WorldWideScience

Sample records for endothelial superoxide production

  1. Curcumin supplementation could improve diabetes-induced endothelial dysfunction associated with decreased vascular superoxide production and PKC inhibition

    Directory of Open Access Journals (Sweden)

    Ruangvejvorachai Preecha

    2010-10-01

    Full Text Available Abstract Background Curcumin, an Asian spice and food-coloring agent, is known for its anti-oxidant properties. We propose that curcumin can improve diabetes-induced endothelial dysfunction through superoxide reduction. Methods Diabetes (DM was induced in rats by streptozotocin (STZ. Daily curcumin oral feeding was started six weeks after the STZ injection. Twelve weeks after STZ injection, mesenteric arteriolar responses were recorded in real time using intravital fluorescence videomicroscopy. Superoxide and vascular protein kinase C (PKC-βII were examined by hydroethidine and immunofluorescence, respectively. Results The dilatory response to acetylcholine (ACh significantly decreased in DM arterioles as compared to control arterioles. There was no difference among groups when sodium nitroprusside (SNP was used. ACh responses were significantly improved by both low and high doses (30 and 300 mg/kg, respectively of curcumin supplementation. An oxygen radical-sensitive fluorescent probe, hydroethidine, was used to detect intracellular superoxide anion (O2●- production. O2●- production was markedly increased in DM arterioles, but it was significantly reduced by supplementation of either low or high doses of curcumin. In addition, with a high dose of curcumin, diabetes-induced vascular PKC-βII expression was diminished. Conclusion Therefore, it is suggested that curcumin supplementation could improve diabetes-induced endothelial dysfunction significantly in relation to its potential to decrease superoxide production and PKC inhibition.

  2. Intermittent high glucose implements stress-induced senescence in human vascular endothelial cells: role of superoxide production by NADPH oxidase.

    Directory of Open Access Journals (Sweden)

    Morihiko Maeda

    Full Text Available Impaired glucose tolerance characterized by postprandial hyperglycemia, which occurs frequently in elderly persons and represents an important preliminary step in diabetes mellitus, poses an independent risk factor for the development of atherosclerosis. Endothelial cellular senescence is reported to precede atherosclerosis. We reported that continuous high glucose stimulus causes endothelial senescence more markedly than hypertension or dyslipidemia stimulus. In the present study, we evaluated the effect of fluctuating glucose levels on human endothelial senescence. Constant high glucose increased senescence-associated-β-galactosidase (SA-β-gal activity, a widely used marker for cellular senescence. Interestingly, in intermittent high glucose, this effect was more pronounced as well as increase of p21 and p16INK4a , senescence related proteins with DNA damage. However, telomerase was not activated and telomere length was not shortened, thus stress-induced senescence was shown. However, constant high glucose activated telomerase and shortened telomere length, which suggested replicative senescence. Intermittent but not constant high glucose strikingly up-regulated the expression of p22phox, an NADPH oxidase component, increasing superoxide. The small interfering RNA of p22phox undermined the increase in SA-β-gal activity induced by intermittent high glucose. Conclusively, intermittent high glucose can promote vascular endothelial senescence more than constant high glucose, which is in partially dependent on superoxide overproduction.

  3. Mediation of endothelial cell damage by serine proteases, but not superoxide, released from antineutrophil cytoplasmic antibody-stimulated neutrophils.

    Science.gov (United States)

    Lu, X; Garfield, A; Rainger, G E; Savage, C O S; Nash, G B

    2006-05-01

    To evaluate potential mediators of endothelial cell injury in systemic vasculitis associated with antineutrophil cytoplasmic antibodies (ANCAs), we investigated the factors controlling the neutrophil respiratory burst and endothelial release of von Willebrand factor (vWF) during neutrophil-endothelial cell interactions. Superoxide release from neutrophils binding to purified P-selectin or to tumor necrosis factor-activated endothelial cells was measured under flow or static conditions using the superoxide dismutase (SOD)-inhibitable reduction of ferricytochrome c. Neutrophils were activated with fMLP, normal IgG, or ANCA IgG. Enzyme-linked immunosorbent assay was used to measure vWF. Serine protease activity was measured enzymatically. ANCA IgG or fMLP induced superoxide release when perfused over neutrophils that were rolling over P-selectin, but not those that were binding to endothelial cells. In static assays, endothelial cells inhibited superoxide production by neutrophils. Adenosine inhibited the respiratory burst, and, in cocultures, adenosine deaminase overcame the inhibitory effects of endothelial cells. Serine proteases were released during activated neutrophil-endothelial cell coculture. There was enhanced release of vWF during activated neutrophil-endothelial cell coculture; this was not inhibited by diphenyleneiodonium or by SOD plus catalase, but was inhibited by diisopropylfluorophosphate. Endothelial cells inhibit superoxide generation by fMLP and ANCA-activated neutrophils. The release of vWF occurs during coculture and is sensitive to serine protease, but not NADPH oxidase inhibition. Serine proteases may play a more important role than reactive oxygen species as mediators of endothelial injury during ANCA-associated systemic vasculitis.

  4. Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A.

    Science.gov (United States)

    Yamagishi, S I; Edelstein, D; Du, X L; Kaneda, Y; Guzmán, M; Brownlee, M

    2001-07-06

    Leptin, a circulating hormone secreted mainly from adipose tissues, is involved in the control of body weight. The plasma concentrations are correlated with body mass index, and are reported to be high in patients with insulin resistance, which is one of the major risk factors for cardiovascular disease. However, the direct effect of leptin on vascular wall cells is not fully understood. In this study, we investigated the effects of leptin on reactive oxygen species (ROS) generation and expression of monocyte chemoattractant protein-1 (MCP-1) in bovine aortic endothelial cells (BAEC). We found that leptin increases ROS generation in BAEC in a dose-dependent manner and that its effects are additive with those of glucose. Rotenone, thenoyltrifluoroacetone (TTFA), carbonyl cyanide m-chlorophenylhydrazone (CCCP), Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP), uncoupling protein-1 (UCP1) HVJ-liposomes, or manganese superoxide dismutase (MnSOD) HVJ-liposomes completely prevented the effect of leptin, suggesting that ROS arise from mitochondrial electron transport. Leptin increased fatty acid oxidation by stimulating the activity of carnitine palmitoyltransferase-1 (CPT-1) and inhibiting that of acetyl-CoA carboxylase (ACC), pace-setting enzymes for fatty acid oxidation and synthesis, respectively. Leptin-induced ROS generation, CPT-1 activation, ACC inhibition, and MCP-1 overproduction were found to be completely prevented by either genistein, a tyrosine kinase inhibitor, H-89, a protein kinase A (PKA) inhibitor, or tetradecylglycidate, a CPT-1 inhibitor. Leptin activated PKA, and the effects of leptin were inhibited by the cAMP antagonist Rp-cAMPS. These results suggest that leptin induces ROS generation by increasing fatty acid oxidation via PKA activation, which may play an important role in the progression of atherosclerosis in insulin-resistant obese diabetic patients.

  5. Differential production of superoxide by neuronal mitochondria

    Directory of Open Access Journals (Sweden)

    Levin Leonard A

    2008-01-01

    Full Text Available Abstract Background Mitochondrial DNA (mtDNA mutations, which are present in all mitochondria-containing cells, paradoxically cause tissue-specific disease. For example, Leber's hereditary optic neuropathy (LHON results from one of three point mutations mtDNA coding for complex I components, but is only manifested in retinal ganglion cells (RGCs, a central neuron contained within the retina. Given that RGCs use superoxide for intracellular signaling after axotomy, and that LHON mutations increase superoxide levels in non-RGC transmitochondrial cybrids, we hypothesized that RGCs regulate superoxide levels differently than other neuronal cells. To study this, we compared superoxide production and mitochondrial electron transport chain (METC components in isolated RGC mitochondria to mitochondria isolated from cerebral cortex and neuroblastoma SK-N-AS cells. Results In the presence of the complex I substrate glutamate/malate or the complex II substrate succinate, the rate of superoxide production in RGC-5 cells was significantly lower than cerebral or neuroblastoma cells. Cerebral but not RGC-5 or neuroblastoma cells increased superoxide production in response to the complex I inhibitor rotenone, while neuroblastoma but not cerebral or RGC-5 cells dramatically decreased superoxide production in response to the complex III inhibitor antimycin A. Immunoblotting and real-time quantitative PCR of METC components demonstrated different patterns of expression among the three different sources of neuronal mitochondria. Conclusion RGC-5 mitochondria produce superoxide at significantly lower rates than cerebral and neuroblastoma mitochondria, most likely as a result of differential expression of complex I components. Diversity in METC component expression and function could explain tissue specificity in diseases associated with inherited mtDNA abnormalities.

  6. Extracellular but not cytosolic superoxide dismutase protects against oxidant-mediated endothelial dysfunction

    Directory of Open Access Journals (Sweden)

    Erin L. Foresman

    2013-01-01

    Full Text Available Superoxide (O2•− contributes to the development of cardiovascular disease. Generation of O2•− occurs in both the intracellular and extracellular compartments. We hypothesized that the gene transfer of cytosolic superoxide dismutase (SOD1 or extracellular SOD (SOD3 to blood vessels would differentially protect against O2•−-mediated endothelial-dependent dysfunction. Aortic ring segments from New Zealand rabbits were incubated with adenovirus (Ad containing the gene for Escherichia coli β-galactosidase, SOD1, or SOD3. Activity assays confirmed functional overexpression of both SOD3 and SOD1 isoforms in aorta 24 h following gene transfer. Histochemical staining for β-galactosidase showed gene transfer occurred in the endothelium and adventitia. Next, vessels were prepared for measurement of isometric tension in Kreb's buffer containing xanthine. After precontraction with phenylephrine, xanthine oxidase impaired relaxation to the endothelium-dependent dilator acetylcholine (ACh, max relaxation 33±4% with XO vs. 64±3% without XO, p<0.05, whereas relaxation to the endothelium-independent dilator sodium nitroprusside was unaffected. In the presence of XO, maximal relaxation to ACh was improved in vessels incubated with AdSOD3 (55±2%, p<0.05 vs. control but not AdSOD1 (34±4%. We conclude that adenoviral-mediated gene transfer of SOD3, but not SOD1, protects the aorta from xanthine/XO-mediated endothelial dysfunction. These data provide important insight into the location and enzymatic source of O2•− production in vascular disease.

  7. Clastogenic Factors as Potential Biomarkers of Increased Superoxide Production

    OpenAIRE

    Ingrid Emerit

    2007-01-01

    The formation of clastogenic factors (CF) and their damaging effects are mediated by superoxide, since superoxide dismutase is regularly protective. CF are produced via superoxide and stimulate the production of superoxide by monocytes and neutrophils. This results in a selfsustaining and longlasting process of clastogenesis, which may exceed the DNA repair system and ultimately lead to cancer (Emerit, 1994). An increased cancer risk is indeed observed in conditions accompanied by CF formatio...

  8. Nitric oxide and superoxide dismutase modulate endothelial progenitor cell function in type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Brenner Benjamin

    2009-10-01

    Full Text Available Abstract Background The function of endothelial progenitor cells (EPCs, which are key cells in vascular repair, is impaired in diabetes mellitus. Nitric oxide (NO and reactive oxygen species can regulate EPC functions. EPCs tolerate oxidative stress by upregulating superoxide dismutase (SOD, the enzyme that neutralizes superoxide anion (O2-. Therefore, we investigated the roles of NO and SOD in glucose-stressed EPCs. Methods The functions of circulating EPCs from patients with type 2 diabetes were compared to those from healthy individuals. Healthy EPCs were glucose-stressed, and then treated with insulin and/or SOD. We assessed O2- generation, NO production, SOD activity, and their ability to form colonies. Results EPCs from diabetic patients generated more O2-, had higher NAD(PH oxidase and SOD activity, but lower NO bioavailability, and expressed higher mRNA and protein levels of p22-phox, and manganese SOD and copper/zinc SOD than those from the healthy individuals. Plasma glucose and HbA1c levels in the diabetic patients were correlated negatively with the NO production from their EPCs. SOD treatment of glucose-stressed EPCs attenuated O2- generation, restored NO production, and partially restored their ability to form colonies. Insulin treatment of glucose-stressed EPCs increased NO production, but did not change O2- generation and their ability to form colonies. However, their ability to produce NO and to form colonies was fully restored after combined SOD and insulin treatment. Conclusion Our data provide evidence that SOD may play an essential role in EPCs, and emphasize the important role of antioxidant therapy in type 2 diabetic patients.

  9. Mitochondrial complex I deactivation is related to superoxide production in acute hypoxia

    Directory of Open Access Journals (Sweden)

    Pablo Hernansanz-Agustín

    2017-08-01

    Full Text Available Mitochondria use oxygen as the final acceptor of the respiratory chain, but its incomplete reduction can also produce reactive oxygen species (ROS, especially superoxide. Acute hypoxia produces a superoxide burst in different cell types, but the triggering mechanism is still unknown. Herein, we show that complex I is involved in this superoxide burst under acute hypoxia in endothelial cells. We have also studied the possible mechanisms by which complex I could be involved in this burst, discarding reverse electron transport in complex I and the implication of PTEN-induced putative kinase 1 (PINK1. We show that complex I transition from the active to ‘deactive’ form is enhanced by acute hypoxia in endothelial cells and brain tissue, and we suggest that it can trigger ROS production through its Na+/H+ antiporter activity. These results highlight the role of complex I as a key actor in redox signalling in acute hypoxia.

  10. Superoxide anion production by human neutrophils activated by Trichomonas vaginalis.

    Science.gov (United States)

    Song, Hyun-Ouk; Ryu, Jae-Sook

    2013-08-01

    Neutrophils are the predominant inflammatory cells found in vaginal discharges of patients infected with Trichomonas vaginalis. In this study, we examined superoxide anion (O2 (.-)) production by neutrophils activated by T. vaginalis. Human neutrophils produced superoxide anions when stimulated with either a lysate of T. vaginalis, its membrane component (MC), or excretory-secretory product (ESP). To assess the role of trichomonad protease in production of superoxide anions by neutrophils, T. vaginalis lysate, ESP, and MC were each pretreated with a protease inhibitor cocktail before incubation with neutrophils. Superoxide anion production was significantly decreased by this treatment. Trichomonad growth was inhibited by preincubation with supernatants of neutrophils incubated for 3 hr with T. vaginalis lysate. Furthermore, myeloperoxidase (MPO) production by neutrophils was stimulated by live trichomonads. These results indicate that the production of superoxide anions and MPO by neutrophils stimulated with T. vaginalis may be a part of defense mechanisms of neutrophils in trichomoniasis.

  11. Aerobic Swim Training Restores Aortic Endothelial Function by Decreasing Superoxide Levels in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Camila P. Jordão

    Full Text Available OBJECTIVE: We aimed to determine whether aerobic training decreases superoxide levels, increases nitric oxide levels, and improves endothelium-dependent vasodilation in the aortas of spontaneously hypertensive rats. METHODS: Spontaneously hypertensive rats (SHR and Wistar Kyoto rats (WKY were distributed into 2 groups: sedentary (SHRsd and WKYsd, n=10 each and swimming-trained (SHRtr, n=10 and WKYtr, n=10, respectively. The trained group participated in training sessions 5 days/week for 1 h/day with an additional work load of 4% of the animal’s body weight. After a 10-week sedentary or aerobic training period, the rats were euthanized. The thoracic aortas were removed to evaluate the vasodilator response to acetylcholine (10-10 to 10-4 M with or without preincubation with L-NG-nitro-L-arginine methyl ester hydrochloride (L-NAME; 10-4 M in vitro. The aortic tissue was also used to assess the levels of the endothelial nitric oxide synthase and nicotinamide adenine dinucleotide oxidase subunit isoforms 1 and 4 proteins, as well as the superoxide and nitrite contents. Blood pressure was measured using a computerized tail-cuff system. RESULTS: Aerobic training significantly increased the acetylcholine-induced maximum vasodilation observed in the SHRtr group compared with the SHRsd group (85.9±4.3 vs. 71.6±5.2%. Additionally, in the SHRtr group, superoxide levels were significantly decreased, nitric oxide bioavailability was improved, and the levels of the nicotinamide adenine dinucleotide oxidase subunit isoform 4 protein were decreased compared to the SHRsd group. Moreover, after training, the blood pressure of the SHRtr group decreased compared to the SHRsd group. Exercise training had no effect on the blood pressure of the WKYtr group. CONCLUSIONS: In SHR, aerobic swim training decreased vascular superoxide generation by nicotinamide adenine dinucleotide oxidase subunit isoform 4 and increased nitric oxide bioavailability, thereby improving

  12. Aerobic Swim Training Restores Aortic Endothelial Function by Decreasing Superoxide Levels in Spontaneously Hypertensive Rats.

    Science.gov (United States)

    Jordão, Camila P; Fernandes, Tiago; Tanaka, Leonardo Yuji; Bechara, Luiz R Grassmann; de Sousa, Luis Gustavo Oliveira; Oliveira, Edilamar M; Ramires, Paulo Rizzo

    2017-05-01

    We aimed to determine whether aerobic training decreases superoxide levels, increases nitric oxide levels, and improves endothelium-dependent vasodilation in the aortas of spontaneously hypertensive rats. Spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY) were distributed into 2 groups: sedentary (SHRsd and WKYsd, n=10 each) and swimming-trained (SHRtr, n=10 and WKYtr, n=10, respectively). The trained group participated in training sessions 5 days/week for 1 h/day with an additional work load of 4% of the animal's body weight. After a 10-week sedentary or aerobic training period, the rats were euthanized. The thoracic aortas were removed to evaluate the vasodilator response to acetylcholine (10-10 to 10-4 M) with or without preincubation with L-NG-nitro-L-arginine methyl ester hydrochloride (L-NAME; 10-4 M) in vitro. The aortic tissue was also used to assess the levels of the endothelial nitric oxide synthase and nicotinamide adenine dinucleotide oxidase subunit isoforms 1 and 4 proteins, as well as the superoxide and nitrite contents. Blood pressure was measured using a computerized tail-cuff system. Aerobic training significantly increased the acetylcholine-induced maximum vasodilation observed in the SHRtr group compared with the SHRsd group (85.9±4.3 vs. 71.6±5.2%). Additionally, in the SHRtr group, superoxide levels were significantly decreased, nitric oxide bioavailability was improved, and the levels of the nicotinamide adenine dinucleotide oxidase subunit isoform 4 protein were decreased compared to the SHRsd group. Moreover, after training, the blood pressure of the SHRtr group decreased compared to the SHRsd group. Exercise training had no effect on the blood pressure of the WKYtr group. In SHR, aerobic swim training decreased vascular superoxide generation by nicotinamide adenine dinucleotide oxidase subunit isoform 4 and increased nitric oxide bioavailability, thereby improving endothelial function.

  13. Superoxide anion production in the rat penis impairs erectile function in diabetes: influence of in vivo extracellular superoxide dismutase gene therapy.

    Science.gov (United States)

    Bivalacqua, Trinity J; Usta, Mustafa F; Kendirci, Muammer; Pradhan, Leena; Alvarez, Xavier; Champion, Hunter C; Kadowitz, Philip J; Hellstrom, Wayne J G

    2005-03-01

    Superoxide anion may contribute to erectile dysfunction (ED) in diabetes mellitus by reducing cavernosal nitric oxide (NO) bioavailability. The purpose of this study was to determine if gene transfer of extracellular superoxide dismutase (EC-SOD) can reduce superoxide anion formation and determine if this reactive oxygen species may contribute to diabetes-related ED in an experimental model of diabetes. Three groups of animals were utilized: (1) control; (2) streptozotocin (STZ)-diabetic rats [60 mg/kg intraperitoneally (ip)] intracavernosally injected with AdCMVbetagal (negative control); and (3) STZ-rats intracavernosally injected with AdCMVEC-SOD. Two months after ip injection of STZ, groups 2 and 3 were transfected with the adenoviruses and 2 days after transfection, all animals underwent cavernosal nerve stimulation (CNS) to assess erectile function. Confocal microscopy for superoxide anion and von Willebrand Factor (vWF) was performed in the STZ-diabetic rat. Superoxide anion production, total SOD activity, and cyclic guanosine monophosphate (cGMP) levels were measured in each experimental group of rats. Confocal microscopy demonstrated superoxide in smooth muscle and endothelial cells of the STZ-rat cavernosum and colocalized with vWF in the endothelium. Higher superoxide anion levels and decreased cGMP levels were found in the penis of STZ-rats at a time when erectile function was reduced. Two days after administration of AdCMVEC-SOD, superoxide anion levels were significantly lower in the penis of STZ-rats. Total SOD activity and cavernosal cGMP was increased in the penis of EC-SOD-transfected rats. STZ-rats transfected with AdCMVEC-SOD had a peak intracavernosal pressure (ICP) and total ICP to CNS that was similar to control rats. These data demonstrate that in vivo adenoviral gene transfer of EC-SOD can reduce corporal superoxide anion levels and raise cavernosal cGMP levels by increasing NO bioavailability thus restoring erectile function in the STZ

  14. Suppression of neutrophil superoxide production by conventional peritoneal dialysis solution.

    Science.gov (United States)

    Ing, B L; Gupta, D K; Nawab, Z M; Zhou, F Q; Rahman, M A; Daugirdas, J T

    1988-09-01

    The pH of conventional peritoneal dialysis solution is normally in the range of 5.0 to 5.5, because acid has been added during the manufacturing process to prevent caramelization of dextrose during sterilization. We studied the effects of normalizing the pH of conventional peritoneal dialysis solution on superoxide production by normal human neutrophils. At a pH of 6.0, superoxide generation was 4.07 +/- 2.56 (SD) nanomoles per million cells. With normalization of pH to 7.4, superoxide production was 19.3 +/- 7.3 (p less than 0.001). The results suggest that the unphysiologic acidity of conventional peritoneal dialysis solution has deleterious consequences on neutrophil superoxide formation.

  15. High glucose impairs superoxide production from isolated blood neutrophils

    DEFF Research Database (Denmark)

    Perner, A; Nielsen, S E; Rask-Madsen, J

    2003-01-01

    Superoxide (O(2)(-)), a key antimicrobial agent in phagocytes, is produced by the activity of NADPH oxidase. High glucose concentrations may, however, impair the production of O(2)(-) through inhibition of glucose-6-phosphate dehydrogenase (G6PD), which catalyzes the formation of NADPH. This study...

  16. High glucose impairs superoxide production from isolated blood neutrophils

    DEFF Research Database (Denmark)

    Perner, A; Nielsen, S E; Rask-Madsen, J

    2003-01-01

    Superoxide (O(2)(-)), a key antimicrobial agent in phagocytes, is produced by the activity of NADPH oxidase. High glucose concentrations may, however, impair the production of O(2)(-) through inhibition of glucose-6-phosphate dehydrogenase (G6PD), which catalyzes the formation of NADPH. This study...... measured the acute effects of high glucose or the G6PD inhibitor dehydroepiandrosterone (DHEA) on the production of O(2)(-) from isolated human neutrophils....

  17. Ceruloplasmin enhances smooth muscle cell- and endothelial cell-mediated low density lipoprotein oxidation by a superoxide-dependent mechanism

    Science.gov (United States)

    Mukhopadhyay, C. K.; Ehrenwald, E.; Fox, P. L.

    1996-01-01

    Cultured vascular smooth muscle cells (SMC) and endothelial cells (EC) stimulate low density lipoprotein (LDL) oxidation by free radical-mediated, transition metal-dependent mechanisms. The physiological source(s) of metal ions is not known; however, purified ceruloplasmin, a plasma protein containing 7 coppers, oxidizes LDL in vitro. We now show that ceruloplasmin also increases LDL oxidation by vascular cells. In metal ion-free medium, human ceruloplasmin increased bovine aortic SMC- and EC-mediated LDL oxidation by up to 30- and 15-fold, respectively. The maximal response was at 100-300 microg ceruloplasmin/ml, a level at or below the unevoked physiological plasma concentration. Oxidant activity was dependent on protein structure as a specific proteolytic cleavage or removal of one of the seven ceruloplasmin copper atoms inhibited activity. Three lines of evidence indicated a critical role for cellular superoxide (O2.) in ceruloplasmin-stimulated oxidation. First, the rate of production of O2. by cells correlated with their rates of LDL oxidation. Second, superoxide dismutase effectively blocked ceruloplasmin-stimulated oxidation by both cell types. Finally, O2. production by SMC quantitatively accounted for the observed rate of LDL oxidation. To show this, the course of O2. production by SMC was simulated by repeated addition of xanthine and xanthine oxidase to culture medium under cell-free conditions. Neither ceruloplasmin nor O2. alone increased LDL oxidation, but together they completely reconstituted the oxidation rate of ceruloplasmin-stimulated SMC. These results are the first to show that ceruloplasmin stimulates EC- and SMC-mediated oxidation of LDL and that cell-derived O2. accounts quantitatively for metal-dependent, free radical-initiated oxidation of LDL by these cells.

  18. Manganese superoxide dismutase expression in endothelial progenitor cells accelerates wound healing in diabetic mice.

    Science.gov (United States)

    Marrotte, Eric J; Chen, Dan-Dan; Hakim, Jeffrey S; Chen, Alex F

    2010-12-01

    Amputation as a result of impaired wound healing is a serious complication of diabetes. Inadequate angiogenesis contributes to poor wound healing in diabetic patients. Endothelial progenitor cells (EPCs) normally augment angiogenesis and wound repair but are functionally impaired in diabetics. Here we report that decreased expression of manganese superoxide dismutase (MnSOD) in EPCs contributes to impaired would healing in a mouse model of type 2 diabetes. A decreased frequency of circulating EPCs was detected in type 2 diabetic (db/db) mice, and when isolated, these cells exhibited decreased expression and activity of MnSOD. Wound healing and angiogenesis were markedly delayed in diabetic mice compared with normal controls. For cell therapy, topical transplantation of EPCs onto excisional wounds in diabetic mice demonstrated that diabetic EPCs were less effective than normal EPCs at accelerating wound closure. Transplantation of diabetic EPCs after MnSOD gene therapy restored their ability to mediate angiogenesis and wound repair. Conversely, siRNA-mediated knockdown of MnSOD in normal EPCs reduced their activity in diabetic wound healing assays. Increasing the number of transplanted diabetic EPCs also improved the rate of wound closure. Our findings demonstrate that cell therapy using diabetic EPCs after ex vivo MnSOD gene transfer accelerates their ability to heal wounds in a mouse model of type 2 diabetes.

  19. Trans fatty acids induce vascular inflammation and reduce vascular nitric oxide production in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Naomi G Iwata

    Full Text Available Intake of trans fatty acids (TFA, which are consumed by eating foods made from partially hydrogenated vegetable oils, is associated with a higher risk of cardiovascular disease. This relation can be explained by many factors including TFA's negative effect on endothelial function and reduced nitric oxide (NO bioavailability. In this study we investigated the effects of three different TFA (2 common isomers of C18 found in partially hydrogenated vegetable oil and a C18 isomer found from ruminant-derived-dairy products and meat on endothelial NF-κB activation and nitric oxide (NO production. Human endothelial cells were treated with increasing concentrations of Elaidic (trans-C18:1 (9 trans, Linoelaidic (trans-C18:2 (9 trans, 12 trans, and Transvaccenic (trans-C18:1 (11 trans for 3 h. Both Elaidic and Linoelaidic acids were associated with increasing NF-κB activation as measured by IL-6 levels and phosphorylation of IκBα, and impairment of endothelial insulin signaling and NO production, whereas Transvaccenic acid was not associated with these responses. We also measured superoxide production, which has been hypothesized to be necessary in fatty acid-dependent activation of NF-κB. Both Elaidic acid and Linoelaidic acid are associated with increased superoxide production, whereas Transvaccenic acid (which did not induce inflammatory responses did not increase superoxide production. We observed differential activation of endothelial superoxide production, NF-κB activation, and reduction in NO production by different C18 isomers suggesting that the location and number of trans double bonds effect endothelial NF-κB activation.

  20. Inactivation of Escherichia coli by superoxide radicals and their dismutation products

    NARCIS (Netherlands)

    Hemmen, J.J. van; Meuling, W.J.A.

    1977-01-01

    E. coli cells are inactivated by the products of the reaction between dialuric acid and oxygen, of which the primary product is superoxide. The rate of inactivation is decreased by superoxide dismutase, by catalase, and by EDTA, whereas it is increased by addition of cupric ions or hydrogen

  1. Detoxification of superoxide without production of H2O2: antioxidant activity of superoxide reductase complexed with ferrocyanide

    CERN Document Server

    Molina-Heredia, Fernando P; Berthomieu, Catherine; Touati, Danièle; Tremey, Emilie; Favaudon, Vincent; Adam, Virgile; Nivière, Vincent

    2015-01-01

    The superoxide radical O(2)(-.) is a toxic by-product of oxygen metabolism. Two O(2)(-.) detoxifying enzymes have been described so far, superoxide dismutase and superoxide reductase (SOR), both forming H2O2 as a reaction product. Recently, the SOR active site, a ferrous iron in a [Fe(2+) (N-His)(4) (S-Cys)] pentacoordination, was shown to have the ability to form a complex with the organometallic compound ferrocyanide. Here, we have investigated in detail the reactivity of the SOR-ferrocyanide complex with O(2)(-.) by pulse and gamma-ray radiolysis, infrared, and UV-visible spectroscopies. The complex reacts very efficiently with O(2)(-.). However, the presence of the ferrocyanide adduct markedly modifies the reaction mechanism of SOR, with the formation of transient intermediates different from those observed for SOR alone. A one-electron redox chemistry appears to be carried out by the ferrocyanide moiety of the complex, whereas the SOR iron site remains in the reduced state. Surprisingly, the toxic H2O2 s...

  2. Dark production of extracellular superoxide by the coral Porites astreoides and representative symbionts

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    2016-11-01

    Full Text Available The reactive oxygen species (ROS superoxide has been implicated in both beneficial and detrimental processes in coral biology, ranging from pathogenic disease resistance to coral bleaching. Despite the critical role of ROS in coral health, there is a distinct lack of ROS measurements and thus an incomplete understanding of underpinning ROS sources and production mechanisms within coral systems. Here, we quantified in situ extracellular superoxide concentrations at the surfaces of aquaria-hosted Porites astreoides during a diel cycle. High concentrations of superoxide (~10’s of nM were present at coral surfaces, and these levels did not change significantly as a function of time of day. These results indicate that the coral holobiont produces extracellular superoxide in the dark, independent of photosynthesis. As a short-lived anion at physiological pH, superoxide has a limited ability to cross intact biological membranes. Further, removing surface mucus layers from the P. astreoides colonies did not impact external superoxide concentrations. We therefore attribute external superoxide derived from the coral holobiont under these conditions to the activity of the coral host epithelium, rather than mucus-derived epibionts or internal sources such as endosymbionts (e.g., Symbiodinium. However, endosymbionts likely contribute to internal ROS levels via extracellular superoxide production. Indeed, common coral symbionts, including multiple strains of Symbiodinium (clades A to D and the bacterium Endozoicomonas montiporae LMG 24815, produced extracellular superoxide in the dark and at low light levels. Further, representative P. astreoides symbionts, Symbiodinium CCMP2456 (clade A and E. montiporae, produced similar concentrations of superoxide alone and in combination with each other, in the dark and low light, and regardless of time of day. Overall, these results indicate that healthy, non-stressed P. astreoides and representative symbionts produce

  3. Essential role of copper-zinc superoxide dismutase for ischemia-induced neovascularization via modulation of bone marrow-derived endothelial progenitor cells.

    Science.gov (United States)

    Groleau, Jessika; Dussault, Sylvie; Haddad, Paola; Turgeon, Julie; Ménard, Catherine; Chan, John S; Rivard, Alain

    2010-11-01

    To investigate the effect of oxidative stress on ischemia-induced neovascularization in copper-zinc (CuZn) superoxide dismutase (SOD)-deficient mice. In the vascular wall, CuZnSOD is essential for protecting against excessive oxidative stress and maintaining endothelial function. However, its specific role for the development of new vessels in response to ischemia is unknown. After surgically induced hind limb ischemia, CuZnSOD-deficient mice showed impaired neovascularization, as assessed by blood flow recuperation (laser Doppler) and capillary density in the ischemic muscles. This was associated with increased levels of oxidative stress in ischemic tissues and peripheral blood, together with reduced plasmatic NO production. CuZnSOD-deficient mice demonstrated an important reduction in the number of endothelial progenitor cells (EPCs) in the bone marrow and spleen. Moreover, EPCs isolated from CuZnSOD-deficient mice showed increased oxidative stress levels, decreased NO production, and a reduced ability to migrate and integrate into capillary-like networks. Importantly, the functional activities of CuZnSOD-deficient EPCs were rescued after treatment with the SOD-mimetic Tempol (a membrane-permeable radical scavenger) or the NO donor sodium nitroprusside (SNP). Moreover, the neovascularization defect in CuZnSOD-deficient mice could be rescued by wild-type (but not CuZnSOD-deficient) EPC supplementation. Protection against oxidative stress by CuZnSOD may be essential for EPC function and reparative neovascularization after ischemia.

  4. Propofol attenuates high glucose-induced superoxide anion accumulation in human umbilical vein endothelial cells.

    Science.gov (United States)

    Wang, Jiaqiang; Jiang, Hui; Wang, Jing; Zhao, Yanjun; Zhu, Yun; Zhu, Minmin

    2016-12-01

    Perioperative hyperglycemia is a common clinical metabolic disorder. Hyperglycemia could induce endothelial apoptosis, dysfunction, and inflammation, resulting in endothelial injury. Propofol is a widely used anesthetic drug in clinical settings. Our previous studies indicated that propofol attenuated high glucose-induced endothelial apoptosis, dysfunction, and inflammation via inhibiting reactive oxygen species (ROS) accumulation. However, the mechanisms by which propofol reduces high glucose-induced endothelial ROS accumulation are still obscure. In this study, we examined how propofol attenuates high glucose-induced endothelial ROS accumulation. Compared with 5 mm glucose treatment, 15 mm glucose upregulated the expression of pin-1, phosphatase A2 (PP2A), p66shc and mitochondrial p66shc expression, increased p66shc -Ser36 phosphorylation, and O2·- accumulation. More importantly, although propofol had no effect on 15 mm glucose-induced p66shc -Ser36 phosphorylation and pin-1 expression, propofol could downregulated PP2A expression and p66shc expression in whole-cell and mitochondrion, resulting in the reduction of O2·- accumulation. Moreover, we demonstrated that the antioxidative effect of propofol was similar to that of calyculin A, an inhibitor of PP2A. In contrast, FTY720, an activator of PP2A, antagonized the effect of propofol. Our data indicated that the antioxidative effect of propofol was achieved by downregulating PP2A expression, resulting in the inhibition of p66shc -Ser36 dephosphorylation and mitochondrial p66shc expression. © 2016 Société Française de Pharmacologie et de Thérapeutique.

  5. Neutrophil superoxide production in the presence of cigarette smoke extract, nicotine and cotinine.

    Science.gov (United States)

    Matthews, John B; Chen, Fa-Ming; Milward, Michael R; Ling, Martin R; Chapple, Iain L C

    2012-07-01

    To determine the effect of cigarette smoke extract, nicotine and cotinine on lucigenin-detectable neutrophil superoxide production. Neutrophils from periodontally healthy individuals were treated with aqueous smoke extract, nicotine and cotinine, prior to stimulation or at the same time as stimulation with Fusobacterium nucleatum, IgG-opsonized Staphylococcus aureus and Escherichia coli Lipopolysaccharide (LPS). Superoxide generation was determined by lucigenin chemiluminescence. Smoke extract induced superoxide release from neutrophils (p Nicotine and cotinine (0-10 μg/ml) had no effect on superoxide release from unstimulated or stimulated neutrophils. Stable water-soluble components of cigarette smoke directly induce superoxide generation by otherwise unstimulated neutrophils, but reduce superoxide responses of cells to pathologically relevant stimuli. These data suggest potential neutrophil-mediated mechanisms by which smoking may initiate and maintain oxidative stress at periodontally healthy sites and participate in disease progression, by reducing innate immune responses. © 2012 John Wiley & Sons A/S.

  6. A Refined Analysis of Superoxide Production by Mitochondrial sn-Glycerol 3-Phosphate Dehydrogenase*

    Science.gov (United States)

    Orr, Adam L.; Quinlan, Casey L.; Perevoshchikova, Irina V.; Brand, Martin D.

    2012-01-01

    The oxidation of sn-glycerol 3-phosphate by mitochondrial sn-glycerol 3-phosphate dehydrogenase (mGPDH) is a major pathway for transfer of cytosolic reducing equivalents to the mitochondrial electron transport chain. It is known to generate H2O2 at a range of rates and from multiple sites within the chain. The rates and sites depend upon tissue source, concentrations of glycerol 3-phosphate and calcium, and the presence of different electron transport chain inhibitors. We report a detailed examination of H2O2 production during glycerol 3-phosphate oxidation by skeletal muscle, brown fat, brain, and heart mitochondria with an emphasis on conditions under which mGPDH itself is the source of superoxide and H2O2. Importantly, we demonstrate that a substantial portion of H2O2 production commonly attributed to mGPDH originates instead from electron flow through the ubiquinone pool into complex II. When complex II is inhibited and mGPDH is the sole superoxide producer, the rate of superoxide production depends on the concentrations of glycerol 3-phosphate and calcium and correlates positively with the predicted reduction state of the ubiquinone pool. mGPDH-specific superoxide production plateaus at a rate comparable with the other major sites of superoxide production in mitochondria, the superoxide-producing center shows no sign of being overreducible, and the maximum superoxide production rate correlates with mGPDH activity in four different tissues. mGPDH produces superoxide approximately equally toward each side of the mitochondrial inner membrane, suggesting that the Q-binding pocket of mGPDH is the major site of superoxide generation. These results clarify the maximum rate and mechanism of superoxide production by mGPDH. PMID:23124204

  7. Superoxide production by cytochrome bc1 complex: a mathematical model

    NARCIS (Netherlands)

    Guillaud, F.; Drose, S.; Kowald, A.; Brandt, U.; Klipp, E.

    2014-01-01

    Reactive oxygen species (ROS) are involved in the pathophysiology of several diseases (e.g. Alzheimer or atherosclerosis) and also in the aging process. The main source of ROS in aerobic organisms is the electron transport chain (ETC) in the inner mitochondrial membrane. Superoxide is produced at

  8. Mn(II) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction

    Energy Technology Data Exchange (ETDEWEB)

    Hansel, C. M.; Zeiner, C. A.; Santelli, C. M.; Webb, S. M.

    2012-07-16

    Manganese (Mn) oxides are among the most reactive minerals within the environment, where they control the bioavailability of carbon, nutrients, and numerous metals. Although the ability of microorganisms to oxidize Mn(II) to Mn(III/IV) oxides is scattered throughout the bacterial and fungal domains of life, the mechanism and physiological basis for Mn(II) oxidation remains an enigma. Here, we use a combination of compound-specific chemical assays, microspectroscopy, and electron microscopy to show that a common Ascomycete filamentous fungus, Stilbella aciculosa, oxidizes Mn(II) to Mn oxides by producing extracellular superoxide during cell differentiation. The reactive Mn oxide phase birnessite and the reactive oxygen species superoxide and hydrogen peroxide are colocalized at the base of asexual reproductive structures. Mn oxide formation is not observed in the presence of superoxide scavengers (e.g., Cu) and inhibitors of NADPH oxidases (e.g., diphenylene iodonium chloride), enzymes responsible for superoxide production and cell differentiation in fungi. Considering the recent identification of Mn(II) oxidation by NADH oxidase-based superoxide production by a common marine bacterium (Roseobacter sp.), these results introduce a surprising homology between some prokaryotic and eukaryotic organisms in the mechanisms responsible for Mn(II) oxidation, where oxidation appears to be a side reaction of extracellular superoxide production. Finally, given the versatility of superoxide as a redox reactant and the widespread ability of fungi to produce superoxide, this microbial extracellular superoxide production may play a central role in the cycling and bioavailability of metals (e.g., Hg, Fe, Mn) and carbon in natural systems.

  9. Photochemical production of superoxide and hydrogen peroxide from natural organic matter

    Science.gov (United States)

    Garg, Shikha; Rose, Andrew L.; Waite, T. David

    2011-08-01

    Irradiation of Suwannee River fulvic acid (SRFA) at pH 8.1 with simulated sunlight resulted in production of nanomolar concentrations of superoxide and hydrogen peroxide. SRFA contains a redox-active chromophore which reduced oxygen to yield superoxide upon photoexcitation. Hydrogen peroxide was generated exclusively via uncatalysed disproportionation of superoxide produced in this way. Superoxide decayed through both uncatalysed disproportionation and an oxidative pathway that did not result in hydrogen peroxide production, whereas hydrogen peroxide did not undergo further reaction to any discernible extent over the one-hour duration of irradiation. Singlet oxygen did not contribute substantially to production of superoxide or hydrogen peroxide but was found to play a critical role in controlling the mechanism and associated rate of superoxide decay in the irradiated solution. A kinetic model based on these observations is presented which provides an excellent description of the experimental results and is also consistent with observations from a wide range of other studies in which various aspects of SRFA redox chemistry and photochemistry have been investigated.

  10. Evidence for Two Sites of Superoxide Production by Mitochondrial NADH-Ubiquinone Oxidoreductase (Complex I)*

    Science.gov (United States)

    Treberg, Jason R.; Quinlan, Casey L.; Brand, Martin D.

    2011-01-01

    Complex I (NADH-ubiquinone oxidoreductase) can form superoxide during forward electron flow (NADH-oxidizing) or, at sufficiently high protonmotive force, during reverse electron transport from the ubiquinone (Q) pool (NAD+-reducing). We designed an assay system to allow titration of the redox state of the superoxide-generating site during reverse electron transport in rat skeletal muscle mitochondria: a protonmotive force generated by ATP hydrolysis, succinate:malonate to alter electron supply and modulate the redox state of the Q pool, and inhibition of complex III to prevent QH2 oxidation via the Q cycle. Stepwise oxidation of the QH2/Q pool by increasing malonate concentration slowed the rates of both reverse electron transport and rotenone-sensitive superoxide production by complex I. However, the superoxide production rate was not uniquely related to the resultant potential of the NADH/NAD+ redox couple. Thus, there is a superoxide producer during reverse electron transport at complex I that responds to Q pool redox state and is not in equilibrium with the NAD reduction state. In contrast, superoxide production during forward electron transport in the presence of rotenone was uniquely related to NAD redox state. These results support a two-site model of complex I superoxide production; one site in equilibrium with the NAD pool, presumably the flavin of the FMN moiety (site IF) and the other dependent not only on NAD redox state, but also on protonmotive force and the reduction state of the Q pool, presumably a semiquinone in the Q-binding site (site IQ). PMID:21659507

  11. Role of NAD(PH oxidase in superoxide generation and endothelial dysfunction in Goto-Kakizaki (GK rats as a model of nonobese NIDDM.

    Directory of Open Access Journals (Sweden)

    Sachin Gupte

    Full Text Available BACKGROUND: Cardiovascular disease is the leading cause of mortality in diabetics, and it has a complex etiology that operates on several levels. Endothelial dysfunction and increased generation of reactive oxygen species are believed to be an underlying cause of vascular dysfunction and coronary artery disease in diabetes. This impairment is likely the result of decreased bioavailability of nitric oxide (NO within the vasculature. However, it is unclear whether hyperglycemia per se stimulates NADPH oxidase-derived superoxide generation in vascular tissue. METHODS AND RESULTS: This study focused on whether NADPH oxidase-derived superoxide is elevated in vasculature tissue evoking endothelial/smooth muscle dysfunction in the hyperglycemic (169+/-4 mg% Goto-Kakizaki (GK rat. By dihydroethidine fluorescence staining, we determined that aorta superoxide levels were significantly elevated in 9 month-old GK compared with age matched Wistar (GK; 195+/-6%, Wistar; 100+/-3.5%. Consistent with these findings, 10(-6 mol/L acetylcholine-induced relaxation of the carotid artery was significantly reduced in GK rats compared with age matched Wistar (GK; 41+/-7%, Wistar; 100+/-5% and measurements in the aorta showed a similar trend (p = .08. In contrast, relaxation to the NO donor SNAP was unaltered in GK compared to Wistar. Endothelial dysfunction was reversed by lowering of superoxide with apocynin, a specific Nox inhibitor. CONCLUSIONS: The major findings from this study are that chronic hyperglycemia induces significant vascular dysfunction in both the aorta and small arteries. Hyperglycemic induced increases in NAD(PH oxidase activity that did not come from an increase in the expression of the NAD(PH oxidase subunits, but more likely as a result of chronic activation via intracellular signaling pathways.

  12. Extracellular production and degradation of superoxide in the coral Stylophora pistillata and cultured Symbiodinium.

    Directory of Open Access Journals (Sweden)

    Eldad Saragosti

    Full Text Available BACKGROUND: Reactive oxygen species (ROS are thought to play a major role in cell death pathways and bleaching in scleractinian corals. Direct measurements of ROS in corals are conspicuously in short supply, partly due to inherent problems with ROS quantification in cellular systems. METHODOLOGY/PRINCIPAL FINDINGS: In this study we characterized the dynamics of the reactive oxygen species superoxide anion radical (O(2(- in the external milieu of the coral Stylophora pistillata. Using a sensitive, rapid and selective chemiluminescence-based technique, we measured extracellular superoxide production and detoxification activity of symbiont (non-bleached and aposymbiont (bleached corals, and of cultured Symbiodinium (from clades A and C. Bleached and non-bleached Stylophora fragments were found to produce superoxide at comparable rates of 10(-11-10(-9 mol O(2(- mg protein(-1 min(-1 in the dark. In the light, a two-fold enhancement in O(2(- production rates was observed in non-bleached corals, but not in bleached corals. Cultured Symbiodinium produced superoxide in the dark at a rate of . Light was found to markedly enhance O(2(- production. The NADPH Oxidase inhibitor Diphenyleneiodonium chloride (DPI strongly inhibited O(2(- production by corals (and more moderately by algae, possibly suggesting an involvement of NADPH Oxidase in the process. An extracellular O(2(- detoxifying activity was found for bleached and non-bleached Stylophora but not for Symbiodinium. The O(2(- detoxifying activity was partially characterized and found to resemble that of the enzyme superoxide dismutase (SOD. CONCLUSIONS/SIGNIFICANCE: The findings of substantial extracellular O(2(- production as well as extracellular O(2(- detoxifying activity may shed light on the chemical interactions between the symbiont and its host and between the coral and its environment. Superoxide production by Symbiodinium possibly implies that algal bearing corals are more susceptible to an

  13. Production of superoxide/H2O2 by dihydroorotate dehydrogenase in rat skeletal muscle mitochondria.

    Science.gov (United States)

    Hey-Mogensen, Martin; Goncalves, Renata L S; Orr, Adam L; Brand, Martin D

    2014-07-01

    Dehydrogenases that use ubiquinone as an electron acceptor, including complex I of the respiratory chain, complex II, and glycerol-3-phosphate dehydrogenase, are known to be direct generators of superoxide and/or H2O2. Dihydroorotate dehydrogenase oxidizes dihydroorotate to orotate and reduces ubiquinone to ubiquinol during pyrimidine metabolism, but it is unclear whether it produces superoxide and/or H2O2 directly or does so only indirectly from other sites in the electron transport chain. Using mitochondria isolated from rat skeletal muscle we establish that dihydroorotate oxidation leads to superoxide/H2O2 production at a fairly high rate of about 300pmol H2O2·min(-1)·mg protein(-1) when oxidation of ubiquinol is prevented and complex II is uninhibited. This H2O2 production is abolished by brequinar or leflunomide, known inhibitors of dihydroorotate dehydrogenase. Eighty percent of this rate is indirect, originating from site IIF of complex II, because it can be prevented by malonate or atpenin A5, inhibitors of complex II. In the presence of inhibitors of all known sites of superoxide/H2O2 production (rotenone to inhibit sites in complex I (site IQ and, indirectly, site IF), myxothiazol to inhibit site IIIQo in complex III, and malonate plus atpenin A5 to inhibit site IIF in complex II), dihydroorotate dehydrogenase generates superoxide/H2O2, at a small but significant rate (23pmol H2O2·min(-1)·mg protein(-1)), from the ubiquinone-binding site. We conclude that dihydroorotate dehydrogenase can generate superoxide and/or H2O2 directly at low rates and is also capable of indirect production at higher rates from other sites through its ability to reduce the ubiquinone pool. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain

    NARCIS (Netherlands)

    Drose, S.; Brandt, U.

    2012-01-01

    The mitochondrial respiratory chain is a major source of reactive oxygen species (ROS) in eukaryotic cells. Mitochondrial ROS production associated with a dysfunction of respiratory chain complexes has been implicated in a number of degenerative diseases and biological aging. Recent findings suggest

  15. Hydroethidine detection of superoxide production during the lithium-pilocarpine model of status epilepticus.

    Science.gov (United States)

    Peterson, Steven L; Morrow, Daniel; Liu, Shimin; Liu, Ke Jian

    2002-05-01

    Hydroethidine is reported to be selectively oxidized to ethidium by superoxide. Using digital imaging and fluorescence microscopy it is possible to evaluate neuronal ethidium accumulation in specific brain regions of rats damaged in the lithium-pilocarpine model of status epilepticus. Intravenous or intraperitoneal administration of hydroethidine prior to 1 h of status epilepticus produced diffuse cytosolic distribution of ethidium fluorescence suggesting an increased neuronal production of superoxide that was not observed in control animals. A significantly increased number of neurons with the enhanced ethidium fluorescence was observed in parietal cortex, piriform cortex, perirhinal cortex, lateral amygdala, mediodorsal thalamus and laterodorsal thalamus, suggesting superoxide as a mechanism of neuronal injury in those regions. Other regions injured by lithium-pilocarpine seizures, such as the basolateral amygdala and hippocampus, did not demonstrate the enhanced neuronal ethidium fluorescence. In such regions it is possible that superoxide is not a mechanism of injury or that 1 h of status epilepticus is not sufficient to produce superoxide or other reactive oxygen species.

  16. Production of soluble Neprilysin by endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kuruppu, Sanjaya, E-mail: Sanjaya.Kuruppu@monash.edu [Department of Biochemistry and Molecular Biology, Building 77, Monash University, Wellington Rd, Clayton, Vic 3800 (Australia); Rajapakse, Niwanthi W. [Department of Physiology, Building 13F, Monash University, Wellington Rd, Clayton, Vic 3800 (Australia); Minond, Dmitriy [Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, FL 34987 (United States); Smith, A. Ian [Department of Biochemistry and Molecular Biology, Building 77, Monash University, Wellington Rd, Clayton, Vic 3800 (Australia)

    2014-04-04

    Highlights: • A soluble full-length form of Neprilysin exists in media of endothelial cells. • Exosomal release is the key mechanism for the production of soluble Neprilysin. • Inhibition of ADAM-17 by specific inhibitors reduce Neprilysin release. • Exosome mediated release of Neprilysin is dependent on ADAM-17 activity. - Abstract: A non-membrane bound form of Neprilysin (NEP) with catalytic activity has the potential to cleave substrates throughout the circulation, thus leading to systemic effects of NEP. We used the endothelial cell line Ea.hy926 to identify the possible role of exosomes and A Disintegrin and Metalloprotease 17 (ADAM-17) in the production of non-membrane bound NEP. Using a bradykinin based quenched fluorescent substrate (40 μM) assay, we determined the activity of recombinant human NEP (rhNEP; 12 ng), and NEP in the media of endothelial cells (10% v/v; after 24 h incubation with cells) to be 9.35 ± 0.70 and 6.54 ± 0.41 μmols of substrate cleaved over 3 h, respectively. The presence of NEP in the media was also confirmed by Western blotting. At present there are no commercially available inhibitors specific for ADAM-17. We therefore synthesised two inhibitors TPI2155-14 and TPI2155-17, specific for ADAM-17 with IC{sub 50} values of 5.36 and 4.32 μM, respectively. Treatment of cells with TPI2155-14 (15 μM) and TPI2155-17 (4.3 μM) resulted in a significant decrease in NEP activity in media (62.37 ± 1.43 and 38.30 ± 4.70, respectively as a % of control; P < 0.0001), implicating a possible role for ADAM-17 in NEP release. However, centrifuging media (100,000g for 1 h at 4 °C) removed all NEP activity from the supernatant indicating the likely role of exosomes in the release of NEP. Our data therefore indicated for the first time that NEP is released from endothelial cells via exosomes, and that this process is dependent on ADAM-17.

  17. Phagocytosis of mast cell granules results in decreased macrophage superoxide production

    Directory of Open Access Journals (Sweden)

    Bobby A. Shah

    1995-01-01

    Full Text Available The mechanism by which phagocytosed mast cell granules (MCGs inhibit macrophage superoxide production has not been defined. In this study, rat peritoneal macrophages were co-incubated with either isolated intact MCGs or MCG-sonicate, and their respiratory burst capacity and morphology were studied. Co-incubation of macrophages with either intact MCGs or MCG-sonicate resulted in a dose-dependent inhibition of superoxide- mediated cytochrome c reduction. This inhibitory effect was evident within 5 min of incubation and with MCG-sonicate was completely reversed when macrophages were washed prior to activation with PMA. In the case of intact MCGs, the inhibitory effect was only partially reversed by washing after a prolonged co-incubation time. Electron microscopic analyses revealed that MCGs were rapidly phagocytosed by macrophages and were subsequently disintegrated within the phagolysosomes. Assay of MCGs for superoxide dismutase (SOD revealed the presence of significant activity of this enzyme. A comparison of normal macrophages and those containing phagocytosed MCGs did not reveal a significant difference in total SOD activity. It is speculated that, although there was no significant increase in total SOD activity in macrophages containing phagocytosed MCGs, the phagocytosed MCGs might cause a transient increase in SOD activity within the phagolysosomes. This transient rise in SOD results in scavenging of the newly generated superoxide. Alternatively, MCG inhibition of NADPH oxidase would explain the reported observations.

  18. Nicorandil prevents sirolimus-induced production of reactive oxygen species, endothelial dysfunction, and thrombus formation

    Directory of Open Access Journals (Sweden)

    Ken Aizawa

    2015-03-01

    Full Text Available Sirolimus (SRL is widely used to prevent restenosis after percutaneous coronary intervention. However, its beneficial effect is hampered by complications of thrombosis. Several studies imply that reactive oxygen species (ROS play a critical role in endothelial dysfunction and thrombus formation. The present study investigated the protective effect of nicorandil (NIC, an anti-angina agent, on SRL-associated thrombosis. In human coronary artery endothelial cells (HCAECs, SRL stimulated ROS production, which was prevented by co-treatment with NIC. The preventive effect of NIC on ROS was abolished by 5-hydroxydecanoate but not by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. NIC also inhibited SRL-induced up-regulation of NADPH oxidase subunit p22phox mRNA. Co-treatment with NIC and SRL significantly up-regulated superoxide dismutase 2. NIC treatment significantly improved SRL-induced decrease in viability of HCAECs. The functional relevance of the preventive effects of NIC on SRL-induced ROS production and impairment of endothelial viability was investigated in a mouse model of thrombosis. Pretreatment with NIC inhibited the SRL-induced acceleration of FeCl3-initiated thrombus formation and ROS production in the testicular arteries of mice. In conclusion, NIC prevented SRL-induced thrombus formation, presumably due to the reduction of ROS and to endothelial protection. The therapeutic efficacy of NIC could represent an additional option in the prevention of SRL-related thrombosis.

  19. Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes.

    Science.gov (United States)

    Heyno, Eiri; Mary, Véronique; Schopfer, Peter; Krieger-Liszkay, Anja

    2011-07-01

    Production of reactive oxygen species (hydroxyl radicals, superoxide radicals and hydrogen peroxide) was studied using EPR spin-trapping techniques and specific dyes in isolated plasma membranes from the growing and the non-growing zones of hypocotyls and roots of etiolated soybean seedlings as well as coleoptiles and roots of etiolated maize seedlings. NAD(P)H mediated the production of superoxide in all plasma membrane samples. Hydroxyl radicals were only produced by the membranes of the hypocotyl growing zone when a Fenton catalyst (FeEDTA) was present. By contrast, in membranes from other parts of the seedlings a low rate of spontaneous hydroxyl radical formation was observed due to the presence of small amounts of tightly bound peroxidase. It is concluded that apoplastic hydroxyl radical generation depends fully, or for the most part, on peroxidase localized in the cell wall. In soybean plasma membranes from the growing zone of the hypocotyl pharmacological tests showed that the superoxide production could potentially be attributed to the action of at least two enzymes, an NADPH oxidase and, in the presence of menadione, a quinone reductase.

  20. Studies on Production and Chemical Property of Singlet Oxygen and Superoxide Radical by Dyestuffs

    Directory of Open Access Journals (Sweden)

    Vikesh Kumar

    2009-01-01

    Full Text Available There are several low lying singlet oxygen (1O2 and superoxide radical (O-2 which are important in photochemical oxidation. In our present analysis we are studying chemical property of singlet oxygen (1O2 and super oxide radical (O-2 and some dyestuffs species to produce reactive oxygen such as singlet oxygen 1O2 and superoxide radicals. Irradiation with sun light in vitro the dyestuff like benzanthrone, metanil yellow and p-aminodiphenylamine were found to produce reactive oxygen species such as singlet oxygen (1O2 and/or superoxide radicals (O-2 .The dose response relationship between singlet 1O2 production when sunlight expose of those dyestuffs (0-25 min, and (0-12 min for super oxide (O-2 production were studied. However benzanthrone produces detectable amount of 1O2, Although metanil yellow and p-aminodiphenylamine (p-ADPA did not produce detectable amounts of 1O2 under similar conditions. The above dye stuffs are routinely used in textiles, cosmetics, detergents, leather industries as well as food additives and role of these activated oxygen species in the development of skin diseases.

  1. PCB 77 dechlorination products modulate pro-inflammatory events in vascular endothelial cells.

    Science.gov (United States)

    Eske, Katryn; Newsome, Bradley; Han, Sung Gu; Murphy, Margaret; Bhattacharyya, Dibakar; Hennig, Bernhard

    2014-05-01

    Persistent organic pollutants such as polychlorinated biphenyls (PCBs) are associated with detrimental health outcomes including cardiovascular diseases. Remediation of these compounds is a critical component of environmental policy. Although remediation efforts aim to completely remove toxicants, little is known about the effects of potential remediation byproducts. We previously published that Fe/Pd nanoparticles effectively dechlorinate PCB 77 to biphenyl, thus eliminating PCB-induced endothelial dysfunction using primary vascular endothelial cells. Herein, we analyzed the toxic effects of PCB congener mixtures (representative mixtures of commercial PCBs based on previous dechlorination data) produced at multiple time points during the dechlorination of PCB 77 to biphenyl. Compared with pure PCB 77, exposing endothelial cells to lower chlorinated PCB byproducts led to improved cellular viability, decreased superoxide production, and decreased nuclear factor kappa B activation based on duration of remediation. Presence of the parent compound, PCB 77, led to significant increases in mRNA and protein inflammatory marker expression. These data implicate that PCB dechlorination reduces biological toxicity to vascular endothelial cells.

  2. Sites of superoxide and hydrogen peroxide production during fatty acid oxidation in rat skeletal muscle mitochondria

    Science.gov (United States)

    Perevoshchikova, Irina V.; Quinlan, Casey L.; Orr, Adam L.; Gerencser, Akos A.; Brand, Martin D.

    2013-01-01

    H2O2 production by skeletal muscle mitochondria oxidizing palmitoylcarnitine was examined under two conditions: the absence of respiratory chain inhibitors and the presence of myxothiazol to inhibit complex III. Without inhibitors, respiration and H2O2 production were low unless carnitine or malate was added to limit acetyl-CoA accumulation. With palmitoylcarnitine alone, H2O2 production was dominated by complex II (44% from site IIF in the forward reaction); the remainder was mostly from complex I (34%, superoxide from site IF). With added carnitine, H2O2 production was about equally shared between complexes I, II, and III. With added malate, it was 75% from complex III (superoxide from site IIIQo) and 25% from site IF. Thus complex II (site IIF in the forward reaction) is a major source of H2O2 production during oxidation of palmitoylcarnitine ± carnitine. Under the second condition (myxothiazol present to keep ubiquinone reduced), the rates of H2O2 production were highest in the presence of palmitoylcarnitine ± carnitine and were dominated by complex II (site IIF in the reverse reaction). About half the rest was from site IF, but a significant portion, ~40 pmol H2O2 · min−1 · mg protein−1, was not from complex I, II, or III and was attributed to the proteins of β-oxidation (electron-transferring flavoprotein (ETF) and ETF-ubiquinone oxidoreductase). The maximum rate from the ETF system was ~200 pmol H2O2 · min−1 ~ mg protein−1 under conditions of compromised antioxidant defense and reduced ubiqui-none pool. Thus complex II and the ETF system both contribute to H2O2 production during fatty acid oxidation under appropriate conditions. PMID:23583329

  3. Production of superoxide anions by keratinocytes initiates P. acnes-induced inflammation of the skin.

    Directory of Open Access Journals (Sweden)

    Philippe A Grange

    2009-07-01

    Full Text Available Acne vulgaris is a chronic inflammatory disorder of the sebaceous follicles. Propionibacterium acnes (P. acnes, a gram-positive anareobic bacterium, plays a critical role in the development of these inflammatory lesions. This study aimed at determining whether reactive oxygen species (ROS are produced by keratinocytes upon P. acnes infection, dissecting the mechanism of this production, and investigating how this phenomenon integrates in the general inflammatory response induced by P. acnes. In our hands, ROS, and especially superoxide anions (O2(*-, were rapidly produced by keratinocytes upon stimulation by P. acnes surface proteins. In P. acnes-stimulated keratinocytes, O2(*- was produced by NAD(PH oxidase through activation of the scavenger receptor CD36. O2(*- was dismuted by superoxide dismutase to form hydrogen peroxide which was further detoxified into water by the GSH/GPx system. In addition, P. acnes-induced O2(*- abrogated P. acnes growth and was involved in keratinocyte lysis through the combination of O2(*- with nitric oxide to form peroxynitrites. Finally, retinoic acid derivates, the most efficient anti-acneic drugs, prevent O2(*- production, IL-8 release and keratinocyte apoptosis, suggesting the relevance of this pathway in humans.

  4. Evaluation of sperm superoxide anion production and Mitochondrial Membrane Potential: flowcytometry in rats with experimental varicocele

    Directory of Open Access Journals (Sweden)

    Jafari A

    2009-05-01

    Full Text Available "n Normal 0 false false false EN-GB X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: Varicocele is a major cause of male infertility, but its pathophysiology is unclear. Recent studies declare that fertile varicocele people with normal semen analysis are also at risk of loss of infertility. The exact mechanism by which varicocele damages spermatogenesis is still unknown. Some studies have reported increased Reactive Oxygen Species (ROS is a major factor in semen of men with varicocele. The aim of this study was to investigate whether the source of elevated ROS is intracellular or not. In addition, we studied Mitochondrial Membrane Potential (MMP, viability, antioxidant activity, sperm count and motility in these rats."n"n Methods: The study group consisted of 28 male rats divided in four groups: control, sham, varicocele 1, varicocele 2, Experimental varicocele was established by partial ligation of the left renal vein in last two groups. Animals were sacrificed two and six months after surgery and dilation of the internal spermatic veins was observed. Then, superoxide anion production and Mitochondrial Membrane Potential were evaluated by Flow cytometry sperm characteristics were evaluated by Flow cytometry. Sperm superoxide anion production was assessed by the dihydroethidium and

  5. Production of superoxide radical in reductive metabolism of a synthetic food-coloring agent, indigocarmine, and related compounds.

    Science.gov (United States)

    Kohno, Yoichi; Kitamura, Shigeyuki; Yamada, Tsuyoshi; Sugihara, Kazumi; Ohta, Shigeru

    2005-06-24

    Indigocarmine, which is widely used as a synthetic colouring agent for foods and cosmetics in many countries, was reduced to its leuco form and decolorized by rat liver microsomes with NADPH under anaerobic conditions. The reductase activity was enhanced in liver microsomes of phenobarbital-treated rats, and inhibited by diphenyliodonium chloride, a NADPH-cytochrome P450 reductase (P450 reductase) inhibitor, but was not inhibited by SKF 525-A or carbon monoxide. Indigocarmine reductase activity was exhibited by purified rat P450 reductase. In contrast, when indigocarmine was incubated with rat liver microsomes and NADPH under aerobic conditions, superoxide radical was produced and its production was inhibited by superoxide dismutase and diphenyliodonium chloride. When indigocarmine was incubated with purified rat P450 reductase in the presence of NADPH, superoxide radical production was enhanced 17.7-fold (similar to the enhancement of indigocarmine-reducing ability) as compared with that of rat liver microsomes. A decrease of one molecule of NADPH was accompanied with formation of about two molecules of superoxide radical. P450 reductase exhibited little reductase activity towards indigo and tetrabromoindigo, which also afforded little superoxide radical under aerobic conditions. These results indicate that indigocarmine is reduced by P450 reductase to its leuco form, and superoxide radical is produced by autoxidation of the leuco form, through a mechanism known as futile redox cycling.

  6. Temperature and Light Effects on Extracellular Superoxide Production by Algal and Bacterial Symbionts in Corals: Implications for Coral Bleaching

    Science.gov (United States)

    Brighi, C.; Diaz, J. M.; Apprill, A.; Hansel, C. M.

    2014-12-01

    Increased surface seawater temperature due to global warming is one of the main causes of coral bleaching, a phenomenon in which corals lose their photosynthetic algae. Light and temperature induced production of superoxide and other reactive oxygen species (ROS) by these symbiotic algae has been implicated in the breakdown of their symbiotic association with the coral host and subsequent coral bleaching. Nevertheless, a direct link between Symbiodinium ROS production and coral bleaching has not been demonstrated. In fact, given the abundance and diversity of microorganisms within the coral holobiont, the concentration and fluxes of ROS within corals may involve several microbial sources and sinks. Here, we explore the role of increased light and temperature on superoxide production by coral-derived cultures of Symbiodinium algae and Oceanospirillales bacteria of the genus Endozoicomonas, which are globally common and abundant associates of corals. Using a high sensitivity chemiluminescent technique, we find that heat stress (exposure to 34°C vs. 23°C for 2hr or 24hr) has no significant effect on extracellular superoxide production by Symbiodinium isolates within clades B and C, regardless of the level of light exposure. Exposure to high light, however, increased superoxide production by these organisms at both 34°C and 23°C. On the other hand, extracellular superoxide production by Endozoicomonas bacteria tested under the same conditions was stimulated by the combined effects of thermal and light stress. The results of this research suggest that the sources and physical triggers for biological superoxide production within corals are more complex than currently assumed. Thus, further investigations into the biological processes controlling ROS dynamics within corals are required to improve our understanding of the mechanisms underpinning coral bleaching and to aid in the development of mitigation strategies.

  7. Mitochondria Superoxide Anion Production Contributes to Geranylgeraniol-Induced Death in Leishmania amazonensis

    Science.gov (United States)

    Lopes, Milene Valéria; Desoti, Vânia Cristina; Caleare, Angelo de Oliveira; Ueda-Nakamura, Tânia; Silva, Sueli Oliveira

    2012-01-01

    Here we demonstrate the activity of geranylgeraniol, the major bioactive constituent from seeds of Bixa orellana, against Leishmania amazonensis. Geranylgeraniol was identified through 1H and 13C nuclear magnetic resonance imaging and DEPT. The compound inhibited the promastigote and intracellular amastigote forms, with IC50 of 11 ± 1.0 and 17.5 ± 0.7 μg/mL, respectively. This compound was also more toxic to parasites than to macrophages and did not cause lysis in human blood cells. Morphological and ultrastructural changes induced by geranylgeraniol were observed in the protozoan by electronic microscopy and included mainly mitochondria alterations and an abnormal chromatin condensation in the nucleus. These alterations were confirmed by Rh 123 and TUNEL assays. Additionally, geranylgeraniol induces an increase in superoxide anion production. Collectively, our in vitro studies indicate geranylgeraniol as a selective antileishmanial that appears to be mediated by apoptosis-like cell death. PMID:23304195

  8. Mitochondria Superoxide Anion Production Contributes to Geranylgeraniol-Induced Death in Leishmania amazonensis

    Directory of Open Access Journals (Sweden)

    Milene Valéria Lopes

    2012-01-01

    Full Text Available Here we demonstrate the activity of geranylgeraniol, the major bioactive constituent from seeds of Bixa orellana, against Leishmania amazonensis. Geranylgeraniol was identified through 1H and 13C nuclear magnetic resonance imaging and DEPT. The compound inhibited the promastigote and intracellular amastigote forms, with IC50 of 11±1.0 and 17.5±0.7 μg/mL, respectively. This compound was also more toxic to parasites than to macrophages and did not cause lysis in human blood cells. Morphological and ultrastructural changes induced by geranylgeraniol were observed in the protozoan by electronic microscopy and included mainly mitochondria alterations and an abnormal chromatin condensation in the nucleus. These alterations were confirmed by Rh 123 and TUNEL assays. Additionally, geranylgeraniol induces an increase in superoxide anion production. Collectively, our in vitro studies indicate geranylgeraniol as a selective antileishmanial that appears to be mediated by apoptosis-like cell death.

  9. Extracellular superoxide production, viability and redox poise in response to desiccation in recalcitrant Castanea sativa seeds.

    Science.gov (United States)

    Roach, Thomas; Beckett, Richard P; Minibayeva, Farida V; Colville, Louise; Whitaker, Claire; Chen, Hongying; Bailly, Christophe; Kranner, Ilse

    2010-01-01

    Reactive oxygen species (ROS) are implicated in seed death following dehydration in desiccation-intolerant 'recalcitrant' seeds. However, it is unknown if and how ROS are produced in the apoplast and if they play a role in stress signalling during desiccation. We studied intracellular damage and extracellular superoxide (O(2)(.-)) production upon desiccation in Castanea sativa seeds, mechanisms of O(2)(.-) production and the effect of exogenously supplied ROS. A transient increase in extracellular O(2)(.-) production by the embryonic axes preceded significant desiccation-induced viability loss. Thereafter, progressively more oxidizing intracellular conditions, as indicated by a significant shift in glutathione half-cell reduction potential, accompanied cell and axis death, coinciding with the disruption of nuclear membranes. Most hydrogen peroxide (H(2)O(2))-dependent O(2)(.-) production was found in a cell wall fraction that contained extracellular peroxidases (ECPOX) with molecular masses of approximately 50 kDa. Cinnamic acid was identified as a potential reductant required for ECPOX-mediated O(2)(.-) production. H(2)O(2), applied exogenously to mimic the transient ROS burst at the onset of desiccation, counteracted viability loss of sub-lethally desiccation-stressed seeds and of excised embryonic axes grown in tissue culture. Hence, extracellular ROS produced by embryonic axes appear to be important signalling components involved in wound response, regeneration and growth.

  10. Testosterone enhances tubuloglomerular feedback by increasing superoxide production in the macula densa

    Science.gov (United States)

    Fu, Yiling; Lu, Yan; Liu, Eddie Y.; Zhu, Xiaolong; Mahajan, Gouri J.; Lu, Deyin; Roman, Richard J.

    2013-01-01

    Males have higher prevalence of hypertension and renal injury than females, which may be attributed in part to androgen-mediated effects on renal hemodynamics. Tubuloglomerular feedback (TGF) is an important mechanism in control of renal microcirculation. The present study examines the role of testosterone in the regulation of TGF responses. TGF was measured by micropuncture (change of stop-flow pressure, ΔPsf) in castrated Sprague-Dawley rats. The addition of testosterone (10−7 mol/l) into the lumen increased the ΔPsf from 10.1 ± 1.2 to 12.2 ± 1.2 mmHg. To determine whether androgen receptors (AR) are involved, mRNA of AR was measured in the macula dense cells isolated by laser capture microdissection from kidneys, and a macula densa-like cell line (MMDD1). AR mRNA was expressed in the macula densa of rats and in MMDD1 cells. We next examined the effects of the AR blocker, flutamide (10−5 mol/l) on the TGF response. The addition of flutamide blocked the effects of testosterone on TGF. The addition of Tempol (10−4 mol/l) or polyethylene glycol-superoxide dismutase (100 U/ml) to scavenge superoxide blocked the effect of testosterone to augment TGF. We then applied apocynin to inhibit NAD(P)H oxidase and oxypurinol to inhibit xanthine oxidase and found the testosterone-induced augmentation of TGF was blocked. In additional experiments in MMDD1 cells, we found that testosterone increased O2− generation. Apocynin or oxypurinol blocked the testosterone-induced increases of O2−, while blockade of COX-2 with NS-398 had no effect. These findings suggest that testosterone enhances TGF response by stimulating O2− production in macula densa via an AR-dependent pathway. PMID:23467324

  11. The inhibition of superoxide production in EL4 lymphoma cells overexpressing growth hormone.

    Science.gov (United States)

    Arnold, Robyn E; Weigent, Douglas A

    2003-05-01

    A substantial body of research exists to support the production of growth hormone by cells of the immune system. However, the function and mechanism of action of lymphocyte-derived growth hormone remain largely unelucidated. Since, it has been found that exogenous growth hormone (GH) primes neutrophils for the production of reactive oxygen intermediates (ROI) and in particular superoxide (O2-), we investigated the role of GH on the production of O2- in T cells. Furthermore, we examined whether endogenous and exogenous GH act similarly. Our studies show that overexpression of GH in EL4, a T-cell lymphoma cell line, results in a decrease in the production of O2- compared to control cells, as detected using the fluorescent dye, dihydroethidium. O2- production in control cells was not affected by treatment with inhibitors of xanthine oxidase or a non-specific NADPH-oxidase inhibitor. However, treatment with diallyl sulfide, an inhibitor of cytochrome P450 2E1 mimicked the reduction in O2- production seen in cells overexpressing GH. Although no significant change could be detected in CYP2E1 protein levels, CYP2E1 activity was found to be greater in control EL4 than in cells overexpressing GH. Both the decrease in O2- production and the lower CYP2E1 activity in GH overexpressing cells could be abrogated by treatment with N(G)-monomethyl-L-arginine, an inhibitor of nitric oxide synthase. The overexpression of GH protects cells from apoptosis induced by isoniazid, a CYP2E1 inducer, suggesting a role for nitric oxide as a mediator in the regulation of xenobiotic metabolism and apoptosis-protection by lymphocyte GH.

  12. Resveratrol: A Multifunctional Compound Improving Endothelial Function

    OpenAIRE

    Li, Huige; F?rstermann, Ulrich

    2009-01-01

    The red wine polyphenol resveratrol boosts endothelium-dependent and -independent vasorelaxations. The improvement of endothelial function by resveratrol is largely attributable to nitric oxide (NO) derived from endothelial NO synthase (eNOS). By stimulating eNOS expression, eNOS phosphorylation and eNOS deacetylation, resveratrol enhances endothelial NO production. By upregulating antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) and suppressing the expression a...

  13. Does elevated nitric oxide production enhance the release of prostacyclin from shear stressed aortic endothelial cells?

    Science.gov (United States)

    Wang, W; Diamond, S L

    1997-04-28

    Nitric oxide (NO) enhances prostacyclin (PGI2) production in agonist-stimulated endothelial cells, while peroxynitrite formed from NO and superoxide anion has been shown to activate cyclooxygenase. Using cultured bovine aortic endothelial cells (BAEC) exposed to arterial levels of laminar shear stress of 25 dynes/ cm2, we tested the hypothesis that NO mediated the elevated synthesis of PGI2 by shear stressed endothelium. Shear stress caused a large and rapid burst and sustained release of NO and PGI2 with the cumulative production at 1 hr enhanced 9.96-fold (n = 4, p BAEC and 0.0193 ng-PGI2/cm2-BAEC. The NO synthase inhibitors, N(G)-nitro-L-arginine methyl ester (100 microM, LNAME) and N(G)-nitro-L-arginine (10 microM, LNA), caused 87.5 and 65% reductions (n = 3, p shear stressed cells was due to NO-dependent signaling, indicating that hemodynamic control of these two dilatory molecules is partially coupled.

  14. Oleuropein Prevents Neuronal Death, Mitigates Mitochondrial Superoxide Production and Modulates Autophagy in a Dopaminergic Cellular Model

    Directory of Open Access Journals (Sweden)

    Imène Achour

    2016-08-01

    Full Text Available Parkinson’s disease (PD is a progressive neurodegenerative disorder, primarily affecting dopaminergic neurons in the substantia nigra. There is currently no cure for PD and present medications aim to alleviate clinical symptoms, thus prevention remains the ideal strategy to reduce the prevalence of this disease. The goal of this study was to investigate whether oleuropein (OLE, the major phenolic compound in olive derivatives, may prevent neuronal degeneration in a cellular dopaminergic model of PD, differentiated PC12 cells exposed to the potent parkinsonian toxin 6-hydroxydopamine (6-OHDA. We also investigated OLE’s ability to mitigate mitochondrial oxidative stress and modulate the autophagic flux. Our results obtained by measuring cytotoxicity and apoptotic events demonstrate that OLE significantly decreases neuronal death. OLE could also reduce mitochondrial production of reactive oxygen species resulting from blocking superoxide dismutase activity. Moreover, quantification of autophagic and acidic vesicles in the cytoplasm alongside expression of specific autophagic markers uncovered a regulatory role for OLE against autophagic flux impairment induced by bafilomycin A1. Altogether, our results define OLE as a neuroprotective, anti-oxidative and autophagy-regulating molecule, in a neuronal dopaminergic cellular model.

  15. Oleic acid increases mitochondrial reactive oxygen species production and decreases endothelial nitric oxide synthase activity in cultured endothelial cells

    NARCIS (Netherlands)

    Gremmels, Hendrik; Bevers, Lonneke M.; Fledderus, Joost O.; Braam, Branko; Jan Van Zonneveld, Anton; Verhaar, Marianne C.; Joles, Jaap A.

    2015-01-01

    Elevated plasma levels of free fatty acids (FFA) are associated with increased cardiovascular risk. This may be related to FFA-induced elevation of oxidative stress in endothelial cells. We hypothesized that, in addition to mitochondrial production of reactive oxygen species, endothelial nitric

  16. Aerobic exercise training protects against endothelial dysfunction by increasing nitric oxide and hydrogen peroxide production in LDL receptor-deficient mice.

    Science.gov (United States)

    Guizoni, Daniele M; Dorighello, Gabriel G; Oliveira, Helena C F; Delbin, Maria A; Krieger, Marta H; Davel, Ana P

    2016-07-19

    Endothelial dysfunction associated with hypercholesterolemia is an early event in atherosclerosis characterized by redox imbalance associated with high superoxide production and reduced nitric oxide (NO) and hydrogen peroxide (H2O2) production. Aerobic exercise training (AET) has been demonstrated to ameliorate atherosclerotic lesions and oxidative stress in advanced atherosclerosis. However, whether AET protects against the early mechanisms of endothelial dysfunction in familial hypercholesterolemia remains unclear. This study investigated the effects of AET on endothelial dysfunction and vascular redox status in the aortas of LDL receptor knockout mice (LDLr(-/-)), a genetic model of familial hypercholesterolemia. Twelve-week-old C57BL/6J (WT) and LDLr(-/-) mice were divided into sedentary and exercised (AET on a treadmill 1 h/5 × per week) groups for 4 weeks. Changes in lipid profiles, endothelial function, and aortic NO, H2O2 and superoxide production were examined. Total cholesterol and triglycerides were increased in sedentary and exercised LDLr(-/-) mice. Endothelium-dependent relaxation induced by acetylcholine was impaired in aortas of sedentary LDLr(-/-) mice but not in the exercised group. Inhibition of NO synthase (NOS) activity or H2O2 decomposition by catalase abolished the differences in the acetylcholine response between the animals. No changes were noted in the relaxation response induced by NO donor sodium nitroprusside or H2O2. Neuronal NOS expression and endothelial NOS phosphorylation (Ser1177), as well as NO and H2O2 production, were reduced in aortas of sedentary LDLr(-/-) mice and restored by AET. Incubation with apocynin increased acetylcholine-induced relaxation in sedentary, but not exercised LDLr(-/-) mice, suggesting a minor participation of NADPH oxidase in the endothelium-dependent relaxation after AET. Consistent with these findings, Nox2 expression and superoxide production were reduced in the aortas of exercised compared to

  17. Heme oxygenase attenuates angiotensin II-mediated superoxide production in cultured mouse thick ascending loop of Henle cells.

    Science.gov (United States)

    Kelsen, Silvia; Patel, Bijal J; Parker, Lawson B; Vera, Trinity; Rimoldi, John M; Gadepalli, Rama S V; Drummond, Heather A; Stec, David E

    2008-10-01

    Heme oxygenase (HO)-1 induction can attenuate the development of angiotensin II (ANG II)-dependent hypertension. However, the mechanism by which HO-1 lowers blood pressure is not clear. The goal of this study was to test the hypothesis that induction of HO-1 can reduce the ANG II-mediated increase in superoxide production in cultured thick ascending loop of Henle (TALH) cells. Studies were performed on an immortalized cell line of mouse TALH (mTALH) cells. HO-1 was induced in cultured mTALH cells by treatment with cobalt protoporphyrin (CoPP, 10 microM) or hemin (50 microM) or by transfection with a plasmid containing the human HO-1 isoform. Treatment of mTALH cells with 10(-9) M ANG II increased dihydroethidium (DHE) fluorescence (an index of superoxide levels) from 35.5+/-5 to 136+/-18 relative fluorescence units (RFU)/microm2. Induction of HO-1 via CoPP, hemin, or overexpression of the human HO-1 isoform significantly reduced ANG II-induced DHE fluorescence to 64+/-5, 64+/-8, and 41+/-4 RFU/microm2, respectively. To determine which metabolite of HO-1 is responsible for reducing ANG II-mediated increases in superoxide production in mTALH cells, cells were preincubated with bilirubin or carbon monoxide (CO)-releasing molecule (CORM)-A1 (each at 100 microM) before exposure to ANG II. DHE fluorescence averaged 80+/-7 RFU/microm2 after incubation with ANG II and was significantly decreased to 55+/-7 and 53+/-4 RFU/microm2 after pretreatment with bilirubin and CORM-A1. These results demonstrate that induction of HO-1 in mTALH cells reduces the levels of ANG II-mediated superoxide production through the production of both bilirubin and CO.

  18. Sites of Superoxide and Hydrogen Peroxide Production by Muscle Mitochondria Assessed ex Vivo under Conditions Mimicking Rest and Exercise*

    Science.gov (United States)

    Goncalves, Renata L. S.; Quinlan, Casey L.; Perevoshchikova, Irina V.; Hey-Mogensen, Martin; Brand, Martin D.

    2015-01-01

    The sites and rates of mitochondrial production of superoxide and H2O2 in vivo are not yet defined. At least 10 different mitochondrial sites can generate these species. Each site has a different maximum capacity (e.g. the outer quinol site in complex III (site IIIQo) has a very high capacity in rat skeletal muscle mitochondria, whereas the flavin site in complex I (site IF) has a very low capacity). The maximum capacities can greatly exceed the actual rates observed in the absence of electron transport chain inhibitors, so maximum capacities are a poor guide to actual rates. Here, we use new approaches to measure the rates at which different mitochondrial sites produce superoxide/H2O2 using isolated muscle mitochondria incubated in media mimicking the cytoplasmic substrate and effector mix of skeletal muscle during rest and exercise. We find that four or five sites dominate during rest in this ex vivo system. Remarkably, the quinol site in complex I (site IQ) and the flavin site in complex II (site IIF) each account for about a quarter of the total measured rate of H2O2 production. Site IF, site IIIQo, and perhaps site EF in the β-oxidation pathway account for most of the remainder. Under conditions mimicking mild and intense aerobic exercise, total production is much less, and the low capacity site IF dominates. These results give novel insights into which mitochondrial sites may produce superoxide/H2O2 in vivo. PMID:25389297

  19. Mitochondrial physiology in the major arbovirus vector Aedes aegypti: substrate preferences and sexual differences define respiratory capacity and superoxide production.

    Directory of Open Access Journals (Sweden)

    Juliana B R Correa Soares

    Full Text Available Adult females of Aedes aegypti are facultative blood sucking insects and vectors of Dengue and yellow fever viruses. Insect dispersal plays a central role in disease transmission and the extremely high energy demand posed by flight is accomplished by a very efficient oxidative phosphorylation process, which take place within flight muscle mitochondria. These organelles play a central role in energy metabolism, interconnecting nutrient oxidation to ATP synthesis, but also represent an important site of cellular superoxide production. Given the importance of mitochondria to cell physiology, and the potential contributions of this organelle for A. aegypti biology and vectorial capacity, here, we conducted a systematic assessment of mitochondrial physiology in flight muscle of young adult A. aegypti fed exclusively with sugar. This was carried out by determining the activities of mitochondrial enzymes, the substrate preferences to sustain respiration, the mitochondrial bioenergetic efficiency and capacity, in both mitochondria-enriched preparations and mechanically permeabilized flight muscle in both sexes. We also determined the substrates preferences to promote mitochondrial superoxide generation and the main sites where it is produced within this organelle. We observed that respiration in A. aegypti mitochondria was essentially driven by complex I and glycerol 3 phosphate dehydrogenase substrates, which promoted distinct mitochondrial bioenergetic capacities, but with preserved efficiencies. Respiration mediated by proline oxidation in female mitochondria was strikingly higher than in males. Mitochondrial superoxide production was essentially mediated through proline and glycerol 3 phosphate oxidation, which took place at sites other than complex I. Finally, differences in mitochondrial superoxide production among sexes were only observed in male oxidizing glycerol 3 phosphate, exhibiting higher rates than in female. Together, these data

  20. Geldanamycin leads to superoxide formation by enzymatic and non-enzymatic redox cycling. Implications for studies of Hsp90 and endothelial cell nitric-oxide synthase

    National Research Council Canada - National Science Library

    Dikalov, Sergey; Landmesser, Ulf; Harrison, David G

    2002-01-01

    .... Geldanamycin contains a quinone group, which may participate in redox cycling. When geldanamycin was exposed to the flavin-containing enzyme cytochrome P-450 reductase, both semiquinone and superoxide (O(2...

  1. Investigation of the simultaneous production of superoxide dismutase and catalase enzymes from Rhodotorula glutinis under different culture conditions.

    Science.gov (United States)

    Unlü, Ayşe Ezgi; Takaç, Serpil

    2012-10-01

    The simultaneous production production of superoxide (SOD) and catalase (CAT) from Rhodotorula glutinis was studied. The effects of temperature, initial medium pH, and carbon source on the enzyme activities were investigated. Temperature and carbon sources were found to have significant effects on the enzyme activities. 10°C provided the highest specific CAT and SOD activities as 22.6 U/mg protein and 170 U/mg protein, respectively. Glycerol was found to be the best carbon source for enzyme activities, providing 113 U/mg protein for CAT and 125 U/mg protein for SOD, which were also the highest activities obtained in the present study.

  2. Direction-Dependent Effects of Combined Static and ELF Magnetic Fields on Cell Proliferation and Superoxide Radical Production.

    Science.gov (United States)

    Naarala, Jonne; Kesari, Kavindra Kumar; McClure, Ian; Chavarriaga, Cristina; Juutilainen, Jukka; Martino, Carlos F

    2017-01-01

    Proliferation of human umbilical vein endothelial cells was stimulated by a nearly vertical 60 or 120 μT static magnetic field (MF) in comparison to cells that were shielded against MFs. When the static field was combined with an extremely low frequency (ELF) MF (18 Hz, 30 μT), proliferation was suppressed by a horizontal but not by a vertical ELF field. As these results suggested that the effects of an ELF MF depend on its direction in relation to the static MF, independent experiments were carried out to confirm such dependence using 50 Hz MFs and a different experimental model. Cytosolic superoxide level in rat glioma C6 cells exposed in the presence of a nearly vertical 33 μT static MF was increased by a horizontal 50 Hz, 30 μT MF, but not affected by a vertical 50 Hz MF. The results suggest that a weak ELF MF may interact with the static geomagnetic field in producing biological effects, but the effect depends on the relative directions of the static and ELF MFs.

  3. Aliphatic alcohols of illegally produced spirits can act synergistically on superoxide-anion production by human granulocytes.

    Science.gov (United States)

    Arnyas, Ervin M; Pál, László; Kovács, Csilla; Adány, Róza; McKee, Martin; Szűcs, Sándor

    2012-10-01

    Aliphatic alcohols present in illegally produced spirits in a large number of low and middle income countries have been implicated in the etiology of chronic liver disease and cirrhosis. Previous studies have confirmed that chronic alcoholism can lead to increased susceptibility to infectious diseases. Reduced superoxide-anion (O(2)·(-)) production by granulocytes could provide a mechanism by which antimicrobial defense is impaired in alcoholics. In vitro experiments have also demonstrated that ethanol can inhibit granulocyte O(2)·(-) generation. Aliphatic alcohols consumed as contaminants of illicit spirits may also influence O(2)·(-) production thereby contributing to a decrease in microbicidal activity. The aim of this study was to investigate this possibility. It measured the O(2)·(-) production by human granulocytes following treatment of the cells with aliphatic alcohol contaminants found in illicit spirits. Granulocytes were isolated from human buffy coats with centrifugal elutriation and then treated with individual aliphatic alcohols and their mixture. The O(2)·(-) production was stimulated with phorbol-12-13-dibutyrate and N-formyl-methionyl-leucyl-phenylalanine (FMLP) and measured by superoxide dismutase inhibitable reduction of ferricytochrome c. Aliphatic alcohols of illegally produced spirits inhibited the FMLP-induced O(2)·(-) production in a concentration dependent manner. They suppressed O(2)·(-) generation at 2.5-40 times lower concentrations when combined than when tested individually. Aliphatic alcohols found in illegally produced spirits can inhibit FMLP-induced O(2)·(-) production by granulocytes in a concentration-dependent manner. Due to their synergistic effects, it is possible that, in combination with ethanol, they may inhibit O(2)·(-) formation in heavy episodic drinkers.

  4. Increasing Superoxide Production and the Labile Iron Pool in Tumor Cells May Sensitize Them to Extracellular Ascorbate

    Directory of Open Access Journals (Sweden)

    Mark Frederick Mccarty

    2014-09-01

    Full Text Available Low millimolar concencentrations of ascorbate are capable of inflicting lethal damage on a high proportion of cancer cells lines, yet leave non-transformed cell lines unscathed; extracellular generation of hydrogen peroxide, reflecting reduction of molecular oxygen by ascorbate, has been shown to mediate this effect. Although some cancer cell lines express low catalase activity, this cannot fully explain the selective sensitivity of cancer cells to hydrogen peroxide. Ranzato and colleagues have presented evidence for a plausible new explanation of this sensitivity - a high proportion of cancers, via NADPH oxidase complexes or dysfunctional mitochondria, produce elevated amounts of superoxide. This superoxide, via a transition metal-catalyzed transfer of an electron to the hydrogen peroxide produced by ascorbate, can generate deadly hydroxyl radical (Haber-Weiss reaction. It thus can be predicted that concurrent measures which somewhat selectively boost superoxide production in cancers will enhance their sensitivity to i.v. ascorbate therapy. One way to achieve this is to increase the provision of substrate to cancer mitochondria. Measures which inhibit the constitutive hypoxia-inducible factor-1 (HIF-1 activity in cancers (such as salsalate and mTORC1 inhibitors, or an improvement of tumor oxygenation, or that inhibit the HIF-1-inducible pyruvate dehydrogenase kinase (such as dichloroacetate, can be expected to increase pyruvate oxidation. A ketogenic diet should provide more lipid substrate for tumor mitochondria. The cancer-killing activity of 42°C hyperthermia is to some degree contingent on an increase in oxidative stress, likely of mitochondrial origin; reports that hydrogen peroxide synergizes with hyperthermia in killing cancer cells suggest that hyperthermia and i.v. ascorbate could potentiate each other’s efficacy. A concurrent enhancement of tumor oxygenation might improve results by decreasing HIF-1 activity while increasing the

  5. Effect of Bothrops alternatus snake venom on macrophage phagocytosis and superoxide production: participation of protein kinase C

    Directory of Open Access Journals (Sweden)

    SS Setubal

    2011-01-01

    Full Text Available Envenomations caused by different species of Bothrops snakes result in severe local tissue damage, hemorrhage, pain, myonecrosis, and inflammation with a significant leukocyte accumulation at the bite site. However, the activation state of leukocytes is still unclear. According to clinical cases and experimental work, the local effects observed in envenenomation by Bothrops alternatus are mainly the appearance of edema, hemorrhage, and necrosis. In this study we investigated the ability of Bothrops alternatus crude venom to induce macrophage activation. At 6 to 100 ¼g/mL, BaV is not toxic to thioglycollate-elicited macrophages; at 3 and 6 ¼g/mL, it did not interfere in macrophage adhesion or detachment. Moreover, at concentrations of 1.5, 3, and 6 ¼g/mL the venom induced an increase in phagocytosis via complement receptor one hour after incubation. Pharmacological treatment of thioglycollate-elicited macrophages with staurosporine, a protein kinase (PKC inhibitor, abolished phagocytosis, suggesting that PKC may be involved in the increase of serum-opsonized zymosan phagocytosis induced by BaV. Moreover, BaV also induced the production of anion superoxide (O2_ by thioglycollate-elicited macrophages. This BaV stimulated superoxide production was abolished after treating the cells with staurosporine, indicating that PKC is an important signaling pathway for the production of this radical. Based on these results, we suggest that phagocytosis and reactive oxygen species are involved in the pathogenesis of local tissue damage characteristic of Bothrops spp. envenomations.

  6. HV1 ACTS AS A SODIUM SENSOR AND PROMOTES SUPEROXIDE PRODUCTION IN MEDULLARY THICK ASCENDING LIMB OF DAHL SALT-SENSITIVE RATS

    Science.gov (United States)

    Jin, Chunhua; Sun, Jingping; Stilphen, Carly A.; Smith, Susan M. E.; Ocasio, Hiram; Bermingham, Brent; Darji, Sandip; Guha, Avirup; Patel, Roshan; Geurts, Aron M.; Jacob, Howard J.; Lambert, Nevin A.; O’Connor, Paul M.

    2015-01-01

    We previously characterized a H+ transport pathway in medullary thick ascending limb nephron segments that when activated stimulated the production of superoxide by NAD(P)H oxidase. Importantly, the activity of this pathway was greater in Dahl salt-sensitive rats than salt-resistant (SS.13BN) rats, and superoxide production was enhanced in low Na+ media. The goal of this study was to determine the molecular identity of this pathway and its relationship to Na+. We hypothesized that the voltage-gated proton channel, HV1, was the source of superoxide-stimulating H+ currents. In order to test this hypothesis, we developed HV1−/− null mutant rats on the Dahl salt-sensitive rat genetic background using zinc-finger nuclease gene targeting. HV1 could be detected in medullary thick limb from wild-type rats. Intracellular acidification using an NH4Cl prepulse in 0 sodium/BaCl2 containing media resulted in superoxide production in thick limb from wild-type but not HV1−/− rats (P<0.05), and more rapid recovery of intracellular pH in wild-type rats (ΔpHi 0.005U/sec vs. 0.002U/sec, p=0.046 respectively). Superoxide production was enhanced by low intracellular sodium (<10mM) in both thick limb and peritoneal macrophages only when HV1 was present. When fed a high salt diet, blood pressure, outer-medullary renal injury (tubular casts) and oxidative stress (4-Hydroxynonenal staining) were significantly reduced in HV1−/− rats compared to wild-type Dahl salt-sensitive rats. We conclude that HV1 is expressed in medullary thick ascending limb and promotes superoxide production in this segment when intracellular Na+ is low. HV1 contributes to the development of hypertension and renal disease in Dahl salt-sensitive rats. PMID:24935944

  7. Yops of Yersinia enterocolitica Inhibit Receptor-Dependent Superoxide Anion Production by Human Granulocytes

    Science.gov (United States)

    Visser, L. G.; Seijmonsbergen, E.; Nibbering, P. H.; van den Broek, P. J.; van Furth, R.

    1999-01-01

    The virulence plasmid-borne genes encoding Yersinia adhesin A (YadA) and several Yersinia secreted proteins (Yops) are involved in the inhibition of phagocytosis and killing of Yersinia enterocolitica by human granulocytes. One of these Yops, YopH, dephosphorylates multiple tyrosine-phosphorylated proteins in eukaryotic cells and is involved in the inhibition of phagocytosis of Y. enterocolitica by human granulocytes. We investigated whether antibody- and complement-opsonized plasmid-bearing (pYV+) Y. enterocolitica inhibits O2− production by human granulocytes in response to various stimuli and whether YopH is involved. Granulocytes were preincubated with mutant strains unable to express YadA or to secrete Yops or YopH. O2− production by granulocytes during stimulation was assessed by measuring the reduction of ferricytochrome c. PYV+ Y. enterocolitica inhibited O2− production by granulocytes incubated with opsonized Y. enterocolitica or N-formyl-Met-Leu-Phe (f-MLP). This inhibitory effect mediated by pYV did not affect receptor-independent O2− production by granulocytes in response to phorbol myristate acetate, indicating that NADPH activity remained unaffected after activation of protein kinase C. The inhibition of f-MLP-induced O2− production by granulocytes depends on the secretion of Yops and not on the expression of YadA. Insertional inactivation of the yopH gene abrogated the inhibition of phagocytosis of antibody- and complement-opsonized Y. enterocolitica by human granulocytes but not of the f-MLP-induced O2− production by granulocytes or tyrosine phosphorylation of granulocyte proteins. These findings suggest that the specific targets for YopH are not present in f-MLP receptor-linked signal transduction and that other Yop-mediated mechanisms are involved. PMID:10024567

  8. Oscillatory shear stress stimulates endothelial production of O2- from p47phox-dependent NAD(P)H oxidases, leading to monocyte adhesion

    Science.gov (United States)

    Hwang, Jinah; Saha, Aniket; Boo, Yong Chool; Sorescu, George P.; McNally, J. Scott; Holland, Steven M.; Dikalov, Sergei; Giddens, Don P.; Griendling, Kathy K.; Harrison, David G.; hide

    2003-01-01

    Arterial regions exposed to oscillatory shear (OS) in branched arteries are lesion-prone sites of atherosclerosis, whereas those of laminar shear (LS) are relatively well protected. Here, we examined the hypothesis that OS and LS differentially regulate production of O2- from the endothelial NAD(P)H oxidase, which, in turn, is responsible for their opposite effects on a critical atherogenic event, monocyte adhesion. We used aortic endothelial cells obtained from C57BL/6 (MAE-C57) and p47phox-/- (MAE-p47-/-) mice, which lack a component of NAD(P)H oxidase. O2- production was determined by dihydroethidium staining and an electron spin resonance using an electron spin trap methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine. Chronic exposure (18 h) to an arterial level of OS (+/- 5 dynes/cm2) increased O2- (2-fold) and monocyte adhesion (3-fold) in MAE-C57 cells, whereas chronic LS (15 dynes/cm2, 18 h) significantly decreased both monocyte adhesion and O2- compared with static conditions. In contrast, neither LS nor OS were able to induce O2- production and monocyte adhesion to MAE-p47-/-. Treating MAE-C57 with a cell-permeable superoxide dismutase compound, polyethylene glycol-superoxide dismutase, also inhibited OS-induced monocyte adhesion. In addition, over-expressing p47phox in MAE-p47-/- restored OS-induced O2- production and monocyte adhesion. These results suggest that chronic exposure of endothelial cells to OS stimulates O2- and/or its derivatives produced from p47phox-dependent NAD(P)H oxidase, which, in turn, leads to monocyte adhesion, an early and critical atherogenic event.

  9. The phytoestrogen equol increases nitric oxide availability by inhibiting superoxide production: an antioxidant mechanism for cell-mediated LDL modification.

    Science.gov (United States)

    Hwang, Juliana; Wang, Jian; Morazzoni, Paolo; Hodis, Howard N; Sevanian, Alex

    2003-05-15

    Estrogen replacement therapy (ERT) is reported to lower the incidence of cardiovascular disease in postmenopausal women. ERT also lowers the levels of oxidatively modified low-density lipoprotein (LDL). Because modified LDL can mediate the development of atherosclerosis by inflammatory processes, ERT may exert its LDL protective effect through enhanced antioxidant activity in vascular tissues. Plant sources of estrogenic compounds have been used as alternatives for ERT because they avoid a number of negative health effects produced by estrogen. In this study, the antioxidant properties of the soy isoflavone metabolite, equol (an estrogenic metabolite of daidzein) were studied. Equol has a greater antioxidant activity than the parent isoflavone compounds genistein and daidzein, found in high concentration in soy. Equol inhibits LDL oxidation in vitro and LDL oxidative modification by J774 monocyte/macrophages to LDL(-), an electronegative modified LDL found in human plasma. An antioxidant effect of equol was found to be mediated by inhibition of superoxide radical (O(2)(-*)) production and manifested through enhanced levels of free nitric oxide (NO) that prevents LDL modification. Thus, when NO levels were increased by donor agents, generators, or compounds that facilitate nitric oxide synthase activity, LDL(-) formation by J774 cells was strongly inhibited. Conversely, inhibition of NO production enhanced LDL(-) formation, and the combination of reduced NO and increased O(2)(-*) production yielded maximum LDL(-) formation. Pretreatment of cells with equol inhibited production of O(2)(-*) by J774 cells apparently via the inactivation of the reduced nicotinamide adenine dinucleotide phosphate oxidase complex. Decreased O(2)(-*) production resulted in increased free NO levels (but not total NO production) indicating that decreased reactions between O(2)(-*) and NO are an outcome of equol's antioxidant activity in cell culture.

  10. Involvement of the reductase domain of neuronal nitric oxide synthase in superoxide anion production.

    Science.gov (United States)

    Miller, R T; Martásek, P; Roman, L J; Nishimura, J S; Masters, B S

    1997-12-09

    Neuronal nitric oxide synthase (nNOS) is a modular enzyme which consists of a flavin-containing reductase domain and a heme-containing oxygenase domain, linked by a stretch of amino acids which contains a calmodulin (CaM) binding site. CaM binding to nNOS facilitates the transfer of NADPH-derived electrons from the reductase domain to the oxygenase domain, resulting in the conversion of L-arginine to L-citrulline with the concomitant formation of a guanylate cyclase activating factor, putatively nitric oxide. Numerous studies have established that peroxynitrite-derived nitrogen oxides are present following nNOS turnover. Since peroxynitrite is formed by the diffusion-limited reaction between the two radical species, nitric oxide and O2.-, we employed the adrenochrome assay to examine whether nNOS was capable of producing O2.- during catalytic turnover in the presence of L-arginine. To differentiate between the role played by the reductase domain and that of the oxygenase domain in O2.- production, we compared its production by nNOS against that of a nNOS mutant (CYS-331), which was unable to transfer NADPH-derived electrons efficiently to the heme iron under special conditions, and against that of a flavoprotein module construct of nNOS. We report that O2.- production by nNOS and the CYS-331 mutant is CaM-dependent and that O2.- production can be modulated by substrates and inhibitors of nNOS. O2.- was also produced by the reductase domain of nNOS; however, it did not display the same CaM dependency. We conclude that both the reductase and oxygenase domains of nNOS produce O2.-, but that the reductase domain is both necessary and sufficient for O2.- production.

  11. Effect of lithium on superoxide production and intracellular free calcium mobilization in elastin peptide (kappa-elastin) and FMLP stimulated human PMNS. Effect of age.

    Science.gov (United States)

    Fülöp, T; Varga, Z s; Jacob, M P; Robert, L

    1997-01-01

    The effect of lithium pretreatment on superoxide anion production and intracellular free calcium levels was investigated in polymorphonuclear leukocytes (PMN) from middle-aged and old individuals after stimulation by elastin peptides or FMLP. K-elastin (KE) significantly stimulated the production of superoxide anion by PMNs from middle-aged subjects, while this stimulation decreased with age and was absent in PMNs of elderly arteriosclerotic patients. Li pretreatment slightly increased this stimulating effect of KE in PMNs from middle-aged subjects and elderly arteriosclerotic patients, while slightly decreased in healthy elderly subjects. Moreover, Li was able to increase superoxide anion production even in the absence of KE, but this effect decreased also in PMNs of healthy and arteriosclerotic elderly patients. FMLP significantly increased superoxide anion production in all age-groups, but this effect was further amplified by Li only in PMNs of middle-aged subjects. In aged individuals Li pretreatment slightly decreased the effect of FMLP and had no effect in arteriosclerotic patients. Ca-mobilization induced by KE was inhibited by Li pretreatement in each age group. This inhibition by Li was much weaker in FMLP-stimulated PMNs. Li pretreatment did however modify the shape of the Ca-transient curves in FMLP stimulated leukocytes suggesting a qualitative modification of ion channel regulation. No such shape change of Ca-transient curves was observed after KE stimulation of Li pretreated PMNs. It appears that the regulation of these two receptors is differently affected by Li treatment.

  12. Regulation of staphylococcal enterotoxin B-elicited nitric oxide production by endothelial cells.

    Science.gov (United States)

    LeClaire, R D; Kell, W M; Sadik, R A; Downs, M B; Parker, G W

    1995-01-01

    The effect of staphylococcal enterotoxin B (SEB)-elicited inducible nitric oxide synthase (iNOS) in mouse endothelial cells was investigated. Results showed that SEB stimulated the same level of NO production in gamma interferon (IFN-gamma)-primed cells as did trichloroacetic acid-extracted lipopolysaccharide. The kinetics of induced NO production and expression of mRNA for iNOS differed markedly in endothelial and macrophage cells. Induced endothelial nitrite production was transient and was 15 to 20% of that generated by macrophage cells; mRNA levels peaked by 2 h and then steadily declined, whereas macrophage message levels continually increased. The ability of endothelial cells to produce SEB-induced NO depended on priming with IFN-gamma, although detectable mRNA could be elicited by SEB alone. Induction of endothelial iNOS mRNA was inhibited by cycloheximide, which indicated a requirement for de novo protein synthesis. Niacinamide and interleukin-10 significantly reduced SEB-induced endothelial NO production. Both are reported to affect IFN-gamma-induced class II major histocompatibility complex (MHC) expression on antigen-presenting cells. Niacinamide reduced iNOS mRNA levels and markedly reduced IFN-gamma induction of endothelial class II MHC surface antigen. Interleukin-10 did not consistently reduce iNOS mRNA expression and had no effect on IFN-gamma induction of endothelial class II MHC surface antigen. These results suggest that SEB interacts with IFN-gamma-primed endothelial cells to elicit induced NO and that this induction can be effectively modulated at the receptor or transcriptional level. PMID:7529748

  13. Superoxide production and expression of NAD(P)H oxidases by transformed and primary human colonic epithelial cells

    DEFF Research Database (Denmark)

    Perner, A; Andresen, Lars; Pedersen, G

    2003-01-01

    Superoxide (O(2)(-)) generation through the activity of reduced nicotinamide dinucleotide (NADH) or reduced nicotinamide dinucleotide phosphate (NADPH) oxidases has been demonstrated in a variety of cell types, but not in human colonic epithelial cells.......Superoxide (O(2)(-)) generation through the activity of reduced nicotinamide dinucleotide (NADH) or reduced nicotinamide dinucleotide phosphate (NADPH) oxidases has been demonstrated in a variety of cell types, but not in human colonic epithelial cells....

  14. Synthesis of decacationic [60]fullerene decaiodides giving photoinduced production of superoxide radicals and effective PDT-mediation on antimicrobial photoinactivation.

    Science.gov (United States)

    Wang, Min; Maragani, Satyanarayana; Huang, Liyi; Jeon, Seaho; Canteenwala, Taizoon; Hamblin, Michael R; Chiang, Long Y

    2013-05-01

    We report a novel class of highly water-soluble decacationic methano[60]fullerene decaiodides C60[>M(C3N6(+)C3)2]-(I(-))10 [1-(I(-))10] capable of co-producing singlet oxygen (Type-II) and highly reactive hydroxyl radicals, formed from superoxide radicals in Type-I photosensitizing reactions, upon illumination at both UVA and white light wavelengths. The O2(-)·-production efficiency of 1-(I(-))10 was confirmed by using an O2(-)·-reactive bis(2,4-dinitrobenzenesulfonyl)tetrafluorofluorescein probe and correlated to the photoinduced electron-transfer event going from iodide anions to (3)C60*[>M(C3N6(+)C3)2] leading to C60(-)·[>M(C3N6(+)C3)2]. Incorporation of a defined number (ten) of quaternary ammonium cationic charges per C60 in 1 was aimed to enhance its ability to target pathogenic Gram-positive and Gram-negative bacterial cells. We used the well-characterized malonato[60]fullerene diester monoadduct C60[>M(t-Bu)2] as the starting fullerene derivative to provide a better synthetic route to C60[>M(C3N6(+)C3)2] via transesterification reaction under trifluoroacetic acid catalyzed conditions. These compounds may be used as effective photosensitizers and nano-PDT drugs for photoinactivation of pathogens. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  15. Therapeutic Targeting of the Mitochondria Initiates Excessive Superoxide Production and Mitochondrial Depolarization Causing Decreased mtDNA Integrity.

    Science.gov (United States)

    Pokrzywinski, Kaytee L; Biel, Thomas G; Kryndushkin, Dmitry; Rao, V Ashutosh

    2016-01-01

    Mitochondrial dysregulation is closely associated with excessive reactive oxygen species (ROS) production. Altered redox homeostasis has been implicated in the onset of several diseases including cancer. Mitochondrial DNA (mtDNA) and proteins are particularly sensitive to ROS as they are in close proximity to the respiratory chain (RC). Mitoquinone (MitoQ), a mitochondria-targeted redox agent, selectively damages breast cancer cells possibly through damage induced via enhanced ROS production. However, the effects of MitoQ and other triphenylphosphonium (TPP+) conjugated agents on cancer mitochondrial homeostasis remain unknown. The primary objective of this study was to determine the impact of mitochondria-targeted agent [(MTAs) conjugated to TPP+: mitoTEMPOL, mitoquinone and mitochromanol-acetate] on mitochondrial physiology and mtDNA integrity in breast (MDA-MB-231) and lung (H23) cancer cells. The integrity of the mtDNA was assessed by quantifying the degree of mtDNA fragmentation and copy number, as well as by measuring mitochondrial proteins essential to mtDNA stability and maintenance (TFAM, SSBP1, TWINKLE, POLG and POLRMT). Mitochondrial status was evaluated by measuring superoxide production, mitochondrial membrane depolarization, oxygen consumption, extracellular acidification and mRNA or protein levels of the RC complexes along with TCA cycle activity. In this study, we demonstrated that all investigated MTAs impair mitochondrial health and decrease mtDNA integrity in MDA-MB-231 and H23 cells. However, differences in the degree of mitochondrial damage and mtDNA degradation suggest unique properties among each MTA that may be cell line, dose and time dependent. Collectively, our study indicates the potential for TPP+ conjugated molecules to impair breast and lung cancer cells by targeting mitochondrial homeostasis.

  16. Propylthiouracil, Perchlorate, and Thyroid-Stimulating Hormone Modulate High Concentrations of Iodide Instigated Mitochondrial Superoxide Production in the Thyroids of Metallothionein I/II Knockout Mice

    Directory of Open Access Journals (Sweden)

    Qi Duan

    2016-03-01

    Full Text Available BackgroundIncreased oxidative stress has been suggested as one of the underlying mechanisms in iodide excess-induced thyroid disease. Metallothioneins (MTs are regarded as scavengers of reactive oxygen species (ROS in oxidative stress. Our aim is to investigate the effects of propylthiouracil (PTU, a thyroid peroxidase inhibitor, perchlorate (KClO4, a competitive inhibitor of iodide transport, and thyroid stimulating hormone (TSH on mitochondrial superoxide production instigated by high concentrations of iodide in the thyroids of MT-I/II knockout (MT-I/II KO mice.MethodsEight-week-old 129S7/SvEvBrd-Mt1tm1Bri Mt2tm1Bri/J (MT-I/II KO mice and background-matched wild type (WT mice were used.ResultsBy using a mitochondrial superoxide indicator (MitoSOX Red, lactate dehydrogenase (LDH release, and methyl thiazolyl tetrazolium (MTT assay, we demonstrated that the decreased relative viability and increased LDH release and mitochondrial superoxide production induced by potassium iodide (100 µM can be relieved by 300 µM PTU, 30 µM KClO4, or 10 U/L TSH in the thyroid cell suspensions of both MT-I/II KO and WT mice (P<0.05. Compared to the WT mice, a significant decrease in the relative viability along with a significant increase in LDH release and mitochondrial superoxide production were detected in MT-I/II KO mice(P<0.05.ConclusionWe concluded that PTU, KClO4, or TSH relieved the mitochondrial oxidative stress induced by high concentrations of iodide in the thyroids of both MT-I/II KO and WT mice. MT-I/II showed antioxidant effects against high concentrations of iodide-induced mitochondrial superoxide production in the thyroid.

  17. Atrial fibrillation increases production of superoxide by the left atrium and left atrial appendage: role of the NADPH and xanthine oxidases.

    Science.gov (United States)

    Dudley, Samuel C; Hoch, Nyssa E; McCann, Louise A; Honeycutt, Clegg; Diamandopoulos, Laura; Fukai, Tohru; Harrison, David G; Dikalov, Sergey I; Langberg, Jonathan

    2005-08-30

    Atrial fibrillation (AF) is associated with an increased risk of stroke due almost exclusively to emboli from left atrial appendage (LAA) thrombi. Recently, we reported that AF was associated with endocardial dysfunction, limited to the left atrium (LA) and LAA and manifest as reduced nitric oxide (NO*) production and increased expression of plasminogen activator inhibitor-1. We hypothesized that reduced LAA NO* levels observed in AF may be associated with increased superoxide (O2*-) production. After a week of AF induced by rapid atrial pacing in pigs, O2*- production from acutely isolated heart tissue was measured by 2 independent techniques, electron spin resonance and superoxide dismutase-inhibitable cytochrome C reduction assays. Compared with control animals with equivalent ventricular heart rates, basal O2*- production was increased 2.7-fold (P<0.01) and 3.0-fold (P<0.02) in the LA and LAA, respectively. A similar 3.0-fold (P<0.01) increase in LAA O2*- production was observed using a cytochrome C reduction assay. The increases could not be explained by changes in atrial total superoxide dismutase activity. Addition of either apocyanin or oxypurinol reduced LAA O2*-, implying that NADPH and xanthine oxidases both contributed to increased O2*- production in AF. Enzyme assays of atrial tissue homogenates confirmed increases in LAA NAD(P)H oxidase (P=0.04) and xanthine oxidase (P=0.01) activities. Although there were no changes in expression of the NADPH oxidase subunits, the increase in superoxide production was accompanied by an increase in GTP-loaded Rac1, an activator of the NADPH oxidase. AF increased O2*- production in both the LA and LAA. Increased NAD(P)H oxidase and xanthine oxidase activities contributed to the observed increase in LAA O2*- production. This increase in O2*- and its reactive metabolites may contribute to the pathological consequences of AF such as thrombosis, inflammation, and tissue remodeling.

  18. Non-specific immunity and ketone bodies. II: In vitro studies on adherence and superoxide anion production in ovine neutrophils.

    Science.gov (United States)

    Sartorelli, P; Paltrinieri, S; Comazzi, S

    2000-02-01

    The effects of the ketone bodies beta-OH-butyrate and acetoacetate (2.4 or 4.8 mmol/l), administered singly or simultaneously in vitro, on adherence and superoxide anion (SO) production in ovine neutrophils were investigated by simultaneous assay in 96-well microplates. Because the acetoacetate used was a lithium salt, the effect of 2.4 and 4.8 mmol/l lithium chloride was also tested. Neutrophils from eight non-lactating, non-pregnant ewes were used. SO release from neutrophils was found to be very low in basal conditions and was apparently not stimulated by contact with plastic. Administration of 10(-7) mol/l phorbol myristate acetate (PMA) caused a rapid increase and release of SO production, but smaller than that induced by co-stimulation with plastic and 10(-7) mol/l PMA. LiCl (2.4 and 4.8 mmol/l) significantly increased PMA-stimulated release, but inhibited plastic and PMA co-stimulated SO release. Administration of 2.4 mmol/l ketone bodies inhibited plastic and PMA-costimulated SO release, but the effect of acetoacetate could be due to the lithium component. Administration of 4.8 mmol/l ketone bodies had no effect. Adherence was significantly increased by contact with plastic, and moreover by 10(-7) mol/l PMA. The effect was similar when PMA was acting alone or with plastic. Neither basal nor stimulated adherence were affected by 2.4 or 4.8 mmol/l ketone bodies. LiCl at a concentration of 4.8 mmol/l increased PMA and plastic co-stimulated adherence. The results suggest that, in sheep, only the ketone body beta-OH butyrate at concentrations seen in mild ketosis, could decrease bactericidal activity, while adherence is not affected. In addition to other factors that could impair the efficiency of the immune system in ketotic ruminants, the reduced bactericidal activity may contribute to the higher occurrence of infectious disease in these animals.

  19. Metabolism of hydrogen sulfide (H2S) and Production of Reactive Sulfur Species (RSS) by superoxide dismutase.

    Science.gov (United States)

    Olson, Kenneth R; Gao, Yan; Arif, Faihaan; Arora, Kanika; Patel, Shivali; DeLeon, Eric R; Sutton, Thomas R; Feelisch, Martin; Cortese-Krott, Miriam M; Straub, Karl D

    2017-11-20

    Reactive sulfur species (RSS) such as H2S, HS•, H2Sn, (n = 2-7) and HS2•- are chemically similar to H2O and the reactive oxygen species (ROS) HO•, H2O2, O2•- and act on common biological effectors. RSS were present in evolution long before ROS, and because both are metabolized by catalase it has been suggested that "antioxidant" enzymes originally evolved to regulate RSS and may continue to do so today. Here we examined RSS metabolism by Cu/Zn superoxide dismutase (SOD) using amperometric electrodes for dissolved H2S, a polysulfide-specific fluorescent probe (SSP4), and mass spectrometry to identify specific polysulfides (H2S2-H2S5). H2S was concentration- and oxygen-dependently oxidized by 1μM SOD to polysulfides (mainly H2S2, and to a lesser extent H2S3 and H2S5) with an EC50 of approximately 380μM H2S. H2S concentrations > 750μM inhibited SOD oxidation (IC50 = 1.25mM) with complete inhibition when H2S > 1.75mM. Polysulfides were not metabolized by SOD. SOD oxidation preferred dissolved H2S over hydrosulfide anion (HS-), whereas HS- inhibited polysulfide production. In hypoxia, other possible electron donors such as nitrate, nitrite, sulfite, sulfate, thiosulfate and metabisulfite were ineffective. Manganese SOD also catalyzed H2S oxidation to form polysulfides, but did not metabolize polysulfides indicating common attributes of these SODs. These experiments suggest that, unlike the well-known SOD-mediated dismutation of two O2•- to form H2O2 and O2, SOD catalyzes a reaction using H2S and O2 to form persulfide. These can then combine in various ways to form polysulfides and sulfur oxides. It is also possible that H2S (or polysulfides) interact/react with SOD cysteines to affect catalytic activity or to directly contribute to sulfide metabolism. Our studies suggest that H2S metabolism by SOD may have been an ancient mechanism to detoxify sulfide or to regulate RSS and along with catalase may continue to do so in contemporary organisms. Copyright

  20. Chemical vs Electrochemical Formation of Li2CO3 as a Discharge Product in Li-O2/CO2 Batteries by Controlling the Superoxide Intermediate.

    Science.gov (United States)

    Yin, Wei; Grimaud, Alexis; Lepoivre, Florent; Yang, Chunzhen; Tarascon, Jean Marie

    2017-01-05

    The Li-O2/CO2 battery with high capacity has recently been proposed as a new protocol to convert CO2. However, the fundamental mechanism for the reaction still remains hazy. Here, we investigated the discharge processes of Li-O2/CO2 (70%/30%) batteries in two solvents, dimethyl sulfoxide (DMSO) and 1,2-dimethoxyethane (DME). During discharge, both solvents initially show the reduction of oxygen. However, afterward, the solvent affects the reaction pathways of superoxide species by solvating Li+ with different strength, depending on the so-called donor number. More precisely, the initial formation of CO4•- is favored in DMSO at the expense of lithium superoxide formation that we observed in DME. Despite the different intermediate processes, X-ray diffraction showed that Li2CO3 was the final discharge product in both solvents. Moreover, we observed that CO2 cannot be reduced within the electrochemical stability window of DMSO and DME.

  1. Inhibition of endothelial interleukin-8 production and neutrophil transmigration by Staphylococcus aureus beta-hemolysin.

    Science.gov (United States)

    Tajima, Akiko; Iwase, Tadayuki; Shinji, Hitomi; Seki, Keiko; Mizunoe, Yoshimitsu

    2009-01-01

    Neutrophils play a crucial role in the host response to infection with Staphylococcus aureus, which is a major human pathogen capable of causing life-threatening disease. Interleukin-8 (IL-8) is a potent chemoattractant and activator of neutrophils. We previously reported that S. aureus secretes a factor that suppresses IL-8 production by human endothelial cells. Here we isolated an inhibitor of IL-8 production from the supernatant and identified it as staphylococcal beta-hemolysin. Beta-hemolysin reduced IL-8 production without cytotoxicity to endothelial cells. Pretreatment with beta-hemolysin decreased the expression of both IL-8 mRNA and protein induced by tumor necrosis factor alpha (TNF-alpha). Migration of neutrophils across TNF-alpha-activated endothelium was also inhibited by beta-hemolysin. In contrast, beta-hemolysin had no effect on intercellular adhesive molecule 1 expression in activated endothelial cells. These results showed that beta-hemolysin produced by S. aureus interferes with inflammatory signaling in endothelial cells and may help S. aureus evade the host immune response.

  2. Murine brain endothelial cells differently modulate interferon-γ and interleukin-17 production in vitro

    Directory of Open Access Journals (Sweden)

    Momčilović Miljana

    2009-01-01

    Full Text Available Brain endothelial cells (BEC are the major constituents of the blood-brain barrier (BBB, the structure that controls entrance of immune cells into CNS parenchyma. Our aim was to investigate the influence of BEC on production of IL-17 and IFN-γ-cytokines that are important for CNS inflammation. To that end, co-cultivations of the bEnd.3 brain endothelial cell line and lymph node cells (LNC were performed, and gene expression and production of IL-17 and IFN-γ were determined. It was found that bEnd.3 cells inhibited expression and production of IFN-γ, but not of IL-17. Additionally, bEnd.3 cells also reduced production of the major IFN-γ-promoting cytokine - IL-12 - in LNC. The observed variation in modulation of pro-inflammatory cytokines by BEC could be of importance for the understanding of CNS inflammation.

  3. Bile acid receptor TGR5 agonism induces NO production and reduces monocyte adhesion in vascular endothelial cells.

    Science.gov (United States)

    Kida, Taiki; Tsubosaka, Yoshiki; Hori, Masatoshi; Ozaki, Hiroshi; Murata, Takahisa

    2013-07-01

    TGR5 is a G-protein-coupled receptor for bile acids. So far, little is known about the function of TGR5 in vascular endothelial cells. In bovine aortic endothelial cells, treatment with a bile acid having a high affinity to TGR5, taurolithocholic acid (TLCA), significantly increased NO production. This effect was abolished by small interfering RNA-mediated depletion of TGR5. TLCA-induced NO production was also observed in human umbilical vein endothelial cells measured via intracellular cGMP accumulation. TLCA increased endothelial NO synthase(ser1177) phosphorylation in human umbilical vein endothelial cells. This response was accompanied by increased Akt(ser473) phosphorylation and intracellular Ca(2+). Inhibition of these signals significantly decreased TLCA-induced NO production. We next examined whether TGR5-mediated NO production affects inflammatory responses of endothelial cells. In human umbilical vein endothelial cells, TLCA significantly reduced tumor necrosis factor-α-induced adhesion of monocytes, vascular cell adhesion molecule-1 expression, and activation of nuclear factor-κB. TLCA also inhibited lipopolysaccharide-induced monocyte adhesion to mesenteric venules in vivo. These inhibitory effects of TLCA were abrogated by NO synthase inhibition. TGR5 agonism induces NO production via Akt activation and intracellular Ca(2+) increase in vascular endothelial cells, and this function inhibits monocyte adhesion in response to inflammatory stimuli.

  4. Racial differences in tumor necrosis factor-α-induced endothelial microparticles and interleukin-6 production

    Directory of Open Access Journals (Sweden)

    Brown M

    2011-08-01

    Full Text Available Michael D Brown1,3, Deborah L Feairheller1, Sunny Thakkar1, Praveen Veerabhadrappa1, Joon-Young Park21Hypertension, Molecular and Applied Physiology Laboratory, 2Cardiovascular Genomics Laboratory, Department of Kinesiology, 3Cardiovascular Research Center, School of Medicine, Temple University, Philadelphia, PA, USAAbstract: African Americans (AA tend to have heightened systemic inflammation and endothelial dysfunction. Endothelial microparticles (EMP are released from activated/apoptotic endothelial cells (EC when stimulated by inflammation. The purpose of our study was to assess EMP responses to inflammatory cytokine (TNF-α and antioxidant (superoxide dismutase, SOD conditions in human umbilical vein ECs (HUVECs obtained from AA and Caucasians. EMPs were measured under four conditions: control (basal, TNF-α, SOD, and TNF-α + SOD. Culture supernatant was collected for EMP analysis by flow cytometry and IL-6 assay by ELISA. IL-6 protein expression was assessed by Western blot. AA HUVECs had greater EMP levels under the TNF- α condition compared to the Caucasian HUVECs (6.8 ± 1.1 vs 4.7% ± 0.4%, P = 0.04. The EMP level increased by 89% from basal levels in the AA HUVECs under the TNF-α condition (P = 0.01 compared to an 8% increase in the Caucasian HUVECs (P = 0.70. Compared to the EMP level under the TNF-α condition, the EMP level in the AA HUVECs was lower under the SOD only condition (2.9% ± 0.3%, P = 0.005 and under the TNF-α + SOD condition (2.1% ± 0.4%, P = 0.001. Basal IL-6 concentrations were 56.1 ± 8.8 pg/mL/µg in the AA and 30.9 ± 14.9 pg/mL/µg in the Caucasian HUVECs (P = 0.17, while basal IL-6 protein expression was significantly greater (P < 0.05 in the AA HUVECs. These preliminary observational results suggest that AA HUVECs may be more susceptible to the injurious effects of the proinflammatory cytokine, TNF-α.Keywords: endothelium, inflammation, endothelial microparticles, African Americans

  5. Charge Transfer at the Qo-Site of the Cytochrome bc1 Complex Leads to Superoxide Production.

    Science.gov (United States)

    Salo, Adrian Bøgh; Husen, Peter; Solov'yov, Ilia A

    2017-03-02

    The cytochrome bc1 complex is the third protein complex in the electron transport chain of mitochondria or photosynthetic bacteria, and it serves to create an electrochemical gradient across a cellular membrane, which is used to drive ATP synthesis. The purpose of this study is to investigate interactions involving an occasionally trapped oxygen molecule (O2) at the so-called Qo site of the bc1 complex, which is one of the central active sites of the protein complex, where redox reactions are expected to occur. The investigation focuses on revealing the possibility of the oxygen molecule to influence the normal operation of the bc1 complex and acquire an extra electron, thus becoming superoxide, a biologically toxic free radical. The process is modeled by applying quantum chemical calculations to previously performed classical molecular dynamics simulations. Investigations reveal several spontaneous charge transfer modes from amino acid residues and cofactors at the Qo-site to the trapped O2 molecule.

  6. Enamel Matrix Derivative Promotes Superoxide Production and Chemotaxis, but Reduces Matrix Metalloproteinase 8 Expression by Polymorphonuclear Leukocytes

    Science.gov (United States)

    Karima, Mamdouh M.; Van Dyke, Thomas E.

    2015-01-01

    Background Polymorphonuclear leukocyte (PMN) is the predominant innate immune cell type activated in acute inflammation. The aim of this study was to determine the impact of Enamel matrix derivative (EMD) on superoxide (O2−) generation, chemotaxis, and matrix metalloproteinase 8 (MMP 8) secretion by PMN in vitro to better understand the role of EMD in surgical wound healing. Methods PMN were isolated from healthy volunteers (N = 14). Superoxide generation was measured using a cytochrome-C reduction assay. Chemotaxis was measured in a modified Boyden chamber. MMP 8 secretion was analyzed by Western blotting. A relative density method was used to determine the percent of MMP 8 released from the PMN in relation to the total cellular MMP 8 content. Results O2− generation was significantly elevated when PMN were stimulated with EMD (200 μg/ml) (P<0.01). Secondary stimulation of PMN with 1 μM fMLP trigged earlier and more sustained O2− generation with EMD. EMD significantly increased PMN chemotactic activity (P<0.05). Combined stimulation with EMD plus formyl-methionyl-leucyl-phenylalanine (fMLP) resulted in significantly higher chemotaxis compared to fMLP alone (P<0.05). Conversely, EMD did not induce MMP 8 secretion from PMN. MMP 8 secretion by PMN in response to fMLP or serum-opsonized zymosan (OZ) stimulation was significantly inhibited by EMD (P<0.05). Conclusion EMD has specific, differential actions on PMN that suggest potential for enhancement of wound healing; bacterial and tissue debris clearance (O2− generation and chemotaxis) and suppress tissue damage and degradation (MMP 8). Taken together, the data suggest that EMD enhances wound healing and reduces inflammation. PMID:22050547

  7. Anti-inflammatory activity of betalain-rich dye of Beta vulgaris: effect on edema, leukocyte recruitment, superoxide anion and cytokine production.

    Science.gov (United States)

    Martinez, Renata M; Longhi-Balbinot, Daniela T; Zarpelon, Ana C; Staurengo-Ferrari, Larissa; Baracat, Marcela M; Georgetti, Sandra R; Sassonia, Rogério C; Verri, Waldiceu A; Casagrande, Rubia

    2015-04-01

    We have recently developed betalain-rich beetroot (Beta vulgaris) dye (betalain) to be used in food products. Betalain (30-300 mg/kg) intraperitoneal (i.p.) treatment diminished carrageenan (100 µg/paw)-induced paw edema and neutrophil migration to the paw skin tissue. Betalain (100 mg/kg) treatment by subcutaneous or per oral routes also inhibited the carrageenan-induced paw edema. Importantly, the post-treatment with betalain (100 mg/kg, i.p.) significantly inhibited carrageenan- and complete Freund's adjuvant (10 µl/paw)-induced paw edema. Betalain (100 mg/kg) also reduced carrageenan (500 µg/cavity)-induced recruitment of total leukocytes, including mononuclear cells and neutrophils, as well as increasing vascular permeability in the peritoneal cavity. Furthermore, betalain significantly reduced carrageenan-induced superoxide anion, tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-1β levels in the peritoneal fluid, as well as augmenting IL-10 levels. Therefore, this compound presents prominent anti-inflammatory effect on carrageenan-induced paw edema and peritonitis by reducing the production of superoxide anion and the cytokines TNF-α and IL-1β, in addition to increasing IL-10 levels. These results suggest that betalain shows therapeutic potential that could be utilized in the treatment of inflammation-associated diseases.

  8. Hydrogen sulfide increases nitric oxide production from endothelial cells by an Akt-dependent mechanism

    Directory of Open Access Journals (Sweden)

    Arturo J Cardounel

    2011-12-01

    Full Text Available Hydrogen sulfide (H2S and nitric oxide (NO are both gasotransmitters that can elicit synergistic vasodilatory responses in the in the cardiovascular system, but the mechanisms behind this synergy are unclear. In the current study we investigated the molecular mechanisms through which H2S regulates endothelial NO production. Initial studies were performed to establish the temporal and dose-dependent effects of H2S on NO generation using EPR spin trapping techniques. H2S stimulated a two-fold increase in NO production from endothelial nitric oxide synthase (eNOS, which was maximal 30 min after exposure to 25-150 µM H2S. Following 30 min H2S exposure, eNOS phosphorylation at Ser 1177 was significantly increased compared to control, consistent with eNOS activation. Pharmacological inhibition of Akt, the kinase responsible for Ser 1177 phosphorylation, attenuated the stimulatory effect of H2S on NO production. Taken together, these data demonstrate that H2S up-regulates NO production from eNOS through an Akt-dependent mechanism. These results implicate H2S in the regulation of NO in endothelial cells, and suggest that deficiencies in H2S signaling can directly impact processes regulated by NO.

  9. Ceramide Production Mediates Aldosterone-Induced Human Umbilical Vein Endothelial Cell (HUVEC Damages.

    Directory of Open Access Journals (Sweden)

    Yumei Zhang

    Full Text Available Here, we studied the underlying mechanism of aldosterone (Aldo-induced vascular endothelial cell damages by focusing on ceramide. We confirmed that Aldo (at nmol/L inhibited human umbilical vein endothelial cells (HUVEC survival, and induced considerable cell apoptosis. We propose that ceramide (mainly C18 production might be responsible for Aldo-mediated damages in HUVECs. Sphingosine-1-phosphate (S1P, an anti-ceramide lipid, attenuated Aldo-induced ceramide production and following HUVEC damages. On the other hand, the glucosylceramide synthase (GCS inhibitor PDMP or the ceramide (C6 potentiated Aldo-induced HUVEC apoptosis. Eplerenone, a mineralocorticoid receptor (MR antagonist, almost completely blocked Aldo-induced C18 ceramide production and HUVEC damages. Molecularly, ceramide synthase 1 (CerS-1 is required for C18 ceramide production by Aldo. Knockdown of CerS-1 by targeted-shRNA inhibited Aldo-induced C18 ceramide production, and protected HUVECs from Aldo. Reversely, CerS-1 overexpression facilitated Aldo-induced C18 ceramide production, and potentiated HUVEC damages. Together, these results suggest that C18 ceramide production mediates Aldo-mediated HUVEC damages. MR and CerS-1 could be the two signaling molecule regulating C18 ceramide production by Aldo.

  10. Effect of dietary advanced glycation end products on postprandial appetite, inflammation, and endothelial activation in healthy overweight individuals

    DEFF Research Database (Denmark)

    Poulsen, Malene Wibe; Bak, Monika Judyta; Andersen, Jeanette Marker

    2014-01-01

    Advanced glycation end products (AGEs) formed in food during high-heat cooking may induce overeating and inflammation. We investigated whether AGE contents in a single meal affect postprandial appetite and markers of inflammation, endothelial activation, and oxidative stress....

  11. Ionizing radiation enhances IL-6 and IL-8 production by human endothelial cells

    Directory of Open Access Journals (Sweden)

    A. Van Der Meeren

    1997-01-01

    Full Text Available Irradiation exposure is known to induce an inflammatory reaction. Endothelial cells play a crucial role both in the inflammatory process and in radiation damage. Therefore, supernatants and cell lysates of 60Co-irradiated human umbilical vein endothelial cells (HUVEC have been assessed for the presence of pro-inflammatory cytokines. After gamma irradiation, interleukin (IL-1α, IL-1β and tumor necrosis factor (TNF-α remained undetectable in both cell supernatants and cell lysates. However, a dose-dependent increase in the production of IL-6 and IL-8 has been demonstrated up to 6 days after exposure. These data indicate that the pro-inflammatory cytokines IL-6 and IL-8 may be involved in the inflammatory response of vascular endothelium induced by exposure to ionizing radiation.

  12. Citrus Polyphenol Hesperidin Stimulates Production of Nitric Oxide in Endothelial Cells while Improving Endothelial Function and Reducing Inflammatory Markers in Patients with Metabolic Syndrome

    Science.gov (United States)

    Rizza, Stefano; Muniyappa, Ranganath; Iantorno, Micaela; Kim, Jeong-a; Chen, Hui; Pullikotil, Philomena; Senese, Nicoletta; Tesauro, Manfredi; Lauro, Davide; Cardillo, Carmine

    2011-01-01

    Context: Hesperidin, a citrus flavonoid, and its metabolite hesperetin may have vascular actions relevant to their health benefits. Molecular and physiological mechanisms of hesperetin actions are unknown. Objective: We tested whether hesperetin stimulates production of nitric oxide (NO) from vascular endothelium and evaluated endothelial function in subjects with metabolic syndrome on oral hesperidin therapy. Design, Setting, and Interventions: Cellular mechanisms of action of hesperetin were evaluated in bovine aortic endothelial cells (BAEC) in primary culture. A randomized, placebo-controlled, double-blind, crossover trial examined whether oral hesperidin administration (500 mg once daily for 3 wk) improves endothelial function in individuals with metabolic syndrome (n = 24). Main Outcome Measure: We measured the difference in brachial artery flow-mediated dilation between placebo and hesperidin treatment periods. Results: Treatment of BAEC with hesperetin acutely stimulated phosphorylation of Src, Akt, AMP kinase, and endothelial NO synthase to produce NO; this required generation of H2O2. Increased adhesion of monocytes to BAEC and expression of vascular cell adhesion molecule-1 in response to TNF-α treatment was reduced by pretreatment with hesperetin. In the clinical study, when compared with placebo, hesperidin treatment increased flow-mediated dilation (10.26 ± 1.19 vs. 7.78 ± 0.76%; P = 0.02) and reduced concentrations of circulating inflammatory biomarkers (high-sensitivity C-reactive protein, serum amyloid A protein, soluble E-selectin). Conclusions: Novel mechanisms for hesperetin action in endothelial cells inform effects of oral hesperidin treatment to improve endothelial dysfunction and reduce circulating markers of inflammation in our exploratory clinical trial. Hesperetin has vasculoprotective actions that may explain beneficial cardiovascular effects of citrus consumption. PMID:21346065

  13. Biochemical Characterization, Action on Macrophages, and Superoxide Anion Production of Four Basic Phospholipases A2 from Panamanian Bothrops asper Snake Venom

    Science.gov (United States)

    Rueda, Aristides Quintero; Rodríguez, Isela González; Arantes, Eliane C.; Setúbal, Sulamita S.; Calderon, Leonardo de A.; Zuliani, Juliana P.; Stábeli, Rodrigo G.; Soares, Andreimar M.

    2013-01-01

    Bothrops asper (Squamata: Viperidae) is the most important venomous snake in Central America, being responsible for the majority of snakebite accidents. Four basic PLA2s (pMTX-I to -IV) were purified from crude venom by a single-step chromatography using a CM-Sepharose ion-exchange column (1.5 × 15 cm). Analysis of the N-terminal sequence demonstrated that pMTX-I and III belong to the catalytically active Asp49 phospholipase A2 subclass, whereas pMTX-II and IV belong to the enzymatically inactive Lys49 PLA2s-like subclass. The PLA2s isolated from Panama Bothrops asper venom (pMTX-I, II, III, and IV) are able to induce myotoxic activity, inflammatory reaction mainly leukocyte migration to the muscle, and induce J774A.1 macrophages activation to start phagocytic activity and superoxide production. PMID:23509779

  14. Dissociations in the effects of β2-adrenergic receptor agonists on cAMP formation and superoxide production in human neutrophils: support for the concept of functional selectivity.

    Directory of Open Access Journals (Sweden)

    Irena Brunskole Hummel

    Full Text Available In neutrophils, activation of the β2-adrenergic receptor (β2AR, a Gs-coupled receptor, inhibits inflammatory responses, which could be therapeutically exploited. The aim of this study was to evaluate the effects of various β2AR ligands on adenosine-3',5'-cyclic monophosphate (cAMP accumulation and N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP-induced superoxide anion (O2(•- production in human neutrophils and to probe the concept of ligand-specific receptor conformations (also referred to as functional selectivity or biased signaling in a native cell system. This is an important question because so far, evidence for functional selectivity has been predominantly obtained with recombinant systems, due to the inherent difficulties to genetically manipulate human native cells. cAMP concentration was determined by HPLC/tandem mass spectrometry, and O2(•- formation was assessed by superoxide dismutase-inhibitable reduction of ferricytochrome c. β2AR agonists were generally more potent in inhibiting fMLP-induced O2(•- production than in stimulating cAMP accumulation. (--Ephedrine and dichloroisoproterenol were devoid of any agonistic activity in the cAMP assay, but partially inhibited fMLP-induced O2(•- production. Moreover, (--adrenaline was equi-efficacious in both assays whereas the efficacy of salbutamol was more than two-fold higher in the O2(•- assay. Functional selectivity was visualized by deviations of ligand potencies and efficacies from linear correlations for various parameters. We obtained no evidence for involvement of protein kinase A in the inhibition of fMLP-induced O2(•- production after β2AR-stimulation although cAMP-increasing substances inhibited O2(•- production. Taken together, our data corroborate the concept of ligand-specific receptor conformations with unique signaling capabilities in native human cells and suggest that the β2AR inhibits O2(•- production in a cAMP-independent manner.

  15. Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Mishima Satoshi

    2009-11-01

    Full Text Available Abstract Background Vascular endothelial growth factor (VEGF is a key regulator of pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. Bee products [royal jelly (RJ, bee pollen, and Chinese red propolis] from the honeybee, Apis mellifera, have been used as traditional health foods for centuries. The aim of this study was to investigate the anti-angiogenic effects of bee products using human umbilical vein endothelial cells (HUVECs. Methods In an in vitro tube formation assay, HUVECs and fibroblast cells were incubated for 14 days with VEGF and various concentrations of bee products [RJ, ethanol extract of bee pollen, ethanol extract of Chinese red propolis and its constituent, caffeic acid phenethyl ester (CAPE]. To clarify the mechanism of in vitro angiogenesis, HUVEC proliferation and migration were induced by VEGF with or without various concentrations of RJ, bee pollen, Chinese red propolis, and CAPE. Results RJ, bee pollen, Chinese red propolis, and CAPE significantly suppressed VEGF-induced in vitro tube formation in the descending order: CAPE > Chinese red propolis >> bee pollen > RJ. RJ and Chinese red propolis suppressed both VEGF-induced HUVEC proliferation and migration. In contrast, bee pollen and CAPE suppressed only the proliferation. Conclusion Among the bee products, Chinese red propolis and CAPE in particular showed strong suppressive effects against VEGF-induced angiogenesis. These findings indicate that Chinese red propolis and CAPE may have potential as preventive and therapeutic agents against angiogenesis-related human diseases.

  16. Endothelial surface glycocalyx can regulate flow-induced nitric oxide production in microvessels in vivo.

    Directory of Open Access Journals (Sweden)

    Wanyi Yen

    Full Text Available Due to its unique location, the endothelial surface glycocalyx (ESG at the luminal side of the microvessel wall may serve as a mechano-sensor and transducer of blood flow and thus regulate endothelial functions. To examine this role of the ESG, we used fluorescence microscopy to measure nitric oxide (NO production in post-capillary venules and arterioles of rat mesentery under reduced (low and normal (high flow conditions, with and without enzyme pretreatment to remove heparan sulfate (HS of the ESG and in the presence of an endothelial nitric oxide synthase (eNOS inhibitor, NG-monomethyl-L-arginine (L-NMMA. Rats (SD, 250-300 g were anesthetized. The mesentery was gently taken out from the abdominal cavity and arranged on the surface of a glass coverslip for the measurement. An individual post-capillary venule or arteriole was cannulated and loaded for 45 min with 5 μM 4, 5-Diaminofluorescein diacetate, a membrane permeable fluorescent indictor for NO, then the NO production was measured for ~10 min under a low flow (~300 μm/s and for ~60 min under a high flow (~1000 μm/s. In the 15 min after switching to the high flow, DAF-2-NO fluorescence intensity increased to 1.27-fold of its baseline, DAF-2-NO continuously increased under the high flow, to 1.53-fold of its baseline in 60 min. Inhibition of eNOS by 1 mM L-NMMA attenuated the flow-induced NO production to 1.13-fold in 15 min and 1.30-fold of its baseline in 60 min, respectively. In contrast, no significant increase in NO production was observed after switching to the high flow for 60 min when 1 h pretreatment with 50 mU/mL heparanase III to degrade the ESG was applied. Similar NO production was observed in arterioles under low and high flows and under eNOS inhibition. Our results suggest that ESG participates in endothelial cell mechanosensing and transduction through its heparan sulfate to activate eNOS.

  17. Effects of rotational culture on morphology, nitric oxide production and cell cycle of endothelial cells.

    Science.gov (United States)

    Tang, Chaojun; Wu, Xue; Ye, Linqi; Xie, Xiang; Wang, Guixue

    2012-12-01

    Devices for the rotational culture of cells and the study of biological reactions have been widely applied in tissue engineering. However, there are few reports exploring the effects of rotational culture on cell morphology, nitric oxide (NO) production, and cell cycle of the endothelial cells from human umbilical vein on the stent surface. This study focuses on these parameters after the cells are seeded on the stents. Results showed that covering of stents by endothelial cells was improved by rotational culture. NO production decreased within 24 h in both rotational and static culture groups. In addition, rotational culture significantly increased NO production by 37.9% at 36 h and 28.9% at 48 h compared with static culture. Flow cytometry showed that the cell cycle was not obviously influenced by rotational culture. Results indicate that rotational culture may be helpful for preparation of cell-seeded vascular grafts and intravascular stents, which are expected to be the most frequently implanted materials in the future.

  18. H2O2-induced endothelial NO production contributes to vascular cell apoptosis and increased permeability in rat venules

    Science.gov (United States)

    Zhou, Xueping; Yuan, Dong; Wang, Mingxia

    2013-01-01

    Although elevated levels of H2O2 have been implicated to play important roles in the pathogenesis of various cardiovascular diseases, the underlying mechanisms remain unclear. This study aims to examine the effect of H2O2 on endothelial nitric oxide (NO) production in intact venules, and elucidate the role and mechanisms of NO in H2O2-induced increases in microvessel permeability. Experiments were conducted on individually perfused rat mesenteric venules. Microvessel permeability was determined by measuring hydraulic conductivity (Lp), and endothelial [Ca2+]i was measured on fura-2-loaded vessels. Perfusion of H2O2 (10 μM) caused a delayed and progressively increased endothelial [Ca2+]i and Lp, a pattern different from inflammatory mediator-induced immediate and transient response. Under the same experimental conditions, measuring endothelial NO via DAF-2 and the spatial detection of cell apoptosis by fluorescent markers revealed that H2O2 induced two phases of NO production followed by caspase activation, intracellular Ca2+ accumulation, and vascular cell apoptosis. The initial NO production was correlated with increased endothelial NO synthase (eNOS) Ser1177 phosphorylation in the absence of elevated endothelial [Ca2+]i, whereas the second phase of NO depended on increased [Ca2+]i and was associated with Thr495 dephosphorylation without increased Ser1177 phosphorylation. Inhibition of NOS prevented H2O2-induced caspase activation, cell apoptosis, and increases in endothelial [Ca2+]i and Lp. Our results indicate that H2O2 at micromolar concentration is able to induce a large magnitude of NO in intact venules, causing caspase activation-mediated endothelial Ca2+ accumulation, cell apoptosis, and increases in permeability. The mechanisms revealed from intact microvessels may contribute to the pathogenesis of oxidant-related cardiovascular diseases. PMID:23086988

  19. Free Superoxide is an Intermediate in the Production of H2O2 by Copper(I)-Aβ Peptide and O2.

    Science.gov (United States)

    Reybier, Karine; Ayala, Sara; Alies, Bruno; Rodrigues, João V; Bustos Rodriguez, Susana; La Penna, Giovanni; Collin, Fabrice; Gomes, Cláudio M; Hureau, Christelle; Faller, Peter

    2016-01-18

    Oxidative stress is considered as an important factor and an early event in the etiology of Alzheimer's disease (AD). Cu bound to the peptide amyloid-β (Aβ) is found in AD brains, and Cu-Aβ could contribute to this oxidative stress, as it is able to produce in vitro H2O2 and HO˙ in the presence of oxygen and biological reducing agents such as ascorbate. The mechanism of Cu-Aβ-catalyzed H2O2 production is however not known, although it was proposed that H2O2 is directly formed from O2 via a 2-electron process. Here, we implement an electrochemical setup and use the specificity of superoxide dismutase-1 (SOD1) to show, for the first time, that H2O2 production by Cu-Aβ in the presence of ascorbate occurs mainly via a free O2˙(-) intermediate. This finding radically changes the view on the catalytic mechanism of H2O2 production by Cu-Aβ, and opens the possibility that Cu-Aβ-catalyzed O2˙(-) contributes to oxidative stress in AD, and hence may be of interest. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. 1,4-Anhydro-4-seleno-d-talitol (SeTal) protects endothelial function in the mouse aorta by scavenging superoxide radicals under conditions of acute oxidative stress

    DEFF Research Database (Denmark)

    Ng, Hooi Hooi; Leo, Chen Huei; O'Sullivan, Kelly

    2017-01-01

    Hyperglycaemia increases the generation of reactive oxidants in blood vessels and is a major cause of endothelial dysfunction. A water-soluble selenium-containing sugar (1,4-Anhydro-4-seleno-d-talitol, SeTal) has potent antioxidant activity in vitro and is a promising treatment to accelerate wound...... healing in diabetic mice. One possible mechanism of SeTal action is a direct effect on blood vessels. Therefore, we tested the hypothesis that SeTal prevents endothelial dysfunction by scavenging reactive oxidants in isolated mouse aorta under conditions of acute oxidative stress induced by hyperglycaemia...

  1. Increased microparticle production and impaired microvascular endothelial function in aldosterone-salt-treated rats: protective effects of polyphenols.

    Directory of Open Access Journals (Sweden)

    Natalia López Andrés

    Full Text Available We aimed to characterize circulating microparticles in association with arterial stiffness, inflammation and endothelial dysfunction in aldosterone-salt-induced hypertension in rats and to investigate the preventive effects of red wine polyphenols. Uninephrectomized male Sprague-Dawley rats were treated with aldosterone-salt (1 µg.h(-1, with or without administration of either red wine polyphenols, Provinols™ (20 mg.kg(-1.day(-1, or spironolactone (30 mg.kg(-1.day(-1 for 4 weeks. Microparticles, arterial stiffness, nitric oxide (NO spin trapping, and mesenteric arterial function were measured. Aldosterone-salt rats showed increased microparticle levels, including those originating from platelets, endothelium and erythrocytes. Hypertension resulted in enhanced aortic stiffness accompanied by increased circulating and aortic NO levels and an upregulation of aortic inducible NO-synthase, NFκB, superoxide anions and nitrotyrosine. Flow-induced dilatation was reduced in mesenteric arteries. These effects were prevented by spironolactone. Provinols™ did not reduce arterial stiffness or systolic hypertension but had effects similar to those of spironolactone on endothelial function assessed by flow-mediated vasodilatation, microparticle generation, aortic NO levels and oxidative stress and apoptosis in the vessel wall. Neither the contractile response nor endothelium-dependent relaxation in mesenteric arteries differed between groups. The in vivo effects of Provinols™ were not mediated by mineralocorticoid receptors or changes in shear stress. In conclusion, vascular remodelling and endothelial dysfunction in aldosterone-salt-mediated hypertension are associated with increased circulating microparticles. Polyphenols prevent the enhanced release of microparticles, macrovascular inflammation and oxidative stress, and microvascular endothelial dysfunction independently of blood pressure, shear stress and mineralocorticoid receptor activation in a

  2. Endothelial nitric oxide synthase is not essential for nitric oxide production by osteoblasts subjected to fluid shear stress in vitro

    NARCIS (Netherlands)

    Bakker, A.D.; Huesa, C.; Hughes, A.; Aspden, R.M.; van 't Hof, R.J.; Klein-Nulend, J.; Helfrich, M.H.

    2013-01-01

    Endothelial nitric oxide synthase (eNOS) has long been held responsible for NO production by mechanically stimulated osteoblasts, but this has recently been disputed. We investigated whether one of the three known NOS isoforms is essential for NO production by mechanically stimulated osteoblasts in

  3. Matrix production and organization by endothelial colony forming cells in mechanically strained engineered tissue constructs.

    Directory of Open Access Journals (Sweden)

    Nicky de Jonge

    Full Text Available AIMS: Tissue engineering is an innovative method to restore cardiovascular tissue function by implanting either an in vitro cultured tissue or a degradable, mechanically functional scaffold that gradually transforms into a living neo-tissue by recruiting tissue forming cells at the site of implantation. Circulating endothelial colony forming cells (ECFCs are capable of differentiating into endothelial cells as well as a mesenchymal ECM-producing phenotype, undergoing Endothelial-to-Mesenchymal-transition (EndoMT. We investigated the potential of ECFCs to produce and organize ECM under the influence of static and cyclic mechanical strain, as well as stimulation with transforming growth factor β1 (TGFβ1. METHODS AND RESULTS: A fibrin-based 3D tissue model was used to simulate neo-tissue formation. Extracellular matrix organization was monitored using confocal laser-scanning microscopy. ECFCs produced collagen and also elastin, but did not form an organized matrix, except when cultured with TGFβ1 under static strain. Here, collagen was aligned more parallel to the strain direction, similar to Human Vena Saphena Cell-seeded controls. Priming ECFC with TGFβ1 before exposing them to strain led to more homogenous matrix production. CONCLUSIONS: Biochemical and mechanical cues can induce extracellular matrix formation by ECFCs in tissue models that mimic early tissue formation. Our findings suggest that priming with bioactives may be required to optimize neo-tissue development with ECFCs and has important consequences for the timing of stimuli applied to scaffold designs for both in vitro and in situ cardiovascular tissue engineering. The results obtained with ECFCs differ from those obtained with other cell sources, such as vena saphena-derived myofibroblasts, underlining the need for experimental models like ours to test novel cell sources for cardiovascular tissue engineering.

  4. Tea polyphenols alleviate high fat and high glucose-induced endothelial hyperpermeability by attenuating ROS production via NADPH oxidase pathway.

    Science.gov (United States)

    Zuo, Xuezhi; Tian, Chong; Zhao, Nana; Ren, Weiye; Meng, Yi; Jin, Xin; Zhang, Ying; Ding, Shibin; Ying, Chenjiang; Ye, Xiaolei

    2014-03-02

    Hyperglycemia-induced endothelial hyperpermeability is crucial to cardiovascular disorders and macro-vascular complications in diabetes mellitus. The objective of this study is to investigate the effects of green tea polyphenols (GTPs) on endothelial hyperpermeability and the role of nicotinamide adenine dinucleotide phosphate (NADPH) pathway. Male Wistar rats fed on a high fat diet (HF) were treated with GTPs (0, 0.8, 1.6, 3.2 g/L in drinking water) for 26 weeks. Bovine aortic endothelial cells (BAECs) were treated with high glucose (HG, 33 mmol/L) and GTPs (0.0, 0.4, or 4 μg/mL) for 24 hours in vitro. The endothelial permeabilities in rat aorta and monolayer BAECs were measured by Evans blue injection method and efflux of fluorescein isothiocyanate (FITC)-dextran, respectively. The reactive oxygen species (ROS) levels in rat aorta and monolayer BAECs were measured by dihydroethidium (DHE) and 2', 7'-dichloro-fluorescein diacetate (DCFH-DA) fluorescent probe, respectively. Protein levels of NADPH oxidase subunits were determined by Western-blot. HF diet-fed increased the endothelial permeability and ROS levels in rat aorta while HG treatments increased the endothelial permeability and ROS levels in cultured BAECs. Co-treatment with GTPs alleviated those changes both in vivo and in vitro. In in vitro studies, GTPs treatments protected against the HG-induced over-expressions of p22phox and p67phox. Diphenylene iodonium chloride (DPI), an inhibitor of NADPH oxidase, alleviated the hyperpermeability induced by HG. GTPs could alleviate endothelial hyperpermeabilities in HF diet-fed rat aorta and in HG treated BAECs. The decrease of ROS production resulting from down-regulation of NADPH oxidase contributed to the alleviation of endothelial hyperpermeability.

  5. Manganese superoxide dismutase (SOD2 polymorphisms, plasma advanced oxidation protein products (AOPP concentration and risk of kidney complications in subjects with type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Kamel Mohammedi

    Full Text Available AIMS: Oxidative stress is involved in the pathophysiology of diabetic nephropathy. Manganese superoxide dismutase (SOD2 catalyses the dismutation of superoxide, regulates the metabolism of reactive oxygen species in the mitochondria and is highly expressed in the kidney. Plasma concentration of advanced oxidation protein products (AOPP, a marker of oxidative stress, was found to be increased in patients with kidney disease. We investigated associations of SOD2 allelic variations, plasma SOD activity and AOPP concentration with diabetic nephropathy in type 1 diabetic subjects. METHODS: Eight SNPs in the SOD2 region were analysed in 1285 Caucasian subjects with type 1 diabetes from the SURGENE prospective study (n = 340; 10-year follow-up, GENESIS (n = 501 and GENEDIAB (n = 444 cross-sectional studies. Baseline plasma concentration of AOPP and SOD activity were measured in GENEDIAB participants. Hazard ratio (HR and odds ratio (OR were determined for incidence and prevalence of nephropathy. Analyses were adjusted or stratified by retinopathy stages. RESULTS: In the SURGENE cohort, the T-allele of rs4880 (V16A was associated with the incidence of renal events (new cases, or the progression to a more severe stage of nephropathy; HR 1.99, 95% CI 1.24-3.12, p = 0.004 and with the decline in estimated glomerular filtration rate (eGFR during follow-up. Similar associations were observed for rs2758329 and rs8031. Associations were replicated in GENESIS/GENEDIAB cohorts, in the subset of participants without proliferative retinopathy, and were confirmed by haplotype analyses. Risk allele and haplotype were also associated with higher plasma AOPP concentration and lower SOD activity. CONCLUSIONS: SOD2 allelic variations were associated with the incidence and the progression of diabetic nephropathy, with a faster decline in eGFR and with plasma AOPP concentration and SOD activity in subjects with type 1 diabetes. These results are consistent

  6. Lead-induced stress, which triggers the production of nitric oxide (NO) and superoxide anion (O2·-) in Arabidopsis peroxisomes, affects catalase activity.

    Science.gov (United States)

    Corpas, Francisco J; Barroso, Juan B

    2017-08-01

    Lead (Pb) contamination has a toxic effect on plant metabolisms, leading to a decrease in biomass production. The free radical nitric oxide (NO) is involved in the mechanism of response to a wide range of abiotic stresses. However, little is known about the interplay between Pb-induced stress and NO metabolism. Peroxisomes are sub-cellular compartments involved in multiple cellular metabolic pathways which are characterized by an active nitro-oxidative metabolism. Thus, Arabidopsis thaliana mutants expressing cyan fluorescent protein (CFP) through the addition of peroxisomal targeting signal 1 (PTS1), which enables peroxisomes to be visualized in vivo by confocal laser scanning microscopy (CLSM) combined with fluorescent probes for nitric oxide (NO), superoxide anion (O2·-) and peroxynitrite (ONOO-), were used to evaluate the potential involvement of these organelles in the mechanism of response to 150 μM lead-induced stress. Both NO and O2·- radicals, and consequently ONOO-, were overproduced under Pb-stress. Additionally, biochemical and gene expression analyses of peroxisomal enzymes, including the antioxidant catalase (CAT) and two photorespiration enzymes, such as glycolate oxidase (GOX) and hydroxypyruvate reductase (HPR), show that, under Pb-stress, only the catalase was negatively affected, while the two photorespiration enzymes remained unaffected. These results corroborate the involvement of plant peroxisomal metabolisms in the mechanism of response to lead contamination and highlight the importance of the peroxisomal NO metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Measurement of dark, particle-generated superoxide and hydrogen peroxide production and decay in the subtropical and temperate North Pacific Ocean

    Science.gov (United States)

    Roe, Kelly L.; Schneider, Robin J.; Hansel, Colleen M.; Voelker, Bettina M.

    2016-01-01

    Reactive oxygen species (ROS), which include the superoxide radical (O2-) and hydrogen peroxide (H2O2), are thought to be generated mostly through photochemical reactions and biological activity in seawater and can influence trace metal speciation in the ocean. This study reports the results of an intercomparison of two methods to measure particle-generated [O2-] in seawater samples, as well as measurements of particle-generated O2- and H2O2 concentrations, decay kinetics, and dark production rates in seawater samples at Station ALOHA and (O2- only) in the southern California Current Ecosystem. O2- was measured using two different methods relying on chemiluminescence detection. The first method measured the difference between steady-state [O2-] in filtered and unfiltered seawater, while the second method (standard method) measured O2- decay to baseline in freshly filtered seawater. Because both methods detected [O2-] relative to the background signal from filtered seawater, both should have measured [O2-] generated by particles (presumably biota). However, the O2- concentrations determined by the first method were always much smaller than those obtained from the second (standard) method. Follow-up laboratory and field experiments showed that the increased signal in the standard method was due to a filtration artifact that could neither be eliminated nor consistently accounted for under the tested conditions. We therefore recommend the first method for measuring particle-generated [O2-]. Measured by this method, Station ALOHA had particle-generated O2- concentrations that ranged from undetectable to 0.02 nM, with production rates less than 0.6 nM hr-1 and decay rate coefficients from 0.003 to 0.014 s-1. The southern California Current Ecosystem had particle-generated O2- concentrations that ranged from undetectable to 0.05 nM, with production rates up to 4.7 nM hr-1 and decay rate coefficients from 0.006 to 0.017 s-1. H2O2 concentrations were measured by

  8. Catechins inhibit vascular endothelial growth factor production and cyclooxygenase-2 expression in human dental pulp cells.

    Science.gov (United States)

    Nakanishi, T; Mukai, K; Hosokawa, Y; Takegawa, D; Matsuo, T

    2015-03-01

    To investigate the effect of catechins on vascular endothelial growth factor (VEGF) production and cyclooxygenase-2 (COX-2) expression in human dental pulp cells (HDPC) stimulated with bacteria-derived factors or pro-inflammatory cytokines. Morphologically fibroblastic cells established from explant cultures of healthy human dental pulp tissues were used as HDPC. HDPC pre-treated with catechins, epigallocatechin-3-gallate (EGCG) or epicatechin gallate (ECG), were exposed to lipopolysaccharide (LPS), peptidoglycan (PG), interlukin-1β (IL-1β) or tumour necrosis factor-α (TNF-α). VEGF production was examined by enzyme-linked immunosorbent assay, and COX-2 expression was assessed by immunoblot. EGCG and ECG significantly reduced LPS- or PG-mediated VEGF production in the HDPC in a dose-dependent manner. EGCG also prevented IL-1β-mediated VEGF production. Although TNF-α did not enhance VEGF production in the dental pulp cells, treatment of 20 μg mL(-1) of EGCG decreased the level of VEGF. In addition, the catechins attenuated COX-2 expression induced by LPS and IL-1β. The up-regulated VEGF and COX-2 expressions in the HDPC stimulated with these bacteria-derived factors or IL-1β were diminished by the treatment of EGCG and ECG. These findings suggest that the catechins may be beneficial as an anti-inflammatory tool of the treatment for pulpal inflammation. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  9. In silico modeling of shear-stress-induced nitric oxide production in endothelial cells through systems biology.

    Science.gov (United States)

    Koo, Andrew; Nordsletten, David; Umeton, Renato; Yankama, Beracah; Ayyadurai, Shiva; García-Cardeña, Guillermo; Dewey, C Forbes

    2013-05-21

    Nitric oxide (NO) produced by vascular endothelial cells is a potent vasodilator and an antiinflammatory mediator. Regulating production of endothelial-derived NO is a complex undertaking, involving multiple signaling and genetic pathways that are activated by diverse humoral and biomechanical stimuli. To gain a thorough understanding of the rich diversity of responses observed experimentally, it is necessary to account for an ensemble of these pathways acting simultaneously. In this article, we have assembled four quantitative molecular pathways previously proposed for shear-stress-induced NO production. In these pathways, endothelial NO synthase is activated 1), via calcium release, 2), via phosphorylation reactions, and 3), via enhanced protein expression. To these activation pathways, we have added a fourth, a pathway describing actual NO production from endothelial NO synthase and its various protein partners. These pathways were combined and simulated using CytoSolve, a computational environment for combining independent pathway calculations. The integrated model is able to describe the experimentally observed change in NO production with time after the application of fluid shear stress. This model can also be used to predict the specific effects on the system after interventional pharmacological or genetic changes. Importantly, this model reflects the up-to-date understanding of the NO system, providing a platform upon which information can be aggregated in an additive way. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Anesthetic Propofol Overdose Causes Vascular Hyperpermeability by Reducing Endothelial Glycocalyx and ATP Production

    Science.gov (United States)

    Lin, Ming-Chung; Lin, Chiou-Feng; Li, Chien-Feng; Sun, Ding-Ping; Wang, Li-Yun; Hsing, Chung-Hsi

    2015-01-01

    Prolonged treatment with a large dose of propofol may cause diffuse cellular cytotoxicity; however, the detailed underlying mechanism remains unclear, particularly in vascular endothelial cells. Previous studies showed that a propofol overdose induces endothelial injury and vascular barrier dysfunction. Regarding the important role of endothelial glycocalyx on the maintenance of vascular barrier integrity, we therefore hypothesized that a propofol overdose-induced endothelial barrier dysfunction is caused by impaired endothelial glycocalyx. In vivo, we intraperitoneally injected ICR mice with overdosed propofol, and the results showed that a propofol overdose significantly induced systemic vascular hyperpermeability and reduced the expression of endothelial glycocalyx, syndecan-1, syndecan-4, perlecan mRNA and heparan sulfate (HS) in the vessels of multiple organs. In vitro, a propofol overdose reduced the expression of syndecan-1, syndecan-4, perlecan, glypican-1 mRNA and HS and induced significant decreases in the nicotinamide adenine dinucleotide (NAD+)/NADH ratio and ATP concentrations in human microvascular endothelial cells (HMEC-1). Oligomycin treatment also induced significant decreases in the NAD+/NADH ratio, in ATP concentrations and in syndecan-4, perlecan and glypican-1 mRNA expression in HMEC-1 cells. These results demonstrate that a propofol overdose induces a partially ATP-dependent reduction of endothelial glycocalyx expression and consequently leads to vascular hyperpermeability due to the loss of endothelial barrier functions. PMID:26023717

  11. Low-grade chronic inflammation and superoxide anion production by NADPH oxidase are the main determinants of physical frailty in older adults.

    Science.gov (United States)

    Baptista, Gregory; Dupuy, Anne-Marie; Jaussent, Audrey; Durant, Richard; Ventura, Emilie; Sauguet, Pauline; Picot, Marie-Christine; Jeandel, Claude; Cristol, Jean Paul

    2012-09-01

    Physical performance measured by gait speed is being recognized as a major instrument for clinical evaluation in older adults, because it predicts physical frailty, loss of autonomy, hospitalization and decreased survival. Low-grade chronic inflammation and oxidative stress, mediated partly by the superoxide anion produced by NADPH oxidase, are closely linked and could be involved in age-related physical decline. To determine whether slow gait speed is associated with superoxide anion overproduction by NADPH oxidase and low-grade chronic inflammation. Observational study among the 280 elderly of an ambulatory geriatric care unit (191 women, 89 men, 79.9 ± 6.1 years old). Gait speed was evaluated by walking at self-chosen usual pace. Usual gait speed older people is associated with superoxide anion overproduction by NADPH oxidase and low-grade chronic inflammation.

  12. Hydrogen Sulfide Increases Nitric Oxide Production and Subsequent S-Nitrosylation in Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Ping-Ho Chen

    2014-01-01

    Full Text Available Hydrogen sulfide (H2S and nitric oxide (NO, two endogenous gaseous molecules in endothelial cells, got increased attention with respect to their protective roles in the cardiovascular system. However, the details of the signaling pathways between H2S and NO in endothelia cells remain unclear. In this study, a treatment with NaHS profoundly increased the expression and the activity of endothelial nitric oxide synthase. Elevated gaseous NO levels were observed by a novel and specific fluorescent probe, 5-amino-2-(6-hydroxy-3-oxo-3H-xanthen-9-ylbenzoic acid methyl ester (FA-OMe, and quantified by flow cytometry. Further study indicated an increase of upstream regulator for eNOS activation, AMP-activated protein kinase (AMPK, and protein kinase B (Akt. By using a biotin switch, the level of NO-mediated protein S-nitrosylation was also enhanced. However, with the addition of the NO donor, NOC-18, the expressions of cystathionine-γ-lyase, cystathionine-β-synthase, and 3-mercaptopyruvate sulfurtransferase were not changed. The level of H2S was also monitored by a new designed fluorescent probe, 4-nitro-7-thiocyanatobenz-2-oxa-1,3-diazole (NBD-SCN with high specificity. Therefore, NO did not reciprocally increase the expression of H2S-generating enzymes and the H2S level. The present study provides an integrated insight of cellular responses to H2S and NO from protein expression to gaseous molecule generation, which indicates the upstream role of H2S in modulating NO production and protein S-nitrosylation.

  13. Resveratrol and Endothelial Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Ning Xia

    2014-10-01

    Full Text Available Nitric oxide (NO derived from the endothelial NO synthase (eNOS has antihypertensive, antithrombotic, anti-atherosclerotic and antiobesogenic properties. Resveratrol is a polyphenol phytoalexin with multiple cardiovascular and metabolic effects. Part of the beneficial effects of resveratrol are mediated by eNOS. Resveratrol stimulates NO production from eNOS by a number of mechanisms, including upregulation of eNOS expression, stimulation of eNOS enzymatic activity and reversal of eNOS uncoupling. In addition, by reducing oxidative stress, resveratrol prevents oxidative NO inactivation by superoxide thereby enhancing NO bioavailability. Molecular pathways underlying these effects of resveratrol involve SIRT1, AMPK, Nrf2 and estrogen receptors.

  14. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells

    DEFF Research Database (Denmark)

    Jantzen, Kim; Møller, Peter Horn; Karottki, Dorina Gabriela

    2016-01-01

    to leukocyte-mediated oxidative stress. The study utilized a cross sectional design performed in 58 study participants from a larger cohort. Levels of circulating endothelial progenitor cells, defined as either late (CD34(+)KDR(+) cells) or early (CD34(+)CD133(+)KDR(+) cells) subsets were measured using...... polychromatic flow cytometry. We additionally measured production of reactive oxygen species in leukocyte subsets (lymphocytes, monocytes and granulocytes) by flow cytometry using intracellular 2',7'-dichlorofluoroscein. The measurements encompassed both basal levels of reactive oxygen species production...... and capacity for reactive oxygen species production for each leukocyte subset. We found that the late endothelial progenitor subset was negatively associated with levels of ultrafine particles measured within the participant residences and with reactive oxygen species production capacity in lymphocytes...

  15. Superoxide radical induces sclerotial differentiation in filamentous phytopathogenic fungi: a superoxide dismutase mimetics study.

    Science.gov (United States)

    Papapostolou, Ioannis; Georgiou, Christos D

    2010-03-01

    This study shows that the superoxide radical (O(2) *( -)), a direct indicator of oxidative stress, is involved in the differentiation of the phytopathogenic filamentous fungi Rhizoctonia solani, Sclerotinia sclerotiorum, Sclerotium rolfsii and Sclerotinia minor, shown by using superoxide dismutase (SOD) mimetics to decrease their sclerotial differentiation. The production rate of O(2) *(-) and SOD levels in these fungi, as expected, were significantly lowered by the SOD mimetics, with concomitant decrease of the indirect indicator of oxidative stress, lipid peroxidation.

  16. Carbon black nanoparticles promote endothelial activation and lipid accumulation in macrophages independently of intracellular ROS production

    DEFF Research Database (Denmark)

    Cao, Yi; Roursgaard, Martin; Danielsen, Pernille Høgh

    2014-01-01

    Exposure to nanoparticles (NPs) may cause vascular effects including endothelial dysfunction and foam cell formation, with oxidative stress and inflammation as supposed central mechanisms. We investigated oxidative stress, endothelial dysfunction and lipid accumulation caused by nano-sized carbon...... black (CB) exposure in cultured human umbilical vein endothelial cells (HUVECs), THP-1 (monocytes) and THP-1 derived macrophages (THP-1a). The proliferation of HUVECs or co-cultures of HUVECs and THP-1 cells were unaffected by CB exposure, whereas there was increased cytotoxicity, assessed by the LDH...

  17. Oxidative stress induced pulmonary endothelial cell proliferation is ...

    African Journals Online (AJOL)

    Cellular hyper-proliferation, endothelial dysfunction and oxidative stress are hallmarks of the pathobiology of pulmonary hypertension. Indeed, pulmonary endothelial cells proliferation is susceptible to redox state modulation. Some studies suggest that superoxide stimulates endothelial cell proliferation while others have ...

  18. Role of prostacyclin signaling in endothelial production of soluble amyloid precursor protein-α in cerebral microvessels.

    Science.gov (United States)

    He, Tongrong; Santhanam, Anantha Vijay R; Lu, Tong; d'Uscio, Livius V; Katusic, Zvonimir S

    2017-01-01

    We tested hypothesis that activation of the prostacyclin (PGI2) receptor (IP receptor) signaling pathway in cerebral microvessels plays an important role in the metabolism of amyloid precursor protein (APP). In human brain microvascular endothelial cells activation of IP receptor with the stable analogue of PGI2, iloprost, stimulated expression of amyloid precursor protein and a disintegrin and metalloprotease 10 (ADAM10), resulting in an increased production of the neuroprotective and anticoagulant molecule, soluble APPα (sAPPα). Selective agonist of IP receptor, cicaprost, and adenylyl cyclase activator, forskolin, also enhanced expression of amyloid precursor protein and ADAM10. Notably, in cerebral microvessels of IP receptor knockout mice, protein levels of APP and ADAM10 were reduced. In addition, iloprost increased protein levels of peroxisome proliferator-activated receptor δ (PPARδ) in human brain microvascular endothelial cells. PPARδ-siRNA abolished iloprost-augmented protein expression of ADAM10. In contrast, GW501516 (a selective agonist of PPARδ) upregulated ADAM10 and increased production of sAPPα. Genetic deletion of endothelial PPARδ (ePPARδ-/-) in mice significantly reduced cerebral microvascular expression of ADAM10 and production of sAPPα. In vivo treatment with GW501516 increased sAPPα content in hippocampus of wild type mice but not in hippocampus of ePPARδ-/- mice. Our findings identified previously unrecognized role of IP-PPARδ signal transduction pathway in the production of sAPPα in cerebral microvasculature. © The Author(s) 2015.

  19. Characterization of bovine immortalized luteal endothelial cells: action of cytokines on production and content of arachidonic acid metabolites

    Directory of Open Access Journals (Sweden)

    Blitek Agnieszka

    2011-02-01

    Full Text Available Abstract Background The interactions between luteal, vascular endothelial, immune cells and its products: steroids, peptide hormones, prostaglandins (PGs, growth factors and cytokines play a pivotal role in the regulation of corpus luteum (CL function. Luteal endothelial cells undergo many dynamic morphological changes and their action is regulated by cytokines. The aims are: (1 to establish in vitro model for bovine luteal endothelial cells examination; (2 to study the effect of cytokines: tumor necrosis factor alpha (TNFalpha and interferon gamma (IFNgamma on cell viability, leukotrienes (LTs and PG synthases, and endothelin-1 (EDN-1 mRNA, protein expression and their secretion in bovine immortalized luteal endothelial (EnCL-1 cells. Methods The primary cultures of bovine luteal endothelial cells were immortalized by transfection with vector carrying the Simian virus 40 T-antigen (SV40 T-ag sequence. Expression of SV40 T-ag gene in EnCL-1 cells was confirmed by RT-PCR and immunofluorescence staining showed the presence of endothelial cell markers: VE-cadherin and von Willebrand factor. EnCL-1 cells were stimulated by TNFalpha with IFNgamma (50 ng/ml each for 24 h. Cell viability, mRNA expression (real time RT-PCR, protein expression (western blotting for LTC4 synthase (LTC4S, LTA4 hydrolase (LTA4H, PGE2 and PGF2alpha synthases and endothelin-1 (EDN-1, and levels of LTs (B4 and C4 and PGs (E2 and F2alpha and EDN-1 in the medium (EIA were evaluated. Results We received immortalized luteal endothelial cell line (EnCL-1. Cytokines did not change EnCL-1 cell viability but increased mRNA expression of LTC4S, LTA4H, PGE2 and PGF2alpha synthases and EDN-1. EDN-1/2/3, LTC4 and PGF2alpha synthases protein expression were elevated in the presence of TNFalpha/IFNgamma, and accompanied by increased EDN-1, LTC4 and PGF2alpha secretion. Cytokines had no effect on PGES and LTA4H protein expression, and PGE2 and LTB4 release. Conclusions TNFalpha and IFNgamma

  20. Piper sarmentosum increases nitric oxide production in oxidative stress: a study on human umbilical vein endothelial cells.

    Science.gov (United States)

    Ugusman, Azizah; Zakaria, Zaiton; Hui, Chua Kien; Nordin, Nor Anita Megat Mohd

    2010-07-01

    Nitric oxide produced by endothelial nitric oxide synthase (eNOS) possesses multiple anti-atherosclerotic properties. Hence, enhanced expression of eNOS and increased Nitric oxide levels may protect against the development of atherosclerosis. Piper sarmentosum is a tropical plant with antioxidant and anti-inflammatory activities. This study aimed to investigate the effects of Piper sarmentosum on the eNOS and Nitric oxide pathway in cultured human umbilical vein endothelial cells (HUVECs). HUVECS WERE DIVIDED INTO FOUR GROUPS: control, treatment with 180 microM hydrogen peroxide (H(2)O(2)), treatment with 150 microg/mL aqueous extract of Piper sarmentosum, and concomitant treatment with aqueous extract of PS and H(2)O(2) for 24 hours. Subsequently, HUVECs were harvested and eNOS mRNA expression was determined using qPCR. The eNOS protein level was measured using ELISA, and the eNOS activity and Nitric oxide level were determined by the Griess reaction. Human umbilical vein endothelial cells treated with aqueous extract of Piper sarmentosum showed a marked induction of Nitric oxide. Treatment with PS also resulted in increased eNOS mRNA expression, eNOS protein level and eNOS activity in HUVECs. Aqueous extract of Piper sarmentosum may improve endothelial function by promoting NO production in HUVECs.

  1. Piper sarmentosum increases nitric oxide production in oxidative stress: a study on human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Azizah Ugusman

    2010-01-01

    Full Text Available OBJECTIVE: Nitric oxide produced by endothelial nitric oxide synthase (eNOS possesses multiple anti-atherosclerotic properties. Hence, enhanced expression of eNOS and increased Nitric oxide levels may protect against the development of atherosclerosis. Piper sarmentosum is a tropical plant with antioxidant and anti-inflammatory activities. This study aimed to investigate the effects of Piper sarmentosum on the eNOS and Nitric oxide pathway in cultured human umbilical vein endothelial cells (HUVECs. METHODS: HUVECs were divided into four groups: control, treatment with 180 μM hydrogen peroxide (H2O2, treatment with 150 μg/mL aqueous extract of Piper sarmentosum, and concomitant treatment with aqueous extract of PS and H2O2 for 24 hours. Subsequently, HUVECs were harvested and eNOS mRNA expression was determined using qPCR. The eNOS protein level was measured using ELISA, and the eNOS activity and Nitric oxide level were determined by the Griess reaction. RESULTS: Human umbilical vein endothelial cells treated with aqueous extract of Piper sarmentosum showed a marked induction of Nitric oxide. Treatment with PS also resulted in increased eNOS mRNA expression, eNOS protein level and eNOS activity in HUVECs. CONCLUSION: Aqueous extract of Piper sarmentosum may improve endothelial function by promoting NO production in HUVECs.

  2. HSP27 Inhibits Homocysteine-Induced Endothelial Apoptosis by Modulation of ROS Production and Mitochondrial Caspase-Dependent Apoptotic Pathway

    Directory of Open Access Journals (Sweden)

    Xin Tian

    2016-01-01

    Full Text Available Objectives. Elevated plasma homocysteine (Hcy could lead to endothelial dysfunction and is viewed as an independent risk factor for atherosclerosis. Heat shock protein 27 (HSP27, a small heat shock protein, is reported to exert protective effect against atherosclerosis. This study aims to investigate the protective effect of HSP27 against Hcy-induced endothelial cell apoptosis in human umbilical vein endothelial cells (HUVECs and to determine the underlying mechanisms. Methods. Apoptosis, reactive oxygen species (ROS, and mitochondrial membrane potential (MMP of normal or HSP27-overexpressing HUVECs in the presence of Hcy were analyzed by flow cytometry. The mRNA and protein expression levels were measured by quantitative real-time polymerase chain reaction (qRT-PCR and western blot. Results. We found that Hcy could induce cell apoptosis with corresponding decrease of nitric oxide (NO level, increase of endothelin-1 (ET-1, intracellular adhesion molecule-1 (ICAM-1, vascular cellular adhesion molecule-1 (VCAM-1, and monocyte chemoattractant protein-1 (MCP-1 levels, elevation of ROS, and dissipation of MMP. In addition, HSP27 could protect the cell against Hcy-induced apoptosis and inhibit the effect of Hcy on HUVECs. Furthermore, HSP27 could increase the ratio of Bcl-2/Bax and inhibit caspase-3 activity. Conclusions. Therefore, we concluded that HSP27 played a protective role against Hcy-induced endothelial apoptosis through modulation of ROS production and the mitochondrial caspase-dependent apoptotic pathway.

  3. Heat shock protein 70, heat shock protein 32, and vascular endothelial growth factor production and their effects on lipopolysaccharide-induced apoptosis in porcine aortic endothelial cells.

    Science.gov (United States)

    Bernardini, Chiara; Zannoni, Augusta; Turba, Maria Elena; Fantinati, Paolo; Tamanini, Carlo; Bacci, Maria Laura; Forni, Monica

    2005-01-01

    Lipopolysaccharide (LPS) is a highly proactive molecule that causes in vivo a systemic inflammatory response syndrome and activates in vitro the inflammatory pathway in different cellular types, including endothelial cells (EC). Because the proinflammatory status could lead to EC injury and apoptosis, the expression of proinflammatory genes must be finely regulated through the induction of protective genes. This study aimed at determining whether an LPS exposure is effective in inducing apoptosis in primary cultures of porcine aortic endothelial cells and in stimulating heat shock protein (Hsp)70 and Hsp32 production as well as vascular endothelial growth factor (VEGF) secretion. Cells between third and eighth passage were exposed to 10 microg/mL LPS for 1, 7, 15, and 24 hours (time-course experiments) or to 1, 10, and 100 microg/mL LPS for 7 and 15 hours (dose-response experiments). Apoptosis was not affected by 1 microg/mL LPS but significantly increased in a dose-dependent manner with the highest LPS doses. Furthermore, apoptosis rate increased only till 15 hours of LPS exposure. LPS stimulated VEGF secretion in a dose-dependent manner; its effect became significant after 7 hours and reached a plateau after 15 hours. Both Hsp70 and Hsp32 expressions were induced by LPS in a dose-dependent manner after 7 hours. Subsequent studies were addressed to evaluate the protective role of Hsp32, Hsp70, and VEGF. Hemin, an Hsp32 inducer (5, 20, 50 microM), and recombinant VEGF (100 and 200 ng/mL), were added to the culture 2 hours before LPS (10 microg/mL for 24 hours); to induce Hsp70 expression, cells were heat shocked (42 degrees C for 1 hour) 15 hours before LPS (10 microg/mL for 24 hours). Hemin exposure upregulated Hsp32 expression in a dose-dependent manner and protected cells against LPS-induced apoptosis. Heat shock (HS) stimulated Hsp70 expression but failed to reduce LPS-induced apoptosis; VEGF addition did not protect cells against LPS-induced apoptosis at any

  4. Sulforaphane reduces advanced glycation end products (AGEs)-induced inflammation in endothelial cells and rat aorta.

    Science.gov (United States)

    Matsui, T; Nakamura, N; Ojima, A; Nishino, Y; Yamagishi, S-I

    2016-09-01

    Advanced glycation end products (AGEs)-receptor RAGE interaction evokes oxidative stress and inflammatory reactions, thereby being involved in endothelial cell (EC) damage in diabetes. Sulforaphane is generated from glucoraphanin, a naturally occurring isothiocyanate found in widely consumed cruciferous vegetables, by myrosinase. Sulforaphane has been reported to protect against oxidative stress-mediated cell and tissue injury. However, effects of sulforaphane on AGEs-induced vascular damage remain unclear. In this study, we investigated whether and how sulforaphane could inhibit inflammation in AGEs-exposed human umbilical vein ECs (HUVECs) and AGEs-injected rat aorta. Sulforaphane treatment for 4 or 24 h dose-dependently inhibited the AGEs-induced increase in RAGE, monocyte chemoattractant protein-1 (MCP-1), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecular-1 (VCAM-1) gene expression in HUVECs. AGEs significantly stimulated MCP-1 production by, and THP-1 cell adhesion to, HUVECs, both of which were prevented by 1.6 μM sulforaphane. Sulforaphane significantly suppressed oxidative stress generation and NADPH oxidase activation evoked by AGEs in HUVECs. Furthermore, aortic RAGE, ICAM-1 and VCAM-1 expression in AGEs-injected rats were increased, which were suppressed by simultaneous infusion of sulforaphane. The present study demonstrated for the first time that sulforaphane could inhibit inflammation in AGEs-exposed HUVECs and AGEs-infused rat aorta partly by suppressing RAGE expression through its anti-oxidative properties. Inhibition of the AGEs-RAGE axis by sulforaphane might be a novel therapeutic target for vascular injury in diabetes. Copyright © 2016 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  5. Models of Superoxide Dismutases

    Energy Technology Data Exchange (ETDEWEB)

    Cabelli, Diane E.; Riley, Dennis; Rodriguez, Jorge A.; Valentine, Joan Selverstone; Zhu, Haining

    1998-05-20

    In this review we have focused much of our discussion on the mechanistic details of how the native enzymes function and how mechanistic developments/insights with synthetic small molecule complexes possessing SOD activity have influenced our understanding of the electron transfer processes involved with the natural enzymes. A few overriding themes have emerged. Clearly, the SOD enzymes operate at near diffusion controlled rates and to achieve such catalytic turnover activity, several important physical principles must be operative. Such fast electron transfer processes requires a role for protons; i.e., proton-coupled electron transfer (''H-atom transfer'') solves the dilemma of charge separation developing in the transition state for the electron transfer step. Additionally, outer-sphere electron transfer is likely a most important pathway for manganese and iron dismutases. This situation arises because the ligand exchange rates on these two ions in water never exceed {approx}10{sup +7} s{sup -1}; consequently, 10{sup +9} catalytic rates require more subtle mechanistic insights. In contrast, copper complexes can achieve diffusion controlled (>10{sup +9}) exchange rates in water; thus inner-sphere electron transfer processes are more likely to be operative in the Cu/Zn enzymes. Recent studies have continued to expand our understanding of the mechanism of action of this most important class of redox active enzymes, the superoxide dismutases, which have been critical in the successful adaptation of life on this planet to an oxygen-based metabolism. The design of SOD mimic drugs, synthetic models compounds that incorporate this superoxide dismutase catalytic activity and are capable of functioning in vivo, offers clear potential benefits in the control of diseases, ranging from the control of neurodegenerative conditions, such as Parkinson's or Alzheimer's disease, to cancer.

  6. Purification from a human hepatoma cell line of a basic fibroblast growth factor-like molecule that stimulates capillary endothelial cell plasminogen activator production, DNA synthesis, and migration.

    OpenAIRE

    Presta, M; Moscatelli, D; Joseph-Silverstein, J; Rifkin, D B

    1986-01-01

    A 17,500-dalton protein which stimulates plasminogen activator production in cultured bovine capillary endothelial cells has been purified from a SK-Hep-1 human hepatoma cell lysate by using heparin affinity chromatography and fast protein-liquid ion exchange chromatography. The purified molecule stimulated plasminogen activator production in a dose-dependent manner between 0.01 and 1 ng/ml. It also stimulated collagenase synthesis, DNA synthesis, and motility in capillary endothelial cells i...

  7. Danggui Buxue Tang, Chinese Herbal Decoction Containing Astragali Radix and Angelicae Sinensis Radix, Induces Production of Nitric Oxide in Endothelial Cells: Signaling Mediated by Phosphorylation of Endothelial Nitric Oxide Synthase.

    Science.gov (United States)

    Gong, Amy G W; Lau, K M; Zhang, Laura M L; Lin, H Q; Dong, Tina T X; Tsim, Karl W K

    2016-03-01

    Danggui Buxue Tang, an ancient Chinese herbal decoction containing Astragali Radix and Angelicae Sinensis Radix at the weight ratio of 5:1, is used to mitigate menopausal syndromes in women. The pharmacological properties of Danggui Buxue Tang have been illustrated in bone development, blood enhancement, and immune stimulation. Here, we extended the possible pharmacological role of Danggui Buxue Tang in cardiovascular function. In cultured human umbilical vein endothelial cells, the application of Danggui Buxue Tang induced the release of nitric oxide and the phosphorylation of endothelial nitric oxide synthase and Akt kinase in time- and dose-dependent manners. The robust activation of nitric oxide signaling, however, required the boiling of Astragali Radix and Angelicae Sinensis Radix together, i.e., as Danggui Buxue Tang instead of other herbal extracts. The Danggui Buxue Tang-induced phosphorylation of endothelial nitric oxide synthase and Akt kinase in human umbilical vein endothelial cells were fully blocked by treatment with an endothelial nitric oxide synthase inhibitor (L-NAME), a PI3K/Akt inhibitor (LY294002), and a Ca(2+) chelator (BAPTA-AM). In parallel, the blockage of endothelial nitric oxide synthase and Akt activation subsequently fully abolished the Danggui Buxue Tang-induced nitric oxide production. Georg Thieme Verlag KG Stuttgart · New York.

  8. S-equol Partially Restored Endothelial Nitric Oxide Production in Isoflavone-deficient Ovariectomized Rats.

    Science.gov (United States)

    Ohkura, Yoshinori; Obayashi, Satoshi; Yamada, Kazuki; Yamada, Mikiko; Kubota, Toshiro

    2015-05-01

    S-equol is known as an estrogenic substance, but its ability to restore vascular endothelial function is unknown. The aim of this study was to investigate the impact of S-equol on endothelial function and intimal thickening under isoflavone- and estrogen-deficient circumstances. Twelve-week-old female Sprague-Dawley rats were bilaterally ovariectomized and assigned to one of the 3 groups: control, isoflavone-deficient (ID), or ID plus equol (n = 12, respectively). The control group received a normal diet containing isoflavones, while ID and ID plus equol groups received isoflavones-free diet. At 16th week, subcutaneous administration of S-equol (200 μg/d) started in the ID plus equol group. At 18th week, endothelial denudation of the left common carotid artery was performed in all groups, and thoracic and carotid arteries were collected at 20th week. In thoracic artery, endothelium-dependent relaxation, cyclic guanosine monophosphate levels in the tissue, and endothelial nitric oxide (NO) synthase expression and phosphorylation were significantly higher in the groups of ID plus equol and control than in the ID. The ratio of intima to media of the injured carotid artery in the control group was the lowest. Removal of dietary soy isoflavones decreased endothelium-derived NO level in ovariectomized rats. S-equol supplementation partially improved NO-related endothelial function.

  9. The influence of propofol on P-selectin expression and nitric oxide production in re-oxygenated human umbilical vein endothelial cells.

    LENUS (Irish Health Repository)

    Corcoran, T B

    2012-02-03

    BACKGROUND: Reperfusion injury is characterized by free radical production and endothelial inflammation. Neutrophils mediate much of the end-organ injury that occurs, requiring P-selectin-mediated neutrophil-endothelial adhesion, and this is associated with decreased endothelial nitric oxide production. Propofol has antioxidant properties in vitro which might abrogate this inflammation. METHODS: Cultured human umbilical vein endothelial cells were exposed to 20 h of hypoxia and then returned to normoxic conditions. Cells were treated with saline, Diprivan 5 microg\\/l or propofol 5 microg\\/l for 4 h after re-oxygenation and were then examined for P-selectin expression and supernatant nitric oxide concentrations for 24 h. P-selectin was determined by flow cytometry, and culture supernatant nitric oxide was measured as nitrite. RESULTS: In saline-treated cells, a biphasic increase in P-selectin expression was demonstrated at 30 min (P = 0.01) and 4 h (P = 0.023) after re-oxygenation. Propofol and Diprivan prevented these increases in P-selectin expression (P < 0.05). Four hours after re-oxygenation, propofol decreased endothelial nitric oxide production (P = 0.035). CONCLUSION: This is the first study to demonstrate an effect of propofol upon endothelial P-selectin expression. Such an effect may be important in situations of reperfusion injury such as cardiac transplantation and coronary artery bypass surgery. We conclude that propofol attenuates re-oxygenation-induced endothelial inflammation in vitro.

  10. Bacterial wall products induce downregulation of vascular endothelial growth factor receptors on endothelial cells via a CD14-dependent mechanism: implications for surgical wound healing.

    LENUS (Irish Health Repository)

    Power, C

    2012-02-03

    INTRODUCTION: Vascular endothelial growth factor (VEGF) is a potent mitogenic cytokine which has been identified as the principal polypeptide growth factor influencing endothelial cell (EC) migration and proliferation. Ordered progression of these two processes is an absolute prerequisite for initiating and maintaining the proliferative phase of wound healing. The response of ECs to circulating VEGF is determined by, and directly proportional to, the functional expression of VEGF receptors (KDR\\/Flt-1) on the EC surface membrane. Systemic sepsis and wound contamination due to bacterial infection are associated with significant retardation of the proliferative phase of wound repair. The effects of the Gram-negative bacterial wall components lipopolysaccharide (LPS) and bacterial lipoprotein (BLP) on VEGF receptor function and expression are unknown and may represent an important biological mechanism predisposing to delayed wound healing in the presence of localized or systemic sepsis. MATERIALS AND METHODS: We designed a series of in vitro experiments investigating this phenomenon and its potential implications for infective wound repair. VEGF receptor density on ECs in the presence of LPS and BLP was assessed using flow cytometry. These parameters were assessed in hypoxic conditions as well as in normoxia. The contribution of CD14 was evaluated using recombinant human (rh) CD14. EC proliferation in response to VEGF was quantified in the presence and absence of LPS and BLP. RESULTS: Flow cytometric analysis revealed that LPS and BLP have profoundly repressive effects on VEGF receptor density in normoxic and, more pertinently, hypoxic conditions. The observed downregulation of constitutive and inducible VEGF receptor expression on ECs was not due to any directly cytotoxic effect of LPS and BLP on ECs, as measured by cell viability and apoptosis assays. We identified a pivotal role for soluble\\/serum CD14, a highly specific bacterial wall product receptor, in

  11. Lipid peroxidation product 4-hydroxy-trans-2-nonenal causes endothelial activation by inducing endoplasmic reticulum stress.

    Science.gov (United States)

    Vladykovskaya, Elena; Sithu, Srinivas D; Haberzettl, Petra; Wickramasinghe, Nalinie S; Merchant, Michael L; Hill, Bradford G; McCracken, James; Agarwal, Abhinav; Dougherty, Susan; Gordon, Sharon A; Schuschke, Dale A; Barski, Oleg A; O'Toole, Timothy; D'Souza, Stanley E; Bhatnagar, Aruni; Srivastava, Sanjay

    2012-03-30

    Lipid peroxidation products, such as 4-hydroxy-trans-2-nonenal (HNE), cause endothelial activation, and they increase the adhesion of the endothelium to circulating leukocytes. Nevertheless, the mechanisms underlying these effects remain unclear. We observed that in HNE-treated human umbilical vein endothelial cells, some of the protein-HNE adducts colocalize with the endoplasmic reticulum (ER) and that HNE forms covalent adducts with several ER chaperones that assist in protein folding. We also found that at concentrations that did not induce apoptosis or necrosis, HNE activated the unfolded protein response, leading to an increase in XBP-1 splicing, phosphorylation of protein kinase-like ER kinase and eukaryotic translation initiation factor 2α, and the induction of ATF3 and ATF4. This increase in eukaryotic translation initiation factor 2α phosphorylation was prevented by transfection with protein kinase-like ER kinase siRNA. Treatment with HNE increased the expression of the ER chaperones, GRP78 and HERP. Exposure to HNE led to a depletion of reduced glutathione and an increase in the production of reactive oxygen species (ROS); however, glutathione depletion and ROS production by tert-butyl-hydroperoxide did not trigger the unfolded protein response. Pretreatment with a chemical chaperone, phenylbutyric acid, or adenoviral transfection with ATF6 attenuated HNE-induced monocyte adhesion and IL-8 induction. Moreover, phenylbutyric acid and taurine-conjugated ursodeoxycholic acid attenuated HNE-induced leukocyte rolling and their firm adhesion to the endothelium in rat cremaster muscle. These data suggest that endothelial activation by HNE is mediated in part by ER stress, induced by mechanisms independent of ROS production or glutathione depletion. The induction of ER stress may be a significant cause of vascular inflammation induced by products of oxidized lipids.

  12. Endothelial Nitric Oxide Synthase Uncoupling: A Novel Pathway in OSA Induced Vascular Endothelial Dysfunction

    OpenAIRE

    Varadharaj, Saradhadevi; Porter, Kyle; Pleister, Adam; Wannemacher, Jacob; Sow, Angela; Jarjoura, David; Zweier, Jay L.; Khayat, Rami N.

    2014-01-01

    The mechanism of vascular endothelial dysfunction (VED) and cardiovascular disease in obstructive sleep apnea (OSA) is unknown. We performed a comprehensive evaluation of endothelial nitric oxide synthase (eNOS) function directly in the microcirculatory endothelial tissue of OSA patients who have very low cardiovascular risk status. Nineteen OSA patients underwent gluteal biopsies before, and after effective treatment of OSA. We measured superoxide (O2−·) and nitric oxide (NO) in the microcir...

  13. Hyperoxia impairs pro-angiogenic RNA production in preterm endothelial colony-forming cells

    Directory of Open Access Journals (Sweden)

    Megan A. Ahern

    2017-04-01

    Full Text Available Disruptions in the response of endothelial progenitor cells to changes in oxygen environment may present a possible mechanism behind multiple pediatric pulmonary disease models, such as bronchopulmonary dysplasia. Using high-throughput fixed single-cell protein and RNA imaging, we have created “stop-motion” movies of Thymosin β4 (Tβ4 and Hypoxia Inducible Factor 1α (HIF-1α protein expression and vascular endothelial growth factor (vegf and endothelial nitric oxide synthase (eNOS mRNA in human umbilical cord-derived endothelial colony-forming cells (ECFC. ECFC were grown in vitro under both room air and hyperoxia (50% O2. We find elevated basal Tβ4 protein expression in ECFC derived from prematurely born infants versus full term infants. Tβ4 is a potent growth hormone that additionally acts as an actin sequestration protein and regulates the stability of HIF-1α. This basal level increase of Tβ4 is associated with lower HIF-1α nuclear localization in preterm versus term ECFC upon exposure to hyperoxia. We find altered expression in the pro-angiogenic genes vegf and eNOS, two genes that HIF-1α acts as a transcription factor for. This provides a potential link between a developmentally regulated protein and previously observed impaired function of preterm ECFC in response to hyperoxia.

  14. Progesterone amplifies oxidative stress signal and promotes NO production via H2O2 in mouse kidney arterial endothelial cells.

    Science.gov (United States)

    Yuan, Xiao-Hua; Fan, Yang-Yang; Yang, Chun-Rong; Gao, Xiao-Rui; Zhang, Li-Li; Hu, Ying; Wang, Ya-Qin; Jun, Hu

    2016-01-01

    The role of progesterone on the cardiovascular system is controversial. Our present research is to specify the effect of progesterone on arterial endothelial cells in response to oxidative stress. Our result showed that H2O2 (150 μM and 300 μM) induced cellular antioxidant response. Glutathione (GSH) production and the activity of Glutathione peroxidase (GPx) were increased in H2O2-treated group. The expression of glutamate cysteine ligase catalytic subunit (GCLC) and modifier subunit (GCLM) was induced in response to H2O2. However, progesterone absolutely abolished the antioxidant response through increasing ROS level, inhibiting the activity of Glutathione peroxidase (GPx), decreasing GSH level and reducing expression of GClC and GCLM. In our study, H2O2 induced nitrogen monoxide (NO) production and endothelial nitric oxide synthase (eNOS) expression, and progesterone promoted H2O2-induced NO production. Progesterone increased H2O2-induced expression of hypoxia inducible factor-α (HIFα) which in turn regulated eNOS expression and NO synthesis. Further study demonstrated that progesterone increased H2O2 concentration of culture medium which may contribute to NO synthesis. Exogenous GSH decreased the content of H2O2 of culture medium pretreated by progesterone combined with H2O2 or progesterone alone. GSH also inhibited expression of HIFα and eNOS, and abolished NO synthesis. Collectively, our study demonstrated for the first time that progesterone inhibited cellular antioxidant effect and increased oxidative stress, promoted NO production of arterial endothelial cells, which may be due to the increasing H2O2 concentration and amplified oxidative stress signal. Copyright © 2015. Published by Elsevier Ltd.

  15. Physiological Levels of Nitric Oxide Diminish Mitochondrial Superoxide. Potential Role of Mitochondrial Dinitrosyl Iron Complexes and Nitrosothiols

    Directory of Open Access Journals (Sweden)

    Sergey I. Dikalov

    2017-11-01

    Full Text Available Mitochondria are the major source of superoxide radicals and superoxide overproduction contributes to cardiovascular diseases and metabolic disorders. Endothelial dysfunction and diminished nitric oxide levels are early steps in the development of these pathological conditions. It is known that physiological production of nitric oxide reduces oxidative stress and inflammation, however, the precise mechanism of “antioxidant” effect of nitric oxide is not clear. In this work we tested the hypothesis that physiological levels of nitric oxide diminish mitochondrial superoxide production without inhibition of mitochondrial respiration. In order to test this hypothesis we analyzed effect of low physiological fluxes of nitric oxide (20 nM/min on superoxide and hydrogen peroxide production by ESR spin probes and Amplex Red in isolated rat brain mitochondria. Indeed, low levels of nitric oxide substantially attenuated both basal and antimycin A-stimulated production of reactive oxygen species in the presence of succinate or glutamate/malate as mitochondrial substrates. Furthermore, slow releasing NO donor DPTA-NONOate (100 μM did not change oxygen consumption in State 4 and State 3. However, the NO-donor strongly inhibited oxygen consumption in the presence of uncoupling agent CCCP, which is likely associated with inhibition of the over-reduced complex IV in uncoupled mitochondria. We have examined accumulation of dinitrosyl iron complexes and nitrosothiols in mitochondria treated with fast-releasing NO donor MAHMA NONOate (10 μM for 30 min until complete release of NO. Following treatment with NO donor, mitochondria were frozen for direct detection of dinitrosyl iron complexes using Electron Spin Resonance (ESR while accumulation of nitrosothiols was measured by ferrous-N-Methyl-D-glucamine dithiocarbamate complex, Fe(MGD2, in lysed mitochondria. Treatment of mitochondria with NO-donor gave rise to ESR signal of dinitrosyl iron complexes while ESR

  16. Physiological Levels of Nitric Oxide Diminish Mitochondrial Superoxide. Potential Role of Mitochondrial Dinitrosyl Iron Complexes and Nitrosothiols.

    Science.gov (United States)

    Dikalov, Sergey I; Mayorov, Vladimir I; Panov, Alexander V

    2017-01-01

    Mitochondria are the major source of superoxide radicals and superoxide overproduction contributes to cardiovascular diseases and metabolic disorders. Endothelial dysfunction and diminished nitric oxide levels are early steps in the development of these pathological conditions. It is known that physiological production of nitric oxide reduces oxidative stress and inflammation, however, the precise mechanism of "antioxidant" effect of nitric oxide is not clear. In this work we tested the hypothesis that physiological levels of nitric oxide diminish mitochondrial superoxide production without inhibition of mitochondrial respiration. In order to test this hypothesis we analyzed effect of low physiological fluxes of nitric oxide (20 nM/min) on superoxide and hydrogen peroxide production by ESR spin probes and Amplex Red in isolated rat brain mitochondria. Indeed, low levels of nitric oxide substantially attenuated both basal and antimycin A-stimulated production of reactive oxygen species in the presence of succinate or glutamate/malate as mitochondrial substrates. Furthermore, slow releasing NO donor DPTA-NONOate (100 μM) did not change oxygen consumption in State 4 and State 3. However, the NO-donor strongly inhibited oxygen consumption in the presence of uncoupling agent CCCP, which is likely associated with inhibition of the over-reduced complex IV in uncoupled mitochondria. We have examined accumulation of dinitrosyl iron complexes and nitrosothiols in mitochondria treated with fast-releasing NO donor MAHMA NONOate (10 μM) for 30 min until complete release of NO. Following treatment with NO donor, mitochondria were frozen for direct detection of dinitrosyl iron complexes using Electron Spin Resonance (ESR) while accumulation of nitrosothiols was measured by ferrous-N-Methyl-D-glucamine dithiocarbamate complex, Fe(MGD)2, in lysed mitochondria. Treatment of mitochondria with NO-donor gave rise to ESR signal of dinitrosyl iron complexes while ESR spectra of Fe

  17. Tumor necrosis factor-alpha induction of novel gene products in human endothelial cells including a macrophage-specific chemotaxin.

    Science.gov (United States)

    Dixit, V M; Green, S; Sarma, V; Holzman, L B; Wolf, F W; O'Rourke, K; Ward, P A; Prochownik, E V; Marks, R M

    1990-02-15

    Cytokines such as tumor necrosis factor alpha (TNF) profoundly affect endothelial cell function, promoting for example interaction with leukocytes and inducing a procoagulant phenotype. Changes of this nature are likely to be central to the proinflammatory effects of TNF. In order to elucidate molecular mechanisms by which TNF alters endothelial cell function we utilized differential plaque hybridization to identify TNF-responsive genes. Forty TNF-inducible cDNAs were identified which on cross-hybridization were found to arise from six unique genes. DNA sequencing of these cDNAs revealed two encoded known cytokine-induced genes, endothelial leukocyte adhesion molecule 1 and neutrophil chemotactic factor. One of the cDNAs encodes a recently described monocyte-specific chemotactic factor not previously associated with endothelium. The production of a monocyte chemotaxin by cytokine-activated endothelium has important implications for understanding the role of the vessel wall in disease states such as atherosclerosis and may also in part explain the indirect angiogenic activity of TNF. The three other cDNAs are completely novel as judged by data bank searches of partial DNA sequences and remain unidentified. On exposure of endothelial cells to TNF there is a rapid and substantial increase in levels of mRNA encoding the six genes, which are further superinduced by cycloheximide. Thus these represent primary response genes as their induction does not depend on protein synthesis. Interleukin-1 beta and lipopolysaccharide are also potent inducers. Nuclear run-on studies revealed that in most cases induction by TNF is mediated largely at the transcriptional level.

  18. The carbonate radical anion-induced covalent aggregation of human copper, zinc superoxide dismutase, and alpha-synuclein: intermediacy of tryptophan- and tyrosine-derived oxidation products.

    Science.gov (United States)

    Zhang, Hao; Andrekopoulos, Christopher; Joseph, Joy; Crow, John; Kalyanaraman, B

    2004-06-01

    In this review, we describe the free radical mechanism of covalent aggregation of human copper, zinc superoxide dismutase (hSOD1). Bicarbonate anion (HCO3-) enhances the covalent aggregation of hSOD1 mediated by the SOD1 peroxidase-dependent formation of carbonate radical anion (CO3*-), a potent and selective oxidant. This species presumably diffuses out the active site of hSOD1 and reacts with tryptophan residue located on the surface of hSOD1. The oxidative degradation of tryptophan to kynurenine and N-formyl kynurenine results in the covalent crosslinking and aggregation of hSOD1. Implications of oxidant-mediated aggregation of hSOD1 in the increased cytotoxicity of motor neurons in amyotrophic lateral sclerosis are discussed.

  19. Deletion of the Trypanosoma brucei Superoxide Dismutase Gene sodb1 Increases Sensitivity to Nifurtimox and Benznidazole▿

    Science.gov (United States)

    Prathalingham, S. Radhika; Wilkinson, Shane R.; Horn, David; Kelly, John M.

    2007-01-01

    It has been more than 25 years since it was first reported that nifurtimox and benznidazole promote superoxide production in trypanosomes. However, there has been no direct evidence of an association between the drug-induced free radicals and trypanocidal activity. Here, we identify a superoxide dismutase required to protect Trypanosoma brucei from drug-generated superoxide. PMID:17145786

  20. Deletion of the Trypanosoma brucei superoxide dismutase gene sodb1 increases sensitivity to nifurtimox and benznidazole.

    Science.gov (United States)

    Prathalingham, S Radhika; Wilkinson, Shane R; Horn, David; Kelly, John M

    2007-02-01

    It has been more than 25 years since it was first reported that nifurtimox and benznidazole promote superoxide production in trypanosomes. However, there has been no direct evidence of an association between the drug-induced free radicals and trypanocidal activity. Here, we identify a superoxide dismutase required to protect Trypanosoma brucei from drug-generated superoxide.

  1. C-Terminal Repeats of Clostridium difficile Toxin A Induce Production of Chemokine and Adhesion Molecules in Endothelial Cells and Promote Migration of Leukocytes▿

    Science.gov (United States)

    Yeh, Chiou-Yueh; Lin, Chun-Nan; Chang, Chuan-Fa; Lin, Chun-Hung; Lien, Huei-Ting; Chen, Jen-Yang; Chia, Jean-San

    2008-01-01

    The C-terminal repeating sequences of Clostridium difficile toxin A (designated ARU) are homologous to the carbohydrate-binding domain of streptococcal glucosyltransferases (GTFs) that were recently identified as potent modulins. To test the hypothesis that ARU might exert a similar biological activity on endothelial cells, recombinant ARU (rARU), which was noncytotoxic to cell cultures, was analyzed using human umbilical vein endothelial cells. The rARU could bind directly to endothelial cells in a serum- and calcium-dependent manner and induce the production of interleukin-6 (IL-6), IL-8, and monocyte chemoattractant protein 1 in a dose-dependent manner. An oligosaccharide binding assay indicated that rARU, but not GTFC, binds preferentially to Lewis antigens and 3′HSO3-containing oligosaccharides. Binding of rARU to human endothelial or intestinal cells correlated directly with the expression of Lewis Y antigen. Bound rARU directly activated mitogen-activated protein kinases and the NF-κB signaling pathway in endothelial cells to release biologically active chemokines and adhesion molecules that promoted migration in a transwell assay and the adherence of polymorphonuclear and mononuclear cells to the endothelial cells. These results suggest that ARU may bind to multiple carbohydrate motifs to exert its biological activity on human endothelial cells. PMID:18160482

  2. Red wine polyphenols prevent angiotensin II-induced hypertension and endothelial dysfunction in rats: role of NADPH oxidase.

    Science.gov (United States)

    Sarr, Mamadou; Chataigneau, Marta; Martins, Sandrine; Schott, Christa; El Bedoui, Jasser; Oak, Min-Ho; Muller, Bernard; Chataigneau, Thierry; Schini-Kerth, Valérie B

    2006-09-01

    Chronic administration of moderate amounts of red wine has been associated with a protective effect on the cardiovascular system. This study examined whether red wine polyphenols prevent the angiotensin II (Ang II)-induced hypertension and endothelial dysfunction in rats, and, if so, to elucidate the underlying mechanism. Hypertensive rats were obtained by a 14-day infusion of Ang II. Red wine polyphenols were administered in the drinking water one week before and during the Ang II infusion. Arterial pressure was measured in conscious rats. Ex vivo vascular relaxation was assessed in organ chambers, vascular superoxide anion production by dihydroethidine and vascular NADPH oxidase expression by immunohistochemistry. Ang II-induced hypertension was associated with decreased relaxation to acetylcholine but not to red wine polyphenols. The Ang II treatment also increased vascular superoxide anion production and expression of nox1 and p22phox NADPH oxidase subunits. Intake of red wine polyphenols prevented the Ang II-induced hypertension and endothelial dysfunction and normalized vascular superoxide anion production and NADPH oxidase subunit expression. Red wine polyphenol treatment alone did not affect blood pressure. Intake of red wine polyphenols prevents Ang II-induced hypertension and endothelial dysfunction. Prevention of vascular NADPH oxidase induction and preservation of arterial nitric oxide availability during Ang II administration likely contribute to this effect.

  3. Requirements for superoxide-dependent tyrosine hydroperoxide formation in peptides

    DEFF Research Database (Denmark)

    Winterbourn, Christine C; Parsons-Mair, Helena N; Gebicki, Silvia

    2004-01-01

    Superoxide reacts rapidly with other radicals, but these reactions have received little attention in the context of oxidative stress. For tyrosyl radicals, reaction with superoxide is 3-fold faster than dimerization, and forms the addition product tyrosine hydroperoxide. We have explored structural...... requirements for hydroperoxide formation using tyrosine analogues and di- and tri-peptides. Superoxide and phenoxyl radicals were generated using xanthine oxidase, peroxidase and the respective tyrosine derivative, or by gamma-radiation. Peroxides were measured using FeSO4/Xylenol Orange. Tyrosine and tyramine...

  4. Production of factor VIII by human liver sinusoidal endothelial cells transplanted in immunodeficient uPA mice.

    Directory of Open Access Journals (Sweden)

    Marina E Fomin

    Full Text Available Liver sinusoidal endothelial cells (LSECs form a semi-permeable barrier between parenchymal hepatocytes and the blood. LSECs participate in liver metabolism, clearance of pathological agents, immunological responses, architectural maintenance of the liver and synthesis of growth factors and cytokines. LSECs also play an important role in coagulation through the synthesis of Factor VIII (FVIII. Herein, we phenotypically define human LSECs isolated from fetal liver using flow cytometry and immunofluorescence microscopy. Isolated LSECs were cultured and shown to express endothelial markers and markers specific for the LSEC lineage. LSECs were also shown to engraft the liver when human fetal liver cells were transplanted into immunodeficient mice with liver specific expression of the urokinase-type plasminogen activator (uPA transgene (uPA-NOG mice. Engrafted cells expressed human Factor VIII at levels approaching those found in human plasma. We also demonstrate engraftment of adult LSECs, as well as hepatocytes, transplanted into uPA-NOG mice. We propose that overexpression of uPA provides beneficial conditions for LSEC engraftment due to elevated expression of the angiogenic cytokine, vascular endothelial growth factor. This work provides a detailed characterization of human midgestation LSECs, thereby providing the means for their purification and culture based on their expression of CD14 and CD32 as well as a lack of CD45 expression. The uPA-NOG mouse is shown to be a permissive host for human LSECs and adult hepatocytes, but not fetal hepatoblasts. Thus, these mice provide a useful model system to study these cell types in vivo. Demonstration of human FVIII production by transplanted LSECs encourages further pursuit of LSEC transplantation as a cellular therapy for the treatment of hemophilia A.

  5. Pregnancy Augments VEGF-Stimulated In Vitro Angiogenesis and Vasodilator (NO and H2S) Production in Human Uterine Artery Endothelial Cells.

    Science.gov (United States)

    Zhang, Hong-Hai; Chen, Jennifer C; Sheibani, Lili; Lechuga, Thomas J; Chen, Dong-Bao

    2017-07-01

    Augmented uterine artery (UA) production of vasodilators, including nitric oxide (NO) and hydrogen sulfide (H2S), has been implicated in pregnancy-associated and agonist-stimulated rise in uterine blood flow that is rate-limiting to pregnancy health. Developing a human UA endothelial cell (hUAEC) culture model from main UAs of nonpregnant (NP) and pregnant (P) women for testing a hypothesis that pregnancy augments endothelial NO and H2S production and endothelial reactivity to vascular endothelial growth factor (VEGF). Main UAs from NP and P women were used for developing hUAEC culture models. Comparisons were made between NP- and P-hUAECs in in vitro angiogenesis, activation of cell signaling, expression of endothelial NO synthase (eNOS) and H2S-producing enzymes cystathionine β-synthase (CBS) and cystathionine γ-lyase, and NO/H2S production upon VEGF stimulation. NP- and P-hUAECs displayed a typical cobblestone-like shape in culture and acetylated low-density lipoprotein uptake, stained positively for endothelial and negatively for smooth muscle markers, maintained key signaling proteins during passage, and had statistically significant greater eNOS and CBS proteins in P- vs NP-hUAECs. Treatment with VEGF stimulated in vitro angiogenesis and eNOS protein and NO production only in P-hUEACs and more robust cell signaling in P- vs NP-hUAECs. VEGF stimulated CBS protein expression, accounting for VEGF-stimulated H2S production in hUAECs. Comparisons between NP- and P-hUAECs reveal that pregnancy augments VEGF-stimulated in vitro angiogenesis and NO/H2S production in hUAECs, showing that the newly established hUAEC model provides a critical in vitro tool for understanding human uterine hemodynamics.

  6. AXL-Mediated Productive Infection of Human Endothelial Cells by Zika Virus.

    Science.gov (United States)

    Liu, Shufeng; DeLalio, Leon J; Isakson, Brant E; Wang, Tony T

    2016-11-11

    The mosquito-borne Zika virus (ZIKV) is now recognized as a blood-borne pathogen, raising an important question about how the virus gets into human bloodstream. The imminent threat of the ZIKV epidemic to the global blood supply also demands novel therapeutics to stop virus transmission though transfusion. We intend to characterize ZIKV tropism for human endothelial cells (ECs) and provide potential targets for intervention. We conducted immunostaining, plaque assay, and quantitative reverse transcription-polymerase chain reaction of ZIKV RNA to evaluate the possible infection of ECs by ZIKV. Both the African and the South American ZIKV strains readily infect human umbilical vein endothelial cells and human ECs derived from aortic and coronary artery, as well as the saphenous vein. Infected ECs released infectious progeny virus. Compared with the African strains, South American ZIKV isolates replicate faster in ECs and are partially cytopathic, suggesting enhanced virulence of these isolates. Flow cytometric analyses showed that the susceptibility of ECs positively correlated with the cell surface levels of tyrosine-protein kinase receptor UFO (AXL) receptor tyrosine kinase. Gain- and loss-of-function studies further revealed that AXL is required for ZIKV entry at a postbinding step. Finally, small-molecule inhibitors of the AXL kinase significantly reduced ZIKA infection of ECs. We identified EC as a key cell type for ZIKV infection. These data support the view of hematogenous dissemination of ZIKV and implicate AXL as a new target for antiviral therapy. © 2016 American Heart Association, Inc.

  7. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling

    Directory of Open Access Journals (Sweden)

    Shi Xianglin

    2009-01-01

    Full Text Available Abstract Background Engineered iron nanoparticles are being explored for the development of biomedical applications and many other industry purposes. However, to date little is known concerning the precise mechanisms of translocation of iron nanoparticles into targeted tissues and organs from blood circulation, as well as the underlying implications of potential harmful health effects in human. Results The confocal microscopy imaging analysis demonstrates that exposure to engineered iron nanoparticles induces an increase in cell permeability in human microvascular endothelial cells. Our studies further reveal iron nanoparticles enhance the permeability through the production of reactive oxygen species (ROS and the stabilization of microtubules. We also showed Akt/GSK-3β signaling pathways are involved in iron nanoparticle-induced cell permeability. The inhibition of ROS demonstrate ROS play a major role in regulating Akt/GSK-3β – mediated cell permeability upon iron nanoparticle exposure. These results provide new insights into the bioreactivity of engineered iron nanoparticles which can inform potential applications in medical imaging or drug delivery. Conclusion Our results indicate that exposure to iron nanoparticles induces an increase in endothelial cell permeability through ROS oxidative stress-modulated microtubule remodeling. The findings from this study provide new understandings on the effects of nanoparticles on vascular transport of macromolecules and drugs.

  8. Irisin Alleviates Advanced Glycation End Products-Induced Inflammation and Endothelial Dysfunction via Inhibiting ROS-NLRP3 Inflammasome Signaling.

    Science.gov (United States)

    Deng, Xian; Huang, Wei; Peng, Juan; Zhu, Ting-Ting; Sun, Xiao-Lei; Zhou, Xiang-Yu; Yang, Hui; Xiong, Jian-Feng; He, Hu-Qiang; Xu, You-Hua; He, Yan-Zheng

    2018-02-01

    The activation of NLR family pyrin domain containing 3 (NLRP3) inflammasome have been implicated in the initiation or progression of atherosclerosis. Recent research showed that irisin, a newly discovered adipomiokine, alleviates endothelial dysfunction in type 2 diabetes partially via reducing oxidative/nitrative stresses, suggesting that irisin may be a promising candidate for the treatment of vascular complications of diabetes. However, the association between irisin and NLRP3 inflammasome in the pathogenesis of atherosclerosis remains unclear. In the present study, we cultured human umbilical vein endothelial cells (HUVECs) in advanced glycation end products (AGEs) medium; exogenous irisin (0.01, 0.1, 1 μg/ml) were used as an intervention reagent. siRNA and adenoviral vector were constructed to realize silencing and over-expression of NLRP3 gene. Our data showed that irisin significantly reversed AGEs-induced oxidative stress and NLRP3 inflammasome signaling activation (p NLRP3 facilitated the irisin-mediated anti-inflammatory and antiatherogenic effects (p NLRP3 (p NLRP3 inflammasome signaling, suggest a likely mechanism for irisin-induced therapeutic effect in vascular complications of diabetes.

  9. Superoxide anion, superoxide dismutase and lipid peroxidation in the murine macrophage cell line C4M0

    Energy Technology Data Exchange (ETDEWEB)

    Imre, S.; Erdei, J.; Chihara, G.; Fachet, J.

    1985-01-01

    A remarkable increase in the production of superoxide radicals and superoxide dismutase (SOD) activity was measured in suspension of the murine macrophage cell line C4M0 treated with Lentinan (4-10 x 10/sup 3/ ..mu..g/5 x 10/sup 6/ cells). In activated macrophages the decrease of lipid peroxidation could be interpreted as a consequence of enhanced SOD activity.

  10. Etanercept improves endothelial function via pleiotropic effects in rat adjuvant-induced arthritis.

    Science.gov (United States)

    Totoson, Perle; Maguin-Gaté, Katy; Prigent-Tessier, Anne; Monnier, Alice; Verhoeven, Frank; Marie, Christine; Wendling, Daniel; Demougeot, Céline

    2016-07-01

    To determine the effect of etanercept on endothelial dysfunction and on traditional cardiovascular (CV) risk factors in the adjuvant-induced arthritis (AIA) rat model. At the first signs of arthritis, etanercept (10 mg/kg/3 days, s.c.) or saline was administered for 3 weeks in AIA rats. Body weights and arthritis scores were monitored daily. Endothelial function was studied in aortic rings relaxed with acetylcholine (Ach) with or without inhibitors of nitric oxide synthase (NOS), cyclo-oxygenase (COX-2), arginase, endothelium-derived hyperpolarizing factor and superoxide anions (O2 (-)°) production. Aortic expression of endothelial nitic oxide synthase (eNOS), Ser1177-phospho-eNOS, COX-2, arginase-2, p22(phox) and p47(phox) was evaluated by western blotting analysis. Blood pressure, heart rate and blood levels of triglycerides, cholesterol and glucose were measured. Etanercept significantly reduced arthritis score (P etanercept on inflammatory symptoms improved endothelial function in AIA. This beneficial effect on endothelial function is disconnected from its impact on CV risk factors and relates to pleiotropic effects of etanercept on endothelial pathways. These results suggest that etanercept could be a good choice for patients with rheumatoid arthritis at high risk of CV events. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Large Negative Stress Phase Angle (SPA) attenuates nitric oxide production in bovine aortic endothelial cells.

    Science.gov (United States)

    Dancu, Michael B; Tarbell, John M

    2006-06-01

    Hemodynamics plays an important role in cardiovascular physiology and pathology. Pulsatile flow (Q), pressure (P), and diameter (D) waveforms exert wall shear stress (WSS), normal stress, and circumferential strain (CS) on blood vessels. Most in vitro studies to date have focused on either WSS or CS but not their interaction. Recently, we have shown that concomitant WSS and CS affect EC biochemical response modulated by the temporal phase angle between WSS and CS (stress phase angle, SPA). Large negative SPA has been shown to occur in regions of the circulation where atherosclerosis and intimal hyperplasia are prevalent. Here, we report that nitric oxide (NO) biochemical secretion was significantly decreased in response to a large negative SPA of -180 deg with respect to an SPA of 0 degrees in bovine aortic endothelial cells (BAEC) at 5 h. A new hemodynamic simulator for the study of the physiologic SPA was used to provide the hemodynamic conditions of pro-atherogenic (SPA = -180 deg) and normopathic (SPA = 0 deg) states. The role of complex hemodynamics in vascular remodeling, homeostasis, and pathogenesis can be advanced by further assessment of the hypothesis that a large negative SPA is pro-atherogenic.

  12. Hypoglycemia Reduces Vascular Endothelial Growth Factor A Production by Pancreatic Beta Cells as a Regulator of Beta Cell Mass*

    Science.gov (United States)

    Xiao, Xiangwei; Guo, Ping; Chen, Zean; El-Gohary, Yousef; Wiersch, John; Gaffar, Iljana; Prasadan, Krishna; Shiota, Chiyo; Gittes, George K.

    2013-01-01

    VEGF-A expression in beta cells is critical for pancreatic development, formation of islet-specific vasculature, and Insulin secretion. However, two key questions remain. First, is VEGF-A release from beta cells coupled to VEGF-A production in beta cells? Second, how is the VEGF-A response by beta cells affected by metabolic signals? Here, we show that VEGF-A secretion, but not gene transcription, in either cultured islets or purified pancreatic beta cells, was significantly reduced early on during low glucose conditions. In vivo, a sustained hypoglycemia in mice was induced with Insulin pellets, resulting in a significant reduction in beta cell mass. This loss of beta cell mass could be significantly rescued with continuous delivery of exogenous VEGF-A, which had no effect on beta cell mass in normoglycemic mice. In addition, an increase in apoptotic endothelial cells during hypoglycemia preceded an increase in apoptotic beta cells. Both endothelial and beta cell apoptosis were prevented by exogenous VEGF-A, suggesting a possible causative relationship between reduced VEGF-A and the loss of islet vasculature and beta cells. Furthermore, in none of these experimental groups did beta cell proliferation and islet vessel density change, suggesting a tightly regulated balance between these two cellular compartments. The average islet size decreased in hypoglycemia, which was also prevented by exogenous VEGF-A. Taken together, our data suggest that VEGF-A release in beta cells is independent of VEGF-A synthesis. Beta cell mass can be regulated through modulated release of VEGF-A from beta cells based on physiological need. PMID:23378532

  13. Hypoglycemia reduces vascular endothelial growth factor A production by pancreatic beta cells as a regulator of beta cell mass.

    Science.gov (United States)

    Xiao, Xiangwei; Guo, Ping; Chen, Zean; El-Gohary, Yousef; Wiersch, John; Gaffar, Iljana; Prasadan, Krishna; Shiota, Chiyo; Gittes, George K

    2013-03-22

    VEGF-A expression in beta cells is critical for pancreatic development, formation of islet-specific vasculature, and Insulin secretion. However, two key questions remain. First, is VEGF-A release from beta cells coupled to VEGF-A production in beta cells? Second, how is the VEGF-A response by beta cells affected by metabolic signals? Here, we show that VEGF-A secretion, but not gene transcription, in either cultured islets or purified pancreatic beta cells, was significantly reduced early on during low glucose conditions. In vivo, a sustained hypoglycemia in mice was induced with Insulin pellets, resulting in a significant reduction in beta cell mass. This loss of beta cell mass could be significantly rescued with continuous delivery of exogenous VEGF-A, which had no effect on beta cell mass in normoglycemic mice. In addition, an increase in apoptotic endothelial cells during hypoglycemia preceded an increase in apoptotic beta cells. Both endothelial and beta cell apoptosis were prevented by exogenous VEGF-A, suggesting a possible causative relationship between reduced VEGF-A and the loss of islet vasculature and beta cells. Furthermore, in none of these experimental groups did beta cell proliferation and islet vessel density change, suggesting a tightly regulated balance between these two cellular compartments. The average islet size decreased in hypoglycemia, which was also prevented by exogenous VEGF-A. Taken together, our data suggest that VEGF-A release in beta cells is independent of VEGF-A synthesis. Beta cell mass can be regulated through modulated release of VEGF-A from beta cells based on physiological need.

  14. Myocardial Production of Plasminogen Activator Inhibitor-1 is Associated with Coronary Endothelial and Ventricular Dysfunction after Acute Myocardial Infarction.

    Science.gov (United States)

    Shimizu, Takuya; Uematsu, Manabu; Yoshizaki, Toru; Obata, Jun-Ei; Nakamura, Takamitsu; Fujioka, Daisuke; Watanabe, Kazuhiro; Watanabe, Yosuke; Kugiyama, Kiyotaka

    2016-05-02

    Although plasminogen activator inhibitor-1 (PAI-1) is abundantly expressed in infarcted myocardium, the pathogenic role of myocardial PAI-1 remains unknown. This study examined whether PAI-1 in the infarcted lesion contributes to coronary endothelial dysfunction and left ventricular (LV) dysfunction in patients with acute myocardial infarction (AMI). Plasma levels of PAI-1 activity and tissue-plasminogen activator (tPA) antigen were measured 2 weeks and 6 months after MI by ELISA in plasma obtained from the aortic root (AO) and anterior interventricular vein (AIV) in 28 patients with a first AMI due to occlusion of the left anterior descending coronary artery (LAD). Coronary blood flow responses in LAD to intracoronary infusion of acetylcholine (ACh) and left ventriculography were measured at the same time points: 2 weeks and 6 months after MI. The trans-myocardial gradient of PAI-1 from AO to AIV, reflecting production/release of PAI-1 in the infarcted lesion, was inversely correlated with the coronary blood flow response to ACh 6 months after MI (r=-0.43, p=0.02) and with the percentage change in LV regional motion in the LAD territory from 2 weeks to 6 months after MI (r=-0.38, p=0.04). The trans-myocardial gradient of tPA level showed no significant correlations. PAI-1 produced in the infarcted myocardium and released into the coronary circulation is associated with endothelial dysfunction in resistance vessels of the infarct-related coronary arteries and with progressive dysfunction of the infarcted region of the left ventricle in AMI survivors.

  15. Superoxide dismutase from Ascaris suum.

    Science.gov (United States)

    Sanchez-Moreno, M; Monteoliva, M; Fatou, A; García-Ruiz, M A

    1988-10-01

    Three superoxide dismutases (SOD) (EC 1.15.1.1) were detected in homogenates of Ascaris suum. Each of the three forms of SOD was purified by a sequence of multiple differential centrifugations, ammonium sulphate precipitation, ion-exchange chromatography and G-75 Sephadex column chromatography. The three forms of SOD were present in different cellular locations; one in the cytoplasmic fraction, sensitive to cyanide and hydrogen peroxide, and two in the mitochondrial fraction, one of which was cyanide sensitive. The SOD forms presented clear differences in their electrophoretic patterns. The sexual organs of females showed the highest SOD activities of all the tissues examined. The finding of such high levels of superoxide dismutase in A. suum reflects the importance of this enzyme in the metabolism of this helminth parasite.

  16. Dopamine agonist inhibits vascular endothelial growth factor protein production and secretion in granulosa cells.

    Science.gov (United States)

    Ferrero, Hortensia; García-Pascual, Carmen M; Pellicer, Nuria; Simón, Carlos; Pellicer, Antonio; Gómez, Raúl

    2015-09-17

    Dopamine receptor 2 agonists (D2-ags) inhibit vascular endothelial growth factor (VEGF) secretion in luteinized granulosa cells (LGCs) both in vitro and in vivo. However, the mechanism of D2 regulation of the VEGF/VEGF Receptor 2 (VEGFR-2) pathway remains to be elucidated. We sought to determine the effects of D2 signaling on VEGF transcription and translation in LGCs, with the expectation of identifying potential D2-ag-based therapies for ovarian hyperstimulation syndrome (OHSS). LGCs from egg donors were cultured with chorionic gonadotropin (hCG) in the presence of Actinomycin-D (ActD) or Brefeldin-A (BFA) to evaluate the effects of a D2-ag, cabergoline (Cb2), on VEGF secretion. The contribution of the conventional Gi/Go, Gz and AKT/β-Arrestin pathways in the VEGF regulation was assessed by adding pertussis toxin (PTX), phorbol 12-myristate 13-acetate (PMA), or wortmannin (WT). While Cb2 inhibited VEGF secretion by interfering with VEGF peptide translation and secretion, inhibition of conventional D2 transduction pathways did not reverse Cb2-mediated inhibition of VEGF secretion. The effects of D2-ag on VEGF translation and secretion are mediated by D2 signaling pathways that have yet to be described. We found that D2-ag inhibits VEGF secretion at the post-transcriptional level, suggesting that D2-ag treatment should be combined with therapies that inhibit VEGF transcription, such as the employment of LH or GnRH for triggering ovulation, to improve the efficacy of OHSS prevention.

  17. Skeletal muscle contractions induce acute changes in cytosolic superoxide, but slower responses in mitochondrial superoxide and cellular hydrogen peroxide.

    Directory of Open Access Journals (Sweden)

    Timothy Pearson

    Full Text Available Skeletal muscle generation of reactive oxygen species (ROS is increased following contractile activity and these species interact with multiple signaling pathways to mediate adaptations to contractions. The sources and time course of the increase in ROS during contractions remain undefined. Confocal microscopy with specific fluorescent probes was used to compare the activities of superoxide in mitochondria and cytosol and the hydrogen peroxide content of the cytosol in isolated single mature skeletal muscle (flexor digitorum brevis fibers prior to, during, and after electrically stimulated contractions. Superoxide in mitochondria and cytoplasm were assessed using MitoSox red and dihydroethidium (DHE respectively. The product of superoxide with DHE, 2-hydroxyethidium (2-HE was acutely increased in the fiber cytosol by contractions, whereas hydroxy-MitoSox showed a slow cumulative increase. Inhibition of nitric oxide synthases increased the contraction-induced formation of hydroxy-MitoSox only with no effect on 2-HE formation. These data indicate that the acute increases in cytosolic superoxide induced by contractions are not derived from mitochondria. Data also indicate that, in muscle mitochondria, nitric oxide (NO reduces the availability of superoxide, but no effect of NO on cytosolic superoxide availability was detected. To determine the relationship of changes in superoxide to hydrogen peroxide, an alternative specific approach was used where fibers were transduced using an adeno-associated viral vector to express the hydrogen peroxide probe, HyPer within the cytoplasmic compartment. HyPer fluorescence was significantly increased in fibers following contractions, but surprisingly followed a relatively slow time course that did not appear directly related to cytosolic superoxide. These data demonstrate for the first time temporal and site specific differences in specific ROS that occur in skeletal muscle fibers during and after contractile

  18. Discovery of superoxide reductase: an historical perspective

    OpenAIRE

    Nivière, Vincent; Fontecave, Marc

    2014-01-01

    International audience; For more than 30 years, the only enzymatic system known to catalyze the elimination of superoxide was superoxide dismutase, SOD. SOD has been found in almost all organisms living in the presence of oxygen, including some anaerobic bacteria, supporting the notion that superoxide is a key and general component of oxidative stress. Recently, a new concept in the field of the mechanisms of cellular defense against superoxide has emerged. It was discovered that elimination ...

  19. Activation of NAD(P)H oxidase by tryptophan-derived 3-hydroxykynurenine accelerates endothelial apoptosis and dysfunction in vivo.

    Science.gov (United States)

    Wang, Qiongxin; Zhang, Miao; Ding, Ye; Wang, Qilong; Zhang, Wencheng; Song, Ping; Zou, Ming-Hui

    2014-01-31

    The kynurenine (Kyn) pathway is the major route for tryptophan (Trp) metabolism in mammals. The Trp-Kyn pathway is reported to regulate several fundamental biological processes, including cell death. The aim of this study was to elucidate the contributions and molecular mechanism of Trp-Kyn pathway to endothelial cell death. Endogenous reactive oxygen species, endothelial cell apoptosis, and endothelium-dependent and endothelium-independent vasorelaxation were measured in aortas of wild-type mice or mice deficient for nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidase subunits (p47(phox) or gp91(phox)) or indoleamine-pyrrole 2,3-dioxygenase 1 with or without angiotensin (Ang) II infusion. As expected, AngII increased plasma levels of Kyn- and 3-hydroxykynurenine-modified proteins in endothelial cells in vivo. Consistent with this, AngII markedly increased the expression of indoleamine-pyrrole 2,3-dioxygenase in parallel with increased expression of interferon-γ. Furthermore, in wild-type mice, AngII significantly increased oxidative stress, endothelial cell apoptosis, and endothelial dysfunction. These effects of AngII infusion were significantly suppressed in mice deficient for p47(phox), gp91(phox), or indoleamine-pyrrole 2,3-dioxygenase 1, suggesting that AngII-induced enhancement of Kynurenines via NAD(P)H oxidase-derived oxidants causes endothelial cell apoptosis and dysfunction in vivo. Furthermore, interferon-γ neutralization eliminates AngII-increased superoxide products and endothelial apoptosis by inhibiting AngII-induced Kynurenines generation, suggesting that AngII-activated Kyn pathway is interferon-γ-dependent. Mechanistically, we found that AngII-enhanced 3-hydroxykynurenine promoted the generation of NAD(P)H oxidase-mediated superoxide anions by increasing the translocation and membrane assembly of NAD(P)H oxidase subunits in endothelial cells, resulting in accelerated apoptosis and consequent endothelial dysfunction. Kyn pathway

  20. Scavenging of superoxide anion by phosphorylethanolamine: studies in human neutrophils and in a cell free system.

    Science.gov (United States)

    Gordon, L I; Weiss, D; Prachand, S; Weitzman, S A

    1991-01-01

    On the basis of previous observations, we attempted to characterize the effects of various products of phospholipid hydrolysis on neutrophil (PMN) respiratory burst activity. We studied the effects of phosphorylcholine (PC) and phosphorylethanoline (PE) on superoxide anion production in PMN and in cell free system. We found that PE but not PC inhibited measured superoxide anion, but that this was not due to inhibition of cellular superoxide generation but to scavenging of generated superoxide anion. Further, utilizing a system based upon the photo-oxidation of O-dianisidine sensitized by riboflavin, we were able to determine that the scavenging effect of PE was not superoxide dismutase (SOD)-like but rather a general scavenging or glutathione (GSH)-like effect. These data underscore the importance of identifying the mechanism of inhibition of superoxide generation by putative inhibitors as being due to a direct cellular effect or to a scavenging property.

  1. Two-photon Imaging of Intracellular Ca2+ Handling and Nitric Oxide Production in Endothelial and Smooth Muscle Cells of an Isolated Rat Aorta.

    Science.gov (United States)

    Endres, Bradley T; Staruschenko, Alexander; Schulte, Marie; Geurts, Aron M; Palygin, Oleg

    2015-06-10

    Calcium is a very important regulator of many physiological processes in vascular tissues. Most endothelial and smooth muscle functions highly depend on changes in intracellular calcium ([Ca(2+)]i) and nitric oxide (NO). In order to understand how [Ca(2+)]i, NO and downstream molecules are handled by a blood vessel in response to vasoconstrictors and vasodilators, we developed a novel technique that applies calcium-labeling (or NO-labeling) dyes with two photon microscopy to measure calcium handling (or NO production) in isolated blood vessels. Described here is a detailed step-by-step procedure that demonstrates how to isolate an aorta from a rat, label calcium or NO within the endothelial or smooth muscle cells, and image calcium transients (or NO production) using a two photon microscope following physiological or pharmacological stimuli. The benefits of using the method are multi-fold: 1) it is possible to simultaneously measure calcium transients in both endothelial cells and smooth muscle cells in response to different stimuli; 2) it allows one to image endothelial cells and smooth muscle cells in their native setting; 3) this method is very sensitive to intracellular calcium or NO changes and generates high resolution images for precise measurements; and 4) described approach can be applied to the measurement of other molecules, such as reactive oxygen species. In summary, application of two photon laser emission microscopy to monitor calcium transients and NO production in the endothelial and smooth muscle cells of an isolated blood vessel has provided high quality quantitative data and promoted our understanding of the mechanisms regulating vascular function.

  2. Formation of manganese oxides by bacterially generated superoxide

    Science.gov (United States)

    Learman, D. R.; Voelker, B. M.; Vazquez-Rodriguez, A. I.; Hansel, C. M.

    2011-02-01

    Manganese oxide minerals are among the strongest sorbents and oxidants in the environment. The formation of these minerals controls the fate of contaminants, the degradation of recalcitrant carbon, the cycling of nutrients and the activity of anaerobic-based metabolisms. Oxidation of soluble manganese(II) ions to manganese(III/IV) oxides has been primarily attributed to direct enzymatic oxidation by microorganisms. However, the physiological reason for this process remains unknown. Here we assess the ability of a common species of marine bacteria-Roseobacter sp. AzwK-3b-to oxidize manganese(II) in the presence of chemical and biological inhibitors. We show that Roseobacter AzwK-3b oxidizes manganese(II) by producing the strong and versatile redox reactant superoxide. The oxidation of manganese(II), and concomitant production of manganese oxides, was inhibited in both the light and dark in the presence of enzymes and metals that scavenge superoxide. Oxidation was also inhibited by various proteases, enzymes that break down bacterial proteins, confirming that the superoxide was bacterially generated. We conclude that bacteria can oxidize manganese(II) indirectly, through the enzymatic generation of extracellular superoxide radicals. We suggest that dark bacterial production of superoxide may be a driving force in metal cycling and mineralization in the environment.

  3. Pollutant particles enhanced H2O2 production from NAD(P)H oxidase and mitochondria in human pulmonary artery endothelial cells.

    Science.gov (United States)

    Li, Zhuowei; Hyseni, Xhevahire; Carter, Jacqueline D; Soukup, Joleen M; Dailey, Lisa A; Huang, Yuh-Chin T

    2006-08-01

    Particulate matter (PM) induces oxidative stress and cardiovascular adverse health effects, but the mechanistic link between the two is unclear. We hypothesized that PM enhanced oxidative stress in vascular endothelial cells and investigated the enzymatic sources of reactive oxygen species and their effects on mitogen-activated protein kinase (MAPK) activation and vasoconstriction. We measured the production of extracellular H2O2, activation of extracellular signal-regulated kinases1/2 (ERK1/2) and p38 MAPKs in human pulmonary artery endothelial cells (HPAEC) treated with urban particles (UP; SRM1648), and assessed the effects of H2O2 on vasoconstriction in pulmonary artery ring and isolated perfused lung. Within minutes after UP treatment, HPAEC increased H2O2 production that could be inhibited by diphenyleneiodonium (DPI), apocynin (APO), and sodium azide (NaN3). The water-soluble fraction of UP as well as its two transition metal components, Cu and V, also stimulated H2O2 production. NaN3 inhibited H2O2 production stimulated by Cu and V, whereas DPI and APO inhibited only Cu-stimulated H2O2 production. Inhibitors of other H2O2-producing enzymes, including Nomega-methyl-L-argnine, indomethacin, allopurinol, cimetidine, rotenone, and antimycin, had no effects. DPI but not NaN3 attenuated UP-induced pulmonary vasoconstriction and phosphorylation of ERK1/2 and p38 MAPKs. Knockdown of p47phox gene expression by small interfering RNA attenuated UP-induced H2O2 production and phosphorylation of ERK1/2 and p38 MAPKs. Intravascular administration of H2O2 generated by glucose oxidase increased pulmonary artery pressure. We conclude that UP induce oxidative stress in vascular endothelial cells by activating NAD(P)H oxidase and the mitochondria. The endothelial oxidative stress may be an important mechanism for PM-induced acute cardiovascular health effects.

  4. Superoxide dismutase from Mycobacterium tuberculosis.

    Science.gov (United States)

    Kusunose, E; Ichihara, K; Noda, Y; Kusunose, M

    1976-12-01

    1. A superoxide dismutase [EC 1.15.1.1] was purified about 275-fold with a yield of 34% from Mycobacterium tuberculosis, strain H37Ra (attenuated strain), grown on a Sauton medium for two months. The purified enzyme was homogeneous as judged by polyacrylamide gel electrophoresis, and by analytical ultracentrifugation and sedimentation equilibrium studies. 2. The molecular weight of the enzyme was estimated to be approximately 88,000 by sedimentation equilibrium analysis. Since the molecular weight of the subunit was 21,000 as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis, the enzyme appears to be composed of four subunits of equal size. 3. Electron spin resonance (ESR) spectra showed that the enzyme contained ferric iron, and metal analysis showed that the enzyme contained ferric iron, and metal analysis showed that approximately 3.7 atoms of iron were present per mole of the enzyme, indicating the occurrence of 1 atom of iron per subunit. 4. The amino acid composition was apparently similar to those of the iron-containing superoxide dismutases from Escherichia coli, luminous bacteria, Pseudomonas ovalis, and blue-green alga. 5. Antibodies against the enzyme were raised in rabbits and immunological studies were performed. The enzyme from M. tuberculosis, strain H37Rv (virulent strain), was found to have antigenic structures identical with those of the H37Ra enzyme. On the other hand, the manganese-containing superoxide dismutases from other species of mycobacteria, i.e., Mycobacterium species, strain Takeo, M. phlei and M. lepraemurium, showed only partial immunological identity with the H37Ra enzyme. 6. During the growth of M. tuberculosis, strain H37Ra, the enzyme was found to be secreted into the culture medium.

  5. Treatment with acarbose may improve endothelial dysfunction in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Vallejo, S; Angulo, J; Peiró, C; Cercas, E; Sánchez-Ferrer, A; Nevado, J; Llergo, J L; Rodríguez-Mañas, L; Sánchez-Ferrer, C F

    2000-08-01

    We sought to determine whether a single reduction of hyperglycemia and those derivatives from nonenzymatic protein glycosylation may be effective in reducing the development of diabetic endothelial dysfunction. Therefore, we investigated how acarbose, an inhibitor of intestinal alpha-glucosidase that reduce hyperglycemia by lowering glucose absorption, may prevent the impairment of acetylcholine (ACh)-induced endothelium-dependent relaxations observed in isolated vascular segments from untreated streptozotocin-induced diabetic rats. When administered after diabetes induction, 10 mg/kg acarbose decreased modestly the enhancement of blood glucose and glycosylated hemoglobin (HbA1c) levels, but not those of advanced glycosylation end products (AGEs). This effect was linked to a partial improvement of ACh-induced responses both in conductance vessels, such as aortic segments, and resistance vasculature, like mesenteric microvessels. When acarbose was introduced after 6 weeks of untreated diabetes, blood glucose, HbA1c, and AGE levels were not affected and endothelial dysfunction remained unchanged in mesenteric microvessels, whereas a small improvement was observed in aortic segments. The addition of 100 U/ml superoxide dismutase enhanced the impaired relaxations to values similar to vessels from nondiabetic rats, indicating a main role for superoxide anions in diabetes-induced endothelial dysfunction. We conclude that hyperglycemia itself or elevated HbA1c, but not plasma AGEs, are related to enhanced oxidative stress and to the impairment of endothelium function associated to diabetes. This process can be partially prevented by reducing glucose absorption with acarbose.

  6. Detection of Non-Photochemical Superoxide in Coastal and Open Ocean Seawater: Particulate Versus Dissolved Sources

    Science.gov (United States)

    Roe, K. L.; Rand, T.; Hansel, C. M.; Voelker, B. M.

    2016-02-01

    Superoxide radical (O2-) could have a significant effect on marine metal redox chemistry, but little data exists on its marine concentrations. In this study, we measured superoxide steady-state concentrations in both filtered and unfiltered samples collected near the California coast and at Station ALOHA. Particle-generated superoxide, defined as the difference between unfiltered and filtered concentrations, ranged from undetectable to 0.019 nM at Station ALOHA and from undetectable to 0.052 nM in samples from the southern California Current. We also show that a transient superoxide signal is generated during filtering, an artifact that may have affected previously reported concentrations of particle-generated superoxide in the ocean. High concentrations of superoxide (range) were measured in filtered samples from ALOHA station and the California Current, raising concerns about possible sources of background signals. Further study of background signals revealed that some superoxide production occurs even in artificial seawater and very aged filtered seawater samples, and that a small additional background signal is generated as the sample travels from the container to the flow cell where it is mixed with reagent for CL analysis. However, filtered seawater samples collected from the Scripps Pier had significantly higher superoxide production rates than those measured in artificial seawater, and production rates in unfiltered samples were no higher than those in filtered samples. Therefore, production by dissolved sources was the dominant non-photochemical source of superoxide in these samples. Production rates decreased in the presence of DTPA, suggesting involvement of metal ions in superoxide production. Laboratory experiments with natural organic matter (NOM) indicate that superoxide formation occurs during oxidation of reduced moieties of NOM by oxygen.

  7. Superoxide anion-induced pain and inflammation depends on TNFα/TNFR1 signaling in mice.

    Science.gov (United States)

    Yamacita-Borin, Fabiane Y; Zarpelon, Ana C; Pinho-Ribeiro, Felipe A; Fattori, Victor; Alves-Filho, Jose C; Cunha, Fernando Q; Cunha, Thiago M; Casagrande, Rubia; Verri, Waldiceu A

    2015-09-25

    Inhibition of tumor necrosis factor-alpha (TNFα) and superoxide anion production reduces inflammation and pain. The present study investigated whether superoxide anion-induced pain depends on TNFα signaling and the role of superoxide anion in TNFα-induced hyperalgesia to clarify the interrelation between these two mediators in the context of pain. Intraplantar injection of a superoxide anion donor (potassium superoxide) induced mechanical hyperalgesia (0.5-5h after injection), neutrophil recruitment (myeloperoxidase activity), and overt pain-like behaviors (paw flinching, paw licking, and abdominal writhings) in wild-type mice. Tumor necrosis factor receptor 1 deficiency (TNFR1-/-) and treatment of wild-type mice with etanercept (a soluble TNFR2 receptor that inhibits TNFα actions) inhibited superoxide anion-induced pain-like behaviors. TNFR1(-/-) mice were also protected from superoxide anion donor-induced oxidative stress, suggesting the role of this pathway in the maintenance of oxidative stress. Finally, we demonstrated that Apocynin (an NADPH oxidase inhibitor) or Tempol (a superoxide dismutase mimetic) treatment inhibited TNFα-induced paw mechanical hyperalgesia and neutrophil recruitment (myeloperoxidase activity). These results demonstrate that TNFα/TNFR1 signaling is important in superoxide anion-triggered pain and that TNFα/TNFR1 signaling amplifies the oxidative stress triggered by superoxide anion, which contributes to sustaining pain and inflammation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Chlorella 11-Peptide Inhibits the Production of Macrophage-Induced Adhesion Molecules and Reduces Endothelin-1 Expression and Endothelial Permeability

    Science.gov (United States)

    Shih, Mei Fen; Chen, Lih Chi; Cherng, Jong Yuh

    2013-01-01

    The inflammation process in large vessels involves the up-regulation of vascular adhesion molecules such as endothelial cell selectin (E-selectin), intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) which are also known as the markers of atherosclerosis. We have reported that Chlorella 11-peptide exhibited effective anti-inflammatory effects. This peptide with an amino sequence Val-Glu-Cys-Tyr-Gly-Pro-Asn-Arg-Pro-Gln-Phe was further examined for its potential in preventing atherosclerosis in this study. In particular, the roles of Chlorella 11-peptide in lowering the production of vascular adhesion molecules, monocyte chemoattractant protein (MCP-1) and expression of endothelin-1 (ET-1) from endothelia (SVEC4-10 cells) were studied. The production of E-selectin, ICAM-1, VCAM-1 and MCP-1 in SVEC4-10 cells was measured with ELISA. The mRNA expression of ET-1 was analyzed by RT-PCR and agarose gel. Results showed that Chlorella 11-peptide significantly suppressed the levels of E-selectin, ICAM, VCAM, MCP-1 as well as ET-1 gene expression. The inhibition of ICAM-1 and VCAM-1 production by Chlorella 11-peptide was reversed in the presence of protein kinase A inhibitor (H89) which suggests that the cAMP pathway was involved in the inhibitory cause of the peptide. In addition, this peptide was shown to reduce the extent of increased intercellular permeability induced by combination of 50% of lipopolysaccharide (LPS)-activated RAW 264.7 cells medium and 50% normal SEVC cell culture medium (referred to as 50% RAW-conditioned medium). These data demonstrate that Chlorella 11-peptide is a promising biomolecule in preventing chronic inflammatory-related vascular diseases. PMID:24129228

  9. Efficient production of platelets from mouse embryonic stem cells by enforced expression of Gata2 in late hemogenic endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Manami [Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 (Japan); Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 (Japan); Kitajima, Kenji [Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 (Japan); Kanokoda, Mai [Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 (Japan); Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 (Japan); Suzuki, Hidenori [Division of Morphological and Biomolecular Research, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 (Japan); Miyashita, Kazuya; Nakajima, Marino [Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 (Japan); Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 (Japan); Nuriya, Hideko [Core Technology and Research Center, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 (Japan); Kasahara, Kohji [Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 (Japan); Hara, Takahiko, E-mail: hara-tk@igakuken.or.jp [Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 (Japan); Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 (Japan)

    2016-06-03

    Platelets are essential for blood circulation and coagulation. Previous study indicated that overexpression of Gata2 in differentiated mouse embryonic stem cells (ESCs) resulted in robust induction of megakaryocytes (Mks). To evaluate platelet production capacity of the Gata2-induced ESC-derived Mks, we generated iGata2-ESC line carrying the doxycycline-inducible Gata2 expression cassette. When doxycycline was added to day 5 hemogenic endothelial cells in the in vitro differentiation culture of iGata2-ESCs, c-Kit{sup −}Tie2{sup −}CD41{sup +} Mks were predominantly generated. These iGata2-ESC-derived Mks efficiently produced CD41{sup +}CD42b{sup +}CD61{sup +} platelets and adhered to fibrinogen-coated glass coverslips in response to thrombin stimulation. Transmission electron microscopy analysis demonstrated that the iGata2-ESC-derived platelets were discoid-shaped with α-granules and an open canalicular system, but were larger than peripheral blood platelets in size. These results demonstrated that an enforced expression of Gata2 in late HECs of differentiated ESCs efficiently promotes megakaryopoiesis followed by platelet production. This study provides valuable information for ex vivo platelet production from human pluripotent stem cells in future. -- Highlights: •Megakaryocytes are efficiently induced by Gata2 from ESC-derived day 5 HECs. •Gata2-induced ESC-derived megakaryocytes are c-Kit{sup −}Tie2{sup −}CD41{sup +}. •Gata2-induced ESC-derived megakaryocytes produce larger discoid-shaped platelets. •Gata2-induced ESC-derived platelets bind fibrinogen upon thrombin stimulation.

  10. Factor Xa induces cytokine production and expression of adhesion molecules by human umbilical vein endothelial cells

    NARCIS (Netherlands)

    Senden, N. H.; Jeunhomme, T. M.; Heemskerk, J. W.; Wagenvoord, R.; van't Veer, C.; Hemker, H. C.; Buurman, W. A.

    1998-01-01

    Proinflammatory effects induced by the serine protease factor Xa were investigated in HUVEC. Exposure of cells to factor Xa (5-80 nM) concentration dependently stimulated the production of IL-6, IL-8, and monocyte chemotactic protein-1 (MCP-1) and the expression of E-selectin, ICAM-1, and VCAM-1,

  11. Endothelial dysfunction in rats with ligature-induced periodontitis: Participation of nitric oxide and cycloxygenase-2-derived products.

    Science.gov (United States)

    Campi, Paula; Herrera, Bruno Schneider; de Jesus, Flavia Neto; Napolitano, Mauro; Teixeira, Simone Aparecida; Maia-Dantas, Aline; Spolidorio, Luis Carlos; Akamine, Eliana Hiromi; Mayer, Marcia Pinto Alves; de Carvalho, Maria Helena Catelli; Costa, Soraia Katia Pereira; Muscara, Marcelo Nicolas

    2016-03-01

    Considering the evident relationship between periodontitis and cardiovascular diseases in humans, we aimed to study the in vitro vascular reactivity of aorta rings prepared from rats with ligature-induced periodontitis. Seven days after the induction of unilateral periodontitis, the animals were euthanised; rings were prepared from the descending abdominal aortas and mounted in tissue baths for the in vitro measurement of the isometric force responses to norepinephrine (NE) and acetylcholine (ACh), as well as in the presence of inhibitors of nitric oxide synthase (NOS) and cycloxygenase (COX) isoenzymes. Aortic COX and NOS gene expressions were analysed by RT-PCR, as well as protein COX-2 expression by Western blot. Periodontitis resulted in significant alveolar bone loss and did not affect arterial pressure. However, both NE-induced contraction and ACh-induced relaxation were significantly decreased and related to the presence of endothelium. Diminished eNOS and augmented COX-2 and iNOS expressions were found in the aortas from rats with periodontitis, and the pharmacological inhibition of COX-2 or iNOS improved the observed vasomotor deficiencies. We can thus conclude that periodontitis induces significant endothelial dysfunction in rat aorta which is characterized by decreased eNOS expression and mediated by upregulated iNOS and COX-2 products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Methylglyoxal-derived hydroimidazolone-1 evokes inflammatory reactions in endothelial cells via an interaction with receptor for advanced glycation end products.

    Science.gov (United States)

    Ishibashi, Yuji; Matsui, Takanori; Nakamura, Nobutaka; Sotokawauchi, Ami; Higashimoto, Yuichiro; Yamagishi, Sho-Ichi

    2017-09-01

    Glyceraldehyde-derived advanced glycation end products contribute to vascular inflammation in diabetes. However, what advanced glycation end product structure could evoke inflammatory reactions remains unknown. We examined whether and how methylglyoxal-derived hydroimidazolone 1, one of the advanced glycation end products formed from glyceraldehyde, elicits inflammatory reactions in human umbilical vein endothelial cells. Glyceraldehyde-advanced glycation end products-aptamer was prepared using a systemic evolution of ligands by exponential enrichment. The binding affinities of methylglyoxal-derived hydroimidazolone 1 to receptor for advanced glycation end products or advanced glycation end product-aptamer were measured with a quartz crystal microbalance. Intracellular reactive oxygen species generation and THP-1 cell adhesion were evaluated using fluorescent probes. Gene expression was analysed by reverse transcription polymerase chain reaction. Methylglyoxal-derived hydroimidazolone 1 bound to receptor for advanced glycation end products and advanced glycation end product-aptamer with a dissociation constant ( K d ) of 56.7 µM and 1.51 mM, respectively. Methylglyoxal-derived hydroimidazolone 1 at 100 µg/mL significantly increased reactive oxygen species generation in human umbilical vein endothelial cells, which were attenuated by anti-receptor for advanced glycation end products antibody or advanced glycation end product-aptamer. In all, 100 µg/mL methylglyoxal-derived hydroimidazolone 1 significantly increased receptor for advanced glycation end products and intercellular adhesion molecule-1 messenger RNA levels in, and THP-1 cell adhesion to, human umbilical vein endothelial cells, all of which were blocked by anti-receptor for advanced glycation end products antibody. Our present results indicate that methylglyoxal-derived hydroimidazolone 1 evokes inflammatory reactions in human umbilical vein endothelial cells via receptor for advanced glycation

  13. Salidroside Stimulates Mitochondrial Biogenesis and Protects against H2O2-Induced Endothelial Dysfunction

    Directory of Open Access Journals (Sweden)

    Shasha Xing

    2014-01-01

    Full Text Available Salidroside (SAL is an active component of Rhodiola rosea with documented antioxidative properties. The purpose of this study is to explore the mechanism of the protective effect of SAL on hydrogen peroxide- (H2O2- induced endothelial dysfunction. Pretreatment of the human umbilical vein endothelial cells (HUVECs with SAL significantly reduced the cytotoxicity brought by H2O2. Functional studies on the rat aortas found that SAL rescued the endothelium-dependent relaxation and reduced superoxide anion (O2∙- production induced by H2O2. Meanwhile, SAL pretreatment inhibited H2O2-induced nitric oxide (NO production. The underlying mechanisms involve the inhibition of H2O2-induced activation of endothelial nitric oxide synthase (eNOS, adenosine monophosphate-activated protein kinase (AMPK, and Akt, as well as the redox sensitive transcription factor, NF-kappa B (NF-κB. SAL also increased mitochondrial mass and upregulated the mitochondrial biogenesis factors, peroxisome proliferator-activated receptor gamma-coactivator-1alpha (PGC-1α, and mitochondrial transcription factor A (TFAM in the endothelial cells. H2O2-induced mitochondrial dysfunction, as demonstrated by reduced mitochondrial membrane potential (Δψm and ATP production, was rescued by SAL pretreatment. Taken together, these findings implicate that SAL could protect endothelium against H2O2-induced injury via promoting mitochondrial biogenesis and function, thus preventing the overactivation of oxidative stress-related downstream signaling pathways.

  14. Salidroside Stimulates Mitochondrial Biogenesis and Protects against H2O2-Induced Endothelial Dysfunction

    Science.gov (United States)

    Xing, Shasha; Yang, Xiaoyan; Li, Wenjing; Bian, Fang; Wu, Dan; Chi, Jiangyang; Xu, Gao; Zhang, Yonghui; Jin, Si

    2014-01-01

    Salidroside (SAL) is an active component of Rhodiola rosea with documented antioxidative properties. The purpose of this study is to explore the mechanism of the protective effect of SAL on hydrogen peroxide- (H2O2-) induced endothelial dysfunction. Pretreatment of the human umbilical vein endothelial cells (HUVECs) with SAL significantly reduced the cytotoxicity brought by H2O2. Functional studies on the rat aortas found that SAL rescued the endothelium-dependent relaxation and reduced superoxide anion (O2∙−) production induced by H2O2. Meanwhile, SAL pretreatment inhibited H2O2-induced nitric oxide (NO) production. The underlying mechanisms involve the inhibition of H2O2-induced activation of endothelial nitric oxide synthase (eNOS), adenosine monophosphate-activated protein kinase (AMPK), and Akt, as well as the redox sensitive transcription factor, NF-kappa B (NF-κB). SAL also increased mitochondrial mass and upregulated the mitochondrial biogenesis factors, peroxisome proliferator-activated receptor gamma-coactivator-1alpha (PGC-1α), and mitochondrial transcription factor A (TFAM) in the endothelial cells. H2O2-induced mitochondrial dysfunction, as demonstrated by reduced mitochondrial membrane potential (Δψm) and ATP production, was rescued by SAL pretreatment. Taken together, these findings implicate that SAL could protect endothelium against H2O2-induced injury via promoting mitochondrial biogenesis and function, thus preventing the overactivation of oxidative stress-related downstream signaling pathways. PMID:24868319

  15. Re-evaluation of superoxide scavenging capacity of xanthohumol.

    Science.gov (United States)

    Schempp, Harald; Vogel, Susanne; Hückelhoven, Ralph; Heilmann, Jörg

    2010-12-01

    The chemopreventive chalcone xanthohumol (Xh) has been reported to decrease xanthine oxidase (XOD) catalysed formation of formazan from nitroblue tetrazolium (NBT) and is discussed as a potent scavenger of superoxide. Re-evaluation of the scavenging capacity indicated that Xh disturbed detection of superoxide with NBT, in case of an insufficient NBT/Xh ratio. Xh lacked superoxide scavenging activity in contrast to the Xh-derivative 3'-hydroxy-Xh with catechol substructure, used as positive control. This was shown by the use of sufficient concentration of NBT and other detectors such as hydroxylamine, XTT, cytochrome c and hydroethidine. HPLC analysis of reaction products in a xanthine/XOD/peroxidase system demonstrated beside enhanced inhibition of NBT-formazan by Xh that NBT even prevented oxidation of Xh. p-coumaric acid or ferulic acid could replace Xh in that system, indicating that superoxide detection using NBT is likely jeopardized by interference of phenoxyl-radicals. Furthermore, this study provides evidence that Xh can moderately generate superoxide via auto-oxidation.

  16. Water stress induces overexpression of superoxide dismutases that ...

    African Journals Online (AJOL)

    Water stress is known to induce active oxygen species in plants. The accumulation of these harmful species must be prevented by plants as rapidly as possible to maintain growth and productivity. The aim of this study was to determine the effect of water stress on superoxide dismutase isozymes (SOD, EC 1.15.1.1.) in two ...

  17. A cystine-knot miniprotein from tomato fruit inhibits endothelial cell migration and angiogenesis by affecting vascular endothelial growth factor receptor (VEGFR) activation and nitric oxide production.

    Science.gov (United States)

    Treggiari, Davide; Zoccatelli, Gianni; Molesini, Barbara; Degan, Maurizio; Rotino, Giuseppe Leonardo; Sala, Tea; Cavallini, Chiara; MacRae, Calum A; Minuz, Pietro; Pandolfini, Tiziana

    2015-11-01

    Cystine-knot miniproteins are bioactive molecules with a broad range of potential therapeutic applications. Recently, it was demonstrated that two tomato cystine-knot miniproteins (TCMPs) exhibit in vitro antiangiogenic activity on human umbilical vein cells. The aim of the present study was to investigate the effects of a fruit-specific cystine-knot miniprotein of tomato on in vitro endothelial cell migration and in vivo angiogenesis using a zebrafish model. The cystine-knot protein purified from tomato fruits using gel filtration LC and RP-HPLC inhibited cell migration when tested at 200 nM using the wound healing assay, and reduced nitric oxide formation probed by 4-amino-5-methylamino-27-difluorofluoscescin diacetate. RT-PCR and Western blot analyses demonstrated that vascular endothelium growth factor A dependent signaling was the target of TCMP bioactivity. Angiogenesis was inhibited in vivo in zebrafish embryos treated with 500 nM TCMP. Our results demonstrate that cystine-knot miniproteins present in mature tomato fruits are endowed with antiangiogenic activity in vitro and in vivo. These molecules may confer beneficial effects to tomato dietary intake, along with lycopene and other antioxidants. Further investigation is warranted to explore the potential of these compounds as model scaffolds for the development of new drugs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Acidic microenvironments induce lymphangiogenesis and IL-8 production via TRPV1 activation in human lymphatic endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Masako, E-mail: n-masako@wakayama-med.ac.jp [Department of Pathology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509 (Japan); Morita, Yoshihiro [Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871 (Japan); Department of Oral and Maxillofacial Surgery, Seichokai Hannan Municipal Hospital, Hannan, Osaka 599-0202 (Japan); Hata, Kenji [Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871 (Japan); Muragaki, Yasuteru, E-mail: ymuragak@wakayama-med.ac.jp [Department of Pathology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509 (Japan)

    2016-07-15

    Local acidosis is one of the characteristic features of the cancer microenvironment. Many reports indicate that acidosis accelerates the proliferation and invasiveness of cancer cells. However, whether acidic conditions affect lymphatic metastasis is currently unknown. In the present study, we focused on the effects of acidosis on lymphatic endothelial cells (LECs) to assess the relationship between acidic microenvironments and lymph node metastasis. We demonstrated that normal human LECs express various acid receptors by immunohistochemistry and reverse transcriptase-polymerase chain reaction (PCR). Acidic stimulation with low pH medium induced morphological changes in LECs to a spindle shape, and significantly promoted cellular growth and tube formation. Moreover, real-time PCR revealed that acidic conditions increased the mRNA expression of interleukin (IL)-8. Acidic stimulation increased IL-8 production in LECs, whereas a selective transient receptor potential vanilloid subtype 1 (TRPV1) antagonist, 5′-iodoresiniferatoxin, decreased IL-8 production. IL-8 accelerated the proliferation of LECs, and inhibition of IL-8 diminished tube formation and cell migration. In addition, phosphorylation of nuclear factor (NF)-κB was induced by acidic conditions, and inhibition of NF-κB activation reduced acid-induced IL-8 expression. These results suggest that acidic microenvironments in tumors induce lymphangiogenesis via TRPV1 activation in LECs, which in turn may promote lymphatic metastasis. - Highlights: • Acidity accelerates the growth, migration, and tube formation of LECs. • Acidic condition induces IL-8 expression in LECs. • IL-8 is critical for the changes of LECs. • IL-8 expression is induced via TRPV1 activation.

  19. Distinct and overlapping roles of Nipah virus P gene products in modulating the human endothelial cell antiviral response.

    Directory of Open Access Journals (Sweden)

    Michael K Lo

    Full Text Available Nipah virus (NiV is a highly pathogenic zoonotic paramyxovirus that causes fatal encephalitis in up to 75% of infected humans. Like other paramyxoviruses, NiV employs co-transcriptional mRNA editing during transcription of the phosphoprotein (P gene to generate additional mRNAs encoding the V and W proteins. The C protein is translated from the P mRNA, but in an alternative reading frame. There is evidence from both in vitro and in vivo studies to show that the P gene products play a role in NiV pathogenesis. We have developed a reverse genetic system to dissect the individual roles of the NiV P gene products in limiting the antiviral response in primary human microvascular lung endothelial cells, which represent important targets in human NiV infection. By characterizing growth curves and early antiviral responses against a number of recombinant NiVs with genetic modifications altering expression of the proteins encoded by the P gene, we observed that multiple elements encoded by the P gene have both distinct and overlapping roles in modulating virus replication as well as in limiting expression of antiviral mediators such as IFN-β, CXCL10, and CCL5. Our findings corroborate observations from in vivo hamster infection studies, and provide molecular insights into the attenuation and the histopathology observed in hamsters infected with C, V, and W-deficient NiVs. The results of this study also provide an opportunity to verify the results of earlier artificial plasmid expression studies in the context of authentic viral infection.

  20. Distinct and overlapping roles of Nipah virus P gene products in modulating the human endothelial cell antiviral response.

    Science.gov (United States)

    Lo, Michael K; Peeples, Mark E; Bellini, William J; Nichol, Stuart T; Rota, Paul A; Spiropoulou, Christina F

    2012-01-01

    Nipah virus (NiV) is a highly pathogenic zoonotic paramyxovirus that causes fatal encephalitis in up to 75% of infected humans. Like other paramyxoviruses, NiV employs co-transcriptional mRNA editing during transcription of the phosphoprotein (P) gene to generate additional mRNAs encoding the V and W proteins. The C protein is translated from the P mRNA, but in an alternative reading frame. There is evidence from both in vitro and in vivo studies to show that the P gene products play a role in NiV pathogenesis. We have developed a reverse genetic system to dissect the individual roles of the NiV P gene products in limiting the antiviral response in primary human microvascular lung endothelial cells, which represent important targets in human NiV infection. By characterizing growth curves and early antiviral responses against a number of recombinant NiVs with genetic modifications altering expression of the proteins encoded by the P gene, we observed that multiple elements encoded by the P gene have both distinct and overlapping roles in modulating virus replication as well as in limiting expression of antiviral mediators such as IFN-β, CXCL10, and CCL5. Our findings corroborate observations from in vivo hamster infection studies, and provide molecular insights into the attenuation and the histopathology observed in hamsters infected with C, V, and W-deficient NiVs. The results of this study also provide an opportunity to verify the results of earlier artificial plasmid expression studies in the context of authentic viral infection.

  1. Invasion of human aortic endothelial cells by oral viridans group streptococci and induction of inflammatory cytokine production.

    Science.gov (United States)

    Nagata, E; de Toledo, A; Oho, T

    2011-02-01

    Oral viridans group streptococci are the major commensal bacteria of the supragingival oral biofilm and have been detected in human atheromatous plaque. Atherosclerosis involves an ongoing inflammatory response, reportedly involving chronic infection caused by multiple pathogens. The aim of this study was to examine the invasion of human aortic endothelial cells (HAECs) by oral viridans group streptococci and the subsequent cytokine production by viable invaded HAECs. The invasion of HAECs by bacteria was examined using antibiotic protection assays and was visualized by confocal scanning laser microscopy. The inhibitory effects of catalase and cytochalasin D on the invasion of HAECs were also examined. The production of cytokines by invaded or infected HAECs was determined using enzyme-linked immunosorbent assays, and a real-time polymerase chain reaction method was used to evaluate the expression of cytokine messenger RNA. The oral streptococci tested were capable of invading HAECs. The number of invasive bacteria increased with the length of the co-culture period. After a certain co-culture period, some organisms were cytotoxic to the HAECs. Catalase and cytochalasin D inhibited the invasion of HAECs by the organism. HAECs invaded by Streptococcus mutans Xc, Streptococcus gordonii DL1 (Challis), Streptococcus gordonii ATCC 10558 and Streptococcus salivarius ATCC 13419 produced more cytokine(s) (interleukin-6, interleukin-8, monocyte chemoattractant protein-1) than non-invaded HAECs. The HAECs invaded by S. mutans Xc produced the largest amounts of cytokines, and the messenger RNA expression of cytokines by invaded HAECs increased markedly compared with that by non-invaded HAECs. These results suggest that oral streptococci may participate in the pathogenesis of atherosclerosis. © 2010 John Wiley & Sons A/S.

  2. Superoxide radicals have a protective role during H2O2 stress

    Science.gov (United States)

    Thorpe, Geoffrey W.; Reodica, Mayfebelle; Davies, Michael J.; Heeren, Gino; Jarolim, Stefanie; Pillay, Bethany; Breitenbach, Michael; Higgins, Vincent J.; Dawes, Ian W.

    2013-01-01

    Reactive oxygen species (ROS) consist of potentially toxic, partly reduced oxygen species and free radicals. After H2O2 treatment, yeast cells significantly increase superoxide radical production. Respiratory chain complex III and possibly cytochrome b function are essential for this increase. Disruption of complex III renders cells sensitive to H2O2 but not to the superoxide radical generator menadione. Of interest, the same H2O2-sensitive mutant strains have the lowest superoxide radical levels, and strains with the highest resistance to H2O2 have the highest levels of superoxide radicals. Consistent with this correlation, overexpression of superoxide dismutase increases sensitivity to H2O2, and this phenotype is partially rescued by addition of small concentrations of menadione. Small increases in levels of mitochondrially produced superoxide radicals have a protective effect during H2O2-induced stress, and in response to H2O2, the wild-type strain increases superoxide radical production to activate this defense mechanism. This provides a direct link between complex III as the main source of ROS and its role in defense against ROS. High levels of the superoxide radical are still toxic. These opposing, concentration-dependent roles of the superoxide radical comprise a form of hormesis and show one ROS having a hormetic effect on the toxicity of another. PMID:23864711

  3. Constraints on superoxide mediated formation of manganese oxides

    Science.gov (United States)

    Learman, Deric R.; Voelker, Bettina M.; Madden, Andrew S.; Hansel, Colleen M.

    2013-01-01

    Manganese (Mn) oxides are among the most reactive sorbents and oxidants within the environment, where they play a central role in the cycling of nutrients, metals, and carbon. Recent discoveries have identified superoxide (O2−) both of biogenic and abiogenic origin as an effective oxidant of Mn(II) leading to the formation of Mn oxides. Here we examined the conditions under which abiotically produced superoxide led to oxidative precipitation of Mn and the solid-phases produced. Oxidized Mn, as both aqueous Mn(III) and Mn(III/IV) oxides, was only observed in the presence of active catalase, indicating that hydrogen peroxide (H2O2), a product of the reaction of O2− with Mn(II), inhibits the oxidation process presumably through the reduction of Mn(III). Citrate and pyrophosphate increased the yield of oxidized Mn but decreased the amount of Mn oxide produced via formation of Mn(III)-ligand complexes. While complexing ligands played a role in stabilizing Mn(III), they did not eliminate the inhibition of net Mn(III) formation by H2O2. The Mn oxides precipitated were highly disordered colloidal hexagonal birnessite, similar to those produced by biotically generated superoxide. Yet, in contrast to the large particulate Mn oxides formed by biogenic superoxide, abiotic Mn oxides did not ripen to larger, more crystalline phases. This suggests that the deposition of crystalline Mn oxides within the environment requires a biological, or at least organic, influence. This work provides the first direct evidence that, under conditions relevant to natural waters, oxidation of Mn(II) by superoxide can occur and lead to formation of Mn oxides. For organisms that oxidize Mn(II) by producing superoxide, these findings may also point to other microbially mediated processes, in particular enzymatic hydrogen peroxide degradation and/or production of organic ligand metabolites, that allow for Mn oxide formation. PMID:24027565

  4. Constraints on superoxide mediated formation of manganese oxides

    Directory of Open Access Journals (Sweden)

    Deric R. Learman

    2013-09-01

    Full Text Available Manganese (Mn oxides are among the most reactive sorbents and oxidants within the environment, where they play a central role in the cycling of nutrients, metals, and carbon. Recent discoveries have identified superoxide (O2- (both of biogenic and abiogenic origin as an effective oxidant of Mn(II leading to the formation of Mn oxides. Here we examined the conditions under which abiotically produced superoxide led to oxidative precipitation of Mn and the solid-phases produced. Oxidized Mn, as both aqueous Mn(III and Mn(III/IV oxides, was only observed in the presence of active catalase, indicating that hydrogen peroxide, a product of the reaction of O2- with Mn(II, inhibits the oxidation process presumably through the reduction of Mn(III. Citrate and pyrophosphate increased the yield of oxidized Mn but decreased the amount of Mn oxide produced via formation of Mn(III-ligand complexes. While complexing ligands played a role in stabilizing Mn(III, they did not eliminate the inhibition of net Mn(III formation by H2O2. The Mn oxides precipitated were highly disordered colloidal hexagonal birnessite, similar to those produced by biotically generated superoxide. Yet, in contrast to the large particulate Mn oxides formed by biogenic superoxide, abiotic Mn oxides did not ripen to larger, more crystalline phases. This suggests that the deposition of crystalline Mn oxides within the environment requires a biological, or at least organic, influence. This work provides the first direct evidence that, under conditions relevant to natural waters, oxidation of Mn(II by superoxide can occur and lead to formation of Mn oxides. For organisms that oxidize Mn(II by producing superoxide, these findings may also point to other microbially mediated processes, in particular enzymatic hydrogen peroxide degradation and/or production of organic ligand metabolites, that allow for Mn oxide formation.

  5. NADH Induces the Generation of Superoxide Radicals in Leaf Peroxisomes.

    Science.gov (United States)

    Del Río, L A; Fernández, V M; Rupérez, F L; Sandalio, L M; Palma, J M

    1989-03-01

    In peroxisomes isolated from pea leaves (Pisum sativum L.) the production of superoxide free radicals (O(2) (-)) by xanthine and NADH was investigated. In peroxisomal membranes, 100 micromolar NADH induced the production of O(2) (-) radicals. In the soluble fractions of peroxisomes, no generation of O(2) (-) radicals was observed by incubation with either NADH or xanthine, although xanthine oxidase was found located predominantly in the matrix of peroxisomes. The failure of xanthine to induce superoxide generation was probably due to the inability to fully suppress the endogenous Mn-superoxide dismutase activity by inhibitors which were inactive against xanthine oxidase. The generation of superoxide radicals in leaf peroxisomes together with the recently described production of these oxygen radicals in glyoxysomes (LM Sandalio, VM Fernández, FL Rupérez, LA del Río [1988] Plant Physiol 87: 1-4) suggests that O(2) (-) generation could be a common metabolic property of peroxisomes and further supports the existence of active oxygen-related rôles for peroxisomes in cellular metabolism.

  6. Growth hormone-releasing peptide ghrelin inhibits homocysteine-induced endothelial dysfunction in porcine coronary arteries and human endothelial cells.

    Science.gov (United States)

    Hedayati, Nasim; Annambhotla, Suman; Jiang, Jun; Wang, Xinwen; Chai, Hong; Lin, Peter H; Yao, Qizhi; Chen, Changyi

    2009-01-01

    Ghrelin, a novel growth hormone-releasing peptide, is implicated to play a protective role in cardiovascular tissues. However, it is not clear whether ghrelin protects vascular tissues from injury secondary to risk factors such as homocysteine (Hcy). This study investigated the effect and potential mechanisms of ghrelin on Hcy-induced endothelial dysfunction. Porcine coronary artery rings were incubated for 24 hours with ghrelin (100 ng/mL), Hcy (50 microM), or ghrelin plus Hcy. Endothelial vasomotor function was evaluated using the myograph tension model. The response to the thromboxane A(2)analog U46619, bradykinin, and sodium nitroprusside was analyzed. Endothelial nitric oxide synthase (eNOS) expression was determined using real-time polymerase chain reaction and immunohistochemistry staining, and superoxide anion production was documented lucigenin-enhanced chemiluminescence analysis. Human coronary artery endothelial cells (HCAECs) were treated with different concentrations of Hcy, ghrelin, or antighrelin receptor antibody for 24 hours, and eNOS protein levels were determined by Western blot analysis. Maximal contraction with U46619 and endothelium-independent vasorelaxation with sodium nitroprusside were not different among the four groups. However, endothelium-dependent vasorelaxation with bradykinin (10(-6) M) was significantly reduced by 34% with Hcy compared with controls (P ghrelin to Hcy had a protective effect, with 61.6% relaxation, which was similar to controls (64.7%). Homocysteine significantly reduced eNOS expression, whereas ghrelin cotreatment effectively restored eNOS expression to the control levels. Superoxide anion levels, which were increased by 100% with Hcy, returned to control levels with ghrelin cotreatment. Ghrelin also effectively blocked the Hcy-induced decrease of eNOS protein levels in HCAECs in a concentration-dependent manner. Antighrelin receptor antibody effectively inhibited the effect of ghrelin. Ghrelin has a protective

  7. Genistein ameliorated endothelial nitric oxidase synthase uncoupling by stimulating sirtuin-1 pathway in ox-LDL-injured HUVECs.

    Science.gov (United States)

    Zhang, Hua-ping; Zhao, Jia-hui; Yu, Hai-xia; Guo, Dong-xing

    2016-03-01

    Endothelial nitric oxidase synthase (eNOS) uncoupling plays a causal role in endothelial dysfunction in atherosclerosis. Genistein consumption has been associated with the prevention of atherosclerosis. However, the effect of genistein on eNOS uncoupling has not been reported. A model of oxidized low-density lipoprotein (ox-LDL)-induced injury on human umbilical vein endothelial cells (HUVECs) was established to evaluate the effect of genistein on eNOS uncoupling. We investigated the effect of genistein on NADPH oxidase-dependent superoxide production, NOX4 expression, BH4 synthesis and oxidation, the expression of GTP cyclohydrolase 1 (GCH1) and dihydrofolate reductase (DHFR). The results showed that genistein decreased superoxide production and NOX4 expression, enhanced the ratio of BH4/BH2, augmented the expressions of GCH1 and DHFR. Accompanied with genistein ameliorating eNOS uncoupling, genistein elevated the expression of sirtuin-1; furthermore, the effects of genistein on eNOS uncoupling were blunted with sirtuin-1 siRNA. The present study indicated that genistein ameliorated eNOS uncoupling was concerned with sirtuin-1 pathway in ox-LDL-injured HUVECs. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Estrogen increases the severity of anaphylaxis in female mice through enhanced endothelial nitric oxide synthase expression and nitric oxide production.

    Science.gov (United States)

    Hox, Valerie; Desai, Avanti; Bandara, Geethani; Gilfillan, Alasdair M; Metcalfe, Dean D; Olivera, Ana

    2015-03-01

    Clinical observations suggest that anaphylaxis is more common in adult women compared with adult men, although the mechanistic basis for this sex bias is not well understood. We sought to document sex-dependent differences in a mouse model of anaphylaxis and explore the role of female sex hormones and the mechanisms responsible. Passive systemic anaphylaxis was induced in female and male mice by using histamine, as well as IgE or IgG receptor aggregation. Anaphylaxis was assessed by monitoring body temperature, release of mast cell mediators and/or hematocrit, and lung weight as a measure of vascular permeability. A combination of ovariectomy, estrogen receptor antagonism, and estrogen administration techniques were used to establish estrogen involvement. Anaphylactic responses were more pronounced in female than male mice. The enhanced severity of anaphylaxis in female mice was eliminated after pretreatment with an estrogen receptor antagonist or ovariectomy but restored after administration of estradiol in ovariectomized mice, demonstrating that the sex-specific differences are due to the female steroid estradiol. Estrogen did not affect mast cell responsiveness or anaphylaxis onset. Instead, it increased tissue expression of endothelial nitric oxide synthase (eNOS). Blockage of NOS activity with the inhibitor L-NG-nitroarginine methyl ester or genetic eNOS deficiency abolished the sex-related differences. Our study defines a contribution of estrogen through its regulation of eNOS expression and nitric oxide production to vascular hyperpermeability and intensified anaphylactic responses in female mice, providing additional mechanistic insights into risk factors and possible implications for clinical management in the further exploration of human anaphylaxis. Published by Elsevier Inc.

  9. Advanced Glycation End Products Inhibit the Proliferation of Human Umbilical Vein Endothelial Cells by Inhibiting Cathepsin D

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2017-02-01

    Full Text Available We aimed to investigate the effect of advanced glycation end products (AGEs on the proliferation and migration ability of human umbilical vein endothelial cells (HUVECs. Cell proliferation was detected by methyl thiazolyl tetrazolium (MTT assay, real-time cell analyzer and 5-Ethynyl-2′-deoxyuridine (EdU staining. Cell migration was detected by wound-healing and transwell assay. AGEs significantly inhibited the proliferation and migration of HUVECs in a time-and dose-dependent way. Western blotting revealed that AGEs dramatically increased the expression of microtubule-associated protein 1 light chain 3 (LC3 II/I and p62. Immunofluorescence of p62 and acridine orange staining revealed that AGEs significantly increased the expression of p62 and the accumulation of autophagic vacuoles, respectively. Chloroquine (CQ could further promote the expression of LC3 II/I and p62, increase the accumulation of autophagic vacuoles and promote cell injury induced by AGEs. In addition, AGEs reduced cathepsin D (CTSD expression in a time-dependent way. Overexpression of wild-type CTSD significantly decreased the ratio of LC 3 II/I as well as p62 accumulation induced by AGEs, but overexpression of catalytically inactive mutant CTSD had no such effects. Only overexpression of wild-type CTSD could restore the proliferation of HUVECs inhibited by AGEs. However, overexpression of both wild-type CTSD and catalytically inactive mutant CTSD could promote the migration of HUVECs inhibited by AGEs. Collectively, our study found that AGEs inhibited the proliferation and migration in HUVECs and promoted autophagic flux, which in turn played a protective role against AGEs-induced cell injury. CTSD, in need of its catalytic activity, may promote proliferation in AGEs-treated HUVECs independent of the autophagy-lysosome pathway. Meanwhile, CTSD could improve the migration of AGEs-treated HUVECs regardless of its enzymatic activity.

  10. Endothelial microparticles prevent lipid-induced endothelial damageviaAkt/eNOS signaling and reduced oxidative stress.

    Science.gov (United States)

    Mahmoud, Ayman M; Wilkinson, Fiona L; McCarthy, Eoghan M; Moreno-Martinez, Daniel; Langford-Smith, Alexander; Romero, Miguel; Duarte, Juan; Alexander, M Yvonne

    2017-10-01

    Endothelial microparticles (EMPs) are endothelium-derived submicron vesicles that are released in response to diverse stimuli and are elevated in cardiovascular disease, which is correlated with risk factors. This study investigates the effect of EMPs on endothelial cell function and dysfunction in a model of free fatty acid (FFA) palmitate-induced oxidative stress. EMPs were generated from TNF-α-stimulated HUVECs and quantified by using flow cytometry. HUVECs were treated with and without palmitate in the presence or absence of EMPs. EMPs were found to carry functional eNOS and to protect against oxidative stress by positively regulating eNOS/Akt signaling, which restored NO production, increased superoxide dismutase and catalase, and suppressed NADPH oxidase and reactive oxygen species (ROS) production, with the involvement of NF-erythroid 2-related factor 2 and heme oxygenase-1. Conversely, under normal conditions, EMPs reduced NO release and increased ROS and redox-sensitive marker expression. In addition, functional assays using EMP-treated mouse aortic rings that were performed under homeostatic conditions demonstrated a decline in endothelium-dependent vasodilatation, but restored the functional response under lipid-induced oxidative stress. These data indicate that EMPs harbor functional eNOS and potentially play a role in the feedback loop of damage and repair during homeostasis, but are also effective in protecting against FFA-induced oxidative stress; thus, EMP function is reflected by the microenvironment.-Mahmoud, A. M., Wilkinson, F. L., McCarthy, E. M., Moreno-Martinez, D., Langford-Smith, A., Romero, M., Duarte, J., Alexander, M. Y. Endothelial microparticles prevent lipid-induced endothelial damage via Akt/eNOS signaling and reduced oxidative stress. © FASEB.

  11. HIV-1/cocaine induced oxidative stress disrupts tight junction protein-1 in human pulmonary microvascular endothelial cells: role of Ras/ERK1/2 pathway.

    Directory of Open Access Journals (Sweden)

    Pranjali Dalvi

    Full Text Available Intravenous drug use (IVDU is the major risk factor in the development of HIV-related pulmonary arterial hypertension (HRPAH; however, the pathogenesis of HRPAH in association with IVDU has yet to be characterized. Endothelial injury is considered to be an initiating factor for pulmonary vascular remodeling in animal models of PAH. Our previous study shows that simultaneous exposure to HIV-Trans-activator of transcription (Tat and cocaine exacerbates both disruption of tight junction proteins and permeability of human pulmonary artery endothelial cells compared with either treatment alone. We here now demonstrate that this HIV-Tat and cocaine mediated endothelial dysfunction accompanies with increase in hydrogen peroxide and superoxide radicals generation and involves redox sensitive signaling pathway. Pretreatment with antioxidant cocktail attenuated the cocaine and Tat mediated disassembly of Zonula Occludens (ZO-1 and enhancement of endothelial monolayer permeability. Furthermore, inhibition of NADPH oxidase by apocynin or siRNA-mediated knockdown of gp-91(phox abolished the Tat/cocaine-induced reactive oxygen species (ROS production, suggesting the NADPH oxidase mediated generation of oxidative radicals. In addition, ROS dependent activation of Ras and ERK1/2 Kinase was observed to be mediating the TJP-1 disassembly, and endothelial dysfunction in response to cocaine and Tat exposure. In conclusion, our findings demonstrate that Tat/cocaine -mediated production of ROS activate Ras/Raf/ERK1/2 pathway that contributes to disruption of tight junction protein leading to pulmonary endothelial dysfunction associated with pulmonary vascular remodeling.

  12. Expression of inducible nitric oxide synthase, caspase-3 and production of reactive oxygen intermediate on endothelial cells culture (HUVECs treated with P. falciparum infected erythrocytes and tumour necrosis factor-α

    Directory of Open Access Journals (Sweden)

    Loeki E. Fitri

    2006-09-01

    Full Text Available Cytoadherence of P. falciparum infected erythrocytes on endothelial cells is a key factor in development of severe malaria. This process may associated with the activation of local immune that was enhanced by tumour necrosis factor-α (TNF-α. This study was conducted to see the influence of P.falciparum infected erythrocytes cytoadherence and TNF-α treatment in inducing endothelial cells activation in vitro. inducible nitric oxide synthase (iNOS and caspase-3 expression, also reactive oxygen intermediate (ROI production were used as parameters. An Experimental laboratory study had been done to observe endothelial cells activation (HUVECs after treatment with TNF-α for 20 hours or P. falciparum infected erythrocytes for 1 hour or both of them. Normal endothelial cells culture had been used as a control. Using immunocytochemistry local immune activation of endothelial cells was determined by iNOS and caspase-3 expression. Nitro Blue Tetrazolium reduction-assay was conducted to see the ROI production semi quantitatively. inducible nitric oxide synthase expression only found on endothelial cells culture treated with P. falciparum infected erythrocytes or both P. falciparum infected erythrocytes and TNF-α. Caspase-3 expression found slightly on normal endothelial cells culture. This expression increased significantly on endothelial cells culture treated with both P.falciparum infected erythrocytes and TNF-α (p=0.000. The normal endothelial cells release low level of ROI in the presence of non-specific trigger, PMA. In the presence of P. falciparum infected erythrocytes or TNF-α or both of them, some cells showed medium to high levels of ROI. Cytoadherence of P. falciparum infected erythrocytes and TNF α treatment on endothelial cells can induce activation of local immune marked by increase inducible nitric oxide synthase and release of free radicals that cause cell damage. (Med J Indones 2006; 15:151-6 Keywords: P.falciparum ,HUVECs, TNF-α, i

  13. Pengendalian Superoxide Dismutase (SOD) dan Nitrit Oxide(NO) pada penderita DMT2 dengan emping garut (Maranta arundinacea Linn) sebagai makanan selingan

    OpenAIRE

    Betty Prastuti; Sunarti Sunarti

    2012-01-01

    Background: Hyperglycemia in diabetes mellitus increases the production of superoxide that cause oxidative stress and decrease the activity of superoxide dismutase (SOD). SOD enzyme reduces superoxide to hydrogen peroxide to lessen the reaction between superoxide and nitric oxide (NO). To reduce hyperglycemia in diabetes mellitus, diabetics are encouraged to consume diet with low glycemic index. Arrowroot chips is a product commonly used by the community as a snack. Arrowroot has low glycemic...

  14. Novel Superoxide Dismutase Mimetics for Protection against ...

    African Journals Online (AJOL)

    While proven to be of benefit in animal models of organ injury involving O2○-, superoxide dismutase (SOD) and superoxide dismutase mimetics (SODm) can suffer problems regarding their bioavailability and toxicity. Since ROS has been incriminated in the pathogenesis of several disease conditions including acute kidney ...

  15. Bosentan, a mixed endothelin receptor antagonist, inhibits superoxide anion-induced pain and inflammation in mice.

    Science.gov (United States)

    Serafim, Karla G G; Navarro, Suelen A; Zarpelon, Ana C; Pinho-Ribeiro, Felipe A; Fattori, Victor; Cunha, Thiago M; Alves-Filho, Jose C; Cunha, Fernando Q; Casagrande, Rubia; Verri, Waldiceu A

    2015-11-01

    Bosentan is a mixed endothelin receptor antagonist widely used to treat patients with pulmonary arterial hypertension, and the emerging literature suggests bosentan as a potent anti-inflammatory drug. Superoxide anion is produced in large amounts during inflammation, stimulates cytokine production, and thus contributes to inflammation and pain. However, it remains to be determined whether endothelin contributes to the inflammatory response triggered by the superoxide anion. The present study investigated the effects of bosentan in a mouse model of inflammation and pain induced by potassium superoxide, a superoxide anion donor. Male Swiss mice were treated with bosentan (10-100 mg/kg) by oral gavage, 1 h before potassium superoxide injection, and the inflammatory response was evaluated locally and at spinal cord (L4-L6) levels. Bosentan (100 mg/kg) inhibited superoxide anion-induced mechanical and thermal hyperalgesia, overt pain-like behavior (abdominal writhings, paw flinching, and licking), paw edema, myeloperoxidase activity (neutrophil marker) in the paw skin, and leukocyte recruitment in the peritoneal cavity. Bosentan also inhibited superoxide anion-induced interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) production, while it enhanced IL-10 production in the paw skin and spinal cord. Bosentan inhibited the reduction of antioxidant capacity (reduced glutathione, ferric reducing antioxidant power, and ABTS radical scavenging ability) induced by the superoxide anion. Finally, we demonstrated that intraplantar injection of potassium superoxide induces the mRNA expression of prepro-endothelin-1 in the paw skin and spinal cord. In conclusion, our results demonstrated that superoxide anion-induced inflammation, pain, cytokine production, and oxidative stress depend on endothelin; therefore, these responses are amenable to bosentan treatment.

  16. Induction of Haemeoxygenase-1 Directly Improves Endothelial Function in Isolated Aortas from Obese Rats through the Ampk-Pi3k/Akt-Enos Pathway

    Directory of Open Access Journals (Sweden)

    Fang Han

    2015-07-01

    Full Text Available Background: Induction of haemeoxygenase-1 (HO-1 increases adiponectin secretion by remodeling adipose tissue in obesity. The objective of our study is to explore whether HO-1 induction directly improves endothelial function independent of adiponectin changes in obese rats. Methods: Rats were divided into control and obesity groups. Aortic endothelial function was determined by measuring endothelium-dependent vasodilatation (EDV. Vascular segments of the obese rats were incubated in an organ bath in the presence or absence of cobalt protoporphyrin (CoPP or CoPP plus stannous protoporphyrin. Nitric oxide (NO production, superoxide anion production and NF-κB p65 expression in the aorta were determined. The expression of AMP-activated kinase (AMPK, Akt and endothelial nitric oxide synthase (eNOS in endothelial cells was determined by western blotting. The aortic rings from the obese rats were then incubated with CoPP in the presence of specific inhibitors of AMPK, phosphatidylinositol 3-kinase (PI3K or eNOS. Results: Acetylcholine-induced EDV was significantly attenuated in the obese rats, compared with the NC group (p p in vitro in the presence of inhibitors of AMPK, PI3K or eNOS. HO-1 induction with CoPP significantly increased the activation of the AMPK-PI3K/Akt-eNOS pathway and NO production in parallel with reduced superoxide anion production and NF-κB p65 expression in obese rats. Conclusions: HO-1 induction with CoPP directly improved endothelial function in obese rats independent of adiponectin changes. The mechanism of this protective effect is related to increasing NO production by activation of the AMPK-PI3K/Akt-eNOS signaling pathway.

  17. Polysulfides and products of H2S/S-nitrosoglutathione in comparison to H2S, glutathione and antioxidant Trolox are potent scavengers of superoxide anion radical and produce hydroxyl radical by decomposition of H2O2.

    Science.gov (United States)

    Misak, Anton; Grman, Marian; Bacova, Zuzana; Rezuchova, Ingeborg; Hudecova, Sona; Ondriasova, Elena; Krizanova, Olga; Brezova, Vlasta; Chovanec, Miroslav; Ondrias, Karol

    2017-09-23

    Exogenous and endogenously produced sulfide derivatives, such as H 2 S/HS - /S 2- , polysulfides and products of the H 2 S/S-nitrosoglutathione interaction (S/GSNO), affect numerous biological processes in which superoxide anion (O 2 - ) and hydroxyl (OH) radicals play an important role. Their cytoprotective-antioxidant and contrasting pro-oxidant-toxic effects have been reported. Therefore, the aim of our work was to contribute to resolving this apparent inconsistency by studying sulfide derivatives/free radical interactions and their consequent biological effects compared to the antioxidants glutathione (GSH) and Trolox. Using the electron paramagnetic resonance (EPR) spin trapping technique and O 2 - , we found that a polysulfide (Na 2 S 4 ) and S/GSNO were potent scavengers of O 2 - and cPTIO radicals compared to H 2 S (Na 2 S), GSH and Trolox, and S/GSNO scavenged the DEPMPO-OH radical. As detected by the EPR spectra of DEPMPO-OH, the formation of OH in physiological solution by S/GSNO was suggested. All the studied sulfide derivatives, but not Trolox or GSH, had a bell-shaped potency to decompose H 2 O 2 and produced OH in the following order: S/GSNO > Na 2 S 4  ≥ Na 2 S > GSH = Trolox = 0, but they scavenged OH at higher concentrations. In studies of the biological consequences of these sulfide derivatives/H 2 O 2 properties, we found the following: (i) S/GSNO alone and all sulfide derivatives in the presence of H 2 O 2 cleaved plasmid DNA; (ii) S/GSNO interfered with viral replication and consequently decreased the infectivity of viruses; (iii) the sulfide derivatives induced apoptosis in A2780 cells but inhibited apoptosis induced by H 2 O 2 ; and (iv) Na 2 S 4 modulated intracellular calcium in A87MG cells, which depended on the order of Na 2 S 4 /H 2 O 2 application. We suggest that the apparent inconsistency of the cytoprotective-antioxidant and contrasting pro-oxidant-toxic biological effects of sulfide derivatives results from their time

  18. Manganese Superoxide Dismutase: Guardian of the Powerhouse

    Directory of Open Access Journals (Sweden)

    Daret K. St. Clair

    2011-10-01

    Full Text Available The mitochondrion is vital for many metabolic pathways in the cell, contributing all or important constituent enzymes for diverse functions such as β-oxidation of fatty acids, the urea cycle, the citric acid cycle, and ATP synthesis. The mitochondrion is also a major site of reactive oxygen species (ROS production in the cell. Aberrant production of mitochondrial ROS can have dramatic effects on cellular function, in part, due to oxidative modification of key metabolic proteins localized in the mitochondrion. The cell is equipped with myriad antioxidant enzyme systems to combat deleterious ROS production in mitochondria, with the mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD acting as the chief ROS scavenging enzyme in the cell. Factors that affect the expression and/or the activity of MnSOD, resulting in diminished antioxidant capacity of the cell, can have extraordinary consequences on the overall health of the cell by altering mitochondrial metabolic function, leading to the development and progression of numerous diseases. A better understanding of the mechanisms by which MnSOD protects cells from the harmful effects of overproduction of ROS, in particular, the effects of ROS on mitochondrial metabolic enzymes, may contribute to the development of novel treatments for various diseases in which ROS are an important component.

  19. Detection and Imaging of Superoxide in Roots by an Electron Spin Resonance Spin-Probe Method

    Science.gov (United States)

    Warwar, Nasim; Mor, Avishai; Fluhr, Robert; Pandian, Ramasamy P.; Kuppusamy, Periannan; Blank, Aharon

    2011-01-01

    The detection, quantification, and imaging of short-lived reactive oxygen species, such as superoxide, in live biological specimens have always been challenging and controversial. Fluorescence-based methods are nonspecific, and electron spin resonance (ESR) spin-trapping methods require high probe concentrations and lack the capability for sufficient image resolution. In this work, a novel (to our knowledge), sensitive, small ESR imaging resonator was used together with a stable spin probe that specifically reacts with superoxide with a high reaction rate constant. This ESR spin-probe-based methodology was used to examine superoxide generated in a plant root as a result of an apical leaf injury. The results show that the spin probe rapidly permeated the plant's extracellular space. Upon injury of the plant tissue, superoxide was produced and the ESR signal decreased rapidly in the injured parts as well as in the distal part of the root. This is attributed to superoxide production and thus provides a means of quantifying the level of superoxide in the plant. The spin probe's narrow single-line ESR spectrum, together with the sensitive imaging resonator, facilitates the quantitative measurement of superoxide in small biological samples, such as the plant's root, as well as one-dimensional imaging along the length of the root. This type of methodology can be used to resolve many questions involving the production of apoplastic superoxide in plant biology. PMID:21943435

  20. Superoxide dismutases in chronic gastritis.

    Science.gov (United States)

    Švagelj, Dražen; Terzić, Velimir; Dovhanj, Jasna; Švagelj, Marija; Cvrković, Mirta; Švagelj, Ivan

    2016-04-01

    Human gastric diseases have shown significant changes in the activity and expression of superoxide dismutase (SOD) isoforms. The aim of this study was to detect Mn-SOD activity and expression in the tissue of gastric mucosa, primarily in chronic gastritis (immunohistochemical Helicobacter pylori-negative gastritis, without other pathohistological changes) and to evaluate their possible connection with pathohistological diagnosis. We examined 51 consecutive outpatients undergoing endoscopy for upper gastrointestinal symptoms. Patients were classified based on their histopathological examinations and divided into three groups: 51 patients (archive samples between 2004-2009) with chronic immunohistochemical Helicobacter pylori-negative gastritis (mononuclear cells infiltration were graded as absent, moderate, severe) divided into three groups. Severity of gastritis was graded according to the updated Sydney system. Gastric tissue samples were used to determine the expression of Mn-SOD with anti-Mn-SOD Ab immunohistochemically. The Mn-SOD expression was more frequently present in specimens with severe and moderate inflammation of gastric mucosa than in those with normal mucosa. In patients with normal histological finding, positive immunoreactivity of Mn-SOD was not found. Our results determine the changes in Mn-SOD expression occurring in the normal gastric mucosa that had undergone changes in the intensity of chronic inflammatory infiltrates in the lamina propria. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  1. Detection of superoxide radicals in tomato plants exposed to salinity, drought, cold and heavy metal stress using CMC-G-SOD biosensor.

    Science.gov (United States)

    Kocabay, Ozge; Emregul, Emel; Aydın, Semra Soydan; Aras, Sumer

    2013-10-01

    A novel highly sensitive electrochemical carboxymethylcellulose-gelatin-superoxide dismutase biosensor was used for the determination of superoxide radicals enhancement in tomato plants exposed to salinity, drought, cold and heavy metal stress. The variations in superoxide radicals depending on abiotic stress was determined using biosensor. The superoxide radical production with regard to control rapidly was increased in tomato plants exposed to salinity, drought, cold and heavy metal stress. The superoxide radical enhancement in tomato plants exposed to salinity, drought, cold and heavy metal stress was successfully determined using carboxymethylcellulose-gelatin-superoxide dismutase biosensor.

  2. Toxic effect of silica nanoparticles on endothelial cells through DNA damage response via Chk1-dependent G2/M checkpoint.

    Directory of Open Access Journals (Sweden)

    Junchao Duan

    Full Text Available Silica nanoparticles have become promising carriers for drug delivery or gene therapy. Endothelial cells could be directly exposed to silica nanoparticles by intravenous administration. However, the underlying toxic effect mechanisms of silica nanoparticles on endothelial cells are still poorly understood. In order to clarify the cytotoxicity of endothelial cells induced by silica nanoparticles and its mechanisms, cellular morphology, cell viability and lactate dehydrogenase (LDH release were observed in human umbilical vein endothelial cells (HUVECs as assessing cytotoxicity, resulted in a dose- and time- dependent manner. Silica nanoparticles-induced reactive oxygen species (ROS generation caused oxidative damage followed by the production of malondialdehyde (MDA as well as the inhibition of superoxide dismutase (SOD and glutathione peroxidase (GSH-Px. Both necrosis and apoptosis were increased significantly after 24 h exposure. The mitochondrial membrane potential (MMP decreased obviously in a dose-dependent manner. The degree of DNA damage including the percentage of tail DNA, tail length and Olive tail moment (OTM were markedly aggravated. Silica nanoparticles also induced G2/M arrest through the upregulation of Chk1 and the downregulation of Cdc25C, cyclin B1/Cdc2. In summary, our data indicated that the toxic effect mechanisms of silica nanoparticles on endothelial cells was through DNA damage response (DDR via Chk1-dependent G2/M checkpoint signaling pathway, suggesting that exposure to silica nanoparticles could be a potential hazards for the development of cardiovascular diseases.

  3. Early and intermediate Amadori glycosylation adducts, oxidative stress, and endothelial dysfunction in the streptozotocin-induced diabetic rats vasculature.

    Science.gov (United States)

    Rodríguez-Mañas, L; Angulo, J; Vallejo, S; Peiró, C; Sánchez-Ferrer, A; Cercas, E; López-Dóriga, P; Sánchez-Ferrer, C F

    2003-04-01

    In a model of streptozotocin-induced Type 1 diabetes mellitus in rats of 9 weeks duration, we analysed time associations between the development of hyperglycaemia, early and intermediate glycosylation Amadori adducts, or AGE compared with enhancement of oxidative stress and endothelial dysfunction. Endothelial function was tested at several stages of streptozotocin-induced diabetes and after treatment with insulin, resulting in different concentrations of blood glucose, glycosylated haemoglobin (an Amadori adduct), and AGE. Other animals were studied antagonising the formation of AGE with aminoguanidine. Relaxation in response to acetylcholine (1 nmol/l to 10 micro mol/l) was tested in isolated segments from aorta or mesenteric microvessels. Impairment of endothelium-dependent relaxations occurred after 2 weeks of untreated diabetes. Preincubation of vessels affected with 100 U/ml superoxide dismutase improved the relaxations to acetylcholine, along the time-course of the endothelial impairment. This indicates the participation of reactive oxygen species on diabetic endothelial dysfunction. The impairment of endothelium-dependent relaxations was recovered after 3 more weeks of insulin treatment. Aminoguanidine treatment did not modify this pattern of development. The time course of the rise and disappearance of endothelial dysfunction showed a higher correlation with glycosylated haemoglobin concentrations than with blood glucose or serum AGE. Enhancement of early and intermediate Amadori adducts of protein glycosylation was the factor showing a better relation with the development of endothelium impairment. These results are consistent with a role for these products in the development of diabetic vasculopathy.

  4. Influence of proliferation signal inhibitors on vascular endothelial growth factor production in heart transplant recipients - preliminary report.

    Science.gov (United States)

    Kamieńska, Natalia; Zakliczyński, Michał; Kasperska-Zając, Alicja; Szewczyk, Marta; Trybunia-Orzeszek, Dominika; Nożyński, Jerzy; Pijet, Marta; Hrapkowicz, Tomasz; Zembala, Marian

    2014-06-01

    Proliferation signal inhibitors (PSI) are especially beneficial for heart transplant recipients, but are rarely used due to frequent side effects. As they may be caused by vascular endothelial growth factor (VEGF), we performed a prospective cross-sectional pilot study to assess the influence of PSI and/or calcineurin inhibitors (CNI) presence in immunosuppressive protocols of heart transplant recipients on VEGF secretion. All electively screened heart transplant recipients willing to participate were enrolled in the study. The preliminary report was based on the results of the first 89 serum samples. The study group (n = 84) consisted of the PSI group (n = 14) further divided into the PSI + CNI subgroup (n = 10) and PSIw/oCNI subgroup (n = 4) based on concomitant CNI use, and the CNIw/oPSI group (n = 70) receiving CNI without PSI. The control group (n = 5) consisted of patients not requiring immunosuppression. VEGF was present in serum of 70 (83%) study group patients: median (range) 18 (0-316) pg/mL, mean 35 ± 57 pg/mL; in 13 (93%) PSI group patients: 22 (0-110) pg/mL, 28 ± 28 pg/mL, with 19 (8-20) pg/mL, 16 ± 6 pg/mL in the PSI + CNI subgroup, and 29 (0-110) pg/mL, 32 ± 32 pg/mL in the PSIw/oCNI subgroup. In the CNIw/oPSI group VEGF was present in 57 (81%) patients: 16 (0-316) pg/mL, 37 ± 62 pg/mL, and in the control group in 3 (60%) patients: 4 (0-110) pg/mL, 32 ± 48 pg/mL. None of the differences observed between any compared groups and/or subgroups was significant (χ(2) and Mann-Whitney U test). In conclusion, differences of VEGF concentration observed among groups imply the influence of PSI and CNI on VEGF production, but further studies involving higher numbers of participants are needed to prove it.

  5. Role of folic acid in nitric oxide bioavailability and vascular endothelial function.

    Science.gov (United States)

    Stanhewicz, Anna E; Kenney, W Larry

    2017-01-01

    Folic acid is a member of the B-vitamin family and is essential for amino acid metabolism. Adequate intake of folic acid is vital for metabolism, cellular homeostasis, and DNA synthesis. Since the initial discovery of folic acid in the 1940s, folate deficiency has been implicated in numerous disease states, primarily those associated with neural tube defects in utero and neurological degeneration later in life. However, in the past decade, epidemiological studies have identified an inverse relation between both folic acid intake and blood folate concentration and cardiovascular health. This association inspired a number of clinical studies that suggested that folic acid supplementation could reverse endothelial dysfunction in patients with cardiovascular disease (CVD). Recently, in vitro and in vivo studies have begun to elucidate the mechanism(s) through which folic acid improves vascular endothelial function. These studies, which are the focus of this review, suggest that folic acid and its active metabolite 5-methyl tetrahydrofolate improve nitric oxide (NO) bioavailability by increasing endothelial NO synthase coupling and NO production as well as by directly scavenging superoxide radicals. By improving NO bioavailability, folic acid may protect or improve endothelial function, thereby preventing or reversing the progression of CVD in those with overt disease or elevated CVD risk. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. NADPH oxidase NOX2 mediates TLR2/6-dependent release of GM-CSF from endothelial cells.

    Science.gov (United States)

    Schuett, Jutta; Schuett, Harald; Oberoi, Raghav; Koch, Ann-Kathrin; Pretzer, Silke; Luchtefeld, Maren; Schieffer, Bernhard; Grote, Karsten

    2017-06-01

    NADPH oxidase-generated reactive oxygen species (ROS) from immune cells are well known to be important for pathogen killing in response to TLR ligands. Here, we investigated a new aspect of NADPH oxidase in the TLR2/6-induced release of the immunologically relevant GM-CSF by endothelial cells. Stimulation of human endothelial cells with TLR2/6 agonist, MALP-2 (macrophage-activating lipopeptide of 2 kDa), induced NADPH oxidase activation and ROS formation. Inhibition by ROS scavengers and NADPH oxidase inhibitors blocked MALP-2-induced GM-CSF release. NADPH oxidase activators or ROS donors alone did not result in GM-CSF secretion; however, additional superoxide supply augmented MALP-2-induced GM-CSF secretion and restored GM-CSF levels after NADPH oxidase inhibition. MALP-2-dependent NF-ĸB activation was suppressed by NADPH oxidase inhibition, and inhibition of NF-κB completely blunted MALP-2-induced GM-CSF release. Vascular explants from mice that were deficient for the NADPH oxidase subunit p47 phox showed diminished intimal superoxide production and GM-CSF release after ex vivo stimulation with MALP-2. Moreover, an increase in circulating progenitor cells after MALP-2 injection was completely abolished in p47phox-knockout mice. Finally, MALP-2 stimulation increased mRNA expression of the major subunit NADPH oxidase, (Nox)2, in endothelial cells, and Nox2 inhibition prevented MALP-2-induced GM-CSF release. Our findings identify a Nox2-containing NADPH oxidase as a crucial regulator of the immunologic important growth factor GM-CSF after TLR2/6 stimulation in endothelial cells.-Schuett, J., Schuett, H., Oberoi, R., Koch, A.-K., Pretzer, S., Luchtefeld, M., Schieffer, B., Grote, K. NADPH oxidase NOX2 mediates TLR2/6-dependent release of GM-CSF from endothelial cells. © FASEB.

  7. Activation of Nrf2-Antioxidant Signaling by 1,25-Dihydroxycholecalciferol Prevents Leptin-Induced Oxidative Stress and Inflammation in Human Endothelial Cells.

    Science.gov (United States)

    Teixeira, Thaisa M; da Costa, Danielly C; Resende, Angela C; Soulage, Christophe O; Bezerra, Flavia F; Daleprane, Julio B

    2017-04-01

    Background: Obesity is associated with hyperleptinemia and endothelial dysfunction. Hyperleptinemia has been reported to induce both oxidative stress and inflammation by increasing reactive oxygen species production.Objective: The objective of this study was to determine the effects of 1,25-dihydroxycholecalciferol [1,25(OH)2D3] against leptin-induced oxidative stress and inflammation in human endothelial cells.Methods: Small interfering RNA (siRNA) were used to knock down the expression of vitamin D receptor (VDR) in human umbilical vein endothelial cells (HUVECs). HUVECs were pretreated for 4 h with physiologic (10(-10) M) or supraphysiologic (10(-7) M) concentrations of 1,25(OH)2D3 and exposed to leptin (10 ng/mL). Superoxide anion production and translocation of nuclear factor (erythroid-derived 2)-like 2 (NRF2) and nuclear transcription factor κB (NF-κB) subunit p65 to the nucleus and the activation of their target genes were quantified.Results: Pretreatment of HUVECs with 1,25(OH)2D3 prevented the leptin-induced increase in superoxide anion production (P Leptin doubled the translocation of NF-κB (P leptin has a beneficial effect on HUVECs through the regulation of mediators of antioxidant activity and inflammation. © 2017 American Society for Nutrition.

  8. Knock-down of CD44 regulates endothelial cell differentiation via NFκB-mediated chemokine production.

    Directory of Open Access Journals (Sweden)

    Berit Olofsson

    Full Text Available A striking feature of microvascular endothelial cells is their capacity to fuse and differentiate into tubular structures when grown in three-dimensional (3D extracellular matrices, in collagen or Matrigel, mimicking the in vivo blood vessel formation. In this study we demonstrate that human telomerase-immortalised foreskin microvascular endothelial (TIME cells express high levels of the hyaluronan receptor CD44 and the hyaluronidase HYAL2. Knock-down of CD44 or HYAL2 resulted in an inability of TIME cells to form a tubular network, suggesting a key regulatory role of hyaluronan in controlling TIME cell tubulogenesis in 3D matrices. Knock-down of CD44 resulted in an upregulation of mRNA expression of the chemokines CXCL9 and CXCL12, as well as their receptors CXCR3 and CXCR4. This was accompanied by a defect maturation of the tubular structure network and increased phosphorylation of the inhibitor of NFκB kinase (IKK complex and thus translocation of NFκB into the nucleus and activation of chemokine targed genes. Furthermore, the interaction between CD44 and hyaluronan determines the adhesion of breast cancer cells. In summary, our observations support the notion that the interaction between CD44 and hyaluronan regulates microvascular endothelial cell tubulogenesis by affecting the expression of cytokines and their receptors, as well as breast cancer dissemination.

  9. Quercetin inhibits LPS-induced adhesion molecule expression and oxidant production in human aortic endothelial cells by p38-mediated Nrf2 activation and antioxidant enzyme induction.

    Science.gov (United States)

    Li, Chuan; Zhang, Wei-Jian; Frei, Balz

    2016-10-01

    Atherosclerosis, the underlying cause of ischemic heart disease and stroke, is an inflammatory disease of arteries in a hyperlipidemic milieu. Endothelial expression of cellular adhesion molecules, such as endothelial-leukocyte adhesion molecule-1 (E-selectin) and intercellular adhesion molecule-1 (ICAM-1), plays a critical role in the initiation and progression of atherosclerosis. The dietary flavonoid, quercetin, has been reported to inhibit expression of cellular adhesion molecules, but the underlying mechanisms are incompletely understood. In this study, we found that quercetin dose-dependently (5-20µM) inhibits lipopolysaccharide (LPS)-induced mRNA and protein expression of E-selectin and ICAM-1 in human aortic endothelial cells (HAEC). Incubation of HAEC with quercetin also significantly reduced LPS-induced oxidant production, but did not inhibit activation of the nuclear factor-kappaB (NF-κB). Furthermore, quercetin induced activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) and subsequent mRNA and protein expression of the antioxidant enzymes, heme oxygenase-1 (HO-1), NAD(P)H dehydrogenase, quinone 1, and glutamate-cysteine ligase. The induction of Nrf2 and antioxidant enzymes was partly inhibited by the p38 mitogen-activated protein kinase (p38) inhibitor, SB203580. Our results suggest that quercetin suppresses LPS-induced oxidant production and adhesion molecule expression by inducing Nrf2 activation and antioxidant enzyme expression, which is partially mediated by p38; and the inhibitory effect of quercetin on adhesion molecule expression is not due to inhibition of NF-κB activation, but instead due to antioxidant-independent effects of HO-1. Copyright © 2016. Published by Elsevier B.V.

  10. Estrogens, selective estrogen receptor modulators, and a selective estrogen receptor down-regulator inhibit endothelial production of tissue factor pathway inhibitor 1

    Directory of Open Access Journals (Sweden)

    Ree Anne

    2006-10-01

    Full Text Available Abstract Background Hormone therapy, oral contraceptives, and tamoxifen increase the risk of thrombotic disease. These compounds also reduce plasma content of tissue factor pathway inhibitor-1 (TFPI, which is the physiological inhibitor of the tissue factor pathway of coagulation. The current aim was to study if estrogens and estrogen receptor (ER modulators may inhibit TFPI production in cultured endothelial cells and, if so, identify possible mechanisms involved. Methods Human endothelial cell cultures were treated with 17β-estradiol (E2, 17α-ethinylestradiol (EE2, tamoxifen, raloxifene, or fulvestrant. Protein levels of TFPI in cell media and cell lysates were measured by an enzyme-linked immunosorbent assay, and TFPI mRNA levels were assessed by quantitative PCR. Expression of ERα was analysed by immunostaining. Results All compounds (each in a concentration of 10 nM reduced TFPI in cell medium, by 34% (E2, 21% (EE2, 16% (tamoxifen, and 28% (raloxifene, respectively, with identical inhibitory effects on cellular TFPI levels. Expression of TFPI mRNA was principally unchanged. Treatment with fulvestrant, which was also associated with down-regulation of secreted TFPI (9% with 10 nM and 26% with 1000 nM, abolished the TFPI-inhibiting effect of raloxifene, but not of the other compounds. Notably, the combination of 1000 nM fulvestrant and 10 nM raloxifene increased TFPI secretion, and, conversely, 10 nM of either tamoxifen or raloxifene seemed to partly (tamoxifen or fully (raloxifene counteract the inhibitory effect of 1000 nM fulvestrant. The cells did not express the regular nuclear 66 kDa ERα, but instead a 45 kDa ERα, which was not regulated by estrogens or ER modulators. Conclusion E2, EE2, tamoxifen, raloxifene, and fulvestrant inhibited endothelial production of TFPI by a mechanism apparently independent of TFPI transcription.

  11. Sildenafil restores endothelial function in the apolipoprotein E knockout mouse

    Directory of Open Access Journals (Sweden)

    Balarini Camille M

    2013-01-01

    Full Text Available Abstract Background Atherosclerosis is an inflammatory process of the arterial walls and is initiated by endothelial dysfunction accompanied by an imbalance in the production of reactive oxygen species (ROS and nitric oxide (NO. Sildenafil, a selective phosphodiesterase-5 (PDE5 inhibitor used for erectile dysfunction, exerts its cardiovascular effects by enhancing the effects of NO. The aim of this study was to investigate the influence of sildenafil on endothelial function and atherosclerosis progression in apolipoprotein E knockout (apoE−/− mice. Methods ApoE−/− mice treated with sildenafil (Viagra®, 40 mg/kg/day, for 3 weeks, by oral gavage were compared to the untreated apoE−/− and the wild-type (WT mice. Aortic rings were used to evaluate the relaxation responses to acetylcholine (ACh in all of the groups. In a separate set of experiments, the roles of NO and ROS in the relaxation response to ACh were evaluated by incubating the aortic rings with L-NAME (NO synthase inhibitor or apocynin (NADPH oxidase inhibitor. In addition, the atherosclerotic lesions were quantified and superoxide production was assessed. Results Sildenafil restored the vasodilator response to acetylcholine (ACh in the aortic rings of the apoE−/− mice. Treatment with L-NAME abolished the vasodilator responses to ACh in all three groups of mice and revealed an augmented participation of NO in the endothelium-dependent vasodilation in the sildenafil-treated animals. The normalized endothelial function in sildenafil-treated apoE−/− mice was unaffected by apocynin highlighting the low levels of ROS production in these animals. Moreover, morphological analysis showed that sildenafil treatment caused approximately a 40% decrease in plaque deposition in the aorta. Conclusion This is the first study demonstrating the beneficial effects of chronic treatment with sildenafil on endothelial dysfunction and atherosclerosis in a model of spontaneous

  12. Study of malondialdehyde (MDA) content, superoxide dismutase ...

    African Journals Online (AJOL)

    Study of malondialdehyde (MDA) content, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in chickens infected with avian infectious bronchitis virus. HF Wang, XH Zhong, W Shi, B Guo ...

  13. Superoxide Ion: Generation and Chemical Implications.

    Science.gov (United States)

    Hayyan, Maan; Hashim, Mohd Ali; AlNashef, Inas M

    2016-03-09

    Superoxide ion (O2(•-)) is of great significance as a radical species implicated in diverse chemical and biological systems. However, the chemistry knowledge of O2(•-) is rather scarce. In addition, numerous studies on O2(•-) were conducted within the latter half of the 20th century. Therefore, the current advancement in technology and instrumentation will certainly provide better insights into mechanisms and products of O2(•-) reactions and thus will result in new findings. This review emphasizes the state-of-the-art research on O2(•-) so as to enable researchers to venture into future research. It comprises the main characteristics of O2(•-) followed by generation methods. The reaction types of O2(•-) are reviewed, and its potential applications including the destruction of hazardous chemicals, synthesis of organic compounds, and many other applications are highlighted. The O2(•-) environmental chemistry is also discussed. The detection methods of O2(•-) are categorized and elaborated. Special attention is given to the feasibility of using ionic liquids as media for O2(•-), addressing the latest progress of generation and applications. The effect of electrodes on the O2(•-) electrochemical generation is reviewed. Finally, some remarks and future perspectives are concluded.

  14. PLC/CAMK IV-NF-kappaB involved in the receptor for advanced glycation end products mediated signaling pathway in human endothelial cells.

    Science.gov (United States)

    You, Jie; Peng, Wei; Lin, Xu; Huang, Qing-Ling; Lin, Jian-Yin

    2010-05-14

    Advanced glycation end products (AGEs) and their interaction with the receptor for advanced glycation end products (RAGE) play an important role in diabetic vascular complications. The current study demonstrated that AGEs significantly increased RAGE expression and the release of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6) in human umbilical vein endothelial cell-derived line ECV304 cells. RAGE antisense RNA partially inhibited the expression of TNF-alpha and IL-6 induced by AGEs. Oligonucleotide microarray was used to identify the genes that respond to RAGE activation. Phospholipase C beta 1 (PLC beta 1), phospholipase C beta 4 (PLC beta 4) and calcium/calmodulin-dependent protein kinase IV (CAMK IV) which associated with Ca(2+) signaling were upregulated. The rise of intracellular calcium and the NF-kappaB promoter activity induced by AGEs were suppressed by RAGE antisense RNA, PLC inhibitor U73122 and dominant negative CAMK IV, respectively. These findings suggest that PLC/CAMK IV-NF-kappaB is involved in RAGE mediated signaling pathway in human endothelial cells. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Superoxide Is Produced by the Reduced Flavin in Mitochondrial Complex I

    Science.gov (United States)

    Pryde, Kenneth R.; Hirst, Judy

    2011-01-01

    NADH:ubiquinone oxidoreductase (complex I) is a major source of reactive oxygen species in mitochondria and a contributor to cellular oxidative stress. In isolated complex I the reduced flavin is known to react with molecular oxygen to form predominantly superoxide, but studies using intact mitochondria contend that superoxide may result from a semiquinone species that responds to the proton-motive force (Δp) also. Here, we use bovine heart submitochondrial particles to show that a single mechanism describes superoxide production by complex I under all conditions (during both NADH oxidation and reverse electron transfer). NADH-induced superoxide production is inhibited by complex I flavin-site inhibitors but not by inhibitors of ubiquinone reduction, and it is independent of Δp. Reverse electron transfer (RET) through complex I in submitochondrial particles, driven by succinate oxidation and the Δp created by ATP hydrolysis, reduces the flavin, leading to NAD+ and O2 reduction. RET-induced superoxide production is inhibited by both flavin-site and ubiquinone-reduction inhibitors. The potential dependence of NADH-induced superoxide production (set by the NAD+ potential) matches that of RET-induced superoxide production (set by the succinate potential and Δp), and they both match the potential dependence of the flavin. Therefore, both NADH- and RET-induced superoxide are produced by the flavin, according to the same molecular mechanism. The unified mechanism describes how reactive oxygen species production by complex I responds to changes in cellular conditions. It establishes a route to understanding causative connections between the enzyme and its pathological effects and to developing rational strategies for addressing them. PMID:21393237

  16. Species-specific control of external superoxide levels by the coral holobiont during a natural bleaching event

    Science.gov (United States)

    Diaz, Julia M.; Hansel, Colleen M.; Apprill, Amy; Brighi, Caterina; Zhang, Tong; Weber, Laura; McNally, Sean; Xun, Liping

    2016-12-01

    The reactive oxygen species superoxide (O2.-) is both beneficial and detrimental to life. Within corals, superoxide may contribute to pathogen resistance but also bleaching, the loss of essential algal symbionts. Yet, the role of superoxide in coral health and physiology is not completely understood owing to a lack of direct in situ observations. By conducting field measurements of superoxide produced by corals during a bleaching event, we show substantial species-specific variation in external superoxide levels, which reflect the balance of production and degradation processes. Extracellular superoxide concentrations are independent of light, algal symbiont abundance and bleaching status, but depend on coral species and bacterial community composition. Furthermore, coral-derived superoxide concentrations ranged from levels below bulk seawater up to ~120 nM, some of the highest superoxide concentrations observed in marine systems. Overall, these results unveil the ability of corals and/or their microbiomes to regulate superoxide in their immediate surroundings, which suggests species-specific roles of superoxide in coral health and physiology.

  17. Impact of Thyroid Dysfunction on Antioxidant Capacity, Superoxide Dismutase

    Directory of Open Access Journals (Sweden)

    Mehdi Hedayati

    2014-01-01

    Full Text Available Background: In hypothyroidism and hyperthyroidism, disturbance of oxidant/antioxidant balance leads to reactive oxygen species (ROS generation. The aim of this study is assaying total antioxidant capacity and superoxide dismutase and catalase activities in patients with hypo-and hyperthyroidism in order to control the progression of its pathology and health care. Materials and Methods: This case-control study was performed on 85 patients with hypothyroidism, 66 patients with hyperthyroidism and 74 normal individuals as control that referred to the clinic of the Research Institute for Endocrine Sciences of Shahid-Beheshti University in year 2010. Serum enzymatic activity of catalase, superoxide dismutase and total antioxidant capacity was measured in the fasting state. Data was described as mean±SD and data means of the two groups was compared by independent t-test. Data was analyzed by SPSS-18 application. Results: The total antioxidant capacity in individuals with hyperthyroidism decreased compared to healthy controls, but individuals with hypothyroidism compared to the healthy control group showed no significant difference. Catalase and superoxide dismutase activity in hypo-and hyperthyroidism were significantly increased compared with healthy controls (p=0.005. Conclusion: Decreasing of antioxidant capacity in hyperthyroid patients is probably because of increased production of free radicals. There was not observed significant difference in total antioxidant capacity in hypothyroid patients. Also in hypo-and hyperthyroidism patients, increasing of enzymes activity is probably due to increasing of the production of ROS.

  18. Endothelial nitric oxide synthase uncoupling: a novel pathway in OSA induced vascular endothelial dysfunction.

    Science.gov (United States)

    Varadharaj, Saradhadevi; Porter, Kyle; Pleister, Adam; Wannemacher, Jacob; Sow, Angela; Jarjoura, David; Zweier, Jay L; Khayat, Rami N

    2015-02-01

    The mechanism of vascular endothelial dysfunction (VED) and cardiovascular disease in obstructive sleep apnea (OSA) is unknown. We performed a comprehensive evaluation of endothelial nitric oxide synthase (eNOS) function directly in the microcirculatory endothelial tissue of OSA patients who have very low cardiovascular risk status. Nineteen OSA patients underwent gluteal biopsies before, and after effective treatment of OSA. We measured superoxide (O2(•-)) and nitric oxide (NO) in the microcirculatory endothelium using confocal microscopy. We evaluated the effect of the NOS inhibitor l-Nitroarginine-Methyl-Ester (l-NAME) and the NOS cofactor tetrahydrobiopterin (BH4) on endothelial O2(•-) and NO in patient endothelial tissue before and after treatment. We found that eNOS is dysfunctional in OSA patients pre-treatment, and is a source of endothelial O2(•-) overproduction. eNOS dysfunction was reversible with the addition of BH4. These findings provide a new mechanism of endothelial dysfunction in OSA patients and a potentially targetable pathway for treatment of cardiovascular risk in OSA. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Valproic acid increases NO production via the SH-PTP1-CDK5-eNOS-Ser(116) signaling cascade in endothelial cells and mice.

    Science.gov (United States)

    Cho, Du-Hyong; Park, Jung-Hyun; Joo Lee, Eun; Jong Won, Kyung; Lee, Sang-Hee; Kim, Yang-Hoon; Hwang, Soojin; Ja Kwon, Kyoung; Young Shin, Chan; Song, Kee-Ho; Jo, Inho; Han, Seol-Heui

    2014-11-01

    Valproic acid (VPA) with its inhibitory activity of histone deacetylase has been used in the treatment of epilepsy and bipolar disorder associated with cerebrovascular dysfunction. Because nitric oxide (NO) produced by endothelial NO synthase (eNOS) plays a role in the maintenance of vascular function, NO is likely to mediate VPA׳s drug effect, but its effect on NO production remains controversial. We investigated whether and how VPA regulates NO production in bovine aortic endothelial cells (BAECs) and mice. VPA increased NO production in BAECs, which was accompanied by a decrease in phosphorylation of eNOS at serine 116 (eNOS-Ser(116)) and cyclin-dependent kinase 5 at tyrosine 15 (CDK5-Tyr(15)). Ectopic expression of p25, a CDK5 activator, restored the VPA-inhibited eNOS-Ser(116) phosphorylation. In silico analysis revealed that the CDK5-Tyr(15) residue might be a substrate for SH2 domain-containing protein tyrosine phosphatase 1 (SH-PTP1), and CDK5 actually interacted with SH-PTP1. VPA increased SH-PTP1 expression and its activity. Stibogluconate, a specific SH-PTP1 inhibitor, reversed the VPA-inhibited phosphorylation of CDK5-Tyr(15) and eNOS-Ser(116). Knockdown of SH-PTP1 using small interfering RNA also reversed all the observed effects of VPA. Finally, both serum NO level and acetylcholine-induced aortic relaxation increased in VPA-medicated male mice. These increases were accompanied by increased SH-PTP1 expression and decreased phosphorylation of CDK5-Tyr(15) and eNOS-Ser(116) in mouse aortas. In conclusion, VPA increases NO production by inhibiting the CDK5-Tyr(15)-eNOS-Ser(116) phosphorylation axis; this process is mediated by SH-PTP1. VPA may be useful in the treatment of NO-related cerebrocardiovascular diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. High-fat diet-induced reduction in nitric oxide-dependent arteriolar dilation in rats: role of xanthine oxidase-derived superoxide anion.

    Science.gov (United States)

    Erdei, Nóra; Tóth, Attila; Pásztor, Eniko T; Papp, Zoltán; Edes, István; Koller, Akos; Bagi, Zsolt

    2006-11-01

    Obesity frequently leads to the development of hypertension. We hypothesized that high-fat diet (HFD)-induced obesity impairs the endothelium-dependent dilation of arterioles. Male Wistar rats were fed with normal (control) or HFD (60% of saturated fat, for 10 wk). In rats with HFD, body weight, mean arterial blood pressure, and serum insulin, cholesterol, and glucose were elevated. In isolated gracilis muscle arterioles (diameter: approximately 160 microm) of HFD, rat dilations to ACh (at 1 microM, maximum: 83 +/- 3%) and histamine (at 10 microM, maximum: 16 +/- 4%) were significantly (P < 0.05) decreased compared with those of control responses (maximum: 90 +/- 2 and 46 +/- 4%, respectively). Dilations to the NO donor sodium nitroprusside were similar in the two groups. Inhibition of NO synthesis by N(omega)-nitro-l-arginine methyl ester reduced ACh- and histamine-induced dilations in control arterioles but had no effect on microvessels of HFD rats. The superoxide dismutase mimetic Tiron or xanthine oxidase inhibitor allopurinol enhanced ACh (maximum: 90 +/- 2 and 93 +/- 2%, respectively)- and histamine (maximum: 30 +/- 7 and 37 +/- 8%, respectively)-induced dilations in HFD arterioles, whereas the NAD(P)H oxidase inhibitor apocynin had no significant effect. Correspondingly, in carotid arteries of HFD rats, an enhanced superoxide production was shown by lucigenin-enhanced chemiluminescence, in association with an increased xanthine oxidase, but not NAD(P)H oxidase activity. In addition, a marked xanthine oxidase immunostaining was detected in the endothelial layer of the gracilis arterioles of HFD, but not in control rats. These findings suggest that, in obese rats, NO mediation of endothelium-dependent dilation of skeletal muscle arterioles is reduced because of an enhanced xanthine oxidase-derived superoxide production. These alterations demonstrate substantial dysregulation of arteriolar tone by the endothelium in HFD-induced obesity, which may contribute to

  1. Productive replication of avian influenza viruses in chicken endothelial cells is determined by hemagglutinin cleavability and is related to innate immune escape.

    Science.gov (United States)

    Lion, Adrien; Richard, Mathilde; Esnault, Evelyne; Kut, Emmanuel; Soubieux, Denis; Guillory, Vanaïque; Germond, Mélody; Blondeau, Caroline; Guabiraba, Rodrigo; Short, Kirsty R; Marc, Daniel; Quéré, Pascale; Trapp, Sascha

    2018-01-01

    Endotheliotropism is a hallmark of gallinaceous poultry infections with highly pathogenic avian influenza (HPAI) viruses and a feature that distinguishes HPAI from low pathogenic avian influenza (LPAI) viruses. Here, we used chicken aortic endothelial cells (chAEC) as a novel in vitro infection model to assess the susceptibility, permissiveness, and host response of chicken endothelial cells (EC) to infections with avian influenza (AI) viruses. Our data show that productive replication of AI viruses in chAEC is critically determined by hemagglutinin cleavability, and is thus an exclusive trait of HPAI viruses. However, we provide evidence for a link between limited (i.e. trypsin-dependent) replication of certain LPAI viruses, and the viruses' ability to dampen the antiviral innate immune response in infected chAEC. Strikingly, this cell response pattern was also detected in HPAI virus-infected chAEC, suggesting that viral innate immune escape might be a prerequisite for robust AI virus replication in chicken EC. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. A glucagon-like peptide-1 (GLP-1) analogue, liraglutide, upregulates nitric oxide production and exerts anti-inflammatory action in endothelial cells.

    Science.gov (United States)

    Hattori, Y; Jojima, T; Tomizawa, A; Satoh, H; Hattori, S; Kasai, K; Hayashi, T

    2010-10-01

    Glucagon-like peptide-1 (GLP-1), a member of the proglucagon-derived peptide family, was seen to exert favourable actions on cardiovascular function in preclinical and clinical studies. The mechanisms through which GLP-1 modulates cardiovascular function are complex and incompletely understood. We thus investigated whether the GLP-1 analogue, liraglutide, which is an acylated GLP-1, has protective effects on vascular endothelial cells. Nitrite and nitrate were measured in medium with an automated nitric oxide detector. Endothelial nitric oxide synthase (eNOS) activation was assessed by evaluating the phosphorylation status of the enzyme and evaluating eNOS activity by citrulline synthesis. Nuclear factor kappaB (NF-kappaB) activation was assessed by reporter gene assay. Liraglutide dose-dependently increased nitric oxide production in HUVECs. It also caused eNOS phosphorylation, potentiated eNOS activity and restored the cytokine-induced downregulation of eNOS (also known as NOS3) mRNA levels, which is dependent on NF-kappaB activation. We therefore examined the effect of liraglutide on TNFalpha-induced NF-kappaB activation and NF-kappaB-dependent expression of proinflammatory genes. Liraglutide dose-dependently inhibited NF-kappaB activation and TNFalpha-induced IkappaB degradation. It also reduced TNFalpha-induced MCP-1 (also known as CCL2), VCAM1, ICAM1 and E-selectin mRNA expression. Liraglutide-induced enhancement of nitric oxide production and suppression of NF-kappaB activation were attenuated by the AMP-activated protein kinase (AMPK) inhibitor compound C or AMPK (also known as PRKAA1) small interfering RNA. Indeed, liraglutide induced phosphorylation of AMPK, which occurs through a signalling pathway independent of cyclic AMP. Liraglutide exerts an anti-inflammatory effect on vascular endothelial cells by increasing nitric oxide production and suppressing NF-kappaB activation, partly at least through AMPK activation. These effects may explain some of the

  3. MicroRNA-155 Regulates ROS Production, NO Generation, Apoptosis and Multiple Functions of Human Brain Microvessel Endothelial Cells Under Physiological and Pathological Conditions.

    Science.gov (United States)

    Liu, Yajing; Pan, Qunwen; Zhao, Yuhui; He, Caixia; Bi, Kexia; Chen, Yusen; Zhao, Bin; Chen, Yanfang; Ma, Xiaotang

    2015-12-01

    The microRNA-155 (miR155) regulates various functions of cells. Dysfunction or injury of endothelial cells (ECs) plays an important role in the pathogenesis of various vascular diseases. In this study, we investigated the role and potential mechanisms of miR155 in human brain microvessel endothelial cells (HBMECs) under physiological and pathological conditions. We detected the effects of miR155 silencing on ROS production, NO generation, apoptosis and functions of HBMECs at basal and in response to oxidized low density lipoprotein (ox-LDL). Western blot and q-PCR were used for analyzing the gene expression of epidermal growth factor receptor (EGFR)/extracellular regulated protein kinases (ERK)/p38 mitogen-activated protein kinase (p38 MAPK), phosphatidylinositol-3-kinase (PI3K) and serine/threonine kinase(Akt), activated caspase-3, and intercellular adhesion molecule-1 (ICAM-1). Results showed that under both basal and challenge situations: (1) Silencing of miR155 decreased apoptosis and reactive oxygen species (ROS) production of HBMECs, whereas, promoted nitric oxide (NO) generation. (2) Silencing of miR155 increased the proliferation, migration, and tube formation ability of HBMECs, while decreased cell adhesion ability. (3) Gene expression analyses showed that EGFR/ERK/p38 MAPK and PI3K/Akt were increased and that activated caspase-3 and ICAM-1 mRNA were decreased after knockdown of miR155. In conclusion, knockdown of miR155 could modulate ROS production, NO generation, apoptosis and function of HBMECs via regulating diverse gene expression, such as caspase-3, ICAM-1 and EGFR/ERK/p38 MAPK and PI3K/Akt pathways. © 2015 Wiley Periodicals, Inc.

  4. Endothelial nitric oxide gene polymorphisms, nitric oxide production and coronary artery disease risk in a South Indian population.

    Science.gov (United States)

    Angeline, T; Isabel, W; Tsongalis, Gregory J

    2010-12-01

    Nitric oxide (NO) synthesized by vascular endothelial cells, is a vasodilator agent produced from endothelial NO synthase (eNOS). It has been reported that decreased bioavailability of NO plays an important role in the development and progression of atherosclerosis. Electrocardiographically proven 100 patients with acute myocardial infarction and 100 age and sex matched healthy individuals with normal coronary arteries were included for the study. The genotypes of a 27-bp insertion/deletion in intron 4 (eNOS 4b/4a) and G894T polymorphism in exon 7, were determined by PCR analysis based on the banding pattern on gel electrophoresis. The genotype frequencies were calculated following the Hardy-Weinberg law. Serum NO level was also estimated by the Griess method. NO levels in AMI patients were higher than those of the healthy subjects (median [interquartile range], (14.36[12.42-15.78]) μM compared with 11.28[10.32-11.89]) μM; p<0.001; Mann-Whitney rank sum test, U=285. Mutant "T" allele frequency of the eNOS-G894T polymorphism was found to be comparatively higher (0.29) in AMI patients than among the controls (0.17). The calculated Odds ratio showed that the occurrence of mutant allele "T" was 1.6 fold as frequent in cases than controls [OR=1.6 (95%CI 0.898 to 2.833)]. To conclude, in the present study, (i) NO levels were found to be increased in patients than in controls, (ii) the homozygous mutant (TT) genotype confers genetic susceptibility to coronary artery disease (iii) both the eNOS 4a/b and G894T polymorphisms were not associated with serum NO levels in a South Indian Tamil population. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Helicobacter pylori induces vascular endothelial growth factor production in gastric epithelial cells through hypoxia-inducible factor-1α-dependent pathway.

    Science.gov (United States)

    Kang, Min-Jung; Song, Eun-Jung; Kim, Bo-Yeon; Kim, Dong-Jae; Park, Jong-Hwan

    2014-12-01

    Although Helicobacter pylori have been known to induce vascular endothelial growth factor (VEGF) production in gastric epithelial cells, the precise mechanism for cellular signaling is incompletely understood. In this study, we investigated the role of bacterial virulence factor and host cellular signaling in VEGF production of H. pylori-infected gastric epithelial cells. We evaluated production of VEGF, activation of nuclear factor nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPKs) and hypoxia-inducible factor-1α (HIF-1α) stabilization in gastric epithelial cells infected with H. pylori WT or isogenic mutants deficient in type IV secretion system (T4SS). H. pylori induced VEGF production in gastric epithelial cells via both T4SS-dependent and T4SS-independent pathways, although T4SS-independent pathway seems to be the dominant signaling. The inhibitor assay implicated that activation of NF-κB and MAPKs is dispensable for H. pylori-induced VEGF production in gastric epithelial cells. H. pylori led to HIF-1α stabilization in gastric epithelial cells independently of T4SS, NF-κB, and MAPKs, which was essential for VEGF production in these cells. N-acetyl-cysteine (NAC), a reactive oxygen species (ROS) inhibitor, treatment impaired H. pylori-induced HIF-1α stabilization and VEGF production in gastric epithelial cells. We defined the important role of ROS-HIF-1α axis in VEGF production of H. pylori-infected gastric epithelial cells, and bacterial T4SS has a minor role in H. pylori-induced VEGF production of gastric epithelial cells. © 2014 John Wiley & Sons Ltd.

  6. Effects of asymmetric dimethylarginine on bovine retinal capillary endothelial cell proliferation, reactive oxygen species production, permeability, intercellular adhesion molecule-1, and occludin expression.

    Science.gov (United States)

    Chen, Yi-Hui; Xu, Xun; Sheng, Min-Jie; Zheng, Zhi; Gu, Qing

    2011-02-01

    Asymmetric dimethylarginine (ADMA), an endogenous competitive inhibitor of nitric oxide synthase, is associated with impaired endothelial dysfunction, such as chronic heart failure, hypertension, diabetes, and pulmonary hypertension. The effects of ADMA on cell proliferation, reactive oxygen species (ROS) production, cell permeability, intercellular adhesion molecule-1 (ICAM-1), and tight-junction protein occludin levels in bovine retinal capillary endothelial cells (BRCECs) were investigated. A cell proliferation assay was performed using the novel tetrazolium compound 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium and an electron coupling reagent. Intracellular ROS levels were determined using the fluorescent probe CM-H(2)DCFDA. Horseradish peroxidase was used for a permeability assay. ICAM-1 and tight-junction protein occludin were assessed by western blotting and quantitative real-time PCR. Cell proliferation was significantly inhibited by ADMA. ADMA increased intracellular ROS generation in BRCECs. The increased ROS production induced by ADMA was markedly inhibited by the angiotensin II receptor-blocker telmisartan, the angiotensin-converting enzyme inhibitor benazepril, the reduced form of nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase inhibitor diphenyliodonium (DPI), or the antioxidant and free-radical scavenger N-acetyl-L-cysteine (NAC). ADMA significantly increased horseradish peroxidase (HRP) permeability in BRCECs. Benazepril, telmisartan, DPI, and NAC downregulated cell permeability. ADMA markedly upregulated ICAM-1 expression in BRCECs, which were downregulated by telmisartan, DPI, and NAC. ADMA significantly downregulated occludin expression in BRCECs. Benazepril and telmisartan upregulated occludin expression in BRCECs exposed to ADMA. Our results provide the first reported evidence that ADMA has potent adverse effects on cell proliferation, intracellular ROS generation, cell permeability

  7. 1α,25-Dihydroxyvitamin D(3) inhibits vascular cellular adhesion molecule-1 expression and interleukin-8 production in human coronary arterial endothelial cells.

    Science.gov (United States)

    Kudo, Keiko; Hasegawa, Shunji; Suzuki, Yasuo; Hirano, Reiji; Wakiguchi, Hiroyuki; Kittaka, Setsuaki; Ichiyama, Takashi

    2012-11-01

    Kawasaki disease is an acute febrile vasculitis of childhood that is associated with elevated production of inflammatory cytokines, causing damage to the coronary arteries. The production of proinflammatory cytokines and expression of adhesion molecules in human coronary arterial endothelial cells (HCAECs) is regulated by nuclear transcription factor-κB (NF-κB) activation. We have previously reported that the active form of vitamin D, 1α,25-dihydroxyvitamin D(3) (1α,25-(OH)(2)D(3)), inhibits tumor necrosis factor-α (TNF-α)-induced NF-κB activation. In this study, we examined the anti-inflammatory effects of 1α,25-(OH)(2)D(3) on TNF-α-induced adhesion molecule expression (vascular cellular adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1)) and cytokine production (interleukin-6 (IL-6) and IL-8) in HCAECs. Pretreatment with 1α,25-(OH)(2)D(3) significantly inhibited TNF-α-induced VCAM-1 expression and IL-8 production in HCAECs. Our results suggest that adjunctive 1α,25-(OH)(2)D(3) therapy may modulate the inflammatory response during Kawasaki disease vasculitis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Retraction: Radenović L, Selaković V. Mitochondrial superoxide production and MnSOD activity following exposure to an agonist and antagonists of ionotropic receptors in rat brain, Arch Biol Sci. 2005; 57(1:1-10, DOI:10.2298/ABS0501001R

    Directory of Open Access Journals (Sweden)

    Editorial

    2015-01-01

    Full Text Available This is a notice of retraction of the article: Mitochondrial superoxide production and MnSOD activity following exposure to an agonist and antagonists of ionotropic glutamate receptors in rat brain, published in the Archives of Biological Sciences in 2005, Vol. 57, Issue 1. The Editor-in-Chief has been informed that this paper plagiarizes an earlier paper: Radenović L, Selaković V, Kartelija G, Todorović N, Nedeljković M. Differential effects of NMDA and AMPA/kainate receptor antagonists on superoxide production and MnSOD activity in rat brain following intrahippocampal injection. Brain Res Bull, 2004, 64(1:85-93. This claim is correct and almost the entire paper is a verbatim copy of the earlier one. After confirmation of this fact, the Editor-in-Chief of the Archives of Biological Sciences has decided to retract the paper immediately. We apologize to the readers of the journal that it took so many years to notice this error and to retract the paper. We request readers of the journal to directly get in touch with the editorial office and the editors of the journal for similar cases in the future, so that they can be handled promptly. Link to the retracted article 10.2298/ABS0501001R

  9. Heterosis for superoxide dismutase, peroxidase and catalase ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 89; Issue 2. Heterosis for superoxide dismutase, peroxidase and catalase enzymes in the head of single cross-hybrids of cabbage (Brassica oleracea var. capitata). B. K. Singh S. R. Sharma B. Singh. Research Note Volume 89 Issue 2 August 2010 pp 217-221 ...

  10. Polyvinylidene fluoride for proliferation and preservation of bovine corneal endothelial cells by enhancing type IV collagen production and deposition.

    Science.gov (United States)

    Wang, Tsung-Jen; Wang, I-Jong; Chen, Yi-Hsin; Lu, Jui-Nan; Young, Tai-Horng

    2012-01-01

    In this study, biomaterials with different hydrophobic properties including polyvinyl alcohol (PVA), poly(ethylene-co-vinyl alcohol) (EVAL), tissue culture polystyrene (TCPS), and polyvinylidene fluoride (PVDF) were examined in the bovine corneal endothelial cells (BCECs) culture system to elucidate their possible impact on clinical demand and scientific interest. It was found that BCECs were inhibited to attach onto the PVA surface. Conversely, relatively more hydrophobic biomaterials EVAL, TCPS, and PVDF successfully initiate BCEC adhesion. Compared to EVAL, cultured BCECs on TCPS and PVDF exhibited higher viability. Furthermore, fibroblastic transformation on EVAL and TCPS was observed at day 17, but BCECs maintained typical hexagonal shape on the PVDF surface at day 21. This phenomenon can be rescued by previously coating type IV collagen on TCPS but not on EVAL. In addition, when BCECs were cultured on PVDF, the expressions of gap junction connexin-43, differentiation marker N-cadherin, and tight junction ZO-1 were well-developed, resembling the physiological phenotypes. After examining the type IV collagen expression by Western blot analysis and protein absorption test, a possible explanation for the better proliferation and preservation of BCECs on the PVDF substrate is that PVDF is a bioactive substratum which enables BCECs to synthesize and reserve more extracellular matrix type IV collagen, paving an important way to provide a more preferential environment for BCEC cultures. Accordingly, promoting CEC growth effects after cell-biomaterial association may be applied to the tissue engineering of corneal endothelium. Copyright © 2011 Wiley Periodicals, Inc.

  11. Equine Arteritis Virus Does Not Induce Interferon Production in Equine Endothelial Cells: Identification of Nonstructural Protein 1 as a Main Interferon Antagonist

    Directory of Open Access Journals (Sweden)

    Yun Young Go

    2014-01-01

    Full Text Available The objective of this study was to investigate the effect of equine arteritis virus (EAV on type I interferon (IFN production. Equine endothelial cells (EECs were infected with the virulent Bucyrus strain (VBS of EAV and expression of IFN-β was measured at mRNA and protein levels by quantitative real-time RT-PCR and IFN bioassay using vesicular stomatitis virus expressing the green fluorescence protein (VSV-GFP, respectively. Quantitative RT-PCR results showed that IFN-β mRNA levels in EECs infected with EAV VBS were not increased compared to those in mock-infected cells. Consistent with quantitative RT-PCR, Sendai virus- (SeV- induced type I IFN production was inhibited by EAV infection. Using an IFN-β promoter-luciferase reporter assay, we subsequently demonstrated that EAV nsps 1, 2, and 11 had the capability to inhibit type I IFN activation. Of these three nsps, nsp1 exhibited the strongest inhibitory effect. Taken together, these data demonstrate that EAV has the ability to suppress the type I IFN production in EECs and nsp1 may play a critical role to subvert the equine innate immune response.

  12. [Effects of Porphyromonas gingivalis with different fimA genotypes on vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 production by human umbilical vein endothelial cells].

    Science.gov (United States)

    Cai, Shu-Yu; Lin, Yu-Xiang; Xiao, Li; He, Quan-Min; Ge, Song; Qian, Min-Zhang

    2011-06-01

    To investigate the effect of Porphyromonas gingivalis (Pg) with different fimA genotypes on vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) production by human umbilical vein endothelial cells (HUVEC). In the present study, PgATCC33277 (type I fimA genotype), WCSP 115 (type II fimA genotype), W83 (type IV fimA genotype), and Escherichia coli-lipopolysaccharide (Ec-LPS) were designed as experimental group 1, 2, 3, and positive control group, respectively, to stimulate HUVEC, and the un-stimulated HUVEC were analyzed as negative control group. The three strains of Pg were cultured anaerobically in standard condition, and then the Pg cells and Ec-LPS were co-cultured with HUVEC for 2, 6, and 24 h, respectively. The amount of ICAM-1 and VCAM-1 produced by HUVEC was detected with flow cytometry (FCM). The expression of ICAM-1 and VCAM-1 by HUVEC were assayed with confocal laser scanning microscope (CLSM). The expression of ICAM-1 on the surface of HUVEC were intensified after infected by Pg with I, II, and IV fimA genotypes (P 0.05). Expression of ICAM-1 and VCAM-1 in Pg infected HUVEC were confirmed by CLSM. Infection of HUVEC with Pg resulted in more fluorescence staining of ICAM-1 and VCAM-1 compared with that in uninfected HUVEC cultures. The virulence and pathogenicity of Pg is associated with its fimA genotypes, Pg with type II and IV fimA genes possess stronger ability to stimulate HUVEC to up-regulate the expression of cell adhesion molecules, which may lead to disorders in vascular endothelial function.

  13. Invasive Streptococcus mutans induces inflammatory cytokine production in human aortic endothelial cells via regulation of intracellular toll-like receptor 2 and nucleotide-binding oligomerization domain 2.

    Science.gov (United States)

    Nagata, E; Oho, T

    2017-04-01

    Streptococcus mutans, the primary etiologic agent of dental caries, can gain access to the bloodstream and has been associated with cardiovascular disease. However, the roles of S. mutans in inflammation in cardiovascular disease remain unclear. The aim of this study was to examine cytokine production induced by S. mutans in human aortic endothelial cells (HAECs) and to evaluate the participation of toll-like receptors (TLRs) and cytoplasmic nucleotide-binding oligomerization domain (NOD) -like receptors in HAECs. Cytokine production by HAECs was determined using enzyme-linked immunosorbent assays, and the expression of TLRs and NOD-like receptors was evaluated by real-time polymerase chain reaction, flow cytometry and immunocytochemistry. The involvement of TLR2 and NOD2 in cytokine production by invaded HAECs was examined using RNA interference. The invasion efficiencies of S. mutans strains were evaluated by means of antibiotic protection assays. Five of six strains of S. mutans of various serotypes induced interleukin-6, interleukin-8 and monocyte chemoattractant protein-1 production by HAECs. All S. mutans strains upregulated TLR2 and NOD2 mRNA levels in HAECs. Streptococcus mutans Xc upregulated the intracellular TLR2 and NOD2 protein levels in HAECs. Silencing of the TLR2 and NOD2 genes in HAECs invaded by S. mutans Xc led to a reduction in interleukin-6, interleukin-8 and monocyte chemoattractant protein-1 production. Cytokine production induced by invasive S. mutans via intracellular TLR2 and NOD2 in HAECs may be associated with inflammation in cardiovascular disease. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. A role for superoxide in gentamicin-mediated nephropathy in rats.

    Science.gov (United States)

    Cuzzocrea, Salvatore; Mazzon, Emanuela; Dugo, Laura; Serraino, Ivana; Di Paola, Rosanna; Britti, Domenico; De Sarro, Angela; Pierpaoli, Simone; Caputi, Achille; Masini, Emanuela; Salvemini, Daniela

    2002-08-16

    Gentamicin is an antibiotic effective against Gram-negative infection, whose clinical use is limited by its nephrotoxicity. Oxygen free radicals are considered to be important mediators of gentamicin-mediated nephrotoxicity, but the exact nature of the radical in question is not known with certainty. We have investigated the potential role of superoxide in gentamicin-induced renal toxicity by using M40403, a low molecular weight synthetic manganese containing superoxide dismutase mimetic, which selectively removes superoxide. Administration of gentamicin at 100 mg/kg, s.c. for 5 days to rats induced a marked renal failure, characterised by a significant decrease in creatinine clearance and increased plasma creatinine levels, fractional excretion of sodium, lithium, urine gamma glutamyl transferase (gamma GT) and daily urine volume. A significant increase in kidney myeloperoxidase activity and lipid peroxidation was also observed in gentamicin-treated rats. M40403 (10 mg/kg, i.p. for 5 days) attenuated all these parameters of damage. Immunohistochemical localisation demonstrated nitrotyrosine formation and poly(ADP-ribose) synthetase (PARS) activation in the proximal tubule of gentamicin-treated rats. Renal histology examination confirmed tubular necrosis. M40403 significantly prevented gentamicin-induced nitrotyrosine formation, poly(ADP-ribose) synthetase activation and tubular necrosis. These results confirm our hypothesis that superoxide anions play an important role in gentamicin-mediated nephropathy and support the possible clinical use of low molecular weight synthetic superoxide dismutase mimetics in those conditions that are associated with over production of superoxide.

  15. Bubble-Induced Endothelial Microparticles Promote Endothelial Dysfunction.

    Science.gov (United States)

    Yu, Xuhua; Xu, Jiajun; Huang, Guoyang; Zhang, Kun; Qing, Long; Liu, Wenwu; Xu, Weigang

    2017-01-01

    Decompression sickness is a systemic pathophysiological process caused by bubbles and endothelial microparticles (EMPs) are established markers reflecting competency of endothelial function and vascular biology. Here, we investigated the effects of bubble-induced EMPs on endothelial cells in vitro and vivo. Rat pulmonary microvascular endothelial cells (PMVECs) were isolated and stimulated by bubbles and bubble-induced EMPs were collected and incubated with normal PMVECs in vitro. Cell viability and apoptosis were detected using Cell Counting Kit-8 assay and Annexin V FITC/PI double staining, respectively. Cell permeability and pro-inflammatory cytokines were determined by electric cell substrate impedance sensing and enzyme-linked immunosorbent assay, respectively. Intracellular nitric oxide and reactive oxygen species production were analyzed microscopically. In vivo study, bubble-induced EMPs were intravenously injected to the rats and soluble thrombomodulin, intercellular adhesion molecule 1, and vascullar adhesion molecule 1 were involved in evaluating endothelial dysfunction. In our study, bubble stimulus resulted in a significant increase of EMPs release by 3 fold. Bubble-induced EMPs significantly decreased cell viability and increased cell apoptosis. Moreover, bubble-induced EMPs induced abnormal increase of cell permeability and over-expression of pro-inflammatory cytokines. Intracellular ROS production increased while NO production decreased. These negative effects caused by bubble-induced EMPs were remarkably suppressed when EMPs pretreated with surfactant FSN-100. Finally, intravenous injection of bubble-induced EMPs caused elevations of soluble thrombomodulin and pro-inflammatory cytokines in the circulation. Altogether, our results demonstrated that bubble-induced EMPs can mediate endothelial dysfunction in vitro and vivo, which can be attenuated by EMPs abatement strategy. These data expanded our horizon of the detrimental effects of bubble

  16. Bubble-Induced Endothelial Microparticles Promote Endothelial Dysfunction.

    Directory of Open Access Journals (Sweden)

    Xuhua Yu

    Full Text Available Decompression sickness is a systemic pathophysiological process caused by bubbles and endothelial microparticles (EMPs are established markers reflecting competency of endothelial function and vascular biology. Here, we investigated the effects of bubble-induced EMPs on endothelial cells in vitro and vivo. Rat pulmonary microvascular endothelial cells (PMVECs were isolated and stimulated by bubbles and bubble-induced EMPs were collected and incubated with normal PMVECs in vitro. Cell viability and apoptosis were detected using Cell Counting Kit-8 assay and Annexin V FITC/PI double staining, respectively. Cell permeability and pro-inflammatory cytokines were determined by electric cell substrate impedance sensing and enzyme-linked immunosorbent assay, respectively. Intracellular nitric oxide and reactive oxygen species production were analyzed microscopically. In vivo study, bubble-induced EMPs were intravenously injected to the rats and soluble thrombomodulin, intercellular adhesion molecule 1, and vascullar adhesion molecule 1 were involved in evaluating endothelial dysfunction. In our study, bubble stimulus resulted in a significant increase of EMPs release by 3 fold. Bubble-induced EMPs significantly decreased cell viability and increased cell apoptosis. Moreover, bubble-induced EMPs induced abnormal increase of cell permeability and over-expression of pro-inflammatory cytokines. Intracellular ROS production increased while NO production decreased. These negative effects caused by bubble-induced EMPs were remarkably suppressed when EMPs pretreated with surfactant FSN-100. Finally, intravenous injection of bubble-induced EMPs caused elevations of soluble thrombomodulin and pro-inflammatory cytokines in the circulation. Altogether, our results demonstrated that bubble-induced EMPs can mediate endothelial dysfunction in vitro and vivo, which can be attenuated by EMPs abatement strategy. These data expanded our horizon of the detrimental effects

  17. Irbesartan inhibits advanced glycation end product (AGE)-induced up-regulation of vascular cell adhesion molecule-1 (VCAM-1) mRNA levels in glomerular endothelial cells.

    Science.gov (United States)

    Matsui, Takanori; Nishino, Yuri; Maeda, Sayaka; Takeuchi, Masayoshi; Yamagishi, Sho-ichi

    2011-05-01

    Renin-angiotensin system (RAS) plays a central role in the development and progression of diabetic nephropathy. There is a growing body of evidence that advanced glycation end products (AGE) and inflammation contribute to diabetic nephropathy as well. However, the pathophysiological crosstalk between the RAS and AGE in inflammatory reactions in glomerular endothelial cells (ECs) remains unknown. In this study, we examined whether and how irbesartan, an angiotensin II type 1 receptor blocker (ARB), inhibited the AGE-induced vascular cell adhesion molecule-1 (VCAM-1) gene expression in cultured human glomerular ECs. Irbesartan or an anti-oxidant N-acetylcysteine inhibited the AGE-induced increase in reactive oxygen species (ROS) generation and subsequently blocked up-regulation of VCAM-1 mRNA levels in glomerular ECs. AGE significantly stimulated angiotensin II production by glomerular ECs. Furthermore, irbesartan completely suppressed up-regulation of VCAM-1 mRNA levels in AGE plus angiotensin II-exposed glomerular ECs. Our present data suggest that there exists a crosstalk between the RAS and AGE in inflammatory reactions in glomerular ECs. Irbesartan may play a protective role against diabetic nephropathy by blocking the deleterious effects of AGE-elicited angiotensin II and ROS. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. bFGF-Regulating MAPKs Are Involved in High Glucose-Mediated ROS Production and Delay of Vascular Endothelial Cell Migration.

    Directory of Open Access Journals (Sweden)

    Zhong Xin Zhu

    Full Text Available High blood sugar is a symptom of diabetes mellitus (DM. Vascular endothelial cells (VECs directly contact the blood and are damaged when blood sugar levels are high. However, the molecular mechanism underlying this process remains elusive. To analyze the effects of DM on migration, we simulated DM by applying high glucose (HG to the human VEC. HG delayed cell migration and induced phosphorylation of MAPKs (JNK and ERK. By contrast, in presence of bFGF, cell migration was promoted and MAPK phosphorylation levels were reduced. Furthermore, treatment with JNK and ERK inhibitors rescued HG-mediated delay of cell migration. Molecular and cell biological studies demonstrated that HG increased ROS production, whereas treatment with bFGF or JNK/ERK inhibitors blocked HG-induced ROS accumulation. Addition of MnTMPyP, a ROS scavenger, reduced HG-induced ROS production and accelerated cell migration, suggesting that the influence of HG on bFGF-MAPK signaling causes accumulation of ROS, which in turn regulate cell migration. This is the first study to elucidate the molecular mechanism of HG-mediated VEC migration; these findings could facilitate the development of novel therapies for DM.

  19. Iron and Manganese complexes for investigation of superoxide relevant processes

    OpenAIRE

    Dürr, Anna Katharina

    2010-01-01

    In the course of this work, stoichiometric superoxide reactions, as well as mechanistic details on catalytic superoxide dismutation with iron heme and iron and manganese non-heme complexes, respectively, have been elucidated. For the first time, quantitative investigations on superoxide reactions with metal centers have been achieved, particularly with regard to experiments under high pressure, at low temperatures and with variable superoxide concentrations resulting in crucial kinetic, therm...

  20. Superoxide anion radical scavenging property of catecholamines.

    Science.gov (United States)

    Kładna, Aleksandra; Berczyński, Paweł; Kruk, Irena; Michalska, Teresa; Aboul-Enein, Hassan Y

    2013-01-01

    The direct effect of the four catecholamines (adrenaline, noradrenaline, dopamine and isoproterenol) on superoxide anion radicals (O2•) was investigated. The reaction between 18-crown-6-ether and potassium superoxide in dimethylsulfoxide was used as a source of O2•. The reactivity of catecholamines with O2• was examined using chemiluminescence, reduction of nitroblue tetrazolium and electron paramagnetic resonance spin-trapping techniques. 5,5-Dimethyl-1-pyrroline-N-oxide was included as the spin trap. The results showed that the four catecholamines were effective and efficient in inhibiting chemiluminescence accompanying the potassium superoxide/18-crown-6-ether system in a dose-dependent manner over the range 0.05-2 mM in the following order: adrenaline > noradrenaline > dopamine > isoproterenol, with, IC50 = 0.15 ± 0.02 mM 0.21 ± 0.03 mM, 0.27 ± 0.03 mM and 0.50 ± 0.04 mM, respectively. The catecholamines examined also exhibited a strong scavenging effect towards O2• when evaluated this property by the inhibition of nitroblue tetrazolium reduction (56-73% at 1 M concentration). A very similar capacity of O2• scavenging was monitored in the 5,5-dimethyl-1-pyrroline-N-oxide spin-trapping assay. The results suggest that catecholamines tested may involve a direct effect on scavenging O2- radicals. Copyright © 2013 John Wiley & Sons, Ltd.

  1. NADPH oxidase (NOX) 1 mediates cigarette smoke-induced superoxide generation in rat vascular smooth muscle cells.

    Science.gov (United States)

    Chang, Kyung-Hwa; Park, Jung-Min; Lee, Chang Hoon; Kim, Bumseok; Choi, Kyung-Chul; Choi, Seong-Jin; Lee, Kyuhong; Lee, Moo-Yeol

    2017-02-01

    Smoking is a well-established risk factor for cardiovascular diseases. Oxidative stress is one of the common etiological factors, and NADPH oxidase (NOX) has been suggested as a potential mediator of oxidative stress. In this study, cigarette smoke (CS)-induced superoxide production was characterized in vascular smooth muscle cells (VSMC). CS was prepared in forms of cigarette smoke extract (CSE) and total particulate matter (TPM). Several molecular probes for reactive oxygen species were trialed, and dihydroethidium (DHE) and WST-1 were chosen for superoxide detection considering the autofluorescence, light absorbance, and peroxidase inhibitory activity of CS. Both CSE and TPM generated superoxide in a VSMC culture system by stimulating cells to produce superoxide and by directly producing superoxide in the aqueous solution. NOX, specifically NOX1 was found to be an important cellular source of superoxide through experiments with the NOX inhibitors diphenyleneiodonium (DPI) and VAS2870 as well as isoform-specific NOX knockdown. NOX inhibitors and the superoxide dismutase mimetic TEMPOL reduced the cytotoxicity of CSE, thus suggesting the contribution of NOX1-derived superoxide to cytotoxicity. Since NOX1 is known to mediate diverse pathological processes in the vascular system, NOX1 may be a critical effector of cardiovascular toxicity caused by smoking. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Endothelial cell respiration is affected by the oxygen tension during shear exposure: role of mitochondrial peroxynitrite.

    Science.gov (United States)

    Jones, Charles I; Han, Zhaosheng; Presley, Tennille; Varadharaj, Saradhadevi; Zweier, Jay L; Ilangovan, Govindasamy; Alevriadou, B Rita

    2008-07-01

    Cultured vascular endothelial cell (EC) exposure to steady laminar shear stress results in peroxynitrite (ONOO(-)) formation intramitochondrially and inactivation of the electron transport chain. We examined whether the "hyperoxic state" of 21% O(2), compared with more physiological O(2) tensions (Po(2)), increases the shear-induced nitric oxide (NO) synthesis and mitochondrial superoxide (O(2)(*-)) generation leading to ONOO(-) formation and suppression of respiration. Electron paramagnetic resonance oximetry was used to measure O(2) consumption rates of bovine aortic ECs sheared (10 dyn/cm(2), 30 min) at 5%, 10%, or 21% O(2) or left static at 5% or 21% O(2). Respiration was inhibited to a greater extent when ECs were sheared at 21% O(2) than at lower Po(2) or left static at different Po(2). Flow in the presence of an endothelial NO synthase (eNOS) inhibitor or a ONOO(-) scavenger abolished the inhibitory effect. EC transfection with an adenovirus that expresses manganese superoxide dismutase in mitochondria, and not a control virus, blocked the inhibitory effect. Intracellular and mitochondrial O(2)(*-) production was higher in ECs sheared at 21% than at 5% O(2), as determined by dihydroethidium and MitoSOX red fluorescence, respectively, and the latter was, at least in part, NO-dependent. Accumulation of NO metabolites in media of ECs sheared at 21% O(2) was modestly increased compared with ECs sheared at lower Po(2), suggesting that eNOS activity may be higher at 21% O(2). Hence, the hyperoxia of in vitro EC flow studies, via increased NO and mitochondrial O(2)(*-) production, leads to enhanced ONOO(-) formation intramitochondrially and suppression of respiration.

  3. A lithium-oxygen battery based on lithium superoxide

    Science.gov (United States)

    Lu, Jun; Jung Lee, Yun; Luo, Xiangyi; Chun Lau, Kah; Asadi, Mohammad; Wang, Hsien-Hau; Brombosz, Scott; Wen, Jianguo; Zhai, Dengyun; Chen, Zonghai; Miller, Dean J.; Sub Jeong, Yo; Park, Jin-Bum; Zak Fang, Zhigang; Kumar, Bijandra; Salehi-Khojin, Amin; Sun, Yang-Kook; Curtiss, Larry A.; Amine, Khalil

    2016-01-01

    Batteries based on sodium superoxide and on potassium superoxide have recently been reported. However, there have been no reports of a battery based on lithium superoxide (LiO2), despite much research into the lithium-oxygen (Li-O2) battery because of its potential high energy density. Several studies of Li-O2 batteries have found evidence of LiO2 being formed as one component of the discharge product along with lithium peroxide (Li2O2). In addition, theoretical calculations have indicated that some forms of LiO2 may have a long lifetime. These studies also suggest that it might be possible to form LiO2 alone for use in a battery. However, solid LiO2 has been difficult to synthesize in pure form because it is thermodynamically unstable with respect to disproportionation, giving Li2O2 (refs 19, 20). Here we show that crystalline LiO2 can be stabilized in a Li-O2 battery by using a suitable graphene-based cathode. Various characterization techniques reveal no evidence for the presence of Li2O2. A novel templating growth mechanism involving the use of iridium nanoparticles on the cathode surface may be responsible for the growth of crystalline LiO2. Our results demonstrate that the LiO2 formed in the Li-O2 battery is stable enough for the battery to be repeatedly charged and discharged with a very low charge potential (about 3.2 volts). We anticipate that this discovery will lead to methods of synthesizing and stabilizing LiO2, which could open the way to high-energy-density batteries based on LiO2 as well as to other possible uses of this compound, such as oxygen storage.

  4. A lithium-oxygen battery based on lithium superoxide.

    Science.gov (United States)

    Lu, Jun; Lee, Yun Jung; Luo, Xiangyi; Lau, Kah Chun; Asadi, Mohammad; Wang, Hsien-Hau; Brombosz, Scott; Wen, Jianguo; Zhai, Dengyun; Chen, Zonghai; Miller, Dean J; Jeong, Yo Sub; Park, Jin-Bum; Fang, Zhigang Zak; Kumar, Bijandra; Salehi-Khojin, Amin; Sun, Yang-Kook; Curtiss, Larry A; Amine, Khalil

    2016-01-21

    Batteries based on sodium superoxide and on potassium superoxide have recently been reported. However, there have been no reports of a battery based on lithium superoxide (LiO2), despite much research into the lithium-oxygen (Li-O2) battery because of its potential high energy density. Several studies of Li-O2 batteries have found evidence of LiO2 being formed as one component of the discharge product along with lithium peroxide (Li2O2). In addition, theoretical calculations have indicated that some forms of LiO2 may have a long lifetime. These studies also suggest that it might be possible to form LiO2 alone for use in a battery. However, solid LiO2 has been difficult to synthesize in pure form because it is thermodynamically unstable with respect to disproportionation, giving Li2O2 (refs 19, 20). Here we show that crystalline LiO2 can be stabilized in a Li-O2 battery by using a suitable graphene-based cathode. Various characterization techniques reveal no evidence for the presence of Li2O2. A novel templating growth mechanism involving the use of iridium nanoparticles on the cathode surface may be responsible for the growth of crystalline LiO2. Our results demonstrate that the LiO2 formed in the Li-O2 battery is stable enough for the battery to be repeatedly charged and discharged with a very low charge potential (about 3.2 volts). We anticipate that this discovery will lead to methods of synthesizing and stabilizing LiO2, which could open the way to high-energy-density batteries based on LiO2 as well as to other possible uses of this compound, such as oxygen storage.

  5. Activation of endothelial toll-like receptor 3 impairs endothelial function.

    Science.gov (United States)

    Zimmer, Sebastian; Steinmetz, Martin; Asdonk, Tobias; Motz, Inga; Coch, Christoph; Hartmann, Evelyn; Barchet, Winfried; Wassmann, Sven; Hartmann, Gunther; Nickenig, Georg

    2011-05-27

    Endothelial dysfunction and atherosclerosis are chronic inflammatory diseases characterized by activation of the innate and acquired immune system. Specialized protein receptors of the innate immune system recognize products of microorganisms and endogenous ligands such as nucleic acids. Toll-like receptor 3 (TLR3), for example, detects long double-stranded RNA and is abundantly expressed in endothelial cells. Whether innate immunity contributes to atherogenic mechanisms in endothelial cells is poorly understood. We sought to determine the effects of TLR3 activation in endothelial cells. We first investigated whether stimulation of TLR3 influences endothelial biology in mice. Intravenous injection of polyinosine polycytidylic acid, a synthetic double-stranded RNA analog and TLR3 ligand, impaired endothelium-dependent vasodilation, increased vascular production of reactive oxygen species, and reduced reendothelialization after carotid artery injury in wild-type mice compared with controls but had no effect in TLR3(-/-) animals. TLR3 stimulation not only induced endothelial dysfunction but also enhanced the formation of atherosclerotic plaques in apolipoprotein E-deficient mice. In vitro incubation of endothelial cells with polyinosine polycytidylic acid induced production of the proinflammatory cytokines interleukin-8 and interferon-γ-induced protein 10, increased formation of reactive oxygen species, diminished proliferation, and increased apoptosis, which suggests that endothelial cells are able to directly detect and respond to TLR3 ligands. Neutralization of interleukin-8 and interferon-γ-induced protein 10 antagonizes the observed negative effects of polyinosine polycytidylic acid. We found elevated levels of circulating endothelial progenitor cells in polyinosine polycytidylic acid-treated mice, although they displayed increased endothelial dysfunction. Stimulation of TLR3 in cultured endothelial progenitor cells, however, led to increased formation of

  6. Indirect detection of superoxide in RAW 264.7 macrophage cells using microchip electrophoresis coupled to laser-induced fluorescence.

    Science.gov (United States)

    de Campos, Richard P S; Siegel, Joseph M; Fresta, Claudia G; Caruso, Giuseppe; da Silva, José A F; Lunte, Susan M

    2015-09-01

    Superoxide, a naturally produced reactive oxygen species (ROS) in the human body, is involved in many pathological and physiological signaling processes. However, if superoxide formation is left unregulated, overproduction can lead to oxidative damage to important biomolecules, such as DNA, lipids, and proteins. Superoxide can also lead to the formation of peroxynitrite, an extremely hazardous substance, through its reaction with endogenously produced nitric oxide. Despite its importance, quantitative information regarding superoxide production is difficult to obtain due to its high reactivity and low concentrations in vivo. MitoHE, a fluorescent probe that specifically reacts with superoxide, was used in conjunction with microchip electrophoresis (ME) and laser-induced fluorescence (LIF) detection to investigate changes in superoxide production by RAW 264.7 macrophage cells following stimulation with phorbol 12-myristate 13-acetate (PMA). Stimulation was performed in the presence and absence of the superoxide dismutase (SOD) inhibitors, diethyldithiocarbamate (DDC) and 2-metoxyestradiol (2-ME). The addition of these inhibitors resulted in an increase in the amount of superoxide specific product (2-OH-MitoE(+)) from 0.08 ± 0.01 fmol (0.17 ± 0.03 mM) in native cells to 1.26 ± 0.06 fmol (2.5 ± 0.1 mM) after PMA treatment. This corresponds to an approximately 15-fold increase in intracellular concentration per cell. Furthermore, the addition of 3-morpholino-sydnonimine (SIN-1) to the cells during incubation resulted in the production of 0.061 ± 0.006 fmol (0.12 ± 0.01 mM) of 2-OH-MitoE(+) per cell on average. These results demonstrate that indirect superoxide detection coupled with the use of SOD inhibitors and a separation method is a viable method to discriminate the 2-OH-MitoE(+) signal from possible interferences.

  7. Red wine polyphenols prevent endothelial dysfunction induced by endothelin-1 in rat aorta: role of NADPH oxidase.

    Science.gov (United States)

    López-Sepúlveda, Rocío; Gómez-Guzmán, Manuel; Zarzuelo, Maria José; Romero, Miguel; Sánchez, Manuel; Quintela, Ana María; Galindo, Pilar; O'Valle, Francisco; Tamargo, Juan; Pérez-Vizcaíno, Francisco; Duarte, Juan; Jiménez, Rosario

    2011-04-01

    RWPs (red wine polyphenols) exert antihypertensive effects and improve endothelial function by reducing the plasma levels of ET-1 (endothelin-1) and the subsequent vascular production of O(2)(•-) (superoxide anion). Our present study was designed to evaluate whether RWPs act directly in the vascular wall improving endothelial dysfunction and O(2)(•-) production induced by ET-1 and to analyse the compounds responsible for these protective effects. We incubated rat isolated aortic rings in the presence or absence of ET-1 (10 nM) and RWPs (10(-4) to 10(-2) g/l) or catechin (0.2 μM), epicatechin (10 μM) and resveratrol (0.1 μM). ET-1 reduced the relaxant responses to acetylcholine, increased intracellular O(2)(•-) production, NADPH oxidase activity and protein expression of NADPH oxidase subunit p47phox. All these changes were prevented by RWPs. The preventive effects of RWPs were unaffected by co-incubation with either ICI-182780, an ER (oestrogen receptor) antagonist, or GW9662, a PPARγ (peroxisome-proliferator-activated receptor γ) antagonist. RWPs inhibited the phosphorylation of the mitogen-activated protein kinase, ERK1/2 (extracellular signal-regulated kinase 1/2), a key regulator of p47phox expression in response to ET-1. When the isolated polyphenols were tested, at the concentrations found in 10(-2) g/l RWPs, only epicatechin prevented endothelial dysfunction and all biochemical changes induced by ET-1 in the vascular wall. Taken together, these results indicate that RWPs prevent ET-1-induced vascular O(2)(•-) production by reducing overexpression of p47phox and the subsequent increased NADPH oxidase activity, leading to improvement in endothelial function. The effects of RWPs appear to be independent of ER and PPARγ activation and are related to ERK1/2 inhibition.

  8. [Involvement of carbonate/bicarbonate ions in the superoxide-generating reaction of adrenaline autoxidation].

    Science.gov (United States)

    Sirota, T V

    2015-01-01

    An important role of carbonate/bicarbonate ions has been recognized in the superoxide generating reaction of adrenaline autooxidation in an alkaline buffer (a model of quinoid adrenaline oxidation in the body). It is suggested that these ions are directly involved not only in formation of superoxide anion radical (О(2)(-)) but also other radicals derived from the carbonate/bicarbonate buffer. Using various buffers it was shown that the rate of accumulation of adrenochrome, the end product of adrenaline oxidation, and the rate of О(2)(-)· formation depend on concentration of carbonate/bicarbonate ions in the buffer and that these ions significantly accelerate adrenaline autooxidation thus demonstrating prooxidant properties. The detectable amount of diformazan, the product of nitro blue tetrazolium (NBT) reduction, was significantly higher than the amount of adrenochrome formed; taking into consideration the literature data on О(2)(-)· detection by NBT it is suggested that adrenaline autooxidation is accompanied by one-electron reduction not only of oxygen dissolved in the buffer and responsible for superoxide formation but possible carbon dioxide also dissolved in the buffer as well as carbonate/bicarbonate buffer components leading to formation of corresponding radicals. The plots of the dependence of the inhibition of adrenochrome and diformazan formation on the superoxide dismutase concentration have shown that not only superoxide radicals are formed during adrenaline autooxidation. Since carbonate/bicarbonate ions are known to be universally present in the living nature, their involvement in free radical processes proceeding in the organism is discussed.

  9. Induction of reactive oxygen intermediates-dependent programmed cell death in human malignant ex vivo glioma cells and inhibition of the vascular endothelial growth factor production by taurolidine.

    Science.gov (United States)

    Rodak, Roksana; Kubota, Hisashi; Ishihara, Hideyuki; Eugster, Hans-Pietro; Könü, Dilek; Möhler, Hanns; Yonekawa, Yasuhiro; Frei, Karl

    2005-06-01

    Taurolidine, a derivative of the amino acid taurin, was recently found to display a potent antineoplastic effect both in vitro and in vivo. The authors therefore initiated studies to assess the potential antineoplastic activity of taurolidine in human glioma cell lines and in ex vivo malignant cell cultures. They also studied the mechanisms that induce cell death and the impact of taurolidine on tumor-derived vascular endothelial growth factor (VEGF) production. Cytotoxicity and clonogenic assays were performed using crystal violet staining. In the cytotoxicity assay 100% of glioma cell lines (eight of eight) and 74% of ex vivo glioma cultures (14 of 19) demonstrated sensitivity to taurolidine, with a mean median effective concentration (EC50) of 51 +/- 28 microg/ml and 56 +/- 23 microg/ml, respectively. Colony formation was inhibited by taurolidine, with a mean EC50 of 7 +/- 3 microg/ml for the cell lines and a mean EC50 of 3.5 +/- 1.7 microg/ml for the ex vivo glioma cultures. On observing this high activity of taurolidine in both assays, the authors decided to evaluate its cell death mechanisms. Fragmentation of DNA, externalization of phosphatidylserine, activation of poly(adenosine diphosphate-ribose) polymerase, loss of the mitochondrial membrane potential followed by a release of apoptosis-inducing factor, and typical apoptotic features were found after taurolidine treatment. Cell death was preceded by the generation of reactive O2 intermediates, which was abrogated by N-acetylcysteine but not by benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. Moreover, taurolidine also induced suppression of VEGF production on the protein and messenger RNA level, as shown by an enzyme-linked immunosorbent assay and by reverse transcription-polymerase chain reaction. Given all these findings, taurolidine may be a promising new agent in the treatment of malignant gliomas; it displays a combination of antineoplastic and antiangiogenic activities, inducing tumor cell

  10. Retraction: Radenović L. Effect of 7-nitroindazole on superoxide production and MnSOD activity in the rat brain following kainate-induced neurotoxicity. Arch biol sci, 2008, 60(1:25-32. DOI: 10.2298/ABS0801025R

    Directory of Open Access Journals (Sweden)

    Editorial

    2015-01-01

    Full Text Available This is a notice of retraction of the article: Effect of 7-nitroindazole on superoxide production and MnSOD activity in the rat brain following kainate-induced neurotoxicity, published in the Archives of Biological Sciences in 2008, Vol. 60, Issue 1. The Editor-in-Chief has been informed that this paper plagiarizes an earlier paper: Radenovic L, Selakovic V, Kartelija G, Todorovic N, Nedeljkovic M. Differential effects of NMDA and AMPA/kainate receptor antagonists on superoxide production and MnSOD activity in rat brain following intrahippocampal injection. Brain Res Bull, 2004, 64(1:85-93. The results in the article being retracted were presented as findings obtained from novel research. Inspection of the results has revealed that they were part of research already presented in the original article without appropriate justification or cross-referencing. The Editor-in-Chief considered publishing a notice of redundancy specifying the elements published previously. However, since the original article had already been autoplagiarized by the same corresponding author in the same journal (retraction DOI:10.2298/ABS150318026E, the article is being retracted in accordance with the publishing ethics of the Archives of Biological Sciences in order to preserve the integrity of scientific research. We apologize to the journal's readers that it took so long to notice this error and instigate retraction of the paper. We request our readers to contact the editorial office and editors of the journal directly should similar cases occur in the future, so that the necessary action can be taken more promptly. Link to the retracted article 10.2298/ABS0801025R

  11. Hepatocyte growth factor increases vascular endothelial growth factor-A production in human synovial fibroblasts through c-Met receptor pathway.

    Directory of Open Access Journals (Sweden)

    Yu-Min Lin

    Full Text Available BACKGROUND: Angiogenesis is essential for the progression of osteoarthritis (OA. Hepatocyte growth factor (HGF is an angiogenic mediator, and it shows elevated levels in regions of OA. However, the relationship between HGF and vascular endothelial growth factor (VEGF-A in OA synovial fibroblasts (OASFs is mostly unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we found that stimulation of OASFs with HGF induced concentration- and time-dependent increases in VEGF-A expression. Pretreatment with PI3K inhibitor (Ly294002, Akt inhibitor, or mTORC1 inhibitor (rapamycin blocked the HGF-induced VEGF-A production. Treatment of cells with HGF also increased PI3K, Akt, and mTORC1 phosphorylation. Furthermore, HGF increased the stability and activity of HIF-1 protein. Moreover, the use of pharmacological inhibitors or genetic inhibition revealed that c-Met, PI3K, Akt, and mTORC1 signaling pathways were potentially required for HGF-induced HIF-1α activation. CONCLUSIONS/SIGNIFICANCE: Taken together, our results provide evidence that HGF enhances VEGF-A expression in OASFs by an HIF-1α-dependent mechanism involving the activation of c-Met/PI3K/Akt and mTORC1 pathways.

  12. Endothelial Nitric Oxide Synthase-Derived Nitric Oxide Prevents Dihydrofolate Reductase Degradation via Promoting S-Nitrosylation.

    Science.gov (United States)

    Cai, Zhejun; Lu, Qiulun; Ding, Ye; Wang, Qilong; Xiao, Lei; Song, Ping; Zou, Ming-Hui

    2015-11-01

    Dihydrofolate reductase (DHFR) is a key protein involved in tetrahydrobiopterin (BH4) regeneration from 7,8-dihydrobiopterin (BH2). Dysfunctional DHFR may induce endothelial nitric oxide (NO) synthase (eNOS) uncoupling resulting in enzyme production of superoxide anions instead of NO. The mechanism by which DHFR is regulated is unknown. Here, we investigate whether eNOS-derived NO maintains DHFR stability. DHFR activity, BH4 content, eNOS activity, and S-nitrosylation were assessed in human umbilical vein endothelial cells and in aortas isolated from wild-type and eNOS knockout mice. In human umbilical vein endothelial cells, depletion of intracellular NO by transfection with eNOS-specific siRNA or by the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO)-both of which had no effect on DHFR mRNA levels-markedly reduced DHFR protein levels in parallel with increased DHFR polyubiquitination. Supplementation of S-nitroso-l-glutathione (GSNO), a NO donor, or MG132, a potent inhibitor of the 26S proteasome, prevented eNOS silencing and PTIO-induced DHFR reduction in human umbilical vein endothelial cells. PTIO suppressed S-nitrosylation of DHFR, whereas GSNO promoted DHFR S-nitrosylation. Mutational analysis confirmed that cysteine 7 of DHFR was S-nitrosylated. Cysteine 7 S-nitrosylation stabilized DHFR from ubiquitination and degradation. Experiments performed in aortas confirmed that PTIO or eNOS deficiency reduces endothelial DHFR, which can be abolished by MG132 supplementation. We conclude that S-nitrosylation of DHFR at cysteine 7 by eNOS-derived NO is crucial for DHFR stability. We also conclude that NO-induced stabilization of DHFR prevents eNOS uncoupling via regeneration of BH4, an essential eNOS cofactor. © 2015 American Heart Association, Inc.

  13. Equol-Stimulated Mitochondrial Reactive Oxygen Species Activate Endothelial Nitric Oxide Synthase and Redox Signaling in Endothelial Cells

    Science.gov (United States)

    Rowlands, David J.; Chapple, Sarah; Siow, Richard C.M.; Mann, Giovanni E.

    2011-01-01

    We reported previously that dietary isoflavones modulate arterial blood pressure in vivo and that the daidzein metabolite equol rapidly activates endothelial NO synthase (eNOS) via Akt and extracellular signal–regulated kinase 1/2– dependent signaling. In this study, we report the first evidence in human endothelial cells that acute stimulation of mitochondrial superoxide generation by equol (100 nmol/L) is required for eNOS activation. Scavengers of superoxide (superoxide dismutase and manganese [III] tetrakis[1-methyl-4-pyridyl]porphyrin) abrogated equol stimulated Akt and eNOS phosphorylation, and the mitochondrial complex I inhibitor rotenone inhibited Akt, extracellular signal–regulated kinase 1/2, and eNOS phosphorylation, as well as NO-mediated increases in intracellular cGMP. Equol also induced rapid alterations in F-actin fiber distribution, with depolymerization of F-actin with cytochalasin D abrogating equol-stimulated mitochondrial superoxide generation. Treatment of cells with pertussis toxin or inhibition of GPR30/epidermal growth factor receptor kinase transactivation prevented equol-induced activation of extracellular signal–regulated kinase 1/2 via c-Src, Akt, and eNOS. Moreover, inhibition of epidermal growth factor receptor kinase activation with AG-1478 abrogated equol-stimulated mitochondrial reactive oxygen species generation and subsequent kinase and eNOS activation. Our findings suggest that equol-stimulated mitochondrial reactive oxygen species modulate endothelial redox signaling and NO release involving transactivation of epidermal growth factor receptor kinase and reorganization of the F-actin cytoskeleton. Identification of these novel actions of equol may provide valuable insights for therapeutic strategies to restore endothelial function in cardiovascular disease. PMID:21300668

  14. A lithium-oxygen battery based on lithium superoxide.

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jun; Lee, Yun Jung; Luo, Xiangyi; Lau, Kah Chun; Wen, Jianguo; Wang, Hsien-Hau; Zhai, Dengyun; Miller, Dean; Jeong, Yo-Sub; Park, Jin-Bum; Curtiss, Larry A.; Amine, Khalil

    2016-01-11

    Although the superoxide of lithium (LiO2) is believed to be a key intermediate in Li-O2 batteries leading to the formation of lithium peroxide, LiO2 has never been observed in its pure state. In this work, we provide evidence that use of a cathode based on a reduced graphene oxide with Ir nanoparticles in a Li-O2 battery results in a LiO2 discharge product formed by single electron transfer without further electron transfer or disproportionation to form Li2O2. High energy X-ray diffraction (HE-XRD) patterns indicates the presence of crystalline LiO2 with no evidence of Li2O2 or Li2O. The HEXRD studies as a function of time also show that LiO2 can be stable in its crystalline form after one week of aging in the presence of electrolyte. The results provide evidence that LiO2 is stable enough that it can be repeatedly charged and discharged with a very low charge potential (~3.2 V) and may open the avenue for a lithium superoxide-based battery.

  15. Nicorandil prevents endothelial dysfunction due to antioxidative effects via normalisation of NADPH oxidase and nitric oxide synthase in streptozotocin diabetic rats

    Directory of Open Access Journals (Sweden)

    Serizawa Ken-ichi

    2011-11-01

    Full Text Available Abstract Background Nicorandil, an anti-angina agent, reportedly improves outcomes even in angina patients with diabetes. However, the precise mechanism underlying the beneficial effect of nicorandil on diabetic patients has not been examined. We investigated the protective effect of nicorandil on endothelial function in diabetic rats because endothelial dysfunction is a major risk factor for cardiovascular disease in diabetes. Methods Male Sprague-Dawley rats (6 weeks old were intraperitoneally injected with streptozotocin (STZ, 40 mg/kg, once a day for 3 days to induce diabetes. Nicorandil (15 mg/kg/day and tempol (20 mg/kg/day, superoxide dismutase mimetic were administered in drinking water for one week, starting 3 weeks after STZ injection. Endothelial function was evaluated by measuring flow-mediated dilation (FMD in the femoral arteries of anaesthetised rats. Cultured human coronary artery endothelial cells (HCAECs were treated with high glucose (35.6 mM, 24 h and reactive oxygen species (ROS production with or without L-NAME (300 μM, apocynin (100 μM or nicorandil (100 μM was measured using fluorescent probes. Results Endothelial function as evaluated by FMD was significantly reduced in diabetic as compared with normal rats (diabetes, 9.7 ± 1.4%; normal, 19.5 ± 1.7%; n = 6-7. There was a 2.4-fold increase in p47phox expression, a subunit of NADPH oxidase, and a 1.8-fold increase in total eNOS expression in diabetic rat femoral arteries. Nicorandil and tempol significantly improved FMD in diabetic rats (nicorandil, 17.7 ± 2.6%; tempol, 13.3 ± 1.4%; n = 6. Nicorandil significantly inhibited the increased expressions of p47phox and total eNOS in diabetic rat femoral arteries. Furthermore, nicorandil significantly inhibited the decreased expression of GTP cyclohydrolase I and the decreased dimer/monomer ratio of eNOS. ROS production in HCAECs was increased by high-glucose treatment, which was prevented by L-NAME and nicorandil

  16. Inhibition of neutrophil-mediated production of reactive oxygen species (ROS) by endothelial cells is not impaired in anti-neutrophil cytoplasmic autoantibodies (ANCA)-associated vasculitis patients

    NARCIS (Netherlands)

    Al Laham, F.; Kaelsch, A. -I.; Heinrich, L.; Birck, R.; Kallenberg, C. G. M.; Heeringa, P.; Yard, B.

    P>Leucocyte transendothelial migration is strictly regulated to prevent undesired inflammation and collateral damage of endothelial cells by activated neutrophils/monocytes. We hypothesized that in anti-neutrophil cytoplasmic autoantibodies (ANCA)-associated vasculitis (AAV) patients' dysregulation

  17. Myocardial capillary permeability after regional ischemia and reperfusion in the in vivo canine heart. Effect of superoxide dismutase

    DEFF Research Database (Denmark)

    Svendsen, Jesper Hastrup; Bjerrum, P J; Haunsø, S

    1991-01-01

    This study assesses the effect of the superoxide anion scavenger superoxide dismutase on myocardial capillary permeability-surface area (PS) products for small hydrophilic molecules after ischemia and reperfusion. Open-chest dogs underwent a 20-minute occlusion of the left anterior descending...... the start of reperfusion. In 13 dogs, no scavenger treatment was given (nonprotected control group), whereas eight dogs were treated systemically with 15,000 units/kg superoxide dismutase during 1 hour, starting 20 minutes before ischemia. In the control group, three dogs developed reperfusion ventricular...

  18. Spontaneous Binding of Molecular Oxygen at the Qo-Site of the bc1 Complex Could Stimulate Superoxide Formation

    DEFF Research Database (Denmark)

    Husen, Peter; Solov'yov, Ilia A

    2016-01-01

    to drive ATP synthesis. This molecular machinery, however, is suspected to be a source of superoxide, which is toxic to the cell, even in minuscular quantities, and believed to be a factor in aging. Through molecular dynamics simulations, we investigate here the migration of molecular oxygen in the bc1...... complex in order to identify possible reaction sites that could lead to superoxide formation. It is found, in particular, that oxygen penetrates spontaneously the Qo binding site of the bc1 complex in the presence of an intermediate semiquinone radical, thus making the Qo-site a strong candidate for being...... a center of superoxide production....

  19. Increased susceptibility to amyloid-β toxicity in rat brain microvascular endothelial cells under hyperglycemic conditions.

    Science.gov (United States)

    Carvalho, Cristina; Katz, Paige S; Dutta, Somhrita; Katakam, Prasad V G; Moreira, Paula I; Busija, David W

    2014-01-01

    We hypothesized that hyperglycemia-induced mitochondrial dysfunction and oxidative stress are closely associated with amyloid-β peptide (Aβ) toxicity in endothelial cells. Brain microvascular endothelial cells from rat (RBMEC) and mice (MBMEC) were isolated from adult Sprague-Dawley rats and homozygous db/db (Leprdb/Leprdb) and heterozygous (Dock7m/Leprdb) mice, and cultured under normo- and hyperglycemic conditions for 7 d followed by 24 h exposure to Aβ1-40. Some experiments were also performed with two mitochondrial superoxide (O2•-) scavengers, MitoTempo and Peg-SOD. Cell viability was measured by the Alamar blue assay and mitochondrial membrane potential (ΔΨm) by confocal microscopy. Mitochondrial O2•- and hydrogen peroxide (H2O2) production was assessed by fluorescence microscopy and H2O2 production was confirmed by microplate reader. Hyperglycemia or Aβ1-40 alone did not affect cell viability in RBMEC. However, the simultaneous presence of high glucose and Aβ1-40 reduced cell viability and ΔΨm, and enhanced mitochondrial O2•- and H2O2 production. MitoTempo and PEG-SOD prevented Aβ1-40 toxicity. Interestingly, MBMEC presented a similar pattern of alterations with db/db cultures presenting higher susceptibility to Aβ1-40. Overall, our results show that high glucose levels increase the susceptibility of brain microvascular endothelial cells to Aβ toxicity supporting the idea that hyperglycemia is a major risk factor for vascular injury associated with AD.

  20. Superoxide: a two-edged sword

    Directory of Open Access Journals (Sweden)

    Babior B.M.

    1997-01-01

    Full Text Available Superoxide (O2- is the compound obtained when oxygen is reduced by one electron. For a molecule with an unpaired electron, O2- is surprisingly inert, its chief reaction being a dismutation in which it reacts with itself to form H2O2 and oxygen. The involvement of O2- in biological systems was first revealed by the discovery in 1969 of superoxide dismutase, an enzyme that catalyzes the dismutation of O2-. Since then it has been found that biological systems produce a bewildering variety of reactive oxidants, all but a few arising ultimately from O2-. These oxidants include O2- itself, H2O2 and alkyl peroxides, hydroxyl radical and other reactive oxidizing radicals, oxidized halogens and halamines, singlet oxygen, and peroxynitrite. These various oxidants are able to damage molecules in their environment, and are therefore very dangerous. They are thought to participate in the pathogenesis of a number of common diseases, including among others malignancy, by their ability to mutate the genome, and atherosclerosis, by their capacity for oxidizing lipoproteins. Their properties are put to good use, however, in host defense, where they serve as microbicidal and parasiticidal agents, and in biological signalling, where their liberation in small quantities results in redox-mediated changes in the functions of enzymes and other proteins

  1. Neuroprotection against superoxide anion radical by metallocorroles in cellular and murine models of optic neuropathy

    Science.gov (United States)

    Kanamori, Akiyasu; Catrinescu, Maria-Magdalena; Mahammed, Atif; Gross, Zeev; Levin, Leonard A.

    2010-01-01

    Corroles are tetrapyrrolic macrocycles that have come under increased attention because of their unique capabilities for oxidation catalysis, reduction catalysis, and biomedical applications. Corrole-metal complexes (metallocorroles) can decompose certain reactive oxygen species (ROS), similar to metalloporphyrins. We investigated whether Fe-, Mn- and Ga-corroles have neuroprotective effects on neurons and correlated this with superoxide scavenging activity in vitro and in vivo. Apoptosis was induced in RGC-5 neuronal precursor cells by serum deprivation. Cell death was measured with XTT and calcein-AM/propidium iodide assays. Fe- and Mn-corroles, but not the non redox-active Ga-corrole used as control, reduced RGC-5 cell death after serum deprivation. Serum deprivation caused increased levels of intracellular superoxide, detected by an increase in the fluorescence intensity of 2-hydroxyethidium, and this was blocked by Fe- and Mn-corroles, but not Ga-corrole. In vivo real-time confocal imaging of retinas after optic nerve transection assessed the superoxide production within individual rat retinal ganglion cells. Fe- and Mn-corroles but not Ga-corrole scavenged neuronal superoxide in vivo. Given that the neuroprotective activity of metallocorroles correlated with superoxide scavenging activity, Fe- and Mn-corroles could be candidate drugs for delaying neuronal death after axonal injury in optic neuropathies such as glaucoma. PMID:20456018

  2. Superoxide reduction by a superoxide reductase lacking the highly conserved lysine residue.

    Science.gov (United States)

    Pinto, Ana F; Romão, Célia V; Pinto, Liliana C; Huber, Harald; Saraiva, Lígia M; Todorovic, Smilja; Cabelli, Diane; Teixeira, Miguel

    2015-01-01

    Superoxide reductases (SORs) are the most recently identified superoxide detoxification systems, being found in microorganisms from the three domains of life. These enzymes are characterized by a catalytic mononuclear iron site, with one cysteine and four histidine ligands of the ferrous active form. A lysine residue in the -EKHVP- motif, located close to the active site, has been considered to be essential for the enzyme function, by contributing to the positive surface patch that attracts the superoxide anion and by controlling the chemistry of the catalytic mechanism through a hydrogen bond network. However, we show here that this residue is substituted by non-equivalent amino acids in several putative SORs from Archaea and unicellular Eukarya. In this work, we focus on mechanistic and spectroscopic studies of one of these less common enzymes, the SOR from the hyperthermophilic Crenarchaeon Ignicoccus hospitalis. We employ pulse radiolysis fast kinetics and spectroscopic approaches to study the wild-type enzyme (-E23T24HVP-), and two mutants, T24K and E23A, the later mimicking enzymes lacking both the lysine and glutamate (a ferric ion ligand) of the motif. The efficiency of the wild-type protein and mutants in reducing superoxide is comparable to other SORs, revealing the robustness of these enzymes to single mutations.

  3. Glucocorticoids improve endothelial function in rheumatoid arthritis: a study in rats with adjuvant-induced arthritis.

    Science.gov (United States)

    Verhoeven, F; Totoson, P; Maguin-Gaté, K; Prigent-Tessier, A; Marie, C; Wendling, D; Moretto, J; Prati, C; Demougeot, C

    2017-05-01

    To determine the effect of glucocorticoids (GCs) on endothelial dysfunction (ED) and on traditional cardiovascular (CV) risk factors in the adjuvant-induced arthritis (AIA) rat model. At the first signs of AIA, a high dose (HD) [10 mg/kg/day, intraperitoneally (i.p.), GC-HD] or low dose (LD) (1 mg/kg/day, i.p., GC-LD) of prednisolone was administered for 3 weeks. Endothelial function was studied in aortic rings relaxed with acetylcholine (Ach) with or without inhibitors of nitric oxide synthase (NOS), cyclooxygenase 2 (COX-2), arginase, endothelium derived hyperpolarizing factor (EDHF) and superoxide anions ( O2-°) production. Aortic expression of endothelial NOS (eNOS), Ser1177-phospho-eNOS, COX-2, arginase-2, p22(phox) and p47(phox) was evaluated by Western blotting analysis. Arthritis scores, blood pressure, heart rate and blood levels of cytokines, triglycerides, cholesterol and glucose were measured. GC-HD but not GC-LD reduced arthritis score significantly and improved Ach-induced relaxation (P < 0·05). The positive effect of GC-HD resulted from increased NOS activity and EDHF production and decreased COX-2/arginase activities and O2-° production. These functional effects relied upon increased phospho-eNOS expression and decreased COX-2, arginase-2 and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase expression. Despite the lack of effect of GC-LD on ED, it increased NOS and EDHF and down-regulated O2-° pathways but did not change arginase and COX-2 pathways. GC-HD increased triglycerides levels and blood pressure significantly (P < 0·05). Both doses of GCs decreased to the same extent as plasma interleukin (IL)-1β and tumour necrosis factor (TNF)-α levels (P < 0·05). Our data demonstrated that subchronic treatment with prednisolone improved endothelial function in AIA via pleiotropic effects on endothelial pathways. These effects occurred independently of the deleterious cardiometabolic effects and the impact of prednisolone on

  4. Nucleophilic reactivity of a copper(II)-superoxide complex.

    Science.gov (United States)

    Pirovano, Paolo; Magherusan, Adriana M; McGlynn, Ciara; Ure, Andrew; Lynes, Amy; McDonald, Aidan R

    2014-06-02

    Metal-bound superoxide intermediates are often implicated as electrophilic oxidants in dioxygen-activating metalloenzymes. In the nonheme iron α-ketoglutarate dependent oxygenases and pterin-dependent hydroxylases, however, Fe(III)-superoxide intermediates are postulated to react by nucleophilic attack on electrophilic carbon atoms. By reacting a Cu(II)-superoxide complex (1) with acyl chloride substrates, we have found that a metal-superoxide complex can be a very reactive nucleophile. Furthermore, 1 was found to be an efficient nucleophilic deformylating reagent, capable of Baeyer-Villiger oxidation of a number of aldehyde substrates. The observed nucleophilic chemistry represents a new domain for metal-superoxide reactivity. Our observations provide support for the postulated role of metal-superoxide intermediates in nonheme iron α-ketoglutarate dependent and pterin-dependent enzymes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Postprandial effects of a high salt meal on serum sodium, arterial stiffness, markers of nitric oxide production and markers of endothelial function.

    Science.gov (United States)

    Dickinson, Kacie M; Clifton, Peter M; Burrell, Louise M; Barrett, P Hugh R; Keogh, Jennifer B

    2014-01-01

    The aim of the study was to determine if a high salt meal containing 65 mmol Na causes a rise in sodium concentrations and a reduction in plasma nitrate/nitrite concentrations (an index of nitric oxide production). Secondary aims were to determine the effects of a high salt meal on augmentation index (AIx) a measure of arterial stiffness and markers of endothelial function. In a randomised cross-over study 16 healthy normotensive adults consumed a low sodium soup containing 5 mmol Na and a high sodium soup containing 65 mmol Na. Sodium, plasma nitrate/nitrite, endothelin-1 (ET-1), C-reactive protein (CRP), vasopressin (AVP) and atrial natriuretic peptide (ANP) concentrations before and every 30 min after the soup for 2 h. Blood pressure (BP) and AI were also measured at these time points. There were significant increases in serum sodium, osmolality and chloride in response to the high sodium meal. However plasma nitrate/nitrite concentrations were not different between meals (meal p = 0.812; time p = 0.45; meal × time interaction p = 0.50). Plasma ANP, AVP and ET-1 were not different between meals. AI was significantly increased following the high sodium meal (p = 0.02) but there was no effect on BP. A meal containing 65 mmol Na increases serum sodium and arterial stiffness but does not alter postprandial nitrate/nitrite concentration in healthy normotensive individuals. Further research is needed to explore the mechanism by which salt affects vascular function in the postprandial period. This trial was registered with the Australian and New Zealand Clinical Trials Registry Unique Identifier: ACTRN12611000583943http://www.anzctr.org.au/trial_view.aspx?ID=343019. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Prevention of endothelial dysfunction in streptozotocin-induced diabetic rats by gliclazide treatment.

    Science.gov (United States)

    Vallejo, S; Angulo, J; Peiró, C; Sánchez-Ferrer, A; Cercas, E; Llergo, J L; Nevado, J; Sánchez-Ferrer, C F; Rodríguez-Mañas, L

    2000-01-01

    The aim of the present work was to analyze whether the oral hypoglycemic drug gliclazide affects diabetic endothelial dysfunction in streptozotocin-induced diabetic rats. Gliclazide was compared with glibenclamide, ascorbic acid, and aminoguanidine. An insulin-dependent model of diabetes was selected to exclude insulin-releasing effects of the drugs. Both in isolated aortic segments and mesenteric microvessels, endothelium-dependent relaxation evoked by acetylcholine (ACh, 1 nM to 10 microM) was significantly reduced in vessels from diabetic animals. This impairment was reversed when the segments were previously incubated with 100 U/ml superoxide dismutase. When streptozotocin-induced diabetic rats were orally treated from the time of diabetes induction with gliclazide (10 mg/kg) or ascorbic acid (250 mg/kg), ACh-induced endothelium-dependent relaxation was well preserved both in aortic segments and mesenteric microvessels. In addition, the impaired vasodilatation to exogenous nitric oxide (NO) in aortic segments was also improved in gliclazide-treated diabetic rats. On the other hand, oral treatment with glibenclamide (1 and 10 mg/kg) or aminoguanidine (250 mg/kg) did not produce significant improvements in diabetic endothelial dysfunction. We conclude that gliclazide reverses the endothelial dysfunction associated with diabetes. This effect appears to be due not to the metabolic actions of the drug but rather to its antioxidant properties, as it can be mimicked by other antioxidants. We propose that the mechanism involved is the inactivation of reactive oxygen species, which are increased in diabetes probably as a result of increased early protein glycosylation products, such as glycosylated hemoglobin (HbA(1c)). These effects of gliclazide are not shared by other oral hypoglycemic agent such as glibenclamide, or by blockade of advanced glycosylation end product (AGE) generation with aminoguanidine.

  7. NADH induces the generation of superoxide radicals in leaf peroxisomes. [Pisum sativum L

    Energy Technology Data Exchange (ETDEWEB)

    del Rio, L.A.; Sandalio, L.M.; Palma, J.M. (Unidad de Bioquimica Vegetal, Granada (Spain)); Fernandez, V.M.; Ruperez, F.L. (Instituto de Catalisis, Madrid (Spain))

    1989-03-01

    In peroxisomes isolated from pea leaves (Pisum sativum L.) the production of superoxide free radicals (O{sub 2}{sup {minus}}) by xanthine and NADH was investigated. In peroxisomal membranes, 100 micromolar NADH induced the production of O{sub 2}{sup {minus}} radicals. In the soluble fractions of peroxisomes, no generation of O{sub 2}{sup {minus}} radicals was observed by incubation with either NADH or xanthine, although xanthine oxidase was found located predominantly in the matrix of peroxisomes. The failure of xanthine to induce superoxide generation was probably due to the inability to fully suppress the endogenous Mn-superoxide dismutase activity by inhibitors which were inactive against xanthine oxidase. The generation of superoxide radicals in leaf peroxisomes together with the recently described production of these oxygen radicals in glyoxysomes suggests that O{sub 2}{sup {minus}} generation could be a common metabolic property of peroxisomes and further supports the existence of active oxygen-related roles for peroxisomes in cellular metabolism.

  8. EETs Attenuate Ox-LDL-Induced LTB4 Production and Activity by Inhibiting p38 MAPK Phosphorylation and 5-LO/BLT1 Receptor Expression in Rat Pulmonary Arterial Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Jun-xia Jiang

    Full Text Available Cytochrome P-450 epoxygenase (EPOX-derived epoxyeicosatrienoic acids (EETs, 5-lipoxygenase (5-LO, and leukotriene B4 (LTB4, the product of 5-LO, all play a pivotal role in the vascular inflammatory process. We have previously shown that EETs can alleviate oxidized low-density lipoprotein (ox-LDL-induced endothelial inflammation in primary rat pulmonary artery endothelial cells (RPAECs. Here, we investigated whether ox-LDL can promote LTB4 production through the 5-LO pathway. We further explored how exogenous EETs influence ox-LDL-induced LTB4 production and activity. We found that treatment with ox-LDL increased the production of LTB4 and further led to the expression and release of both monocyte chemoattractant protein-1 (MCP-1/CCL2 and intercellular adhesion molecule-1 (ICAM-1. All of the above ox-LDL-induced changes were attenuated by the presence of 11,12-EET and 14,15-EET, as these molecules inhibited the 5-LO pathway. Furthermore, the LTB4 receptor 1 (BLT1 receptor antagonist U75302 attenuated ox-LDL-induced ICAM-1 and MCP-1/CCL2 expression and production, whereas LY255283, a LTB4 receptor 2 (BLT2 receptor antagonist, produced no such effects. Moreover, in RPAECs, we demonstrated that the increased expression of 5-LO and BLT1 following ox-LDL treatment resulted from the activation of nuclear factor-κB (NF-κB via the p38 mitogen-activated protein kinase (MAPK pathway. Our results indicated that EETs suppress ox-LDL-induced LTB4 production and subsequent inflammatory responses by downregulating the 5-LO/BLT1 receptor pathway, in which p38 MAPK phosphorylation activates NF-κB. These results suggest that the metabolism of arachidonic acid via the 5-LO and EPOX pathways may present a mutual constraint on the physiological regulation of vascular endothelial cells.

  9. [Endothelial dysfunction in pathogenesis of duodenal ulcer].

    Science.gov (United States)

    Oparin, A G; Oparin, A A

    2002-01-01

    It is shown that in patients with ulcer associated with Helicobacter pylori (HP) there is a close correlation between the severity of the lesion of gastroduodenal protective mucous barrier and that of endothelial dysfunction manifesting in elevated level of endothelin-1, serum levels of TBK-active products, inhibition of blood flow and narrowing of the celiac trunk. The correlation becomes stronger with expanding contamination of gastroduodenal mucosa with HP. Thus, HP may participate in breaking the protective mucous barrier in endothelial dysfunction.

  10. Scavenging of superoxide anion radical by chaparral.

    Science.gov (United States)

    Zang, L Y; Cosma, G; Gardner, H; Starks, K; Shi, X; Vallyathan, V

    1999-06-01

    Chaparral is considered to act as an antioxidant. However, the inhibitory effects of chaparral on specific radical species are not well understood. Using electron paramagnetic resonance (EPR) spectroscopy in combination with spin trapping techniques, we have found that chaparral scavenges superoxide anion radical (O2*-) in a dose-dependent manner. 5,5-dimethyl-lpyrroline-N-oxide (DMPO) was used as a spin trapping agent and the reaction of xanthine and xanthine oxidase as a source of O2*-. The kinetic parameters, IC50 and Vmax, for chaparral scavenging of O2*- were found to be 0.899 microg/mL and 8.4 ng/mL/sec, respectively. The rate constant for chaparral scavenging O2*- was found to be 1.22 x 10(6) g(-1) s(-1). Our studies suggest that the antioxidant properties of chaparral may involve a direct scavenging effect of the primary oxygen radical, O2*-.

  11. Manganese superoxide dismutase and breast cancer recurrence

    DEFF Research Database (Denmark)

    Cronin-Fenton, Deirdre P; Christensen, Mariann; Lash, Timothy L

    2014-01-01

    BACKGROUND: Manganese superoxide dismutase (MnSOD) inhibits oxidative damage and cancer therapy effectiveness. A polymorphism in its encoding gene (SOD2: Val16Ala rs4880) may confer poorer breast cancer survival, but data are inconsistent. We examined the association of SOD2 genotype and breast......-metastatic breast cancer from 1990-2001, received adjuvant Cyclo, and were registered in the Danish Breast Cancer Cooperative Group. We identified 118 patients with BCR and 213 matched breast cancer controls. We genotyped SOD2 and used conditional logistic regression to compute the odds ratio (OR) and associated 95...... cancer recurrence (BCR) among patients treated with cyclophosphamide-based chemotherapy (Cyclo). We compared our findings with published studies using meta-analyses. METHODS: We conducted a population-based case-control study of BCR among women in Jutland, Denmark. Subjects were diagnosed with non...

  12. Acute Superoxide Radical Scavenging Reduces Blood Pressure but Does Not Influence Kidney Function in Hypertensive Rats with Postischemic Kidney Injury

    Directory of Open Access Journals (Sweden)

    Zoran Miloradović

    2014-01-01

    Full Text Available Acute kidney injury (AKI is associated with significant morbidity and mortality in hypertensive surroundings. We investigated superoxide radical molecules influence on systemic haemodynamic and kidney function in spontaneously hypertensive rats (SHR with induced postischemic AKI. Experiment was performed in anesthetized adult male SHR. The right kidney was removed, and left renal artery was subjected to ischemia by clamping for 40 minutes. The treated group received synthetic superoxide dismutase mimetic TEMPOL in the femoral vein 5 minutes before, during, and 175 minutes after the period of reperfusion, while the control AKI group received the vehicle via the same route. All parameters were measured 24 h after renal reperfusion. TEMPOL treatment significantly decreased mean arterial pressure and total peripheral resistance P<0.05 compared to AKI control. It also increased cardiac output and catalase activity P<0.05. Lipid peroxidation and renal vascular resistance were decreased in TEMPOL P<0.05. Plasma creatinine and kidney morphological parameters were unchanged among TEMPOL treated and control groups. Our study shows that superoxide radicals participate in haemodynamic control, but acute superoxide scavenging is ineffective in glomerular and tubular improvement, probably due to hypertension-induced strong endothelial dysfunction which neutralizes beneficial effects of O2− scavenging.

  13. Cannabidiol attenuates high glucose-induced endothelial cell inflammatory response and barrier disruption

    Science.gov (United States)

    Rajesh, Mohanraj; Mukhopadhyay, Partha; Bátkai, Sándor; Haskó, György; Liaudet, Lucas; Drel, Viktor R.; Obrosova, Irina G.; Pacher, Pál

    2008-01-01

    A nonpsychoactive cannabinoid cannabidiol (CBD) has been shown to exert potent anti-inflammatory and antioxidant effects and has recently been reported to lower the incidence of diabetes in nonobese diabetic mice and to preserve the blood-retinal barrier in experimental diabetes. In this study we have investigated the effects of CBD on high glucose (HG)-induced, mitochondrial superoxide generation, NF-κB activation, nitrotyrosine formation, inducible nitric oxide synthase (iNOS) and adhesion molecules ICAM-1 and VCAM-1 expression, monocyte-endothelial adhesion, transendothelial migration of monocytes, and disruption of endothelial barrier function in human coronary artery endothelial cells (HCAECs). HG markedly increased mitochondrial superoxide generation (measured by flow cytometry using MitoSOX), NF-κB activation, nitrotyrosine formation, upregulation of iNOS and adhesion molecules ICAM-1 and VCAM-1, transendothelial migration of monocytes, and monocyte-endothelial adhesion in HCAECs. HG also decreased endothelial barrier function measured by increased permeability and diminished expression of vascular endothelial cadherin in HCAECs. Remarkably, all the above mentioned effects of HG were attenuated by CBD pretreatment. Since a disruption of the endothelial function and integrity by HG is a crucial early event underlying the development of various diabetic complications, our results suggest that CBD, which has recently been approved for the treatment of inflammation, pain, and spasticity associated with multiple sclerosis in humans, may have significant therapeutic benefits against diabetic complications and atherosclerosis. PMID:17384130

  14. Chronic nitric oxide deprivation induces an adaptive antioxidant status in human endothelial cells.

    Science.gov (United States)

    Cattaneo, Maria Grazia; Cappellini, Elisa; Ragni, Maurizio; Tacchini, Lorenza; Scaccabarozzi, Diletta; Nisoli, Enzo; Vicentini, Lucia Maria

    2013-11-01

    In a previous work, we showed an increased cell motility due to the accumulation and transcriptional activation of the Hypoxia Inducible Factor-1α (HIF-1α) and a reduced mitochondrial energy production in an in vitro model of endothelial dysfunction (ED) represented by human endothelial cells (ECs) chronically deprived of nitric oxide (NO) by L-NAME treatment. In the present study, in the attempt to unravel the pathway(s) linking NO deficiency to HIF-1α accumulation and activation, we focused our attention on Reactive Oxygen Species (ROS). We found that ROS were partially involved in HIF-1α stabilization, but not in the pro-migratory phenotype. Regarding mitochondrial dysfunction, it did not require neither ROS generation nor HIF-1α activity, and was not due to autophagy. Very interestingly, while acute treatment with L-NAME induced a transient increase in ROS formation, chronic NO deprivation by long term L-NAME exposure drastically reduced cellular ROS content giving rise to an antioxidant environment characterized by an increase in superoxide dismutase-2 (SOD-2) expression and activity, and by nuclear accumulation of the transcription factor NF-E2-related factor-2 (Nrf2). These results might have important implications for our understanding of the consequences of NO deprivation in endothelium behavior and in the onset of cardiovascular diseases. © 2013.

  15. Monocyte-mediated activation of endothelial cells occurs only after binding to extracellular vesicles from red blood cell products, a process mediated by β-integrin.

    Science.gov (United States)

    Straat, Marleen; van Hezel, Maike E; Böing, Anita; Tuip-De Boer, Anita; Weber, Nina; Nieuwland, Rienk; van Bruggen, Robin; Juffermans, Nicole P

    2016-12-01

    Red blood cell (RBC) transfusion is associated with organ failure. The mechanism remains unknown, but may include adherence of blood cells to the microvasculature. We hypothesized that RBC-derived extracellular vesicles (EVs) interact with monocytes to activate endothelial cells. Human umbilical vein endothelial cells were incubated with supernatant from fresh and stored RBC units either containing EVs or depleted from EVs, with or without the addition of immune cells. We measured expression of adhesion markers by flow cytometry and markers of coagulation and inflammation in the culture medium. We studied phagocytosis of EVs by monocytes by using confocal microscopy and flow cytometry. Incubation of endothelial cells with monocytes alone did not induce up regulation of adhesion markers. The addition of both monocytes and supernatant from RBCs containing EVs resulted in up regulation of endothelial expression of intercellular adhesion molecule 1 and E-selectin when compared to baseline. Up regulation was absent when stimulated with RBC supernatant depleted from EVs. EVs are phagocytosed by monocytes, which was partly abrogated after coincubation with two different complement receptor 3 (CR3)-blocking antibodies. Addition of RBC-derived EVs also increased levels of von Willebrand factor (VWF). There were no differences between groups related to storage time. EVs from RBC transfusion bags activate monocytes with subsequent up regulation of endothelial cell adhesion markers. EVs are phagocytosed by monocytes through CR3. Furthermore, these EVs proved to be a source of VWF. These effects are unrelated to storage time. Thereby, EVs from RBC transfusion bags induce a proinflammatory and procoagulant endothelial cell response. © 2016 AABB.

  16. Sources of superoxide/H2O2 during mitochondrial proline oxidation

    Directory of Open Access Journals (Sweden)

    Renata L.S. Goncalves

    2014-01-01

    Full Text Available p53 Inducible gene 6 (PIG6 encodes mitochondrial proline dehydrogenase (PRODH and is up-regulated several fold upon p53 activation. Proline dehydrogenase is proposed to generate radicals that contribute to cancer cell apoptosis. However, there are at least 10 mitochondrial sites that can produce superoxide and/or H2O2, and it is unclear whether proline dehydrogenase generates these species directly, or instead drives production by other sites. Amongst six cancer cell lines, ZR75-30 human breast cancer cells had the highest basal proline dehydrogenase levels, and mitochondria isolated from ZR75-30 cells consumed oxygen and produced H2O2 with proline as sole substrate. Insects use proline oxidation to fuel flight, and mitochondria isolated from Drosophila melanogaster were even more active with proline as sole substrate than ZR75-30 mitochondria. Using mitochondria from these two models we identified the sites involved in formation of superoxide/H2O2 during proline oxidation. In mitochondria from Drosophila the main sites were respiratory complexes I and II. In mitochondria from ZR75-30 breast cancer cells the main sites were complex I and the oxoglutarate dehydrogenase complex. Even with combinations of substrates and respiratory chain inhibitors designed to minimize the contributions of other sites and maximize any superoxide/H2O2 production from proline dehydrogenase itself, there was no significant direct contribution of proline dehydrogenase to the observed H2O2 production. Thus proline oxidation by proline dehydrogenase drives superoxide/H2O2 production, but it does so mainly or exclusively by providing anaplerotic carbon for other mitochondrial dehydrogenases and not by producing superoxide/H2O2 directly.

  17. Sources of superoxide/H2O2 during mitochondrial proline oxidation.

    Science.gov (United States)

    Goncalves, Renata L S; Rothschild, Daniel E; Quinlan, Casey L; Scott, Gary K; Benz, Christopher C; Brand, Martin D

    2014-01-01

    p53 Inducible gene 6 (PIG6) encodes mitochondrial proline dehydrogenase (PRODH) and is up-regulated several fold upon p53 activation. Proline dehydrogenase is proposed to generate radicals that contribute to cancer cell apoptosis. However, there are at least 10 mitochondrial sites that can produce superoxide and/or H2O2, and it is unclear whether proline dehydrogenase generates these species directly, or instead drives production by other sites. Amongst six cancer cell lines, ZR75-30 human breast cancer cells had the highest basal proline dehydrogenase levels, and mitochondria isolated from ZR75-30 cells consumed oxygen and produced H2O2 with proline as sole substrate. Insects use proline oxidation to fuel flight, and mitochondria isolated from Drosophila melanogaster were even more active with proline as sole substrate than ZR75-30 mitochondria. Using mitochondria from these two models we identified the sites involved in formation of superoxide/H2O2 during proline oxidation. In mitochondria from Drosophila the main sites were respiratory complexes I and II. In mitochondria from ZR75-30 breast cancer cells the main sites were complex I and the oxoglutarate dehydrogenase complex. Even with combinations of substrates and respiratory chain inhibitors designed to minimize the contributions of other sites and maximize any superoxide/H2O2 production from proline dehydrogenase itself, there was no significant direct contribution of proline dehydrogenase to the observed H2O2 production. Thus proline oxidation by proline dehydrogenase drives superoxide/H2O2 production, but it does so mainly or exclusively by providing anaplerotic carbon for other mitochondrial dehydrogenases and not by producing superoxide/H2O2 directly.

  18. Prolonged exposure of resveratrol induces reactive superoxide species-independent apoptosis in murine prostate cells.

    Science.gov (United States)

    Kumar, Sanjay; Stokes, James; Singh, Udai P; Scissum-Gunn, Karyn; Singh, Rajesh; Manne, Upender; Mishra, Manoj K

    2017-10-01

    Nitric oxide, a signaling molecule, inhibits mitochondrial respiration by binding with cytochrome c oxidase, resulting in elevated production of reactive superoxide species (reactive oxygen and nitrogen) in the mitochondria and increased susceptibility to cell death. Generation of mitochondrial superoxide species can be suppressed by natural compounds such as resveratrol, a dietary polyphenol found in the skin of red fruits. In various cancer cells, resveratrol shows anti-oxidant and cancer preventive properties. Since, the effect of resveratrol on reactive superoxide species-independent apoptosis in prostate cancer cells is not well illustrated; therefore, we investigated this phenomenon in TRAMP murine prostate cancer cells. To accomplish this, TRAMP cells were incubated with resveratrol, resveratrol + DETA-NONOate, DETA-NONOate (nitric oxide donor), resveratrol + L-NMMA, or L-NMMA (nitric oxide inhibitor) for 48 h, and reactive superoxide species in the mitochondria and culture supernatant were measured. In addition, the mitochondrial membrane potential, cell viability, expression of apoptotic markers (Bax and Bcl2), γ-H2A.x, p53, and caspase-3 was determined. We found that resveratrol suppressed reactive superoxide species such as reactive oxygen species in the mitochondria and nitric oxide in culture supernatant when compared to the DETA-NONOate treatment and disrupted the mitochondrial membrane potential. Resveratrol also reduced cell viability, altered the expression of apoptotic markers (Bax and Bcl2), and increased expression of γ-H2A.x (indicative marker of DNA fragmentation) and p53 (a critical DNA damage response protein). However, there was no appreciable modulation of the caspase-3. Therefore, our data suggest that resveratrol induces superoxide species-independent apoptosis and may act as a therapeutic agent against prostate cancer.

  19. Advanced glycation end products upregulate lysyl oxidase and endothelin-1 in human aortic endothelial cells via parallel activation of ERK1/2-NF-κB and JNK-AP-1 signaling pathways.

    Science.gov (United States)

    Adamopoulos, Christos; Piperi, Christina; Gargalionis, Antonios N; Dalagiorgou, Georgia; Spilioti, Eliana; Korkolopoulou, Penelope; Diamanti-Kandarakis, Evanthia; Papavassiliou, Athanasios G

    2016-04-01

    Endothelial dysfunction involves deregulation of the key extracellular matrix (ECM) enzyme lysyl oxidase (LOX) and the vasoconstrictor protein, endothelin-1 (ET-1), whose gene expression can be modulated by the transcriptional activators nuclear factor kappa B (NF-κB) and activator protein-1 (AP-1). Advanced glycation end products (AGEs) present an aggravating factor of endothelial dysfunction which upon engagement to their receptor RAGE induce upregulation of mitogen-activated protein kinases (MAPKs), leading to NF-κB and AP-1 potentiation. We hypothesized that AGEs could induce NF-κΒ- and AP-1-dependent regulation of LOX and ET-1 expression via the AGE/RAGE/MAPK signaling axis. Western blot, real-time qRT-PCR, FACS analysis and electrophoretic mobility-shift assays were employed in human aortic endothelial cells (HAECs) following treatment with AGE-bovine serum albumin (AGE-BSA) to investigate the signaling pathway towards this hypothesis. Furthermore, immunohistochemical analysis of AGEs, RAGE, LOX and ET-1 expression was conducted in aortic endothelium of a rat experimental model exposed to high- or low-AGE content diet. HAECs exposed to AGE-BSA for various time points exhibited upregulation of LOX and ET-1 mRNA levels in a dose- and time-dependent manner. Exposure of HAECs to AGE-BSA also showed specific elevation of phospho(p)-ERK1/2 and p-JNK levels in a dose- and time-dependent fashion. AGE administration significantly increased NF-κΒ- and AP-1-binding activity to both LOX and ET-1 cognate promoter regions. Moreover, LOX and ET-1 overexpression in rat aortic endothelium upon high-AGE content diet confirmed the functional interrelation of these molecules. Our findings demonstrate that AGEs trigger NF-κΒ- and AP-1-mediated upregulation of LOX and ET-1 via the AGE/RAGE/MAPK signaling cascade in human endothelial cells, thus contributing to distorted endothelial homeostasis by impairing endothelial barrier function, altering ECM biomechanical properties

  20. Protection of Coronary Endothelial Function during Cardiac Surgery: Potential of Targeting Endothelial Ion Channels in Cardioprotection

    Directory of Open Access Journals (Sweden)

    Qin Yang

    2014-01-01

    Full Text Available Vascular endothelium plays a critical role in the control of blood flow by producing vasoactive factors to regulate vascular tone. Ion channels, in particular, K+ channels and Ca2+-permeable channels in endothelial cells, are essential to the production and function of endothelium-derived vasoactive factors. Impairment of coronary endothelial function occurs in open heart surgery that may result in reduction of coronary blood flow and thus in an inadequate myocardial perfusion. Hyperkalemic exposure and concurrent ischemia-reperfusion during cardioplegic intervention compromise NO and EDHF-mediated function and the impairment involves alterations of K+ channels, that is, KATP and KCa, and Ca2+-permeable TRP channels in endothelial cells. Pharmacological modulation of these channels during ischemia-reperfusion and hyperkalemic exposure show promising results on the preservation of NO and EDHF-mediated endothelial function, which suggests the potential of targeting endothelial K+ and TRP channels for myocardial protection during cardiac surgery.

  1. Superoxide reductase as a unique defense system against superoxide stress in the microaerophile Treponema pallidum.

    OpenAIRE

    Lombard, M; Touati, D.; Fontecave, M; Nivière, V

    2000-01-01

    International audience; Aerobic life requires the presence of antioxidant enzymes, such as superoxide dismutase, catalase, and peroxidase to eliminate deleterious oxygen derivatives. Treponema pallidum, a microaerophilic bacterium responsible for venereal syphilis, is an interesting organism because it lacks all of the above-mentioned enzymes, as deduced from its recently sequenced genome. In this paper, we describe a gene in T. pallidum with sequence homologies to a new class of antioxidant ...

  2. The 2-Oxoacid Dehydrogenase Complexes in Mitochondria Can Produce Superoxide/Hydrogen Peroxide at Much Higher Rates Than Complex I*

    Science.gov (United States)

    Quinlan, Casey L.; Goncalves, Renata L. S.; Hey-Mogensen, Martin; Yadava, Nagendra; Bunik, Victoria I.; Brand, Martin D.

    2014-01-01

    Several flavin-dependent enzymes of the mitochondrial matrix utilize NAD+ or NADH at about the same operating redox potential as the NADH/NAD+ pool and comprise the NADH/NAD+ isopotential enzyme group. Complex I (specifically the flavin, site IF) is often regarded as the major source of matrix superoxide/H2O2 production at this redox potential. However, the 2-oxoglutarate dehydrogenase (OGDH), branched-chain 2-oxoacid dehydrogenase (BCKDH), and pyruvate dehydrogenase (PDH) complexes are also capable of considerable superoxide/H2O2 production. To differentiate the superoxide/H2O2-producing capacities of these different mitochondrial sites in situ, we compared the observed rates of H2O2 production over a range of different NAD(P)H reduction levels in isolated skeletal muscle mitochondria under conditions that favored superoxide/H2O2 production from complex I, the OGDH complex, the BCKDH complex, or the PDH complex. The rates from all four complexes increased at higher NAD(P)H/NAD(P)+ ratios, although the 2-oxoacid dehydrogenase complexes produced superoxide/H2O2 at high rates only when oxidizing their specific 2-oxoacid substrates and not in the reverse reaction from NADH. At optimal conditions for each system, superoxide/H2O2 was produced by the OGDH complex at about twice the rate from the PDH complex, four times the rate from the BCKDH complex, and eight times the rate from site IF of complex I. Depending on the substrates present, the dominant sites of superoxide/H2O2 production at the level of NADH may be the OGDH and PDH complexes, but these activities may often be misattributed to complex I. PMID:24515115

  3. Biomimetic superoxide dismutase stabilized by photopolymerization for superoxide anions biosensing and cell monitoring.

    Science.gov (United States)

    Yuan, Ling; Liu, Suli; Tu, Wenwen; Zhang, Zengsong; Bao, Jianchun; Dai, Zhihui

    2014-05-20

    Photopolymerization strategy, as one of the immobilization methods, has attracted considerable interest because of some advantages, such as easy operation, harmlessness to the biomolecules, and long storage stability. (E)-4-(4-Formylstyryl) pyridine (formylstyrylpyridine) was prepared through Heck reaction and used as a photopolymer material to immobilize biomimetic superoxide dismutase under ultraviolet irradiation (UV) irradiation in a short time. The styrylpyridinium moiety of Formylstyrylpyridine was photoreactive and formed a dimer under UV irradiation. Mn2P2O7 multilayer sheet, a novel superoxide dismutase mimic, was synthesized. The formed photopolymer can immobilize Mn2P2O7 firmly under UV irradiation. On the basis of high catalytic activity of Mn2P2O7 biomimetic enzyme and long-term stability of Mn2P2O7-formylstyrylpyridine film, after introducing multiwalled carbon nanotubes (MWCNTs), a novel electrochemical biosensing platform called MWCNTs/Mn2P2O7-formylstyrylpyridine for superoxide anion (O2(•-)) detection was constructed. The biosensor displayed good performance for O2(•-) detection and provided a reliable platform to adhere living cells directly on the modified electrode surface. Therefore, the biosensor was successfully applied to vitro determination of O2(•-) released from living cells, which had a promising prospect for living cells monitoring and diagnosis of reactive oxygen species-related diseases.

  4. Monocyte-mediated activation of endothelial cells occurs only after binding to extracellular vesicles from red blood cell products, a process mediated by β-integrin

    NARCIS (Netherlands)

    Straat, Marleen; van Hezel, Maike E.; Böing, Anita; Tuip-de Boer, Anita; Weber, Nina; Nieuwland, Rienk; van Bruggen, Robin; Juffermans, Nicole P.

    2016-01-01

    Red blood cell (RBC) transfusion is associated with organ failure. The mechanism remains unknown, but may include adherence of blood cells to the microvasculature. We hypothesized that RBC-derived extracellular vesicles (EVs) interact with monocytes to activate endothelial cells. Human umbilical

  5. Alcohol and red wine consumption, but not fruit, vegetables, fish or dairy products, are associated with less endothelial dysfunction and less low-grade inflammation

    NARCIS (Netherlands)

    Bussel, van B.C.T.; Henry, R.M.A.; Schalkwijk, C.G.; Dekker, J.M.; Nijpels, G.; Feskens, E.J.M.; Stehouwer, C.D.A.

    2017-01-01

    Purpose: Endothelial dysfunction and low-grade inflammation are key phenomena in the pathobiology of cardiovascular disease (CVD). Their dietary modification might explain the observed reduction in CVD that has been associated with a healthy diet rich in fruit, vegetables and fish, low in dairy

  6. Manganese Superoxide Dismutase Gene Polymorphism (V16A is Associated with Diabetic Retinopathy in Slovene (Caucasians Type 2 Diabetes Patients

    Directory of Open Access Journals (Sweden)

    Mojca Globočnik Petrovič

    2008-01-01

    Full Text Available Substantial data indicate that oxidative stress is involved in the development of diabetic retinopathy. Two candidate genes that affect the oxidative stress are manganese mitochondrial superoxide dismutase (Mn-SOD and endothelial nitric oxide synthase (eNOS. The aim of the present study was to examine the role of the V16A polymorphism of the Mn-SOD gene and the 4a/b polymorphism of the eNOS gene in the development of diabetic retinopathy in Caucasians with type 2 diabetes.

  7. Combination therapy with losartan and L-carnitine protects against endothelial dysfunction of streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Sleem, Mostafa; Taye, Ashraf; El-Moselhy, Mohamed A; Mangoura, Safwat A

    2014-12-05

    Endothelial dysfunction is a critical factor during the initiation of diabetic cardiovascular complications and angiotensin II appears to play a pivotal role in this setting. The present study aimed to investigate whether the combination therapy with losartan and the nutritional supplement, L-carnitine can provide an additional protection against diabetes-associated endothelial dysfunction and elucidate the possible mechanism(s) underlying this effect. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ) (60 mg/kg) in rat. Effects of losartan (20 mg/kg, orally, 3 months) and L-carnitine (200 mg/kg, orally, 3 months) on tumor necrosis factor (TNF)-α, oxidative stress parameters, endothelial nitric oxide synthase expression (eNOS), and vascular function were evaluated. Our results showed a marked increase in aortic superoxide anion (O2(-)) production and serum malondialdehyde (MDA) level alongside attenuating antioxidant enzyme capacities in diabetic rats. This was associated with a significant increase in anigiotensin II type 1 receptor gene expression and TNF-α serum level of diabetic rats alongside reducing aortic eNOS gene expression and nitric oxide (NO) bioavailability. The single or combined administration of losartan and L-carnitine significantly inhibited these changes. Additionally, the vascular endothelium-dependent relaxation with acetylcholine (ACh) in aortic diabetic rat was significantly ameliorated by the single and combined administration of losartan or L-carnitine. Noteworthy, the combination therapy exhibited a more profound response over the monotherapy. Collectively, our results demonstrate that the combined therapy of losartan and L-carnitine affords additive beneficial effects against diabetes-associated endothelial dysfunction, possibly via normalizing the dysregulated eNOS and reducing the inflammation and oxidative stress in diabetic rats. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Argan (Argania spinosa) oil lowers blood pressure and improves endothelial dysfunction in spontaneously hypertensive rats.

    Science.gov (United States)

    Berrougui, Hicham; Alvarez de Sotomayor, Maria; Pérez-Guerrero, Concepción; Ettaib, Abdelkader; Hmamouchi, Mohamed; Marhuenda, Elisa; Herrera, Maria Dolores

    2004-12-01

    Traditionally hand-pressed argan oil, obtained from Argania spinosa seeds, is eaten raw in south-west Morocco; its rich composition of tocopherols, MUFA and PUFA make a study of its actions on risk factors for CVD, such as hypertension, interesting. The effects of 7 weeks of treatment with argan oil (10 ml/kg) on the blood pressure and endothelial function of spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats were investigated. Systolic blood pressure and heart rate were measured every week by the tail-cuff method and endothelial function was assessed by carbachol (10(-8) to 10(-4) M)-induced relaxations of aortic rings and small mesenteric arteries pre-contracted with phenylephrine. Argan-oil administration reduced the mean blood pressure of SHR after the fifth week of treatment (P<0.05) and increased (P<0.01) the endothelial responses of arteries from SHR. The NO synthase inhibitor, L-N-omega-nitroarginine (3 x 10(-5) M) revealed a greater participation of NO in the relaxant effect after the treatment. When cyclooxygenase (COX) was blocked with indomethacin (10(-5) M), an involvement of COX products in the endothelium-dependent response was characterized. Enzyme immunoassay of thromboxane B2 showed a significant decrease (P<0.05) in the release of thromboxane A2 in both aorta and small mesenteric artery after argan-oil treatment of SHR. Experiments in the presence of the thromboxane A2-prostaglandin H2 receptor antagonist ICI 192,605 (10(-5) M) confirmed this result. Results after incubation with the antioxidants superoxide dismutase and catalase suggested that a decreased oxidative stress might contribute to explain the beneficial effects of argan-oil treatment.

  9. Heat shock pretreatment prevents hydrogen peroxide injury of pulmonary endothelial cells and macrophages in culture.

    Science.gov (United States)

    Wang, Y R; Xiao, X Z; Huang, S N; Luo, F J; You, J L; Luo, H; Luo, Z Y

    1996-08-01

    The purpose of the present study was to determine whether heat shock pretreatment would protect pulmonary endothelial cells and alveolar macrophages against hydrogen peroxide (H2O2)-induced injury. The bovine pulmonary artery endothelial cells (BPAECs) heat-shocked (42 degrees C for 2 h) prior to exposure to H2O2 (1 mmol/L for 45 min) showed significant decrease in H2O2-mediated increment of release of lactate dehydrogenase and production of thiobarbituric acid-reactive substances, and obvious alleviation in H2O2-induced decrease in activities of catalase and superoxide dismutase. Heat-shocked (42 degrees C for 2 h) rat pulmonary alveolar macrophages (PAMs) also obtained acquired resistance to injury by subsequent exposure of 1, 2, or 3 mmol/L H2O2 for 45 min. Simultaneously with this acquired oxidative resistance, Northern blot analysis showed that heat-shocked BPAECs and PAMs, contained an increased level of mRNA coding for the inducible form of heat shock protein 70 (HSP70), and Western blot analysis indicated that there were increased expression of HSP70. Inhibition of protein synthesis by cycloheximide (25 micrograms/mL) and inhibition of RNA synthesis by actinomycin D (5 micrograms/mL) prevented the cytoprotection against H2O2. These results are consistent with the hypothesis that heat shock pretreatment would protect pulmonary endothelial cells and alveolar macrophages against H2O2-induced injury, and possibly that HSPs play a role in this cytoprotection.

  10. Acquired superoxide-scavenging ability of ceria nanoparticles.

    Science.gov (United States)

    Li, Yuanyuan; He, Xiao; Yin, Jun-Jie; Ma, Yuhui; Zhang, Peng; Li, Jingyuan; Ding, Yayun; Zhang, Jing; Zhao, Yuliang; Chai, Zhifang; Zhang, Zhiyong

    2015-02-02

    Ceria nanoparticles (nanoceria) are well known as a superoxide scavenger. However, inherent superoxide-scavenging ability has only been found in the nanoceria with sizes of less than 5 nm and with very limited shape diversity. Reported herein is a strategy to significantly improve the superoxide-scavenging activity of nanoceria sized at greater than 5 nm. The nanoceria with sizes of greater than 5 nm, with different shapes, and with a negligible Ce(3+)/Ce(4+) ratio can acquire remarkable superoxide-scavenging abilities through electron transfer. This method will make it possible to develop nanoceria-based superoxide-scavengers with long-acting activity and tailorable characteristics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. N-butanol extracts of Morinda citrifolia suppress advanced glycation end products (AGE)-induced inflammatory reactions in endothelial cells through its anti-oxidative properties.

    Science.gov (United States)

    Ishibashi, Yuji; Matsui, Takanori; Isami, Fumiyuki; Abe, Yumi; Sakaguchi, Tatsuya; Higashimoto, Yuichiro; Yamagishi, Sho-Ichi

    2017-03-04

    Advanced glycation end products (AGEs), senescent macroprotein derivatives formed during a normal aging process and acceleratedly under diabetic conditions, play a role in atherosclerotic cardiovascular disease. AGEs cause endothelial cell (EC) damage, an initial trigger for atherosclerosis through the interaction with a receptor for AGEs (RAGE). We have previously shown that n-butanol extracts of Morinda citrifolia (noni), a plant belonging to the family Rubiaceae, block the binding of AGEs to RAGE in vitro. In this study, we examined the effects of n-butanol extracts of noni on reactive oxygen species (ROS) generation and inflammatory reactions on AGE-exposed human umbilical vein ECs (HUVECs). HUVECs were treated with 100 μg/ml AGE-bovine serum albumin (AGE-BSA) or non-glycated BSA in the presence or absence of 670 ng/ml n-butanol extracts of noni for 4 h. Then ROS generation and inflammatory and gene expression in HUVECs were evaluated by dihydroethidium staining and real-time reverse transcription-polymerase chain reaction analyses, respectively. THP-1 cell adhesion to HUVECs was measured after 2-day incubation of AGE-BSA or BSA in the presence or absence of 670 ng/ml n-butanol extracts of noni. N-butanol extracts of noni at 670 ng/ml significantly inhibited the AGE-induced ROS generation and RAGE, intercellular adhesion molecule-1 and plasminogen activator inhibitor-1 gene expressions in HUVECs. AGEs significantly increased monocytic THP-1 cell adhesion to HUVECs, which was also prevented by 670 ng/ml n-butanol extracts of noni. The present study demonstrated for the first time that N-butanol extracts of noni could suppress the AGE-induced inflammatory reactions in HUVECs through its anti-oxidative properties via blocking of the interaction of AGEs with RAGE. Inhibition of the AGE-RAGE axis by n-butanol extracts of noni may be a novel nutraceutical strategy for the treatment of cardiovascular disease.

  12. Pyrrolidine dithiocarbamate inhibits superoxide anion-induced pain and inflammation in the paw skin and spinal cord by targeting NF-κB and oxidative stress.

    Science.gov (United States)

    Pinho-Ribeiro, Felipe A; Fattori, Victor; Zarpelon, Ana C; Borghi, Sergio M; Staurengo-Ferrari, Larissa; Carvalho, Thacyana T; Alves-Filho, Jose C; Cunha, Fernando Q; Cunha, Thiago M; Casagrande, Rubia; Verri, Waldiceu A

    2016-06-01

    We evaluated the effect of pyrrolidine dithiocarbamate (PDTC) in superoxide anion-induced inflammatory pain. Male Swiss mice were treated with PDTC and stimulated with an intraplantar or intraperitoneal injection of potassium superoxide, a superoxide anion donor. Subcutaneous PDTC treatment attenuated mechanical hyperalgesia, thermal hyperalgesia, paw oedema and leukocyte recruitment (neutrophils and macrophages). Intraplantar injection of superoxide anion activated NF-κB and increased cytokine production (IL-1β, TNF-α and IL-10) and oxidative stress (nitrite and lipid peroxidation levels) at the primary inflammatory foci and in the spinal cord (L4-L6). PDTC treatment inhibited superoxide anion-induced NF-κB activation, cytokine production and oxidative stress in the paw and spinal cord. Furthermore, intrathecal administration of PDTC successfully inhibited superoxide anion-induced mechanical hyperalgesia, thermal hyperalgesia and inflammatory response in peripheral foci (paw). These results suggest that peripheral stimulus with superoxide anion activates the local and spinal cord oxidative- and NF-κB-dependent inflammatory nociceptive mechanisms. PDTC targets these events, therefore, inhibiting superoxide anion-induced inflammatory pain in mice.

  13. Polyphenols in preventing endothelial dysfunction

    Directory of Open Access Journals (Sweden)

    Sylwia Biegańska-Hensoldt

    2017-03-01

    Full Text Available One of the main causes of mortality in developed countries is atherosclerosis. The pathogenesis of atherosclerosis is associated with endothelial dysfunction. Consumption of food rich in natural antioxidants including polyphenols significantly improves endothelial cells functions.Polyphenols have a beneficial effect on the human body and play an important part in protecting the cardiovascular system. Polyphenols present in food have antioxidant, anti-inflammatory, antihypertensive, antithrombotic and antiproliferative properties. Catechins cause an increase in the activity of endothelial nitric oxide synthase (eNOS and increased production of nitric oxide (NO and decrease in blood pressure. Catechins also reduce platelet adhesion, lower the concentration of C-reactive protein and tumor necrosis factor alpha and interleukin-6. Resveratrol inhibits NADPH oxidase expression, increases the expression of eNOS and NO production as well as decreases the expression of proinflammatory cytokines, and also lowers the concentration of the soluble forms of adhesion molecules – sICAM-1 and sVCAM-1 in blood. Quercetin reduces the blood level of low density lipoprotein cholesterol, lowers blood pressure, reduces the concentration of C-reactive protein and F2-isoprostane level. Curcumin has antagonistic activity to homocysteine. Curcumin increases the expression of eNOS and reduces oxidative DNA damage in rat cardiomyocytes. Numerous attempts are taken for improving the bioavailability of polyphenols in order to increase their use in the body.

  14. Strategies to reverse endothelial dysfunction in diabetic nephropathy

    OpenAIRE

    Badal, Shawn S.; Danesh, Farhad R.

    2012-01-01

    Endothelial dysfunction underlies the basic pathophysiology of microvascular complications of diabetes. Endothelial dysfunction is associated with impaired nitric oxide (NO) availability. Since NO production is tightly regulated by endothelial nitric oxide synthase (eNOS), several therapeutic strategies have been investigated and proposed to improve eNOS bioavailability in the vasculature. The findings of Cheng et al. suggest that increased availability of eNOS may be an effective strategy in...

  15. Far-infrared radiation acutely increases nitric oxide production by increasing Ca(2+) mobilization and Ca(2+)/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179.

    Science.gov (United States)

    Park, Jung-Hyun; Lee, Sangmi; Cho, Du-Hyong; Park, Young Mi; Kang, Duk-Hee; Jo, Inho

    2013-07-12

    Repeated thermal therapy manifested by far-infrared (FIR) radiation improves vascular function in both patients and mouse model with coronary heart disease, but its underlying mechanism is not fully understood. Using FIR as a thermal therapy agent, we investigate the molecular mechanism of its effect on endothelial nitric oxide synthase (eNOS) activity and NO production. FIR increased the phosphorylation of eNOS at serine 1179 (eNOS-Ser(1179)) in a time-dependent manner (up to 40min of FIR radiation) in bovine aortic endothelial cells (BAEC) without alterations in eNOS expression. This increase was accompanied by increases in NO production and intracellular Ca(2+) levels. Treatment with KN-93, a selective inhibitor of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and H-89, a protein kinase A inhibitor, inhibited FIR radiation-stimulated eNOS-Ser(1179) phosphorylation. FIR radiation itself also increased the temperature of culture medium. As transient receptors potential vanilloid (TRPV) ion channels are known to be temperature-sensitive calcium channels, we explore whether TRPV channels mediate these observed effects. Reverse transcription-PCR assay revealed two TRPV isoforms in BAEC, TRPV2 and TRPV4. Although ruthenium red, a pan-TRPV inhibitor, completely reversed the observed effect of FIR radiation, a partial attenuation (∼20%) was found in cells treated with Tranilast, TRPV2 inhibitor. However, ectopic expression of siRNA of TRPV2 showed no significant alteration in FIR radiation-stimulated eNOS-Ser(1179) phosphorylation. This study suggests that FIR radiation increases NO production via increasing CaMKII-mediated eNOS-Ser(1179) phosphorylation but TRPV channels may not be involved in this pathway. Our results may provide the molecular mechanism by which FIR radiation improves endothelial function. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Cross-linking of IgGs bound on circulating neutrophils leads to an activation of endothelial cells: possible role of rheumatoid factors in rheumatoid arthritis-associated vascular dysfunction.

    Science.gov (United States)

    Rollet-Labelle, Emmanuelle; Vaillancourt, Myriam; Marois, Louis; Newkirk, Marianna M; Poubelle, Patrice E; Naccache, Paul H

    2013-07-31

    Rheumatoid arthritis is characterized by the presence of circulating auto-antibodies, including rheumatoid factors, which recognize the Fc portion of IgGs. The neutrophil is the most abundant circulating leukocyte and it expresses high levels of FcγRs on its surface. The aim of the present study was to examine the capacity of circulating human neutrophils to be activated by rheumatoid factors and the consequences of these events on endothelium. Neutrophil-bound IgGs were cross-linked with anti-human IgGs to mimick the presence of circulating rheumatoid factors and FcγRs-dependent signalling events and functions were examined. The IgG and IgM composition of rheumatoid factors isolated from the serum of RA patients was characterized. Adhesion of neutrophils to endothelial cells was quantified in response to the addition of rheumatoid factors. Cross-linking of IgGs bound on neutrophils leads to FcγRs-dependent tyrosine phosphorylation, mobilisation of intracellular calcium and the extracellular release of superoxide anions and lysozyme. Incubation of endothelial cells with the supernatant of activated neutrophils increases ICAM-1 expression and IL-8 production by endothelial cells. Finally, rheumatoid factors enhance neutrophil adhesion to endothelial cells. Our results show that activation of neutrophils' FcγRs by rheumatoid factors could participate in rheumatoid arthritis-associated vascular damage.

  17. Superoxide converts indigo carmine to isatin sulfonic acid: implications for the hypothesis that neutrophils produce ozone.

    Science.gov (United States)

    Kettle, Anthony J; Clark, Bruce M; Winterbourn, Christine C

    2004-04-30

    Recently, it was proposed that neutrophils generate ozone (Wentworth, P. J., McDunn, J. E., Wentworth, A. D., Takeuchi, C., Nieva, J., Jones, T., Bautista, C., Ruedi, J. M., Gutierrez, A., Janda, K. D., Babior, B. M., Eschenmoser, A., and Lerner, R. A. (2002) Science 298, 2195-2199; Babior, B. M., Takeuchi, C., Ruedi, J., Gutierrez, A., and Wentworth, P. J. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 3031-3034). Evidence for the proposal was based largely on the chemistry of ozone reacting with indigo carmine to produce isatin sulfonic acid. In this investigation, we have examined the specificity of this reaction and whether it can be used as unequivocal evidence of ozone production by neutrophils. Stimulated neutrophils promoted the loss of indigo carmine and formation of isatin sulfonic acid in a reaction that was completely inhibited by superoxide dismutase. Methionine, which scavenges ozone, singlet oxygen, and hypochlorous acid, had no effect on the reaction. Neither did catalase or azide, which scavenge hydrogen peroxide and inhibit myeloperoxidase, respectively. From these results, it is apparent that superoxide was responsible for bleaching indigo carmine. Superoxide generated using xanthine oxidase and acetaldehyde also converted indigo carmine to isatin sulfonic acid in a reaction that was completely inhibited by superoxide dismutase and unaffected by catalase. When the xanthine oxidase reaction was carried out in H(2)(18)O, the proportion of (18)O incorporated into the isatin sulfonic acid was the same as that found for ozone. Thus, reactions of ozone and superoxide with indigo carmine are indistinguishable with respect to isatin sulfonic acid formation. We conclude that bleaching of indigo carmine cannot be used to invoke ozone production by neutrophils. Studies using indigo carmine to implicate ozone in other biological processes should also be interpreted with caution.

  18. Unraveling the role of animal heme peroxidases in superoxide mediated Mn oxide formation

    Science.gov (United States)

    Learman, D. R.; Hansel, C. M.

    2013-12-01

    Manganese(III,IV) oxides are important in the environment as they can impact the fate of a broad range of nutrients (e.g. carbon and phosphate) and contaminates (e.g. lead and chromium). Bacteria play a valuable role in the production of Mn oxides, yet the mechanisms and physiological reasons remain unclear. Roseobacter sp. AzwK-3b, an organism within the abundant and ubiquitous Roseobacter clade, has recently been shown to oxidize Mn(II) via a novel pathway that involves enzymatic extracellular superoxide production. However, in reactions with only Mn(II) and abiotically generated superoxide, we find superoxide alone is not enough to produce Mn(III,IV) oxides. Scavenging of the byproduct hydrogen peroxide (via the addition of catalase) is required to generate Mn oxides via abiotic reaction of Mn(II) with superoxide. Thus, R. AzwK-3b must produce superoxide and also scavenge hydrogen peroxide to form Mn oxides. Further, in-gel Mn(II) oxidation assay revealed a protein band that could generate Mn oxides in the presence of soluble Mn(II). This Mn(II)-oxidizing protein band was excised from the gel and the peptides identified via mass spectrometry. An animal heme peroxidase (AHP) was the predominant protein found in this band. This protein is homologous to the AHPs previously implicated as a Mn(II)-oxidizing enzyme within the Alphaproteobacteria, Erythrobacter SD-21 and Aurantimonas manganoxydans strain SI85-9A1. Currently, protein expression of the AHPs in R. AzwK-3b is being examined to determine if expression is correlated with Mn(II) concentration or oxidative stress. Our data suggests that AHPs do not directly oxidize Mn(II) but rather plays a role in scavenging hydrogen peroxide and/or producing an organic Mn(III) ligand that complexes Mn(III) and likely aids in Mn oxide precipitation.

  19. Endothelial dysfunction: a comprehensive appraisal

    Directory of Open Access Journals (Sweden)

    Vilariño Jorge O

    2006-02-01

    Full Text Available Abstract The endothelium is a thin monocelular layer that covers all the inner surface of the blood vessels, separating the circulating blood from the tissues. It is not an inactive organ, quite the opposite. It works as a receptor-efector organ and responds to each physical or chemical stimulus with the release of the correct substance with which it may maintain vasomotor balance and vascular-tissue homeostasis. It has the property of producing, independently, both agonistic and antagonistic substances that help to keep homeostasis and its function is not only autocrine, but also paracrine and endocrine. In this way it modulates the vascular smooth muscle cells producing relaxation or contraction, and therefore vasodilatation or vasoconstriction. The endothelium regulating homeostasis by controlling the production of prothrombotic and antithrombotic components, and fibrynolitics and antifibrynolitics. Also intervenes in cell proliferation and migration, in leukocyte adhesion and activation and in immunological and inflammatory processes. Cardiovascular risk factors cause oxidative stress that alters the endothelial cells capacity and leads to the so called endothelial "dysfunction" reducing its capacity to maintain homeostasis and leads to the development of pathological inflammatory processes and vascular disease. There are different techniques to evaluate the endothelium functional capacity, that depend on the amount of NO produced and the vasodilatation effect. The percentage of vasodilatation with respect to the basal value represents the endothelial functional capacity. Taking into account that shear stress is one of the most important stimulants for the synthesis and release of NO, the non-invasive technique most often used is the transient flow-modulate "endothelium-dependent" post-ischemic vasodilatation, performed on conductance arteries such as the brachial, radial or femoral arteries. This vasodilatation is compared with the

  20. Inhibition of biliverdin reductase increases ANG II-dependent superoxide levels in cultured renal tubular epithelial cells.

    Science.gov (United States)

    Young, Shelby C; Storm, Megan V; Speed, Joshua S; Kelsen, Silvia; Tiller, Chelsea V; Vera, Trinity; Drummond, Heather A; Stec, David E

    2009-11-01

    Induction of heme oxygenase-1 (HO-1) in the renal medulla increases carbon monoxide and bilirubin production and decreases ANG II-mediated superoxide production. The goal of this study was to determine the importance of increases in bilirubin to the antioxidant effects of HO-1 induction in cultured mouse thick ascending loop of Henle (TALH) and inner medullary collecting duct (IMCD3) cells. Bilirubin levels were decreased by using small interfering RNAs (siRNAs) targeted to biliverdin reductase (BVR), which is the cellular enzyme responsible for the conversion of biliverdin to bilirubin. Treatment of cultured TALH or IMCD-3 cells with BVR siRNA (50 or 100 nM) resulted in an 80% decrease in the level of BVR protein and decreased cellular bilirubin levels from 46 +/- 5 to 23 +/- 4 nM (n = 4). We then determined the effects of inhibition of BVR on ANG II-mediated superoxide production. Superoxide production induced by ANG II (10(-9) M) significantly increased in both TALH and IMCD-3 cells. Treatment of TALH cells with BVR siRNA resulted in a significant increase in ouabain-sensitive rubidium uptake from 95 +/- 6 to 122 +/- 5% control (n = 4, P < 0.05). Lastly, inhibition of BVR with siRNA did not prevent the decrease in superoxide levels observed in cells pretreated with the HO-1 inducer, hemin. We conclude that decreased levels of cellular bilirubin increase ANG II-mediated superoxide production and sodium transport; however, increases in bilirubin are not necessary for HO-1 induction to attenuate ANG II-mediated superoxide production.

  1. Superoxide triggers an acid burst in Saccharomyces cerevisiae to condition the environment of glucose-starved cells.

    Science.gov (United States)

    Baron, J Allen; Laws, Kaitlin M; Chen, Janice S; Culotta, Valeria C

    2013-02-15

    Although yeast cells grown in abundant glucose tend to acidify their extracellular environment, they raise the pH of the environment when starved for glucose or when grown strictly with non-fermentable carbon sources. Following prolonged periods in this alkaline phase, Saccharomyces cerevisiae cells will switch to producing acid. The mechanisms and rationale for this "acid burst" were unknown. Herein we provide strong evidence for the role of mitochondrial superoxide in initiating the acid burst. Yeast mutants lacking the mitochondrial matrix superoxide dismutase (SOD2) enzyme, but not the cytosolic Cu,Zn-SOD1 enzyme, exhibited marked acceleration in production of acid on non-fermentable carbon sources. Acid production is also dramatically enhanced by the superoxide-producing agent, paraquat. Conversely, the acid burst is eliminated by boosting cellular levels of Mn-antioxidant mimics of SOD. We demonstrate that the acid burst is dependent on the mitochondrial aldehyde dehydrogenase Ald4p. Our data are consistent with a model in which mitochondrial superoxide damage to Fe-S enzymes in the tricarboxylic acid (TCA) cycle leads to acetate buildup by Ald4p. The resultant expulsion of acetate into the extracellular environment can provide a new carbon source to glucose-starved cells and enhance growth of yeast. By triggering production of organic acids, mitochondrial superoxide has the potential to promote cell population growth under nutrient depravation stress.

  2. Synergistic Triggering of Superoxide Flashes by Mitochondrial Ca2+ Uniport and Basal Reactive Oxygen Species Elevation*

    Science.gov (United States)

    Hou, Tingting; Zhang, Xing; Xu, Jiejia; Jian, Chongshu; Huang, Zhanglong; Ye, Tao; Hu, Keping; Zheng, Ming; Gao, Feng; Wang, Xianhua; Cheng, Heping

    2013-01-01

    Mitochondrial superoxide flashes reflect a quantal, bursting mode of reactive oxygen species (ROS) production that arises from stochastic, transient opening of the mitochondrial permeability transition pore (mPTP) in many types of cells and in living animals. However, the regulatory mechanisms and the exact nature of the flash-coupled mPTP remain poorly understood. Here we demonstrate a profound synergistic effect between mitochondrial Ca2+ uniport and elevated basal ROS production in triggering superoxide flashes in intact cells. Hyperosmotic stress potently augmented the flash activity while simultaneously elevating mitochondrial Ca2+ and ROS. Blocking mitochondrial Ca2+ transport by knockdown of MICU1 or MCU, newly identified components of the mitochondrial Ca2+ uniporter, or scavenging mitochondrial basal ROS markedly diminished the flash response. More importantly, whereas elevating Ca2+ or ROS production alone was inefficacious in triggering the flashes, concurrent physiological Ca2+ and ROS elevation served as the most powerful flash activator, increasing the flash incidence by an order of magnitude. Functionally, superoxide flashes in response to hyperosmotic stress participated in the activation of JNK and p38. Thus, physiological levels of mitochondrial Ca2+ and ROS synergistically regulate stochastic mPTP opening and quantal ROS production in intact cells, marking the flash as a coincidence detector of mitochondrial Ca2+ and ROS signals. PMID:23283965

  3. Folic Acid Promotes Recycling of Tetrahydrobiopterin and Protects Against Hypoxia-Induced Pulmonary Hypertension by Recoupling Endothelial Nitric Oxide Synthase

    Science.gov (United States)

    Chalupsky, Karel; Kračun, Damir; Kanchev, Ivan; Bertram, Katharina

    2015-01-01

    Abstract Aims: Nitric oxide (NO) derived from endothelial NO synthase (eNOS) has been implicated in the adaptive response to hypoxia. An imbalance between 5,6,7,8-tetrahydrobiopterin (BH4) and 7,8-dihydrobiopterin (BH2) can result in eNOS uncoupling and the generation of superoxide instead of NO. Dihydrofolate reductase (DHFR) can recycle BH2 to BH4, leading to eNOS recoupling. However, the role of DHFR and eNOS recoupling in the response to hypoxia is not well understood. We hypothesized that increasing the capacity to recycle BH4 from BH2 would improve NO bioavailability as well as pulmonary vascular remodeling (PVR) and right ventricular hypertrophy (RVH) as indicators of pulmonary hypertension (PH) under hypoxic conditions. Results: In human pulmonary artery endothelial cells and murine pulmonary arteries exposed to hypoxia, eNOS was uncoupled as indicated by reduced superoxide production in the presence of the nitric oxide synthase inhibitor, L-(G)-nitro-L-arginine methyl ester (L-NAME). Concomitantly, NO levels, BH4 availability, and expression of DHFR were diminished under hypoxia. Application of folic acid (FA) restored DHFR levels, NO bioavailability, and BH4 levels under hypoxia. Importantly, FA prevented the development of hypoxia-induced PVR, right ventricular pressure increase, and RVH. Innovation: FA-induced upregulation of DHFR recouples eNOS under hypoxia by improving BH4 recycling, thus preventing hypoxia-induced PH. Conclusion: FA might serve as a novel therapeutic option combating PH. Antioxid. Redox Signal. 23, 1076–1091. PMID:26414244

  4. Mitochondrial Flashes: Dump Superoxide and Dance with Protons Now.

    Science.gov (United States)

    Demaurex, Nicolas; Schwarzländer, Markus

    2016-09-20

    Transient changes in the physiology of individual mitochondria have recently drawn much interest. The use of a circular permuted yellow fluorescent protein (cpYFP) to monitor mitochondrial flashes and their interpretation as superoxide bursts has added confusion, however. Reviewing mitochondrial flashes in this Forum, Wang et al. again deem cpYFP to be a specific and reversible superoxide indicator, dismissing evidence that purified cpYFP is insensitive to superoxide. This interpretation lacks reproducible evidence and conflicts with the parsimony principle. We offer a constructive, transparent pathway to reach definitive clarification of contradictory reports. Antioxid. Redox Signal. 25, 550-551.

  5. Superoxide generation is diminished during glucose-stimulated insulin secretion in INS-1E cells

    Czech Academy of Sciences Publication Activity Database

    Ježek, Petr; Hlavatá, Lydie; Špaček, Tomáš

    2008-01-01

    Roč. 275, Suppl.1 (2008), s. 310-310 ISSN 1742-464X. [FEBS Congress /33./ and IUBMB Conference /11./. 28.06.2008-03.07.2008, Athens] R&D Projects: GA MZd(CZ) NR7917; GA AV ČR(CZ) IAA500110701 Institutional research plan: CEZ:AV0Z50110509 Keywords : cpo1 * superoxide production * glucose-stimulated insulin secretion * INS-1E cells Subject RIV: ED - Physiology

  6. A diet enriched with mackerel (Scomber scombrus)-derived products improves the endothelial function in a senior population (Prevención de las Enfermedades Cardiovasculares: Estudio Santoña--PECES project).

    Science.gov (United States)

    de Berrazueta, J R; Gómez de Berrazueta, J M; Amado Señarís, J A; Peña Sarabia, N; Fernández Viadero, C; García-Unzueta, M T; Sáez de Adana, M; Sanchez Ovejero, C J; Llorca, J

    2009-03-01

    Regular consumption of fish reduces cardiovascular risks. Here, we investigate if the consumption of products with mackerel (Scomber scombrus) with 8.82 g of eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) content per 100 g of product improves parameters of endothelial function in a controlled population. Subjects maintained a 12-week diet with products with mackerel. The population consisted of 58 senior subjects (12 withdrawals, 25 women), aged 82.08 +/- 8.13 years (Group A). Twenty-three senior subjects (13 women) on a regular diet were used as the control group (Group B). Subjects of Group A received 57 portions throughout 12 weeks (four to five portions a week of products with a mean EPA + DHA content of 2.5 g a day). A continuous follow-up and a final evaluation were performed to determine the level of consumption. Plasma samples were stored at -70 degrees C for a biochemical study. Endothelial function was analysed by reactive hyperemia with a mercury strain gauge plethysmography with measurement of blood flow in the forearm, both baseline and at the end of the 12-week diet. Endothelium-dependent vasodilatation significantly increased in Group A subjects (P < 0.001). No changes were found in Group B. The subgroup analyses showed that improvements were produced in Group A subjects without cardiovascular disease (P < 0.001). Nitrites/nitrates and von Willebrand factor plasma concentrations were higher in participants after the 12-week diet. The consumption of mackerel meat products improves endothelium-dependent, flow-mediated vasodilatation in a senior population. This finding might explain some of the cardioprotective effects of fish consumption.

  7. In vivo incorporation of cobalt into Propionibacterium shermanii superoxide dismutase.

    Science.gov (United States)

    Meier, B; Sehn, A P; Sette, M; Paci, M; Desideri, A; Rotilio, G

    1994-07-18

    Propionibacterium shermanii, an aerotolerant anaerobic bacterium, has already been shown to incorporate, depending on the metal supplementation to the medium, either iron or manganese or copper into the same superoxide dismutase protein. The in vivo incorporation of cobalt in the same superoxide dismutase was obtained in an iron-, manganese- and copper-depleted medium. The protein was isolated and characterized by NMR which offers the possibility to identify the amino acid residues at the active site exploiting isotropically shifted proton resonance.

  8. Superoxide chemistry revisited: synthesis of tetrachloro-substituted methylenenortricyclenes

    OpenAIRE

    Budanur, Basavaraj M; Faiz Ahmed Khan

    2014-01-01

    An unexpected reactivity of the superoxide ion leading to the synthesis of tetrachloroaryl/vinyl-substituted nortricyclenes through its dual mode of action has been reported. KO2 was found to be superior and the only reagent to perform this kind of reaction over other conventional bases. Addition of the antioxidant BHT (2,6-di-tert-butyl-4-methylphenol) improved the yields of methylenenortricyclenes. A complete deuterium incorporation was observed in the superoxide-mediated reaction in DMSO-d...

  9. Dietary phosphorus acutely impairs endothelial function.

    Science.gov (United States)

    Shuto, Emi; Taketani, Yutaka; Tanaka, Rieko; Harada, Nagakatsu; Isshiki, Masashi; Sato, Minako; Nashiki, Kunitaka; Amo, Kikuko; Yamamoto, Hironori; Higashi, Yukihito; Nakaya, Yutaka; Takeda, Eiji

    2009-07-01

    Excessive dietary phosphorus may increase cardiovascular risk in healthy individuals as well as in patients with chronic kidney disease, but the mechanisms underlying this risk are not completely understood. To determine whether postprandial hyperphosphatemia may promote endothelial dysfunction, we investigated the acute effect of phosphorus loading on endothelial function in vitro and in vivo. Exposing bovine aortic endothelial cells to a phosphorus load increased production of reactive oxygen species, which depended on phosphorus influx via sodium-dependent phosphate transporters, and decreased nitric oxide production via inhibitory phosphorylation of endothelial nitric oxide synthase. Phosphorus loading inhibited endothelium-dependent vasodilation of rat aortic rings. In 11 healthy men, we alternately served meals containing 400 mg or 1200 mg of phosphorus in a double-blind crossover study and measured flow-mediated dilation of the brachial artery before and 2 h after the meals. The high dietary phosphorus load increased serum phosphorus at 2 h and significantly decreased flow-mediated dilation. Flow-mediated dilation correlated inversely with serum phosphorus. Taken together, these findings suggest that endothelial dysfunction mediated by acute postprandial hyperphosphatemia may contribute to the relationship between serum phosphorus level and the risk for cardiovascular morbidity and mortality.

  10. Superoxide dismutase 3 attenuates experimental Th2-driven allergic conjunctivitis.

    Science.gov (United States)

    Lee, Hyun Jung; Kim, Bo-Mi; Shin, Soojung; Kim, Tae-Yoon; Chung, So-Hyang

    2017-03-01

    Allergic conjunctivitis is an inflammatory eye disease mediated by Th2 type immune response. The role of extracellular superoxide dismutase 3 (SOD3) in immune response and allergic conjunctival inflammation was examined in a murine model for experimental allergic conjunctivitis (EAC). Allergic conjunctivitis was induced in mice by allergen challenge with ovalbumin in alum via the conjunctival sac. SOD3 was topically applied and allergy indicators were compared. Clinical signs associated with conjunctivitis, such as OVA-specific IgE production, IgG1/G2a ratio and eosinophil infiltration, were drastically reduced in mice treated with SOD3. They also had less dendritic cells and CD4(+) T cells in conjunctiva than controls. Attenuated allergic inflammation was accredited to reduced Th2 type cytokine responses and increased Treg cytokine in draining lymph node. The characteristics of EAC were attributed to the absence of SOD3. Our findings suggest that SOD3 might be considered as a potential target for Th2-driven allergic conjunctival inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Protein hydrolysate from canned sardine and brewing by-products improves TNF-α-induced inflammation in an intestinal-endothelial co-culture cell model.

    Science.gov (United States)

    Vieira, Elsa F; Van Camp, John; Ferreira, Isabel M P L V O; Grootaert, Charlotte

    2017-07-17

    The anti-inflammatory activity of sardine protein hydrolysates (SPH) obtained by hydrolysis with proteases from brewing yeast surplus was ascertained. For this purpose, a digested and desalted SPH fraction with molecular weight lower than 10 kDa was investigated using an endothelial cell line (EA.hy926) as such and in a co-culture model with an intestinal cell line (Caco-2). Effects of SPH SPH SPH SPH SPH to be used as a functional food with anti-inflammatory properties.

  12. Direct Evidence of Solution-Mediated Superoxide Transport and Organic Radical Formation in Sodium-Oxygen Batteries.

    Science.gov (United States)

    Xia, Chun; Fernandes, Russel; Cho, Franklin H; Sudhakar, Niranjan; Buonacorsi, Brandon; Walker, Sean; Xu, Meng; Baugh, Jonathan; Nazar, Linda F

    2016-09-07

    Advanced large-scale electrochemical energy storage requires cost-effective battery systems with high energy densities. Aprotic sodium-oxygen (Na-O2) batteries offer advantages, being comprised of low-cost elements and possessing much lower charge overpotential and higher reversibility compared to their lithium-oxygen battery cousins. Although such differences have been explained by solution-mediated superoxide transport, the underlying nature of this mechanism is not fully understood. Water has been suggested to solubilize superoxide via formation of hydroperoxyl (HO2), but direct evidence of these HO2 radical species in cells has proven elusive. Here, we use ESR spectroscopy at 210 K to identify and quantify soluble HO2 radicals in the electrolyte-cold-trapped in situ to prolong their lifetime-in a Na-O2 cell. These investigations are coupled to parallel SEM studies that image crystalline sodium superoxide (NaO2) on the carbon cathode. The superoxide radicals were spin-trapped via reaction with 5,5-dimethyl-pyrroline N-oxide at different electrochemical stages, allowing monitoring of their production and consumption during cycling. Our results conclusively demonstrate that transport of superoxide from cathode to electrolyte leads to the nucleation and growth of NaO2, which follows classical mechanisms based on the variation of superoxide content in the electrolyte and its correlation with the crystallization of cubic NaO2. The changes in superoxide content upon charge show that charge proceeds through the reverse solution process. Furthermore, we identify the carbon-centered/oxygen-centered alkyl radicals arising from attack of these solubilized HO2 species on the diglyme solvent. This is the first direct evidence of such species, which are likely responsible for electrolyte degradation.

  13. Far-infrared radiation acutely increases nitric oxide production by increasing Ca{sup 2+} mobilization and Ca{sup 2+}/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung-Hyun; Lee, Sangmi [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Cho, Du-Hyong [Department of Neuroscience, School of Medicine, Konkuk University, Seoul 143-701 (Korea, Republic of); Park, Young Mi [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Kang, Duk-Hee [Division of Nephrology, Department of Internal Medicine, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Jo, Inho, E-mail: inhojo@ewha.ac.kr [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of)

    2013-07-12

    Highlights: •Far-infrared (FIR) radiation increases eNOS-Ser{sup 1179} phosphorylation and NO production in BAEC. •CaMKII and PKA mediate FIR-stimulated increases in eNOS-Ser{sup 1179} phosphorylation. •FIR increases intracellular Ca{sup 2+} levels. •Thermo-sensitive TRPV Ca{sup 2+} channels are unlikely to be involved in the FIR-mediated eNOS-Ser{sup 1179} phosphorylation pathway. -- Abstract: Repeated thermal therapy manifested by far-infrared (FIR) radiation improves vascular function in both patients and mouse model with coronary heart disease, but its underlying mechanism is not fully understood. Using FIR as a thermal therapy agent, we investigate the molecular mechanism of its effect on endothelial nitric oxide synthase (eNOS) activity and NO production. FIR increased the phosphorylation of eNOS at serine 1179 (eNOS-Ser{sup 1179}) in a time-dependent manner (up to 40 min of FIR radiation) in bovine aortic endothelial cells (BAEC) without alterations in eNOS expression. This increase was accompanied by increases in NO production and intracellular Ca{sup 2+} levels. Treatment with KN-93, a selective inhibitor of Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) and H-89, a protein kinase A inhibitor, inhibited FIR radiation-stimulated eNOS-Ser{sup 1179} phosphorylation. FIR radiation itself also increased the temperature of culture medium. As transient receptors potential vanilloid (TRPV) ion channels are known to be temperature-sensitive calcium channels, we explore whether TRPV channels mediate these observed effects. Reverse transcription-PCR assay revealed two TRPV isoforms in BAEC, TRPV2 and TRPV4. Although ruthenium red, a pan-TRPV inhibitor, completely reversed the observed effect of FIR radiation, a partial attenuation (∼20%) was found in cells treated with Tranilast, TRPV2 inhibitor. However, ectopic expression of siRNA of TRPV2 showed no significant alteration in FIR radiation-stimulated eNOS-Ser{sup 1179} phosphorylation. This

  14. Poly(ADP-ribose) polymerase-1 protects from oxidative stress induced endothelial dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Gebhard, Catherine; Staehli, Barbara E. [Cardiovascular Research, Physiology Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Cardiology, Cardiovascular Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich (Switzerland); Shi, Yi; Camici, Giovanni G.; Akhmedov, Alexander; Hoegger, Lisa; Lohmann, Christine [Cardiovascular Research, Physiology Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Matter, Christian M. [Cardiovascular Research, Physiology Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Cardiology, Cardiovascular Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich (Switzerland); Hassa, Paul O.; Hottiger, Michael O. [Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Malinski, Tadeusz [Department of Chemistry and Biochemistry, Ohio University, Athens, OH (United States); Luescher, Thomas F. [Cardiovascular Research, Physiology Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Cardiology, Cardiovascular Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich (Switzerland); and others

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer The nuclear enzyme PARP-1 is a downstream effector of oxidative stress. Black-Right-Pointing-Pointer PARP-1 protects from oxidative stress induced endothelial dysfunction. Black-Right-Pointing-Pointer This effect is mediated through inhibition of vasoconstrictor prostanoid production. Black-Right-Pointing-Pointer Thus, PARP-1 may play a protective role as antioxidant defense mechanism. -- Abstract: Background: Generation of reactive oxygen species (ROS) is a key feature of vascular disease. Activation of the nuclear enzyme poly (adenosine diphosphate [ADP]-ribose) polymerase-1 (PARP-1) is a downstream effector of oxidative stress. Methods: PARP-1(-/-) and PARP-1(+/+) mice were injected with paraquat (PQ; 10 mg/kg i.p.) to induce intracellular oxidative stress. Aortic rings were suspended in organ chambers for isometric tension recording to analyze vascular function. Results: PQ treatment markedly impaired endothelium-dependent relaxations to acetylcholine in PARP-1(-/-), but not PARP-1(+/+) mice (p < 0.0001). Maximal relaxation was 45% in PQ treated PARP-1(-/-) mice compared to 79% in PARP-1(+/+) mice. In contrast, endothelium-independent relaxations to sodium nitroprusside (SNP) were not altered. After PQ treatment, L-NAME enhanced contractions to norepinephrine by 2.0-fold in PARP-1(-/-) mice, and those to acetylcholine by 3.3-fold, respectively, as compared to PARP-1(+/+) mice. PEG-superoxide dismutase (SOD) and PEG-catalase prevented the effect of PQ on endothelium-dependent relaxations to acetylcholine in PARP-1(-/-) mice (p < 0.001 vs. PQ treated PARP-1(+/+) mice. Indomethacin restored endothelium-dependent relaxations to acetylcholine in PQ treated PARP-1(-/-) mice (p < 0.05 vs. PQ treated PARP-1(+/+). Conclusion: PARP-1 protects from acute intracellular oxidative stress induced endothelial dysfunction by inhibiting ROS induced production of vasoconstrictor prostanoids.

  15. The Basic Understanding of Lithium Superoxide in Li-O2 Battery

    Science.gov (United States)

    Lau, Kah Chun; Zhai, Dengyun; Wang, Hsien-Hau; Luo, Xiangyi; Wen, Jianguo; Miller, Dean; Redfern, Paul; Lu, Jun; Curtiss, Larry; Amine, Khalil

    The electrochemical and chemical processes that involved in Li-O2 battery are complex, and depend heavily on electrode materials, electrolytes, interfaces, and cell operating conditions. In non-aqueous Li-O2 battery, the main discharge products are commonly known to be lithium peroxide (Li2O2) , and possibly some other parasitic components (i.e. Li2CO3, LiOH, Li2O). However, the superoxide intermediates and lithium superoxide (O2-, LiO2) which are commonly known to be metastable can also be found as reported. Relative to these compounds (i.e. Li2CO3, Li2O,LiOH,Li2O2) in discharge products, little is known about LiO2. To have a basic understanding of lithium superoxide, both theoretical studies and experimental characterizations are important. In this presentation, the recent developments, studies and findings of this exotic species will be discussed. This work was primarily supported by the U.S. Department of Energy under Contract DE-AC02-06CH11357 from the Vehicle Technologies Office, Department of Energy, Office of Energy Efficiency and Renewable Energy.

  16. ORIGINAL ARTICLE Relationship between endothelial nitric oxide ...

    African Journals Online (AJOL)

    salah

    Introduction: Endothelial nitric oxide synthase (eNOS), the enzyme in charge of nitric oxide production, plays a crucial role in vascular biology. However, the impact of single nucleotide polymorphisms (SNPs) affecting the gene encoding for eNOS (eNOS) on coronary artery diseases remains under debate and no data were ...

  17. Relationship between endothelial nitric oxide synthase gene ...

    African Journals Online (AJOL)

    Introduction: Endothelial nitric oxide synthase (eNOS), the enzyme in charge of nitric oxide production, plays a crucial role in vascular biology. However, the impact of single nucleotide polymorphisms (SNPs) affecting the gene encoding for eNOS (eNOS) on coronary artery diseases remains under debate and no data were ...

  18. Progress in Understanding Algal Bloom-Mediated Fish Kills: The Role of Superoxide Radicals, Phycotoxins and Fatty Acids.

    Directory of Open Access Journals (Sweden)

    Juan José Dorantes-Aranda

    Full Text Available Quantification of the role of reactive oxygen species, phycotoxins and fatty acids in fish toxicity by harmful marine microalgae remains inconclusive. An in vitro fish gill (from rainbow trout Oncorhynchus mykiss assay was used to simultaneously assess the effect in superoxide dismutase, catalase and lactate dehydrogenase enzymatic activities caused by seven species of ichthyotoxic microalgae (Chattonella marina, Fibrocapsa japonica, Heterosigma akashiwo, Karenia mikimotoi, Alexandrium catenella, Karlodinium veneficum, Prymnesium parvum. Quantification of superoxide production by these algae was also performed. The effect of purified phycotoxins and crude extracts was compared, and the effect of fatty acids is discussed. The raphidophyte Chattonella was the most ichthyotoxic (gill cell viability down to 35% and also the major producer of superoxide radicals (14 pmol cell-1 hr-1 especially after cell lysis. The raphidophyte Heterosigma and dinoflagellate Alexandrium were the least toxic and had low superoxide production, except when A. catenella was lysed (5.6 pmol cell-1 hr-1. Catalase showed no changes in activity in all the treatments. Superoxide dismutase (SOD and lactate dehydrogenase exhibited significant activity increases of ≤23% and 51.2% TCC (total cellular content, respectively, after exposure to C. marina, but SOD showed insignificant changes with remaining algal species. A strong relationship between gill cell viability and superoxide production or superoxide dismutase was not observed. Purified brevetoxins PbTx-2 and -3 (from Karenia brevis, LC50 of 22.1 versus 35.2 μg mL-1 and karlotoxin KmTx-2 (from Karlodinium; LC50 = 380 ng mL-1 could almost entirely account for the fish killing activity by those two dinoflagellates. However, the paralytic shellfish toxins (PST GTX1&4, C1&C2, and STX did not account for Alexandrium ichthyotoxicity. Only aqueous extracts of Alexandrium were cytotoxic (≤65% decrease of viability, whereas

  19. Progress in Understanding Algal Bloom-Mediated Fish Kills: The Role of Superoxide Radicals, Phycotoxins and Fatty Acids.

    Science.gov (United States)

    Dorantes-Aranda, Juan José; Seger, Andreas; Mardones, Jorge I; Nichols, Peter D; Hallegraeff, Gustaaf M

    2015-01-01

    Quantification of the role of reactive oxygen species, phycotoxins and fatty acids in fish toxicity by harmful marine microalgae remains inconclusive. An in vitro fish gill (from rainbow trout Oncorhynchus mykiss) assay was used to simultaneously assess the effect in superoxide dismutase, catalase and lactate dehydrogenase enzymatic activities caused by seven species of ichthyotoxic microalgae (Chattonella marina, Fibrocapsa japonica, Heterosigma akashiwo, Karenia mikimotoi, Alexandrium catenella, Karlodinium veneficum, Prymnesium parvum). Quantification of superoxide production by these algae was also performed. The effect of purified phycotoxins and crude extracts was compared, and the effect of fatty acids is discussed. The raphidophyte Chattonella was the most ichthyotoxic (gill cell viability down to 35%) and also the major producer of superoxide radicals (14 pmol cell-1 hr-1) especially after cell lysis. The raphidophyte Heterosigma and dinoflagellate Alexandrium were the least toxic and had low superoxide production, except when A. catenella was lysed (5.6 pmol cell-1 hr-1). Catalase showed no changes in activity in all the treatments. Superoxide dismutase (SOD) and lactate dehydrogenase exhibited significant activity increases of ≤23% and 51.2% TCC (total cellular content), respectively, after exposure to C. marina, but SOD showed insignificant changes with remaining algal species. A strong relationship between gill cell viability and superoxide production or superoxide dismutase was not observed. Purified brevetoxins PbTx-2 and -3 (from Karenia brevis, LC50 of 22.1 versus 35.2 μg mL-1) and karlotoxin KmTx-2 (from Karlodinium; LC50 = 380 ng mL-1) could almost entirely account for the fish killing activity by those two dinoflagellates. However, the paralytic shellfish toxins (PST) GTX1&4, C1&C2, and STX did not account for Alexandrium ichthyotoxicity. Only aqueous extracts of Alexandrium were cytotoxic (≤65% decrease of viability), whereas crude

  20. Increased endothelial cell-leukocyte interaction in murine schistosomiasis: possible priming of endothelial cells by the disease.

    Directory of Open Access Journals (Sweden)

    Suellen D S Oliveira

    Full Text Available BACKGROUND AND AIMS: Schistosomiasis is an intravascular parasitic disease associated with inflammation. Endothelial cells control leukocyte transmigration and vascular permeability being modulated by pro-inflammatory mediators. Recent data have shown that endothelial cells primed in vivo in the course of a disease keep the information in culture. Herein, we evaluated the impact of schistosomiasis on endothelial cell-regulated events in vivo and in vitro. METHODOLOGY AND PRINCIPAL FINDINGS: The experimental groups consisted of Schistosoma mansoni-infected and age-matched control mice. In vivo infection caused a marked influx of leukocytes and an increased protein leakage in the peritoneal cavity, characterizing an inflamed vascular and cellular profile. In vitro leukocyte-mesenteric endothelial cell adhesion was higher in cultured cells from infected mice as compared to controls, either in the basal condition or after treatment with the pro-inflammatory cytokine tumor necrosis factor (TNF. Nitric oxide (NO donation reduced leukocyte adhesion to endothelial cells from control and infected groups; however, in the later group the effect was more pronounced, probably due to a reduced NO production. Inhibition of control endothelial NO synthase (eNOS increased leukocyte adhesion to a level similar to the one observed in the infected group. Besides, the adhesion of control leukocytes to endothelial cells from infected animals is similar to the result of infected animals, confirming that schistosomiasis alters endothelial cells function. Furthermore, NO production as well as the expression of eNOS were reduced in cultured endothelial cells from infected animals. On the other hand, the expression of its repressor protein, namely caveolin-1, was similar in both control and infected groups. CONCLUSION/SIGNIFICANCE: Schistosomiasis increases vascular permeability and endothelial cell-leukocyte interaction in vivo and in vitro. These effects are partially

  1. Metal uptake of recombinant cambialistic superoxide dismutase from Propionibacterium shermanii is affected by growth conditions of host Escherichia coli cells.

    Science.gov (United States)

    Gabbianelli, R; Battistoni, A; Polizio, F; Carrì, M T; De Martino, A; Meier, B; Desideri, A; Rotilio, G

    1995-11-22

    We constructed the complete nucleotide sequence coding for the cambialistic superoxide dismutase from Propionibacterium shermanii by ligation of a synthetic linker to a polymerase chain reaction amplification product obtained using degenerate primers. We set up an expression system yielding large amounts of recombinant superoxide dismutase in the cytoplasm of Escherichia coli and purified the enzyme from cells grown in a complex medium. The physicochemical properties of the recombinant enzyme were identical to those of the natural protein. Under anaerobic conditions the enzyme produced in an iron-supplemented medium incorporated iron as metal cofactor, while the enzyme purified from cells grown under aerobic conditions contained a variable amount of iron and manganese depending on metal availability. Functional equivalence of the two metals in this superoxide dismutase variant was indicated by independence of enzyme activity from Fe/Mn ratio.

  2. Phosphocreatine protects endothelial cells from oxidized low-density lipoprotein-induced apoptosis by modulating the PI3K/Akt/eNOS pathway.

    Science.gov (United States)

    Ahsan, Anil; Han, Guozhu; Pan, Junfang; Liu, Shumin; Padhiar, Arshad Ahmed; Chu, Peng; Sun, Zhengwu; Zhang, Zonghui; Sun, Bin; Wu, Jingjun; Irshad, Aisha; Lin, Yuan; Peng, Jinyong; Tang, Zeyao

    2015-12-01

    Endothelial apoptosis triggered by oxidized low-density lipoprotein (oxLDL) can accelerate the progression of endothelial dysfunction atherosclerosis. Phosphocreatine (PCr) is a natural compound, which has been used in cardiac disease and cardiopulmonary resuscitation. However, its protective effects on atherosclerosis and its mechanism have not been clarified. In the present study, we investigated the anti-apoptotic effect of phosphocreatine in human umbilical vein endothelial cells (HUVECs) exposed to oxLDL and explored the possible mechanisms. HUVECs were pre-treated with 10-30 mM PCr and then stimulated with oxLDL. Cell morphology, cytotoxicity and apoptosis were evaluated by light microscopy, CCK assay, and flow cytometry respectively. Levels of Bax, Bcl-2, protein expression of protein kinase B (Akt), eNOS and caspase activities were assessed by Western blotting. Reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were measured with fluorescent probes. Lactate dehydrogenase (LDH), malondialdehyde (MDA), nitric oxide (NO) and superoxide dismutase (SOD) contents were determined by spectrophotometer. Our results showed that PCr dose-dependently prevented oxLDL associated HUVEC cytotoxicity and apoptotic biochemical changes such as loss of MMP, LDH and MDA leakage and loss of SOD, decrease of Bcl-2/Bax protein ratio, activation of caspase-3 and 9, and ROS generation. In addition, the antiapoptotic effect of PCr was partially inhibited by a PI3K inhibitor (LY294002) and also enhanced p-Akt/Akt protein ratio, eNOS activation and NO production. In conclusion, our data show that the inhibition of oxLDL-induced endothelial apoptosis by PCr is due, at least in part to its anti-oxidant activity and its ability to modulate the PI3K/Akt/eNOS signaling pathway.

  3. The preparation of calcium superoxide at subambient temperatures and pressures. [oxygen source for breathing apparatus

    Science.gov (United States)

    Ballou, E. V.; Wood, P. C.; Spitze, L. A.; Wydeven, T.; Stein, R.

    1977-01-01

    The effects of disproportionations at lower temperatures and also of a range of reaction chamber pressures on the preparation of calcium superoxide, Ca(O2)2, from calcium peroxide diperoxyhydrate were studied. About 60% purity of product was obtained by a disproportionation procedure. The significance of features of this procedure for a prospective scale-up of the mass prepared in a single experiment is considered. The optimum pressure for product purity was determined, and the use of a molecular sieve desiccant is described.

  4. Influence of superoxide on myeloperoxidase kinetics measured with a hydrogen peroxide electrode.

    OpenAIRE

    Kettle, A J; Winterbourn, C C

    1989-01-01

    Stimulated neutrophils discharge large quantities of superoxide (O2.-), which dismutates to form H2O2. In combination with Cl-, H2O2 is converted into the potent oxidant hypochlorous acid (HOCl) by the haem enzyme myeloperoxidase. We have used an H2O2 electrode to monitor H2O2 uptake by myeloperoxidase, and have shown that in the presence of Cl- this accurately represents production of HOCl. Monochlorodimedon, which is routinely used to assay production of HOCl, inhibited H2O2 uptake by 95%. ...

  5. Dobesilate enhances endothelial nitric oxide synthase-activity in macro- and microvascular endothelial cells.

    Science.gov (United States)

    Suschek, C; Kolb, H; Kolb-Bachofen, V

    1997-12-01

    1. Dobesilate is used for normalizing vascular dysfunction in a number of diseases. In search for an effect on endothelial NO production, macrovascular endothelial cells from rat aorta, microvascular endothelial cells from rat exocrine pancreatic tissue, and capillary endothelial cells from rat islets, were cultured in the presence or absence of Mg-Dobesilate. The activity of constitutive nitric oxide synthase (ecNOS) in resident cells as well as of inducible nitric oxide synthase (iNOS) in cytokine-activated cells was measured indirectly by recording the citrulline concentrations in culture supernatants. 2. In each of the different endothelial cells Mg-Dobesilate incubation (0.25-1 mM) for 24 h led to a significant and concentration-dependent increase in ecNOS-activities. With cytokine-activated endothelial cell cultures only moderate effects were seen with little or no concentration-dependency. Addition of the NOS-inhibitor N(G)-monomethyl-L-arginine led to a significant suppression of citrulline formation in all cultures as an evidence for the enzyme specificity of these effects. 3. iNOS- and ecNOS-specific reverse transcription and semi-quantitative polymerase chain reaction (RT-PCR) with RNA from resident or cytokine-activated endothelial cells gave no evidence for an increase in NOS-specific mRNA after Mg-Dobesilate-treatment. Furthermore, Dobesilate-mediated enhancement of NO synthesis in resting endothelial cells was not due to iNOS induction in these cells, as no iNOS-specific signal was found by RT-PCR.

  6. The endothelial border to health

    DEFF Research Database (Denmark)

    Hansen, Nina Wærling; Hansen, Anker Jon; Sams, Anette

    2017-01-01

    by hyperglycemic events because the endothelium transduces “high glucose” signaling into significant pathophysiological phenomena leading to reduced endothelial barrier function, compromised vascular tone regulation and inflammation (e.g., cytokine secretion and RAGE activation). In addition, endothelial...

  7. Antioxidative effect of Bacteroides thetaiotaomicron extracts: superoxide dismutase identification.

    Science.gov (United States)

    Hochart-Behra, Anne-Cécile; Behra-Miellet, Josette; Sam, Julie; Drobecq, Hervé; Gressier, Bernard; Luyckx, Michel; Dine, Thierry; Brunet, Claude; Dubreuil, Luc

    2008-05-01

    Bacteroides thetaiotaomicron, a bowel anaerobic commensal, seems to release enzymes detoxifying reactive oxygen species according to our recent work. This opportunistic pathogen would be beneficial in the case of an inflammatory process. To explore its role after an oxidative or nutritive stress, six to seven separate experiments were performed. The bacteria were grown on media restricted in growth factors or supplemented with bile. Their viability was checked after surface protein extraction. The extracts underwent 2D electrophoresis. Gel images were statistically analysed to construct "master" gels. Proteins were identified (peptide-mass fingerprinting technique). The effect of each extract on superoxide anions was evaluated (spectrophotometric method). Superoxide dismutase was identified and a major superoxide anion inhibition was shown by extracts obtained after a nutritive and oxidative stress without significant bacterial death. So, a therapeutic antioxidant potential is firmly hoped for. [figure: see text

  8. Assessment of antioxidants status and superoxide dismutase activity in HIV-infected children

    Directory of Open Access Journals (Sweden)

    Camila Pugliese

    Full Text Available Objective: This study aims to assess the nutritional status of selenium, copper and zinc; and also the erythrocyte superoxide dismutase activity of HIV-infected children compared to a control group. Methods: A cross-sectional study was carried out with prepubertal HIV-infected children (n = 51 and their healthy siblings (n = 32. All biochemical measurements including plasma selenium, serum copper levels, serum and erythrocyte zinc levels and erythrocyte super-oxide dismutase activity were evaluated according to dietary, clinical and biochemical parameters. Results: Compared to the control group, the HIV-infected children had lower z-score values for height-for-age (p = 0.0006, higher prevalence of stunting (11.8% (p = 0.047, lower selenium levels (p = 0.0006 and higher copper levels (p = 0.019. No difference was found concerning superoxide dismutase activity (p > 0.05. The HIV-infected group presented a higher proportion (45.1% of children with zinc intakes below the estimated average requirement (p = 0.014; however, no association with zinc biochemical parameters was found. Conclusion: HIV-infected children have an inadequate selenium and copper nutritional status, which could influence the progression to AIDS. An adequate micronutrient status could improve the clinical conditions in these patients and minimize free radical production and cellular oxidative stress.

  9. Topical Application of TAT-Superoxide Dismutase in Acupoints LI 20 on Allergic Rhinitis

    Directory of Open Access Journals (Sweden)

    Jing-Ke Guo

    2016-01-01

    Full Text Available Reactive oxygen species are products of cellular metabolism and assigned important roles in biomedical science as deleterious factors in pathologies. In fact, some studies have shown that the therapeutic benefits of taking antioxidants were limited and the potential for therapeutic intervention remains unclear. New evidences showed that ROS have some ability of intercellular transportation. For treating allergic rhinitis, as a novel intracellular superoxide quencher, TAT-SOD applied to acupoints LI 20 instead of directly to nasal cavity can be used to test that. TTA group apply TAT-SOD cream prepared by adding purified TAT-SOD to the vehicle cream to acupoints LI 20, while placebo group used the vehicle cream instead. TTN group applied the same TAT-SOD cream directly to nasal cavity three times daily. Symptom scores were recorded at baseline and days 8 and 15. For the overall efficacy rate, TTA group was 81.0%, while placebo group was 5.9% and TTN was 0%. Malondialdehyde levels decreased observably in TTA group, and superoxide dismutase, catalase, and glutathione peroxidase levels remained basically unaffected. Enzymatic scavenging of the intracellular superoxide at acupoints LI 20 proved to be effective in treating allergic rhinitis, while no improvement was observed with the placebo group and TTN group.

  10. Investigation of the Highly Active Manganese Superoxide Dismutase from Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Cabelli, D.E.; Barnese, K.; Sheng, Y.; Stich, T.A.; Gralla, E.B.; Britt, R.D.; Valentine, J.S.

    2010-09-15

    Manganese superoxide dismutase (MnSOD) from different species differs in its efficiency in removing high concentrations of superoxide (O{sub 2}{sup -}), due to different levels of product inhibition. Human MnSOD exhibits a substantially higher level of product inhibition than the MnSODs from bacteria. In order to investigate the mechanism of product inhibition and whether it is a feature common to eukaryotic MnSODs, we purified MnSOD from Saccharomyces cerevisiae (ScMnSOD). It was a tetramer with 0.6 equiv of Mn per monomer. The catalytic activity of ScMnSOD was investigated by pulse radiolysis and compared with human and two bacterial (Escherichia coli and Deinococcus radiodurans) MnSODs. To our surprise, ScMnSOD most efficiently facilitates removal of high concentrations of O{sub 2}{sup -} among these MnSODs. The gating value k{sub 2}/k{sub 3} that characterizes the level of product inhibition scales as ScMnSOD > D. radiodurans MnSOD > E. coli MnSOD > human MnSOD. While most MnSODs rest as the oxidized form, ScMnSOD was isolated in the Mn{sup 2+} oxidation state as revealed by its optical and electron paramagnetic resonance spectra. This finding poses the possibility of elucidating the origin of product inhibition by comparing human MnSOD with ScMnSOD.

  11. Impaired Endothelial Repair Capacity of Early Endothelial Progenitor Cells in Hypertensive Patients With Primary Hyperaldosteronemia: Role of 5,6,7,8-Tetrahydrobiopterin Oxidation and Endothelial Nitric Oxide Synthase Uncoupling.

    Science.gov (United States)

    Chen, Long; Ding, Mei-Lin; Wu, Fang; He, Wen; Li, Jin; Zhang, Xiao-Yu; Xie, Wen-Li; Duan, Sheng-Zhong; Xia, Wen-Hao; Tao, Jun

    2016-02-01

    Although hyperaldosteronemia exerts detrimental impacts on vascular endothelium in addition to elevating blood pressure, the effects and molecular mechanisms of hyperaldosteronemia on early endothelial progenitor cell (EPC)-mediated endothelial repair after arterial damage are yet to be determined. The aim of this study was to investigate the endothelial repair capacity of early EPCs from hypertensive patients with primary hyperaldosteronemia (PHA). In vivo endothelial repair capacity of early EPCs from PHAs (n=20), age- and blood pressure-matched essential hypertension patients (n=20), and age-matched healthy subjects (n=20) was evaluated by transplantation into a nude mouse carotid endothelial denudation model. Endothelial function was evaluated by flow-mediated dilation of brachial artery in human subjects. In vivo endothelial repair capacity of early EPCs and flow-mediated dilation were impaired both in PHAs and in essential hypertension patients when compared with age-matched healthy subjects; however, the early EPC in vivo endothelial repair capacity and flow-mediated dilation of PHAs were impaired more severely than essential hypertension patients. Oral spironolactone improved early EPC in vivo endothelial repair capacity and flow-mediated dilation of PHAs. Increased oxidative stress, oxidative 5,6,7,8-tetrahydrobiopterin degradation, endothelial nitric oxide synthase uncoupling and decreased nitric oxide production were found in early EPCs from PHAs. Nicotinamide adenine dinucleotide phosphate oxidase subunit p47(phox) knockdown or 5,6,7,8-tetrahydrobiopterin supplementation attenuated endothelial nitric oxide synthase uncoupling and enhanced in vivo endothelial repair capacity of early EPCs from PHAs. In conclusion, PHAs exhibited more impaired endothelial repair capacity of early EPCs than did essential hypertension patients independent of blood pressure, which was associated with mineralocorticoid receptor-dependent oxidative stress and subsequently 5

  12. Oxidative stress and superoxide dismutase activity in brain of rats ...

    African Journals Online (AJOL)

    The present study was envisaged to investigate the possible role of oxidative stress in permethrin neurotoxicity and to evaluate the protective effect of superoxide dismutase (SOD) activity in brain homogenates of Wistar rats. Oxidative stress measured as thiobarbituric acid reacting substances (TBARS) was found to ...

  13. effect of some free radicals on superoxide dismutase and ...

    African Journals Online (AJOL)

    dambayero

    ABSTRACT. Free radicals are species with unpaired electron in their outermost shell. Most free radicals come from oxygen or nitrogen atoms. Radical species such as superoxide radical, hydroxyl radicals and hydrated electron are called the primary radicals of water radiolysis and can be produced by irradiating water.

  14. Effect of some free radicals on superoxide dismutase and ...

    African Journals Online (AJOL)

    Free radicals are species with unpaired electron in their outermost shell. Most free radicals come from oxygen or nitrogen atoms. Radical species such as superoxide radical, hydroxyl radicals and hydrated electron are called the primary radicals of water radiolysis and can be produced by irradiating water molecule.

  15. Zinc, copper, magnesium, proteins and superoxide dismutase in acne

    Directory of Open Access Journals (Sweden)

    Madadi A

    1993-01-01

    Full Text Available Serum zinc, copper, magnesium, proteins and superoxide dismutase (SOD were studied in 40 cases of acne. Serum zinc, magnesium and albumin were found to be significantly decreased whereas serum copper and globulin were significantly increased. There were no significant alterations in the serum total proteins and SOD in the above cases.

  16. Superoxide dismutase in the marine sponge Cliona celata

    NARCIS (Netherlands)

    Marques, D.; Esteves, A.I.; Almeida, M.; Xavier, J.; Humanes, M.

    2008-01-01

    The aim of this work is to investigate the activity of the antioxidant enzyme superoxide dismutase in the cosmopolitan sponge Cliona celata (Grant, 1826), since this enzyme has been described as a useful biomarker for marine pollution in other marine invertebrates. The quantification of the

  17. Oxidative stress and superoxide dismutase activity in brain of rats ...

    African Journals Online (AJOL)

    JTEkanem

    Oxidative stress and superoxide dismutase activity in brain of rats fed with diet containing permethrin. Olawale OTITOJU1, Ikechukwu N. E. ONWURAH2*, Grace T. O. OTITOJU3 and. Chidiebere E. UGWU4. 1Department of Biochemistry, Faculty of Basic Medical Sciences, University of Uyo, Uyo,. Nigeria. 2 Pollution Control ...

  18. superoxide dismutase mRNA in Phascolosoma esculenta exposed

    African Journals Online (AJOL)

    Yomi

    2012-01-16

    Jan 16, 2012 ... 2State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China. 3Third Institute of .... class of important antioxidant enzymes that catalyze the dismutation of superoxide into oxygen and ... The present study therefore aimed to: (1) clone cDNA encoding MnSOD and 18S ...

  19. Neutrophil superoxide-anion generating capacity in chronic smoking ...

    Indian Academy of Sciences (India)

    We investigated whether long-term -tocopherol therapy in chronic smoking affects superoxide generating capacity of neutrophils ex vivo. To this purpose, we randomly assigned 128 male chronic smokers (37 ± 21 pack years of smoking) to treatment with placebo ( = 64) or -tocopherol (400 IU dL--tocopherol daily, ...

  20. Effect of vitamin C on salivary superoxide dismutase activity in ...

    African Journals Online (AJOL)

    This study was performed to elucidate the effect of ascorbic acid on salivary superoxide dismutase (SOD) activity in smokers. In this single blind, cross over clinical trial, whole unstimulated saliva of 30 smokers, who were randomly divided into two groups, was collected. In the first phase, patients of one group took 500 mg of ...

  1. Effect of Low Level Cadmium Exposure on Superoxide Dismutase ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of low level cadmium (Cd) exposure on the activity of superoxide dismutase (SOD) in rat. Methods: Thirty-two male albino rats were divided into four groups of eight animals each. Group one received distilled water and served as control. The other three groups were exposed to 100, 200 ...

  2. Effect of yogic exercise on superoxide dismutase levels in diabetics

    Directory of Open Access Journals (Sweden)

    Mahapure Hemant

    2008-01-01

    Full Text Available Context: Reactive oxygen species are known to aggravate disease progression. To counteract their harmful effects, the body produces various antioxidant enzymes, viz , superoxide dismutase, glutathione reductase etc. Literature reviews revealed that exercises help to enhance antioxidant enzyme systems; hence, yogic exercises may be useful to combat various diseases. Aims: This study aims to record the efficacy of yoga on superoxide dismutase, glycosylated hemoglobin (Hb and fasting blood glucose levels in diabetics. Settings and Design: Forty diabetics aged 40-55 years were assigned to experimental (30 and control (10 groups. The experimental subjects underwent a Yoga program comprising of various Asanas (isometric type exercises and Pranayamas (breathing exercises along with regular anti-diabetic therapy whereas the control group received anti-diabetic therapy only. Methods and Material: Heparinized blood samples were used to determine erythrocyte superoxide dismutase (SOD activity and glycosylated Hb levels and fasting blood specimens collected in fluoride Vacutainers were used for assessing blood glucose. Statistical analysis used: Data were analyzed by using 2 x 2 x 3 Factorial ANOVA followed by Scheffe′s posthoc test. Results: The results revealed that Yogic exercise enhanced the levels of Superoxide dismutase and reduced glycosylated Hb and glucose levels in the experimental group as compared to the control group. Conclusion: The findings conclude that Yogic exercises have enhanced the antioxidant defence mechanism in diabetics by reducing oxidative stress.

  3. Rapid generation of mitochondrial superoxide induces mitochondrion-dependent but caspase-independent cell death in hippocampal neuronal cells that morphologically resembles necroptosis

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Masayuki; Choi, Hye Joung; Zhu, Bao Ting, E-mail: BTZhu@kumc.edu

    2012-07-15

    Studies in recent years have revealed that excess mitochondrial superoxide production is an important etiological factor in neurodegenerative diseases, resulting from oxidative modifications of cellular lipids, proteins, and nucleic acids. Hence, it is important to understand the mechanism by which mitochondrial oxidative stress causes neuronal death. In this study, the immortalized mouse hippocampal neuronal cells (HT22) in culture were used as a model and they were exposed to menadione (also known as vitamin K{sub 3}) to increase intracellular superoxide production. We found that menadione causes preferential accumulation of superoxide in the mitochondria of these cells, along with the rapid development of mitochondrial dysfunction and cellular ATP depletion. Neuronal death induced by menadione is independent of the activation of the MAPK signaling pathways and caspases. The lack of caspase activation is due to the rapid depletion of cellular ATP. It was observed that two ATP-independent mitochondrial nucleases, namely, AIF and Endo G, are released following menadione exposure. Silencing of their expression using specific siRNAs results in transient suppression (for ∼ 12 h) of mitochondrial superoxide-induced neuronal death. While suppression of the mitochondrial superoxide dismutase expression markedly sensitizes neuronal cells to mitochondrial superoxide-induced cytotoxicity, its over-expression confers strong protection. Collectively, these findings showed that many of the observed features associated with mitochondrial superoxide-induced cell death, including caspase independency, rapid depletion of ATP level, mitochondrial release of AIF and Endo G, and mitochondrial swelling, are distinctly different from those of apoptosis; instead they resemble some of the known features of necroptosis. -- Highlights: ► Menadione causes mitochondrial superoxide accumulation and injury. ► Menadione-induced cell death is caspase-independent, due to rapid depletion of

  4. Differentiation state determines neural effects on microvascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Muffley, Lara A., E-mail: muffley@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Pan, Shin-Chen, E-mail: pansc@mail.ncku.edu.tw [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Smith, Andria N., E-mail: gnaunderwater@gmail.com [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Ga, Maricar, E-mail: marga16@uw.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Hocking, Anne M., E-mail: ahocking@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Gibran, Nicole S., E-mail: nicoleg@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States)

    2012-10-01

    Growing evidence indicates that nerves and capillaries interact paracrinely in uninjured skin and cutaneous wounds. Although mature neurons are the predominant neural cell in the skin, neural progenitor cells have also been detected in uninjured adult skin. The aim of this study was to characterize differential paracrine effects of neural progenitor cells and mature sensory neurons on dermal microvascular endothelial cells. Our results suggest that neural progenitor cells and mature sensory neurons have unique secretory profiles and distinct effects on dermal microvascular endothelial cell proliferation, migration, and nitric oxide production. Neural progenitor cells and dorsal root ganglion neurons secrete different proteins related to angiogenesis. Specific to neural progenitor cells were dipeptidyl peptidase-4, IGFBP-2, pentraxin-3, serpin f1, TIMP-1, TIMP-4 and VEGF. In contrast, endostatin, FGF-1, MCP-1 and thrombospondin-2 were specific to dorsal root ganglion neurons. Microvascular endothelial cell proliferation was inhibited by dorsal root ganglion neurons but unaffected by neural progenitor cells. In contrast, microvascular endothelial cell migration in a scratch wound assay was inhibited by neural progenitor cells and unaffected by dorsal root ganglion neurons. In addition, nitric oxide production by microvascular endothelial cells was increased by dorsal root ganglion neurons but unaffected by neural progenitor cells. -- Highlights: Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell proliferation. Black-Right-Pointing-Pointer Neural progenitor cells, not dorsal root ganglion neurons, regulate microvascular endothelial cell migration. Black-Right-Pointing-Pointer Neural progenitor cells and dorsal root ganglion neurons do not effect microvascular endothelial tube formation. Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate

  5. Understanding Free Radicals: Isolating Active Thylakoid Membranes and Purifying the Cytochrome b6f Complex for Superoxide Generation Studies

    Directory of Open Access Journals (Sweden)

    Jason Stofleth

    2012-01-01

    Full Text Available All life persists in an environment that is rich in molecular oxygen. The production of oxygen free radicals, or superoxide, is a necessary consequence of the biogenesis of energy in cells. Both mitochondrial and photosynthetic electron transport chains have been found to produce superoxide associated with cell differentiation, proliferation, and cell death, thereby contributing to the effects of aging. Aerobic respiration in mitochondria consumes oxygen, whereas photosynthesis in chloroplasts or cyanobacteria produces oxygen. The increased concentration of molecular oxygen may serve to allow greater availability for the production of superoxide by cytochrome bc complexes in photosynthetic membranes compared to those of mitochondrial membranes. The isolation of well-coupled chloroplasts, containing the cytochrome b6f complex of oxygenic photosynthesis, is a vital initial step in the process of comparing the rate of production of superoxide to those of the homologous cytochrome bc1 complex of aerobic respiration. It is necessary to determine if the isolated chloroplasts have retained their oxygengenerating capability after isolation by an oxygen evolution assay with a Clark-type electrode. A necessary second step, which is the isolation of cytochrome b6f from spinach, has yet to be successfully performed. Oxygen measurements taken from chloroplasts in the presence of the uncoupler, NH4Cl, exhibited a rate of oxygen evolution over three times greater at 344 +/- 18 μmol O2/mg Chlorophyll a/hr than the rate of oxygen evolution without uncoupler at 109 +/- 29 μmol O2/mg Chlorophyll a/hr. These data demonstrate that the technique used to isolate spinach chloroplasts preserves their light-driven electron-transport activity, making them reliable for future superoxide assays.

  6. Arginase Inhibitor in the Pharmacological Correction of Endothelial Dysfunction

    Science.gov (United States)

    Pokrovskiy, Mihail V.; Korokin, Mihail V.; Tsepeleva, Svetlana A.; Pokrovskaya, Tatyana G.; Gureev, Vladimir V.; Konovalova, Elena A.; Gudyrev, Oleg S.; Kochkarov, Vladimir I.; Korokina, Liliya V.; Dudina, Eleonora N.; Babko, Anna V.; Terehova, Elena G.

    2011-01-01

    This paper is about a way of correction of endothelial dysfunction with the inhibitor of arginase: L-norvaline. There is an imbalance between vasoconstriction and vasodilatation factors of endothelium on the basis of endothelial dysfunction. Among vasodilatation agents, nitrogen oxide plays the basic role. Amino acid L-arginine serves as a source of molecules of nitrogen oxide in an organism. Because of the high activity of arginase enzyme which catalyzes the hydrolysis of L-arginine into ornithine and urea, the bioavailability of nitrogen oxide decreases. The inhibitors of arginase suppress the activity of the given enzyme, raising and production of nitrogen oxide, preventing the development of endothelial dysfunction. PMID:21747978

  7. Cellular and molecular biology of aging endothelial cells.

    Science.gov (United States)

    Donato, Anthony J; Morgan, R Garrett; Walker, Ashley E; Lesniewski, Lisa A

    2015-12-01

    Cardiovascular disease (CVD) is the leading cause of death in the United States and aging is a major risk factor for CVD development. One of the major age-related arterial phenotypes thought to be responsible for the development of CVD in older adults is endothelial dysfunction. Endothelial function is modulated by traditional CVD risk factors in young adults, but advancing age is independently associated with the development of vascular endothelial dysfunction. This endothelial dysfunction results from a reduction in nitric oxide bioavailability downstream of endothelial oxidative stress and inflammation that can be further modulated by traditional CVD risk factors in older adults. Greater endothelial oxidative stress with aging is a result of augmented production from the intracellular enzymes NADPH oxidase and uncoupled eNOS, as well as from mitochondrial respiration in the absence of appropriate increases in antioxidant defenses as regulated by relevant transcription factors, such as FOXO. Interestingly, it appears that NFkB, a critical inflammatory transcription factor, is sensitive to this age-related endothelial redox change and its activation induces transcription of pro-inflammatory cytokines that can further suppress endothelial function, thus creating a vicious feed-forward cycle. This review will discuss the two macro-mechanistic processes, oxidative stress and inflammation, that contribute to endothelial dysfunction with advancing age as well as the cellular and molecular events that lead to the vicious cycle of inflammation and oxidative stress in the aged endothelium. Other potential mediators of this pro-inflammatory endothelial phenotype are increases in immune or senescent cells in the vasculature. Of note, genomic instability, telomere dysfunction or DNA damage has been shown to trigger cell senescence via the p53/p21 pathway and result in increased inflammatory signaling in arteries from older adults. This review will discuss the current state

  8. Extracellular Superoxide Dismutase Is a Growth Regulatory Mediator of Tissue Injury Recovery

    Science.gov (United States)

    Laurila, Juha P; Castellone, Maria D; Curcio, Antonio; Laatikainen, Lilja E; Haaparanta-Solin, Merja; Gronroos, Tove J; Marjamaki, Paivi; Martikainen, Satu; Santoro, Massimo; Laukkanen, Mikko O

    2008-01-01

    Extracellular superoxide dismutase (SOD3) gene therapy has been shown to attenuate tissue damages and to improve the recovery of the tissue injuries, but the cellular events delivering the therapeutic response of the enzyme are not well defined. In the current work, we overexpressed SOD3 in rat hindlimb ischemia model to study the signal transduction and injury healing following the sod3 gene transfer. The data suggest a novel sod3 gene transfer–derived signal transduction cascade through Ras-Mek-Erk mitogenic pathway leading to activation of AP1 and CRE transcription factors, increased vascular endothelial growth factor (VEGF)-A and cyclin D1 expression, increased cell proliferation, and consequently improved metabolic functionality of the injured tissue. Increased cell proliferation could explain the improved metabolic performance and the healing of the tissue damages after the sod3 gene transfer. The present data is a novel description of the molecular mechanism of SOD3-mediated recovery of tissue injury and suggests a new physiological role for SOD3 as a Ras regulatory molecule in signal transduction. PMID:19107121

  9. Are superoxide dismutase 2 and nitric oxide synthase polymorphisms associated with idiopathic infertility?

    Science.gov (United States)

    Faure, Celine; Leveille, Pauline; Dupont, Charlotte; Julia, Chantal; Chavatte-Palmer, Pascale; Sutton, Angela; Levy, Rachel

    2014-08-01

    The aim of this study was to investigate in a case-control study the associations between idiopathic infertility and antioxidant gene polymorphisms. One hundred ten infertile subjects (58 women and 52 men) with a history of idiopathic infertility and 69 fertile subjects (35 women and 34 men) with no history of infertility were included by three hospital departments of reproductive biology in the NCT01093378 French government clinical trial. Genotyping was assessed by real-time polymerase chain reaction with TaqMan assay. We examined genetic polymorphisms affecting five antioxidant enzymes: manganese superoxide dismutase (MnSOD), myeloperoxidase (MPO), glutathione peroxidase 1 (GPx1), catalase (CAT), and endothelial nitric oxide synthase (eNOS). The presence of at least 1 Ala-MnSOD allele (rs4880) increased significantly the risk of infertility (odds ratio [OR] 2.94; 95% confidence interval [CI], 1.14, 7.60; p=0.03) in male subjects. Moreover, the presence of 2 G-eNOS allele (rs1799983) increased significantly the risk of infertility in both men and women (OR 1.91; 95% CI, 1.04, 3.54; p=0.04). Our observations lead to the hypothesis that the genetic susceptibility modulating oxidative stress may represent a risk factor for male idiopathic infertility.

  10. Nanomedicines for Endothelial Disorders

    OpenAIRE

    Chung, Bomy Lee; Toth, Michael J.; Kamaly, Nazila; Sei, Yoshitaka J.; Becraft, Jacob; Mulder, Willem J. M.; Fayad, Zahi A; Farokhzad, Omid C.; Kim, YongTae; Langer, Robert

    2015-01-01

    The endothelium lines the internal surfaces of blood and lymphatic vessels and has a critical role in maintaining homeostasis. Endothelial dysfunction is involved in the pathology of many diseases and conditions, including disorders such as diabetes, cardiovascular diseases, and cancer. Given this common etiology in a range of diseases, medicines targeting an impaired endothelium can strengthen the arsenal of therapeutics. Nanomedicine – the application of nanotechnology to healthcare – prese...

  11. Apigenin Isolated from the Medicinal Plant Elsholtzia rugulosa Prevents β-Amyloid 25–35-Induces Toxicity in Rat Cerebral Microvascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Qingshan Liu

    2011-05-01

    Full Text Available Endothelial cells of cerebral capillaries forming the blood-brain barrier play an important role in the pathogenesis and therapy of Alzheimer’s disease. Amyloid-β peptides are key pathological elements in the development of this disease. Apigenin (4’,5,7-tetrahydroxyflavone is a plant flavonoid and pharmacologically active agent that can be isolated from several plant species. In the present study, effects of apigenin obtained from the medicinal plant Elsholtzia rugulosa (Labiatae on primary cultured rat cerebral microvascular endothelial cells (CMECs mediated by amyloid-β peptide 25–35 (Aβ25–35 were examined. Aβ25–35 showed toxic effects on CMECs, involving reduction of cell viability, release of lactate dehydrogenase (LDH, increase of nuclear condensation, over-production of intracellular reactive oxygen species (ROS, decrease of superoxide dismutase (SOD activity, and breakage of the barrier integrity and function. Based on this model, we demonstrated that apigenin from the medicinal plant Elsholtzia rugulosa protected cultured rat CMECs by increasing cell viability, reducing LDH release, relieving nuclear condensation, alleviating intracellular ROS generation, increasing SOD activity, and strengthening the barrier integrity through the preservation of transendothelial electrical resistance, permeability property and characteristic enzymatic activity after being exposed to Aβ25–35. In conclusion, apigenin isolated from Elsholtzia rugulosa has the ability to protect rat CMECs against Aβ25–35-induced toxicity.

  12. Supression of hemin-mediated oxidation of low-density lipoprotein and subsequent endothelial reactions by hydrogen sulfide (H(2)S).

    Science.gov (United States)

    Jeney, Viktória; Komódi, Edina; Nagy, Emõke; Zarjou, Abolfazl; Vercellotti, Gregory M; Eaton, John W; Balla, György; Balla, József

    2009-03-01

    Heme-mediated oxidative modification of low-density lipoprotein (LDL) plays a crucial role in early atherogenesis. It has been shown that hydrogen sulfide (H(2)S) produced by vascular smooth muscle cells is present in plasma at a concentration of about 50 micromol/L. H(2)S is a strong reductant which can react with reactive oxygen species like superoxide anion and hydrogen peroxide. The current study investigated the effect of H(2)S on hemin-mediated oxidation of LDL and oxidized LDL (oxLDL)-induced endothelial reactions. H(2)S dose dependently delayed the accumulation of lipid peroxidation products-conjugated dienes, lipid hydroperoxides (LOOH), and thiobarbituric acid reactive substances-during hemin-mediated oxidation. Moreover, H(2)S decreased the LOOH content of both oxidized LDL and lipid extracts derived from soft atherosclerotic plaque, which was accompanied by reduced cytotoxicity. OxLDL-mediated induction of the oxidative stress responsive gene, heme oxygenase-1, was also abolished by H(2)S. Finally we have shown that H(2)S can directly protect endothelium against hydrogen peroxide and oxLDL-mediated endothelial cytotoxicity. These results demonstrate novel functions of H(2)S in preventing hemin-mediated oxidative modification of LDL, and consequent deleterious effects, suggesting a possible antiatherogenic action of H(2)S.

  13. Ferrous Ion Chelating, Superoxide Anion Radical Scavenging and Tyrosinase Inhibitory Properties of Pure and Commercial Essential Oils of Anetrhum Graveolens

    Directory of Open Access Journals (Sweden)

    Sh Darvish Alipour Astaneh

    2013-04-01

    Full Text Available Introduction: Despite slight toxicities of essential oils, they are not under strict control in many countries. Anethum graveolens is widely consumed and its essential oils are at public reach. This study was designed to study essential oils of Anethum graveolens. Methods: The biological properties of pure and commercial essential oils of Anethum graveolens were investigated. In fact, Ferrous ion chelating activity, superoxide anion radical scavenging property, tyrosinase inhibition and total flavonoids of the oils were determined. Results: Chelating activity of 7.8 µg of EDTA was equivalent to 2 µg of the pure oil. The oils had superoxide anion radical scavenging activities which may be related to their total phenol and flavonoid contents. IC50 of ferrous ion chelating, antityrosiase and superoxide anion radical scavenging activities of pure and commercial oils were 1.3, 1.4, 1 and (171.6, 589, 132 µg respectively. Antityrosiase activity of 6.4 µg pure oil was equal to 1000 µg of the commercial oil. Conclusion: Anethum possesses antioxidative and free radical scavenging properties. This oil chelates ferrous ions and superoxide radicals. It is effective in formation of reactive toxic products. Anethum has good potentials regarding its applications in food and drug industries.

  14. ACTIVITY OF SUPEROXIDE DISMUTASE ENZYME IN YEAST SACCHAROMYCES CEREVISIAE

    Directory of Open Access Journals (Sweden)

    Blažena Lavová

    2014-02-01

    Full Text Available Reactive oxygen species (ROS with reactive nitrogen species (RNS are known to play dual role in biological systems, they can be harmful or beneficial to living systems. ROS can be important mediators of damage to cell structures, including proteins, lipids and nucleic acids termed as oxidative stress. The antioxidant enzymes protect the organism against the oxidative damage caused by active oxygen forms. The role of superoxide dismutase (SOD is to accelerate the dismutation of the toxic superoxide radical, produced during oxidative energy processes, to hydrogen peroxide and molecular oxygen. In this study, SOD activity of three yeast strains Saccharomyces cerevisiae was determined. It was found that SOD activity was the highest (23.7 U.mg-1 protein in strain 612 after 28 hours of cultivation. The lowest SOD activity from all tested strains was found after 56 hours of cultivation of strain Gyöng (0.7 U.mg-1 protein.

  15. Active center of superoxide dismutase from Propionibacterium Shermanii

    Energy Technology Data Exchange (ETDEWEB)

    Iakovleva, O.; Parak, F. [Technische Univ. Muenchen (Germany). Fakultaet fuer Physik E 17; Rimke, T. [Mainz Univ. (Germany). Inst. fuer Molekukare Biophysik; Meier, B. [Tiraerztliche Hochschule Hannover, Chemisches Institut, Hannover (Germany); Huttermann, J.; Kappl, R. [Homburg Univ. (Germany). Inst. fuer Biophysik

    1996-02-01

    A self-consistent description of the EPR spectra and of the Moessbauer spectra of the natural superoxide dismutase from Propionibacterium shermanii with ferric iron as an active centre is presented. The spectra were measured at pH 6.5, 7.8 and 9.4. The theoretical approach is based on the use of the complete crystal field Hamiltonian for the high-spin ferric complexes with due regard for the terms of the fourth power of the electronic spin. It is shown that a SOD (superoxide dismutase) molecule can exists in two conformations. The low-pH conformation has the symmetry close to the extreme rhombic. This interpretation is in full agreement with EXAFS structural data.

  16. Endothelial dysfunction in rheumatic autoimmune diseases.

    Science.gov (United States)

    Murdaca, Giuseppe; Colombo, Barbara Maria; Cagnati, Paola; Gulli, Rossella; Spanò, Francesca; Puppo, Francesco

    2012-10-01

    Rheumatic autoimmune diseases have been associated with accelerated atherosclerosis and various types of vasculopathies. Atherosclerosis is an inflammatory condition which starts as a "response to injury" favoring endothelial dysfunction which is associated with increased expression of adhesion molecules, pro-inflammatory cytokines, pro-thrombotic factors, oxidative stress upregulation and abnormal vascular tone modulation. Endothelial dysfunction in rheumatic autoimmune diseases involves innate immune responses, including macrophages and dendritic cells expression of scavenger and toll-like receptors for modified or native LDL as well as neutrophil and complement activation, and dysregulation of adaptive immune responses, including proliferation of autoreactive T-helper-1 lymphocytes and defective function of dendritic and regulatory T cells. Specific differences for endothelial function among different disorders include: a) increased amounts of pro-atherogenic hormones, decreased amounts of anti-atherogenic hormones and increased insulin resistance in rheumatoid arthritis; b) autoantibodies production in systemic lupus erythematosus and antiphospholipid syndrome; c) smooth muscle cells proliferation, destruction of internal elastic lamina, fibrosis and coagulation and fibrinolytic system dysfunction in systemic sclerosis. Several self-antigens (i.e. high density lipoproteins, heat shock proteins, β2-glycoprotein1) and self-molecules modified by oxidative events (i.e. low density lipoproteins and oxidized hemoglobin) have been identified as targets of autoimmune responses. Endothelial dysfunction leads to accelerated atherosclerosis in rheumatoid arthritis, systemic lupus erythematosus and spondyloarthropaties whereas obliterative vasculopathy is associated with systemic sclerosis. In this paper, we will briefly review the most relevant information upon endothelial dysfunction and inflammatory mechanisms in atherosclerosis and we will summarize the similarities

  17. Endothelial RIG-I activation impairs endothelial function

    Energy Technology Data Exchange (ETDEWEB)

    Asdonk, Tobias, E-mail: tobias.asdonk@ukb.uni-bonn.de [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Motz, Inga; Werner, Nikos [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Coch, Christoph; Barchet, Winfried; Hartmann, Gunther [Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Nickenig, Georg; Zimmer, Sebastian [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer RIG-I activation impairs endothelial function in vivo. Black-Right-Pointing-Pointer RIG-I activation alters HCAEC biology in vitro. Black-Right-Pointing-Pointer EPC function is affected by RIG-I stimulation in vitro. -- Abstract: Background: Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Methods and results: Wild type mice were injected intravenously with 32.5 {mu}g of the RIG-ligand 3pRNA (RNA with triphosphate at the 5 Prime end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. Conclusion: This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.

  18. Impairment by hypoxia or hypoxia/reoxygenation of nitric oxide-mediated relaxation in isolated monkey coronary artery: the role of intracellular superoxide.

    Science.gov (United States)

    Tawa, Masashi; Yamamizu, Kohei; Geddawy, Ayman; Shimosato, Takashi; Imamura, Takeshi; Ayajiki, Kazuhide; Okamura, Tomio

    2011-01-01

    To investigate the effect of hypoxia or hypoxia/reoxygenation on vascular smooth muscle function, mechanical response of monkey coronary artery without endothelium was studied under normoxia, hypoxia, and hypoxia/reoxygenation. Hypoxia or hypoxia/reoxygenation impaired the relaxation by nitroglycerin or isosorbide dinitrate but not that by 8-bromoguanosine-3',5'-cyclic monophosphate or isoproterenol. Tempol restored the impaired relaxation by nitroglycerin or isosorbide dinitrate, but superoxide dismutase had no effect. Apocynin, an NADPH oxidase inhibitor, improved the nitroglycerin-induced relaxation under hypoxia, but not under reoxygenation. Under combined treatment of apocynin with oxypurinol (xanthine oxidase inhibitor), rotenone (mitochondria electron transport inhibitor), or both, hypoxic impairment of vasorelaxation was restored more effectively. Similarly, impairment of the nitroglycerin-induced vasorelaxation under hypoxia/reoxygenation was restored by combined treatment with three inhibitors, apocynin, oxypurinol, and rotenone. Increase in superoxide production under hypoxia tended to be inhibited by apocynin and that under hypoxia/reoxygenation was abolished by combined treatment with three inhibitors. These findings suggest that increased intracellular superoxide production under hypoxia or hypoxia/reoxygenation attenuates vasodilation mediated with a nitric oxide/soluble guanylyl cyclase, but not adenylyl cyclase, signaling pathway. The main source of superoxide production under hypoxia seems to be different from that under reoxygenation: superoxide is produced by NADPH oxidase during hypoxia, whereas it is produced by xanthine oxidase, mitochondria, or both during reoxygenation.[Supplementary Figure: available only at http://dx.doi.org/10.1254/jphs.11031FP].

  19. The Superoxide Reductase from the Early Diverging Eukaryote Giardia Intestinalis

    Energy Technology Data Exchange (ETDEWEB)

    Cabelli, D.E.; Testa, F.; Mastronicola, D.; Bordi, E.; Pucillo, L.P.; Sarti, P.; Saraiva, L.M.; Giuffre, A.; Teixeira, M.

    2011-10-15

    Unlike superoxide dismutases (SODs), superoxidereductases (SORs) eliminate superoxide anion (O{sub 2}{sup {sm_bullet}-}) not through its dismutation, but via reduction to hydrogen peroxide (H{sub 2}O{sub 2}) in the presence of an electron donor. The microaerobic protist Giardia intestinalis, responsible for a common intestinal disease in humans, though lacking SOD and other canonical reactive oxygen species-detoxifying systems, is among the very few eukaryotes encoding a SOR yet identified. In this study, the recombinant SOR from Giardia (SOR{sub Gi}) was purified and characterized by pulse radiolysis and stopped-flow spectrophotometry. The protein, isolated in the reduced state, after oxidation by superoxide or hexachloroiridate(IV), yields a resting species (T{sub final}) with Fe{sup 3+} ligated to glutamate or hydroxide depending on pH (apparent pK{sub a} = 8.7). Although showing negligible SOD activity, reduced SOR{sub Gi} reacts with O{sub 2}{sup {sm_bullet}-} with a pH-independent second-order rate constant k{sub 1} = 1.0 x 10{sup 9} M{sup -1} s{sup -1} and yields the ferric-(hydro)peroxo intermediate T{sub 1}; this in turn rapidly decays to the T{sub final} state with pH-dependent rates, without populating other detectable intermediates. Immunoblotting assays show that SOR{sub Gi} is expressed in the disease-causing trophozoite of Giardia. We propose that the superoxide-scavenging activity of SOR in Giardia may promote the survival of this air-sensitive parasite in the fairly aerobic proximal human small intestine during infection.

  20. Recent developments in detection of superoxide radical anion and hydrogen peroxide: Opportunities, challenges, and implications in redox signaling.

    Science.gov (United States)

    Kalyanaraman, Balaraman; Hardy, Micael; Podsiadly, Radoslaw; Cheng, Gang; Zielonka, Jacek

    2017-03-01

    In this review, some of the recent developments in probes and assay techniques specific for superoxide (O2-) and hydrogen peroxide (H2O2) are discussed. Over the last decade, significant progress has been made in O2- and H2O2 detection due to syntheses of new redox probes, better understanding of their chemistry, and development of specific and sensitive assays. For superoxide detection, hydroethidine (HE) is the most suitable probe, as the product, 2-hydroxyethidium, is specific for O2-. In addition, HE-derived dimeric products are specific for one-electron oxidants. As red-fluorescent ethidium is always formed from HE intracellularly, chromatographic techniques are required for detecting 2-hydroxyethidium. HE analogs, Mito-SOX and hydropropidine, exhibit the same reaction chemistry with O2- and one-electron oxidants. Thus, mitochondrial superoxide can be unequivocally detected using HPLC-based methods and not by fluorescence microscopy. Aromatic boronate-based probes react quantitatively with H2O2, forming a phenolic product. However, peroxynitrite and hypochlorite react more rapidly with boronates, forming the same product. Using ROS-specific probes and HPLC assays, it is possible to screen chemical libraries to discover specific inhibitors of NADPH oxidases. We hope that rigorous detection of O2- and H2O2 in different cellular compartments will improve our understanding of their role in redox signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Superoxide dismutase 1 is positively selected to minimize protein aggregation in great apes

    DEFF Research Database (Denmark)

    Dasmeh, Pouria; Kepp, Kasper Planeta

    2017-01-01

    Positive (adaptive) selection has recently been implied in human superoxide dismutase 1 (SOD1), a highly abundant antioxidant protein with energy signaling and antiaging functions, one of very few examples of direct selection on a human protein product (exon); the molecular drivers of this select...... and SOD1 aggregates and triggered by aging. Our study thus marks an example of direct selection for a particular chemical phenotype (high net charge and stability) in a single human protein with possible implications for the evolution of aging.......Positive (adaptive) selection has recently been implied in human superoxide dismutase 1 (SOD1), a highly abundant antioxidant protein with energy signaling and antiaging functions, one of very few examples of direct selection on a human protein product (exon); the molecular drivers...... of this selection are unknown. We mapped 30 extant SOD1 sequences to the recently established mammalian species tree and inferred ancestors, key substitutions, and signatures of selection during the protein's evolution. We detected elevated substitution rates leading to great apes (Hominidae) at ~1 per 2 million...

  2. Dissolution and ionization of sodium superoxide in sodium-oxygen batteries

    Science.gov (United States)

    Kim, Jinsoo; Park, Hyeokjun; Lee, Byungju; Seong, Won Mo; Lim, Hee-Dae; Bae, Youngjoon; Kim, Haegyeom; Kim, Won Keun; Ryu, Kyoung Han; Kang, Kisuk

    2016-02-01

    With the demand for high-energy-storage devices, the rechargeable metal-oxygen battery has attracted attention recently. Sodium-oxygen batteries have been regarded as the most promising candidates because of their lower-charge overpotential compared with that of lithium-oxygen system. However, conflicting observations with different discharge products have inhibited the understanding of precise reactions in the battery. Here we demonstrate that the competition between the electrochemical and chemical reactions in sodium-oxygen batteries leads to the dissolution and ionization of sodium superoxide, liberating superoxide anion and triggering the formation of sodium peroxide dihydrate (Na2O2.2H2O). On the formation of Na2O2.2H2O, the charge overpotential of sodium-oxygen cells significantly increases. This verification addresses the origin of conflicting discharge products and overpotentials observed in sodium-oxygen systems. Our proposed model provides guidelines to help direct the reactions in sodium-oxygen batteries to achieve high efficiency and rechargeability.

  3. A new method to prevent degradation of lithium-oxygen batteries: reduction of superoxide by viologen.

    Science.gov (United States)

    Yang, L; Frith, J T; Garcia-Araez, N; Owen, J R

    2015-01-31

    Lithium-oxygen battery development is hampered by degradation reactions initiated by superoxide, which is formed in the pathway of oxygen reduction to peroxide. This work demonstrates that the superoxide lifetime is drastically decreased upon addition of ethyl viologen, which catalyses the reduction of superoxide to peroxide.

  4. Autocrine VEGF isoforms differentially regulate endothelial cell behavior

    Directory of Open Access Journals (Sweden)

    Hideki Yamamoto

    2016-09-01

    Full Text Available Vascular endothelial growth factor A (VEGF is involved in all the essential biology of endothelial cells, from proliferation to vessel function, by mediating intercellular interactions and monolayer integrity. It is expressed as three major alternative spliced variants. In mice, these are VEGF120, VEGF164, and VEGF188, each with different affinities for extracellular matrices and cell surfaces, depending on the inclusion of heparin-binding sites, encoded by exons 6 and 7. To determine the role of each VEGF isoform in endothelial homeostasis, we compared phenotypes of primary endothelial cells isolated from lungs of mice expressing single VEGF isoforms in normoxic and hypoxic conditions. The differential expression and distribution of VEGF isoforms affect endothelial cell functions, such as proliferation, adhesion, migration and integrity, which are dependent on the stability of and affinity to VEGF receptor 2 (VEGFR2. We found a correlation between autocrine VEGF164 and VEGFR2 stability, which is also associated with increased expression of proteins involved in cell adhesion. Endothelial cells expressing only VEGF188, which localizes to extracellular matrices or cell surfaces, presented a mesenchymal morphology and weakened monolayer integrity. Cells expressing only VEGF120 lacked stable VEGFR2 and dysfunctional downstream processes, rendering the cells unviable. Endothelial cells expressing these different isoforms in isolation also had differing rates of apoptosis, proliferation, and signaling via nitric oxide (NO synthesis. These data indicate that autocrine signaling of each VEGF isoform has unique functions on endothelial homeostasis and response to hypoxia, due to both distinct VEGF distribution and VEGFR2 stability, which appears to be, at least partly, affected by differential NO production. This study demonstrates that each autocrine VEGF isoform has a distinct effect on downstream functions, namely VEGFR2-regulated endothelial cell

  5. [Transplantation of corneal endothelial cells].

    Science.gov (United States)

    Amano, Shiro

    2002-12-01

    Though conventional corneal transplantation has achieved great success, it still has several drawbacks including limited availability of donor corneas, recurrent allograft rejection, and subsequent graft failure in certain cases. Reconstructing clinically usable corneas by applying the technology of regenerative medicine can offer a solution to these problems, as well as making corneal transplantation a non-emergency surgery and enabling the usage of banked corneal cells. In the present study, we focused on corneal endothelium that is critical for corneal transparency and investigated the reconstruction of cornea utilizing cultured human corneal endothelial cells (HCECs). We succeeded in steadily culturing HCECs by using culture dishes pre-coated with extracellular matrix produced by calf corneal endothelial cells and culture media that contained basic fibroblast growth factor and fetal bovine serum. We performed the following analysis utilizing these cultured HCECs. The older the donor was, the more frequently large senescent cells appeared in the passaged HCECs. The telomeres of HCECs were measured as terminal restriction fragments (TRF) by Southern blotting. HCECs, in vivo from donors in their seventies had a long TRFs of over 12 kilobases. Passaging shortened the TRFs but there was no difference in TRFs among donors of various ages. These results indicated that shortening of telomere length is not related to senescence of HCECs. We investigated the role of advanced glycation end products (AGEs) in the senescence of in vivo HCECs. The results indicated that AGE-protein in the aqueous humor is endocytosed into HCECs via AGE receptors expressed on the surface of HCECs and damages HCECs by producing reactive oxygen species and inducing apoptosis, suggesting that AGEs, at least partly, cause the senescence of HECEs. HCECs were cultured using adult human serum instead of bovine serum to get rid of bovine material that can be infected with prions. Primary and passage

  6. Reactions of superoxide dismutases with HS(-)/H2S and superoxide radical anion: An in vitro EPR study.

    Science.gov (United States)

    Bolić, Bojana; Mijušković, Ana; Popović-Bijelić, Ana; Nikolić-Kokić, Aleksandra; Spasić, Snežana; Blagojević, Duško; Spasić, Mihajlo B; Spasojević, Ivan

    2015-12-01

    Interactions of hydrogen sulfide (HS(-)/H2S), a reducing signaling species, with superoxide dimutases (SOD) are poorly understood. We applied low-T EPR spectroscopy to examine the effects of HS(-)/H2S and superoxide radical anion O2.- on metallocenters of FeSOD, MnSOD, and CuZnSOD. HS(-)/H2S did not affect FeSOD, whereas active centers of MnSOD and CuZnSOD were open to this agent. Cu(2+) was reduced to Cu(1+), while manganese appears to be released from MnSOD active center. Untreated and O2.- treated FeSOD and MnSOD predominantly show 5 d-electron systems, i.e. Fe(3+) and Mn(2+). Our study provides new details on the mechanisms of (patho)physiological effects of HS(-)/H2S. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. In Vitro Endothelialization Test of Biomaterials Using Immortalized Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Ken Kono

    Full Text Available Functionalizing biomaterials with peptides or polymers that enhance recruitment of endothelial cells (ECs can reduce blood coagulation and thrombosis. To assess endothelialization of materials in vitro, primary ECs are generally used, although the characteristics of these cells vary among the donors and change with time in culture. Recently, primary cell lines immortalized by transduction of simian vacuolating virus 40 large T antigen or human telomerase reverse transcriptase have been developed. To determine whether immortalized ECs can substitute for primary ECs in material testing, we investigated endothelialization on biocompatible polymers using three lots of primary human umbilical vein endothelial cells (HUVEC and immortalized microvascular ECs, TIME-GFP. Attachment to and growth on polymer surfaces were comparable between cell types, but results were more consistent with TIME-GFP. Our findings indicate that TIME-GFP is more suitable for in vitro endothelialization testing of biomaterials.

  8. Spironolactone Prevents Endothelial Nitric Oxide Synthase Uncoupling and Vascular Dysfunction Induced by β-Adrenergic Overstimulation: Role of Perivascular Adipose Tissue.

    Science.gov (United States)

    Victorio, Jamaira A; Clerici, Stefano P; Palacios, Roberto; Alonso, María J; Vassallo, Dalton V; Jaffe, Iris Z; Rossoni, Luciana V; Davel, Ana P

    2016-09-01

    Sustained stimulation of β-adrenoceptors (β-ARs) and activation of renin-angiotensin-aldosterone system are common features of cardiovascular diseases with rising sympathetic activation, including essential hypertension, myocardial infarction, and heart failure. In this study, we investigated the role of AT1 receptor and mineralocorticoid receptor (MR) in the vascular alterations caused by β-AR overstimulation. β-AR overstimulation with associated cardiac hypertrophy and increased vasoconstrictor response to phenylephrine in aorta were modeled in rats by 7-day isoproterenol treatment. The increased vasoconstrictor response to phenylephrine in this model was blunted by the MR antagonist spironolactone, but not by the AT1 receptor antagonist losartan, despite the blunting of cardiac hypertrophy with both drugs. Spironolactone, but not losartan, restored NO bioavailability in association with lower endothelial nitric oxide synthase-derived superoxide production, increased endothelial nitric oxide synthase dimerization, and aortic HSP90 upregulation. MR genomic and nongenomic functions were activated in aortas from isoproterenol-treated rats. Isoproterenol did not modify plasma levels of MR ligands aldosterone and corticosterone but rather increased perivascular adipose tissue-derived corticosterone in association with increased expression of 11β-hydroxysteroid dehydrogenase type 1. The anticontractile effect of aortic perivascular adipose tissue was impaired by β-AR overstimulation and restored by MR blockade. These results suggest that activation of vascular MR signaling contributes to the vascular dysfunction induced by β-AR overstimulation associated with endothelial nitric oxide synthase uncoupling. These findings reveal an additional explanation for the protective effects of MR antagonists in cardiovascular disorders with sympathetic activation. © 2016 The Authors.

  9. Endothelial RIG-I activation impairs endothelial function.

    Science.gov (United States)

    Asdonk, Tobias; Motz, Inga; Werner, Nikos; Coch, Christoph; Barchet, Winfried; Hartmann, Gunther; Nickenig, Georg; Zimmer, Sebastian

    2012-03-30

    Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Wild type mice were injected intravenously with 32.5 μg of the RIG-ligand 3pRNA (RNA with triphosphate at the 5'end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Lower Superoxide Dismutase 2 (SOD2 Protein Content in Mononuclear Cells Is Associated with Better Survival in Patients with Hemodialysis Therapy

    Directory of Open Access Journals (Sweden)

    Katharina Krueger

    2016-01-01

    Full Text Available Mitochondrial superoxide dismutase 2 (SOD2 converts superoxide anions to hydrogen peroxide and oxygen. Human data on SOD2 protein content in chronic kidney disease (CKD are sparse and mortality data are lacking. We investigated SOD2 protein content in monocytes from patients with hemodialysis therapy (n=81, CKD stage 1–5 (n=120, and healthy controls (n=13 using in-cell Western assays. SOD2 protein decreased from CKD stage 1 until stage 4 whereas it increased again in stage 5 with and without hemodialysis. SOD2 gene expression, analyzed by quantitative real-time PCR, was not significantly different between the groups. Elevating cellular superoxide production reduced SOD2 protein content. This effect was abolished by the superoxide dismutase mimetic Tempol. Using gelelectrophoresis and Western blot we did not detect nitrotyrosine modifications of SOD2 in CKD. Finally, in patients with CKD stage 5 with hemodialysis therapy higher than median SOD2 protein content was associated with higher all-cause mortality. In conclusion, SOD2 protein content declined in CKD until stage 4 while SOD2 gene expression did not. Increased cellular superoxide anion production might affect SOD2 protein content. In advanced CKD (stage 5 SOD2 protein content increased again, but higher than median SOD2 protein content in these patients did not confer a survival benefit.

  11. Modelling the endothelial blood-CNS barriers: a method for the production of robust in vitro models of the rat blood-brain barrier and blood-spinal cord barrier.

    Science.gov (United States)

    Watson, P Marc D; Paterson, Judy C; Thom, George; Ginman, Ulrika; Lundquist, Stefan; Webster, Carl I

    2013-06-18

    Modelling the blood-CNS barriers of the brain and spinal cord in vitro continues to provide a considerable challenge for research studying the passage of large and small molecules in and out of the central nervous system, both within the context of basic biology and for pharmaceutical drug discovery. Although there has been considerable success over the previous two decades in establishing useful in vitro primary endothelial cell cultures from the blood-CNS barriers, no model fully mimics the high electrical resistance, low paracellular permeability and selective influx/efflux characteristics of the in vivo situation. Furthermore, such primary-derived cultures are typically labour-intensive and generate low yields of cells, limiting scope for experimental work. We thus aimed to establish protocols for the high yield isolation and culture of endothelial cells from both rat brain and spinal cord. Our aim was to optimise in vitro conditions for inducing phenotypic characteristics in these cells that were reminiscent of the in vivo situation, such that they developed into tight endothelial barriers suitable for performing investigative biology and permeability studies. Brain and spinal cord tissue was taken from the same rats and used to specifically isolate endothelial cells to reconstitute as in vitro blood-CNS barrier models. Isolated endothelial cells were cultured to expand the cellular yield and then passaged onto cell culture inserts for further investigation. Cell culture conditions were optimised using commercially available reagents and the resulting barrier-forming endothelial monolayers were characterised by functional permeability experiments and in vitro phenotyping by immunocytochemistry and western blotting. Using a combination of modified handling techniques and cell culture conditions, we have established and optimised a protocol for the in vitro culture of brain and, for the first time in rat, spinal cord endothelial cells. High yields of both CNS

  12. [Medical significance of endothelial glycocalyx].

    Science.gov (United States)

    Frati-Munari, Alberto C

    2013-01-01

    Endothelial glycocalyx is a layer composed by glycosaminoglycans, proteoglycans and glycoproteins attached to the vascular endothelial luminal surface. It has several physiological roles: shear stress mechanotransduction to the endothelial cells, regulation of fluids and macromolecules vascular permeability, of coagulation cascade activation and fibrinolysis, and protects the endothelium from platelets and leukocytes adhesion. In general, glycocalyx protects vascular wall against pathogenic insults. The glycocalyx may be damaged by abnormal shear stress, reactive oxygen species, hypernatremia, hyperglycemia, hypercholesterolemia and inflammatory molecules, resulting in endothelial dysfunction, enhanced vascular permeability, lipoproteins leakage to subendothelial space, activation of plasma coagulation, and increased adherence of platelets and leukocytes to the endothelial cells. Shredding of glycocalyx appears as an important initial step in the pathophysiology of vascular diseases. Copyright © 2012 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  13. Martian Superoxide and Peroxide O2 Release (OR) Assay: A New Technology for Terrestrial and Planetary Applications

    Science.gov (United States)

    Georgiou, Christos D.; Zisimopoulos, Dimitrios; Panagiotidis, Konstantinos; Grintzalis, Kontantinos; Papapostolou, Ioannis; Quinn, Richard C.; McKay, Christopher P.; Sun, Henry J.

    2015-01-01

    This study presents an assay for the detection and quantification of soil metal superoxides and peroxides in regolith and soil. The O2 release (OR) assay is based on the enzymatic conversion of the hydrolysis products of metal oxides to O2, and their quantification by an O2 electrode based on the stoichiometry of the involved reactions: The intermediate product O2 from the hydrolysis of metal superoxides is converted by cytochrome c to O2, and also by superoxide dismutase (SOD) to 1/2 mol O2 and 1/2 mol H2O2, which is then converted by catalase (CAT) to 1/2 mol O2. The product H2O2 from the hydrolysis of metal peroxides and hydroperoxides is converted to 1/2 mol O2 by CAT. The assay-method was validated in a sealed sample chamber using a liquid-phase Clark-type O2 electrode with known concentrations of O2 and H2O2, and with commercial metal superoxide and peroxide mixed with Mars analogue Mojave and Atacama Desert soils. Carbonates and perchlorates, both present on Mars, do not interfere with the assay. The assay lower limit of detection, using luminescence quenching/optical sensing O2-electrodes, is 1 nmol O2 cm(exp. -3) or better. The activity of the assay enzymes SOD and cytochrome c was unaffected up to 6 Gy exposure by gamma-radiation, while CAT retained 100% and 40% of its activity at 3 and 6 Gy, respectively, demonstrating the suitability of these enzymes for planetary missions, e.g., in Mars or Europa.

  14. Ferrous iron reduction of superoxide, a proton-coupled electron-transfer four-point test.

    Science.gov (United States)

    Wander, Matthew C F; Kubicki, James D; Clark, Aurora E; Schoonen, Martin A A

    2009-02-12

    Nelsen's four-point method of separating oxidants and reductants has been tested to evaluate its applicability to proton-coupled electron-transfer reactions. An efficient computational method was developed to determine rate-limiting steps in complex, multistep redox reactions. Geochemical redox reactions are rarely single-step, and by identifying the rate-limiting steps, computational time can be greatly reduced. The reaction of superoxide and ferrous oxide was selected as a test case for its simplicity and its importance in environmental radical generation chemistry (Fenton's reaction). Two approaches, one quantum mechanical and the other semiempirical, were compared. In both approaches, hybrid density functional theory (DFT) was used with the B3LYP/6-31+G(d,p) basis set and a polarized continuum model of the solvent to minimize the structures and determine the energies. In the quantum mechanical case, DFT was used to determine both the Gibbs free energies and the values for the intrinsic component of the reorganization energy of possible combinations of reactants and products. In the latter, experimental DeltaG(f) values were combined with calculated intrinsic reorganization energy values. The computational results matched the relative difference in rate barriers between the reduction of superoxide by ferrous iron above and below pH 4.8. In the acidic pH range, the proton is coupled to the electron transfer, whereas in the neutral case, the proton initiates the electron transfer.

  15. Brain-Specific Superoxide Dismutase 2 Deficiency Causes Perinatal Death with Spongiform Encephalopathy in Mice.

    Science.gov (United States)

    Izuo, Naotaka; Nojiri, Hidetoshi; Uchiyama, Satoshi; Noda, Yoshihiro; Kawakami, Satoru; Kojima, Shuji; Sasaki, Toru; Shirasawa, Takuji; Shimizu, Takahiko

    2015-01-01

    Oxidative stress is believed to greatly contribute to the pathogenesis of various diseases, including neurodegeneration. Impairment of mitochondrial energy production and increased mitochondrial oxidative damage are considered early pathological events that lead to neurodegeneration. Manganese superoxide dismutase (Mn-SOD, SOD2) is a mitochondrial antioxidant enzyme that converts toxic superoxide to hydrogen peroxide. To investigate the pathological role of mitochondrial oxidative stress in the central nervous system, we generated brain-specific SOD2-deficient mice (B-Sod2(-/-)) using nestin-Cre-loxp system. B-Sod2(-/-) showed perinatal death, along with severe growth retardation. Interestingly, these mice exhibited spongiform neurodegeneration in motor cortex, hippocampus, and brainstem, accompanied by gliosis. In addition, the mutant mice had markedly decreased mitochondrial complex II activity, but not complex I or IV, in the brain based on enzyme histochemistry. Furthermore, brain lipid peroxidation was significantly increased in the B-Sod2(-/-), without any compensatory alterations of the activities of other antioxidative enzymes, such as catalase or glutathione peroxidase. These results suggest that SOD2 protects the neural system from oxidative stress in the perinatal stage and is essential for infant survival and central neural function in mice.

  16. Oxidative stress and apoptosis induced by iron oxide nanoparticles in cultured human umbilical endothelial cells.

    Science.gov (United States)

    Zhu, Mo-Tao; Wang, Yun; Feng, Wei-Yue; Wang, Bing; Wang, Meng; Ouyang, Hong; Chai, Zhi-Fang

    2010-12-01

    Recent epidemiologic researches indicate that exposure to ultrafine particles (nanoparticles) is an independent risk factor for several cardiovascular diseases. The induction of endothelial injuries is hypothesized to be an attractive mechanism involved in these cardiovascular diseases. To investigate this hypothesis, the widely used iron nanomaterials, ferric oxide (Fe2O3) and ferriferrous oxide (Fe3O4) nanoparticles were incubated with human umbilical endothelial cells (ECV304 cells) at different concentrations of 2, 20, 100 microg/mL. The cell viability, the rate of apoptosis, the apoptotic nuclear morphology and the mitochondria membrane potential were measured to estimate the cell necrosis and apoptosis caused by the nanoparticle exposure. The stimulation of superoxide anion (O2*-) and nitric oxide (NO) were examined to evaluate the stress responses of endothelial cells. Our results indicated that both the Fe2O3 and Fe3O4 nanoparticles could generate oxidative stress as well as the significant increase of nitric oxide in ECV304 cells. The loss of mitochondria membrane potential and the apoptotic chromatin condensation in the nucleus were observed as the early signs of apoptosis. It is inferred the stress response might be an important mechanism involving in endothelial cells apoptosis and death, and these injuries in endothelial cells might play a key role in downstream cardiovascular diseases such as atheroscelerosis, hypertension and myocardial infarction (MI).

  17. Theoretical determination of the alkali-metal superoxide bond energies

    Science.gov (United States)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Sodupe, Mariona; Langhoff, Stephen R.

    1992-07-01

    The bond dissociation energies for the alkali-metal superoxides have been computed using extensive Gaussian basis sets and treating electron correlation at the modified coupled-pair functional level. Our computed D0 values are 61.4, 37.2, 40.6, and 38.4 kcal/mol for LiO 2, NaO 2, KO 2, and RbO 2, respectively. These values, which are expected to be lower bounds and accurate to 2 kcal/mol, agree well with some of the older flame data, but rule out several recent experimental measurements.

  18. Differential effect of amylin on endothelial-dependent vasodilation in mesenteric arteries from control and insulin resistant rats.

    Directory of Open Access Journals (Sweden)

    Mariam El Assar

    Full Text Available Insulin resistance (IR is frequently associated with endothelial dysfunction and has been proposed to play a major role in cardiovascular disease (CVD. On the other hand, amylin has long been related to IR. However the role of amylin in the vascular dysfunction associated to IR is not well addressed. Therefore, the aim of the study was to assess the effect of acute treatment with amylin on endothelium-dependent vasodilation of isolated mesenteric arteries from control (CR and insulin resistant (IRR rats and to evaluate the possible mechanisms involved. Five week-old male Wistar rats received 20% D-fructose dissolved in drinking water for 8 weeks and were compared with age-matched CR. Plasmatic levels of glucose, insulin and amylin were measured. Mesenteric microvessels were dissected and mounted in wire myographs to evaluate endothelium-dependent vasodilation to acetylcholine. IRR displayed a significant increase in plasmatic levels of glucose, insulin and amylin and reduced endothelium-dependent relaxation when compared to CR. Acute treatment of mesenteric arteries with r-amylin (40 pM deteriorated endothelium-dependent responses in CR. Amylin-induced reduction of endothelial responses was unaffected by the H2O2 scavenger, catalase, but was prevented by the extracellular superoxide scavenger, superoxide dismutase (SOD or the NADPH oxidase inhibitor (VAS2870. By opposite, amylin failed to further inhibit the impaired relaxation in mesenteric arteries of IRR. SOD, or VAS2870, but not catalase, ameliorated the impairment of endothelium-dependent relaxation in IRR. At concentrations present in insulin resistance conditions, amylin impairs endothelium-dependent vasodilation in mircrovessels from rats with preserved vascular function and low levels of endogenous amylin. In IRR with established endothelial dysfunction and elevated levels of amylin, additional exposure to this peptide has no effect on endothelial vasodilation. Increased superoxide

  19. RAGE Plays a Role in LPS-Induced NF-κB Activation and Endothelial Hyperpermeability.

    Science.gov (United States)

    Wang, Liqun; Wu, Jie; Guo, Xiaohua; Huang, Xuliang; Huang, Qiaobing

    2017-03-30

    Endothelial functional dysregulation and barrier disruption contribute to the initiation and development of sepsis. The receptor for advanced glycation end products (RAGE) has been demonstrated to be involved in the pathogenesis of sepsis. The present study aimed to investigate the role of RAGE in lipopolysaccharide (LPS)-induced nuclear factor-κB (NF-κB) activation in endothelial cells and the consequent endothelial hyperpermeability. LPS-induced upregulation of RAGE protein expression in human umbilical vein endothelial cells (HUVECs) was detected by western blotting. Activation of NF-κB was revealed using western blotting and immunofluorescent staining. LPS-elicited endothelial hyperpermeability was explored by transendothelial electrical resistance (TER) assay and endothelial monolayer permeability assay. The blocking antibody specific to RAGE was used to confirm the role of RAGE in LPS-mediated NF-κB activation and endothelial barrier disruption. We found that LPS upregulated the protein expression of RAGE in a dose- and time-dependent manner in HUVECs. Moreover, LPS triggered a significant phosphorylation and degradation of IκBα, as well as NF-κB p65 nuclear translocation. Moreover, we observed a significant increase in endothelial permeability after LPS treatment. However, the RAGE blocking antibody attenuated LPS-evoked NF-κB activation and endothelial hyperpermeability. Our results suggest that RAGE plays an important role in LPS-induced NF-κB activation and endothelial barrier dysfunction.

  20. Rosmarinic acid and arbutin suppress osteoclast differentiation by inhibiting superoxide and NFATc1 downregulation in RAW 264.7 cells

    Science.gov (United States)

    OMORI, AKINA; YOSHIMURA, YOSHITAKA; DEYAMA, YOSHIAKI; SUZUKI, KUNIAKI

    2015-01-01

    The present study investigated the effect of the natural polyphenols, rosmarinic acid and arbutin, on osteoclast differentiation in RAW 264.7 cells. Rosmarinic acid and arbutin suppressed osteoclast differentiation and had no cytotoxic effect on osteoclast precursor cells. Rosmarinic acid and arbutin inhibited superoxide production in a dose-dependent manner. mRNA expression of the master regulator of osteoclastogenesis, nuclear factor of activated T cells cytoplasmic 1 (NFATc1) and the osteoclast marker genes, matrix metalloproteinase-9, tartrate-resistant acid phosphatase and cathepsin-K, decreased following treatments with rosmarinic acid and arbutin. Furthermore, resorption activity decreased with the number of osteoclasts. These results suggest that rosmarinic acid and arbutin may be useful for the prevention and treatment of bone diseases, such as osteoporosis, through mechanisms involving inhibition of superoxide and downregulation of NFATc1. PMID:26171153

  1. Rosmarinic acid and arbutin suppress osteoclast differentiation by inhibiting superoxide and NFATc1 downregulation in RAW 264.7 cells.

    Science.gov (United States)

    Omori, Akina; Yoshimura, Yoshitaka; Deyama, Yoshiaki; Suzuki, Kuniaki

    2015-07-01

    The present study investigated the effect of the natural polyphenols, rosmarinic acid and arbutin, on osteoclast differentiation in RAW 264.7 cells. Rosmarinic acid and arbutin suppressed osteoclast differentiation and had no cytotoxic effect on osteoclast precursor cells. Rosmarinic acid and arbutin inhibited superoxide production in a dose-dependent manner. mRNA expression of the master regulator of osteoclastogenesis, nuclear factor of activated T cells cytoplasmic 1 (NFATc1) and the osteoclast marker genes, matrix metalloproteinase-9, tartrate-resistant acid phosphatase and cathepsin-K, decreased following treatments with rosmarinic acid and arbutin. Furthermore, resorption activity decreased with the number of osteoclasts. These results suggest that rosmarinic acid and arbutin may be useful for the prevention and treatment of bone diseases, such as osteoporosis, through mechanisms involving inhibition of superoxide and downregulation of NFATc1.

  2. Lonidamine Causes Inhibition of Angiogenesis-Related Endothelial Cell Functions

    Directory of Open Access Journals (Sweden)

    Donatella Del Bufalo

    2004-09-01

    Full Text Available The aim of this study was to assess whether lonidamine (LND interferes with some steps in angiogenesis progression. We report here, for the first time, that LND inhibited angiogenic-related endothelial cell functions in a dose-dependent manner (1-50 μg/ml. In particular, LND decreased proliferation, migration, invasion, and morphogenesis on matrigel of different endothelial cell lines. Zymographic and Western blot analysis assays showed that LND treatment produced a reduction in the secretion of matrix metalloproteinase-2 and metalloproteinase-9 by endothelial cells. Vessel formation in a matrigel plug was also reduced by LND. The viability, migration, invasion, and matrix metalloproteinase production of different tumor cell lines were not affected by low doses of LND (1-10 μg/ml, whereas 50 μg/ml LND, which corresponds to the dose used in clinical management of tumors, triggered apoptosis both in endothelial and tumor cells. Together, these data demonstrate that LND is a compound that interferes with endothelial cell functions, both at low and high doses. Thus, the effect of LND on endothelial cell functions, previously undescribed, may be a significant contributor to the antitumor effect of LND observed for clinical management of solid tumors.

  3. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome

    Directory of Open Access Journals (Sweden)

    Hadi AR Hadi

    2005-10-01

    Full Text Available Hadi AR Hadi, Cornelia S Carr, Jassim Al SuwaidiDepartment of Cardiology and Cardiovascular Surgery, Hamad General Hospital – Hamad Medical Corporation, Doha, State of QatarAbstract: Endothelial dysfunction is a well established response to cardiovascular risk factors and precedes the development of atherosclerosis. Endothelial dysfunction is involved in lesion formation by the promotion of both the early and late mechanisms of atherosclerosis including up-regulation of adhesion molecules, increased chemokine secretion and leukocyte adherence, increased cell permeability, enhanced low-density lipoprotein oxidation, platelet activation, cytokine elaboration, and vascular smooth muscle cell proliferation and migration. Endothelial dysfunction is a term that covers diminished production/availability of nitric oxide and/or an imbalance in the relative contribution of endothelium-derived relaxing and contracting factors. Also, when cardiovascular risk factors are treated the endothelial dysfunction is reversed and it is an independent predictor of cardiac events. We review the literature concerning endothelial dysfunction in regard to its pathogenesis, treatment, and outcome.Keywords: endothelial dysfunction, coronary atherosclerosis, coronary artery disease

  4. Paradoxic effects of metformin on endothelial cells and angiogenesis

    Science.gov (United States)

    Bruno, Antonino; Cantelmo, Anna R.; Albini, Adriana

    2014-01-01

    The biguanide metformin is used in type 2 diabetes management and has gained significant attention as a potential cancer preventive agent. Angioprevention represents a mechanism of chemoprevention, yet conflicting data concerning the antiangiogenic action of metformin have emerged. Here, we clarify some of the contradictory effects of metformin on endothelial cells and angiogenesis, using in vitro and in vivo assays combined with transcriptomic and protein array approaches. Metformin inhibits formation of capillary-like networks by endothelial cells; this effect is partially dependent on the energy sensor adenosine-monophosphate-activated protein kinase (AMPK) as shown by small interfering RNA knockdown. Gene expression profiling of human umbilical vein endothelial cells revealed a paradoxical modulation of several angiogenesis-associated genes and proteins by metformin, with short-term induction of vascular endothelial growth factor (VEGF), cyclooxygenase 2 and CXC chemokine receptor 4 at the messenger RNA level and downregulation of ADAMTS1. Antibody array analysis shows an essentially opposite regulation of numerous angiogenesis-associated proteins in endothelial and breast cancer cells including interleukin-8, angiogenin and TIMP-1, as well as selective regulation of angiopioetin-1, -2, endoglin and others. Endothelial cell production of the cytochrome P450 member CYP1B1 is upregulated by tumor cell supernatants in an AMPK-dependent manner, metformin blocks this effect. Metformin inhibits VEGF-dependent activation of extracellular signal-regulated kinase 1/2, and the inhibition of AMPK activity abrogates this event. Metformin hinders angiogenesis in matrigel pellets in vivo, prevents the microvessel density increase observed in obese mice on a high-fat diet, downregulating the number of white adipose tissue endothelial precursor cells. Our data show that metformin has an antiangiogenic activity in vitro and in vivo associated with a contradictory short

  5. Paradoxic effects of metformin on endothelial cells and angiogenesis.

    Science.gov (United States)

    Dallaglio, Katiuscia; Bruno, Antonino; Cantelmo, Anna R; Esposito, Alessia I; Ruggiero, Luca; Orecchioni, Stefania; Calleri, Angelica; Bertolini, Francesco; Pfeffer, Ulrich; Noonan, Douglas M; Albini, Adriana

    2014-05-01

    The biguanide metformin is used in type 2 diabetes management and has gained significant attention as a potential cancer preventive agent. Angioprevention represents a mechanism of chemoprevention, yet conflicting data concerning the antiangiogenic action of metformin have emerged. Here, we clarify some of the contradictory effects of metformin on endothelial cells and angiogenesis, using in vitro and in vivo assays combined with transcriptomic and protein array approaches. Metformin inhibits formation of capillary-like networks by endothelial cells; this effect is partially dependent on the energy sensor adenosine-monophosphate-activated protein kinase (AMPK) as shown by small interfering RNA knockdown. Gene expression profiling of human umbilical vein endothelial cells revealed a paradoxical modulation of several angiogenesis-associated genes and proteins by metformin, with short-term induction of vascular endothelial growth factor (VEGF), cyclooxygenase 2 and CXC chemokine receptor 4 at the messenger RNA level and downregulation of ADAMTS1. Antibody array analysis shows an essentially opposite regulation of numerous angiogenesis-associated proteins in endothelial and breast cancer cells including interleukin-8, angiogenin and TIMP-1, as well as selective regulation of angiopioetin-1, -2, endoglin and others. Endothelial cell production of the cytochrome P450 member CYP1B1 is upregulated by tumor cell supernatants in an AMPK-dependent manner, metformin blocks this effect. Metformin inhibits VEGF-dependent activation of extracellular signal-regulated kinase 1/2, and the inhibition of AMPK activity abrogates this event. Metformin hinders angiogenesis in matrigel pellets in vivo, prevents the microvessel density increase observed in obese mice on a high-fat diet, downregulating the number of white adipose tissue endothelial precursor cells. Our data show that metformin has an antiangiogenic activity in vitro and in vivo associated with a contradictory short

  6. An Important Method in the Investigation of Vascular Pathologies: Endothelial Cell Culture

    Directory of Open Access Journals (Sweden)

    Yusufhan Yazır

    2012-12-01

    Full Text Available Endothelial cells line the interior surface of blood vessels and form an interface between circulating blood in the lumen and the rest of the vessel wall. Endothelial cells are involved in many aspects of vascular biology, including barrier function, vasoconstriction, coagulation and inflamation. The endothelial cells in different organs have different functions and surface phenotype. These cells express prostoglandin-I2, platelet activating factor, collagen, endothelin-1, laminin, fibronectin and growth factors including platelet derived growth factor, fibroblast growth factor. İn the cell culture, cells can be isolated, maintened and proliferate in the laboratory conditions. The techniques of the cell culture have allowed scientists to use the cells in vitro for experimental studies, such as the production of vaccine, antibody and enzime, drug research, cell-cell interactions. Human umbilical vein endothelial cell is a good source for endothelial cell, because it is cheaper, easy to find and has the basic features of the normal endothelial cells.

  7. A cytoplasmic Cu-Zn superoxide dismutase SOD1 contributes to hyphal growth and virulence of Fusarium graminearum.

    Science.gov (United States)

    Yao, Sheng-Hua; Guo, Yan; Wang, Yan-Zhang; Zhang, Dong; Xu, Ling; Tang, Wei-Hua

    2016-06-01

    Superoxide dismutases (SODs) are scavengers of superoxide radicals, one of the main reactive oxygen species (ROS) in the cell. SOD-based ROS scavenging system constitutes the frontline defense against intra- and extracellular ROS, but the roles of SODs in the important cereal pathogen Fusarium graminearum are not very clear. There are five SOD genes in F. graminearum genome, encoding cytoplasmic Cu-Zn SOD1 and MnSOD3, mitochondrial MnSOD2 and FeSOD4, and extracellular CuSOD5. Previous studies reported that the expression of SOD1 increased during infection of wheat coleoptiles and florets. In this work we showed that the recombinant SOD1 protein had the superoxide dismutase activity in vitro, and that the SOD1-mRFP fusion protein localized in the cytoplasm of F. graminearum. The Δsod1 mutants had slightly reduced hyphal growth and markedly increased sensitivity to the intracellular ROS generator menadione. The conidial germination under extracellular oxidative stress was significantly delayed in the mutants. Wheat floret infection assay showed that the Δsod1 mutants had a reduced pathogenicity. Furthermore, the Δsod1 mutants had a significant reduction in production of deoxynivalenol mycotoxin. Our results indicate that the cytoplasmic Cu-Zn SOD1 affects fungal growth probably depending on detoxification of intracellular superoxide radicals, and that SOD1-mediated deoxynivalenol production contributes to the virulence of F. graminearum in wheat head infection. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Increased Expression of Periplasmic Cu,Zn Superoxide Dismutase Enhances Survival of Escherichia coli Invasive Strains within Nonphagocytic Cells

    Science.gov (United States)

    Battistoni, Andrea; Pacello, Francesca; Folcarelli, Silvia; Ajello, Maria; Donnarumma, Giovanna; Greco, Rita; Grazia Ammendolia, Maria; Touati, Danièle; Rotilio, Giuseppe; Valenti, Piera

    2000-01-01

    We have studied the influence of periplasmic Cu,Zn superoxide dismutase on the intracellular survival of Escherichia coli strains able to invade epithelial cells by the expression of the inv gene from Yersinia pseudotuberculosis but unable to multiply intracellularly. Intracellular viability assays, confirmed by electron microscopy observations, showed that invasive strains of E. coli engineered to increase Cu,Zn superoxide dismutase production are much more resistant to intracellular killing than strains containing only the chromosomal sodC copy. However, we have found only a slight difference in survival within HeLa cells between a sodC-null mutant and its isogenic wild-type strain. Such a small difference in survival correlates with the very low expression of this enzyme in the wild-type strain. We have also observed that acid- and oxidative stress-sensitive E. coli HB101(pRI203) is more rapidly killed in epithelial cells than E. coli GC4468(pRI203). The high mortality of E. coli HB101(pRI203), independent of the acidification of the endosome, is abolished by the overexpression of sodC. Our data suggest that oxyradicals are involved in the mechanisms of bacterial killing within epithelial cells and that high-level production of periplasmic Cu,Zn superoxide dismutase provides bacteria with an effective protection against oxidative damage. We propose that Cu,Zn superoxide dismutase could offer an important selective advantage in survival within host cells to bacteria expressing high levels of this enzyme. PMID:10603365

  9. Superoxide dismutase mimetic activity of cytokinin-copper(II) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, H.; Hirobe, M.

    1986-05-29

    Dissociation constants of cytokinins, derivatives of purine which form complexes which cupric ion, were determined by spectrophotometry and the stability constants of their copper complexes by pH titration. The values found for kinetic were 3.76, 9.96, 7.8, and 15.3 for pK/sub 1/ for pK/sub 2/, logk/sub 1/, and log..beta../sub 2/, respectively, and those for 6-benzylaminopurine were, in the same order, 3.90, 9.84, 8.3, and 15.9. The copper(II) complexes with kinetin and 6-benzylaminopurine had superoxide dismutase mimetic activity, and the reaction rate constants with superoxide, which were determined by polarography. were 2.3 x 10/sup 7/ M/sup -1/s/sup -1/ for kinetin and 1.5 x 10/sup 7/ M/sup -1/s/sup -1/ for 6-benzylaminopurine at pH 9.8 and 25/sup 0/C.

  10. Determination of superoxide dismutase mimetic activity in common culinary herbs.

    Science.gov (United States)

    Chohan, Magali; Naughton, Declan P; Opara, Elizabeth I

    2014-01-01

    Under conditions of oxidative stress, the removal of superoxide, a free radical associated with chronic inflammation, is catalysed by superoxide dismutase (SOD). Thus in addition to acting as an antioxidant, SOD may also be utilized as an anti-inflammatory agent. Some plant derived foods have been shown to have SOD mimetic (SODm) activity however it is not known if this activity is possessed by culinary herbs which have previously been shown to possess both antioxidant and anti-inflammatory properties. The aim of the study was to ascertain if the culinary herbs rosemary, sage and thyme possess SODm activity, and to investigate the influence of cooking and digestion on this activity. Transition metal ion content was also determined to establish if it could likely contribute to any SODm activity detected. All extracts of uncooked (U), cooked (C) and cooked and digested (C&D) herbs were shown to possess SODm activity, which was significantly correlated with previously determined antioxidant and anti-inflammatory activities of these herbs. SODm activity was significantly increased following (C) and (C&D) for rosemary and sage only. The impact of (C) and (C&D) on the SODm for thyme may have been influenced by its transition metal ion content. SODm activity may contribute to the herbs' antioxidant and anti-inflammatory activities however the source and significance of this activity need to be established.

  11. Epigallocatechin-3-gallate attenuates microcystin-LR induced oxidative stress and inflammation in human umbilical vein endothelial cells.

    Science.gov (United States)

    Shi, Jun; Deng, Huiping; Pan, Huichao; Xu, Yinjie; Zhang, Min

    2017-02-01

    Epigallocatechin-3-gallate (EGCG) has been shown to possess anti-inflammatory effects. Microcystin-LR (MC-LR) is a potent toxin and our past research suggested that it also mediated human umbilical vein endothelial cell (HUVEC) injury. The aim of this study was to investigate the effects of EGCG on MC-LR-induced oxidative stress and inflammatory responses in HUVECs. HUVECs were stimulated with MC-LR in the presence or absence of EGCG. MC-LR (40 μM) significantly increased cell death and decreased cell viability, migration, and tube formation, whereas EGCG (50 μM) inhibited these effects. Furthermore, the results indicated that EGCG inhibited the production of reactive oxygen species (ROS), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6) in MC-LR-stimulated HUVECs. Compared with MC-LR, EGCG significantly increased superoxide dismutase (SOD) and glutathione (GSH) levels and decreased malondialdehyde (MDA) levels. Moreover, the analysis indicated that EGCG suppressed MC-LR-induced NF-κB activation. In conclusion, the effects of EGCG were associated with inhibition of the NF-κB signaling pathway, which resulted in decreased ROS and TNF-α, thereby attenuating MC-LR-mediated oxidative and inflammatory responses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Featured Article: Differential regulation of endothelial nitric oxide synthase phosphorylation by protease-activated receptors in adult human endothelial cells.

    Science.gov (United States)

    Tillery, Lakeisha C; Epperson, Tenille A; Eguchi, Satoru; Motley, Evangeline D

    2016-03-01

    Protease-activated receptors have been shown to regulate endothelial nitric oxide synthase through the phosphorylation of specific sites on the enzyme. It has been established that PAR-2 activation phosphorylates eNOS-Ser-1177 and leads to the production of the potent vasodilator nitric oxide, while PAR-1 activation phosphorylates eNOS-Thr-495 and decreases nitric oxide production in human umbilical vein endothelial cells. In this study, we hypothesize a differential coupling of protease-activated receptors to the signaling pathways that regulates endothelial nitric oxide synthase and nitric oxide production in primary adult human coronary artery endothelial cells. Using Western Blot analysis, we showed that thrombin and the PAR-1 activating peptide, TFLLR, lead to the phosphorylation of eNOS-Ser-1177 in human coronary artery endothelial cells, which was blocked by SCH-79797 (SCH), a PAR-1 inhibitor. Using the nitrate/nitrite assay, we also demonstrated that the thrombin- and TFLLR-induced production of nitric oxide was inhibited by SCH and L-NAME, a NOS inhibitor. In addition, we observed that TFLLR, unlike thrombin, significantly phosphorylated eNOS-Thr-495, which may explain the observed delay in nitric oxide production in comparison to that of thrombin. Activation of PAR-2 by SLIGRL, a PAR-2 specific ligand, leads to dual phosphorylation of both catalytic sites but primarily regulated eNOS-Thr-495 phosphorylation with no change in nitric oxide production in human coronary artery endothelial cells. PAR-3, known as the non-signaling receptor, was activated by TFRGAP, a PAR-3 mimicking peptide, and significantly induced the phosphorylation of eNOS-Thr-495 with minimal phosphorylation of eNOS-Ser-1177 with no change in nitric oxide production. In addition, we confirmed that PAR-mediated eNOS-Ser-1177 phosphorylation was Ca(2+)-dependent using the Ca(2+) chelator, BAPTA, while eNOS-Thr-495 phosphorylation was mediated via Rho kinase using the ROCK inhibitor, Y-27632

  13. Lifestyle factors and endothelial function.

    Science.gov (United States)

    Papageorgiou, Nikolaos; Tousoulis, Dimitris; Androulakis, Emmanuel; Giotakis, Aris; Siasos, Gerasimos; Latsios, George; Stefanadis, Christodoulos

    2012-01-01

    Atherosclerotic disease remains a major health problem around the world. The central role of endothelium and inflammation in all stages of the atherosclerotic process is advocated by significant data. Moreover, clinical evidence supports the prognostic potential of endothelial dysfunction for the development of ischemic events and for adverse outcome after acute coronary syndromes. Interestingly, suboptimal lifestyle choices are implicated in the development and deterioration of this endothelial dysfunction, a fact with significant impact, considering the contribution of endothelial dysfunction in atherosclerosis and its complications. Many epidemiological research studies, using a variety of strategies, provide encouraging evidence suggesting that lifestyle modifications may have significant impact regarding the improvement of endothelial function. However, little is known about how individual's genetic background interacts with environmental influences on vascular health, thereby making the interpretation of the relative importance of lifestyle interventions more complicated.

  14. Protective effect of superoxide dismutase against hair graying in a mouse model.

    Science.gov (United States)

    Emerit, I; Filipe, P; Freitas, J; Vassy, J

    2004-01-01

    Oxygen free radicals play a role in the aging process, and the protective effect of various antioxidants has been intensively studied, in particular for cutaneous aging. Besides hereditary factors, free radical-mediated damage to melanocytes of the hair follicle has been considered as a mechanism for aging of the hair. It was the aim of this study to evaluate the role of photosensitization reactions for hair graying and to demonstrate potential protective effects of superoxide dismutase (SOD). Mice with black hair were depilated with the fingertips on a surface of 6 x 2.5 cm on both sides of the dorsum. The right side received five applications of a SOD-containing gel before exposure to psoralen (concentration 0.5 mg/mL) plus UV-A (365 nm, 4 J/cm2). The left side was pretreated in the same way with a gel free of SOD. When the hair started growing again, the SOD-protected side was covered with black hair, whereas the hair on the vehicle-treated side was gray or white in 27 of the 30 animals studied. The 0.01% SOD concentration was as protective as the 0.1% concentration. Heat-inactivated SOD, applied in another five animals, was not protective. Using fluorescent labeling of the SOD with fluorescein isothiocyanate, epifluorescence microscopy and digital imaging processing, we show that SOD applied to the skin surface penetrates through the follicular appendages, as well as through the unbroken stratum corneum. Our findings suggest that superoxide radicals, generated by interaction of UV-A light with the sensitizer, initiated the formation of secondary products with well-known DNA-damaging effects, such as lipid peroxidation products and tumor necrosis factor alpha. SOD prevented the damage to melanocyte DNA by dismutating superoxide. Photosensitization may be another mechanism for hair graying, which can be influenced by antioxidants. Given the large number of exogenous and endogenous sensitizers, this mechanism deserves further study for human hair graying.

  15. Mechanism of Action of Sulforaphane as a Superoxide Radical Anion and Hydrogen Peroxide Scavenger by Double Hydrogen Transfer: A Model for Iron Superoxide Dismutase.

    Science.gov (United States)

    Prasad, Ajit Kumar; Mishra, P C

    2015-06-25

    The mechanism of action of sulforaphane as a scavenger of superoxide radical anion (O2(•-)) and hydrogen peroxide (H2O2) was investigated using density functional theory (DFT) in both gas phase and aqueous media. Iron superoxide dismutase (Fe-SOD) involved in scavenging superoxide radical anion from biological media was modeled by a complex consisting of the ferric ion (Fe(3+)) attached to three histidine rings. Reactions related to scavenging of superoxide radical anion by sulforaphane were studied using DFT in the presence and absence of Fe-SOD represented by this model in both gas phase and aqueous media. The scavenging action of sulforaphane toward both superoxide radical anion and hydrogen peroxide was found to involve the unusual mechanism of double hydrogen transfer. It was found that sulforaphane alone, without Fe-SOD, cannot scavenge superoxide radical anion in gas phase or aqueous media efficiently as the corresponding reaction barriers are very high. However, in the presence of Fe-SOD represented by the above-mentioned model, the scavenging reactions become barrierless, and so sulforaphane scavenges superoxide radical anion by converting it to hydrogen peroxide efficiently. Further, sulforaphane was found to scavenge hydrogen peroxide also very efficiently by converting it into water. Thus, the mechanism of action of sulforaphane as an excellent antioxidant has been unravelled.

  16. The Antiozonant Ethylenediurea Does Not Act via Superoxide Dismutase Induction in Bean.

    Science.gov (United States)

    Pitcher, L H; Brennan, E; Zilinskas, B A

    1992-08-01

    It has been proposed that the mode of action of ethylenediurea, a very effective antiozonant, is via an increase in the antioxidant enzyme superoxide dismutase (EH Lee, JH Bennett [1982] Plant Physiol 69: 1444-1449). Data presented here refute that hypothesis. No ethylenediurea-associated increases in Cu/Zn-superoxide dismutase or Mn-superoxide dismutase activity, nor in steady-state Cu/Zn-superoxide dismutase protein levels, were found in soluble extracts of bean (Phaseolus vulgaris L. cv Bush Blue Lake 290) leaves. However, the cytosolic Cu/Zn-superoxide dismutase increased as a result of ozone fumigation and subsequent injury. Also noted was a developmentally related difference between chloroplastic and cytosolic Cu/Zn-superoxide dismutase, the latter declining during maturation of the leaf.

  17. The Antiozonant Ethylenediurea Does Not Act via Superoxide Dismutase Induction in Bean 1

    Science.gov (United States)

    Pitcher, Lynne H.; Brennan, Eileen; Zilinskas, Barbara A.

    1992-01-01

    It has been proposed that the mode of action of ethylenediurea, a very effective antiozonant, is via an increase in the antioxidant enzyme superoxide dismutase (EH Lee, JH Bennett [1982] Plant Physiol 69: 1444-1449). Data presented here refute that hypothesis. No ethylenediurea-associated increases in Cu/Zn-superoxide dismutase or Mn-superoxide dismutase activity, nor in steady-state Cu/Zn-superoxide dismutase protein levels, were found in soluble extracts of bean (Phaseolus vulgaris L. cv Bush Blue Lake 290) leaves. However, the cytosolic Cu/Zn-superoxide dismutase increased as a result of ozone fumigation and subsequent injury. Also noted was a developmentally related difference between chloroplastic and cytosolic Cu/Zn-superoxide dismutase, the latter declining during maturation of the leaf. ImagesFigure 1Figure 3 PMID:16669049

  18. Inactivation of catecholamines by superoxide gives new insights on the pathogenesis of septic shock

    Science.gov (United States)

    Macarthur, Heather; Westfall, Thomas C.; Riley, Dennis P.; Misko, Thomas P.; Salvemini, Daniela

    2000-01-01

    A major feature of septic shock is the development of a vascular crisis characterized by nonresponsiveness to sympathetic vasoconstrictor agents and the subsequent irreversible fall in blood pressure. In addition, sepsis, like other inflammatory conditions, results in a large increase in the production of free radicals, including superoxide anions (O2⨪) within the body. Here we show that O2⨪ reacts with catecholamines deactivating them in vitro. Moreover, this deactivation would appear to account for the hyporeactivity to exogenous catecholamines observed in sepsis, because administration of a superoxide dismutase (SOD) mimetic to a rat model of septic shock to remove excess O2⨪ restored the vasopressor responses to norepinephrine. This treatment with the SOD mimetic also reversed the hypotension in these animals; suggesting that deactivation of endogenous norepinephrine by O2⨪ contributes significantly to this aspect of the vascular crisis. Indeed, the plasma concentrations of both norepinephrine and epinephrine in septic rats treated with the SOD mimetic were significantly higher than in untreated rats. Interestingly, the plasma concentrations for norepinephrine and epinephrine were inversely related to the plasma concentrations of adrenochromes, the product of the autoxidation of catecholamines initiated by O2⨪. We propose, therefore, that the use of a SOD mimetic represents a new paradigm for the treatment of septic shock. By removing O2⨪, exogenous and endogenous catecholamines are protected from autoxidation. As a result, both hyporeactivity and hypotension are reversed, generation of potentially toxic adrenochromes is reduced, and survival rate is improved. PMID:10944234

  19. The Influence of Extracellular Superoxide on Iron Redox Chemistry and Bioavailability to Aquatic Microorganisms

    OpenAIRE

    Andrew eRose

    2012-01-01

    Superoxide, the one-electron reduced form of dioxygen, is produced in the extracellular milieu of aquatic microbes through a range of abiotic chemical processes and also by microbes themselves. Due to its ability to promote both oxidative and reductive reactions, superoxide may have a profound impact on the redox state of iron, potentially influencing iron solubility, complex speciation, and bioavailability. The interplay between iron, superoxide, and oxygen may also produce a cascade of othe...

  20. Hepatocyte growth factor suppresses hypoxia/reoxygenation-induced XO activation in cardiac microvascular endothelial cells.

    Science.gov (United States)

    Zhang, Yingqian; Hu, Shunying; Chen, Yundai

    2015-07-01

    Hypoxia/reoxygenation (H/R) is one of the cellular stresses in pathological conditions, such as myocardial infarction, stroke and organ transplantation. Oxidative stress caused by reactive oxygen species (ROS) is a crucial element of H/R injury in vascular endothelial cells (ECs). Xanthine oxidase (XO) has been recognized to contribute to H/R injury. Of note, xanthine oxidoreductase is synthesized as xanthine dehydrogenase (XDH) and needs to be converted to XO to become a source of superoxide. Hepatocyte growth factor (HGF) has been found to protect ECs against H/R injury. The relation, however, between HGF and XO in ECs under H/R conditions remains to be determined. Primary cultured rat cardiac microvascular endothelial cells (CMECs) were exposed to 4 h of hypoxia and followed by 1 h of reoxygenation. Generation of ROS and cytosolic Ca2+ concentration was measured by flow cytometry qualification of DCFHDA and fluo-3 AM staining cells, respectively. XDH mRNA was qualified by qRT-PCR analysis. XO activity was determined by colorimetric assay and XO protein levels were determined by Western blot. Cell apoptosis was assessed by caspase-3 activity and Annexin V/PI staining. After H/R, cellular ROS production significantly increased. Both XO activity and XO protein increased after H/R. Cellular ROS elevation was inhibited by allopurinol (a potent XO inhibitor), indicting XO accounting for the generation of ROS after H/R. In addition, XDH mRNA increased after H/R, indicating a de novo XDH synthesis, which needs to be converted to XO to become a source of superoxide. Pretreatment of HGF inhibited the elevation of XO activity and XO protein level after H/R; however, HGF has no effect on the increase of XDH mRNA. We also find an increase of the cytosolic Ca2+ in CMECs after H/R. BAPTA-AM, a cell-permeable Ca2+ chelator, prevented the increase of XO activity and XO protein levels, implicating the elevated cytosolic Ca2+ concentration involvement in XO conversion and XO

  1. Effect of exercise training on eNOS expression, NO production and oxygen metabolism in human placenta.

    Directory of Open Access Journals (Sweden)

    Robinson Ramírez-Vélez

    Full Text Available OBJECTIVE: To determine the effects of combined aerobic and resistance exercise training during the second half of pregnancy on endothelial NOS expression (eNOS, nitric oxide (NO production and oxygen metabolism in human placenta. METHODS: The study included 20 nulliparous in gestational week 16-20, attending prenatal care at three tertiary hospitals in Colombia who were randomly assigned into one of two groups: The exercise group (n = 10 took part in an exercise session three times a week for 12 weeks which consisted of: aerobic exercise at an intensity of 55-75% of their maximum heart rate for 60 min and 25 mins. Resistance exercise included 5 exercise groups circuit training (50 repetitions of each using barbells (1-3 kg/exercise and low-to-medium resistance bands. The control group (n = 10 undertook their usual physical activity. Mitochondrial and cytosol fractions were isolated from human placental tissue by differential centrifugation. A spectrophotometric assay was used to measure NO production in cytosolic samples from placental tissue and Western Blot technique to determine eNOS expression. Mitochondrial superoxide levels and hydrogen peroxide were measured to determine oxygen metabolism. RESULTS: Combined aerobic and resistance exercise training during pregnancy leads to a 2-fold increase in eNOS expression and 4-fold increase in NO production in placental cytosol (p = 0.05. Mitochondrial superoxide levels and hydrogen peroxide production rate were decreased by 8% and 37% respectively in the placental mitochondria of exercising women (p = 0.05. CONCLUSION: Regular exercise training during the second half of pregnancy increases eNOS expression and NO production and decreases reactive oxygen species generation in human placenta. Collectively, these data demonstrate that chronic exercise increases eNOS/NO production, presumably by increasing endothelial shear stress. This adaptation may contribute to the beneficial effects of exercise on

  2. Computing Stability Effects of Mutations in Human Superoxide Dismutase 1

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2014-01-01

    Protein stability is affected in several diseases and is of substantial interest in efforts to correlate genotypes to phenotypes. Superoxide dismutase 1 (SOD1) is a suitable test case for such correlations due to its abundance, stability, available crystal structures and thermochemical data......, and physiological importance. In this work, stability changes of SOD1 mutations were computed with five methods, CUPSAT, I-Mutant2.0, I-Mutant3.0, PoPMuSiC, and SDM, with emphasis on structural sensitivity as a potential issue in structure-based protein calculation. The large correlation between experimental...... displayed less structural sensitivity, with the standard deviation from different high-resolution structures down to ∼0.2 kcal/mol. Structures of variable resolution and number of protein copies locally affected specific sites, emphasizing the use of state-relevant crystal structures when such sites...

  3. [Formation of superoxide radicals in isolated cardiac mitochondria: effect of low oxygen concentration].

    Science.gov (United States)

    Sviriaeva, I V; Mertsalova, A S; Ruuge, E K

    2010-01-01

    The formation of superoxide radical in isolated rat heart mitochondria under conditions of variable oxygen concentration has been studied by the spin trapping technique and EPR oximetry. Lithium phthalocyanine and TEMPONE-D-15 N16 were used to determine the oxygen concentration. TIRON was used as a spin trap. By varying the oxygen content in reaction medium, it was shown that isolated heart mitochondria can produce superoxide even at an oxygen partial pressure of 17.5 mmHg. However, the rate of superoxide generation was considerably lower than in control. It was found that increasing the oxygen concentration leads to an increase in the rate of superoxide generation.

  4. Novel biomimetic enzyme for sensitive detection of superoxide anions.

    Science.gov (United States)

    Peng, Fang; Xu, Tingting; Wu, Fan; Ma, Chunxue; Liu, Yuhong; Li, Jianying; Zhao, Bo; Mao, Chun

    2017-11-01

    Superoxide anion (O2(•-)), one of the most active reactive oxygen species (ROS) in micro-environment of the human body, is involved in some diseases if there is excess O2(•-) associated with oxidative stress. Accurate detection of its concentration has important medical diagnostic significance. In this work, a new electrochemical sensor was designed and fabricated for sensitive detection based on Mn-superoxide dismutase (MnSOD) that decorated onto the surface of magnetic polymeric nanotubes by surface self-assembly processes. The composite nanotubes were characterized by transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR), Zeta potential analyzer, energy dispersive spectroscopy (EDS) and vibrating sample magnetometer(VSM), and the biosensor exhibited excellent analytical performance, for example, the interference could be eliminated with high selectivity, the linear range from 0.15 to 3.0μM with a detection limit of 0.0136μM (S/N=3),Cyclic voltammogram (CV) curves of the biosensor for 30 overlapping cycles showed the biosensor had a good cycle stability. Results indicated that the magnetic polymeric nanotubes that decorated by Mn3(PO4)2 nanoparticles could effectively catalyze the dismutation of O2(•-) that attributed to its high surface areas and a large number of active sites of self-assembled Mn3(PO4)2 nanoparticles. This method combining nanotechnology and self-assembly technique provided a new appropriate platform to design and fabricate electrochemical sensor with high performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. [Mechanisms of delay endothelial cell replicative senescence by extracts from Panax ginseng, Panax notoginseng and Ligusticum chuanxiong].

    Science.gov (United States)

    Yang, Jing; Lei, Yan; Cui, Wei; Fang, Suping; Chen, Keji

    2009-06-01

    To explore effect of extracts from Panax ginseng, P. notoginseng and Ligusticum chuanxiong on human umbilical endothelial cells (HUVECs) replicative senescence. HUVECs were induced to aging by generation cultivating to the eighth cells in order to establish a model of endothelial cells replicative senescence. The cultured HUVECs in vitro were divided into 4 groups, the eighth generation cell-senescence untreated group, Vitamin E group, herbal treated high dose and low dose groups. Changes of HUVECs aging were observed by method of SA-beta-gal stained HUVECs and cells cycle were analyzed. Contents of ROS in cells, the levels of anti-superoxide (O2-) and nitric oxide (NO) in cell mediums were examined. Western blot were used to analyse protein expression of NADPH oxidase p47phox, angiotensin type 1 and 2 receptor (AT1R, AT2R). Compared with Vitamin E group, the positive cell numbers of beta-gal stained HUVECs were enhanced, cell proliferation was depressed, and the fluorescence intensity of ROS was increased, at the same time, less NO and more O2- in cells were produced in the eighth generation cell-senescence untreated group. Protein expression of p47phox, AT1R and AT2R in cells increased compared with Vit E group. Chinese herbs of high dose and low dose could improve condutions of HUVECs aging. Chinese herbs of high dose and low dose could reduce the positive cell numbers of beta-gal stained HUVEC, increase cell proliferation and decrease fluorescence intensity of ROS in cells, at the same time, cells secreting more NO and less O2-. Protein expression of p47phox, AT1R and AT2R in cells treated with Chinese herbs of high dose and low dose were decreased compared with Vit E group. The study indicated that extracts from P. ginseng, P. notoginseng and L. chuanxiong could delay endothelial cell replicative senescence. Herbal extracts downregulate the expression of NAD (P) H oxidase subunit-p47phox by means of ROS, hence decrease O2- production and ultimately delay

  6. Folic acid restores endothelial function in ACTH-induced hypertension

    Directory of Open Access Journals (Sweden)

    Ibrahim Elmadbouh

    2016-06-01

    Full Text Available Hypertension is associated with increased oxidative stress and vascular endothelium dysfunction. The aim was to study the effect of folic acid (FA on hypertension, blood nitric oxide (NO, homocysteine (HCY, malondialdehyde (MDA and reduced glutathione (GSH; aortic tissue glutathione peroxidase (GPx, catalase (CAT, superoxide dismutase (SOD; and vascular endothelial function in adrenocorticotrophic hormone (ACTH-induced hypertension rats. Rats were treated with saline or FA alone (0.04 g/L/day orally, control, or subcutaneous ACTH-induced hypertension (0.2 mg/kg/day, ACTH groups. Treated FA groups were started before (Folic–ACTH, prevention and during (ACTH–Folic, reversal ACTH administrations. Systolic blood pressure (SBP, thymus/body weight ratio, blood urea, creatinine, NO, HCY, MDA and GSH; aortic endothelium-dependent vasodilator (EDD in response to acetylcholine (ACh, aortic tissue extract for CAT, GPx, and SOD activity; and histopathological changes of aorta and kidney were assessed. Saline or FA alone did not change SBP (P > 0.05. FA, in prevention study, significantly decreased SBP, increased serum NO and GSH, enhanced relaxation response (EDD% to 1 × 10−4 M ACh; increased aortic tissue GPx, CAT and SOD activity, also revealed nearly normal endothelial cell layer and moderately positive cytoplasmic staining for CD34+ expression versus ACTH-treated rats (P  0.05. FA can be used as an adjuvant therapy for prevention and treatment of ACTH-induced hypertension. The protective role of FA in ACTH-induced hypertension could be attributed via decreasing HCY, MDA (oxidative stress; increasing NO, GSH, GPx, CAT, SOD activity (antioxidants; and restoring endothelial dysfunction.

  7. Endothelial-regenerating cells: an expanding universe.

    Science.gov (United States)

    Steinmetz, Martin; Nickenig, Georg; Werner, Nikos

    2010-03-01

    Atherosclerosis is the most common cause for cardiovascular diseases and is based on endothelial dysfunction. A growing body of evidence suggests the contribution of bone marrow-derived endothelial progenitor cells, monocytic cells, and mature endothelial cells to vessel formation and endothelial rejuvenation. To this day, various subsets of these endothelial-regenerating cells have been identified according to cellular origin, phenotype, and properties in vivo and in vitro. However, the definition and biology, especially of endothelial progenitor cells, is complex and under heavy debate. In this review, we focus on current definitions of endothelial progenitor cells, highlight the clinical relevance of endothelial-regenerating cells, and provide new insights into cell-cell interactions involved in endothelial cell rejuvenation.

  8. Omeprazole impairs vascular redox biology and causes xanthine oxidoreductase-mediated endothelial dysfunction.

    Science.gov (United States)

    Pinheiro, Lucas C; Oliveira-Paula, Gustavo H; Portella, Rafael L; Guimarães, Danielle A; de Angelis, Celio D; Tanus-Santos, Jose E

    2016-10-01

    Proton pump inhibitors (PPIs) are widely used drugs that may increase the cardiovascular risk by mechanisms not entirely known. While PPIs increase asymmetric dimethylarginine (ADMA) levels and inhibit nitric oxide production, it is unknown whether impaired vascular redox biology resulting of increased xanthine oxidoreductase (XOR) activity mediates PPIs-induced endothelial dysfunction (ED). We examined whether increased XOR activity impairs vascular redox biology and causes ED in rats treated with omeprazole. We also examined whether omeprazole aggravates the ED found in hypertension. Treatment with omeprazole reduced endothelium-dependent aortic responses to acetylcholine without causing hypertension. However, omeprazole did not aggravate two-kidney, one-clip (2K1C) hypertension, nor hypertension-induced ED. Omeprazole and 2K1C increased vascular oxidative stress as assessed with dihydroethidium (DHE), which reacts with superoxide, and by the lucigenin chemiluminescence assay. The selective XOR inhibitor febuxostat blunted both effects induced by omeprazole. Treatment with omeprazole increased plasma ADMA concentrations, XOR activity and systemic markers of oxidative stress. Incubation of aortic rings with ADMA increased XOR activity, DHE fluorescence and lucigenin chemiluminescence signals, and febuxostat blunted these effects. Providing functional evidence that omeprazole causes ED by XOR-mediated mechanisms, we found that febuxostat blunted the ED caused by omeprazole treatment. This study shows that treatment with omeprazole impairs the vascular redox biology by XOR-mediated mechanisms leading to ED. While omeprazole did not further impair hypertension-induced ED, further studies in less severe animal models are warranted. Our findings may have major relevance, particularly to patients with cardiovascular diseases taking PPIs. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Indoxyl sulfate potentiates endothelial dysfunction via reciprocal role for reactive oxygen species and RhoA/ROCK signaling in 5/6 nephrectomized rats.

    Science.gov (United States)

    Chu, Shuang; Mao, Xiaodong; Guo, Hengjiang; Wang, Li; Li, Zezheng; Zhang, Yang; Wang, Yunman; Wang, Hao; Zhang, Xuemei; Peng, Wen

    2017-03-01

    Accumulative indoxyl sulfate (IS) retained in chronic kidney disease (CKD) can potentiate vascular endothelial dysfunction, and herein, we aim at elucidating the underlying mechanisms from the perspective of possible association between reactive oxygen species (ROS) and RhoA/ROCK pathway. IS-treated nephrectomized rats are administered with antioxidants including NADPH oxidase inhibitor apocynin, SOD analog tempol, and mitochondrion-targeted SOD mimetic mito-TEMPO to scavenge ROS, or ROCK inhibitor fasudil to obstruct RhoA/ROCK pathway. First, we find in response to IS stimulation, antioxidants treatments suppress increased aortic ROCK activity and expression levels. Additionally, ROCK blockade prevent IS-induced increased NADPH oxidase expression (mainly p22phox and p47phox), mitochondrial and intracellular ROS (superoxide and hydrogen peroxide) generation, and decreased Cu/Zn-SOD expression in thoracic aortas. Apocynin, mito-TEMPO, and tempol also reverse these markers of oxidative stress. These results suggest that IS induces excessive ROS production and ROCK activation involving a circuitous relationship in which ROS activate ROCK and ROCK promotes ROS overproduction. Finally, ROS and ROCK depletion attenuate IS-induced decrease in nitric oxide (NO) production and eNOS expression levels, and alleviate impaired vasomotor responses including increased vasocontraction to phenylephrine and decreased vasorelaxation to acetylcholine, thereby preventing cardiovascular complications accompanied by CKD. Taken together, excessive ROS derived from NADPH oxidase and mitochondria coordinate with RhoA/ROCK activation in a form of positive reciprocal relationship to induce endothelial dysfunction through disturbing endothelium-dependent NO signaling upon IS stimulation in CKD status.

  10. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase

    Directory of Open Access Journals (Sweden)

    Abrahim Noor

    2012-11-01

    Full Text Available Abstract Background Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7. Methods The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase assays in MCF-7 cells. Results Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml. Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase. Conclusions Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide

  11. Centrally Mediated Erectile Dysfunction in Rats with Type 1 Diabetes: Role of Angiotensin II and Superoxide

    Science.gov (United States)

    Zheng, Hong; Liu, Xuefei; Patel, Kaushik P.

    2015-01-01

    Introduction Erectile dysfunction is a serious complication of diabetes mellitus. Apart from the peripheral actions, central mechanisms are also responsible for penile erection. Aim To determine the contribution of angiotensin (ANG) II in the dysfunction of central N-methyl-D-aspartic acid (NMDA)-nitric oxide (NO)-induced erectile responses in streptozotocin-induced type 1 diabetic (T1D) rats. Methods Three weeks after streptozotocin injections, rats were randomly treated with the angiotensin-converting enzyme inhibitor-enalapril, or the ANG II type 1 receptor blocker, losartan, or the superoxide dismutase mimetic, tempol or vehicle via chronic intracerebroventricular infusion by osmotic mini-pump for 2 weeks. Main Outcome Measure Central NMDA receptor stimulation or the administration of the NO donor, sodium nitroprusside (SNP)-induced penile erectile responses and concurrent behavioral responses were monitored in conscious rats. Results Two weeks of enalapril, losartan or tempol treatment significantly improved the erectile responses to central microinjection of both NMDA and SNP in the paraventricular nucleus (PVN) of conscious T1D rats (NMDA responses – T1D+enalapril: 1.7 ± 0.6, T1D+losartan: 2.0 ± 0.3, T1D+tempol: 2.0 ± 0.6 vs. T1D+vehicle: 0.6 ± 0.3 penile erections/rat in the first 20 min, P penile erections/rat in the first 20 min, P < 0.05). Concurrent behavioral responses including yawning and stretching, induced by central NMDA and SNP microinjections were also significantly increased in T1D rats after enalapril, losartan or tempol treatments. Neuronal NO synthase expression within the PVN was also significantly increased and superoxide production was reduced in T1D rats after these treatments. Conclusions These data strongly support the contention that enhanced ANG II mechanism/s within the PVN of T1D rats contributes to the dysfunction of central NMDA-induced erectile responses in T1D rats via stimulation of superoxide. PMID:23841890

  12. Possible vasculoprotective role of linagliptin against sodium arsenite-induced vascular endothelial dysfunction.

    Science.gov (United States)

    Jyoti, Uma; Kansal, Sunil Kumar; Kumar, Puneet; Goyal, Sandeep

    2016-02-01

    Vascular endothelial dysfunction (VED) interrupts the integrity and function of endothelial lining through enhanced markers of oxidative stress and decrease endothelial nitric oxide synthase (eNOS) expression. The main aim of the present study has been designed to investigate the possible vasculoprotective role of linagliptin against sodium arsenite-induced VED. Sodium arsenite (1.5 mg/kg, i.p., 2 weeks) abrogated the acetylcholine-induced, endothelium-dependent vasorelaxation by depicting the decrease in serum nitrite/nitrate concentration, reduced glutathione level, and simultaneously enhance the thiobarbituric acid reactive substances (TBARS) level, superoxide level, and tumor necrosis factor-alpha. These elevated markers interrupt the integrity of endothelial lining of thoracic aorta which was assessed histologically. The study elicits dose dependent effect of linagliptin (1.5 mg/kg, i.p. and 3 mg/kg, i.p.) or atorvastatin (30 mg/kg, p.o.) treatment, improved the endothelium-dependent independent relaxation, improve the integrity of endothelium lining which was assessed histologically by enhancing the serum nitrite/nitrate level, reduced glutathione level and simultaneously decreasing the TBARS level, superoxide anion level and tumor necrosis factor-alpha (TNF-α) level. L-NAME (25 mg/kg, i.p.), eNOS inhibitor, abrogated the ameliorative potential of linagliptin. However, the ameliorative potential of linagliptin has been enhanced by l-arginine (200 mg/kg, i.p.) which elicits that ameliorative potential of linagliptin was through eNOS signaling cascade and it may be concluded that linagliptin 3 mg/kg, i.p. has more significantly activated the eNOS and decreased the oxidative markers than linagliptin 1.5 mg/kg, i.p. and prevented sodium arsenite-induced VED.

  13. Vitamin C prevents the endothelial dysfunction induced by acute ethanol intake.

    Science.gov (United States)

    Hipólito, Ulisses V; Callera, Glaucia E; Simplicio, Janaina A; De Martinis, Bruno S; Touyz, Rhian M; Tirapelli, Carlos R

    2015-11-15

    Investigate the effect of ascorbic acid (vitamin C) on the endothelial dysfunction induced by acute ethanol intake. Ethanol (1g/kg; p.o. gavage) effects were assessed within 30min in male Wistar rats. Ethanol intake decreased the endothelium-dependent relaxation induced by acetylcholine in the rat aorta and treatment with vitamin C (250mg/kg; p.o. gavage, 5days) prevented this response. Ethanol increased superoxide anion (O2(-)) generation and decreased aortic nitrate/nitrite levels and these responses were not prevented by vitamin C. Superoxide dismutase (SOD) and catalase (CAT) activities as well as hydrogen peroxide (H2O2) and reduced glutathione (GSH) levels were not affected by ethanol. RhoA translocation as well as the phosphorylation levels of protein kinase B (Akt), eNOS (Ser(1177) or Thr(495) residues), p38MAPK, SAPK/JNK and ERK1/2 was not affected by ethanol intake. Vitamin C increased SOD activity and phosphorylation of Akt, eNOS (Ser(1177) residue) and p38MAPK in aortas from both control and ethanol-treated rats. Incubation of aortas with tempol prevented ethanol-induced decrease in the relaxation induced by acetylcholine. Ethanol (50mM/1min) increased O2(-) generation in cultured aortic vascular smooth muscle cells (VSMC) and vitamin C did not prevent this response. In endothelial cells, vitamin C prevented the increase on ROS generation and the decrease in the cytosolic NO content induced by ethanol. Our study provides novel evidence that vitamin C prevents the endothelial dysfunction induced by acute ethanol intake by a mechanism that involves reduced ROS generation and increased NO availability in endothelial cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The amino-acid sequence of copper/zinc superoxide dismutase from swordfish liver. Comparison of copper/zinc superoxide dismutase sequences.

    Science.gov (United States)

    Rocha, H A; Bannister, W H; Bannister, J V

    1984-12-17

    The amino acid sequence of copper/zinc superoxide dismutase from swordfish (Xiphias gladius) liver has been determined by alignment of the tryptic peptides according to the known sequence of bovine erythrocyte copper/zinc superoxide dismutase. This alignment has resulted in the ligands to the copper (His-47, 49, 76 and 94) and the zinc (His-76, 85, 134 and Asp-97) being conserved in all the copper/zinc superoxide dismutases sequenced so far. Also conserved in the sequences are the cysteines forming the intrachain disulphide bridge (Cys-58 and 160) and the essential arginine (Arg-157). Comparison of the amino acid sequence of swordfish liver copper/zinc superoxide dismutase with the bovine, human, horse, yeast and Photobacterium leiognathi indicates that the swordfish enzyme has a high homology with the other eukaryotic enzymes. Low homology is, however, observed with the P. leiognathi enzyme.

  15. A copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity in Arabidopsis.

    Science.gov (United States)

    Chu, Chiung-Chih; Lee, Wen-Chi; Guo, Wen-Yu; Pan, Shu-Mei; Chen, Lih-Jen; Li, Hsou-Min; Jinn, Tsung-Luo

    2005-09-01

    The copper chaperone for superoxide dismutase (CCS) has been identified as a key factor integrating copper into copper/zinc superoxide dismutase (CuZnSOD) in yeast (Saccharomyces cerevisiae) and mammals. In Arabidopsis (Arabidopsis thaliana), only one putative CCS gene (AtCCS, At1g12520) has been identified. The predicted AtCCS polypeptide contains three distinct domains: a central domain, flanked by an ATX1-like domain, and a C-terminal domain. The ATX1-like and C-terminal domains contain putative copper-binding motifs. We have investigated the function of this putative AtCCS gene and shown that a cDNA encoding the open reading frame predicted by The Arabidopsis Information Resource complemented only the cytosolic and peroxisomal CuZnSOD activities in the Atccs knockout mutant, which has lost all CuZnSOD activities. However, a longer AtCCS cDNA, as predicted by the Munich Information Centre for Protein Sequences and encoding an extra 66 amino acids at the N terminus, could restore all three, including the chloroplastic CuZnSOD activities in the Atccs mutant. The extra 66 amino acids were shown to direct the import of AtCCS into chloroplasts. Our results indicated that one AtCCS gene was responsible for the activation of all three types of CuZnSOD activity. In addition, a truncated AtCCS, containing only the central and C-terminal domains without the ATX1-like domain failed to restore any CuZnSOD activity in the Atccs mutant. This result indicates that the ATX1-like domain is essential for the copper chaperone function of AtCCS in planta.

  16. A Copper Chaperone for Superoxide Dismutase That Confers Three Types of Copper/Zinc Superoxide Dismutase Activity in Arabidopsis1

    Science.gov (United States)

    Chu, Chiung-Chih; Lee, Wen-Chi; Guo, Wen-Yu; Pan, Shu-Mei; Chen, Lih-Jen; Li, Hsou-min; Jinn, Tsung-Luo

    2005-01-01

    The copper chaperone for superoxide dismutase (CCS) has been identified as a key factor integrating copper into copper/zinc superoxide dismutase (CuZnSOD) in yeast (Saccharomyces cerevisiae) and mammals. In Arabidopsis (Arabidopsis thaliana), only one putative CCS gene (AtCCS, At1g12520) has been identified. The predicted AtCCS polypeptide contains three distinct domains: a central domain, flanked by an ATX1-like domain, and a C-terminal domain. The ATX1-like and C-terminal domains contain putative copper-binding motifs. We have investigated the function of this putative AtCCS gene and shown that a cDNA encoding the open reading frame predicted by The Arabidopsis Information Resource complemented only the cytosolic and peroxisomal CuZnSOD activities in the Atccs knockout mutant, which has lost all CuZnSOD activities. However, a longer AtCCS cDNA, as predicted by the Munich Information Centre for Protein Sequences and encoding an extra 66 amino acids at the N terminus, could restore all three, including the chloroplastic CuZnSOD activities in the Atccs mutant. The extra 66 amino acids were shown to direct the import of AtCCS into chloroplasts. Our results indicated that one AtCCS gene was responsible for the activation of all three types of CuZnSOD activity. In addition, a truncated AtCCS, containing only the central and C-terminal domains without the ATX1-like domain failed to restore any CuZnSOD activity in the Atccs mutant. This result indicates that the ATX1-like domain is essential for the copper chaperone function of AtCCS in planta. PMID:16126858

  17. [Physiological and pathophysiological significance of superoxide-radicals and the regulatory role of the enzyme superoxide dismutase (author's transl)].

    Science.gov (United States)

    Nohl, H

    1981-10-01

    The monovalent reduction of molecular oxygen, resulting in the formation of superoxide radicals (O(2)) is regarded as to be an ongoing physiological process involved in the respiration and other biological processes of aerobic cells. These reactive oxygen species have been reported to function as cofactors in many biosynthetic reaction steps. Thus, deviations from cellular steady state concentrations may lead to a multiplicity of clinical symptoms or may to a great deal determine the characteristic of a distinct malady. Decrease of cellular O(2)-concentration is discussed in connection with Trisomie 21 and various mental disorders. The role of O(2) in the biochemistry of inflammation, autoimmune diseases, various toxicological cases and the biological aging process is described. Hypothetical considerations concerning the involvement of O(2) in the pathogenetic mechanisms of Morbus Wilson, haemochromatosis, Parkinson syndrome, cataractogenesis and in carcinogenesis are presented. The physiological control of cellular O(2)-concentration is performed by formation rates of the various cellular O(2)-sources and the overall elimination rates of O(2)-consuming reaction steps. Superoxide dismutase (SOD) is of special interest within this cycle because it detoxifies O(2) radicals with velocity rates which are significantly faster than any other pathway involved in O(2) elimination. Thus attempts for a therapeutic interference on tissue levels of O(2)-radicals are mainly based on inhibition or activation of cellular SOD-activities depending on a supposed decrease or increase in cellular steady state concentrations of O(2). The availability of a drug version of SOD and of various synthetic SOD-active compounds allowing a therapeutic decrease of O(2)-tissue levels. Inhibition of cellular SOD is also possible, however, many still unknown toxic side effects should be expected because of unspecific action of the inhibitor available.

  18. Recent advances in understanding the roles of vascular endothelial cells in allergic inflammation.

    Science.gov (United States)

    Shoda, Tetsuo; Futamura, Kyoko; Orihara, Kanami; Emi-Sugie, Maiko; Saito, Hirohisa; Matsumoto, Kenji; Matsuda, Akio

    2016-01-01

    Allergic disorders commonly involve both chronic tissue inflammation and remodeling caused by immunological reactions to various antigens on tissue surfaces. Due to their anatomical location, vascular endothelial cells are the final responders to interact with various exogenous factors that come into contact with the epithelial surface, such as pathogen-associated molecular patterns (PAMPs) and antigens. Recent studies have shed light on the important roles of endothelial cells in the development and exacerbation of allergic disorders. For instance, endothelial cells have the greatest potential to produce several key molecules that are deeply involved in allergic inflammation, such as periostin and thymus and activation-regulated chemokine (TARC/CCL17). Additionally, endothelial cells were recently shown to be important functional targets for IL-33--an essential regulator of allergic inflammation. Notably, almost all endothelial cell responses and functions involved in allergic inflammation are not suppressed by corticosteroids. These corticosteroid-refractory endothelial cell responses and functions include TNF-α-associated angiogenesis, leukocyte adhesion, IL-33-mediated responses and periostin and TARC production. Therefore, these unique responses and functions of endothelial cells may be critically involved in the pathogenesis of various allergic disorders, especially their refractory processes. Here, we review recent studies, including ours, which have elucidated previously unknown pathophysiological roles of vascular endothelial cells in allergic inflammation and discuss the possibility of endothelium-targeted therapy for allergic disorders. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  19. Estetrol modulates endothelial nitric oxide synthesis in human endothelial cells

    Directory of Open Access Journals (Sweden)

    Maria Magdalena eMontt-Guevara

    2015-07-01

    Full Text Available Estetrol (E4 is a natural human estrogen that is present at high concentrations during pregnancy. E4 has been reported to act as an endogenous estrogen receptor modulator, exerting estrogenic actions on the endometrium or the central nervous system but presenting antagonistic effects on the breast. Due to these characteristics, E4 is currently being developed for a number of clinical applications, including contraception and menopausal hormone therapy. Endothelial nitric oxide (NO is a key player for vascular function and disease during pregnancy and throughout ageing in women. Endothelial NO is an established target of estrogens that enhance its formation in human endothelial cells. We here addressed the effects of E4 on the activity and expression of the endothelial nitric oxide synthase (eNOS in cultured human umbilical vein endothelial cells (HUVEC. E4 stimulated the activation of eNOS and NO secretion in HUVEC. E4 was significantly less effective compared to E2 and a peculiar concentration-dependent effect was found, with higher amounts of E4 being less effective than lower concentrations. When E2 was combined with E4, an interesting pattern was noted. E4 antagonized NO synthesis induced by pregnancy-like E2 concentrations. However, E4 did not impede the modest induction of NO synthesis associated with postmenopausal-like E2 levels. These results support the hypothesis that E4 may be a regulator of NO synthesis in endothelial cells and raise questions on its peculiar signaling in this context. Our results may be useful to interpret the role of E4 during human pregnancy and possibly to help develop this interesting steroid for clinical use.

  20. Endothelial cells, fibroblasts and vasculitis.

    Science.gov (United States)

    Buckley, Christopher D; Rainger, G Ed; Nash, Gerard B; Raza, Karim

    2005-07-01

    One of the most important questions in vasculitis research is not why inflammation of blood vessels occurs but why it persists, often in a site-specific manner. In this review we illustrate how stromal cells, such as fibroblasts and pericytes, might play an important role in regulating the site at which vasculitis occurs. Smooth muscle cells and fibroblasts directly influence the behaviour of overlying vascular cells, amplifying the response of the endothelium to proinflammatory agents such as TNF-alpha and allowing enhanced and inappropriate leucocyte recruitment. An abnormal local vascular stromal environment can therefore influence local endothelial function and drive the persistence of local vascular inflammation. However, such local vascular inflammation can have distant effects on the systemic vascular system, leading to widespread endothelial cell dysfunction. Vascular endothelial dysfunction is common in a range of immune-mediated inflammatory diseases, is seen in multiple vascular beds, and is reversible following the induction of disease remission. The mechanisms that drive such systemic vascular endothelial dysfunction are unclear but factors such as TNF-alpha and CRP may play a role. Persistence of such widespread endothelial dysfunction in systemic vasculitis appears to have long-term consequences, leading to the acceleration of atherosclerosis and premature ischaemic heart disease. It may also underlie the accelerated atherosclerosis seen in other immune-mediated rheumatic diseases, such as rheumatoid arthritis.

  1. Infection with Porphyromonas gingivalis exacerbates endothelial injury in obese mice.

    Directory of Open Access Journals (Sweden)

    Min Ao

    Full Text Available BACKGROUND: A number of studies have revealed a link between chronic periodontitis and cardiovascular disease in obese patients. However, there is little information about the influence of periodontitis-associated bacteria, Porphyromonas gingivalis (Pg, on pathogenesis of atherosclerosis in obesity. METHODS: In vivo experiment: C57BL/6J mice were fed with a high-fat diet (HFD or normal chow diet (CD, as a control. Pg was infected from the pulp chamber. At 6 weeks post-infection, histological and immunohistochemical analysis of aortal tissues was performed. In vitro experiment: hTERT-immortalized human umbilical vein endothelial cells (HuhT1 were used to assess the effect of Pg/Pg-LPS on free fatty acid (FFA induced endothelial cells apoptosis and regulation of cytokine gene expression. RESULTS: Weaker staining of CD31 and increased numbers of TUNEL positive cells in aortal tissue of HFD mice indicated endothelial injury. Pg infection exacerbated the endothelial injury. Immunohistochemically, Pg was detected deep in the smooth muscle of the aorta, and the number of Pg cells in the aortal wall was higher in HFD mice than in CD mice. Moreover, in vitro, FFA treatment induced apoptosis in HuhT1 cells and exposure to Pg-LPS increased this effect. In addition, Pg and Pg-LPS both attenuated cytokine production in HuhT1 cells stimulated by palmitate. CONCLUSIONS: Dental infection of Pg may contribute to pathogenesis of atherosclerosis by accelerating FFA-induced endothelial injury.

  2. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.).

    Science.gov (United States)

    McKersie, B D; Chen, Y; de Beus, M; Bowley, S R; Bowler, C; Inzé, D; D'Halluin, K; Botterman, J

    1993-01-01

    Activated oxygen or oxygen free radicals have been implicated in a number of physiological disorders in plants including freezing injury. Superoxide dismutase (SOD) catalyzes the dismutation of superoxide into O2 and H2O2 and thereby reduces the titer of activated oxygen molecules in the cell. To further examine the relationship between oxidative and freezing stresses, the expression of SOD was modified in transgenic alfalfa (Medicago sativa L.). The Mn-SOD cDNA from Nicotiana plumbaginifolia under the control of the cauliflower mosaic virus 35S promoter was introduced into alfalfa using Agrobacterium tumefaciens-mediated transformation. Two plasmid vectors, pMitSOD and pChlSOD, contained a chimeric Mn-SOD construct with a transit peptide for targeting to the mitochondria or one for targeting to the chloroplast, respectively. The putatively transgenic plants were selected for resistance to kanamycin and screened for neomycin phosphotransferase activity and the presence of an additional Mn-SOD isozyme. Detailed analysis of a set of four selected transformants indicated that some had enhanced SOD activity, increased tolerance to the diphenyl ether herbicide, acifluorfen, and increased regrowth after freezing stress. The F1 progeny of one line, RA3-ChlSOD-30, were analyzed by SOD isozyme activity, by polymerase chain reaction for the Mn-SOD gene, and by polymerase chain reaction for the neo gene. RA3-ChlSOD-30 had three sites of insertion of pChlSOD, but only one gave a functional Mn-SOD isozyme; the other two were apparently partial insertions. The progeny with a functional Mn-SOD transgene had more rapid regrowth following freezing stress than those progeny lacking the functional Mn-SOD transgene, suggesting that Mn-SOD serves a protective role by minimizing oxygen free radical production after freezing stress. PMID:8290627

  3. Perylene Diimide as a Precise Graphene-like Superoxide Dismutase Mimetic

    Energy Technology Data Exchange (ETDEWEB)

    Jalilov, Almaz S.; Nilewski, Lizanne G.; Berka, Vladimir [Hematology,; Zhang, Chenhao; Yakovenko, Andrey A. [Argonne National Laboratory, X-ray Science Division,; Wu, Gang [Hematology,; Kent, Thomas A. [Department; Center for Translational Research in Inflammatory Diseases, Michel E. DeBakey VA Medical Center, Houston, Texas 77030, United States; Tsai, Ah-Lim [Hematology,; Tour, James M.

    2017-01-31

    Here we show that the active portion of a graphitic nanoparticle can be mimicked by a perylene diimide (PDI) to explain the otherwise elusive biological and electrocatalytic activity of the nanoparticle construct. Development of molecular analogues that mimic the antioxidant properties of oxidized graphenes, in this case the poly(ethylene glycolated) hydrophilic carbon clusters (PEG–HCCs), will afford important insights into the highly efficient activity of PEG–HCCs and their graphitic analogues. PEGylated perylene diimides (PEGn–PDI) serve as well-defined molecular analogues of PEG–HCCs and oxidized graphenes in general, and their antioxidant and superoxide dismutase-like (SOD-like) properties were studied. PEGn–PDIs have two reversible reduction peaks, which are more positive than the oxidation peak of superoxide (O2•–). This is similar to the reduction peak of the HCCs. Thus, as with PEG–HCCs, PEGn–PDIs are also strong single-electron oxidants of O2•–. Furthermore, reduced PEGn–PDI, PEGn–PDI•–, in the presence of protons, was shown to reduce O2•– to H2O2 to complete the catalytic cycle in this SOD analogue. The kinetics of the conversion of O2•– to O2 and H2O2 by PEG8–PDI was measured using freeze-trap EPR experiments to provide a turnover number of 133 s–1; the similarity in kinetics further supports that PEG8–PDI is a true SOD mimetic. Finally, PDIs can be used as catalysts in the electrochemical oxygen reduction reaction in water, which proceeds by a two-electron process with the production of H2O2, mimicking graphene oxide nanoparticles that are otherwise difficult to study spectroscopically.

  4. Cloning, Expression, and Characterization of Thermotolerant Manganese Superoxide Dismutase from Bacillus sp. MHS47

    Directory of Open Access Journals (Sweden)

    Supatra Areekit

    2011-01-01

    Full Text Available A superoxide dismutase gene from thermotolerant Bacillus sp. MHS47 (MnSOD47 was cloned, sequenced, and expressed. The gene has an open reading frame of 612 bp, corresponding to 203 deduced amino acids, with high homology to the amino acid sequences of B. thuringiensis (accession no. EEN01322, B. anthracis (accession no. NP_846724, B. cereus (accession no. ZP_04187911, B. weihenstephanensis (accession no. YP_001646918, and B. pseudomycoides. The conserved manganese-binding sites (H28, H83, D165, and H169 show that MnSOD47 has the specific characteristics of the manganese superoxide dismutase (MnSOD enzymes. MnSOD47 expressed an enzyme with a molecular weight of approximately 22.65 kDa and a specific activity of 3537.75 U/mg. The enzyme is active in the pH range 7–8.5, with an optimum pH of 7.5, and at temperatures in the range 30–45 °C, with an optimum temperature of 37 °C. Tests of inhibitors and metal ions indicated that the enzyme activity is inhibited by sodium azide, but not by hydrogen peroxide or potassium cyanide. These data should benefit future studies of MnSODs in other microorganisms and the biotechnological production of MnSOD47, and could also be used to develop a biosensor for the detection of antioxidants and free radical activity. In the future, this basic knowledge could be applicable to the detection of cancer risks in humans and therapeutic treatments.

  5. Arginase Inhibitor in the Pharmacological Correction of Endothelial Dysfunction

    Directory of Open Access Journals (Sweden)

    Mihail V. Pokrovskiy

    2011-01-01

    Full Text Available This paper is about a way of correction of endothelial dysfunction with the inhibitor of arginase: L-norvaline. There is an imbalance between vasoconstriction and vasodilatation factors of endothelium on the basis of endothelial dysfunction. Among vasodilatation agents, nitrogen oxide plays the basic role. Amino acid L-arginine serves as a source of molecules of nitrogen oxide in an organism. Because of the high activity of arginase enzyme which catalyzes the hydrolysis of L-arginine into ornithine and urea, the bioavailability of nitrogen oxide decreases. The inhibitors of arginase suppress the activity of the given enzyme, raising and production of nitrogen oxide, preventing the development of endothelial dysfunction.

  6. Effect of superoxide and superoxide-generating systems on the prooxidant effect of iron in oil emulsion and raw turkey homogenates.

    Science.gov (United States)

    Ahn, D U; Kim, S M

    1998-09-01

    Mechanisms of superoxide.O2--generating systems on the pro-oxidant effect of iron from various sources were studied. Reaction mixtures were prepared with distilled water, oil emulsion, or meat homogenates. Free ionic iron (ferrous and ferric), ferritin and hemoglobin (Hb) were used as iron sources, and KO2 and xanthine oxidase (XOD) systems were used to produce .O2-. Thiobarbituric acid reactive substances (TBARS) values and iron contents of the reaction mixtures were determined. Ferric iron and ferritin, in the presence or absence of superoxide-generating systems, had no catalytic effect on the oxidation of oil emulsion but became pro-oxidants when reducing agent (ascorbate) was present. Ferrous iron and Hb had strong catalytic effects on the oxidation of oil emulsion as shown by TBARS values. Superoxide and H2O2, generated from superoxide-generating systems, oxidized ferrous iron and ascorbate, and lowered the pro-oxidant effect of ferrous iron in oil emulsion. Addition of ferric or ferrous iron increased but Hb did not have any effect on the TBARS values of raw meat homogenates. The reaction mechanisms of superoxide and the superoxide-generating systems on the prooxidant effect of various iron sources indicated that .O2- was a strong oxidizer rather than a reducing agent, and the antioxidant effect of XOD system in oil was caused by the oxidation of ferrous iron to the ferric form by .O2- and/or H2O2.

  7. Release of a leukocyte activation inhibitor by staurosporine-treated pulmonary artery endothelial cells.

    Science.gov (United States)

    Chen, X; Catravas, J D

    1998-07-01

    Bovine pulmonary arterial endothelial cells (BPAE) treated with the protein kinase C (PKC) inhibitor staurosporine inhibited O-2. generation by neutrophils exposed to phorbol myristate acetate (PMA) but did not affect O-2. generated enzymatically by xanthine/xanthine oxidase (X/XO). Similar results were obtained with conditioned medium from staurosporine-pretreated BPAE. The inhibitory effects of staurosporine-treated BPAE on O-2. generation were not altered by the superoxide dismutase inhibitor diethylcarbamazine. This BPAE-derived inhibitor was continuously released from staurosporine-pretreated BPAE for at least 5 h. The exact nature of the inhibitor remains unknown, but it appears to be a positively charged molecule with molecular weight neutrophils with staurosporine or conditioned medium from staurosporine-treated BPAE prevented the neutrophil-mediated decrease in endothelium-bound angiotensin-converting enzyme activity and cytotoxicity in BPAE. In contrast, staurosporine potentiated the H2O2- and X/XO-mediated endothelial cytotoxicity. These data suggest that staurosporine-treated endothelial cells release a soluble factor that inhibits neutrophil activation and protects endothelial cells from neutrophil-mediated injury.

  8. Superoxide anions produced by Streptococcus pyogenes group A-stimulated keratinocytes are responsible for cellular necrosis and bacterial growth inhibition.

    Science.gov (United States)

    Regnier, Elodie; Grange, Philippe A; Ollagnier, Guillaume; Crickx, Etienne; Elie, Laetitia; Chouzenoux, Sandrine; Weill, Bernard; Plainvert, Céline; Poyart, Claire; Batteux, Frédéric; Dupin, Nicolas

    2016-02-01

    Gram-positive Streptococcus pyogenes (group A Streptococcus or GAS) is a major skin pathogen and interacts with keratinocytes in cutaneous tissues. GAS can cause diverse suppurative and inflammatory infections, such as cellulitis, a common acute bacterial dermo-hypodermitis with a high morbidity. Bacterial isolation yields from the lesions are low despite the strong local inflammation observed, raising numerous questions about the pathogenesis of the infection. Using an in vitro model of GAS-infected keratinocytes, we show that the major ROS produced is the superoxide anion ([Formula: see text]), and that its production is time- and dose-dependent. Using specific modulators of ROS production, we show that [Formula: see text] is mainly synthesized by the cytoplasmic NADPH oxidase. Superoxide anion production leads to keratinocyte necrosis but incomplete inhibition of GAS growth, suggesting that GAS may be partially resistant to the oxidative burst. In conclusion, GAS-stimulated keratinocytes are able to develop an innate immune response based on the production of ROS. This local immune response limits GAS development and induces keratinocyte cell death, resulting in the skin lesions observed in patients with cellulitis. © The Author(s) 2015.

  9. Furin proteolytically processes the heparin-binding region of extracellular superoxide dismutase

    DEFF Research Database (Denmark)

    Bowler, Russell P; Nicks, Mike; Olsen, Dorte Aa

    2002-01-01

    Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme that attenuates brain and lung injury from oxidative stress. A polybasic region in the carboxyl terminus distinguishes EC-SOD from other superoxide dismutases and determines EC-SOD's tissue half-life and affinity for heparin...

  10. Do Superoxide Dismutase (SOD) and Catalase (CAT) protect Cells from DNA Damage Induced by Active Arsenicals?

    Science.gov (United States)

    Superoxide dismutase (SOD) catalyzes the conversion of superoxide to hydrogen peroxide, which can be converted to water and oxygen through the action of catalase. Heterozygous mice of strain B6: 129S7-SodltmlLeb/J were obtained from Jackson Laboratories and bred to produce offspr...

  11. The French Paradox: Determining the Superoxide-Scavenging Capacity of Red Wine and Other Beverages

    Science.gov (United States)

    Logan, Barry A.; Hammond, Matthew P.; Stormo, Benjamin M.

    2008-01-01

    Plant-derived phenolic compounds such as those found in red wine, tea, and certain fruit juices may protect against cardiovascular disease by detoxifying (scavenging) superoxide and other unstable reactive oxygen species. We present a laboratory exercise that can be used to assess the superoxide-scavenging capacity of beverages. Among the…

  12. Endothelial function in vasovagal syncope.

    Science.gov (United States)

    Pietrucha, Artur Z

    2014-12-01

    Vasovagal syncope (VVS) is a common form of fainting. The pathophysiology of VVS is complex and involves changes in the autonomic and vascular tone, resulting in reflex bradycardia with marked hypotension. Paradoxical peripheral vasodilation caused by endothelial dysfunction may also play a key role in inappropriate hypotension during VVS. Endothelial hyperactivity due to up regulation of nitric oxide synthase leads to profound vasodilation, much stronger than vasodilation caused by adrenergic stimulation in response to orthostatic stress alone. Studies have reported significantly higher flow-mediated dilation and higher plasma nitric oxide concentration in people with vasovagal syndrome. Patients with VVS showed decreased vasoconstrictive agent endothelin-1 levels during orthostatic stress. Coagulation and fibrinolysis activity also play important roles in endothelial function in syncopal patients. The response of the endothelium to orthostatic stress is similar to the reaction to haemorrhagic stress and is likely to be a remnant from the evolutionary adaptation of primates.

  13. Endothelial keratoplasty: evolution and horizons

    Directory of Open Access Journals (Sweden)

    Gustavo Teixeira Grottone

    2012-12-01

    Full Text Available Endothelial keratoplasty has been adopted by corneal surgeons worldwide as an alternative to penetrating keratoplasty (PK in the treatment of corneal endothelial disorders. Since the first surgeries in 1998, different surgical techniques have been used to replace the diseased endothelium. Compared with penetrating keratoplasty, all these techniques may provide faster and better visual rehabilitation with minimal change in refractive power of the transplanted cornea, minimal induced astigmatism, elimination of suture-induced complications and late wound dehiscence, and a reduced demand for postoperative care. Translational research involving cell-based therapy is the next step in work on endothelial keratoplasty. The present review updates information on comparisons among different techniques and predicts the direction of future treatment.

  14. In vivo ultrathin Descemet stripping automated endothelial keratoplasty with a low-energy and high-frequency femtosecond laser

    Directory of Open Access Journals (Sweden)

    Gustavo Victor

    2014-04-01

    Full Text Available This case report describes the production of an ultrathin endothelial donor corneal lamella using a femtosecond laser with low energy and a high frequency. In addition, we report its use in vivo in an eye with pseudophakic bullous keratopathy. The outcomes were observed 3 months after surgery in terms of the change in endothelial donor lamella and full cornea thickness (including pachymetric mapping, visual acuity, and endothelial cell count.

  15. Interfacial effects on lithium superoxide disproportionation in Li-O₂ batteries.

    Science.gov (United States)

    Zhai, Dengyun; Lau, Kah Chun; Wang, Hsien-Hau; Wen, Jianguo; Miller, Dean J; Lu, Jun; Kang, Feiyu; Li, Baohua; Yang, Wenge; Gao, Jing; Indacochea, Ernesto; Curtiss, Larry A; Amine, Khalil

    2015-02-11

    During the cycling of Li-O2 batteries the discharge process gives rise to dynamically evolving agglomerates composed of lithium-oxygen nanostructures; however, little is known about their composition. In this paper, we present results for a Li-O2 battery based on an activated carbon cathode that indicate interfacial effects can suppress disproportionation of a LiO2 component in the discharge product. High-intensity X-ray diffraction and transmission electron microscopy measurements are first used to show that there is a LiO2 component along with Li2O2 in the discharge product. The stability of the discharge product was then probed by investigating the dependence of the charge potential and Raman intensity of the superoxide peak with time. The results indicate that the LiO2 component can be stable for possibly up to days when an electrolyte is left on the surface of the discharged cathode. Density functional calculations on amorphous LiO2 reveal that the disproportionation process will be slower at an electrolyte/LiO2 interface compared to a vacuum/LiO2 interface. The combined experimental and theoretical results provide new insight into how interfacial effects can stabilize LiO2 and suggest that these interfacial effects may play an important role in the charge and discharge chemistries of a Li-O2 battery.

  16. Interfacial Effects on Lithium Superoxide Disproportionation in Li-O 2 Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Dengyun; Lau, Kah Chun; Wang, Hsien-Hau; Wen, Jianguo; Miller, Dean J.; Lu, Jun; Kang, Feiyu; Li, Baohua; Yang, Wenge; Gao, Jing; Indacochea, Ernesto; Curtiss, Larry A.; Amine, Khalil

    2015-02-11

    During the cycling of Li-O-2 batteries the discharge process gives rise to dynamically evolving agglomerates composed of lithium-oxygen nanostructures; however, little is known about their composition. In this paper, we present results for a Li-O-2 battery based on an activated carbon cathode that indicate interfacial effects can suppress disproportionation of a LiO2 component in the discharge product. High-intensity X-ray diffraction and transmission electron microscopy measurements are first used to show that there is a LiO2 component along with Li2O2 in the discharge product. The stability of the discharge product was then probed by investigating the dependence of the charge potential and Raman intensity of the superoxide peak with time. The results indicate that the LiO2 component can be stable for possibly up to days when an electrolyte is left on the surface of the discharged cathode. Density functional calculations on amorphous LiO2 reveal that the disproportionation process will be slower at an electrolyte/LiO2 interface compared to a vacuum/LiO2 interface. The combined experimental and theoretical results provide new insight into how interfacial effects can stabilize LiO2 and suggest that these interfacial effects may play an important role in the charge and discharge chemistries of a Li-O-2 battery.

  17. Interfacial Effects on Lithium Superoxide Disproportionation in Li-O₂ Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Dengyun; Lau, Kah Chun; Wang, Hsien-Hau; Wen, Jianguo; Miller, Dean; Lu, Jun; Kang, Feiyu; Li, Baohua; Yang, Wenge; Gao, Jing; Indacochea, Ernesto; Curtiss, Larry A.; Amine, Khalil

    2015-02-11

    During the cycling of Li-O₂ batteries the discharge process gives rise to dynamically evolving agglomerates composed of lithium-oxygen nanostructures; however, little is known about their composition. In this paper, we present results for a Li-O₂ battery based on an activated carbon cathode that indicate interfacial effects can suppress disproportionation of a LiO₂ component in the discharge product. High-intensity X-ray diffraction and transmission electron microscopy measurements are first used to show that there is a LiO₂ component along with Li₂O₂ in the discharge product. The stability of the discharge product was then probed by investigating the dependence of the charge potential and Raman intensity of the superoxide peak with time. The results indicate that the LiO₂ component can be stable for possibly up to days when an electrolyte is left on the surface of the discharged cathode. Density functional calculations on amorphous LiO₂ reveal that the disproportionation process will be slower at an electrolyte/LiO₂ interface compared to a vacuum/LiO₂ interface. The combined experimental and theoretical results provide new insight into how interfacial effects can stabilize LiO₂ and suggest that these interfacial effects may play an important role in the charge and discharge chemistries of a Li-O₂ battery.

  18. Superoxide radicals can act synergistically with hypochlorite to induce damage to proteins

    DEFF Research Database (Denmark)

    Hawkins, Clare Louise; Rees, Martin D; Davies, Michael Jonathan

    2002-01-01

    Activated phagocytes generate both superoxide radicals via a respiratory burst, and HOCl via the concurrent release of the haem enzyme myeloperoxidase. Amine and amide functions on proteins and carbohydrates are major targets for HOCl, generating chloramines (RNHCl) and chloramides (RC(O)NClR'), ......Activated phagocytes generate both superoxide radicals via a respiratory burst, and HOCl via the concurrent release of the haem enzyme myeloperoxidase. Amine and amide functions on proteins and carbohydrates are major targets for HOCl, generating chloramines (RNHCl) and chloramides (RC......(O)NClR'), which can accumulate to high concentrations (>100 microM). Here we show that superoxide radicals catalyse the decomposition of chloramines and chloramides to reactive nitrogen-centred radicals, and increase the extent of protein fragmentation compared to that observed with either superoxide radicals...... or HOCl, alone. This synergistic action may be of significance at sites of inflammation, where both superoxide radicals and chloramines/chloramides are formed simultaneously....

  19. Inhibitory effects of cardols and related compounds on superoxide anion generation by xanthine oxidase.

    Science.gov (United States)

    Masuoka, Noriyoshi; Nihei, Ken-ichi; Maeta, Ayami; Yamagiwa, Yoshiro; Kubo, Isao

    2015-01-01

    5-Pentadecatrienylresorcinol, isolated from cashew nuts and commonly known as cardol (C₁₅:₃), prevented the generation of superoxide radicals catalysed by xanthine oxidase without the inhibition of uric acid formation. The inhibition kinetics did not follow the Michelis-Menten equation, but instead followed the Hill equation. Cardol (C₁₀:₀) also inhibited superoxide anion generation, but resorcinol and cardol (C₅:₀) did not inhibit superoxide anion generation. The related compounds 3,5-dihydroxyphenyl alkanoates and alkyl 2,4-dihydroxybenzoates, had more than a C9 chain, cooperatively inhibited but alkyl 3,5-dihydroxybenzoates, regardless of their alkyl chain length, did not inhibit the superoxide anion generation. These results suggested that specific inhibitors for superoxide anion generation catalysed by xanthine oxidase consisted of an electron-rich resorcinol group and an alkyl chain having longer than C9 chain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Tetramethylpyrazine Protects against Hydrogen Peroxide-Provoked Endothelial Dysfunction in Isolated Rat Aortic Rings: Implications for Antioxidant Therapy of Vascular Diseases

    Directory of Open Access Journals (Sweden)

    Xiaojia Ni

    2014-01-01

    Full Text Available Background and Objectives. Oxidative stress can initiate endothelial dysfunction and atherosclerosis. This study evaluated whether tetramethylpyrazine (TMP, the predominant active ingredient in Rhizoma Ligustici Wallichii (chuanxiong, prevents endothelial dysfunction in a rat model of oxidative stress. Methods. Isolated rat aortic rings were pretreated with various drugs before the induction of endothelial dysfunction by hydrogen peroxide (H2O2. Changes in isometric tension were then measured in acetylcholine- (ACh- relaxed rings. Endothelial nitric oxide synthase (eNOS expression was evaluated in the rings by Western blotting, and superoxide anion (O2∙- content was assessed in primary rat aortic endothelial cells by dihydroethidium- (DHE- mediated fluorescence microscopy. Results. ACh-induced endothelium-dependent relaxation (EDR was disrupted by H2O2 in endothelium-intact aortic rings. H2O2-impaired relaxation was ameliorated by acute pretreatment with low concentrations of TMP, as well as by pretreatment with catalase and the NADPH oxidase inhibitors, apocynin and diphenyleneiodonium (DPI. TMP, apocynin, and DPI also reduced O2∙- accumulation in endothelial cells,but TMP failed to alter eNOS expression in aortic rings incubated with H2O2. Conclusions. TMP safeguards against oxidative stress-induced endothelial dysfunction, suggesting that the agent might find therapeutic utility in the management of vascular diseases. However, TMP’s role in inhibiting NADPH oxidase and its vascular-protective mechanism of action requires further investigation.

  1. Effects of Parietaria judaica pollen extract on human microvascular endothelial cells.

    Science.gov (United States)

    Taverna, Simona; Flugy, Anna; Colomba, Paolo; Barranca, Marilisa; De Leo, Giacomo; Alessandro, Riccardo

    2008-08-08

    Pollinosis from Parietaria judaica is one of the main causes of allergy in the Mediterranean area. The present study is designed to assess if P. judaica pollens contain bioactive compounds able to elicit a functional response in endothelial cells. We have demonstrated that addition of pollen extract to human lung microvascular endothelial cells (HMVEC-L) induces a modification of cell morphology, actin cytoskeletal rearrangements and an increase in endothelial cell permeability. We further showed that the treatment of endothelial cells with pollen extract causes an increase of E-selectin and VCAM-1 protein levels as well as an increase of IL-8 production. The stimulation of cell-cell adhesion molecules was paralleled by a dose-dependent increase of adhesion of polymorphonuclear cells (PMNs) to HMVEC-L monolayer. Our results suggest for the first time that pollen affect directly endothelial cells (EC) modulating critical functions related to the inflammatory response.

  2. Superoxide Dismutase 2 is dispensable for platelet function.

    Science.gov (United States)

    Fidler, Trevor P; Rowley, Jesse W; Araujo, Claudia; Boudreau, Luc H; Marti, Alex; Souvenir, Rhonda; Dale, Kali; Boilard, Eric; Weyrich, Andrew S; Abel, E Dale

    2017-10-05

    Increased intracellular reactive oxygen species (ROS) promote platelet activation. The sources of platelet-derived ROS are diverse and whether or not mitochondrial derived ROS, modulates platelet function is incompletely understood. Studies of platelets from patients with sickle cell disease, and diabetes suggest a correlation between mitochondrial ROS and platelet dysfunction. Therefore, we generated mice with a platelet specific knockout of superoxide dismutase 2 (SOD2-KO) to determine if increased mitochondrial ROS increases platelet activation. SOD2-KO platelets demonstrated decreased SOD2 activity and increased mitochondrial ROS, however total platelet ROS was unchanged. Mitochondrial function and content were maintained in non-stimulated platelets. However SOD2-KO platelets demonstrated decreased mitochondrial function following thrombin stimulation. In vitro platelet activation and spreading was normal and in vivo, deletion of SOD2 did not change tail-bleeding or arterial thrombosis indices. In pathophysiological models mediated by platelet-dependent immune mechanisms such as sepsis and autoimmune inflammatory arthritis, SOD2-KO mice were phenotypically identical to wildtype controls. These data demonstrate that increased mitochondrial ROS does not result in platelet dysfunction.

  3. A Second Superoxide Dismutase Gene in the Medfly, Ceratitis Capitata

    Science.gov (United States)

    Banks, G. K.; Robinson, A. S.; Kwiatowski, J.; Ayala, F. J.; Scott, M. J.; Kriticou, D.

    1995-01-01

    We report the first case of two Cu/Zn Sod genes (ccSod1 and ccSod2) that have been cloned and sequenced from an insect, the medfly, Ceratitis capitata. Biochemical evidence suggested the presence of two Sod genes in the medfly. The two genes are isolated using different molecular strategies: ccSod1 via cross-hybridization to a genomic library using a heterologous probe and ccSod2 from cDNA using a homologous probe generated by PCR. Sequence analysis shows that ccSod1 and ccSod2 are different genes. The inferred amino sequences show that all essential residues of the active site are strictly conserved, which suggests both genes encode functional Cu/Zn superoxide dismutase (SOD). Phylogenetic analysis by the maximum parsimony method with bootstrap resampling of previously known Cu/Zn SOD reveals two monophyletic groups, vertebrates and insects. The position of ccSOD2 in this phylogeny is undefined with respect to dipteran ccSOD1, vertebrate, plant, fungal, and extracellular Cu/Zn SOD, which suggests that the duplication detected in Ceratitis is ancient, perhaps as old as the origins of the arthropod phylum in the Cambrian more than 500 million years ago. In situ hybridization to polytene c