WorldWideScience

Sample records for endothelial superoxide production

  1. Angiotensin II receptor one (AT1) mediates dextrose induced endoplasmic reticulum stress and superoxide production in human coronary artery endothelial cells.

    Science.gov (United States)

    Haas, Michael J; Onstead-Haas, Luisa; Lee, Tracey; Torfah, Maisoon; Mooradian, Arshag D

    2016-10-01

    Renin-angiotensin-aldosterone system (RAAS) has been implicated in diabetes-related vascular complications partly through oxidative stress. To determine the role of angiotensin II receptor subtype one (AT1) in dextrose induced endoplasmic reticulum (ER) stress, another cellular stress implicated in vascular disease. Human coronary artery endothelial cells with or without AT1 receptor knock down were treated with 27.5mM dextrose for 24h in the presence of various pharmacologic blockers of RAAS and ER stress and superoxide (SO) production were measured. Transfection of cells with AT1 antisense RNA knocked down cellular AT1 by approximately 80%. The ER stress was measured using the placental alkaline phosphatase (ES-TRAP) assay and western blot analysis of glucose regulated protein 78 (GRP78), c-jun-N-terminal kinase 1 (JNK1), phospho-JNK1, eukaryotic translation initiation factor 2α (eIF2α) and phospho-eIF2α measurements. Superoxide (SO) generation was measured using the superoxide-reactive probe 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride (MCLA) chemiluminescence. In cells with AT1 knock down, dextrose induced ER stress was significantly blunted and treatment with 27.5mM dextrose resulted in significantly smaller increase in SO production compared to 27.5mM dextrose treated and sham transfected cells. Dextrose induced ER stress was reduced with pharmacologic blockers of AT1 (losartan and candesartan) and mineralocorticoid receptor blocker (spironolactone) but not with angiotensin converting enzyme inhibitors (captopril and lisinopril). The dextrose induced SO generation was inhibited by all pharmacologic blockers of RAAS tested. The results indicate that dextrose induced ER stress and SO production in endothelial cells are mediated at least partly through AT1 receptor activation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Superoxide dismutase and catalase conjugated to polyethylene glycol increases endothelial enzyme activity and oxidant resistance

    International Nuclear Information System (INIS)

    Beckman, J.S.; Minor, R.L. Jr.; White, C.W.; Repine, J.E.; Rosen, G.M.; Freeman, B.A.

    1988-01-01

    Covalent conjugation of superoxide dismutase and catalase with polyethylene glycol (PEG) increases the circulatory half-lives of these enzymes from 125 I-PEG-catalase or 125 I-PEG-superoxide dismutase produced a linear, concentration-dependent increase in cellular enzyme activity and radioactivity. Fluorescently labeled PEG-superoxide dismutase incubated with endothelial cells showed a vesicular localization. Mechanical injury to cell monolayers, which is known to stimulate endocytosis, further increased the uptake of fluorescent PEG-superoxide dismutase. Addition of PEG and PEG-conjugated enzymes perturbed the spin-label binding environment, indicative of producing an increase in plasma membrane fluidity. Thus, PEG conjugation to superoxide dismutase and catalase enhances cell association of these enzymes in a manner which increases cellular enzyme activities and provides prolonged protection from partially reduced oxygen species

  3. Extracellular but not cytosolic superoxide dismutase protects against oxidant-mediated endothelial dysfunction

    Directory of Open Access Journals (Sweden)

    Erin L. Foresman

    2013-01-01

    Full Text Available Superoxide (O2•− contributes to the development of cardiovascular disease. Generation of O2•− occurs in both the intracellular and extracellular compartments. We hypothesized that the gene transfer of cytosolic superoxide dismutase (SOD1 or extracellular SOD (SOD3 to blood vessels would differentially protect against O2•−-mediated endothelial-dependent dysfunction. Aortic ring segments from New Zealand rabbits were incubated with adenovirus (Ad containing the gene for Escherichia coli β-galactosidase, SOD1, or SOD3. Activity assays confirmed functional overexpression of both SOD3 and SOD1 isoforms in aorta 24 h following gene transfer. Histochemical staining for β-galactosidase showed gene transfer occurred in the endothelium and adventitia. Next, vessels were prepared for measurement of isometric tension in Kreb's buffer containing xanthine. After precontraction with phenylephrine, xanthine oxidase impaired relaxation to the endothelium-dependent dilator acetylcholine (ACh, max relaxation 33±4% with XO vs. 64±3% without XO, p<0.05, whereas relaxation to the endothelium-independent dilator sodium nitroprusside was unaffected. In the presence of XO, maximal relaxation to ACh was improved in vessels incubated with AdSOD3 (55±2%, p<0.05 vs. control but not AdSOD1 (34±4%. We conclude that adenoviral-mediated gene transfer of SOD3, but not SOD1, protects the aorta from xanthine/XO-mediated endothelial dysfunction. These data provide important insight into the location and enzymatic source of O2•− production in vascular disease.

  4. Nitric oxide and superoxide dismutase modulate endothelial progenitor cell function in type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Brenner Benjamin

    2009-10-01

    Full Text Available Abstract Background The function of endothelial progenitor cells (EPCs, which are key cells in vascular repair, is impaired in diabetes mellitus. Nitric oxide (NO and reactive oxygen species can regulate EPC functions. EPCs tolerate oxidative stress by upregulating superoxide dismutase (SOD, the enzyme that neutralizes superoxide anion (O2-. Therefore, we investigated the roles of NO and SOD in glucose-stressed EPCs. Methods The functions of circulating EPCs from patients with type 2 diabetes were compared to those from healthy individuals. Healthy EPCs were glucose-stressed, and then treated with insulin and/or SOD. We assessed O2- generation, NO production, SOD activity, and their ability to form colonies. Results EPCs from diabetic patients generated more O2-, had higher NAD(PH oxidase and SOD activity, but lower NO bioavailability, and expressed higher mRNA and protein levels of p22-phox, and manganese SOD and copper/zinc SOD than those from the healthy individuals. Plasma glucose and HbA1c levels in the diabetic patients were correlated negatively with the NO production from their EPCs. SOD treatment of glucose-stressed EPCs attenuated O2- generation, restored NO production, and partially restored their ability to form colonies. Insulin treatment of glucose-stressed EPCs increased NO production, but did not change O2- generation and their ability to form colonies. However, their ability to produce NO and to form colonies was fully restored after combined SOD and insulin treatment. Conclusion Our data provide evidence that SOD may play an essential role in EPCs, and emphasize the important role of antioxidant therapy in type 2 diabetic patients.

  5. Nitric oxide and superoxide dismutase modulate endothelial progenitor cell function in type 2 diabetes mellitus.

    Science.gov (United States)

    Hamed, Saher; Brenner, Benjamin; Aharon, Anat; Daoud, Deeb; Roguin, Ariel

    2009-10-30

    The function of endothelial progenitor cells (EPCs), which are key cells in vascular repair, is impaired in diabetes mellitus. Nitric oxide (NO) and reactive oxygen species can regulate EPC functions. EPCs tolerate oxidative stress by upregulating superoxide dismutase (SOD), the enzyme that neutralizes superoxide anion (O2-). Therefore, we investigated the roles of NO and SOD in glucose-stressed EPCs. The functions of circulating EPCs from patients with type 2 diabetes were compared to those from healthy individuals. Healthy EPCs were glucose-stressed, and then treated with insulin and/or SOD. We assessed O2- generation, NO production, SOD activity, and their ability to form colonies. EPCs from diabetic patients generated more O2-, had higher NAD(P)H oxidase and SOD activity, but lower NO bioavailability, and expressed higher mRNA and protein levels of p22-phox, and manganese SOD and copper/zinc SOD than those from the healthy individuals. Plasma glucose and HbA1c levels in the diabetic patients were correlated negatively with the NO production from their EPCs. SOD treatment of glucose-stressed EPCs attenuated O2- generation, restored NO production, and partially restored their ability to form colonies. Insulin treatment of glucose-stressed EPCs increased NO production, but did not change O2- generation and their ability to form colonies. However, their ability to produce NO and to form colonies was fully restored after combined SOD and insulin treatment. Our data provide evidence that SOD may play an essential role in EPCs, and emphasize the important role of antioxidant therapy in type 2 diabetic patients.

  6. Seasonal superoxide overproduction and endothelial activation in guinea-pig heart; seasonal oxidative stress in rats and humans.

    Science.gov (United States)

    Konior, Anna; Klemenska, Emilia; Brudek, Magdalena; Podolecka, Ewa; Czarnowska, Elżbieta; Beręsewicz, Andrzej

    2011-04-01

    Seasonality in endothelial dysfunction and oxidative stress was noted in humans and rats, suggesting it is a common phenomenon of a potential clinical relevance. We aimed at studying (i) seasonal variations in cardiac superoxide (O(2)(-)) production in rodents and in 8-isoprostane urinary excretion in humans, (ii) the mechanism of cardiac O(2)(-) overproduction occurring in late spring/summer months in rodents, (iii) whether this seasonal O(2)(-)-overproduction is associated with a pro-inflammatory endothelial activation, and (iv) how the summer-associated changes compare to those caused by diabetes, a classical cardiovascular risk factor. Langendorff-perfused guinea-pig and rat hearts generated ~100% more O(2)(-), and human subjects excreted 65% more 8-isoprostane in the summer vs. other seasons. Inhibitors of NADPH oxidase, xanthine oxidase, and NO synthase inhibited the seasonal O(2)(-)-overproduction. In the summer vs. other seasons, cardiac NADPH oxidase and xanthine oxidase activity, and protein expression were increased, the endothelial NO synthase and superoxide dismutases were downregulated, and, in guinea-pig hearts, adhesion molecules upregulation and the endothelial glycocalyx destruction associated these changes. In guinea-pig hearts, the summer and a streptozotocin-induced diabetes mediated similar changes, yet, more severe endothelial activation associated the diabetes. These findings suggest that the seasonal oxidative stress is a common phenomenon, associated, at least in guinea-pigs, with the endothelial activation. Nonetheless, its biological meaning (regulatory vs. deleterious) remains unclear. Upregulated NADPH oxidase and xanthine oxidase and uncoupled NO synthase are the sources of the seasonal O(2)(-)-overproduction. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Superoxide anion production and superoxide dismutase and catalase activities in Coxiella burnetii.

    OpenAIRE

    Akporiaye, E T; Baca, O G

    1983-01-01

    Coxiella burnetii was examined for superoxide anion (O2-) production and superoxide dismutase and catalase activities. The organism generated O2- at pH 4.5 but not at pH 7.4. The rickettsia displayed superoxide dismutase activity distinguishable from that of the host cell (L-929 mouse fibroblast). Catalase activity was maximal at pH 7.0 and diminished at pH 4.5. These enzymes may account, in part, for the ability of this obligate intracellular parasite to survive within phagocytes.

  8. Superoxide anion production by human neutrophils activated by Trichomonas vaginalis.

    Science.gov (United States)

    Song, Hyun-Ouk; Ryu, Jae-Sook

    2013-08-01

    Neutrophils are the predominant inflammatory cells found in vaginal discharges of patients infected with Trichomonas vaginalis. In this study, we examined superoxide anion (O2 (.-)) production by neutrophils activated by T. vaginalis. Human neutrophils produced superoxide anions when stimulated with either a lysate of T. vaginalis, its membrane component (MC), or excretory-secretory product (ESP). To assess the role of trichomonad protease in production of superoxide anions by neutrophils, T. vaginalis lysate, ESP, and MC were each pretreated with a protease inhibitor cocktail before incubation with neutrophils. Superoxide anion production was significantly decreased by this treatment. Trichomonad growth was inhibited by preincubation with supernatants of neutrophils incubated for 3 hr with T. vaginalis lysate. Furthermore, myeloperoxidase (MPO) production by neutrophils was stimulated by live trichomonads. These results indicate that the production of superoxide anions and MPO by neutrophils stimulated with T. vaginalis may be a part of defense mechanisms of neutrophils in trichomoniasis.

  9. Targeting superoxide dismutase to endothelial caveolae profoundly alleviates inflammation caused by endotoxin.

    Science.gov (United States)

    Shuvaev, Vladimir V; Kiseleva, Raisa Yu; Arguiri, Evguenia; Villa, Carlos H; Muro, Silvia; Christofidou-Solomidou, Melpo; Stan, Radu V; Muzykantov, Vladimir R

    2018-02-28

    Inflammatory mediators binding to Toll-Like receptors (TLR) induce an influx of superoxide anion in the ensuing endosomes. In endothelial cells, endosomal surplus of superoxide causes pro-inflammatory activation and TLR4 agonists act preferentially via caveolae-derived endosomes. To test the hypothesis that SOD delivery to caveolae may specifically inhibit this pathological pathway, we conjugated SOD with antibodies (Ab/SOD, size ~10nm) to plasmalemmal vesicle-associated protein (Plvap) that is specifically localized to endothelial caveolae in vivo and compared its effects to non-caveolar target CD31/PECAM-1. Plvap Ab/SOD bound to endothelial cells in culture with much lower efficacy than CD31 Ab/SOD, yet blocked the effects of LPS signaling with higher efficiency than CD31 Ab/SOD. Disruption of cholesterol-rich membrane domains by filipin inhibits Plvap Ab/SOD endocytosis and LPS signaling, implicating the caveolae-dependent pathway(s) in both processes. Both Ab/SOD conjugates targeted to Plvap and CD31 accumulated in the lungs after IV injection in mice, but the former more profoundly inhibited LPS-induced pulmonary inflammation and elevation of plasma level of interferon-beta and -gamma and interleukin-27. Taken together, these results indicate that targeted delivery of SOD to specific cellular compartments may offer effective, mechanistically precise interception of pro-inflammatory signaling mediated by reactive oxygen species. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Aerobic Swim Training Restores Aortic Endothelial Function by Decreasing Superoxide Levels in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Camila P. Jordão

    Full Text Available OBJECTIVE: We aimed to determine whether aerobic training decreases superoxide levels, increases nitric oxide levels, and improves endothelium-dependent vasodilation in the aortas of spontaneously hypertensive rats. METHODS: Spontaneously hypertensive rats (SHR and Wistar Kyoto rats (WKY were distributed into 2 groups: sedentary (SHRsd and WKYsd, n=10 each and swimming-trained (SHRtr, n=10 and WKYtr, n=10, respectively. The trained group participated in training sessions 5 days/week for 1 h/day with an additional work load of 4% of the animal’s body weight. After a 10-week sedentary or aerobic training period, the rats were euthanized. The thoracic aortas were removed to evaluate the vasodilator response to acetylcholine (10-10 to 10-4 M with or without preincubation with L-NG-nitro-L-arginine methyl ester hydrochloride (L-NAME; 10-4 M in vitro. The aortic tissue was also used to assess the levels of the endothelial nitric oxide synthase and nicotinamide adenine dinucleotide oxidase subunit isoforms 1 and 4 proteins, as well as the superoxide and nitrite contents. Blood pressure was measured using a computerized tail-cuff system. RESULTS: Aerobic training significantly increased the acetylcholine-induced maximum vasodilation observed in the SHRtr group compared with the SHRsd group (85.9±4.3 vs. 71.6±5.2%. Additionally, in the SHRtr group, superoxide levels were significantly decreased, nitric oxide bioavailability was improved, and the levels of the nicotinamide adenine dinucleotide oxidase subunit isoform 4 protein were decreased compared to the SHRsd group. Moreover, after training, the blood pressure of the SHRtr group decreased compared to the SHRsd group. Exercise training had no effect on the blood pressure of the WKYtr group. CONCLUSIONS: In SHR, aerobic swim training decreased vascular superoxide generation by nicotinamide adenine dinucleotide oxidase subunit isoform 4 and increased nitric oxide bioavailability, thereby improving

  11. Aortic superoxide production at the early hyperglycemic stage in a rat type 2 diabetes model and the effects of pravastatin.

    Science.gov (United States)

    Kikuchi, Chigusa; Kajikuri, Junko; Hori, Eisei; Nagami, Chie; Matsunaga, Tamihide; Kimura, Kazunori; Itoh, Takeo

    2014-01-01

    Endothelium-derived superoxide induces vascular dysfunctions. The aim of this study was to examine the activity of protein kinase C (PKC) isoforms and endothelial nitric oxide synthase (eNOS), which leads to vascular superoxide production in type 2 diabetes, in addition to the effects of pravastatin. We studied these mechanisms in Otsuka Long-Evans Tokushima Fatty (OLETF) rats (type 2 diabetes model) at the early hyperglycemic stage (vs. non-diabetic Long-Evans Tokushima Otsuka [LETO] rats). Superoxide production and catalase activity were measured in aortas, as were the protein expressions of PKCδ and phospho-Ser(1177) eNOS. Superoxide production was increased in OLETF rats, and this increase was inhibited by the selective conventional PKC (cPKC) inhibitor Gö6976 and by the non-selective cPKC and novel PKC inhibitor GF109203X. Phospho-Ser(1177) eNOS was significantly increased in OLETF rats, whereas the protein expressions of PKCδ and phosopho-Thr(505) PKCδ and catalase activity were all greatly reduced. Pravastatin administration to OLETF rats in vivo had normalizing effects on all of these variables. The increment in superoxide production seen in OLETF rats (but not the production in pravastatin-treated OLETF rats) was abolished by high concentration of N(ω)-nitro-L-arginine methyl ester (electron transport inhibitor of eNOS), by sepiapterin (precursor of tetrahydrobiopterin), and by LY294002 (phosphatidylinositol 3-kinase [PI3-kinase] inhibitor). In OLETF rats at the early hyperglycemic stage, aortic superoxide production is increased owing to activation of uncoupled eNOS through phosphorylation by PI3-kinase/Akt. This may be related to the observed reduction in PKCδ/catalase activities. Pravastatin inhibited endothelial superoxide production via normalization of PKCδ/catalase activities.

  12. High glucose impairs superoxide production from isolated blood neutrophils

    DEFF Research Database (Denmark)

    Perner, A; Nielsen, S E; Rask-Madsen, J

    2003-01-01

    Superoxide (O(2)(-)), a key antimicrobial agent in phagocytes, is produced by the activity of NADPH oxidase. High glucose concentrations may, however, impair the production of O(2)(-) through inhibition of glucose-6-phosphate dehydrogenase (G6PD), which catalyzes the formation of NADPH. This study...... measured the acute effects of high glucose or the G6PD inhibitor dehydroepiandrosterone (DHEA) on the production of O(2)(-) from isolated human neutrophils....

  13. Catalase and superoxide dismutase conjugated with platelet-endothelial cell adhesion molecule antibody distinctly alleviate abnormal endothelial permeability caused by exogenous reactive oxygen species and vascular endothelial growth factor.

    Science.gov (United States)

    Han, Jingyan; Shuvaev, Vladimir V; Muzykantov, Vladimir R

    2011-07-01

    Reactive oxygen species (ROS) superoxide anion (O(2)()) and hydrogen peroxide (H(2)O(2)) produced by activated leukocytes and endothelial cells in sites of inflammation or ischemia cause endothelial barrier dysfunction that may lead to tissue edema. Antioxidant enzymes (AOEs) catalase and superoxide dismutase (SOD) conjugated with antibodies to platelet-endothelial cell adhesion molecule-1 (PECAM-1) specifically bind to endothelium, quench the corresponding ROS, and alleviate vascular oxidative stress and inflammation. In the present work, we studied the effects of anti-PECAM/catalase and anti-PECAM/SOD conjugates on the abnormal permeability manifested by transendothelial electrical resistance decline, increased fluorescein isothiocyanate-dextran influx, and redistribution of vascular endothelial-cadherin in human umbilical vein endothelial cell (HUVEC) monolayers. Anti-PECAM/catalase protected HUVEC monolayers against H(2)O(2)-induced endothelial barrier dysfunction. Polyethylene glycol-conjugated catalase exerted orders of magnitude lower endothelial uptake and no protective effect, similarly to IgG/catalase. Anti-PECAM/catalase, but not anti-PECAM/SOD, alleviated endothelial hyperpermeability caused by exposure to hypoxanthine/xanthine oxidase, implicating primarily H(2)O(2) in the disruption of the endothelial barrier in this model. Thrombin-induced endothelial permeability was not affected by treatment with anti-PECAM/AOEs or the NADPH oxidase inhibitor apocynin or overexpression of AOEs, indicating that the endogenous ROS play no key role in thrombin-mediated endothelial barrier dysfunction. In contrast, anti-PECAM/SOD, but not anti-PECAM/catalase, inhibited a vascular endothelial growth factor (VEGF)-induced increase in endothelial permeability, identifying a key role of endogenous O(2)() in the VEGF-mediated regulation of endothelial barrier function. Therefore, AOEs targeted to endothelial cells provide versatile molecular tools for testing the roles of

  14. Quantitative optical measurement of mitochondrial superoxide dynamics in pulmonary artery endothelial cells

    Directory of Open Access Journals (Sweden)

    Zahra Ghanian

    2018-01-01

    Full Text Available Reactive oxygen species (ROS play a vital role in cell signaling and redox regulation, but when present in excess, lead to numerous pathologies. Detailed quantitative characterization of mitochondrial superoxide anion (O2•− production in fetal pulmonary artery endothelia cells (PAECs has never been reported. The aim of this study is to assess mitochondrial O2•− production in cultured PAECs over time using a novel quantitative optical approach. The rate, the sources, and the dynamics of O2•− production were assessed using targeted metabolic modulators of the mitochondrial electron transport chain (ETC complexes, specifically an uncoupler and inhibitors of the various ETC complexes, and inhibitors of extra-mitochondrial sources of O2•−. After stabilization, the cells were loaded with nanomolar mitochondrial-targeted hydroethidine (Mito-HE, MitoSOX online during the experiment without washout of the residual dye. Time-lapse fluorescence microscopy was used to monitor the dynamic changes in O2•− fluorescence intensity over time in PAECs. The transient behaviors of the fluorescence time course showed exponential increases in the rate of O2•− production in the presence of the ETC uncoupler or inhibitors. The most dramatic and the fastest increase in O2•− production was observed when the cells were treated with the uncoupling agent, PCP. We also showed that only the complex IV inhibitor, KCN, attenuated the marked surge in O2•− production induced by PCP. The results showed that mitochondrial respiratory complexes I, III and IV are sources of O2•− production in PAECs, and a new observation that ROS production during uncoupling of mitochondrial respiration is mediated in part via complex IV. This novel method can be applied in other studies that examine ROS production under stress condition and during ROS-mediated injuries in vitro.

  15. Angiotensin II stimulates superoxide production by nitric oxide synthase in thick ascending limbs.

    Science.gov (United States)

    Gonzalez-Vicente, Agustin; Saikumar, Jagannath H; Massey, Katherine J; Hong, Nancy J; Dominici, Fernando P; Carretero, Oscar A; Garvin, Jeffrey L

    2016-02-01

    Angiotensin II (Ang II) causes nitric oxide synthase (NOS) to become a source of superoxide (O2 (-)) via a protein kinase C (PKC)-dependent process in endothelial cells. Ang II stimulates both NO and O2 (-) production in thick ascending limbs. We hypothesized that Ang II causes O2 (-) production by NOS in thick ascending limbs via a PKC-dependent mechanism. NO production was measured in isolated rat thick ascending limbs using DAF-FM, whereas O2 (-) was measured in thick ascending limb suspensions using the lucigenin assay. Consistent stimulation of NO was observed with 1 nmol/L Ang II (P thick ascending limbs via a PKC- and NADPH oxidase-dependent process; and (2) the effect of Ang II is not due to limited substrate. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  16. Biomaterial-induced alterations of neutrophil superoxide production.

    Science.gov (United States)

    Kaplan, S S; Basford, R E; Mora, E; Jeong, M H; Simmons, R L

    1992-08-01

    Because periprosthetic infection remains a vexing problem for patients receiving implanted devices, we evaluated the effect of several materials on neutrophil free radical production. Human peripheral blood neutrophils were incubated with several sterile, lipopolysaccharide (LPS)-free biomaterials used in surgically implantable prosthetic devices: polyurethane, woven dacron, and velcro. Free radical formation as the superoxide (O2-) anion was evaluated by cytochrome c reduction in neutrophils that were exposed to the materials and then removed and in neutrophils allowed to remain in association with the materials. Neutrophils exposed to polyurethane or woven dacron for 30 or 60 min and then removed consistently exhibited an enhanced release of O2- after simulation via receptor engagement with formyl methionyl-leucyl-phenylalanine. Enhanced reactivity to stimulation via protein kinase C with phorbol myristate acetate, however, was not consistently observed. The cells evaluated for O2- release during continuous association with the biomaterials showed enhanced metabolic activity during short periods of association (especially with polyurethane and woven dacron). Although O2- release by neutrophils in association with these materials decreased with longer periods of incubation, it was not obliterated. These studies, therefore, show that several commonly used biomaterials activate neutrophils soon after exposure and that this activated state diminishes with prolonged exposure but nevertheless remains measurable. The diminishing level of activity with prolonged exposure, however, suggests that ultimately a depletion of reactivity may occur and may result in increased susceptibility to periprosthetic infection.

  17. Dark production of extracellular superoxide by the coral Porites astreoides and representative symbionts

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    2016-11-01

    Full Text Available The reactive oxygen species (ROS superoxide has been implicated in both beneficial and detrimental processes in coral biology, ranging from pathogenic disease resistance to coral bleaching. Despite the critical role of ROS in coral health, there is a distinct lack of ROS measurements and thus an incomplete understanding of underpinning ROS sources and production mechanisms within coral systems. Here, we quantified in situ extracellular superoxide concentrations at the surfaces of aquaria-hosted Porites astreoides during a diel cycle. High concentrations of superoxide (~10’s of nM were present at coral surfaces, and these levels did not change significantly as a function of time of day. These results indicate that the coral holobiont produces extracellular superoxide in the dark, independent of photosynthesis. As a short-lived anion at physiological pH, superoxide has a limited ability to cross intact biological membranes. Further, removing surface mucus layers from the P. astreoides colonies did not impact external superoxide concentrations. We therefore attribute external superoxide derived from the coral holobiont under these conditions to the activity of the coral host epithelium, rather than mucus-derived epibionts or internal sources such as endosymbionts (e.g., Symbiodinium. However, endosymbionts likely contribute to internal ROS levels via extracellular superoxide production. Indeed, common coral symbionts, including multiple strains of Symbiodinium (clades A to D and the bacterium Endozoicomonas montiporae LMG 24815, produced extracellular superoxide in the dark and at low light levels. Further, representative P. astreoides symbionts, Symbiodinium CCMP2456 (clade A and E. montiporae, produced similar concentrations of superoxide alone and in combination with each other, in the dark and low light, and regardless of time of day. Overall, these results indicate that healthy, non-stressed P. astreoides and representative symbionts produce

  18. Mn(II) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction.

    Science.gov (United States)

    Hansel, Colleen M; Zeiner, Carolyn A; Santelli, Cara M; Webb, Samuel M

    2012-07-31

    Manganese (Mn) oxides are among the most reactive minerals within the environment, where they control the bioavailability of carbon, nutrients, and numerous metals. Although the ability of microorganisms to oxidize Mn(II) to Mn(III/IV) oxides is scattered throughout the bacterial and fungal domains of life, the mechanism and physiological basis for Mn(II) oxidation remains an enigma. Here, we use a combination of compound-specific chemical assays, microspectroscopy, and electron microscopy to show that a common Ascomycete filamentous fungus, Stilbella aciculosa, oxidizes Mn(II) to Mn oxides by producing extracellular superoxide during cell differentiation. The reactive Mn oxide phase birnessite and the reactive oxygen species superoxide and hydrogen peroxide are colocalized at the base of asexual reproductive structures. Mn oxide formation is not observed in the presence of superoxide scavengers (e.g., Cu) and inhibitors of NADPH oxidases (e.g., diphenylene iodonium chloride), enzymes responsible for superoxide production and cell differentiation in fungi. Considering the recent identification of Mn(II) oxidation by NADH oxidase-based superoxide production by a common marine bacterium (Roseobacter sp.), these results introduce a surprising homology between some prokaryotic and eukaryotic organisms in the mechanisms responsible for Mn(II) oxidation, where oxidation appears to be a side reaction of extracellular superoxide production. Given the versatility of superoxide as a redox reactant and the widespread ability of fungi to produce superoxide, this microbial extracellular superoxide production may play a central role in the cycling and bioavailability of metals (e.g., Hg, Fe, Mn) and carbon in natural systems.

  19. Vascular smooth muscle modulates endothelial control of vasoreactivity via reactive oxygen species production through myoendothelial communications.

    Directory of Open Access Journals (Sweden)

    Marie Billaud

    Full Text Available BACKGROUND: Endothelial control of vascular smooth muscle plays a major role in the resulting vasoreactivity implicated in physiological or pathological circulatory processes. However, a comprehensive understanding of endothelial (EC/smooth muscle cells (SMC crosstalk is far from complete. Here, we have examined the role of gap junctions and reactive oxygen species (ROS in this crosstalk and we demonstrate an active contribution of SMC to endothelial control of vasomotor tone. METHODOLOGY/PRINCIPAL FINDINGS: In small intrapulmonary arteries, quantitative RT-PCR, Western Blot analyses and immunofluorescent labeling evidenced connexin (Cx 37, 40 and 43 in EC and/or SMC. Functional experiments showed that the Cx-mimetic peptide targeted against Cx 37 and Cx 43 ((37,43Gap27 (1 reduced contractile and calcium responses to serotonin (5-HT simultaneously recorded in pulmonary arteries and (2 abolished the diffusion in SMC of carboxyfluorescein-AM loaded in EC. Similarly, contractile and calcium responses to 5-HT were decreased by superoxide dismutase and catalase which, catabolise superoxide anion and H(2O(2, respectively. Both Cx- and ROS-mediated effects on the responses to 5-HT were reversed by L-NAME, a NO synthase inhibitor or endothelium removal. Electronic paramagnetic resonance directly demonstrated that 5-HT-induced superoxide anion production originated from the SMC. Finally, whereas 5-HT increased NO production, it also decreased cyclic GMP content in isolated intact arteries. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that agonist-induced ROS production in SMC targeting EC via myoendothelial gap junctions reduces endothelial NO-dependent control of pulmonary vasoreactivity. Such SMC modulation of endothelial control may represent a signaling pathway controlling vasoreactivity under not only physiological but also pathological conditions that often implicate excessive ROS production.

  20. Roles of prostaglandin F2alpha and hydrogen peroxide in the regulation of Copper/Zinc superoxide dismutase in bovine corpus luteum and luteal endothelial cells

    Directory of Open Access Journals (Sweden)

    Vu Hai V

    2012-10-01

    Full Text Available Abstract Background Prostaglandin F2alpha (PGF induces luteolysis in cow by inducing a rapid reduction in progesterone production (functional luteolysis followed by tissue degeneration (structural luteolysis. However the mechanisms of action of PGF remain unclear. Reactive oxygen species (ROS play important roles in regulating the luteolytic action of PGF. The local concentration of ROS is controlled by superoxide dismutase (SOD, the main enzyme involved in the control of intraluteal ROS. Thus SOD seems to be involved in luteolysis process induced by PGF in cow. Methods To determine the dynamic relationship between PGF and ROS in bovine corpus luteum (CL during luteolysis, we determined the time-dependent change of Copper/Zinc SOD (SOD1 in CL tissues after PGF treatment in vivo. We also investigated whether PGF and hydrogen peroxide (H2O2 modulates SOD1 expression and SOD activity in cultured bovine luteal endothelial cells (LECs in vitro. Results Following administration of a luteolytic dose of PGF analogue (0 h to cows at the mid-luteal stage, the expression of SOD1 mRNA and protein, and total SOD activity in CL tissues increased between 0.5 and 2 h, but fell below the initial (0 h level at 24 h post-treatment. In cultured LECs, the expression of SOD1 mRNA was stimulated by PGF (1–10 microM and H2O2 (10–100 microM at 2 h (P

  1. Extracellular production and degradation of superoxide in the coral Stylophora pistillata and cultured Symbiodinium.

    Directory of Open Access Journals (Sweden)

    Eldad Saragosti

    2010-09-01

    Full Text Available Reactive oxygen species (ROS are thought to play a major role in cell death pathways and bleaching in scleractinian corals. Direct measurements of ROS in corals are conspicuously in short supply, partly due to inherent problems with ROS quantification in cellular systems.In this study we characterized the dynamics of the reactive oxygen species superoxide anion radical (O(2(- in the external milieu of the coral Stylophora pistillata. Using a sensitive, rapid and selective chemiluminescence-based technique, we measured extracellular superoxide production and detoxification activity of symbiont (non-bleached and aposymbiont (bleached corals, and of cultured Symbiodinium (from clades A and C. Bleached and non-bleached Stylophora fragments were found to produce superoxide at comparable rates of 10(-11-10(-9 mol O(2(- mg protein(-1 min(-1 in the dark. In the light, a two-fold enhancement in O(2(- production rates was observed in non-bleached corals, but not in bleached corals. Cultured Symbiodinium produced superoxide in the dark at a rate of . Light was found to markedly enhance O(2(- production. The NADPH Oxidase inhibitor Diphenyleneiodonium chloride (DPI strongly inhibited O(2(- production by corals (and more moderately by algae, possibly suggesting an involvement of NADPH Oxidase in the process. An extracellular O(2(- detoxifying activity was found for bleached and non-bleached Stylophora but not for Symbiodinium. The O(2(- detoxifying activity was partially characterized and found to resemble that of the enzyme superoxide dismutase (SOD.The findings of substantial extracellular O(2(- production as well as extracellular O(2(- detoxifying activity may shed light on the chemical interactions between the symbiont and its host and between the coral and its environment. Superoxide production by Symbiodinium possibly implies that algal bearing corals are more susceptible to an internal build-up of O(2(-, which may in turn be linked to oxidative stress

  2. Mitochondrial Complex I superoxide production is attenuated by uncoupling

    Czech Academy of Sciences Publication Activity Database

    Dlasková, Andrea; Hlavatá, Lydie; Ježek, Jan; Ježek, Petr

    2008-01-01

    Roč. 40, č. 10 (2008), s. 2098-2109 ISSN 1357-2725 R&D Projects: GA ČR GP303/05/P100; GA AV ČR IAA500110701; GA MŠk(CZ) 1P05ME794 Institutional research plan: CEZ:AV0Z50110509 Keywords : mitochondrial H2O2 production * mitochondrial Complex I proton pumping * uncoupling Subject RIV: CE - Biochemistry Impact factor: 4.178, year: 2008

  3. Production of soluble Neprilysin by endothelial cells

    International Nuclear Information System (INIS)

    Kuruppu, Sanjaya; Rajapakse, Niwanthi W.; Minond, Dmitriy; Smith, A. Ian

    2014-01-01

    Highlights: • A soluble full-length form of Neprilysin exists in media of endothelial cells. • Exosomal release is the key mechanism for the production of soluble Neprilysin. • Inhibition of ADAM-17 by specific inhibitors reduce Neprilysin release. • Exosome mediated release of Neprilysin is dependent on ADAM-17 activity. - Abstract: A non-membrane bound form of Neprilysin (NEP) with catalytic activity has the potential to cleave substrates throughout the circulation, thus leading to systemic effects of NEP. We used the endothelial cell line Ea.hy926 to identify the possible role of exosomes and A Disintegrin and Metalloprotease 17 (ADAM-17) in the production of non-membrane bound NEP. Using a bradykinin based quenched fluorescent substrate (40 μM) assay, we determined the activity of recombinant human NEP (rhNEP; 12 ng), and NEP in the media of endothelial cells (10% v/v; after 24 h incubation with cells) to be 9.35 ± 0.70 and 6.54 ± 0.41 μmols of substrate cleaved over 3 h, respectively. The presence of NEP in the media was also confirmed by Western blotting. At present there are no commercially available inhibitors specific for ADAM-17. We therefore synthesised two inhibitors TPI2155-14 and TPI2155-17, specific for ADAM-17 with IC 50 values of 5.36 and 4.32 μM, respectively. Treatment of cells with TPI2155-14 (15 μM) and TPI2155-17 (4.3 μM) resulted in a significant decrease in NEP activity in media (62.37 ± 1.43 and 38.30 ± 4.70, respectively as a % of control; P < 0.0001), implicating a possible role for ADAM-17 in NEP release. However, centrifuging media (100,000g for 1 h at 4 °C) removed all NEP activity from the supernatant indicating the likely role of exosomes in the release of NEP. Our data therefore indicated for the first time that NEP is released from endothelial cells via exosomes, and that this process is dependent on ADAM-17

  4. Phagocytosis of mast cell granules results in decreased macrophage superoxide production

    Directory of Open Access Journals (Sweden)

    Bobby A. Shah

    1995-01-01

    Full Text Available The mechanism by which phagocytosed mast cell granules (MCGs inhibit macrophage superoxide production has not been defined. In this study, rat peritoneal macrophages were co-incubated with either isolated intact MCGs or MCG-sonicate, and their respiratory burst capacity and morphology were studied. Co-incubation of macrophages with either intact MCGs or MCG-sonicate resulted in a dose-dependent inhibition of superoxide- mediated cytochrome c reduction. This inhibitory effect was evident within 5 min of incubation and with MCG-sonicate was completely reversed when macrophages were washed prior to activation with PMA. In the case of intact MCGs, the inhibitory effect was only partially reversed by washing after a prolonged co-incubation time. Electron microscopic analyses revealed that MCGs were rapidly phagocytosed by macrophages and were subsequently disintegrated within the phagolysosomes. Assay of MCGs for superoxide dismutase (SOD revealed the presence of significant activity of this enzyme. A comparison of normal macrophages and those containing phagocytosed MCGs did not reveal a significant difference in total SOD activity. It is speculated that, although there was no significant increase in total SOD activity in macrophages containing phagocytosed MCGs, the phagocytosed MCGs might cause a transient increase in SOD activity within the phagolysosomes. This transient rise in SOD results in scavenging of the newly generated superoxide. Alternatively, MCG inhibition of NADPH oxidase would explain the reported observations.

  5. Nicorandil prevents sirolimus-induced production of reactive oxygen species, endothelial dysfunction, and thrombus formation

    Directory of Open Access Journals (Sweden)

    Ken Aizawa

    2015-03-01

    Full Text Available Sirolimus (SRL is widely used to prevent restenosis after percutaneous coronary intervention. However, its beneficial effect is hampered by complications of thrombosis. Several studies imply that reactive oxygen species (ROS play a critical role in endothelial dysfunction and thrombus formation. The present study investigated the protective effect of nicorandil (NIC, an anti-angina agent, on SRL-associated thrombosis. In human coronary artery endothelial cells (HCAECs, SRL stimulated ROS production, which was prevented by co-treatment with NIC. The preventive effect of NIC on ROS was abolished by 5-hydroxydecanoate but not by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. NIC also inhibited SRL-induced up-regulation of NADPH oxidase subunit p22phox mRNA. Co-treatment with NIC and SRL significantly up-regulated superoxide dismutase 2. NIC treatment significantly improved SRL-induced decrease in viability of HCAECs. The functional relevance of the preventive effects of NIC on SRL-induced ROS production and impairment of endothelial viability was investigated in a mouse model of thrombosis. Pretreatment with NIC inhibited the SRL-induced acceleration of FeCl3-initiated thrombus formation and ROS production in the testicular arteries of mice. In conclusion, NIC prevented SRL-induced thrombus formation, presumably due to the reduction of ROS and to endothelial protection. The therapeutic efficacy of NIC could represent an additional option in the prevention of SRL-related thrombosis.

  6. Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes.

    Science.gov (United States)

    Heyno, Eiri; Mary, Véronique; Schopfer, Peter; Krieger-Liszkay, Anja

    2011-07-01

    Production of reactive oxygen species (hydroxyl radicals, superoxide radicals and hydrogen peroxide) was studied using EPR spin-trapping techniques and specific dyes in isolated plasma membranes from the growing and the non-growing zones of hypocotyls and roots of etiolated soybean seedlings as well as coleoptiles and roots of etiolated maize seedlings. NAD(P)H mediated the production of superoxide in all plasma membrane samples. Hydroxyl radicals were only produced by the membranes of the hypocotyl growing zone when a Fenton catalyst (FeEDTA) was present. By contrast, in membranes from other parts of the seedlings a low rate of spontaneous hydroxyl radical formation was observed due to the presence of small amounts of tightly bound peroxidase. It is concluded that apoplastic hydroxyl radical generation depends fully, or for the most part, on peroxidase localized in the cell wall. In soybean plasma membranes from the growing zone of the hypocotyl pharmacological tests showed that the superoxide production could potentially be attributed to the action of at least two enzymes, an NADPH oxidase and, in the presence of menadione, a quinone reductase.

  7. Mitochondria Superoxide Anion Production Contributes to Geranylgeraniol-Induced Death in Leishmania amazonensis

    Directory of Open Access Journals (Sweden)

    Milene Valéria Lopes

    2012-01-01

    Full Text Available Here we demonstrate the activity of geranylgeraniol, the major bioactive constituent from seeds of Bixa orellana, against Leishmania amazonensis. Geranylgeraniol was identified through 1H and 13C nuclear magnetic resonance imaging and DEPT. The compound inhibited the promastigote and intracellular amastigote forms, with IC50 of 11±1.0 and 17.5±0.7 μg/mL, respectively. This compound was also more toxic to parasites than to macrophages and did not cause lysis in human blood cells. Morphological and ultrastructural changes induced by geranylgeraniol were observed in the protozoan by electronic microscopy and included mainly mitochondria alterations and an abnormal chromatin condensation in the nucleus. These alterations were confirmed by Rh 123 and TUNEL assays. Additionally, geranylgeraniol induces an increase in superoxide anion production. Collectively, our in vitro studies indicate geranylgeraniol as a selective antileishmanial that appears to be mediated by apoptosis-like cell death.

  8. Resveratrol: A Multifunctional Compound Improving Endothelial Function

    OpenAIRE

    Li, Huige; F?rstermann, Ulrich

    2009-01-01

    The red wine polyphenol resveratrol boosts endothelium-dependent and -independent vasorelaxations. The improvement of endothelial function by resveratrol is largely attributable to nitric oxide (NO) derived from endothelial NO synthase (eNOS). By stimulating eNOS expression, eNOS phosphorylation and eNOS deacetylation, resveratrol enhances endothelial NO production. By upregulating antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) and suppressing the expression a...

  9. Quantification of superoxide radical production in thylakoid membrane using cyclic hydroxylamines.

    Science.gov (United States)

    Kozuleva, Marina; Klenina, Irina; Mysin, Ivan; Kirilyuk, Igor; Opanasenko, Vera; Proskuryakov, Ivan; Ivanov, Boris

    2015-12-01

    Applicability of two lipophilic cyclic hydroxylamines (CHAs), CM-H and TMT-H, and two hydrophilic CHAs, CAT1-H and DCP-H, for detection of superoxide anion radical (O2(∙-)) produced by the thylakoid photosynthetic electron transfer chain (PETC) of higher plants under illumination has been studied. ESR spectrometry was applied for detection of the nitroxide radical originating due to CHAs oxidation by O2(∙-). CHAs and corresponding nitroxide radicals were shown to be involved in side reactions with PETC which could cause miscalculation of O2(∙-) production rate. Lipophilic CM-H was oxidized by PETC components, reducing the oxidized donor of Photosystem I, P700(+), while at the same concentration another lipophilic CHA, TMT-H, did not reduce P700(+). The nitroxide radical was able to accept electrons from components of the photosynthetic chain. Electrostatic interaction of stable cation CAT1-H with the membrane surface was suggested. Water-soluble superoxide dismutase (SOD) was added in order to suppress the reaction of CHA with O2(∙-) outside the membrane. SOD almost completely inhibited light-induced accumulation of DCP(∙), nitroxide radical derivative of hydrophilic DCP-H, in contrast to TMT(∙) accumulation. Based on the results showing that change in the thylakoid lumen pH and volume had minor effect on TMT(∙) accumulation, the reaction of TMT-H with O2(∙-) in the lumen was excluded. Addition of TMT-H to thylakoid suspension in the presence of SOD resulted in the increase in light-induced O2 uptake rate, that argued in favor of TMT-H ability to detect O2(∙-) produced within the membrane core. Thus, hydrophilic DCP-H and lipophilic TMT-H were shown to be usable for detection of O2(∙-) produced outside and within thylakoid membranes. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The inhibition of superoxide production in EL4 lymphoma cells overexpressing growth hormone.

    Science.gov (United States)

    Arnold, Robyn E; Weigent, Douglas A

    2003-05-01

    A substantial body of research exists to support the production of growth hormone by cells of the immune system. However, the function and mechanism of action of lymphocyte-derived growth hormone remain largely unelucidated. Since, it has been found that exogenous growth hormone (GH) primes neutrophils for the production of reactive oxygen intermediates (ROI) and in particular superoxide (O2-), we investigated the role of GH on the production of O2- in T cells. Furthermore, we examined whether endogenous and exogenous GH act similarly. Our studies show that overexpression of GH in EL4, a T-cell lymphoma cell line, results in a decrease in the production of O2- compared to control cells, as detected using the fluorescent dye, dihydroethidium. O2- production in control cells was not affected by treatment with inhibitors of xanthine oxidase or a non-specific NADPH-oxidase inhibitor. However, treatment with diallyl sulfide, an inhibitor of cytochrome P450 2E1 mimicked the reduction in O2- production seen in cells overexpressing GH. Although no significant change could be detected in CYP2E1 protein levels, CYP2E1 activity was found to be greater in control EL4 than in cells overexpressing GH. Both the decrease in O2- production and the lower CYP2E1 activity in GH overexpressing cells could be abrogated by treatment with N(G)-monomethyl-L-arginine, an inhibitor of nitric oxide synthase. The overexpression of GH protects cells from apoptosis induced by isoniazid, a CYP2E1 inducer, suggesting a role for nitric oxide as a mediator in the regulation of xenobiotic metabolism and apoptosis-protection by lymphocyte GH.

  11. 1,4-Anhydro-4-seleno-d-talitol (SeTal) protects endothelial function in the mouse aorta by scavenging superoxide radicals under conditions of acute oxidative stress

    DEFF Research Database (Denmark)

    Ng, Hooi Hooi; Leo, Chen Huei; O'Sullivan, Kelly

    2017-01-01

    and decreased basal nitric oxide (NO) availability. SeTal (1mM) co-treatment prevented high glucose-induced endothelial dysfunction and oxidative stress in the mouse aorta. The presence of a cyclooxygenase inhibitor, indomethacin significantly improved the sensitivity to ACh in high glucose-treated aortae......, but had no effect in SeTal-treated aortae. Our data show that SeTal has potent antioxidant activity in isolated mouse aortae and prevents high glucose-induced endothelial dysfunction by decreasing superoxide levels, increasing basal NO availability and normalising the contribution of vasoconstrictor......Hyperglycaemia increases the generation of reactive oxidants in blood vessels and is a major cause of endothelial dysfunction. A water-soluble selenium-containing sugar (1,4-Anhydro-4-seleno-d-talitol, SeTal) has potent antioxidant activity in vitro and is a promising treatment to accelerate wound...

  12. Modification and inactivation of Cu,Zn-superoxide dismutase by the lipid peroxidation product, acrolein

    Directory of Open Access Journals (Sweden)

    Jung Hoon Kang

    2013-11-01

    Full Text Available Acrolein is the most reactive aldehydic product of lipidperoxidation and is found to be elevated in the brain whenoxidative stress is high. The effects of acrolein on the structureand function of human Cu,Zn-superoxide dismutase (SOD wereexamined. When Cu,Zn-SOD was incubated with acrolein, thecovalent crosslinking of the protein was increased, and the loss ofenzymatic activity was increased in a dose-dependent manner.Reactive oxygen species (ROS scavengers and copper chelatorsinhibited the acrolein-mediated Cu,Zn-SOD modification and theformation of carbonyl compound. The present study shows thatROS may play a critical role in acrolein-induced Cu,Zn-SODmodification and inactivation. When Cu,Zn-SOD that has beenexposed to acrolein was subsequently analyzed by amino acidanalysis, serine, histidine, arginine, threonine and lysine residueswere particularly sensitive. It is suggested that the modificationand inactivation of Cu,Zn-SOD by acrolein could be produced bymore oxidative cell environments. [BMB Reports 2013; 46(11:555-560

  13. Oleuropein Prevents Neuronal Death, Mitigates Mitochondrial Superoxide Production and Modulates Autophagy in a Dopaminergic Cellular Model

    Directory of Open Access Journals (Sweden)

    Imène Achour

    2016-08-01

    Full Text Available Parkinson’s disease (PD is a progressive neurodegenerative disorder, primarily affecting dopaminergic neurons in the substantia nigra. There is currently no cure for PD and present medications aim to alleviate clinical symptoms, thus prevention remains the ideal strategy to reduce the prevalence of this disease. The goal of this study was to investigate whether oleuropein (OLE, the major phenolic compound in olive derivatives, may prevent neuronal degeneration in a cellular dopaminergic model of PD, differentiated PC12 cells exposed to the potent parkinsonian toxin 6-hydroxydopamine (6-OHDA. We also investigated OLE’s ability to mitigate mitochondrial oxidative stress and modulate the autophagic flux. Our results obtained by measuring cytotoxicity and apoptotic events demonstrate that OLE significantly decreases neuronal death. OLE could also reduce mitochondrial production of reactive oxygen species resulting from blocking superoxide dismutase activity. Moreover, quantification of autophagic and acidic vesicles in the cytoplasm alongside expression of specific autophagic markers uncovered a regulatory role for OLE against autophagic flux impairment induced by bafilomycin A1. Altogether, our results define OLE as a neuroprotective, anti-oxidative and autophagy-regulating molecule, in a neuronal dopaminergic cellular model.

  14. Ghrelin-related peptides do not modulate vasodilator nitric oxide production or superoxide levels in mouse systemic arteries.

    Science.gov (United States)

    Ku, Jacqueline M; Sleeman, Mark W; Sobey, Christopher G; Andrews, Zane B; Miller, Alyson A

    2016-04-01

    The ghrelin gene is expressed in the stomach where it ultimately encodes up to three peptides, namely, acylated ghrelin, des-acylated ghrelin and obestatin, which all have neuroendocrine roles. Recently, the authors' reported that these peptides have important physiological roles in positively regulating vasodilator nitric oxide (NO) production in the cerebral circulation, and may normally suppress superoxide production by the pro-oxidant enzyme, Nox2-NADPH oxidase. To date, the majority of studies using exogenous peptides infer that they may have similar roles in the systemic circulation. Therefore, this study examined whether exogenous and endogenous ghrelin-related peptides modulate NO production and superoxide levels in mouse mesenteric arteries and/or thoracic aorta. Using wire myography, it was found that application of exogenous acylated ghrelin, des-acylated ghrelin or obestatin to mouse thoracic aorta or mesenteric arteries failed to elicit a vasorelaxation response, whereas all three peptides elicited vasorelaxation responses of rat thoracic aorta. Also, none of the peptides modulated mouse aortic superoxide levels as measured by L-012-enhanced chemiluminescence. Next, it was found that NO bioactivity and superoxide levels were unaffected in the thoracic aorta from ghrelin-deficient mice when compared with wild-type mice. Lastly, using novel GHSR-eGFP reporter mice in combination with double-labelled immunofluorescence, no evidence was found for the growth hormone secretagogue receptor (GHSR1a) in the throracic aorta, which is the only functional ghrelin receptor identified to date. Collectively these findings demonstrate that, in contrast to systemic vessels of other species (e.g. rat and human) and mouse cerebral vessels, ghrelin-related peptides do not modulate vasodilator NO production or superoxide levels in mouse systemic arteries. © 2016 John Wiley & Sons Australia, Ltd.

  15. Nitric oxide and superoxide anion production in monocytes from children exposed to arsenic and lead in region Lagunera, Mexico

    International Nuclear Information System (INIS)

    Pineda-Zavaleta, Ana Patricia; Garcia-Vargas, Gonzalo; Borja-Aburto, Victor H.; Acosta-Saavedra, Leonor C.; Vera Aguilar, Eunice; Gomez-Munoz, Aristides; Cebrian, Mariano E.; Calderon-Aranda, Emma S.

    2004-01-01

    We evaluated in Mexican children environmentally exposed to arsenic and lead monocyte nitric oxide (NO) and superoxide anion production in response to direct activation with interferon-γ (IFN-γ) + lipopolysaccharide (LPS). The integrity of Th1-regulated cellular immune response when monocytes were indirectly activated was also evaluated. Most children lived near a primary lead smelter. Lead and arsenic contamination in soil and dust by far exceeded background levels. As levels in water were between 10 and 30 ppb. Most children (93%) had urinary arsenic (AsU) concentrations above 50 μg/l (range 16.75-465.75) and 65% had lead blood levels (PbB) above 10 μg/dl (range 3.47-49.19). Multivariate analyses showed that NO production in monocytes activated indirectly was negatively associated with both PbB and AsU. Superoxide production in directly activated monocytes was negatively associated with AsU but positively associated with PbB. The models including the interaction term for AsU and PbB suggested the possibility of a negative interaction for NO production and a positive interaction for superoxide. There were indications of differential gender-based associations, NO production in indirectly activated monocytes obtained from girls was negatively associated with AsU but not with PbB. Superoxide production was positively associated with PbB in both directly and indirectly activated monocytes from boys but the latter was negatively associated with AsU. These effects are consistent with immune system abnormalities observed in human populations exposed to Pb or As. Further studies in larger populations are required to characterize As and Pb interactions and the mechanism(s) underlying the observed effects

  16. Heme oxygenase attenuates angiotensin II-mediated superoxide production in cultured mouse thick ascending loop of Henle cells.

    Science.gov (United States)

    Kelsen, Silvia; Patel, Bijal J; Parker, Lawson B; Vera, Trinity; Rimoldi, John M; Gadepalli, Rama S V; Drummond, Heather A; Stec, David E

    2008-10-01

    Heme oxygenase (HO)-1 induction can attenuate the development of angiotensin II (ANG II)-dependent hypertension. However, the mechanism by which HO-1 lowers blood pressure is not clear. The goal of this study was to test the hypothesis that induction of HO-1 can reduce the ANG II-mediated increase in superoxide production in cultured thick ascending loop of Henle (TALH) cells. Studies were performed on an immortalized cell line of mouse TALH (mTALH) cells. HO-1 was induced in cultured mTALH cells by treatment with cobalt protoporphyrin (CoPP, 10 microM) or hemin (50 microM) or by transfection with a plasmid containing the human HO-1 isoform. Treatment of mTALH cells with 10(-9) M ANG II increased dihydroethidium (DHE) fluorescence (an index of superoxide levels) from 35.5+/-5 to 136+/-18 relative fluorescence units (RFU)/microm2. Induction of HO-1 via CoPP, hemin, or overexpression of the human HO-1 isoform significantly reduced ANG II-induced DHE fluorescence to 64+/-5, 64+/-8, and 41+/-4 RFU/microm2, respectively. To determine which metabolite of HO-1 is responsible for reducing ANG II-mediated increases in superoxide production in mTALH cells, cells were preincubated with bilirubin or carbon monoxide (CO)-releasing molecule (CORM)-A1 (each at 100 microM) before exposure to ANG II. DHE fluorescence averaged 80+/-7 RFU/microm2 after incubation with ANG II and was significantly decreased to 55+/-7 and 53+/-4 RFU/microm2 after pretreatment with bilirubin and CORM-A1. These results demonstrate that induction of HO-1 in mTALH cells reduces the levels of ANG II-mediated superoxide production through the production of both bilirubin and CO.

  17. Mitochondrial Physiology in the Major Arbovirus Vector Aedes aegypti: Substrate Preferences and Sexual Differences Define Respiratory Capacity and Superoxide Production

    Science.gov (United States)

    Soares, Juliana B. R. Correa; Gaviraghi, Alessandro; Oliveira, Marcus F.

    2015-01-01

    Adult females of Aedes aegypti are facultative blood sucking insects and vectors of Dengue and yellow fever viruses. Insect dispersal plays a central role in disease transmission and the extremely high energy demand posed by flight is accomplished by a very efficient oxidative phosphorylation process, which take place within flight muscle mitochondria. These organelles play a central role in energy metabolism, interconnecting nutrient oxidation to ATP synthesis, but also represent an important site of cellular superoxide production. Given the importance of mitochondria to cell physiology, and the potential contributions of this organelle for A. aegypti biology and vectorial capacity, here, we conducted a systematic assessment of mitochondrial physiology in flight muscle of young adult A. aegypti fed exclusively with sugar. This was carried out by determining the activities of mitochondrial enzymes, the substrate preferences to sustain respiration, the mitochondrial bioenergetic efficiency and capacity, in both mitochondria-enriched preparations and mechanically permeabilized flight muscle in both sexes. We also determined the substrates preferences to promote mitochondrial superoxide generation and the main sites where it is produced within this organelle. We observed that respiration in A. aegypti mitochondria was essentially driven by complex I and glycerol 3 phosphate dehydrogenase substrates, which promoted distinct mitochondrial bioenergetic capacities, but with preserved efficiencies. Respiration mediated by proline oxidation in female mitochondria was strikingly higher than in males. Mitochondrial superoxide production was essentially mediated through proline and glycerol 3 phosphate oxidation, which took place at sites other than complex I. Finally, differences in mitochondrial superoxide production among sexes were only observed in male oxidizing glycerol 3 phosphate, exhibiting higher rates than in female. Together, these data represent a significant step

  18. Arsenic alters monocyte superoxide anion and nitric oxide production in environmentally exposed children

    International Nuclear Information System (INIS)

    Luna, Ana L.; Acosta-Saavedra, Leonor C.; Lopez-Carrillo, Lizbeth; Conde, Patricia; Vera, Eunice; De Vizcaya-Ruiz, Andrea; Bastida, Mariana; Cebrian, Mariano E.; Calderon-Aranda, Emma S.

    2010-01-01

    Arsenic (As) exposure has been associated with alterations in the immune system, studies in experimental models and adults have shown that these effects involve macrophage function; however, limited information is available on what type of effects could be induced in children. The aim of this study was to evaluate effects of As exposure, through the association of inorganic As (iAs) and its metabolites [monomethylated arsenic (MMA) and dimethylated arsenic (DMA)] with basal levels of nitric oxide (NO ·- ) and superoxide anion (O 2 ·- ), in peripheral blood mononuclear cells (PBMC) and monocytes, and NO ·- and O 2 ·- produced by activated monocytes. Hence, a cross-sectional study was conducted in 87 children (6-10 years old) who had been environmentally exposed to As through drinking water. Levels of urinary As species (iAs, MMA and DMA) were determined by hydride generation atomic absorption spectrometry, total As (tAs) represents the sum of iAs and its species; tAs urine levels ranged from 12.3 to 1411 μg/g creatinine. Using multiple linear regression models, iAs presented a positive and statistical association with basal NO ·- in PBMC (β = 0.0048, p = 0.049) and monocytes (β = 0.0044, p = 0.044), while basal O 2 ·- had a significant positive association with DMA (β = 0.0025, p = 0.046). In activated monocytes, O 2 ·- showed a statistical and positive association with iAs (β = 0.0108, p = 0.023), MMA (β = 0.0066, p = 0.022), DMA (β = 0.0018, p = 0.015), and tAs (β = 0.0013, p = 0.015). We conclude that As exposure in the studied children was positively associated with basal levels of NO ·- and O 2 ·- in PBMC and monocytes, suggesting that As induces oxidative stress in circulating blood cells. Additionally, this study showed a positive association of O 2 ·- production with iAs and its metabolites in stimulated monocytes, supporting previous data that suggests that these cells, and particularly the O 2 ·- activation pathway, are relevant targets

  19. Investigation of the simultaneous production of superoxide dismutase and catalase enzymes from Rhodotorula glutinis under different culture conditions.

    Science.gov (United States)

    Unlü, Ayşe Ezgi; Takaç, Serpil

    2012-10-01

    The simultaneous production production of superoxide (SOD) and catalase (CAT) from Rhodotorula glutinis was studied. The effects of temperature, initial medium pH, and carbon source on the enzyme activities were investigated. Temperature and carbon sources were found to have significant effects on the enzyme activities. 10°C provided the highest specific CAT and SOD activities as 22.6 U/mg protein and 170 U/mg protein, respectively. Glycerol was found to be the best carbon source for enzyme activities, providing 113 U/mg protein for CAT and 125 U/mg protein for SOD, which were also the highest activities obtained in the present study.

  20. Effects of blood products on inflammatory response in endothelial cells in vitro.

    Directory of Open Access Journals (Sweden)

    Martin Urner

    Full Text Available BACKGROUND: Transfusing blood products may induce inflammatory reactions within the vascular compartment potentially leading to a systemic inflammatory response. Experiments were designed to assess the inflammatory potential of different blood products in an endothelial cell-based in vitro model and to compare baseline levels of potentially activating substances in transfusion products. METHODS: The inflammatory response from pre-activated (endotoxin-stimulated and non-activated endothelial cells as well as neutrophil endothelial transmigration in response to packed red blood cells (PRBC, platelet concentrates (PC and fresh frozen plasma (FFP was determined. Baseline inflammatory mediator and lipid concentrations in blood products were evaluated. RESULTS: Following incubation with all blood products, an increased inflammatory mediator release from endothelial cells was observed. Platelet concentrates, and to a lesser extent also FFP, caused the most pronounced response, which was accentuated in already pre-stimulated endothelial cells. Inflammatory response of endothelial cells as well as blood product-induced migration of neutrophils through the endothelium was in good agreement with the lipid content of the according blood product. CONCLUSION: Within the group of different blood transfusion products both PC and FFP have a high inflammatory potential with regard to activation of endothelial cells. Inflammation upon blood product exposure is strongly accentuated when endothelial cells are pre-injured. High lipid contents in the respective blood products goes along with an accentuated inflammatory reaction from endothelial cells.

  1. Similar Transition States Mediate the Q-cycle and Superoxide Production by the Cytochrome bc1 Complex

    International Nuclear Information System (INIS)

    Forquer, Isaac P.; Covian, Raul; Bowman, Michael K.; Trumpower, Bernard; Kramer, David M.

    2006-01-01

    The cytochrome bc complexes found in mitochondria, chloroplasts and many bacteria catalyze a critical reaction in their respective electron transport chains. The quinol oxidase (Qo) site in this complex oxidizes a hydroquinone (quinol), reducing two one-electron carriers, a low-potential cytochrome b heme and a ''Rieske'' iron-sulfur cluster. The overall electron transfer reactions are coupled to transmembrane translocation of protons via a ''Q-cycle'' mechanism, which generates proton motive force for ATP synthesis. Since semiquinone intermediates of quinol oxidation are generally highly reactive, one of the key questions in this field is: how does the Qo site oxidize quinol without the production of deleterious side reactions including superoxide production? We attempt to test three possible general models to account for this behavior: (1) The Qo site semiquinone (or quinol:imidazolate complex) is unstable and thus occurs at a very low steady-state concentration, limiting O2 reduction; (2) the Qo site semiquinone is highly stabilized making it unreactive towards oxygen; and (3) the Qo site catalyzes a quantum mechanically-coupled two-electron/two proton transfer without a semiquinone intermediate. Enthalpies of activation were found to be almost identical between the uninhibited Q-cycle and superoxide production in the presence of Antimycin A in wild type. This behavior was also preserved in a series of mutants with altered driving forces for quinol oxidation. Overall, the data supports models where the rate-limiting step for both Q-cycle and superoxide production are essentially identical, consistent with model 1 but requiring modifications to models 2 and 3

  2. Direct Comparison of the Enzymatic Characteristics and Superoxide Production of the Four Aldehyde Oxidase Enzymes Present in Mouse.

    Science.gov (United States)

    Kücükgöze, Gökhan; Terao, Mineko; Garattini, Enrico; Leimkühler, Silke

    2017-08-01

    Aldehyde oxidases (AOXs) are molybdoflavoenzymes with an important role in the metabolism and detoxification of heterocyclic compounds and aliphatic as well as aromatic aldehydes. The enzymes use oxygen as the terminal electron acceptor and produce reduced oxygen species during turnover. Four different enzymes, mAOX1, mAOX3, mAOX4, and mAOX2, which are the products of distinct genes, are present in the mouse. A direct and simultaneous comparison of the enzymatic properties and characteristics of the four enzymes has never been performed. In this report, the four catalytically active mAOX enzymes were purified after heterologous expression in Escherichia coli The kinetic parameters of the four mouse AOX enzymes were determined and compared with the use of six predicted substrates of physiologic and toxicological interest, i.e., retinaldehyde, N 1 -methylnicotinamide, pyridoxal, vanillin, 4-(dimethylamino)cinnamaldehyde ( p- DMAC), and salicylaldehyde. While retinaldehyde, vanillin, p- DMAC, and salycilaldehyde are efficient substrates for the four mouse AOX enzymes, N 1 -methylnicotinamide is not a substrate of mAOX1 or mAOX4, and pyridoxal is not metabolized by any of the purified enzymes. Overall, mAOX1, mAOX2, mAOX3, and mAOX4 are characterized by significantly different K M and k cat values for the active substrates. The four mouse AOXs are also characterized by quantitative differences in their ability to produce superoxide radicals. With respect to this last point, mAOX2 is the enzyme generating the largest rate of superoxide radicals of around 40% in relation to moles of substrate converted, and mAOX1, the homolog to the human enzyme, produces a rate of approximately 30% of superoxide radicals with the same substrate. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Aliphatic alcohols of illegally produced spirits can act synergistically on superoxide-anion production by human granulocytes.

    Science.gov (United States)

    Arnyas, Ervin M; Pál, László; Kovács, Csilla; Adány, Róza; McKee, Martin; Szűcs, Sándor

    2012-10-01

    Aliphatic alcohols present in illegally produced spirits in a large number of low and middle income countries have been implicated in the etiology of chronic liver disease and cirrhosis. Previous studies have confirmed that chronic alcoholism can lead to increased susceptibility to infectious diseases. Reduced superoxide-anion (O(2)·(-)) production by granulocytes could provide a mechanism by which antimicrobial defense is impaired in alcoholics. In vitro experiments have also demonstrated that ethanol can inhibit granulocyte O(2)·(-) generation. Aliphatic alcohols consumed as contaminants of illicit spirits may also influence O(2)·(-) production thereby contributing to a decrease in microbicidal activity. The aim of this study was to investigate this possibility. It measured the O(2)·(-) production by human granulocytes following treatment of the cells with aliphatic alcohol contaminants found in illicit spirits. Granulocytes were isolated from human buffy coats with centrifugal elutriation and then treated with individual aliphatic alcohols and their mixture. The O(2)·(-) production was stimulated with phorbol-12-13-dibutyrate and N-formyl-methionyl-leucyl-phenylalanine (FMLP) and measured by superoxide dismutase inhibitable reduction of ferricytochrome c. Aliphatic alcohols of illegally produced spirits inhibited the FMLP-induced O(2)·(-) production in a concentration dependent manner. They suppressed O(2)·(-) generation at 2.5-40 times lower concentrations when combined than when tested individually. Aliphatic alcohols found in illegally produced spirits can inhibit FMLP-induced O(2)·(-) production by granulocytes in a concentration-dependent manner. Due to their synergistic effects, it is possible that, in combination with ethanol, they may inhibit O(2)·(-) formation in heavy episodic drinkers.

  4. Effect of Bothrops alternatus snake venom on macrophage phagocytosis and superoxide production: participation of protein kinase C

    Directory of Open Access Journals (Sweden)

    SS Setubal

    2011-01-01

    Full Text Available Envenomations caused by different species of Bothrops snakes result in severe local tissue damage, hemorrhage, pain, myonecrosis, and inflammation with a significant leukocyte accumulation at the bite site. However, the activation state of leukocytes is still unclear. According to clinical cases and experimental work, the local effects observed in envenenomation by Bothrops alternatus are mainly the appearance of edema, hemorrhage, and necrosis. In this study we investigated the ability of Bothrops alternatus crude venom to induce macrophage activation. At 6 to 100 ¼g/mL, BaV is not toxic to thioglycollate-elicited macrophages; at 3 and 6 ¼g/mL, it did not interfere in macrophage adhesion or detachment. Moreover, at concentrations of 1.5, 3, and 6 ¼g/mL the venom induced an increase in phagocytosis via complement receptor one hour after incubation. Pharmacological treatment of thioglycollate-elicited macrophages with staurosporine, a protein kinase (PKC inhibitor, abolished phagocytosis, suggesting that PKC may be involved in the increase of serum-opsonized zymosan phagocytosis induced by BaV. Moreover, BaV also induced the production of anion superoxide (O2_ by thioglycollate-elicited macrophages. This BaV stimulated superoxide production was abolished after treating the cells with staurosporine, indicating that PKC is an important signaling pathway for the production of this radical. Based on these results, we suggest that phagocytosis and reactive oxygen species are involved in the pathogenesis of local tissue damage characteristic of Bothrops spp. envenomations.

  5. Perfluorooctane sulfonate (PFOS) induces reactive oxygen species (ROS) production in human microvascular endothelial cells: role in endothelial permeability.

    Science.gov (United States)

    Qian, Yong; Ducatman, Alan; Ward, Rebecca; Leonard, Steve; Bukowski, Valerie; Lan Guo, Nancy; Shi, Xianglin; Vallyathan, Val; Castranova, Vincent

    2010-01-01

    Perfluorooctane sulfonate (PFOS) is a member of the perfluoroalkyl acids (PFAA) containing an eight-carbon backbone. PFOS is a man-made chemical with carbon-fluorine bonds that are among the strongest in organic chemistry, and PFOS is widely used in industry. Human occupational and environmental exposure to PFOS occurs globally. PFOS is non-biodegradable and is persistent in the human body and environment. In this study, data demonstrated that exposure of human microvascular endothelial cells (HMVEC) to PFOS induced the production of reactive oxygen species (ROS) at both high and low concentrations. Morphologically, it was found that exposure to PFOS induced actin filament remodeling and endothelial permeability changes in HMVEC. Furthermore, data demonstrated that the production of ROS plays a regulatory role in PFOS-induced actin filament remodeling and the increase in endothelial permeability. Our results indicate that the generation of ROS may play a role in PFOS-induced aberrations of the endothelial permeability barrier. The results generated from this study may provide a new insight into the potential adverse effects of PFOS exposure on humans at the cellular level.

  6. Exercise training improves in vivo endothelial repair capacity of early endothelial progenitor cells in subjects with metabolic syndrome.

    Science.gov (United States)

    Sonnenschein, Kristina; Horváth, Tibor; Mueller, Maja; Markowski, Andrea; Siegmund, Tina; Jacob, Christian; Drexler, Helmut; Landmesser, Ulf

    2011-06-01

    Endothelial dysfunction and injury are considered to contribute considerably to the development and progression of atherosclerosis. It has been suggested that intense exercise training can increase the number and angiogenic properties of early endothelial progenitor cells (EPCs). However, whether exercise training stimulates the capacity of early EPCs to promote repair of endothelial damage and potential underlying mechanisms remain to be determined. The present study was designed to evaluate the effects of moderate exercise training on in vivo endothelial repair capacity of early EPCs, and their nitric oxide and superoxide production as characterized by electron spin resonance spectroscopy analysis in subjects with metabolic syndrome. Twenty-four subjects with metabolic syndrome were randomized to an 8 weeks exercise training or a control group. Superoxide production and nitric oxide (NO) availability of early EPCs were characterized by using electron spin resonance (ESR) spectroscopy analysis. In vivo endothelial repair capacity of EPCs was examined by transplantation into nude mice with defined carotid endothelial injury. Endothelium-dependent, flow-mediated vasodilation was analysed using high-resolution ultrasound. Importantly, exercise training resulted in a substantially improved in vivo endothelial repair capacity of early EPCs (24.0 vs 12.7%; p exercise training, but not in the control group. Moreover, exercise training reduced superoxide production of EPCs, which was not observed in the control group. The present study suggests for the first time that moderate exercise training increases nitric oxide production of early endothelial progenitor cells and reduces their superoxide production. Importantly, this is associated with a marked beneficial effect on the in vivo endothelial repair capacity of early EPCs in subjects with metabolic syndrome.

  7. Omega-3 fatty acid oxidation products prevent vascular endothelial cell activation by coplanar polychlorinated biphenyls

    International Nuclear Information System (INIS)

    Majkova, Zuzana; Layne, Joseph; Sunkara, Manjula; Morris, Andrew J.; Toborek, Michal; Hennig, Bernhard

    2011-01-01

    Coplanar polychlorinated biphenyls (PCBs) may facilitate development of atherosclerosis by stimulating pro-inflammatory pathways in the vascular endothelium. Nutrition, including fish oil-derived long-chain omega-3 fatty acids, such as docosahexaenoic acid (DHA, 22:6ω-3), can reduce inflammation and thus the risk of atherosclerosis. We tested the hypothesis that cyclopentenone metabolites produced by oxidation of DHA can protect against PCB-induced endothelial cell dysfunction. Oxidized DHA (oxDHA) was prepared by incubation of the fatty acid with the free radical generator 2,2-azo-bis(2-amidinopropane) dihydrochloride (AAPH). Cellular pretreatment with oxDHA prevented production of superoxide induced by PCB77, and subsequent activation of nuclear factor-κB (NF-κB). A 4 /J 4 -neuroprostanes (NPs) were identified and quantitated using HPLC ESI tandem mass spectrometry. Levels of these NPs were markedly increased after DHA oxidation with AAPH. The protective actions of oxDHA were reversed by treatment with sodium borohydride (NaBH 4 ), which concurrently abrogated A 4 /J 4 -NP formation. Up-regulation of monocyte chemoattractant protein-1 (MCP-1) by PCB77 was markedly reduced by oxDHA, but not by un-oxidized DHA. These protective effects were proportional to the abundance of A 4 /J 4 NPs in the oxidized DHA sample. Treatment of cells with oxidized eicosapentaenoic acid (EPA, 20:5ω-3) also reduced MCP-1 expression, but less than oxDHA. Treatment with DHA-derived cyclopentenones also increased DNA binding of NF-E2-related factor-2 (Nrf2) and downstream expression of NAD(P)H:quinone oxidoreductase (NQO1), similarly to the Nrf-2 activator sulforaphane. Furthermore, sulforaphane prevented PCB77-induced MCP-1 expression, suggesting that activation of Nrf-2 mediates the observed protection against PCB77 toxicity. Our data implicate A 4 /J 4 -NPs as mediators of omega-3 fatty acid-mediated protection against the endothelial toxicity of coplanar PCBs.

  8. Superoxide production and expression of NAD(P)H oxidases by transformed and primary human colonic epithelial cells

    DEFF Research Database (Denmark)

    Perner, A; Andresen, Lars; Pedersen, G

    2003-01-01

    Superoxide (O(2)(-)) generation through the activity of reduced nicotinamide dinucleotide (NADH) or reduced nicotinamide dinucleotide phosphate (NADPH) oxidases has been demonstrated in a variety of cell types, but not in human colonic epithelial cells....

  9. HV1 acts as a sodium sensor and promotes superoxide production in medullary thick ascending limb of Dahl salt-sensitive rats.

    Science.gov (United States)

    Jin, Chunhua; Sun, Jingping; Stilphen, Carly A; Smith, Susan M E; Ocasio, Hiram; Bermingham, Brent; Darji, Sandip; Guha, Avirup; Patel, Roshan; Geurts, Aron M; Jacob, Howard J; Lambert, Nevin A; O'Connor, Paul M

    2014-09-01

    We previously characterized a H(+) transport pathway in medullary thick ascending limb nephron segments that when activated stimulated the production of superoxide by nicotinamide adenine dinucleotide phosphate oxidase. Importantly, the activity of this pathway was greater in Dahl salt-sensitive rats than salt-resistant (SS.13(BN)) rats, and superoxide production was enhanced in low Na(+) media. The goal of this study was to determine the molecular identity of this pathway and its relationship to Na(+). We hypothesized that the voltage-gated proton channel, HV1, was the source of superoxide-stimulating H(+) currents. To test this hypothesis, we developed HV1(-/-) null mutant rats on the Dahl salt-sensitive rat genetic background using zinc-finger nuclease gene targeting. HV1 could be detected in medullary thick limb from wild-type rats. Intracellular acidification using an NH4Cl prepulse in 0 sodium/BaCl2 containing media resulted in superoxide production in thick limb from wild-type but not HV1(-/-) rats (Pthick limb and peritoneal macrophages only when HV1 was present. When fed a high-salt diet, blood pressure, outer medullary renal injury (tubular casts), and oxidative stress (4-hydroxynonenal staining) were significantly reduced in HV1(-/-) rats compared with wild-type Dahl salt-sensitive rats. We conclude that HV1 is expressed in medullary thick ascending limb and promotes superoxide production in this segment when intracellular Na(+) is low. HV1 contributes to the development of hypertension and renal disease in Dahl salt-sensitive rats. © 2014 American Heart Association, Inc.

  10. Potential of Food and Natural Products to Promote Endothelial and Vascular Health.

    Science.gov (United States)

    Auger, Cyril; Said, Amissi; Nguyen, Phuong Nga; Chabert, Philippe; Idris-Khodja, Noureddine; Schini-Kerth, Valérie B

    2016-07-01

    Endothelial dysfunction is now well established as a pivotal early event in the development of major cardiovascular diseases including hypertension, atherosclerosis, and diabetes. The alteration of the endothelial function is often triggered by an imbalance between the endothelial formation of vasoprotective factors including nitric oxide (NO) and endothelium-dependent hyperpolarization, and an increased level of oxidative stress involving several prooxidant enzymes such as NADPH oxidase and, often also, the appearance of cyclooxygenase-derived vasoconstrictors. Preclinical studies have indicated that polyphenol-rich food and food-derived products such as grape-derived products, black and red berries, green and black teas and cocoa, and omega-3 fatty acids can trigger activating pathways in endothelial cells promoting an increased formation of nitric oxide and endothelium-dependent hyperpolarization. Moreover, intake of such food-derived products has been associated with the prevention and/or the improvement of an established endothelial dysfunction in several experimental models of cardiovascular diseases and in humans with cardiovascular diseases. This review will discuss both experimental and clinical evidences indicating that different types of food and natural products are able to promote endothelial and vascular health, as well as the underlying mechanisms.

  11. Therapeutic Targeting of the Mitochondria Initiates Excessive Superoxide Production and Mitochondrial Depolarization Causing Decreased mtDNA Integrity.

    Science.gov (United States)

    Pokrzywinski, Kaytee L; Biel, Thomas G; Kryndushkin, Dmitry; Rao, V Ashutosh

    2016-01-01

    Mitochondrial dysregulation is closely associated with excessive reactive oxygen species (ROS) production. Altered redox homeostasis has been implicated in the onset of several diseases including cancer. Mitochondrial DNA (mtDNA) and proteins are particularly sensitive to ROS as they are in close proximity to the respiratory chain (RC). Mitoquinone (MitoQ), a mitochondria-targeted redox agent, selectively damages breast cancer cells possibly through damage induced via enhanced ROS production. However, the effects of MitoQ and other triphenylphosphonium (TPP+) conjugated agents on cancer mitochondrial homeostasis remain unknown. The primary objective of this study was to determine the impact of mitochondria-targeted agent [(MTAs) conjugated to TPP+: mitoTEMPOL, mitoquinone and mitochromanol-acetate] on mitochondrial physiology and mtDNA integrity in breast (MDA-MB-231) and lung (H23) cancer cells. The integrity of the mtDNA was assessed by quantifying the degree of mtDNA fragmentation and copy number, as well as by measuring mitochondrial proteins essential to mtDNA stability and maintenance (TFAM, SSBP1, TWINKLE, POLG and POLRMT). Mitochondrial status was evaluated by measuring superoxide production, mitochondrial membrane depolarization, oxygen consumption, extracellular acidification and mRNA or protein levels of the RC complexes along with TCA cycle activity. In this study, we demonstrated that all investigated MTAs impair mitochondrial health and decrease mtDNA integrity in MDA-MB-231 and H23 cells. However, differences in the degree of mitochondrial damage and mtDNA degradation suggest unique properties among each MTA that may be cell line, dose and time dependent. Collectively, our study indicates the potential for TPP+ conjugated molecules to impair breast and lung cancer cells by targeting mitochondrial homeostasis.

  12. Numerical investigation of a non-aqueous lithium-oxygen battery based on lithium superoxide as the discharge product

    International Nuclear Information System (INIS)

    Tan, Peng; Ni, Meng; Shao, Zongping; Chen, Bin; Kong, Wei

    2017-01-01

    Highlights: •A macroscopic model for Li-O 2 batteries based on LiO 2 is developed. •The electrode and electrolyte properties on discharge behaviors are investigated. •A thin cathode with a large porosity is favorable for a high specific capacity. •A high catalytic activity can lead to a high discharge voltage. •The oxygen solubility has larger impacts on the discharge performance. -- Abstract: It is reported lithium superoxide as the discharge product can largely decrease the charge voltage and enable a high round-trip efficiency of lithium-oxygen (Li-O 2 ) batteries. Here, we conduct a numerical investigation of the discharge behaviors of such batteries with LiO 2 as the discharge product. A mathematical model considering the mass transport and electrochemical reaction processes is first developed, which gives good agreement of the simulated discharge voltage with the experimental data. Then, with this model, the effects of electrode and electrolyte properties on the discharge performance are detailedly investigated. It is found that a thin cathode with a large porosity is favorable for a high specific capacity, and a high catalytic activity can lead to a high discharge voltage. For the cathode with different geometrical properties, it is found that the oxygen solubility and diffusivity have similar impacts on discharge capacities, but the oxygen solubility has a larger impact on energy densities. Besides, the limitations and further developments of the present model are also discussed. The results obtained from this work may give useful guidance for the discharge performance improvements of non-aqueous Li-O 2 batteries, and provide implications for other energy storage systems with solid product formation such as Na-O 2 batteries and Li-S batteries.

  13. Selective suppression of endothelial cytokine production by progesterone receptor

    OpenAIRE

    Goddard, Lauren M.; Ton, Amy N.; Org, Tõnis; Mikkola, Hanna K.A.; Iruela-Arispe, M. Luisa

    2013-01-01

    Steroid hormones are well-recognized suppressors of the inflammatory response, however, their cell- and tissue-specific effects in the regulation of inflammation are far less understood, particularly for the sex-related steroids. To determine the contribution of progesterone in the endothelium, we have characterized and validated an in vitro culture system in which human umbilical vein endothelial cells constitutively express human progesterone receptor (PR). Using next generation RNA-sequenc...

  14. Ursolic acid inhibits superoxide production in activated neutrophils and attenuates trauma-hemorrhage shock-induced organ injury in rats.

    Directory of Open Access Journals (Sweden)

    Tsong-Long Hwang

    Full Text Available Neutrophil activation is associated with the development of organ injury after trauma-hemorrhagic shock. In the present study, ursolic acid inhibited the superoxide anion generation and elastase release in human neutrophils. Administration of ursolic acid attenuated trauma-hemorrhagic shock-induced hepatic and lung injuries in rats. In addition, administration of ursolic acid attenuated the hepatic malondialdehyde levels and reduced the plasma aspartate aminotransferase and alanine aminotransferase levels after trauma-hemorrhagic shock. In conclusion, ursolic acid, a bioactive natural compound, inhibits superoxide anion generation and elastase release in human neutrophils and ameliorates trauma-hemorrhagic shock-induced organ injury in rats.

  15. Production of Superoxide in Bacteria Is Stress- and Cell State-Dependent: A Gating-Optimized Flow Cytometry Method that Minimizes ROS Measurement Artifacts with Fluorescent Dyes.

    Science.gov (United States)

    McBee, Megan E; Chionh, Yok H; Sharaf, Mariam L; Ho, Peiying; Cai, Maggie W L; Dedon, Peter C

    2017-01-01

    The role of reactive oxygen species (ROS) in microbial metabolism and stress response has emerged as a major theme in microbiology and infectious disease. Reactive fluorescent dyes have the potential to advance the study of ROS in the complex intracellular environment, especially for high-content and high-throughput analyses. However, current dye-based approaches to measuring intracellular ROS have the potential for significant artifacts. Here, we describe a robust platform for flow cytometric quantification of ROS in bacteria using fluorescent dyes, with ROS measurements in 10s-of-1000s of individual cells under a variety of conditions. False positives and variability among sample types (e.g., bacterial species, stress conditions) are reduced with a flexible four-step gating scheme that accounts for side- and forward-scattered light (morphological changes), background fluorescence, DNA content, and dye uptake to identify cells producing ROS. Using CellROX Green dye with Escherichia coli, Mycobacterium smegmatis , and Mycobacterium bovis BCG as diverse model bacteria, we show that (1) the generation of a quantifiable CellROX Green signal for superoxide, but not hydrogen peroxide-induced hydroxyl radicals, validates this dye as a superoxide detector; (2) the level of dye-detectable superoxide does not correlate with cytotoxicity or antibiotic sensitivity; (3) the non-replicating, antibiotic tolerant state of nutrient-deprived mycobacteria is associated with high levels of superoxide; and (4) antibiotic-induced production of superoxide is idiosyncratic with regard to both the species and the physiological state of the bacteria. We also show that the gating method is applicable to other fluorescent indicator dyes, such as the 5-carboxyfluorescein diacetate acetoxymethyl ester and 5-cyano-2,3-ditolyl tetrazolium chloride for cellular esterase and reductive respiratory activities, respectively. These results demonstrate that properly controlled flow cytometry coupled

  16. Reduced saphenous vein prostacyclin production in the absence of endothelial detachment

    International Nuclear Information System (INIS)

    De Caterina, R.; Cruz-Bracho, M.R.; Alonso, D.R.; Subramanian, V.A.; Weksler, B.B.

    1988-01-01

    High-potassium cardioplegic solutions have been suspected of inducing vascular damage at coronary bypass surgery. In this study the authors compared prostacyclin production and endothelial morphology in saphenous vein segments perfused either with cardioplegic solutions with a potassium concentration of 20, 40 and 80 mEq/1, or with a control buffer (1) at 4 grade centigrades for 30 min; (2) at 37 grade centigrades for 15 min; (3) at 37 grade centigrades for 15 min after the addition of arachidonic acid. Prostacyclin production (6-keto-PGF 1α , pg/ml cm 2 endothelial surface area) in control treated segments was a function of temperature and of substrute availability, being (mean±SEM) 62.4±8.2 in setting (1); 309±34.7 in setting (2); and 1515.4±205.2 in setting (3). Cardioplegic solution containing 20 mEq/1 potassium did not alter prostacyclin production in any of these settings, whereas exposure of tissue to the 40 mEq/1 potassium solution decreased prostacyclin production in setting (21) and (2), and the solution containing 80 mEq/1 potassium decreased prostacyclin production in all three experimental conditions. Absence of endothelial detachment in all experimental settings was documented by immunoperoxidase staining of vascular cross-sections for the specific endothelial marker Factor VIII - related antigen and staining of ''en face'' preparations of endothelial surface with silver nitrate and silver nitrate-hematoxylin. These data indicate that cardioplegic solutions with a potassium concentration equal or greater than 40 mEq/1 can induce morphologically silent endothelial damage manifested by decreased prostacyclin production. The use of these solutions may predispose to possible thrombogenicity after coronary bypass surgery

  17. Involvement of both protein kinase C and G proteins in superoxide production after IgE triggering in guinea pig eosinophils

    Directory of Open Access Journals (Sweden)

    Toshiya Aizawa

    1997-01-01

    Full Text Available To study the function and mechanism of eosinophils via the low affinity IgE receptor (FceRII, we examined the production of 02 metabolites by measuring the luminol-dependent chemiluminescence (LDCL response and the generation of cysteinyl leukotrienes. Eosinophils obtained from guinea pig peritoneal fluid sensitized with horse serum were purified. Luminol-dependent chemiluminescence was induced by stimulation with monoclonal anti-CD23 antibody, but not by mouse serum (controls. The mean (±SEM value of LDCL was 20.6±1.3X103 c.p.m. This reaction consisted of an initial rapid phase and a propagation phase and ended within lOmin. Guinea pig eosinophils were histochemically stained with monoclonal anti-CD23 antibody. The major product generated in the LDCL response was superoxide, as determined by the measurement of superoxide by cytochrome c reduction and the complete inhibitory effect of superoxide dismutase on the LDCL response. Pretreatment with either pertussis toxin or cholera toxin inhibited the LDCL reaction. Depletion of bivalent ions by EDTA inhibited this response and the protein kinase C inhibitor D-sphingosin inhibited both 1-oleoyl-2-acetyl-glycerol-induced and FcϵRII-mediated LDCL. These findings suggest that the NADPH-protein kinase C pathway may be involved in the FceRII-mediated LDCL response in guinea pig eosinophils.

  18. Use of spin traps to detect superoxide production in living cells by electron paramagnetic resonance (EPR) spectroscopy.

    Science.gov (United States)

    Abbas, Kahina; Babić, Nikola; Peyrot, Fabienne

    2016-10-15

    Detection of superoxide produced by living cells has been an on-going challenge in biology for over forty years. Various methods have been proposed to address this issue, among which spin trapping with cyclic nitrones coupled to EPR spectroscopy, the gold standard for detection of radicals. This technique is based on the nucleophilic addition of superoxide to a diamagnetic cyclic nitrone, referred to as the spin trap, and the formation of a spin adduct, i.e. a persistent radical with a characteristic EPR spectrum. The first application of spin trapping to living cells dates back 1979. Since then, considerable improvements of the method have been achieved both in the structures of the spin traps, the EPR methodology, and the design of the experiments including appropriate controls. Here, we will concentrate on technical aspects of the spin trapping/EPR technique, delineating recent breakthroughs, inherent limitations, and potential artifacts. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. HIV antiretroviral drug combination induces endothelial mitochondrial dysfunction and reactive oxygen species production, but not apoptosis

    International Nuclear Information System (INIS)

    Jiang Bo; Hebert, Valeria Y.; Li, Yuchi; Mathis, J. Michael; Alexander, J. Steven; Dugas, Tammy R.

    2007-01-01

    Numerous reports now indicate that HIV patients administered long-term antiretroviral therapy (ART) are at a greater risk for developing cardiovascular diseases. Endothelial dysfunction is an initiating event in atherogenesis and may contribute to HIV-associated atherosclerosis. We previously reported that ART induces direct endothelial dysfunction in rodents. In vitro treatment of human umbilical vein endothelial cells (HUVEC) with ART indicated endothelial mitochondrial dysfunction and a significant increase in the production of reactive oxygen species (ROS). In this study, we determined whether ART-induced endothelial dysfunction is mediated via mitochondria-derived ROS and whether this mitochondrial injury culminates in endothelial cell apoptosis. Two major components of ART combination therapy, a nucleoside reverse transcriptase inhibitor and a protease inhibitor, were tested, using AZT and indinavir as representatives for each. Microscopy utilizing fluorescent indicators of ROS and mitochondria demonstrated the mitochondrial localization of ART-induced ROS. MnTBAP, a cell-permeable metalloporphyrin antioxidant, abolished ART-induced ROS production. As a final step in confirming the mitochondrial origin of the ART-induced ROS, HUVEC were transduced with a cytosolic- compared to a mitochondria-targeted catalase. Transduction with the mitochondria-targeted catalase was more effective than cytoplasmic catalase in inhibiting the ROS and 8-isoprostane (8-iso-PGF 2α ) produced after treatment with either AZT or indinavir. However, both mitochondrial and cytoplasmic catalase attenuated ROS and 8-iso-PGF 2α production induced by the combination treatment, suggesting that in this case, the formation of cytoplasmic ROS may also occur, and thus, that the mechanism of toxicity in the combination treatment group may be different compared to treatment with AZT or indinavir alone. Finally, to determine whether ART-induced mitochondrial dysfunction and ROS production

  20. Selective suppression of endothelial cytokine production by progesterone receptor.

    Science.gov (United States)

    Goddard, Lauren M; Ton, Amy N; Org, Tõnis; Mikkola, Hanna K A; Iruela-Arispe, M Luisa

    2013-01-01

    Steroid hormones are well-recognized suppressors of the inflammatory response, however, their cell- and tissue-specific effects in the regulation of inflammation are far less understood, particularly for the sex-related steroids. To determine the contribution of progesterone in the endothelium, we have characterized and validated an in vitro culture system in which human umbilical vein endothelial cells constitutively express human progesterone receptor (PR). Using next generation RNA-sequencing, we identified a selective group of cytokines that are suppressed by progesterone both under physiological conditions and during pathological activation by lipopolysaccharide. In particular, IL-6, IL-8, CXCL2/3, and CXCL1 were found to be direct targets of PR, as determined by ChIP-sequencing. Regulation of these cytokines by progesterone was also confirmed by bead-based multiplex cytokine assays and quantitative PCR. These findings provide a novel role for PR in the direct regulation of cytokine levels secreted by the endothelium. They also suggest that progesterone-PR signaling in the endothelium directly impacts leukocyte trafficking in PR-expressing tissues. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Hepatocyte growth factor protects human endothelial cells against advanced glycation end products-induced apoposis

    International Nuclear Information System (INIS)

    Zhou Yijun; Wang Jiahe; Zhang Jin

    2006-01-01

    Advanced glycation end products (AGEs) form by a non-enzymatic reaction between reducing sugars and biological proteins, which play an important role in the pathogenesis of atherosclerosis. In this study, we assessed AGEs effects on human umbilical vein endothelial cells (HUVECs) growth, proliferation and apoptosis. Additionally, we investigated whether hepatocyte growth factor (HGF), an anti-apoptotic factor for endothelial cells, prevents AGEs-induced apoptosis of HUVECs. HUVECs were treated with AGEs in the presence or absence of HGF. Treatment of HUVECs with AGEs changed cell morphology, decreased cell viability, and induced DNA fragmentation, leading to apoptosis. Apoptosis was induced by AGEs in a dose- and time-dependent fashion. AGEs markedly elevated Bax and decreased NF-κB, but not Bcl-2 expression. Additionally, AGEs significantly inhibited cell growth through a pro-apoptotic action involving caspase-3 and -9 activations in HUVECs. Most importantly, pretreatment with HGF protected against AGEs-induced cytotoxicity in the endothelial cells. HGF significantly promoted the expression of Bcl-2 and NF-κB, while decreasing the activities of caspase-3 and -9 without affecting Bax level. Our data suggest that AGEs induce apoptosis in endothelial cells. HGF effectively attenuate AGEs-induced endothelial cell apoptosis. These findings provide new perspectives in the role of HGF in cardiovascular disease

  2. Titanium dioxide nanoparticles enhance production of superoxide anion and alter the antioxidant system in human osteoblast cells

    Directory of Open Access Journals (Sweden)

    Niska K

    2015-02-01

    Full Text Available Karolina Niska,1 Katarzyna Pyszka,1 Cecylia Tukaj,2 Michal Wozniak,1 Marek Witold Radomski,3–5 Iwona Inkielewicz-Stepniak1 1Department of Medical Chemistry, 2Department of Electron Microscopy, Medical University of Gdansk, Gdansk, Poland; 3School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, The University of Dublin Trinity College, Dublin, Ireland; 4Kardio-Med Silesia, 5Silesian Medical University, Zabrze, Poland Abstract: Titanium dioxide (TiO2 nanoparticles (NPs are manufactured worldwide for a variety of engineering and bioengineering applications. TiO2NPs are frequently used as a material for orthopedic implants. However, to the best of our knowledge, the biocompatibility of TiO2NPs and their effects on osteoblast cells, which are responsible for the growth and remodeling of the human skeleton, have not been thoroughly investigated. In the research reported here, we studied the effects of exposing hFOB 1.19 human osteoblast cells to TiO2NPs (5–15 nm for 24 and 48 hours. Cell viability, alkaline phosphatase (ALP activity, cellular uptake of NPs, cell morphology, superoxide anion (O2•- generation, superoxide dismutase (SOD activity and protein level, sirtuin 3 (SIR3 protein level, correlation between manganese (Mn SOD and SIR, total antioxidant capacity, and malondialdehyde were measured following exposure of hFOB 1.19 cells to TiO2NPs. Exposure of hFOB 1.19 cells to TiO2NPs resulted in: (1 cellular uptake of NPs; (2 increased cytotoxicity and cell death in a time- and concentration-dependent manner; (3 ultrastructure changes; (4 decreased SOD and ALP activity; (5 decreased protein levels of SOD1, SOD2, and SIR3; (6 decreased total antioxidant capacity; (7 increased O2•- generation; and (8 enhanced lipid peroxidation (malondialdehyde level. The linear relationship between the protein level of MnSOD and SIR3 and between O2•- content and SIR3 protein level was observed. Importantly, the cytotoxic

  3. Charge Transfer at the Qo-Site of the Cytochrome bc1 Complex Leads to Superoxide Production

    DEFF Research Database (Denmark)

    Bøgh Salo, Adrian; Husen, Peter; Solov'yov, Ilia A

    2017-01-01

    The cytochrome bc1 complex is the third protein complex in the electron transport chain of mitochondria or photosynthetic bacteria, and it serves to create an electrochemical gradient across a cellular membrane, which is used to drive ATP synthesis. The purpose of this study is to investigate...... interactions involving an occasionally trapped oxygen molecule (O2) at the so-called Qo site of the bc1 complex, which is one of the central active sites of the protein complex, where redox reactions are expected to occur. The investigation focuses on revealing the possibility of the oxygen molecule...... to influence the normal operation of the bc1 complex and acquire an extra electron, thus becoming superoxide, a biologically toxic free radical. The process is modeled by applying quantum chemical calculations to previously performed classical molecular dynamics simulations. Investigations reveal several...

  4. Hydrogen sulfide increases nitric oxide production from endothelial cells by an Akt-dependent mechanism

    Directory of Open Access Journals (Sweden)

    Arturo J Cardounel

    2011-12-01

    Full Text Available Hydrogen sulfide (H2S and nitric oxide (NO are both gasotransmitters that can elicit synergistic vasodilatory responses in the in the cardiovascular system, but the mechanisms behind this synergy are unclear. In the current study we investigated the molecular mechanisms through which H2S regulates endothelial NO production. Initial studies were performed to establish the temporal and dose-dependent effects of H2S on NO generation using EPR spin trapping techniques. H2S stimulated a two-fold increase in NO production from endothelial nitric oxide synthase (eNOS, which was maximal 30 min after exposure to 25-150 µM H2S. Following 30 min H2S exposure, eNOS phosphorylation at Ser 1177 was significantly increased compared to control, consistent with eNOS activation. Pharmacological inhibition of Akt, the kinase responsible for Ser 1177 phosphorylation, attenuated the stimulatory effect of H2S on NO production. Taken together, these data demonstrate that H2S up-regulates NO production from eNOS through an Akt-dependent mechanism. These results implicate H2S in the regulation of NO in endothelial cells, and suggest that deficiencies in H2S signaling can directly impact processes regulated by NO.

  5. Titanium dioxide nanoparticles enhance production of superoxide anion and alter the antioxidant system in human osteoblast cells

    Science.gov (United States)

    Niska, Karolina; Pyszka, Katarzyna; Tukaj, Cecylia; Wozniak, Michal; Radomski, Marek Witold; Inkielewicz-Stepniak, Iwona

    2015-01-01

    Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide for a variety of engineering and bioengineering applications. TiO2NPs are frequently used as a material for orthopedic implants. However, to the best of our knowledge, the biocompatibility of TiO2NPs and their effects on osteoblast cells, which are responsible for the growth and remodeling of the human skeleton, have not been thoroughly investigated. In the research reported here, we studied the effects of exposing hFOB 1.19 human osteoblast cells to TiO2NPs (5–15 nm) for 24 and 48 hours. Cell viability, alkaline phosphatase (ALP) activity, cellular uptake of NPs, cell morphology, superoxide anion (O2•−2) generation, superoxide dismutase (SOD) activity and protein level, sirtuin 3 (SIR3) protein level, correlation between manganese (Mn) SOD and SIR, total antioxidant capacity, and malondialdehyde were measured following exposure of hFOB 1.19 cells to TiO2NPs. Exposure of hFOB 1.19 cells to TiO2NPs resulted in: (1) cellular uptake of NPs; (2) increased cytotoxicity and cell death in a time- and concentration-dependent manner; (3) ultrastructure changes; (4) decreased SOD and ALP activity; (5) decreased protein levels of SOD1, SOD2, and SIR3; (6) decreased total antioxidant capacity; (7) increased O2•− generation; and (8) enhanced lipid peroxidation (malondialdehyde level). The linear relationship between the protein level of MnSOD and SIR3 and between O2•− content and SIR3 protein level was observed. Importantly, the cytotoxic effects of TiO2NPs were attenuated by the pretreatment of hFOB 1.19 cells with SOD, indicating the significant role of O2•− in the cell damage and death observed. Thus, decreased expression of SOD leading to increased oxidizing stress may underlie the nanotoxic effects of TiO2NPs on human osteoblasts. PMID:25709434

  6. Ceramide Production Mediates Aldosterone-Induced Human Umbilical Vein Endothelial Cell (HUVEC Damages.

    Directory of Open Access Journals (Sweden)

    Yumei Zhang

    Full Text Available Here, we studied the underlying mechanism of aldosterone (Aldo-induced vascular endothelial cell damages by focusing on ceramide. We confirmed that Aldo (at nmol/L inhibited human umbilical vein endothelial cells (HUVEC survival, and induced considerable cell apoptosis. We propose that ceramide (mainly C18 production might be responsible for Aldo-mediated damages in HUVECs. Sphingosine-1-phosphate (S1P, an anti-ceramide lipid, attenuated Aldo-induced ceramide production and following HUVEC damages. On the other hand, the glucosylceramide synthase (GCS inhibitor PDMP or the ceramide (C6 potentiated Aldo-induced HUVEC apoptosis. Eplerenone, a mineralocorticoid receptor (MR antagonist, almost completely blocked Aldo-induced C18 ceramide production and HUVEC damages. Molecularly, ceramide synthase 1 (CerS-1 is required for C18 ceramide production by Aldo. Knockdown of CerS-1 by targeted-shRNA inhibited Aldo-induced C18 ceramide production, and protected HUVECs from Aldo. Reversely, CerS-1 overexpression facilitated Aldo-induced C18 ceramide production, and potentiated HUVEC damages. Together, these results suggest that C18 ceramide production mediates Aldo-mediated HUVEC damages. MR and CerS-1 could be the two signaling molecule regulating C18 ceramide production by Aldo.

  7. Effect of dietary advanced glycation end products on postprandial appetite, inflammation, and endothelial activation in healthy overweight individuals

    DEFF Research Database (Denmark)

    Poulsen, Malene Wibe; Bak, Monika Judyta; Andersen, Jeanette Marker

    2014-01-01

    Advanced glycation end products (AGEs) formed in food during high-heat cooking may induce overeating and inflammation. We investigated whether AGE contents in a single meal affect postprandial appetite and markers of inflammation, endothelial activation, and oxidative stress.......Advanced glycation end products (AGEs) formed in food during high-heat cooking may induce overeating and inflammation. We investigated whether AGE contents in a single meal affect postprandial appetite and markers of inflammation, endothelial activation, and oxidative stress....

  8. Citrus Polyphenol Hesperidin Stimulates Production of Nitric Oxide in Endothelial Cells while Improving Endothelial Function and Reducing Inflammatory Markers in Patients with Metabolic Syndrome

    Science.gov (United States)

    Rizza, Stefano; Muniyappa, Ranganath; Iantorno, Micaela; Kim, Jeong-a; Chen, Hui; Pullikotil, Philomena; Senese, Nicoletta; Tesauro, Manfredi; Lauro, Davide; Cardillo, Carmine

    2011-01-01

    Context: Hesperidin, a citrus flavonoid, and its metabolite hesperetin may have vascular actions relevant to their health benefits. Molecular and physiological mechanisms of hesperetin actions are unknown. Objective: We tested whether hesperetin stimulates production of nitric oxide (NO) from vascular endothelium and evaluated endothelial function in subjects with metabolic syndrome on oral hesperidin therapy. Design, Setting, and Interventions: Cellular mechanisms of action of hesperetin were evaluated in bovine aortic endothelial cells (BAEC) in primary culture. A randomized, placebo-controlled, double-blind, crossover trial examined whether oral hesperidin administration (500 mg once daily for 3 wk) improves endothelial function in individuals with metabolic syndrome (n = 24). Main Outcome Measure: We measured the difference in brachial artery flow-mediated dilation between placebo and hesperidin treatment periods. Results: Treatment of BAEC with hesperetin acutely stimulated phosphorylation of Src, Akt, AMP kinase, and endothelial NO synthase to produce NO; this required generation of H2O2. Increased adhesion of monocytes to BAEC and expression of vascular cell adhesion molecule-1 in response to TNF-α treatment was reduced by pretreatment with hesperetin. In the clinical study, when compared with placebo, hesperidin treatment increased flow-mediated dilation (10.26 ± 1.19 vs. 7.78 ± 0.76%; P = 0.02) and reduced concentrations of circulating inflammatory biomarkers (high-sensitivity C-reactive protein, serum amyloid A protein, soluble E-selectin). Conclusions: Novel mechanisms for hesperetin action in endothelial cells inform effects of oral hesperidin treatment to improve endothelial dysfunction and reduce circulating markers of inflammation in our exploratory clinical trial. Hesperetin has vasculoprotective actions that may explain beneficial cardiovascular effects of citrus consumption. PMID:21346065

  9. Biosensor Technology Reveals the Disruption of the Endothelial Barrier Function and the Subsequent Death of Blood Brain Barrier Endothelial Cells to Sodium Azide and Its Gaseous Products.

    Science.gov (United States)

    Kho, Dan T; Johnson, Rebecca H; O'Carroll, Simon J; Angel, Catherine E; Graham, E Scott

    2017-09-21

    Herein we demonstrate the sensitive nature of human blood-brain barrier (BBB) endothelial cells to sodium azide and its gaseous product. Sodium azide is known to be acutely cytotoxic at low millimolar concentrations, hence its use as a biological preservative (e.g., in antibodies). Loss of barrier integrity was noticed in experiments using Electric Cell-substrate Impedance Sensing (ECIS) biosensor technology, to measure endothelial barrier integrity continuously in real-time. Initially the effect of sodium azide was observed as an artefact where it was present in antibodies being employed in neutralisation experiments. This was confirmed where antibody clones that were azide-free did not mediate loss of barrier function. A delayed loss of barrier function in neighbouring wells implied the influence of a liberated gaseous product. ECIS technology demonstrated that the BBB endothelial cells had a lower level of direct sensitivity to sodium azide of ~3 µM. Evidence of gaseous toxicity was consistently observed at 30 µM and above, with disrupted barrier function and cell death in neighbouring wells. We highlight the ability of this cellular biosensor technology to reveal both the direct and gaseous toxicity mediated by sodium azide. The sensitivity and temporal dimension of ECIS technology was instrumental in these observations. These findings have substantial implications for the wide use of sodium azide in biological reagents, raising issues of their application in live-cell assays and with regard to the protection of the user. This research also has wider relevance highlighting the sensitivity of brain endothelial cells to a known mitochondrial disruptor. It is logical to hypothesise that BBB endothelial dysfunction due to mitochondrial dys-regulation could have an important but underappreciated role in a range of neurological diseases.

  10. Medroxyprogesterone acetate attenuates estrogen-induced nitric oxide production in human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Oishi, Akira; Ohmichi, Masahide; Takahashi, Kazuhiro; Takahashi, Toshifumi; Mori-Abe, Akiko; Kawagoe, Jun; Otsu, Reiko; Mochizuki, Yoshiko; Inaba, Noriyuki; Kurachi, Hirohisa

    2004-01-01

    We report the novel observation that medroxyprogesterone acetate (MPA) attenuates the induction by 17β estradiol (E2) of both nitric oxide (NO) production and endothelial nitric oxide synthase (eNOS) activity in human umbilical vein endothelial cells. Although MPA had no effect on basal NO production or basal eNOS phosphorylation or activity, it attenuated the E2-induced NO production and eNOS phosphorylation and activity. Moreover, we examined the mechanism by which MPA attenuated the E2-induced NO production and eNOS phosphorylation. MPA attenuated the E2-induced phosphorylation of Akt, a kinase that phosphorylates eNOS. Treatment with pure progesterone receptor (PR) antagonist RU486 completely abolished the inhibitory effect of MPA on E2-induced Akt phosphorylation and eNOS phosphorylation. In addition, the effects of actinomycin D were tested to rule out the influence of genomic events mediated by nuclear PRs. Actinomycin D did not affect the inhibitory effect of MPA on E2-induced Akt phosphorylation. Furthermore, the potential roles of PRA and PRB were evaluated. In COS cells transfected with either PRA or PRB, MPA attenuated E2-induced Akt phosphorylation. These results indicate that MPA attenuated E2-induced NO production via an Akt cascade through PRA or PRB in a non-genomic manner

  11. Advanced glycation end-products inhibition improves endothelial dysfunction in rheumatoid arthritis.

    Science.gov (United States)

    Syngle, Ashit; Vohra, Kanchan; Garg, Nidhi; Kaur, Ladbans; Chand, Prem

    2012-02-01

    Chronic inflammation in rheumatoid arthritis is associated with vascular endothelial dysfunction. The objective was to study the efficacy and safety of advanced glycation end products (AGEs) inhibitor (benfotiamine 50 mg + pyridoxamine 50 mg + methylcobalamin 500 μg, Vonder(®) (ACME Lifescience, Baddi, Himachal Pradesh, India)) on endothelial function in rheumatoid arthritis (RA). Twenty-four patients with established active RA with high disease activity (Disease Activity Score of 28 joints [DAS28 score] > 5.1) despite treatment with stable doses of conventional disease-modifying antirheumatic drugs were investigated. Inflammatory disease activity (DAS28 and Health Assessment Questionnaire-Disability Index [HAQ-DI] scores, erythrocyte sedimentation rate [ESR] and C-reactive protein [CRP]), markers of endothelial dysfunction, serum nitrite concentration and endothelium-dependent and -independent vasodilation of the brachial artery were measured before and after 12 weeks therapy with twice a day oral AGEs inhibitor. After treatment, flow-mediated vasodilation improved from 9.64 ± 0.65% to 15.82 ± 1.02% (P < 0.01), whereas there was no significant change in endothelium-independent vasodilation with nitroglycerin and baseline diameter; serum nitrite concentration significantly reduced from 5.6 ± 0.13 to 5.1 ± 0.14 μmol/L (P = 0.004), ESR from 63.00 ± 3.5 to 28.08 ± 1.5 mm in the first h (P < 0.01) and CRP levels from 16.7 ± 4.1 to 10.74 ± 2.9 mg/dL (P < 0.01). DAS28 and HAQ-DI scores were significantly reduced, from 5.9 ± 0.17 to 3.9 ± 0.17 (P < 0.01) and 4.6 ± 0.17 to 1.7 ± 0.22 (P < 0.01), respectively. Advanced glycation end products inhibitor improves endothelial dysfunction and inflammatory disease activity in RA. In RA, endothelial dysfunction is part of the disease process and is mediated by AGEs-induced inflammation. © 2011 The Authors. International Journal of Rheumatic Diseases © 2011 Asia Pacific League of Associations for Rheumatology and

  12. Endothelial surface glycocalyx can regulate flow-induced nitric oxide production in microvessels in vivo.

    Directory of Open Access Journals (Sweden)

    Wanyi Yen

    Full Text Available Due to its unique location, the endothelial surface glycocalyx (ESG at the luminal side of the microvessel wall may serve as a mechano-sensor and transducer of blood flow and thus regulate endothelial functions. To examine this role of the ESG, we used fluorescence microscopy to measure nitric oxide (NO production in post-capillary venules and arterioles of rat mesentery under reduced (low and normal (high flow conditions, with and without enzyme pretreatment to remove heparan sulfate (HS of the ESG and in the presence of an endothelial nitric oxide synthase (eNOS inhibitor, NG-monomethyl-L-arginine (L-NMMA. Rats (SD, 250-300 g were anesthetized. The mesentery was gently taken out from the abdominal cavity and arranged on the surface of a glass coverslip for the measurement. An individual post-capillary venule or arteriole was cannulated and loaded for 45 min with 5 μM 4, 5-Diaminofluorescein diacetate, a membrane permeable fluorescent indictor for NO, then the NO production was measured for ~10 min under a low flow (~300 μm/s and for ~60 min under a high flow (~1000 μm/s. In the 15 min after switching to the high flow, DAF-2-NO fluorescence intensity increased to 1.27-fold of its baseline, DAF-2-NO continuously increased under the high flow, to 1.53-fold of its baseline in 60 min. Inhibition of eNOS by 1 mM L-NMMA attenuated the flow-induced NO production to 1.13-fold in 15 min and 1.30-fold of its baseline in 60 min, respectively. In contrast, no significant increase in NO production was observed after switching to the high flow for 60 min when 1 h pretreatment with 50 mU/mL heparanase III to degrade the ESG was applied. Similar NO production was observed in arterioles under low and high flows and under eNOS inhibition. Our results suggest that ESG participates in endothelial cell mechanosensing and transduction through its heparan sulfate to activate eNOS.

  13. Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Mishima Satoshi

    2009-11-01

    Full Text Available Abstract Background Vascular endothelial growth factor (VEGF is a key regulator of pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. Bee products [royal jelly (RJ, bee pollen, and Chinese red propolis] from the honeybee, Apis mellifera, have been used as traditional health foods for centuries. The aim of this study was to investigate the anti-angiogenic effects of bee products using human umbilical vein endothelial cells (HUVECs. Methods In an in vitro tube formation assay, HUVECs and fibroblast cells were incubated for 14 days with VEGF and various concentrations of bee products [RJ, ethanol extract of bee pollen, ethanol extract of Chinese red propolis and its constituent, caffeic acid phenethyl ester (CAPE]. To clarify the mechanism of in vitro angiogenesis, HUVEC proliferation and migration were induced by VEGF with or without various concentrations of RJ, bee pollen, Chinese red propolis, and CAPE. Results RJ, bee pollen, Chinese red propolis, and CAPE significantly suppressed VEGF-induced in vitro tube formation in the descending order: CAPE > Chinese red propolis >> bee pollen > RJ. RJ and Chinese red propolis suppressed both VEGF-induced HUVEC proliferation and migration. In contrast, bee pollen and CAPE suppressed only the proliferation. Conclusion Among the bee products, Chinese red propolis and CAPE in particular showed strong suppressive effects against VEGF-induced angiogenesis. These findings indicate that Chinese red propolis and CAPE may have potential as preventive and therapeutic agents against angiogenesis-related human diseases.

  14. Caffeic acid, a phenol found in white wine, modulates endothelial nitric oxide production and protects from oxidative stress-associated endothelial cell injury.

    Directory of Open Access Journals (Sweden)

    Massimiliano Migliori

    Full Text Available Several studies demonstrated that endothelium dependent vasodilatation is impaired in cardiovascular and chronic kidney diseases because of oxidant stress-induced nitric oxide availability reduction. The Mediterranean diet, which is characterized by food containing phenols, was correlated with a reduced incidence of cardiovascular diseases and delayed progression toward end stage chronic renal failure. Previous studies demonstrated that both red and white wine exert cardioprotective effects. In particular, wine contains Caffeic acid (CAF, an active component with known antioxidant activities.The aim of the present study was to investigate the protective effect of low doses of CAF on oxidative stress-induced endothelial injury.CAF increased basal as well as acetylcholine-induced NO release by a mechanism independent from eNOS expression and phosphorylation. In addition, low doses of CAF (100 nM and 1 μM increased proliferation and angiogenesis and inhibited leukocyte adhesion and endothelial cell apoptosis induced by hypoxia or by the uremic toxins ADMA, p-cresyl sulfate and indoxyl sulfate. The biological effects exerted by CAF on endothelial cells may be at least in part ascribed to modulation of NO release and by decreased ROS production. In an experimental model of kidney ischemia-reperfusion injury in mice, CAF significantly decreased tubular cell apoptosis, intraluminal cast deposition and leukocyte infiltration.The results of the present study suggest that CAF, at very low dosages similar to those observed after moderate white wine consumption, may exert a protective effect on endothelial cell function by modulating NO release independently from eNOS expression and phosphorylation. CAF-induced NO modulation may limit cardiovascular and kidney disease progression associated with oxidative stress-mediated endothelial injury.

  15. Carbon black nanoparticles promote endothelial activation and lipid accumulation in macrophages independently of intracellular ROS production

    DEFF Research Database (Denmark)

    Cao, Yi; Roursgaard, Martin; Danielsen, Pernille Høgh

    2014-01-01

    , the concentrations of CB to induce lipid accumulation were lower than the concentrations to promote intracellular ROS production in THP-1a cells. In conclusion, exposure to nano-sized CB induced endothelial dysfunction and foam cell formation, which was not dependent on intracellular ROS production....... and WST-1 assays, especially in THP-1 and THP-1a cells. The CB exposure decreased the glutathione (GSH) content in THP-1 and THP-1a cells, whereas GSH was increased in HUVECs. The reactive oxygen species (ROS) production was increased in all cell types after CB exposure. A reduction of the intracellular...... GSH concentration by buthionine sulfoximine (BSO) pre-treatment further increased the CB-induced ROS production in THP-1 cells and HUVECs. The expression of adhesion molecules ICAM-1 and VCAM-1, but not adhesion of THP-1 to HUVECs or culture dishes, was elevated by CB exposure, whereas these effects...

  16. An EMMPRIN–γ-catenin–Nm23 complex drives ATP production and actomyosin contractility at endothelial junctions

    Science.gov (United States)

    Moreno, Vanessa; Gonzalo, Pilar; Gómez-Escudero, Jesús; Pollán, Ángela; Acín-Pérez, Rebeca; Breckenridge, Mark; Yáñez-Mó, María; Barreiro, Olga; Orsenigo, Fabrizio; Kadomatsu, Kenji; Chen, Christopher S.; Enríquez, José A.; Dejana, Elisabetta; Sánchez-Madrid, Francisco; Arroyo, Alicia G.

    2014-01-01

    ABSTRACT Cell–cell adhesions are important sites through which cells experience and resist forces. In endothelial cells, these forces regulate junction dynamics and determine endothelial barrier strength. We identify the Ig superfamily member EMMPRIN (also known as basigin) as a coordinator of forces at endothelial junctions. EMMPRIN localization at junctions correlates with endothelial junction strength in different mouse vascular beds. Accordingly, EMMPRIN-deficient mice show altered junctions and increased junction permeability. Lack of EMMPRIN alters the localization and function of VE-cadherin (also known as cadherin-5) by decreasing both actomyosin contractility and tugging forces at endothelial cell junctions. EMMPRIN ensures proper actomyosin-driven maturation of competent endothelial junctions by forming a molecular complex with γ-catenin (also known as junction plakoglobin) and Nm23 (also known as NME1), a nucleoside diphosphate kinase, thereby locally providing ATP to fuel the actomyosin machinery. These results provide a novel mechanism for the regulation of actomyosin contractility at endothelial junctions and might have broader implications in biological contexts such as angiogenesis, collective migration and tissue morphogenesis by coupling compartmentalized energy production to junction assembly. PMID:24994937

  17. An EMMPRIN-γ-catenin-Nm23 complex drives ATP production and actomyosin contractility at endothelial junctions.

    Science.gov (United States)

    Moreno, Vanessa; Gonzalo, Pilar; Gómez-Escudero, Jesús; Pollán, Ángela; Acín-Pérez, Rebeca; Breckenridge, Mark; Yáñez-Mó, María; Barreiro, Olga; Orsenigo, Fabrizio; Kadomatsu, Kenji; Chen, Christopher S; Enríquez, José A; Dejana, Elisabetta; Sánchez-Madrid, Francisco; Arroyo, Alicia G

    2014-09-01

    Cell-cell adhesions are important sites through which cells experience and resist forces. In endothelial cells, these forces regulate junction dynamics and determine endothelial barrier strength. We identify the Ig superfamily member EMMPRIN (also known as basigin) as a coordinator of forces at endothelial junctions. EMMPRIN localization at junctions correlates with endothelial junction strength in different mouse vascular beds. Accordingly, EMMPRIN-deficient mice show altered junctions and increased junction permeability. Lack of EMMPRIN alters the localization and function of VE-cadherin (also known as cadherin-5) by decreasing both actomyosin contractility and tugging forces at endothelial cell junctions. EMMPRIN ensures proper actomyosin-driven maturation of competent endothelial junctions by forming a molecular complex with γ-catenin (also known as junction plakoglobin) and Nm23 (also known as NME1), a nucleoside diphosphate kinase, thereby locally providing ATP to fuel the actomyosin machinery. These results provide a novel mechanism for the regulation of actomyosin contractility at endothelial junctions and might have broader implications in biological contexts such as angiogenesis, collective migration and tissue morphogenesis by coupling compartmentalized energy production to junction assembly. © 2014. Published by The Company of Biologists Ltd.

  18. Enhanced 15-HPETE production during oxidant stress induces apoptosis of endothelial cells.

    Science.gov (United States)

    Sordillo, Lorraine M; Weaver, James A; Cao, Yu-Zhang; Corl, Chris; Sylte, Matt J; Mullarky, Isis K

    2005-05-01

    Oxidant stress plays an important role in the etiology of vascular diseases by increasing rates of endothelial cell apoptosis, but few data exist on the mechanisms involved. Using a unique model of oxidative stress based on selenium deficiency (-Se), the effects of altered eicosanoid production on bovine aortic endothelial cells (BAEC) apoptosis was evaluated. Oxidant stress significantly increased the immediate oxygenation product of arachidonic acid metabolized by the 15-lipoxygenase pathway, 15-hydroxyperoxyeicosatetraenoic acid (15-HPETE). Treatment of -Se BAEC with TNFalpha/cyclohexamide (CHX) exhibited elevated levels of apoptosis, which was significantly reduced by the addition of a specific 15-lipoxygenase inhibitor PD146176. Furthermore, the addition of 15-HPETE to PD146176-treated BAEC, partially restored TNF/CHX-induced apoptosis. Increased exposure to 15-HPETE induced apoptosis, as determined by internucleosomal DNA fragmentation, chromatin condensation, caspase-3 activation, and caspase-9 activation, which suggests mitochondrial dysfunction. The expression of Bcl-2 protein also was decreased in -Se BAEC. Addition of a caspase-9 inhibitor (LEHD-fmk) completely blocked 15-HPETE-induced chromatin condensation in -Se BAEC, suggesting that 15-HPETE-induced apoptosis is caspase-9 dependent. Increased apoptosis of BAEC as a result of oxidant stress and subsequent production of 15-HPETE may play a critical role in a variety of inflammatory based diseases.

  19. Sibutramine provokes apoptosis of aortic endothelial cells through altered production of reactive oxygen and nitrogen species

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Yoshifumi [Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501 (Japan); Shibata, Akinobu; Okumura, Naoko; Ikari, Akira [Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196 (Japan); Sasajima, Yasuhide; Suenami, Koichi; Sato, Kiyohito; Takekoshi, Yuji [Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501 (Japan); El-Kabbani, Ossama [Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Matsunaga, Toshiyuki, E-mail: matsunagat@gifu-pu.ac.jp [Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196 (Japan)

    2017-01-01

    Overdose administration of sibutramine, a serotonin-noradrenalin reuptake inhibitor, is considered to elicit severe side effects including hypertension, whose pathogenic mechanism remains unclear. Here, we found that 48-h incubation with > 10 μM sibutramine provokes apoptosis of human aortic endothelial (HAE) cells. Treatment with the lethal concentration of sibutramine facilitated production of reactive oxygen species (ROS), altered expression of endoplasmic reticulum stress response genes (heat shock protein 70 and C/EBP homologous protein), and inactivated 26S proteasome-based proteolysis. The treatment also decreased cellular level of nitric oxide (NO) through lowering of expression and activity of endothelial NO synthase. These results suggest that ROS production and depletion of NO are crucial events in the apoptotic mechanism and may be linked to the pathogenesis of vasoconstriction elicited by the drug. Compared to sibutramine, its metabolites (N-desmethylsibutramine and N-didesmethylsibutramine) were much less cytotoxic to HAE cells, which hardly metabolized sibutramine. In contrast, both the drug and metabolites showed low cytotoxicity to hepatic HepG2 cells with high metabolic potency and expression of cytochrome P450 (CYP) 3A4. The cytotoxicity of sibutramine to HepG2 and Chang Liver cells was remarkably augmented by inhibition and knockdown of CYP3A4. This study also suggests an inverse relationship between sibutramine cytotoxicity and CYP3A4-mediated metabolism into the N-desmethyl metabolites. - Highlights: • Treatment with sibutramine, an anorexiant, induces endothelial cell apoptosis. • The apoptotic mechanism includes induction of ROS and NO depletion. • There is an inverse relationship between sibutramine cytotoxicity and its metabolism.

  20. Biological Superoxide In Manganese Oxide Formation

    Science.gov (United States)

    Hansel, C.; Learman, D.; Zeiner, C.; Santelli, C. M.

    2011-12-01

    Manganese (Mn) oxides are among the strongest sorbents and oxidants within the environment, controlling the fate and transport of numerous elements and the degradation of recalcitrant carbon. Both bacteria and fungi mediate the oxidation of Mn(II) to Mn(III/IV) oxides but the genetic and biochemical mechanisms responsible remain poorly understood. Furthermore, the physiological basis for microbial Mn(II) oxidation remains an enigma. We have recently reported that a common marine bacterium (Roseobacter sp. AzwK-3b) oxidizes Mn(II) via reaction with extracellular superoxide (O2-) produced during exponential growth. Here we expand this superoxide-mediated Mn(II) oxidation pathway to fungi, introducing a surprising homology between prokaryotic and eukaryotic metal redox processes. For instance, Stibella aciculosa, a common soil Ascomycete filamentous fungus, precipitates Mn oxides at the base of asexual reproductive structures (synnemata) used to support conidia (Figure 1). This distribution is a consequence of localized production of superoxide (and it's dismutation product hydrogen peroxide, H2O2), leading to abiotic oxidation of Mn(II) by superoxide. Disruption of NADPH oxidase activity using the oxidoreductase inhibitor DPI leads to diminished cell differentiation and subsequent Mn(II) oxidation inhibition. Addition of Cu(II) (an effective superoxide scavenger) leads to a concentration dependent decrease in Mn oxide formation. We predict that due to the widespread production of extracellular superoxide within the fungal and likely bacterial kingdoms, biological superoxide may be an important contributor to the cycling of Mn, as well as other metals (e.g., Hg, Fe). Current and future explorations of the genes and proteins involved in superoxide production and Mn(II) oxidation will ideally lend insight into the physiological and biochemical basis for these processes.

  1. Production of BMP4 by endothelial cells is crucial for endogenous thymic regeneration

    Science.gov (United States)

    Wertheimer, Tobias; Velardi, Enrico; Tsai, Jennifer; Cooper, Kirsten; Xiao, Shiyun; Kloss, Christopher C.; Ottmüller, Katja J.; Mokhtari, Zeinab; Brede, Christian; deRoos, Paul; Kinsella, Sinéad; Palikuqi, Brisa; Ginsberg, Michael; Young, Lauren F.; Kreines, Fabiana; Lieberman, Sophia R.; Lazrak, Amina; Guo, Peipei; Malard, Florent; Smith, Odette M.; Shono, Yusuke; Jenq, Robert R.; Hanash, Alan M.; Nolan, Daniel J.; Butler, Jason M.; Beilhack, Andreas; Manley, Nancy R.; Rafii, Shahin; Dudakov, Jarrod A; van den Brink, Marcel RM

    2018-01-01

    The thymus is extremely sensitive to damage but also has a remarkable ability to repair itself. However, the mechanisms underlying this endogenous regeneration remain poorly understood and this capacity diminishes considerably with age. Here we show that thymic endothelial cells (ECs) comprise a critical pathway of regeneration, via their production of BMP4. ECs increased their production of BMP4 after thymic damage, and abrogating BMP4 signalling or production by either pharmacologic or genetic inhibition impaired thymic repair. EC-derived BMP4 acted on thymic epithelial cells (TECs) to increase their expression of Foxn1, a key transcription factor involved in TEC development, maintenance and regeneration; and its downstream targets such as Dll4, itself a key mediator of thymocyte development and regeneration. These studies demonstrate the importance of the BMP4 pathway in endogenous tissue regeneration and offer a potential clinical approach to enhance T cell immunity. PMID:29330161

  2. Sibutramine provokes apoptosis of aortic endothelial cells through altered production of reactive oxygen and nitrogen species.

    Science.gov (United States)

    Morikawa, Yoshifumi; Shibata, Akinobu; Okumura, Naoko; Ikari, Akira; Sasajima, Yasuhide; Suenami, Koichi; Sato, Kiyohito; Takekoshi, Yuji; El-Kabbani, Ossama; Matsunaga, Toshiyuki

    2017-01-01

    Overdose administration of sibutramine, a serotonin-noradrenalin reuptake inhibitor, is considered to elicit severe side effects including hypertension, whose pathogenic mechanism remains unclear. Here, we found that 48-h incubation with >10μM sibutramine provokes apoptosis of human aortic endothelial (HAE) cells. Treatment with the lethal concentration of sibutramine facilitated production of reactive oxygen species (ROS), altered expression of endoplasmic reticulum stress response genes (heat shock protein 70 and C/EBP homologous protein), and inactivated 26S proteasome-based proteolysis. The treatment also decreased cellular level of nitric oxide (NO) through lowering of expression and activity of endothelial NO synthase. These results suggest that ROS production and depletion of NO are crucial events in the apoptotic mechanism and may be linked to the pathogenesis of vasoconstriction elicited by the drug. Compared to sibutramine, its metabolites (N-desmethylsibutramine and N-didesmethylsibutramine) were much less cytotoxic to HAE cells, which hardly metabolized sibutramine. In contrast, both the drug and metabolites showed low cytotoxicity to hepatic HepG2 cells with high metabolic potency and expression of cytochrome P450 (CYP) 3A4. The cytotoxicity of sibutramine to HepG2 and Chang Liver cells was remarkably augmented by inhibition and knockdown of CYP3A4. This study also suggests an inverse relationship between sibutramine cytotoxicity and CYP3A4-mediated metabolism into the N-desmethyl metabolites. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Chlorpromazine-induced corneal endothelial phototoxicity

    International Nuclear Information System (INIS)

    Hull, D.S.; Csukas, S.; Green, K.

    1982-01-01

    Chlorpromazine, which has been used extensively for the treatment of psychiatric disorders, is known to accumulate in the posterior corneal stroma, lens, and uveal tract. Because it is a phototoxic compound, the potential exists for it to cause cellular damage after light exposure. Specular microscopic perfusion of corneal endothelial cells in darkness with 0.5 mM chlorpromazine HCl resulted in a swelling rate of 18 +/- 2 micrometer/hr, whereas corneas exposed to long-wavelength ultraviolet light for 3 min in the presence of 0.5 mM chlorpromazine swelled at 37 +/- 9 micrometer/hr (p less than 0.01). Preirradiation of 0.5 mM chlorpromazine solution with ultraviolet light for 30 min and subsequent corneal perfusion with the solution resulted in a corneal swelling rate of 45 +/- 19 micrometer/hr. Cornea endothelial cells perfused with 0.5 mM chlorpromazine that was preirradiated with ultraviolet light showed marked swelling on scanning electron microscopic examination, whereas those perfused with nonirradiated chlorpromazine were flat and showed a normal mosaic pattern. Combining either 500 U/ml catalase or 290 U/ml superoxide dismutase with chlorpromazine did not alter photoinduction of corneal swelling. The data suggest that corneal endothelial chlorpromazine phototoxicity is secondary to cytotoxic products resulting from the photodynamically induced decomposition of chlorpromazine and is not caused by hydrogen peroxide or superoxide anion generated during the phototoxic reaction

  4. Matrix production and organization by endothelial colony forming cells in mechanically strained engineered tissue constructs.

    Directory of Open Access Journals (Sweden)

    Nicky de Jonge

    Full Text Available AIMS: Tissue engineering is an innovative method to restore cardiovascular tissue function by implanting either an in vitro cultured tissue or a degradable, mechanically functional scaffold that gradually transforms into a living neo-tissue by recruiting tissue forming cells at the site of implantation. Circulating endothelial colony forming cells (ECFCs are capable of differentiating into endothelial cells as well as a mesenchymal ECM-producing phenotype, undergoing Endothelial-to-Mesenchymal-transition (EndoMT. We investigated the potential of ECFCs to produce and organize ECM under the influence of static and cyclic mechanical strain, as well as stimulation with transforming growth factor β1 (TGFβ1. METHODS AND RESULTS: A fibrin-based 3D tissue model was used to simulate neo-tissue formation. Extracellular matrix organization was monitored using confocal laser-scanning microscopy. ECFCs produced collagen and also elastin, but did not form an organized matrix, except when cultured with TGFβ1 under static strain. Here, collagen was aligned more parallel to the strain direction, similar to Human Vena Saphena Cell-seeded controls. Priming ECFC with TGFβ1 before exposing them to strain led to more homogenous matrix production. CONCLUSIONS: Biochemical and mechanical cues can induce extracellular matrix formation by ECFCs in tissue models that mimic early tissue formation. Our findings suggest that priming with bioactives may be required to optimize neo-tissue development with ECFCs and has important consequences for the timing of stimuli applied to scaffold designs for both in vitro and in situ cardiovascular tissue engineering. The results obtained with ECFCs differ from those obtained with other cell sources, such as vena saphena-derived myofibroblasts, underlining the need for experimental models like ours to test novel cell sources for cardiovascular tissue engineering.

  5. Infusion of hypertonic saline (7.5%) does not change neutrophil oxidative burst or expression of endothelial adhesion molecules after abdominal hysterectomy

    DEFF Research Database (Denmark)

    Kølsen-Petersen, Jens Aage; Rasmussen, Torsten Bøgh; Krog, Jan

    2006-01-01

    of leukocyte and differential count, neutrophil membrane expression of endothelial adhesion molecules by flow cytometry, and O2- -generation by superoxide dismutase-inhibitable reduction of cytochrome C. RESULTS: Surgery induced well-known changes in the number and distribution of white blood cells, reduced...... the expression of adhesion molecules, and halved the superoxide production unrelated to the tonicity or volume of the infused fluids. CONCLUSION: Infusion of a clinically relevant dose of hypertonic saline has no detectable effect on the membrane expression of endothelial adhesion molecules or O2- -generation...

  6. Novel Fluorometric Method for the Determination of Production Rate and Steady-State Concentration of Photochemically Generated Superoxide Radical in Seawater Using 3',6'-(Diphenylphosphinyl)fluorescein.

    Science.gov (United States)

    Anifowose, Adebanjo Jacob; Takeda, Kazuhiko; Sakugawa, Hiroshi

    2015-12-15

    Superoxide radical (O2(•-)) is an important reactive oxygen species in seawater. Measurements of its production rates and steady-state concentrations generated by photochemical processes have been a Herculean task over the years. In this study, a probe - 3'6'-(diphenylphosphinyl)fluorescein (PF-1) - was used to trap photochemically generated O2(•-) in seawater, thereby yielding fluorescein. The fluorescein produced was measured by an isocratic fluorescence HPLC at excitation/emission wavelengths of 490/513 nm, respectively. The reaction rate constant of PF-1 with O2(•-) (kPF-1) was pH-dependent: (3.2-23.5) × 10(7) M(-1) s(-1) at pHTOT 7.65-8.50. By applying appropriate equations, both the production rate and the steady-state concentration of O2(•-) generated by photochemical reactions in the seawater were quantified. Under the optimized experimental conditions, fluorescein standards (3-50 nM) exhibited linearity in the seawater by HPLC. The photoformation of fluorescein, due to the reaction of PF-1 with the O2(•-) photochemically produced in the seawater, was linear within the 20 min irradiation. The detection limit of the fluorescein photoformation rate was 0.03 pM s(-1), defined as 3σ of the lowest standard fluorescein concentration per 20 min irradiation. Using this value, the yield of fluorescein, and the fraction of O2(•-) that reacted with PF-1 in the seawater, the detection limit of the O2(•-) photoformation rate was 1.78 pM s(-1). Superoxide measurements using the proposed method were relatively unaffected by the potential interfering species in seawater. Application of the proposed method to ten (10) seawater samples from the Seto Inland Sea, Japan, resulted in measured O2(•-) photoformation rates of 3.1-8.5 nM s(-1), with steady-state concentrations ranging (0.06-0.3) × 10(-10) M. The method is simple, requires no technical sample preparation, and can be used to analyze a large number of samples.

  7. Tea polyphenols alleviate high fat and high glucose-induced endothelial hyperpermeability by attenuating ROS production via NADPH oxidase pathway.

    Science.gov (United States)

    Zuo, Xuezhi; Tian, Chong; Zhao, Nana; Ren, Weiye; Meng, Yi; Jin, Xin; Zhang, Ying; Ding, Shibin; Ying, Chenjiang; Ye, Xiaolei

    2014-03-02

    Hyperglycemia-induced endothelial hyperpermeability is crucial to cardiovascular disorders and macro-vascular complications in diabetes mellitus. The objective of this study is to investigate the effects of green tea polyphenols (GTPs) on endothelial hyperpermeability and the role of nicotinamide adenine dinucleotide phosphate (NADPH) pathway. Male Wistar rats fed on a high fat diet (HF) were treated with GTPs (0, 0.8, 1.6, 3.2 g/L in drinking water) for 26 weeks. Bovine aortic endothelial cells (BAECs) were treated with high glucose (HG, 33 mmol/L) and GTPs (0.0, 0.4, or 4 μg/mL) for 24 hours in vitro. The endothelial permeabilities in rat aorta and monolayer BAECs were measured by Evans blue injection method and efflux of fluorescein isothiocyanate (FITC)-dextran, respectively. The reactive oxygen species (ROS) levels in rat aorta and monolayer BAECs were measured by dihydroethidium (DHE) and 2', 7'-dichloro-fluorescein diacetate (DCFH-DA) fluorescent probe, respectively. Protein levels of NADPH oxidase subunits were determined by Western-blot. HF diet-fed increased the endothelial permeability and ROS levels in rat aorta while HG treatments increased the endothelial permeability and ROS levels in cultured BAECs. Co-treatment with GTPs alleviated those changes both in vivo and in vitro. In in vitro studies, GTPs treatments protected against the HG-induced over-expressions of p22phox and p67phox. Diphenylene iodonium chloride (DPI), an inhibitor of NADPH oxidase, alleviated the hyperpermeability induced by HG. GTPs could alleviate endothelial hyperpermeabilities in HF diet-fed rat aorta and in HG treated BAECs. The decrease of ROS production resulting from down-regulation of NADPH oxidase contributed to the alleviation of endothelial hyperpermeability.

  8. Endothelial cell energy metabolism, proliferation, and apoptosis in pulmonary hypertension.

    Science.gov (United States)

    Xu, Weiling; Erzurum, Serpil C

    2011-01-01

    Pulmonary arterial hypertension (PAH) is a fatal disease characterized by impaired regulation of pulmonary hemodynamics and excessive growth and dysfunction of the endothelial cells that line the arteries in PAH lungs. Establishment of methods for culture of pulmonary artery endothelial cells from PAH lungs has provided the groundwork for mechanistic translational studies that confirm and extend findings from model systems and spontaneous pulmonary hypertension in animals. Endothelial cell hyperproliferation, survival, and alterations of biochemical-metabolic pathways are the unifying endothelial pathobiology of the disease. The hyperproliferative and apoptosis-resistant phenotype of PAH endothelial cells is dependent upon the activation of signal transducer and activator of transcription (STAT) 3, a fundamental regulator of cell survival and angiogenesis. Animal models of PAH, patients with PAH, and human PAH endothelial cells produce low nitric oxide (NO). In association with the low level of NO, endothelial cells have reduced mitochondrial numbers and cellular respiration, which is associated with more than a threefold increase in glycolysis for energy production. The shift to glycolysis is related to low levels of NO and likely to the pathologic expression of the prosurvival and proangiogenic signal transducer, hypoxia-inducible factor (HIF)-1, and the reduced mitochondrial antioxidant manganese superoxide dismutase (MnSOD). In this article, we review the phenotypic changes of the endothelium in PAH and the biochemical mechanisms accounting for the proliferative, glycolytic, and strongly proangiogenic phenotype of these dysfunctional cells, which consequently foster the panvascular progressive pulmonary remodeling in PAH. © 2011 American Physiological Society.

  9. Resveratrol and Endothelial Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Ning Xia

    2014-10-01

    Full Text Available Nitric oxide (NO derived from the endothelial NO synthase (eNOS has antihypertensive, antithrombotic, anti-atherosclerotic and antiobesogenic properties. Resveratrol is a polyphenol phytoalexin with multiple cardiovascular and metabolic effects. Part of the beneficial effects of resveratrol are mediated by eNOS. Resveratrol stimulates NO production from eNOS by a number of mechanisms, including upregulation of eNOS expression, stimulation of eNOS enzymatic activity and reversal of eNOS uncoupling. In addition, by reducing oxidative stress, resveratrol prevents oxidative NO inactivation by superoxide thereby enhancing NO bioavailability. Molecular pathways underlying these effects of resveratrol involve SIRT1, AMPK, Nrf2 and estrogen receptors.

  10. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells

    DEFF Research Database (Denmark)

    Jantzen, Kim; Møller, Peter Horn; Karottki, Dorina Gabriela

    2016-01-01

    . Additionally, the early endothelial progenitor cell levels were positively associated with a personalised measure of ultrafine particle exposure and negatively associated with both basal and capacity for reactive oxygen species production in lymphocytes and granulocytes, respectively. Our results indicate......Exposure to particles in the fine and ultrafine size range has been linked to induction of low-grade systemic inflammation, oxidative stress and development of cardiovascular diseases. Declining levels of endothelial progenitor cells within systemic circulation have likewise been linked...... to progression of cardiovascular diseases. The objective was to determine if exposure to fine and ultrafine particles from indoor and outdoor sources, assessed by personal and residential indoor monitoring, is associated with altered levels of endothelial progenitor cells, and whether such effects are related...

  11. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells

    International Nuclear Information System (INIS)

    Jantzen, Kim; Møller, Peter; Karottki, Dorina Gabriela; Olsen, Yulia; Bekö, Gabriel; Clausen, Geo; Hersoug, Lars-Georg; Loft, Steffen

    2016-01-01

    Exposure to particles in the fine and ultrafine size range has been linked to induction of low-grade systemic inflammation, oxidative stress and development of cardiovascular diseases. Declining levels of endothelial progenitor cells within systemic circulation have likewise been linked to progression of cardiovascular diseases. The objective was to determine if exposure to fine and ultrafine particles from indoor and outdoor sources, assessed by personal and residential indoor monitoring, is associated with altered levels of endothelial progenitor cells, and whether such effects are related to leukocyte-mediated oxidative stress. The study utilized a cross sectional design performed in 58 study participants from a larger cohort. Levels of circulating endothelial progenitor cells, defined as either late (CD34 + KDR + cells) or early (CD34 + CD133 + KDR + cells) subsets were measured using polychromatic flow cytometry. We additionally measured production of reactive oxygen species in leukocyte subsets (lymphocytes, monocytes and granulocytes) by flow cytometry using intracellular 2′,7′-dichlorofluoroscein. The measurements encompassed both basal levels of reactive oxygen species production and capacity for reactive oxygen species production for each leukocyte subset. We found that the late endothelial progenitor subset was negatively associated with levels of ultrafine particles measured within the participant residences and with reactive oxygen species production capacity in lymphocytes. Additionally, the early endothelial progenitor cell levels were positively associated with a personalised measure of ultrafine particle exposure and negatively associated with both basal and capacity for reactive oxygen species production in lymphocytes and granulocytes, respectively. Our results indicate that exposure to fine and ultrafine particles derived from indoor sources may have adverse effects on human vascular health.

  12. Hydrogen Sulfide Increases Nitric Oxide Production and Subsequent S-Nitrosylation in Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Ping-Ho Chen

    2014-01-01

    Full Text Available Hydrogen sulfide (H2S and nitric oxide (NO, two endogenous gaseous molecules in endothelial cells, got increased attention with respect to their protective roles in the cardiovascular system. However, the details of the signaling pathways between H2S and NO in endothelia cells remain unclear. In this study, a treatment with NaHS profoundly increased the expression and the activity of endothelial nitric oxide synthase. Elevated gaseous NO levels were observed by a novel and specific fluorescent probe, 5-amino-2-(6-hydroxy-3-oxo-3H-xanthen-9-ylbenzoic acid methyl ester (FA-OMe, and quantified by flow cytometry. Further study indicated an increase of upstream regulator for eNOS activation, AMP-activated protein kinase (AMPK, and protein kinase B (Akt. By using a biotin switch, the level of NO-mediated protein S-nitrosylation was also enhanced. However, with the addition of the NO donor, NOC-18, the expressions of cystathionine-γ-lyase, cystathionine-β-synthase, and 3-mercaptopyruvate sulfurtransferase were not changed. The level of H2S was also monitored by a new designed fluorescent probe, 4-nitro-7-thiocyanatobenz-2-oxa-1,3-diazole (NBD-SCN with high specificity. Therefore, NO did not reciprocally increase the expression of H2S-generating enzymes and the H2S level. The present study provides an integrated insight of cellular responses to H2S and NO from protein expression to gaseous molecule generation, which indicates the upstream role of H2S in modulating NO production and protein S-nitrosylation.

  13. Oxidative stress induced pulmonary endothelial cell proliferation is ...

    African Journals Online (AJOL)

    Cellular hyper-proliferation, endothelial dysfunction and oxidative stress are hallmarks of the pathobiology of pulmonary hypertension. Indeed, pulmonary endothelial cells proliferation is susceptible to redox state modulation. Some studies suggest that superoxide stimulates endothelial cell proliferation while others have ...

  14. Apple, grape or orange juice: Which one offers the best substrate for lactobacilli growth? — A screening study on bacteria viability, superoxide dismutase activity, folates production and hedonic characteristics

    OpenAIRE

    Carlin, Frederic; Renard, Catherine

    2015-01-01

    Fermentation can contribute to improve functional aspects of foods. The first goal of this study was to determine amongst apple, grape and orange juices, the onewith the best bacterial growth performance during fermentation by Lactobacillus strains from commercial and artisanal food origins, at 40 °C for 48 h. The juice with the highest bacterial growth was evaluated for bacteria viability during 4 weeks of cold storage, superoxide dismutase (SOD) activity and folates production a...

  15. Superoxide dismutase of human platelets

    International Nuclear Information System (INIS)

    Kimura, Akiro; Fujimura, Kingo; Kuramoto, Atsushi

    1979-01-01

    Superoxide dismutase (S.O.D.) is the enzyme to protect from destructive effect of superoxide (O 2 -) produced in many metabolic pathways related to oxygen. The purpose of this study was to investigate the possibility that S.O.D. may play an important role in the platelet function. The cytoplasmic and mitochondrial S.O.D. has been investigated spectrophotometrically and gel electrophoretically in human platelets from eleven patients of chronic myelogenous leukemia (CML) and three patients of primary thrombocythemia (P.Th.). Neither deficiency nor abnormality of cytoplasmic and mitochondrial S.O.D. has been found electrophoretically in any case compared to normal platelets. However, the total activity from three of the CML patients and one of the P.Th. patients were above 3 unit/mg platelet protein (normal subject: 2.11 - 2.70 unit/mg protein), suggesting the possibility either that more O 2 -production occurs in the platelets or that rather little O 2 -production due to much O 2 -deprivation by the increased S.O.D. The S.O.D. activity of human platelets has been also investigated in several conditions, where much O 2 -generation might occur in platelets. Sodium fluoride (2 mM), which increases platelet O 2 -production about 3 fold, had no effect on platelet S.O.D. The aggregated platelets induced by ADP (10 -5 M), epinephrin (50 μg/ml), ristocetin (1.5 mg/ml) or collagen (1 - 20 μg/ml) had no increase of S.O.D. activity compared to that from non aggregated platelets. X-ray irradiation (1,000 - 20,000R) had not induced its activity increase or decrease. These findings indicated the induction of platelet S.O.D. was not brought about under these conditions. (author)

  16. HSP27 Inhibits Homocysteine-Induced Endothelial Apoptosis by Modulation of ROS Production and Mitochondrial Caspase-Dependent Apoptotic Pathway

    Directory of Open Access Journals (Sweden)

    Xin Tian

    2016-01-01

    Full Text Available Objectives. Elevated plasma homocysteine (Hcy could lead to endothelial dysfunction and is viewed as an independent risk factor for atherosclerosis. Heat shock protein 27 (HSP27, a small heat shock protein, is reported to exert protective effect against atherosclerosis. This study aims to investigate the protective effect of HSP27 against Hcy-induced endothelial cell apoptosis in human umbilical vein endothelial cells (HUVECs and to determine the underlying mechanisms. Methods. Apoptosis, reactive oxygen species (ROS, and mitochondrial membrane potential (MMP of normal or HSP27-overexpressing HUVECs in the presence of Hcy were analyzed by flow cytometry. The mRNA and protein expression levels were measured by quantitative real-time polymerase chain reaction (qRT-PCR and western blot. Results. We found that Hcy could induce cell apoptosis with corresponding decrease of nitric oxide (NO level, increase of endothelin-1 (ET-1, intracellular adhesion molecule-1 (ICAM-1, vascular cellular adhesion molecule-1 (VCAM-1, and monocyte chemoattractant protein-1 (MCP-1 levels, elevation of ROS, and dissipation of MMP. In addition, HSP27 could protect the cell against Hcy-induced apoptosis and inhibit the effect of Hcy on HUVECs. Furthermore, HSP27 could increase the ratio of Bcl-2/Bax and inhibit caspase-3 activity. Conclusions. Therefore, we concluded that HSP27 played a protective role against Hcy-induced endothelial apoptosis through modulation of ROS production and the mitochondrial caspase-dependent apoptotic pathway.

  17. Piper sarmentosum increases nitric oxide production in oxidative stress: a study on human umbilical vein endothelial cells.

    Science.gov (United States)

    Ugusman, Azizah; Zakaria, Zaiton; Hui, Chua Kien; Nordin, Nor Anita Megat Mohd

    2010-07-01

    Nitric oxide produced by endothelial nitric oxide synthase (eNOS) possesses multiple anti-atherosclerotic properties. Hence, enhanced expression of eNOS and increased Nitric oxide levels may protect against the development of atherosclerosis. Piper sarmentosum is a tropical plant with antioxidant and anti-inflammatory activities. This study aimed to investigate the effects of Piper sarmentosum on the eNOS and Nitric oxide pathway in cultured human umbilical vein endothelial cells (HUVECs). HUVECS WERE DIVIDED INTO FOUR GROUPS: control, treatment with 180 microM hydrogen peroxide (H(2)O(2)), treatment with 150 microg/mL aqueous extract of Piper sarmentosum, and concomitant treatment with aqueous extract of PS and H(2)O(2) for 24 hours. Subsequently, HUVECs were harvested and eNOS mRNA expression was determined using qPCR. The eNOS protein level was measured using ELISA, and the eNOS activity and Nitric oxide level were determined by the Griess reaction. Human umbilical vein endothelial cells treated with aqueous extract of Piper sarmentosum showed a marked induction of Nitric oxide. Treatment with PS also resulted in increased eNOS mRNA expression, eNOS protein level and eNOS activity in HUVECs. Aqueous extract of Piper sarmentosum may improve endothelial function by promoting NO production in HUVECs.

  18. Piper sarmentosum increases nitric oxide production in oxidative stress: a study on human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Azizah Ugusman

    2010-01-01

    Full Text Available OBJECTIVE: Nitric oxide produced by endothelial nitric oxide synthase (eNOS possesses multiple anti-atherosclerotic properties. Hence, enhanced expression of eNOS and increased Nitric oxide levels may protect against the development of atherosclerosis. Piper sarmentosum is a tropical plant with antioxidant and anti-inflammatory activities. This study aimed to investigate the effects of Piper sarmentosum on the eNOS and Nitric oxide pathway in cultured human umbilical vein endothelial cells (HUVECs. METHODS: HUVECs were divided into four groups: control, treatment with 180 μM hydrogen peroxide (H2O2, treatment with 150 μg/mL aqueous extract of Piper sarmentosum, and concomitant treatment with aqueous extract of PS and H2O2 for 24 hours. Subsequently, HUVECs were harvested and eNOS mRNA expression was determined using qPCR. The eNOS protein level was measured using ELISA, and the eNOS activity and Nitric oxide level were determined by the Griess reaction. RESULTS: Human umbilical vein endothelial cells treated with aqueous extract of Piper sarmentosum showed a marked induction of Nitric oxide. Treatment with PS also resulted in increased eNOS mRNA expression, eNOS protein level and eNOS activity in HUVECs. CONCLUSION: Aqueous extract of Piper sarmentosum may improve endothelial function by promoting NO production in HUVECs.

  19. Advanced glycation end-products (AGEs acutely impair Ca2+ signalling in bovine aortic endothelial cells

    Directory of Open Access Journals (Sweden)

    Nadim eNaser

    2013-03-01

    Full Text Available Post-translational modification of proteins in diabetes, including formation of advanced glycation end products (AGEs are believed to contribute to vascular dysfunction and disease. Impaired function of the endothelium is an early indicator of vascular dysfunction in diabetes and as many endothelial cell processes are dependent upon intracellular [Ca2+] and Ca2+ signalling, the aim of this study was to examine the acute effects of AGEs on Ca2+ signalling in bovine aortic endothelial cells (BAEC. Ca2+ signalling was studied using the fluorescent indicator dye Fura2-AM. AGEs were generated by incubating bovine serum albumin with 0 - 250 mM glucose or glucose-6-phosphate for 0 to 120 days at 37ºC. Under all conditions, the main AGE species generated was carboxymethyl lysine (CML as assayed using both GC-MS and HPLC. In Ca2+-replete solution, exposure of BAEC to AGEs for 5 min caused an elevation in basal [Ca2+] and attenuated the increase in intracellular [Ca2+] caused by ATP (100 µM. In the absence of extracellular Ca2+, exposure of BAEC to AGEs for 5 min caused an elevation in basal [Ca2+] and attenuated subsequent intracellular Ca2+ release caused by ATP, thapsigargin (0.1 µM and ionomycin (3 µM, but AGEs did not affect extracellular Ca2+ entry induced by the re-addition of Ca2+ to the bathing solution in the presence of any of these agents. The anti-oxidant α-lipoic acid (2 µM and NAD(PH oxidase inhibitors apocynin (500 µM and diphenyleneiodonium (DPI, 1 µM abolished these effects of AGEs on BAECs, as did the IP3 receptor antagonist xestospongin C (1 µM. In summary, AGEs caused an acute depletion of Ca2+ from the intracellular store in BAECs, such that the Ca2+ signal stimulated by the subsequent application other agents acting upon this store is reduced. The mechanism may involve generation of ROS from NAD(PH oxidase and possible activation of the IP3 receptor.

  20. Models of Superoxide Dismutases

    Energy Technology Data Exchange (ETDEWEB)

    Cabelli, Diane E.; Riley, Dennis; Rodriguez, Jorge A.; Valentine, Joan Selverstone; Zhu, Haining

    1998-05-20

    In this review we have focused much of our discussion on the mechanistic details of how the native enzymes function and how mechanistic developments/insights with synthetic small molecule complexes possessing SOD activity have influenced our understanding of the electron transfer processes involved with the natural enzymes. A few overriding themes have emerged. Clearly, the SOD enzymes operate at near diffusion controlled rates and to achieve such catalytic turnover activity, several important physical principles must be operative. Such fast electron transfer processes requires a role for protons; i.e., proton-coupled electron transfer (''H-atom transfer'') solves the dilemma of charge separation developing in the transition state for the electron transfer step. Additionally, outer-sphere electron transfer is likely a most important pathway for manganese and iron dismutases. This situation arises because the ligand exchange rates on these two ions in water never exceed {approx}10{sup +7} s{sup -1}; consequently, 10{sup +9} catalytic rates require more subtle mechanistic insights. In contrast, copper complexes can achieve diffusion controlled (>10{sup +9}) exchange rates in water; thus inner-sphere electron transfer processes are more likely to be operative in the Cu/Zn enzymes. Recent studies have continued to expand our understanding of the mechanism of action of this most important class of redox active enzymes, the superoxide dismutases, which have been critical in the successful adaptation of life on this planet to an oxygen-based metabolism. The design of SOD mimic drugs, synthetic models compounds that incorporate this superoxide dismutase catalytic activity and are capable of functioning in vivo, offers clear potential benefits in the control of diseases, ranging from the control of neurodegenerative conditions, such as Parkinson's or Alzheimer's disease, to cancer.

  1. 2,3,7,8-Tetrachlorodibenzo-p-dioxin increases reactive oxygen species production in human endothelial cells via induction of cytochrome P4501A1

    International Nuclear Information System (INIS)

    Kopf, P.G.; Walker, M.K.

    2010-01-01

    Studies in our laboratory have demonstrated that subchronic 2,3,7,8,-tetrachlorodibenzo-p-dioxin (TCDD) exposure of adult mice results in hypertension, cardiac hypertrophy, and reduced nitric oxide (NO)-mediated vasodilation. Moreover, increased superoxide anion production was observed in cardiovascular organs of TCDD-exposed mice and this increase contributed to the reduced NO-mediated vasodilation. Since cytochrome P4501A1 (CYP1A1) can contribute to some TCDD-induced toxicity, we tested the hypothesis that TCDD increases reactive oxygen species (ROS) in endothelial cells by the induction of CYP1A1. A concentration-response to 24 h TCDD exposure (10 pM-10 nM) was performed in confluent primary human aortic endothelial cells (HAECs). Oxidant-sensitive fluorescent probes dihydroethidium (DHE) and 2',7'-dichlorofluorescin diacetate (DCFH-DA), were used to measure superoxide anion, and hydrogen peroxide and hydroxyl radical, respectively. NO was also measured using the fluorescent probe diaminofluorescein-2 diacetate (DAF-2DA). These assessments were conducted in HAECs transfected with siRNA targeting the aryl hydrocarbon receptor (AhR), CYP1A1, or CYP1B1. TCDD concentration-dependently increased CYP1A1 and CYP1B1 mRNA, protein, and enzyme activity. Moreover, 1 nM TCDD maximally increased DHE (Cont = 1.0 ± 0.3; TCDD = 5.1 ± 1.0; p = 0.002) and DCFH-DA (Cont = 1.0 ± 0.2; TCDD = 4.1 ± 0.5; p = 0.002) fluorescence and maximally decreased DAF-2DA fluorescence (Cont = 1.0 ± 0.4; TCDD = 0.68 ± 0.1). siRNA targeting AhR and CYP1A1 significantly decreased TCDD-induced DHE (siAhR: Cont = 1.0 ± 0.1; TCDD = 1.3 ± 0.2; p = 0.093) (siCYP1A1: Cont = 1.0 ± 0.1; TCDD = 1.1 ± 0.1; p = 0.454) and DCFH-DA (siAhR: Cont = 1.0 ± 0.2; TCDD = 1.3 ± 0.3; p = 0.370) (siCYP1A1: Cont = 1.0 ± 0.1; TCDD = 1.3 ± 0.2; p = 0.114) fluorescence and increased DAF-2DA fluorescence (siAhR: Cont = 1.00 ± 0.03; TCDD = 0.97 ± 0.03; p = 0.481) (siCYP1A1: Cont = 1.00 ± 0.03; TCDD = 0.92 ± 0

  2. Superoxide dismutase: an industrial perspective.

    Science.gov (United States)

    Bafana, Amit; Dutt, Som; Kumar, Sanjay; Ahuja, Paramvir S

    2011-03-01

    The application of enzyme technologies to industrial research, development, and manufacturing has become a very important field. Since the production of crude rennet in 1874, several enzymes have been commercialized, and used for therapeutic, supplementary, and other applications. Recent advancements in biotechnology now allow companies to produce safer and less expensive enzymes with enhanced potency and specificity. Antioxidant enzymes are emerging as a new addition to the pool of industrial enzymes and are surpassing all other enzymes in terms of the volume of research and production. In the 1990s, an antioxidant enzyme--superoxide dismutase (SOD)--was introduced into the market. Although the enzyme initially showed great promise in therapeutic applications, it did not perform up to expectations. Consequently, its use was limited to non-drug applications in humans and drug applications in animals. This review summarizes the rise and fall of SOD at the industrial level, the reasons for this, and potential future thrust areas that need to be addressed. The review also focuses on other industrially relevant aspects of SOD such as industrial importance, enzyme engineering, production processes, and process optimization and scale-up.

  3. Rocuronium Bromide Inhibits Inflammation and Pain by Suppressing Nitric Oxide Production and Enhancing Prostaglandin E2 Synthesis in Endothelial Cells.

    Science.gov (United States)

    Baek, Sang Bin; Shin, Mal Soon; Han, Jin Hee; Moon, Sang Woong; Chang, Boksoon; Jeon, Jung Won; Yi, Jae Woo; Chung, Jun Young

    2016-12-01

    Rocuronium bromide is a nondepolarizing neuromuscular blocking drug and has been used as an adjunct for relaxation or paralysis of the skeletal muscles, facilitation of endotracheal intubation, and improving surgical conditions during general anesthesia. However, intravenous injection of rocuronium bromide induces injection pain or withdrawal movement. The exact mechanism of rocuronium bromide-induced injection pain or withdrawal movement is not yet understood. We investigated whether rocuronium bromide treatment is involved in the induction of inflammation and pain in vascular endothelial cells. For this study, calf pulmonary artery endothelial (CPAE) cells were used, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Western blot, nitric oxide detection, and prostaglandin E 2 immunoassay were conducted. Rocuronium bromide treatment inhibited endothelial nitric oxide synthase and suppressed nitric oxide production in CPAE cells. Rocuronium bromide activated cyclooxygenase-2, inducible nitric oxide synthase and increased prostaglandin E 2 synthesis in CPAE cells. Rocuronium bromide induced inflammation and pain in CPAE cells. Suppressing nitric oxide production and enhancing prostaglandin E 2 synthesis might be associated with rocuronium bromide-induced injection pain or withdrawal movement.

  4. The influence of propofol on P-selectin expression and nitric oxide production in re-oxygenated human umbilical vein endothelial cells.

    LENUS (Irish Health Repository)

    Corcoran, T B

    2012-02-03

    BACKGROUND: Reperfusion injury is characterized by free radical production and endothelial inflammation. Neutrophils mediate much of the end-organ injury that occurs, requiring P-selectin-mediated neutrophil-endothelial adhesion, and this is associated with decreased endothelial nitric oxide production. Propofol has antioxidant properties in vitro which might abrogate this inflammation. METHODS: Cultured human umbilical vein endothelial cells were exposed to 20 h of hypoxia and then returned to normoxic conditions. Cells were treated with saline, Diprivan 5 microg\\/l or propofol 5 microg\\/l for 4 h after re-oxygenation and were then examined for P-selectin expression and supernatant nitric oxide concentrations for 24 h. P-selectin was determined by flow cytometry, and culture supernatant nitric oxide was measured as nitrite. RESULTS: In saline-treated cells, a biphasic increase in P-selectin expression was demonstrated at 30 min (P = 0.01) and 4 h (P = 0.023) after re-oxygenation. Propofol and Diprivan prevented these increases in P-selectin expression (P < 0.05). Four hours after re-oxygenation, propofol decreased endothelial nitric oxide production (P = 0.035). CONCLUSION: This is the first study to demonstrate an effect of propofol upon endothelial P-selectin expression. Such an effect may be important in situations of reperfusion injury such as cardiac transplantation and coronary artery bypass surgery. We conclude that propofol attenuates re-oxygenation-induced endothelial inflammation in vitro.

  5. Bacterial wall products induce downregulation of vascular endothelial growth factor receptors on endothelial cells via a CD14-dependent mechanism: implications for surgical wound healing.

    LENUS (Irish Health Repository)

    Power, C

    2012-02-03

    INTRODUCTION: Vascular endothelial growth factor (VEGF) is a potent mitogenic cytokine which has been identified as the principal polypeptide growth factor influencing endothelial cell (EC) migration and proliferation. Ordered progression of these two processes is an absolute prerequisite for initiating and maintaining the proliferative phase of wound healing. The response of ECs to circulating VEGF is determined by, and directly proportional to, the functional expression of VEGF receptors (KDR\\/Flt-1) on the EC surface membrane. Systemic sepsis and wound contamination due to bacterial infection are associated with significant retardation of the proliferative phase of wound repair. The effects of the Gram-negative bacterial wall components lipopolysaccharide (LPS) and bacterial lipoprotein (BLP) on VEGF receptor function and expression are unknown and may represent an important biological mechanism predisposing to delayed wound healing in the presence of localized or systemic sepsis. MATERIALS AND METHODS: We designed a series of in vitro experiments investigating this phenomenon and its potential implications for infective wound repair. VEGF receptor density on ECs in the presence of LPS and BLP was assessed using flow cytometry. These parameters were assessed in hypoxic conditions as well as in normoxia. The contribution of CD14 was evaluated using recombinant human (rh) CD14. EC proliferation in response to VEGF was quantified in the presence and absence of LPS and BLP. RESULTS: Flow cytometric analysis revealed that LPS and BLP have profoundly repressive effects on VEGF receptor density in normoxic and, more pertinently, hypoxic conditions. The observed downregulation of constitutive and inducible VEGF receptor expression on ECs was not due to any directly cytotoxic effect of LPS and BLP on ECs, as measured by cell viability and apoptosis assays. We identified a pivotal role for soluble\\/serum CD14, a highly specific bacterial wall product receptor, in

  6. Endothelial dysfunction in cardiovascular and endocrine-metabolic diseases: an update

    Directory of Open Access Journals (Sweden)

    A.P. Davel

    2011-09-01

    Full Text Available The endothelium plays a vital role in maintaining circulatory homeostasis by the release of relaxing and contracting factors. Any change in this balance may result in a process known as endothelial dysfunction that leads to impaired control of vascular tone and contributes to the pathogenesis of some cardiovascular and endocrine/metabolic diseases. Reduced endothelium-derived nitric oxide (NO bioavailability and increased production of thromboxane A2, prostaglandin H2 and superoxide anion in conductance and resistance arteries are commonly associated with endothelial dysfunction in hypertensive, diabetic and obese animals, resulting in reduced endothelium-dependent vasodilatation and in increased vasoconstrictor responses. In addition, recent studies have demonstrated the role of enhanced overactivation ofβ-adrenergic receptors inducing vascular cytokine production and endothelial NO synthase (eNOS uncoupling that seem to be the mechanisms underlying endothelial dysfunction in hypertension, heart failure and in endocrine-metabolic disorders. However, some adaptive mechanisms can occur in the initial stages of hypertension, such as increased NO production by eNOS. The present review focuses on the role of NO bioavailability, eNOS uncoupling, cyclooxygenase-derived products and pro-inflammatory factors on the endothelial dysfunction that occurs in hypertension, sympathetic hyperactivity, diabetes mellitus, and obesity. These are cardiovascular and endocrine-metabolic diseases of high incidence and mortality around the world, especially in developing countries and endothelial dysfunction contributes to triggering, maintenance and worsening of these pathological situations.

  7. Advanced glycation end product Nε-carboxymethyllysine induces endothelial cell injury: the involvement of SHP-1-regulated VEGFR-2 dephosphorylation.

    Science.gov (United States)

    Liu, Shing Hwa; Sheu, Wayne Huey Herng; Lee, Maw Rong; Lee, Wen Jane; Yi, Yu Chiao; Yang, Tzung Jie; Jen, Jen Fon; Pan, Hung Chuan; Shen, Chin Chang; Chen, Wen Bao; Tien, Hsing Ru; Sheu, Meei Ling

    2013-06-01

    N(ε)-carboxymethyllysine (CML), a major advanced glycation end product, plays a crucial role in diabetes-induced vascular injury. The roles of protein tyrosine phosphatases and vascular endothelial growth factor (VEGF) receptors in CML-related endothelial cell injury are still unclear. Human umbilical vein endothelial cells (HUVECs) are a commonly used human EC type. Here, we tested the hypothesis that NADPH oxidase/reactive oxygen species (ROS)-mediated SH2 domain-containing tyrosine phosphatase-1 (SHP-1) activation by CML inhibits the VEGF receptor-2 (VEGFR-2, KDR/Flk-1) activation, resulting in HUVEC injury. CML significantly inhibited cell proliferation and induced apoptosis and reduced VEGFR-2 activation in parallel with the increased SHP-1 protein expression and activity in HUVECs. Adding recombinant VEGF increased forward biological effects, which were attenuated by CML. The effects of CML on HUVECs were abolished by SHP-1 siRNA transfection. Exposure of HUVECs to CML also remarkably escalated the integration of SHP-1 with VEGFR-2. Consistently, SHP-1 siRNA transfection and pharmacological inhibitors could block this interaction and elevating [(3)H]thymidine incorporation. CML also markedly activated the NADPH oxidase and ROS production. The CML-increased SHP-1 activity in HUVECs was effectively attenuated by antioxidants. Moreover, the immunohistochemical staining of SHP-1 and CML was increased, but phospho-VEGFR-2 staining was decreased in the aortic endothelium of streptozotocin-induced and high-fat diet-induced diabetic mice. We conclude that a pathway of tyrosine phosphatase SHP-1-regulated VEGFR-2 dephosphorylation through NADPH oxidase-derived ROS is involved in the CML-triggered endothelial cell dysfunction/injury. These findings suggest new insights into the development of therapeutic approaches to reduce diabetic vascular complications. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  8. Therapeutically targeting mitochondrial redox signalling alleviates endothelial dysfunction in preeclampsia.

    Science.gov (United States)

    McCarthy, Cathal; Kenny, Louise C

    2016-09-08

    Aberrant placentation generating placental oxidative stress is proposed to play a critical role in the pathophysiology of preeclampsia. Unfortunately, therapeutic trials of antioxidants have been uniformly disappointing. There is provisional evidence implicating mitochondrial dysfunction as a source of oxidative stress in preeclampsia. Here we provide evidence that mitochondrial reactive oxygen species mediates endothelial dysfunction and establish that directly targeting mitochondrial scavenging may provide a protective role. Human umbilical vein endothelial cells exposed to 3% plasma from women with pregnancies complicated by preeclampsia resulted in a significant decrease in mitochondrial function with a subsequent significant increase in mitochondrial superoxide generation compared to cells exposed to plasma from women with uncomplicated pregnancies. Real-time PCR analysis showed increased expression of inflammatory markers TNF-α, TLR-9 and ICAM-1 respectively in endothelial cells treated with preeclampsia plasma. MitoTempo is a mitochondrial-targeted antioxidant, pre-treatment of cells with MitoTempo protected against hydrogen peroxide-induced cell death. Furthermore MitoTempo significantly reduced mitochondrial superoxide production in cells exposed to preeclampsia plasma by normalising mitochondrial metabolism. MitoTempo significantly altered the inflammatory profile of plasma treated cells. These novel data support a functional role for mitochondrial redox signaling in modulating the pathogenesis of preeclampsia and identifies mitochondrial-targeted antioxidants as potential therapeutic candidates.

  9. Effect of nanoparticles binding ß-amyloid peptide on nitric oxide production by cultured endothelial cells and macrophages

    Directory of Open Access Journals (Sweden)

    Orlando A

    2013-04-01

    Full Text Available Antonina Orlando,1 Francesca Re,1 Silvia Sesana,1 Ilaria Rivolta,1 Alice Panariti,1 Davide Brambilla,2 Julien Nicolas,2 Patrick Couvreur,2 Karine Andrieux,2 Massimo Masserini,1 Emanuela Cazzaniga1 1Department of Health Sciences, University of Milano-Bicocca, Monza, Italy; 2Institut Galien Paris Sud, University Paris-Sud, Châtenay-Malabry, France Background: As part of a project designing nanoparticles for the treatment of Alzheimer’s disease, we have synthesized and characterized a small library of nanoparticles binding with high affinity to the β-amyloid peptide and showing features of biocompatibility in vitro, which are important properties for administration in vivo. In this study, we focused on biocompatibility issues, evaluating production of nitric oxide by cultured human umbilical vein endothelial cells and macrophages, used as models of cells which would be exposed to nanoparticles after systemic administration. Methods: The nanoparticles tested were liposomes and solid lipid nanoparticles carrying phosphatidic acid or cardiolipin, and PEGylated poly(alkyl cyanoacrylate nanoparticles (PEG-PACA. We measured nitric oxide production using the Griess method as well as phosphorylation of endothelial nitric oxide synthase and intracellular free calcium, which are biochemically related to nitric oxide production. MTT viability tests and caspase-3 detection were also undertaken. Results: Exposure to liposomes did not affect the viability of endothelial cells at any concentration tested. Increased production of nitric oxide was detected only with liposomes carrying phosphatidic acid or cardiolipin at the highest concentration (120 µg/mL, together with increased synthase phosphorylation and intracellular calcium levels. Macrophages exposed to liposomes showed a slightly dose-dependent decrease in viability, with no increase in production of nitric oxide. Exposure to solid lipid nanoparticles carrying phosphatidic acid decreased viability in

  10. Attenuation of oxidative stress in Type 1 diabetic rats supplemented with a seasoning obtained from winemaking by-products and its effect on endothelial function.

    Science.gov (United States)

    Del Pino-García, Raquel; Rivero-Pérez, María D; González-SanJosé, María L; Castilla-Camina, Pablo; Croft, Kevin D; Muñiz, Pilar

    2016-10-12

    Type 1 diabetes mellitus (DM) is characterized by hyperglycemia resulting from insulin deficiency. This is usually accompanied by a pro-oxidative environment, dyslipidemia and endothelial dysfunction, thus leading to several micro- and macro-vascular complications. This study investigated the potential benefits of a seasoning obtained from seedless red wine pomace (RWPS) in protecting against oxidative damage and preserving endothelial function in Type 1 DM, and the underlying mechanisms involved at the level of gene expression. The diet of streptozotocin (45 mg kg -1 )-induced diabetic (DB) and control (CN) male Wistar rats (n = 5 rats per group) was supplemented with RWPS (300 mg per kg per day) or vehicle for 4 weeks. Characteristic indicators of DM such as increased food and water intakes and weight loss were significantly ameliorated in DB + RWPS rats, with a notable normalization in their fasting glycemic control and cholesterol profile. Plasma total antioxidant capacity (TAC) was substantially increased, and biomarkers of oxidative damage to lipids (F 2 -isoprostanes, 24.9%; malondialdehyde, 28.4%) and proteins (carbonyl groups, 5.91%) were significantly decreased. Nitric oxide availability tended to improve in plasma of DB + RWPS compared with DB rats. Insulin levels were increased (1.51-fold) and aortic tissue antioxidant enzymes such as mitochondrial superoxide dismutase (SOD2, 1.93-fold) were up-regulated. Other important genes for endothelial function, including endothelial β-nicotinamide adenine dinucleotide phosphate oxidase (NOX4), endothelial and inducible nitric oxide synthases (eNOS, iNOS), and angiotensin-converting enzyme-I (ACE), were non-significantly modulated, although certain potentially positive trends were observed. These results indicate that RWPS supplementation might be a useful nutritional approach to manage Type 1 DM and ameliorate its vascular complications.

  11. Physiological Levels of Nitric Oxide Diminish Mitochondrial Superoxide. Potential Role of Mitochondrial Dinitrosyl Iron Complexes and Nitrosothiols

    Directory of Open Access Journals (Sweden)

    Sergey I. Dikalov

    2017-11-01

    Full Text Available Mitochondria are the major source of superoxide radicals and superoxide overproduction contributes to cardiovascular diseases and metabolic disorders. Endothelial dysfunction and diminished nitric oxide levels are early steps in the development of these pathological conditions. It is known that physiological production of nitric oxide reduces oxidative stress and inflammation, however, the precise mechanism of “antioxidant” effect of nitric oxide is not clear. In this work we tested the hypothesis that physiological levels of nitric oxide diminish mitochondrial superoxide production without inhibition of mitochondrial respiration. In order to test this hypothesis we analyzed effect of low physiological fluxes of nitric oxide (20 nM/min on superoxide and hydrogen peroxide production by ESR spin probes and Amplex Red in isolated rat brain mitochondria. Indeed, low levels of nitric oxide substantially attenuated both basal and antimycin A-stimulated production of reactive oxygen species in the presence of succinate or glutamate/malate as mitochondrial substrates. Furthermore, slow releasing NO donor DPTA-NONOate (100 μM did not change oxygen consumption in State 4 and State 3. However, the NO-donor strongly inhibited oxygen consumption in the presence of uncoupling agent CCCP, which is likely associated with inhibition of the over-reduced complex IV in uncoupled mitochondria. We have examined accumulation of dinitrosyl iron complexes and nitrosothiols in mitochondria treated with fast-releasing NO donor MAHMA NONOate (10 μM for 30 min until complete release of NO. Following treatment with NO donor, mitochondria were frozen for direct detection of dinitrosyl iron complexes using Electron Spin Resonance (ESR while accumulation of nitrosothiols was measured by ferrous-N-Methyl-D-glucamine dithiocarbamate complex, Fe(MGD2, in lysed mitochondria. Treatment of mitochondria with NO-donor gave rise to ESR signal of dinitrosyl iron complexes while ESR

  12. Progesterone amplifies oxidative stress signal and promotes NO production via H2O2 in mouse kidney arterial endothelial cells.

    Science.gov (United States)

    Yuan, Xiao-Hua; Fan, Yang-Yang; Yang, Chun-Rong; Gao, Xiao-Rui; Zhang, Li-Li; Hu, Ying; Wang, Ya-Qin; Jun, Hu

    2016-01-01

    The role of progesterone on the cardiovascular system is controversial. Our present research is to specify the effect of progesterone on arterial endothelial cells in response to oxidative stress. Our result showed that H2O2 (150 μM and 300 μM) induced cellular antioxidant response. Glutathione (GSH) production and the activity of Glutathione peroxidase (GPx) were increased in H2O2-treated group. The expression of glutamate cysteine ligase catalytic subunit (GCLC) and modifier subunit (GCLM) was induced in response to H2O2. However, progesterone absolutely abolished the antioxidant response through increasing ROS level, inhibiting the activity of Glutathione peroxidase (GPx), decreasing GSH level and reducing expression of GClC and GCLM. In our study, H2O2 induced nitrogen monoxide (NO) production and endothelial nitric oxide synthase (eNOS) expression, and progesterone promoted H2O2-induced NO production. Progesterone increased H2O2-induced expression of hypoxia inducible factor-α (HIFα) which in turn regulated eNOS expression and NO synthesis. Further study demonstrated that progesterone increased H2O2 concentration of culture medium which may contribute to NO synthesis. Exogenous GSH decreased the content of H2O2 of culture medium pretreated by progesterone combined with H2O2 or progesterone alone. GSH also inhibited expression of HIFα and eNOS, and abolished NO synthesis. Collectively, our study demonstrated for the first time that progesterone inhibited cellular antioxidant effect and increased oxidative stress, promoted NO production of arterial endothelial cells, which may be due to the increasing H2O2 concentration and amplified oxidative stress signal. Copyright © 2015. Published by Elsevier Ltd.

  13. Superoxide radical formation, superoxide dismutase and glutathione reductase activity in the brain of irradiated rats

    International Nuclear Information System (INIS)

    Stanimirovic, D.; Ivanovic, L.; Simovic, M.; Cernak, I.; Savic, J.

    1989-01-01

    In the forebrain cortex, basal ganglia and hippocampus of irradiated rats (whole body, X-ray, 9 Gy), nitroblue-tetrazolium (NBT) reduction was measured as a probe of superoxide radical formation 1 hr, 6 hrs, 24 hrs and 72 hrs after irradiation. Increased superoxide radical formation was found in parallel with increase of superoxide dismutase (SOD) activity and marked decrease of glutathione reductase (GR) activity which is the most pronounced in basal ganglia. The results indicate that in the postradiation period disproportion among free radical production and capacity of brain antioxidative system occurs. This disbalance is more expressed in the brain regions known as selective vulnerable (basal ganglia, hippocampus). (author). 10 refs.; 2 tabs

  14. Effects of α-lipoic acid on endothelial function in aged diabetic and high-fat fed rats

    Science.gov (United States)

    Sena, C M; Nunes, E; Louro, T; Proença, T; Fernandes, R; Boarder, M R; Seiça, R M

    2007-01-01

    Background and purpose: This study was conducted to investigate the effects of α-lipoic acid (α-LA) on endothelial function in diabetic and high-fat fed animal models and elucidate the potential mechanism underlying the benefits of α-LA. Experimental approach: Plasma metabolites reflecting glucose and lipid metabolism, endothelial function, urinary albumin excretion (UAE), plasma and aortic malondialdehyde (MDA) and urinary 8-hydroxydeoxyguanosine (8-OHdG) were assessed in non-diabetic controls (Wistar rats), untreated Goto-Kakizaki (GK) diabetic and high-fat fed GK rats (fed with atherogenic diet only, treated with α-LA and treated with vehicle, for 3 months). Vascular eNOS, nitrotyrosine, carbonyl groups and superoxide anion were also assessed in the different groups. Key results: α-LA and soybean oil significantly reduced both total and non-HDL serum cholesterol and triglycerides induced by atherogenic diet. MDA, carbonyl groups, vascular superoxide and 8-OHdG levels were higher in GK and high-fat fed GK groups and fully reversed with α-LA treatment. High-fat fed GK diabetic rats showed significantly reduced endothelial function and increased UAE, effects ameliorated with α-LA. This endothelial dysfunction was associated with decreased NO production, decreased expression of eNOS and increased vascular superoxide production and nitrotyrosine expression. Conclusions and implications: α-LA restores endothelial function and significantly improves systemic and local oxidative stress in high-fat fed GK diabetic rats. Improved endothelial function due to α-LA was at least partially attributed to recoupling of eNOS and increased NO bioavailability and represents a pharmacological approach to prevent major complications associated with type 2 diabetes. PMID:17906683

  15. Uric acid modulates vascular endothelial function through the down regulation of nitric oxide production

    Czech Academy of Sciences Publication Activity Database

    Papežíková, Ivana; Pekarová, Michaela; Kolářová, Hana; Klinke, A.; Lau, D.; Baldus, S.; Lojek, Antonín; Kubala, Lukáš

    2013-01-01

    Roč. 47, č. 2 (2013), s. 82-88 ISSN 1071-5762 R&D Projects: GA ČR(CZ) GA524/08/1753; GA ČR(CZ) GP204/07/P539 Grant - others:GA MŠk(CZ) ED1.100/02/0123 Institutional research plan: CEZ:AV0Z50040702 Institutional support: RVO:68081707 Keywords : CORONARY-ARTERY- DISEASE * CHRONIC HEART -FAILURE * SUPEROXIDE-DISMUTASE Subject RIV: BO - Biophysics Impact factor: 2.989, year: 2013

  16. Low intensity shear stress increases endothelial ELR+ CXC chemokine production via a focal adhesion kinase-p38{beta} MAPK-NF-{kappa}B pathway.

    Science.gov (United States)

    Shaik, Sadiq S; Soltau, Thomas D; Chaturvedi, Gaurav; Totapally, Balagangadhar; Hagood, James S; Andrews, William W; Athar, Mohammad; Voitenok, Nikolai N; Killingsworth, Cheryl R; Patel, Rakesh P; Fallon, Michael B; Maheshwari, Akhil

    2009-02-27

    CXC chemokines with a glutamate-leucine-arginine (ELR) tripeptide motif (ELR(+) CXC chemokines) play an important role in leukocyte trafficking into the tissues. For reasons that are not well elucidated, circulating leukocytes are recruited into the tissues mainly in small vessels such as capillaries and venules. Because ELR(+) CXC chemokines are important mediators of endothelial-leukocyte interaction, we compared chemokine expression by microvascular and aortic endothelium to investigate whether differences in chemokine expression by various endothelial types could, at least partially, explain the microvascular localization of endothelial-leukocyte interaction. Both in vitro and in vivo models indicate that ELR(+) CXC chemokine expression is higher in microvascular endothelium than in aortic endothelial cells. These differences can be explained on the basis of the preferential activation of endothelial chemokine production by low intensity shear stress. Low shear activated endothelial ELR(+) CXC chemokine production via cell surface heparan sulfates, beta(3)-integrins, focal adhesion kinase, the mitogen-activated protein kinase p38beta, mitogen- and stress-associated protein kinase-1, and the transcription factor.

  17. Production of factor VIII by human liver sinusoidal endothelial cells transplanted in immunodeficient uPA mice.

    Directory of Open Access Journals (Sweden)

    Marina E Fomin

    Full Text Available Liver sinusoidal endothelial cells (LSECs form a semi-permeable barrier between parenchymal hepatocytes and the blood. LSECs participate in liver metabolism, clearance of pathological agents, immunological responses, architectural maintenance of the liver and synthesis of growth factors and cytokines. LSECs also play an important role in coagulation through the synthesis of Factor VIII (FVIII. Herein, we phenotypically define human LSECs isolated from fetal liver using flow cytometry and immunofluorescence microscopy. Isolated LSECs were cultured and shown to express endothelial markers and markers specific for the LSEC lineage. LSECs were also shown to engraft the liver when human fetal liver cells were transplanted into immunodeficient mice with liver specific expression of the urokinase-type plasminogen activator (uPA transgene (uPA-NOG mice. Engrafted cells expressed human Factor VIII at levels approaching those found in human plasma. We also demonstrate engraftment of adult LSECs, as well as hepatocytes, transplanted into uPA-NOG mice. We propose that overexpression of uPA provides beneficial conditions for LSEC engraftment due to elevated expression of the angiogenic cytokine, vascular endothelial growth factor. This work provides a detailed characterization of human midgestation LSECs, thereby providing the means for their purification and culture based on their expression of CD14 and CD32 as well as a lack of CD45 expression. The uPA-NOG mouse is shown to be a permissive host for human LSECs and adult hepatocytes, but not fetal hepatoblasts. Thus, these mice provide a useful model system to study these cell types in vivo. Demonstration of human FVIII production by transplanted LSECs encourages further pursuit of LSEC transplantation as a cellular therapy for the treatment of hemophilia A.

  18. Pregnancy Augments VEGF-Stimulated In Vitro Angiogenesis and Vasodilator (NO and H2S) Production in Human Uterine Artery Endothelial Cells.

    Science.gov (United States)

    Zhang, Hong-Hai; Chen, Jennifer C; Sheibani, Lili; Lechuga, Thomas J; Chen, Dong-Bao

    2017-07-01

    Augmented uterine artery (UA) production of vasodilators, including nitric oxide (NO) and hydrogen sulfide (H2S), has been implicated in pregnancy-associated and agonist-stimulated rise in uterine blood flow that is rate-limiting to pregnancy health. Developing a human UA endothelial cell (hUAEC) culture model from main UAs of nonpregnant (NP) and pregnant (P) women for testing a hypothesis that pregnancy augments endothelial NO and H2S production and endothelial reactivity to vascular endothelial growth factor (VEGF). Main UAs from NP and P women were used for developing hUAEC culture models. Comparisons were made between NP- and P-hUAECs in in vitro angiogenesis, activation of cell signaling, expression of endothelial NO synthase (eNOS) and H2S-producing enzymes cystathionine β-synthase (CBS) and cystathionine γ-lyase, and NO/H2S production upon VEGF stimulation. NP- and P-hUAECs displayed a typical cobblestone-like shape in culture and acetylated low-density lipoprotein uptake, stained positively for endothelial and negatively for smooth muscle markers, maintained key signaling proteins during passage, and had statistically significant greater eNOS and CBS proteins in P- vs NP-hUAECs. Treatment with VEGF stimulated in vitro angiogenesis and eNOS protein and NO production only in P-hUEACs and more robust cell signaling in P- vs NP-hUAECs. VEGF stimulated CBS protein expression, accounting for VEGF-stimulated H2S production in hUAECs. Comparisons between NP- and P-hUAECs reveal that pregnancy augments VEGF-stimulated in vitro angiogenesis and NO/H2S production in hUAECs, showing that the newly established hUAEC model provides a critical in vitro tool for understanding human uterine hemodynamics. Copyright © 2017 Endocrine Society

  19. EPR detection of cellular and mitochondrial superoxide using cyclic hydroxylamines.

    Science.gov (United States)

    Dikalov, Sergey I; Kirilyuk, Igor A; Voinov, Maxim; Grigor'ev, Igor A

    2011-04-01

    Superoxide (O₂ⁱ⁻) has been implicated in the pathogenesis of many human diseases, but detection of the O(2)(•-) radicals in biological systems is limited due to inefficiency of O₂ⁱ⁻ spin trapping and lack of site-specific information. This work studied production of extracellular, intracellular and mitochondrial O₂ⁱ⁻ in neutrophils, cultured endothelial cells and isolated mitochondria using a new set of cationic, anionic and neutral hydroxylamine spin probes with various lipophilicity and cell permeability. Cyclic hydroxylamines rapidly react with O₂ⁱ⁻, producing stable nitroxides and allowing site-specific cO₂ⁱ⁻ detection in intracellular, extracellular and mitochondrial compartments. Negatively charged 1-hydroxy-4-phosphono-oxy-2,2,6,6-tetramethylpiperidine (PP-H) and positively charged 1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl-trimethylammonium (CAT1-H) detected only extramitochondrial O₂ⁱ⁻. Inhibition of EPR signal by SOD2 over-expression showed that mitochondria targeted mitoTEMPO-H detected intramitochondrial O₂ⁱ⁻ both in isolated mitochondria and intact cells. Both 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine (CP-H) and 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CM-H) detected an increase in cytoplasm O₂ⁱ⁻ stimulated by PMA, but only CM-H and mitoTEMPO-H showed an increase in rotenone-induced mitochondrial O₂ⁱ⁻. These data show that a new set of hydroxylamine spin probes provide unique information about site-specific production of the O₂ⁱ⁻ radical in extracellular or intracellular compartments, cytoplasm or mitochondria.

  20. Advanced glycation end products impair function of late endothelial progenitor cells through effects on protein kinase Akt and cyclooxygenase-2

    International Nuclear Information System (INIS)

    Chen Qin; Dong Li; Wang Lian; Kang Lina; Xu Biao

    2009-01-01

    Endothelial progenitor cells (EPCs) exhibit impaired function in the context of diabetes, and advanced glycation end products (AGEs), which accumulate in diabetes, may contribute to this. In the present study, we investigated the mechanism by which AGEs impair late EPC function. EPCs from human umbilical cord blood were isolated, and incubated with AGE-modified albumin (AGE-albumin) at different concentrations found physiologically in plasma. Apoptosis, migration, and tube formation assays were used to evaluate EPC function including capacity for vasculogenesis, and expression of the receptor for AGEs (RAGE), Akt, endothelial nitric oxide synthase (eNOS), and cycloxygenase-2 (COX-2) were determined. Anti-RAGE antibody was used to block RAGE function. AGE-albumin concentration-dependently enhanced apoptosis and depressed migration and tube formation, but did not affect proliferation, of late EPCs. High AGE-albumin increased RAGE mRNA and protein expression, and decreased Akt and COX-2 protein expression, whilst having no effect on eNOS mRNA or protein in these cells. These effects were inhibited by co-incubation with anti-RAGE antibody. These results suggest that RAGE mediates the AGE-induced impairment of late EPC function, through down-regulation of Akt and COX-2 in these cells.

  1. Acrolein induces cyclooxygenase-2 and prostaglandin production in human umbilical vein endothelial cells: roles of p38 MAP kinase.

    Science.gov (United States)

    Park, Yong Seek; Kim, Jayoung; Misonou, Yoshiko; Takamiya, Rina; Takahashi, Motoko; Freeman, Michael R; Taniguchi, Naoyuki

    2007-06-01

    Acrolein, a known toxin in tobacco smoke, might be involved in atherogenesis. This study examined the effect of acrolein on expression of cyclooxygenase-2 (COX-2) and prostaglandin (PG) production in endothelial cells. Cyclooxygenase (COX)-2 induction by acrolein and signal pathways were measured using Western blots, Northern blots, immunofluorescence, ELISA, gene silencing, and promoter assay. Colocalization of COX2 and acrolein-adduct was determined by immunohistochemistry. Here we report that the levels of COX-2 mRNA and protein are increased in human umbilical vein endothelial cells (HUVECs) after acrolein exposure. COX-2 was found to colocalize with acrolein-lysine adducts in human atherosclerotic lesions. Inhibition of p38 MAPK activity abolished the induction of COX-2 protein and PGE2 accumulation by acrolein, while suppression of extracellular signal-regulated kinase (ERK) and JNK activity had no effect on the induction of COX-2 expression in experiments using inhibitors and siRNA. Furthermore, rottlerin, an inhibitor of protein kinase Cdelta (PKCdelta), abrogated the upregulation of COX-2 at both protein and mRNA levels. These results provide that acrolein may play a role in progression of atherosclerosis and new information on the signaling pathways involved in COX-2 upregulation in response to acrolein and provide evidence that PKCdelta and p38 MAPK are required for transcriptional activation of COX-2.

  2. Brazilin Ameliorates High Glucose-Induced Vascular Inflammation via Inhibiting ROS and CAMs Production in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Thanasekaran Jayakumar

    2014-01-01

    Full Text Available Vascular inflammatory process has been suggested to play a key role in the initiation and progression of atherosclerosis, a major complication of diabetes mellitus. Recent studies have shown that brazilin exhibits antihepatotoxic, antiplatelet, cancer preventive, or anti-inflammatory properties. Thus, we investigated whether brazilin suppresses vascular inflammatory process induced by high glucose (HG in cultured human umbilical vein endothelial cells (HUVEC. HG induced nitrite production, lipid peroxidation, and intracellular reactive oxygen species formation in HUVEC cells, which was reversed by brazilin. Western blot analysis revealed that brazilin markedly inhibited HG-induced phosphorylation of endothelial nitric oxide synthase. Besides, we investigated the effects of brazilin on the MAPK signal transduction pathway because MAPK families are associated with vascular inflammation under stress. Brazilin blocked HG-induced phosphorylation of extracellular signal-regulated kinase and transcription factor NF-κB. Furthermore, brazilin concentration-dependently attenuated cell adhesion molecules (ICAM-1 and VCAM-1 expression induced by various concentrations of HG in HUVEC. Taken together, the present data suggested that brazilin could suppress high glucose-induced vascular inflammatory process, which may be closely related with the inhibition of oxidative stress, CAMs expression, and NF-κB activation in HUVEC. Our findings may highlight a new therapeutic intervention for the prevention of vascular diseases.

  3. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling

    Directory of Open Access Journals (Sweden)

    Shi Xianglin

    2009-01-01

    Full Text Available Abstract Background Engineered iron nanoparticles are being explored for the development of biomedical applications and many other industry purposes. However, to date little is known concerning the precise mechanisms of translocation of iron nanoparticles into targeted tissues and organs from blood circulation, as well as the underlying implications of potential harmful health effects in human. Results The confocal microscopy imaging analysis demonstrates that exposure to engineered iron nanoparticles induces an increase in cell permeability in human microvascular endothelial cells. Our studies further reveal iron nanoparticles enhance the permeability through the production of reactive oxygen species (ROS and the stabilization of microtubules. We also showed Akt/GSK-3β signaling pathways are involved in iron nanoparticle-induced cell permeability. The inhibition of ROS demonstrate ROS play a major role in regulating Akt/GSK-3β – mediated cell permeability upon iron nanoparticle exposure. These results provide new insights into the bioreactivity of engineered iron nanoparticles which can inform potential applications in medical imaging or drug delivery. Conclusion Our results indicate that exposure to iron nanoparticles induces an increase in endothelial cell permeability through ROS oxidative stress-modulated microtubule remodeling. The findings from this study provide new understandings on the effects of nanoparticles on vascular transport of macromolecules and drugs.

  4. Hydrolysis products generated by lipoprotein lipase and endothelial lipase differentially impact THP-1 macrophage cell signalling pathways.

    Science.gov (United States)

    Essaji, Yasmin; Yang, Yanbo; Albert, Carolyn J; Ford, David A; Brown, Robert J

    2013-08-01

    Macrophages express lipoprotein lipase (LPL) and endothelial lipase (EL) within atherosclerotic plaques; however, little is known about how lipoprotein hydrolysis products generated by these lipases might affect macrophage cell signalling pathways. We hypothesized that hydrolysis products affect macrophage cell signalling pathways associated with atherosclerosis. To test our hypothesis, we incubated differentiated THP-1 macrophages with products from total lipoprotein hydrolysis by recombinant LPL or EL. Using antibody arrays, we found that the phosphorylation of six receptor tyrosine kinases and three signalling nodes--most associated with atherosclerotic processes--was increased by LPL derived hydrolysis products. EL derived hydrolysis products only increased the phosphorylation of tropomyosin-related kinase A, which is also implicated in playing a role in atherosclerosis. Using electrospray ionization-mass spectrometry, we identified the species of triacylglycerols and phosphatidylcholines that were hydrolyzed by LPL and EL, and we identified the fatty acids liberated by gas chromatography-mass spectrometry. To determine if the total liberated fatty acids influenced signalling pathways, we incubated differentiated THP-1 macrophages with a mixture of the fatty acids that matched the concentrations of liberated fatty acids from total lipoproteins by LPL, and we subjected cell lysates to antibody array analyses. The analyses showed that only the phosphorylation of Akt was significantly increased in response to fatty acid treatment. Overall, our study shows that macrophages display potentially pro-atherogenic signalling responses following acute treatments with LPL and EL lipoprotein hydrolysis products.

  5. Extracellular histones disarrange vasoactive mediators release through a COX-NOS interaction in human endothelial cells.

    Science.gov (United States)

    Pérez-Cremades, Daniel; Bueno-Betí, Carlos; García-Giménez, José Luis; Ibañez-Cabellos, José Santiago; Hermenegildo, Carlos; Pallardó, Federico V; Novella, Susana

    2017-08-01

    Extracellular histones are mediators of inflammation, tissue injury and organ dysfunction. Interactions between circulating histones and vascular endothelial cells are key events in histone-mediated pathologies. Our aim was to investigate the implication of extracellular histones in the production of the major vasoactive compounds released by human endothelial cells (HUVECs), prostanoids and nitric oxide (NO). HUVEC exposed to increasing concentrations of histones (0.001 to 100 μg/ml) for 4 hrs induced prostacyclin (PGI2) production in a dose-dependent manner and decreased thromboxane A2 (TXA2) release at 100 μg/ml. Extracellular histones raised cyclooxygenase-2 (COX-2) and prostacyclin synthase (PGIS) mRNA and protein expression, decreased COX-1 mRNA levels and did not change thromboxane A2 synthase (TXAS) expression. Moreover, extracellular histones decreased both, eNOS expression and NO production in HUVEC. The impaired NO production was related to COX-2 activity and superoxide production since was reversed after celecoxib (10 μmol/l) and tempol (100 μmol/l) treatments, respectively. In conclusion, our findings suggest that extracellular histones stimulate the release of endothelial-dependent mediators through an up-regulation in COX-2-PGIS-PGI2 pathway which involves a COX-2-dependent superoxide production that decreases the activity of eNOS and the NO production. These effects may contribute to the endothelial cell dysfunction observed in histone-mediated pathologies. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  6. [Effects of non-saccharomyces albicans metabolic products on the proliferation of human umbilical vein endothelial cell ECV304].

    Science.gov (United States)

    Chen, Bin; Che, Tuanjie; Bai, Decheng; He, Xiangyi

    2013-04-01

    To evaluate the effects of non-Saccharomyces albicans metabolic products on the cell cycle distribution and proliferation of human umbilical vein endothelial cell ECV304 cells in vitro. The parallel dilution supernatant of Saccharomyces tropicalis, Saccharomyces krusei and Saccharomyces glabrata were prepared, and 1, 4, 16-fold(s) diluted concentration and control group were set up. The line of human umbilical vein endothelial cell ECV304 was cultured in vitro and treated by non-Saccharomyces albicans supernatant. The proliferous effect of ECV304 induced by non-Saccharomyces albicans supernatant after 24, 48, 72 h was detected by the methods of MTT, and the changes of cell density and cycle after 48 h were investigated by inverted microscope and flow cytometry. At the 24th hour, all of the higher concentration (1-fold) of non-Saccharomyces albicans supernatant and the 4-folds diluted Saccharomyces krusei could promote ECV304 proliferation(P Saccharomyces albicans supernatant at 48h and 72th hour, Saccharomyces krusei supernatant and Saccharomyces glabrata supernatant significantly increased proliferation rate of ECV304, while Saccharomyces tropicalis supernatant group showed no significant change no matter which concentration was tested. At 48th hour after adding the non-Saccharomyces albicans supernatant, the ECV304 cells density treated by Saccharomyces krusei supernatant and Saccharomyces glabrata supernatant were significantly higher under the inverted microscope. The G0/G1 population of ECV304 cells decreased while cell proliferation index (PI) increased after incubated with Saccharomyces krusei supernatant and Saccharomyces glabrata supernatant for 48 hours (P Saccharomyces tropicalis group showed no significant change (P > 0.05). The metabolic products of Sacharoymces krusei and Saccharomyces glabrata could induce proliferation of ECV304 cell, which suggests non-Saccharomyces albicans should be undergone more attention clinically in detection and treatment.

  7. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    International Nuclear Information System (INIS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Puchala, Mieczyslaw

    2010-01-01

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as · OH and ONOO - . In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  8. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Rodacka, Aleksandra, E-mail: olakow@biol.uni.lodz.p [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Serafin, Eligiusz, E-mail: serafin@biol.uni.lodz.p [Laboratory of Computer and Analytical Techniques, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Puchala, Mieczyslaw, E-mail: puchala@biol.uni.lodz.p [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland)

    2010-09-15

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as {sup {center_dot}}OH and ONOO{sup -}. In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  9. Tumor necrosis factor increases the production of plasminogen activator inhibitor in human endothelial cells in vitro and in rats in vivo

    NARCIS (Netherlands)

    Hinsbergh, V.W.M. van; Kooistra, T.; Berg, E.A. van den; Princen, H.M.G.; Fiers, W.; Emeis, J.J.

    1988-01-01

    The vascular endothelium plays an important role in fibrinolysis by producing tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor (PAI). The monokine tumor necrosis factor (human recombinant TNF) increased the production of PAI by cultured human endothelial cells from

  10. Antioxidant mechanism of heme oxygenase-1 involves an increase in superoxide dismutase and catalase in experimental diabetes.

    Science.gov (United States)

    Turkseven, Saadet; Kruger, Adam; Mingone, Christopher J; Kaminski, Pawel; Inaba, Muneo; Rodella, Luigi F; Ikehara, Susumu; Wolin, Michael S; Abraham, Nader G

    2005-08-01

    Increased heme oxygenase (HO)-1 activity attenuates endothelial cell apoptosis and decreases superoxide anion (O2-) formation in experimental diabetes by unknown mechanisms. We examined the effect of HO-1 protein and HO activity on extracellular SOD (EC-SOD), catalase, O2-, inducible nitric oxide synthase (iNOS), and endothelial nitric oxide synthase (eNOS) levels and vascular responses to ACh in control and diabetic rats. Vascular EC-SOD and plasma catalase activities were significantly reduced in diabetic compared with nondiabetic rats (P inhibitor of HO-1 activity, decreased EC-SOD protein. Increased HO-1 activity in diabetic rats was associated with a decrease in iNOS but increases in eNOS and plasma catalase activity. On the other hand, aortic ring segments from diabetic rats exhibited a significant reduction in vascular relaxation to ACh, which was reversed with cobalt protoporphyrin treatment. These data demonstrate that an increase in HO-1 protein and activity, i.e., CO and bilirubin production, in diabetic rats brings about a robust increase in EC-SOD, catalase, and eNOS with a concomitant increase in endothelial relaxation and a decrease in O2-. These observations in experimental diabetes suggest that the vascular cytoprotective mechanism of HO-1 against oxidative stress requires an increase in EC-SOD and catalase.

  11. Tissue factor-dependent vascular endothelial growth factor production by human fibroblasts in response to activated factor VII.

    Science.gov (United States)

    Ollivier, V; Bentolila, S; Chabbat, J; Hakim, J; de Prost, D

    1998-04-15

    The transmembrane protein tissue factor (TF) is the cell surface receptor for coagulation factor VII (FVII) and activated factor VII (FVIIa). Recently, TF has been identified as a regulator of angiogenesis, tumor growth, and metastasis. This study was designed to link the binding of FVII(a) to its receptor, TF, with the subsequent triggering of angiogenesis through vascular endothelial growth factor (VEGF) production by human lung fibroblasts. We report that incubation of fibroblasts, which express constitutive surface TF, with FVII(a) induces VEGF synthesis. FVII(a)-induced VEGF secretion, assessed by a specific enzyme-linked immunosorbent assay, was time- and concentration-dependent. VEGF secretion was maximal after 24 hours of incubation of the cells with 100 nmol/L FVII(a) and represented a threefold induction of the basal VEGF level. Reverse transcriptase-polymerase chain reaction analysis of VEGF detected three mRNA species of 180, 312, and 384 bp corresponding, respectively, to VEGF121, VEGF165, and VEGF189. A 2.5- to 3.5-fold increase was observed for the 180- and 312-bp transcripts at 12 and 24 hours, respectively. FVII(a)-dependent VEGF production was inhibited by a pool of antibodies against TF, pointing to the involvement of this receptor. On specific active-site inhibition with dansyl-glutamyl-glycinyl-arginyl chloromethyl ketone, FVIIa lost 70% of its capacity to elicit VEGF production. Consistent with this, the native form (zymogen) of FVII only had a 1.8-fold stimulating effect. Protein tyrosine kinase and protein kinase C are involved in signal transduction leading to VEGF production, as shown by the inhibitory effects of genistein and GF 109203X. The results of this study indicate that TF is essential for VIIa-induced VEGF production by human fibroblasts and that its role is mainly linked to the proteolytic activity of the TF-VIIa complex.

  12. Benfotiamine prevents macro- and microvascular endothelial dysfunction and oxidative stress following a meal rich in advanced glycation end products in individuals with type 2 diabetes.

    Science.gov (United States)

    Stirban, Alin; Negrean, Monica; Stratmann, Bernd; Gawlowski, Thomas; Horstmann, Tina; Götting, Christian; Kleesiek, Knut; Mueller-Roesel, Michaela; Koschinsky, Theodor; Uribarri, Jaime; Vlassara, Helen; Tschoepe, Diethelm

    2006-09-01

    Diabetes is characterized by marked postprandial endothelial dysfunction induced by hyperglycemia, hypertriglyceridemia, advanced glycation end products (AGEs), and dicarbonyls (e.g., methylglyoxal [MG]). In vitro hyperglycemia-induced MG formation and endothelial dysfunction could be blocked by benfotiamine, but in vivo effects of benfotiamine on postprandial endothelial dysfunction and MG synthesis have not been investigated in humans until now. Thirteen people with type 2 diabetes were given a heat-processed test meal with a high AGE content (HAGE; 15.100 AGE kU, 580 kcal, 54 g protein, 17 g lipids, and 48 g carbohydrates) before and after a 3-day therapy with benfotiamine (1,050 mg/day). Macrovascular flow-mediated dilatation (FMD) and microvascular reactive hyperemia, along with serum markers of endothelial disfunction (E-selectin, vascular cell adhesion molecule-1, and intracellular adhesion molecule-1), oxidative stress, AGE, and MG were measured during both test meal days after an overnight fast and then at 2, 4, and 6 h postprandially. The HAGE induced a maximum reactive hyperemia decrease of -60.0% after 2 h and a maximum FMD impairment of -35.1% after 4 h, without affecting endothelium-independent vasodilatation. The effects of HAGE on both FMD and reactive hyperemia were completely prevented by benfotiamine. Serum markers of endothelial dysfunction and oxidative stress, as well as AGE, increased after HAGE. These effects were significantly reduced by benfotiamine. Our study confirms micro- and macrovascular endothelial dysfunction accompanied by increased oxidative stress following a real-life, heat-processed, AGE-rich meal in individuals with type 2 diabetes and suggests benfotiamine as a potential treatment.

  13. 2',3-dihydroxy-5-methoxybiphenyl suppresses fMLP-induced superoxide anion production and cathepsin G release by targeting the β-subunit of G-protein in human neutrophils.

    Science.gov (United States)

    Liao, Hsiang-Ruei; Chen, Ih-Sheng; Liu, Fu-Chao; Lin, Shinn-Zhi; Tseng, Ching-Ping

    2018-06-15

    This study investigates the effect and the underlying mechanism of 2',3-dihydroxy-5-methoxybiphenyl (RIR-2), a lignan extracted from the roots of Rhaphiolepis indica (L.) Lindl. ex Ker var. tashiroi Hayata ex Matsum. & Hayata (Rosaceae), on N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP)-induced respiratory burst and cathepsin G in human neutrophils. Signaling pathways regulated by RIR-2 which modulated fMLP-induced respiratory burst were evaluated by an interaction between β subunit of G-protein (Gβ) with downstream signaling induced by fMLP and by immunoblotting analysis of the downstream targets of Gβ-protein. RIR-2 inhibited fMLP-induced superoxide anion production (IC 50 :2.57 ± 0.22 μM), cathepsin G release (IC 50 :18.72 ± 3.76 μM) and migration in a concentration dependent manner. RIR-2 specifically suppresses fMLP-induced Src family kinases phosphorylation by inhibiting the interaction between Gβ-protein with Src kinases without inhibiting Src kinases activities, therefore, RIR-2 attenuated the downstream targets of Src kinase, such as phosphorylation of Raf/ERK, AKT, P38, PLCγ2, PKC and translocation Tec, p47 ph ° x and P40 ph ° x from the cytosol to the inner leaflet of the plasma membrane. Furthermore, RIR-2 attenuated fMLP-induced intracellular calcium mobilization by inhibiting the interaction between Gβ-protein with PLCβ2. RIR-2 was not a competitive or allosteric antagonist of fMLP. On the contrary, phorbol 12-myristate 13-acetate (PMA)-induced phosphorylation of Src, AKT, P38, PKC and membrane localization of p47 ph ° x and P40 ph ° x remained unaffected. RIR-2 specifically modulates fMLP-mediated neutrophil superoxide anion production and cathepsin G release by inhibiting the interaction between Gβ-protein with downstream signaling which subsequently interferes with the activation of intracellular calcium, PLCγ2, AKT, p38, PKC, ERK, p47 ph ° x and p40 phox . Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Microvascular Endothelial Dysfunction in Sedentary, Obese Humans is mediated by NADPH Oxidase; Influence of Exercise Training

    Science.gov (United States)

    La Favor, Justin D.; Dubis, Gabriel S.; Yan, Huimin; White, Joseph D.; Nelson, Margaret A.M.; Anderson, Ethan J.; Hickner, Robert C.

    2016-01-01

    Objective The objectives of this study were to determine the impact of in vivo reactive oxygen species (ROS) on microvascular endothelial function in obese human subjects and to determine the efficacy of an aerobic exercise intervention on alleviating obesity-associated dysfunctionality. Approach and Results Young, sedentary men and women were divided into lean (BMI 18–25; n=14), intermediate (BMI 28–32.5; n=13), and obese (BMI 33–40; n=15) groups. A novel microdialysis technique was utilized to detect elevated interstitial hydrogen peroxide (H2O2) and superoxide levels in the vastus lateralis of obese compared to both lean and intermediate subjects. Nutritive blood flow was monitored in the vastus lateralis via the microdialysis-ethanol technique. A decrement in acetylcholine-stimulated blood flow revealed impaired microvascular endothelial function in the obese subjects. Perfusion of apocynin, an NADPH oxidase (Nox) inhibitor, lowered (normalized) H2O2 and superoxide levels and reversed microvascular endothelial dysfunction in obese subjects. Following 8-weeks of exercise, H2O2 levels were decreased in the obese subjects and microvascular endothelial function in these subjects was restored to levels similar to lean subjects. Skeletal muscle protein expression of the Nox subunits p22phox, p47phox, and p67phox were increased in obese relative to lean subjects, where p22phox and p67phox expression was attenuated by exercise training in obese subjects. Conclusions This study implicates Nox as a source of excessive ROS production in skeletal muscle of obese individuals, and links excessive Nox derived ROS to microvascular endothelial dysfunction in obesity. Furthermore, aerobic exercise training proved to be an effective strategy for alleviating these maladies. PMID:27765769

  15. Reactivation of desensitized formyl peptide receptors by platelet activating factor: a novel receptor cross talk mechanism regulating neutrophil superoxide anion production.

    Directory of Open Access Journals (Sweden)

    Huamei Forsman

    Full Text Available Neutrophils express different chemoattractant receptors of importance for guiding the cells from the blood stream to sites of inflammation. These receptors communicate with one another, a cross talk manifested as hierarchical, heterologous receptor desensitization. We describe a new receptor cross talk mechanism, by which desensitized formyl peptide receptors (FPRdes can be reactivated. FPR desensitization is induced through binding of specific FPR agonists and is reached after a short period of active signaling. The mechanism that transfers the receptor to a non-signaling desensitized state is not known, and a signaling pathway has so far not been described, that transfers FPRdes back to an active signaling state. The reactivation signal was generated by PAF stimulation of its receptor (PAFR and the cross talk was uni-directional. LatrunculinA, an inhibitor of actin polymerization, induced a similar reactivation of FPRdes as PAF while the phosphatase inhibitor CalyculinA inhibited reactivation, suggesting a role for the actin cytoskeleton in receptor desensitization and reactivation. The activated PAFR could, however, reactivate FPRdes also when the cytoskeleton was disrupted prior to activation. The receptor cross talk model presented prophesies that the contact on the inner leaflet of the plasma membrane that blocks signaling between the G-protein and the FPR is not a point of no return; the receptor cross-talk from the PAFRs to the FPRdes initiates an actin-independent signaling pathway that turns desensitized receptors back to a signaling state. This represents a novel mechanism for amplification of neutrophil production of reactive oxygen species.

  16. Efficient production of platelets from mouse embryonic stem cells by enforced expression of Gata2 in late hemogenic endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Manami [Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 (Japan); Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 (Japan); Kitajima, Kenji [Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 (Japan); Kanokoda, Mai [Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 (Japan); Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 (Japan); Suzuki, Hidenori [Division of Morphological and Biomolecular Research, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 (Japan); Miyashita, Kazuya; Nakajima, Marino [Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 (Japan); Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 (Japan); Nuriya, Hideko [Core Technology and Research Center, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 (Japan); Kasahara, Kohji [Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 (Japan); Hara, Takahiko, E-mail: hara-tk@igakuken.or.jp [Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 (Japan); Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 (Japan)

    2016-06-03

    Platelets are essential for blood circulation and coagulation. Previous study indicated that overexpression of Gata2 in differentiated mouse embryonic stem cells (ESCs) resulted in robust induction of megakaryocytes (Mks). To evaluate platelet production capacity of the Gata2-induced ESC-derived Mks, we generated iGata2-ESC line carrying the doxycycline-inducible Gata2 expression cassette. When doxycycline was added to day 5 hemogenic endothelial cells in the in vitro differentiation culture of iGata2-ESCs, c-Kit{sup −}Tie2{sup −}CD41{sup +} Mks were predominantly generated. These iGata2-ESC-derived Mks efficiently produced CD41{sup +}CD42b{sup +}CD61{sup +} platelets and adhered to fibrinogen-coated glass coverslips in response to thrombin stimulation. Transmission electron microscopy analysis demonstrated that the iGata2-ESC-derived platelets were discoid-shaped with α-granules and an open canalicular system, but were larger than peripheral blood platelets in size. These results demonstrated that an enforced expression of Gata2 in late HECs of differentiated ESCs efficiently promotes megakaryopoiesis followed by platelet production. This study provides valuable information for ex vivo platelet production from human pluripotent stem cells in future. -- Highlights: •Megakaryocytes are efficiently induced by Gata2 from ESC-derived day 5 HECs. •Gata2-induced ESC-derived megakaryocytes are c-Kit{sup −}Tie2{sup −}CD41{sup +}. •Gata2-induced ESC-derived megakaryocytes produce larger discoid-shaped platelets. •Gata2-induced ESC-derived platelets bind fibrinogen upon thrombin stimulation.

  17. Efficient production of platelets from mouse embryonic stem cells by enforced expression of Gata2 in late hemogenic endothelial cells

    International Nuclear Information System (INIS)

    Kawaguchi, Manami; Kitajima, Kenji; Kanokoda, Mai; Suzuki, Hidenori; Miyashita, Kazuya; Nakajima, Marino; Nuriya, Hideko; Kasahara, Kohji; Hara, Takahiko

    2016-01-01

    Platelets are essential for blood circulation and coagulation. Previous study indicated that overexpression of Gata2 in differentiated mouse embryonic stem cells (ESCs) resulted in robust induction of megakaryocytes (Mks). To evaluate platelet production capacity of the Gata2-induced ESC-derived Mks, we generated iGata2-ESC line carrying the doxycycline-inducible Gata2 expression cassette. When doxycycline was added to day 5 hemogenic endothelial cells in the in vitro differentiation culture of iGata2-ESCs, c-Kit − Tie2 − CD41 + Mks were predominantly generated. These iGata2-ESC-derived Mks efficiently produced CD41 + CD42b + CD61 + platelets and adhered to fibrinogen-coated glass coverslips in response to thrombin stimulation. Transmission electron microscopy analysis demonstrated that the iGata2-ESC-derived platelets were discoid-shaped with α-granules and an open canalicular system, but were larger than peripheral blood platelets in size. These results demonstrated that an enforced expression of Gata2 in late HECs of differentiated ESCs efficiently promotes megakaryopoiesis followed by platelet production. This study provides valuable information for ex vivo platelet production from human pluripotent stem cells in future. -- Highlights: •Megakaryocytes are efficiently induced by Gata2 from ESC-derived day 5 HECs. •Gata2-induced ESC-derived megakaryocytes are c-Kit − Tie2 − CD41 + . •Gata2-induced ESC-derived megakaryocytes produce larger discoid-shaped platelets. •Gata2-induced ESC-derived platelets bind fibrinogen upon thrombin stimulation.

  18. Biological activity of anthocyanins and their phenolic degradation products and metabolites in human vascular endothelial cells

    OpenAIRE

    Edwards, Michael

    2013-01-01

    Human, animal, and in vitro data indicate significant vasoprotective activity of anthocyanins. However, few studies have investigated the activity of anthocyanin degradation products and metabolites which are likely to mediate bioactivity in vivo. The present thesis therefore examined the vascular bioactivity in vitro of anthocyanins, their phenolic degradants, and the potential for interactions between dietary bioactive compounds. Seven treatment compounds (cyanidin-, peonidin-, petunidin- &...

  19. Molecular basis for arsenic-Induced alteration in nitric oxide production and oxidative stress: implication of endothelial dysfunction

    International Nuclear Information System (INIS)

    Kumagai, Yoshito; Pi Jingbo

    2004-01-01

    Accumulated epidemiological studies have suggested that prolonged exposure of humans to arsenic in drinking water is associated with vascular diseases. The exact mechanism of how this occurs currently unknown. Nitric oxide (NO), formed by endothelial NO synthase (eNOS), plays a crucial role in the vascular system. Decreased availability of biologically active NO in the endothelium is implicated in the pathophysiology of several vascular diseases and inhibition of eNOS by arsenic is one of the proposed mechanism s for arsenic-induced vascular diseases. In addition, during exposure to arsenic, overproduction of reactive oxygen species (ROS) can occur, resulting in oxidative stress, which is another major risk factor for vascular dysfunction. The molecular basis for decreased NO levels and increased oxidative stress during arsenic exposure is poorly understood. In this article, evidence for arsenic-mediated alteration in NO production and oxidative stress is reviewed. The results of a cross-sectional study in an endemic area of chronic arsenic poisoning and experimental animal studies to elucidate a potential mechanism for the impairment of NO formation and oxidative stress caused by prolonged exposure to arsenate in the drinking water are also reviewed

  20. Requirements for superoxide-dependent tyrosine hydroperoxide formation in peptides

    DEFF Research Database (Denmark)

    Winterbourn, Christine C; Parsons-Mair, Helena N; Gebicki, Silvia

    2004-01-01

    Superoxide reacts rapidly with other radicals, but these reactions have received little attention in the context of oxidative stress. For tyrosyl radicals, reaction with superoxide is 3-fold faster than dimerization, and forms the addition product tyrosine hydroperoxide. We have explored structural...... requirements for hydroperoxide formation using tyrosine analogues and di- and tri-peptides. Superoxide and phenoxyl radicals were generated using xanthine oxidase, peroxidase and the respective tyrosine derivative, or by gamma-radiation. Peroxides were measured using FeSO4/Xylenol Orange. Tyrosine and tyramine...... formed stable hydroperoxides, but N-acetyltyrosine and p-hydroxyphenylacetic acid did not, demonstrating a requirement for a free amino group. Using [14C]tyrosine, the hydroperoxide and dityrosine were formed at a molar ratio of 1.8:1. Studies with pre-formed hydroperoxides, and measurements of substrate...

  1. Water stress induces overexpression of superoxide dismutases that ...

    African Journals Online (AJOL)

    Water stress is known to induce active oxygen species in plants. The accumulation of these harmful species must be prevented by plants as rapidly as possible to maintain growth and productivity. The aim of this study was to determine the effect of water stress on superoxide dismutase isozymes (SOD, EC 1.15.1.1.) in two ...

  2. Effect of benzo[a]pyrene on the production of vascular endothelial growth factor by human eosinophilic leukemia EoL-1 cells.

    Science.gov (United States)

    Gu, Jie; Chan, Lai-Sheung; Wong, Chris Kong-Chu; Wong, Ngok-Shun; Wong, Chun-Kwok; Leung, Kok-Nam; Mak, Naiki K

    2011-01-01

    Benzo[a]pyrene (BaP) has been shown to affect both the development and response of T and B cells in the immune system. However, the effect of BaP on other immune cells, such as eosionophils, is unknown. In this study, we investigated the effect of BaP on the production of vascular endothelial growth factor (VEGF) using an in vitro eosinophilic EoL-1 cell and human umbilical vein endothelial cell (HUVEC) co-culture system. EoL-1-conditioned medium was found to promote the growth of HUVEC in a time-dependent manner. The growth stimulating activity was due to the production of VEGF by the EoL-1 cells. The production of VEGF was correlated with the enhanced expression of the phosphorylated form of extracellular signal-regulated kinases (p-ERKs) and the upregulated expression of VEGF mRNA. Furthermore, BaP-induced expression of VEGF mRNA was reduced by the ERK inhibitor PD98059. Results from this study suggested that BaP might affect the growth of endothelial cells through the modulation of VEGF production by eosinophils.

  3. Constraints on superoxide mediated formation of manganese oxides

    Directory of Open Access Journals (Sweden)

    Deric R. Learman

    2013-09-01

    Full Text Available Manganese (Mn oxides are among the most reactive sorbents and oxidants within the environment, where they play a central role in the cycling of nutrients, metals, and carbon. Recent discoveries have identified superoxide (O2- (both of biogenic and abiogenic origin as an effective oxidant of Mn(II leading to the formation of Mn oxides. Here we examined the conditions under which abiotically produced superoxide led to oxidative precipitation of Mn and the solid-phases produced. Oxidized Mn, as both aqueous Mn(III and Mn(III/IV oxides, was only observed in the presence of active catalase, indicating that hydrogen peroxide, a product of the reaction of O2- with Mn(II, inhibits the oxidation process presumably through the reduction of Mn(III. Citrate and pyrophosphate increased the yield of oxidized Mn but decreased the amount of Mn oxide produced via formation of Mn(III-ligand complexes. While complexing ligands played a role in stabilizing Mn(III, they did not eliminate the inhibition of net Mn(III formation by H2O2. The Mn oxides precipitated were highly disordered colloidal hexagonal birnessite, similar to those produced by biotically generated superoxide. Yet, in contrast to the large particulate Mn oxides formed by biogenic superoxide, abiotic Mn oxides did not ripen to larger, more crystalline phases. This suggests that the deposition of crystalline Mn oxides within the environment requires a biological, or at least organic, influence. This work provides the first direct evidence that, under conditions relevant to natural waters, oxidation of Mn(II by superoxide can occur and lead to formation of Mn oxides. For organisms that oxidize Mn(II by producing superoxide, these findings may also point to other microbially mediated processes, in particular enzymatic hydrogen peroxide degradation and/or production of organic ligand metabolites, that allow for Mn oxide formation.

  4. Sphingosine-1-phosphate induces human endothelial VEGF and MMP-2 production via transcription factor ZNF580: Novel insights into angiogenesis

    International Nuclear Information System (INIS)

    Sun, Hui-Yan; Wei, Shu-Ping; Xu, Rui-Cheng; Xu, Peng-Xiao; Zhang, Wen-Cheng

    2010-01-01

    Sphingosine-1-phosphate (S1P)-induced migration and proliferation of endothelial cells are critical for angiogenesis. C2H2-zinc finger (ZNF) proteins usually play an essential role in altering gene expression and regulating the angiogenesis. The aim of this study is to investigate whether a novel human C2H2-zinc finger gene ZNF580 (Gene ID: 51157) is involved in the migration and proliferation of endothelial cells stimulated by S1P. Our study shows that EAhy926 endothelial cells express S1P1, S1P3 and S1P5 receptors. Furthermore, S1P upregulates both ZNF580 mRNA and protein levels in a concentration- and time-dependent manner. SB203580, the specific inhibitor of the p38 mitogen-activated protein kinase (p38 MAPK) pathway, blocks the S1P-induced upregulation of ZNF580. Moreover, overexpression/downexpression of ZNF580 in EAhy926 cells leads to the enhancement/decrease of matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) expression as well as the migration and proliferation of EAhy926 endothelial cells. These results elucidate the important role that ZNF580 plays in the process of migration and proliferation of endothelial cells, which provides a foundation for a novel approach to regulate angiogenesis.

  5. Sphingosine-1-phosphate induces human endothelial VEGF and MMP-2 production via transcription factor ZNF580: Novel insights into angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hui-Yan, E-mail: shy35309@sohu.com [Department of Physiology and Pathophysiology, Medical College of Chinese People' s Armed Police Forces, Tianjin 300162 (China); Wei, Shu-Ping, E-mail: weishuping_83@163.com [Department of Physiology and Pathophysiology, Medical College of Chinese People' s Armed Police Forces, Tianjin 300162 (China); Xu, Rui-Cheng, E-mail: xu_rc@sohu.com [Department of Physiology and Pathophysiology, Medical College of Chinese People' s Armed Police Forces, Tianjin 300162 (China); Xu, Peng-Xiao, E-mail: xupengxiao1228@sina.com [Department of Physiology and Pathophysiology, Medical College of Chinese People' s Armed Police Forces, Tianjin 300162 (China); Zhang, Wen-Cheng, E-mail: wenchengzhang@yahoo.com [Department of Physiology and Pathophysiology, Medical College of Chinese People' s Armed Police Forces, Tianjin 300162 (China)

    2010-05-07

    Sphingosine-1-phosphate (S1P)-induced migration and proliferation of endothelial cells are critical for angiogenesis. C2H2-zinc finger (ZNF) proteins usually play an essential role in altering gene expression and regulating the angiogenesis. The aim of this study is to investigate whether a novel human C2H2-zinc finger gene ZNF580 (Gene ID: 51157) is involved in the migration and proliferation of endothelial cells stimulated by S1P. Our study shows that EAhy926 endothelial cells express S1P1, S1P3 and S1P5 receptors. Furthermore, S1P upregulates both ZNF580 mRNA and protein levels in a concentration- and time-dependent manner. SB203580, the specific inhibitor of the p38 mitogen-activated protein kinase (p38 MAPK) pathway, blocks the S1P-induced upregulation of ZNF580. Moreover, overexpression/downexpression of ZNF580 in EAhy926 cells leads to the enhancement/decrease of matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) expression as well as the migration and proliferation of EAhy926 endothelial cells. These results elucidate the important role that ZNF580 plays in the process of migration and proliferation of endothelial cells, which provides a foundation for a novel approach to regulate angiogenesis.

  6. Invasion of human aortic endothelial cells by oral viridans group streptococci and induction of inflammatory cytokine production.

    Science.gov (United States)

    Nagata, E; de Toledo, A; Oho, T

    2011-02-01

    Oral viridans group streptococci are the major commensal bacteria of the supragingival oral biofilm and have been detected in human atheromatous plaque. Atherosclerosis involves an ongoing inflammatory response, reportedly involving chronic infection caused by multiple pathogens. The aim of this study was to examine the invasion of human aortic endothelial cells (HAECs) by oral viridans group streptococci and the subsequent cytokine production by viable invaded HAECs. The invasion of HAECs by bacteria was examined using antibiotic protection assays and was visualized by confocal scanning laser microscopy. The inhibitory effects of catalase and cytochalasin D on the invasion of HAECs were also examined. The production of cytokines by invaded or infected HAECs was determined using enzyme-linked immunosorbent assays, and a real-time polymerase chain reaction method was used to evaluate the expression of cytokine messenger RNA. The oral streptococci tested were capable of invading HAECs. The number of invasive bacteria increased with the length of the co-culture period. After a certain co-culture period, some organisms were cytotoxic to the HAECs. Catalase and cytochalasin D inhibited the invasion of HAECs by the organism. HAECs invaded by Streptococcus mutans Xc, Streptococcus gordonii DL1 (Challis), Streptococcus gordonii ATCC 10558 and Streptococcus salivarius ATCC 13419 produced more cytokine(s) (interleukin-6, interleukin-8, monocyte chemoattractant protein-1) than non-invaded HAECs. The HAECs invaded by S. mutans Xc produced the largest amounts of cytokines, and the messenger RNA expression of cytokines by invaded HAECs increased markedly compared with that by non-invaded HAECs. These results suggest that oral streptococci may participate in the pathogenesis of atherosclerosis. © 2010 John Wiley & Sons A/S.

  7. Acidic microenvironments induce lymphangiogenesis and IL-8 production via TRPV1 activation in human lymphatic endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Masako, E-mail: n-masako@wakayama-med.ac.jp [Department of Pathology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509 (Japan); Morita, Yoshihiro [Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871 (Japan); Department of Oral and Maxillofacial Surgery, Seichokai Hannan Municipal Hospital, Hannan, Osaka 599-0202 (Japan); Hata, Kenji [Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871 (Japan); Muragaki, Yasuteru, E-mail: ymuragak@wakayama-med.ac.jp [Department of Pathology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509 (Japan)

    2016-07-15

    Local acidosis is one of the characteristic features of the cancer microenvironment. Many reports indicate that acidosis accelerates the proliferation and invasiveness of cancer cells. However, whether acidic conditions affect lymphatic metastasis is currently unknown. In the present study, we focused on the effects of acidosis on lymphatic endothelial cells (LECs) to assess the relationship between acidic microenvironments and lymph node metastasis. We demonstrated that normal human LECs express various acid receptors by immunohistochemistry and reverse transcriptase-polymerase chain reaction (PCR). Acidic stimulation with low pH medium induced morphological changes in LECs to a spindle shape, and significantly promoted cellular growth and tube formation. Moreover, real-time PCR revealed that acidic conditions increased the mRNA expression of interleukin (IL)-8. Acidic stimulation increased IL-8 production in LECs, whereas a selective transient receptor potential vanilloid subtype 1 (TRPV1) antagonist, 5′-iodoresiniferatoxin, decreased IL-8 production. IL-8 accelerated the proliferation of LECs, and inhibition of IL-8 diminished tube formation and cell migration. In addition, phosphorylation of nuclear factor (NF)-κB was induced by acidic conditions, and inhibition of NF-κB activation reduced acid-induced IL-8 expression. These results suggest that acidic microenvironments in tumors induce lymphangiogenesis via TRPV1 activation in LECs, which in turn may promote lymphatic metastasis. - Highlights: • Acidity accelerates the growth, migration, and tube formation of LECs. • Acidic condition induces IL-8 expression in LECs. • IL-8 is critical for the changes of LECs. • IL-8 expression is induced via TRPV1 activation.

  8. Alcohol and red wine consumption, but not fruit, vegetables, fish or dairy products, are associated with less endothelial dysfunction and less low-grade inflammation: the Hoorn Study.

    Science.gov (United States)

    van Bussel, B C T; Henry, R M A; Schalkwijk, C G; Dekker, J M; Nijpels, G; Feskens, E J M; Stehouwer, C D A

    2017-03-27

    Endothelial dysfunction and low-grade inflammation are key phenomena in the pathobiology of cardiovascular disease (CVD). Their dietary modification might explain the observed reduction in CVD that has been associated with a healthy diet rich in fruit, vegetables and fish, low in dairy products and with moderate alcohol and red wine consumption. We investigated the associations between the above food groups and endothelial dysfunction and low-grade inflammation in a population-based cohort of Dutch elderly individuals. Diet was measured by food frequency questionnaire (n = 801; women = 399; age 68.5 ± 7.2 years). Endothelial dysfunction was determined (1) by combining von Willebrand factor, and soluble intercellular adhesion molecule 1 (sICAM-1), vascular cell adhesion molecule 1, endothelial selectin and thrombomodulin, using Z-scores, into a biomarker score and (2) by flow-mediated vasodilation (FMD), and low-grade inflammation by combining C-reactive protein, serum amyloid A, interleukin 6, interleukin 8, tumour necrosis factor α and sICAM-1 into a biomarker score, with smaller FMD and higher scores representing more dysfunction and inflammation, respectively. We used linear regression analyses to adjust associations for sex, age, energy, glucose metabolism, body mass index, smoking, prior CVD, educational level, physical activity and each of the other food groups. Moderate [β (95% CI) -0.13 (-0.33; 0.07)] and high [-0.22 (-0.45; -0.003)] alcohol consumption, and red wine [-0.16 (-0.30; -0.01)] consumption, but none of the other food groups, were associated with a lower endothelial dysfunction biomarker score and a greater FMD. The associations for FMD were, however, not statistically significant. Only red wine consumption was associated with a lower low-grade inflammation biomarker score [-0.18 (-0.33; -0.04)]. Alcohol and red wine consumption may favourably influence processes involved in atherothrombosis.

  9. Protein hydrolysate from canned sardine and brewing by-products improves TNF-α-induced inflammation in an intestinal-endothelial co-culture cell model.

    Science.gov (United States)

    Vieira, Elsa F; Van Camp, John; Ferreira, Isabel M P L V O; Grootaert, Charlotte

    2017-07-17

    The anti-inflammatory activity of sardine protein hydrolysates (SPH) obtained by hydrolysis with proteases from brewing yeast surplus was ascertained. For this purpose, a digested and desalted SPH fraction with molecular weight lower than 10 kDa was investigated using an endothelial cell line (EA.hy926) as such and in a co-culture model with an intestinal cell line (Caco-2). Effects of SPH <10 kDa on nitric oxide (NO) production, reactive oxygen species (ROS) inhibition and secretion of monocyte chemoattractant protein 1 (MCP-1), vascular endothelial growth factor (VEGF), chemokine IL-8 (IL-8) and intercellular adhesion molecule-1 (ICAM-1) were evaluated in TNF-α-treated and untreated cells. Upon TNF-α treatment, levels of NO, MCP-1, VEGF, IL-8, ICAM-1 and endothelial ROS were significantly increased in both mono- and co-culture models. Treatment with SPH <10 kDa (2.0 mg peptides/mL) significantly decreased all the inflammation markers when compared to TNF-α-treated control. This protective effect was more pronounced in the co-culture model, suggesting that SPH <10 kDa Caco-2 cells metabolites produced in the course of intestinal absorption may provide a more relevant protective effect against endothelial dysfunction. Additionally, indirect cross-talk between two cell types was established, suggesting that SPH <10 kDa may also bind to receptors on the Caco-2 cells, thereby triggering a pathway to secrete the pro-inflammatory compounds. Overall, these in vitro screening results, in which intestinal digestion, absorption and endothelial bioactivity are simulated, show the potential of SPH to be used as a functional food with anti-inflammatory properties.

  10. Trifluoperazine: corneal endothelial phototoxicity

    International Nuclear Information System (INIS)

    Hull, D.S.; Csukas, S.; Green, K.

    1983-01-01

    Trifluoperazine is used for the treatment of psychiatric disorders. Perfusion of corneal endothelial cells with trifluoperazine-HC1 concurrent with exposure to long wavelength ultraviolet light resulted in a corneal swelling rate greater than that found in perfused corneas not exposed to ultraviolet light. Exposure of endothelial cells to 25 W incandescent light during perfusion with trifluoperazine-HC1 did not result in a higher corneal swelling rate compared to those perfused in the dark. The increased corneal swelling rate could be produced by pre-exposure of the trifluoperazine-HC1 perfusing solution to ultraviolet light suggesting the production of toxic photoproducts during exposure of trifluoperazine-HC1 to ultraviolet light. Perfusion of corneal endothelial cells with non-ultraviolet illuminated trifluoperazine-HC1 had no effect on endothelial cell membranes or ultrastructure. This is in contrast to cells perfused with trifluoperazine-HC1 that had been exposed to ultraviolet light in which there was an alteration of mitochondria and a loss of cytoplasmic homogeneity. The data imply that the trifluoperazine-HC1 photoproduct had an adverse effect on cellular transport mechanisms. The study also further demonstrates the value of the corneal endothelial cell model for identifying the physiological and anatomical changes occuring in photo-induced toxic reactions. (author)

  11. Mitochondria and Endothelial Function

    Science.gov (United States)

    Kluge, Matthew A.; Fetterman, Jessica L.; Vita, Joseph A.

    2013-01-01

    In contrast to their role in other cell types with higher energy demands, mitochondria in endothelial cells primarily function in signaling cellular responses to environmental cues. This article provides an overview of key aspects of mitochondrial biology in endothelial cells, including subcellular location, biogenesis, dynamics, autophagy, ROS production and signaling, calcium homeostasis, regulated cell death, and heme biosynthesis. In each section, we introduce key concepts and then review studies showing the importance of that mechanism to endothelial control of vasomotor tone, angiogenesis, and inflammatory activation. We particularly highlight the small number of clinical and translational studies that have investigated each mechanism in human subjects. Finally, we review interventions that target different aspects of mitochondrial function and their effects on endothelial function. The ultimate goal of such research is the identification of new approaches for therapy. The reviewed studies make it clear that mitochondria are important in endothelial physiology and pathophysiology. A great deal of work will be needed, however, before mitochondria-directed therapies are available for the prevention and treatment of cardiovascular disease. PMID:23580773

  12. Advanced Glycation End Products Inhibit the Proliferation of Human Umbilical Vein Endothelial Cells by Inhibiting Cathepsin D

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2017-02-01

    Full Text Available We aimed to investigate the effect of advanced glycation end products (AGEs on the proliferation and migration ability of human umbilical vein endothelial cells (HUVECs. Cell proliferation was detected by methyl thiazolyl tetrazolium (MTT assay, real-time cell analyzer and 5-Ethynyl-2′-deoxyuridine (EdU staining. Cell migration was detected by wound-healing and transwell assay. AGEs significantly inhibited the proliferation and migration of HUVECs in a time-and dose-dependent way. Western blotting revealed that AGEs dramatically increased the expression of microtubule-associated protein 1 light chain 3 (LC3 II/I and p62. Immunofluorescence of p62 and acridine orange staining revealed that AGEs significantly increased the expression of p62 and the accumulation of autophagic vacuoles, respectively. Chloroquine (CQ could further promote the expression of LC3 II/I and p62, increase the accumulation of autophagic vacuoles and promote cell injury induced by AGEs. In addition, AGEs reduced cathepsin D (CTSD expression in a time-dependent way. Overexpression of wild-type CTSD significantly decreased the ratio of LC 3 II/I as well as p62 accumulation induced by AGEs, but overexpression of catalytically inactive mutant CTSD had no such effects. Only overexpression of wild-type CTSD could restore the proliferation of HUVECs inhibited by AGEs. However, overexpression of both wild-type CTSD and catalytically inactive mutant CTSD could promote the migration of HUVECs inhibited by AGEs. Collectively, our study found that AGEs inhibited the proliferation and migration in HUVECs and promoted autophagic flux, which in turn played a protective role against AGEs-induced cell injury. CTSD, in need of its catalytic activity, may promote proliferation in AGEs-treated HUVECs independent of the autophagy-lysosome pathway. Meanwhile, CTSD could improve the migration of AGEs-treated HUVECs regardless of its enzymatic activity.

  13. Advanced Glycation End Products Inhibit the Proliferation of Human Umbilical Vein Endothelial Cells by Inhibiting Cathepsin D.

    Science.gov (United States)

    Li, Yuan; Chang, Ye; Ye, Ning; Dai, Dongxue; Chen, Yintao; Zhang, Naijin; Sun, Guozhe; Sun, Yingxian

    2017-02-17

    We aimed to investigate the effect of advanced glycation end products (AGEs) on the proliferation and migration ability of human umbilical vein endothelial cells (HUVECs). Cell proliferation was detected by methyl thiazolyl tetrazolium (MTT) assay, real-time cell analyzer and 5-Ethynyl-2'-deoxyuridine (EdU) staining. Cell migration was detected by wound-healing and transwell assay. AGEs significantly inhibited the proliferation and migration of HUVECs in a time-and dose-dependent way. Western blotting revealed that AGEs dramatically increased the expression of microtubule-associated protein 1 light chain 3 (LC3) II/I and p62. Immunofluorescence of p62 and acridine orange staining revealed that AGEs significantly increased the expression of p62 and the accumulation of autophagic vacuoles, respectively. Chloroquine (CQ) could further promote the expression of LC3 II/I and p62, increase the accumulation of autophagic vacuoles and promote cell injury induced by AGEs. In addition, AGEs reduced cathepsin D (CTSD) expression in a time-dependent way. Overexpression of wild-type CTSD significantly decreased the ratio of LC 3 II/I as well as p62 accumulation induced by AGEs, but overexpression of catalytically inactive mutant CTSD had no such effects. Only overexpression of wild-type CTSD could restore the proliferation of HUVECs inhibited by AGEs. However, overexpression of both wild-type CTSD and catalytically inactive mutant CTSD could promote the migration of HUVECs inhibited by AGEs. Collectively, our study found that AGEs inhibited the proliferation and migration in HUVECs and promoted autophagic flux, which in turn played a protective role against AGEs-induced cell injury. CTSD, in need of its catalytic activity, may promote proliferation in AGEs-treated HUVECs independent of the autophagy-lysosome pathway. Meanwhile, CTSD could improve the migration of AGEs-treated HUVECs regardless of its enzymatic activity.

  14. Oxidation of cholesterol moiety of low density lipoprotein in the presence of human endothelial cells or Cu+2 ions: identification of major products and their effects.

    Science.gov (United States)

    Bhadra, S; Arshad, M A; Rymaszewski, Z; Norman, E; Wherley, R; Subbiah, M T

    1991-04-15

    Oxidation of lipoproteins is believed to play a key role in atherogenesis. In this study, low density lipoproteins (LDL) was subjected to oxidation in the presence of either human umbilical vein endothelial cells or with Cu+2 ions and the major oxides formed were identified. While cholesterol-alpha-epoxide (C-alpha EP) was the major product of cholesterol peroxidation in the presence of endothelial cells, cholest-3,5-dien-7-one (CD) predominated in the presence of Cu+2 ion. Both steroids were identified by gas chromatography/mass spectrometry. HDL cholesterol was resistant to oxidation. When tested on human skin fibroblasts in culture C-alpha EP (10 micrograms/ml) caused marked stimulation of 14C-oleate incorporation into cholesterol esters, while CD stimulated cholesterol esterification only mildly. These studies show that a) C-alpha EP is the major peroxidation product of LDL cholesterol moiety in the presence of endothelial cells and b) it causes marked stimulation of cholesterol esterification in cells. C-alpha EP may play a key role in increasing cholesterol esterification noted in atherogenesis.

  15. Superoxide activates mitochondrial uncoupling protein 2 from the matrix side. Studies using targeted antioxidants.

    Science.gov (United States)

    Echtay, Karim S; Murphy, Michael P; Smith, Robin A J; Talbot, Darren A; Brand, Martin D

    2002-12-06

    Superoxide activates nucleotide-sensitive mitochondrial proton transport through the uncoupling proteins UCP1, UCP2, and UCP3 (Echtay, K. S., et al. (2002) Nature 415, 1482-1486). Two possible mechanisms were proposed: direct activation of the UCP proton transport mechanism by superoxide or its products and a cycle of hydroperoxyl radical entry coupled to UCP-catalyzed superoxide anion export. Here we provide evidence for the first mechanism and show that superoxide activates UCP2 in rat kidney mitochondria from the matrix side of the mitochondrial inner membrane: (i) Exogenous superoxide inhibited matrix aconitase, showing that external superoxide entered the matrix. (ii) Superoxide-induced uncoupling was abolished by low concentrations of the mitochondrially targeted antioxidants 10-(6'-ubiquinonyl)decyltriphenylphosphonium (mitoQ) or 2-[2-(triphenylphosphonio)ethyl]-3,4-dihydro-2,5,7,8-tetramethyl-2H-1-benzopyran-6-ol bromide (mitoVit E), which are ubiquinone (Q) or tocopherol derivatives targeted to the matrix by covalent attachment to triphenylphosphonium cation. However, superoxide-induced uncoupling was not affected by similar concentrations of the nontargeted antioxidants Q(o), Q(1), decylubiquinone, vitamin E, or 6-hydroxy-2,5,7,8-tetramethylchroman 2-carboxylic acid (TROLOX) or of the mitochondrially targeted but redox-inactive analogs decyltriphenylphosphonium or 4-chlorobutyltriphenylphosphonium. Thus matrix superoxide appears to be necessary for activation of UCP2 by exogenous superoxide. (iii) When the reduced to oxidized ratio of mitoQ accumulated by mitochondria was increased by inhibiting cytochrome oxidase, it induced nucleotide-sensitive uncoupling that was not inhibited by external superoxide dismutase. Under these conditions quinols are known to produce superoxide, and because mitoQ is localized within the mitochondrial matrix this suggests that production of superoxide in the matrix was sufficient to activate UCP2. Furthermore, the superoxide

  16. Expression of inducible nitric oxide synthase, caspase-3 and production of reactive oxygen intermediate on endothelial cells culture (HUVECs treated with P. falciparum infected erythrocytes and tumour necrosis factor-α

    Directory of Open Access Journals (Sweden)

    Loeki E. Fitri

    2006-09-01

    Full Text Available Cytoadherence of P. falciparum infected erythrocytes on endothelial cells is a key factor in development of severe malaria. This process may associated with the activation of local immune that was enhanced by tumour necrosis factor-α (TNF-α. This study was conducted to see the influence of P.falciparum infected erythrocytes cytoadherence and TNF-α treatment in inducing endothelial cells activation in vitro. inducible nitric oxide synthase (iNOS and caspase-3 expression, also reactive oxygen intermediate (ROI production were used as parameters. An Experimental laboratory study had been done to observe endothelial cells activation (HUVECs after treatment with TNF-α for 20 hours or P. falciparum infected erythrocytes for 1 hour or both of them. Normal endothelial cells culture had been used as a control. Using immunocytochemistry local immune activation of endothelial cells was determined by iNOS and caspase-3 expression. Nitro Blue Tetrazolium reduction-assay was conducted to see the ROI production semi quantitatively. inducible nitric oxide synthase expression only found on endothelial cells culture treated with P. falciparum infected erythrocytes or both P. falciparum infected erythrocytes and TNF-α. Caspase-3 expression found slightly on normal endothelial cells culture. This expression increased significantly on endothelial cells culture treated with both P.falciparum infected erythrocytes and TNF-α (p=0.000. The normal endothelial cells release low level of ROI in the presence of non-specific trigger, PMA. In the presence of P. falciparum infected erythrocytes or TNF-α or both of them, some cells showed medium to high levels of ROI. Cytoadherence of P. falciparum infected erythrocytes and TNF α treatment on endothelial cells can induce activation of local immune marked by increase inducible nitric oxide synthase and release of free radicals that cause cell damage. (Med J Indones 2006; 15:151-6 Keywords: P.falciparum ,HUVECs, TNF-α, i

  17. Superoxide dismutase 1-mediated production of ethanol- and DNA-derived radicals in yeasts challenged with hydrogen peroxide: molecular insights into the genome instability of peroxiredoxin-null strains.

    Science.gov (United States)

    Ogusucu, Renata; Rettori, Daniel; Netto, Luis E S; Augusto, Ohara

    2009-02-27

    Peroxiredoxins are receiving increasing attention as defenders against oxidative damage and sensors of hydrogen peroxide-mediated signaling events. In the yeast Saccharomyces cerevisiae, deletion of one or more isoforms of the peroxiredoxins is not lethal but compromises genome stability by mechanisms that remain under scrutiny. Here, we show that cytosolic peroxiredoxin-null cells (tsa1Deltatsa2Delta) are more resistant to hydrogen peroxide than wild-type (WT) cells and consume it faster under fermentative conditions. Also, tsa1Deltatsa2Delta cells produced higher yields of the 1-hydroxyethyl radical from oxidation of the glucose metabolite ethanol, as proved by spin-trapping experiments. A major role for Fenton chemistry in radical formation was excluded by comparing WT and tsa1Deltatsa2Delta cells with respect to their levels of total and chelatable metal ions and of radical produced in the presence of chelators. The main route for 1-hydroxyethyl radical formation was ascribed to the peroxidase activity of Cu,Zn-superoxide dismutase (Sod1), whose expression and activity increased approximately 5- and 2-fold, respectively, in tsa1Deltatsa2Delta compared with WT cells. Accordingly, overexpression of human Sod1 in WT yeasts led to increased 1-hydroxyethyl radical production. Relevantly, tsa1Deltatsa2Delta cells challenged with hydrogen peroxide contained higher levels of DNA-derived radicals and adducts as monitored by immuno-spin trapping and incorporation of (14)C from glucose into DNA, respectively. The results indicate that part of hydrogen peroxide consumption by tsa1Deltatsa2Delta cells is mediated by induced Sod1, which oxidizes ethanol to the 1-hydroxyethyl radical, which, in turn, leads to increased DNA damage. Overall, our studies provide a pathway to account for the hypermutability of peroxiredoxin-null strains.

  18. Differential intracellular calcium influx, nitric oxide production, ICAM-1 and IL8 expression in primary bovine endothelial cells exposed to nonesterified fatty acids.

    Science.gov (United States)

    Loaiza, Anitsi; Carretta, María D; Taubert, Anja; Hermosilla, Carlos; Hidalgo, María A; Burgos, Rafael A

    2016-02-25

    Nonesterified fatty acids (NEFAs) are involved in proinflammatory processes in cattle, including in the increased expression of adhesion molecules in endothelial cells. However, the mechanisms underlying these effects are still unknown. The aim of this study was to assess the effects of NEFAs on the intracellular calcium (Ca(2+) i) influx, nitric oxide production, and ICAM-1 and IL-8 expression in primary bovine umbilical vein endothelial cells (BUVECs). Myristic (MA), palmitic (PA), stearic (SA), oleic (OA) and linoleic acid (LA) rapidly increased Ca(2+) i. The calcium response to all tested NEFAs showed an extracellular calcium dependence and only the LA response was significantly inhibited until the intracellular calcium was chelated. The EC50 values for MA and LA were 125 μM and 37 μM, respectively, and the MA and LA effects were dependent on calcium release from the endoplasmic reticulum stores and on the L-type calcium channels. Only the calcium response to MA was significantly reduced by GW1100, a selective G-protein-coupled free fatty acid receptor (GPR40) antagonist. We also detected a functional FFAR1/GPR40 protein in BUVECs by using western blotting and the FFAR1/GPR40 agonist TAK-875. Only LA increased the cellular nitric oxide levels in a calcium-dependent manner. LA stimulation but not MA stimulation increased ICAM-1 and IL-8-expression in BUVECs. This effect was inhibited by GW1100, an antagonist of FFAR1/GPR40, but not by U-73122, a phospholipase C inhibitor. These findings strongly suggest that each individual NEFA stimulates endothelial cells in a different way, with clearly different effects on intracellular calcium mobilization, NO production, and IL-8 and ICAM-1 expression in primary BUVECs. These findings not only extend our understanding of NEFA-mediated diseases in ruminants, but also provide new insight into the different molecular mechanisms involved during endothelial cell activation by NEFAs.

  19. Superoxide dismutases in chronic gastritis.

    Science.gov (United States)

    Švagelj, Dražen; Terzić, Velimir; Dovhanj, Jasna; Švagelj, Marija; Cvrković, Mirta; Švagelj, Ivan

    2016-04-01

    Human gastric diseases have shown significant changes in the activity and expression of superoxide dismutase (SOD) isoforms. The aim of this study was to detect Mn-SOD activity and expression in the tissue of gastric mucosa, primarily in chronic gastritis (immunohistochemical Helicobacter pylori-negative gastritis, without other pathohistological changes) and to evaluate their possible connection with pathohistological diagnosis. We examined 51 consecutive outpatients undergoing endoscopy for upper gastrointestinal symptoms. Patients were classified based on their histopathological examinations and divided into three groups: 51 patients (archive samples between 2004-2009) with chronic immunohistochemical Helicobacter pylori-negative gastritis (mononuclear cells infiltration were graded as absent, moderate, severe) divided into three groups. Severity of gastritis was graded according to the updated Sydney system. Gastric tissue samples were used to determine the expression of Mn-SOD with anti-Mn-SOD Ab immunohistochemically. The Mn-SOD expression was more frequently present in specimens with severe and moderate inflammation of gastric mucosa than in those with normal mucosa. In patients with normal histological finding, positive immunoreactivity of Mn-SOD was not found. Our results determine the changes in Mn-SOD expression occurring in the normal gastric mucosa that had undergone changes in the intensity of chronic inflammatory infiltrates in the lamina propria. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  20. Manganese Superoxide Dismutase: Guardian of the Powerhouse

    Directory of Open Access Journals (Sweden)

    Daret K. St. Clair

    2011-10-01

    Full Text Available The mitochondrion is vital for many metabolic pathways in the cell, contributing all or important constituent enzymes for diverse functions such as β-oxidation of fatty acids, the urea cycle, the citric acid cycle, and ATP synthesis. The mitochondrion is also a major site of reactive oxygen species (ROS production in the cell. Aberrant production of mitochondrial ROS can have dramatic effects on cellular function, in part, due to oxidative modification of key metabolic proteins localized in the mitochondrion. The cell is equipped with myriad antioxidant enzyme systems to combat deleterious ROS production in mitochondria, with the mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD acting as the chief ROS scavenging enzyme in the cell. Factors that affect the expression and/or the activity of MnSOD, resulting in diminished antioxidant capacity of the cell, can have extraordinary consequences on the overall health of the cell by altering mitochondrial metabolic function, leading to the development and progression of numerous diseases. A better understanding of the mechanisms by which MnSOD protects cells from the harmful effects of overproduction of ROS, in particular, the effects of ROS on mitochondrial metabolic enzymes, may contribute to the development of novel treatments for various diseases in which ROS are an important component.

  1. Toxic effect of silica nanoparticles on endothelial cells through DNA damage response via Chk1-dependent G2/M checkpoint.

    Directory of Open Access Journals (Sweden)

    Junchao Duan

    Full Text Available Silica nanoparticles have become promising carriers for drug delivery or gene therapy. Endothelial cells could be directly exposed to silica nanoparticles by intravenous administration. However, the underlying toxic effect mechanisms of silica nanoparticles on endothelial cells are still poorly understood. In order to clarify the cytotoxicity of endothelial cells induced by silica nanoparticles and its mechanisms, cellular morphology, cell viability and lactate dehydrogenase (LDH release were observed in human umbilical vein endothelial cells (HUVECs as assessing cytotoxicity, resulted in a dose- and time- dependent manner. Silica nanoparticles-induced reactive oxygen species (ROS generation caused oxidative damage followed by the production of malondialdehyde (MDA as well as the inhibition of superoxide dismutase (SOD and glutathione peroxidase (GSH-Px. Both necrosis and apoptosis were increased significantly after 24 h exposure. The mitochondrial membrane potential (MMP decreased obviously in a dose-dependent manner. The degree of DNA damage including the percentage of tail DNA, tail length and Olive tail moment (OTM were markedly aggravated. Silica nanoparticles also induced G2/M arrest through the upregulation of Chk1 and the downregulation of Cdc25C, cyclin B1/Cdc2. In summary, our data indicated that the toxic effect mechanisms of silica nanoparticles on endothelial cells was through DNA damage response (DDR via Chk1-dependent G2/M checkpoint signaling pathway, suggesting that exposure to silica nanoparticles could be a potential hazards for the development of cardiovascular diseases.

  2. Intracellular L-arginine concentration does not determine NO production in endothelial cells: Implications on the 'L-arginine paradox'

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Soyoung; Mohan, Srinidi [Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260 (United States); Fung, Ho-Leung, E-mail: hlfung@buffalo.edu [Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260 (United States)

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Our findings provide a possible solution to the 'L-arginine paradox'. Black-Right-Pointing-Pointer Extracellular L-arginine concentration is the major determinant of NO production. Black-Right-Pointing-Pointer Cellular L-arginine action is limited by cellular ARG transport, not the K{sub m} of NOS. Black-Right-Pointing-Pointer We explain how L-arginine supplementation can work to increase endothelial function. -- Abstract: We examined the relative contributory roles of extracellular vs. intracellular L-arginine (ARG) toward cellular activation of endothelial nitric oxide synthase (eNOS) in human endothelial cells. EA.hy926 human endothelial cells were incubated with different concentrations of {sup 15}N{sub 4}-ARG, ARG, or L-arginine ethyl ester (ARG-EE) for 2 h. To modulate ARG transport, siRNA for ARG transporter (CAT-1) vs. sham siRNA were transfected into cells. ARG transport activity was assessed by cellular fluxes of ARG, {sup 15}N{sub 4}-ARG, dimethylarginines, and L-citrulline by an LC-MS/MS assay. eNOS activity was determined by nitrite/nitrate accumulation, either via a fluorometric assay or by{sup 15}N-nitrite or estimated {sup 15}N{sub 3}-citrulline concentrations when {sup 15}N{sub 4}-ARG was used to challenge the cells. We found that ARG-EE incubation increased cellular ARG concentration but no increase in nitrite/nitrate was observed, while ARG incubation increased both cellular ARG concentration and nitrite accumulation. Cellular nitrite/nitrate production did not correlate with cellular total ARG concentration. Reduced {sup 15}N{sub 4}-ARG cellular uptake in CAT-1 siRNA transfected cells vs. control was accompanied by reduced eNOS activity, as determined by {sup 15}N-nitrite, total nitrite and {sup 15}N{sub 3}-citrulline formation. Our data suggest that extracellular ARG, not intracellular ARG, is the major determinant of NO production in endothelial cells. It is likely that once transported inside

  3. Intracellular L-arginine concentration does not determine NO production in endothelial cells: Implications on the “L-arginine paradox”

    International Nuclear Information System (INIS)

    Shin, Soyoung; Mohan, Srinidi; Fung, Ho-Leung

    2011-01-01

    Highlights: ► Our findings provide a possible solution to the “L-arginine paradox”. ► Extracellular L-arginine concentration is the major determinant of NO production. ► Cellular L-arginine action is limited by cellular ARG transport, not the K m of NOS. ► We explain how L-arginine supplementation can work to increase endothelial function. -- Abstract: We examined the relative contributory roles of extracellular vs. intracellular L-arginine (ARG) toward cellular activation of endothelial nitric oxide synthase (eNOS) in human endothelial cells. EA.hy926 human endothelial cells were incubated with different concentrations of 15 N 4 -ARG, ARG, or L-arginine ethyl ester (ARG-EE) for 2 h. To modulate ARG transport, siRNA for ARG transporter (CAT-1) vs. sham siRNA were transfected into cells. ARG transport activity was assessed by cellular fluxes of ARG, 15 N 4 -ARG, dimethylarginines, and L-citrulline by an LC–MS/MS assay. eNOS activity was determined by nitrite/nitrate accumulation, either via a fluorometric assay or by 15 N-nitrite or estimated 15 N 3 -citrulline concentrations when 15 N 4 -ARG was used to challenge the cells. We found that ARG-EE incubation increased cellular ARG concentration but no increase in nitrite/nitrate was observed, while ARG incubation increased both cellular ARG concentration and nitrite accumulation. Cellular nitrite/nitrate production did not correlate with cellular total ARG concentration. Reduced 15 N 4 -ARG cellular uptake in CAT-1 siRNA transfected cells vs. control was accompanied by reduced eNOS activity, as determined by 15 N-nitrite, total nitrite and 15 N 3 -citrulline formation. Our data suggest that extracellular ARG, not intracellular ARG, is the major determinant of NO production in endothelial cells. It is likely that once transported inside the cell, ARG can no longer gain access to the membrane-bound eNOS. These observations indicate that the “L-arginine paradox” should not consider intracellular ARG

  4. Role of folic acid in nitric oxide bioavailability and vascular endothelial function.

    Science.gov (United States)

    Stanhewicz, Anna E; Kenney, W Larry

    2017-01-01

    Folic acid is a member of the B-vitamin family and is essential for amino acid metabolism. Adequate intake of folic acid is vital for metabolism, cellular homeostasis, and DNA synthesis. Since the initial discovery of folic acid in the 1940s, folate deficiency has been implicated in numerous disease states, primarily those associated with neural tube defects in utero and neurological degeneration later in life. However, in the past decade, epidemiological studies have identified an inverse relation between both folic acid intake and blood folate concentration and cardiovascular health. This association inspired a number of clinical studies that suggested that folic acid supplementation could reverse endothelial dysfunction in patients with cardiovascular disease (CVD). Recently, in vitro and in vivo studies have begun to elucidate the mechanism(s) through which folic acid improves vascular endothelial function. These studies, which are the focus of this review, suggest that folic acid and its active metabolite 5-methyl tetrahydrofolate improve nitric oxide (NO) bioavailability by increasing endothelial NO synthase coupling and NO production as well as by directly scavenging superoxide radicals. By improving NO bioavailability, folic acid may protect or improve endothelial function, thereby preventing or reversing the progression of CVD in those with overt disease or elevated CVD risk. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Statins Prevent Dextrose-Induced Endoplasmic Reticulum Stress and Oxidative Stress in Endothelial and HepG2 Cells.

    Science.gov (United States)

    Kojanian, Hagop; Szafran-Swietlik, Anna; Onstead-Haas, Luisa M; Haas, Michael J; Mooradian, Arshag D

    Statins have favorable effects on endothelial function partly because of their capacity to reduce oxidative stress. However, antioxidant vitamins, unlike statins, are not as cardioprotective, and this paradox has been explained by failure of vitamin antioxidants to ameliorate endoplasmic reticulum (ER) stress. To determine whether statins prevent dextrose-induced ER stress in addition to their antioxidative effects, human umbilical vein endothelial cells and HepG2 hepatocytes were treated with 27.5 mM dextrose in the presence of simvastatin (lipophilic statin that is a prodrug) and pravastatin (water-soluble active drug), and oxidative stress, ER stress, and cell death were measured. Superoxide generation was measured using 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride. ER stress was measured using the placental alkaline phosphatase assay and Western blot of glucose-regulated protein 75, c-jun-N-terminal kinase, phospho-JNK, eukaryotic initiating factor 2α and phospho-eIF2α, and X-box binding protein 1 mRNA splicing. Cell viability was measured by propidium iodide staining. Superoxide anion production, ER stress, and cell death induced by 27.5 mM dextrose were inhibited by therapeutic concentrations of simvastatin and pravastatin. The salutary effects of statins on endothelial cells in reducing both ER stress and oxidative stress observed with pravastatin and the prodrug simvastatin suggest that the effects may be independent of cholesterol-lowering activity.

  6. Polysulfides and products of H2S/S-nitrosoglutathione in comparison to H2S, glutathione and antioxidant Trolox are potent scavengers of superoxide anion radical and produce hydroxyl radical by decomposition of H2O2.

    Science.gov (United States)

    Misak, Anton; Grman, Marian; Bacova, Zuzana; Rezuchova, Ingeborg; Hudecova, Sona; Ondriasova, Elena; Krizanova, Olga; Brezova, Vlasta; Chovanec, Miroslav; Ondrias, Karol

    2018-06-01

    Exogenous and endogenously produced sulfide derivatives, such as H 2 S/HS - /S 2- , polysulfides and products of the H 2 S/S-nitrosoglutathione interaction (S/GSNO), affect numerous biological processes in which superoxide anion (O 2 - ) and hydroxyl (OH) radicals play an important role. Their cytoprotective-antioxidant and contrasting pro-oxidant-toxic effects have been reported. Therefore, the aim of our work was to contribute to resolving this apparent inconsistency by studying sulfide derivatives/free radical interactions and their consequent biological effects compared to the antioxidants glutathione (GSH) and Trolox. Using the electron paramagnetic resonance (EPR) spin trapping technique and O 2 - , we found that a polysulfide (Na 2 S 4 ) and S/GSNO were potent scavengers of O 2 - and cPTIO radicals compared to H 2 S (Na 2 S), GSH and Trolox, and S/GSNO scavenged the DEPMPO-OH radical. As detected by the EPR spectra of DEPMPO-OH, the formation of OH in physiological solution by S/GSNO was suggested. All the studied sulfide derivatives, but not Trolox or GSH, had a bell-shaped potency to decompose H 2 O 2 and produced OH in the following order: S/GSNO > Na 2 S 4  ≥ Na 2 S > GSH = Trolox = 0, but they scavenged OH at higher concentrations. In studies of the biological consequences of these sulfide derivatives/H 2 O 2 properties, we found the following: (i) S/GSNO alone and all sulfide derivatives in the presence of H 2 O 2 cleaved plasmid DNA; (ii) S/GSNO interfered with viral replication and consequently decreased the infectivity of viruses; (iii) the sulfide derivatives induced apoptosis in A2780 cells but inhibited apoptosis induced by H 2 O 2 ; and (iv) Na 2 S 4 modulated intracellular calcium in A87MG cells, which depended on the order of Na 2 S 4 /H 2 O 2 application. We suggest that the apparent inconsistency of the cytoprotective-antioxidant and contrasting pro-oxidant-toxic biological effects of sulfide derivatives results from their time

  7. Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets

    Science.gov (United States)

    Möhle, Robert; Green, David; Moore, Malcolm A. S.; Nachman, Ralph L.; Rafii, Shahin

    1997-01-01

    We have shown that coculture of bone marrow microvascular endothelial cells with hematopoietic progenitor cells results in proliferation and differentiation of megakaryocytes. In these long-term cultures, bone marrow microvascular endothelial cell monolayers maintain their cellular integrity in the absence of exogenous endothelial growth factors. Because this interaction may involve paracrine secretion of cytokines, we evaluated megakaryocytic cells for secretion of vascular endothelial growth factor (VEGF). Megakaryocytes (CD41a+) were generated by ex vivo expansion of hematopoietic progenitor cells with kit-ligand and thrombopoietin for 10 days and further purified with immunomagnetic microbeads. Using reverse transcription–PCR, we showed that megakaryocytic cell lines (Dami, HEL) and purified megakaryocytes expressed mRNA of the three VEGF isoforms (121, 165, and 189 amino acids). Large quantities of VEGF (>1 ng/106 cells/3 days) were detected in the supernatant of Dami cells, ex vivo-generated megakaryocytes, and CD41a+ cells isolated from bone marrow. The constitutive secretion of VEGF by CD41a+ cells was stimulated by growth factors of the megakaryocytic lineage (interleukin 3, thrombopoietin). Western blotting of heparin–Sepharose-enriched supernatant mainly detected the isoform VEGF165. In addition, immunohistochemistry showed intracytoplasmic VEGF in polyploid megakaryocytes. Thrombin stimulation of megakaryocytes and platelets resulted in rapid release of VEGF within 30 min. We conclude that human megakaryocytes produce and secrete VEGF in an inducible manner. Within the bone marrow microenvironment, VEGF secreted by megakaryocytes may contribute to the proliferation of endothelial cells. VEGF delivered to sites of vascular injury by activated platelets may initiate angiogenesis. PMID:9012841

  8. Inhibitory effects of Kaempferia parviflora extract on monocyte adhesion and cellular reactive oxygen species production in human umbilical vein endothelial cells.

    Science.gov (United States)

    Horigome, Satoru; Yoshida, Izumi; Ito, Shihomi; Inohana, Shuichi; Fushimi, Kei; Nagai, Takeshi; Yamaguchi, Akihiro; Fujita, Kazuhiro; Satoyama, Toshiya; Katsuda, Shin-Ichi; Suzuki, Shinobu; Watai, Masatoshi; Hirose, Naoto; Mitsue, Takahiro; Shirakawa, Hitoshi; Komai, Michio

    2017-04-01

    The rhizome of Kaempferia parviflora (KP) is used in traditional Thai medicine. In this study, we investigated the effects of an ethanol KP extract and two of its components [5,7-dimethoxyflavone (DMF) and 5-hydroxy-3,7,3',4'-tetramethoxyflavone (TMF)] on monocyte adhesion and cellular reactive oxygen species (ROS) production in human umbilical vein endothelial cells (HUVECs), which provide an in vitro model of events relevant to the development and progression of atherosclerosis. RAW264.7 mouse macrophage-like cells were incubated with various concentrations of KP extract or polymethoxyflavonoids and stimulated with lipopolysaccharide prior to measuring nitrite levels in the culture media. Monocyte adhesion was evaluated by measuring the fluorescently labeled human monocytic leukemia THP-1 cells that is attached to tumor necrosis factor-α (TNF-α)-stimulated HUVECs. Cellular ROS production was assessed by measuring cellular antioxidant activity using pyocyanin-stimulated HUVECs. KP extract and DMF reduced nitrite levels (as indicator of nitric oxide production) in LPS-stimulated RAW264.7 cells and also inhibited THP-1 cell adhesion to HUVECs. These treatments induced mRNA expression of endothelial nitric oxide synthase in TNF-α-stimulated HUVECs and downregulated that of various cell adhesion molecules, inflammatory mediators, and endothelial function-related genes. Angiotensin-converting enzyme activity was inhibited by KP extract in vitro. Furthermore, KP extract, DMF, and TMF inhibited the production of cellular ROS in pyocyanin-stimulated HUVECs. KP extract, DMF, and TMF showed potential anti-inflammatory and antioxidant effects in these in vitro models, properties that would inhibit the development and progression of atherosclerosis.

  9. 3',4'-Dihydroxyflavonol reduces superoxide and improves nitric oxide function in diabetic rat mesenteric arteries.

    Directory of Open Access Journals (Sweden)

    Chen-Huei Leo

    diabetic rats with DiOHF significantly reduced vascular ROS and restored NO-mediated endothelium-dependent relaxation. Treatment of the diabetic rats with DiOHF also increased eNOS expression, both in total and as a dimer.DiOHF improves NO activity in diabetes by reducing Nox2-dependent superoxide production and preventing eNOS uncoupling to improve endothelial function.

  10. Sildenafil restores endothelial function in the apolipoprotein E knockout mouse

    Directory of Open Access Journals (Sweden)

    Balarini Camille M

    2013-01-01

    Full Text Available Abstract Background Atherosclerosis is an inflammatory process of the arterial walls and is initiated by endothelial dysfunction accompanied by an imbalance in the production of reactive oxygen species (ROS and nitric oxide (NO. Sildenafil, a selective phosphodiesterase-5 (PDE5 inhibitor used for erectile dysfunction, exerts its cardiovascular effects by enhancing the effects of NO. The aim of this study was to investigate the influence of sildenafil on endothelial function and atherosclerosis progression in apolipoprotein E knockout (apoE−/− mice. Methods ApoE−/− mice treated with sildenafil (Viagra®, 40 mg/kg/day, for 3 weeks, by oral gavage were compared to the untreated apoE−/− and the wild-type (WT mice. Aortic rings were used to evaluate the relaxation responses to acetylcholine (ACh in all of the groups. In a separate set of experiments, the roles of NO and ROS in the relaxation response to ACh were evaluated by incubating the aortic rings with L-NAME (NO synthase inhibitor or apocynin (NADPH oxidase inhibitor. In addition, the atherosclerotic lesions were quantified and superoxide production was assessed. Results Sildenafil restored the vasodilator response to acetylcholine (ACh in the aortic rings of the apoE−/− mice. Treatment with L-NAME abolished the vasodilator responses to ACh in all three groups of mice and revealed an augmented participation of NO in the endothelium-dependent vasodilation in the sildenafil-treated animals. The normalized endothelial function in sildenafil-treated apoE−/− mice was unaffected by apocynin highlighting the low levels of ROS production in these animals. Moreover, morphological analysis showed that sildenafil treatment caused approximately a 40% decrease in plaque deposition in the aorta. Conclusion This is the first study demonstrating the beneficial effects of chronic treatment with sildenafil on endothelial dysfunction and atherosclerosis in a model of spontaneous

  11. Wine and endothelial function.

    Science.gov (United States)

    Caimi, G; Carollo, C; Lo Presti, R

    2003-01-01

    In recent years many studies have focused on the well-known relationship between wine consumption and cardiovascular risk. Wine exerts its protective effects through various changes in lipoprotein profile, coagulation and fibrinolytic cascades, platelet aggregation, oxidative mechanisms and endothelial function. The last has earned more attention for its implications in atherogenesis. Endothelium regulates vascular tone by a delicate balancing among vasorelaxing (nitric oxide [NO]) and vasoconstrincting (endothelins) factors produced by endothelium in response to various stimuli. In rat models, wine and other grape derivatives exerted an endothelium-dependent vasorelaxing capacity especially associated with the NO-stimulating activity of their polyphenol components. In experimental conditions, reservatrol (a stilbene polyphenol) protected hearts and kidneys from ischemia-reperfusion injury through antioxidant activity and upregulation of NO production. Wine polyphenols are also able to induce the expression of genes involved in the NO pathway within the arterial wall. The effects of wine on endothelial function in humans are not yet clearly understood. A favorable action of red wine or dealcoholized wine extract or purple grape juice on endothelial function has been observed by several authors, but discrimination between ethanol and polyphenol effects is controversial. It is, however likely that regular and prolonged moderate wine drinking positively affects endothelial function. The beneficial effects of wine on cardiovascular health are greater if wine is associated with a healthy diet. The most recent nutritional and epidemiologic studies show that the ideal diet closely resembles the Mediterranean diet.

  12. Species-specific control of external superoxide levels by the coral holobiont during a natural bleaching event

    Science.gov (United States)

    Diaz, Julia M.; Hansel, Colleen M.; Apprill, Amy; Brighi, Caterina; Zhang, Tong; Weber, Laura; McNally, Sean; Xun, Liping

    2016-12-01

    The reactive oxygen species superoxide (O2.-) is both beneficial and detrimental to life. Within corals, superoxide may contribute to pathogen resistance but also bleaching, the loss of essential algal symbionts. Yet, the role of superoxide in coral health and physiology is not completely understood owing to a lack of direct in situ observations. By conducting field measurements of superoxide produced by corals during a bleaching event, we show substantial species-specific variation in external superoxide levels, which reflect the balance of production and degradation processes. Extracellular superoxide concentrations are independent of light, algal symbiont abundance and bleaching status, but depend on coral species and bacterial community composition. Furthermore, coral-derived superoxide concentrations ranged from levels below bulk seawater up to ~120 nM, some of the highest superoxide concentrations observed in marine systems. Overall, these results unveil the ability of corals and/or their microbiomes to regulate superoxide in their immediate surroundings, which suggests species-specific roles of superoxide in coral health and physiology.

  13. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity.

    Science.gov (United States)

    Schäfer, Nicola; Lohmann, Christine; Winnik, Stephan; van Tits, Lambertus J; Miranda, Melroy X; Vergopoulos, Athanasios; Ruschitzka, Frank; Nussberger, Jürg; Berger, Stefan; Lüscher, Thomas F; Verrey, François; Matter, Christian M

    2013-12-01

    Aldosterone plays a crucial role in cardiovascular disease. 'Systemic' inhibition of its mineralocorticoid receptor (MR) decreases atherosclerosis by reducing inflammation and oxidative stress. Obesity, an important cardiovascular risk factor, is an inflammatory disease associated with increased plasma aldosterone levels. We have investigated the role of the 'endothelial' MR in obesity-induced endothelial dysfunction, the earliest stage in atherogenesis. C57BL/6 mice were exposed to a normal chow diet (ND) or a high-fat diet (HFD) alone or in combination with the MR antagonist eplerenone (200 mg/kg/day) for 14 weeks. Diet-induced obesity impaired endothelium-dependent relaxation in response to acetylcholine, whereas eplerenone treatment of obese mice prevented this. Expression analyses in aortic endothelial cells isolated from these mice revealed that eplerenone attenuated expression of pro-oxidative NADPH oxidase (subunits p22phox, p40phox) and increased expression of antioxidative genes (glutathione peroxidase-1, superoxide dismutase-1 and -3) in obesity. Eplerenone did not affect obesity-induced upregulation of cyclooxygenase (COX)-1 or prostacyclin synthase. Endothelial-specific MR deletion prevented endothelial dysfunction in obese (exhibiting high 'endogenous' aldosterone) and in 'exogenous' aldosterone-infused lean mice. Pre-incubation of aortic rings from aldosterone-treated animals with the COX-inhibitor indomethacin restored endothelial function. Exogenous aldosterone administration induced endothelial expression of p22phox in the presence, but not in the absence of the endothelial MR. Obesity-induced endothelial dysfunction depends on the 'endothelial' MR and is mediated by an imbalance of oxidative stress-modulating mechanisms. Therefore, MR antagonists may represent an attractive therapeutic strategy in the increasing population of obese patients to decrease vascular dysfunction and subsequent atherosclerotic complications.

  14. Phosphorylation and activation of p42 and p44 mitogen-activated protein kinase are required for the P2 purinoceptor stimulation of endothelial prostacyclin production.

    Science.gov (United States)

    Patel, V; Brown, C; Goodwin, A; Wilkie, N; Boarder, M R

    1996-11-15

    Extracellular ATP and ADP, released from platelets and other sites stimulate the endothelial production of prostacyclin (PGI2) by acting on G-protein-coupled P2Y2 and P2Y2 purinoceptors, contributing to the maintenance of a non-thrombogenic surface. The mechanism, widely described as being dependent on elevated cytosolic [Ca2+], also requires protein tyrosine phosphorylation. Here we show that activation of both these P2 receptor types leads to the tyrosine phosphorylation and activation of both the p42 and p44 forms of mitogen-activated protein kinase (MAPK). 2-Methylthio-ATP and UTP, selectively activating P2Y1 and P2Y2 purinoceptors respectively, and ATP, a non-selective agonist at these two receptors, stimulate the tyrosine phosphorylation of both p42mapk and p44mapk, as revealed by Western blots with an antiserum specific for the tyrosine-phosphorylated forms of the enzymes. By using separation on Resource Q columns, peptide kinase activity associated with the phosphorylated MAPK enzymes distributes into two peaks, one mainly p42mapk and one mainly p44mapk, both of which are stimulated by ATP with respect to kinase activity and phospho-MAPK immunoreactivity. Stimulation of P2Y1 or P2Y2 purinoceptors leads to a severalfold increase in PGI2 efflux; this was blocked in a dose-dependent manner by the selective MAPK kinase inhibitor PD98059. This drug also blocked the agonist-stimulated increase in phospho-MAPK immunoreactivity for both p42mapk and p44mapk but left the phospholipase C response to P2 agonists essentially unchanged. Olomoucine has been reported to inhibit p44mapk activity. Here we show that in the same concentration range olomoucine inhibits activity in both peaks from the Resource Q column and also the agonist stimulation of 6-keto-PGF1, but has no effect on agonist-stimulated phospho-MAPK immunoreactivity. These results provide direct evidence for the involvement of p42 and p44 MAPK in the PGI2 response of intact endothelial cells: we have shown

  15. Allergen-stimulated T lymphocytes from allergic patients induce vascular cell adhesion molecule-1 (VCAM-1) expression and IL-6 production by endothelial cells.

    Science.gov (United States)

    Delneste, Y; Jeannin, P; Gosset, P; Lassalle, P; Cardot, E; Tillie-Leblond, I; Joseph, M; Pestel, J; Tonnel, A B

    1995-01-01

    Adhesion of inflammatory cells to endothelium is a critical step for their transvascular migration to inflammatory sites. To evaluate the relationship between T lymphocytes (TL) and vascular endothelium, supernatants from allergen-stimulated TL obtained from patients sensitive to Dermatophagoides pteronyssinus (Dpt) versus healthy subjects were added to endothelial cell (EC) cultures. TL were stimulated by autologous-activated antigen-presenting cells (APC) previously fixed in paraformaldehyde to prevent monokine secretion. Two parameters were measured: the expression of adhesion molecule and the production of IL-6. Related allergen-stimulated TL supernatants from allergic patients induced an increase of VCAM-1 and intercellular adhesion molecule-1 (ICAM-1) expression when supernatants of the control groups (TL exposed to an unrelated allergen or not stimulated or TL obtained from healthy subjects) did not. E-selectin expression was not modulated whatever the supernatant added to EC culture. IL-6 production by EC was significantly enhanced after activation with related allergen-stimulated TL supernatants from allergics compared with control supernatants. Induction of VCAM-1 expression was inhibited by adding neutralizing antibodies against IL-4, whereas IL-6 production and ICAM-1 expression were inhibited by anti-interferon-gamma (IFN-gamma) antibodies. Enhanced production of IL-4 and IFN-gamma was detected in related allergen-stimulated TL supernatants from allergic subjects compared with the different supernatants. These data suggest that allergen-specific TL present in the peripheral blood of allergic patients are of Th1 and Th2 subtypes. Their stimulation in allergic patients may lead to the activation of endothelial cells and thereby participate in leucocyte recruitment towards the inflammatory site. PMID:7542574

  16. Effects of 5-fluorouracil on morphology, cell cycle, proliferation, apoptosis, autophagy and ROS production in endothelial cells and cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Chiara Focaccetti

    Full Text Available Antimetabolites are a class of effective anticancer drugs interfering in essential biochemical processes. 5-Fluorouracil (5-FU and its prodrug Capecitabine are widely used in the treatment of several solid tumors (gastro-intestinal, gynecological, head and neck, breast carcinomas. Therapy with fluoropyrimidines is associated with a wide range of adverse effects, including diarrhea, dehydration, abdominal pain, nausea, stomatitis, and hand-foot syndrome. Among the 5-FU side effects, increasing attention is given to cardiovascular toxicities induced at different levels and intensities. Since the mechanisms related to 5-FU-induced cardiotoxicity are still unclear, we examined the effects of 5-FU on primary cell cultures of human cardiomyocytes and endothelial cells, which represent two key components of the cardiovascular system. We analyzed at the cellular and molecular level 5-FU effects on cell proliferation, cell cycle, survival and induction of apoptosis, in an experimental cardioncology approach. We observed autophagic features at the ultrastructural and molecular levels, in particular in 5-FU exposed cardiomyocytes. Reactive oxygen species (ROS elevation characterized the endothelial response. These responses were prevented by a ROS scavenger. We found induction of a senescent phenotype on both cell types treated with 5-FU. In vivo, in a xenograft model of colon cancer, we showed that 5-FU treatment induced ultrastructural changes in the endothelium of various organs. Taken together, our data suggest that 5-FU can affect, both at the cellular and molecular levels, two key cell types of the cardiovascular system, potentially explaining some manifestations of 5-FU-induced cardiovascular toxicity.

  17. Differential Effects of Superoxide Dismutase Mimetics after Mechanical Overload of Articular Cartilage

    Directory of Open Access Journals (Sweden)

    Mitchell C. Coleman

    2017-11-01

    Full Text Available Post-traumatic osteoarthritis can develop as a result of the initial mechanical impact causing the injury and also as a result of chronic changes in mechanical loading of the joint. Aberrant mechanical loading initiates excessive production of reactive oxygen species, oxidative damage, and stress that appears to damage mitochondria in the surviving chondrocytes. To probe the benefits of increasing superoxide removal with small molecular weight superoxide dismutase mimetics under severe loads, we applied both impact and overload injury scenarios to bovine osteochondral explants using characterized mechanical platforms with and without GC4403, MnTE-2-PyP, and MnTnBuOE-2-PyP. In impact scenarios, each of these mimetics provides some dose-dependent protection from cell death and loss of mitochondrial content while in repeated overloading scenarios only MnTnBuOE-2-PyP provided a clear benefit to chondrocytes. These results support the hypothesis that superoxide is generated in excess after impact injuries and suggest that superoxide production within the lipid compartment may be a critical mediator of responses to chronic overload. This is an important nuance distinguishing roles of superoxide, and thus superoxide dismutases, in mediating damage to cellular machinery in hyper-acute impact scenarios compared to chronic scenarios.

  18. Helicobacter pylori induces vascular endothelial growth factor production in gastric epithelial cells through hypoxia-inducible factor-1α-dependent pathway.

    Science.gov (United States)

    Kang, Min-Jung; Song, Eun-Jung; Kim, Bo-Yeon; Kim, Dong-Jae; Park, Jong-Hwan

    2014-12-01

    Although Helicobacter pylori have been known to induce vascular endothelial growth factor (VEGF) production in gastric epithelial cells, the precise mechanism for cellular signaling is incompletely understood. In this study, we investigated the role of bacterial virulence factor and host cellular signaling in VEGF production of H. pylori-infected gastric epithelial cells. We evaluated production of VEGF, activation of nuclear factor nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPKs) and hypoxia-inducible factor-1α (HIF-1α) stabilization in gastric epithelial cells infected with H. pylori WT or isogenic mutants deficient in type IV secretion system (T4SS). H. pylori induced VEGF production in gastric epithelial cells via both T4SS-dependent and T4SS-independent pathways, although T4SS-independent pathway seems to be the dominant signaling. The inhibitor assay implicated that activation of NF-κB and MAPKs is dispensable for H. pylori-induced VEGF production in gastric epithelial cells. H. pylori led to HIF-1α stabilization in gastric epithelial cells independently of T4SS, NF-κB, and MAPKs, which was essential for VEGF production in these cells. N-acetyl-cysteine (NAC), a reactive oxygen species (ROS) inhibitor, treatment impaired H. pylori-induced HIF-1α stabilization and VEGF production in gastric epithelial cells. We defined the important role of ROS-HIF-1α axis in VEGF production of H. pylori-infected gastric epithelial cells, and bacterial T4SS has a minor role in H. pylori-induced VEGF production of gastric epithelial cells. © 2014 John Wiley & Sons Ltd.

  19. Prostacyclin production in rabbit arteries in situ: inhibition by arachidonic acid-induced endothelial cell damage or by low-dose aspirin.

    Science.gov (United States)

    Ingerman-Wojenski, C; Silver, M J; Smith, J B; Nissenbaum, M; Sedar, A W

    1981-04-01

    The central artery of the rabbit ear was perfused in situ and effluent fractions from the artery were assayed for 6-keto-prostaglandin F1 alpha (6-K-PGF1 alpha) and thromboxane B2 (TxB2), the stable metabolites of prostacyclin (PGI2) and TxA2, using specific radioimmunoassays. These metabolites of arachidonic acid (AA) were not detected in the effluent during infusion of Tyrode's solution but both metabolites were detected when small amounts of AA were infused into the artery. Examination of the arteries by scanning electron microscopy revealed that high concentrations of AA which caused a short burst of 6-K-PGF1 alpha and TxB2 production damaged the endothelial cells while lower concentrations which stimulated continuous production did not cause damage. When a non-damaging concentration of AA was infused into an artery that had previously received a damaging concentration, PG production was greatly reduced. Pretreatment of the rabbits with 4 mg/kg acetyl-salicylic acid (ASA) inhibited 6-K-PGF1 alpha production by the rabbit ear artery in response to AA and 70% inhibition was still evident 18 hours after ASA.

  20. 1α,25-Dihydroxyvitamin D(3) inhibits vascular cellular adhesion molecule-1 expression and interleukin-8 production in human coronary arterial endothelial cells.

    Science.gov (United States)

    Kudo, Keiko; Hasegawa, Shunji; Suzuki, Yasuo; Hirano, Reiji; Wakiguchi, Hiroyuki; Kittaka, Setsuaki; Ichiyama, Takashi

    2012-11-01

    Kawasaki disease is an acute febrile vasculitis of childhood that is associated with elevated production of inflammatory cytokines, causing damage to the coronary arteries. The production of proinflammatory cytokines and expression of adhesion molecules in human coronary arterial endothelial cells (HCAECs) is regulated by nuclear transcription factor-κB (NF-κB) activation. We have previously reported that the active form of vitamin D, 1α,25-dihydroxyvitamin D(3) (1α,25-(OH)(2)D(3)), inhibits tumor necrosis factor-α (TNF-α)-induced NF-κB activation. In this study, we examined the anti-inflammatory effects of 1α,25-(OH)(2)D(3) on TNF-α-induced adhesion molecule expression (vascular cellular adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1)) and cytokine production (interleukin-6 (IL-6) and IL-8) in HCAECs. Pretreatment with 1α,25-(OH)(2)D(3) significantly inhibited TNF-α-induced VCAM-1 expression and IL-8 production in HCAECs. Our results suggest that adjunctive 1α,25-(OH)(2)D(3) therapy may modulate the inflammatory response during Kawasaki disease vasculitis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Distinct associations of HbA(1c) and the urinary excretion of pentosidine, an advanced glycosylation end-product, with markers of endothelial function in insulin-dependent diabetes mellitus

    NARCIS (Netherlands)

    Smulders, R.A.; Stehouwer, C.D.A.; Schalkwijk, C.G.; Donker, A.J.M.; Hinsbergh, V.W.M. van; TeKoppele, J.M.

    1998-01-01

    Dysfunction of the vascular endothelium is considered an early step in the development of diabetic angiopathy. Hyperglycaemia results in endothelial dysfunction, both through direct effects of glucose and through formation of advanced glycosylation end-products (AGEs). We hypothesized that the

  2. Signaling hierarchy regulating human endothelial cell development.

    Science.gov (United States)

    Kelly, Melissa A; Hirschi, Karen K

    2009-05-01

    Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these studies. Using human embryonic stem cells as a model system, we were able to reproducibly and robustly generate differentiated endothelial cells via coculture on OP9 marrow stromal cells. We found that, in contrast to studies in the mouse, bFGF and VEGF had no specific effects on the initiation of human vasculogenesis. However, exogenous Ihh promoted endothelial cell differentiation, as evidenced by increased production of cells with cobblestone morphology that coexpress multiple endothelial-specific genes and proteins, form lumens, and exhibit DiI-AcLDL uptake. Inhibition of BMP signaling using Noggin or BMP4, specifically, using neutralizing antibodies suppressed endothelial cell formation; whereas, addition of rhBMP4 to cells treated with the hedgehog inhibitor cyclopamine rescued endothelial cell development. Our studies revealed that Ihh promoted human endothelial cell differentiation from pluripotent hES cells via BMP signaling, providing novel insights applicable to modulating human endothelial cell formation and vascular regeneration for human clinical therapies.

  3. Additive effects of low concentrations of estradiol-17β and progesterone on nitric oxide production by human vascular endothelial cells through shared signaling pathways.

    Science.gov (United States)

    Pang, Yefei; Thomas, Peter

    2017-01-01

    Potential cardiovascular benefits of low-dose formulations of estrogens and progesterone (P4) for treating climacteric symptoms in postmenopausal women remain unclear because information is lacking on their combined vascular effects. Protective effects of low concentrations (5nM) of P4 and estradiol-17β (E2), alone and in combination (P4+E2), were investigated in a nongenomic model of vascular protection which measured acute increases in nitric oxide (NO) production by cultured human umbilical vein endothelial cells (HUVECs). Treatment with 5nM P4+E2 for twenty minutes significantly increased NO production and endothelial NO synthase (eNOS) phosphorylation, whereas 5nM treatments with either steroid alone were ineffective. The 5nM P4+E2 treatment also increased phosphorylation of ERK and Akt, mimicking the effects of higher concentrations of P4 and E2 alone. Pre-treatment with inhibitors of PI3K (wortmannin), Akt (ML-9), and MAP kinase (AZD6244 and U0126) completely blocked the NO response to 5nM P4+E2. Combined 5nM treatments with specific estrogen and progesterone receptor agonists showed an involvement of membrane progesterone receptor alpha (mPRα, also known as PAQR7), G protein-coupled estrogen receptor 1 (GPER), and estrogen receptor alpha (ERα), but not ERβ, in P4+E2 stimulation of NO production. P4+E2 also exerted genomic actions, increasing mPRα, GPER, cyclooxygenase-1, and prostacyclin-synthase mRNA levels. Taken together, the results show that a low concentration of P4+E2 rapidly increases NO production in HUVECs through mPRα, ERα, and GPER and involves common signaling pathways, PI3K/Akt and MAP kinase. These in vitro findings suggest that low doses of E2 and P4 may also have some beneficial cardiovascular effects in vivo when administered as hormone replacement therapy (HRT) for post-menopausal women. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Invasive Streptococcus mutans induces inflammatory cytokine production in human aortic endothelial cells via regulation of intracellular toll-like receptor 2 and nucleotide-binding oligomerization domain 2.

    Science.gov (United States)

    Nagata, E; Oho, T

    2017-04-01

    Streptococcus mutans, the primary etiologic agent of dental caries, can gain access to the bloodstream and has been associated with cardiovascular disease. However, the roles of S. mutans in inflammation in cardiovascular disease remain unclear. The aim of this study was to examine cytokine production induced by S. mutans in human aortic endothelial cells (HAECs) and to evaluate the participation of toll-like receptors (TLRs) and cytoplasmic nucleotide-binding oligomerization domain (NOD) -like receptors in HAECs. Cytokine production by HAECs was determined using enzyme-linked immunosorbent assays, and the expression of TLRs and NOD-like receptors was evaluated by real-time polymerase chain reaction, flow cytometry and immunocytochemistry. The involvement of TLR2 and NOD2 in cytokine production by invaded HAECs was examined using RNA interference. The invasion efficiencies of S. mutans strains were evaluated by means of antibiotic protection assays. Five of six strains of S. mutans of various serotypes induced interleukin-6, interleukin-8 and monocyte chemoattractant protein-1 production by HAECs. All S. mutans strains upregulated TLR2 and NOD2 mRNA levels in HAECs. Streptococcus mutans Xc upregulated the intracellular TLR2 and NOD2 protein levels in HAECs. Silencing of the TLR2 and NOD2 genes in HAECs invaded by S. mutans Xc led to a reduction in interleukin-6, interleukin-8 and monocyte chemoattractant protein-1 production. Cytokine production induced by invasive S. mutans via intracellular TLR2 and NOD2 in HAECs may be associated with inflammation in cardiovascular disease. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Stimulatory effect of vascular endothelial growth factor on progesterone production and survivability of cultured bubaline luteal cells.

    Science.gov (United States)

    Chouhan, V S; Dangi, S S; Gupta, M; Babitha, V; Khan, F A; Panda, R P; Yadav, V P; Singh, G; Sarkar, M

    2014-08-01

    The objectives of the present study were to investigate the effects of vascular endothelial growth factor (VEGF) on progesterone (P4) synthesis in cultured luteal cells from different stages of the estrous cycle and on expression of steroidogenic acute regulatory protein (STARD1), cytochrome P450 cholesterol side chain cleavage (CYP11A1) and 3β-hydroxysteroid dehydrogenase (HSD3B), antiapoptotic gene PCNA, and proapoptotic gene BAX in luteal cells obtained from mid-luteal phase (MLP) of estrous cycle in buffalo. Corpus luteum samples from the early luteal phase (ELP; day 1st-4th; n=4), MLP (day 5th-10th; n=4), and the late luteal phase (LLP; day 11th-16th; n=4) of oestrous cycle were obtained from a slaughterhouse. Luteal cell cultures were treated with VEGF (0, 1, 10 and 100 ng/ml) for 24, 48 and 72h. Progesterone was assessed by RIA, while mRNA expression was determined by quantitative real-time PCR (qRT-PCR). Results indicated a dose- and time-dependent stimulatory effect of VEGF on P4 synthesis and expression of steroidogenic enzymes. Moreover, VEGF treatment led to an increase in PCNA expression and decrease in BAX expression. In summary, these findings suggest that VEGF acts locally in the bubaline CL to modulate steroid hormone synthesis and cell survivability, which indicates that this factor has an important role as a regulator of CL development and function in buffalo. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Size and targeting to PECAM vs ICAM control endothelial delivery, internalization and protective effect of multimolecular SOD conjugates.

    Science.gov (United States)

    Shuvaev, Vladimir V; Muro, Silvia; Arguiri, Evguenia; Khoshnejad, Makan; Tliba, Samira; Christofidou-Solomidou, Melpo; Muzykantov, Vladimir R

    2016-07-28

    Controlled endothelial delivery of SOD may alleviate abnormal local surplus of superoxide involved in ischemia-reperfusion, inflammation and other disease conditions. Targeting SOD to endothelial surface vs. intracellular compartments is desirable to prevent pathological effects of external vs. endogenous superoxide, respectively. Thus, SOD conjugated with antibodies to cell adhesion molecule PECAM (Ab/SOD) inhibits pro-inflammatory signaling mediated by endogenous superoxide produced in the endothelial endosomes in response to cytokines. Here we defined control of surface vs. endosomal delivery and effect of Ab/SOD, focusing on conjugate size and targeting to PECAM vs. ICAM. Ab/SOD enlargement from about 100 to 300nm enhanced amount of cell-bound SOD and protection against extracellular superoxide. In contrast, enlargement inhibited endocytosis of Ab/SOD and diminished mitigation of inflammatory signaling of endothelial superoxide. In addition to size, shape is important: endocytosis of antibody-coated spheres was more effective than that of polymorphous antibody conjugates. Further, targeting to ICAM provides higher endocytic efficacy than targeting to PECAM. ICAM-targeted Ab/SOD more effectively mitigated inflammatory signaling by intracellular superoxide in vitro and in animal models, although total uptake was inferior to that of PECAM-targeted Ab/SOD. Therefore, both geometry and targeting features of Ab/SOD conjugates control delivery to cell surface vs. endosomes for optimal protection against extracellular vs. endosomal oxidative stress, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. [Cell surface peroxidase--generator of superoxide anion in wheat root cells under wound stress].

    Science.gov (United States)

    Chasov, A V; Gordon, L Kh; Kolesnikov, O P; Minibaeva, F V

    2002-01-01

    Development of wound stress in excised wheat roots is known to be accompanied with an increase in reactive oxygen species (ROS) production, fall of membrane potential, release of K+ from cells, alkalization of extracellular solution, changes in respiration and metabolism of structural lipids. Dynamics of superoxide release correlates with changes in other physiological parameters, indicating the cross-reaction of these processes. Activity of peroxidase in extracellular solution after a 1 h incubation and removal of roots was shown to be stimulated by the range of organic acids, detergents, metals, and to be inhibited by cyanide. Superoxide production was sensitive to the addition of Mn2+ and H2O2. Increase in superoxide production correlates with the enhancement of peroxidase activity at the application of organic acids and detergents. The results obtained indicate that cell surface peroxidase is one of the main generators of superoxide in wounded wheat root cells. Different ways of stimulation of the ROS producing activity in root cells is supposed. By controlling superoxide and hydrogen peroxide formation, the cell surface peroxidase can control the adaptation processes in stressed plant cells.

  8. Endothelial cell respiration is affected by the oxygen tension during shear exposure: role of mitochondrial peroxynitrite.

    Science.gov (United States)

    Jones, Charles I; Han, Zhaosheng; Presley, Tennille; Varadharaj, Saradhadevi; Zweier, Jay L; Ilangovan, Govindasamy; Alevriadou, B Rita

    2008-07-01

    Cultured vascular endothelial cell (EC) exposure to steady laminar shear stress results in peroxynitrite (ONOO(-)) formation intramitochondrially and inactivation of the electron transport chain. We examined whether the "hyperoxic state" of 21% O(2), compared with more physiological O(2) tensions (Po(2)), increases the shear-induced nitric oxide (NO) synthesis and mitochondrial superoxide (O(2)(*-)) generation leading to ONOO(-) formation and suppression of respiration. Electron paramagnetic resonance oximetry was used to measure O(2) consumption rates of bovine aortic ECs sheared (10 dyn/cm(2), 30 min) at 5%, 10%, or 21% O(2) or left static at 5% or 21% O(2). Respiration was inhibited to a greater extent when ECs were sheared at 21% O(2) than at lower Po(2) or left static at different Po(2). Flow in the presence of an endothelial NO synthase (eNOS) inhibitor or a ONOO(-) scavenger abolished the inhibitory effect. EC transfection with an adenovirus that expresses manganese superoxide dismutase in mitochondria, and not a control virus, blocked the inhibitory effect. Intracellular and mitochondrial O(2)(*-) production was higher in ECs sheared at 21% than at 5% O(2), as determined by dihydroethidium and MitoSOX red fluorescence, respectively, and the latter was, at least in part, NO-dependent. Accumulation of NO metabolites in media of ECs sheared at 21% O(2) was modestly increased compared with ECs sheared at lower Po(2), suggesting that eNOS activity may be higher at 21% O(2). Hence, the hyperoxia of in vitro EC flow studies, via increased NO and mitochondrial O(2)(*-) production, leads to enhanced ONOO(-) formation intramitochondrially and suppression of respiration.

  9. A lithium-oxygen battery based on lithium superoxide.

    Science.gov (United States)

    Lu, Jun; Lee, Yun Jung; Luo, Xiangyi; Lau, Kah Chun; Asadi, Mohammad; Wang, Hsien-Hau; Brombosz, Scott; Wen, Jianguo; Zhai, Dengyun; Chen, Zonghai; Miller, Dean J; Jeong, Yo Sub; Park, Jin-Bum; Fang, Zhigang Zak; Kumar, Bijandra; Salehi-Khojin, Amin; Sun, Yang-Kook; Curtiss, Larry A; Amine, Khalil

    2016-01-21

    Batteries based on sodium superoxide and on potassium superoxide have recently been reported. However, there have been no reports of a battery based on lithium superoxide (LiO2), despite much research into the lithium-oxygen (Li-O2) battery because of its potential high energy density. Several studies of Li-O2 batteries have found evidence of LiO2 being formed as one component of the discharge product along with lithium peroxide (Li2O2). In addition, theoretical calculations have indicated that some forms of LiO2 may have a long lifetime. These studies also suggest that it might be possible to form LiO2 alone for use in a battery. However, solid LiO2 has been difficult to synthesize in pure form because it is thermodynamically unstable with respect to disproportionation, giving Li2O2 (refs 19, 20). Here we show that crystalline LiO2 can be stabilized in a Li-O2 battery by using a suitable graphene-based cathode. Various characterization techniques reveal no evidence for the presence of Li2O2. A novel templating growth mechanism involving the use of iridium nanoparticles on the cathode surface may be responsible for the growth of crystalline LiO2. Our results demonstrate that the LiO2 formed in the Li-O2 battery is stable enough for the battery to be repeatedly charged and discharged with a very low charge potential (about 3.2 volts). We anticipate that this discovery will lead to methods of synthesizing and stabilizing LiO2, which could open the way to high-energy-density batteries based on LiO2 as well as to other possible uses of this compound, such as oxygen storage.

  10. Extracellular superoxide dismutase is necessary to maintain renal blood flow during sepsis development.

    Science.gov (United States)

    Constantino, Larissa; Galant, Letícia Selinger; Vuolo, Francieli; Guarido, Karla Lorena; Kist, Luiza Wilges; de Oliveira, Giovanna Medeiros Tavares; Pasquali, Matheus Augusto de Bittencourt; de Souza, Cláudio Teodoro; da Silva-Santos, José Eduardo; Bogo, Maurício Reis; Moreira, José Cláudio Fonseca; Ritter, Cristiane; Dal-Pizzol, Felipe

    2017-12-01

    Extracellular superoxide dismutase (ECSOD) protects nitric oxide (NO) bioavailability by decreasing superoxide levels and preventing peroxynitrite generation, which is important in maintaining renal blood flow and in preventing acute kidney injury. However, the profile of ECSOD expression after sepsis is not fully understood. Therefore, we intended to evaluate the content and gene expression of superoxide dismutase (SOD) isoforms in the renal artery and their relation to renal blood flow. Sepsis was induced in Wistar rats by caecal ligation and perforation. Several times after sepsis induction, renal blood flow (12, 24 and 48 h); the renal arterial content of SOD isoforms, nitrotyrosine, endothelial and inducible nitric oxide synthase (e-NOS and i-NOS), and phosphorylated vasodilator-stimulated phosphoprotein (pVASP); and SOD activity (3, 6 and 12 h) were measured. The influence of a SOD inhibitor was also evaluated. An increase in ECSOD content was associated with decreased 3-nitrotyrosine levels. These events were associated with an increase in pVASP content and maintenance of renal blood flow. Moreover, previous treatment with a SOD inhibitor increased nitrotyrosine content and reduced renal blood flow. ECSOD appears to have a major role in decreasing peroxynitrite formation in the renal artery during the early stages of sepsis development, and its application can be important in renal blood flow control and maintenance during septic insult.

  11. Formation and scavenging of superoxide in chloroplasts, with relation to injury by sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Asada, K

    1980-01-01

    Injury of plant leaf cells by sulfur dioxide-exposure is greater in day time than in night. A hypothesis is proposed that the free radical chain oxidation of sulfite is initiated by the superoxide radicals (O/sub 2//sup -/) produced in illuminated chloroplasts, and that the resulting amplified production of O/sub 2//sup -/, the hydroxyl radicals and the bisulfite radicals causes the injury of leaf tissues. In this review, the production of O/sub 2//sup -/ in illuminated chloroplasts and scavenging of O/sub 2//sup -/ by superoxide dismutase and their relation to oxidation of sulfite in chloroplasts are discussed. Superoxide dismutase in chloroplasts plays an important role in protecting leaf cells from injury by sulfur dioxide.

  12. [Involvement of carbonate/bicarbonate ions in the superoxide-generating reaction of adrenaline autoxidation].

    Science.gov (United States)

    Sirota, T V

    2015-01-01

    An important role of carbonate/bicarbonate ions has been recognized in the superoxide generating reaction of adrenaline autooxidation in an alkaline buffer (a model of quinoid adrenaline oxidation in the body). It is suggested that these ions are directly involved not only in formation of superoxide anion radical (О(2)(-)) but also other radicals derived from the carbonate/bicarbonate buffer. Using various buffers it was shown that the rate of accumulation of adrenochrome, the end product of adrenaline oxidation, and the rate of О(2)(-)· formation depend on concentration of carbonate/bicarbonate ions in the buffer and that these ions significantly accelerate adrenaline autooxidation thus demonstrating prooxidant properties. The detectable amount of diformazan, the product of nitro blue tetrazolium (NBT) reduction, was significantly higher than the amount of adrenochrome formed; taking into consideration the literature data on О(2)(-)· detection by NBT it is suggested that adrenaline autooxidation is accompanied by one-electron reduction not only of oxygen dissolved in the buffer and responsible for superoxide formation but possible carbon dioxide also dissolved in the buffer as well as carbonate/bicarbonate buffer components leading to formation of corresponding radicals. The plots of the dependence of the inhibition of adrenochrome and diformazan formation on the superoxide dismutase concentration have shown that not only superoxide radicals are formed during adrenaline autooxidation. Since carbonate/bicarbonate ions are known to be universally present in the living nature, their involvement in free radical processes proceeding in the organism is discussed.

  13. Beta Blockers Suppress Dextrose-Induced Endoplasmic Reticulum Stress, Oxidative Stress, and Apoptosis in Human Coronary Artery Endothelial Cells.

    Science.gov (United States)

    Haas, Michael J; Kurban, William; Shah, Harshit; Onstead-Haas, Luisa; Mooradian, Arshag D

    Beta blockers are known to have favorable effects on endothelial function partly because of their capacity to reduce oxidative stress. To determine whether beta blockers can also prevent dextrose-induced endoplasmic reticulum (ER) stress in addition to their antioxidative effects, human coronary artery endothelial cells and hepatocyte-derived HepG2 cells were treated with 27.5 mM dextrose for 24 hours in the presence of carvedilol (a lipophilic beta blockers with alpha blocking activity), propranolol (a lipophilic nonselective beta blockers), and atenolol (a water-soluble selective beta blockers), and ER stress, oxidative, stress and cell death were measured. ER stress was measured using the placental alkaline phosphatase assay and Western blot analysis of glucose regulated protein 78, c-Jun-N-terminal kinase (JNK), phospho-JNK, eukaryotic initiating factor 2α (eIF2α), and phospho-eIF2α and measurement of X-box binding protein 1 (XBP1) mRNA splicing using reverse transcriptase-polymerase chain reaction. Superoxide (SO) generation was measured using the superoxide-reactive probe 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride (MCLA) chemiluminescence. Cell viability was measured by propidium iodide staining method. The ER stress, SO production, and cell death induced by 27.5 mM dextrose were inhibited by all 3 beta blockers tested. The antioxidative and ER stress reducing effects of beta blockers were also observed in HepG2 cells. The salutary effects of beta blockers on endothelial cells in reducing both ER stress and oxidative stress may contribute to the cardioprotective effects of these agents.

  14. Chronic exposure to high glucose impairs bradykinin-stimulated nitric oxide production by interfering with the phospholipase-C-implicated signalling pathway in endothelial cells: evidence for the involvement of protein kinase C.

    Science.gov (United States)

    Tang, Y; Li, G D

    2004-12-01

    Overwhelming evidence indicates that endothelial cell dysfunction in diabetes is characterised by diminished endothelium-dependent relaxation, but the matter of the underlying molecular mechanism remains unclear. As nitric oxide (NO) production from the endothelium is the major player in endothelium-mediated vascular relaxation, we investigated the effects of high glucose on NO production, and the possible alterations of signalling pathways implicated in this scenario. NO production and intracellular Ca(2+) levels ([Ca(2+)](i)) were assessed using the fluorescent probes 4,5-diaminofluorescein diacetate and fura-2 respectively. Exposure of cultured bovine aortic endothelial cells to high glucose for 5 or 10 days significantly reduced NO production induced by bradykinin (but not by Ca(2+) ionophore) in a time- and dose-dependent manner. This was probably due to an attenuation in bradykinin-induced elevations of [Ca(2+)](i) under these conditions, since a close correlation between [Ca(2+)](i) increases and NO generation was observed in intact bovine aortic endothelial cells. Both bradykinin-promoted intracellular Ca(2+) mobilisation and extracellular Ca(2+) entry were affected. Moreover, bradykinin-induced formation of Ins(1,4,5)P(3), a phospholipase C product leading to increases in [Ca(2+)](i), was also inhibited following high glucose culture. This abnormality was not attributable to a decrease in inositol phospholipids, but possibly to a reduction in the number of bradykinin receptors. The alterations in NO production, the increases in [Ca(2+)](i), and the bradykinin receptor number due to high glucose could be largely reversed by protein kinase C inhibitors and D: -alpha-tocopherol (antioxidant). Chronic exposure to high glucose reduces NO generation in endothelial cells, probably by impairing phospholipase-C-mediated Ca(2+) signalling due to excess protein kinase C activation. This defect in NO release may contribute to the diminished endothelium

  15. Nicorandil prevents endothelial dysfunction due to antioxidative effects via normalisation of NADPH oxidase and nitric oxide synthase in streptozotocin diabetic rats

    Directory of Open Access Journals (Sweden)

    Serizawa Ken-ichi

    2011-11-01

    Full Text Available Abstract Background Nicorandil, an anti-angina agent, reportedly improves outcomes even in angina patients with diabetes. However, the precise mechanism underlying the beneficial effect of nicorandil on diabetic patients has not been examined. We investigated the protective effect of nicorandil on endothelial function in diabetic rats because endothelial dysfunction is a major risk factor for cardiovascular disease in diabetes. Methods Male Sprague-Dawley rats (6 weeks old were intraperitoneally injected with streptozotocin (STZ, 40 mg/kg, once a day for 3 days to induce diabetes. Nicorandil (15 mg/kg/day and tempol (20 mg/kg/day, superoxide dismutase mimetic were administered in drinking water for one week, starting 3 weeks after STZ injection. Endothelial function was evaluated by measuring flow-mediated dilation (FMD in the femoral arteries of anaesthetised rats. Cultured human coronary artery endothelial cells (HCAECs were treated with high glucose (35.6 mM, 24 h and reactive oxygen species (ROS production with or without L-NAME (300 μM, apocynin (100 μM or nicorandil (100 μM was measured using fluorescent probes. Results Endothelial function as evaluated by FMD was significantly reduced in diabetic as compared with normal rats (diabetes, 9.7 ± 1.4%; normal, 19.5 ± 1.7%; n = 6-7. There was a 2.4-fold increase in p47phox expression, a subunit of NADPH oxidase, and a 1.8-fold increase in total eNOS expression in diabetic rat femoral arteries. Nicorandil and tempol significantly improved FMD in diabetic rats (nicorandil, 17.7 ± 2.6%; tempol, 13.3 ± 1.4%; n = 6. Nicorandil significantly inhibited the increased expressions of p47phox and total eNOS in diabetic rat femoral arteries. Furthermore, nicorandil significantly inhibited the decreased expression of GTP cyclohydrolase I and the decreased dimer/monomer ratio of eNOS. ROS production in HCAECs was increased by high-glucose treatment, which was prevented by L-NAME and nicorandil

  16. Induction of reactive oxygen intermediates-dependent programmed cell death in human malignant ex vivo glioma cells and inhibition of the vascular endothelial growth factor production by taurolidine.

    Science.gov (United States)

    Rodak, Roksana; Kubota, Hisashi; Ishihara, Hideyuki; Eugster, Hans-Pietro; Könü, Dilek; Möhler, Hanns; Yonekawa, Yasuhiro; Frei, Karl

    2005-06-01

    Taurolidine, a derivative of the amino acid taurin, was recently found to display a potent antineoplastic effect both in vitro and in vivo. The authors therefore initiated studies to assess the potential antineoplastic activity of taurolidine in human glioma cell lines and in ex vivo malignant cell cultures. They also studied the mechanisms that induce cell death and the impact of taurolidine on tumor-derived vascular endothelial growth factor (VEGF) production. Cytotoxicity and clonogenic assays were performed using crystal violet staining. In the cytotoxicity assay 100% of glioma cell lines (eight of eight) and 74% of ex vivo glioma cultures (14 of 19) demonstrated sensitivity to taurolidine, with a mean median effective concentration (EC50) of 51 +/- 28 microg/ml and 56 +/- 23 microg/ml, respectively. Colony formation was inhibited by taurolidine, with a mean EC50 of 7 +/- 3 microg/ml for the cell lines and a mean EC50 of 3.5 +/- 1.7 microg/ml for the ex vivo glioma cultures. On observing this high activity of taurolidine in both assays, the authors decided to evaluate its cell death mechanisms. Fragmentation of DNA, externalization of phosphatidylserine, activation of poly(adenosine diphosphate-ribose) polymerase, loss of the mitochondrial membrane potential followed by a release of apoptosis-inducing factor, and typical apoptotic features were found after taurolidine treatment. Cell death was preceded by the generation of reactive O2 intermediates, which was abrogated by N-acetylcysteine but not by benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. Moreover, taurolidine also induced suppression of VEGF production on the protein and messenger RNA level, as shown by an enzyme-linked immunosorbent assay and by reverse transcription-polymerase chain reaction. Given all these findings, taurolidine may be a promising new agent in the treatment of malignant gliomas; it displays a combination of antineoplastic and antiangiogenic activities, inducing tumor cell

  17. In Vitro Human Umbilical Vein Endothelial Cells Response to Ionic Dissolution Products from Lithium-Containing 45S5 Bioactive Glass

    Science.gov (United States)

    Haro Durand, Luis A.; Vargas, Gabriela E.; Vera-Mesones, Rosa; Baldi, Alberto; Zago, María P.; Fanovich, María A.; Boccaccini, Aldo R.; Gorustovich, Alejandro

    2017-01-01

    Since lithium (Li+) plays roles in angiogenesis, the localized and controlled release of Li+ ions from bioactive glasses (BGs) represents a promising alternative therapy for the regeneration and repair of tissues with a high degree of vascularization. Here, microparticles from a base 45S5 BG composition containing (wt %) 45% SiO2, 24.5% Na2O, 24.5% CaO, and 6% P2O5, in which Na2O was partially substituted by 5% Li2O (45S5.5Li), were obtained. The results demonstrate that human umbilical vein endothelial cells (HUVECs) have greater migratory and proliferative response and ability to form tubules in vitro after stimulation with the ionic dissolution products (IDPs) of the 45S5.5Li BG. The results also show the activation of the canonical Wnt/β-catenin pathway and the increase in expression of proangiogenic cytokines insulin like growth factor 1 (IGF1) and transforming growth factor beta (TGFβ). We conclude that the IDPs of 45S5.5Li BG would act as useful inorganic agents to improve tissue repair and regeneration, ultimately stimulating HUVECs behavior in the absence of exogenous growth factors. PMID:28773103

  18. Myocardial capillary permeability after regional ischemia and reperfusion in the in vivo canine heart. Effect of superoxide dismutase

    DEFF Research Database (Denmark)

    Svendsen, J H; Bjerrum, P J; Haunsø, S

    1991-01-01

    This study assesses the effect of the superoxide anion scavenger superoxide dismutase on myocardial capillary permeability-surface area (PS) products for small hydrophilic molecules after ischemia and reperfusion. Open-chest dogs underwent a 20-minute occlusion of the left anterior descending...... the start of reperfusion. In 13 dogs, no scavenger treatment was given (nonprotected control group), whereas eight dogs were treated systemically with 15,000 units/kg superoxide dismutase during 1 hour, starting 20 minutes before ischemia. In the control group, three dogs developed reperfusion ventricular...

  19. 2,3,7,8-TCDD exposure, endothelial dysfunction and impaired microvascular reactivity

    Czech Academy of Sciences Publication Activity Database

    Pelclová, D.; Prázdný, M.; Škrha, J.; Fenclová, Z.; Kalousová, M.; Urban, P.; Navrátil, Tomáš; Šenholdová, Z.; Šmerhovský, Z.

    2007-01-01

    Roč. 26, - (2007), s. 705-713 ISSN 0960-3271 Institutional research plan: CEZ:AV0Z40400503 Keywords : 2,3,7,8-TCDD * endothelial dysfunction * oxidative stress * superoxide dismutase Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.335, year: 2007

  20. Participation of superoxide generating system, superoxide dismutase and vitamin E in the radiation hazards

    International Nuclear Information System (INIS)

    Aono, Kaname; Yamamoto, Michio; Iida, Sosuke; Utsumi, Kozo

    1978-01-01

    In relation to the mechanism by which hemolysis was induced in radiated human erythrocytes in vitro, several inducements of membrane lipid peroxidation and protective effects of vitamin E (V.E) and superoxide dismutase (SOD) were investigated. (1) K + -release from erythrocytes was accelerated by radiation prior to hemolysis. These accelerated hemolysis and K + -release were protected remarkably by V.E and evidently by SOD. (2) Mitochondrial Fe 2+ induced and Fe 3+ -superoxide generating system -- ADP induced lipid peroxidation, and microsomal superoxide generating system -- induced lipid peroxidation were also protected by V.E and SOD. (3) Radiation of x-ray or 60 Co γ-ray accelerated lipid peroxidation of liver homogenate, microsome and liposome. Some of these accelerated lipid peroxidations were protected effectively by V.E and SOD. These results suggest that superoxide and/or OH generation by radiation induces of membrane lipid peroxidation, which leads deterioration of membrane resulting in the change of ion permeability and then hemolysis. (author)

  1. Effect of agmatine on experimental vascular endothelial dysfunction.

    Science.gov (United States)

    Nader, M A; Gamiel, N M; El-Kashef, H; Zaghloul, M S

    2016-05-01

    This study was designed to investigate the effect of agmatine sulfate (AG, CAS2482-00-0) in nicotine (NIC)-induced vascular endothelial dysfunction (VED) in rabbits. NIC was administered to produce VED in rabbits with or without AG for 6 weeks. Serum lipid profile, serum thiobarbituric acid reactive substances, reduced glutathione, superoxide dismutase generation, serum nitrite/nitrate, serum vascular cellular adhesion molecule-1 (VCAM-1), and aortic nuclear factor κB (NF-κB) levels were analyzed.Treatment with AG markedly improves lipid profile and prevented NIC-induced VED and oxidative stress. The mechanism of AG in improving NIC-induced VED may be due to the significant reduction in serum VCAM-1 levels and aortic NF-κB. Thus, it may be concluded that AG reduces the oxidative stress, nitric oxide production, VCAM-1 levels, and aortic NF-κB expression, thereby consequently improving the integrity of vascular endothelium. © The Author(s) 2015.

  2. Human Manganese Superoxide Dismutase Tyrosine 34 Contribution to Structure and Catalysis

    Science.gov (United States)

    Perry, J. Jefferson P.; Hearn, Amy S.; Cabelli, Diane E.; Nick, Harry S.; Tainer, John A.; Silverman, David N.

    2009-01-01

    Superoxide dismutase (SOD) enzymes are critical in controlling levels of reactive oxygen species (ROS) that are linked to aging, cancer and neurodegenerative disease. Superoxide (O2 •−) produced during respiration is removed by the product of the SOD2 gene, the homotetrameric manganese superoxide dismutase (MnSOD). Here, we examine the structural and catalytic roles of the highly conserved active-site residue Tyr34, based upon structure-function studies of MnSOD enzymes with mutations at this site. Substitution of Tyr34 with five different amino acids retained the active site protein structure and assembly, but causes a substantial decrease in the catalytic rate constant for the reduction of superoxide. The rate constant for formation of product inhibition complex also decreases but to a much lesser extent, resulting in a net increase in the product inhibition form of the mutant enzymes. Comparisons of crystal structures and catalytic rates also suggest that one mutation, Y34V, interrupts the hydrogen-bonded network, which is associated with a rapid dissociation of the product-inhibited complex. Notably, with three of the Tyr34 mutants we also observe an intermediate in catalysis, which has not been reported previously. Thus, these mutants establish a means to trap a catalytic intermediate that promises to help elucidate the mechanism of catalysis. PMID:19265433

  3. Protective effect of superoxide dismutase in radiation-induced intestinal inflammation

    International Nuclear Information System (INIS)

    Molla, Meritxell; Gironella, Meritxell; Salas, Antonio; Closa, Daniel; Biete, Albert; Gimeno, Mercedes; Coronel, Pilar; Pique, Josep M.; Panes, Julian

    2005-01-01

    Purpose: To analyze the therapeutic value of Cu/Zn-superoxide dismutase (SOD1) supplementation in an experimental model of radiation-induced intestinal inflammation and explore its mechanistic effects. Methods and materials: Mice were subjected to abdominal irradiation with 10 Gy or sham irradiation and studied 24 or 72 hours after radiation. Groups of mice were treated with 0.1, 4, or 6 mg/kg/day of SOD1 or vehicle. Leukocyte-endothelial cell interactions in intestinal venules were assessed by intravital microscopy. Endothelial intercellular adhesion molecule-1 (ICAM-1) expression was determined with radiolabeled antibodies. Effects of SOD1 on histologic damage and levels of lipid hydroperoxides were also measured. Results: A significant increase in the flux of rolling leukocytes and number of firmly adherent leukocytes in intestinal venules was observed at 24 and 72 hours after irradiation. Treatment with SOD1 had no effect on leukocyte rolling but significantly and dose-dependently decreased firm leukocyte adhesion to intestinal venules. Treatment with SOD1 at doses that reduced leukocyte recruitment abrogated the increase in hydroperoxides in intestinal tissue and ICAM-1 upregulation in intestinal endothelial cells. The inflammatory score, but not a combined histology damage score, was also significantly reduced by SOD1. Conclusions: Treatment with SOD1 decreases oxidative stress and adhesion molecule upregulation in response to abdominal irradiation. This is associated with an attenuation of the radiation-induced intestinal inflammatory response

  4. Manganese superoxide dismutase and breast cancer recurrence

    DEFF Research Database (Denmark)

    Cronin-Fenton, Deirdre P; Christensen, Mariann; Lash, Timothy L

    2014-01-01

    BACKGROUND: Manganese superoxide dismutase (MnSOD) inhibits oxidative damage and cancer therapy effectiveness. A polymorphism in its encoding gene (SOD2: Val16Ala rs4880) may confer poorer breast cancer survival, but data are inconsistent. We examined the association of SOD2 genotype and breast......-metastatic breast cancer from 1990-2001, received adjuvant Cyclo, and were registered in the Danish Breast Cancer Cooperative Group. We identified 118 patients with BCR and 213 matched breast cancer controls. We genotyped SOD2 and used conditional logistic regression to compute the odds ratio (OR) and associated 95...... cancer recurrence (BCR) among patients treated with cyclophosphamide-based chemotherapy (Cyclo). We compared our findings with published studies using meta-analyses. METHODS: We conducted a population-based case-control study of BCR among women in Jutland, Denmark. Subjects were diagnosed with non...

  5. Acute Superoxide Radical Scavenging Reduces Blood Pressure but Does Not Influence Kidney Function in Hypertensive Rats with Postischemic Kidney Injury

    Directory of Open Access Journals (Sweden)

    Zoran Miloradović

    2014-01-01

    Full Text Available Acute kidney injury (AKI is associated with significant morbidity and mortality in hypertensive surroundings. We investigated superoxide radical molecules influence on systemic haemodynamic and kidney function in spontaneously hypertensive rats (SHR with induced postischemic AKI. Experiment was performed in anesthetized adult male SHR. The right kidney was removed, and left renal artery was subjected to ischemia by clamping for 40 minutes. The treated group received synthetic superoxide dismutase mimetic TEMPOL in the femoral vein 5 minutes before, during, and 175 minutes after the period of reperfusion, while the control AKI group received the vehicle via the same route. All parameters were measured 24 h after renal reperfusion. TEMPOL treatment significantly decreased mean arterial pressure and total peripheral resistance P<0.05 compared to AKI control. It also increased cardiac output and catalase activity P<0.05. Lipid peroxidation and renal vascular resistance were decreased in TEMPOL P<0.05. Plasma creatinine and kidney morphological parameters were unchanged among TEMPOL treated and control groups. Our study shows that superoxide radicals participate in haemodynamic control, but acute superoxide scavenging is ineffective in glomerular and tubular improvement, probably due to hypertension-induced strong endothelial dysfunction which neutralizes beneficial effects of O2− scavenging.

  6. Cellular dysfunction in the diabetic fibroblast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia.

    Science.gov (United States)

    Lerman, Oren Z; Galiano, Robert D; Armour, Mary; Levine, Jamie P; Gurtner, Geoffrey C

    2003-01-01

    Although it is known that systemic diseases such as diabetes result in impaired wound healing, the mechanism for this impairment is not understood. Because fibroblasts are essential for wound repair, we compared the in vitro behavior of fibroblasts cultured from diabetic, leptin receptor-deficient (db/db) mice with wild-type fibroblasts from mice of the same genetic background in processes important during tissue repair. Adult diabetic mouse fibroblast migration exhibited a 75% reduction in migration compared to normal fibroblasts (P under basal or hypoxic conditions, confirming that the results from db/db fibroblasts in mature mice resulted from the diabetic state and were not because of alterations in the leptin-leptin receptor axis. Markers of cellular viability including proliferation and senescence were not significantly different between diabetic and wild-type fibroblasts. We conclude that, in vitro, diabetic fibroblasts show selective impairments in discrete cellular processes critical for tissue repair including cellular migration, VEGF production, and the response to hypoxia. The VEGF abnormalities developed concurrently with the onset of hyperglycemia and were not seen in normoglycemic, leptin receptor-deficient db/db mice. These observations support a role for fibroblast dysfunction in the impaired wound healing observed in human diabetics, and also suggest a mechanism for the poor clinical outcomes that occur after ischemic injury in diabetic patients.

  7. Apoptosis of Endothelial Cells by 13-HPODE Contributes to Impairment of Endothelial Barrier Integrity

    Directory of Open Access Journals (Sweden)

    Valerie E. Ryman

    2016-01-01

    Full Text Available Inflammation is an essential host response during bacterial infections such as bovine mastitis. Endothelial cells are critical for an appropriate inflammatory response and loss of vascular barrier integrity is implicated in the pathogenesis of Streptococcus uberis-induced mastitis. Previous studies suggested that accumulation of linoleic acid (LA oxygenation products derived from 15-lipoxygenase-1 (15-LOX-1 metabolism could regulate vascular functions. The initial LA derivative from the 15-LOX-1 pathway, 13-hydroperoxyoctadecadienoic acid (HPODE, can induce endothelial death, whereas the reduced hydroxyl product, 13-hydroxyoctadecadienoic acid (HODE, is abundantly produced during vascular activation. However, the relative contribution of specific LA-derived metabolites on impairment of mammary endothelial integrity is unknown. Our hypothesis was that S. uberis-induced LA-derived 15-LOX-1 oxygenation products impair mammary endothelial barrier integrity by apoptosis. Exposure of bovine mammary endothelial cells (BMEC to S. uberis did not increase 15-LOX-1 LA metabolism. However, S. uberis challenge of bovine monocytes demonstrated that monocytes may be a significant source of both 13-HPODE and 13-HODE during mastitis. Exposure of BMEC to 13-HPODE, but not 13-HODE, significantly reduced endothelial barrier integrity and increased apoptosis. Changing oxidant status by coexposure to an antioxidant during 13-HPODE treatment prevented adverse effects of 13-HPODE, including amelioration of apoptosis. A better understanding of how the oxidant status of the vascular microenvironment impacts endothelial barrier properties could lead to more efficacious treatments for S. uberis mastitis.

  8. Sources of superoxide/H2O2 during mitochondrial proline oxidation

    Directory of Open Access Journals (Sweden)

    Renata L.S. Goncalves

    2014-01-01

    Full Text Available p53 Inducible gene 6 (PIG6 encodes mitochondrial proline dehydrogenase (PRODH and is up-regulated several fold upon p53 activation. Proline dehydrogenase is proposed to generate radicals that contribute to cancer cell apoptosis. However, there are at least 10 mitochondrial sites that can produce superoxide and/or H2O2, and it is unclear whether proline dehydrogenase generates these species directly, or instead drives production by other sites. Amongst six cancer cell lines, ZR75-30 human breast cancer cells had the highest basal proline dehydrogenase levels, and mitochondria isolated from ZR75-30 cells consumed oxygen and produced H2O2 with proline as sole substrate. Insects use proline oxidation to fuel flight, and mitochondria isolated from Drosophila melanogaster were even more active with proline as sole substrate than ZR75-30 mitochondria. Using mitochondria from these two models we identified the sites involved in formation of superoxide/H2O2 during proline oxidation. In mitochondria from Drosophila the main sites were respiratory complexes I and II. In mitochondria from ZR75-30 breast cancer cells the main sites were complex I and the oxoglutarate dehydrogenase complex. Even with combinations of substrates and respiratory chain inhibitors designed to minimize the contributions of other sites and maximize any superoxide/H2O2 production from proline dehydrogenase itself, there was no significant direct contribution of proline dehydrogenase to the observed H2O2 production. Thus proline oxidation by proline dehydrogenase drives superoxide/H2O2 production, but it does so mainly or exclusively by providing anaplerotic carbon for other mitochondrial dehydrogenases and not by producing superoxide/H2O2 directly.

  9. Prolonged exposure of resveratrol induces reactive superoxide species-independent apoptosis in murine prostate cells.

    Science.gov (United States)

    Kumar, Sanjay; Stokes, James; Singh, Udai P; Scissum-Gunn, Karyn; Singh, Rajesh; Manne, Upender; Mishra, Manoj K

    2017-10-01

    Nitric oxide, a signaling molecule, inhibits mitochondrial respiration by binding with cytochrome c oxidase, resulting in elevated production of reactive superoxide species (reactive oxygen and nitrogen) in the mitochondria and increased susceptibility to cell death. Generation of mitochondrial superoxide species can be suppressed by natural compounds such as resveratrol, a dietary polyphenol found in the skin of red fruits. In various cancer cells, resveratrol shows anti-oxidant and cancer preventive properties. Since, the effect of resveratrol on reactive superoxide species-independent apoptosis in prostate cancer cells is not well illustrated; therefore, we investigated this phenomenon in TRAMP murine prostate cancer cells. To accomplish this, TRAMP cells were incubated with resveratrol, resveratrol + DETA-NONOate, DETA-NONOate (nitric oxide donor), resveratrol + L-NMMA, or L-NMMA (nitric oxide inhibitor) for 48 h, and reactive superoxide species in the mitochondria and culture supernatant were measured. In addition, the mitochondrial membrane potential, cell viability, expression of apoptotic markers (Bax and Bcl2), γ-H2A.x, p53, and caspase-3 was determined. We found that resveratrol suppressed reactive superoxide species such as reactive oxygen species in the mitochondria and nitric oxide in culture supernatant when compared to the DETA-NONOate treatment and disrupted the mitochondrial membrane potential. Resveratrol also reduced cell viability, altered the expression of apoptotic markers (Bax and Bcl2), and increased expression of γ-H2A.x (indicative marker of DNA fragmentation) and p53 (a critical DNA damage response protein). However, there was no appreciable modulation of the caspase-3. Therefore, our data suggest that resveratrol induces superoxide species-independent apoptosis and may act as a therapeutic agent against prostate cancer.

  10. Endogenous superoxide is a key effector of the oxygen sensitivity of a model obligate anaerobe.

    Science.gov (United States)

    Lu, Zheng; Sethu, Ramakrishnan; Imlay, James A

    2018-04-03

    It has been unclear whether superoxide and/or hydrogen peroxide play important roles in the phenomenon of obligate anaerobiosis. This question was explored using Bacteroides thetaiotaomicron , a major fermentative bacterium in the human gastrointestinal tract. Aeration inactivated two enzyme families-[4Fe-4S] dehydratases and nonredox mononuclear iron enzymes-whose homologs, in contrast, remain active in aerobic Escherichia coli Inactivation-rate measurements of one such enzyme, B. thetaiotaomicron fumarase, showed that it is no more intrinsically sensitive to oxidants than is an E. coli fumarase. Indeed, when the E. coli enzymes were expressed in B. thetaiotaomicron , they no longer could tolerate aeration; conversely, the B. thetaiotaomicron enzymes maintained full activity when expressed in aerobic E. coli Thus, the aerobic inactivation of the B. thetaiotaomicron enzymes is a feature of their intracellular environment rather than of the enzymes themselves. B. thetaiotaomicron possesses superoxide dismutase and peroxidases, and it can repair damaged enzymes. However, measurements confirmed that the rate of reactive oxygen species production inside aerated B. thetaiotaomicron is far higher than in E. coli Analysis of the damaged enzymes recovered from aerated B. thetaiotaomicron suggested that they had been inactivated by superoxide rather than by hydrogen peroxide. Accordingly, overproduction of superoxide dismutase substantially protected the enzymes from aeration. We conclude that when this anaerobe encounters oxygen, its internal superoxide levels rise high enough to inactivate key catabolic and biosynthetic enzymes. Superoxide thus comprises a major element of the oxygen sensitivity of this anaerobe. The extent to which molecular oxygen exerts additional direct effects remains to be determined.

  11. Increased superoxide accumulation in pyruvate dehydrogenase complex deficient fibroblasts.

    Science.gov (United States)

    Glushakova, Lyudmyla G; Judge, Sharon; Cruz, Alex; Pourang, Deena; Mathews, Clayton E; Stacpoole, Peter W

    2011-11-01

    The pyruvate dehydrogenase complex (PDC) oxidizes pyruvate to acetyl CoA and is critically important in maintaining normal cellular energy homeostasis. Loss-of-function mutations in PDC give rise to congenital lactic acidosis and to progressive cellular energy failure. However, the subsequent biochemical consequences of PDC deficiency that may contribute to the clinical manifestations of the disorder are poorly understood. We postulated that altered flux through PDC would disrupt mitochondrial electron transport, resulting in oxidative stress. Compared to cells from 4 healthy subjects, primary cultures of skin fibroblasts from 9 patients with variable mutations in the gene encoding the alpha subunit (E1α) of pyruvate dehydrogenase (PDA1) demonstrated reduced growth and viability. Superoxide (O(2)(.-)) from the Qo site of complex III of the electron transport chain accumulated in these cells and was associated with decreased activity of manganese superoxide dismutase. The expression of uncoupling protein 2 was also decreased in patient cells, but there were no significant changes in the expression of cellular markers of protein or DNA oxidative damage. The expression of hypoxia transcription factor 1 alpha (HIF1α) also increased in PDC deficient fibroblasts. We conclude that PDC deficiency is associated with an increase in O(2)(.-) accumulation coupled to a decrease in mechanisms responsible for its removal. Increased HIF1α expression may contribute to the increase in glycolytic flux and lactate production in PDC deficiency and, by trans-activating pyruvate dehydrogenase kinase, may further suppress residual PDC activity through phosphorylation of the E1α subunit. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Polyphenols in preventing endothelial dysfunction

    Directory of Open Access Journals (Sweden)

    Sylwia Biegańska-Hensoldt

    2017-03-01

    Full Text Available One of the main causes of mortality in developed countries is atherosclerosis. The pathogenesis of atherosclerosis is associated with endothelial dysfunction. Consumption of food rich in natural antioxidants including polyphenols significantly improves endothelial cells functions.Polyphenols have a beneficial effect on the human body and play an important part in protecting the cardiovascular system. Polyphenols present in food have antioxidant, anti-inflammatory, antihypertensive, antithrombotic and antiproliferative properties. Catechins cause an increase in the activity of endothelial nitric oxide synthase (eNOS and increased production of nitric oxide (NO and decrease in blood pressure. Catechins also reduce platelet adhesion, lower the concentration of C-reactive protein and tumor necrosis factor alpha and interleukin-6. Resveratrol inhibits NADPH oxidase expression, increases the expression of eNOS and NO production as well as decreases the expression of proinflammatory cytokines, and also lowers the concentration of the soluble forms of adhesion molecules – sICAM-1 and sVCAM-1 in blood. Quercetin reduces the blood level of low density lipoprotein cholesterol, lowers blood pressure, reduces the concentration of C-reactive protein and F2-isoprostane level. Curcumin has antagonistic activity to homocysteine. Curcumin increases the expression of eNOS and reduces oxidative DNA damage in rat cardiomyocytes. Numerous attempts are taken for improving the bioavailability of polyphenols in order to increase their use in the body.

  13. Effect of Low Level Cadmium Exposure on Superoxide Dismutase ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of low level cadmium (Cd) exposure on the activity of superoxide dismutase ... cancer, aging and a diversity of diseases [5]. Superoxide .... responsible for the long biological half-life of cadmium [12]. ... indicator of the balance between the damaging effects and the ... Scand J Work Environ.

  14. Mitochondrial respiration scavenges extramitochondrial superoxide anion via a nonenzymatic mechanism.

    OpenAIRE

    Guidot, D M; Repine, J E; Kitlowski, A D; Flores, S C; Nelson, S K; Wright, R M; McCord, J M

    1995-01-01

    We determined that mitochondrial respiration reduced cytosolic oxidant stress in vivo and scavenged extramitochondrial superoxide anion (O2-.) in vitro. First, Saccharomyces cerevisiae deficient in both the cytosolic antioxidant cupro-zinc superoxide dismutase (Cu,Zn-SOD) and electron transport (Rho0 state) grew poorly (P 0.05) in all yeast. Seco...

  15. Electrocatalytic analysis of superoxide anion radical using nitrogen-doped graphene supported Prussian Blue as a biomimetic superoxide dismutase

    International Nuclear Information System (INIS)

    Liu, Tingting; Niu, Xiangheng; Shi, Libo; Zhu, Xiang; Zhao, Hongli; Lana, Minbo

    2015-01-01

    Graphical abstract: Prussian Blue (PB) cubes supported on nitrogen-doped graphene sheets (NGS) were synthesized using a simple and scalable method, and the utilization of the PB-NGS hybrid as an efficient superoxide dismutase mimic in the electrochemical sensing of O 2 ·− was demonstrated. - Highlights: • Facile and scalable synthesis of Prussian Blue cubes supported on nitrogen-doped graphene; • Nitrogen-doped graphene supported Prussian Blue as an efficient biomimetic superoxide dismutase for the electrocatalytic sensing of superoxide anion; • Good sensitivity, excellent selectivity and attractive long-term stability for superoxide anion sensing. - Abstract: Considering the double-sided roles of superoxide anion radical, monitoring of its track in living systems is attracting increasing academic and practical interest. Here we synthesized Prussian Blue (PB) cubes that were supported on nitrogen-doped graphene sheets (NGS) using a facile and scalable method, and explored their potential utilization in the electrochemical sensing of superoxide anion. As an efficient superoxide dismutase mimic, direct electron transfer of the prepared PB-NGS hybrid immobilized on a screen-printed gold electrode was harvested in physiological media. With the bifunctional activities, the synthetic mimic could catalyze the dismutation of superoxide anion via the redox cycle of active iron. By capturing the electro-reduction amperometric responses of superoxide anion radical to hydrogen peroxide in the cathodic polarization, highly sensitive determination (a sensitivity of as high as 0.32 μA cm −2 μM −1 ) of the target was achieved, with no interference from common coexisting species including ascorbic acid, dopamine, and uric acid observed. Compared to natural superoxide dismutases, the artificial enzyme mimic exhibited favorable activity stability, indicating its promising applications in the in vivo long-term monitoring of superoxide anion

  16. A diet enriched with mackerel (Scomber scombrus)-derived products improves the endothelial function in a senior population (Prevención de las Enfermedades Cardiovasculares: Estudio Santoña--PECES project).

    Science.gov (United States)

    de Berrazueta, J R; Gómez de Berrazueta, J M; Amado Señarís, J A; Peña Sarabia, N; Fernández Viadero, C; García-Unzueta, M T; Sáez de Adana, M; Sanchez Ovejero, C J; Llorca, J

    2009-03-01

    Regular consumption of fish reduces cardiovascular risks. Here, we investigate if the consumption of products with mackerel (Scomber scombrus) with 8.82 g of eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) content per 100 g of product improves parameters of endothelial function in a controlled population. Subjects maintained a 12-week diet with products with mackerel. The population consisted of 58 senior subjects (12 withdrawals, 25 women), aged 82.08 +/- 8.13 years (Group A). Twenty-three senior subjects (13 women) on a regular diet were used as the control group (Group B). Subjects of Group A received 57 portions throughout 12 weeks (four to five portions a week of products with a mean EPA + DHA content of 2.5 g a day). A continuous follow-up and a final evaluation were performed to determine the level of consumption. Plasma samples were stored at -70 degrees C for a biochemical study. Endothelial function was analysed by reactive hyperemia with a mercury strain gauge plethysmography with measurement of blood flow in the forearm, both baseline and at the end of the 12-week diet. Endothelium-dependent vasodilatation significantly increased in Group A subjects (P cardiovascular disease (P < 0.001). Nitrites/nitrates and von Willebrand factor plasma concentrations were higher in participants after the 12-week diet. The consumption of mackerel meat products improves endothelium-dependent, flow-mediated vasodilatation in a senior population. This finding might explain some of the cardioprotective effects of fish consumption.

  17. Alcohol and red wine consumption, but not fruit, vegetables, fish or dairy products, are associated with less endothelial dysfunction and less low-grade inflammation

    NARCIS (Netherlands)

    Bussel, van B.C.T.; Henry, R.M.A.; Schalkwijk, C.G.; Dekker, J.M.; Nijpels, G.; Feskens, E.J.M.; Stehouwer, C.D.A.

    2017-01-01

    Purpose: Endothelial dysfunction and low-grade inflammation are key phenomena in the pathobiology of cardiovascular disease (CVD). Their dietary modification might explain the observed reduction in CVD that has been associated with a healthy diet rich in fruit, vegetables and fish, low in dairy

  18. Endothelial dysfunction in the microcirculation of patients with obstructive sleep apnea.

    Science.gov (United States)

    Patt, Brian T; Jarjoura, David; Haddad, Diane N; Sen, Chandan K; Roy, Sashwati; Flavahan, Nicholas A; Khayat, Rami N

    2010-12-15

    Obstructive sleep apnea (OSA) is a risk factor for cardiovascular disease. We hypothesized that patients with OSA and no cardiovascular disease have oxidant-related microcirculatory endothelial dysfunction. To evaluate the microcirculation in OSA. This study included seven patients with OSA and seven age- and weight-matched control subjects (mean age, 38 yr; mean body mass index, 32.5 kg/m²). All participants were free of cardiovascular risk factors. Participants received measurement of brachial artery flow-mediated dilation and forearm subcutaneous biopsy. Patients underwent repeated tests 12 weeks after treatment. Microcirculatory endothelial cells were isolated, and immunohistochemistry staining for peroxynitrite in the microcirculation was performed. Flow-mediated dilation was lower in patients than in control subjects at baseline (mean ± SEM: 5.7 ± 0.5 vs. 9.5 ± 0.6; P = 0.02) and increased after treatment (5.7-7.3; change, 1.7 ± 0.6; P = 0.04). Microcirculatory peroxynitrite deposit was higher in patients compared with control subjects (44.0 ± 1.6 vs. 21.8 ± 1.9 stain density units; P < 0.001) and decreased after treatment from 44.0 to 30.5 stain density units (change, -13.5 ± 2.9; P = 0.009). In patients, transcription of endothelial nitric oxide synthase decreased from 5.2 to -1.3 after treatment (change, 6.5 ± 2.5; P = 0.05), and transcription of superoxide dismutase1 decreased from -4.0 to -12.3 after treatment (change, -8.3 ± 2.1; P = 0.01). These changes persisted after adjustment for weight and underlying severity of OSA. This is the first direct evaluation of the microcirculation in OSA. Patients with OSA with low cardiovascular risk status had increased oxidant production in the microcirculation and endothelial dysfunction, both of which improved with treatment. Endothelial nitric oxide synthase transcription decreased with treatment.

  19. Pyrrolidine dithiocarbamate inhibits superoxide anion-induced pain and inflammation in the paw skin and spinal cord by targeting NF-κB and oxidative stress.

    Science.gov (United States)

    Pinho-Ribeiro, Felipe A; Fattori, Victor; Zarpelon, Ana C; Borghi, Sergio M; Staurengo-Ferrari, Larissa; Carvalho, Thacyana T; Alves-Filho, Jose C; Cunha, Fernando Q; Cunha, Thiago M; Casagrande, Rubia; Verri, Waldiceu A

    2016-06-01

    We evaluated the effect of pyrrolidine dithiocarbamate (PDTC) in superoxide anion-induced inflammatory pain. Male Swiss mice were treated with PDTC and stimulated with an intraplantar or intraperitoneal injection of potassium superoxide, a superoxide anion donor. Subcutaneous PDTC treatment attenuated mechanical hyperalgesia, thermal hyperalgesia, paw oedema and leukocyte recruitment (neutrophils and macrophages). Intraplantar injection of superoxide anion activated NF-κB and increased cytokine production (IL-1β, TNF-α and IL-10) and oxidative stress (nitrite and lipid peroxidation levels) at the primary inflammatory foci and in the spinal cord (L4-L6). PDTC treatment inhibited superoxide anion-induced NF-κB activation, cytokine production and oxidative stress in the paw and spinal cord. Furthermore, intrathecal administration of PDTC successfully inhibited superoxide anion-induced mechanical hyperalgesia, thermal hyperalgesia and inflammatory response in peripheral foci (paw). These results suggest that peripheral stimulus with superoxide anion activates the local and spinal cord oxidative- and NF-κB-dependent inflammatory nociceptive mechanisms. PDTC targets these events, therefore, inhibiting superoxide anion-induced inflammatory pain in mice.

  20. Endothelial dysfunction: a comprehensive appraisal

    Directory of Open Access Journals (Sweden)

    Vilariño Jorge O

    2006-02-01

    Full Text Available Abstract The endothelium is a thin monocelular layer that covers all the inner surface of the blood vessels, separating the circulating blood from the tissues. It is not an inactive organ, quite the opposite. It works as a receptor-efector organ and responds to each physical or chemical stimulus with the release of the correct substance with which it may maintain vasomotor balance and vascular-tissue homeostasis. It has the property of producing, independently, both agonistic and antagonistic substances that help to keep homeostasis and its function is not only autocrine, but also paracrine and endocrine. In this way it modulates the vascular smooth muscle cells producing relaxation or contraction, and therefore vasodilatation or vasoconstriction. The endothelium regulating homeostasis by controlling the production of prothrombotic and antithrombotic components, and fibrynolitics and antifibrynolitics. Also intervenes in cell proliferation and migration, in leukocyte adhesion and activation and in immunological and inflammatory processes. Cardiovascular risk factors cause oxidative stress that alters the endothelial cells capacity and leads to the so called endothelial "dysfunction" reducing its capacity to maintain homeostasis and leads to the development of pathological inflammatory processes and vascular disease. There are different techniques to evaluate the endothelium functional capacity, that depend on the amount of NO produced and the vasodilatation effect. The percentage of vasodilatation with respect to the basal value represents the endothelial functional capacity. Taking into account that shear stress is one of the most important stimulants for the synthesis and release of NO, the non-invasive technique most often used is the transient flow-modulate "endothelium-dependent" post-ischemic vasodilatation, performed on conductance arteries such as the brachial, radial or femoral arteries. This vasodilatation is compared with the

  1. Unraveling the role of animal heme peroxidases in superoxide mediated Mn oxide formation

    Science.gov (United States)

    Learman, D. R.; Hansel, C. M.

    2013-12-01

    Manganese(III,IV) oxides are important in the environment as they can impact the fate of a broad range of nutrients (e.g. carbon and phosphate) and contaminates (e.g. lead and chromium). Bacteria play a valuable role in the production of Mn oxides, yet the mechanisms and physiological reasons remain unclear. Roseobacter sp. AzwK-3b, an organism within the abundant and ubiquitous Roseobacter clade, has recently been shown to oxidize Mn(II) via a novel pathway that involves enzymatic extracellular superoxide production. However, in reactions with only Mn(II) and abiotically generated superoxide, we find superoxide alone is not enough to produce Mn(III,IV) oxides. Scavenging of the byproduct hydrogen peroxide (via the addition of catalase) is required to generate Mn oxides via abiotic reaction of Mn(II) with superoxide. Thus, R. AzwK-3b must produce superoxide and also scavenge hydrogen peroxide to form Mn oxides. Further, in-gel Mn(II) oxidation assay revealed a protein band that could generate Mn oxides in the presence of soluble Mn(II). This Mn(II)-oxidizing protein band was excised from the gel and the peptides identified via mass spectrometry. An animal heme peroxidase (AHP) was the predominant protein found in this band. This protein is homologous to the AHPs previously implicated as a Mn(II)-oxidizing enzyme within the Alphaproteobacteria, Erythrobacter SD-21 and Aurantimonas manganoxydans strain SI85-9A1. Currently, protein expression of the AHPs in R. AzwK-3b is being examined to determine if expression is correlated with Mn(II) concentration or oxidative stress. Our data suggests that AHPs do not directly oxidize Mn(II) but rather plays a role in scavenging hydrogen peroxide and/or producing an organic Mn(III) ligand that complexes Mn(III) and likely aids in Mn oxide precipitation.

  2. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling.

    Science.gov (United States)

    Wang, Ying; Branicky, Robyn; Noë, Alycia; Hekimi, Siegfried

    2018-04-18

    Superoxide dismutases (SODs) are universal enzymes of organisms that live in the presence of oxygen. They catalyze the conversion of superoxide into oxygen and hydrogen peroxide. Superoxide anions are the intended product of dedicated signaling enzymes as well as the byproduct of several metabolic processes including mitochondrial respiration. Through their activity, SOD enzymes control the levels of a variety of reactive oxygen species (ROS) and reactive nitrogen species, thus both limiting the potential toxicity of these molecules and controlling broad aspects of cellular life that are regulated by their signaling functions. All aerobic organisms have multiple SOD proteins targeted to different cellular and subcellular locations, reflecting the slow diffusion and multiple sources of their substrate superoxide. This compartmentalization also points to the need for fine local control of ROS signaling and to the possibility for ROS to signal between compartments. In this review, we discuss studies in model organisms and humans, which reveal the dual roles of SOD enzymes in controlling damage and regulating signaling. © 2018 Wang et al.

  3. Far-infrared radiation acutely increases nitric oxide production by increasing Ca(2+) mobilization and Ca(2+)/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179.

    Science.gov (United States)

    Park, Jung-Hyun; Lee, Sangmi; Cho, Du-Hyong; Park, Young Mi; Kang, Duk-Hee; Jo, Inho

    2013-07-12

    Repeated thermal therapy manifested by far-infrared (FIR) radiation improves vascular function in both patients and mouse model with coronary heart disease, but its underlying mechanism is not fully understood. Using FIR as a thermal therapy agent, we investigate the molecular mechanism of its effect on endothelial nitric oxide synthase (eNOS) activity and NO production. FIR increased the phosphorylation of eNOS at serine 1179 (eNOS-Ser(1179)) in a time-dependent manner (up to 40min of FIR radiation) in bovine aortic endothelial cells (BAEC) without alterations in eNOS expression. This increase was accompanied by increases in NO production and intracellular Ca(2+) levels. Treatment with KN-93, a selective inhibitor of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and H-89, a protein kinase A inhibitor, inhibited FIR radiation-stimulated eNOS-Ser(1179) phosphorylation. FIR radiation itself also increased the temperature of culture medium. As transient receptors potential vanilloid (TRPV) ion channels are known to be temperature-sensitive calcium channels, we explore whether TRPV channels mediate these observed effects. Reverse transcription-PCR assay revealed two TRPV isoforms in BAEC, TRPV2 and TRPV4. Although ruthenium red, a pan-TRPV inhibitor, completely reversed the observed effect of FIR radiation, a partial attenuation (∼20%) was found in cells treated with Tranilast, TRPV2 inhibitor. However, ectopic expression of siRNA of TRPV2 showed no significant alteration in FIR radiation-stimulated eNOS-Ser(1179) phosphorylation. This study suggests that FIR radiation increases NO production via increasing CaMKII-mediated eNOS-Ser(1179) phosphorylation but TRPV channels may not be involved in this pathway. Our results may provide the molecular mechanism by which FIR radiation improves endothelial function. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. PPARγ activation abolishes LDL-induced proliferation of human aortic smooth muscle cells via SOD-mediated down-regulation of superoxide

    International Nuclear Information System (INIS)

    Heo, Kyung-Sun; Kim, Dong-Uk; Ryoo, Sungwoo; Nam, Miyoung; Baek, Seung Tae; Kim, Lila; Park, Song-Kyu; Myung, Chang-Seon; Hoe, Kwang-Lae

    2007-01-01

    Native LDL would be a mitogenic and chemotactic stimulus of VSMC proliferation and differentiation in the atherosclerotic lesion where endothelial disruption occurred. In previous studies, our group investigated the molecular mechanisms by which LDL induces IL-8 production and by which PPARα activation abolishes LDL effects in human aortic SMCs (hAoSMCs). Herein is the first report of PPARγ activation by troglitazone (TG) exerting its inhibitory effects on LDL-induced cell proliferation via generation not of H 2 O 2 , but of O2?-, and the subsequent activation of Erk1/2 in hAoSMCs. Moreover, in this study TG abolished the LDL-accelerated G 1 -S progression to control levels via down-regulation of active cyclinD1/CDK4 and cyclinE/CDK2 complexes and up-regulation of p21 Cip1 expression. TG exerted its anti-proliferative effects through the up-regulation of basal superoxide dismutase (SOD) expression. This data suggests that the regulation of O2?- is located at the crossroads between LDL signaling and cell proliferation

  5. Specific inhibition of hypoxia-inducible factor (HIF)-1 alpha activation and of vascular endothelial growth factor (VEGF) production by flavonoids.

    Science.gov (United States)

    Hasebe, Yuki; Egawa, Kiyoshi; Yamazaki, Yoko; Kunimoto, Setsuko; Hirai, Yasuaki; Ida, Yoshiteru; Nose, Kiyoshi

    2003-10-01

    Screening using a reporter under the control of the hypoxia-response element (HRE) identified several flavonoids and homoisoflavonoids that inhibit the activation of HRE under hypoxic conditions. Among various compounds, isorhamnetin, luteolin, quercetin, and methyl ophiopogonanone B (MOB) were effective at 3 to 9 microg/ml in inhibiting the reporter activity. The expression of vascular endothelial growth factor (VEGF) mRNA during hypoxia was also inhibited by MOB in HepG2 cells, but the effective doses were 10 to 20 microg/ml. MOB caused destabilization of hypoxia-inducible factor (HIF)-1alpha, as revealed by Western blotting, that was dependent on proteasome activity and the tumor suppressor, p53. The tubular formation and migration of human umbilical vein endothelial cells was also inhibited by MOB. MOB is expected to act as an inhibitor of angiogenesis.

  6. [Interaction between TRPC1 and STIM1 in calcium sensing receptor mediated calcium influx and nitric oxide production in human umbilical vein endothelial cells].

    Science.gov (United States)

    Wang, L M; Zhong, H; Tang, N; Pang, L J; Zhang, C J; He, F

    2017-11-24

    Objective: To investigate the interaction of Ca(2+) protein TRPC1 and STIM1 in extracellular Ca(2+) -sensing receptor (CaR)-induced extracellular Ca(2+) influx and the production of nitric oxide (NO). Methods: Human umbilical vein endothelial cells (HUVECs) were cultured and incubated with CaR agonist spermine (activating store-operates cation channels (SOC) and receptor-operated channels (ROC)), CaR negative allosteric modulator Calhex231 (blocking SOC, activating ROC) and ROC analogue TPA (activating ROC, blocking SOC), protein kinase C (PKC) inhibitor Ro31-8220, PKCs and PKCμ inhibitor Go6967(activate SOC, blocking ROC), respectively. The interaction of TRPC1 and STIM1 was determined using the immunofluorescence methods. The interaction between TRPC1 and STIM1 were examined by Co-immuno precipitation. The HUVECs were divided into: TRPC1 and STIM1 short hairpin RNA group (shTRPC1+ shSTIM1 group), vehicle-TRPC1+ vehicle-STIM1 group and control group. The cells were incubated with four different treatments under the action of above mentioned interventions, intracellular Ca(2+) concentration ([Ca(2+) ](i)) was detected using the fluorescence Ca(2+) indicator Fura-2/AM, the production of NO was determined by DAF-FM. Results: (1) The expression of TRPC1 and STIM1 proteins levels in HUVECs: Under the confocal microscope, TRPC1 and STIM1 protein expression showed masculine gender, both located in cytoplasm in the normal control group. Post incubation with Calhex231+ TPA, Ro31-8220 and Go6967, TRPC1 and STIM1 positioned in cytoplasm was significantly reduced, and the combined TRPC1 and STIM1 was also significantly reduced. (2) The interaction of TRPC1 and STIM1 in HUVECs: The relative ratios of Calhex231+ TPA+ Spermine+ Ca(2+) group, Ro31-8220+ Spermine+ Ca(2+) group and Go6976+ Spermine+ Ca(2+) group STIM1/TRPC1 and TRPC1/STIM1 were as follows: (25.98±2.17)% and (44.10±4.01)%, (20.85±1.01)% and (46.31±3.47)%, (23.88±2.05)% and (39.65±2.91)%, which were

  7. Advanced glycation end‑products affect the cytoskeletal structure of rat glomerular endothelial cells via the Ras‑related C3 botulinum toxin substrate 1 signaling pathway.

    Science.gov (United States)

    Lan, Lei; Han, Yongsheng; Ren, Wei; Jiang, Jielong; Wang, Peng; Hu, Zhao

    2015-06-01

    The present study aimed to determine the molecular mechanisms leading to the production of advanced glycation end‑products (AGEs) and their effect on the morphology and function of rat glomerular capillary endothelial cells (GECs). Primary rat GECs were treated with AGE‑modified human serum albumin (AGE‑HSA) and divided into groups according to AGE concentration and treatment time. The structure and distribution of cytoskeletal protein F‑actin and the cortical actin binding protein, cortactin, were analyzed using immunofluorescence and confocal microscopy. As the Ras‑related C3 botulinum toxin substrate 1 (Rac1) signaling pathway was previously identified to be involved in mediating the contraction of endothelial actin‑myosin activity, Rac1 was examined subsequent to treatment of the cells with the Rac1 agonist 2'‑O‑methyladenosine‑3',5'‑cyclic monophosphate (O‑Me‑cAMP) for 1 h using a pull‑down assay. Cell permeability was determined by the leakage rate of a fluorescein isothiocyanate fluorescent marker protein. AGE‑HSA treatment resulted in alterations in the structure and distribution of F‑actin and cortactin in a dose‑ and time‑dependent manner, while no effect was observed with HSA alone. The effect of AGE on the cytoskeleton was inhibited by the addition of O‑Me‑cAMP. AGE‑HSA significantly reduced the level of Rac1 activity (P<0.05); however, no effect was observed on total protein levels. Furthermore, AGE‑HSA treatment led to a significant increase in the permeability of endothelial cells (P<0.01), which was inhibited by O‑Me‑cAMP (P<0.01). The Rac1 signaling pathway is thus suggested to serve an important function in mediating AGE‑induced alterations in GEC morphology and function.

  8. Dietary phosphorus acutely impairs endothelial function.

    Science.gov (United States)

    Shuto, Emi; Taketani, Yutaka; Tanaka, Rieko; Harada, Nagakatsu; Isshiki, Masashi; Sato, Minako; Nashiki, Kunitaka; Amo, Kikuko; Yamamoto, Hironori; Higashi, Yukihito; Nakaya, Yutaka; Takeda, Eiji

    2009-07-01

    Excessive dietary phosphorus may increase cardiovascular risk in healthy individuals as well as in patients with chronic kidney disease, but the mechanisms underlying this risk are not completely understood. To determine whether postprandial hyperphosphatemia may promote endothelial dysfunction, we investigated the acute effect of phosphorus loading on endothelial function in vitro and in vivo. Exposing bovine aortic endothelial cells to a phosphorus load increased production of reactive oxygen species, which depended on phosphorus influx via sodium-dependent phosphate transporters, and decreased nitric oxide production via inhibitory phosphorylation of endothelial nitric oxide synthase. Phosphorus loading inhibited endothelium-dependent vasodilation of rat aortic rings. In 11 healthy men, we alternately served meals containing 400 mg or 1200 mg of phosphorus in a double-blind crossover study and measured flow-mediated dilation of the brachial artery before and 2 h after the meals. The high dietary phosphorus load increased serum phosphorus at 2 h and significantly decreased flow-mediated dilation. Flow-mediated dilation correlated inversely with serum phosphorus. Taken together, these findings suggest that endothelial dysfunction mediated by acute postprandial hyperphosphatemia may contribute to the relationship between serum phosphorus level and the risk for cardiovascular morbidity and mortality.

  9. Superoxide generation is diminished during glucose-stimulated insulin secretion in INS-1E cells

    Czech Academy of Sciences Publication Activity Database

    Ježek, Petr; Hlavatá, Lydie; Špaček, Tomáš

    2008-01-01

    Roč. 275, Suppl.1 (2008), s. 310-310 ISSN 1742-464X. [FEBS Congress /33./ and IUBMB Conference /11./. 28.06.2008-03.07.2008, Athens] R&D Projects: GA MZd(CZ) NR7917; GA AV ČR(CZ) IAA500110701 Institutional research plan: CEZ:AV0Z50110509 Keywords : cpo1 * superoxide production * glucose-stimulated insulin secretion * INS-1E cells Subject RIV: ED - Physiology

  10. Neutrophil superoxide-anion generating capacity in chronic smoking ...

    Indian Academy of Sciences (India)

    Unknown

    To this purpose, we randomly assigned 128 male chronic smokers (37 ± 21 pack years of smoking) ... Secondly, in non-smoking human subjects we have recently shown ... therapy in chronic smoking affects superoxide generating capacity of ...

  11. Oxidative stress and superoxide dismutase activity in brain of rats ...

    African Journals Online (AJOL)

    JTEkanem

    effect of superoxide dismutase (SOD) activity in brain homogenates of Wistar rats. Oxidative stress measured as ..... on the brain and nervous system of humans as handlers and ... environment may be at higher health risk in that their internal ...

  12. Potential for free radical-induced lipid peroxidation as a cause of endothelial cell injury in Rocky Mountain spotted fever.

    Science.gov (United States)

    Silverman, D J; Santucci, L A

    1988-01-01

    Cells infected by Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, display unusual intracellular morphological changes characterized by dilatation of the membranes of the endoplasmic reticulum and outer nuclear envelope. These changes are consistent with those that might be expected to occur following peroxidation of membrane lipids initiated by oxygen radical species, such as the hydroxyl radical or a variety of organic radicals. Using a fluorescent probe, we have found significantly increased levels of peroxides in human endothelial cells infected by R. rickettsii. Studies with desferrioxamine, an iron chelator effective in preventing formation of the hydroxyl radical from hydrogen peroxide and the superoxide free radical, reduced peroxide levels in infected cells to those found in uninfected cells. This observation suggests that the increased peroxides in infected cells may be lipid peroxides, degradation products of free radical attack on polyenoic fatty acids. The potential for lipid peroxidation as an important mechanism in endothelial cell injury caused by R. rickettsii is discussed. Images PMID:3141280

  13. Chemistry of superoxide radical in seawater: CDOM associated sink of superoxide in coastal waters

    Energy Technology Data Exchange (ETDEWEB)

    Goldstone, J.V.; Voelker, B.M.

    2000-03-15

    Colored dissolved organic matter (CDOM) and humic substances contain a nonmetallic redox-cycling component capable of catalyzing superoxide (O{sub 2}{sup {minus}}) dismutation. First-order rate coefficients (k{sub pseudo}) measured for this O{sub 2}{sup {minus}} sink in a number of coastal and Chesapeake Bay water samples range up to 1.4s{sup {minus}1}, comparable in magnitude to catalyzed dismutation by Cu species. A significant (r{sup 2}=0.73) correlation is observed between k{sub pseudo} and the optical absorption and salinity of individual coastal water samples, suggesting an association with non-marine-derived CDOM. The activity of this sink is not changed by acidification or boiling of samples but is removed by photooxidation, indicating that it is an organic compound, but that it is neither enzymatic nor likely to consist of tightly bound metals. The stoichiometry of hydrogen peroxide formation from O{sub 2}{sup {minus}} decay indicates that this sink is capable of a redox cycle catalyzing the dismutation of O{sub 2}{sup {minus}}. This CDOM sink combined with the organic copper sink previously described will produce a steady-state superoxide concentration in coastal waters that is 100--1000-fold lower than that predicted from bimolecular dismutation alone. Catalyzed O{sub 2}{sup {minus}} decay was also observed in a variety of humic and fulvic acid samples, possibly occurring through quinone functionalities. Although the presence of quinone moieties in humic and fulvic acids has been demonstrated, there do not appear to be good correlations between several measures of quinone content and the O{sub 2}{sup {minus}} dismutation rates of these samples.

  14. Evolution of endothelial keratoplasty.

    Science.gov (United States)

    Price, Francis W; Price, Marianne O

    2013-11-01

    Endothelial keratoplasty has evolved into a popular alternative to penetrating keratoplasty (PK) for the treatment of endothelial dysfunction. Although the earliest iterations were challenging and were not widely adopted, the iteration known as Descemet stripping endothelial keratoplasty (DSEK) has gained widespread acceptance. DSEK combines a simplified technique for stripping dysfunctional endothelium from the host cornea and microkeratome dissection of the donor tissue, a step now commonly completed in advance by eye bank technicians. Studies show that a newer endothelial keratoplasty iteration, known as Descemet membrane endothelial keratoplasty (DMEK), provides an even faster and better visual recovery than DSEK does. In addition, DMEK significantly reduces the risk of immunologic graft rejection episodes compared with that in DSEK or in PK. Although the DMEK donor tissue, consisting of the bare endothelium and Descemet membrane without any stroma, is more challenging to prepare and position in the recipient eye, recent improvements in instrumentation and surgical techniques are increasing the ease and the reliability of the procedure. DSEK successfully mitigates 2 of the main liabilities of PK: ocular surface complications and structural problems (including induced astigmatism and perpetually weak wounds), whereas DMEK further mitigates the 2 principal remaining liabilities of PK: immunologic graft reactions and secondary glaucoma from prolonged topical corticosteroid use.

  15. STUDIES ON ENDOTHELIAL REACTIONS

    Science.gov (United States)

    Foot, Nathan Chandler

    1923-01-01

    If the spleen be removed from rabbits and tubercle bacilli be injected intravenously, it is found that the lesions produced differ materially from those observed in control animals; the lungs present the most marked contrast, the liver also shows a definite difference in the distribution of the tubercles, and the kidney lesions also differ in the two instances. In discussing these facts we must answer, if possible, the four questions formulated above. It appears that the pulmonary lesions in Group S are small and discrete because of some inhibitory factor that prevents the diffusion of the products of dead tubercle bacilli. The organisms, far from being killed, are more numerous and better preserved in this group, but their destructive action is localized. This seems to be connected with the presence of polymorphonuclear leucocytes, for these cells are more numerous in the lesions and more plentiful in the lumina of the pulmonary capillaries of Group S than they are in the controls. The conclusion to be drawn from this covers the answer to the second question. It is not the tubercle bacillus itself that produces the destructive changes, but the toxins liberated by the breaking down of its substance. The well known experiments of Hodenpyl and Armand-Delille, already referred to in this series of papers, show this to be true; dead tubercle bacilli, or even extracts of these organisms, will produce typical tubercles. Removing the spleen stimulates the production of polymorphonuclear leucocytes, as shown by Johnstone (1922). These cells may prevent the diffusion of split products from the bacilli by removing or neutralizing them. The third question, as to why the liver is more affected after splenectomy than in normal controls, is more readily answered. Probably the spleen acts as a catch-basin for the bacteria; once removed it can no longer withhold them from the portal circulation and the liver receives a larger number than it would were this bacterial filter still

  16. Increased endothelial cell-leukocyte interaction in murine schistosomiasis: possible priming of endothelial cells by the disease.

    Directory of Open Access Journals (Sweden)

    Suellen D S Oliveira

    Full Text Available BACKGROUND AND AIMS: Schistosomiasis is an intravascular parasitic disease associated with inflammation. Endothelial cells control leukocyte transmigration and vascular permeability being modulated by pro-inflammatory mediators. Recent data have shown that endothelial cells primed in vivo in the course of a disease keep the information in culture. Herein, we evaluated the impact of schistosomiasis on endothelial cell-regulated events in vivo and in vitro. METHODOLOGY AND PRINCIPAL FINDINGS: The experimental groups consisted of Schistosoma mansoni-infected and age-matched control mice. In vivo infection caused a marked influx of leukocytes and an increased protein leakage in the peritoneal cavity, characterizing an inflamed vascular and cellular profile. In vitro leukocyte-mesenteric endothelial cell adhesion was higher in cultured cells from infected mice as compared to controls, either in the basal condition or after treatment with the pro-inflammatory cytokine tumor necrosis factor (TNF. Nitric oxide (NO donation reduced leukocyte adhesion to endothelial cells from control and infected groups; however, in the later group the effect was more pronounced, probably due to a reduced NO production. Inhibition of control endothelial NO synthase (eNOS increased leukocyte adhesion to a level similar to the one observed in the infected group. Besides, the adhesion of control leukocytes to endothelial cells from infected animals is similar to the result of infected animals, confirming that schistosomiasis alters endothelial cells function. Furthermore, NO production as well as the expression of eNOS were reduced in cultured endothelial cells from infected animals. On the other hand, the expression of its repressor protein, namely caveolin-1, was similar in both control and infected groups. CONCLUSION/SIGNIFICANCE: Schistosomiasis increases vascular permeability and endothelial cell-leukocyte interaction in vivo and in vitro. These effects are partially

  17. Cafestol Inhibits Cyclic-Strain-Induced Interleukin-8, Intercellular Adhesion Molecule-1, and Monocyte Chemoattractant Protein-1 Production in Vascular Endothelial Cells

    Science.gov (United States)

    Hao, Wen-Rui; Sung, Li-Chin; Chen, Chun-Chao; Chen, Jin-Jer

    2018-01-01

    Moderate coffee consumption is inversely associated with cardiovascular disease mortality; however, mechanisms underlying this causal effect remain unclear. Cafestol, a diterpene found in coffee, has various properties, including an anti-inflammatory property. This study investigated the effect of cafestol on cyclic-strain-induced inflammatory molecule secretion in vascular endothelial cells. Cells were cultured under static or cyclic strain conditions, and the secretion of inflammatory molecules was determined using enzyme-linked immunosorbent assay. The effects of cafestol on mitogen-activated protein kinases (MAPK), heme oxygenase-1 (HO-1), and sirtuin 1 (Sirt1) signaling pathways were examined using Western blotting and specific inhibitors. Cafestol attenuated cyclic-strain-stimulated intercellular adhesion molecule-1 (ICAM-1), monocyte chemoattractant protein- (MCP-) 1, and interleukin- (IL-) 8 secretion. Cafestol inhibited the cyclic-strain-induced phosphorylation of extracellular signal-regulated kinase and p38 MAPK. By contrast, cafestol upregulated cyclic-strain-induced HO-1 and Sirt1 expression. The addition of zinc protoporphyrin IX, sirtinol, or Sirt1 silencing (transfected with Sirt1 siRNA) significantly attenuated cafestol-mediated modulatory effects on cyclic-strain-stimulated ICAM-1, MCP-1, and IL-8 secretion. This is the first study to report that cafestol inhibited cyclic-strain-induced inflammatory molecule secretion, possibly through the activation of HO-1 and Sirt1 in endothelial cells. The results provide valuable insights into molecular pathways that may contribute to the effects of cafestol. PMID:29854096

  18. Far-infrared radiation acutely increases nitric oxide production by increasing Ca2+ mobilization and Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179

    International Nuclear Information System (INIS)

    Park, Jung-Hyun; Lee, Sangmi; Cho, Du-Hyong; Park, Young Mi; Kang, Duk-Hee; Jo, Inho

    2013-01-01

    Highlights: •Far-infrared (FIR) radiation increases eNOS-Ser 1179 phosphorylation and NO production in BAEC. •CaMKII and PKA mediate FIR-stimulated increases in eNOS-Ser 1179 phosphorylation. •FIR increases intracellular Ca 2+ levels. •Thermo-sensitive TRPV Ca 2+ channels are unlikely to be involved in the FIR-mediated eNOS-Ser 1179 phosphorylation pathway. -- Abstract: Repeated thermal therapy manifested by far-infrared (FIR) radiation improves vascular function in both patients and mouse model with coronary heart disease, but its underlying mechanism is not fully understood. Using FIR as a thermal therapy agent, we investigate the molecular mechanism of its effect on endothelial nitric oxide synthase (eNOS) activity and NO production. FIR increased the phosphorylation of eNOS at serine 1179 (eNOS-Ser 1179 ) in a time-dependent manner (up to 40 min of FIR radiation) in bovine aortic endothelial cells (BAEC) without alterations in eNOS expression. This increase was accompanied by increases in NO production and intracellular Ca 2+ levels. Treatment with KN-93, a selective inhibitor of Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) and H-89, a protein kinase A inhibitor, inhibited FIR radiation-stimulated eNOS-Ser 1179 phosphorylation. FIR radiation itself also increased the temperature of culture medium. As transient receptors potential vanilloid (TRPV) ion channels are known to be temperature-sensitive calcium channels, we explore whether TRPV channels mediate these observed effects. Reverse transcription-PCR assay revealed two TRPV isoforms in BAEC, TRPV2 and TRPV4. Although ruthenium red, a pan-TRPV inhibitor, completely reversed the observed effect of FIR radiation, a partial attenuation (∼20%) was found in cells treated with Tranilast, TRPV2 inhibitor. However, ectopic expression of siRNA of TRPV2 showed no significant alteration in FIR radiation-stimulated eNOS-Ser 1179 phosphorylation. This study suggests that FIR radiation increases NO

  19. Far-infrared radiation acutely increases nitric oxide production by increasing Ca{sup 2+} mobilization and Ca{sup 2+}/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung-Hyun; Lee, Sangmi [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Cho, Du-Hyong [Department of Neuroscience, School of Medicine, Konkuk University, Seoul 143-701 (Korea, Republic of); Park, Young Mi [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Kang, Duk-Hee [Division of Nephrology, Department of Internal Medicine, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Jo, Inho, E-mail: inhojo@ewha.ac.kr [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of)

    2013-07-12

    Highlights: •Far-infrared (FIR) radiation increases eNOS-Ser{sup 1179} phosphorylation and NO production in BAEC. •CaMKII and PKA mediate FIR-stimulated increases in eNOS-Ser{sup 1179} phosphorylation. •FIR increases intracellular Ca{sup 2+} levels. •Thermo-sensitive TRPV Ca{sup 2+} channels are unlikely to be involved in the FIR-mediated eNOS-Ser{sup 1179} phosphorylation pathway. -- Abstract: Repeated thermal therapy manifested by far-infrared (FIR) radiation improves vascular function in both patients and mouse model with coronary heart disease, but its underlying mechanism is not fully understood. Using FIR as a thermal therapy agent, we investigate the molecular mechanism of its effect on endothelial nitric oxide synthase (eNOS) activity and NO production. FIR increased the phosphorylation of eNOS at serine 1179 (eNOS-Ser{sup 1179}) in a time-dependent manner (up to 40 min of FIR radiation) in bovine aortic endothelial cells (BAEC) without alterations in eNOS expression. This increase was accompanied by increases in NO production and intracellular Ca{sup 2+} levels. Treatment with KN-93, a selective inhibitor of Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) and H-89, a protein kinase A inhibitor, inhibited FIR radiation-stimulated eNOS-Ser{sup 1179} phosphorylation. FIR radiation itself also increased the temperature of culture medium. As transient receptors potential vanilloid (TRPV) ion channels are known to be temperature-sensitive calcium channels, we explore whether TRPV channels mediate these observed effects. Reverse transcription-PCR assay revealed two TRPV isoforms in BAEC, TRPV2 and TRPV4. Although ruthenium red, a pan-TRPV inhibitor, completely reversed the observed effect of FIR radiation, a partial attenuation (∼20%) was found in cells treated with Tranilast, TRPV2 inhibitor. However, ectopic expression of siRNA of TRPV2 showed no significant alteration in FIR radiation-stimulated eNOS-Ser{sup 1179} phosphorylation. This

  20. Progress in Understanding Algal Bloom-Mediated Fish Kills: The Role of Superoxide Radicals, Phycotoxins and Fatty Acids.

    Directory of Open Access Journals (Sweden)

    Juan José Dorantes-Aranda

    Full Text Available Quantification of the role of reactive oxygen species, phycotoxins and fatty acids in fish toxicity by harmful marine microalgae remains inconclusive. An in vitro fish gill (from rainbow trout Oncorhynchus mykiss assay was used to simultaneously assess the effect in superoxide dismutase, catalase and lactate dehydrogenase enzymatic activities caused by seven species of ichthyotoxic microalgae (Chattonella marina, Fibrocapsa japonica, Heterosigma akashiwo, Karenia mikimotoi, Alexandrium catenella, Karlodinium veneficum, Prymnesium parvum. Quantification of superoxide production by these algae was also performed. The effect of purified phycotoxins and crude extracts was compared, and the effect of fatty acids is discussed. The raphidophyte Chattonella was the most ichthyotoxic (gill cell viability down to 35% and also the major producer of superoxide radicals (14 pmol cell-1 hr-1 especially after cell lysis. The raphidophyte Heterosigma and dinoflagellate Alexandrium were the least toxic and had low superoxide production, except when A. catenella was lysed (5.6 pmol cell-1 hr-1. Catalase showed no changes in activity in all the treatments. Superoxide dismutase (SOD and lactate dehydrogenase exhibited significant activity increases of ≤23% and 51.2% TCC (total cellular content, respectively, after exposure to C. marina, but SOD showed insignificant changes with remaining algal species. A strong relationship between gill cell viability and superoxide production or superoxide dismutase was not observed. Purified brevetoxins PbTx-2 and -3 (from Karenia brevis, LC50 of 22.1 versus 35.2 μg mL-1 and karlotoxin KmTx-2 (from Karlodinium; LC50 = 380 ng mL-1 could almost entirely account for the fish killing activity by those two dinoflagellates. However, the paralytic shellfish toxins (PST GTX1&4, C1&C2, and STX did not account for Alexandrium ichthyotoxicity. Only aqueous extracts of Alexandrium were cytotoxic (≤65% decrease of viability, whereas

  1. Infections and endothelial cells

    NARCIS (Netherlands)

    Keller, Tymen T.; Mairuhu, Albert T. A.; de Kruif, Martijn D.; Klein, Saskia K.; Gerdes, Victor E. A.; ten Cate, Hugo; Brandjes, Dees P. M.; Levi, Marcel; van Gorp, Eric C. M.

    2003-01-01

    Systemic infection by various pathogens interacts with the endothelium and may result in altered coagulation, vasculitis and atherosclerosis. Endothelium plays a role in the initiation and regulation of both coagulation and fibrinolysis. Exposure of endothelial cells may lead to rapid activation of

  2. A study on superoxide dismutase activity of some model compounds.

    Science.gov (United States)

    Liao, Z; Liu, W; Liu, J; Jiang, Y; Shi, J; Liu, C

    1994-08-15

    The synthesis and characteristics of a binuclear ligand N,N,N',N'-tetrakis (2'-benzimidazolyl methyl)-1,4-diethylene amino glycol ether (EGTB) and its series of coordination compounds containing copper(II), iron(III), and manganese(II) with and without exogenous bridging ligand which was imidazolate ion (Im-), bipyridine (bpy), or 1,10-phenanthroline (phen) are reported. Depending on the redox potentials by cyclic voltammetry, the coordination compounds can act as catalysts for the dismutation of superoxide radicals (O2-). The detection of the rate constant of the reaction of superoxide ion with nitroblue tetrazolium (NBT) which is inhibited by superoxide dismutase (SOD) and its model compounds of the EGTB system has been performed by a modified illumination method. The rate constants kQ of the catalytic dismutation have been obtained.

  3. Antioxidant therapy attenuates myocardial telomerase activity reduction in superoxide dismutase-deficient mice.

    Science.gov (United States)

    Makino, Naoki; Maeda, Toyoki; Oyama, Jun-ichi; Sasaki, Makoto; Higuchi, Yoshihiro; Mimori, Koji; Shimizu, Takahiko

    2011-04-01

    Oxidative stress plays a pathological role in the development of heart failure. This study examined telomere biology in heart/muscle-specific manganese superoxide dismutase-deficient mice (H/M-SOD2(-/-)), which develop progressive congestive heart failure and exhibit pathology typical of dilated cardiomyopathy. EUK-8 (25mg/kg/day), a superoxide dismutase and catalase mimetic, was administered to H/M-SOD2(-/-) mice for four weeks beginning at 8 weeks of age. Telomere length, telomerase activity, telomere-associated proteins, and cell death signals were assessed in hearts from control wild-type mice (H/M-Sod2 (lox/ lox)) and H/M-SOD2(-/-) mice either treated or untreated with EUK-8. While cardiac function was unchanged in these experimental mice, the end-diastolic dimension in H/M-SOD2(-/-) mice was notably dilated and could be significantly reduced by EUK-8 treatment. At the end of the study, no shortening of telomere length was observed in heart tissues from all mice tested, but telomerase activity was decreased in heart tissue from H/M-SOD2(-/-) mice compared to control mice. Protein expression for telomerase reverse transcriptase and telomere repeat binding factor 2 was also downregulated in H/M-SOD2(-/-) heart tissue as was expression of phospho-Akt, insulin-like growth factor, and endothelial nitric oxide synthase. Expression levels of Sirt1, a lifespan modulator, were enhanced while FoxO3a was depressed in H/M-SOD2(-/-) hearts. All of the changes seen in H/M-SOD2(-/-) heart tissue could be inhibited by EUK-8 treatment. Taken together, the results suggest that oxidant stress might affect myocardial telomerase activity and telomere-associated proteins. Telomerase may therefore play a pivotal role in antioxidant defense mechanisms, and may be useful as a novel therapeutic tool for treating human heart failure. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Metabolic Regulation of Manganese Superoxide Dismutase Expression via Essential Amino Acid Deprivation*

    Science.gov (United States)

    Aiken, Kimberly J.; Bickford, Justin S.; Kilberg, Michael S.; Nick, Harry S.

    2008-01-01

    Organisms respond to available nutrient levels by rapidly adjusting metabolic flux, in part through changes in gene expression. A consequence of adaptations in metabolic rate is the production of mitochondria-derived reactive oxygen species. Therefore, we hypothesized that nutrient sensing could regulate the synthesis of the primary defense of the cell against superoxide radicals, manganese superoxide dismutase. Our data establish a novel nutrient-sensing pathway for manganese superoxide dismutase expression mediated through essential amino acid depletion concurrent with an increase in cellular viability. Most relevantly, our results are divergent from current mechanisms governing amino acid-dependent gene regulation. This pathway requires the presence of glutamine, signaling via the tricarboxylic acid cycle/electron transport chain, an intact mitochondrial membrane potential, and the activity of both the MEK/ERK and mammalian target of rapamycin kinases. Our results provide evidence for convergence of metabolic cues with nutrient control of antioxidant gene regulation, revealing a potential signaling strategy that impacts free radical-mediated mutations with implications in cancer and aging. PMID:18187411

  5. Metabolic regulation of manganese superoxide dismutase expression via essential amino acid deprivation.

    Science.gov (United States)

    Aiken, Kimberly J; Bickford, Justin S; Kilberg, Michael S; Nick, Harry S

    2008-04-18

    Organisms respond to available nutrient levels by rapidly adjusting metabolic flux, in part through changes in gene expression. A consequence of adaptations in metabolic rate is the production of mitochondria-derived reactive oxygen species. Therefore, we hypothesized that nutrient sensing could regulate the synthesis of the primary defense of the cell against superoxide radicals, manganese superoxide dismutase. Our data establish a novel nutrient-sensing pathway for manganese superoxide dismutase expression mediated through essential amino acid depletion concurrent with an increase in cellular viability. Most relevantly, our results are divergent from current mechanisms governing amino acid-dependent gene regulation. This pathway requires the presence of glutamine, signaling via the tricarboxylic acid cycle/electron transport chain, an intact mitochondrial membrane potential, and the activity of both the MEK/ERK and mammalian target of rapamycin kinases. Our results provide evidence for convergence of metabolic cues with nutrient control of antioxidant gene regulation, revealing a potential signaling strategy that impacts free radical-mediated mutations with implications in cancer and aging.

  6. Isolation and characterization of Cu/Zn-superoxide dismutase in Fasciola gigantica.

    Science.gov (United States)

    Lalrinkima, H; Raina, O K; Chandra, Dinesh; Jacob, Siju Susan; Bauri, R K; Chandra, Subhash; Yadav, H S; Singh, M N; Rialch, A; Varghese, A; Banerjee, P S; Kaur, Navneet; Sharma, Arvind

    2015-01-01

    A full-length complementary DNA (cDNA) encoding Cu/Zn-superoxide dismutase was isolated from Fasciola gigantica that on nucleotide sequencing showed a close homology (98.9%) with Cu/Zn-superoxide dismutase (SOD) of the temperate liver fluke, F. hepatica. Expression of the gene was found in all the three developmental stages of the parasite viz. adult, newly excysted juvenile and metacercaria at transcriptional level by reverse transcription-polymerase chain reaction (RT-PCR) and at the protein level by Western blotting. F. gigantica Cu/Zn-SOD cDNA was cloned and expressed in Escherichia coli. Enzyme activity of the recombinant protein was determined by nitroblue tetrazolium (NBT)-polyacrylamide gel electrophoresis (PAGE) and this activity was inactivated by hydrogen peroxide but not by sodium azide, indicating that the recombinant protein is Cu/Zn-SOD. The enzyme activity was relatively stable at a broad pH range of pH 4.0-10.0. Native Cu/Zn-superoxide dismutase protein was detected in the somatic extract and excretory-secretory products of the adult F. gigantica by Western blotting. NBT-PAGE showed a single Cu/Zn-SOD present in the somatic extract while three SODs are released ex vivo by the adult parasite. The recombinant superoxide dismutase did not react with the serum from buffaloes infected with F. gigantica. The role of this enzyme in defense by the parasite against the host reactive oxygen species is discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. The potential of the superoxide dismutase inhibitor, diethyldithiocarbamate as an adjuvant to radiotherapy

    International Nuclear Information System (INIS)

    Kent, C.

    1990-10-01

    Oxygen has the potential to be toxic to biologic systems. This toxicity is not due to oxygen itself, but due to the production of oxygen radicals. One of these potentially toxic radicals, superoxide, can be generated as a result of ionizing radiation, and if not adequately removed can proceed to cause cell damage. Superoxide dismutase (SOD) is one of the key enzymes involved in the defence against oxygen toxicity. SOD activity can be inhibited by diethyldithiocarbamate (DDC), a powerful copper chelator. If inhibition of SOD by DDC increases the lifetime and effectiveness of radiation induced superoxide, it follows that the potential exists for DDC to enhance the effect of radiation. DDC is however also a thiol compound, and thus may act as a radioprotector by modifying tissue oxygenation status or by free radical scavenging. The inhibition of superoxide dismutase by diethyldithiocarbamate in order to sensitize tumours to ionizing radiation was studied. The use of DDC as an inhibitor of SOD has however meant that any sensitization resulting from SOD inhibition could be masked by a radioprotective effect by DDC. The inhibition of SOD by DDC was confirmed in a murine rhabdomyosarcoma, and this inhibition can be maintained for up to twenty-four hours after DDC administration. It was shown that DDC could act as both a radiosensitizer and as a radioprotector in the same experiment. The dominant action of DDC was found to be dependent on the time allowed between DDC administration and irradiation. The time modulation effect of DDC was shown in larger tumours, rather than smaller tumours, which could indicate that tumour oxygenation is an important criterion in determining the response to radiation of DDC treated cells. Some caution should be exercised when DDC is put forward as either a radiosensitizer or a radioprotector in the clinic, but DDC may have potential as a thermosensitizer. 37 figs., 23 tabs., 208 refs

  8. Differentiation state determines neural effects on microvascular endothelial cells

    International Nuclear Information System (INIS)

    Muffley, Lara A.; Pan, Shin-Chen; Smith, Andria N.; Ga, Maricar; Hocking, Anne M.; Gibran, Nicole S.

    2012-01-01

    Growing evidence indicates that nerves and capillaries interact paracrinely in uninjured skin and cutaneous wounds. Although mature neurons are the predominant neural cell in the skin, neural progenitor cells have also been detected in uninjured adult skin. The aim of this study was to characterize differential paracrine effects of neural progenitor cells and mature sensory neurons on dermal microvascular endothelial cells. Our results suggest that neural progenitor cells and mature sensory neurons have unique secretory profiles and distinct effects on dermal microvascular endothelial cell proliferation, migration, and nitric oxide production. Neural progenitor cells and dorsal root ganglion neurons secrete different proteins related to angiogenesis. Specific to neural progenitor cells were dipeptidyl peptidase-4, IGFBP-2, pentraxin-3, serpin f1, TIMP-1, TIMP-4 and VEGF. In contrast, endostatin, FGF-1, MCP-1 and thrombospondin-2 were specific to dorsal root ganglion neurons. Microvascular endothelial cell proliferation was inhibited by dorsal root ganglion neurons but unaffected by neural progenitor cells. In contrast, microvascular endothelial cell migration in a scratch wound assay was inhibited by neural progenitor cells and unaffected by dorsal root ganglion neurons. In addition, nitric oxide production by microvascular endothelial cells was increased by dorsal root ganglion neurons but unaffected by neural progenitor cells. -- Highlights: ► Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell proliferation. ► Neural progenitor cells, not dorsal root ganglion neurons, regulate microvascular endothelial cell migration. ► Neural progenitor cells and dorsal root ganglion neurons do not effect microvascular endothelial tube formation. ► Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell production of nitric oxide. ► Neural progenitor cells and dorsal root

  9. Neutrophil superoxide-anion generating capacity in chronic smoking ...

    Indian Academy of Sciences (India)

    We investigated whether long-term -tocopherol therapy in chronic smoking affects superoxide generating capacity of neutrophils ex vivo. To this purpose, we randomly assigned 128 male chronic smokers (37 ± 21 pack years of smoking) to treatment with placebo ( = 64) or -tocopherol (400 IU dL--tocopherol daily, ...

  10. Oxidative stress and superoxide dismutase activity in brain of rats ...

    African Journals Online (AJOL)

    The present study was envisaged to investigate the possible role of oxidative stress in permethrin neurotoxicity and to evaluate the protective effect of superoxide dismutase (SOD) activity in brain homogenates of Wistar rats. Oxidative stress measured as thiobarbituric acid reacting substances (TBARS) was found to ...

  11. Role of nitric oxide and superoxide in Giardia lamblia killing

    Directory of Open Access Journals (Sweden)

    P.D. Fernandes

    1997-01-01

    Full Text Available Giardia lamblia trophozoites were incubated for 2 h with activated murine macrophages, nitric oxide (NO donors or a superoxide anion generator (20 mU/ml xanthine oxidase plus 1 mM xanthine. Activated macrophages were cytotoxic to Giardia trophozoites (~60% dead trophozoites. This effect was inhibited (>90% by an NO synthase inhibitor (200 µM and unaffected by superoxide dismutase (SOD, 300 U/ml. Giardia trophozoites were killed by the NO donors, S-nitroso-acetyl-penicillamine (SNAP and sodium nitroprusside (SNP in a dose-dependent manner (LD50 300 and 50 µM, respectively. A dual NO-superoxide anion donor, 3-morpholino-sydnonimine hydrochloride (SIN-1, did not have a killing effect in concentrations up to 1 mM. However, when SOD (300 U/ml was added simultaneously with SIN-1 to Giardia, a significant trophozoite-killing effect was observed (~35% dead trophozoites at 1 mM. The mixture of SNAP or SNP with superoxide anion, which yields peroxynitrite, abolished the trophozoite killing induced by NO donors. Authentic peroxynitrite only killed trophozoites at very high concentrations (3 mM. These results indicate that NO accounts for Giardia trophozoite killing and this effect is not mediated by peroxynitrite

  12. Effect of yogic exercise on superoxide dismutase levels in diabetics

    Directory of Open Access Journals (Sweden)

    Mahapure Hemant

    2008-01-01

    Full Text Available Context: Reactive oxygen species are known to aggravate disease progression. To counteract their harmful effects, the body produces various antioxidant enzymes, viz , superoxide dismutase, glutathione reductase etc. Literature reviews revealed that exercises help to enhance antioxidant enzyme systems; hence, yogic exercises may be useful to combat various diseases. Aims: This study aims to record the efficacy of yoga on superoxide dismutase, glycosylated hemoglobin (Hb and fasting blood glucose levels in diabetics. Settings and Design: Forty diabetics aged 40-55 years were assigned to experimental (30 and control (10 groups. The experimental subjects underwent a Yoga program comprising of various Asanas (isometric type exercises and Pranayamas (breathing exercises along with regular anti-diabetic therapy whereas the control group received anti-diabetic therapy only. Methods and Material: Heparinized blood samples were used to determine erythrocyte superoxide dismutase (SOD activity and glycosylated Hb levels and fasting blood specimens collected in fluoride Vacutainers were used for assessing blood glucose. Statistical analysis used: Data were analyzed by using 2 x 2 x 3 Factorial ANOVA followed by Scheffe′s posthoc test. Results: The results revealed that Yogic exercise enhanced the levels of Superoxide dismutase and reduced glycosylated Hb and glucose levels in the experimental group as compared to the control group. Conclusion: The findings conclude that Yogic exercises have enhanced the antioxidant defence mechanism in diabetics by reducing oxidative stress.

  13. The Superoxide Reductase from the Early Diverging Eukaryote Giardia Intestinalis

    International Nuclear Information System (INIS)

    Cabelli, D.E.; Testa, F.; Mastronicola, D.; Bordi, E.; Pucillo, L.P.; Sarti, P.; Saraiva, L.M.; Giuffre, A.; Teixeira, M.

    2011-01-01

    Unlike superoxide dismutases (SODs), superoxidereductases (SORs) eliminate superoxide anion (O 2 # sm b ullet# - ) not through its dismutation, but via reduction to hydrogen peroxide (H 2 O 2 ) in the presence of an electron donor. The microaerobic protist Giardia intestinalis, responsible for a common intestinal disease in humans, though lacking SOD and other canonical reactive oxygen species-detoxifying systems, is among the very few eukaryotes encoding a SOR yet identified. In this study, the recombinant SOR from Giardia (SOR Gi ) was purified and characterized by pulse radiolysis and stopped-flow spectrophotometry. The protein, isolated in the reduced state, after oxidation by superoxide or hexachloroiridate(IV), yields a resting species (T final ) with Fe 3+ ligated to glutamate or hydroxide depending on pH (apparent pK a = 8.7). Although showing negligible SOD activity, reduced SOR Gi reacts with O 2 # sm b ullet# - with a pH-independent second-order rate constant k 1 = 1.0 x 10 9 M -1 s -1 and yields the ferric-(hydro)peroxo intermediate T 1 ; this in turn rapidly decays to the T final state with pH-dependent rates, without populating other detectable intermediates. Immunoblotting assays show that SOR Gi is expressed in the disease-causing trophozoite of Giardia. We propose that the superoxide-scavenging activity of SOR in Giardia may promote the survival of this air-sensitive parasite in the fairly aerobic proximal human small intestine during infection.

  14. Antibacterial activity and safety of commercial veterinary cationic steroid antibiotics and neutral superoxidized water.

    Directory of Open Access Journals (Sweden)

    Benjamin E Bergstrom

    Full Text Available Antibiotic resistance of bacteria common to the ocular surface is an evolving problem. Thus, novel treatment options with new modes of action are required. We investigated the antibacterial activity and safety of three commercially available topical veterinary ophthalmic products (cationic steroid antibiotics, products A and B, and a neutral superoxidized water, product C to determine their potential use as antimicrobial alternatives. The minimum inhibitory concentrations (MIC of the three products were determined against 17 antibiotic resistant bacterial clinical isolates from the ocular surface. Using a standard cytotoxicity assay, the products at varying concentrations were evaluated with a corneal fibroblast cell line and a macrophage-like cell line to determine their potential toxic effect in vitro. The commercial ophthalmic solutions, ofloxacin 0.3%, tobramycin 0.3% and gentamicin 0.3% were used as positive controls for the MIC and tobramycin 0.3% was used as positive control for the cytotoxicity assays. For the MIC, Product C showed no inhibition of growth for any organisms, while Products A and B showed inhibition of growth similar to slightly less than the positive controls. For the cytotoxicity assays, Product C exhibited minimal toxicity while Products A and B exhibited toxicity similar to the controls. In conclusion, Product C had no antibacterial activity in these assays, while Products A and B had antibacterial profiles similar to slightly less than common topical ophthalmic antibiotics and cytotoxicity profiles similar to common topical ophthalmic antibiotics. To our knowledge, this is the first report on the antibacterial activity and safety of the cationic steroid antibiotics and superoxidized water.

  15. Rapid generation of mitochondrial superoxide induces mitochondrion-dependent but caspase-independent cell death in hippocampal neuronal cells that morphologically resembles necroptosis

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Masayuki; Choi, Hye Joung; Zhu, Bao Ting, E-mail: BTZhu@kumc.edu

    2012-07-15

    Studies in recent years have revealed that excess mitochondrial superoxide production is an important etiological factor in neurodegenerative diseases, resulting from oxidative modifications of cellular lipids, proteins, and nucleic acids. Hence, it is important to understand the mechanism by which mitochondrial oxidative stress causes neuronal death. In this study, the immortalized mouse hippocampal neuronal cells (HT22) in culture were used as a model and they were exposed to menadione (also known as vitamin K{sub 3}) to increase intracellular superoxide production. We found that menadione causes preferential accumulation of superoxide in the mitochondria of these cells, along with the rapid development of mitochondrial dysfunction and cellular ATP depletion. Neuronal death induced by menadione is independent of the activation of the MAPK signaling pathways and caspases. The lack of caspase activation is due to the rapid depletion of cellular ATP. It was observed that two ATP-independent mitochondrial nucleases, namely, AIF and Endo G, are released following menadione exposure. Silencing of their expression using specific siRNAs results in transient suppression (for ∼ 12 h) of mitochondrial superoxide-induced neuronal death. While suppression of the mitochondrial superoxide dismutase expression markedly sensitizes neuronal cells to mitochondrial superoxide-induced cytotoxicity, its over-expression confers strong protection. Collectively, these findings showed that many of the observed features associated with mitochondrial superoxide-induced cell death, including caspase independency, rapid depletion of ATP level, mitochondrial release of AIF and Endo G, and mitochondrial swelling, are distinctly different from those of apoptosis; instead they resemble some of the known features of necroptosis. -- Highlights: ► Menadione causes mitochondrial superoxide accumulation and injury. ► Menadione-induced cell death is caspase-independent, due to rapid depletion of

  16. Rapid generation of mitochondrial superoxide induces mitochondrion-dependent but caspase-independent cell death in hippocampal neuronal cells that morphologically resembles necroptosis

    International Nuclear Information System (INIS)

    Fukui, Masayuki; Choi, Hye Joung; Zhu, Bao Ting

    2012-01-01

    Studies in recent years have revealed that excess mitochondrial superoxide production is an important etiological factor in neurodegenerative diseases, resulting from oxidative modifications of cellular lipids, proteins, and nucleic acids. Hence, it is important to understand the mechanism by which mitochondrial oxidative stress causes neuronal death. In this study, the immortalized mouse hippocampal neuronal cells (HT22) in culture were used as a model and they were exposed to menadione (also known as vitamin K 3 ) to increase intracellular superoxide production. We found that menadione causes preferential accumulation of superoxide in the mitochondria of these cells, along with the rapid development of mitochondrial dysfunction and cellular ATP depletion. Neuronal death induced by menadione is independent of the activation of the MAPK signaling pathways and caspases. The lack of caspase activation is due to the rapid depletion of cellular ATP. It was observed that two ATP-independent mitochondrial nucleases, namely, AIF and Endo G, are released following menadione exposure. Silencing of their expression using specific siRNAs results in transient suppression (for ∼ 12 h) of mitochondrial superoxide-induced neuronal death. While suppression of the mitochondrial superoxide dismutase expression markedly sensitizes neuronal cells to mitochondrial superoxide-induced cytotoxicity, its over-expression confers strong protection. Collectively, these findings showed that many of the observed features associated with mitochondrial superoxide-induced cell death, including caspase independency, rapid depletion of ATP level, mitochondrial release of AIF and Endo G, and mitochondrial swelling, are distinctly different from those of apoptosis; instead they resemble some of the known features of necroptosis. -- Highlights: ► Menadione causes mitochondrial superoxide accumulation and injury. ► Menadione-induced cell death is caspase-independent, due to rapid depletion of ATP

  17. Understanding Free Radicals: Isolating Active Thylakoid Membranes and Purifying the Cytochrome b6f Complex for Superoxide Generation Studies

    Directory of Open Access Journals (Sweden)

    Jason Stofleth

    2012-01-01

    Full Text Available All life persists in an environment that is rich in molecular oxygen. The production of oxygen free radicals, or superoxide, is a necessary consequence of the biogenesis of energy in cells. Both mitochondrial and photosynthetic electron transport chains have been found to produce superoxide associated with cell differentiation, proliferation, and cell death, thereby contributing to the effects of aging. Aerobic respiration in mitochondria consumes oxygen, whereas photosynthesis in chloroplasts or cyanobacteria produces oxygen. The increased concentration of molecular oxygen may serve to allow greater availability for the production of superoxide by cytochrome bc complexes in photosynthetic membranes compared to those of mitochondrial membranes. The isolation of well-coupled chloroplasts, containing the cytochrome b6f complex of oxygenic photosynthesis, is a vital initial step in the process of comparing the rate of production of superoxide to those of the homologous cytochrome bc1 complex of aerobic respiration. It is necessary to determine if the isolated chloroplasts have retained their oxygengenerating capability after isolation by an oxygen evolution assay with a Clark-type electrode. A necessary second step, which is the isolation of cytochrome b6f from spinach, has yet to be successfully performed. Oxygen measurements taken from chloroplasts in the presence of the uncoupler, NH4Cl, exhibited a rate of oxygen evolution over three times greater at 344 +/- 18 μmol O2/mg Chlorophyll a/hr than the rate of oxygen evolution without uncoupler at 109 +/- 29 μmol O2/mg Chlorophyll a/hr. These data demonstrate that the technique used to isolate spinach chloroplasts preserves their light-driven electron-transport activity, making them reliable for future superoxide assays.

  18. Cytochrome b5 reductase is the component from neuronal synaptic plasma membrane vesicles that generates superoxide anion upon stimulation by cytochrome c

    Directory of Open Access Journals (Sweden)

    Alejandro K. Samhan-Arias

    2018-05-01

    Full Text Available In this work, we measured the effect of cytochrome c on the NADH-dependent superoxide anion production by synaptic plasma membrane vesicles from rat brain. In these membranes, the cytochrome c stimulated NADH-dependent superoxide anion production was inhibited by antibodies against cytochrome b5 reductase linking the production to this enzyme. Measurement of the superoxide anion radical generated by purified recombinant soluble and membrane cytochrome b5 reductase corroborates the production of the radical by different enzyme isoforms. In the presence of cytochrome c, a burst of superoxide anion as well as the reduction of cytochrome c by cytochrome b5 reductase was measured. Complex formation between both proteins suggests that cytochrome b5 reductase is one of the major partners of cytochrome c upon its release from mitochondria to the cytosol during apoptosis. Superoxide anion production and cytochrome c reduction are the consequences of the stimulated NADH consumption by cytochrome b5 reductase upon complex formation with cytochrome c and suggest a major role of this enzyme as an anti-apoptotic protein during cell death.

  19. COPD as an endothelial disorder: endothelial injury linking lesions in the lungs and other organs? (2017 Grover Conference Series)

    Science.gov (United States)

    Polverino, Francesca; Celli, Bartolome R.

    2018-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by chronic expiratory airflow obstruction that is not fully reversible. COPD patients develop varying degrees of emphysema, small and large airway disease, and various co-morbidities. It has not been clear whether these co-morbidities share common underlying pathogenic processes with the pulmonary lesions. Early research into the pathogenesis of COPD focused on the contributions of injury to the extracellular matrix and pulmonary epithelial cells. More recently, cigarette smoke-induced endothelial dysfunction/injury have been linked to the pulmonary lesions in COPD (especially emphysema) and systemic co-morbidities including atherosclerosis, pulmonary hypertension, and chronic renal injury. Herein, we review the evidence linking endothelial injury to COPD, and the pathways underlying endothelial injury and the “vascular COPD phenotype” including: (1) direct toxic effects of cigarette smoke on endothelial cells; (2) generation of auto-antibodies directed against endothelial cells; (3) vascular inflammation; (4) increased oxidative stress levels in vessels inducing increases in lipid peroxidation and increased activation of the receptor for advanced glycation end-products (RAGE); (5) reduced activation of the anti-oxidant pathways in endothelial cells; (6) increased endothelial cell release of mediators with vasoconstrictor, pro-inflammatory, and remodeling activities (endothelin-1) and reduced endothelial cell expression of mediators that promote vasodilation and homeostasis of endothelial cells (nitric oxide synthase and prostacyclin); and (7) increased endoplasmic reticular stress and the unfolded protein response in endothelial cells. We also review the literature on studies of drugs that inhibit RAGE signaling in other diseases (angiotensin-converting enzyme inhibitors and angiotensin receptor blockers), or vasodilators developed for idiopathic pulmonary arterial hypertension that have been tested

  20. Redistribution of Extracellular Superoxide Dismutase Causes Neonatal Pulmonary Vascular Remodeling and PH but Protects Against Experimental Bronchopulmonary Dysplasia

    Directory of Open Access Journals (Sweden)

    Laurie G. Sherlock

    2018-03-01

    Full Text Available Background: A naturally occurring single nucleotide polymorphism (SNP, (R213G, in extracellular superoxide dismutase (SOD3, decreases SOD3 matrix binding affinity. Humans and mature mice expressing the R213G SNP exhibit increased cardiovascular disease but decreased lung disease. The impact of this SNP on the neonatal lung at baseline or with injury is unknown. Methods: Wild type and homozygous R213G mice were injected with intraperitoneal bleomycin or phosphate buffered saline (PBS three times weekly for three weeks and tissue harvested at 22 days of life. Vascular and alveolar development were evaluated by morphometric analysis and immunostaining of lung sections. Pulmonary hypertension (PH was assessed by right ventricular hypertrophy (RVH. Lung protein expression for superoxide dismutase (SOD isoforms, catalase, vascular endothelial growth factor receptor 2 (VEGFR2, endothelial nitric oxide synthase (eNOS and guanosine triphosphate cyclohydrolase-1 (GTPCH-1 was evaluated by western blot. SOD activity and SOD3 expression were measured in serum. Results: In R213G mice, SOD3 lung protein expression decreased, serum SOD3 protein expression and SOD serum activity increased compared to wild type (WT mice. Under control conditions, R213G mice developed pulmonary vascular remodeling (decreased vessel density and increased medial wall thickness and PH; alveolar development was similar between strains. After bleomycin injury, in contrast to WT, R213G mice were protected from impaired alveolar development and their vascular abnormalities and PH did not worsen. Bleomycin decreased VEGFR2 and GTPCH-1 only in WT mice. Conclusion: R213G neonatal mice demonstrate impaired vascular development and PH at baseline without alveolar simplification, yet are protected from bleomycin induced lung injury and worsening of pulmonary vascular remodeling and PH. These results show that vessel bound SOD3 is essential in normal pulmonary vascular development, and

  1. Hypoxia/reoxygenation increases the permeability of endothelial cell monolayers: Role of oxygen radicals

    International Nuclear Information System (INIS)

    Inauen, W.; Payne, D.K.; Kvietys, P.R.; Granger, D.N.

    1990-01-01

    We assessed the effect of hypoxia/reoxygenation on 14C-albumin flux across endothelial monolayers. Cultured bovine pulmonary artery endothelial cells were grown to confluence on nitrocellulose filters (pore size 12 microns). The endothelialized filters were mounted in Ussing-type chambers which were filled with cell culture medium (M 199). Equimolar amounts (33 nM) of 14C-labeled and unlabeled albumin were added to the hot and cold chambers, respectively. The monolayers were then exposed to successive periods (90 min) of normoxia (pO2 145 mmHg), hypoxia (pO2 20 mmHg), and reoxygenation (pO2 145 mmHg). A gas bubbling system was used to control media pO2 and to ensure adequate mixing. Four aliquots of culture media were taken during each period in order to calculate the 14C-albumin permeability across the endothelialized filter. In some experiments, either the xanthine oxidase inhibitor, oxypurinol (10 microM), or superoxide dismutase (600 U/mL), was added to the media immediately prior to the experiments. As compared to the normoxic control period, albumin permeability was 1.5 times higher during hypoxia (p less than 0.01) and 2.3 times higher during reoxygenation (p less than 0.01). The reoxygenation-induced increase in albumin permeability was prevented by either oxypurinol or superoxide dismutase. These data indicate that xanthine oxidase-derived oxygen radicals contribute to the hypoxia/reoxygenation-induced endothelial cell dysfunction. The altered endothelial barrier function induced by hypoxia/reoxygenation is consistent with the microvascular dysfunction observed following reperfusion of ischemic tissues

  2. Endothelial RIG-I activation impairs endothelial function

    Energy Technology Data Exchange (ETDEWEB)

    Asdonk, Tobias, E-mail: tobias.asdonk@ukb.uni-bonn.de [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Motz, Inga; Werner, Nikos [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Coch, Christoph; Barchet, Winfried; Hartmann, Gunther [Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Nickenig, Georg; Zimmer, Sebastian [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer RIG-I activation impairs endothelial function in vivo. Black-Right-Pointing-Pointer RIG-I activation alters HCAEC biology in vitro. Black-Right-Pointing-Pointer EPC function is affected by RIG-I stimulation in vitro. -- Abstract: Background: Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Methods and results: Wild type mice were injected intravenously with 32.5 {mu}g of the RIG-ligand 3pRNA (RNA with triphosphate at the 5 Prime end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. Conclusion: This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.

  3. Endothelial RIG-I activation impairs endothelial function

    International Nuclear Information System (INIS)

    Asdonk, Tobias; Motz, Inga; Werner, Nikos; Coch, Christoph; Barchet, Winfried; Hartmann, Gunther; Nickenig, Georg; Zimmer, Sebastian

    2012-01-01

    Highlights: ► RIG-I activation impairs endothelial function in vivo. ► RIG-I activation alters HCAEC biology in vitro. ► EPC function is affected by RIG-I stimulation in vitro. -- Abstract: Background: Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Methods and results: Wild type mice were injected intravenously with 32.5 μg of the RIG-ligand 3pRNA (RNA with triphosphate at the 5′end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. Conclusion: This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.

  4. Intracellular implantation of enzymes in hollow silica nanospheres for protein therapy: cascade system of superoxide dismutase and catalase.

    Science.gov (United States)

    Chang, Feng-Peng; Chen, Yi-Ping; Mou, Chung-Yuan

    2014-11-01

    An approach for enzyme therapeutics is elaborated with cell-implanted nanoreactors that are based on multiple enzymes encapsulated in hollow silica nanospheres (HSNs). The synthesis of HSNs is carried out by silica sol-gel templating of water-in-oil microemulsions so that polyethyleneimine (PEI) modified enzymes in aqueous phase are encapsulated inside the HSNs. PEI-grafted superoxide dismutase (PEI-SOD) and catalase (PEI-CAT) encapsulated in HSNs are prepared with quantitative control of the enzyme loadings. Excellent activities of superoxide dismutation by PEI-SOD@HSN are found and transformation of H2 O2 to water by PEI-CAT@HSN. When PEI-SOD and PEI-CAT are co-encapsulated, cascade transformation of superoxide through hydrogen peroxide to water was facile. Substantial fractions of HSNs exhibit endosome escape to cytosol after their delivery to cells. The production of downstream reactive oxygen species (ROS) and COX-2/p-p38 expression show that co-encapsulated SOD/CAT inside the HSNs renders the highest cell protection against the toxicant N,N'-dimethyl-4,4'-bipyridinium dichloride (paraquat). The rapid cell uptake and strong detoxification effect on superoxide radicals by the SOD/CAT-encapsulated hollow mesoporous silica nanoparticles demonstrate the general concept of implanting catalytic nanoreactors in biological cells with designed functions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Measurement of Antioxidant Activity Towards Superoxide in Natural Waters.

    Directory of Open Access Journals (Sweden)

    D. Whitney King

    2016-11-01

    Full Text Available Antioxidants are a class of molecules that provide a protective function against reactive oxygen species (ROS in biological systems by out competing physiologically important molecules for ROS oxidation. In natural waters, the reactivity of antioxidants gives an estimate of oxidative stress and may determine the reactivity and distribution of reactive oxidants. We present an analytical method to measure antioxidant activity in natural waters through the competition between ascorbic acid, an antioxidant, and MCLA, a chemiluminescent probe for superoxide. A numerical kinetic model of the analytical method has been developed to optimize analytical performance. Measurements of antioxidant concentrations in pure and seawater are possible with detection limits below 0.1 nM. Surface seawater samples collected at solar noon contained over 0.4 nM of antioxidants and exhibited first-order decay with a half-life of 3-7 minutes, consistent with a reactive species capable of scavenging photochemically produced superoxide.

  6. ACTIVITY OF SUPEROXIDE DISMUTASE ENZYME IN YEAST SACCHAROMYCES CEREVISIAE

    Directory of Open Access Journals (Sweden)

    Blažena Lavová

    2014-02-01

    Full Text Available Reactive oxygen species (ROS with reactive nitrogen species (RNS are known to play dual role in biological systems, they can be harmful or beneficial to living systems. ROS can be important mediators of damage to cell structures, including proteins, lipids and nucleic acids termed as oxidative stress. The antioxidant enzymes protect the organism against the oxidative damage caused by active oxygen forms. The role of superoxide dismutase (SOD is to accelerate the dismutation of the toxic superoxide radical, produced during oxidative energy processes, to hydrogen peroxide and molecular oxygen. In this study, SOD activity of three yeast strains Saccharomyces cerevisiae was determined. It was found that SOD activity was the highest (23.7 U.mg-1 protein in strain 612 after 28 hours of cultivation. The lowest SOD activity from all tested strains was found after 56 hours of cultivation of strain Gyöng (0.7 U.mg-1 protein.

  7. Immobilization of Superoxide Dismutase on Polyelectrolyte-Functionalized Titania Nanosheets.

    Science.gov (United States)

    Rouster, Paul; Pavlovic, Marko; Szilagyi, Istvan

    2018-02-16

    The superoxide dismutase (SOD) enzyme was successfully immobilized on titania nanosheets (TNS) functionalized with the poly(diallyldimethylammonium chloride) (PDADMAC) polyelectrolyte. The TNS-PDADMAC solid support was prepared by hydrothermal synthesis followed by self-assembled polyelectrolyte layer formation. It was found that SOD strongly adsorbed onto oppositely charged TNS-PDADMAC through electrostatic and hydrophobic interactions. The TNS-PDADMAC-SOD material was characterized by light scattering and microscopy techniques. Colloidal stability studies revealed that the obtained nanocomposites possessed good resistance against salt-induced aggregation in aqueous suspensions. The enzyme kept its functional integrity upon immobilization; therefore, TNS-PDADMAC-SOD showed excellent superoxide radical anion scavenging activity. The developed system is a promising candidate for applications in which suspensions of antioxidant activity are required in the manufacturing processes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Superoxide radical (O2-) reactivity with respect to glutathione

    International Nuclear Information System (INIS)

    Sekaki, A.; Gardes-Albert, M.; Ferradini, C.

    1984-01-01

    Influence of superoxide radicals formed during gamma irradiation of glutathione in aerated aqueous solutions is examined. Solutions are buffered at pH7 and contain sodium formate for capture of H and OH radicals which are transformed in COO - radicals and then O 2 - radicals. G value of glutathione disparition vs glutathione concentration are given with and without enzyme or catalase. Reaction mechanism are interpreted [fr

  9. Experimental study of antiradiation properties of recombinant superoxide dismutase

    International Nuclear Information System (INIS)

    Derimedvyid', L.V.; Simonova, L.Yi.; Gertman, V.Z.

    2003-01-01

    The study involved 250 mongrel white male mice weighing 18-22 g. It was shown that the superoxide dismutase had a marked radioprotective effect. The experiments on animals exposed to ionizing radiation at a absolute and mean lethal doses demonstrate considerable increase of survival rate, mean life span of the dead animals, shifts in the peaks of lethality to later terms, reduction in the percentage of animals with intestinal syndrome,

  10. Formation and disappearance of superoxide radicals in aqueous solutions

    International Nuclear Information System (INIS)

    Allen, A.O.; Bielski, B.H.J.

    1980-01-01

    A literature review of superoxide radicals in aqueous solutions is presented covering the following: history; methods of formation of aqueous HO 2 /HO 2 - by radiolysis and photolysis, electrolysis, mixing nonaqueous solutions into water, chemical reactions, enzymatic generation of O 2 - , and photosensitization; and properties of HO 2 /O 2 - in aqueous solution, which cover spontaneous dismutation rates, pk and absorption spectra, catalyzed dismutation, thermodynamics and the so-called Haber-Weiss Reaction

  11. Cell lysis and superoxide dismutase activities of highly radioresistant bacteria

    International Nuclear Information System (INIS)

    Yoshinaka, Taeko; Yano, Keiji; Yamaguchi, Hikoyuki

    1976-01-01

    The highly radioresistant bacterium, Arthrobacter radiotolerans, has been isolated from the radioactive hot spring of Misasa, and it does not sporulate, it is Gram-positive, and its color is pink to red. This bacterium shows the highest resistance to gamma-ray among Gram-positive resistants, but the lytic enzyme capable of lysing the cells of strong radioresistants and the surface structure of the cells are little known except those about Micrococcus radiodurans. The cells of the M. radiodurans can be lysed by Achramobacter lyticus enzyme, and electron microscopic observation and chemical analysis revealed the mutilayered surface structure of the cells consisting of an inner membrane, a mucopeptide wall layer and a very outer layer. The superoxide dismutase (SOD) activity of aerobic and anaerobic bacteria was studied, and the relatively high SOD activity of the M. radiodurans was found. The SOD function acts against the threat posed by the reactive superoxide radical being generated biologically, photochemically and radiochemically in the presence of molecular oxygen. In this paper, it is reported that the lytic enzyme No.2 obtained from Cytophaga sp., containing N-acetyl-muramyl-L-alanine amidase, peptidase and endopeptidase, and showing broad lytic spectra, was able to lyse the cells of A. radiotolerans and four radioresistant micrococci, and the radioresistant bacteria showed relatively high SOD activity except M. sp. 248. It is well known that superoxide anions are generated by aerobic irradiation, and are toxic to microbial cells. (Kako, I.)

  12. Cell lysis and superoxide dismutase activities of highly radioresistant bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaka, T; Yano, K; Yamaguchi, H [Tokyo Univ. (Japan). Faculty of Agriculture

    1976-01-01

    The highly radioresistant bacterium, Arthrobacter radiotolerans, has been isolated from the radioactive hot spring of Misasa, and it does not sporulate, it is Gram-positive, and its color is pink to red. This bacterium shows the highest resistance to gamma-ray among Gram-positive resistants, but the lytic enzyme capable of lysing the cells of strong radioresistants and the surface structure of the cells are little known except those about Micrococcus radiodurans. The cells of the M. radiodurans can be lysed by Achramobacter lyticus enzyme, and electron microscopic observation and chemical analysis revealed the mutilayered surface structure of the cells consisting of an inner membrane, a mucopeptide wall layer and a very outer layer. The superoxide dismutase (SOD) activity of aerobic and anaerobic bacteria was studied, and the relatively high SOD activity of the M. radiodurans was found. The SOD function acts against the threat posed by the reactive superoxide radical being generated biologically, photochemically and radiochemically in the presence of molecular oxygen. In this paper, it is reported that the lytic enzyme No.2 obtained from Cytophaga sp., containing N-acetyl-muramyl-L-alanine amidase, peptidase and endopeptidase, and showing broad lytic spectra, was able to lyse the cells of A. radiotolerans and four radioresistant micrococci, and the radioresistant bacteria showedrelatively high SOD activity except M. sp. 248. It is well known that superoxide anions are generated by aerobic irradiation, and are toxic to microbial cells.

  13. Fructose intake exacerbates the contractile response elicited by norepinephrine in mesenteric vascular bed of rats via increased endothelial prostanoids.

    Science.gov (United States)

    Sousa, Glauciene J; Oliveira, Phablo Wendell C; Nogueira, Breno V; Melo, Antônio F; Faria, Thaís de Oliveira; Meira, Eduardo Frizera; Mill, José G; Bissoli, Nazaré S; Baldo, Marcelo P

    2017-10-01

    Chronic fructose intake induces major cardiovascular and metabolic disturbances and is associated with the development of hypertension due to changes in vascular function. We hypothesized that high fructose intake for 6 weeks would cause metabolic syndrome and lead to initial vascular dysfunction. Male Wistar rats were assigned to receive fructose (FRU, 10%) or drinking water (CON) for 6 weeks. Systolic blood pressure was evaluated by tail plethysmography. Fasting glucose, insulin and glucose tolerance were measured at the end of the follow-up. Mesenteric vascular bed reactivity was tested before and after pharmacological blockade. Western blot analysis was performed for iNOS, eNOS, Nox2 and COX-2. DHE staining was used for vascular superoxide anion detection. Vessel structure was evaluated by optical and electronic microscopy. Fructose intake did not alter blood pressure, but did increase visceral fat deposition and fasting glucose as well as impair insulin and glucose tolerance. Fructose increased NE-induced vasoconstriction compared with CON, and this difference was abrogated by indomethacin perfusion as well as endothelium removal. ACh-induced relaxation was preserved, and the NO modulation tested after L-NAME perfusion was similar between groups. SNP-induced relaxation was not altered. Inducible NOS was increased; however, there were no changes in eNOS, Nox2 or COX-2 protein expression. Basal or stimulated superoxide anion production was not changed by fructose intake. In conclusion, high fructose intake increased NE-induced vasoconstriction through the endothelial prostanoids even in the presence of a preserved endothelium-mediated relaxation. No major changes in vessel structure were detected. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Infection of endothelial cells by common human viruses.

    Science.gov (United States)

    Friedman, H M

    1989-01-01

    Common human viruses were evaluated for their ability to replicate in the endothelial cells of human umbilical vein and bovine thoracic aorta in vitro. Infection occurred with most viruses. The susceptibilities of endothelial cells derived from bovine aorta, pulmonary artery, and vena cava were compared. Among the viruses studied, no differences were noted in the ability to grow in endothelial cells from these three large vessels. One virus, herpes simplex virus type 1, was evaluated for its ability to produce persistent infection of endothelial cells. Infection developed and persisted for up to 3 months. After the first week, productive infection was found in less than 1% of cells. Nevertheless, the infection markedly affected the growth and morphology of the endothelial monolayer. Infection with any of several different viruses was noted to alter endothelial cell functions, including adherence of granulocytes, production of colony-stimulating factor, and synthesis of matrix protein. In addition, herpes simplex virus type 1 induced receptors for the Fc portion of IgG and for complement component C3b. These findings indicate that common human viruses can profoundly affect the biology of the endothelium.

  15. The effects of hydroxychloroquine on endothelial dysfunction.

    Science.gov (United States)

    Rahman, Rahana; Murthi, Padma; Singh, Harmeet; Gurusinghe, Seshini; Mockler, Joanne C; Lim, Rebecca; Wallace, Euan M

    2016-10-01

    Hydroxychloroquine is an anti-malarial drug which, due to its anti-inflammatory and immunomodulatory effects, is widely used for the treatment of autoimmune diseases. In a model of systemic lupus erythematosus hydroxychloroquine has been shown to exert protective endothelial effects. In this study, we aimed to investigate whether hydroxychloroquine was endothelial protective in an in vitro model of TNF-α and preeclamptic serum induced dysfunction. We showed that hydroxychloroquine significantly reduced the production of TNF-α and preeclamptic serum induced endothelin-1 (ET-1). Hydroxychloroquine also significantly mitigated TNF-α induced impairment of angiogenesis. These findings support the further assessment of hydroxychloroquine as an adjuvant therapy in preeclampsia. Copyright © 2016 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.

  16. Rapid generation of mitochondrial superoxide induces mitochondrion-dependent but caspase-independent cell death in hippocampal neuronal cells that morphologically resembles necroptosis☆

    Science.gov (United States)

    Fukui, Masayuki; Choi, Hye Joung; Zhu, Bao Ting

    2013-01-01

    Studies in recent years have revealed that excess mitochondrial superoxide production is an important etiological factor in neurodegenerative diseases, resulting from oxidative modifications of cellular lipids, proteins, and nucleic acids. Hence, it is important to understand the mechanism by which mitochondrial oxidative stress causes neuronal death. In this study, the immortalized mouse hippocampal neuronal cells (HT22) in culture were used as a model and they were exposed to menadione (also known as vitamin K3) to increase intracellular superoxide production. We found that menadione causes preferential accumulation of superoxide in the mitochondria of these cells, along with the rapid development of mitochondrial dysfunction and cellular ATP depletion. Neuronal death induced by menadione is independent of the activation of the MAPK signaling pathways and caspases. The lack of caspase activation is due to the rapid depletion of cellular ATP. It was observed that two ATP-independent mitochondrial nucleases, namely, AIF and Endo G, are released following menadione exposure. Silencing of their expression using specific siRNAs results in transient suppression (for ~12 h) of mitochondrial superoxide-induced neuronal death. While suppression of the mitochondrial superoxide dismutase expression markedly sensitizes neuronal cells to mitochondrial superoxide-induced cytotoxicity, its over-expression confers strong protection. Collectively, these findings showed that many of the observed features associated with mitochondrial superoxide-induced cell death, including caspase independency, rapid depletion of ATP level, mitochondrial release of AIF and Endo G, and mitochondrial swelling, are distinctly different from those of apoptosis; instead they resemble some of the known features of necroptosis. PMID:22575170

  17. Superoxide produced in the matrix of mitochondria enhances methylmercury toxicity in human neuroblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Mailloux, Ryan J.; Yumvihoze, Emmanuel; Chan, Hing Man, E-mail: laurie.chan@uottawa.ca

    2015-12-15

    The mechanism of intracellular metabolism of methylmercury (MeHg) is not fully known. It has been shown that superoxide (O{sub 2}·{sup −}), the proximal reactive oxygen species (ROS) generated by mitochondria, is responsible for MeHg demethylation. Here, we investigated the impact of different mitochondrial respiratory inhibitors, namely rotenone and antimycin A, on the O{sub 2}·{sup −} mediated degradation of MeHg in human neuroblastoma cells SH-K-SN. We also utilized paraquat (PQ) which generates O{sub 2}·{sup −} in the mitochondrial matrix. We found that the cleavage of the carbon-metal bond in MeHg was highly dependent on the topology of O{sub 2}·{sup −} production by mitochondria. Both rotenone and PQ, which increase O{sub 2}·{sup −} in the mitochondrial matrix at a dose-dependent manner, enhanced the conversion of MeHg to inorganic mercury (iHg). Surprisingly, antimycin A, which prompts emission of O{sub 2}·{sup −} into the intermembrane space, did not have the same effect even though antimycin A induced a dose dependent increase in O{sub 2}·{sup −} emission. Rotenone and PQ also enhanced the toxicity of sub-toxic doses (0.1 μM) MeHg which correlated with the accumulation of iHg in mitochondria and depletion of mitochondrial protein thiols. Taken together, our results demonstrate that MeHg degradation is mediated by mitochondrial O{sub 2}·{sup −}, specifically within the matrix of mitochondria when O{sub 2}·{sup −} is in adequate supply. Our results also show that O{sub 2}·{sup −} amplifies MeHg toxicity specifically through its conversion to iHg and subsequent interaction with protein cysteine thiols (R-SH). The implications of our findings in mercury neurotoxicity are discussed herein. - Highlights: • Superoxide produced in the matrix of mitochondria degrades MeHg. • Superoxide produced in intermembrane space does not degrade MeHg. • Matrix-generated superoxide enhances Hg toxicity by converting MeHg to iHg.

  18. Restoration of Endothelial Function in Pparα−/− Mice by Tempol

    Directory of Open Access Journals (Sweden)

    Neerupma Silswal

    2015-01-01

    Full Text Available Peroxisome proliferator activated receptor alpha (PPARα is one of the PPAR isoforms belonging to the nuclear hormone receptor superfamily that regulates genes involved in lipid and lipoprotein metabolism. PPARα is present in the vascular wall and is thought to be involved in protection against vascular disease. To determine if PPARα contributes to endothelial function, conduit and cerebral resistance arteries were studied in Pparα−/− mice using isometric and isobaric tension myography, respectively. Aortic contractions to PGF2α and constriction of middle cerebral arteries to phenylephrine were not different between wild type (WT and Pparα−/−; however, relaxation/dilation to acetylcholine (ACh was impaired. There was no difference in relaxation between WT and Pparα−/− aorta to treatment with a nitric oxide (NO surrogate indicating impairment in endothelial function. Endothelial NO levels as well as NO synthase expression were reduced in Pparα−/− aortas, while superoxide levels were elevated. Two-week feeding with the reactive oxygen species (ROS scavenger, tempol, normalized ROS levels and rescued the impaired endothelium-mediated relaxation in Pparα−/− mice. These results suggest that Pparα−/− mice have impaired endothelial function caused by decreased NO bioavailability. Therefore, activation of PPARα receptors may be a therapeutic target for maintaining endothelial function and protection against cardiovascular disease.

  19. Differential effect of amylin on endothelial-dependent vasodilation in mesenteric arteries from control and insulin resistant rats.

    Directory of Open Access Journals (Sweden)

    Mariam El Assar

    Full Text Available Insulin resistance (IR is frequently associated with endothelial dysfunction and has been proposed to play a major role in cardiovascular disease (CVD. On the other hand, amylin has long been related to IR. However the role of amylin in the vascular dysfunction associated to IR is not well addressed. Therefore, the aim of the study was to assess the effect of acute treatment with amylin on endothelium-dependent vasodilation of isolated mesenteric arteries from control (CR and insulin resistant (IRR rats and to evaluate the possible mechanisms involved. Five week-old male Wistar rats received 20% D-fructose dissolved in drinking water for 8 weeks and were compared with age-matched CR. Plasmatic levels of glucose, insulin and amylin were measured. Mesenteric microvessels were dissected and mounted in wire myographs to evaluate endothelium-dependent vasodilation to acetylcholine. IRR displayed a significant increase in plasmatic levels of glucose, insulin and amylin and reduced endothelium-dependent relaxation when compared to CR. Acute treatment of mesenteric arteries with r-amylin (40 pM deteriorated endothelium-dependent responses in CR. Amylin-induced reduction of endothelial responses was unaffected by the H2O2 scavenger, catalase, but was prevented by the extracellular superoxide scavenger, superoxide dismutase (SOD or the NADPH oxidase inhibitor (VAS2870. By opposite, amylin failed to further inhibit the impaired relaxation in mesenteric arteries of IRR. SOD, or VAS2870, but not catalase, ameliorated the impairment of endothelium-dependent relaxation in IRR. At concentrations present in insulin resistance conditions, amylin impairs endothelium-dependent vasodilation in mircrovessels from rats with preserved vascular function and low levels of endogenous amylin. In IRR with established endothelial dysfunction and elevated levels of amylin, additional exposure to this peptide has no effect on endothelial vasodilation. Increased superoxide

  20. Modelling the endothelial blood-CNS barriers: a method for the production of robust in vitro models of the rat blood-brain barrier and blood-spinal cord barrier.

    Science.gov (United States)

    Watson, P Marc D; Paterson, Judy C; Thom, George; Ginman, Ulrika; Lundquist, Stefan; Webster, Carl I

    2013-06-18

    Modelling the blood-CNS barriers of the brain and spinal cord in vitro continues to provide a considerable challenge for research studying the passage of large and small molecules in and out of the central nervous system, both within the context of basic biology and for pharmaceutical drug discovery. Although there has been considerable success over the previous two decades in establishing useful in vitro primary endothelial cell cultures from the blood-CNS barriers, no model fully mimics the high electrical resistance, low paracellular permeability and selective influx/efflux characteristics of the in vivo situation. Furthermore, such primary-derived cultures are typically labour-intensive and generate low yields of cells, limiting scope for experimental work. We thus aimed to establish protocols for the high yield isolation and culture of endothelial cells from both rat brain and spinal cord. Our aim was to optimise in vitro conditions for inducing phenotypic characteristics in these cells that were reminiscent of the in vivo situation, such that they developed into tight endothelial barriers suitable for performing investigative biology and permeability studies. Brain and spinal cord tissue was taken from the same rats and used to specifically isolate endothelial cells to reconstitute as in vitro blood-CNS barrier models. Isolated endothelial cells were cultured to expand the cellular yield and then passaged onto cell culture inserts for further investigation. Cell culture conditions were optimised using commercially available reagents and the resulting barrier-forming endothelial monolayers were characterised by functional permeability experiments and in vitro phenotyping by immunocytochemistry and western blotting. Using a combination of modified handling techniques and cell culture conditions, we have established and optimised a protocol for the in vitro culture of brain and, for the first time in rat, spinal cord endothelial cells. High yields of both CNS

  1. Insights into the molecular mechanisms of diabetes-induced endothelial dysfunction

    DEFF Research Database (Denmark)

    Saad, Mohamed I.; Abdelkhalek, Taha M.; Saleh, Moustafa M.

    2015-01-01

    -associated metabolic disturbances (IR, subclinical inflammation, dyslipidemia, hyperglycemia, dysregulated production of adipokines, defective incretin and gut hormones production/action, and oxidative stress) and ED, focusing on oxidative stress and endothelial progenitor cells (EPCs). In addition, we re...

  2. Martian Superoxide and Peroxide O2 Release (OR) Assay: A New Technology for Terrestrial and Planetary Applications

    Science.gov (United States)

    Georgiou, Christos D.; Zisimopoulos, Dimitrios; Panagiotidis, Konstantinos; Grintzalis, Kontantinos; Papapostolou, Ioannis; Quinn, Richard C.; McKay, Christopher P.; Sun, Henry J.

    2015-01-01

    This study presents an assay for the detection and quantification of soil metal superoxides and peroxides in regolith and soil. The O2 release (OR) assay is based on the enzymatic conversion of the hydrolysis products of metal oxides to O2, and their quantification by an O2 electrode based on the stoichiometry of the involved reactions: The intermediate product O2 from the hydrolysis of metal superoxides is converted by cytochrome c to O2, and also by superoxide dismutase (SOD) to 1/2 mol O2 and 1/2 mol H2O2, which is then converted by catalase (CAT) to 1/2 mol O2. The product H2O2 from the hydrolysis of metal peroxides and hydroperoxides is converted to 1/2 mol O2 by CAT. The assay-method was validated in a sealed sample chamber using a liquid-phase Clark-type O2 electrode with known concentrations of O2 and H2O2, and with commercial metal superoxide and peroxide mixed with Mars analogue Mojave and Atacama Desert soils. Carbonates and perchlorates, both present on Mars, do not interfere with the assay. The assay lower limit of detection, using luminescence quenching/optical sensing O2-electrodes, is 1 nmol O2 cm(exp. -3) or better. The activity of the assay enzymes SOD and cytochrome c was unaffected up to 6 Gy exposure by gamma-radiation, while CAT retained 100% and 40% of its activity at 3 and 6 Gy, respectively, demonstrating the suitability of these enzymes for planetary missions, e.g., in Mars or Europa.

  3. Superoxide dismutase levels and peak expiratory flow in asthmatic children

    Directory of Open Access Journals (Sweden)

    Arie Kurniasih

    2016-11-01

    Full Text Available Background Asthma is a chronic inflammatory process which involve variety of cells such as inflammatory mediators, reactive oxygen species (ROS, and cytokines. The inflammatory process would be exacerbated in the presence of oxidative stress. Superoxide dismutase (SOD is the first important enzyme to protect the respiratory tract against oxidative stress. The decreased of SOD has a correlation with increased of airway obstruction and bronchospasm. Objective To assess for a correlation between superoxide dismutase (SOD levels and peak expiratory flow, as well as to determine the impact of SOD levels for predicting asthma attacks. Methods We conducted a prospective cohort study at Dr. Sardjito Hospital, Yogyakarta, between February and April 2011 involving asthmatic children aged 5-18 years. Subjects’ serum SOD levels and peak expiratory flow were measured at the same time point. We then performed a prospective study following up on the same subjects to find out if they had a recurrent asthma attack within one month of the tests. We also reassessed their peak expiratory flow one month after blood specimens were obtained. Results Thirty-nine patients were enrolled in this study. There was no significant correlation between SOD level and peak expiratory flow [r=0.289; 95%CI -0.025 to 0.47; P=0.074]. However, older age was significantly associated with higher peak expiratory flow (=0.5; 95%CI 3.10 to 11.57; P=0.01. Lower levels of SOD increased the risk of asthma attacks in a month following the initial measurements (RR=5.5; 95%CI 1.6 to 18.9; P=0.009. Conclusion Superoxide dismutase (SOD level is not significantly associated with peak expiratory flow. However, we find a relationship between older age and higher peak expiratory flow and a relationship between lower SOD levels and risk of asthma attacks within one month following the tests.

  4. Low-temperature phase transformation in rubidium and cesium superoxides

    International Nuclear Information System (INIS)

    Alikhanov, R.A.; Toshich, B.S.; Smirnov, L.S.

    1980-01-01

    Crystal structures of rubidium and cesium superoxides which are two interpenetrating lattices of metal ions and oxygen molecule ions reveal a number of phase transformations with temperature decrease. Crystal-phase transformations in CsO 2 are 1-2, 2-3 and low temperature one 3-4 at 378, 190 and 10 K. Low temperature transition is considered as the instability of lattice quadrupoles of oxygen molecule ions to phase transformation of the order-disorder type. Calculated temperatures of low temperature phase transformations in PbO 2 and CsO 2 agree with experimental calculations satisfactory [ru

  5. Radioprotective effects of bacterial superoxide dismutase on mice

    International Nuclear Information System (INIS)

    Hu Tianxi

    1992-01-01

    The radioprotective effects of bacterial superoxide dismutase (b-SOD) on the mice irradiated by 8 Gy γ-ray were investigated. The results showed that when b-SOD was injected before and after irradiation, the survival fraction of mice is increased 50% and 30% respectively. The former treatment could increase the DNA synthesis of the myeloid cells and spleen's lymphocytes, decrease the LPO of tissue homogenates and the hemolysis of erythrocytes significantly. The mechanism that b-SOD can drop the radiation injury of the mice was discussed

  6. The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis.

    Science.gov (United States)

    Welsh, Sarah J; Bellamy, William T; Briehl, Margaret M; Powis, Garth

    2002-09-01

    Hypoxia-inducible factor 1 (HIF-1), a heterodimer of HIF-1alpha and HIF-1beta subunits, is a transcriptional activator central to the cellular response to low oxygen that includes metabolic adaptation, angiogenesis, metastasis, and inhibited apoptosis. Thioredoxin-1 (Trx-1) is a small redox protein overexpressed in a number of human primary tumors. We have examined the effects of Trx-1 on HIF activity and the activation of downstream genes. Stable transfection of human breast carcinoma MCF-7 cells with human Trx-1 caused a significant increase in HIF-1alpha protein levels under both normoxic (20% oxygen) and hypoxic (1% oxygen) conditions. Trx-1 increased hypoxia-induced HIF-1 transactivation activity measured using a luciferase reporter under the control of the hypoxia response element. Changes in HIF-1alpha mRNA levels did not account for the changes observed at the protein level, and HIF-1beta protein levels did not change. Trx-1 transfection also caused a significant increase in the protein products of hypoxia-responsive genes, including vascular endothelial growth factor (VEGF) and nitric oxide synthase 2 in a number of different cell lines (MCF-7 human breast and HT29 human colon carcinomas and WEHI7.2 mouse lymphoma cells) under both normoxic and hypoxic conditions. The pattern of expression of the different isoforms of VEGF was not changed by Trx-1. Transfection of a redox-inactive Trx-1 (C32S/C35S) markedly decreased levels of HIF-1alpha protein, HIF-1 transactivating activity, and VEGF protein in MCF-7 cells compared with empty vector controls. In vivo studies using WEHI7.2 cells transfected with Trx-1 showed significantly increased tumor VEGF and angiogenesis. The results suggest that Trx-1 increases HIF-1alpha protein levels in cancer cells and increases VEGF production and tumor angiogenesis.

  7. Purification and crystallization of human Cu/Zn superoxide dismutase recombinantly produced in the protozoan Leishmania tarentolae

    International Nuclear Information System (INIS)

    Gazdag, Emerich Mihai; Cirstea, Ion Cristian; Breitling, Reinhard; Lukeš, Julius; Blankenfeldt, Wulf; Alexandrov, Kirill

    2010-01-01

    The structures of two new crystal forms of human Cu/Zn superoxide dismutase produced in the eukaryotic expression host L. tarentolae are reported. The rapid and inexpensive production of high-quality eukaryotic proteins in recombinant form still remains a challenge in structural biology. Here, a protein-expression system based on the protozoan Leishmania tarentolae was used to produce human Cu/Zn superoxide dismutase (SOD1) in recombinant form. Sequential integration of the SOD1 expression cassettes was demonstrated to lead to a linear increase in expression levels to up to 30 mg per litre. Chromatographic purification resulted in 90% pure recombinant protein, with a final yield of 6.5 mg per litre of culture. The protein was crystallized and the structures of two new crystal forms were determined. These results demonstrate the suitability of the L. tarentolae expression system for structural research

  8. Vascular protective effects of aqueous extracts of Tribulus terrestris on hypertensive endothelial injury.

    Science.gov (United States)

    Jiang, Yue-Hua; Guo, Jin-Hao; Wu, Sai; Yang, Chuan-Hua

    2017-08-01

    Angiotensin II (Ang II) is involved in endothelium injury during the development of hypertension. Tribulus terrestris (TT) is used to treat hypertension, arteriosclerosis, and post-stroke syndrome in China. The present study aimed to determine the effects of aqueous TT extracts on endothelial injury in spontaneously hypertensive rats (SHRs) and its protective effects against Ang II-induced injury in human umbilical vein endothelial cells (HUVECs). SHRs were administered intragastrically with TT (17.2 or 8.6 g·kg -1 ·d -1 ) for 6 weeks, using valsartan (13.5 mg·kg -1 ·d -1 ) as positive control. Blood pressure, heart rate, endothelial morphology of the thoracic aorta, serum levels of Ang II, endothelin-1 (ET-1), superoxide dismutase (SOD) and malonaldehyde (MDA) were measured. The endothelial injury of HUVECs was induced by 2 × 10 -6 mol·L -1 Ang II. Cell Apoptosisapoptosis, intracellular reactive oxygen species (ROS) was assessed. Endothelial nitric oxide synthase (eNOS), ET-1, SOD, and MDA in the cell culture supernatant and cell migration were assayed. The expression of hypertension-linked genes and proteins were analyzed. TT decreased systolic pressure, diastolic pressure, mean arterial pressure and heart rate, improved endothelial integrity of thoracic aorta, and decreased serum leptin, Ang II, ET-1, NPY, and Hcy, while increased NO in SHRs. TT suppressed Ang II-induced HUVEC proliferation and apoptosis and prolonged the survival, and increased cell migration. TT regulated the ROS, and decreased mRNA expression of Akt1, JAK2, PI3Kα, Erk2, FAK, and NF-κB p65 and protein expression of Erk2, FAK, and NF-κB p65. In conclusion, TT demonstrated anti-hypertensive and endothelial protective effects by regulating Erk2, FAK and NF-κB p65. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  9. Endothelial cell repopulation after stenting determines in-stent neointima formation: effects of bare-metal vs. drug-eluting stents and genetic endothelial cell modification.

    Science.gov (United States)

    Douglas, Gillian; Van Kampen, Erik; Hale, Ashley B; McNeill, Eileen; Patel, Jyoti; Crabtree, Mark J; Ali, Ziad; Hoerr, Robert A; Alp, Nicholas J; Channon, Keith M

    2013-11-01

    Understanding endothelial cell repopulation post-stenting and how this modulates in-stent restenosis is critical to improving arterial healing post-stenting. We used a novel murine stent model to investigate endothelial cell repopulation post-stenting, comparing the response of drug-eluting stents with a primary genetic modification to improve endothelial cell function. Endothelial cell repopulation was assessed en face in stented arteries in ApoE(-/-) mice with endothelial-specific LacZ expression. Stent deployment resulted in near-complete denudation of endothelium, but was followed by endothelial cell repopulation, by cells originating from both bone marrow-derived endothelial progenitor cells and from the adjacent vasculature. Paclitaxel-eluting stents reduced neointima formation (0.423 ± 0.065 vs. 0.240 ± 0.040 mm(2), P = 0.038), but decreased endothelial cell repopulation (238 ± 17 vs. 154 ± 22 nuclei/mm(2), P = 0.018), despite complete strut coverage. To test the effects of selectively improving endothelial cell function, we used transgenic mice with endothelial-specific overexpression of GTP-cyclohydrolase 1 (GCH-Tg) as a model of enhanced endothelial cell function and increased NO production. GCH-Tg ApoE(-/-) mice had less neointima formation compared with ApoE(-/-) littermates (0.52 ± 0.08 vs. 0.26 ± 0.09 mm(2), P = 0.039). In contrast to paclitaxel-eluting stents, reduced neointima formation in GCH-Tg mice was accompanied by increased endothelial cell coverage (156 ± 17 vs. 209 ± 23 nuclei/mm(2), P = 0.043). Drug-eluting stents reduce not only neointima formation but also endothelial cell repopulation, independent of strut coverage. In contrast, selective targeting of endothelial cell function is sufficient to improve endothelial cell repopulation and reduce neointima formation. Targeting endothelial cell function is a rational therapeutic strategy to improve vascular healing and decrease neointima formation after stenting.

  10. Determination of superoxide dismutase mimetic activity in common culinary herbs.

    Science.gov (United States)

    Chohan, Magali; Naughton, Declan P; Opara, Elizabeth I

    2014-01-01

    Under conditions of oxidative stress, the removal of superoxide, a free radical associated with chronic inflammation, is catalysed by superoxide dismutase (SOD). Thus in addition to acting as an antioxidant, SOD may also be utilized as an anti-inflammatory agent. Some plant derived foods have been shown to have SOD mimetic (SODm) activity however it is not known if this activity is possessed by culinary herbs which have previously been shown to possess both antioxidant and anti-inflammatory properties. The aim of the study was to ascertain if the culinary herbs rosemary, sage and thyme possess SODm activity, and to investigate the influence of cooking and digestion on this activity. Transition metal ion content was also determined to establish if it could likely contribute to any SODm activity detected. All extracts of uncooked (U), cooked (C) and cooked and digested (C&D) herbs were shown to possess SODm activity, which was significantly correlated with previously determined antioxidant and anti-inflammatory activities of these herbs. SODm activity was significantly increased following (C) and (C&D) for rosemary and sage only. The impact of (C) and (C&D) on the SODm for thyme may have been influenced by its transition metal ion content. SODm activity may contribute to the herbs' antioxidant and anti-inflammatory activities however the source and significance of this activity need to be established.

  11. Physical and chemical stability of different formulations with superoxide dismutase.

    Science.gov (United States)

    Di Mambro, V M; Campos, P M B G Maia; Fonseca, M J V

    2004-10-01

    Topical formulations with superoxide dismutase (SOD), a scavenger of superoxide radicals, have proved to be effective against some skin diseases. Nevertheless, formulations with proteins are susceptible to both chemical and physical instability. Three different formulations (anionic and non-ionic gel and emulsion) were developed and supplemented with SOD in order to determine the most stable formulation that would maintain SOD activity. Physical stability was evaluated by assessing the rheological behavior of the formulations stored at room temperature, 37 and 45 degrees C. Chemical stability was evaluated by the measurement of enzymatic activity in the formulations stored at room temperature and at 45 degrees C. Formulations showed a flow index less than one, characterizing pseudoplastic behavior. There was no significant difference in initial values of flow index, tixotropy or minimum apparent viscosity. Neither gel showed significant changes in minimum apparent viscosity concerning storage time or temperature, as well, SOD presence and its activity. The emulsion showed decreased viscosity by the 28th day, but no significant changes concerning storage temperature or SOD presence, although it showed a decreased activity. The addition of SOD to the formulations studied did not affect their physical stability but gel formulations seem to be better bases for enzyme addition.

  12. Papillary endothelial hyperplasia in angiokeratoma.

    Science.gov (United States)

    Mehta, Anurag; Sayal, Satish Kumar; Raman, Deep Kumar; Sood, Aradhana

    2003-01-01

    Papillary endothelial hyperplasia (Masson's tumour) is a reactive proliferation of endothelium producing papillary structures with fibrovascular cores. Dilatation, stasis and accompanying inflammation have been incriminated as the inciting events, evident by the presence of this lesion in haemorrhoids, urethral caruncles and laryngeal polyps. We present here a case of papillary endothelial hyperplasia in angiokeratoma hitherto undescribed despite sharing common etiopathogenetic features of dilatation and stasis with other aforementioned lesions.

  13. Endothelial Dysfunction in Human Diabetes Is Mediated by Wnt5a-JNK Signaling.

    Science.gov (United States)

    Bretón-Romero, Rosa; Feng, Bihua; Holbrook, Monika; Farb, Melissa G; Fetterman, Jessica L; Linder, Erika A; Berk, Brittany D; Masaki, Nobuyuki; Weisbrod, Robert M; Inagaki, Elica; Gokce, Noyan; Fuster, Jose J; Walsh, Kenneth; Hamburg, Naomi M

    2016-03-01

    Endothelial dysfunction is linked to insulin resistance, inflammatory activation, and increased cardiovascular risk in diabetes mellitus; however, the mechanisms remain incompletely understood. Recent studies have identified proinflammatory signaling of wingless-type family member (Wnt) 5a through c-jun N-terminal kinase (JNK) as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in 85 subjects with type 2 diabetes mellitus (n=42) and age- and sex-matched nondiabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Endothelial cells from patients with diabetes mellitus displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes mellitus. In endothelial cells from nondiabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In human aortic endothelial cells, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. Our findings demonstrate that noncanonical Wnt5a signaling and JNK activity contribute to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes mellitus. © 2016 American Heart

  14. Downstream components of RhoA required for signal pathway of superoxide formation during phagocytosis of serum opsonized zymosans in macrophages.

    Science.gov (United States)

    Kim, Jun Sub; Kim, Jae Gyu; Jeon, Chan Young; Won, Ha Young; Moon, Mi Young; Seo, Ji Yeon; Kim, Jong Il; Kim, Jaebong; Lee, Jae Yong; Choi, Soo Young; Park, Jinseu; Yoon Park, Jung Han; Ha, Kwon Soo; Kim, Pyeung Hyeun; Park, Jae Bong

    2005-12-31

    Rac1 and Rac2 are essential for the control of oxidative burst catalyzed by NADPH oxidase. It was also documented that Rho is associated with the superoxide burst reaction during phagocytosis of serum- (SOZ) and IgG-opsonized zymosan particles (IOZ). In this study, we attempted to reveal the signal pathway components in the superoxide formation regulated by Rho GTPase. Tat-C3 blocked superoxide production, suggesting that RhoA is essentially involved in superoxide formation during phagocytosis of SOZ. Conversely SOZ activated both RhoA and Rac1/2. Inhibition of RhoA-activated kinase (ROCK), an important downstream effector of RhoA, by Y27632 and myosin light chain kinase (MLCK) by ML-7 abrogated superoxide production by SOZ. Extracellular signaling-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) were activated during phagocytosis of SOZ, and Tat-C3 and SB203580 reduced ERK1/2 and p38 MAPK activation, suggesting that RhoA and p38 MAPK may be upstream regulators of ERK1/2. Inhibition of ERK1/2, p38 MAPK, phosphatidyl inositol 3-kinase did not block translocation of RhoA to membranes, suggesting that RhoA is upstream to these kinases. Inhibition of RhoA by Tat-C3 blocked phosphorylation of p47(PHOX). Taken together, RhoA, ROCK, p38MAPK, ERK1/2, and p47(PHOX) may be subsequently activated, leading to activation of NADPH oxidase to produce superoxide.

  15. The influence of extracellular superoxide on iron redox chemistry and bioavailability to aquatic microorganisms

    Directory of Open Access Journals (Sweden)

    Andrew eRose

    2012-04-01

    Full Text Available Superoxide, the one-electron reduced form of dioxygen, is produced in the extracellular milieu of aquatic microbes through a range of abiotic chemical processes and also by microbes themselves. Due to its ability to promote both oxidative and reductive reactions, superoxide may have a profound impact on the redox state of iron, potentially influencing iron solubility, complex speciation and bioavailability. The interplay between iron, superoxide and oxygen may also produce a cascade of other highly reactive transients in oxygenated natural waters. For microbes, the overall effect of reactions between superoxide and iron may be deleterious or beneficial, depending on the organism and its chemical environment. Here I critically discuss recent advances in understanding: (i sources of extracellular superoxide in natural waters, with a particular emphasis on microbial generation; (ii the chemistry of reactions between superoxide and iron; and (iii the influence of these processes on iron bioavailability and microbial iron nutrition.

  16. Dietary sodium restriction reverses vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure

    Science.gov (United States)

    Jablonski, Kristen L.; Racine, Matthew L.; Geolfos, Candace J.; Gates, Phillip E.; Chonchol, Michel; McQueen, Matthew B.; Seals, Douglas R.

    2013-01-01

    Objectives We determined the efficacy of dietary sodium restriction (DSR) for improving vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure (SBP; 130–159 mmHg) and the associated physiological mechanisms. Background Vascular endothelial dysfunction develops with advancing age and elevated SBP, contributing to increased cardiovascular risk. DSR lowers BP, but its effect on vascular endothelial function and mechanisms involved are unknown. Methods Seventeen subjects (11M/6F; 62±7 yrs, mean±S.D.) completed a randomized, crossover study of 4 weeks of both low and normal sodium intake. Vascular endothelial function (endothelium-dependent dilation; EDD), nitric oxide (NO)/tetrahydrobiopterin (BH4) bioavailability and oxidative stress-associated mechanisms were assessed following each condition. Results Urinary sodium excretion was reduced by ~50% (to 70±30 mmol/day), and conduit (brachial artery flow-mediated dilation [FMDBA]) and resistance (forearm blood flow responses to acetylcholine [FBFACh]) artery EDD were 68% and 42% (peak FBFACh) higher following the low sodium diet (psodium markedly enhanced NO- mediated EDD (greater ΔFBFACh with endothelial NO synthase [eNOS] inhibition) without changing eNOS expression/activation (Ser1177 phosphorylation), restored BH4 bioactivity (less ΔFMDBA with acute BH4), abolished tonic superoxide suppression of EDD (less ΔFMDBA and ΔFBFACh with ascorbic acid infusion), and increased circulating superoxide dismutase activity (p<0.05). These effects were independent of ΔSBP. Other subject characteristics/dietary factors and endothelium-independent dilation were unchanged. Conclusions DSR largely reverses both macro- and microvascular endothelial dysfunction by enhancing NO and BH4 bioavailability and reducing oxidative stress. Our findings support the emerging concept that DSR induces “vascular protection” beyond that attributable to its BP-lowering effects. PMID

  17. Endothelial-regenerating cells: an expanding universe.

    Science.gov (United States)

    Steinmetz, Martin; Nickenig, Georg; Werner, Nikos

    2010-03-01

    Atherosclerosis is the most common cause for cardiovascular diseases and is based on endothelial dysfunction. A growing body of evidence suggests the contribution of bone marrow-derived endothelial progenitor cells, monocytic cells, and mature endothelial cells to vessel formation and endothelial rejuvenation. To this day, various subsets of these endothelial-regenerating cells have been identified according to cellular origin, phenotype, and properties in vivo and in vitro. However, the definition and biology, especially of endothelial progenitor cells, is complex and under heavy debate. In this review, we focus on current definitions of endothelial progenitor cells, highlight the clinical relevance of endothelial-regenerating cells, and provide new insights into cell-cell interactions involved in endothelial cell rejuvenation.

  18. Superoxide dismutase 1 is positively selected to minimize protein aggregation in great apes

    DEFF Research Database (Denmark)

    Dasmeh, Pouria; Kepp, Kasper Planeta

    2017-01-01

    Positive (adaptive) selection has recently been implied in human superoxide dismutase 1 (SOD1), a highly abundant antioxidant protein with energy signaling and antiaging functions, one of very few examples of direct selection on a human protein product (exon); the molecular drivers...... and SOD1 aggregates and triggered by aging. Our study thus marks an example of direct selection for a particular chemical phenotype (high net charge and stability) in a single human protein with possible implications for the evolution of aging....... of this selection are unknown. We mapped 30 extant SOD1 sequences to the recently established mammalian species tree and inferred ancestors, key substitutions, and signatures of selection during the protein's evolution. We detected elevated substitution rates leading to great apes (Hominidae) at ~1 per 2 million...

  19. Cloning and expression of an iron-containing superoxide dismutase in the parasitic protist, Trichomonas vaginalis.

    Science.gov (United States)

    Viscogliosi, E; Delgado-Viscogliosi, P; Gerbod, D; Dauchez, M; Gratepanche, S; Alix, A J; Dive, D

    1998-04-01

    A superoxide dismutase (SOD) gene of the parasitic protist Trichomonas vaginalis was cloned, sequenced, expressed in Escherichia coli, and its gene product characterized. It is an iron-containing dimeric protein with a monomeric mass of 22,067 Da. Southern blots analyses suggested the presence of seven iron-containing (FeSOD) gene copies. Hydrophobic cluster analysis revealed some peculiarities in the 2D structure of the FeSOD from T. vaginalis and a strong structural conservation between prokaryotic and eukaryotic FeSODs. Phylogenetic reconstruction of the SOD sequences confirmed the dichotomy between FeSODs and manganese-containing SODs. FeSODs of protists appeared to group together with homologous proteobacterial enzymes suggesting a possible origin of eukaryotic FeSODs through an endosymbiotic event.

  20. Targeting the superoxide/nitric oxide ratio by L-arginine and SOD mimic in diabetic rat skin.

    Science.gov (United States)

    Jankovic, Aleksandra; Ferreri, Carla; Filipovic, Milos; Ivanovic-Burmazovic, Ivana; Stancic, Ana; Otasevic, Vesna; Korac, Aleksandra; Buzadzic, Biljana; Korac, Bato

    2016-11-01

    Setting the correct ratio of superoxide anion (O 2 •- ) and nitric oxide ( • NO) radicals seems to be crucial in restoring disrupted redox signaling in diabetic skin and improvement of • NO physiological action for prevention and treatment of skin injuries in diabetes. In this study we examined the effects of L-arginine and manganese(II)-pentaazamacrocyclic superoxide dismutase (SOD) mimic - M40403 in diabetic rat skin. Following induction of diabetes by alloxan (blood glucose level ≥12 mMol l  -1 ) non-diabetic and diabetic male Mill Hill hybrid hooded rats were divided into three subgroups: (i) control, and receiving: (ii) L-arginine, (iii) M40403. Treatment of diabetic animals started after diabetes induction and lasted for 7 days. Compared to control, lower cutaneous immuno-expression of endothelial NO synthase (eNOS), heme oxygenase 1 (HO1), manganese SOD (MnSOD) and glutathione peroxidase (GSH-Px), in parallel with increased NFE2-related factor 2 (Nrf2) and nitrotyrosine levels characterized diabetic skin. L-arginine and M40403 treatments normalized alloxan-induced increase in nitrotyrosine. This was accompanied by the improvement/restitution of eNOS and HO1 or MnSOD and GSH-Px protein expression levels in diabetic skin following L-arginine, i.e. SOD mimic treatments, respectively. The results indicate that L-arginine and M40403 stabilize redox balance in diabetic skin and suggest the underlying molecular mechanisms. Restitution of skin redox balance by L-arginine and M40403 may represent an effective strategy to ameliorate therapy of diabetic skin.

  1. Sustained apnea induces endothelial activation.

    Science.gov (United States)

    Eichhorn, Lars; Dolscheid-Pommerich, Ramona; Erdfelder, Felix; Ayub, Muhammad Ajmal; Schmitz, Theresa; Werner, Nikos; Jansen, Felix

    2017-09-01

    Apnea diving has gained worldwide popularity, even though the pathophysiological consequences of this challenging sport on the human body are poorly investigated and understood. This study aims to assess the influence of sustained apnea in healthy volunteers on circulating microparticles (MPs) and microRNAs (miRs), which are established biomarkers reflecting vascular function. Short intermittent hypoxia due to voluntary breath-holding affects circulating levels of endothelial cell-derived MPs (EMPs) and endothelial cell-derived miRs. Under dry laboratory conditions, 10 trained apneic divers performed maximal breath-hold. Venous blood samples were taken, once before and at 4 defined points in time after apnea. Samples were analyzed for circulating EMPs and endothelial miRs. Average apnea time was 329 seconds (±103), and SpO 2 at the end of apnea was 79% (±12). Apnea was associated with a time-dependent increase of circulating endothelial cell-derived EMPs and endothelial miRs. Levels of circulating EMPs in the bloodstream reached a peak 4 hours after the apnea period and returned to baseline levels after 24 hours. Circulating miR-126 levels were elevated at all time points after a single voluntary maximal apnea, whereas miR-26 levels were elevated significantly only after 30 minutes and 4 hours. Also miR-21 and miR-92 levels increased, but did not reach the level of significance. Even a single maximal breath-hold induces acute endothelial activation and should be performed with great caution by subjects with preexisting vascular diseases. Voluntary apnea might be used as a model to simulate changes in endothelial function caused by hypoxia in humans. © 2017 Wiley Periodicals, Inc.

  2. Two-stage gene regulation of the superoxide stress response soxRS system in Escherichia coli.

    Science.gov (United States)

    Nunoshiba, T

    1996-01-01

    All organisms have adapted to environmental changes by acquiring various functions controlled by gene regulation. In bacteria, a number of specific responses have been found to confer cell survival in various nutrient-limited conditions, and under physiological stresses such as high or low temperature, extreme pH, radiation, and oxidation (for review, see Neidhardt et al., 1987). In this article, I introduce an Escherichia coli (E. coli) global response induced by superoxide stress, the soxRS regulon. The functions controlled by this system consist of a wide variety of enzymes such as manganese-containing SOD (Mn-SOD); glucose 6-phosphate dehydrogenase (G6PD), the DNA repair enzyme endonuclease IV, fumarase C, NADPH:ferredoxin oxidoreductase, and aconitase. This response is positively regulated by a two-stage control system in which SoxR iron-sulfur protein senses exposure to superoxide and nitric oxide, and then activates transcription of the soxS gene, whose product stimulates the expression of the regulon genes. Our recent finding indicates that soxS transcription is initiated in a manner dependent on the rpoS gene encoding RNA polymerase sigma factor, theta s, in response to entering the stationary phase of growth. With this information, mechanisms for prokaryotic coordinating gene expression in response to superoxide stress and in stationary phase are discussed.

  3. Developmental and environmental regulation of the Nicotiana plumbaginifolia cytosolic Cu/Zn-superoxide dismutase promoter in transgenic tobacco.

    Science.gov (United States)

    Hérouart, D; Van Montagu, M; Inzé, D

    1994-03-01

    Superoxide dismutases (SODs) play a key role in the cellular defense against reactive oxygen species. To study the transcriptional regulation at the cellular level, the promoter of the Nicotiana plumbaginifolia cytosolic gene encoding Cu/ZnSOD (SODCc) was fused to the beta-glucuronidase (GUS) reporter gene (gusA) and analyzed in transgenic tobacco plants. The promoter was highly active in vascular bundles of leaves and stems, where it is confined to phloem cells. In flowers, GUS activity was detected in ovules and pollen grains, in pigmented tissues of petals, and in vascular tissue of ovaries and anthers. In response to treatment with the superoxide-generating herbicide paraquat, very strong GUS staining was observed in photosynthetically active cells of leaves and in some epidermal root cells of seedlings. The expression of the SODCc-gusA was also induced in seedlings after heat shock and chilling and after treatment with sulfhydryl antioxidants such as reduced glutathione and cysteine. It is postulated that SODCc expression is directly linked to a cell-specific production of excess superoxide radicals in the cytosol.

  4. Superoxide scavenging activity of pirfenidone-iron complex

    International Nuclear Information System (INIS)

    Mitani, Yoshihiro; Sato, Keizo; Muramoto, Yosuke; Karakawa, Tomohiro; Kitamado, Masataka; Iwanaga, Tatsuya; Nabeshima, Tetsuji; Maruyama, Kumiko; Nakagawa, Kazuko; Ishida, Kazuhiko; Sasamoto, Kazumi

    2008-01-01

    Pirfenidone (PFD) is focused on a new anti-fibrotic drug, which can minimize lung fibrosis etc. We evaluated the superoxide (O 2 ·- ) scavenging activities of PFD and the PFD-iron complex by electron spin resonance (ESR) spectroscopy, luminol-dependent chemiluminescence assay, and cytochrome c reduction assay. Firstly, we confirmed that the PFD-iron complex was formed by mixing iron chloride with threefold molar PFD, and the complex was stable in distillated water and ethanol. Secondary, the PFD-iron complex reduced the amount of O 2 ·- produced by xanthine oxidase/hypoxanthine without inhibiting the enzyme activity. Thirdly, it also reduced the amount of O 2 ·- released from phorbor ester-stimulated human neutrophils. PFD alone showed few such effects. These results suggest the possibility that the O 2 ·- scavenging effect of the PFD-iron complex contributes to the anti-fibrotic action of PFD used for treating idiopathic pulmonary fibrosis

  5. Superoxide dismutase amplifies organismal sensitivity to ionizing radiation

    International Nuclear Information System (INIS)

    Scott, M.D.; Meshnick, S.R.; Eaton, J.W.

    1989-01-01

    Although increased superoxide dismutase (SOD) activity is often associated with enhanced resistance of cells and organisms to oxidant challenges, few direct tests of the antioxidant importance of this enzyme have been carried out. To assess the importance of SOD in defending against gamma-radiation, we employed Escherichia coli with deficient, normal, and super-normal enzyme activities. Surprisingly, the radiation sensitivity of E. coli actually increases as bacterial SOD activity increases. Elevated intracellular SOD activity sensitizes E. coli to radiation-induced mortality, whereas SOD-deficient bacteria show normal or decreased radiosensitivity. Toxic effects of activated oxygen species are involved in this phenomenon; bacterial SOD activity has no effect on radiation sensitivity under anaerobic conditions or on the lethality of other, non-oxygen-dependent, toxins such as ultraviolet radiation

  6. Computing Stability Effects of Mutations in Human Superoxide Dismutase 1

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2014-01-01

    Protein stability is affected in several diseases and is of substantial interest in efforts to correlate genotypes to phenotypes. Superoxide dismutase 1 (SOD1) is a suitable test case for such correlations due to its abundance, stability, available crystal structures and thermochemical data......, and physiological importance. In this work, stability changes of SOD1 mutations were computed with five methods, CUPSAT, I-Mutant2.0, I-Mutant3.0, PoPMuSiC, and SDM, with emphasis on structural sensitivity as a potential issue in structure-based protein calculation. The large correlation between experimental...... literature data of SOD1 dimers and monomers (r = 0.82) suggests that mutations in separate protein monomers are mostly additive. PoPMuSiC was most accurate (typical MAE ∼ 1 kcal/mol, r ∼ 0.5). The relative performance of the methods was not very structure-dependent, and the more accurate methods also...

  7. Metalloantibiotic Mn(II)-bacitracin complex mimicking manganese superoxide dismutase

    International Nuclear Information System (INIS)

    Piacham, Theeraphon; Isarankura-Na-Ayudhya, Chartchalerm; Nantasenamat, Chanin; Yainoy, Sakda; Ye Lei; Buelow, Leif; Prachayasittikul, Virapong

    2006-01-01

    Superoxide dismutase (SOD) activities of various metallobacitracin complexes were evaluated using the riboflavin-methionine-nitro blue tetrazolium assay. The radical scavenging activity of various metallobacitracin complexes was shown to be higher than those of the negative controls, e.g., free transition metal ions and metal-free bacitracin. The SOD activity of the complex was found to be in the order of Mn(II) > Cu(II) > Co(II) > Ni(II). Furthermore, the effect of bacitracin and their complexation to metals on various microorganisms was assessed by antibiotic susceptibility testing. Moreover, molecular modeling and quantum chemical calculation of the metallobacitracin complex was performed to evaluate the correlation of electrostatic charge of transition metal ions on the SOD activity

  8. Reduced superoxide dismutase activity in xeroderma pigmentosum fibroblasts

    International Nuclear Information System (INIS)

    Nishigori, C.; Miyachi, Y.; Imamura, S.; Takebe, H.

    1989-01-01

    This study was performed in order to assess the possible protective effect of superoxide dismutase (SOD) on ultraviolet (UV) damage in xeroderma pigmentosum (XP) fibroblasts. SOD activity in fibroblasts originating from seven xeroderma pigmentosum (XP) patients was significantly lower than that in normal cells (p less than 0.005). Average SOD activity in XP cells belonging to complementation group A was 3.68 +/- 0.54 (n = 7) and that in normal human cells was 5.79 +/- 1.59 (n = 6). Addition of SOD before and during UV irradiation (UVB and UVC) to the cells caused no change in the amount of unscheduled DNA synthesis and UV survival. A possible involvement of reduced SOD in XP and a possible protective effect by SOD on UV damage is discussed

  9. Superoxide dismutase in radioresistant PC-3 human prostate carcinoma cells

    International Nuclear Information System (INIS)

    Prokopovic, J.; Adzic M; Niciforovic, A.; Vucic, V.; Zaric, B.; Radojcic, M. B.

    2006-01-01

    The molecular mechanism of gamma-ionizing radiation (IR) resistance of human prostate cancer cells PC-3 is not known. Since low-LET-IR effects are primarily achieved through generation of reactive oxygen species (ROS), IR-induced expression of ROS-metabolizing antioxidant enzymes, Mn- and CuZn-superoxide dismutase (Mn- and CuZnSOD) and catalase (CAT), and their upstream regulator transcription factor NFκB was followed. Significant elevation of both SODs was found in cells irradiated with 10- and 20 Gy, while CAT and NFκB expression was unchanged. Since, such conditions lead to accumulation of H 2 O 2 , it is concluded that radioresistance of PC-3 cells may emerge from positive feed-forward vicious circle established between H 2 O 2 activation of NFκB and elevated MnSOD activity. (author)

  10. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase

    Directory of Open Access Journals (Sweden)

    Abrahim Noor

    2012-11-01

    Full Text Available Abstract Background Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7. Methods The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase assays in MCF-7 cells. Results Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml. Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase. Conclusions Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide

  11. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase.

    Science.gov (United States)

    Abrahim, Noor Nazirahanie; Kanthimathi, M S; Abdul-Aziz, Azlina

    2012-11-15

    Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7. The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane) and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase) assays in MCF-7 cells. Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml). Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase. Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide dismutase in the treated cells could alter the antioxidant defense

  12. Infection with Porphyromonas gingivalis exacerbates endothelial injury in obese mice.

    Directory of Open Access Journals (Sweden)

    Min Ao

    Full Text Available BACKGROUND: A number of studies have revealed a link between chronic periodontitis and cardiovascular disease in obese patients. However, there is little information about the influence of periodontitis-associated bacteria, Porphyromonas gingivalis (Pg, on pathogenesis of atherosclerosis in obesity. METHODS: In vivo experiment: C57BL/6J mice were fed with a high-fat diet (HFD or normal chow diet (CD, as a control. Pg was infected from the pulp chamber. At 6 weeks post-infection, histological and immunohistochemical analysis of aortal tissues was performed. In vitro experiment: hTERT-immortalized human umbilical vein endothelial cells (HuhT1 were used to assess the effect of Pg/Pg-LPS on free fatty acid (FFA induced endothelial cells apoptosis and regulation of cytokine gene expression. RESULTS: Weaker staining of CD31 and increased numbers of TUNEL positive cells in aortal tissue of HFD mice indicated endothelial injury. Pg infection exacerbated the endothelial injury. Immunohistochemically, Pg was detected deep in the smooth muscle of the aorta, and the number of Pg cells in the aortal wall was higher in HFD mice than in CD mice. Moreover, in vitro, FFA treatment induced apoptosis in HuhT1 cells and exposure to Pg-LPS increased this effect. In addition, Pg and Pg-LPS both attenuated cytokine production in HuhT1 cells stimulated by palmitate. CONCLUSIONS: Dental infection of Pg may contribute to pathogenesis of atherosclerosis by accelerating FFA-induced endothelial injury.

  13. Acrylamide induces accelerated endothelial aging in a human cell model.

    Science.gov (United States)

    Sellier, Cyril; Boulanger, Eric; Maladry, François; Tessier, Frédéric J; Lorenzi, Rodrigo; Nevière, Rémi; Desreumaux, Pierre; Beuscart, Jean-Baptiste; Puisieux, François; Grossin, Nicolas

    2015-09-01

    Acrylamide (AAM) has been recently discovered in food as a Maillard reaction product. AAM and glycidamide (GA), its metabolite, have been described as probably carcinogenic to humans. It is widely established that senescence and carcinogenicity are closely related. In vitro, endothelial aging is characterized by replicative senescence in which primary cells in culture lose their ability to divide. Our objective was to assess the effects of AAM and GA on human endothelial cell senescence. Human umbilical vein endothelial cells (HUVECs) cultured in vitro were used as model. HUVECs were cultured over 3 months with AAM or GA (1, 10 or 100 μM) until growth arrest. To analyze senescence, β-galactosidase activity and telomere length of HUVECs were measured by cytometry and semi-quantitative PCR, respectively. At all tested concentrations, AAM or GA reduced cell population doubling compared to the control condition (p < 0.001). β-galactosidase activity in endothelial cells was increased when exposed to AAM (≥10 μM) or GA (≥1 μM) (p < 0.05). AAM (≥10 μM) or GA (100 μM) accelerated telomere shortening in HUVECs (p < 0.05). In conclusion, in vitro chronic exposure to AAM or GA at low concentrations induces accelerated senescence. This result suggests that an exposure to AAM might contribute to endothelial aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Arginase Inhibitor in the Pharmacological Correction of Endothelial Dysfunction

    Directory of Open Access Journals (Sweden)

    Mihail V. Pokrovskiy

    2011-01-01

    Full Text Available This paper is about a way of correction of endothelial dysfunction with the inhibitor of arginase: L-norvaline. There is an imbalance between vasoconstriction and vasodilatation factors of endothelium on the basis of endothelial dysfunction. Among vasodilatation agents, nitrogen oxide plays the basic role. Amino acid L-arginine serves as a source of molecules of nitrogen oxide in an organism. Because of the high activity of arginase enzyme which catalyzes the hydrolysis of L-arginine into ornithine and urea, the bioavailability of nitrogen oxide decreases. The inhibitors of arginase suppress the activity of the given enzyme, raising and production of nitrogen oxide, preventing the development of endothelial dysfunction.

  15. The endothelial border to health

    DEFF Research Database (Denmark)

    Hansen, Nina Wærling; Hansen, Anker Jon; Sams, Anette

    2017-01-01

    player for maintenance of health and for development of a number of diseases. Endothelial dysfunction is known to be an important component of type 2 diabetes, but is also assumed to be involved in many other diseases, for example, rheumatoid arthritis, inflammatory bowel disease, asthma...... extracellular proteins form epitopes for potential specific antibody formation upon interactions with reducing sugars. This paper reviews the endothelial metabolism, biology, inflammatory processes, physical barrier functions, and summarizes evidence that although stochastic in nature, endothelial responses...... to hyperglycemia are major contributors to disease pathophysiology. We present molecular and mechanistic evidence that both biological and physical barriers, protein function, specific immunity, and inflammatory processes are compromised by hyperglycemic events and thus, hyperglycemic events alone should...

  16. Perylene Diimide as a Precise Graphene-like Superoxide Dismutase Mimetic

    Energy Technology Data Exchange (ETDEWEB)

    Jalilov, Almaz S.; Nilewski, Lizanne G.; Berka, Vladimir [Hematology,; Zhang, Chenhao; Yakovenko, Andrey A. [Argonne National Laboratory, X-ray Science Division,; Wu, Gang [Hematology,; Kent, Thomas A. [Department; Center for Translational Research in Inflammatory Diseases, Michel E. DeBakey VA Medical Center, Houston, Texas 77030, United States; Tsai, Ah-Lim [Hematology,; Tour, James M.

    2017-01-31

    Here we show that the active portion of a graphitic nanoparticle can be mimicked by a perylene diimide (PDI) to explain the otherwise elusive biological and electrocatalytic activity of the nanoparticle construct. Development of molecular analogues that mimic the antioxidant properties of oxidized graphenes, in this case the poly(ethylene glycolated) hydrophilic carbon clusters (PEG–HCCs), will afford important insights into the highly efficient activity of PEG–HCCs and their graphitic analogues. PEGylated perylene diimides (PEGn–PDI) serve as well-defined molecular analogues of PEG–HCCs and oxidized graphenes in general, and their antioxidant and superoxide dismutase-like (SOD-like) properties were studied. PEGn–PDIs have two reversible reduction peaks, which are more positive than the oxidation peak of superoxide (O2•–). This is similar to the reduction peak of the HCCs. Thus, as with PEG–HCCs, PEGn–PDIs are also strong single-electron oxidants of O2•–. Furthermore, reduced PEGn–PDI, PEGn–PDI•–, in the presence of protons, was shown to reduce O2•– to H2O2 to complete the catalytic cycle in this SOD analogue. The kinetics of the conversion of O2•– to O2 and H2O2 by PEG8–PDI was measured using freeze-trap EPR experiments to provide a turnover number of 133 s–1; the similarity in kinetics further supports that PEG8–PDI is a true SOD mimetic. Finally, PDIs can be used as catalysts in the electrochemical oxygen reduction reaction in water, which proceeds by a two-electron process with the production of H2O2, mimicking graphene oxide nanoparticles that are otherwise difficult to study spectroscopically.

  17. The French Paradox: Determining the Superoxide-Scavenging Capacity of Red Wine and Other Beverages

    Science.gov (United States)

    Logan, Barry A.; Hammond, Matthew P.; Stormo, Benjamin M.

    2008-01-01

    Plant-derived phenolic compounds such as those found in red wine, tea, and certain fruit juices may protect against cardiovascular disease by detoxifying (scavenging) superoxide and other unstable reactive oxygen species. We present a laboratory exercise that can be used to assess the superoxide-scavenging capacity of beverages. Among the…

  18. Do Superoxide Dismutase (SOD) and Catalase (CAT) protect Cells from DNA Damage Induced by Active Arsenicals?

    Science.gov (United States)

    Superoxide dismutase (SOD) catalyzes the conversion of superoxide to hydrogen peroxide, which can be converted to water and oxygen through the action of catalase. Heterozygous mice of strain B6: 129S7-SodltmlLeb/J were obtained from Jackson Laboratories and bred to produce offspr...

  19. Zinc-Dependent Protection of Tobacco and Rice Cells From Aluminum-Induced Superoxide-Mediated Cytotoxicity

    Science.gov (United States)

    Lin, Cun; Hara, Ayaka; Comparini, Diego; Bouteau, François; Kawano, Tomonori

    2015-01-01

    Al3+ toxicity in growing plants is considered as one of the major factors limiting the production of crops on acidic soils worldwide. In the last 15 years, it has been proposed that Al3+ toxicity are mediated with distortion of the cellular signaling mechanisms such as calcium signaling pathways, and production of cytotoxic reactive oxygen species (ROS) causing oxidative damages. On the other hand, zinc is normally present in plants at high concentrations and its deficiency is one of the most widespread micronutrient deficiencies in plants. Earlier studies suggested that lack of zinc often results in ROS-mediated oxidative damage to plant cells. Previously, inhibitory action of Zn2+ against lanthanide-induced superoxide generation in tobacco cells have been reported, suggesting that Zn2+ interferes with the cation-induced ROS production via stimulation of NADPH oxidase. In the present study, the effect of Zn2+ on Al3+-induced superoxide generation in the cell suspension cultures of tobacco (Nicotiana tabacum L., cell-line, BY-2) and rice (Oryza sativa L., cv. Nipponbare), was examined. The Zn2+-dependent inhibition of the Al3+-induced oxidative burst was observed in both model cells selected from the monocots and dicots (rice and tobacco), suggesting that this phenomenon (Al3+/Zn2+ interaction) can be preserved in higher plants. Subsequently induced cell death in tobacco cells was analyzed by lethal cell staining with Evans blue. Obtained results indicated that presence of Zn2+ at physiological concentrations can protect the cells by preventing the Al3+-induced superoxide generation and cell death. Furthermore, the regulation of the Ca2+ signaling, i.e., change in the cytosolic Ca2+ ion concentration, and the cross-talks among the elements which participate in the pathway were further explored. PMID:26648960

  20. Virtual electrochemical nitric oxide analyzer using copper, zinc superoxide dismutase immobilized on carbon nanotubes in polypyrrole matrix.

    Science.gov (United States)

    Madasamy, Thangamuthu; Pandiaraj, Manickam; Balamurugan, Murugesan; Karnewar, Santosh; Benjamin, Alby Robson; Venkatesh, Krishna Arun; Vairamani, Kanagavel; Kotamraju, Srigiridhar; Karunakaran, Chandran

    2012-10-15

    In this work, we have designed and developed a novel and cost effective virtual electrochemical analyzer for the measurement of NO in exhaled breath and from hydrogen peroxide stimulated endothelial cells using home-made potentiostat. Here, data acquisition system (NI MyDAQ) was used to acquire the data from the electrochemical oxidation of NO mediated by copper, zinc superoxide dismutase (Cu,ZnSOD). The electrochemical control programs (graphical user-interface software) were developed using LabVIEW 10.0 to sweep the potential, acquire the current response and process the acquired current signal. The Cu,ZnSOD (SOD1) immobilized on the carbon nanotubes in polypyrrole modified platinum electrode was used as the NO biosensor. The electrochemical behavior of the SOD1 modified electrode exhibited the characteristic quasi-reversible redox peak at the potential, +0.06 V vs. Ag/AgCl. The biological interferences were eliminated by nafion coated SOD1 electrode and then NO was measured selectively. Further, this biosensor showed a wide linear range of response over the concentration of NO from 0.1 μM to 1 mM with a detection limit of 0.1 μM and high sensitivity of 1.1 μA μM(-1). The electroanalytical results obtained here using the developed virtual electrochemical instrument were also compared with the standard cyclic voltammetry instrument and found in agreement with each other. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Superoxide Dismutase 2 is dispensable for platelet function.

    Science.gov (United States)

    Fidler, Trevor P; Rowley, Jesse W; Araujo, Claudia; Boudreau, Luc H; Marti, Alex; Souvenir, Rhonda; Dale, Kali; Boilard, Eric; Weyrich, Andrew S; Abel, E Dale

    2017-10-05

    Increased intracellular reactive oxygen species (ROS) promote platelet activation. The sources of platelet-derived ROS are diverse and whether or not mitochondrial derived ROS, modulates platelet function is incompletely understood. Studies of platelets from patients with sickle cell disease, and diabetes suggest a correlation between mitochondrial ROS and platelet dysfunction. Therefore, we generated mice with a platelet specific knockout of superoxide dismutase 2 (SOD2-KO) to determine if increased mitochondrial ROS increases platelet activation. SOD2-KO platelets demonstrated decreased SOD2 activity and increased mitochondrial ROS, however total platelet ROS was unchanged. Mitochondrial function and content were maintained in non-stimulated platelets. However SOD2-KO platelets demonstrated decreased mitochondrial function following thrombin stimulation. In vitro platelet activation and spreading was normal and in vivo, deletion of SOD2 did not change tail-bleeding or arterial thrombosis indices. In pathophysiological models mediated by platelet-dependent immune mechanisms such as sepsis and autoimmune inflammatory arthritis, SOD2-KO mice were phenotypically identical to wildtype controls. These data demonstrate that increased mitochondrial ROS does not result in platelet dysfunction.

  2. Biodegradable polycaprolactone (PCL) nanosphere encapsulating superoxide dismutase and catalase enzymes.

    Science.gov (United States)

    Singh, Sushant; Singh, Abhay Narayan; Verma, Anil; Dubey, Vikash Kumar

    2013-12-01

    Biodegradable polycaprolactone (PCL) nanosphere encapsulating superoxide dismutase (SOD) and catalase (CAT) were successfully synthesized using double emulsion (w/o/w) solvent evaporation technique. Characterization of the nanosphere using dynamic light scattering, field emission scanning electron microscope, and Fourier transform infrared spectroscopy revealed a spherical-shaped nanosphere in a size range of 812 ± 64 nm with moderate protein encapsulation efficiency of 55.42 ± 3.7 % and high in vitro protein release. Human skin HaCat cells were used for analyzing antioxidative properties of SOD- and CAT-encapsulated PCL nanospheres. Oxidative stress condition in HaCat cells was optimized with exposure to hydrogen peroxide (H2O2; 1 mM) as external stress factor and verified through reactive oxygen species (ROS) analysis using H2DCFDA dye. PCL nanosphere encapsulating SOD and CAT together indicated better antioxidative defense against H2O2-induced oxidative stress in human skin HaCat cells in comparison to PCL encapsulating either SOD or CAT alone as well as against direct supplement of SOD and CAT protein solution. Increase in HaCat cells SOD and CAT activities after treatment hints toward uptake of PCL nanosphere into the human skin HaCat cells. The result signifies the role of PCL-encapsulating SOD and CAT nanosphere in alleviating oxidative stress.

  3. Plastic compressed collagen as a novel carrier for expanded human corneal endothelial cells for transplantation.

    Directory of Open Access Journals (Sweden)

    Hannah J Levis

    Full Text Available Current treatments for reversible blindness caused by corneal endothelial cell failure involve replacing the failed endothelium with donor tissue using a one donor-one recipient strategy. Due to the increasing pressure of a worldwide donor cornea shortage there has been considerable interest in developing alternative strategies to treat endothelial disorders using expanded cell replacement therapy. Protocols have been developed which allow successful expansion of endothelial cells in vitro but this approach requires a supporting material that would allow easy transfer of cells to the recipient. We describe the first use of plastic compressed collagen as a highly effective, novel carrier for human corneal endothelial cells. A human corneal endothelial cell line and primary human corneal endothelial cells retained their characteristic cobblestone morphology and expression of tight junction protein ZO-1 and pump protein Na+/K+ ATPase α1 after culture on collagen constructs for up to 14 days. Additionally, ultrastructural analysis suggested a well-integrated endothelial layer with tightly opposed cells and apical microvilli. Plastic compressed collagen is a superior biomaterial in terms of its speed and ease of production and its ability to be manipulated in a clinically relevant manner without breakage. This method provides expanded endothelial cells with a substrate that could be suitable for transplantation allowing one donor cornea to potentially treat multiple patients.

  4. Construction of extracellular microenvironment to improve surface endothelialization of NiTi alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peng, E-mail: liupeng79@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China); Zhao, Yongchun; Yan, Ying; Hu, Yan; Yang, Weihu [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Cai, Kaiyong, E-mail: kaiyong_cai@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China)

    2015-10-01

    To mimic extracellular microenvironment of endothelial cell, a bioactive multilayered structure of gelatin/chitosan pair, embedding with vascular endothelial growth factor (VEGF), was constructed onto NiTi alloy substrate surface via a layer-by-layer assembly technique. The successful fabrication of the multilayered structure was demonstrated by scanning electron microscopy, atomic force microscopy, contact angle measurement, attenuated total reflection-fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, respectively. The growth behaviors of endothelial cells on various NiTi alloy substrates were investigated in vitro. Cytoskeleton observation, MTT assay, and wound healing assay proved that the VEGF-embedded multilayer structure positively stimulated adhesion, proliferation and motogenic responses of endothelial cells. More importantly, the present system promoted the nitric oxide production of endothelial cells. The approach affords an alternative to construct extracellular microenvironment for improving surface endothelialization of a cardiovascular implant. - Highlights: • Biofunctional multilayer films mimicking extracellular microenvironment were successfully fabricated. • Multilayered structure stimulated the biological responses of endothelial cells. • The approach affords an efficient approach for surface endothelialization of stent implant.

  5. Downregulation of Endogenous Hydrogen Sulfide Pathway Is Involved in Mitochondrion-Related Endothelial Cell Apoptosis Induced by High Salt

    Directory of Open Access Journals (Sweden)

    Yanfang Zong

    2015-01-01

    Full Text Available Background. The study aimed to investigate whether endogenous H2S pathway was involved in high-salt-stimulated mitochondria-related vascular endothelial cell (VEC apoptosis. Methods. Cultured human umbilical vein endothelial cells (HUVECs were used in the study. H2S content in the supernatant was detected. Western blot was used to detect expression of cystathionine gamma-lyase (CSE, cleaved-caspase-3, and mitochondrial and cytosolic cytochrome c (cytc. Fluorescent probes were used to quantitatively detect superoxide anion generation and measure the in situ superoxide anion generation in HUVEC. Mitochondrial membrane pore opening, mitochondrial membrane potential, and caspase-9 activities were measured. The cell apoptosis was detected by cell death ELISA and TdT-mediated dUTP nick end labeling (TUNEL methods. Results. High-salt treatment downregulated the endogenous VEC H2S/CSE pathway, in association with increased generation of oxygen free radicals, decreased mitochondrial membrane potential, enhanced the opening of mitochondrial membrane permeability transition pore and leakage of mitochondrial cytc, activated cytoplasmic caspase-9 and caspase-3 and subsequently induced VEC apoptosis. However, supplementation of H2S donor markedly inhibited VEC oxidative stress and mitochondria-related VEC apoptosis induced by high salt. Conclusion. H2S/CSE pathway is an important endogenous defensive system in endothelial cells antagonizing high-salt insult. The protective mechanisms for VEC damage might involve inhibiting oxidative stress and protecting mitochondrial injury.

  6. Endothelial ERK signaling controls lymphatic fate specification

    Science.gov (United States)

    Deng, Yong; Atri, Deepak; Eichmann, Anne; Simons, Michael

    2013-01-01

    Lymphatic vessels are thought to arise from PROX1-positive endothelial cells (ECs) in the cardinal vein in response to induction of SOX18 expression; however, the molecular event responsible for increased SOX18 expression has not been established. We generated mice with endothelial-specific, inducible expression of an RAF1 gene with a gain-of-function mutation (RAF1S259A) that is associated with Noonan syndrome. Expression of mutant RAF1S259A in ECs activated ERK and induced SOX18 and PROX1 expression, leading to increased commitment of venous ECs to the lymphatic fate. Excessive production of lymphatic ECs resulted in lymphangiectasia that was highly reminiscent of abnormal lymphatics seen in Noonan syndrome and similar “RASopathies.” Inhibition of ERK signaling during development abrogated the lymphatic differentiation program and rescued the lymphatic phenotypes induced by expression of RAF1S259A. These data suggest that ERK activation plays a key role in lymphatic EC fate specification and that excessive ERK activation is the basis of lymphatic abnormalities seen in Noonan syndrome and related diseases. PMID:23391722

  7. Endothelial dysfunction after non-cardiac surgery

    DEFF Research Database (Denmark)

    Søndergaard, E S; Fonnes, S; Gögenur, I

    2015-01-01

    was to systematically review the literature to evaluate the association between non-cardiac surgery and non-invasive markers of endothelial function. METHODS: A systematic search was conducted in MEDLINE, EMBASE and Cochrane Library Database according to the PRISMA guidelines. Endothelial dysfunction was described only...... transplantation and vascular surgery respectively) had an improvement in endothelial dysfunction 1 month after surgery. CONCLUSION: Endothelial function changes in relation to surgery. Assessment of endothelial function by non-invasive measures has the potential to guide clinicians in the prevention or treatment...

  8. Arachidonic acid metabolites and endothelial dysfunction of portal hypertension.

    Science.gov (United States)

    Sacerdoti, David; Pesce, Paola; Di Pascoli, Marco; Brocco, Silvia; Cecchetto, Lara; Bolognesi, Massimo

    2015-07-01

    Increased resistance to portal flow and increased portal inflow due to mesenteric vasodilatation represent the main factors causing portal hypertension in cirrhosis. Endothelial cell dysfunction, defined as an imbalance between the synthesis, release, and effect of endothelial mediators of vascular tone, inflammation, thrombosis, and angiogenesis, plays a major role in the increase of resistance in portal circulation, in the decrease in the mesenteric one, in the development of collateral circulation. Reduced response to vasodilators in liver sinusoids and increased response in the mesenteric arterioles, and, viceversa, increased response to vasoconstrictors in the portal-sinusoidal circulation and decreased response in the mesenteric arterioles are also relevant to the pathophysiology of portal hypertension. Arachidonic acid (AA) metabolites through the three pathways, cyclooxygenase (COX), lipoxygenase, and cytochrome P450 monooxygenase and epoxygenase, are involved in endothelial dysfunction of portal hypertension. Increased thromboxane-A2 production by liver sinusoidal endothelial cells (LSECs) via increased COX-1 activity/expression, increased leukotriens, increased epoxyeicosatrienoic acids (EETs) (dilators of the peripheral arterial circulation, but vasoconstrictors of the portal-sinusoidal circulation), represent a major component in the increased portal resistance, in the decreased portal response to vasodilators and in the hyper-response to vasoconstrictors. Increased prostacyclin (PGI2) via COX-1 and COX-2 overexpression, and increased EETs/heme-oxygenase-1/K channels/gap junctions (endothelial derived hyperpolarizing factor system) play a major role in mesenteric vasodilatation, hyporeactivity to vasoconstrictors, and hyper-response to vasodilators. EETs, mediators of liver regeneration after hepatectomy and of angiogenesis, may play a role in the development of regenerative nodules and collateral circulation, through stimulation of vascular endothelial

  9. Protective properties of artichoke (Cynara scolymus) against oxidative stress induced in cultured endothelial cells and monocytes.

    Science.gov (United States)

    Zapolska-Downar, Danuta; Zapolski-Downar, Andrzej; Naruszewicz, Marek; Siennicka, Aldona; Krasnodebska, Barbara; Kołdziej, Blanka

    2002-11-01

    It is currently believed that oxidative stress and inflammation play a significant role in atherogenesis. Artichoke extract exhibits hypolipemic properties and contains numerous active substances with antioxidant properties in vitro. We have studied the influence of aqueous and ethanolic extracts from artichoke on intracellular oxidative stress stimulated by inflammatory mediators (TNFalpha and LPS) and ox-LDL in endothelial cells and monocytes. Oxidative stress which reflects the intracellular production of reactive oxygen species (ROS) was followed by measuring the oxidation of 2', 7'-dichlorofluorescin (DCFH) to 2', 7'-dichlorofluorescein (DCF). Agueous and ethanolic extracts from artichoke were found to inhibit basal and stimulated ROS production in endothelial cells and monocytes in dose dependent manner. In endothelial cells, the ethanolic extract (50 microg/ml) reduced ox-LDL-induced intracellular ROS production by 60% (partichoke extracts have marked protective properties against oxidative stress induced by inflammatory mediators and ox-LDL in cultured endothelial cells and monocytes.

  10. Endothelial atheroprotective and anti-inflammatory mechanisms.

    Science.gov (United States)

    Berk, B C; Abe, J I; Min, W; Surapisitchat, J; Yan, C

    2001-12-01

    Atherosclerosis preferentially occurs in areas of turbulent flow and low fluid shear stress, whereas laminar flow and high shear stress are atheroprotective. Inflammatory cytokines, such as tumor necrosis factor-alpha (TNF), have been shown to stimulate expression of endothelial cell (EC) genes that may promote atherosclerosis. Recent data suggest that steady laminar flow decreases EC apoptosis and blocks TNF-mediated EC activation. EC apoptosis is likely important in the process termed "plaque erosion" that leads to platelet aggregation. Steady laminar flow inhibits EC apoptosis by preventing cell cycle entry, by increasing antioxidant mechanisms (e.g., superoxide dismutase), and by stimulating nitric oxide-dependent protective pathways that involve enzymes PI3-kinase and Akt. Conversely, our laboratory has identified nitric oxide-independent mechanisms that limit TNF signal transduction. TNF regulates gene expression in EC, in part, by stimulating mitogen-activated protein kinases (MAPK) which phosphorylate transcription factors. We hypothesized that fluid shear stress modulates TNF effects on EC by inhibiting TNF-mediated activation of MAP kinases. To test this hypothesis, we determined the effects of steady laminar flow (shear stress = 12 dynes/cm2) on TNF-stimulated activity of two MAP kinases: extracellular signal regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK). Flow alone stimulated ERK1/2 activity, but decreased JNK activity compared to static controls. TNF (10 ng/ml) alone activated both ERK1/2 and JNK maximally at 15 minutes in human umbilical vein EC (HUVEC). Pre-exposing HUVEC for 10 minutes to flow inhibited TNF activation of JNK by 46%, but it had no significant effect on ERK1/2 activation. Incubation of EC with PD98059, a specific mitogen-activated protein kinase kinase inhibitor, blocked the flow-mediated inhibition of TNF activation of JNK. Flow-mediated inhibition of JNK was unaffected by 0.1 mM L-nitroarginine, 100 pM 8-bromo

  11. NADPH oxidase 4-derived superoxide mediates flow-stimulated NKCC2 activity in thick ascending limbs.

    Science.gov (United States)

    Saez, Fara; Hong, Nancy J; Garvin, Jeffrey L

    2018-05-01

    Luminal flow augments Na + reabsorption in the thick ascending limb more than can be explained by increased ion delivery. This segment reabsorbs 30% of the filtered load of Na + , playing a key role in its homeostasis. Whether flow elevations enhance Na + -K + -2Cl - cotransporter (NKCC2) activity and the second messenger involved are unknown. We hypothesized that raising luminal flow augments NKCC2 activity by enhancing superoxide ([Formula: see text]) production by NADPH oxidase 4 (NOX4). NKCC2 activity was measured in thick ascending limbs perfused at either 5 or 20 nl/min with and without inhibitors of [Formula: see text] production. Raising luminal flow from 5 to 20 nl/min enhanced NKCC2 activity from 4.8 ± 0.9 to 6.3 ± 1.2 arbitrary fluorescent units (AFU)/s. Maintaining flow at 5 nl/min did not alter NKCC2 activity. The superoxide dismutase mimetic manganese (III) tetrakis (4-benzoic acid) porphyrin chloride blunted NKCC2 activity from 3.5 ± 0.4 to 2.5 ± 0.2 AFU/s when flow was 20 nl/min but not 5 nl/min. When flow was 20 nl/min, NKCC2 activity showed no change with time. The selective NOX1/4 inhibitor GKT-137831 blunted NKCC2 activity when thick ascending limbs were perfused at 20 nl/min from 7.2 ± 1.1 to 4.5 ± 0.8 AFU/s but not at 5 nl/min. The inhibitor also prevented luminal flow from elevating [Formula: see text] production. Allopurinol, a xanthine oxidase inhibitor, had no effect on NKCC2 activity when flow was 20 nl/min. Tetanus toxin prevents flow-induced stimulation of NKCC2 activity. We conclude that elevations in luminal flow enhance NaCl reabsorption in thick ascending limbs by stimulating NKCC2 via NOX4 activation and increased [Formula: see text]. NKCC2 activation is primarily the result of insertion of new transporters in the membrane.

  12. Superoxide produced by Kupffer cells is an essential effector in concanavalin A-induced hepatitis in mice.

    Science.gov (United States)

    Nakashima, Hiroyuki; Kinoshita, Manabu; Nakashima, Masahiro; Habu, Yoshiko; Shono, Satoshi; Uchida, Takefumi; Shinomiya, Nariyoshi; Seki, Shuhji

    2008-12-01

    Although concanavalin A (Con-A)-induced experimental hepatitis is thought to be induced by activated T cells, natural killer T (NKT) cells, and cytokines, precise mechanisms are still unknown. In the current study, we investigated the roles of Kupffer cells, NKT cells, FasL, tumor necrosis factor (TNF), and superoxide in Con-A hepatitis in C57BL/6 mice. Removal of Kupffer cells using gadolinium chloride (GdCl(3)) from the liver completely inhibited Con-A hepatitis, whereas increased serum TNF and IFN-gamma levels were not inhibited at all. Unexpectedly, anti-FasL antibody pretreatment did not inhibit Con-A hepatitis, whereas it inhibited hepatic injury induced by a synthetic ligand of NKT cells, alpha-galactosylceramide. Furthermore, GdCl(3) pretreatment changed neither the activation-induced down-regulation of NK1.1 antigens as well as T cell receptors of NKT cells nor the increased expression of the CD69 activation antigen of hepatic T cells. CD68(+) Kupffer cells greatly increased in proportion in the early phase after Con-A injection; this increase was abrogated by GdCl(3) pretreatment. Anti-TNF antibody (Ab) pretreatment did not inhibit the increase of Kupffer cells, but it effectively suppressed superoxide/reactive oxygen production from Kupffer cells and the resulting hepatic injury. Conversely, depletion of NKT cells in mice by NK1.1 Ab pretreatment did suppress both the increase of CD68(+) Kupffer cells and Con-A hepatitis. Consistently, the diminution of oxygen radicals produced by Kupffer cells by use of free radical scavengers greatly inhibited Con-A hepatitis without suppressing cytokine production. However, adoptive transfer experiments also indicate that a close interaction/cooperation of Kupffer cells with NKT cells is essential for Con-A hepatitis. Superoxide produced by Kupffer cells may be the essential effector in Con-A hepatitis, and TNF and NKT cells support their activation and superoxide production.

  13. Vascular Nitric Oxide-Superoxide Balance and Thrombus Formation after Acute Exercise.

    Science.gov (United States)

    Przyborowski, Kamil; Proniewski, Bartosz; Czarny, Joanna; Smeda, Marta; Sitek, Barbara; Zakrzewska, Agnieszka; Zoladz, Jerzy A; Chlopicki, Stefan

    2018-02-21

    An acute bout of strenuous exercise in humans results in transient impairment of NO-dependent function, but it remains unknown whether this phenomenon is associated with increased risk of post-exercise thrombotic events. This study aimed to evaluate effects of a single bout of exhaustive running in mice on the balance of vascular nitric oxide (NO)/reactive oxygen species (ROS) production, and on thrombogenicity. At different time-points (0h, 2h and 4h) after exercise and in sedentary C57BL/6 mice the production of NO and superoxide (O2) in aorta was measured by electron paramagnetic resonance (EPR) spin trapping and by dihydroethidium (DHE)/HPLC-based method, respectively, while collagen-induced thrombus formation was analyzed in a microchip-based flow-chamber system (T-TAS). We also measured pre- and post-exercise plasma concentration of nitrite/nitrate and 6-keto-PGF1α. An acute bout of exhaustive running in mice resulted in decreased production of NO and increased production of O2 in aorta, with maximum changes 2h after completion of exercise when compared to sedentary mice. However, platelet thrombus formation was not changed by exercise as evidenced by unaltered time to start of thrombus formation (T10) and capillary occlusion (OT), and total thrombogenicity (AUC) as measured in a flow-chamber system. Strenuous exercise increased the plasma concentration of nitrite but did not affect nitrate and 6-keto-PGF1α concentrations. An acute bout of strenuous exercise in mice reduced NO and in parallel increased O2 production in aorta. This response was most pronounced 2h after exercise. Surprisingly, the reduced NO and increased O2 production did not result in increased post-exercise platelet-dependent thrombogenicity. These results show that transient reduction in NO bioavailability, caused by exercise-induced oxidative stress, does not modify post-exercise thromboresistance in healthy mice.

  14. Receptor for advanced glycation end products - membrane type1 matrix metalloproteinase axis regulates tissue factor expression via RhoA and Rac1 activation in high-mobility group box-1 stimulated endothelial cells.

    Directory of Open Access Journals (Sweden)

    Koichi Sugimoto

    Full Text Available BACKGROUND: Atherosclerosis is understood to be a blood vessel inflammation. High-mobility group box-1 (HMGB-1 plays a key role in the systemic inflammation. Tissue factor (TF is known to lead to inflammation which promotes thrombus formation. Membrane type1 matrix metalloprotease (MT1-MMP associates with advanced glycation endproducts (AGE triggered-TF protein expression and phosphorylation of NF-κB. However, it is still unclear about the correlation of MT1-MMP and HMBG-1-mediated TF expression. In this study, we investigated the molecular mechanisms of TF expression in response to HMGB-1 stimulation and the involvement of MT1-MMP in endothelial cells. METHODS AND RESULTS: Pull-down assays and Western blotting revealed that HMGB-1 induced RhoA/Rac1 activation and NF-kB phosphorylation in cultured human aortic endothelial cells. HMGB-1 increased the activity of MT1-MMP, and inhibition of RAGE or MT1-MMP by siRNA suppressed HMGB-1-induced TF upregulation as well as HMGB-1-triggered RhoA/Rac1 activation and NF-kB phosphorylation. CONCLUSIONS: The present study showed that RAGE/MT1-MMP axis modified HMBG-1-mediated TF expression through RhoA and Rac1 activation and NF-κB phosphorylation in endothelial cells. These results suggested that MT1-MMP was involved in vascular inflammation and might be a good target for treating atherosclerosis.

  15. Low-Intensity Pulsed Ultrasound Prevents the Oxidative Stress Induced Endothelial-Mesenchymal Transition in Human Aortic Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Jiamin Li

    2018-02-01

    Full Text Available Background/Aims: Endothelial-mesenchymal transition (EndMT has been shown to take part in the generation and progression of diverse diseases, involving a series of changes leading to a loss of their endothelial characteristics and an acquirement of properties typical of mesenchymal cells. Low-intensity pulsed ultrasound (LIPUS is a new therapeutic option that has been successfully used in fracture healing. However, whether LIPUS can inhibit oxidative stress-induced endothelial cell damages through inhibiting EndMT remained unknown. This study aimed to investigate the protective effects of LIPUS against oxidative stress-induced endothelial cell damages and the underlying mechanisms. Methods: EndMT was induced by H2O2 (100 µm for seven days. Human aortic endothelial cells (HAECs were exposed to H2O2 with or without LIPUS treatment for seven days. The expression of EndMT markers (CD31, VE-cadherin, FSP1 and α-SMA were analyzed. The levels of total and phosphorylated PI3K and AKT proteins were detected by Western Blot analysis. Cell chemotaxis was determined by wound healing and transwell assay. Results: LIPUS relieved EndMT by decreasing ROS accumulation and increasing activation of the PI3K signaling cascade. LIPUS alleviated the migration of EndMT-derived mesenchymal-like cells through reducing extracellular matrix (ECM deposition that is associated with matrix metallopeptidase (MMP proteolytic activity and collagen production. Conclusion: LIPUS produces cytoprotective effects against oxidative injuries to endothelial cells through suppressing the oxidative stress-induced EndMT, activating the PI3K/AKT pathway under oxidative stress, and limiting cell migration and excessive ECM deposition.

  16. Ab initio molecular dynamics of the reaction of quercetin with superoxide radical

    International Nuclear Information System (INIS)

    Lespade, Laure

    2016-01-01

    Highlights: • Ab initio molecular dynamics is performed to describe the reaction of quercetin and superoxide. • The reaction occurs near the sites 4′ and 7 when the system contains sufficiently water molecules. • The difference of reactivity of superoxide compared to commonly used radicals as DPPH · or ABTS ·+ is explained. - Abstract: Superoxide plays an important role in biology but in unregulated concentrations it is implicated in a lot of diseases such as cancer or atherosclerosis. Antioxidants like flavonoids are abundant in plant and are good scavengers of superoxide radical. The modeling of superoxide scavenging by flavonoids from the diet still remains a challenge. In this study, ab initio molecular dynamics of the reaction of the flavonoid quercetin toward superoxide radical has been carried out using Car–Parrinello density functional theory. The study has proven different reactant solvation by modifying the number of water molecules surrounding superoxide. The reaction consists in the gift of a hydrogen atom of one of the hydroxyl groups of quercetin to the radical. When it occurs, it is relatively fast, lower than 100 fs. Calculations show that it depends largely on the environment of the hydroxyl group giving its hydrogen atom, the geometry of the first water layer and the presence of a certain number of water molecules in the second layer, indicating a great influence of the solvent on the reactivity.

  17. Ab initio molecular dynamics of the reaction of quercetin with superoxide radical

    Energy Technology Data Exchange (ETDEWEB)

    Lespade, Laure, E-mail: l.lespade@ism.u-bordeaux1.fr

    2016-08-22

    Highlights: • Ab initio molecular dynamics is performed to describe the reaction of quercetin and superoxide. • The reaction occurs near the sites 4′ and 7 when the system contains sufficiently water molecules. • The difference of reactivity of superoxide compared to commonly used radicals as DPPH{sup ·} or ABTS{sup ·+} is explained. - Abstract: Superoxide plays an important role in biology but in unregulated concentrations it is implicated in a lot of diseases such as cancer or atherosclerosis. Antioxidants like flavonoids are abundant in plant and are good scavengers of superoxide radical. The modeling of superoxide scavenging by flavonoids from the diet still remains a challenge. In this study, ab initio molecular dynamics of the reaction of the flavonoid quercetin toward superoxide radical has been carried out using Car–Parrinello density functional theory. The study has proven different reactant solvation by modifying the number of water molecules surrounding superoxide. The reaction consists in the gift of a hydrogen atom of one of the hydroxyl groups of quercetin to the radical. When it occurs, it is relatively fast, lower than 100 fs. Calculations show that it depends largely on the environment of the hydroxyl group giving its hydrogen atom, the geometry of the first water layer and the presence of a certain number of water molecules in the second layer, indicating a great influence of the solvent on the reactivity.

  18. Cytosolic superoxide dismutase can provide protection against Fasciola gigantica.

    Science.gov (United States)

    Jaikua, Wipaphorn; Kueakhai, Pornanan; Chaithirayanon, Kulathida; Tanomrat, Rataya; Wongwairot, Sirima; Riengrojpitak, Suda; Sobhon, Prasert; Changklungmoa, Narin

    2016-10-01

    Superoxide dismutases (SOD), antioxidant metallo-enzymes, are a part of the first line of defense in the trematode parasites which act as the chief scavengers for reactive oxygen species (ROS). A recombinant Fasciola gigantica cytosolic SOD (FgSOD) was expressed in Escherichia coli BL21 (DE3) and used for immunizing rabbits to obtain polyclonal antibodies (anti-rFgSOD). This rabbit anti-rFgSOD reacted with the native FgSOD at a molecular weight of 17.5kDa. The FgSOD protein was expressed at high level in parenchyma, caecal epithelium and egg of the parasite. The rFgSOD reacted with antisera from rabbits infected with F. gigantica metacercariae collected at 2, 5, and 7 weeks after infection, and reacted with sera of infected mice. Anti-rFgSOD exhibited cross reactivity with the other parasites' antigens, including Eurytrema pancreaticum, Cotylophoron cotylophorum, Fischoederius cobboldi, Gastrothylax crumenifer, Paramphistomum cervi, and Setaria labiato papillosa. A vaccination was performed in imprinting control region (ICR) mice by subcutaneous injection with 50μg of rFgSOD combined with Freund's adjuvant. At 2 weeks after the second boost, mice were infected with 15 metacercariae by oral route. IgG1 and IgG2a in the immune sera were determined to indicate Th2 and Th1 immune responses. It was found that the parasite burden was reduced by 45%, and both IgG1 and IgG2a levels showed correlation with the numbers of worm recoveries. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Naloxone inhibits superoxide but not enzyme release by human neutrophils

    Energy Technology Data Exchange (ETDEWEB)

    Simpkins, C.; Alailima, S.; Tate, E.

    1986-03-01

    The release of toxic oxygen metabolites and enzymes by phagocytic cells is thought to play a role in the multisystemic tissue injury of sepsis. Naloxone protects septic animals. We have found that at concentrations administered to animals (10/sup -7/ to 10/sup -4/M), naloxone inhibited (p < .001) the release of superoxide (O/sub 2//sup -/) by human neutrophils (HN), stimulated with N-formyl methionyl leucyl phenylalanine (FMLP). Naloxone had no effect on cell viability. Maximum inhibition was 65% of the total O/sub 2//sup -/ released (13.1 nMoles/8 min/320,000 cells). FMLP-stimulated release of beta-glucoronidase or lysozyme was not altered by naloxone. Naloxone had no effect on the binding of /sup 3/H FMLP to HN. Using /sup 3/H naloxone and various concentrations of unlabeled naloxone higher affinity (K/sub D/ = 12nM) and lower affinity (K/sub D/ = 4.7 x 10/sup -5/) binding sites were detected. The K/sub D/ of the low affinity site corresponded to the ED/sub 50/ for naloxone inhibition of O/sub 2//sup -/ (1 x 10/sup -5/M). Binding to this low affinity site was decreased by (+) naloxone, beta-endorphin and N acetyl beta-endorphin, but not by leu-enkephalin, thyrotropin releasing factor, prostaglandin D/sub 2/ or E/sub 2/. Conclusions: (1) naloxone inhibits FMLP-stimulated O/sub 2/ but not enzyme release, (2) this inhibition is not due to alteration of FMLP receptor binding, (3) naloxone may act via a low affinity binding site which is ligand specific, and (4) a higher affinity receptor is present on HN.

  20. Glyoxalase I reduces glycative and oxidative stress and prevents age-related endothelial dysfunction through modulation of endothelial nitric oxide synthase phosphorylation.

    Science.gov (United States)

    Jo-Watanabe, Airi; Ohse, Takamoto; Nishimatsu, Hiroaki; Takahashi, Masao; Ikeda, Yoichiro; Wada, Takehiko; Shirakawa, Jun-ichi; Nagai, Ryoji; Miyata, Toshio; Nagano, Tetsuo; Hirata, Yasunobu; Inagi, Reiko; Nangaku, Masaomi

    2014-06-01

    Endothelial dysfunction is a major contributor to cardiovascular disease (CVD), particularly in elderly people. Studies have demonstrated the role of glycation in endothelial dysfunction in nonphysiological models, but the physiological role of glycation in age-related endothelial dysfunction has been poorly addressed. Here, to investigate how vascular glycation affects age-related endothelial function, we employed rats systemically overexpressing glyoxalase I (GLO1), which detoxifies methylglyoxal (MG), a representative precursor of glycation. Four groups of rats were examined, namely young (13 weeks old), mid-age (53 weeks old) wild-type, and GLO1 transgenic (WT/GLO1 Tg) rats. Age-related acceleration in glycation was attenuated in GLO1 Tg rats, together with lower aortic carboxymethyllysine (CML) and urinary 8-hydroxydeoxyguanosine (8-OHdG) levels. Age-related impairment of endothelium-dependent vasorelaxation was attenuated in GLO1 Tg rats, whereas endothelium-independent vasorelaxation was not different between WT and GLO1 Tg rats. Nitric oxide (NO) production was decreased in mid-age WT rats, but not in mid-age GLO1 Tg rats. Age-related inactivation of endothelial NO synthase (eNOS) due to phosphorylation of eNOS on Thr495 and dephosphorylation on Ser1177 was ameliorated in GLO1 Tg rats. In vitro, MG increased phosphorylation of eNOS (Thr495) in primary human aortic endothelial cells (HAECs), and overexpression of GLO1 decreased glycative stress and phosphorylation of eNOS (Thr495). Together, GLO1 reduced age-related endothelial glycative and oxidative stress, altered phohphorylation of eNOS, and attenuated endothelial dysfunction. As a molecular mechanism, GLO1 lessened inhibitory phosphorylation of eNOS (Thr495) by reducing glycative stress. Our study demonstrates that blunting glycative stress prevents the long-term impact of endothelial dysfunction on vascular aging. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons

  1. Impairment of endothelial-myocardial interaction increases the susceptibility of cardiomyocytes to ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Thorsten M Leucker

    Full Text Available Endothelial-myocardial interactions may be critically important for ischemia/reperfusion injury. Tetrahydrobiopterin (BH4 is a required cofactor for nitric oxide (NO production by endothelial NO synthase (eNOS. Hyperglycemia (HG leads to significant increases in oxidative stress, oxidizing BH4 to enzymatically incompetent dihydrobiopterin. How alterations in endothelial BH4 content impact myocardial ischemia/reperfusion injury remains elusive. The aim of this study was to examine the effect of endothelial-myocardial interaction on ischemia/reperfusion injury, with an emphasis on the role of endothelial BH4 content. Langendorff-perfused mouse hearts were treated by triton X-100 to produce endothelial dysfunction and subsequently subjected to 30 min of ischemia followed by 2 h of reperfusion. The recovery of left ventricular systolic and diastolic function during reperfusion was impaired in triton X-100 treated hearts compared with vehicle-treated hearts. Cardiomyocytes (CMs were co-cultured with endothelial cells (ECs and subsequently subjected to 2 h of hypoxia followed by 2 h of reoxygenation. Addition of ECs to CMs at a ratio of 1∶3 significantly increased NO production and decreased lactate dehydrogenase activity compared with CMs alone. This EC-derived protection was abolished by HG. The addition of 100 µM sepiapterin (a BH4 precursor or overexpression of GTP cyclohydrolase 1 (the rate-limiting enzyme for BH4 biosynthesis in ECs by gene trasfer enhanced endothelial BH4 levels, the ratio of eNOS dimer/monomer, eNOS phosphorylation, and NO production and decreased lactate dehydrogenase activity in the presence of HG. These results demonstrate that increased BH4 content in ECs by either pharmacological or genetic approaches reduces myocardial damage during hypoxia/reoxygenation in the presence of HG. Maintaining sufficient endothelial BH4 is crucial for cardioprotection against hypoxia/reoxygenation injury.

  2. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    International Nuclear Information System (INIS)

    Sharma, Bhupesh; Sharma, P.M.

    2013-01-01

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential in

  3. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Bhupesh, E-mail: drbhupeshresearch@gmail.com; Sharma, P.M.

    2013-11-15

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential

  4. Activation of K+ channels and Na+/K+ ATPase prevents aortic endothelial dysfunction in 7-day lead-treated rats

    International Nuclear Information System (INIS)

    Fiorim, Jonaina; Ribeiro Júnior, Rogério Faustino; Azevedo, Bruna Fernades; Simões, Maylla Ronacher; Padilha, Alessandra Simão; Stefanon, Ivanita; Alonso, Maria Jesus; Salaices, Mercedes; Vassallo, Dalton Valentim

    2012-01-01

    Seven day exposure to a low concentration of lead acetate increases nitric oxide bioavailability suggesting a putative role of K + channels affecting vascular reactivity. This could be an adaptive mechanism at the initial stages of toxicity from lead exposure due to oxidative stress. We evaluated whether lead alters the participation of K + channels and Na + /K + -ATPase (NKA) on vascular function. Wistar rats were treated with lead (1st dose 4 μg/100 g, subsequent doses 0.05 μg/100 g, im, 7 days) or vehicle. Lead treatment reduced the contractile response of aortic rings to phenylephrine (PHE) without changing the vasodilator response to acetylcholine (ACh) or sodium nitroprusside (SNP). Furthermore, this treatment increased basal O 2 − production, and apocynin (0.3 μM), superoxide dismutase (150 U/mL) and catalase (1000 U/mL) reduced the response to PHE only in the treated group. Lead also increased aortic functional NKA activity evaluated by K + -induced relaxation curves. Ouabain (100 μM) plus L-NAME (100 μM), aminoguanidine (50 μM) or tetraethylammonium (TEA, 2 mM) reduced the K + -induced relaxation only in lead-treated rats. When aortic rings were precontracted with KCl (60 mM/L) or preincubated with TEA (2 mM), 4-aminopyridine (4-AP, 5 mM), iberiotoxin (IbTX, 30 nM), apamin (0.5 μM) or charybdotoxin (0.1 μM), the ACh-induced relaxation was more reduced in the lead-treated rats. Additionally, 4-AP and IbTX reduced the relaxation elicited by SNP more in the lead-treated rats. Results suggest that lead treatment promoted NKA and K + channels activation and these effects might contribute to the preservation of aortic endothelial function against oxidative stress. -- Highlights: ► Increased free radicals production ► Increased Na + /K + ATPase activity ► Promotes activation of the K + channels and reduced vascular reactivity ► These effects preserve endothelial function against oxidative stress. ► Low concentrations constitute environmental

  5. Scutellarin protects against vascular endothelial dysfunction and prevents atherosclerosis via antioxidation.

    Science.gov (United States)

    Mo, Jiao; Yang, Renhua; Li, Fan; Zhang, Xiaochao; He, Bo; Zhang, Yue; Chen, Peng; Shen, Zhiqiang

    2018-03-15

    Scutellarin is the major constituent responsible for the clinical benefits of Erigeron breviscapus (Vant.) Hand.-Mazz which finds a long history of ethnopharmacological use in Traditional Chinese Medicine. Scutellarin as a pure compound is now under investigation for its protections against various tissue injuries. This study aims to examine the effects of scutellarin on oxidative stress-induced vascular endothelial dysfunction and endothelial cell damage, and then to evaluate the therapeutic efficacy of scutellarin in preventing atherosclerosis in rats. Radical scavenging ability of scutellarin was determined in vitro. Impact of scutellarin on endothelium-dependent relaxation (EDR) of rabbit thoracic aortic rings upon 1, 1-diphenyl-2-picrylhydrazyl (DPPH) challenge was measured. Influences of scutellarin pre-treatment on the levels of reactive oxygen species (ROS), activities of antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase and catalase, and the expression of SOD1 and NADPH oxidase 4 (Nox4) in human umbilical vein endothelial cells (HUVECs) injured by H 2 O 2 were examined. Anti-atherosclerotic effect of scutellarin was evaluated in rats fed with high fat diet (HFD). Scutellarin showed potent antioxidant activity in vitro. Pretreatment of scutellarin retained the EDR of rabbit thoracic aortic rings damaged by DPPH. In H 2 O 2 injured-HUVECs the deleterious alterations in ROS levels and antioxidant enzymes activity were reversed by scutellarin and the mRNA and protein expression of SOD1 and Nox4 were restored also. Oral administration of scutellarin dose-dependently ameliorated hyperlipidemia in HFD-fed rats and alleviated oxidative stress in rat serum, mimicking the effects of reference drug atorvastatin. Scutellarin protects against oxidative stress-induced vascular endothelial dysfunction and endothelial cell damage in vitro and prevents atherosclerosis in vivo through antioxidation. The results rationalize further investigation into the

  6. The activity of catalase and superoxide dismutase in isogenous bacteria strains with different radioresistance

    International Nuclear Information System (INIS)

    Vasil'eva, E.I.; Goncharenko, E.N.; Yudz, T.I.; Samojlenko, I.I.

    1984-01-01

    The catalase and superoxide dismutase activity in isogenous bacterial strains with various radiosensitivity is investigated. In micrococcus radiodurans mutants with defects in the DNA repair systems the superoxide dismutase activity is lower than in the wild type cells. In investigated Escherichia coli strains differing in radiosensitivity, no alteration in catalase and superoxide dismutase activity is found. The conclusion is drawn that viability of bacteria subjected to the effect of ionizing radiations is determined by the efficiency of DNA repair systems whose functional reliability is sometimes connected with the catalase and suferoxide dismutase activity

  7. Diabetes-Induced Oxidative Stress in Endothelial Progenitor Cells May Be Sustained by a Positive Feedback Loop Involving High Mobility Group Box-1

    Directory of Open Access Journals (Sweden)

    Han Wu

    2016-01-01

    Full Text Available Oxidative stress is considered to be a critical factor in diabetes-induced endothelial progenitor cell (EPC dysfunction, although the underlying mechanisms are not fully understood. In this study, we investigated the role of high mobility group box-1 (HMGB-1 in diabetes-induced oxidative stress. HMGB-1 was upregulated in both serum and bone marrow-derived monocytes from diabetic mice compared with control mice. In vitro, advanced glycation end productions (AGEs induced, expression of HMGB-1 in EPCs and in cell culture supernatants in a dose-dependent manner. However, inhibition of oxidative stress with N-acetylcysteine (NAC partially inhibited the induction of HMGB-1 induced by AGEs. Furthermore, p66shc expression in EPCs induced by AGEs was abrogated by incubation with glycyrrhizin (Gly, while increased superoxide dismutase (SOD activity in cell culture supernatants was observed in the Gly treated group. Thus, HMGB-1 may play an important role in diabetes-induced oxidative stress in EPCs via a positive feedback loop involving the AGE/reactive oxygen species/HMGB-1 pathway.

  8. Serotonin disturbs colon epithelial tolerance of commensal E. coli by increasing NOX2-derived superoxide.

    Science.gov (United States)

    Banskota, Suhrid; Regmi, Sushil Chandra; Gautam, Jaya; Gurung, Pallavi; Lee, Yu-Jeong; Ku, Sae Kwang; Lee, Jin-Hyung; Lee, Jintae; Chang, Hyeun Wook; Park, Sang Joon; Kim, Jung-Ae

    2017-05-01

    Adherent-invasive E. coli colonization and Toll-like receptor (TLR) expression are increased in the gut of inflammatory bowel disease (IBD) patients. However, the underlying mechanism of such changes has not been determined. In the current study, it was examined whether gut serotonin (5-hydroxytryptamine, 5-HT) can induce adherent-invasive E. coli colonization and increase TLR expression. In a co-culture system, commensal E. coli strain (BW25113, BW) adhered minimally to colon epithelial cells, but this was significantly enhanced by 5-HT to the level of a pathogenic strain (EDL933). Without inducing bacterial virulence, such as, biofilm formation, 5-HT enhanced BW-induced signaling in colon epithelial cells, that is, NADPH oxidase (NOX)-dependent superoxide production, the up-regulations of IL-8, TLR2, TLR4, and ICAM-1, and the down-regulations of E-cadherin and claudin-2. In a manner commensurate with these gene modulations, BW induced an increase in NF-κB and a decrease in GATA reporter signals in colon epithelial cells. However, 5-HT-enhanced BW adhesion and colon epithelial responses were blocked by knock-down of NOX2, TLR2, or TLR4. In normal mice, 5-HT induced the invasion of BW into gut submucosa, and the observed molecular changes were similar to those observed in vitro, except for significant increases in TNFα and IL-1β, and resulted in death. In dextran sulfate sodium-induced colitis mice (an IBD disease model), in which colonic 5-HT levels were markedly elevated, BW administration induced death in along with large amount of BW invasion into colon submucosa, and time to death was negatively related to the amount of BW injected. Taken together, our results demonstrate that 5-HT induces the invasion of commensal E. coli into gut submucosa by amplifying commensal bacteria-induced epithelial signaling (superoxide production and the inductions of NOX2 and TLR2/TLR4). The authors suggest that these changes may constitute the molecular basis for the

  9. Endothelial cell-derived microparticles induce plasmacytoid dendritic cell maturation: potential implications in inflammatory diseases.

    Science.gov (United States)

    Angelot, Fanny; Seillès, Estelle; Biichlé, Sabeha; Berda, Yael; Gaugler, Béatrice; Plumas, Joel; Chaperot, Laurence; Dignat-George, Françoise; Tiberghien, Pierre; Saas, Philippe; Garnache-Ottou, Francine

    2009-11-01

    Increased circulating endothelial microparticles, resulting from vascular endothelium dysfunction, and plasmacytoid dendritic cell activation are both encountered in common inflammatory disorders. The aim of our study was to determine whether interactions between endothelial microparticles and plasmacytoid dendritic cells could contribute to such pathologies. Microparticles generated from endothelial cell lines, platelets or activated T cells were incubated with human plasmacytoid dendritic cells sorted from healthy donor blood or with monocyte-derived dendritic cells. Dendritic cell maturation was evaluated by flow cytometry, cytokine secretion as well as naive T-cell activation and polarization. Labeled microparticles were also used to study cellular interactions. Endothelial microparticles induced plasmacytoid dendritic cell maturation. In contrast, conventional dendritic cells were resistant to endothelial microparticle-induced maturation. In addition to upregulation of co-stimulatory molecules, endothelial microparticle-matured plasmacytoid dendritic cells secreted inflammatory cytokines (interleukins 6 and 8, but no interferon-alpha) and also induced allogeneic naive CD4(+) T cells to proliferate and to produce type 1 cytokines such as interferon-gamma and tumor necrosis factor-alpha. Endothelial microparticle endocytosis by plasmacytoid dendritic cells appeared to be required for plasmacytoid dendritic cell maturation. Importantly, the ability of endothelial microparticles to induce plasmacytoid dendritic cells to mature was specific as microparticles derived from activated T cells or platelets (the major source of circulating microparticules in healthy subjects) did not induce such plasmacytoid dendritic cell maturation. Our data show that endothelial microparticles specifically induce plasmacytoid dendritic cell maturation and production of inflammatory cytokines. This novel activation pathway may be implicated in various inflammatory disorders and

  10. Challenges in pediatric endothelial keratoplasty

    Directory of Open Access Journals (Sweden)

    Vikas Mittal

    2014-01-01

    Full Text Available We performed endothelial keratoplasty (EK in three eyes of two siblings (2.5 years, male and 3.5 years, female with congenital hereditary endothelial dystrophy (CHED and report the intraoperative and postoperative difficulties. Repeated iris prolapse, apprehension of crystalline lens touch due to positive vitreous pressure, and need for frequent air injections to attach the graft were intraoperative challenges in all three eyes. These were addressed by use of Sheet′s glide instead of Busin′s glide during graft insertion and suturing of main and side ports before air injection. One eye had graft dislocation on second postoperative day due to eye rubbing by the child. Graft was repositioned with air and a venting incision was created. Postoperative examination required repeated general anesthesia. Corneal edema resolved completely in all three eyes. Present case series highlights the possible intraoperative and postoperative challenges and their solutions in pediatric EK for CHED.

  11. [Standardization and regulation of the rate of the superoxide-generating adrenaline autoxidation reaction used for evaluation of pro/antioxidant properties of various materials].

    Science.gov (United States)

    Sirota, T V

    2016-11-01

    The superoxide-generating reaction of adrenaline autoxidation is widely used for determination of the activity of superoxide dismutase and pro/antioxidant properties of various materials. There are two variants of the spectrophotometric registration of the products of this reaction. The first is based on registration of adrenochrome, as adrenaline autooxidation product at 347 nm; the second employs nitro blue tetrazolium (NBT) and registration of diformazan, a product of NBT reduction at 560 nm. In the present work, recommendations for the standardization of the reaction rate in both variants have been proposed. The main approach consists in the use of the pharmaceutical form of 0.1% adrenaline hydrochloride solution. Although each of two adrenaline preparations available in the Russian market has some features in kinetic behavior of its autooxidation; they are applicable in the superoxide generating system based on adrenaline autooxidation. Performing measurements at 560 nm, the reaction rate can be regulated by lowering the concentration of added adrenaline, whereas during spectrophotometric registration at 347 nm, this cannot be done. These features of adrenaline autoxidation may be due to the fact that the intrinsic multistage process of the conversion of adrenaline to adrenochrome, which is recorded at 347 nm, is coupled with the transition of electrons from adrenaline and intermediate products of its oxidation to oxygen, carbon dioxide, and carbonate bicarbonate ions, which is detected in the presence of added NBT.

  12. Conjugates of Superoxide Dismutase 1 with Amphiphilic Poly(2-oxazoline) Block Copolymers for Enhanced Brain Delivery: Synthesis, Characterization and Evaluation in Vitro and in Vivo

    KAUST Repository

    Tong, Jing; Yi, Xiang; Luxenhofer, Robert; Banks, William A.; Jordan, Rainer; Zimmerman, Matthew C.; Kabanov, Alexander V.

    2013-01-01

    Superoxide dismutase 1 (SOD1) efficiently catalyzes dismutation of superoxide, but its poor delivery to the target sites in the body, such as brain, hinders its use as a therapeutic agent for superoxide-associated disorders. Here to enhance

  13. Dicumarol inhibition of NADPH:quinone oxidoreductase induces growth inhibition of pancreatic cancer via a superoxide-mediated mechanism.

    Science.gov (United States)

    Cullen, Joseph J; Hinkhouse, Marilyn M; Grady, Matthew; Gaut, Andrew W; Liu, Jingru; Zhang, Yu Ping; Weydert, Christine J Darby; Domann, Frederick E; Oberley, Larry W

    2003-09-01

    NADPH:quinone oxidoreductase (NQO(1)), a homodimeric, ubiquitous, flavoprotein, catalyzes the two-electron reduction of quinones to hydroquinones. This reaction prevents the one-electron reduction of quinones by cytochrome P450 reductase and other flavoproteins that would result in oxidative cycling with generation of superoxide (O(2)(.-)). NQO(1) gene regulation may be up-regulated in some tumors to accommodate the needs of rapidly metabolizing cells to regenerate NAD(+). We hypothesized that pancreatic cancer cells would exhibit high levels of this enzyme, and inhibiting it would suppress the malignant phenotype. Reverse transcription-PCR, Western blots, and activity assays demonstrated that NQO(1) was up-regulated in the pancreatic cancer cell lines tested but present in very low amounts in the normal human pancreas. To determine whether inhibition of NQO(1) would alter the malignant phenotype, MIA PaCa-2 pancreatic cancer cells were treated with a selective inhibitor of NQO(1), dicumarol. Dicumarol increased intracellular production of O(2)(.-), as measured by hydroethidine staining, and inhibited cell growth. Both of these effects were blunted with infection of an adenoviral vector containing the cDNA for manganese superoxide dismutase. Dicumarol also inhibited cell growth, plating efficiency, and growth in soft agar. We conclude that inhibition of NQO(1) increases intracellular O(2)(.-) production and inhibits the in vitro malignant phenotype of pancreatic cancer. These mechanisms suggest that altering the intracellular redox environment of pancreatic cancer cells may inhibit growth and delineate a potential strategy directed against pancreatic cancer.

  14. Effects of superoxide dismutase, dithiothreitol and formate ion on the inactivation of papain by hydroxyl and superoxide radicals in aerated solutions

    International Nuclear Information System (INIS)

    Lin, W.S.; Armstrong, D.A.

    1978-01-01

    Losses in enzyme activity and sulphydryl content have been studied in aerated papain solutions containing formate, superoxide dismutase and dithiothreitol. Both formate and dithiothreitol converted .OH to .0 2 -, whereas superoxide dismutase completely suppressed the inactivation by .0 2 -. Using results from all systems, the fraction of .0 2 - reactions with papain that caused inactivation of the enzyme was 0.33+-0.07. The results also showed that the fraction of .OH reactions, which cause inactivation of papain, is significantly higher in aerated than in oxygen-free solutions. (author)

  15. Simultaneous determination of superoxide and hydrogen peroxide in macrophage RAW 264.7 cell extracts by microchip electrophoresis with laser-induced fluorescence detection.

    Science.gov (United States)

    Li, Hongmin; Li, Qingling; Wang, Xu; Xu, Kehua; Chen, Zhenzhen; Gong, Xiaocong; Liu, Xin; Tong, Lili; Tang, Bo

    2009-03-15

    A method for the first time to simultaneously determine superoxide and hydrogen peroxide in macrophage RAW 264.7 cell extracts by microchip electrophoresis with laser-induced fluorescence detection (MCE-LIF) was developed. 2-Chloro-1,3-dibenzothiazolinecyclohexene (DBZTC) and bis(p-methylbenzenesulfonyl) dichlorofluorescein (FS), two probes that can be specifically derivatized by superoxide and hydrogen peroxide, respectively, were synthesized and used. Parameters influencing the derivatization and on-chip separation were optimized. With the use of a HEPES (20 mM, pH 7.4) running buffer, a 50 mm long separation channel, and a separation voltage of 1800 V, baseline separation was achieved within 48 s for the two derivatization products, DBZTC-oxide (DBO) and 2,7-dichlorofluorescein (DCF). The linearity ranges of the method were 0.08-5.0 and 0.02-5.0 microM with detection limits (signal-to-noise ratio = 3) of 10 nM (1.36 amol) and 5.6 nM (0.76 amol) for superoxide and hydrogen peroxide, respectively. The relative standard deviations (RSDs) of migration time and peak area were less than 2.0% and 5.0%, respectively. The recoveries of the cell extract samples spiked with 1.0 microM standard solutions were 96.1% and 93.0% for superoxide and hydrogen peroxide, respectively. With the use of this method, superoxide and hydrogen peroxide in phorbol myristate acetate (PMA)-stimulated macrophage RAW 264.7 cell extracts were found to be 0.78 and 1.14 microM, respectively. The method has paved a way for simultaneously determining two or more reactive oxygen species (ROS) in a biological system with high resolution.

  16. Metabolic fate of rat heart endothelial lipoprotein lipase

    International Nuclear Information System (INIS)

    Chajek-Shaul, T.; Bengtsson-Olivecrona, G.; Peterson, J.; Olivecrona, T.

    1988-01-01

    When isolated rat hearts were perfused with medium containing 125I-labeled bovine lipoprotein lipase (LPL), they bound both lipase activity and radioactivity. More than 80% of the bound lipase could be rapidly released by heparin. Low concentrations of bovine LPL displaced 50-60% of the endogeneous, endothelial-bound LPL. Higher concentrations caused additional binding. Both binding and exchange were rapid processes. The hearts continuously released endogenous LPL into the medium. An antiserum that inhibited bovine but not rat LPL was used to differentiate endogeneous and exogeneous LPL activity. When the pool of endothelial LPL was labeled with bovine 125I-labeled LPL and then chased with unlabeled bovine LPL, approximately 50% of the labeled lipase was rapidly displaced. During chase perfusion with medium only, catalytically active bovine LPL appeared in the perfusate. The rate of release was similar to that observed for endogeneous LPL activity and amounted to 10-13% of the heparin-releasable fraction in the first 5 min of perfusion. There was little or no degradation of bovine 125I-labeled LPL to fragments or acid-soluble products. These results indicate that endothelial LPL is accessible for exchange with exogeneous LPL and that detachment rather than degradation may be the pathway for catabolism of endothelial LPL

  17. Nanofiber density determines endothelial cell behavior on hydrogel matrix

    Energy Technology Data Exchange (ETDEWEB)

    Berti, Fernanda V., E-mail: fernanda@intelab.ufsc.br [Department of Chemical and Food Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Rambo, Carlos R. [Department of Electrical Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Dias, Paulo F. [Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Porto, Luismar M. [Department of Chemical and Food Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil)

    2013-12-01

    When cultured under static conditions, bacterial cellulose pellicles, by the nature of the polymer synthesis that involves molecular oxygen, are characterized by two distinct surface sides. The upper surface is denser in fibers (entangled) than the lower surface that shows greater surface porosity. Human umbilical vein endothelial cells (HUVECs) were used to exploit how the microarchitecture (i.e., surface porosity, fiber network structure, surface topology, and fiber density) of bacterial cellulose pellicle surfaces influence cell–biomaterial interaction and therefore cell behavior. Adhesion, cell ingrowth, proliferation, viability and cell death mechanisms were evaluated on the two pellicle surface sides. Cell behavior, including secondary necrosis, is influenced only by the microarchitecture of the surface, since the biomaterial is extremely pure (constituted of cellulose and water only). Cell–cellulose fiber interaction is the determinant signal in the cell–biomaterial responses, isolated from other frequently present interferences such as protein and other chemical traces usually present in cell culture matrices. Our results suggest that microarchitecture of hydrogel materials might determine the performance of biomedical products, such as bacterial cellulose tissue engineering constructs (BCTECs). - Highlights: • Topography of BC pellicle is relevant to determine endothelial cells' fate. • Cell–biomaterial response is affected by the topography of BC-pellicle surface. • Endothelial cells exhibit different behavior depending on the BC topography. • Apoptosis and necrosis of endothelial cells were affected by the BC topography.

  18. Nanofiber density determines endothelial cell behavior on hydrogel matrix

    International Nuclear Information System (INIS)

    Berti, Fernanda V.; Rambo, Carlos R.; Dias, Paulo F.; Porto, Luismar M.

    2013-01-01

    When cultured under static conditions, bacterial cellulose pellicles, by the nature of the polymer synthesis that involves molecular oxygen, are characterized by two distinct surface sides. The upper surface is denser in fibers (entangled) than the lower surface that shows greater surface porosity. Human umbilical vein endothelial cells (HUVECs) were used to exploit how the microarchitecture (i.e., surface porosity, fiber network structure, surface topology, and fiber density) of bacterial cellulose pellicle surfaces influence cell–biomaterial interaction and therefore cell behavior. Adhesion, cell ingrowth, proliferation, viability and cell death mechanisms were evaluated on the two pellicle surface sides. Cell behavior, including secondary necrosis, is influenced only by the microarchitecture of the surface, since the biomaterial is extremely pure (constituted of cellulose and water only). Cell–cellulose fiber interaction is the determinant signal in the cell–biomaterial responses, isolated from other frequently present interferences such as protein and other chemical traces usually present in cell culture matrices. Our results suggest that microarchitecture of hydrogel materials might determine the performance of biomedical products, such as bacterial cellulose tissue engineering constructs (BCTECs). - Highlights: • Topography of BC pellicle is relevant to determine endothelial cells' fate. • Cell–biomaterial response is affected by the topography of BC-pellicle surface. • Endothelial cells exhibit different behavior depending on the BC topography. • Apoptosis and necrosis of endothelial cells were affected by the BC topography

  19. Induction of Apoptosis by Superoxide Anion and the Protective Effects of Selenium and Vitamin E

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective The purpose of this study is to investigate the effect of superoxide anion on the apoptosis of cultured fibroblasts and the protective role of selenium and Vitamin E. Methods Cultured fibroblasts (NIH3T3), with or without selenium or vitamin E in the medium, were treated by superoxide anion produced by xanthine/xanthine oxidase reaction system and changes in cell structure and DNA were observed microscopically and electrophoretically. Results Apoptosis was observed when superoxide anion at a concentration of 5 nmol/L or 10 nmol/L had acted on the fibroblasts for 5-10 h. Selenium and Vitamin E in the medium inhibited the apoptosis significantly when their concentrations reached 1.15 mol/L and 2.3 mol/L respectively. Conclusion Selenium and vitamin E have protective effect against the apoptosis induced by superoxide anion. The effect of selenium is more remarkable than that of vitamin E.

  20. Enzymatic Activity Enhancement of Non-Covalent Modified Superoxide Dismutase and Molecular Docking Analysis

    Directory of Open Access Journals (Sweden)

    Fa-Jun Song

    2012-03-01

    Full Text Available The enzyme activity of superoxide dismutase was improved in the pyrogallol autoxidation system by about 27%, after interaction between hydroxypropyl-β-cyclo- dextrin and superoxide dismutase. Fluorescence spectrometry was used to study the interaction between hydroxypropyl-β-cyclodextrin and superoxide dismutase at different temperatures. By doing this, it can be found that these interactions increase fluorescence sensitivity. In the meantime, the synchronous fluorescence intensity revealed the interaction sites to be close to the tryptophan (Trp and tyrosine (Tyr residues of superoxide dismutase. Furthermore, molecular docking was applied to explore the binding mode between the ligands and the receptor. This suggested that HP-β-CD interacted with the B ring, G ring and the O ring and revealed that the lysine (Lys residues enter the nanocavity. It was concluded that the HP-β-CD caused specific conformational changes in SOD by non-covalent modification.

  1. Endogenous superoxide dismutase and catalase activities and radiation resistance in mouse cell lines

    International Nuclear Information System (INIS)

    Davy, C.A.; Tesfay, Z.; Jones, J.; Rosenberg, R.C.; McCarthy, C.; Ostrand-Rosenberg, S.

    1988-01-01

    The relationship between the endogenous cytoplasmic levels of the enzymes superoxide dismutase and catalase and the inhibition of cell proliferation by γ-radiation has been studied in 11 mouse cell lines. The resistance of these mouse cell lines to radiation was found to vary by over 25-fold. No correlation was found between the cytoplasmic level of CuZn-superoxide dismutase or catalase and the resistance to radiation as measured by extrapolation number (EN), quasi-threshold dose (Dsub(q)), or Dsub(o). None of the cell lines had detectable cytoplasmic Mn-superoxide dismutase. The apparent Ksub(i) of potassium cyanide for mouse CuZn-superoxide dismutase was determined (Ksub(i) = 6.5 μmol dm -3 ). (author)

  2. Trypsin Binding with Copper Ions Scavenges Superoxide: Molecular Dynamics-Based Mechanism Investigation

    Directory of Open Access Journals (Sweden)

    Xin Li

    2018-01-01

    Full Text Available Trypsin is a serine protease, which has been proved to be a novel superoxide scavenger. The burst of superoxide induced by polychlorinated biphenyls can be impeded by trypsin in both wild type and sod knockout mutants of Escherichia coli. The experimental results demonstrated that the activities of superoxide scavenging of trypsin were significantly accelerated by Cu ions. Also, with the addition of Cu ions, a new β-sheet (β7 transited from a random coil in the Cu(II-trypsin (TP system, which was favorable for the formation of more contacts with other sheets of trypsin. Residue–residue network analysis and the porcupine plots proved that the Cu ion in trypsin strengthened some native interactions among residues, which ultimately resulted in much greater stability of the Cu(II-TP system. Moreover, compact and stable trypsin structures with Cu ions might be responsible for significantly provoking the activity of superoxide scavenging.

  3. Effect of pistachio diet on lipid parameters, endothelial function, inflammation, and oxidative status: a prospective study.

    Science.gov (United States)

    Sari, Ibrahim; Baltaci, Yasemin; Bagci, Cahit; Davutoglu, Vedat; Erel, Ozcan; Celik, Hakim; Ozer, Orhan; Aksoy, Nur; Aksoy, Mehmet

    2010-04-01

    Recent studies have suggested that nuts have favorable effects beyond lipid lowering. We aimed to investigate effect of the Antep pistachio (Pistacia vera L.) on blood glucose, lipid parameters, endothelial function, inflammation, and oxidation in healthy young men living in a controlled environment. A Mediterranean diet was administered to normolipidemic 32 healthy young men (mean age 22 y, range 21-24) for 4 wk. After 4 wk, participants continued to receive the Mediterranean diet but pistachio was added for 4 wk by replacing the monounsaturated fat content constituting approximately 20% of daily caloric intake. Fasting blood samples and brachial endothelial function measurements were performed at baseline and after each diet. Compared with the Mediterranean diet, the pistachio diet decreased glucose (Ppistachio diet significantly improved endothelium-dependent vasodilation (P=0.002, 30% relative increase), decreased serum interleukin-6, total oxidant status, lipid hydroperoxide, and malondialdehyde and increased superoxide dismutase (Ppistachio diet improved blood glucose level, endothelial function, and some indices of inflammation and oxidative status in healthy young men. These findings are in accordance with the idea that nuts, in particular pistachio nuts, have favorable effects beyond lipid lowering that deserve to be evaluated with prospective follow-up studies. Copyright 2010. Published by Elsevier Inc.

  4. Expression and localization of insulin-like growth factor system in corpus luteum during different stages of estrous cycle in water buffaloes (Bubalus bubalis) and the effect of insulin-like growth factor I on production of vascular endothelial growth factor and progesterone in luteal cells cultured in vitro.

    Science.gov (United States)

    Uniyal, S; Panda, R P; Chouhan, V S; Yadav, V P; Hyder, I; Dangi, S S; Gupta, M; Khan, F A; Sharma, G T; Bag, S; Sarkar, M

    2015-01-01

    This study investigated the expression and localization of insulin-like growth factor (IGF) system at different stages of buffalo CL and the role of IGF-I in stimulating vascular endothelial growth factor (VEGF) and progesterone (P4) production in cultured luteal cells. The mRNA expression of IGF system, VEGF, steroidogenic acute regulatory protein, P450scc, and hydroxysteroid dehydrogenase (HSD) was investigated by quantitative real-time polymerase chain reaction (PCR). Protein expression of IGF was demonstrated by Western blot and localization by immunohistochemistry. Progesterone and VEGF production was assayed using RIA and ELISA. A relatively high mRNA expression of IGF-I and IGF-II in early, mid- and late luteal phases with immunoreactivity mostly restricted to cytoplasm of large luteal cells indicates their autocrine role, whereas very weak immunoreactivity in endothelial cells during the mid-luteal phase indicates their paracrine role. Insulin-like growth factor receptors, IGF-IR and IGF-IIR, were restricted to large luteal cells with high mRNA and protein expressions in the mid-luteal phase. The significantly higher expression of insulin-like growth factor binding protein (IGFBP)-1, -3, -5, and -6 in the early or mid-luteal phase suggested their stimulatory role, whereas that of IGFBP-2 and -4 in mid-, late, and regressive luteal stages implied their inhibitory role. The mRNA expressions of key steroidogenic factors and VEGF were significantly higher (P production (P production of VEGF in luteal cells and steroid synthesis through the production of key steroidogenic factors. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Extraction of Erythrocyte Enzymes for the Preparation of Polyhemoglobin-catalase-superoxide Dismutase

    OpenAIRE

    Gu, Jingsong; Chang, Thomas Ming Swi

    2009-01-01

    In sustained severe ischemia, reperfusion with oxygen carriers may result in ischemia-reperfusion injuries because of the release of damaging oxygen radicals. A nanobiotechnology-based polyhemogloin-calatase-superoxide dismutase can prevent this because the oxygen carrier, polyhemoglobin, is linked to antioxidant enzymes, catalase and superoxide dismutase. However, these antioxidant enzymes come from nonhuman sources and recombinant human enzymes are expensive. This paper describes our study ...

  6. Catalase and Superoxide Dismutase of Root-Colonizing Saprophytic Fluorescent Pseudomonads †

    OpenAIRE

    Katsuwon, Jirasak; Anderson, Anne J.

    1990-01-01

    Root-colonizing, saprophytic fluorescent pseudomonads of the Pseudomonas putida-P. fluorescens group express similar levels of catalase and superoxide dismutase activities during growth on a sucrose- and amino acid-rich medium. Increased specific activities of catalase but not superoxide dismutase were observed during growth of these bacteria on components washed from root surfaces. The specific activities of both enzymes were also regulated during contact of these bacteria with intact bean r...

  7. Superoxide dismutase from Trichuris ovis, inhibiton by benzimidazoles and pyrimidine derivatives

    OpenAIRE

    Sanchez-Moreno, M.; Garcia-Rejon, L.; Salas, I.; Osuna, A.; Monteoliva, M.

    1992-01-01

    Three superoxide dismutase isoenzymes of different cellular location were detected in an homogenate of Thrichuris ovis. Each of these molecular forms was purified by differential centrifugation and precipitation with ammonium sulphate, followed by chromatography on DEAE-cellulose and Sephadex G-75 columns. The activity levels of the two molecular forms detected in the mitochondrial (one cyanide sensitive Cu-Zn-SOD and the other cyanide intensitive Mn-Sod were higher than that of the superoxid...

  8. Infusing sodium bicarbonate suppresses hydrogen peroxide accumulation and superoxide dismutase activity in hypoxic-reoxygenated newborn piglets.

    Directory of Open Access Journals (Sweden)

    Jiang-Qin Liu

    Full Text Available The effectiveness of sodium bicarbonate (SB has recently been questioned although it is often used to correct metabolic acidosis of neonates. The aim of the present study was to examine its effect on hemodynamic changes and hydrogen peroxide (H(2O(2 generation in the resuscitation of hypoxic newborn animals with severe acidosis.Newborn piglets were block-randomized into a sham-operated control group without hypoxia (n = 6 and two hypoxia-reoxygenation groups (2 h normocapnic alveolar hypoxia followed by 4 h room-air reoxygenation, n = 8/group. At 10 min after reoxygenation, piglets were given either i.v. SB (2 mEq/kg, or saline (hypoxia-reoxygenation controls in a blinded, randomized fashion. Hemodynamic data and blood gas were collected at specific time points and cerebral cortical H(2O(2 production was continuously monitored throughout experimental period. Plasma superoxide dismutase and catalase and brain tissue glutathione, superoxide dismutase, catalase, nitrotyrosine and lactate levels were assayed.Two hours of normocapnic alveolar hypoxia caused cardiogenic shock with metabolic acidosis (PH: 6.99 ± 0.07, HCO(3(-: 8.5 ± 1.6 mmol/L. Upon resuscitation, systemic hemodynamics immediately recovered and then gradually deteriorated with normalization of acid-base imbalance over 4 h of reoxygenation. SB administration significantly enhanced the recovery of both pH and HCO(3- recovery within the first hour of reoxygenation but did not cause any significant effect in the acid-base at 4 h of reoxygenation and the temporal hemodynamic changes. SB administration significantly suppressed the increase in H(2O(2 accumulation in the brain with inhibition of superoxide dismutase, but not catalase, activity during hypoxia-reoxygenation as compared to those of saline-treated controls.Despite enhancing the normalization of acid-base imbalance, SB administration during resuscitation did not provide any beneficial effects on hemodynamic recovery in

  9. Trichloroethylene exposure aggravates behavioral abnormalities in mice that are deficient in superoxide dismutase.

    Science.gov (United States)

    Otsuki, Noriyuki; Homma, Takujiro; Fujiwara, Hiroki; Kaneko, Kenya; Hozumi, Yasukazu; Shichiri, Mototada; Takashima, Mizuki; Ito, Junitsu; Konno, Tasuku; Kurahashi, Toshihiro; Yoshida, Yasukazu; Goto, Kaoru; Fujii, Satoshi; Fujii, Junichi

    2016-08-01

    Trichloroethylene (TCE) has been implicated as a causative agent for Parkinson's disease (PD). The administration of TCE to rodents induces neurotoxicity associated with dopaminergic neuron death, and evidence suggests that oxidative stress as a major player in the progression of PD. Here we report on TCE-induced behavioral abnormality in mice that are deficient in superoxide dismutase 1 (SOD1). Wild-type (WT) and SOD1-deficient (Sod1(-/-)) mice were intraperitoneally administered TCE (500 mg/kg) over a period of 4 weeks. Although the TCE-administrated Sod1(-/-) mice showed marked abnormal motor behavior, no significant differences were observed among the experimental groups by biochemical and histopathological analyses. However, treating mouse neuroblastoma-derived NB2a cells with TCE resulted in the down regulation of the SOD1 protein and elevated oxidative stress under conditions where SOD1 production was suppressed. Taken together, these data indicate that SOD1 plays a pivotal role in protecting motor neuron function against TCE toxicity. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Extracellular superoxide dismutase deficiency impairs wound healing in advanced age by reducing neovascularization and fibroblast function.

    Science.gov (United States)

    Fujiwara, Toshihiro; Duscher, Dominik; Rustad, Kristine C; Kosaraju, Revanth; Rodrigues, Melanie; Whittam, Alexander J; Januszyk, Michael; Maan, Zeshaan N; Gurtner, Geoffrey C

    2016-03-01

    Advanced age is characterized by impairments in wound healing, and evidence is accumulating that this may be due in part to a concomitant increase in oxidative stress. Extended exposure to reactive oxygen species (ROS) is thought to lead to cellular dysfunction and organismal death via the destructive oxidation of intra-cellular proteins, lipids and nucleic acids. Extracellular superoxide dismutase (ecSOD/SOD3) is a prime antioxidant enzyme in the extracellular space that eliminates ROS. Here, we demonstrate that reduced SOD3 levels contribute to healing impairments in aged mice. These impairments include delayed wound closure, reduced neovascularization, impaired fibroblast proliferation and increased neutrophil recruitment. We further establish that SOD3 KO and aged fibroblasts both display reduced production of TGF-β1, leading to decreased differentiation of fibroblasts into myofibroblasts. Taken together, these results suggest that wound healing impairments in ageing are associated with increased levels of ROS, decreased SOD3 expression and impaired extracellular oxidative stress regulation. Our results identify SOD3 as a possible target to correct age-related cellular dysfunction in wound healing. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Superoxide Stabilization and a Universal KO2 Growth Mechanism in Potassium-Oxygen Batteries.

    Science.gov (United States)

    Wang, Wanwan; Lai, Nien-Chu; Liang, Zhuojian; Wang, Yu; Lu, Yi-Chun

    2018-04-23

    Rechargeable potassium-oxygen (K-O 2 ) batteries promise to provide higher round-trip efficiency and cycle life than other alkali-oxygen batteries with satisfactory gravimetric energy density (935 Wh kg -1 ). Exploiting a strong electron-donating solvent, for example, dimethyl sulfoxide (DMSO) strongly stabilizes the discharge product (KO 2 ), resulting in significant improvement in electrode kinetics and chemical/electrochemical reversibility. The first DMSO-based K-O 2 battery demonstrates a much higher energy efficiency and stability than the glyme-based electrolyte. A universal KO 2 growth model is developed and it is demonstrated that the ideal solvent for K-O 2 batteries should strongly stabilize superoxide (strong donor ability) to obtain high electrode kinetics and reversibility while providing fast oxygen diffusion to achieve high discharge capacity. This work elucidates key electrolyte properties that control the efficiency and reversibility of K-O 2 batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Zinc and magnesium ions synergistically inhibit superoxide generation by cultured human neutrophils--a promising candidate formulation for amnioinfusion fluid.

    Science.gov (United States)

    Uchida, Toshiyuki; Itoh, Hiroaki; Nakamura, Yuki; Kobayashi, Yukiko; Hirai, Kyuya; Suzuki, Kazunao; Sugihara, Kazuhiro; Kanayama, Naohiro; Hiramatsu, Mitsuo

    2010-06-01

    Oligohydramnios is often caused by the premature rupturing of membranes and subsequent intrauterine infections, such as chorioamnionitis, in which event oxidative stress is hypothesized to be closely associated with the damage to the fetal organs. The clinical efficiency of amnioinfusion using warmed saline in cases of premature rupture of membranes is still controversial, especially concerning the prognosis for the fetus. In the present study, we found that human amniotic fluid per se suppresses the release of superoxide from cultured human neutrophils, suggesting an acute or chronic shortage of amniotic fluid in cases of premature rupture of membranes can affect the shielding of intrauterine organs from oxidative stress. The aim of this study was to propose a formula of zinc and magnesium ions in saline for amnioinfusion, by assessing antioxidative activities. A combination of 5 microM zinc and 5mM magnesium in saline synergistically inhibited superoxide production by cultured human neutrophils, equivalent to human amniotic fluid. The intraperitoneal administration of this formula significantly improved the survival rate in a rat model of peritonitis compared to the saline control (46.7% vs. 10%). The combination of these metals with saline may thus be a promising formula for an amnioinfusion fluid with the capacity to protect fetal organs from oxidative stress. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Rapid Diagnostic Device for Subclinical Mastitis Based on Electrochemical Detection of Superoxide Produced from Neutrophils in Fresh Milk

    Science.gov (United States)

    Okada, Kohei; Fukuda, Junji; Suzuki, Hiroaki

    Electrochemical microdevices were fabricated to identify mastitic cows based on the increased number of neutrophils in raw milk. Because neutrophils produce superoxide (O2·-), the amount of O2·- can be used as an early indicator for subclinical mastitis. In the microdevices, O2·- was detected on a gold electrode using superoxide dismutase immobilized via a self-assembled monolayer of cysteine. In a preliminary test using xanthine oxidase to produce O2·-, one of the devices detected the production and rapid extinction of O2·-. When neutrophils obtained from a mastitic cow were concentrated by centrifugation and introduced into the device, a current increase distinctly different from the background was observed. Furthermore, a micropillar structure was fabricated on the gold electrode to trap and collect neutrophils, thereby facilitating the concentration of these cells around the electrode. The measured current clearly depended on the number of neutrophils in raw milk samples, demonstrating the applicability of the device for rapid diagnosis of subclinical mastitis.

  14. Endothelial Function in Migraine With Aura – A Systematic Review

    DEFF Research Database (Denmark)

    Butt, Jawad H; Franzmann, Ulriche; Kruuse, Christina

    2015-01-01

    in migraineurs, and several studies on endothelial markers in the areas of inflammation, oxidative stress, and coagulation found increased endothelial activation in migraineurs, particularly in MA. One study, assessing cerebral endothelial function using transcranial Doppler sonography, reported lower...

  15. Protein kinase Cα phosphorylates a novel argininosuccinate synthase site at serine 328 during calcium-dependent stimulation of endothelial nitric-oxide synthase in vascular endothelial cells.

    Science.gov (United States)

    Haines, Ricci J; Corbin, Karen D; Pendleton, Laura C; Eichler, Duane C

    2012-07-27

    Endothelial nitric-oxide synthase (eNOS) utilizes l-arginine as its principal substrate, converting it to l-citrulline and nitric oxide (NO). l-Citrulline is recycled to l-arginine by two enzymes, argininosuccinate synthase (AS) and argininosuccinate lyase, providing the substrate arginine for eNOS and NO production in endothelial cells. Together, these three enzymes, eNOS, AS, and argininosuccinate lyase, make up the citrulline-NO cycle. Although AS catalyzes the rate-limiting step in NO production, little is known about the regulation of AS in endothelial cells beyond the level of transcription. In this study, we showed that AS Ser-328 phosphorylation was coordinately regulated with eNOS Ser-1179 phosphorylation when bovine aortic endothelial cells were stimulated by either a calcium ionophore or thapsigargin to produce NO. Furthermore, using in vitro kinase assay, kinase inhibition studies, as well as protein kinase Cα (PKCα) knockdown experiments, we demonstrate that the calcium-dependent phosphorylation of AS Ser-328 is mediated by PKCα. Collectively, these findings suggest that phosphorylation of AS at Ser-328 is regulated in accordance with the calcium-dependent regulation of eNOS under conditions that promote NO production and are in keeping with the rate-limiting role of AS in the citrulline-NO cycle of vascular endothelial cells.

  16. Ganoderma atrum polysaccharide ameliorates anoxia/reoxygenation-mediated oxidative stress and apoptosis in human umbilical vein endothelial cells.

    Science.gov (United States)

    Zhang, Yan-Song; Li, Wen-Juan; Zhang, Xian-Yi; Yan, Yu-Xin; Nie, Shao-Ping; Gong, De-Ming; Tang, Xiao-Fang; He, Ming; Xie, Ming-Yong

    2017-05-01

    Ganoderma atrum polysaccharide (PSG-1), a main polysaccharide from Ganoderma atrum, possesses potent antioxidant capacity and cardiovascular benefits. The aim of this study was to investigate the role of PSG-1 in oxidative stress and apoptosis in human umbilical vein endothelial cells (HUVECs) under anoxia/reoxygenation (A/R) injury conditions. The results showed that exposure of HUVECs to A/R triggered cell death and apoptosis. Administration of PSG-1 significantly inhibited A/R-induced cell death and apoptosis in HUVECs. PSG-1-reduced A/R injury was mediated via mitochondrial apoptotic pathway, as evidenced by elevation of mitochondrial Bcl-2 protein and mitochondrial membrane potential, and attenuation of Bax translocation, cytochrome c release and caspases activation. Furthermore, PSG-1 enhanced the activities of superoxide dismutase, catalase and glutathione peroxidase and glutathione content, and concomitantly attenuated reactive oxygen species generation, lipid peroxidation and glutathione disulfide content. The antioxidant, N-acetyl-l-cysteine, significantly ameliorated all of these endothelial injuries caused by A/R, suggesting that antioxidant activities might play a key role in PSG-1-induced endothelial protection. Taken together, these findings suggested that PSG-1 could be as a promising adjuvant against endothelial dysfunction through ameliorating oxidative stress and apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Propionyl-L-Carnitine Enhances Wound Healing and Counteracts Microvascular Endothelial Cell Dysfunction.

    Directory of Open Access Journals (Sweden)

    Maria Giovanna Scioli

    Full Text Available Impaired wound healing represents a high cost for health care systems. Endothelial dysfunction characterizes dermal microangiopathy and contributes to delayed wound healing and chronic ulcers. Endothelial dysfunction impairs cutaneous microvascular blood flow by inducing an imbalance between vasorelaxation and vasoconstriction as a consequence of reduced nitric oxide (NO production and the increase of oxidative stress and inflammation. Propionyl-L-carnitine (PLC is a natural derivative of carnitine that has been reported to ameliorate post-ischemic blood flow recovery.We investigated the effects of PLC in rat skin flap and cutaneous wound healing. A daily oral PLC treatment improved skin flap viability and associated with reactive oxygen species (ROS reduction, inducible nitric oxide synthase (iNOS and NO up-regulation, accelerated wound healing and increased capillary density, likely favoring dermal angiogenesis by up-regulation for iNOS, vascular endothelial growth factor (VEGF, placental growth factor (PlGF and reduction of NADPH-oxidase 4 (Nox4 expression. In serum-deprived human dermal microvascular endothelial cell cultures, PLC ameliorated endothelial dysfunction by increasing iNOS, PlGF, VEGF receptors 1 and 2 expression and NO level. In addition, PLC counteracted serum deprivation-induced impairment of mitochondrial β-oxidation, Nox4 and cellular adhesion molecule (CAM expression, ROS generation and leukocyte adhesion. Moreover, dermal microvascular endothelial cell dysfunction was prevented by Nox4 inhibition. Interestingly, inhibition of β-oxidation counteracted the beneficial effects of PLC on oxidative stress and endothelial dysfunction.PLC treatment improved rat skin flap viability, accelerated wound healing and dermal angiogenesis. The beneficial effects of PLC likely derived from improvement of mitochondrial β-oxidation and reduction of Nox4-mediated oxidative stress and endothelial dysfunction. Antioxidant therapy and

  18. Biocompatibility of Poly-ε-caprolactone-hydroxyapatite composite on mouse bone marrow-derived osteoblasts and endothelial cells

    Directory of Open Access Journals (Sweden)

    Wooley Paul H

    2009-02-01

    Full Text Available Abstract Background Tissue-engineered bone may be developed by seeding the cells capable of both osteogenesis and vascularization on biocompatible composite scaffolds. The current study investigated the performance of mice bone marrow-derived osteogenic cells and endothelial cells as seeded on hydroxyapatite (HA and poly-ε-caprolactone (PCL composite scaffolds. Methods Mononuclear cells were induced to osteoblasts and endothelial cells respectively, which were defined by the expression of osteocalcin, alkaline phosphatase (ALP, and deposits of calcium-containing crystal for osteoblasts, or by the expression of vascular endothelial growth factor receptor-2 (VEGFR-2 and von Willebrand factor (vWF, and the formation of a capillary network in Matrigel™ for endothelial cells. Both types of cell were seeded respectively on PCL-HA scaffolds at HA to PCL weight ratio of 1:1, 1:4, or 0:1 and were evaluated using scanning electron microscopy, ALP activity (of osteoblasts and nitric oxide production (of endothelial cells plus the assessment of cell viability. Results The results indicated that HA led to a positive stimulation of osteoblasts viability and ALP activity, while HA showed less influence on endothelial cells viability. An elevated nitric oxide production of endothelial cells was observed in HA-containing group. Conclusion Supplement of HA into PCL improved biocompatible for bone marrow-derived osteoblasts and endothelial cells. The PCL-HA composite integrating with two types of cells may provide a useful system for tissue-engineered bone grafts with vascularization.

  19. Myeloperoxidase amplified high glucose-induced endothelial dysfunction in vasculature: Role of NADPH oxidase and hypochlorous acid.

    Science.gov (United States)

    Tian, Rong; Ding, Yun; Peng, Yi-Yuan; Lu, Naihao

    2017-03-11

    Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H 2 O 2 ), have emerged as important molecules in the pathogenesis of diabetic endothelial dysfunction. Additionally, neutrophils-derived myeloperoxidase (MPO) and MPO-catalyzed hypochlorous acid (HOCl) play important roles in the vascular injury. However, it is unknown whether MPO can use vascular-derived ROS to induce diabetic endothelial dysfunction. In the present study, we demonstrated that NADPH oxidase was the main source of ROS formation in high glucose-cultured human umbilical vein endothelial cells (HUVECs), and played a critical role in high glucose-induced endothelial dysfunction such as cell apoptosis, loss of cell viability and reduction of nitric oxide (NO). However, the addition of MPO could amplify the high glucose-induced endothelial dysfunction which was inhibited by the presence of apocynin (NADPH oxidase inhibitor), catalase (H 2 O 2 scavenger), or methionine (HOCl scavenger), demonstrating the contribution of NADPH oxidase-H 2 O 2 -MPO-HOCl pathway in the MPO/high glucose-induced vascular injury. In high glucose-incubated rat aortas, MPO also exacerbated the NADPH oxidase-induced impairment of endothelium-dependent relaxation. Consistent with these in vitro data, in diabetic rat aortas, both MPO expresion and NADPH oxidase activity were increased while the endothelial function was simultaneously impaired. The results suggested that vascular-bound MPO could amplify high glucose-induced vascular injury in diabetes. MPO-NADPH oxidase-HOCl may represent an important pathogenic pathway in diabetic vascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Hepatoprotective effects of Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase] on alcohol-damaged primary rat hepatocyte culture in vitro.

    Science.gov (United States)

    Jiang, Wenhua; Bian, Yuzhu; Wang, Zhenghui; Chang, Thomas Ming Swi

    2017-02-01

    We have prepared a novel nanobiotherapeutic, Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase], which not only transports both oxygen and carbon dioxide but also a therapeutic antioxidant. Our previous study in a severe sustained 90 min hemorrhagic shock rat model shows that it has a hepatoprotective effect. We investigate its hepatoprotective effect further in this present report using an alcohol-damaged primary hepatocyte culture model. Results show that it significantly reduced ethanol-induced AST release, lipid peroxidation, and ROS production in rat primary hepatocytes culture. It also significantly enhanced the viability of ethanol-treated hepatocytes. Thus, the result shows that Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase] also has some hepatoprotective effects against alcohol-induced injury in in vitro rat primary hepatocytes cell culture. This collaborate our previous observation of its hepatoprotective effect in a severe sustained 90-min hemorrhagic shock rat model.

  1. Acrolein produces nitric oxide through the elevation of intracellular calcium levels to induce apoptosis in human umbilical vein endothelial cells: implications for smoke angiopathy.

    Science.gov (United States)

    Misonou, Yoshiko; Asahi, Michio; Yokoe, Shunichi; Miyoshi, Eiji; Taniguchi, Naoyuki

    2006-03-01

    Acrolein is a highly electrophilic alpha, beta-unsaturated aldehyde, the levels of which are increased in the blood of smokers. To determine if acrolein is involved in the pathology of smoke angiopathy, the effect of acrolein on human umbilical vein endothelial cells (HUVEC) was examined. Intracellular nitric oxide (NO) levels, determined using diaminofluorescein-2 diacetate (DAF-2 DA), an NO sensitive fluorescent dye, were found to be increased after treatment in HUVEC with 10 microM acrolein. The measurement of nitrite with 2,3-diaminonaphthalene and a Western blot analysis revealed that nitrite and S-nitroso-cysteine levels were increased in a dose-dependent manner, confirming that NO production is increased by acrolein. The increase was not reduced by treatment with 10mM N-acetyl-l-cysteine (NAC), an anti-oxidant, but was reduced with 10 microM of the intracellular calcium chelator, 1,2-bis (o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetra (acetoxymethyl) ester. Acrolein-stimulated NO production was significantly reduced by pretreatment with 1mM N(G)-nitro-l-arginine-methyl ester (L-NAME), an NO synthase inhibitor. The cytotoxicity of acrolein was reduced by pretreatment with 10 microM 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (carboxy-PTIO), an intracellular NO scavenger, or 1mM L-NAME, whereas it was not reduced by 10mM NAC, 20 microM Curcumin, another peroxide scavenger, or 100 microM Mn(III)TMPyP, a superoxide dismutase mimic. Nuclear staining and a Western blot analysis using an anti-cleaved caspase 3 antibody revealed that the reduced viability of HUVEC by acrolein was due to apoptosis, which was reversed after pretreatment with 0.1mM carboxy-PTIO or 1mM L-NAME. Thus, acrolein increases intracellular calcium production to induce intracellular NO production by a calcium-dependent NO synthase, possibly eNOS, and the excess and rapid increase in NO might lead to the apoptosis of HUVEC. These data suggest that acrolein might be

  2. Blood on the tracks: hematopoietic stem cell-endothelial cell interactions in homing and engraftment.

    Science.gov (United States)

    Perlin, Julie R; Sporrij, Audrey; Zon, Leonard I

    2017-08-01

    Cells of the hematopoietic system undergo rapid turnover. Each day, humans require the production of about one hundred billion new blood cells for proper function. Hematopoietic stem cells (HSCs) are rare cells that reside in specialized niches and are required throughout life to produce specific progenitor cells that will replenish all blood lineages. There is, however, an incomplete understanding of the molecular and physical properties that regulate HSC migration, homing, engraftment, and maintenance in the niche. Endothelial cells (ECs) are intimately associated with HSCs throughout the life of the stem cell, from the specialized endothelial cells that give rise to HSCs, to the perivascular niche endothelial cells that regulate HSC homeostasis. Recent studies have dissected the unique molecular and physical properties of the endothelial cells in the HSC vascular niche and their role in HSC biology, which may be manipulated to enhance hematopoietic stem cell transplantation therapies.

  3. Signaling hierarchy regulating human endothelial cell development

    Science.gov (United States)

    Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these stud...

  4. Endothelial dysfunction in metabolic and vascular disorders.

    Science.gov (United States)

    Polovina, Marija M; Potpara, Tatjana S

    2014-03-01

    Vascular endothelium has important regulatory functions in the cardiovascular system and a pivotal role in the maintenance of vascular health and metabolic homeostasis. It has long been recognized that endothelial dysfunction participates in the pathogenesis of atherosclerosis from early, preclinical lesions to advanced, thrombotic complications. In addition, endothelial dysfunction has been recently implicated in the development of insulin resistance and type 2 diabetes mellitus (T2DM). Considering that states of insulin resistance (eg, metabolic syndrome, impaired fasting glucose, impaired glucose tolerance, and T2DM) represent the most prevalent metabolic disorders and risk factors for atherosclerosis, it is of considerable scientific and clinical interest that both metabolic and vascular disorders have endothelial dysfunction as a common background. Importantly, endothelial dysfunction has been associated with adverse outcomes in patients with established cardiovascular disease, and a growing body of evidence indicates that endothelial dysfunction also imparts adverse prognosis in states of insulin resistance. In this review, we discuss the association of insulin resistance and T2DM with endothelial dysfunction and vascular disease, with a focus on the underlying mechanisms and prognostic implications of the endothelial dysfunction in metabolic and vascular disorders. We also address current therapeutic strategies for the improvement of endothelial dysfunction.

  5. Interleukin 1 is an autocrine regulator of human endothelial cell growth

    International Nuclear Information System (INIS)

    Cozzolino, F.; Torcia, M.; Aldinucci, D.; Ziche, M.; Bani, D.; Almerigogna, F.; Stern, D.M.

    1990-01-01

    Proliferation of endothelial cells is regulated through the autocrine production of growth factors and the expression of cognate surface receptors. In this study, the authors demonstrate that interleukin 1 (IL-1) is an inhibitor of endothelial growth in vitro and in vivo. IL-1 arrested growing, cultured endothelial cells in G 1 phase; inhibition of proliferation was dose dependent and occurred in parallel with occupancy of endothelial surface IL-1 receptors. In an angiogenesis model, IL-1 could inhibit fibroblast growth factor-induced vessel formation. The autocrine nature of the IL-1 effect on endothelial proliferation was demonstrated by the observation that occupancy of cell-surface receptors by endogenous IL-1 depressed cell growth. The potential significance of this finding was emphasized by the detection of IL-1 in the native endothelium of human umbilical veins. A mechanism by which IL-1 may exert its inhibitory effect on endothelial cell growth was suggested by studies showing that IL-1 decreased the expression of high-affinity fibroblast growth factor binding sites on endothelium. These results point to a potentially important role of IL-1 in regulating blood vessel growth the suggest that autocrine production of inhibitory factors may be a mechanism controlling proliferation of normal cells

  6. Effects of the peroxisome proliferator clofibric acid on superoxide dismutase expression in the human HepG2 hepatoma cell line.

    Science.gov (United States)

    Bécuwe, P; Bianchi, A; Keller, J M; Dauça, M

    1999-09-15

    We examined the effects of clofibric acid, a peroxisome proliferator, on the production of superoxide radicals, on the levels of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), and on the expression of superoxide dismutases (SODs) in the human HepG2 hepatoma cell line. To this end, HepG2 cells were treated for 1 or 5 days with 0.25, 0.50, or 0.75 mM clofibric acid. The production of superoxide radicals was only enhanced in HepG2 cells exposed for 5 days to the different clofibric acid concentrations. However, this overproduction of superoxide radicals was not accompanied by increased rates of lipid peroxidation, as the MDA and 4-HNE levels did not change significantly. Manganese (Mn) SOD activity was increased when HepG2 cells were treated for 1 day with 0.50 or 0.75 mM clofibric acid. For this duration of treatment, no change was observed in total SOD and copper/zinc (Cu/Zn) SOD activities. For a 5-day treatment, total SOD and MnSOD activities as well as the enzyme apoprotein and MnSOD mRNA levels increased whatever the clofibric acid concentration used. This transcriptional induction of the MnSOD gene was correlated with an activation of the activator protein-1 transcription factor for 1 and 5 days of treatment, but was independent of nuclear factor-kappa B and of peroxisome proliferator-activated receptor. On the other hand, the PP exerted very little effect if any on Cu,ZnSOD expression. In contrast to rodent data, PP treatment of human hepatoma cells induces MnSOD expression.

  7. Inhibition of hypoxia inducible factor-1alpha by dihydroxyphenylethanol, a product from olive oil, blocks microsomal prostaglandin-E synthase-1/vascular endothelial growth factor expression and reduces tumor angiogenesis.

    Science.gov (United States)

    Terzuoli, Erika; Donnini, Sandra; Giachetti, Antonio; Iñiguez, Miguel A; Fresno, Manuel; Melillo, Giovanni; Ziche, Marina

    2010-08-15

    2-(3,4-dihydroxyphenil)-ethanol (DPE), a polyphenol present in olive oil, has been found to attenuate the growth of colon cancer cells, an effect presumably related to its anti-inflammatory activity. To further explore the effects of DPE on angiogenesis and tumor growth we investigated the in vivo efficacy of DPE in a HT-29 xenograft model and in vitro activities in colon cancer cells exposed to interleukin-1beta (IL-1beta) and prostaglandin E-2 (PGE-2). DPE (10 mg/kg/day for 14 days) inhibited tumor growth, reducing vessel lumina and blood perfusion to tumor, and diminished expression of hypoxia inducible factor-1alpha (HIF-1alpha), vascular endothelial growth factor (VEGF), and microsomal prostaglandin-E synthase-1 (mPGEs-1). In vitro, DPE (100 mumol/L) neither affected cell proliferation nor induced apoptosis in HT-29 and WiDr cells. DPE prevented the IL-1beta-mediated increase of mPGEs-1 expression and PGE-2 generation, as it did the silencing of HIF-1alpha. Moreover, DPE blocked mPGEs-1-dependent expression of VEGF and inhibited endothelial sprouting induced by tumor cells in a coculture system. PGE-2 triggers a feed-forward loop involving HIF-1alpha, which impinges on mPGEs-1 and VEGF expression, events prevented by DPE via extracellular signal-related kinase 1/2. The reduction of PGE-2 and VEGF levels, caused by DPE, was invariably associated with a marked decrease in HIF-1alpha expression and activity, independent of proteasome activity, indicating that the DPE effects on tumor growth and angiogenesis are dependent on the inhibition of HIF-1alpha translation. We show that the in vivo DPE antitumor effect is associated with anti-inflammatory and antiangiogenic activities resulting from the downregulation of the HIF-1alpha/mPGEs-1/VEGF axis.

  8. Treating infected diabetic wounds with superoxidized water as anti-septic agent: a preliminary experience

    International Nuclear Information System (INIS)

    Hadi, S.F.; Khaliq, T.; Zubair, M.; Saaiq, M.; Sikandar, I.

    2007-01-01

    To evaluate the effectiveness of superoxidized water (MicrocynTM) in diabetic patients with different wounds. One hundred known diabetic patients were enrolled. Half were randomized to the intervention group (those whose wounds were managed with superoxidized water) and half to the control group (whose wounds were treated with normal saline) using a table of random numbers. The two groups were matched for age, gender, duration of diabetes and category of wound. All patients received appropriate surgical treatment for their wounds as required. Local wound treatment was carried out daily using superoxidized water soaked gauzes on twice daily basis in the intervention group and normal saline in the control group. The treatment was continued until wound healing. The main outcome measures were duration of hospital stay, downgrading of the wound category, wound healing time and need for interventions such as amputation. Statistically significant differences were found in favour of the superoxidized water group with respect to duration of hospital stay, downgrading of the wound category and wound healing time. Although the initial results of employing superoxidized water for the management of infected diabetic wounds are encouraging, further multicentre clinical trials are warranted before this antiseptic is recommended for general use. It may offer an economical alternative to other expensive antiseptics with positive impact on the prevailing infection rates, patient outcomes and patient satisfaction. (author)

  9. Deficiency of superoxide dismutase promotes cerebral vascular hypertrophy and vascular dysfunction in hyperhomocysteinemia.

    Directory of Open Access Journals (Sweden)

    Sanjana Dayal

    Full Text Available There is an emerging consensus that hyperhomocysteinemia is an independent risk factor for cerebral vascular disease and that homocysteine-lowering therapy protects from ischemic stroke. However, the mechanisms by which hyperhomocysteinemia produces abnormalities of cerebral vascular structure and function remain largely undefined. Our objective in this study was to define the mechanistic role of superoxide in hyperhomocysteinemia-induced cerebral vascular dysfunction and hypertrophy. Unlike previous studies, our experimental design included a genetic approach to alter superoxide levels by using superoxide dismutase 1 (SOD1-deficient mice fed a high methionine/low folate diet to produce hyperhomocysteinemia. In wild-type mice, the hyperhomocysteinemic diet caused elevated superoxide levels and impaired responses to endothelium-dependent vasodilators in cerebral arterioles, and SOD1 deficiency compounded the severity of these effects. The cross-sectional area of the pial arteriolar wall was markedly increased in mice with SOD1 deficiency, and the hyperhomocysteinemic diet sensitized SOD1-deficient mice to this hypertrophic effect. Analysis of individual components of the vascular wall demonstrated a significant increase in the content of smooth muscle and elastin. We conclude that superoxide is a key driver of both cerebral vascular hypertrophy and vasomotor dysfunction in this model of dietary hyperhomocysteinemia. These findings provide insight into the mechanisms by which hyperhomocysteinemia promotes cerebral vascular disease and ischemic stroke.

  10. Caveolin-1 sensitizes cisplatin-induced lung cancer cell apoptosis via superoxide anion-dependent mechanism.

    Science.gov (United States)

    Pongjit, Kanittha; Chanvorachote, Pithi

    2011-12-01

    Caveolin-1 (Cav-1) expression frequently found in lung cancer was linked with disease prognosis and progression. This study reveals for the first time that Cav-1 sensitizes cisplatin-induced lung carcinoma cell death by the mechanism involving oxidative stress modulation. We established stable Cav-1 overexpressed (H460/Cav-1) cells and investigated their cisplatin susceptibility in comparison with control-transfected cells and found that Cav-1 expression significantly enhanced cisplatin-mediated cell death. Results indicated that the different response to cisplatin between these cells was resulted from different level of superoxide anion induced by cisplatin. Inhibitory study revealed that superoxide anion inhibitor MnTBAP could inhibit cisplatin-mediated toxicity only in H460/Cav-1 cells while had no effect on H460 cells. Further, superoxide anion detected by DHE probe indicated that H460/Cav-1 cells generated significantly higher superoxide anion level in response to cisplatin than that of control cells. The role of Cav-1 in regulating cisplatin sensitivity was confirmed in shRNA-mediated Cav-1 down-regulated (H460/shCav-1) cells and the cells exhibited decreased cisplatin susceptibility and superoxide generation. In summary, these findings reveal novel aspects regarding role of Cav-1 in modulating oxidative stress induced by cisplatin, possibly providing new insights for cancer biology and cisplatin-based chemotherapy.

  11. Extraction of superoxide dismutase, catalase, and carbonic anhydrase from stroma-free red blood cell hemolysate for the preparation of the nanobiotechnological complex of polyhemoglobin-superoxide dismutase-catalase-carbonic anhydrase.

    Science.gov (United States)

    Guo, C; Gynn, M; Chang, T M S

    2015-06-01

    We report a novel method to simultaneously extract superoxide dismutase (SOD), catalase (CAT), and carbonic anhydrase (CA) from the same sample of red blood cells (RBCs). This avoids the need to use expensive commercial enzymes, thus enabling a cost-effective process for large-scale production of a nanobiotechnological polyHb-SOD-CAT-CA complex, with enhancement of all three red blood cell functions. An optimal concentration of phosphate buffer for ethanol-chloroform treatment results in good recovery of CAT, SOD, and CA after extraction. Different concentrations of the enzymes can be used to enhance the activity of polyHb-SOD-CAT-CA to 2, 4, or 6 times that of RBC.

  12. Status of Serum and Salivary Levels of Superoxide Dismutase in ...

    African Journals Online (AJOL)

    BACKGROUND: Type 2 Diabetes Mellitus is a very well known metabolic disorder that has reached epidemic proportions worldwide. Evidence suggests that oxidative stress increases in Diabetes Mellitus because of the excessive production of reactive oxygen species and an impaired antioxidant defence mechanism.

  13. Multiconfigurational and DFT analyses of the electromeric formulation and UV-vis absorption spectra of the superoxide adduct of ferrous superoxide reductase.

    Science.gov (United States)

    Attia, Amr A A; Cioloboc, Daniela; Lupan, Alexandru; Silaghi-Dumitrescu, Radu

    2016-12-01

    The putative initial adduct of ferrous superoxide reductase (SOR) with superoxide has been alternatively formulated as ferric-peroxo or ferrous-superoxo. The ~600-nm UV-vis absorption band proposed to be assigned to this adduct (either as sole intermediate in the SOR catalytic cycle, or as one of the two intermediates) has recently been interpreted as due to a ligand-to-metal charge transfer, involving thiolate and superoxide in a ferrous complex, contrary to an alternative assignment as a predominantly cysteine thiolate-to-ferric charge transfer in a ferric-peroxo electromer. In an attempt to clarify the electromeric formulation of this adduct, we report a computational study using a multiconfigurational complete active space self-consistent field (MC-CASSCF) wave function approach as well as modelling the UV-vis absorption spectra with time-dependent density functional theory (TD-DFT). The MC-CASSCF calculations disclose a weak interaction between iron and the dioxygenic ligand and a dominant configuration with an essentially ferrous-superoxo character. The computed UV-vis absorption spectra reveal a marked dependence on the choice of density functional - both in terms of location of bands and in terms of orbital contributors. For the main band in the visible region, besides the recently reported thiolate-to-superoxide charge transfer, a more salient, and less functional-dependent, feature is a thiolate-to-ferric iron charge transfer, consistent with a ferric-peroxo electromer. By contrast, the computed UV-vis spectra of a ferric-hydroperoxo SOR model match distinctly better (and with no qualitative dependence on the DFT methodology) the 600-nm band as due to a mainly thiolate-to-ferric character - supporting the assignment of the SOR "600-nm intermediate" as a S=5/2 ferric-hydroperoxo species. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Induction of peroxide and superoxide protective enzymes and physiological cross-protection against peroxide killing by a superoxide generator in Vibrio harveyi.

    Science.gov (United States)

    Vattanaviboon, Paiboon; Panmanee, Warunya; Mongkolsuk, Skorn

    2003-04-11

    Vibrio harveyi is a causative agent of destructive luminous vibriosis in farmed black tiger prawn (Penaeus monodon). V. harveyi peroxide and superoxide stress responses toward elevated levels of a superoxide generated by menadione were investigated. Exposure of V. harveyi to sub-lethal concentrations of menadione induced high expression of genes in both the OxyR regulon (e.g., a monofunctional catalase or KatA and an alkyl hydroperoxide reductase subunit C or AhpC), and the SoxRS regulon (e.g., a superoxide dismutase (SOD) and a glucose-6-phosphate dehydrogenase). V. harveyi expressed two detectable, differentially regulated SOD isozymes, [Mn]-SOD and [Fe]-SOD. [Fe]-SOD was expressed constitutively throughout the growth phase while [Mn]-SOD was expressed at the stationary phase and could be induced by a superoxide generator. Physiologically, pre-treatment of V. harveyi with menadione induced cross-protection against subsequent exposure to killing concentrations of H(2)O(2). This induced cross-protection required newly synthesized proteins. However, the treatment did not induce significant protection against exposures to killing concentrations of menadione itself or cross-protect against an organic hydroperoxide (tert-butyl hydroperoxide). Unexpectedly, growing V. harveyi in high-salinity media induced protection against menadione killing. This protection was independent of SOD induction. Stationary-phase cells were more resistant to menadione killing than exponential-phase cells. The induction of oxidative stress protective enzymes and stress-altered physiological responses could play a role in the survival of this bacterium in the host marine crustaceans.

  15. Copper, Zinc Superoxide Dismutase is Primarily a Cytosolic Protein in Human Cells

    Science.gov (United States)

    Crapo, James D.; Oury, Tim; Rabouille, Catherine; Slot, Jan W.; Chang, Ling-Yi

    1992-11-01

    The intracellular localization of human copper, zinc superoxide dismutase (Cu,Zn-SOD; superoxide:superoxide oxidoreductase, EC 1.15.1.1) was evaluated by using EM immunocytochemistry and both isolated human cell lines and human tissues. Eight monoclonal antibodies raised against either native or recombinant human Cu,Zn-SOD and two polyclonal antibodies raised against either native or recombinant human Cu,Zn-SOD were used. Fixation with 2% paraformaldehyde/0.2% glutaraldehyde was found necessary to preserve normal distribution of the protein. Monoclonal antibodies were less effective than polyclonal antibodies in recognizing the antigen after adequate fixation of tissue. Cu,Zn-SOD was found widely distributed in the cell cytosol and in the cell nucleus, consistent with it being a soluble cytosolic protein. Mitochondria and secretory compartments did not label for this protein. In human cells, peroxisomes showed a labeling density slightly less than that of cytoplasm.

  16. Purification of Cu/Zn superoxide dismutase from Piper betle leaf and its characterization in the oral cavity.

    Science.gov (United States)

    Liu, Yu-Ching; Lee, Miau-Rong; Chen, Chao-Jung; Lin, Yung-Chang; Ho, Heng-Chien

    2015-03-04

    The aim of this study was to purify protein(s) from Piper betle leaf for identification and further characterization. A functionally unknown protein was purified to apparent homogeneity with a molecular mass of 15.7 kDa and identified as Cu/Zn superoxide dismutase (SOD). The purified SOD appeared to be monomeric and converted to its dimeric form with increased enzymatic activity in betel nut oral extract. This irreversible conversion was mainly induced by slaked lime, resulting from the increase in pH of the oral cavity. Oral extract from chewing areca nut alone also induced SOD dimerization due to the presence of arginine. The enhanced activity of the SOD dimer was responsible for the continuous production of hydrogen peroxide in the oral cavity. Thus, SOD may contribute to oral carcinogenesis through the continuous formation of hydrogen peroxide in the oral cavity, in spite of its protective role against cancer in vivo.

  17. Effect of Antimicrobial Compounds on Balamuthia mandrillaris Encystment and Human Brain Microvascular Endothelial Cell Cytopathogenicity▿

    OpenAIRE

    Siddiqui, Ruqaiyyah; Matin, Abdul; Warhurst, David; Stins, Monique; Khan, Naveed Ahmed

    2007-01-01

    Cycloheximide, ketoconazole, or preexposure of organisms to cytochalasin D prevented Balamuthia mandrillaris-associated cytopathogenicity in human brain microvascular endothelial cells, which constitute the blood-brain barrier. In an assay for inhibition of cyst production, these three agents prevented the production of cysts, suggesting that the biosynthesis of proteins and ergosterol and the polymerization of actin are important in cytopathogenicity and encystment.

  18. Femtosecond laser cutting of endothelial grafts: comparison of endothelial and epithelial applanation.

    Science.gov (United States)

    Bernard, Aurélien; He, Zhiguo; Gauthier, Anne Sophie; Trone, Marie Caroline; Baubeau, Emmanuel; Forest, Fabien; Dumollard, Jean Marc; Peocʼh, Michel; Thuret, Gilles; Gain, Philippe

    2015-02-01

    Stromal surface quality of endothelial lamellae cut for endothelial keratoplasty with a femtosecond laser (FSL) with epithelial applanation remains disappointing. Applanation of the endothelial side of the cornea, mounted inverted on an artificial chamber, has therefore been proposed to improve cut quality. We compared lamellar quality after FSL cutting using epithelial versus endothelial applanation. Lamellae were cut with an FSL from organ-cultured corneas. After randomization, 7 were cut with epithelial applanation and 7 with endothelial applanation. Lamellae of 50-, 75-, and 100-μm thickness were targeted. Thickness was measured by optical coherence tomography before and immediately after cutting. Viable endothelial cell density was quantified immediately after cutting using triple labeling with Hoechst/ethidium/calcein-AM coupled with image analysis with ImageJ. The stromal surface was evaluated by 9 masked observers using semiquantitative scoring of scanning electronic microscopy images. Histology of 2 samples was also analyzed before lamellar detachment. Precision (difference in target/actual thickness) and thickness regularity [coefficient of variation (CV) of 10 measurements] were significantly better with endothelial applanation (precision: 18 μm; range, 10-30; CV: 11%; range, 8-12) than with epithelial applanation (precision: 84 μm; range, 54-107; P = 0.002; CV: 24%; range, 13-47; P = 0.001). Endothelial applanation provided thinner lamellae. However, viable endothelial cell density was significantly lower after endothelial applanation (1183 cells/mm2; range, 787-1725 versus 1688 cells/mm2; range, 1288-2025; P = 0.018). FSL cutting of endothelial lamellae using endothelial applanation provides thinner more regular grafts with more predictable thickness than with conventional epithelial applanation but strongly reduces the pool of viable endothelial cells.

  19. 2-Deoxy-D-glucose treatment of endothelial cells induces autophagy by reactive oxygen species-mediated activation of the AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Qilong Wang

    2011-02-01

    Full Text Available Autophagy is a cellular self-digestion process activated in response to stresses such as energy deprivation and oxidative stress. However, the mechanisms by which energy deprivation and oxidative stress trigger autophagy remain undefined. Here, we report that activation of AMP-activated protein kinase (AMPK by mitochondria-derived reactive oxygen species (ROS is required for autophagy in cultured endothelial cells. AMPK activity, ROS levels, and the markers of autophagy were monitored in confluent bovine aortic endothelial cells (BAEC treated with the glycolysis blocker 2-deoxy-D-glucose (2-DG. Treatment of BAEC with 2-DG (5 mM for 24 hours or with low concentrations of H(2O(2 (100 µM induced autophagy, including increased conversion of microtubule-associated protein light chain 3 (LC3-I to LC3-II, accumulation of GFP-tagged LC3 positive intracellular vacuoles, and increased fusion of autophagosomes with lysosomes. 2-DG-treatment also induced AMPK phosphorylation, which was blocked by either co-administration of two potent anti-oxidants (Tempol and N-Acetyl-L-cysteine or overexpression of superoxide dismutase 1 or catalase in BAEC. Further, 2-DG-induced autophagy in BAEC was blocked by overexpressing catalase or siRNA-mediated knockdown of AMPK. Finally, pretreatment of BAEC with 2-DG increased endothelial cell viability after exposure to hypoxic stress. Thus, AMPK is required for ROS-triggered autophagy in endothelial cells, which increases endothelial cell survival in response to cell stress.

  20. The defensive effect of benfotiamine in sodium arsenite-induced experimental vascular endothelial dysfunction.

    Science.gov (United States)

    Verma, Sanjali; Reddy, Krishna; Balakumar, Pitchai

    2010-10-01

    The present study has been designed to investigate the effect of benfotiamine, a thiamine derivative, in sodium arsenite-induced vascular endothelial dysfunction (VED) in rats. Sodium arsenite (1.5 mg(-1) kg(-1) day(-1) i.p., 2 weeks) was administered in rats to produce VED. The development of VED was assessed by employing isolated aortic ring preparation and estimating the serum and aortic concentrations of nitrite/nitrate. Further, the integrity of vascular endothelium in thoracic aorta was assessed by scanning electron microscopy. Moreover, the oxidative stress was assessed by estimating serum thiobarbituric acid reactive substances (TBARS) and aortic superoxide anion generation. The administration of sodium arsenite markedly produced VED by attenuating acetylcholine-induced endothelium-dependent relaxation, decreasing serum and aortic concentrations of nitrite/nitrate, and impairing the integrity of vascular endothelium. Further, sodium arsenite produced oxidative stress by increasing serum TBARS and aortic superoxide generation. The treatment with benfotiamine (25, 50, and 100 mg(-1) kg(-1) day(-1) p.o.) or atorvastatin (30 mg(-1) kg(-1) day(-1) p.o., a standard agent) prevented sodium arsenite-induced VED and oxidative stress. However, the beneficial effects of benfotiamine in preventing the sodium arsenite-induced VED were attenuated by co-administration with N-omega-nitro-L: -arginine methyl ester (L: -NAME) (25 mg(-1) kg(-1) day(-1), i.p.), an inhibitor of NOS. Thus, it may be concluded that benfotiamine reduces oxidative stress and activates endothelial nitric oxide synthase to enhance the generation and bioavailability of NO and subsequently improves the integrity of vascular endothelium to prevent sodium arsenite-induced experimental VED.

  1. Status of Serum and Salivary Levels of Superoxide Dismutase in Type 2 Diabetes Mellitus with Oral Manifestations: A Case Control Study.

    Science.gov (United States)

    Madi, Medhini; Babu, Subhas; Kumari, Suchetha; Shetty, Shishir; Achalli, Sonika; Madiyal, Ananya; Bhat, Manohar

    2016-11-01

    Type 2 Diabetes Mellitus is a very well known metabolic disorder that has reached epidemic proportions worldwide. Evidence suggests that oxidative stress increases in Diabetes Mellitus because of the excessive production of reactive oxygen species and an impaired antioxidant defence mechanism. This study estimated, compared and correlated the serum and salivary Superoxide dismutase levels in healthy subjects and subjects with Type 2 Diabetes Mellitus having oral manifestations. In this study, serum and salivary Superoxide dismutase levels were estimated in 45 healthy subjects and 45 patients with Type 2 Diabetes Mellitus with oral manifestations. The mean serum and salivary Superoxide dismutase levels were significantly decreased in subjects with Type 2 Diabetes Mellitus with oral manifestations compared to the healthy subjects. Positive correlation in both healthy and diabetics was observed between serum and salivary samples. This study highlights that the abnormally high levels of oxidative stress in diabetics coupled with simultaneous decline in antioxidant defence mechanism results in complications in Diabetes mellitus. Thus exploring saliva for antioxidant markers that accurately reflect the redox status of the body is worthwhile.

  2. Mechanisms and kinetic profiles of superoxide-stimulated nitrosative processes in cells using a diaminofluorescein probe.

    Science.gov (United States)

    Damasceno, Fernando Cruvinel; Facci, Rômulo Rodrigues; da Silva, Thalita Marques; Toledo, José Carlos

    2014-12-01

    In this study, we examined the mechanisms and kinetic profiles of intracellular nitrosative processes using diaminofluorescein (DAF-2) as a target in RAW 264.7 cells. The intracellular formation of the fluorescent, nitrosated product diaminofluorescein triazol (DAFT) from both endogenous and exogenous nitric oxide (NO) was prevented by deoxygenation and by cell membrane-permeable superoxide (O2(-)) scavengers but not by extracellular bovine Cu,Zn-SOD. In addition, the DAFT formation rate decreased in the presence of cell membrane-permeable Mn porphyrins that are known to scavenge peroxynitrite (ONOO(-)) but was enhanced by HCO3(-)/CO2. Together, these results indicate that nitrosative processes in RAW 264.7 cells depend on endogenous intracellular O2(-) and are stimulated by ONOO(-)/CO2-derived radical oxidants. The N2O3 scavenger sodium azide (NaN3) only partially attenuated the DAFT formation rate and only with high NO (>120 nM), suggesting that DAFT formation occurs by nitrosation (azide-susceptible DAFT formation) and predominantly by oxidative nitrosylation (azide-resistant DAFT formation). Interestingly, the DAFT formation rate increased linearly with NO concentrations of up to 120-140 nM but thereafter underwent a sharp transition and became insensitive to NO. This behavior indicates the sudden exhaustion of an endogenous cell substrate that reacts rapidly with NO and induces nitrosative processes, consistent with the involvement of intracellular O2(-). On the other hand, intracellular DAFT formation stimulated by a fixed flux of xanthine oxidase-derived extracellular O2(-) that also occurs by nitrosation and oxidative nitrosylation increased, peaked, and then decreased with increasing NO, as previously observed. Thus, our findings complementarily show that intra- and extracellular O2(-)-dependent nitrosative processes occurring by the same chemical mechanisms do not necessarily depend on NO concentration and exhibit different unusual kinetic profiles with

  3. Effects of Altered Levels of Extracellular Superoxide Dismutase and Irradiation on Hippocampal Neurogenesis in Female Mice

    International Nuclear Information System (INIS)

    Zou, Yani; Leu, David; Chui, Jennifer; Fike, John R.; Huang, Ting-Ting

    2013-01-01

    Purpose: Altered levels of extracellular superoxide dismutase (EC-SOD) and cranial irradiation have been shown to affect hippocampal neurogenesis. However, previous studies were only conducted in male mice, and it was not clear if there was a difference between males and females. Therefore, female mice were studied and the results compared with those generated in male mice from an earlier study. Methods and Materials: Female wild-type, EC-SOD-null (KO), and EC-SOD bigenic mice with neuronal-specific expression of EC-SOD (OE) were subjected to a single dose of 5-Gy gamma rays to the head at 8 weeks of age. Progenitor cell proliferation, differentiation, and long-term survival of newborn neurons were determined. Results: Similar to results from male mice, EC-SOD deficiency and irradiation both resulted in significant reductions in mature newborn neurons in female mice. EC-SOD deficiency reduced long-term survival of newborn neurons whereas irradiation reduced progenitor cell proliferation. Overexpression of EC-SOD corrected the negative impacts from EC-SOD deficiency and irradiation and normalized the production of newborn neurons in OE mice. Expression of neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 were significantly reduced by irradiation in wild-type mice, but the levels were not changed in KO and OE mice even though both cohorts started out with a lower baseline level. Conclusion: In terms of hippocampal neurogenesis, EC-SOD deficiency and irradiation have the same overall effects in males and females at the age the studies were conducted

  4. Superoxide dismutase and taurine supplementation improves in vitro blastocyst yield from poor-quality feline oocytes.

    Science.gov (United States)

    Ochota, Małgorzata; Pasieka, Anna; Niżański, Wojciech

    2016-03-15

    Blastocyst production in vitro seems to be crucial part of assisted reproduction techniques in feline species. However, the results of cats' oocyte maturation and embryo development are still lower than those in other species. The aim of this study was to evaluate whether the supplementation with superoxide dismutase (SOD) and taurine during maturation or culture would improve the blastocyst yield obtained from lower grades of oocytes, that are usually discarded, as not suitable for further in vitro purposes. To investigate the effect of antioxidants' addition, the good- and poor-quality oocytes, were cultured with the addition of 10-mmol taurine and 600 UI/mL SOD. The nuclear maturity, embryo development, and blastocyst quality were subsequently assessed. In control group, without antioxidant supplementation, significantly less poor-quality oocytes matured (42% vs. 62%) and more degenerated (35% vs. 20%), comparing to the experimental group supplemented with SOD and taurine. The amount of obtained blastocyst was much higher, when poor quality oocytes were supplemented with SOD and taurine (supplementation to IVM-4%; supplementation to IVC-5.5%; supplementation to IVM and IVC-5.9% of blastocyst), comparing to not supplemented control group (1.3%). The best blastocysts were obtained when poor oocytes had antioxidants added only during embryo culture (185 ± 13.4 blastomeres vs. 100 ± 1.5 in control). In the present study, we reported that the lower grades of oocytes can better mature and form significantly more blastocysts with better quality, when cultured with addition of SOD and taurine. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. X-ray effects of lens DNA-implications of superoxide (O2.-)

    International Nuclear Information System (INIS)

    Srivastava, V.K.; Richards, R.D.; Varma, S.D.

    1983-01-01

    The photocemical generation of superoxide (O 2 .-) during in vitro exposure of bovine lenses induced damage in the structure of lens DNA as indicated by hyperchromicity and Tm measurements. The damage in lens DNA was significantly protected by the inclusion of superoxide dismutase (SOD), glutathione (GSH) and ascorbate in the incubation medium before X-ray exposure. The protection by SOD, GSH and ascorbate occurred due to their interaction with O 2 .- radicals. These results thus indicate the deleterious effect of O 2 .- in lens physiology and the protective role of such compounds against radiation damage. (author)

  6. Effect of superoxide anion scavenger on rat hearts with chronic intermittent hypoxia.

    Science.gov (United States)

    Pai, Peiying; Lai, Ching Jung; Lin, Ching-Yuang; Liou, Yi-Fan; Huang, Chih-Yang; Lee, Shin-Da

    2016-04-15

    Only very limited information regarding the protective effects of the superoxide anion scavenger on chronic intermittent hypoxia-induced cardiac apoptosis is available. The purpose of this study is to evaluate the effects of the superoxide anion scavenger on cardiac apoptotic and prosurvival pathways in rats with sleep apnea. Forty-two Sprague-Dawley rats were divided into three groups, rats with normoxic exposure (Control, 21% O2, 1 mo), rats with chronic intermittent hypoxia exposure (Hypoxia, 3-7% O2vs. 21% O2per 40 s cycle, 8 h per day, 1 mo), and rats with pretreatment of the superoxide anion scavenger and chronic intermittent hypoxia exposure (Hypoxia-O2 (-)-Scavenger, MnTMPyP pentachloride, 1 mg/kg ip per day; 3-7% O2vs. 21% O2per 40 s cycle, 8 h per day, 1 mo) at 5-6 mo of age. After 1 mo, the protein levels and apoptotic cells of excised hearts from three groups were measured by Western blotting and terminal deoxynucleotide transferase-mediated dUTP nick end labeling (TUNEL) assay. The superoxide anion scavenger decreased hypoxia-induced myocardial architecture abnormalities, left ventricular hypertrophy, and TUNEL-positive apoptosis. The superoxide anion scavenger decreased hypoxia-induced Fas ligand, Fas death receptors, Fas-associated death domain (FADD), activated caspase-8, and activated caspase-3 (Fas-dependent apoptotic pathway) as well as Bad, activated caspase-9 and activated caspase-3 (mitochondria-dependent apoptotic pathway), endonuclease G (EndoG), apoptosis-inducing factor (AIF), and TUNEL-positive apoptosis. The superoxide anion scavenger increased IGF-1, IGF-1R, p-PI3k, p-Akt, p-Bad, Bcl-2, and Bcl-xL (survival pathway). Our findings imply that the superoxide anion scavenger might prevent cardiac Fas-mediated and mitochondrial-mediated apoptosis and enhance the IGF-1-related survival pathway in chronic intermittent hypoxia. The superoxide anion scavenger may prevent chronic sleep apnea-enhanced cardiac apoptotic pathways and enhances

  7. Extraction of erythrocyte enzymes for the preparation of polyhemoglobin-catalase-superoxide dismutase.

    Science.gov (United States)

    Gu, Jingsong; Chang, Thomas Ming Swi

    2009-01-01

    In sustained severe ischemia, reperfusion with oxygen carriers may result in ischemia-reperfusion injuries because of the release of damaging oxygen radicals. A nanobiotechnology-based polyhemogloin-calatase-superoxide dismutase can prevent this because the oxygen carrier, polyhemoglobin, is linked to antioxidant enzymes, catalase and superoxide dismutase. However, these antioxidant enzymes come from nonhuman sources and recombinant human enzymes are expensive. This paper describes our study on extracting these enzymes from red blood cells and analyzing the amount of enzymes needed for adequate protection from ischemia-reperfusion.

  8. Superoxide radicals can act synergistically with hypochlorite to induce damage to proteins

    DEFF Research Database (Denmark)

    Hawkins, Clare Louise; Rees, Martin D; Davies, Michael Jonathan

    2002-01-01

    Activated phagocytes generate both superoxide radicals via a respiratory burst, and HOCl via the concurrent release of the haem enzyme myeloperoxidase. Amine and amide functions on proteins and carbohydrates are major targets for HOCl, generating chloramines (RNHCl) and chloramides (RC(O)NClR'), ......Activated phagocytes generate both superoxide radicals via a respiratory burst, and HOCl via the concurrent release of the haem enzyme myeloperoxidase. Amine and amide functions on proteins and carbohydrates are major targets for HOCl, generating chloramines (RNHCl) and chloramides (RC...

  9. Real-time cytometric assay of nitric oxide and superoxide interaction in peripheral blood monocytes: A no-wash, no-lyse kinetic method.

    Science.gov (United States)

    Balaguer, Susana; Diaz, Laura; Gomes, Angela; Herrera, Guadalupe; O'Connor, José-Enrique; Urios, Amparo; Felipo, Vicente; Montoliu, Carmina

    2017-05-01

    Nitric oxide (NO) and its related reactive nitrogen species (RNS) and reactive oxygen species (ROS) are crucial in monocyte responses against pathogens and also in inflammatory conditions. Central to both processes is the generation of the strong oxidant peroxynitrite (ONOO) by a fast reaction between NO and superoxide anion. ONOO is a biochemical junction for ROS- and RNS cytotoxicity and causes protein nitrosylation. Circulating by-products of protein nitrosylation are early biomarkers of inflammation-based conditions, including minimal hepatic encephalopathy in cirrhotic patients (Montoliu et al., Am J Gastroenterol 2011; 106:1629-1637). In this context, we have designed a novel no-wash, no-lyse real-time flow cytometry assay to detect and follow-up the NO- and superoxide-driven generation of ONOO in peripheral blood monocytes. Whole blood samples were stained with CD45 and CD14 antibodies plus one of a series of fluorescent probes sensitive to RNS, ROS, or glutathione, namely 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate, dihydrorhodamine 123, MitoSOX Red, dihydroethidium, and 5-chloromethylfluorescein diacetate. Samples were exposed sequentially to a NO donor and three different superoxide donors, and analyzed in real time by kinetic flow cytometry. Relevant kinetic descriptors, such as the rate of fluorescence change, were calculated from the kinetic plot. The generation of ONOO, which consumes both NO and superoxide, led to a decrease in the intensity of the cellular fluorescence of the probes sensitive to these molecules. This is a fast and simple assay that may be used to monitor the intracellular generation of ONOO in physiological, pathological, and pharmacological contexts. © 2015 International Clinical Cytometry Society. © 2015 International Clinical Cytometry Society.

  10. The subcellular compartmentalization of arginine metabolizing enzymes and their role in endothelial dysfunction

    Directory of Open Access Journals (Sweden)

    Feng eChen

    2013-07-01

    Full Text Available The endothelial production of nitric oxide (NO mediates endothelium-dependent vasorelaxation and restrains vascular inflammation, smooth muscle proliferation and platelet aggregation. Impaired production of NO is a hallmark of endothelial dysfunction and promotes the development of cardiovascular disease. In endothelial cells, NO is generated by endothelial nitric oxide synthase (eNOS through the conversion of its substrate, L-arginine to L-citrulline. Reduced access to L-arginine has been proposed as a major mechanism underlying reduced eNOS activity and NO production in cardiovascular disease. The arginases (Arg1 and Arg2 metabolize L-arginine to generate L-ornithine and urea and increased expression of arginase has been proposed as a mechanism of reduced eNOS activity secondary to the depletion of L-arginine. Indeed, supplemental L-arginine and suppression of arginase activity has been shown to improve endothelium-dependent relaxation and ameliorate cardiovascular disease. However, L-arginine concentrations in endothelial cells remain sufficiently high to support NO synthesis suggesting additional mechanisms. The compartmentalization of intracellular L-arginine into poorly interchangeable pools has been proposed to allow for the local depletion of L-arginine. Indeed the subcellular location of L-arginine metabolizing enzymes plays important functional roles. In endothelial cells, eNOS is found in discrete intracellular locations and the capacity to generate NO is heavily influenced by its localtion. Arg1 and Arg2 also reside in different subcellular environments and are thought to differentially influence endothelial function. The plasma membrane solute transporter, CAT-1 and the arginine recycling enzyme, ASL, co-localize with eNOS and facilitate NO release. This review highlights the importance of the subcellular location of eNOS and arginine transporting and metabolizing enzymes to NO release and cardiovascular disease.

  11. Identification and functional analysis of endothelial tip cell-enriched genes.

    Science.gov (United States)

    del Toro, Raquel; Prahst, Claudia; Mathivet, Thomas; Siegfried, Geraldine; Kaminker, Joshua S; Larrivee, Bruno; Breant, Christiane; Duarte, Antonio; Takakura, Nobuyuki; Fukamizu, Akiyoshi; Penninger, Josef; Eichmann, Anne

    2010-11-11

    Sprouting of developing blood vessels is mediated by specialized motile endothelial cells localized at the tips of growing capillaries. Following behind the tip cells, endothelial stalk cells form the capillary lumen and proliferate. Expression of the Notch ligand Delta-like-4 (Dll4) in tip cells suppresses tip cell fate in neighboring stalk cells via Notch signaling. In DLL4(+/-) mouse mutants, most retinal endothelial cells display morphologic features of tip cells. We hypothesized that these mouse mutants could be used to isolate tip cells and so to determine their genetic repertoire. Using transcriptome analysis of retinal endothelial cells isolated from DLL4(+/-) and wild-type mice, we identified 3 clusters of tip cell-enriched genes, encoding extracellular matrix degrading enzymes, basement membrane components, and secreted molecules. Secreted molecules endothelial-specific molecule 1, angiopoietin 2, and apelin bind to cognate receptors on endothelial stalk cells. Knockout mice and zebrafish morpholino knockdown of apelin showed delayed angiogenesis and reduced proliferation of stalk cells expressing the apelin receptor APJ. Thus, tip cells may regulate angiogenesis via matrix remodeling, production of basement membrane, and release of secreted molecules, some of which regulate stalk cell behavior.

  12. Benfotiamine attenuates nicotine and uric acid-induced vascular endothelial dysfunction in the rat.

    Science.gov (United States)

    Balakumar, Pitchai; Sharma, Ramica; Singh, Manjeet

    2008-01-01

    The study has been designed to investigate the effect of benfotiamine, a thiamine derivative, in nicotine and uric acid-induced vascular endothelial dysfunction (VED) in rats. Nicotine (2 mg kg(-1)day(-1), i.p., 4 weeks) and uric acid (150 mg kg(-1)day(-1), i.p., 3 weeks) were administered to produce VED in rats. The development of VED was assessed by employing isolated aortic ring preparation and estimating serum and aortic concentration of nitrite/nitrate. Further, the integrity of vascular endothelium was assessed using the scanning electron microscopy (SEM) of thoracic aorta. Moreover, the oxidative stress was assessed by estimating serum thiobarbituric acid reactive substances (TBARS) and aortic superoxide anion generation. The administration of nicotine and uric acid produced VED by impairing the integrity of vascular endothelium and subsequently decreasing serum and aortic concentration of nitrite/nitrate and attenuating acetylcholine-induced endothelium dependent relaxation. Further, nicotine and uric acid produced oxidative stress, which was assessed in terms of increase in serum TBARS and aortic superoxide generation. However, treatment with benfotiamine (70 mg kg(-1)day(-1), p.o.) or atorvastatin (30 mg kg(-1)day(-1) p.o., a standard agent) markedly prevented nicotine and uric acid-induced VED and oxidative stress by improving the integrity of vascular endothelium, increasing the concentration of serum and aortic nitrite/nitrate, enhancing the acetylcholine-induced endothelium dependent relaxation and decreasing serum TBARS and aortic superoxide anion generation. Thus, it may be concluded that benfotiamine reduces the oxidative stress and consequently improves the integrity of vascular endothelium and enhances the generation of nitric oxide to prevent nicotine and uric acid-induced experimental VED.

  13. Endothelial dysfunction in the regulation of portal hypertension

    Science.gov (United States)

    Iwakiri, Yasuko

    2013-01-01

    Portal hypertension is caused by an increased intrahepatic resistance, a major consequence of cirrhosis. Endothelial dysfunction in liver sinusoidal endothelial cells (LSECs) decreases the production of vasodilators, such as nitric oxide (NO) and favors vasoconstriction. This contributes to an increased vascular resistance in the intrahepatic/sinusoidal microcirculation. Portal hypertension, once developed, causes endothelial cell (EC) dysfunction in the extrahepatic, i.e. splanchnic and systemic, circulation. Unlike LSEC dysfunction, EC dysfunction in the splanchnic and systemic circulation overproduces vasodilator molecules, leading to arterial vasodilatation. In addition, portal hypertension leads to the formation of portosystemic collateral vessels. Both arterial vasodilatation and portosystemic collateral vessel formation exacerbate portal hypertension by increasing the blood flow through the portal vein. Pathologic consequences, such as esophageal varices and ascites, result. While the sequence of pathological vascular events in cirrhosis and portal hypertension have been elucidated, the underlying cellular and molecular mechanisms causing EC dysfunctions are not yet fully understood. This review article summarizes the current cellular and molecular studies on EC dysfunctions found during the development of cirrhosis and portal hypertension with a focus on intra- and extrahepatic circulation. The article ends by discussing future directions of study for EC dysfunctions. PMID:21745318

  14. Antioxidant Effects of Sheep Whey Protein on Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Efthalia Kerasioti

    2016-01-01

    Full Text Available Excessive production of reactive oxygen species (ROS may cause endothelial dysfunction and consequently vascular disease. In the present study, the possible protective effects of sheep whey protein (SWP from tert-butyl hydroperoxide- (tBHP- induced oxidative stress in endothelial cells (EA.hy926 were assessed using oxidative stress biomarkers. These oxidative stress biomarkers were glutathione (GSH and ROS levels determined by flow cytometry. Moreover, thiobarbituric acid-reactive substances (TBARS, protein carbonyls (CARB, and oxidized glutathione (GSSG were determined spectrophotometrically. The results showed that SWP at 0.78, 1.56, 3.12, and 6.24 mg of protein mL−1 increased GSH up to 141%, while it decreased GSSG to 46.7%, ROS to 58.5%, TBARS to 52.5%, and CARB to 49.0%. In conclusion, the present study demonstrated for the first time that SWP protected endothelial cells from oxidative stress. Thus, SWP may be used for developing food supplements or biofunctional foods to attenuate vascular disturbances associated with oxidative stress.

  15. The endothelial αENaC contributes to vascular endothelial function in vivo

    DEFF Research Database (Denmark)

    Tarjus, Antoine; Maase, Martina; Jeggle, Pia

    2017-01-01

    The Epithelial Sodium Channel (ENaC) is a key player in renal sodium homeostasis. The expression of α β γ ENaC subunits has also been described in the endothelium and vascular smooth muscle, suggesting a role in vascular function. We recently demonstrated that endothelial ENaC is involved in aldo......-mediated dilation. Our data suggest that endothelial αENaC contributes to vascular endothelial function in vivo....

  16. Endothelial MMP14 is required for endothelial-dependent growth support of human airway basal cells

    Science.gov (United States)

    Ding, Bi-Sen; Gomi, Kazunori; Rafii, Shahin; Crystal, Ronald G.; Walters, Matthew S.

    2015-01-01

    ABSTRACT Human airway basal cells are the stem (or progenitor) population of the airway epithelium, and play a central role in anchoring the epithelium to the basement membrane. The anatomic position of basal cells allows for potential paracrine signaling between them and the underlying non-epithelial stromal cells. In support of this, we have previously demonstrated that endothelial cells support growth of basal cells during co-culture through vascular endothelial growth factor A (VEGFA)-mediated signaling. Building on these findings, we found, by RNA sequencing analysis, that basal cells expressed multiple fibroblast growth factor (FGF) ligands (FGF2, FGF5, FGF11 and FGF13) and that only FGF2 and FGF5 were capable of functioning in a paracrine manner to activate classical FGF receptor (FGFR) signaling. Antibody-mediated blocking of FGFR1 during basal-cell–endothelial-cell co-culture significantly reduced the endothelial-cell-dependent basal cell growth. Stimulation of endothelial cells with basal-cell-derived growth factors induced endothelial cell expression of matrix metallopeptidase 14 (MMP14), and short hairpin RNA (shRNA)-mediated knockdown of endothelial cell MMP14 significantly reduced the endothelial-cell-dependent growth of basal cells. Overall, these data characterize a new growth-factor-mediated reciprocal ‘crosstalk’ between human airway basal cells and endothelial cells that regulates proliferation of basal cells. PMID:26116571

  17. Activation of K{sup +} channels and Na{sup +}/K{sup +} ATPase prevents aortic endothelial dysfunction in 7-day lead-treated rats

    Energy Technology Data Exchange (ETDEWEB)

    Fiorim, Jonaina, E-mail: nanafiorim@hotmail.com [Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES (Brazil); Ribeiro Júnior, Rogério Faustino, E-mail: faustino43@oi.com.br [Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES (Brazil); Azevedo, Bruna Fernades, E-mail: brunafernandes.azevedo@gmail.com [Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES (Brazil); Simões, Maylla Ronacher, E-mail: yllars@hotmail.com [Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES (Brazil); Padilha, Alessandra Simão, E-mail: ale_spadilha@yahoo.com.br [Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES (Brazil); Stefanon, Ivanita, E-mail: ivanita@pq.cnpq.br [Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES (Brazil); Alonso, Maria Jesus, E-mail: mariajesus.alonso@urjc.es [Departamento de Ciencias de la Salud III, Universidad Rey Juan Carlos, Alcorcón (Spain); Salaices, Mercedes, E-mail: mercedes.salaices@uam.es [Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPaz) (Spain); Vassallo, Dalton Valentim, E-mail: daltonv2@terra.com.br [Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES (Brazil)

    2012-07-01

    Seven day exposure to a low concentration of lead acetate increases nitric oxide bioavailability suggesting a putative role of K{sup +} channels affecting vascular reactivity. This could be an adaptive mechanism at the initial stages of toxicity from lead exposure due to oxidative stress. We evaluated whether lead alters the participation of K{sup +} channels and Na{sup +}/K{sup +}-ATPase (NKA) on vascular function. Wistar rats were treated with lead (1st dose 4 μg/100 g, subsequent doses 0.05 μg/100 g, im, 7 days) or vehicle. Lead treatment reduced the contractile response of aortic rings to phenylephrine (PHE) without changing the vasodilator response to acetylcholine (ACh) or sodium nitroprusside (SNP). Furthermore, this treatment increased basal O{sub 2}{sup −} production, and apocynin (0.3 μM), superoxide dismutase (150 U/mL) and catalase (1000 U/mL) reduced the response to PHE only in the treated group. Lead also increased aortic functional NKA activity evaluated by K{sup +}-induced relaxation curves. Ouabain (100 μM) plus L-NAME (100 μM), aminoguanidine (50 μM) or tetraethylammonium (TEA, 2 mM) reduced the K{sup +}-induced relaxation only in lead-treated rats. When aortic rings were precontracted with KCl (60 mM/L) or preincubated with TEA (2 mM), 4-aminopyridine (4-AP, 5 mM), iberiotoxin (IbTX, 30 nM), apamin (0.5 μM) or charybdotoxin (0.1 μM), the ACh-induced relaxation was more reduced in the lead-treated rats. Additionally, 4-AP and IbTX reduced the relaxation elicited by SNP more in the lead-treated rats. Results suggest that lead treatment promoted NKA and K{sup +} channels activation and these effects might contribute to the preservation of aortic endothelial function against oxidative stress. -- Highlights: ► Increased free radicals production ► Increased Na{sup +}/K{sup +} ATPase activity ► Promotes activation of the K{sup +} channels and reduced vascular reactivity ► These effects preserve endothelial function against oxidative

  18. Endothelial nitric oxide synthase gene polymorphisms associated ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-24

    May 24, 2010 ... chronic periodontitis (CP), 31 with gingivitis (G) and 50 healthy controls. Probing depth ..... Periodontal disease in pregnancy I. Prevalence and severity. ... endothelial nitric oxide synthase gene in premenopausal women with.

  19. Vascular endothelial growth factor attachment to hydroxyapatite via self-assembled monolayers promotes angiogenic activity of endothelial cells

    International Nuclear Information System (INIS)

    Solomon, Kimberly D.; Ong, Joo L.

    2013-01-01

    Currently, tissue engineered constructs for critical sized bone defects are non-vascularized. There are many strategies used in order to promote vascularization, including delivery of growth factors such as vascular endothelial growth factor (VEGF). In this study, hydroxyapatite (HA) was coated with self-assembled monolayers (SAMs). The SAMs were in turn used to covalently bind VEGF to the surface of HA. The different SAM chain length ratios (phosphonoundecanoic acid (11-PUDA):16-phosphonohexadecanoic acid (16-PHDA) utilized in this study were 0:100, 25:75, 50:50, 75:25, and 100:0. Surfaces were characterized by contact angle (CA) and atomic force microscopy, and an in vitro VEGF release study was performed. It was observed that CA and root-mean-squared roughness were not significantly affected by the addition of SAMs, but that CA was significantly lowered with the addition of VEGF. VEGF release profiles of bound VEGF groups all demonstrated less initial burst release than adsorbed control, indicating that VEGF was retained on the HA surface when bound by SAMs. An in vitro study using human aortic endothelial cells (HAECs) demonstrated that bound VEGF increased metabolic activity and caused sustained production of angiopoietin-2, an angiogenic marker, over 28 days. In conclusion, SAMs provide a feasible option for growth factor delivery from HA surfaces, enhancing angiogenic activity of HAECs in vitro. - Highlights: • Vascular endothelial growth factor (VEGF) is attached to hydroxyapatite (HA). • Self-assembled monolayers (SAMs) delay the release of VEGF from hydroxyapatite. • SAM chain length ratio affects the total mass of VEGF released. • VEGF on HA up-regulates proliferation and angiogenic activity of endothelial cells

  20. SUPEROXIDE-DEPENDENT IRON UPTAKE: A NEW ROLE FOR ANION EXCHANGE PROTEIN 2

    Science.gov (United States)

    Lung cells import iron across the plasma membrane as ferrous (Fe2+) ion by incompletely understood mechanisms. We tested the hypothesis that human bronchial epithelial (HBE) cells import non-transferrin-bound iron (NTBI) using superoxide-dependent ferri-reductase activity involvi...

  1. Molecular Cloning and Expression of Sequence Variants of Manganese Superoxide Dismutase Genes from Wheat

    Science.gov (United States)

    Reactive oxygen species (ROS) are very harmful to living organisms due to the potential oxidation of membrane lipids, DNA, proteins, and carbohydrates. Transformed E.coli strain QC 871, superoxide dismutase (SOD) double-mutant, with three sequence variant MnSOD1, MnSOD2, and MnSOD3 manganese supero...

  2. The concentration of extracellular superoxide dismutase in plasma is maintained by LRP-mediated endocytosis

    DEFF Research Database (Denmark)

    Petersen, Steen V; Thøgersen, Ida B; Valnickova, Zuzana

    2010-01-01

    In this study, we show that human extracellular superoxide dismutase (EC-SOD) binds to low-density lipoprotein receptor-related protein (LRP). This interaction is most likely responsible for the removal of EC-SOD from the blood circulation via LRP expressed in liver tissue. The receptor recognition...

  3. Exogenous superoxide dismutase may lose its antidotal ability on rice leaves

    Science.gov (United States)

    Leaf diffusates of the resistant rice cultivars suppressed spore germination of blast fungus (Magnaporthe grisea). Bovine Cu-Zn superoxide dismutase (SOD) added to the diffusate abolished its toxicity. However, the enzyme added to the inoculum did not affect the toxicity of the diffusate. Even the s...

  4. Potentiating antibiotics in drug-resistant clinical isolates via stimuli-activated superoxide generation.

    Science.gov (United States)

    Courtney, Colleen M; Goodman, Samuel M; Nagy, Toni A; Levy, Max; Bhusal, Pallavi; Madinger, Nancy E; Detweiler, Corrella S; Nagpal, Prashant; Chatterjee, Anushree

    2017-10-01

    The rise of multidrug-resistant (MDR) bacteria is a growing concern to global health and is exacerbated by the lack of new antibiotics. To treat already pervasive MDR infections, new classes of antibiotics or antibiotic adjuvants are needed. Reactive oxygen species (ROS) have been shown to play a role during antibacterial action; however, it is not yet understood whether ROS contribute directly to or are an outcome of bacterial lethality caused by antibiotics. We show that a light-activated nanoparticle, designed to produce tunable flux of specific ROS, superoxide, potentiates the activity of antibiotics in clinical MDR isolates of Escherichia coli , Salmonella enterica , and Klebsiella pneumoniae . Despite the high degree of antibiotic resistance in these isolates, we observed a synergistic interaction between both bactericidal and bacteriostatic antibiotics with varied mechanisms of action and our superoxide-producing nanoparticles in more than 75% of combinations. As a result of this potentiation, the effective antibiotic concentration of the clinical isolates was reduced up to 1000-fold below their respective sensitive/resistant breakpoint. Further, superoxide-generating nanoparticles in combination with ciprofloxacin reduced bacterial load in epithelial cells infected with S. enterica serovar Typhimurium and increased Caenorhabditis elegans survival upon infection with S. enterica serovar Enteriditis, compared to antibiotic alone. This demonstration highlights the ability to engineer superoxide generation to potentiate antibiotic activity and combat highly drug-resistant bacterial pathogens.

  5. Hydrogen peroxide induce modifications of human extracellular superoxide dismutase that results in enzyme inhibition

    Directory of Open Access Journals (Sweden)

    Randi H. Gottfredsen

    2013-01-01

    Full Text Available Superoxide dismutase (EC-SOD controls the level of superoxide in the extracellular space by catalyzing the dismutation of superoxide into hydrogen peroxide and molecular oxygen. In addition, the enzyme reacts with hydrogen peroxide in a peroxidase reaction which is known to disrupt enzymatic activity. Here, we show that the peroxidase reaction supports a site-specific bond cleavage. Analyses by peptide mapping and mass spectrometry shows that oxidation of Pro112 supports the cleavage of the Pro112–His113 peptide bond. Substitution of Ala for Pro112 did not inhibit fragmentation, indicating that the oxidative fragmentation at this position is dictated by spatial organization and not by side-chain specificity. The major part of EC-SOD inhibited by the peroxidase reaction was not fragmented but found to encompass oxidations of histidine residues involved in the coordination of copper (His98 and His163. These oxidations are likely to support the dissociation of copper from the active site and thus loss of enzymatic activity. Homologous modifications have also been described for the intracellular isozyme, Cu/Zn-SOD, reflecting the almost identical structures of the active site within these enzymes. We speculate that the inactivation of EC-SOD by peroxidase activity plays a role in regulating SOD activity in vivo, as even low levels of superoxide will allow for the peroxidase reaction to occur.

  6. Superoxide dismutating molecules rescue the toxic effects of PINK1 and parkin loss.

    Science.gov (United States)

    Biosa, Alice; Sanchez-Martinez, Alvaro; Filograna, Roberta; Terriente-Felix, Ana; Alam, Sarah M; Beltramini, Mariano; Bubacco, Luigi; Bisaglia, Marco; Whitworth, Alexander J

    2018-05-01

    Reactive oxygen species exert important functions in regulating several cellular signalling pathways. However, an excessive accumulation of reactive oxygen species can perturb the redox homeostasis leading to oxidative stress, a condition which has been associated to many neurodegenerative disorders. Accordingly, alterations in the redox state of cells and mitochondrial homeostasis are established hallmarks in both familial and sporadic Parkinson's disease cases. PINK1 and Parkin are two genes which account for a large fraction of autosomal recessive early-onset forms of Parkinson's disease and are now firmly associated to both mitochondria and redox homeostasis. In this study we explored the hypothesis that superoxide anions participate in the generation of the Parkin and PINK1 associated phenotypic effect by testing the capacity of endogenous and exogenous superoxide dismutating molecules to rescue the toxic effects induced by loss of PINK1 or Parkin, in both cellular and fly models. Our results demonstrate the positive effect of an increased level of superoxide dismutase proteins on the pathological phenotypes, both in vitro and in vivo. A more pronounced effectiveness for mitochondrial SOD2 activity points to the superoxide radicals generated in the mitochondrial matrix as the prime suspect in the definition of the observed phenotypes. Moreover, we also demonstrate the efficacy of a SOD-mimetic compound, M40403, to partially ameliorate PINK1/Parkin phenotypes in vitro and in vivo. These results support the further exploration of SOD-mimetic compounds as a therapeutic strategy against Parkinson's disease.

  7. Inclusions of amyotrophic lateral sclerosis-linked superoxide dismutase in ventral horns, liver, and kidney

    DEFF Research Database (Denmark)

    Jonsson, P.A.; Bergemalm, D.; Andersen, P.M.

    2008-01-01

    Mutant superoxide dismutases type 1 (SOD1s) cause amyotrophic lateral sclerosis by an unidentified toxic property. In a patient carrying the G127X truncation mutation, minute amounts of SOD1 were found in ventral horns using a mutant-specific antibody. Still, both absolute levels and ratios versus...

  8. Parasitization by Scleroderma guani influences expression of superoxide dismutase genes in Tenebrio molitor

    Science.gov (United States)

    Superoxide dismutase (SOD) is an antioxidant enzyme involved in detoxifying reactive oxygen species. In this study, we identified genes encoding the extracellular and intracellular copper-zinc SODs (ecCuZnSOD and icCuZnSOD) and a manganese SOD (MnSOD) in the yellow mealworm beetle, Tenebrio molitor....

  9. Low activity of superoxide dismutase and high activity of glutathione reductase in erythrocytes from centenarians

    DEFF Research Database (Denmark)

    Andersen, Helle Raun; Jeune, B; Nybo, H

    1998-01-01

    aged between 60 and 79 years. MEASUREMENTS: enzyme activities of superoxide dismutase (CuZn-SOD), glutathione peroxidase, catalase and glutathione reductase (GR) in erythrocytes. Functional capacity among the centenarians was evaluated by Katz' index of activities of daily living, the Physical...

  10. The essential dynamics of Cu, Zn superoxide dismutase : Suggestion of intersubunit communication

    NARCIS (Netherlands)

    Chillemi, G; Falconi, M; Amadei, A; Zimatore, G; Desideri, A; DiNola, A

    A 300-ps molecular dynamics simulation of the whole Cu, Zn superoxide dismutase dimer has been carried out in water, and the trajectory has been analyzed by the essential dynamics method. The results indicate that the motion is defined by few preferred directions identified by the first four to six

  11. Electrolyte Chemistry for Simultaneous Stabilization of Potassium Metal and Superoxide in K-O₂ Batteries.

    Science.gov (United States)

    Xiao, Neng; Gourdin, Gerald; Wu, Yiying

    2018-05-22

    In the superoxide batteries based on O2/O2- redox chemistry, identifying an electrolyte to stabilize both alkali metal and superoxide remains challenging due to their reactivity towards electrolyte components. Bis(fluorosulfonyl)imide (FSI-) has been recognized as a "magical anion" for passivating alkali metals. Herein, we illustrate the chemical reactions between FSI- and superoxide, and the resultant dilemma when considering an anode-compatible electrolyte vs. a cathode-compatible one in K-O2 batteries. On one side, the KFSI-dimethoxyethane (DME) electrolyte passivates the potassium metal anode via the cleavage of S-F bond and formation of a KF-rich solid electrolyte interface (SEI). Nevertheless, the KFSI salt is chemically unstable due to the nucleophilic attack by superoxide and/or hydroxide species. On the other hand, potassium bis(trifluorosulfonyl)imide (KTFSI) is stable for KO2, but results in mossy deposition and irreversible plating and stripping. In order to circumvent this dilemma, we develop an artificial SEI for K metal anode to achieve long cycle-life K-O2 batteries. This work contributes to the understanding of electrolyte chemistry and guides the development of stable electrolytes and artificial SEI in metal-O2 batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Dynamical Systems Approach to Endothelial Heterogeneity

    Science.gov (United States)

    Regan, Erzsébet Ravasz; Aird, William C.

    2012-01-01

    Rationale Objective Here we reexamine our current understanding of the molecular basis of endothelial heterogeneity. We introduce multistability as a new explanatory framework in vascular biology. Methods We draw on the field of non-linear dynamics to propose a dynamical systems framework for modeling multistability and its derivative properties, including robustness, memory, and plasticity. Conclusions Our perspective allows for both a conceptual and quantitative description of system-level features of endothelial regulation. PMID:22723222

  13. An ?All-laser? Endothelial Transplant

    OpenAIRE

    Rossi, Francesca; Canovetti, Annalisa; Malandrini, Alex; Lenzetti, Ivo; Pini, Roberto; Menabuoni, Luca

    2015-01-01

    The ?all laser? assisted endothelial keratoplasty is a procedure that is performed with a femtosecond laser used to cut the donor tissue at an intended depth, and a near infrared diode laser to weld the corneal tissue. The proposed technique enables to reach the three main goals in endothelial keratoplasty: a precise control in the thickness of the donor tissue; its easy insertion in the recipient bed and a reduced risk of donor lenticule dislocation. The donor cornea thickness is measured in...

  14. Endothelial microparticles: Sophisticated vesicles modulating vascular function

    Science.gov (United States)

    Curtis, Anne M; Edelberg, Jay; Jonas, Rebecca; Rogers, Wade T; Moore, Jonni S; Syed, Wajihuddin; Mohler, Emile R

    2015-01-01

    Endothelial microparticles (EMPs) belong to a family of extracellular vesicles that are dynamic, mobile, biological effectors capable of mediating vascular physiology and function. The release of EMPs can impart autocrine and paracrine effects on target cells through surface interaction, cellular fusion, and, possibly, the delivery of intra-vesicular cargo. A greater understanding of the formation, composition, and function of EMPs will broaden our understanding of endothelial communication and may expose new pathways amenable for therapeutic manipulation. PMID:23892447

  15. The role of mitochondrial superoxide anion (O2-) on physiological aging in C57BL/6J mice

    International Nuclear Information System (INIS)

    Miyazawa, Masaki; Ishii, Takamasa; Yasuda, Kayo; Onouchi, Hiromi; Ishii, Naoaki; Noda, Setsuko; Hartman, Philip S.

    2009-01-01

    Much attention has been focused on the mitochondrial superoxide anion (O 2 - ), which is also a critical free radical produced by ionizing radiation. The specific role of the mitochondrial O 2 - on physiological aging in mammals is still nuclear despite wide-spread evidence that oxidative stress is involved in aging and age-related diseases. The major endogenous source of O 2 - is generated as a byproduct of energy metabolism from mitochondria. In order to better understand how O 2 - relates to metazoan aging, we have comprehensively examined age-related changes in the levels of oxidative damage, mitochondrial O 2 - production, mitochondrial antioxidant enzyme activity and apoptosis induction in key organs of an inbred mouse strain (C57BL/6J). Oxidative damage accumulated and excess apoptosis occurred in the brain, oculus and kidney with aging, but comparatively little occurred in the heart and muscle. These rates are correlated with O 2 - levels. Mitochondrial O 2 - production levels increased with aging in the brain, oculus and kidney, and did not significantly increased in the heart and muscle. In contrast to O 2 - production, mitochondrial SOD activities increased in heart and muscle, and remained unchanged in the brain, oculus and kidney with aging. These results suggest that O 2 - production has high organ specificity, and oxidative damage by O 2 - from mitochondria mediated apoptosis can lead to organ atrophy and physiological dysfunction. In addition, O 2 - from mitochondria plays a core role in physiological aging. (author)

  16. The role of mitochondrial superoxide anion (O2(-)) on physiological aging in C57BL/6J mice.

    Science.gov (United States)

    Miyazawa, Masaki; Ishii, Takamasa; Yasuda, Kayo; Noda, Setsuko; Onouchi, Hiromi; Hartman, Philip S; Ishii, Naoaki

    2009-01-01

    Much attention has been focused on the mitochondrial superoxide anion (O2(-)), which is also a critical free radial produced by ionizing radiation. The specific role of the mitochondrial O2(-) on physiological aging in mammals is still unclear despite wide-spread evidence that oxidative stress is involved in aging and age-related diseases. The major endogenous source of O2(-) is generated as a byproduct of energy metabolism from mitochondria. In order to better understand how O2(-)relates to metazoan aging, we have comprehensively examined age-related changes in the levels of oxidative damage, mitochondrial O2(-) production, mitochondrial antioxidant enzyme activity and apoptosis induction in key organs of an inbred mouse strain (C57BL/6J). Oxidative damage accumulated and excess apoptosis occurred in the brain, oculus and kidney with aging, but comparatively little occurred in the heart and muscle. These rates are correlated with O2(-) levels. Mitochondrial O2(-) production levels increased with aging in the brain, oculus and kidney, and did not significantly increased in the heart and muscle. In contrast to O2(-) production, mitochondrial SOD activities increased in heart and muscle, and remained unchanged in the brain, oculus and kidney with aging. These results suggest that O2(-) production has high organ specificity, and oxidative damage by O2(-) from mitochondria mediated apoptosis can lead to organ atrophy and physiological dysfunction. In addition, O2(-) from mitochondria plays a core role in physiological aging.

  17. Host lysozyme-mediated lysis of Lactococcus lactis facilitates delivery of colitis-attenuating superoxide dismutase to inflamed colons

    Science.gov (United States)

    Ballal, Sonia A.; Veiga, Patrick; Fenn, Kathrin; Michaud, Monia; Kim, Jason H.; Gallini, Carey Ann; Glickman, Jonathan N.; Quéré, Gaëlle; Garault, Peggy; Béal, Chloé; Derrien, Muriel; Courtin, Pascal; Kulakauskas, Saulius; Chapot-Chartier, Marie-Pierre; van Hylckama Vlieg, Johan; Garrett, Wendy S.

    2015-01-01

    Beneficial microbes that target molecules and pathways, such as oxidative stress, which can negatively affect both host and microbiota, may hold promise as an inflammatory bowel disease therapy. Prior work showed that a five-strain fermented milk product (FMP) improved colitis in T-bet−/− Rag2−/− mice. By varying the number of strains used in the FMP, we found that Lactococcus lactis I-1631 was sufficient to ameliorate colitis. Using comparative genomic analyses, we identified genes unique to L. lactis I-1631 involved in oxygen respiration. Respiration of oxygen results in reactive oxygen species (ROS) generation. Also, ROS are produced at high levels during intestinal inflammation and cause tissue damage. L. lactis I-1631 possesses genes encoding enzymes that detoxify ROS, such as superoxide dismutase (SodA). Thus, we hypothesized that lactococcal SodA played a role in attenuating colitis. Inactivation of the sodA gene abolished L. lactis I-1631’s beneficial effect in the T-bet−/− Rag2−/− model. Similar effects were obtained in two additional colonic inflammation models, Il10−/− mice and dextran sulfate sodium-treated mice. Efforts to understand how a lipophobic superoxide anion (O2−) can be detoxified by cytoplasmic lactoccocal SodA led to the finding that host antimicrobial-mediated lysis is a prerequisite for SodA release and SodA’s extracytoplasmic O2− scavenging. L. lactis I-1631 may represent a promising vehicle to deliver antioxidant, colitis-attenuating SodA to the inflamed intestinal mucosa, and host antimicrobials may play a critical role in mediating SodA’s bioaccessibility. PMID:26056274

  18. Endothelial remodelling and intracellular calcium machinery.

    Science.gov (United States)

    Moccia, F; Tanzi, F; Munaron, L

    2014-05-01

    Rather being an inert barrier between vessel lumen and surrounding tissues, vascular endothelium plays a key role in the maintenance of cardiovascular homeostasis. The de-endothelialization of blood vessels is regarded as the early event that results in the onset of severe vascular disorders, including atherosclerosis, acute myocardial infarction, brain stroke, and aortic aneurysm. Restoration of the endothelial lining may be accomplished by the activation of neighbouring endothelial cells (ECs) freed by contact inhibition and by circulating endothelial progenitor cells (EPCs). Intracellular Ca(2+) signalling is essential to promote wound healing: however, the molecular underpinnings of the Ca(2+) response to injury are yet to be fully elucidated. Similarly, the components of the Ca(2+) toolkit that drive EPC incorporation into denuded vessels are far from being fully elucidated. The present review will survey the current knowledge on the role of Ca(2+) signalling in endothelial repair and in EPC activation. We propose that endothelial regeneration might be boosted by intraluminal release of specific Ca(2+) channel agonists or by gene transfer strategies aiming to enhance the expression of the most suitable Ca(2+) channels at the wound site. In this view, connexin (Cx) channels/hemichannels and store-operated Ca(2+) entry (SOCE) stand amid the most proper routes to therapeutically induce the regrowth of denuded vessels. Cx stimulation might trigger the proliferative and migratory behaviour of ECs facing the lesion site, whereas activation of SOCE is likely to favour EPC homing to the wounded vessel.

  19. Resveratrol induces mitochondrial biogenesis in endothelial cells.

    Science.gov (United States)

    Csiszar, Anna; Labinskyy, Nazar; Pinto, John T; Ballabh, Praveen; Zhang, Hanrui; Losonczy, Gyorgy; Pearson, Kevin; de Cabo, Rafael; Pacher, Pal; Zhang, Cuihua; Ungvari, Zoltan

    2009-07-01

    Pathways that regulate mitochondrial biogenesis are potential therapeutic targets for the amelioration of endothelial dysfunction and vascular disease. Resveratrol was shown to impact mitochondrial function in skeletal muscle and the liver, but its role in mitochondrial biogenesis in endothelial cells remains poorly defined. The present study determined whether resveratrol induces mitochondrial biogenesis in cultured human coronary arterial endothelial cells (CAECs). In CAECs resveratrol increased mitochondrial mass and mitochondrial DNA content, upregulated protein expression of electron transport chain constituents, and induced mitochondrial biogenesis factors (proliferator-activated receptor-coactivator-1alpha, nuclear respiratory factor-1, mitochondrial transcription factor A). Sirtuin 1 (SIRT1) was induced, and endothelial nitric oxide (NO) synthase (eNOS) was upregulated in a SIRT1-dependent manner. Knockdown of SIRT1 (small interfering RNA) or inhibition of NO synthesis prevented resveratrol-induced mitochondrial biogenesis. In aortas of type 2 diabetic (db/db) mice impaired mitochondrial biogenesis was normalized by chronic resveratrol treatment, showing the in vivo relevance of our findings. Resveratrol increases mitochondrial content in endothelial cells via activating SIRT1. We propose that SIRT1, via a pathway that involves the upregulation of eNOS, induces mitochondrial biogenesis. Resveratrol induced mitochondrial biogenesis in the aortas of type 2 diabetic mice, suggesting the potential for new treatment approaches targeting endothelial mitochondria in metabolic diseases.

  20. Arachidonic metabolism and radiation toxicity in cultures of vascular endothelial cells

    International Nuclear Information System (INIS)

    Eldor, A.; Vlodavsky, I.; Fuks, Z.; Matzner, Y.; Rubin, D.B.

    1989-01-01

    The authors conclude that the observed changes in eicosanoid production by vascular endothelial cells exposed to ionizing irradiation may be relevant to the pathogenesis of post-radiation injury in small and large blood vessels. Anomalies of PGI 2 production may lead to thrombosis and accelerated arteriosclerosis which are observed in irradiated vessels. The generation of potent cells may greatly facilitate inflammation in irradiated vessels. The model of irradiated cultured endothelial cells may also be useful for the study of various methods and agents aimed