Sample records for endothelial cell-derived microparticles

  1. Cell-derived microparticles and the lung

    Dario Nieri


    Full Text Available Cell-derived microparticles are small (0.1–1 μm vesicles shed by most eukaryotic cells upon activation or during apoptosis. Microparticles carry on their surface, and enclose within their cytoplasm, molecules derived from the parental cell, including proteins, DNA, RNA, microRNA and phospholipids. Microparticles are now considered functional units that represent a disseminated storage pool of bioactive effectors and participate both in the maintenance of homeostasis and in the pathogenesis of diseases. The mechanisms involved in microparticle generation include intracellular calcium mobilisation, cytoskeleton rearrangement, kinase phosphorylation and activation of the nuclear factor-κB. The role of microparticles in blood coagulation and inflammation, including airway inflammation, is well established in in vitro and animal models. The role of microparticles in human pulmonary diseases, both as pathogenic determinants and biomarkers, is being actively investigated. Microparticles of endothelial origin, suggestive of apoptosis, have been demonstrated in the peripheral blood of patients with emphysema, lending support to the hypothesis that endothelial dysfunction and apoptosis are involved in the pathogenesis of the disease and represent a link with cardiovascular comorbidities. Microparticles also have potential roles in patients with asthma, diffuse parenchymal lung disease, thromboembolism, lung cancer and pulmonary arterial hypertension.

  2. Circulating apoptotic endothelial cell-derived microparticles are predicted metabolically unhealthy obesity

    Alexander E. Berezin


    Full Text Available Introduction: Circulating apoptotic endothelial cell-derived micro particles (EMPs are a marker of endothelial dysfunction and cardiovascular (CV risk in type 2 diabetes mellitus patients. There is evidence regarding association between apoptotic EMP number and CV disease in obese individuals. The aim of the study to investigate whether increased number of circulating apoptotic EMPs may predict transformation of Met-HO into Met-UHO. Methods: The study was retrospectively evolved 89 patients with established abdominal obesity (47 patients with Met-UHO determined as MetS and 42 subjects with Met-HO from the large cohort of abdominal obesity patients (n=268. Thirty five healthy volunteers matched for age and sex were involved in the study as a control cohort. Obesity-related biomarker (adiponectin, leptin, vistafin and EMPs were measured at baseline. Flow cytometry was used to determine EMPs with immune phenotype CD31+/annexin V+ and CD144+/annexin V+. Results: There was not found a significant difference between numbers of EMPs labeled CD31+/ Annexin V+ in Met-UHO and Met-HO patients, while Met-UHO patients had a significantly increased level of circulating CD144+/ Annexin V+ compared with Met-HO individuals. Multivariate logistic regression analysis has revealed the HOMA-IR, number of CV risk factors, serum leptin and hs-CRP independently predicted numbers of circulating CD31+/ Annexin V+ and CD144+/ Annexin V+ EMPs in Met-UHO. In Met-HO patients HOMA-IR remained an independent predictor of increased numbers of circulating CD31+/ Annexin V+ and CD144+/ Annexin V+ EMPs. Conclusion: in the investigation we found that the increased number of CD31+/Annexin V+ and CD144+/ Annexin V+ EMPs added to the based predictive model (HOMA-IR may predict transformation of Met-HO into Met-UHO.

  3. Flow Cytometric Quantification of Peripheral Blood Cell β-Adrenergic Receptor Density and Urinary Endothelial Cell-Derived Microparticles in Pulmonary Arterial Hypertension.

    Jonathan A Rose

    Full Text Available Pulmonary arterial hypertension (PAH is a heterogeneous disease characterized by severe angiogenic remodeling of the pulmonary artery wall and right ventricular hypertrophy. Thus, there is an increasing need for novel biomarkers to dissect disease heterogeneity, and predict treatment response. Although β-adrenergic receptor (βAR dysfunction is well documented in left heart disease while endothelial cell-derived microparticles (Ec-MPs are established biomarkers of angiogenic remodeling, methods for easy large clinical cohort analysis of these biomarkers are currently absent. Here we describe flow cytometric methods for quantification of βAR density on circulating white blood cells (WBC and Ec-MPs in urine samples that can be used as potential biomarkers of right heart failure in PAH. Biotinylated β-blocker alprenolol was synthesized and validated as a βAR specific probe that was combined with immunophenotyping to quantify βAR density in circulating WBC subsets. Ec-MPs obtained from urine samples were stained for annexin-V and CD144, and analyzed by a micro flow cytometer. Flow cytometric detection of alprenolol showed that βAR density was decreased in most WBC subsets in PAH samples compared to healthy controls. Ec-MPs in urine was increased in PAH compared to controls. Furthermore, there was a direct correlation between Ec-MPs and Tricuspid annular plane systolic excursion (TAPSE in PAH patients. Therefore, flow cytometric quantification of peripheral blood cell βAR density and urinary Ec-MPs may be useful as potential biomarkers of right ventricular function in PAH.

  4. [Endothelial microparticles (EMP) in physiology and pathology].

    Sierko, Ewa; Sokół, Monika; Wojtukiewicz, Marek Z


    Endothelial microparticles (EMP) are released from endothelial cells (ECs) in the process of activation and/or apoptosis. They harbor adhesive molecules, enzymes, receptors and cytoplasmic structures and express a wide range of various constitutive antigens, typical for ECs, at their surface. Under physiological conditions the concentration of EMP in the blood is clinically insignificant. However, it was reported that under pathological conditions EMP concentration in the blood might slightly increase and contribute to blood coagulation, angiogenesis and inflammation. It has been shown that EMP directly and indirectly contribute to the activation of blood coagulation. Endothelial microparticles directly participate in blood coagulation through their surface tissue factor (TF) - a major initiator of blood coagulation. Furthermore, EMP exhibit procoagulant potential via expression of negatively charged phospholipids at their surface, which may promote assembly of coagulation enzymes (TF/VII, tenases and prothrombinase complexes), leading to thrombus formation. In addition, they provide a binding surface for coagulation factors: IXa, VIII, Va and IIa. Moreover, it is possible that EMP transfer TF from TF-bearing EMP to activated platelets and monocytes by binding them through adhesion molecules. Also, EMP express von Willebrand factor, which may facilitate platelet aggregation. Apart from their procoagulant properties, it was demonstrated that EMP may express adhesive molecules and metalloproteinases (MMP-2, MMP-9) at their surface and release growth factors, which may contribute to angiogenesis. Additionally, surface presence of C3 and C4 - components of the classical pathway - suggests pro-inflammatory properties of these structures. This article contains a summary of available data on the biology and pathophysiology of endothelial microparticles and their potential role in blood coagulation, angiogenesis and inflammation.

  5. Circulating Endothelial Microparticles in Diabetes Mellitus

    A. F. Tramontano


    Full Text Available Background. Endothelial Microparticles (EMPs are small vesicles shed from activated or apoptotic endothelial cells and involved in cellular cross-talk. Whether EMP immunophenotypes vary according to stimulus in Diabetes Mellitus (DM is not known. We studied the cellular adhesion molecule (CAM profile of circulating EMPs in patients with and without Diabetes Mellitus type 2, who were undergoing elective cardiac catheterization. Methods and Results. EMPs were analyzed by flow cytometry. The absolute median number of EMPs (EMPs/L specific for CD31, CD105, and CD106 was significantly increased in the DM population. The ratio of CD62E/CD31 EMP populations reflected an apoptotic process. Conclusion. Circulating CD31+, CD105+, and CD106+ EMPs were significantly elevated in patients with DM. EMPs were the only independent predictors of DM in our study cohort. In addition, the EMP immunophenotype reflected an apoptotic process. Circulating EMPs may provide new options for risk assessment.

  6. Role of microparticles in endothelial dysfunction and arterial hypertension

    Thomas; Helbing; Christoph; Olivier; Christoph; Bode; Martin; Moser; Philipp; Diehl


    Microparticles are small cell vesicles that can be released by almost all eukaryotic cells during cellular stress and cell activation. Within the last 1-2 decades it has been shown that microparticles are useful blood surrogate markers for different pathological conditions, such as vascular inflammation, coagulation and tumour diseases. Several studies have investigated the abundance of microparticles of different cellular origins in multiple cardiovascular diseases. It thereby has been shown that microparticles released by platelets, leukocytes and endothelial cells can be found in conditions of endothelial dysfunction, acute and chronic vascular inflammation and hypercoagulation. In addition to their function as surrogate markers, several studies indicate that circulating microparticles can fuse with distinct target cells, such as endothelial cells or leukocyte, and thereby deliver cellular components of their parental cells to the target cells. Hence, microparticles are a novel entity of circulating, paracrine, biological vectors which can influence the phenotype, the function and presumably even the transcriptome of their target cells.This review article aims to give a brief overview about the microparticle biology with a focus on endothelial activation and arterial hypertension. More detailed information about the role of microparticles in pathophysiology and disease can be found in already published work.

  7. Improved flow cytometric assessment reveals distinct microvesicle (cell-derived microparticle signatures in joint diseases.

    Bence György

    Full Text Available INTRODUCTION: Microvesicles (MVs, earlier referred to as microparticles, represent a major type of extracellular vesicles currently considered as novel biomarkers in various clinical settings such as autoimmune disorders. However, the analysis of MVs in body fluids has not been fully standardized yet, and there are numerous pitfalls that hinder the correct assessment of these structures. METHODS: In this study, we analyzed synovial fluid (SF samples of patients with osteoarthritis (OA, rheumatoid arthritis (RA and juvenile idiopathic arthritis (JIA. To assess factors that may confound MV detection in joint diseases, we used electron microscopy (EM, Nanoparticle Tracking Analysis (NTA and mass spectrometry (MS. For flow cytometry, a method commonly used for phenotyping and enumeration of MVs, we combined recent advances in the field, and used a novel approach of differential detergent lysis for the exclusion of MV-mimicking non-vesicular signals. RESULTS: EM and NTA showed that substantial amounts of particles other than MVs were present in SF samples. Beyond known MV-associated proteins, MS analysis also revealed abundant plasma- and immune complex-related proteins in MV preparations. Applying improved flow cytometric analysis, we demonstrate for the first time that CD3(+ and CD8(+ T-cell derived SF MVs are highly elevated in patients with RA compared to OA patients (p=0.027 and p=0.009, respectively, after Bonferroni corrections. In JIA, we identified reduced numbers of B cell-derived MVs (p=0.009, after Bonferroni correction. CONCLUSIONS: Our results suggest that improved flow cytometric assessment of MVs facilitates the detection of previously unrecognized disease-associated vesicular signatures.

  8. "Kill" the messenger: Targeting of cell-derived microparticles in lupus nephritis.

    Nielsen, Christoffer T; Rasmussen, Niclas S; Heegaard, Niels H H; Jacobsen, Søren


    Immune complex (IC) deposition in the glomerular basement membrane (GBM) is a key early pathogenic event in lupus nephritis (LN). The clarification of the mechanisms behind IC deposition will enable targeted therapy in the future. Circulating cell-derived microparticles (MPs) have been proposed as major sources of extracellular autoantigens and ICs and triggers of autoimmunity in LN. The overabundance of galectin-3-binding protein (G3BP) along with immunoglobulins and a few other proteins specifically distinguish circulating MPs in patients with systemic lupus erythematosus (SLE), and this is most pronounced in patients with active LN. G3BP co-localizes with deposited ICs in renal biopsies from LN patients supporting a significant presence of MPs in the IC deposits. G3BP binds strongly to glomerular basement membrane proteins and integrins. Accordingly, MP surface proteins, especially G3BP, may be essential for the deposition of ICs in kidneys and thus for the ensuing formation of MP-derived electron dense structures in the GBM, and immune activation in LN. This review focuses on the notion of targeting surface molecules on MPs as an entirely novel treatment strategy in LN. By targeting MPs, a double hit may be achieved by attenuating both the autoantigenic fueling of immune complexes and the triggering of the adaptive immune system. Thereby, early pathogenic events may be blocked in contrast to current treatment strategies that primarily target and modulate later events in the cellular and humoral immune response.

  9. Increased IgG on cell-derived plasma microparticles in systemic lupus erythematosus is associated with autoantibodies and complement activation

    Nielsen, Christoffer T; Østergaard, Ole; Stener, Line


    To quantify immunoglobulin and C1q on circulating cell-derived microparticles (MPs) in patients with systemic lupus erythematosus (SLE) and to determine whether immunoglobulin and C1q levels are correlated with clinical and serologic parameters.......To quantify immunoglobulin and C1q on circulating cell-derived microparticles (MPs) in patients with systemic lupus erythematosus (SLE) and to determine whether immunoglobulin and C1q levels are correlated with clinical and serologic parameters....

  10. Flow rate calibration to determine cell-derived microparticles and homogeneity of blood components.

    Noulsri, Egarit; Lerdwana, Surada; Kittisares, Kulvara; Palasuwan, Attakorn; Palasuwan, Duangdao


    Cell-derived microparticles (MPs) are currently of great interest to screening transfusion donors and blood components. However, the current approach to counting MPs is not affordable for routine laboratory use due to its high cost. The current study aimed to investigate the potential use of flow-rate calibration for counting MPs in whole blood, packed red blood cells (PRBCs), and platelet concentrates (PCs). The accuracy of flow-rate calibration was investigated by comparing the platelet counts of an automated counter and a flow-rate calibrator. The concentration of MPs and their origins in whole blood (n=100), PRBCs (n=100), and PCs (n=92) were determined using a FACSCalibur. The MPs' fold-changes were calculated to assess the homogeneity of the blood components. Comparing the platelet counts conducted by automated counting and flow-rate calibration showed an r(2) of 0.6 (y=0.69x+97,620). The CVs of the within-run and between-run variations of flow-rate calibration were 8.2% and 12.1%, respectively. The Bland-Altman plot showed a mean bias of -31,142platelets/μl. MP enumeration revealed both the difference in MP levels and their origins in whole blood, PRBCs, and PCs. Screening the blood components demonstrated high heterogeneity of the MP levels in PCs when compared to whole blood and PRBCs. The results of the present study suggest the accuracy and precision of flow-rate calibration for enumerating MPs. This flow-rate approach is affordable for assessing the homogeneity of MPs in blood components in routine laboratory practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Endothelial cells derived from human embryonic stem cells

    Levenberg, Shulamit; Golub, Justin S.; Amit, Michal; Itskovitz-Eldor, Joseph; Langer, Robert


    Human embryonic stem cells have the potential to differentiate into various cell types and, thus, may be useful as a source of cells for transplantation or tissue engineering. We describe here the differentiation steps of human embryonic stem cells into endothelial cells forming vascular-like structures. The human embryonic-derived endothelial cells were isolated by using platelet endothelial cell-adhesion molecule-1 (PECAM1) antibodies, their behavior was characterized in vitro and in vivo, and their potential in tissue engineering was examined. We show that the isolated embryonic PECAM1+ cells, grown in culture, display characteristics similar to vessel endothelium. The cells express endothelial cell markers in a pattern similar to human umbilical vein endothelial cells, their junctions are correctly organized, and they have high metabolism of acetylated low-density lipoprotein. In addition, the cells are able to differentiate and form tube-like structures when cultured on matrigel. In vivo, when transplanted into SCID mice, the cells appeared to form microvessels containing mouse blood cells. With further studies, these cells could provide a source of human endothelial cells that could be beneficial for potential applications such as engineering new blood vessels, endothelial cell transplantation into the heart for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  12. Circulating Endothelial Microparticles: A Key Hallmark of Atherosclerosis Progression

    Keshav Raj Paudel


    Full Text Available The levels of circulating microparticles (MPs are raised in various cardiovascular diseases. Their increased level in plasma is regarded as a biomarker of alteration in vascular function. The prominent MPs present in blood are endothelial microparticles (EMPs described as complex submicron (0.1 to 1.0 μm vesicles like structure, released in response to endothelium cell activation or apoptosis. EMPs possess both physiological and pathological effects and may promote oxidative stress and vascular inflammation. EMPs release is triggered by inducer like angiotensin II, lipopolysaccharide, and hydrogen peroxide leading to the progression of atherosclerosis. However, there are multiple physiological pathways for EMPs generation like NADPH oxidase derived endothelial ROS formation, Rho kinase pathway, and mitogen-activated protein kinases. Endothelial dysfunction is a key initiating event in atherosclerotic plaque formation. Atheroemboli, resulting from ruptured carotid plaques, is a major cause of stroke. Increasing evidence suggests that EMPs play an important role in the pathogenesis of cardiovascular disease, acting as a marker of damage, either exacerbating disease progression or triggering a repair response. In this regard, it has been suggested that EMPs have the potential to act as biomarkers of disease status. This review aims to provide updated information of EMPs in relation to atherosclerosis pathogenesis.

  13. Circulating endothelial microparticles in female migraineurs with aura.

    Liman, Thomas G; Bachelier-Walenta, Katrin; Neeb, Lars; Rosinski, Jana; Reuter, Uwe; Böhm, Michael; Endres, Matthias


    Endothelial microparticles (EMPs) are vesicles that are released from activated endothelial cells and serve as a surrogate for endothelial dysfunction (ED). ED may be involved in migraine pathophysiology and contribute to the increased risk of ischemic stroke, particularly in female migraineurs with aura (MA). We sought to determine whether EMPs are elevated in women with MA. In this case-control study, EMPs were detected by analysing surface markers using fluorescence-activated cell sorting (FACS). Surface markers were measured covering the main cell lines relevant in cardiovascular disease like endothelial cells, platelets, monocytes and leucocytes. Microparticles (MPs) were identified in correlation to calibration by 1 -µm calibrator beads (Beckman Coulter). Arterial stiffness was assessed using fingertip tonometry and the heart rate-adjusted augmentation index (AI). We included 29 patients with MA and 29 matched controls. MA patients had significantly higher EMPs (CD62E(+)AnnexinV(+): 5142/µl vs 1535/µl; p < 0.001; CD144(+)AnnexinV(+): 6683/µl vs 3107/µl; p < 0.001), monocytic (CD14(+)AnnexinV(+) 6378 vs 3161; p < 0.001), and platelet MPs (CD62P(+)CD42b(+)AnnexinV(+) 5450 vs 3204; p < 0.001). Activated EMPs (CD62E(+)AnnexinV(+)) correlated with heart-rate adjusted AI (r = 0.46; p < 001). EMP levels are significantly elevated in women with MA and correlated with increased AI. Our findings suggest that endothelial activation is present in women with MA. This might contribute to higher stroke risk in MA. © International Headache Society 2014 Reprints and permissions:

  14. Differential procoagulant activity of microparticles derived from monocytes, granulocytes, platelets and endothelial cells: impact of active tissue factor.

    Shustova, Olga N; Antonova, Olga A; Golubeva, Nina V; Khaspekova, Svetlana G; Yakushkin, Vladimir V; Aksuk, Svetlana A; Alchinova, Irina B; Karganov, Mikhail Y; Mazurov, Alexey V


    Microparticles released by activated/apoptotic cells exhibit coagulation activity as they express phosphatidylserine and some of them - tissue factor. We compared procoagulant properties of microparticles from monocytes, granulocytes, platelets and endothelial cells and assessed the impact of tissue factor in observed differences. Microparticles were sedimented (20 000g, 30 min) from the supernatants of activated monocytes, monocytic THP-1 cells, granulocytes, platelets and endothelial cells. Coagulation activity of microparticles was examined using plasma recalcification assay. The size of microparticles was evaluated by dynamic light scattering. Tissue factor activity was measured by its ability to activate factor X. All microparticles significantly accelerated plasma coagulation with the shortest lag times for microparticles derived from monocytes, intermediate - for microparticles from THP-1 cells and endothelial cells, and the longest - for microparticles from granulocytes and platelets. Average diameters of microparticles ranged within 400-600 nm. The largest microparticles were produced by endothelial cells and granulocytes, smaller - by monocytes, and the smallest - by THP-1 cells and platelets. The highest tissue factor activity was detected in microparticles from monocytes, lower activity - in microparticles from endothelial cells and THP-1 cells, and no activity - in microparticles from platelets and granulocytes. Anti-tissue factor antibodies extended coagulation lag times for microparticles from monocytes, endothelial cells and THP-1 cells and equalized them with those for microparticles from platelets and granulocytes. Higher coagulation activity of microparticles from monocytes, THP-1 cells and endothelial cells in comparison with microparticles from platelets and granulocytes is determined mainly by the presence of active tissue factor.

  15. Nano-zymography Using Laser-Scanning Confocal Microscopy Unmasks Proteolytic Activity of Cell-Derived Microparticles

    Briens, Aurélien; Gauberti, Maxime; Parcq, Jérôme; Montaner, Joan; Vivien, Denis; Martinez de Lizarrondo, Sara


    Cell-derived microparticles (MPs) are nano-sized vesicles released by activated cells in the extracellular milieu. They act as vectors of biological activity by carrying membrane-anchored and cytoplasmic constituents of the parental cells. Although detection and characterization of cell-derived MPs may be of high diagnostic and prognostic values in a number of human diseases, reliable measurement of their size, number and biological activity still remains challenging using currently available methods. In the present study, we developed a protocol to directly image and functionally characterize MPs using high-resolution laser-scanning confocal microscopy. Once trapped on annexin-V coated micro-wells, we developed several assays using fluorescent reporters to measure their size, detect membrane antigens and evaluate proteolytic activity (nano-zymography). In particular, we demonstrated the applicability and specificity of this method to detect antigens and proteolytic activities of tissue-type plasminogen activator (tPA), urokinase and plasmin at the surface of engineered MPs from transfected cell-lines. Furthermore, we were able to identify a subset of tPA-bearing fibrinolytic MPs using plasma samples from a cohort of ischemic stroke patients who received thrombolytic therapy and in an experimental model of thrombin-induced ischemic stroke in mice. Overall, this method is promising for functional characterization of cell-derived MPs. PMID:27022410

  16. Circulating endothelial cells and procoagulant microparticles in patients with glioblastoma: prognostic value.

    Gaspar Reynés

    Full Text Available AIM: Circulating endothelial cells and microparticles are prognostic factors in cancer. However, their prognostic and predictive value in patients with glioblastoma is unclear. The objective of this study was to investigate the potential prognostic value of circulating endothelial cells and microparticles in patients with newly diagnosed glioblastoma treated with standard radiotherapy and concomitant temozolomide. In addition, we have analyzed the methylation status of the MGMT promoter. METHODS: Peripheral blood samples were obtained before and at the end of the concomitant treatment. Blood samples from healthy volunteers were also obtained as controls. Endothelial cells were measured by an immunomagnetic technique and immunofluorescence microscopy. Microparticles were quantified by flow cytometry. Microparticle-mediated procoagulant activity was measured by endogen thrombin generation and by phospholipid-dependent clotting time. Methylation status of MGMT promoter was determined by multiplex ligation-dependent probe amplification. RESULTS: Pretreatment levels of circulating endothelial cells and microparticles were higher in patients than in controls (p<0.001. After treatment, levels of microparticles and thrombin generation decreased, and phospholipid-dependent clotting time increased significantly. A high pretreatment endothelial cell count, corresponding to the 99(th percentile in controls, was associated with poor overall survival. MGMT promoter methylation was present in 27% of tumor samples and was associated to a higher overall survival (66 weeks vs 30 weeks, p<0.004. CONCLUSION: Levels of circulating endothelial cells may have prognostic value in patients with glioblastoma.

  17. Endothelial microparticles as conveyors of information in atherosclerotic disease.

    Schiro, A; Wilkinson, F L; Weston, R; Smyth, J V; Serracino-Inglott, F; Alexander, M Y


    Endothelial microparticles (EMPs) are complex submicron membrane-shed vesicles released into the circulation following endothelium cell activation or apoptosis. They are classified as either physiological or pathological, with anticoagulant or pro-inflammatory effects respectively. Endothelial dysfunction caused by inflammation is a key initiating event in atherosclerotic plaque formation. Athero-emboli, resulting from ruptured carotid plaques are a major cause of stroke. Current clinical techniques for arterial assessment, angiography and carotid ultrasound, give accurate information about stenosis but limited evidence on plaque composition, inflammation or vulnerability; as a result, patients with asymptomatic, or fragile carotid lesions, may not be identified and treated effectively. There is a need to discover novel biomarkers and develop more efficient diagnostic approaches in order to stratify patients at most risk of stroke, who would benefit from interventional surgery. Increasing evidence suggests that EMPs play an important role in the pathogenesis of cardiovascular disease, acting as a marker of damage, either exacerbating disease progression or triggering a repair response. In this regard, it has been suggested that EMPs have the potential to act as biomarkers of disease status. In this review, we will present the evidence to support this hypothesis and propose a novel concept for the development of a diagnostic device that could be implemented in the clinic. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Transformation of cell-derived microparticles into quantum-dot-labeled nanovectors for antitumor siRNA delivery.

    Chen, Gang; Zhu, Jun-Yi; Zhang, Zhi-Ling; Zhang, Wei; Ren, Jian-Gang; Wu, Min; Hong, Zheng-Yuan; Lv, Cheng; Pang, Dai-Wen; Zhao, Yi-Fang


    Cell-derived microparticles (MPs) have been recently recognized as critical intercellular information conveyors. However, further understanding of their biological behavior and potential application has been hampered by the limitations of current labeling techniques. Herein, a universal donor-cell-assisted membrane biotinylation strategy was proposed for labeling MPs by skillfully utilizing the natural membrane phospholipid exchange of their donor cells. This innovative strategy conveniently led to specific, efficient, reproducible, and biocompatible quantum dot (QD) labeling of MPs, thereby reliably conferring valuable traceability on MPs. By further loading with small interference RNA, QD-labeled MPs that had inherent cell-targeting and biomolecule-conveying ability were successfully employed for combined bioimaging and tumor-targeted therapy. This study provides the first reliable and biofriendly strategy for transforming biogenic MPs into functionalized nanovectors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Elevated procoagulant endothelial and tissue factor expressing microparticles in women with recurrent pregnancy loss.

    Rucha Patil

    Full Text Available BACKGROUND: 15% of reproducing couples suffer from pregnancy loss(PL and recurs in 2-3%. One of the most frequently hypothesized causes of unexplained PL refers to a defective maternal haemostatic response leading to uteroplacental thrombosis. Hereditary thrombophilia and antiphospholipid antibodies have been extensively described as risk factors for PL in women with unknown aetiology. Recently, a new marker has emerged: the cell-derived procoagulant circulating microparticles(MPs which have been reported to have a major role in many thrombosis complicated diseases. This study aims to analyze the significance of procoagulant MPs in women suffering from unexplained recurrent pregnancy loss(RPL, and characterize their cellular origin. METHOD AND FINDINGS: 115 women with RPL were analyzed for common thrombophilia markers and different cell derived MPs-total annexinV, platelet(CD41a, endothelial(CD146,CD62e, leukocyte(CD45, erythrocyte(CD235a and tissue factor(CD142(TF expressing MPs and were compared with 20 healthy non-pregnant women. Methodology for MP analysis was standardized by participating in the "Vascular Biology Scientific and Standardization Committee workshop". RESULTS: Total annexinV, TF and endothelial MPs were found significantly increased(p<0.05, 95% confidence interval in women with RPL. The procoagulant activity of MPs measured by STA-PPL clotting time assay was found in correspondence with annexinV MP levels, wherein the clot time was shortened in samples with increased MP levels. Differences in platelet, leukocyte and erythrocyte derived MPs were not significant. Thirty seven of 115 women were found to carry any of the acquired or hereditary thrombophilia markers. No significant differences were seen in the MP profile of women with and without thrombophilia marker. CONCLUSION: The presence of elevated endothelial, TF and phosphatidylserine expressing MPs at a distance (at least 3 months from the PL suggests a continued chronic

  20. A flow cytometric method for characterization of circulating cell-derived microparticles in plasma

    Nielsen, Morten Hjuler; Beck-Nielsen, Henning; Andersen, Morten Nørgaard;


    BACKGROUND AND AIM: Previous studies on circulating microparticles (MPs) indicate that the majority of MPs are of a size below the detection limit of most standard flow cytometers. The objective of the present study was to establish a method to analyze MP subpopulations above the threshold...... of detection of a new generation BD FACSAria™ III digital flow cytometer. METHODS: We analyzed MP subpopulations in plasma from 24 healthy individuals (9 males and 15 females). MPs were identified according to their size (.... The sensitivity of the flow cytometer was tested against that of a previous-generation instrument FC500. Reproducibility of the FACSAria and our set-up was investigated, and the percentage of phosphatidylserine (PS) exposing MPs binding Lactadherin was determined. RESULTS: By using a flow cytometric approach we...

  1. Hyperphosphatemia, Phosphoprotein Phosphatases, and Microparticle Release in Vascular Endothelial Cells.

    Abbasian, Nima; Burton, James O; Herbert, Karl E; Tregunna, Barbara-Emily; Brown, Jeremy R; Ghaderi-Najafabadi, Maryam; Brunskill, Nigel J; Goodall, Alison H; Bevington, Alan


    Hyperphosphatemia in patients with advanced CKD is thought to be an important contributor to cardiovascular risk, in part because of endothelial cell (EC) dysfunction induced by inorganic phosphate (Pi). Such patients also have an elevated circulating concentration of procoagulant endothelial microparticles (MPs), leading to a prothrombotic state, which may contribute to acute occlusive events. We hypothesized that hyperphosphatemia leads to MP formation from ECs through an elevation of intracellular Pi concentration, which directly inhibits phosphoprotein phosphatases, triggering a global increase in phosphorylation and cytoskeletal changes. In cultured human ECs (EAhy926), incubation with elevated extracellular Pi (2.5 mM) led to a rise in intracellular Pi concentration within 90 minutes. This was mediated by PiT1/slc20a1 Pi transporters and led to global accumulation of tyrosine- and serine/threonine-phosphorylated proteins, a marked increase in cellular Tropomyosin-3, plasma membrane blebbing, and release of 0.1- to 1-μm-diameter MPs. The effect of Pi was independent of oxidative stress or apoptosis. Similarly, global inhibition of phosphoprotein phosphatases with orthovanadate or fluoride yielded a global protein phosphorylation response and rapid release of MPs. The Pi-induced MPs expressed VE-cadherin and superficial phosphatidylserine, and in a thrombin generation assay, they displayed significantly more procoagulant activity than particles derived from cells incubated in medium with a physiologic level of Pi (1 mM). These data show a mechanism of Pi-induced cellular stress and signaling, which may be widely applicable in mammalian cells, and in ECs, it provides a novel pathologic link between hyperphosphatemia, generation of MPs, and thrombotic risk.

  2. Pleomorphic Structures in Human Blood Are Red Blood Cell-Derived Microparticles, Not Bacteria

    Mitchell, Adam J.; Gray, Warren D.; Schroeder, Max; Yi, Hong; Taylor, Jeannette V.; Dillard, Rebecca S.; Ke, Zunlong; Wright, Elizabeth R.; Stephens, David; Roback, John D.; Searles, Charles D.


    Background Red blood cell (RBC) transfusions are a common, life-saving therapy for many patients, but they have also been associated with poor clinical outcomes. We identified unusual, pleomorphic structures in human RBC transfusion units by negative-stain electron microscopy that appeared identical to those previously reported to be bacteria in healthy human blood samples. The presence of viable, replicating bacteria in stored blood could explain poor outcomes in transfusion recipients and have major implications for transfusion medicine. Here, we investigated the possibility that these structures were bacteria. Results Flow cytometry, miRNA analysis, protein analysis, and additional electron microscopy studies strongly indicated that the pleomorphic structures in the supernatant of stored RBCs were RBC-derived microparticles (RMPs). Bacterial 16S rDNA PCR amplified from these samples were sequenced and was found to be highly similar to species that are known to commonly contaminate laboratory reagents. Conclusions These studies suggest that pleomorphic structures identified in human blood are RMPs and not bacteria, and they provide an example in which laboratory contaminants may can mislead investigators. PMID:27760197

  3. Increased circulating cell-derived microparticle count is associated with recurrent implantation failure after IVF and embryo transfer.

    Martínez-Zamora, M Angeles; Tàssies, Dolors; Reverter, Juan Carlos; Creus, Montserrat; Casals, Gemma; Cívico, Salvadora; Carmona, Francisco; Balasch, Juan


    Cell-derived microparticles (cMPs) are small membrane vesicles that are released from many different cell types in response to cellular activation or apoptosis. Elevated cMP counts have been found in almost all thrombotic diseases and pregnancy wastage, such as recurrent spontaneous abortion and in a number of conditions associated with inflammation, cellular activation and angiogenesis. cMP count was investigated in patients experiencing unexplained recurrent implantation failure (RIF). The study group was composed of 30 women diagnosed with RIF (RIF group). The first control group (IVF group) (n = 30) comprised patients undergoing a first successful IVF cycle. The second control group (FER group) included 30 healthy women who had at least one child born at term and no history of infertility or obstetric complications. cMP count was significantly higher in the RIF group compared with the IVF and FER groups (P < 0.05 and P < 0.01, respectively) (RIF group: 15.8 ± 6.2 nM phosphatidylserine equivalent [PS eq]; IVF group: 10.9 ± 5.3 nM PS eq; FER group: 9.6 ± 4.0 nM PS eq). No statistical difference was found in cMP count between the IVF and FER groups. Increased cMP count is, therefore, associated with RIF after IVF and embryo transfer.

  4. Endothelial Microparticle-Derived Reactive Oxygen Species: Role in Endothelial Signaling and Vascular Function

    Dylan Burger


    Full Text Available Endothelial microparticles are effectors of endothelial damage; however mechanisms involved are unclear. We examined the effects of eMPs on cultured endothelial cells (ECs and isolated vessels and investigated the role of eMP-derived reactive oxygen species (ROS and redox signaling in these processes. eMPs were isolated from EC media and their ability to directly produce ROS was assessed by lucigenin and liquid chromatography. Nicotinamide adenine dinucleotide phosphate oxidase (Nox subunits were probed by Western blot. ECs were treated with eMPs and effects on kinase signaling, superoxide anion (O2∙- generation, and nitric oxide (NO production were examined. Acetylcholine-mediated vasorelaxation was assessed by myography in eMP-treated mesenteric arteries. eMPs contained Nox1, Nox2, Nox4, p47phox, p67phox, and p22phox and they produced ROS which was inhibited by the Nox inhibitor, apocynin. eMPs increased phosphorylation of ERK1/2 and Src, increased O2∙- production, and decreased A23187-induced NO production in ECs. Pretreatment of eMPs with apocynin diminished eMP-mediated effects on ROS and NO production but had no effect on eMP-mediated kinase activation or impairment in vasorelaxation. Our findings identify a novel mechanism whereby eMP-derived ROS contributes to MP bioactivity. These interactions may be important in conditions associated with vascular injury and increased eMP formation.

  5. Endotoxin-induced monocytic microparticles have contrasting effects on endothelial inflammatory responses.

    Beryl Wen

    Full Text Available Septic shock is a severe disease state characterised by the body's life threatening response to infection. Complex interactions between endothelial cells and circulating monocytes are responsible for microvasculature dysfunction contributing to the pathogenesis of this syndrome. Here, we intended to determine whether microparticles derived from activated monocytes contribute towards inflammatory processes and notably vascular permeability. We found that endotoxin stimulation of human monocytes enhances the release of microparticles of varying phenotypes and mRNA contents. Elevated numbers of LPS-induced monocytic microparticles (mMP expressed CD54 and contained higher levels of transcripts for pro-inflammatory cytokines such as TNF, IL-6 and IL-8. Using a prothrombin time assay, a greater reduction in plasma coagulation time was observed with LPS-induced mMP than with non-stimulated mMP. Co-incubation of mMP with the human brain endothelial cell line hCMEC/D3 triggered their time-dependent uptake and significantly enhanced endothelial microparticle release. Unexpectedly, mMP also modified signalling pathways by diminishing pSrc (tyr416 expression and promoted endothelial monolayer tightness, as demonstrated by endothelial impedance and permeability assays. Altogether, these data strongly suggest that LPS-induced mMP have contrasting effects on the intercellular communication network and display a dual potential: enhanced pro-inflammatory and procoagulant properties, together with protective function of the endothelium.

  6. Pathogen sensing pathways in human embryonic stem cell derived-endothelial cells: role of NOD1 receptors.

    Daniel M Reed

    Full Text Available Human embryonic stem cell-derived endothelial cells (hESC-EC, as well as other stem cell derived endothelial cells, have a range of applications in cardiovascular research and disease treatment. Endothelial cells sense Gram-negative bacteria via the pattern recognition receptors (PRR Toll-like receptor (TLR-4 and nucleotide-binding oligomerisation domain-containing protein (NOD-1. These pathways are important in terms of sensing infection, but TLR4 is also associated with vascular inflammation and atherosclerosis. Here, we have compared TLR4 and NOD1 responses in hESC-EC with those of endothelial cells derived from other stem cells and with human umbilical vein endothelial cells (HUVEC. HUVEC, endothelial cells derived from blood progenitors (blood outgrowth endothelial cells; BOEC, and from induced pluripotent stem cells all displayed both a TLR4 and NOD1 response. However, hESC-EC had no TLR4 function, but did have functional NOD1 receptors. In vivo conditioning in nude rats did not confer TLR4 expression in hESC-EC. Despite having no TLR4 function, hESC-EC sensed Gram-negative bacteria, a response that was found to be mediated by NOD1 and the associated RIP2 signalling pathways. Thus, hESC-EC are TLR4 deficient but respond to bacteria via NOD1. This data suggests that hESC-EC may be protected from unwanted TLR4-mediated vascular inflammation, thus offering a potential therapeutic advantage.

  7. CD144+ endothelial microparticles as a marker of endothelial injury in neonatal ABO blood group incompatibility.

    Awad, Hisham A E; Tantawy, Azza A G; El-Farrash, Rania A; Ismail, Eman A; Youssif, Noha M


    ABO antigens are expressed on the surfaces of red blood cells and the vascular endothelium. We studied circulating endothelial microparticles (EMP) in ABO haemolytic disease of the newborn (ABO HDN) as a marker of endothelial activation to test a hypothesis of possible endothelial injury in neonates with ABO HDN, and its relation with the occurrence and severity of haemolysis. Forty-five neonates with ABO HDN were compared with 20 neonates with Rhesus incompatibility (Rh HDN; haemolytic controls) and 20 healthy neonates with matched mother and infant blood groups (healthy controls). Laboratory investigations were done for markers of haemolysis and von Willebrand factor antigen (vWF Ag). EMP (CD144(+)) levels were measured before and after therapy (exchange transfusion and/or phototherapy). vWF Ag and pre-therapy EMP levels were higher in infants with ABO HDN or Rh HDN than in healthy controls, and were significantly higher in babies with ABO HDN than in those with Rh HDN (pABO HDN, pre-therapy EMP levels were higher in patients with severe hyperbilirubinaemia than in those with mild and moderate disease or those with Rh HDN (pABO HDN and Rh HDN groups; however, the decline in EMP levels was particularly evident after exchange transfusion in ABO neonates with severe hyperbilirubinaemia (pABO HDN. Elevated EMP levels in ABO HDN may reflect an IgG-mediated endothelial injury parallel to the IgG-mediated erythrocyte destruction and could serve as a surrogate marker of vascular dysfunction and disease severity in neonates with this condition.

  8. Role of tumour necrosis factor receptor-1 and nuclear factor-κB in production of TNF-α-induced pro-inflammatory microparticles in endothelial cells.

    Lee, S K; Yang, S-H; Kwon, I; Lee, O-H; Heo, J H


    Tumour necrosis factor-α (TNF-α) is upregulated in many inflammatory diseases and is also a potent agent for microparticle (MP) generation. Here, we describe an essential role of TNF-α in the production of endothelial cell-derived microparticles (EMPs) in vivo and the function of TNF-α-induced EMPs in endothelial cells. We found that TNF-α rapidly increased blood levels of EMPs in mice. Treatment of human umbilical vein endothelial cells (HUVECs) with TNF-α also induced EMP formation in a time-dependent manner. Silencing of TNF receptor (TNFR)-1 or inhibition of the nuclear factor-κB (NF-κB) in HUVECs impaired the production of TNF-α-induced EMP. Incubation of HUVECs with PKH-67-stained EMPs showed that endothelial cells readily engulfed EMPs, and the engulfed TNF-α-induced EMPs promoted the expression of pro-apoptotic molecules and upregulated intercellular adhesion molecule-1 level on the cell surface, which led to monocyte adhesion. Collectively, our findings indicate that the generation of TNF-α-induced EMPs was mediated by TNFR1 or NF-κB and that EMPs can contribute to apoptosis and inflammation of endothelial cells.

  9. Knockout of endothelial cell-derived endothelin-1 attenuates skin fibrosis but accelerates cutaneous wound healing.

    Katsunari Makino

    Full Text Available Endothelin (ET-1 is known for the most potent vasoconstrictive peptide that is released mainly from endothelial cells. Several studies have reported ET-1 signaling is involved in the process of wound healing or fibrosis as well as vasodilation. However, little is known about the role of ET-1 in these processes. To clarify its mechanism, we compared skin fibrogenesis and wound repair between vascular endothelial cell-specific ET-1 knockout mice and their wild-type littermates. Bleomycin-injected fibrotic skin of the knockout mice showed significantly decreased skin thickness and collagen content compared to that of wild-type mice, indicating that bleomycin-induced skin fibrosis is attenuated in the knockout mice. The mRNA levels of transforming growth factor (TGF-β were decreased in the bleomycin-treated skin of ET-1 knockout mice. On the other hand, skin wound healing was accelerated in ET-1 knockout mice, which was indicated by earlier granulation tissue reduction and re-epithelialization in these mice. The mRNA levels of TGF-β, tumor necrosis factor (TNF-α and connective tissue growth factor (CTGF were reduced in the wound of ET-1 knockout mice. In endothelial ET-1 knockout mouse, the expression of TNF-α, CTGF and TGF-β was down-regulated. Bosentan, an antagonist of dual ET receptors, is known to attenuate skin fibrosis and accelerate wound healing in systemic sclerosis, and such contradictory effect may be mediated by above molecules. The endothelial cell-derived ET-1 is the potent therapeutic target in fibrosis or wound healing, and investigations of the overall regulatory mechanisms of these pathological conditions by ET-1 may lead to a new therapeutic approach.

  10. Stem Cells Derived from Tooth Periodontal Ligament Enhance Functional Angiogenesis by Endothelial Cells

    Yeasmin, Shamima; Ceccarelli, Jacob; Vigen, Marina; Carrion, Bita; Putnam, Andrew J.; Tarle, Susan A.


    In regenerative medicine approaches involving cell therapy, selection of the appropriate cell type is important in that the cells must directly (differentiation) or indirectly (trophic effects) participate in the regenerative response. Regardless of the mode of action of the cells, angiogenesis underlies the success of these approaches. Stem cells derived from tooth tissues, specifically the periodontal ligament of teeth (periodontal ligament stem cells [PDLSCs]), have recently been identified as a good source of multipotent cells for cell therapies. PDLSCs have demonstrated properties similar to mesenchymal stem cells (MSCs), yet, unlike MSCs, their vascular potential has not been previously demonstrated. Thus, the aim of this study was to determine if PDLSCs could modulate angiogenesis. In comparison to MSCs and stem cells derived from tooth pulp tissues (SHEDs), we first determined if PDLSCs released soluble proangiogenic factors with the capacity to induce vessel formation by endothelial cells (ECs). Next, the ability of PDLSCs to modulate angiogenesis was examined through their cotransplantation with ECs in subcutaneous sites of immunocompromised mice. Finally, the stability of the PDLSC-mediated vasculature was determined through evaluation of the maturity and functionality of the vessels formed following PDLSC transplantation. It was determined that PDLSCs produced appreciable levels of vascular endothelial growth factor and basic fibroblast growth factor-2, and additionally, were able to initiate in vitro angiogenesis of ECs comparable to MSC- and SHED-mediated angiogenesis. In vivo cotransplantation of ECs with PDLSCs significantly (>50% increase) enhanced the number of blood vessels formed relative to transplantation of ECs alone. Finally, vessels formed following PDLSC cotransplantation were more mature and less permeable than those formed after transplantation of EC alone. These data demonstrate for the first time that PDLSCs have vascular potential

  11. Endothelial differentiation in multipotent cells derived from mouse and human white mature adipocytes.

    Jumabay, Medet; Abdmaulen, Raushan; Urs, Sumithra; Heydarkhan-Hagvall, Sepideh; Chazenbalk, Gregorio D; Jordan, Maria C; Roos, Kenneth P; Yao, Yucheng; Boström, Kristina I


    White mature adipocytes give rise to multipotent cells, so-called de-differentiated fat (DFAT) cells, when losing their fat in culture. The objective of this study was to examine the ability of DFAT cells to give rise to endothelial cells (ECs) in vitro and vivo. We demonstrate that mouse and human DFAT cells, derived from adipose tissue and lipospirate, respectively, initially lack expression of CD34, CD31, CD146, CD45 and pericyte markers, distinguishing them from progenitor cells previously identified in adipose stroma. The DFAT cells spontaneously differentiate into vascular ECs in vitro, as determined by real-time PCR, fluorescence activated cell sorting, immunostaining, and formation of tube structures. Treatment with bone morphogenetic protein (BMP)4 and BMP9, important in regulating angiogenesis, significantly enhances the EC differentiation. Furthermore, adipocyte-derived cells from Green Fluorescent Protein-transgenic mice were detected in the vasculature of infarcted myocardium up to 6 weeks after ligation of the left anterior descending artery in mice. We conclude that adipocyte-derived multipotent cells are able to spontaneously give rise to ECs, a process that is promoted by BMPs and may be important in cardiovascular regeneration and in physiological and pathological changes in fat and other tissues.

  12. Microparticles generated during chronic cerebral ischemia deliver proapoptotic signals to cultured endothelial cells

    Schock, Sarah C. [Ottawa Hospital Research Institute, Neuroscience, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada); Edrissi, Hamidreza [University of Ottawa, Neuroscience Graduate Program, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada); Burger, Dylan [Ottawa Hospital Research Institute, Kidney Centre, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada); Cadonic, Robert; Hakim, Antoine [Ottawa Hospital Research Institute, Neuroscience, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada); Thompson, Charlie, E-mail: [Ottawa Hospital Research Institute, Neuroscience, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada)


    Highlights: • Microparticles are elevated in the plasma in a rodent model of chronic cerebral ischemia. • These microparticles initiate apoptosis in cultured cells. • Microparticles contain caspase 3 and they activate receptors for TNF-α and TRAIL. - Abstract: Circulating microparticles (MPs) are involved in many physiological processes and numbers are increased in a variety of cardiovascular disorders. The present aims were to characterize levels of MPs in a rodent model of chronic cerebral hypoperfusion (CCH) and to determine their signaling properties. MPs were isolated from the plasma of rats exposed to CCH and quantified by flow cytometry. When MPs were added to cultured endothelial cells or normal rat kidney cells they induced cell death in a time and dose dependent manner. Analysis of pellets by electron microscopy indicates that cell death signals are carried by particles in the range of 400 nm in diameter or less. Cell death involved the activation of caspase 3 and was not a consequence of oxidative stress. Inhibition of the Fas/FasL signaling pathway also did not improve cell survival. MPs were found to contain caspase 3 and treating the MPs with a caspase 3 inhibitor significantly reduced cell death. A TNF-α receptor blocker and a TRAIL neutralizing antibody also significantly reduced cell death. Levels of circulating MPs are elevated in a rodent model of chronic cerebral ischemia. MPs with a diameter of 400 nm or less activate the TNF-α and TRAIL signaling pathways and may deliver caspase 3 to cultured cells.

  13. Endocytosis and intracellular processing of platelet microparticles by brain endothelial cells.

    Faille, Dorothée; El-Assaad, Fatima; Mitchell, Andrew J; Alessi, Marie-Christine; Chimini, Giovanna; Fusai, Thierry; Grau, Georges E; Combes, Valéry


    Platelet-derived microparticles (PMP) bind and modify the phenotype of many cell types including endothelial cells. Recently, we showed that PMP were internalized by human brain endothelial cells (HBEC). Here we intend to better characterize the internalization mechanisms of PMP and their intracellular fate. Confocal microscopy analysis of PKH67-labelled PMP distribution in HBEC showed PMP in early endosome antigen 1 positive endosomes and in LysoTracker-labelled lysosomes, confirming a role for endocytosis in PMP internalization. No fusion of calcein-loaded PMP with HBEC membranes was observed. Quantification of PMP endocytosis using flow cytometry revealed that it was partially inhibited by trypsin digestion of PMP surface proteins and by extracellular Ca(2+) chelation by EDTA, suggesting a partial role for receptor-mediated endocytosis in PMP uptake. This endocytosis was independent of endothelial receptors such as intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 and was not increased by tumour necrosis factor stimulation of HBEC. Platelet-derived microparticle internalization was dramatically increased in the presence of decomplemented serum, suggesting a role for PMP opsonin-dependent phagocytosis. Platelet-derived microparticle uptake was greatly diminished by treatment of HBEC with cytochalasin D, an inhibitor of microfilament formation required for both phagocytosis and macropinocytosis, with methyl-β-cyclodextrin that depletes membrane cholesterol needed for macropinocytosis and with amiloride that inhibits the Na(+)/H(+) exchanger involved in macropinocytosis. In conclusion, PMP are taken up by active endocytosis in HBEC, involving mechanisms consistent with both phagocytosis and macropinocytosis. These findings identify new processes by which PMP could modify endothelial cell phenotype and functions.

  14. Influence of irradiation on release of endothelial microparticles (EMP) in vitro.

    Neuber, Christin; Pufe, Johanna; Pietzsch, Jens


    Survivors of Hodgkin's disease as well as of breast and lung cancer are at risk of radiation-associated cardiovascular disease. Recent studies demonstrated a correlation between cardiovascular risk factors and circulating endothelial microparticles (EMP) and thereby suggest increased EMP levels in circulation to be an early biomarker of endothelial dysfunction and cardiovascular risk. This prompted us to analyze the amount of EMP released by human aortic endothelial cells (HAEC) after exposure to different doses of X-ray (0.4, 2, 4, 6, and 20 Gy) using antibodies against the endothelial cell markers CD31, CD144, and CD146 by flow cytometry. In this pilot experiment only CD146 proved appropriate for quantification of HAEC-derived EMP. Exposure of HAEC to different doses of X-ray did not significantly influence formation of CD146-positive EMP. However, low doses (0.4 Gy) tended to decrease EMP formation, whereas higher doses (2 or 4 Gy) slightly increased release of CD146-positive EMP. By contrast, inflammatory activation of HAEC by TPA significantly increased EMP release about 15-fold (P EMP did not prove a suitable biomarker for radiation-induced endothelial dysfunction in vitro.

  15. Impact of Endothelial Microparticles on Coagulation, Inflammation, and Angiogenesis in Age-Related Vascular Diseases

    Margaret Markiewicz


    Full Text Available Endothelial microparticles (EMPs are complex vesicular structures that originate from plasma membranes of activated or apoptotic endothelial cells. EMPs play a significant role in vascular function by altering the processes of inflammation, coagulation, and angiogenesis, and they are key players in the pathogenesis of several vascular diseases. Circulating EMPs are increased in many age-related vascular diseases such as coronary artery disease, peripheral vascular disease, cerebral ischemia, and congestive heart failure. Their elevation in plasma has been considered as both a biomarker and bioactive effector of vascular damage and a target for vascular diseases. This review focuses on the pleiotropic roles of EMPs and the mechanisms that trigger their formation, particularly the involvement of decreased estrogen levels, thrombin, and PAI-1 as major factors that induce EMPs in age-related vascular diseases.

  16. Effects of high intensity training and high volume training on endothelial microparticles and angiogenic growth factors.

    Patrick Wahl

    Full Text Available AIMS: Endothelial microparticles (EMP are complex vesicular structures shed from activated or apoptotic endothelial cells. As endurance exercise affects the endothelium, the objective of the study was to examine levels of EMP and angiogenic growth factors following different endurance exercise protocols. METHODS: 12 subjects performed 3 different endurance exercise protocols: 1. High volume training (HVT; 130 min at 55% peak power output (PPO; 2. 4 × 4 min at 95% PPO; 3. 4 × 30 sec all-out. EMPs were quantified using flow cytometry after staining platelet-poor-plasma. Events positive for Annexin-V and CD31, and negative for CD42b, were classified as EMPs. Vascular endothelial growth factor (VEGF, migratory inhibiting factor (MIF and hepatocyte growth factor (HGF were determined by ELISA technique. For all these measurements venous blood samples were taken pre, 0', 30', 60' and 180' after each intervention. Furthermore, in vitro experiments were performed to explore the effect of collected sera on target endothelial functions and MP uptake capacities. RESULTS: VEGF and HGF significantly increased after HIT interventions. All three interventions caused a significant decrease in EMP levels post exercise compared to pre values. The sera taken after exercise increased the uptake of EMP in target endothelial cells compared to sera taken under resting conditions, which was shown to be phosphatidylserin-dependent. Increased EMP uptake was associated with an improved protection of target cells against apoptosis. Sera taken prior and after exercise promoted target endothelial cell migration, which was abrogated after inhibition of VEGF. CONCLUSION: Physical exercise leads to decreased EMP levels and promotes a phosphatidylserin-dependent uptake of EMP into target endothelial cells, which is associated with a protection of target cells against apoptosis.

  17. TNFα-Damaged-HUVECs Microparticles Modify Endothelial Progenitor Cell Functional Activity

    Luna, Carlos; Carmona, Andrés; Alique, Matilde; Carracedo, Julia; Ramirez, Rafael


    Endothelial progenitor cells (EPCs) have an important role in the maintenance of vascular integrity and homeostasis. While there are many studies that explain EPCs mechanisms action, there are few studies that demonstrate how they interact with other emerging physiological elements such as Endothelial Microparticles (EMPs). EMPs are membranous structures with a size between 100 and 1000 nm that act as molecular information transporter in biological systems and are known as an important elements in develop different pathologies; moreover a lot of works explains that are novel biomarkers. To elucidate these interactions, we proposed an in vitro model of endothelial damage mediated by TNFalpha, in which damaged EMPs and EPCs are in contact to assess EPCs functional effects. We have observed that damaged EMPs can modulate several EPCs classic factors as colony forming units (CFUs), contribution to repair a physically damaged endothelium (wound healing), binding to mature endothelium, and co-adjuvants to the formation of new vessels in vitro (angiogenesis). All of these in a dose-dependent manner. Damaged EMPs at a concentration of 103 MPs/ml have an activating effect of these capabilities, while at concentrations of 105 MPs/ml these effects are attenuated or reduced. This in vitro model helps explain that in diseases where there is an imbalance between these two elements (EPCs and damaged EMPs), the key cellular elements in the regeneration and maintenance of vascular homeostasis (EPCs) are not fully functional, and could explain, at least in part, endothelial dysfunction associated in various pathologies. PMID:26733886

  18. Endothelial Activation Microparticles and Inflammation Status Improve with Exercise Training in African Americans

    Dianne M. Babbitt


    Full Text Available African Americans have the highest prevalence of hypertension in the world which may emanate from their predisposition to heightened endothelial inflammation. The purpose of this study was to determine the effects of a 6-month aerobic exercise training (AEXT intervention on the inflammatory biomarkers interleukin-10 (IL-10, interleukin-6 (IL-6, and endothelial microparticle (EMP CD62E+ and endothelial function assessed by flow-mediated dilation (FMD in African Americans. A secondary purpose was to evaluate whether changes in IL-10, IL-6, or CD62E+ EMPs predicted the change in FMD following the 6-month AEXT intervention. A pre-post design was employed with baseline evaluation including office blood pressure, FMD, fasting blood sampling, and graded exercise testing. Participants engaged in 6 months of AEXT. Following the AEXT intervention, all baseline tests were repeated. FMD significantly increased, CD62E+ EMPs and IL-6 significantly decreased, and IL-10 increased but not significantly following AEXT. Changes in inflammatory biomarkers did not significantly predict the change in FMD. The change in VO2 max significantly predicted the change in IL-10. Based on these results, AEXT may be a viable, nonpharmacological method to improve inflammation status and endothelial function and thereby contribute to risk reduction for cardiovascular disease in African Americans.

  19. Characterization and comparison of embryonic stem cell-derived KDR+ cells with endothelial cells.

    Sun, Xuan; Cheng, Lamei; Duan, Huaxin; Lin, Ge; Lu, Guangxiu


    Growing interest in utilizing endothelial cells (ECs) for therapeutic purposes has led to the exploration of human embryonic stem cells (hESCs) as a potential source for endothelial progenitors. In this study, ECs were induced from hESC lines and their biological characteristics were analyzed and compared with both cord blood endothelial progenitor cells (CBEPCs) and human umbilical vein endothelial cells (HUVECs) in vitro. The results showed that isolated embryonic KDR+ cells (EC-KDR+) display characteristics that were similar to CBEPCs and HUVECs. EC-KDR+, CBEPCs and HUVECs all expressed CD31 and CD144, incorporated DiI-Ac-LDL, bound UEA1 lectin, and were able to form tube-like structures on Matrigel. Compared with CBEPCs and HUVECs, the expression level of endothelial progenitor cell markers such as CD133 and KDR in EC-KDR+ was significantly higher, while the mature endothelial marker vWF was lowly expressed in EC-KDR+. In summary, the study showed that EC-KDR+ are primitive endothelial-like progenitors and might be a potential source for therapeutic vascular regeneration and tissue engineering.

  20. Flow bioreactor design for quantitative measurements over endothelial cells using micro-particle image velocimetry

    Leong, Chia Min; Voorhees, Abram; Nackman, Gary B.; Wei, Timothy


    Mechanotransduction in endothelial cells (ECs) is a highly complex process through which cells respond to changes in hemodynamic loading by generating biochemical signals involving gene and protein expression. To study the effects of mechanical loading on ECs in a controlled fashion, different in vitro devices have been designed to simulate or replicate various aspects of these physiological phenomena. This paper describes the design, use, and validation of a flow chamber which allows for spatially and temporally resolved micro-particle image velocimetry measurements of endothelial surface topography and stresses over living ECs immersed in pulsatile flow. This flow chamber also allows the study of co-cultures (i.e., ECs and smooth muscle cells) and the effect of different substrates (i.e., coverslip and/or polyethylene terepthalate (PET) membrane) on cellular response. In this report, the results of steady and pulsatile flow on fixed endothelial cells seeded on PET membrane and coverslip, respectively, are presented. Surface topography of ECs is computed from multiple two-dimensional flow measurements. The distributions of shear stress and wall pressure on each individual cell are also determined and the importance of both types of stress in cell remodeling is highlighted.

  1. Flow bioreactor design for quantitative measurements over endothelial cells using micro-particle image velocimetry.

    Leong, Chia Min; Voorhees, Abram; Nackman, Gary B; Wei, Timothy


    Mechanotransduction in endothelial cells (ECs) is a highly complex process through which cells respond to changes in hemodynamic loading by generating biochemical signals involving gene and protein expression. To study the effects of mechanical loading on ECs in a controlled fashion, different in vitro devices have been designed to simulate or replicate various aspects of these physiological phenomena. This paper describes the design, use, and validation of a flow chamber which allows for spatially and temporally resolved micro-particle image velocimetry measurements of endothelial surface topography and stresses over living ECs immersed in pulsatile flow. This flow chamber also allows the study of co-cultures (i.e., ECs and smooth muscle cells) and the effect of different substrates (i.e., coverslip and∕or polyethylene terepthalate (PET) membrane) on cellular response. In this report, the results of steady and pulsatile flow on fixed endothelial cells seeded on PET membrane and coverslip, respectively, are presented. Surface topography of ECs is computed from multiple two-dimensional flow measurements. The distributions of shear stress and wall pressure on each individual cell are also determined and the importance of both types of stress in cell remodeling is highlighted.

  2. Stem cell-derived vascular endothelial cells and their potential application in regenerative medicine

    Although a 'vascular stem cell' population has not been identified or generated, vascular endothelial and mural cells (smooth muscle cells and pericytes) can be derived from currently known pluripotent stem cell sources, including human embryonic stem cells and induced pluripotent stem cells. We rev...

  3. Racial differences in tumor necrosis factor-α-induced endothelial microparticles and interleukin-6 production

    Brown M


    Full Text Available Michael D Brown1,3, Deborah L Feairheller1, Sunny Thakkar1, Praveen Veerabhadrappa1, Joon-Young Park21Hypertension, Molecular and Applied Physiology Laboratory, 2Cardiovascular Genomics Laboratory, Department of Kinesiology, 3Cardiovascular Research Center, School of Medicine, Temple University, Philadelphia, PA, USAAbstract: African Americans (AA tend to have heightened systemic inflammation and endothelial dysfunction. Endothelial microparticles (EMP are released from activated/apoptotic endothelial cells (EC when stimulated by inflammation. The purpose of our study was to assess EMP responses to inflammatory cytokine (TNF-α and antioxidant (superoxide dismutase, SOD conditions in human umbilical vein ECs (HUVECs obtained from AA and Caucasians. EMPs were measured under four conditions: control (basal, TNF-α, SOD, and TNF-α + SOD. Culture supernatant was collected for EMP analysis by flow cytometry and IL-6 assay by ELISA. IL-6 protein expression was assessed by Western blot. AA HUVECs had greater EMP levels under the TNF- α condition compared to the Caucasian HUVECs (6.8 ± 1.1 vs 4.7% ± 0.4%, P = 0.04. The EMP level increased by 89% from basal levels in the AA HUVECs under the TNF-α condition (P = 0.01 compared to an 8% increase in the Caucasian HUVECs (P = 0.70. Compared to the EMP level under the TNF-α condition, the EMP level in the AA HUVECs was lower under the SOD only condition (2.9% ± 0.3%, P = 0.005 and under the TNF-α + SOD condition (2.1% ± 0.4%, P = 0.001. Basal IL-6 concentrations were 56.1 ± 8.8 pg/mL/µg in the AA and 30.9 ± 14.9 pg/mL/µg in the Caucasian HUVECs (P = 0.17, while basal IL-6 protein expression was significantly greater (P < 0.05 in the AA HUVECs. These preliminary observational results suggest that AA HUVECs may be more susceptible to the injurious effects of the proinflammatory cytokine, TNF-α.Keywords: endothelium, inflammation, endothelial microparticles, African Americans

  4. Functions of Müller cell-derived vascular endothelial growthfactor in diabetic retinopathy


    Müller cells are macroglia and play many essentialroles as supporting cells in the retina. To respond topathological changes in diabetic retinopathy (DR), amajor complication in the eye of diabetic patients,retinal Müller glia produce a high level of vascularendothelial growth factor (VEGF or VEGF-A). As VEGFis expressed by multiple retinal cell-types and Müllerglia comprise only a small portion of cells in the retina,it has been a great challenge to reveal the function ofVEGF or other globally expressed proteins produced byMüller cells. With the development of conditional genetargeting tools, it is now possible to dissect the functionof Müller cell-derived VEGF in vivo . By using conditionalgene targeting approach, we demonstrate that Müllerglia are a major source of retinal VEGF in diabetic miceand Müller cell-derived VEGF plays a significant role inthe alteration of protein expression and peroxynitration,which leads to retinal inflammation, neovascularization,vascular leakage, and vascular lesion, key pathologicalchanges in DR. Therefore, Müller glia are a potentialcellular target for the treatment of DR, a leading causeof blindness.


    Carlos eLuna Ruiz


    Full Text Available Endothelial progenitor cells (EPCs have an important role in the maintenance of vascular integrity and homeostasis. While there are many studies that explain EPCs mechanisms action, there are few studies that demonstrate how they interact with other emerging physiological elements such as Endothelial Microparticles (EMPs. EMPs are membranous structures with a size between 100-1000nm that act as molecular information transporter in biological systems and are known as an important elements in develop of different pathologies; moreover a lot of works explains that are novel biomarkers. To elucidate these interactions, we proposed an in vitro model of endothelial damage mediated by TNF-alpha, in which damaged EMPs and EPCs are in contact to assess EPCs functional effects. We have observed that damaged EMPs can modulate several EPCs classic factors as colony forming units (CFUs, contribution to repair a physically damaged endothelium (wound healing, binding to mature endothelium, and co-adjuvants to the formation of new vessels in vitro (angiogenesis. All of these in a dose-dependent manner. Damaged EMPs at a concentration of 103 MPs/ml have an activating effect of these capabilities, while at concentrations of 105 MPs/ml these effects are attenuated or reduced. This in vitro model helps explain that in diseases where there is an imbalance between these two elements (EPCs and damaged EMPs, the key cellular elements in the regeneration and maintenance of vascular homeostasis (EPCs are not fully functional, and could explain, at least in part, endothelial dysfunction associated in various pathologies.

  6. Circulating microparticles from Crohn's disease patients cause endothelial and vascular dysfunctions.

    Daniela Leonetti

    Full Text Available BACKGROUND: Microparticles (MPs are small vesicles released during cell activation or apoptosis. They are involved in coagulation, inflammation and vascular dysfunction in several diseases. We characterized circulating MPs from Crohn's Disease (CD patients and evaluated their effects on endothelial function and vascular reactivity after in vivo injection into mice. METHODS: Circulating MPs and their cellular origins were examined by flow cytometry from blood samples from healthy subjects (HS and inactive or active CD patients. MPs were intravenously injected into mice. After 24 hours, endothelial function and vascular reactivity were assessed. RESULTS: Circulating MP levels did not differ between HS and inactive CD patients except for an increase in leukocyte-derived MPs in CD. Active CD patients compared to HS displayed increased total circulating MPs, pro-coagulant MPs and those from platelets, endothelium, erythrocytes, leukocytes, activated leukocytes and activated platelets. A significant correlation was found between total levels of MPs, those from platelets and endothelial cells, and the Harvey-Bradshaw clinical activity index. MPs from CD, but not from HS, impaired endothelium-dependent relaxation in mice aorta and flow-induced dilation in mice small mesenteric arteries, MPs from inactive CD patients being more effective than those from active patients. CDMPs induced vascular hypo-reactivity in aorta that was prevented by a nitric oxide (NO-synthase inhibitor, and was associated with a subtle alteration of the balance between NO, reactive oxygen species and the release of COX metabolites. CONCLUSIONS: We provide evidence that MPs from CD patients significantly alter endothelial and vascular function and therefore, may play a role in CD pathophysiology, at least by contributing to uncontrolled vascular-dependent intestinal damage.

  7. Endothelial cell-derived pentraxin 3 limits the vasoreparative therapeutic potential of circulating angiogenic cells.

    O'Neill, Christina L; Guduric-Fuchs, Jasenka; Chambers, Sarah E J; O'Doherty, Michelle; Bottazzi, Barbara; Stitt, Alan W; Medina, Reinhold J


    Circulating angiogenic cells (CACs) promote revascularization of ischaemic tissues although their underlying mechanism of action and the consequences of delivering varying number of these cells for therapy remain unknown. This study investigates molecular mechanisms underpinning CAC modulation of blood vessel formation. CACs at low (2 × 10(5) cells/mL) and mid (2 × 10(6) cells/mL) cellular densities significantly enhanced endothelial cell tube formation in vitro, while high density (HD) CACs (2 × 10(7) cells/mL) significantly inhibited this angiogenic process. In vivo, Matrigel-based angiogenesis assays confirmed mid-density CACs as pro-angiogenic and HD CACs as anti-angiogenic. Secretome characterization of CAC-EC conditioned media identified pentraxin 3 (PTX3) as only present in the HD CAC-EC co-culture. Recombinant PTX3 inhibited endothelial tube formation in vitro and in vivo. Importantly, our data revealed that the anti-angiogenic effect observed in HD CAC-EC co-cultures was significantly abrogated when PTX3 bioactivity was blocked using neutralizing antibodies or PTX3 siRNA in endothelial cells. We show evidence for an endothelial source of PTX3, triggered by exposure to HD CACs. In addition, we confirmed that PTX3 inhibits fibroblast growth factor (FGF) 2-mediated angiogenesis, and that the PTX3 N-terminus, containing the FGF-binding site, is responsible for such anti-angiogenic effects. Endothelium, when exposed to HD CACs, releases PTX3 which markedly impairs the vascular regenerative response in an autocrine manner. Therefore, CAC density and accompanying release of angiocrine PTX3 are critical considerations when using these cells as a cell therapy for ischaemic disease. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  8. Human Stem Cell-Derived Endothelial-Hepatic Platform for Efficacy Testing of Vascular-Protective Metabolites from Nutraceuticals.

    Narmada, Balakrishnan Chakrapani; Goh, Yeek Teck; Li, Huan; Sinha, Sanjay; Yu, Hanry; Cheung, Christine


    Atherosclerosis underlies many cardiovascular and cerebrovascular diseases. Nutraceuticals are emerging as a therapeutic moiety for restoring vascular health. Unlike small-molecule drugs, the complexity of ingredients in nutraceuticals often confounds evaluation of their efficacy in preclinical evaluation. It is recognized that the liver is a vital organ in processing complex compounds into bioactive metabolites. In this work, we developed a coculture system of human pluripotent stem cell-derived endothelial cells (hPSC-ECs) and human pluripotent stem cell-derived hepatocytes (hPSC-HEPs) for predicting vascular-protective effects of nutraceuticals. To validate our model, two compounds (quercetin and genistein), known to have anti-inflammatory effects on vasculatures, were selected. We found that both quercetin and genistein were ineffective at suppressing inflammatory activation by interleukin-1β owing to limited metabolic activity of hPSC-ECs. Conversely, hPSC-HEPs demonstrated metabolic capacity to break down both nutraceuticals into primary and secondary metabolites. When hPSC-HEPs were cocultured with hPSC-ECs to permit paracrine interactions, the continuous turnover of metabolites mitigated interleukin-1β stimulation on hPSC-ECs. We observed significant reductions in inflammatory gene expressions, nuclear translocation of nuclear factor κB, and interleukin-8 production. Thus, integration of hPSC-HEPs could accurately reproduce systemic effects involved in drug metabolism in vivo to unravel beneficial constituents in nutraceuticals. This physiologically relevant endothelial-hepatic platform would be a great resource in predicting the efficacy of complex nutraceuticals and mechanistic interrogation of vascular-targeting candidate compounds. Stem Cells Translational Medicine 2017;6:851-863. © 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  9. Reversal of endothelial progenitor cell dysfunction in patients with type 2 diabetes using a conditioned medium of human embryonic stem cell-derived endothelial cells.

    Ho, Jenny C Y; Lai, Wing-Hon; Li, Ming-Fang; Au, Ka-Wing; Yip, Mei-Chu; Wong, Navy L Y; Ng, Ethel S K; Lam, Francis F Y; Siu, Chung-Wah; Tse, Hung-Fat


    The potential clinical application of bone marrow or peripheral blood-derived progenitor cells for cardiovascular regeneration in patients with diabetes mellitus (DM) is limited by their functional impairment. We sought to determine the mechanisms of impaired therapeutic efficacy of peripheral blood-derived progenitor cells in type 2 DM patients and evaluated the use of cell-free conditioned medium obtained from human embryonic stem cell-derived endothelial-like cells (ESC-ECs) to reverse their functional impairment. The angiogenic potential of late outgrowth endothelial cells (OECs) and cytokine profile of the conditional medium of proangiogenic cells (PACs) derived from peripheral blood-mononuclear cells of healthy control and DM patients and ESC-ECs was compared by in vitro tube formation assay and a multiplex bead-based immunoassay kit, respectively. The in vivo angiogenic potential of ESC-ECs derived conditioned medium in rescuing the functional impairment of PB-PACs in DM patients was investigated using a hindlimb ischemia model. Human ESC-ECs had similar functional and phenotypic characteristics as OECs in healthy controls. Cytokine profiling showed that vascular endothelial growth factor, stromal cell-derived factor 1 and placental growth factor were down-regulated in PACs from DM patients. Tube formation assay that revealed functional impairment of OECs from DM patients could be rescued by ESC-ECs conditioned medium. Administration of ESC-ECs conditioned medium restored the therapeutic efficacy of PB-PACs from DM patients in a mouse model of hindlimb ischemia. Our results showed that peripheral blood-derived progenitor cells from DM patients have impaired function because of defective secretion of angiogenic cytokines, which could be restored by supplementation of ESC-ECs conditioned medium. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Alterations in adhesion molecules, pro-inflammatory cytokines and cell-derived microparticles contribute to intima-media thickness and symptoms in postmenopausal women.

    Figueroa-Vega, Nicté; Moreno-Frías, Carmen; Malacara, Juan Manuel


    Menopause, the cessation of menses, occurs with estrogens decline, low-grade inflammation, and impaired endothelial function, contributing to atherosclerotic risk. Intima-media thickness (IMT) is an early subclinical biomarker of atherosclerosis. Inflammation may have a role on symptoms: hot flashes, anxiety, and depressive mood, which also are related to endothelial dysfunction, increased IMT and cardiovascular risk. In this study we compared several inflammatory markers in early vs. late postmenopausal women and studied the association of IMT and symptoms with these markers in the full sample. In a cross-sectional design including 60 women (53.1 ± 4.4 years old) at early and late postmenopause, we evaluated the expression of CD62L, ICAM-1, PSGL-1, CD11b, CD11c, and IL-8R on PBMC by flow cytometry. Serum soluble ICAM-1, sVCAM-1, sCD62E, sCD62P, CXCL8, IL-1β, IL-6, and TNF-α levels were quantified by ELISA. Plasma levels of microparticles (MPs) were determined by FACS. Finally, carotid intima-media thickness (IMT) was measured by ultrasound. We observed that ICAM-1 expression by lymphocytes and serum sVCAM-1 levels were augmented at late postmenopause. Late postmenopause women with severe hot flashes had increased expression of CD62L and IL-8R on neutrophils. By multivariate analysis, the carotid IMT was strongly associated with membrane-bound TNF-α, CD11b expression, Annexin V(+) CD3(+) MPs, LPS-induced NO production, HDL-cholesterol and age. Depressive mood was associated negatively with PSGL-1 and positively with LPS-induced NO. Finally, Log(AMH) levels were associated with carotid IMT, IL-8R expression and time since menopause. IMT and depressive mood were the main clinical features related to vascular inflammation. Aging, hormonal changes and obesity were also related to endothelial dysfunction. These findings provide further evidence for a link between estrogen deficiency and low-grade inflammation in endothelial impairment in mature women.

  11. Alterations in adhesion molecules, pro-inflammatory cytokines and cell-derived microparticles contribute to intima-media thickness and symptoms in postmenopausal women.

    Nicté Figueroa-Vega

    Full Text Available Menopause, the cessation of menses, occurs with estrogens decline, low-grade inflammation, and impaired endothelial function, contributing to atherosclerotic risk. Intima-media thickness (IMT is an early subclinical biomarker of atherosclerosis. Inflammation may have a role on symptoms: hot flashes, anxiety, and depressive mood, which also are related to endothelial dysfunction, increased IMT and cardiovascular risk. In this study we compared several inflammatory markers in early vs. late postmenopausal women and studied the association of IMT and symptoms with these markers in the full sample. In a cross-sectional design including 60 women (53.1 ± 4.4 years old at early and late postmenopause, we evaluated the expression of CD62L, ICAM-1, PSGL-1, CD11b, CD11c, and IL-8R on PBMC by flow cytometry. Serum soluble ICAM-1, sVCAM-1, sCD62E, sCD62P, CXCL8, IL-1β, IL-6, and TNF-α levels were quantified by ELISA. Plasma levels of microparticles (MPs were determined by FACS. Finally, carotid intima-media thickness (IMT was measured by ultrasound. We observed that ICAM-1 expression by lymphocytes and serum sVCAM-1 levels were augmented at late postmenopause. Late postmenopause women with severe hot flashes had increased expression of CD62L and IL-8R on neutrophils. By multivariate analysis, the carotid IMT was strongly associated with membrane-bound TNF-α, CD11b expression, Annexin V(+ CD3(+ MPs, LPS-induced NO production, HDL-cholesterol and age. Depressive mood was associated negatively with PSGL-1 and positively with LPS-induced NO. Finally, Log(AMH levels were associated with carotid IMT, IL-8R expression and time since menopause. IMT and depressive mood were the main clinical features related to vascular inflammation. Aging, hormonal changes and obesity were also related to endothelial dysfunction. These findings provide further evidence for a link between estrogen deficiency and low-grade inflammation in endothelial impairment in mature women.

  12. Biocompatibility of pure titanium modified by human endothelial cell-derived extracellular matrix

    Xue Xiaoqing [Key Laboratory of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); Wang Jin, E-mail: [Key Laboratory of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); Zhu Ying; Tu Qiufen; Huang Nan [Key Laboratory of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China)


    Extracellular matrix (ECM) used to modify biomaterial surface is a promising method for improving cardiovascular material hemocompatibility. In the present work, human umbilical vein endothelial cells (HUVECs) are cultured and native ECM is obtained on pure titanium surface. Fourier infrared spectrum (FTIR) test proves the existence of amide I and amide II band on the modified titanium surface. X-ray photoelectron spectroscopy (XPS) further confirms the chemical composition and binding types of the ECM proteins on the titanium substrate. The results of light microscopy and atomic force microscopy (AFM) exhibit the morphology of HUVEC derived ECM. There are higher water contact angles on the ECM modified samples. Furthermore, some ECM components, including fibronectin (FN), laminin (LN) and type IV collagen (IV-COL) are presented on ECM-covered titanium surface by immunofluorescence staining. The biological behavior of cultured HUVECs and adherent platelets on different samples are investigated by in vitro HUVECs culture and platelet adhesion. Cells exhibit better morphology and their proliferation ability greatly improve on the ECM-covered titanium. At the same time, the platelet adhesion and spreading are inhibited on ECM-covered titanium surface. These investigations demonstrate that ECM produced by HUVECs cannot only improve adhesion and proliferation ability of endothelial cell but also inhibit adhesion and activation of platelets. Thus, the approach described here may provide a basis for preparation of modified surface in cardiovascular implants application.

  13. Human embryonic stem cell-derived endothelial cells as cellular delivery vehicles for treatment of metastatic breast cancer.

    Su, Weijun; Wang, Lina; Zhou, Manqian; Liu, Ze; Hu, Shijun; Tong, Lingling; Liu, Yanhua; Fan, Yan; Kong, Deling; Zheng, Yizhou; Han, Zhongchao; Wu, Joseph C; Xiang, Rong; Li, Zongjin


    Endothelial progenitor cells (EPCs) have shown tropism towards primary tumors or metastases and are thus potential vehicles for targeting tumor therapy. However, the source of adult EPCs is limited, which highlights the need for a consistent and renewable source of endothelial cells for clinical applications. Here, we investigated the potential of human embryonic stem cell-derived endothelial cells (hESC-ECs) as cellular delivery vehicles for therapy of metastatic breast cancer. In order to provide an initial assessment of the therapeutic potency of hESC-ECs, we treated human breast cancer MDA-MB-231 cells with hESC-EC conditioned medium (EC-CM) in vitro. The results showed that hESC-ECs could suppress the Wnt/β-catenin signaling pathway and thereby inhibit the proliferation and migration of MDA-MB-231 cells. To track and evaluate the possibility of hESC-EC-employed therapy, we employed the bioluminescence imaging (BLI) technology. To study the therapeutic potential of hESC-ECs, we established lung metastasis models by intravenous injection of MDA-MB-231 cells labeled with firefly luciferase (Fluc) and green fluorescent protein (GFP) to NOD/SCID mice. In mice with lung metastases, we injected hESC-ECs armed with herpes simplex virus truncated thymidine kinase (HSV-ttk) intravenously on days 11, 16, 21, and 26 after MDA-MB-231 cell injection. The NOD/SCID mice were subsequently treated with ganciclovir (GCV), and the growth status of tumor was monitored by Fluc imaging. We found that MDA-MB-231 tumors were significantly inhibited by intravenously injected hESC-ECs. The tumor-suppressive effects of the hESC-ECs, by inhibiting Wnt/β-catenin signaling pathway and inducing tumor cell death through bystander effect in human metastatic breast cancer model, provide previously unexplored therapeutic modalities for cancer treatment.

  14. Tumor and endothelial cell-derived microvesicles carry distinct CEACAMs and influence T-cell behavior.

    Harrison T Muturi

    Full Text Available Normal and malignant cells release a variety of different vesicles into their extracellular environment. The most prominent vesicles are the microvesicles (MVs, 100-1000 nm in diameter, which are shed of the plasma membrane, and the exosomes (70-120 nm in diameter, derivates of the endosomal system. MVs have been associated with intercellular communication processes and transport numerous proteins, lipids and RNAs. As essential component of immune-escape mechanisms tumor-derived MVs suppress immune responses. Additionally, tumor-derived MVs have been found to promote metastasis, tumor-stroma interactions and angiogenesis. Since members of the carcinoembryonic antigen related cell adhesion molecule (CEACAM-family have been associated with similar processes, we studied the distribution and function of CEACAMs in MV fractions of different human epithelial tumor cells and of human and murine endothelial cells. Here we demonstrate that in association to their cell surface phenotype, MVs released from different human epithelial tumor cells contain CEACAM1, CEACAM5 and CEACAM6, while human and murine endothelial cells were positive for CEACAM1 only. Furthermore, MVs derived from CEACAM1 transfected CHO cells carried CEACAM1. In terms of their secretion kinetics, we show that MVs are permanently released in low doses, which are extensively increased upon cellular starvation stress. Although CEACAM1 did not transmit signals into MVs it served as ligand for CEACAM expressing cell types. We gained evidence that CEACAM1-positive MVs significantly increase the CD3 and CD3/CD28-induced T-cell proliferation. All together, our data demonstrate that MV-bound forms of CEACAMs play important roles in intercellular communication processes, which can modulate immune response, tumor progression, metastasis and angiogenesis.

  15. Increased Vitreous Shedding of Microparticles in Proliferative Diabetic Retinopathy Stimulates Endothelial Proliferation

    Chahed, Sadri; Leroyer, Aurélie S.; Benzerroug, Mounir; Gaucher, David; Georgescu, Adriana; Picaud, Serge; Silvestre, Jean-Sébastien; Gaudric, Alain; Tedgui, Alain; Massin, Pascale; Boulanger, Chantal M.


    OBJECTIVE Diabetic retinopathy is associated with progressive retinal capillary activation and proliferation, leading to vision impairment and blindness. Microparticles are submicron membrane vesicles with biological activities, released following cell activation or apoptosis. We tested the hypothesis that proangiogenic microparticles accumulate in vitreous fluid in diabetic retinopathy. RESEARCH DESIGN AND METHODS Levels and cellular origin of vitreous and plasma microparticles from control ...

  16. Effects of cellular origin on differentiation of human induced pluripotent stem cell-derived endothelial cells.

    Hu, Shijun; Zhao, Ming-Tao; Jahanbani, Fereshteh; Shao, Ning-Yi; Lee, Won Hee; Chen, Haodong; Snyder, Michael P; Wu, Joseph C


    Human induced pluripotent stem cells (iPSCs) can be derived from various types of somatic cells by transient overexpression of 4 Yamanaka factors (OCT4, SOX2, C-MYC, and KLF4). Patient-specific iPSC derivatives (e.g., neuronal, cardiac, hepatic, muscular, and endothelial cells [ECs]) hold great promise in drug discovery and regenerative medicine. In this study, we aimed to evaluate whether the cellular origin can affect the differentiation, in vivo behavior, and single-cell gene expression signatures of human iPSC-derived ECs. We derived human iPSCs from 3 types of somatic cells of the same individuals: fibroblasts (FB-iPSCs), ECs (EC-iPSCs), and cardiac progenitor cells (CPC-iPSCs). We then differentiated them into ECs by sequential administration of Activin, BMP4, bFGF, and VEGF. EC-iPSCs at early passage (10 < P < 20) showed higher EC differentiation propensity and gene expression of EC-specific markers (PECAM1 and NOS3) than FB-iPSCs and CPC-iPSCs. In vivo transplanted EC-iPSC-ECs were recovered with a higher percentage of CD31(+) population and expressed higher EC-specific gene expression markers (PECAM1, KDR, and ICAM) as revealed by microfluidic single-cell quantitative PCR (qPCR). In vitro EC-iPSC-ECs maintained a higher CD31(+) population than FB-iPSC-ECs and CPC-iPSC-ECs with long-term culturing and passaging. These results indicate that cellular origin may influence lineage differentiation propensity of human iPSCs; hence, the somatic memory carried by early passage iPSCs should be carefully considered before clinical translation.

  17. Effects of mesenchymal stem cell-derived cytokines on the functional properties of endothelial progenitor cells.

    Kamprom, Witchayaporn; Kheolamai, Pakpoom; U-Pratya, Yaowalak; Supokawej, Aungkura; Wattanapanitch, Methichit; Laowtammathron, Chuti; Issaragrisil, Surapol


    Human mesenchymal stem cell (hMSC) is a potential source for cell therapy due to its property to promote tissue repair. Although, it has been known that hMSCs promote tissue repair via angiogenic cytokines, the interaction between hMSC-derived cytokines and the endothelial progenitor cells (EPCs), which play an important role in tissue neovascularization, is poorly characterized. We investigate the effect of cytokine released from different sources of hMSCs including bone marrow and gestational tissues on the EPC functions in vitro. The migration, extracellular matrix invasion and vessel formation of EPCs were studied in the presence or absence of cytokines released from various sources of hMSCs using transwell culture system. The migration of EPCs was highest when co-culture with secretory factors from placenta-derived hMSCs (PL-hMSCs) compared to those co-culture with other sources of hMSCs. For invasion and vessel formation, secretory factors from bone marrow-derived hMSCs (BM-hMSCs) could produce the maximal enhancement compared to other sources. We further identified the secreted cytokines and found that the migratory-enhancing cytokine from PL-hMSCs was PDGF-BB while the enhancing cytokine from BM-hMSCs on invasion was IGF-1. For vessel formation, the cytokines released from BM-hMSCs were IGF1 and SDF-1. In conclusion, hMSCs can release angiogenic cytokines which increase the migration, invasion and vessel forming capacity of EPCs. We can then use hMSCs as a source of angiogenic cytokines to induce neovascularization in injured/ischemic tissues.

  18. Endothelial microparticles (EMP) bind and activate monocytes: elevated EMP-monocyte conjugates in multiple sclerosis.

    Jy, Wenche; Minagar, Alireza; Jimenez, Joaquin J; Sheremata, William A; Mauro, Lucia M; Horstman, Lawrence L; Bidot, Carlos; Ahn, Yeon S


    Elevated plasma endothelial microparticles (EMP) have been documented in MS during exacerbation. However, the role of EMP in pathogenesis of MS remains unclear. We investigated the formation of EMP-monocyte conjugates (EMP-MoC) and their potential role in transendothelial migration of inflammatory cells in MS. EMP-MoC were assayed in 30 MS patients in exacerbation, 20 in remission and in 35 controls. EMP-leukocyte conjugation was investigated flowcytometrically by employing alpha-CD54 or alpha-CD62E for EMP, and alpha-CD45 for leukocytes. EMP-MoC were characterized by identifying adhesion molecules involved and their effect on monocyte function. In vivo (clinical): EMP-MoC were markedly elevated in exacerbation vs. remission and controls, correlating with presence of GD+ MRI lesions. Free CD54+ EMP were not elevated but free CD62E+ EMP were. In vitro: EMP bound preferentially to monocytes, less to neutrophils, but little to lymphocytes. Bound EMP activated monocytes: CD11b expression increased 50% and migration through cerebral endothelial cell layer increased 2.6-fold. Blockade of CD54 reduced binding by 80%. Most CD54+ EMP bound to monocytes, leaving little free EMP, while CD62+ EMP were found both free and bound. These results demonstrated that phenotypic subsets of EMP interacted differently with monocytes. Based on our observations, EMP may enhance inflammation and increase transendothelial migration of monocytes in MS by binding to and activating monocytes through CD54. EMP-MoC were markedly increased in MS patients in exacerbation compared to remission and may serve as a sensitive marker of MS disease activity.

  19. Limited gene expression variation in human embryonic stem cell and induced pluripotent stem cell-derived endothelial cells.

    White, Mark P; Rufaihah, Abdul J; Liu, Lei; Ghebremariam, Yohannes T; Ivey, Kathryn N; Cooke, John P; Srivastava, Deepak


    Recent evidence suggests human embryonic stem cell (hESC) and induced pluripotent stem (iPS) cell lines have differences in their epigenetic marks and transcriptomes, yet the impact of these differences on subsequent terminally differentiated cells is less well understood. Comparison of purified, homogeneous populations of somatic cells derived from multiple independent human iPS and ES lines will be required to address this critical question. Here, we report a differentiation protocol based on embryonic development that consistently yields large numbers of endothelial cells (ECs) derived from multiple hESCs or iPS cells. Mesoderm differentiation of embryoid bodies was maximized, and defined growth factors were used to generate KDR(+) EC progenitors. Magnetic purification of a KDR(+) progenitor subpopulation resulted in an expanding, homogeneous pool of ECs that expressed EC markers and had functional properties of ECs. Comparison of the transcriptomes revealed limited gene expression variability between multiple lines of human iPS-derived ECs or between lines of ES- and iPS-derived ECs. These results demonstrate a method to generate large numbers of pure human EC progenitors and differentiated ECs from pluripotent stem cells and suggest individual lineages derived from human iPS cells may have significantly less variance than their pluripotent founders.

  20. Hypoxia Mediated Release of Endothelial Microparticles and Increased Association of S100A12 with Circulating Neutrophils

    Rebecca V. Vince


    Full Text Available Microparticles are released from the endothelium under normal homeostatic conditions and have been shown elevated in disease states, most notably those characterised by endothelial dysfunction. The endothelium is sensitive to oxidative stress/status and vascular cell adhesion molecule-1 (VCAM-1 expression is upregulated upon activated endothelium, furthermore the presence of VCAM-1 on microparticles is known. S100A12, a calcium binding protein part of the S100 family, is shown to be present on circulating leukocytes and is thought a sensitive marker to local inflammatory process, which may be driven by oxidative stress. Eight healthy males were subjected to breathing hypoxic air (15% O2, approximately equivalent to 3000 metres altitude for 80 minutes in a temperature controlled laboratory and venous blood samples were processed immediately for VCAM-1 microparticles (VCAM-1 MP and S100A12 association with leukocytes by flow cytometry. A pre-hypoxic blood sample was used for comparison. Both VCAM-1 MP and S100A12 association with neutrophils were significantly elevated post hypoxic breathing later declining to levels observed in the pre-test samples. A similar trend was observed in both cases and a correlation may exist between these two markers in response to hypoxia. These data offer evidence using novel markers of endothelial and circulating blood responses to hypoxia.

  1. Isolation and transplantation of corneal endothelial cell-like cells derived from in-vitro-differentiated human embryonic stem cells.

    Zhang, Kai; Pang, Kunpeng; Wu, Xinyi


    The maintenance of corneal dehydration and transparency depends on barrier and pump functions of corneal endothelial cells (CECs). The human CECs have no proliferation capacity in vivo and the ability to divide in vitro under culture conditions is dramatically limited. Thus, the acquisition of massive cells analogous to normal human CECs is extremely necessary whether from the perspective of cellular basic research or from clinical applications. Here we report the derivation of CEC-like cells from human embryonic stem cells (hESCs) through the periocular mesenchymal precursor (POMP) phase. Using the transwell coculture system of hESCs with differentiated human corneal stromal cells, we induced hESCs to differentiate into POMPs. Then, CEC-like cells were derived from POMPs with lens epithelial cell-conditioned medium. Within 1 week, CEC-like cells that expressed the corneal endothelium (CE) differentiation marker N-cadherin and transcription factors FoxC1 and Pitx2 were detectable. Fluorescence-activated cell sorting (FACS)-based isolation of the N-cadherin/vimentin dual-positive population enriches for CEC-like cells. The isolated CEC-like cells were labeled with carboxyfluorescein diacetate, succinimidyl ester (CFDA SE) and seeded onto posterior acellular porcine corneal matrix lamellae to construct the CEC-like cell sheets. Pump function parameters of the CEC-like cell sheets approximated those of human donor corneas. Importantly, when the CEC-like cell sheets were transplanted into the eyes of rabbit CE dysfunction models, the corneal transparency was restored gradually. In conclusion, CEC-like cells derived from hESCs displayed characteristics of native human CECs. This renewable source of human CECs offers massive cells for further studies of human CEC biological characteristics and potential applications of replacement therapies as substitution for donor CECs in the future.

  2. Differential diagnosis of acute rejection and chronic cyclosporine nephropathy after rat renal transplantation by detection of endothelial microparticles (EMP).

    Cui, Jiewei; Yang, Jing; Cao, Weike; Sun, Yi


    Endothelial microparticles (EMP) are small vesicles smaller than 1.0μm, released from endothelial cells (EC) during their activation and (or) apoptosis. The assay of the level of elevated EMP is a new approach to evaluate the dysfunction of endothelial cell. EMP can be classified into several types according to their membrane molecular, and the levels of various types of EMP may be different. As the most cost-effective immunodepressant, cyclosporine A (CsA) has been used widely in organ transplantation. But its dose is hard to control, under-medication may cause the acute rejection (AR) and overdose may cause chronic cyclosporine nephropathy (CCN). The cyclosporine A (CsA) caused CCN and the AR caused renal injury after renal transplantation are both vascular diseases related with endothelial dysfunction, and up to now, there is still no effective method to distinguish the two kinds of diseases. Owing to distinct pathogenesis of the two kinds of vascular diseases, the level of each type of EMP originated from vascular endothelial cells may be different. We hypothesize that maybe we can distinguish them by detecting the different levels of some types of EMP which is also related with vascular disease, and we propose to prove our hypothesis through animal experiment. If our hypothesis is proved, it will be more helpful for clinicians to adjust the dose of CsA promptly according to the differential diagnosis of the two kinds of diseases.

  3. Effects of simvastatin/ezetimibe on microparticles, endothelial progenitor cells and platelet aggregation in subjects with coronary heart disease under antiplatelet therapy

    Camargo, L.M.; França, C.N.; Izar, M.C.; Bianco, H.T.; Lins, L.S.; Barbosa, S.P.; Pinheiro, L.F.; Fonseca, F.A.H. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina, São Paulo, SP, Brasil, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)


    It is not known whether the addition of ezetimibe to statins adds cardiovascular protection beyond the expected changes in lipid levels. Subjects with coronary heart disease were treated with four consecutive 1-week courses of therapy (T) and evaluations. The courses were: T1, 100 mg aspirin alone; T2, 100 mg aspirin and 40 mg simvastatin/10 mg ezetimibe; T3, 40 mg simvastatin/10 mg ezetimibe, and 75 mg clopidogrel (300 mg initial loading dose); T4, 75 mg clopidogrel alone. Platelet aggregation was examined in whole blood. Endothelial microparticles (CD51), platelet microparticles (CD42/CD31), and endothelial progenitor cells (CD34/CD133; CDKDR/CD133, or CD34/KDR) were quantified by flow cytometry. Endothelial function was examined by flow-mediated dilation. Comparisons between therapies revealed differences in lipids (T2 and T3endothelial function (T2>T1 and T4, P=0.001). Decreased platelet aggregation was observed after aspirin (arachidonic acid, T1endothelial and platelet microparticles, or endothelial progenitor cells. Cardiovascular protection following therapy with simvastatin/ezetimibe seems restricted to lipid changes and improvement of endothelial function not affecting the release of microparticles, mobilization of endothelial progenitor cells or decreased platelet aggregation.

  4. Endothelial Microparticles Act as Novel Diagnostic and Therapeutic Biomarkers of Diabetes and Its Complications: A Literature Review

    Fan Deng


    Full Text Available Diabetes mellitus- (DM- related vascular diseases attract increased attention due to their high morbidity and mortality. The incidence of obesity, atherosclerosis, coronary heart disease, hypertension, and dyslipidemia is significantly higher in DM patients, with an earlier onset and faster progression compared with non-DM patients. DM-related vascular diseases including macrovascular and microvascular complications are characterized by endothelial dysfunction. Therefore, a better understanding of the etiology and mechanisms of endothelial dysfunction is important for the diagnosis and treatment of DM. Endothelial microparticles (EMPs are new diagnostic and therapeutic targets and biomarkers in DM-related vascular disease. Circulating EMPs containing biologically active substances act as intercellular signals under physiological and pathological conditions. They serve as biological markers of altered vascular endothelium and reflect the pathological progression and diminished endothelial function of blood vessels. Recent evidence suggests that the plasma level of EMPs is significantly higher in DM patients than in healthy population and is significantly correlated with DM-related complications. These observations have prompted speculation that EMPs play a crucial role in the pathophysiology of DM. This review summarizes the known and potential roles of EMPs in the diagnosis, staging, treatment, and clinical prognosis of DM and related vascular diseases.

  5. The Effects of Smoking on Levels of Endothelial Progenitor Cells and Microparticles in the Blood of Healthy Volunteers

    Mobarrez, Fariborz; Antoniewicz, Lukasz; Bosson, Jenny A.; Kuhl, Jeanette; Pisetsky, David S.; Lundbäck, Magnus


    Background Cigarette smoking, both active and passive, is one of the leading causes of morbidity and mortality in cardiovascular disease. To assess the impact of brief smoking on the vasculature, we determined levels of circulating endothelial progenitor cells (EPCs) and circulating microparticles (MPs) following the smoking of one cigarette by young, healthy intermittent smokers. Materials and Methods 12 healthy volunteers were randomized to either smoking or not smoking in a crossover fashion. Blood sampling was performed at baseline, 1, 4 and 24 hours following smoking/not smoking. The numbers of EPCs and MPs were determined by flow cytometry. MPs were measured from platelets, leukocytes and endothelial cells. Moreover, MPs were also labelled with anti-HMGB1 and SYTO 13 to assess the content of nuclear molecules. Results Active smoking of one cigarette caused an immediate and significant increase in the numbers of circulating EPCs and MPs of platelet-, endothelial- and leukocyte origin. Levels of MPs containing nuclear molecules were increased, of which the majority were positive for CD41 and CD45 (platelet- and leukocyte origin). CD144 (VE-cadherin) or HMGB1 release did not significantly change during active smoking. Conclusion Brief active smoking of one cigarette generated an acute release of EPC and MPs, of which the latter contained nuclear matter. Together, these results demonstrate acute effects of cigarette smoke on endothelial, platelet and leukocyte function as well as injury to the vascular wall. PMID:24587320

  6. Endothelial Microparticles Act as Novel Diagnostic and Therapeutic Biomarkers of Diabetes and Its Complications: A Literature Review

    Deng, Fan


    Diabetes mellitus- (DM-) related vascular diseases attract increased attention due to their high morbidity and mortality. The incidence of obesity, atherosclerosis, coronary heart disease, hypertension, and dyslipidemia is significantly higher in DM patients, with an earlier onset and faster progression compared with non-DM patients. DM-related vascular diseases including macrovascular and microvascular complications are characterized by endothelial dysfunction. Therefore, a better understanding of the etiology and mechanisms of endothelial dysfunction is important for the diagnosis and treatment of DM. Endothelial microparticles (EMPs) are new diagnostic and therapeutic targets and biomarkers in DM-related vascular disease. Circulating EMPs containing biologically active substances act as intercellular signals under physiological and pathological conditions. They serve as biological markers of altered vascular endothelium and reflect the pathological progression and diminished endothelial function of blood vessels. Recent evidence suggests that the plasma level of EMPs is significantly higher in DM patients than in healthy population and is significantly correlated with DM-related complications. These observations have prompted speculation that EMPs play a crucial role in the pathophysiology of DM. This review summarizes the known and potential roles of EMPs in the diagnosis, staging, treatment, and clinical prognosis of DM and related vascular diseases. PMID:27803933

  7. The effects of smoking on levels of endothelial progenitor cells and microparticles in the blood of healthy volunteers.

    Fariborz Mobarrez

    Full Text Available BACKGROUND: Cigarette smoking, both active and passive, is one of the leading causes of morbidity and mortality in cardiovascular disease. To assess the impact of brief smoking on the vasculature, we determined levels of circulating endothelial progenitor cells (EPCs and circulating microparticles (MPs following the smoking of one cigarette by young, healthy intermittent smokers. MATERIALS AND METHODS: 12 healthy volunteers were randomized to either smoking or not smoking in a crossover fashion. Blood sampling was performed at baseline, 1, 4 and 24 hours following smoking/not smoking. The numbers of EPCs and MPs were determined by flow cytometry. MPs were measured from platelets, leukocytes and endothelial cells. Moreover, MPs were also labelled with anti-HMGB1 and SYTO 13 to assess the content of nuclear molecules. RESULTS: Active smoking of one cigarette caused an immediate and significant increase in the numbers of circulating EPCs and MPs of platelet-, endothelial- and leukocyte origin. Levels of MPs containing nuclear molecules were increased, of which the majority were positive for CD41 and CD45 (platelet- and leukocyte origin. CD144 (VE-cadherin or HMGB1 release did not significantly change during active smoking. CONCLUSION: Brief active smoking of one cigarette generated an acute release of EPC and MPs, of which the latter contained nuclear matter. Together, these results demonstrate acute effects of cigarette smoke on endothelial, platelet and leukocyte function as well as injury to the vascular wall.

  8. In Vivo Vascularization of Endothelial Cells Derived from Bone Marrow Mesenchymal Stem Cells in SCID Mouse Model

    Allameh Abdolamir


    Full Text Available Objective In vivo and in vitro stem cell differentiation into endothelial cells is a promising area of research for tissue engineering and cell therapy. Materials and Methods We induced human mesenchymal stem cells (MSCs to differentiate to endothelial cells that had the ability to form capillaries on an extracellular matrix (ECM gel. Thereafter, the differentiated endothelial cells at early stage were characterized by expression of specific markers such as von Willebrand factor (vWF, vascular endothelial growth factor (VEGF receptor 2, and CD31. In this experimental model, the endothelial cells were transplanted into the groins of severe combined immunodeficiency (SCID mice. After 30 days, we obtained tissue biopsies from the transplantation sites. Biopsies were processed for histopathological and double immunohistochemistry (DIHC staining. Results Endothelial cells at the early stage of differentiation expressed endothelial markers. Hematoxylin and eosin (H&E staining, in addition to DIHC demonstrated homing of the endothelial cells that underwent vascularization in the injected site. Conclusion The data clearly showed that endothelial cells at the early stage of differentiation underwent neovascularization in vivo in SCID mice. Endothelial cells at their early stage of differentiation have been proven to be efficient for treatment of diseases with impaired vasculogenesis.

  9. Suppression of Transforming Growth Factor-β Signaling Delays Cellular Senescence and Preserves the Function of Endothelial Cells Derived From Human Pluripotent Stem Cells.

    Bai, Hao; Gao, Yongxing; Hoyle, Dixie L; Cheng, Tao; Wang, Zack Z


    : Transplantation of vascular cells derived from human pluripotent stem cells (hPSCs) offers an attractive noninvasive method for repairing the ischemic tissues and for preventing the progression of vascular diseases. Here, we found that in a serum-free condition, the proliferation rate of hPSC-derived endothelial cells is quickly decreased, accompanied with an increased cellular senescence, resulting in impaired gene expression of endothelial nitric oxide synthase (eNOS) and impaired vessel forming capability in vitro and in vivo. To overcome the limited expansion of hPSC-derived endothelial cells, we screened small molecules for specific signaling pathways and found that inhibition of transforming growth factor-β (TGF-β) signaling significantly retarded cellular senescence and increased a proliferative index of hPSC-derived endothelial cells. Inhibition of TGF-β signaling extended the life span of hPSC-derived endothelial and improved endothelial functions, including vascular network formation on Matrigel, acetylated low-density lipoprotein uptake, and eNOS expression. Exogenous transforming growth factor-β1 increased the gene expression of cyclin-dependent kinase inhibitors, p15(Ink4b), p16(Ink4a), and p21(CIP1), in endothelial cells. Conversely, inhibition of TGF-β reduced the gene expression of p15(Ink4b), p16(Ink4a), and p21(CIP1). Our findings demonstrate that the senescence of newly generated endothelial cells from hPSCs is mediated by TGF-β signaling, and manipulation of TGF-β signaling offers a potential target to prevent vascular aging.

  10. Data on the circulating levels of endothelial microparticles are elevated in patients with bicuspid aortic valve and are related to aortic dilation

    Josep M. Alegret


    Full Text Available The data included here support the research article “Circulating endothelial microparticles are elevated in bicuspid aortic valve (BAV disease and related to aortic dilation” (Alegret et al., 2016 [1] where circulating levels of platelet endothelial cell adhesion molecule (PECAM+ endothelial microparticles (EMPs were identified as a biological variable related to aortic dilation in patients with BAV disease. The data presented in this article are composed by four tables and one figure containing the clinical and echocardiographic characteristics of the patients (Alegret et al., 2016 [1] included in this study, and summarize the results of multivariate linear analyses. Furthermore, is also included a figure showing a representative flow cytometry dot plots and histograms used in PECAM+ EMPs quantification is also included.

  11. Characterization of blood borne microparticles as markers of premature coronary calcification in newly menopausal women.

    Jayachandran, Muthuvel; Litwiller, Robert D; Owen, Whyte G; Heit, John A; Behrenbeck, Thomas; Mulvagh, Sharon L; Araoz, Philip A; Budoff, Matthew J; Harman, S Mitchell; Miller, Virginia M


    While the risk for symptomatic atherosclerotic disease increases after menopause, currently recognized risk factors do not identify ongoing disease processes in low-risk women. This study tested the hypothesis that circulating cell-derived microparticles may reflect disease processes in women defined as low risk by the Framingham risk score. The concentration and phenotype of circulating microparticles were evaluated in a cross-sectional study of apparently healthy menopausal women, screened for enrollment into the Kronos Early Estrogen Prevention Study. Microparticles were evaluated by flow cytometry, and coronary artery calcification (CAC) was scored using 64-slice computed tomography scanners. The procoagulant activity of isolated microparticles was determined with a sensitive fluorescent thrombin generation assay. Chronological age, body mass index, serum lipids, systolic blood pressure (Framingham risk score 50; range, 93-315 Agatston units) CAC compared with women without calcification. The total concentration and percentage of microparticles derived from platelets and endothelial cells were greatest in women with high CAC scores. The thrombin-generating capacity of the isolated microparticles correlated with phosphatidylserine expression, which also was greatest in women with high CAC scores. The percentages of microparticles expressing granulocyte and monocyte markers were not significantly different among groups. Therefore, the characterization of platelet and endothelial microparticles may identify early menopausal women with premature CAC who would not otherwise be identified by the usual risk factor analysis.

  12. Extensive Characterization and Comparison of Endothelial Cells Derived from Dermis and Adipose Tissue: Potential Use in Tissue Engineering.

    Monsuur, Hanneke N; Weijers, Ester M; Niessen, Frank B; Gefen, Amit; Koolwijk, Pieter; Gibbs, Susan; van den Broek, Lenie J


    Tissue-engineered constructs need to become quickly vascularized in order to ensure graft take. One way of achieving this is to incorporate endothelial cells (EC) into the construct. The adipose tissue stromal vascular fraction (adipose-SVF) might provide an alternative source for endothelial cells as adipose tissue can easily be obtained by liposuction. Since adipose-EC are now gaining more interest in tissue engineering, we aimed to extensively characterize endothelial cells from adipose tissue (adipose-EC) and compare them with endothelial cells from dermis (dermal-EC). The amount of endothelial cells before purification varied between 4-16% of the total stromal population. After MACS selection for CD31 positive cells, a >99% pure population of endothelial cells was obtained within two weeks of culture. Adipose- and dermal-EC expressed the typical endothelial markers PECAM-1, ICAM-1, Endoglin, VE-cadherin and VEGFR2 to a similar extent, with 80-99% of the cell population staining positive. With the exception of CXCR4, which was expressed on 29% of endothelial cells, all other chemokine receptors (CXCR1, 2, 3, and CCR2) were expressed on less than 5% of the endothelial cell populations. Adipose-EC proliferated similar to dermal-EC, but responded less to the mitogens bFGF and VEGF. A similar migration rate was found for both adipose-EC and dermal-EC in response to bFGF. Sprouting of adipose-EC and dermal-EC was induced by bFGF and VEGF in a 3D fibrin matrix. After stimulation of adipose-EC and dermal-EC with TNF-α an increased secretion was seen for PDGF-BB, but not uPA, PAI-1 or Angiopoietin-2. Furthermore, secretion of cytokines and chemokines (IL-6, CCL2, CCL5, CCL20, CXCL1, CXCL8 and CXCL10) was also upregulated by both adipose- and dermal-EC. The similar characteristics of adipose-EC compared to their dermal-derived counterpart make them particularly interesting for skin tissue engineering. In conclusion, we show here that adipose tissue provides for an

  13. Limited Gene Expression Variation in Human Embryonic Stem Cell and Induced Pluripotent Stem Cell Derived Endothelial Cells


    Recent evidence suggests human embryonic stem cell (hESC) and induced pluripotent stem (iPS) cell lines have differences in their epigenetic marks and transcriptomes, yet the impact of these differences on subsequent terminally differentiated cells is less well understood. Comparison of purified, homogeneous populations of somatic cells derived from multiple independent human iPS and ES lines will be required to address this critical question. Here, we report a differentiation protocol based ...

  14. Induced pluripotent stem cell-derived hepatocytes and endothelial cells in multi-component hydrogel fibers for liver tissue engineering.

    Du, Chan; Narayanan, Karthikeyan; Leong, Meng Fatt; Wan, Andrew C A


    Liver tissue engineering requires a suitable cell source, methodologies to assemble the cells within their niche microenvironments in a spatially defined manner, and vascularization of the construct in vivo for maintenance of hepatocyte viability and function. Recently, we have developed methods of encapsulating cells within separate domains in multi-component hydrogel fibers and methods of assembling fibers to form 3D-patterned tissue constructs. In the present work, we have combined these approaches to encapsulate hepatocytes and endothelial cells within their specific niches, and to assemble them into endothelialized liver tissue constructs. The hepatocytes and endothelial cells were obtained in parallel by differentiating human recombinant protein-induced human pluripotent stem cells, resulting in a construct which contained genetically identical endothelial and parenchymal elements. We were able to demonstrate that the presence of endothelial cells in the scaffold significantly improved hepatocyte function in vitro and facilitated vascularization of the scaffold when implanted in a mouse partial hepatectomy model. The in vivo studies further asserted that integration of the scaffold with host vasculature had occurred, as demonstrated by the presence of human albumin in the mouse serum. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The hematopoietic chemokine CXCL12 promotes integration of human endothelial colony forming cell-derived cells into immature vessel networks.

    Newey, Sarah E; Tsaknakis, Grigorios; Khoo, Cheen P; Athanassopoulos, Thanassi; Camicia, Rosalba; Zhang, Youyi; Grabowska, Rita; Harris, Adrian L; Roubelakis, Maria G; Watt, Suzanne M


    Proangiogenic factors, vascular endothelial growth factor (VEGF), and fibroblast growth factor-2 (FGF-2) prime endothelial cells to respond to "hematopoietic" chemokines and cytokines by inducing/upregulating expression of the respective chemokine/cytokine receptors. Coculture of human endothelial colony forming cell (ECFC)-derived cells with human stromal cells in the presence of VEGF and FGF-2 for 14 days resulted in upregulation of the "hematopoietic" chemokine CXCL12 and its CXCR4 receptor by day 3 of coculture. Chronic exposure to the CXCR4 antagonist AMD3100 in this vasculo/angiogenesis assay significantly reduced vascular tubule formation, an observation recapitulated by delayed AMD3100 addition. While AMD3100 did not affect ECFC-derived cell proliferation, it did demonstrate a dual action. First, over the later stages of the 14-day cocultures, AMD3100 delayed tubule organization into maturing vessel networks, resulting in enhanced endothelial cell retraction and loss of complexity as defined by live cell imaging. Second, at earlier stages of cocultures, we observed that AMD3100 significantly inhibited the integration of exogenous ECFC-derived cells into established, but immature, vascular networks. Comparative proteome profiler array analyses of ECFC-derived cells treated with AMD3100 identified changes in expression of potential candidate molecules involved in adhesion and/or migration. Blocking antibodies to CD31, but not CD146 or CD166, reduced the ECFC-derived cell integration into these extant vascular networks. Thus, CXCL12 plays a key role not only in endothelial cell sensing and guidance, but also in promoting the integration of ECFC-derived cells into developing vascular networks.

  16. Pattern of endothelial progenitor cells and apoptotic endothelial cell-derived microparticles in chronic heart failure patients with preserved and reduced left ventricular ejection fraction

    Alexander E. Berezin


    Conclusion: We found that CD31+/annexin V+ EMPs to CD14+CD309+ cell ratio added to NT-proBNP, clinical data, and cardiovascular risk factors has exhibited the best discriminate value and higher reliability to predict HFpEF compared with NT-proBNP and clinical data/cardiovascular risk factors alone.

  17. Specific cell-derived microvesicles: Linking endothelial function to carotid artery intima-media thickness in low cardiovascular risk menopausal women.

    Miller, Virginia M; Lahr, Brian D; Bailey, Kent R; Hodis, Howard N; Mulvagh, Sharon L; Jayachandran, Muthuvel


    Decreases in endothelial function measured by reactive hyperemic index (RHI) correlated with increases in carotid intima-media thickness (CIMT) in recently menopausal women with a low risk cardiovascular profile. Factors linking this association are unknown. Assess, longitudinally, markers of platelet activation and cell-derived, blood-borne microvesicles (MV) in relationship to RHI and CIMT in asymptomatic, low risk menopausal women. RHI by digital pulse tonometry (n = 93), CIMT by ultrasound (n = 113), measures of platelet activation and specific cell-derived, blood-borne MV were evaluated in women throughout the Kronos Early Estrogen Prevention Study (KEEPS) at Mayo Clinic. CIMT, but not RHI, increased significantly over 4 years. The average change in CIMT correlated significantly with the average follow-up values of MV positive for common leukocyte antigen [CD45; ρ = 0.285 (P = 0.002)] and VCAM-1 [ρ = 0.270 (P = 0.0040)]. Using principal components analysis (PC) on the aggregate set of average follow-up measures, the first derived PC representing numbers of MV positive for markers of vascular endothelium, inflammatory cells (leukocyte and monocytes), pro-coagulant (tissue factor), and cell adhesion molecules (ICAM-1 and VCAM-1) associated with changes in RHI and CIMT. Changes in RHI associated with another PC defined by measures of platelet activation (dense granular ATP secretion, surface expression of P-selectin and fibrinogen receptors). MV derived from activated endothelial and inflammatory cells, and those expressing cell adhesion and pro-coagulant molecules may reflect early vascular dysfunction in low risk menopausal women. Assays of MV as non-conventional measures to assess cardiovascular risk in asymptomatic women remain to be developed. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  18. Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells.

    Hong, Bok Sil; Cho, Ji-Hoon; Kim, Hyunjung; Choi, Eun-Jeong; Rho, Sangchul; Kim, Jongmin; Kim, Ji Hyun; Choi, Dong-Sic; Kim, Yoon-Keun; Hwang, Daehee; Gho, Yong Song


    Various cancer cells, including those of colorectal cancer (CRC), release microvesicles (exosomes) into surrounding tissues and peripheral circulation. These microvesicles can mediate communication between cells and affect various tumor-related processes in their target cells. We present potential roles of CRC cell-derived microvesicles in tumor progression via a global comparative microvesicular and cellular transcriptomic analysis of human SW480 CRC cells. We first identified 11,327 microvesicular mRNAs involved in tumorigenesis-related processes that reflect the physiology of donor CRC cells. We then found 241 mRNAs enriched in the microvesicles above donor cell levels, of which 27 were involved in cell cycle-related processes. Network analysis revealed that most of the cell cycle-related microvesicle-enriched mRNAs were associated with M-phase activities. The integration of two mRNA datasets showed that these M-phase-related mRNAs were differentially regulated across CRC patients, suggesting their potential roles in tumor progression. Finally, we experimentally verified the network-driven hypothesis by showing a significant increase in proliferation of endothelial cells treated with the microvesicles. Our study demonstrates that CRC cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells, suggesting that microvesicles of cancer cells can be involved in tumor growth and metastasis by facilitating angiogenesis-related processes. This information will help elucidate the pathophysiological functions of tumor-derived microvesicles, and aid in the development of cancer diagnostics, including colorectal cancer.

  19. Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells

    Kim Yoon-Keun


    Full Text Available Abstract Background Various cancer cells, including those of colorectal cancer (CRC, release microvesicles (exosomes into surrounding tissues and peripheral circulation. These microvesicles can mediate communication between cells and affect various tumor-related processes in their target cells. Results We present potential roles of CRC cell-derived microvesicles in tumor progression via a global comparative microvesicular and cellular transcriptomic analysis of human SW480 CRC cells. We first identified 11,327 microvesicular mRNAs involved in tumorigenesis-related processes that reflect the physiology of donor CRC cells. We then found 241 mRNAs enriched in the microvesicles above donor cell levels, of which 27 were involved in cell cycle-related processes. Network analysis revealed that most of the cell cycle-related microvesicle-enriched mRNAs were associated with M-phase activities. The integration of two mRNA datasets showed that these M-phase-related mRNAs were differentially regulated across CRC patients, suggesting their potential roles in tumor progression. Finally, we experimentally verified the network-driven hypothesis by showing a significant increase in proliferation of endothelial cells treated with the microvesicles. Conclusion Our study demonstrates that CRC cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells, suggesting that microvesicles of cancer cells can be involved in tumor growth and metastasis by facilitating angiogenesis-related processes. This information will help elucidate the pathophysiological functions of tumor-derived microvesicles, and aid in the development of cancer diagnostics, including colorectal cancer.

  20. In vitro model of cerebral ischemia by using brain microvascular endothelial cells derived from human induced pluripotent stem cells.

    Kokubu, Yasuhiro; Yamaguchi, Tomoko; Kawabata, Kenji


    Brain-derived microvascular endothelial cells (BMECs), which play a central role in blood brain barrier (BBB), can be used for the evaluation of drug transport into the brain. Although human BMEC cell lines have already been reported, they lack original properties such as barrier integrity. Pluripotent stem cells (PSCs) can be used for various applications such as regenerative therapy, drug screening, and pathological study. In the recent study, an induction method of BMECs from PSCs has been established, making it possible to more precisely study the in vitro human BBB function. Here, using induced pluripotent stem (iPS) cell-derived BMECs, we examined the effects of oxygen-glucose deprivation (OGD) and OGD/reoxygenation (OGD/R) on BBB permeability. OGD disrupted the barrier function, and the dysfunction was rapidly restored by re-supply of the oxygen and glucose. Interestingly, TNF-α, which is known to be secreted from astrocytes and microglia in the cerebral ischemia, prevented the restoration of OGD-induced barrier dysfunction in an apoptosis-independent manner. Thus, we could establish the in vitro BBB disease model that mimics the cerebral ischemia by using iPS cell-derived BMECs.

  1. Super-resolved calibration-free flow cytometric characterization of platelets and cell-derived microparticles in platelet-rich plasma.

    Konokhova, Anastasiya I; Chernova, Darya N; Moskalensky, Alexander E; Strokotov, Dmitry I; Yurkin, Maxim A; Chernyshev, Andrei V; Maltsev, Valeri P


    Importance of microparticles (MPs), also regarded as extracellular vesicles, in many physiological processes and clinical conditions motivates one to use the most informative and precise methods for their characterization. Methods based on individual particle analysis provide statistically reliable distributions of MP population over characteristics. Although flow cytometry is one of the most powerful technologies of this type, the standard forward-versus-side-scattering plots of MPs and platelets (PLTs) overlap considerably because of similarity of their morphological characteristics. Moreover, ordinary flow cytometry is not capable of measurement of size and refractive index (RI) of MPs. In this study, we 1) employed the potential of the scanning flow cytometer (SFC) for identification and characterization of MPs from light scattering; 2) suggested the reference method to characterize MP morphology (size and RI) with high precision; and 3) determined the lowest size of a MP that can be characterized from light scattering with the SFC. We equipped the SFC with 405 and 488 nm lasers to measure the light-scattering profiles and side scattering from MPs, respectively. The developed two-stage method allowed accurate separation of PLTs and MPs in platelet-rich plasma. We used two optical models for MPs, a sphere and a bisphere, in the solution of the inverse light-scattering problem. This solution provides unprecedented precision in determination of size and RI of individual spherical MPs-median uncertainties (standard deviations) were 6 nm and 0.003, respectively. The developed method provides instrument-independent quantitative information on MPs, which can be used in studies of various factors affecting MP population.

  2. Functional endothelial cells derived from embryonic stem cells labeled with HIV transactivator peptide-conjugated superparamagnetic nanoparticles

    GAO Bin; FU Wei-guo; DONG Zhi-hui; FANG Zheng-dong; LIU Zhen-jie; SI Yi; ZHANG Xiang-man; WANG Yu-qi


    Background The development of regenerative therapies using derivatives of embryonic stem (ES) cells would be facilitated by a non-invasive method to monitor transplanted cells in vivo,for example,magnetic resonance imaging of cells labeled with superparamagnetic iron oxide (SPIO) nanoparticles.Although ES cells have been labeled with SPIO particles,the potential adverse effects of the label have not been fully examined.The objective of this study was to determine whether SPIO labeling affects murine ES cell viability,proliferation,or ability to differentiate into functional endothelial cells (ECs).Methods Cross-linked iron oxide (CLIO,an SPIO) was conjugated with human immunodeficiency virus transactivator of transcription (HIV-Tat) peptides,and murine ES cells were labeled with either CLiO-Tat,CLIO,or HIV-Tat.After labeling,ES cells were cultured for 4 days and FIk-1+ ES cells identified and sorted by immunocytochemistry and fluorescence activated cell sorting (FACS).FIk-1+ cells were raplated on fibronectin-coated dishes,and ECs were obtained by culturing these for 4 weeks in endothelial cell growth medium supplemented with vascular endothelial growth factor (VEGF).ES cell viability was determined using trypan blue exclusion,and the proportion of SPIO+ cells was evaluated using Prussian blue staining and transmission electron microscopy.After differentiation,the behavior and phenotype of ECs were analyzed by reverse transcription-polymerase chain reaction,flow cytometry,immunocytochemistry,Dil-labeled acetylated low-density lipoprotein (AcLDL) uptake,and Matrigel tube formation assay.Results CLIO-Tat was a highly effective label for ES cells,with >96% of cells incorporating the particles,and it did not alter the viability of the labeled cells.ECs derived from CLIO-Tat+ ES cells were very similar to murine aortic ECs in their morphology,expression of endothelial cell markers,ability to form vascular-like channels,and scavenging of AcLDL from the culture medium

  3. GM-CSF Exhibits Anti-Inflammatory Activity on Endothelial Cells Derived from Chronic Venous Disease Patients

    Veronica Tisato


    Full Text Available Twenty patients affected by chronic venous disease (CVD in tertiary venous network and/or saphenous vein were analyzed before surgical ablation by echo-color-doppler for the hemodynamic parameters reflux time (RT and resistance index (RI, a negative and a positive prognostic factor, respectively. RT and RI were next correlated with relevant in vitro parameters of venous endothelial cells (VEC obtained from surgical specimens, such as cell migration in response to serum gradient, proliferation index, intercellular adhesion molecule (ICAM-1 and vascular cell adhesion molecule (VCAM-1 expression, as well as cytokines release. Of interest, ICAM-1 expression in patient-derived VEC cultures correlated positively with RT and negatively with RI. Moreover, RT showed a positive correlation with the baseline osteoprotegerin (OPG expression by VEC and an inverse correlation with VEC proliferation index. On the other hand, RI correlated positively with TNF-related apoptosis inducing ligand (TRAIL expression. Among the cytokines released by VEC, GM-CSF showed a positive correlation with VEC proliferation and TRAIL expression and a negative correlation with OPG, ICAM-1 and VCAM-1 expression. Since in vitro recombinant GM-CSF induced VEC proliferation and counteracted the induction of ICAM-1, VCAM-1 and OPG upon exposure to TNF-α, our data suggest an anti-inflammatory activity of GM-CSF on venous endothelial cells.

  4. SIRT1 Overexpression Maintains Cell Phenotype and Function of Endothelial Cells Derived from Induced Pluripotent Stem Cells.

    Jiang, Bin; Jen, Michele; Perrin, Louisiane; Wertheim, Jason A; Ameer, Guillermo A


    Endothelial cells (ECs) that are differentiated from induced pluripotent stem cells (iPSCs) can be used in establishing disease models for personalized drug discovery or developing patient-specific vascularized tissues or organoids. However, a number of technical challenges are often associated with iPSC-ECs in culture, including instability of the endothelial phenotype and limited cell proliferative capacity over time. Early senescence is believed to be the primary mechanism underlying these limitations. Sirtuin1 (SIRT1) is an NAD(+)-dependent deacetylase involved in the regulation of cell senescence, redox state, and inflammatory status. We hypothesize that overexpression of the SIRT1 gene in iPSC-ECs will maintain EC phenotype, function, and proliferative capacity by overcoming early cell senescence. SIRT1 gene was packaged into a lentiviral vector (LV-SIRT1) and transduced into iPSC-ECs at passage 4. Beginning with passage 5, iPSC-ECs exhibited a fibroblast-like morphology, whereas iPSC-ECs overexpressing SIRT1 maintained EC cobblestone morphology. SIRT1 overexpressing iPSC-ECs also exhibited a higher percentage of canonical markers of endothelia (LV-SIRT1 61.8% CD31(+) vs. LV-empty 31.7% CD31(+), P cell lifespan, overcoming critical hurdles associated with the use of iPSC-ECs in translational research.

  5. Reed-Sternberg cell-derived lymphotoxin-α activates endothelial cells to enhance T-cell recruitment in classical Hodgkin lymphoma.

    Fhu, Chee Wai; Graham, Anne M; Yap, Celestial T; Al-Salam, Suhail; Castella, Antonio; Chong, Siew Meng; Lim, Yaw-Chyn


    It is known that cells within the inflammatory background in classical Hodgkin lymphoma (cHL) provide signals essential for the continual survival of the neoplastic Hodgkin and Reed-Sternberg (HRS) cells. However, the mechanisms underlying the recruitment of this inflammatory infiltrate into the involved lymph nodes are less well understood. In this study, we show in vitro that HRS cells secrete lymphotoxin-α (LTα) which acts on endothelial cells to upregulate the expression of adhesion molecules that are important for T cell recruitment. LTα also enhances the expression of hyaluronan which preferentially contributes to the recruitment of CD4(+) CD45RA(+) naïve T cells under in vitro defined flow conditions. Enhanced expression of LTα in HRS cells and tissue stroma; and hyaluronan on endothelial cells are readily detected in involved lymph nodes from cHL patients. Our study also shows that although NF-κB and AP-1 are involved, the cyclooxygenase (COX) pathway is the dominant regulator of LTα production in HRS cells. Using pharmacological inhibitors, our data suggest that activity of COX1, but not of COX2, directly regulates the expression of nuclear c-Fos in HRS cells. Our findings suggest that HRS cell-derived LTα is an important mediator that contributes to T cell recruitment into lesional lymph nodes in cHL. © 2014 by The American Society of Hematology.

  6. SIRT1 Overexpression Maintains Cell Phenotype and Function of Endothelial Cells Derived from Induced Pluripotent Stem Cells

    Jiang, Bin; Jen, Michele; Perrin, Louisiane; Wertheim, Jason A.


    Endothelial cells (ECs) that are differentiated from induced pluripotent stem cells (iPSCs) can be used in establishing disease models for personalized drug discovery or developing patient-specific vascularized tissues or organoids. However, a number of technical challenges are often associated with iPSC-ECs in culture, including instability of the endothelial phenotype and limited cell proliferative capacity over time. Early senescence is believed to be the primary mechanism underlying these limitations. Sirtuin1 (SIRT1) is an NAD+-dependent deacetylase involved in the regulation of cell senescence, redox state, and inflammatory status. We hypothesize that overexpression of the SIRT1 gene in iPSC-ECs will maintain EC phenotype, function, and proliferative capacity by overcoming early cell senescence. SIRT1 gene was packaged into a lentiviral vector (LV-SIRT1) and transduced into iPSC-ECs at passage 4. Beginning with passage 5, iPSC-ECs exhibited a fibroblast-like morphology, whereas iPSC-ECs overexpressing SIRT1 maintained EC cobblestone morphology. SIRT1 overexpressing iPSC-ECs also exhibited a higher percentage of canonical markers of endothelia (LV-SIRT1 61.8% CD31+ vs. LV-empty 31.7% CD31+, P < 0.001; LV-SIRT1 46.3% CD144+ vs. LV-empty 20.5% CD144+, P < 0.02), with a higher nitric oxide synthesis, lower β-galactosidase production indicating decreased senescence (3.4% for LV-SIRT1 vs. 38.6% for LV-empty, P < 0.001), enhanced angiogenesis, increased deacetylation activity, and higher proliferation rate. SIRT1 overexpressing iPSC-ECs continued to proliferate through passage 9 with high purity of EC-like characteristics, while iPSC-ECs without SIRT1 overexpression became senescent after passage 5. Taken together, SIRT1 overexpression in iPSC-ECs maintains EC phenotype, improves EC function, and extends cell lifespan, overcoming critical hurdles associated with the use of iPSC-ECs in translational research. PMID:26413932

  7. Endothelial microparticles (EMP for the assessment of endothelial function: an in vitro and in vivo study on possible interference of plasma lipids.

    Sabrina H van Ierssel

    Full Text Available BACKGROUND: Circulating endothelial microparticles (EMP reflect the condition of the endothelium and are of increasing interest in cardiovascular and inflammatory diseases. Recently, increased numbers of EMP following oral fat intake, possibly due to acute endothelial injury, have been reported. On the other hand, the direct interference of lipids with the detection of EMP has been suggested. This study aimed to investigate the effect of lipid-rich solutions, commonly administered in clinical practice, on the detection, both in vitro and in vivo, of EMP. METHODS: For the in vitro assessment, several lipid-rich solutions were added to whole blood of healthy subjects (n = 8 and patients with coronary heart disease (n = 5. EMP (CD31+/CD42b- were detected in platelet poor plasma by flow cytometry. For the in vivo study, healthy volunteers were evaluated on 3 different study-days: baseline evaluation, following lipid infusion and after a NaCl infusion. EMP quantification, lipid measurements and peripheral arterial tonometry were performed on each day. RESULTS: Both in vitro addition and in vivo administration of lipids significantly decreased EMP (from 198.6 to 53.0 and from 272.6 to 90.6/µl PPP, respectively, p = 0.001 and p = 0.012. The EMP number correlated inversely with the concentration of triglycerides, both in vitro and in vivo (r = -0.707 and -0.589, p<0.001 and p = 0.021, respectively. The validity of EMP as a marker of endothelial function is supported by their inverse relationship with the reactive hyperemia index (r = -0.758, p = 0.011. This inverse relation was confounded by the intravenous administration of lipids. CONCLUSION: The confounding effect of high circulating levels of lipids, commonly found in patients that receive intravenous lipid-based solutions, should be taken into account when flow cytometry is used to quantify EMP.

  8. Phenotype commitment in vascular smooth muscle cells derived from coronary atherosclerotic plaques: differential gene expression of endothelial Nitric Oxide Synthase

    ML Rossi


    Full Text Available Unstable angina and myocardial infarction are the clinical manifestations of the abrupt thrombotic occlusion of an epicardial coronary artery as a result of spontaneous atherosclerotic plaque rupture or fissuring, and the exposure of highly thrombogenic material to blood. It has been demonstrated that the proliferation of vascular smooth muscle cells (VSMCs and impaired bioavailabilty of nitric oxide (NO are among the most important mechanisms involved in the progression of atherosclerosis. It has also been suggested that a NO imbalance in coronary arteries may be involved in myocardial ischemia as a result of vasomotor dysfunction triggering plaque rupture and the thrombotic response. We used 5’ nuclease assays (TaqMan™ PCRs to study gene expression in coronary plaques collected by means of therapeutic directional coronary atherectomy from 15 patients with stable angina (SA and 15 with acute coronary syndromes (ACS without ST elevation. Total RNA was extracted from the 30 plaques and the cDNA was amplified in order to determine endothelial nitric oxide synthase (eNOS gene expression. Analysis of the results showed that the expression of eNOS was significantly higher (p<0.001 in the plaques from the ACS patients. Furthermore, isolated VSMCs from ACS and SA plaques confirmed the above pattern even after 25 plating passages. In situ RT-PCR was also carried out to co-localize the eNOS messengers and the VSMC phenotype.

  9. Arterial specification of endothelial cells derived from human induced pluripotent stem cells in a biomimetic flow bioreactor.

    Sivarapatna, Amogh; Ghaedi, Mahboobe; Le, Andrew V; Mendez, Julio J; Qyang, Yibing; Niklason, Laura E


    Endothelial cells (ECs) exist in different microenvironments in vivo, including under different levels of shear stress in arteries versus veins. Standard stem cell differentiation protocols to derive ECs and EC-subtypes from human induced pluripotent stem cells (hiPSCs) generally use growth factors or other soluble factors in an effort to specify cell fate. In this study, a biomimetic flow bioreactor was used to subject hiPSC-derived ECs (hiPSC-ECs) to shear stress to determine the impacts on phenotype and upregulation of markers associated with an anti-thrombotic, anti-inflammatory, arterial-like phenotype. The in vitro bioreactor system was able to efficiently mature hiPSC-ECs into arterial-like cells in 24 h, as demonstrated by qRT-PCR for arterial markers EphrinB2, CXCR4, Conexin40 and Notch1, as well protein-level expression of Notch1 intracellular domain (NICD). Furthermore, the exogenous addition of soluble factors was not able to fully recapitulate this phenotype that was imparted by shear stress exposure. The induction of these phenotypic changes was biomechanically mediated in the shear stress bioreactor. This biomimetic flow bioreactor is an effective means for the differentiation of hiPSC-ECs toward an arterial-like phenotype, and is amenable to scale-up for culturing large quantities of cells for tissue engineering applications.

  10. Hypoxia Affects the Structure of Breast Cancer Cell-Derived Matrix to Support Angiogenic Responses of Endothelial Cells.

    Hielscher, Abigail; Qiu, Connie; Porterfield, Josh; Smith, Quinton; Gerecht, Sharon


    Hypoxia, a common feature of the tumor environment and participant in tumor progression, is known to alter gene and protein expression of several Extracellular Matrix (ECM) proteins, many of which have roles in angiogenesis. Previously, we reported that ECM deposited from co-cultures of Neonatal Fibroblasts (NuFF) with breast cancer cells, supported 3-dimensional vascular morphogenesis. Here, we sought to characterize the hypoxic ECM and to identify whether the deposited ECM induce angiogenic responses in Endothelial Cells (ECs). NuFF and MDA-MB-231 breast cancer cells were co-cultured, subjected to alternating cycles of 24 hours of 1% (hypoxia) and 21% (atmospheric) oxygen and de-cellularized for analyses of deposited ECM. We report differences in mRNA expression profiles of matrix proteins and crosslinking enzymes relevant to angiogenesis in hypoxia-exposed co-cultures. Interestingly, overt differences in the expression of ECM proteins were not detected in the de-cellularized ECM; however, up-regulation of the cell-binding fragment of fibronecin was observed in the conditioned media of hypoxic co-cultures. Ultrastructure analyses of the de-cellularized ECM revealed differences in fiber morphology with hypoxic fibers more compact and aligned, occupying a greater percent area and having larger diameter fibers than atmospheric ECM. Examining the effect of hypoxic ECM on angiogenic responses of ECs, morphological differences in Capillary-Like Structures (CLS) formed atop de-cellularized hypoxic and atmospheric ECM were not evident. Interestingly, we found that hypoxic ECM regulated the expression of angiogenic factors and matrix metalloproteinases in CLS. Overall, we report that in vitro, hypoxia does not alter the composition of the ECM deposited by co-cultures of NuFF/MDA-MB-231, but rather alters fiber morphology, and induces vascular expression of angiogenic growth factors and metalloproteinases. Taken together, these results have important implications for

  11. Norepinephrine inhibits mesenchymal stem cell chemotaxis migration by increasing stromal cell-derived factor-1 secretion by vascular endothelial cells via NE/abrd3/JNK pathway.

    Wu, Baolei; Wang, Lei; Yang, Xi; Mao, Ming; Ye, Chen; Liu, Peng; Yang, Zihui; Yang, Xinjie; Lei, Delin; Zhang, Chenping


    Mesenchymal stem cells (MSCs), which are physiologically maintained in vascular endothelial cell (VEC)-based niches, play a critical role in tissue regeneration. Our previous studies demonstrated that sympathetic denervation could promote MSC mobilization, thereby enhancing bone formation in distraction osteogenesis (DO), a self-tissue engineering for craniofacial and orthopeadic surgeries. However, the mechanisms on how sympathetic neurotransmitter norepinephrine (NE) regulates MSC migration are not well understood. Here we showed that deprivation of NE by transection of cervical sympathetic trunk (TCST) inhibited stromal cell-derived factor-1 (SDF-1) expression in the perivascular regions in rat mandibular DO. In vitro studies showed that NE treatment markedly upregulated p-JNK and therefore stimulated higher SDF-1 expression in VECs than control groups, and siRNA knockdown of the abrd3 gene abolished the NE-induced p-JNK activation. On the other hand, osteoblasts differentiated from MSCs showed an increase in SDF-1 secretion with lack of NE. Importantly, NE-treated VECs inhibited the MSC chemotaxis migration along the SDF-1 concentration gradient as demonstrated in a novel 3-chamber Transwell assay. Collectively, our study suggested that NE may increase the SDF-1 secretion by VECs via NE/abrd3/JNK pathway, thereby inhibiting the MSC chemotaxis migration from perivascular regions toward bone trabecular frontlines along the SDF-1 concentration gradient in bone regeneration. Copyright © 2016. Published by Elsevier Inc.

  12. Circulating Endothelial Microparticles and Correlation of Serum 1,25-Dihydroxyvitamin D with Adiponectin, Nonesterified Fatty Acids, and Glycerol from Middle-Aged Men in China

    Zhongxiao Wan


    Full Text Available The aim of the present study is (1 to determine the correlation between circulating 1,25-dihydroxyvitamin D [25(OHD] and adiponectin, nonesterified fatty acids (NEFAs, and glycerol and (2 to determine the alterations in circulating endothelial microparticles (EMPs in Chinese male subjects with increased body mass index (BMI. A total of 45 male adults were enrolled with varied BMI [i.e., lean, overweight (OW, and obese (OB, N=15 per group]. Blood samples were collected under overnight fasting condition, and plasma was isolated for the measurement of endothelial microparticles (EMPs, total and high-molecular weight (HMW adiponectin, 25(OHD, nonesterified fatty acids (NEFAs, and glycerol. Circulating 25(OHD levels were inversely associated with total adiponectin, NEFA, and glycerol levels. There is no difference for CD62E+ or CD31+/CD42b− EMPs among 3 groups. In Chinese male adults with varied BMI, an inverse correlation existed between 25(OHD levels and total adiponectin, NEFA, and glycerol levels; and there is no significant difference for CD62E+ or CD31+/CD42b− EMPs among lean, overweight, and obese subjects.

  13. Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device.

    van der Meer, Andries D; Orlova, Valeria V; ten Dijke, Peter; van den Berg, Albert; Mummery, Christine L


    Organs-on-chips are microengineered in vitro tissue structures that can be used as platforms for physiological and pathological research. They provide tissue-like microenvironments in which different cell types can be co-cultured in a controlled manner to create synthetic organ mimics. Blood vessels are an integral part of all tissues in the human body. Development of vascular structures is therefore an important research topic for advancing the field of organs-on-chips since generated tissues will require a blood or nutrient supply. Here, we have engineered three-dimensional constructs of vascular tissue inside microchannels by injecting a mixture of human umbilical vein endothelial cells, human embryonic stem cell-derived pericytes (the precursors of vascular smooth muscle cells) and rat tail collagen I into a polydimethylsiloxane microfluidic channel with dimensions 500 μm × 120 μm × 1 cm (w × h × l). Over the course of 12 h, the cells organized themselves into a single long tube resembling a blood vessel that followed the contours of the channel. Detailed examination of tube morphology by confocal microscopy revealed a mature endothelial monolayer with complete PECAM-1 staining at cell-cell contacts and pericytes incorporated inside the tubular structures. We also demonstrated that tube formation was disrupted in the presence of a neutralizing antibody against transforming growth factor-beta (TGF-β). The TGF-β signaling pathway is essential for normal vascular development; deletion of any of its components in mouse development results in defective vasculogenesis and angiogenesis and mutations in humans have been linked to multiple vascular genetic diseases. In the engineered microvessels, inhibition of TGF-β signaling resulted in tubes with smaller diameters and higher tortuosity, highly reminiscent of the abnormal vessels observed in patients with one particular vascular disease known as hereditary hemorrhagic telangiectasia (HHT). In summary, we have

  14. Chemotherapy and anti-angiogenic drugs affect composition and coagulant phenotype of cell-derived vesicles in cancer patients

    Kleinjan, A.; Verhoeff, J.; Berckmans, R.; Kunst, P.; Van Doormaal, F.; Di Nisio, M.; Richel, D.; Kamphuisen, P.W.; Büller, H.R.; Nieuwland, R.


    Background: The relationship between chemotherapy and circulating microparticles in patients with cancer is complex. First, release of cancer cell-derived microparticles may contribute to resistance of cancer cells to chemotherapy. Second, chemotherapy and angiogenesis inhibiting agents promote a pr

  15. Circulating microparticles, protein C, free protein S and endothelial vascular markers in children with sickle cell anaemia

    Andrea Piccin


    Full Text Available Introduction: Circulating microparticles (MP have been described in sickle cell anaemia (SCA; however, their interaction with endothelial markers remains unclear. We investigated the relationship between MP, protein C (PC, free protein S (PS, nitric oxide (NO, endothelin-1 (ET-1 and adrenomedullin (ADM in a large cohort of paediatric patients. Method: A total of 111 children of African ethnicity with SCA: 51 in steady state; 15 in crises; 30 on hydroxyurea (HU therapy; 15 on transfusion; 17 controls (HbAA of similar age/ethnicity. MP were analysed by flow cytometry using: Annexin V (AV, CD61, CD42a, CD62P, CD235a, CD14, CD142 (tissue factor, CD201 (endothelial PC receptor, CD62E, CD36 (TSP-1, CD47 (TSP-1 receptor, CD31 (PECAM, CD144 (VE-cadherin. Protein C, free PS, NO, pro-ADM and C-terminal ET-1 were also measured. Results: Total MP AV was lower in crisis (1.26×106 ml−1; 0.56–2.44×106 and steady state (1.35×106 ml−1; 0.71–3.0×106 compared to transfusion (4.33×106 ml−1; 1.6–9.2×106, p0.9, p<0.05 between total numbers of AV-positive MP (MP AV and platelet MP expressing non-activation platelet markers. There was a lower correlation between MP AV and MP CD62P (R=0.73, p<0.05 (platelet activation marker, and also a lower correlation between percentage of MP expressing CD201 (%MP CD201 and %MP CD14 (R=0.627, p<0.001. %MP CD201 was higher in crisis (11.6% compared with HbAA (3.2%, p<0.05; %MP CD144 was higher in crisis (7.6% compared with transfusion (2.1%, p<0.05; %CD14 (0.77% was higher in crisis compared with transfusion (0.0%, p<0.05 and steady state (0.0%, p<0.01; MP CD14 was detectable in a higher number of samples (92% in crisis compared with the rest (40%; %MP CD235a was higher in crisis (17.9% compared with transfusion (8.9%, HU (8.7% and steady state (9.9%, p<0.05; %CD62E did not differ significantly across the groups and CD142 was undetectable. Pro-ADM levels were raised in chest crisis: 0.38 nmol L−1 (0.31–0

  16. 内皮微粒与冠心病关系的研究进展%Progress of the relationship between endothelial microparticles and coronary heart disease

    孙敏洁; 周静


    Endothelial microparticles (EMPs) are sub-micron particles produced by endothelial cells in various pathological factors. EMPs were found increased in many diseases, especially in cardiovascular disease, and they can re-flect the endothelial function. Recent studies have found that EMPs have all kinds of biological activity, and participate in the formation of coronary heart disease (CHD) in form of thrombosis, inflammation, immune response and intracellu-lar signal transduction. Currently, as a new method for diagnosis of CHD, EMPs also can be used to detect therapeutic ef-fect, and become the therapeutic target for CHD.%内皮微粒(EMPs)是内皮细胞在各种病理因素刺激下产生的亚微米级颗粒,在多种疾病,尤其是心血管疾病状态下升高明显,可以反映内皮功能.近来研究发现EMPs具有各种生物活性,并以血栓形成、炎症、免疫反应及细胞内信号转导等形式参与冠心病(Coronary heart disease,CHD)的发生过程.目前EMPs作为诊断CHD的新方法,还可用于检测CHD的治疗效果,成为CHD的治疗靶点.

  17. Clopidogrel effectively suppresses endothelial microparticle generation induced by indoxyl sulfate via inhibition of the p38 mitogen-activated protein kinase pathway.

    Ryu, Jung-Hwa; Kim, Seung-Jung


    Endothelial microparticles (EMPs) are closely associated with vascular dysfunction. We investigated the effects of several drugs on EMP generation in human umbilical vein endothelial cells (HUVECs), and the involvement of the mitogen-activated protein kinase (MAPK) in EMP generation. CD31+CD42-EMP counts were measured by flow cytometry in supernatants of HUVECs incubated with indoxyl sulfate. The EMP responses to losartan, lovastatin, clopidogrel, and mesoglycan were examined. We then measured the effects of MAPK inhibitors on EMPs. (1) Indoxyl sulfate induced EMP release in HUVECs in a dose-dependent fashion; (2) all drugs (10-50 μM) inhibited EMP generation induced by indoxyl sulfate, with clopidogrel being the most effective; (3) the p38 MAPK inhibitor suppressed EMP generation induced by indoxyl sulfate, and (4) clopidogrel significantly suppressed MAPK signaling activated by indoxyl sulfate, with the most potency on p38. The p38 signaling involves EMP generation induced by indoxyl sulfate and is effectively suppressed by clopidogrel. Copyright © 2011 S. Karger AG, Basel.

  18. 内皮微粒与中枢神经系统疾病%Endothelial microparticles and the diseases of central nervous system



    Endothelial microparticles(EMPs) are microvesicles released from the membrane of activated,injured or apoptotic endothelial cells.It is important to discriminate EMPs from apoptotic bodies and exosomes.Endothelial microparticles contain protein,lipid,mRNA,microRNA and adhesion molecule.By now,the mechanisms that lead to the formation of EMPs are not completely elucidated,probably including loss of membrane phospholipid asymmetry and cytoskeleton reorganization.The connection between EMPs and central nervous system disease are getting more attracted.At different stages of diseases,such as ischemic stroke,hemorrhage stroke,macrovascular complications in type 2 diabetes mellitus,cerebral malaria,multiple sclerosis and traumatic brain injury,the level of EMPs in circulation or cerebral spinal fluid would change differently.It might be a biomarker to understand the mechanism,determine the severity and prognosis,and also the focus to diagnose and treat the central nervous system diseases.%内皮细胞在受到活化、损伤或凋亡时脱落的微粒即为内皮微粒.微粒与外染色体及凋亡小体在亚细胞起源、大小、内容及产生机制方面是不同的.内皮微粒具有蛋白质、脂质、核酸、黏附分子等成分,可通过细胞骨架破坏、膜磷脂不对称分布消失等机制形成.在缺血性脑卒中、出血性脑卒中、糖尿病脑血管病变、脑型疟疾、多发性硬化、脑外伤等,不同疾病时期的循环血和(或)脑脊液中内皮微粒的水平有不同程度的变化.内皮微粒成为理解中枢神经系统疾病发病机制、判断病情及预后指标,并可能成为中枢神经系统疾病诊治的靶点.

  19. Human Brain Microvascular Endothelial Cells Derived from the BC1 iPS Cell Line Exhibit a Blood-Brain Barrier Phenotype

    Katt, Moriah E.; Xu, Zinnia S.; Gerecht, Sharon; Searson, Peter C.


    The endothelial cells that form capillaries in the brain are highly specialized, with tight junctions that minimize paracellular transport and an array of broad-spectrum efflux pumps that make drug delivery to the brain extremely challenging. One of the major limitations in blood-brain barrier research and the development of drugs to treat central nervous system diseases is the lack of appropriate cell lines. Recent reports indicate that the derivation of human brain microvascular endothelial...

  20. Circulating Endothelial-Derived Activated Microparticle: A Useful Biomarker for Predicting One-Year Mortality in Patients with Advanced Non-Small Cell Lung Cancer

    Chin-Chou Wang


    Full Text Available Background. This study tested the hypothesis that circulating microparticles (MPs are useful biomarkers for predicting one-year mortality in patients with end-stage non-small cell lung cancer (ES-NSCLC. Methods and Results. One hundred seven patients were prospectively enrolled into the study between April 2011 and February 2012, and each patient received regular follow-up after enrollment. Levels of four MPs in circulation, (1 platelet-derived activated MPs (PDAc-MPs, (2 platelet-derived apoptotic MPs (PDAp-MPs, (3 endothelial-derived activated MPs (EDAc-MPs, and (4 endothelial-derived apoptotic MPs (EDAp-MPs, were measured just after the patient was enrolled into the study using flow cytometry. Patients who survived for more than one year were categorized into group 1 (n=56 (one-year survivors and patients who survived less than one year were categorized into group 2 (n=51 (one-year nonsurvivors. Male gender, incidence of liver metastasis, progression of disease after first-line treatment, poor performance status, and the Charlson comorbidity index were significantly higher in group 2 than in group 1 (all P<0.05. Additionally, as measured by flow cytometry, only the circulating level of EDAc-MPs was found to be significantly higher in group 2 than in group 1 (P=0.006. Multivariate analysis demonstrated that circulating level of EDAc-MPs along with brain metastasis and male gender significantly and independently predictive of one-year mortality (all P<0.035. Conclusion. Circulating EDAc-MPs may be a useful biomarker predictive of one-year morality in ES-NSCLC patients.

  1. Differential Impact of Acute High-Intensity Exercise on Circulating Endothelial Microparticles and Insulin Resistance between Overweight/Obese Males and Females

    Durrer, Cody; Robinson, Emily; Wan, Zhongxiao; Martinez, Nic; Hummel, Michelle L.; Jenkins, Nathan T.; Kilpatrick, Marcus W.; Little, Jonathan P.


    Background An acute bout of exercise can improve endothelial function and insulin sensitivity when measured on the day following exercise. Our aim was to compare acute high-intensity continuous exercise (HICE) to high-intensity interval exercise (HIIE) on circulating endothelial microparticles (EMPs) and insulin sensitivity in overweight/obese men and women. Methods Inactive males (BMI = 30 ± 3, 25 ± 6 yr, n = 6) and females (BMI = 28 ± 2, 21 ± 3 yr, n = 7) participated in three experimental trials in a randomized counterbalanced crossover design: 1) No exercise control (Control); 2) HICE (20 min cycling @ just above ventilatory threshold); 3) HIIE (10 X 1-min @ ∼90% peak aerobic power). Exercise conditions were matched for external work and diet was controlled post-exercise. Fasting blood samples were obtained ∼18 hr after each condition. CD62E+ and CD31+/CD42b- EMPs were assessed by flow cytometry and insulin resistance (IR) was estimated by homeostasis model assessment (HOMA-IR). Results There was a significant sex X exercise interaction for CD62E+ EMPs, CD31+/CD42b- EMPs, and HOMA-IR (all Pexercise type. There was a significant increase in HOMA-IR in males but a decrease in females following HIIE compared to Control (Pobese males and females appear to respond differently to acute bouts of high-intensity exercise. A single session of HICE and HIIE reduced circulating EMPs measured on the morning following exercise in males but in females CD62E+ EMPs were increased following HICE. Next day HOMA-IR paradoxically increased in males but was reduced in females following HIIE. Future research is needed to investigate mechanisms responsible for potential differential responses between males and females. PMID:25710559

  2. Circulating Endothelial-Derived Apoptotic Microparticles in the Patients with Ischemic Symptomatic Chronic Heart Failure: Relevance of Pro-Inflammatory Activation and Outcomes

    Alexander E. Berezin


    Full Text Available Background: Endothelial-derived apoptotic microparticles (EMPs play a pivotal role in endothelial dysfunction in hronic Heart Failure (CHF. Objectives: The present study aimed to evaluate the association between EMPs and pro-inflammatory biomarkers, clinical status, and outcomes in the patients with ischemic CHF. Patients and Methods: This study was conducted on 154 patients with ischemic symptomatic moderate-to-severe CHF on discharge from hospital. The observation period was up to 3 years. Circulating NT-pro-BNP, TNF-alpha, sFas, and sFas ligand were determined at baseline. Flow cytometry analysis was used for quantifying the number of EMPs. All-cause mortality, CHF-related death, and CHD-re-hospitalization rate were examined. The data were analyzed using descriptive statistics, Receive Operation Characteristic Curve (ROC, and logistic regression analysis. Besides, P 0.514 n/mL and those with a low level of the biomarker (< 0.514 n/mL regarding their survival. The number of circulating EPMs independently predicted all-cause mortality (OR = 1.58; 95% CI = 1.20 – 1.88; P = 0.001, CHF-related death (OR = 1.22; 95% CI: 1.12 – 1.36; P < 0.001, and CHF-related re-hospitalization (OR = 1.20; 95% CI: 1.11 – 1.32; P < 0.001. Conclusions: Among the patients with symptoms of CHF, increased number of circulating EMPs was associated with increased 3-year CHF-related death, all-cause mortality, and risk of recurrent hospitalization due to CHF.

  3. Endothelial cells derived from the blood-brain barrier and islets of Langerhans differ in their response to the effects of bilirubin on oxidative stress under hyperglycemic conditions

    Jaime eKapitulnik


    Full Text Available Unconjugated bilirubin (UCB is a neurotoxic degradation product of heme. Its toxic effects include induction of apoptosis, and ultimately neuronal cell death. However, at low concentrations, UCB is a potent antioxidant that may protect cells and tissues against oxidative stress by neutralizing toxic metabolites such as reactive oxygen species (ROS. High glucose levels (hyperglycemia generate reactive metabolites. Endothelial cell dysfunction, an early vascular complication in diabetes, has been associated with hyperglycemia-induced oxidative stress. Both glucose and UCB are substrates for transport proteins in microvascular endothelial cells of the blood-brain barrier (BBB. In the current study we show that UCB (1-40 M induces apoptosis and reduces survival of bEnd3 cells, a mouse brain endothelial cell line which serves as an in vitro model of the BBB. These deleterious effects of UCB were enhanced in the presence of high glucose (25 mM levels. Interestingly, the bEnd3 cells exhibited an increased sensitivity to the apoptotic effects of UCB when compared to the MS1 microcapillary endothelial cell line. MS1 cells originate from murine pancreatic islets of Langherans, and are devoid of the barrier characteristics of BBB-derived endothelial cells. ROS production was increased in both bEnd3 and MS1 cells exposed to high glucose, as compared with cells exposed to normal (5.5 mM glucose levels. While UCB (0.1-40 M did not alter ROS production in cells exposed to normal glucose, relatively low ('physiological' UCB concentrations (0.1-5 M attenuated ROS generation in both cell lines exposed to high glucose levels. Most strikingly, higher UCB concentrations (20-40 M increased ROS generation in bEnd3 cells exposed to high glucose, but not in similarly treated MS1 cells. These results may be of critical importance for understanding the vulnerability of the BBB endothelium upon exposure to increasing UCB levels under hyperglycemic conditions.

  4. Cellular Functions and Gene and Protein Expression Profiles in Endothelial Cells Derived from Moyamoya Disease-Specific iPS Cells

    Hamauchi, Shuji; Shichinohe, Hideo; Uchino, Haruto; Yamaguchi, Shigeru; Nakayama, Naoki; Kazumata, Ken; Osanai, Toshiya; Abumiya, Takeo; Houkin, Kiyohiro; Era, Takumi


    Background and purpose Moyamoya disease (MMD) is a slow, progressive steno-occlusive disease, arising in the terminal portions of the cerebral internal carotid artery. However, the functions and characteristics of the endothelial cells (ECs) in MMD are unknown. We analyzed these features using induced pluripotent stem cell (iPSC)-derived ECs. Methods iPSC lines were established from the peripheral blood of three patients with MMD carrying the variant RNF213 R4810K, and three healthy persons used as controls. After the endothelial differentiation of iPSCs, CD31+CD144+ cells were purified as ECs using a cell sorter. We analyzed their proliferation, angiogenesis, and responses to some angiogenic factors, namely VEGF, bFGF, TGF-β, and BMP4. The ECs were also analyzed using DNA microarray and proteomics to perform comprehensive gene and protein expression analysis. Results Angiogenesis was significantly impaired in MMD regardless of the presence of any angiogenic factor. On the contrary, endothelial proliferation was not significant between control- and MMD-derived cells. Regarding DNA microarray, pathway analysis illustrated that extracellular matrix (ECM) receptor-related genes, including integrin β3, were significantly downregulated in MMD. Proteomic analysis revealed that cytoskeleton-related proteins were downregulated and splicing regulation-related proteins were upregulated in MMD. Conclusions Downregulation of ECM receptor-related genes may be associated with impaired angiogenic activity in ECs derived from iPSCs from patients with MMD. Upregulation of splicing regulation-related proteins implied differences in splicing patterns between control and MMD ECs. PMID:27662211

  5. Attenuation of hind-limb ischemia in mice with endothelial-like cells derived from different sources of human stem cells.

    Wing-Hon Lai

    Full Text Available Functional endothelial-like cells (EC have been successfully derived from different cell sources and potentially used for treatment of cardiovascular diseases; however, their relative therapeutic efficacy remains unclear. We differentiated functional EC from human bone marrow mononuclear cells (BM-EC, human embryonic stem cells (hESC-EC and human induced pluripotent stem cells (hiPSC-EC, and compared their in-vitro tube formation, migration and cytokine expression profiles, and in-vivo capacity to attenuate hind-limb ischemia in mice. Successful differentiation of BM-EC was only achieved in 1/6 patient with severe coronary artery disease. Nevertheless, BM-EC, hESC-EC and hiPSC-EC exhibited typical cobblestone morphology, had the ability of uptaking DiI-labeled acetylated low-density-lipoprotein, and binding of Ulex europaeus lectin. In-vitro functional assay demonstrated that hiPSC-EC and hESC-EC had similar capacity for tube formation and migration as human umbilical cord endothelial cells (HUVEC and BM-EC (P>0.05. While increased expression of major angiogenic factors including epidermal growth factor, hepatocyte growth factor, vascular endothelial growth factor, placental growth factor and stromal derived factor-1 were observed in all EC cultures during hypoxia compared with normoxia (P<0.05, the magnitudes of cytokine up-regulation upon hypoxic were more dramatic in hiPSC-EC and hESC-EC (P<0.05. Compared with medium, transplanting BM-EC (n = 6, HUVEC (n = 6, hESC-EC (n = 8 or hiPSC-EC (n = 8 significantly attenuated severe hind-limb ischemia in mice via enhancement of neovascularization. In conclusion, functional EC can be generated from hECS and hiPSC with similar therapeutic efficacy for attenuation of severe hind-limb ischemia. Differentiation of functional BM-EC was more difficult to achieve in patients with cardiovascular diseases, and hESC-EC or iPSC-EC are readily available as "off-the-shelf" format for the treatment

  6. Human Brain Microvascular Endothelial Cells Derived from the BC1 iPS Cell Line Exhibit a Blood-Brain Barrier Phenotype.

    Katt, Moriah E; Xu, Zinnia S; Gerecht, Sharon; Searson, Peter C


    The endothelial cells that form capillaries in the brain are highly specialized, with tight junctions that minimize paracellular transport and an array of broad-spectrum efflux pumps that make drug delivery to the brain extremely challenging. One of the major limitations in blood-brain barrier research and the development of drugs to treat central nervous system diseases is the lack of appropriate cell lines. Recent reports indicate that the derivation of human brain microvascular endothelial cells (hBMECs) from human induced pluripotent stem cells (iPSCs) may provide a solution to this problem. Here we demonstrate the derivation of hBMECs extended to two new human iPSC lines: BC1 and GFP-labeled BC1. These hBMECs highly express adherens and tight junction proteins VE-cadherin, ZO-1, occludin, and claudin-5. The addition of retinoic acid upregulates VE-cadherin expression, and results in a significant increase in transendothelial electrical resistance to physiological values. The permeabilities of tacrine, rhodamine 123, and Lucifer yellow are similar to values obtained for MDCK cells. The efflux ratio for rhodamine 123 across hBMECs is in the range 2-4 indicating polarization of efflux transporters. Using the rod assay to assess cell organization in small vessels and capillaries, we show that hBMECs resist elongation with decreasing diameter but show progressive axial alignment. The derivation of hBMECs with a blood-brain barrier phenotype from the BC1 cell line highlights that the protocol is robust. The expression of GFP in hBMECs derived from the BC1-GFP cell line provides an important new resource for BBB research.

  7. Differential impact of acute high-intensity exercise on circulating endothelial microparticles and insulin resistance between overweight/obese males and females.

    Cody Durrer

    Full Text Available An acute bout of exercise can improve endothelial function and insulin sensitivity when measured on the day following exercise. Our aim was to compare acute high-intensity continuous exercise (HICE to high-intensity interval exercise (HIIE on circulating endothelial microparticles (EMPs and insulin sensitivity in overweight/obese men and women.Inactive males (BMI = 30 ± 3, 25 ± 6 yr, n = 6 and females (BMI = 28 ± 2, 21 ± 3 yr, n = 7 participated in three experimental trials in a randomized counterbalanced crossover design: 1 No exercise control (Control; 2 HICE (20 min cycling @ just above ventilatory threshold; 3 HIIE (10 X 1-min @ ∼ 90% peak aerobic power. Exercise conditions were matched for external work and diet was controlled post-exercise. Fasting blood samples were obtained ∼ 18 hr after each condition. CD62E(+ and CD31(+/CD42b- EMPs were assessed by flow cytometry and insulin resistance (IR was estimated by homeostasis model assessment (HOMA-IR.There was a significant sex X exercise interaction for CD62E(+ EMPs, CD31(+/CD42b- EMPs, and HOMA-IR (all P < 0.05. In males, both HICE and HIIE reduced EMPs compared to Control (P ≤ 0.05. In females, HICE increased CD62E(+ EMPs (P < 0.05 vs. Control whereas CD31(+/CD42b- EMPs were unaltered by either exercise type. There was a significant increase in HOMA-IR in males but a decrease in females following HIIE compared to Control (P<0.05.Overweight/obese males and females appear to respond differently to acute bouts of high-intensity exercise. A single session of HICE and HIIE reduced circulating EMPs measured on the morning following exercise in males but in females CD62E(+ EMPs were increased following HICE. Next day HOMA-IR paradoxically increased in males but was reduced in females following HIIE. Future research is needed to investigate mechanisms responsible for potential differential responses between males and females.

  8. The signature of circulating microparticles in heart failure patients with metabolic syndrome

    Alexander E Berezin


    Full Text Available The role of pattern of circulating endothelial cell-derived microparticles, platelet-derived microparticles (PMPs, and monocyte-derived microparticles (MMPs in metabolic syndrome (MetS patients with chronic heart failure (CHF is not still understood. The aim of the study was to investigate a pattern of circulating microparticles (MPs in MetS patients with CHF in relation to neurohumoral and inflammatory activation. The study retrospectively involved 101 patients with MetS and 35 healthy volunteers. Biomarkers were measured at baseline of the study. The results of the study have shown that numerous circulating PMPs- and MMPs in subjects with MetS (with or without CHF insufficiently distinguished from level obtained in healthy volunteers. We found elevated level of CD31+/annexin V+ MPs in association with lower level of CD62E+ MPs. Therefore, we found that biomarkers of biomechanical stress serum N-terminal brain natriuretic peptide and inflammation (high-sensitive C-reactive protein ,osteoprotegerin remain statistically significant predictors for decreased CD62E+ to CD31+/annexin V+ ratio in MetS patients with CHF. In conclusion, decreased CD62E+ to CD31+/annexin V+ ratio reflected that impaired immune phenotype of MPs may be discussed as a surrogate marker of CHF development in MetS population.

  9. Influence of basement membrane proteins and endothelial cell-derived factors on the morphology of human fetal-derived astrocytes in 2D.

    Amanda F Levy

    Full Text Available Astrocytes are the most prevalent type of glial cell in the brain, participating in a variety of diverse functions from regulating cerebral blood flow to controlling synapse formation. Astrocytes and astrocyte-conditioned media are widely used in models of the blood-brain barrier (BBB, however, very little is known about astrocyte culture in 2D. To test the hypothesis that surface coating and soluble factors influence astrocyte morphology in 2D, we quantitatively analyzed the morphology of human fetal derived astrocytes on glass, matrigel, fibronectin, collagen IV, and collagen I, and after the addition soluble factors including platelet-derived growth factor (PDGF, laminin, basic fibroblast growth factor (bFGF, and leukemia inhibitory factor (LIF. Matrigel surface coatings, as well as addition of leukemia inhibitory factor (LIF to the media, were found to have the strongest effects on 2D astrocyte morphology, and may be important in improving existing BBB models. In addition, the novel set of quantitative parameters proposed in this paper provide a test for determining the influence of compounds on astrocyte morphology, both to screen for new endothelial cell-secreted factors that influence astrocytes, and to determine in a high-throughput way which factors are important for translation to more complex, 3D BBB models.

  10. TGFβ inhibition enhances the generation of hematopoietic progenitors from human ES cell-derived hemogenic endothelial cells using a stepwise strategy

    Chengyan Wang; Liying Du; Yang Gao; Ming Yin; Mingxiao Ding; Hongkui Deng; Xuming Tang; Xiaomeng Sun; Zhenchuan Miao; Yaxin Lv; Yanlei Yang; Huidan Zhang; Pengbo Zhang; Yang Liu


    Embryonic hematopoiesis is a complex process.Elucidating the mechanism regulating hematopoietic differentiation from pluripotent stem cells would allow us to establish a strategy to efficiently generate hematopoietic cells.However,the mechanism governing the generation of hematopoietic progenitors from human embryonic stem cells (hESCs)remains unknown.Here,on the basis of the emergence of CD43+ hematopoietic cells from hemogenic endothelial (HE) cells,we demonstrated that VEGF was essential and sufficient,and that bFGF was synergistic with VEGF to specify the HE cells and the subsequent transition into CD43+ hematopoietic cells.Significantly,we identified TGFβ as a novel signal to regulate hematopoietic development,as the TGFβ inhibitor SB 431542 significantly promoted the transition from HE cells into CD43+ hematopoietic progenitor cells (HPCs) during hESC differentiation.By defining these critical signaling factors during hematopoietic differentiation,we can efficiently generate HPCs from hESCs.Our strategy could offer an in vitro model to study early human hematopoietic development.

  11. Effects of Antisense Oligodeoxynucleotide to Follicle-stimulating Hormone Receptor on the Expression of Proliferating Cell Nuclear Antigen and Vascular Endothelial Growth Factor in Primary Culture Cells Derived from Human Ovarian Mucinous Cystadenocarcino


    The effects of antisense oligodeoxynucleotide (antisense ODN) to follicle-stimulating hormone receptor (FSHR) and follicle-stimulating hormone (FSH) on the expression of proliferating cell nuclear antigen (PCNA) and vascular endothelial growth factor (VEGF) were studied in primary culture cells derived from human ovarian mucinous cystadenocarcinoma (OMC). The prlmary OMC cells were cultured with the enzyme digestion method, and the expression of pan Keratin protein and FSHR mRNA was detected for identification of the cells. OMC cells were co-cultured with antisense ODN, nonsense ODN and FSH with different concentrations for 48 h and 72 h. The expression of PCNA and VEGF was detected by using SP immunohistochemistry. Compared with that in the control group, the PCNA and VEGF expression was increased obviously in FSH groups (P<0.05 or P< 0.01), while decreased significantly in antisense ODN groups (P<0. 05 or P<0.01) and unchanged in nonsense ODN groups, respectively. Meanwhile, antisense ODN could antagonize the increased expression of PCNA and VEGF caused by FSH significantly (P<0.01). It was suggested that FSH might promotethe development of OMC to some extent. Antisense ODN could inhibit the proliferative activity of OMC cells and the promoting proliferative activity enhanced by FSH.

  12. 内皮微粒与冠心病相关性研究%Correlationship of endothelial microparticles and coronary heart disease

    张欣; 龙盼; 张俊峰; 王连升; 魏冬; 张田田; 徐芒华


    目的:探讨血浆内皮微粒(EMP)与冠心病的相关性.方法:冠心病组367例,其中稳定型心绞痛(SA)119例,急性冠状动脉综合征(ACS)248例,后者含不稳定型心绞痛(UA) 158例,急性心肌梗死(AMI) 90例.非冠心病组166例.ELISA法测定血浆ET-1,流式微球技术检测血浆EMP.结果:冠心病组ET-1、EMP水平升高,呈正相关(r=0.233,P=0.001).ACS组EMP(547.405)显著高于非冠心病组(148.185)及SA组(429.890),亚组分析中UA组EMP(551.660)升高最为显著;冠心病冠状动脉病变支数与EMP无明显相关;AMI患者EMP与BNP、TnT、TnI间无明显相关;EMP与ACS患者短期预后相关(r=0.280,P<0.01).结论:血浆EMP水平可反映冠心病内皮功能障碍,与冠心病的发生、冠状动脉斑块的不稳定性有关.%Objective:To study the expression of endothelial microparticles (EMP) in coronary heart disease (CHD) and the relationship of EMP and the severity of CHD. Method: 367 patients with CHD were enrolled (119 patients were stable angina (SA) group, 248 patients were acute coronary syndrome (ACS) group, including unstable angina UA 158 and acute myocardial infarction 90). Besides, 166 coronary negative patients were included as control. ELISA was used to detect plasma ET-1 levels and Cytometric Bead Assay (CBA) to detect plasma EMP levels. Result: The levels of ET-1 and EMP were elevated in CHD group with a positive correlation (r = 0. 233, P = 0. 001). The EMP level in ACS (547. 405) was significantly higher than control group (148. 185) and SA group (429. 890). The EMP levelin UA subgroup was the highest. There was no obvious relationship between EMP and the stability of coronary lesions in CHD group. And also no obvious relationship between EMP and BNP, TnT. Tnl in AMI group. The positive correlation was observed between EMP levels and short-term prognosis of ACS (r=0. 280, P<0. 01). Conclusion:Plasma EMP level reflected the endothelial dysfunction of CHD, and correlated to the occurrence

  13. Nitric oxide scavenging by red cell microparticles.

    Liu, Chen; Zhao, Weixin; Christ, George J; Gladwin, Mark T; Kim-Shapiro, Daniel B


    Red cell microparticles form during the storage of red blood cells and in diseases associated with red cell breakdown and asplenia, including hemolytic anemias such as sickle cell disease. These small phospholipid vesicles that are derived from red blood cells have been implicated in the pathogenesis of transfusion of aged stored blood and hemolytic diseases, via activation of the hemostatic system and effects on nitric oxide (NO) bioavailability. Red cell microparticles react with the important signaling molecule NO almost as fast as cell-free hemoglobin, about 1000 times faster than red-cell-encapsulated hemoglobin. The degree to which this fast reaction with NO by red cell microparticles influences NO bioavailability depends on several factors that are explored here. In the context of stored blood preserved in ADSOL, we find that both cell-free hemoglobin and red cell microparticles increase as a function of duration of storage, and the proportion of extra erythrocytic hemoglobin in the red cell microparticle fraction is about 20% throughout storage. Normalized by hemoglobin concentration, the NO-scavenging ability of cell-free hemoglobin is slightly higher than that of red cell microparticles as determined by a chemiluminescence NO-scavenging assay. Computational simulations show that the degree to which red cell microparticles scavenge NO will depend substantially on whether they enter the cell-free zone next to the endothelial cells. Single-microvessel myography experiments performed under laminar flow conditions demonstrate that microparticles significantly enter the cell-free zone and inhibit acetylcholine, endothelial-dependent, and NO-dependent vasodilation. Taken together, these data suggest that as little as 5 μM hemoglobin in red cell microparticles, an amount formed after the infusion of one unit of aged stored packed red blood cells, has the potential to reduce NO bioavailability and impair endothelial-dependent vasodilation.

  14. Stromal Cell-Derived Factor-1 Alpha Is Decreased in Women With Migraine With Aura.

    Liman, Thomas G; Neeb, Lars; Rosinski, Jana; Reuter, Uwe; Endres, Matthias


    Endothelial dysfunction may contribute to the pathophysiology of migraine with aura. Stromal cell-derived factor-1 alpha (SDF-1α) is involved in the maintenance of endothelial integrity via mobilization of vascular stem cells. We sought to determine whether SDF-1α levels are decreased in women with MA. In this post hoc analysis of a case-cohort study, levels of SDF-1α were determined by enzyme-linked immunosorbent assay. Endothelial function was assessed using peripheral arterial tonometry. Arterial stiffness was assessed by fingertip tonometry derived and heart-rate-adjusted augmentation index (AI). Twenty-eight women with MA and 27 age-matched healthy women were included in this study. Levels of SDF-1α were significantly lower in women with MA compared to age- and risk factor-matched healthy women (1763 ± 281 vs 2013 ± 263 pg/mL, P = 0.006). SDF-1α levels were positively correlated with AI in healthy women (r = 0.49, P = 0.009), but not in women with MA (r = 0.05, P = 0.78). SDF-1α levels were negatively correlated with CD144-positive endothelial microparticles (EMP; r = -0.31, P = .02), and activated CD62E-positive EMP (r = -0.35, P = .01). Levels of SDF-1α are decreased in women with MA and are associated with EMPs as a surrogate marker of endothelial dysfunction. This might contribute to the pathophysiology and vascular risk in MA, but evidence from larger prospective studies is warranted. © 2016 American Headache Society.

  15. The role of endothelial cell derived toll-like receptor 4 acute lung injury%内皮源性toll样受体4在急性肺损伤中的作用

    张进祥; 王慧; 仲照东; 李毅清; 梁慧芳; 吴河水; 田元; 蒋春舫; 郑启昌


    Objective To investigate the role of toll-like receptor 4 (TLR4) of endothelium or bone marrow derived cells in the acute lung injury (ALI) induced by lipopolyscccharide (LPS) in mice with reciprocal bone marrow transplantation. Method Chimeric mice were produced by reciprocal bone marrow transplantation between TLR4mut/mut and TLR4+/+ mice and divided into 4 groups: WT/WT (recipient/donor),WT/Mutant, Mutant/WT and Mutant/Mutant group. Six to eight weeks following transplantation, LPS was injected inot mice's tail vein in order to produce ALI model,and mice were sacrificed five hours later on.Samples of lung tissues were taken for the following analysis of wet/dry weight (W/D), lung permeabifity index (LPI), myeloperoxidase (MPO),levels of cytokines (TNF-α, IL-1β) and adhesion molecules (ICAM-1). Results Lung injury in the Mutant/Mutant mice was the mildest in the 4 groups. And lung injury in WT/Mutant mice was more serious than that in Mutant/WT mice. levels of MPO and ICAM-1 in WT/Mutant mice were much higher than those of Mutant/WT. In addition,the expression of ICAM-1 in WT/Mutant mice is comarable to that in WT/WT mice. Mutant/WT mice expressed higher levels of TNF-α and IL-1β than WT/Mutant mice. Conclusions Endothelial cell derived TLR4 plays ker-nel role in ALI induced by LPS via lung PMN recruitment,although bone marrow cells derived TLR4 are more im-portant for the release of cytokines.%目的 探索内皮源性或髓源性细胞表面toll样受体4(TLR4)介入急性肺损伤(ALI)的作用. 方法 采用TLR4基因突变(C3H/HeJ品系,TLR4mut/mut)及野生型(C3H/HeN,TLB4+/+)小鼠,通过骨髓移植建立"内皮细胞TLR4+/+髓系细胞TLR4mut/mut"(WT/Mutant:受体/供体)及Mutant/WT嵌合体小鼠,尾静脉注射LPS(5 mg·kg-1)复制ALI模型,5 h后测肺组织湿干重比(W/D),肺通透指数(LPI),肺组织髓过氧化物酶(MPO)水平、炎症因子及黏附分子水平. 结果 TLR4mut/mut小鼠肺损伤较TLR4+/+小鼠较轻,WT/Mutant组小鼠

  16. Anti-neutrophil cytoplasmic antibodies stimulate release of neutrophil microparticles.

    Hong, Ying


    The mechanisms by which anti-neutrophil cytoplasmic antibodies (ANCAs) may contribute to the pathogenesis of ANCA-associated vasculitis are not well understood. In this study, both polyclonal ANCAs isolated from patients and chimeric proteinase 3-ANCA induced the release of neutrophil microparticles from primed neutrophils. These microparticles expressed a variety of markers, including the ANCA autoantigens proteinase 3 and myeloperoxidase. They bound endothelial cells via a CD18-mediated mechanism and induced an increase in endothelial intercellular adhesion molecule-1 expression, production of endothelial reactive oxygen species, and release of endothelial IL-6 and IL-8. Removal of the neutrophil microparticles by filtration or inhibition of reactive oxygen species production with antioxidants abolished microparticle-mediated endothelial activation. In addition, these microparticles promoted the generation of thrombin. In vivo, we detected more neutrophil microparticles in the plasma of children with ANCA-associated vasculitis compared with that in healthy controls or those with inactive vasculitis. Taken together, these results support a role for neutrophil microparticles in the pathogenesis of ANCA-associated vasculitis, potentially providing a target for future therapeutics.

  17. Detection and quantification of microparticles from different cellular lineages using flow cytometry. Evaluation of the impact of secreted phospholipase A2 on microparticle assessment.

    Matthieu Rousseau

    Full Text Available Microparticles, also called microvesicles, are submicron extracellular vesicles produced by plasma membrane budding and shedding recognized as key actors in numerous physio(pathological processes. Since they can be released by virtually any cell lineages and are retrieved in biological fluids, microparticles appear as potent biomarkers. However, the small dimensions of microparticles and soluble factors present in body fluids can considerably impede their quantification. Here, flow cytometry with improved methodology for microparticle resolution was used to detect microparticles of human and mouse species generated from platelets, red blood cells, endothelial cells, apoptotic thymocytes and cells from the male reproductive tract. A family of soluble proteins, the secreted phospholipases A2 (sPLA2, comprises enzymes concomitantly expressed with microparticles in biological fluids and that catalyze the hydrolysis of membrane phospholipids. As sPLA2 can hydrolyze phosphatidylserine, a phospholipid frequently used to assess microparticles, and might even clear microparticles, we further considered the impact of relevant sPLA2 enzymes, sPLA2 group IIA, V and X, on microparticle quantification. We observed that if enriched in fluids, certain sPLA2 enzymes impair the quantification of microparticles depending on the species studied, the source of microparticles and the means of detection employed (surface phosphatidylserine or protein antigen detection. This study provides analytical considerations for appropriate interpretation of microparticle cytofluorometric measurements in biological samples containing sPLA2 enzymes.

  18. Microparticles and type 2 diabetes.

    Leroyer, A S; Tedgui, A; Boulanger, C M


    Cell activation or apoptosis leads to plasma membrane blebbing and microparticles (MPs) release in the extracellular space. MPs are submicron membrane vesicles, which harbour a panel of oxidized phospholipids and proteins specific to the cells they derived from. MPs are found in the circulating blood of healthy volunteers. MPs levels are increased in many diseases, including cardiovascular diseases with high thrombotic risk. Exposure of negatively charged phospholipids and tissue factor confers a procoagulant potential to MPs. Elevation of plasma MPs levels, particularly those of endothelial origin, reflects cellular injury and appears now as a surrogate marker of vascular dysfunction. Recent studies demonstrate an elevation of circulating levels of MPs in diabetes. MPs could also be involved in the development of vascular complications in diabetes for they stimulate pro-inflammatory responses in target cells and promote thrombosis, endothelial dysfunction and angiogenesis. Thus, these studies provide new insight in the pathogenesis and treatment of vascular complications of diabetes.

  19. Galectin-3 binding protein links circulating microparticles with electron dense glomerular deposits in lupus nephritis

    Nielsen, C T; Østergaard, O; Rekvig, O P


    OBJECTIVE: A high level of galectin-3-binding protein (G3BP) appears to distinguish circulating cell-derived microparticles in systemic lupus erythematosus (SLE). The aim of this study is to characterize the population of G3BP-positive microparticles from SLE patients compared to healthy controls......, explore putative clinical correlates, and examine if G3BP is present in immune complex deposits in kidney biopsies from patients with lupus nephritis. METHODS: Numbers of annexin V-binding and G3BP-exposing plasma microparticles from 56 SLE patients and 36 healthy controls were determined by flow...... in kidney biopsies from one non-SLE control and from patients with class IV (n = 2) and class V (n = 1) lupus nephritis using co-localization immune electron microscopy. RESULTS: Microparticle-G3BP, microparticle-C1q and microparticle-immunoglobulins were significantly (P 

  20. Circulating CD62E+ microparticles and cardiovascular outcomes.

    Soon-Tae Lee

    Full Text Available BACKGROUND: Activated endothelial cells release plasma membrane submicron vesicles expressing CD62E (E-selectin into blood, known as endothelial microparticles (EMPs. We studied whether the levels of endothelial microparticles expressing CD62E(+, CD31(+/Annexin-V(+, or CD31(+/CD42(- predict cardiovascular outcomes in patients with stroke history. METHODS/PRINCIPAL FINDINGS: Patients with stroke history at least 3 months prior to enrolment were recruited. Peripheral blood EMP levels were measured by flow cytometry. Major cardiovascular events and death were monitored for 36 months. Three hundred patients were enrolled, of which 298 completed the study according to protocol. Major cardiovascular events occurred in 29 patients (9.7%. Nine patients died, five from cardiovascular causes. Cumulative event-free survival rates were lower in patients with high levels of CD62E(+ microparticles. Multivariate Cox regression analysis adjusted for cardiovascular risk factors, medications and stroke etiologic groups showed an association between a high CD62E(+ microparticle level and a risk of major cardiovascular events and hospitalization. Levels of other kinds of EMPs expressing CD31(+/Annexin-V(+ or CD31(+/CD42(- markers were not predictive of cardiovascular outcomes. CONCLUSION: A high level of CD62E(+ microparticles is associated with cardiovascular events in patients with stroke history, suggesting that the systemic endothelial activation increases the risk for cardiovascular morbidities.

  1. Angiogenic and osteogenic regeneration in rats via calcium phosphate scaffold and endothelial cell co-culture with human bone marrow mesenchymal stem cells (MSCs), human umbilical cord MSCs, human induced pluripotent stem cell-derived MSCs and human embryonic stem cell-derived MSCs.

    Chen, Wenchuan; Liu, Xian; Chen, Qianmin; Bao, Chongyun; Zhao, Liang; Zhu, Zhimin; Xu, Hockin H K


    Angiogenesis is a limiting factor in regenerating large bone defects. The objective of this study was to investigate angiogenic and osteogenic effects of co-culture on calcium phosphate cement (CPC) scaffold using human umbilical vein endothelial cells (hUVECs) and mesenchymal stem cells (MSCs) from different origins for the first time. hUVECs were co-cultured with four types of cell: human umbilical cord MSCs (hUCMSCs), human bone marrow MSCs (hBMSCs) and MSCs from induced pluripotent stem cells (hiPSC-MSCs) and embryonic stem cells (hESC-MSCs). Constructs were implanted in 8 mm cranial defects of rats for 12 weeks. CPC without cells served as control 1. CPC with hBMSCs served as control 2. Microcapillary-like structures were successfully formed on CPC in vitro in all four co-cultured groups. Microcapillary lengths increased with time (p cultured cells increased with time (p cultured groups were much greater than controls (p animal study. hUVECs co-cultured with hUCMSCs, hiPSC-MSCs and hESC-MSCs achieved new bone and vessel density similar to hUVECs co-cultured with hBMSCs (p > 0.1). Therefore, hUCMSCs, hiPSC-MSCs and hESC-MSCs could serve as alternative cell sources to hBMSCs, which require an invasive procedure to harvest. In conclusion, this study showed for the first time that co-cultures of hUVECs with hUCMSCs, hiPSC-MSCs, hESC-MSCs and hBMSCs delivered via CPC scaffold achieved excellent osteogenic and angiogenic capabilities in vivo. The novel co-culture constructs are promising for bone reconstruction with improved angiogenesis for craniofacial/orthopaedic applications. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Downregulation of Securin by the variant RNF213 R4810K (rs112735431, G>A) reduces angiogenic activity of induced pluripotent stem cell-derived vascular endothelial cells from moyamoya patients

    Hitomi, Toshiaki [Department of Health and Environmental Sciences, Kyoto University, Kyoto (Japan); Habu, Toshiyuki [Radiation Biology Center, Kyoto University, Kyoto (Japan); Kobayashi, Hatasu; Okuda, Hiroko; Harada, Kouji H. [Department of Health and Environmental Sciences, Kyoto University, Kyoto (Japan); Osafune, Kenji [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Taura, Daisuke; Sone, Masakatsu [Department of Medicine and Clinical Science, Kyoto University, Kyoto (Japan); Asaka, Isao; Ameku, Tomonaga; Watanabe, Akira; Kasahara, Tomoko; Sudo, Tomomi; Shiota, Fumihiko [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Hashikata, Hirokuni; Takagi, Yasushi [Department of Neurosurgery, Kyoto University,Kyoto (Japan); Morito, Daisuke [Faculty of Life Sciences, Kyoto Sangyo University, Kyoto (Japan); Miyamoto, Susumu [Department of Neurosurgery, Kyoto University,Kyoto (Japan); Nakao, Kazuwa [Department of Medicine and Clinical Science, Kyoto University, Kyoto (Japan); Koizumi, Akio, E-mail: [Department of Health and Environmental Sciences, Kyoto University, Kyoto (Japan)


    Highlights: •Angiogenic activities were reduced in iPSECs from MMD patients. •Many mitosis-regulated genes were downregulated in iPSECs from MMD patients. •RNF213 R4810K downregulated Securin and inhibited angiogenic activity. •Securin suppression by siRNA reduced angiogenic activities of iPSECs and HUVECs. -- Abstract: Moyamoya disease (MMD) is a cerebrovascular disease characterized by occlusive lesions in the circle of Willis. The RNF213 R4810K polymorphism increases susceptibility to MMD. Induced pluripotent stem cells (iPSCs) were established from unaffected fibroblast donors with wild-type RNF213 alleles, and from carriers/patients with one or two RNF213 R4810K alleles. Angiogenic activities of iPSC-derived vascular endothelial cells (iPSECs) from patients and carriers were lower (49.0 ± 19.4%) than from wild-type subjects (p < 0.01). Gene expression profiles in iPSECs showed that Securin was down-regulated (p < 0.01) in carriers and patients. Overexpression of RNF213 R4810K downregulated Securin, inhibited angiogenic activity (36.0 ± 16.9%) and proliferation of humanumbilical vein endothelial cells (HUVECs) while overexpression of RNF213 wild type did not. Securin expression was downregulated using RNA interference techniques, which reduced the level of tube formation in iPSECs and HUVECs without inhibition of proliferation. RNF213 R4810K reduced angiogenic activities of iPSECs from patients with MMD, suggesting that it is a promising in vitro model for MMD.

  3. Physics of microparticle acoustophoresis

    Barnkob, Rune


    of microparticle acoustophoresis and to develop methods for future advancement of its use. Throughout the work on this thesis the author and co-workers1 have studied the physics of microparticle acoustophoresis by comparing quantitative measurements to a theoretical framework consisting of existing hydrodynamic...

  4. 骨髓内皮细胞分泌的抑制CFU-F生长的因子%Bone Marrow Endothelial Cell-Derived Factors Inhibit the Growth of Marrow CFU-F

    汪保和; 黄炜琦; 王绮如


    为探讨骨髓微环境中内皮细胞调节造血的可能机制,本实验研究了骨髓内皮细胞无血清条件培养液(BMEC-CM)及其不同分子量组分对骨髓成纤维祖细胞(CFU-F)生长的作用.在体外培养条件下,收集人和小鼠纯骨髓内皮细胞无血清条件培养液,应用连续超滤技术从其中制备出分子量>10 kD,3-10 kD和<3 kD三种组分,进行骨髓CFU-F集落形成实验,检测这些条件培养液及其超滤组分的作用.结果显示,人和小鼠骨髓内皮细胞无血清条件培养液和分子量<3 kD超滤组分都抑制CFU-F的生长,但是分子量>10kD和3-10 kD组分却不产生这种效应.两种条件培养液及其<3 kD组分不仅减少CFU-F集落形成数,同时也使集落变小,而且,<3 kD组分与CFU-F集落数之间有明显的负相关浓度依赖性关系.这些结果提示,骨髓内皮细胞至少能分泌一种分子量小于3 kD的对骨髓CFU-F生长有抑制作用的细胞因子.%The present study investigated the effects of the serum-free conditioned media of the bone marrow endothelial cells on CFU-F for potential mechanisms upon which hematopoiesis may be regulated by them within the bone marrow microenvironment. After obtaining the serum-free conditioned media of human and murine purified bone marrow endothelial cells (hBMEC-CM and mBMEC-CM) in vitro, MW>10 kD, 3 - 10 kD and <3 kD components were sifted out from these media by means of serial ultrafiltration. Assays of CFU-F were performed to test the effects of BMEC-CM and their ultrafiltrated components. The results showed that every one of hBMEC-CM, mBMEC-CM and their MW<3 kD components exerted a suppressive effect on the proliferation of corresponding CFU-F but MW>10 kDand 3 - 10 kD components. The BMEC-CM and MW <3 kD components decreased the number as well as the size of CFU-F. There were the markedly negative concentration-dependent relations between the concentrations of MW<3 kD component and the

  5. 基质细胞衍生因子-1α和白细胞介素-1β诱导淋巴管内皮表型的作用%Effect of stromal cell derived factor-1αand interleukin-1βon inducing vascular endothelial cells expressing lymphatic phenotype

    索宁; 王雪颖; 杨春林; 周辉; 李菲; 张宗璞; 万芳竹; 田铧


    目的:探讨基质细胞衍生因子-1α( SDF-1α)及白细胞介素-1β( IL-1β)诱导内皮细胞表达淋巴管表型的作用。方法 SDF-1α和IL-1β分别诱导内皮细胞株CRL-1730,用Real-time PCR、Western blotting 及免疫细胞化学等方法检测其内皮及淋巴管标志物,的表达情况。结果 SDF-1α诱导培养之后,CRL-1730细胞株的内皮细胞标志物血管性血友病因子(vWF)、血管内皮钙黏蛋白(VE-cadherin)、血管内皮生长因子受体(VEGFR)2随其浓度增高而表达降低,淋巴管标志物平足蛋白( podoplanin )、同源异形盒蛋白-1( Prox-1)和淋巴管内皮透明质酸受体-1(LYVE-1)随其浓度增高而表达增高。 IL-1β诱导之后,CRL-1730细胞株的vWF、VEGFR2和podoplanin、prox-1、LYVE-1的变化趋势同SDF-1α,而VE-cadherin的表达量基本不变。结论 SDF-1α和IL-1β都能够诱导血管内皮细胞表达淋巴管标志物。%Objective To investigate the effect of stromal cell-derived factor-1α( SDF-1α) and interleukin ( IL-1β) on inducing vascular endothelial cells to express lymphatic phenotype .Methods The CRL-1730 cell line was cultured and treated with SDF-1αor IL-1β.The expression of endothelial cell markers and lymphatic endothelial cell markers were investigated with Real-time PCR, Western blotting and immunocytochemistry .Results In CRL-1730 cell line, endothelial cell markers such as voln willebrand factor ( vWF ) , VE-cadherin , vascular endothelial growth factor receptor(VEGFR)2, were dose dependently down-regulated after SDF-1αstimulation, while lymphatic phenotypes such as Prox-1, podoplanin and lymphatic vessel endothelial hyaluronan receptor-1(LYVE-1), were dose-dependently up-regulated after SDF-1αstimulation.The changes of vWF, VEGFR2 and podoplanin, Prox-1, LYVE-1 expression after IL-1βstimulation was similar to that after SDF-1αwhile expression of VE-cadherin changed slightly .Conclusion SDF-1αand IL-1

  6. Early and Late Endothelial Progenitor Cells Derived from Rabbit Bone Marrow Isolated and Cultured by An Improved Method%改良法分离培养兔骨髓源性早晚期内皮祖细胞

    王佐; 张凯; 王仁; 苏维; 李爽; 杨简; 姜志胜


    目的 探索简单有效分离培养兔骨髓源性内皮祖细胞的方法,并比较两种内皮祖细胞生物学性状.方法 4周龄左右的新西兰兔,于每侧胫骨取骨髓2mL,密度梯度离心后取单个核细胞接种于培养瓶,48h后将悬浮的细胞收集再次贴壁,血管内皮生长因子诱导其向内皮祖细胞分化.免疫细胞化学鉴定其表面标志物、免疫荧光功能学测定,对比前后两种贴壁细胞生长状况.结果 早期获取的单个核细胞,半小时后就开始贴壁,3天左右即可长出长梭形的细胞,胞体较大,有血岛样克隆形成,随后培养可形成管腔样结构,10天左右即可呈漩涡状融合整个培养瓶,但这种细胞传代能力差,为早期内皮祖细胞;第2次贴壁的晚期细胞于贴壁后呈椭圆形生长,贴壁后5-7天即可出现集落,片状生长,最后呈铺路石样融合,并可连续传至10代以上,为晚期内皮祖细胞.第2次贴壁的内皮祖细胞在分化过程中明显失去CD133+,而CD34+表达有所升高,大部分第1次贴壁内皮祖细胞可以吞噬乙酰化低密度脂蛋白和荆豆凝集素1,第2次贴壁内皮祖细胞功能学鉴定结果与第1次贴壁的结果类似.结论 改良后的密度梯度离心法结合差速贴壁法能有效分离培养兔骨髓源性内皮祖细胞,第2次贴壁的内皮祖细胞生长能力更强.%Aim To establish an available and convenient method to isolate and culture the rabbit bone marrow-derived endothelial progenitor cells (EPC) and compare the characteristics of the two different EPC. Methods Obtained 2 mL bone marrow from each shinbone of about 4 weeks old New Zealand rabbit, mononuclear cells ( MNC) were I-solated by Ficoll density gradient centrifugation method and planted in the first culture flask, after incubated for 48 h, collecting the suspended cells into the second flask, supplemented with vascular endothelial growth factor ( VEGF) in order to induce cells differentiation into EPC. To

  7. Physics of microparticle acoustophoresis

    Barnkob, Rune


    This thesis presents studies of microparticle acoustophoresis, a technique for manipulation of particles in microsystems by means of acoustic radiation and streaming forces induced by ultrasound standing waves. The motivation for the studies is to increase the theoretical understanding of micropa......This thesis presents studies of microparticle acoustophoresis, a technique for manipulation of particles in microsystems by means of acoustic radiation and streaming forces induced by ultrasound standing waves. The motivation for the studies is to increase the theoretical understanding...... of microparticle acoustophoresis and to develop methods for future advancement of its use. Throughout the work on this thesis the author and co-workers1 have studied the physics of microparticle acoustophoresis by comparing quantitative measurements to a theoretical framework consisting of existing hydrodynamic...... and acoustic predictions. The theoretical framework is used to develop methods for in situ determination of acoustic energy density and acoustic properties of microparticles as well as to design a microchip for high-throughput microparticle acoustophoresis. An experimental model system is presented...

  8. Circulating microparticles and plasma levels of soluble E- and P-selectins in patients with systemic sclerosis

    Iversen, Lars; Østergaard, O; Ullman, S


    Microparticles (MPs) may be involved in the pathogenesis of systemic sclerosis (SSc), which includes vasculopathy, endothelial cell activation, and coagulation activation. Circulating MPs from SSc patients were characterized and their relationship with soluble markers of vascular activation...

  9. 稳定型冠心病患者血浆内皮微粒与动脉弹性的关系%Relationship of Endothelial Microparticles and Arterial Elasticity in Patients with Stable Coronary Artery Disease

    张子新; 李超君; 余陆娇


    Aim To investigate the association of endothelial microparticle (EMP) and brachial-ankle pulse wave velocity (baPWV) in patients with stable coronary artery disease (CAD).Methods 50 patients with stable coronary artery disease and 20 healthy volunteers were studied.Flow cytometer was used to measure levels of EMP (CD31 + /CD42b-) in circulation and baPWV was measured to assess the status of arterial elasticity.Results The levels of EMP were higher in patients with stable CAD than that of healthy volunteers (1 748.4 + 102.1 particles/μL vs 847.4 ±86.4 particles/μL,P <0.01),and baPWV was faster in patients with stable CAD than that of healthy volunteers (1931.1 ± 328.3 cm/s vs 1 532.1 ± 147.3 cm/s,P < 0.01).There was a positive correlation between the level of EMP and baPWV in stable CAD (r =0.42,P < 0.01).Conclusions Patients with stable CAD had higher EMP and faster baPWV than those of healthy volunteers,and there was positive correlation between EMP and baPWV.EMP was an independent influencing factor to arterial elasticity.%目的 研究稳定型冠心病患者血浆内皮微粒(EMP)水平与肱踝脉搏波传导速度(baPWV)之间的关系.方法 选择稳定型冠心病患者50例和健康志愿者20例,采用流式细胞术检测两组患者血浆中EMP(CD31+/CD42b-)水平,同时应用无创动脉硬化检测装置测定baPWV,探讨二者之间的关系.结果 冠心病组患者血浆EMP水平较对照组显著升高(1 748.4±102.1个/微升比847.4±86.4个/微升,P<0.01);冠心病组患者baPWV较对照组增快(1 931.1±328.3 cm/s比1 532.1±147.3 cm/s,P<0.01).血浆EMP水平与baPWV呈正相关(r=0.42,P<0.01).以baPWV为因变量的多因素回归分析显示,血浆EMP水平是其独立影响因素.结论 稳定型冠心病患者血浆EMP水平升高,baPWV加快且与EMP水平呈正相关,血浆EMP水平是baPWV的独立影响因素.

  10. Microparticles reveal cell activation during IVF - a possible early marker of a prothrombotic state during the first trimester.

    Olausson, Nina; Mobarrez, Fariborz; Wallen, Håkan; Westerlund, Eli; Hovatta, Outi; Henriksson, Peter


    Cell-derived microparticles (MPs) are known to be elevated in a number of diseases related to arterial and venous thromboembolism (VTE), such as acute myocardial infarction, VTE (deep-vein thrombosis and pulmonary embolism) and peripheral arterial disease. IVF-associated pregnancies have previously been shown to be associated with an increased incidence of VTE, mechanisms behind being unknown and sparsely studied. Our objective was to assess cell activation during IVF through analysis of MP levels and phenotype following ovarian stimulation. Thirty-one women undergoing IVF were included and blood samples were collected at down regulation of oestrogen and at high level stimulation with 10- to 100-fold increased endogenous oestrogen levels. MPs were analysed by flow cytometry and phenotyped according to size and protein expression. We found that overall phosphatidylserine positive platelet-, endothelial- and monocyte-derived MPs significantly increased following ovarian stimulation with increased levels of platelet activation markers CD40 ligand and P-selectin. Furthermore, there was an increase in endothelial-derived MPs exposing activation marker E-selectin and monocyte-derived MPs, while neutrophil-derived MPs decreased slightly. In conclusion we found a major increase in MPs and markers indicating cell activation in parallel with the profound oestrogen boost during IVF. To assess whether these changes in MPs are associated with thromboembolic events requires extended longitudinal studies.

  11. Acceleration of microparticle

    Shibata, H


    A microparticle (dust) ion source has been installed at the high voltage terminal of the 3.75 MV single ended Van de Graaff electrostatic accelerator and a beam line for microparticle experiments has been build at High Fluence Irradiation Facility (HIT) of Research Center for Nuclear Science and Technology, the University of Tokyo. Microparticle acceleration has been successful in obtaining expected velocities of 1-20 km/s or more for micron or submicron sized particles. Development of in situ dust detectors and analyzers on board satellites and spacecraft in the expected mass and velocity range of micrometeoroids and investigation of hypervelocity impact phenomena by using time of flight mass spectrometry, impact flash or luminescence measurement and scanning electron or laser microscope observation for metals, ceramics, polymers and semiconductors bombarded by micron-sized particles were started three years ago. (author)

  12. Influence of peripheral blood microparticles of pregnant women with preeclampsia on the phenotype of monocytes.

    Sokolov, Dmitriy I; Ovchinnikova, Olga M; Korenkov, Daniil A; Viknyanschuk, Alice N; Benken, Konstantin A; Onokhin, Kirril V; Selkov, Sergey A


    Platelet- and endothelial-derived microparticles influence the phenotype of peripheral blood leukocytes and induce production of proinflammatory cytokines. The influence of blood plasma microparticles of pregnant women on the surface receptor expression on intact or activated monocytes is still unexplored. This study was carried out to test the hypothesis that peripheral blood microparticles of women with normal pregnancy and women with preeclampsia have different influence on the expression of surface molecules on monocytes. The objective of the study was to evaluate the influence of blood plasma microparticles of pregnant women on the phenotypic properties of intact and activated THP-1 monocytes. Microparticles were isolated from peripheral blood samples of nonpregnant women, healthy pregnant women, and women with preeclampsia. THP-1 cell line was used as a model of monocytes. Microparticles of nonpregnant women decreased CD18, CD49d, and CD54 expressions and increased CD11c, CD31, CD47, and vascular endothelial growth factor receptor 2 expressions. Microparticles of healthy pregnant women increased CD18, CD54, and integrin β7 expressions and decreased CD11a and CD29 expressions. Microparticles of women with preeclampsia decreased CD18 expression on tumor necrosis factor α (TNF-α)-activated ТНР-1 cells. Microparticles of nonpregnant women, women with normal pregnancy, and pregnant women with preeclampsia decreased CD181 expression on intact and TNF-α-activated THP-1 cells. Therefore, blood plasma microparticles of women with normal pregnancy and women with preeclampsia have different influences on the expression of surface molecules on THP-1 monocytes.

  13. Nanosized blood microparticles

    Yuana, Yuana


    Microparticles (MPs) have important physiological and pathological roles in blood coagulation, inflammation and tumor progression. In recent years MPs also have been recognized to participate in important biological processes, such as in signaling and in the horizontal transfer of their specific pro

  14. Nanosized blood microparticles

    Yuana, Yuana


    Microparticles (MPs) have important physiological and pathological roles in blood coagulation, inflammation and tumor progression. In recent years MPs also have been recognized to participate in important biological processes, such as in signaling and in the horizontal transfer of their specific

  15. The change of circulatory endothelial microparticles in septic rats after cecal ligation and puncture%盲肠结扎穿孔术大鼠外周血内皮细胞微粒改变及意义

    朱丹丹; 于健; 王之余


    目的 动态观察盲肠结扎穿孔术后脓毒症大鼠外周血皮细胞微粒(EMPs)水平,探讨盲肠结扎穿孔术后脓毒症大鼠外周血内皮细胞微粒的变化情况及其趋势.方法 100只健康雄性SD大鼠,采用盲肠结扎穿孔术建立脓毒症大鼠模型,随机分为对照组(n=50)、脓毒症组(n=50),各组分别在术后0、6、12、24、48 h各取10只大鼠采血,分离血浆检测EMPs的百分比,观察比较两组大鼠活动度、肾脏组织病理改变.结果 0h两组血浆EMPs水平比较差异无统计学意义[对照组:(24.31 ±5.21)%,脓毒症组:(23.19±4.98)%,P>0.05],对照组各时间点血浆EMPs变化不明显,在6、12、24、48 h脓毒症组和对照组比较差异均有统计学意义[6h对照组:(26.02±7.89)%,6h脓毒症组:(35.94±5.74)%,12h对照组:(25.73±9.92)%,12h脓毒症组:(65.49±4.93)%,24 h对照组:(26.47±4.93)%,24 h脓毒症组:(59.07±4.35)%,48 h对照组:(25.87±3.98)%,48 h脓毒症组:(42.36±7.95)%,P<0.01].脓毒症组血浆EMPs百分比在术后6h开始升高,12h达到峰值,24 h之后略有下降[6 h:(35.94±5.74)%,12 h:(65.49±4.93)%,24h:(59.07±4.35)%,48 h:(42.36±7.95)%,P<0.01].结论 盲肠结扎穿孔术所致脓毒症大鼠存在内皮细胞微粒水平的升高.%Objective To observe the dynamic changes of endothelial microparticles (EMPs) levels in septic rats after Cecal Ligation and puncture,in order to further elucidate the changes and trends of EMPs levels in septic rats.Methods Sepsis models were established using male SD rats by cecal ligation and puncture (CLP).A total of 100 healthy rats were divided into 2 groups (n =50) randomly:control group,sepsis group.Blood samples of 10 rats in each group were collected at postoperative 0,6,12,24 and 48 hours,to detect EMPs levels in plasma.Observe and compare the mobility of rats in each group and specimens of renals were taken for histopathological examination by optical microscope.Results At 0 hour

  16. Chemokine stromal cell-derived factor 1alpha activates basophils by means of CXCR4

    Jinquan, T; Jacobi, H H; Jing, C


    The CXC chemokine receptor 4 (CXCR4) is predominantly expressed on inactivated naive T lymphocytes, B lymphocytes, dendritic cells, and endothelial cells. CXC chemokine stromal cell-derived factor 1alpha (SDF-1alpha) is the only known ligand for CXCR4. To date, the CXCR4 expression and function...... of SDF-1alpha in basophils are unknown....

  17. Using annexin V-coated magnetic beads to capture active tissue factor-bearing microparticles from body fluids.

    Gieseler, Frank; Gamperl, Hans; Theophil, Frederike; Stenzel, Inga; Quecke, Tabea; Ungefroren, Hendrik; Lehnert, Hendrik


    Microparticles, found in all body fluids including peripheral blood, are important elements that regulate cellular interactions under both physiological and pathological conditions. They play an important role in blood clot formation and increased cell aggregation. However, little is known about the components of the microparticles and their mechanism of action. A method to quantify and assess the underlying mechanism of action of microparticles in pathologies is therefore desirable. We present a specific method to isolate cell-derived microparticles from malignant effusions using annexin V-coated magnetic microbeads. The microparticles can be detected by flow cytometry. Our results show that the microparticles can be isolated with >80% specificity when bound to annexin V-coated magnetic beads, which was originally developed for the detection of apoptotic cells. We also show that the isolated microparticles were still functionally active and can be used for further analysis. Thus, our method enables isolation as well as structural and functional characterisation of the microparticles which are produced in numerous patho-physiological situations. This should help gain a deeper insight into various disease situations, which in turn should pave the way for the development of novel drugs and specific therapy strategies. © 2013 International Federation for Cell Biology.

  18. Neurokinin 1 receptor mediates membrane blebbing and sheer stress-induced microparticle formation in HEK293 cells.

    Panpan Chen

    Full Text Available Cell-derived microparticles participate in intercellular communication similar to the classical messenger systems of small and macro-molecules that bind to specialized membrane receptors. Microparticles have been implicated in the regulation of a variety of complex physiopathologic processes, such as thrombosis, the control of innate and adaptive immunity, and cancer. The neurokinin 1 receptor (NK1R is a Gq-coupled receptor present on the membrane of a variety of tissues, including neurons in the central and peripheral nervous system, immune cells, endocrine and exocrine glands, and smooth muscle. The endogenous agonist of NK1R is the undecapeptide substance P (SP. We have previously described intracellular signaling mechanisms that regulate NK1R-mediated rapid cell shape changes in HEK293 cells and U373MG cells. In the present study, we show that the activation of NK1R in HEK293 cells, but not in U373MG cells, leads to formation of sheer-stress induced microparticles that stain positive with the membrane-selective fluorescent dye FM 2-10. SP-induced microparticle formation is independent of elevated intracellular calcium concentrations and activation of NK1R present on HEK293-derived microparticles triggers detectable calcium increase in SP-induced microparticles. The ROCK inhibitor Y27632 and the dynamin inhibitor dynasore inhibited membrane blebbing and microparticle formation in HEK293 cells, strongly suggesting that microparticle formation in this cell type is dependent on membrane blebbing.

  19. Involvement of microparticles in diabetic vascular complications.

    Tsimerman, Gala; Roguin, Ariel; Bachar, Anat; Melamed, Eyal; Brenner, Benjamin; Aharon, Anat


    Type 2 diabetes mellitus (T2DM) is associated with increased coagulability and vascular complications. Circulating microparticles (MPs) are involved in thrombosis, inflammation, and angiogenesis. However, the role of MPs in T2DM vascular complications is unclear. We characterised the cell origin and pro-coagulant profiles of MPs obtained from 41 healthy controls and 123 T2DM patients with coronary artery disease, retinopathy and foot ulcers. The effects of MPs on endothelial cell coagulability and tube formation were evaluated. Patients with severe diabetic foot ulcers expressed the highest levels of MPs originated from platelet and endothelial cells and negatively-charged phospholipid-bearing MPs. MP coagulability, calculated from MP tissue factor (TF) and TF pathway inhibitor (TFPI) ratio, was low in healthy controls and in diabetic retinopathy patients (1.8, p≥0.002). MPs of all T2DM patients induced a more than two-fold increase in endothelial cell TF (antigen and gene expression) but did not affect TFPI levels. Tube networks were longest and most stable in endothelial cells that were incubated with MPs of healthy controls, whereas no tube formation occurred in MPs of diabetic patients with coronary artery disease. MPs of diabetic retinopathy and diabetic foot ulcer patients induced branched tube networks that were unstable and collapsed over time. This study demonstrates that MP characteristics are related to the specific type of vascular complications and may serve as a bio-marker for the pro- coagulant state and vascular pathology in patients with T2DM.

  20. Stromal cell-derived factor-1/CXCR4 signaling modifies the capillary-like organization of human embryonic stem cell-derived endothelium in vitro.

    Chen, Tong; Bai, Hao; Shao, Ying; Arzigian, Melanie; Janzen, Viktor; Attar, Eyal; Xie, Yi; Scadden, David T; Wang, Zack Z


    The molecular mechanisms that regulate human blood vessel formation during early development are largely unknown. Here we used human ESCs (hESCs) as an in vitro model to explore early human vasculogenesis. We demonstrated that stromal cell-derived factor-1 (SDF-1) and CXCR4 were expressed concurrently with hESC-derived embryonic endothelial differentiation. Human ESC-derived embryonic endothelial cells underwent dose-dependent chemotaxis to SDF-1, which enhanced vascular network formation in Matrigel. Blocking of CXCR4 signaling abolished capillary-like structures induced by SDF-1. Inhibition of the SDF-1/CXCR4 signaling pathway by AMD3100, a CXCR4 antagonist, disrupted the endothelial sprouting outgrowth from human embryoid bodies, suggesting that the SDF-1/CXCR4 axis plays a critical role in regulating initial vessel formation, and may function as a morphogen during human embryonic vascular development.

  1. A novel mechanism of bacterial toxin transfer within host blood cell-derived microvesicles.

    Ståhl, Anne-lie; Arvidsson, Ida; Johansson, Karl E; Chromek, Milan; Rebetz, Johan; Loos, Sebastian; Kristoffersson, Ann-Charlotte; Békássy, Zivile D; Mörgelin, Matthias; Karpman, Diana


    Shiga toxin (Stx) is the main virulence factor of enterohemorrhagic Escherichia coli, which are non-invasive strains that can lead to hemolytic uremic syndrome (HUS), associated with renal failure and death. Although bacteremia does not occur, bacterial virulence factors gain access to the circulation and are thereafter presumed to cause target organ damage. Stx was previously shown to circulate bound to blood cells but the mechanism by which it would potentially transfer to target organ cells has not been elucidated. Here we show that blood cell-derived microvesicles, shed during HUS, contain Stx and are found within patient renal cortical cells. The finding was reproduced in mice infected with Stx-producing Escherichia coli exhibiting Stx-containing blood cell-derived microvesicles in the circulation that reached the kidney where they were transferred into glomerular and peritubular capillary endothelial cells and further through their basement membranes followed by podocytes and tubular epithelial cells, respectively. In vitro studies demonstrated that blood cell-derived microvesicles containing Stx undergo endocytosis in glomerular endothelial cells leading to cell death secondary to inhibited protein synthesis. This study demonstrates a novel virulence mechanism whereby bacterial toxin is transferred within host blood cell-derived microvesicles in which it may evade the host immune system.

  2. A novel mechanism of bacterial toxin transfer within host blood cell-derived microvesicles.

    Anne-lie Ståhl


    Full Text Available Shiga toxin (Stx is the main virulence factor of enterohemorrhagic Escherichia coli, which are non-invasive strains that can lead to hemolytic uremic syndrome (HUS, associated with renal failure and death. Although bacteremia does not occur, bacterial virulence factors gain access to the circulation and are thereafter presumed to cause target organ damage. Stx was previously shown to circulate bound to blood cells but the mechanism by which it would potentially transfer to target organ cells has not been elucidated. Here we show that blood cell-derived microvesicles, shed during HUS, contain Stx and are found within patient renal cortical cells. The finding was reproduced in mice infected with Stx-producing Escherichia coli exhibiting Stx-containing blood cell-derived microvesicles in the circulation that reached the kidney where they were transferred into glomerular and peritubular capillary endothelial cells and further through their basement membranes followed by podocytes and tubular epithelial cells, respectively. In vitro studies demonstrated that blood cell-derived microvesicles containing Stx undergo endocytosis in glomerular endothelial cells leading to cell death secondary to inhibited protein synthesis. This study demonstrates a novel virulence mechanism whereby bacterial toxin is transferred within host blood cell-derived microvesicles in which it may evade the host immune system.

  3. Inhibition of platelet activation prevents the P-selectin and integrin-dependent accumulation of cancer cell microparticles and reduces tumor growth and metastasis in vivo.

    Mezouar, Soraya; Darbousset, Roxane; Dignat-George, Françoise; Panicot-Dubois, Laurence; Dubois, Christophe


    Venous thromboembolism constitutes one of the main causes of death during the progression of a cancer. We previously demonstrated that tissue factor (TF)-bearing cancer cell-derived microparticles accumulate at the site of injury in mice developing a pancreatic cancer. The presence of these microparticles at the site of thrombosis correlates with the size of the platelet-rich thrombus. The objective of this study was to determine the involvement of TF expressed by cancer cell-derived microparticles on thrombosis associated with cancer. We observed that pancreatic cancer cell derived microparticles expressed TF, its inhibitor tissue factor pathway inhibitor (TFPI) as well as the integrins αvβ1 and αvβ3. In mice bearing a tumor under-expressing TF, a significant decrease in circulating TF activity associated with an increase bleeding time and a 100-fold diminished fibrin generation and platelet accumulation at the site of injury were observed. This was mainly due to the interaction of circulating cancer cell-derived microparticles expressing TFPI with activated platelets and fibrinogen. In an ectopic model of cancer, treatment of mice with Clopidogrel, an anti-platelet drug, decreased the size of the tumors and restored hemostasis by preventing the accumulation of cancer cell-derived microparticles at the site of thrombosis. In a syngeneic orthotopic model of pancreatic cancer Clopidogrel also significantly inhibited the development of metastases. Together, these results indicate that an anti-platelet strategy may efficiently treat thrombosis associated with cancer and reduce the progression of pancreatic cancer in mice.

  4. Familial Follicular-Cell Derived Carcinoma

    Eun Ju eSon


    Full Text Available Follicular cell-derived well-differentiated thyroid cancer, papillary (PTC and follicular thyroid carcinomas (FTC compose 95% of all thyroid malignancies. Familial follicular cell-derived well-differentiated thyroid cancers contribute to 5% of those cases. These familial follicular cell derived carcinomas or non-medullary thyroid carcinomas (NMTC divide into two clinical-pathological groups. One group, syndromic-associated, composed by predominately non-thyroidal tumors, is comprised of Pendred syndrome, Warner syndrome, Carney complex type 1, PTEN-hamartoma tumor syndrome (Cowden disease; PHTS, familial adenomatous polyposis (FAP/Gardner syndrome. Additionally other less established links correlated to the development of follicular cell-derived tumors have also included Ataxia-teleangiectasia syndrome, McCune Albright syndrome, and Peutz-Jeghers syndrome. The subsequent group encompasses syndromes typified by non-medullary thyroid carcinomas or NMTC, as well as, pure familial (f PTC with or without oxyphilia, fPTC with multinodular goiter and fPTC with papillary renal cell carcinoma. This heterogeneous group of diseases has not a established genotype-phenotype correlation as the well-known genetic events identified in the familial C-cell-derived tumors or medullary thyroid carcinomas (MTC. Clinicians should be have the knowledge to identify the likelihood of a patient presenting with thyroid cancer having an additional underlying familial syndrome stemming from characteristics through morphological findings that would alert the pathologist to have the patient undergo subsequent molecular genetics evaluations. This review will discuss the clinical and pathological findings of the patients with familial papillary thyroid carcinoma, such as familial adenomatous polyposis, Carney complex, Werner syndrome, and Pendred syndrome and the heterogeneous group of familial papillary thyroid carcinoma.

  5. 2型糖尿病患者循环内皮微颗粒的变化与内皮一氧化氮合酶的关系%Change of endothelial microparticles in patients with type 2 diabetes and the association with the ndothelial nitric oxide synthase

    李红玲; 陈行飞; 廉伟; 裴俊杰; 邢卫团


    目的:探讨2型糖尿病(T2DM)患者循环内皮微颗粒(EMPs)水平与内皮一氧化氮合酶(eNOS)的关系。方法采用流式细胞仪技术测定105例糖尿病患者和40例健康对照者血清 EMPs 水平,ELISA 法检测 eNOS水平,分析 EMPs 与 eNOS 的关系。结果①与健康对照组相比,T2DM 组循环 EMPs 水平显著增高,eNOS 水平明显下降;②循环 EMPs 与 eNOS 呈负相关。③以 eNOS 为因变量的多因素回归分析显示,循环内皮微颗粒水平是其独立影响因素。结论 T2DM 患者循环 EMPs 增加,eNOS 水平下降,EMPs 水平是 eNOS 水平的独立影响因素,提示T2DM 患者体内较高的 EMPs 水平加速了大动脉弹性功能减退。%Objective To investigate the association of endothelial microparticles(EMPs)and endothelial nitric oxide synthase(eNOS). Methods The level of circulating EMPs was measured by flow cytometer and the level of eNOS was measured by ELISA in healthy volunteers(n = 40)and patients with T2DM(n = 105). Results Compared with the control group,the level of circulating EMPs was increased in T2DM,but the level of eNOS was decreased. There was a close correlation between the level of circulating EMPs and the level of eNOS. Conclusions There are elevated circulating EMPs and impaired arterial elasticity in patients with T2DM,The level of circulating EMPs correlates with eNOS,which suggestes high level of circulating EMPs may impair arterial elasticity in patients with T2DM.

  6. Microparticles and cancer thrombosis in animal models.

    Mege, Diane; Mezouar, Soraya; Dignat-George, Françoise; Panicot-Dubois, Laurence; Dubois, Christophe


    Cancer-associated venous thromboembolism (VTE) constitutes the second cause of death after cancer. Many risk factors for cancer-associated VTE have been identified, among them soluble tissue factor and microparticles (MPs). Few data are available about the implication of MPs in cancer associated-VTE through animal model of cancer. The objective of the present review was to report the state of the current literature about MPs and cancer-associated VTE in animal model of cancer. Fourteen series have reported the role of MPs in cancer-associated VTE, through three main mouse models: ectopic or orthotopic tumor induction, experimental metastasis by intravenous injection of tumor cells into the lateral tail vein of the mouse. Pancreatic cancer is the most used animal model, due to its high rate of cancer-associated VTE. All the series reported that tumor cell-derived MPs can promote thrombus formation in TF-dependent manner. Some authors reported also the implication of phosphatidylserine and PSGL1 in the generation of thrombin. Moreover, MPs seem to be implicated in cancer progression through a coagulation-dependent mechanism secondary to thrombocytosis, or a mechanism implicating the regulation of the immune response. For these reasons, few authors have reported that antiplatelet and anticoagulant treatments may prevent tumor progression and the formation of metastases in addition of coagulopathy. © 2016 Elsevier Ltd. All rights reserved.

  7. SDF-1对糖尿病外周血EPCs功能的影响及其与PI3K/AKT信号通路的关系%Effects of Stromal Cell-Derived-Factor-1 on Endothelial Progenitor Cells of Peripheral Blood and Their Relationship with PI3K/AKT Signal Transduction Pathway in Patients with Diabetes

    黎金凤; 林安华; 邓颖; 霍亚南; 刘精东; 吴明斌; 王晨秀


    Objective To observe the effects of stromal cell-derived-factor-1(SDF-1) on the function of endotheli⁃al progenitor cells(EPCs)of peripheral blood in patients with diabetes, and to discuss the effects of PI3K/AKT signaling path⁃way on the role of SDF-1 in EPCs. Methods The peripheral blood samples (30 mL) were collected in 10 diabetes patients (DM group) and 10 healthy controls (HC group). (1) The 100μg/L SDF-1 was added in intervention group. EGM-2MV was added in non-intervention group. The Boyden chamber and in vitro angiogenesis kit were used to analyze the migration and in vitro angiogenesis of EPCs. (2) Cultured EPCs were divided into blank control group, 1μg/L SDF-1 group, 10μg/L SDF-1 group, 100μg/L SDF-1 group, pure AMD3100 group and 100μg/L SDF-1+AMD3100 group. AKT protein expression lev⁃els of endothelial progenitor cells were detected by Western blot assay in each group. Results (1) Without intervention with SDF-1, EPCs’migration and angiogenesis ability were lower in DM group than those in HC group. After intervention with SDF-1, the migration and angiogenesis ability were enhanced in two groups, but the increased level was higher in DM group than that of HC group. (2) Under the same concentration, AKT protein expression level was significantly lower in DM group than that in HC group (P<0.01). AKT protein expression levels were increased with the increased levels of SDF-1 in DM group and HC group (P<0.05). AKT protein expression was significantly lower in 100μg/L SDF-1+AMD3100 group than that of 100μg/L SDF-1 group (P<0.05). Conclusion SDF-1 can increase the chemotactic migration and angiogenesis ability of EPCs in peripheral blood, especially for patients with diabetes. The effects of SDF-1 on EPCs were related to the PI3K/AKT signaling pathway.%目的:观察基质细胞衍生因子-1(SDF-1)对糖尿病外周血内皮祖细胞(EPCs)功能的影响,探讨SDF-1对EPCs的影响是否与PI3K/AKT信号通路有关。方法采集

  8. SDF-1α及其受体CXCR4与HIF-1α、VEGF在脑动静脉畸形中的表达%Expressions of stromal-cell derived factor-1α and its receptor CXCR4, hypoxia inducible factor-1α and vascular endothelial growth factor in brain arteriovenous malformation

    王凌雁; 郭少雷; 齐铁伟; 梁丰; 黄正松


    Objective To investigate the expressions ofstromal-cell derived factor-1α (SDF-1α)and its receptor CXCR4 in brain arteriovenous malformation (AVM) and to explore the relationships of SDF-1α with hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF).Methods Surgical specimens from 48 patients accepted brain AVM resection,collected in our hospital from January 2012 to December 2013,were studied for expressions ofSDF-1α,CXCR4,VEGF and HIF-1α by immunohistochemical staining.The relationships of SDF-1α with VEGF and HIF-1α were analyzed and influences of embolism,hemorrhage and Spetzer-Martin classification in SDF-1α expression were assessed.Results SDF-1α and CXCR4 expressed in 100% and 83.3% AVM specimens,respectively.The positive staining for SDF-1α was observed in the cytoplasm of vascular endothelium within the nidus and smooth muscle cells of vascular wall.CXCR4 expressed in vascular endothelium and perivascular cells located in the space between the abnormal vessels.SDF-1α expression was significantly associated with VEGF and HIF-1α (r=0.537 and 0.437,respectively,P<0.05).SDF-1α showed more intense expression in embolized patients than that in non-embolized patients (P< 0.05),while no significant difference was noted between patients with and without hemorrhage and between patients of different Spetzer-Martin classifications (P>0.05).Conclusion SDF-1α and its receptor CXCR4 highly express in brain AVM; preoperative embolization might induce expression of SDF-1α.%目的 观察脑动静脉畸形(AVM)病灶内间质细胞衍生因子-1α(SDF-1α)及其受体CXCR4的表达情况,以及SDF-1α与低氧诱导因子-1α(HIF-1α)和血管内皮生长因子(VEGF)表达的关系. 方法 选择中山大学附属第一医院神经外科自2012年1月至2013年12月经手术切除并经病理组织学证实的脑AVM标本共48例,应用免疫组化染色方法检测SDF-1α、CXCR4、HIF-1α和VEGF的表达情况,

  9. Endothelial RIG-I activation impairs endothelial function

    Asdonk, Tobias, E-mail: [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Motz, Inga; Werner, Nikos [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Coch, Christoph; Barchet, Winfried; Hartmann, Gunther [Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Nickenig, Georg; Zimmer, Sebastian [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany)


    Highlights: Black-Right-Pointing-Pointer RIG-I activation impairs endothelial function in vivo. Black-Right-Pointing-Pointer RIG-I activation alters HCAEC biology in vitro. Black-Right-Pointing-Pointer EPC function is affected by RIG-I stimulation in vitro. -- Abstract: Background: Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Methods and results: Wild type mice were injected intravenously with 32.5 {mu}g of the RIG-ligand 3pRNA (RNA with triphosphate at the 5 Prime end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. Conclusion: This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.

  10. The role of microparticles in chronic obstructive pulmonary disease

    Takahashi T


    Full Text Available Toru Takahashi,1–3 Hiroshi Kubo11Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Sendai, Japan; 2Cellular and molecular lung biology research units, Institut de Recherches Cliniques de Montréal (IRCM, Montreal, Quebec, Canada; 3Department of Anesthesiology, Tohoku University Hospital, Sendai, JapanAbstract: Accumulating evidence suggests that cell injury in lung tissues is closely connected to disease progression in chronic obstructive pulmonary disease (COPD. Microparticles (MPs are shed membrane vesicles that are released from platelets, leukocytes, red blood cells, and endothelial cells when these cells are activated or undergo apoptosis under inflammatory conditions. Based on increasing evidence that endothelial injury in the pulmonary capillary vasculature leads to lung destruction, and because cardiovascular diseases are the main cause of death among individuals with COPD, endothelial MPs (EMPs are now receiving attention as potential biomarkers for COPD. There are eight types of EMPs which are defined by the presence of different endothelial markers on the cell membrane: vascular endothelial-cadherin; platelet endothelial cell adhesion molecule; melanoma cell adhesion molecule; E-selectin; CD51; CD105; von Willebrand factor; and CD143 EMPs. Vascular endothelial-cadherin, platelet endothelial cell adhesion molecule, and E-selectin EMPs are increased in patients with stable COPD and are further increased in patients with exacerbated COPD compared to non-COPD patients. In addition, the levels of these three EMPs in patients with stable COPD are significantly correlated with lung destruction and airflow limitation. These results indicate that endothelial injury is closely connected to the pathophysiology of COPD. Interestingly, the variations in the levels of the eight EMP subtypes were not identical with changes in patient condition. Although the clinical significance of

  11. Microparticle formation after co-culture of human whole blood and umbilical artery in a novel in vitro model of flow.

    Holtom, Emma; Usherwood, James R; Macey, Marion G; Lawson, Charlotte


    Cardiovascular disease (CVD) is now the largest killer in western society, and the importance of interactions between vascular endothelium and circulating blood components in disease pathogenesis is well established. Microparticles are a heterogeneous population of laminar flow conditions. Here we have investigated microparticle production after perfusion of human whole blood through intact inflamed human umbilical artery. When blood was perfused through umbilical arteries which had been pre-stimulated with tumour necrosis factor (TNFα) for 18 h under flow conditions, there was significantly increased production of microparticles from both platelet and non-platelet sources, in particular from erythrocytes. To determine whether microparticles generated during interactions with inflamed endothelium could induce a pro-inflammatory response in trans, we isolated microparticles by centrifugation after co-culture and incubated with isolated quiescent endothelial cells followed by measurement of reactive oxygen species formation. Microparticles derived from co-culture with inflamed endothelium induced significantly enhanced levels of reactive oxygen species (ROS). These data suggest that presence of an inflamed endothelium causes release of pro-inflammatory microparticles from circulating blood cells, which could contribute to prolonged endothelial activation and subsequent atherosclerotic changes in blood vessels subjected to inflammatory insult.

  12. Vascular complications in diabetes: Microparticles and microparticle associated microRNAs as active players.

    Alexandru, Nicoleta; Badila, Elisabeta; Weiss, Emma; Cochior, Daniel; Stępień, Ewa; Georgescu, Adriana


    The recognition of the importance of diabetes in vascular disease has greatly increased lately. Common risk factors for diabetes-related vascular disease include hyperglycemia, insulin resistance, dyslipidemia, inflammation, hypercoagulability, hypertension, and atherosclerosis. All of these factors contribute to the endothelial dysfunction which generates the diabetic complications, both macro and microvascular. Knowledge of diabetes-related vascular complications and of associated mechanisms it is becoming increasingly important for therapists. The discovery of microparticles (MPs) and their associated microRNAs (miRNAs) have opened new perspectives capturing the attention of basic and clinical scientists for their potential to become new therapeutic targets and clinical biomarkers. MPs known as submicron vesicles generated from membranes of apoptotic or activated cells into circulation have the ability to act as autocrine and paracrine effectors in cell-to-cell communication. They operate as biological vectors modulating the endothelial dysfunction, inflammation, coagulation, angiogenesis, thrombosis, subsequently contributing to the progression of macro and microvascular complications in diabetes. More recently, miRNAs have started to be actively investigated, leading to first exciting reports, which suggest their significant role in vascular physiology and disease. The contribution of MPs and also of their associated miRNAs to the development of vascular complications in diabetes was largely unexplored and undiscussed. In essence, with this review we bring light upon the understanding of impact diabetes has on vascular biology, and the significant role of MPs and MPs associated miRNAs as novel mediators, potential biomarkers and therapeutic targets in vascular complications in diabetes.

  13. Circulating platelet and erythrocyte microparticles in young children and adolescents with sickle cell disease: Relation to cardiovascular complications.

    Tantawy, Azza Abdel Gawad; Adly, Amira Abdel Moneam; Ismail, Eman Abdel Rahman; Habeeb, Nevin Mamdouh; Farouk, Amal


    Sickle cell disease (SCD) is characterized by a complex vasculopathy, consisting of endothelial dysfunction and increased arterial stiffness, with a global effect on cardiovascular function. The hypercoagulable state may result from chronic hemolysis and circulating cell-derived microparticles (MPs) originating mainly from activated platelets and erythrocytes. We measured the levels of platelet and erythrocyte-derived MPs (PMPs and ErMPs) in 50 young SCD patients compared with 40 age- and sex-matched healthy controls and assessed their relation to clinicopathological characteristics and aortic elastic properties. Patients were studied stressing on the occurrence of sickling crisis, transfusion history, hydroxyurea therapy, hematological, and coagulation profile as well as flow cytometric expression of PMPs (CD41b(+)) and ErMPs (glycophorin A(+)). Echocardiography was performed to assess aortic stiffness and distensibility, left ventricular function and pulmonary artery pressure. Both PMPs and ErMPs were significantly elevated in SCD patients compared with control group (p count, HbS, markers of hemolysis, serum ferritin, D-dimer, and vWF Ag, whereas negatively correlated with hemoglobin and HbF levels (p < 0.05). Both PMPs and ErMPs levels were positively correlated with aortic stiffness, pulmonary artery pressure, and tricuspid regurgitant velocity (p < 0.05) while negatively correlated with aortic distensibility. We suggest that PMPs and ErMPs overproduction may be considered a potential biological marker for vascular dysfunction and disease severity in SCD and may be implicated in the pathogenesis of coagulation abnormalities encountered in those patients. Their levels are closely related to sickling crisis, pulmonary hypertension, markers of hemolysis, fibrinolysis, and iron overload. Therefore, quantification of MPs in SCD may provide utility for identifying patients who are at increased risk of thrombotic events or cardiovascular abnormalities and

  14. Microparticles as Potential Biomarkers of Cardiovascular Disease

    França, Carolina Nunes, E-mail: [Universidade Federal de São Paulo - UNIFESP - UNISA, SP, São Paulo (Brazil); Universidade de Santo Amaro - UNISA, SP, São Paulo (Brazil); Izar, Maria Cristina de Oliveira; Amaral, Jônatas Bussador do; Tegani, Daniela Melo; Fonseca, Francisco Antonio Helfenstein [Universidade Federal de São Paulo - UNIFESP - UNISA, SP, São Paulo (Brazil)


    Primary prevention of cardiovascular disease is a choice of great relevance because of its impact on health. Some biomarkers, such as microparticles derived from different cell populations, have been considered useful in the assessment of cardiovascular disease. Microparticles are released by the membrane structures of different cell types upon activation or apoptosis, and are present in the plasma of healthy individuals (in levels considered physiological) and in patients with different pathologies. Many studies have suggested an association between microparticles and different pathological conditions, mainly the relationship with the development of cardiovascular diseases. Moreover, the effects of different lipid-lowering therapies have been described in regard to measurement of microparticles. The studies are still controversial regarding the levels of microparticles that can be considered pathological. In addition, the methodologies used still vary, suggesting the need for standardization of the different protocols applied, aiming at using microparticles as biomarkers in clinical practice.

  15. Microparticles as Potential Biomarkers of Cardiovascular Disease

    Carolina Nunes França


    Full Text Available Primary prevention of cardiovascular disease is a choice of great relevance because of its impact on health. Some biomarkers, such as microparticles derived from different cell populations, have been considered useful in the assessment of cardiovascular disease. Microparticles are released by the membrane structures of different cell types upon activation or apoptosis, and are present in the plasma of healthy individuals (in levels considered physiological and in patients with different pathologies. Many studies have suggested an association between microparticles and different pathological conditions, mainly the relationship with the development of cardiovascular diseases. Moreover, the effects of different lipid-lowering therapies have been described in regard to measurement of microparticles. The studies are still controversial regarding the levels of microparticles that can be considered pathological. In addition, the methodologies used still vary, suggesting the need for standardization of the different protocols applied, aiming at using microparticles as biomarkers in clinical practice.

  16. 细胞毒素相关基因A(+)幽门螺杆菌根除对原发性高血压患者外周血循环内皮微粒及动脉弹性的影响%Effect of Cytotoxin Associated Gene A (+) Helicobacter Pylori Eradication on Circulating Endothelial-Derived Microparticles and Arterial Elasticity in Patients with Essential Hypertension

    李劲草; 黄冰生; 林桂雄; 吴钰燕


    Aim To investigate the effect of cytotoxin associated gene A( + ) Helicobacter pylori eradication on vascular endothelial function and arterial elasticity in patients with essential hypertension. Methods 62 essential hypertension patients infected with cytotoxin associated gene A ( + ) Helicobacter pylori ( eradication therapy group) and 62 essential hypertension patients without infecting with Helicobacter pylori (control group) were recruited into the study. The patients in eradication therapy group were adminstrated with eradication therapy for a week to Helicobacter pylori, however, the patients in control group were adminstrated with placebo for a week on the basis of general treatment. The levels of plasma lipids, circulating endothelial- derived microparticles and arterial elasticity were performed at the beginning and the end of study in all subjects. The follow-up period was 6 months. Results In comparison with the levels at beginning, the levels of plasma total cholesterol and circulating endothelial-derived microparticles were significantly decreased and C2 significantly increased in erdication therapy group at the end of study (P < 0. 05). Conclusion Helicobacter pylori eradication might improve the vascular endothelial function and arterial elasticity in essential hypertension patients infected with cytotoxin associated gene A( + ) Helicobacter pylori.%目的 探讨细胞毒素相关基因A(+)幽门螺杆菌根除对原发性高血压患者血管内皮功能及动脉弹性的影响.方法 选择细胞毒素相关基因A(+)幽门螺杆茵感染的原发性高血压患者62例为根除治疗组,同期就诊的62例无幽门螺杆菌感染的原发性高血压患者为对照组.在常规降压治疗基础上,根除治疗组给予根除幽门螺杆菌治疗1周,对照组给予安慰剂治疗1周,随访6个月.两组研究对象在研究前后均行血脂、外周血循环内皮微粒水平及动脉弹性检测.结果 与根除前比较,根除治疗组

  17. Pharmaceutical microparticle engineering with electrospraying

    Bohr, Adam; Wan, Feng; Kristensen, Jakob


    , acetone, and an anti-solvent, methanol, for PLGA were studied in different ratios. Properties of the spraying solutions were examined and the resulting microparticles were characterized with regard to size, morphology, porosity, solid state form, surface chemistry and drug release. Particle formation...... demonstrated by the increasingly higher drug release rates. The results demonstrate the importance of solvent composition in particle preparation and indicate potential for exploiting this dependence to improve pharmaceutical particle design and performance....

  18. Intermittent Hypoxia Impairs Endothelial Function in Early Preatherosclerosis.

    Tuleta, I; França, C N; Wenzel, D; Fleischmann, B; Nickenig, G; Werner, N; Skowasch, D


    Intermittent hypoxia seems to be a major pathomechanism of obstructive sleep apnea-associated progression of atherosclerosis. The goal of the present study was to assess the influence of hypoxia on endothelial function depending on the initial stage of vasculopathy. We used 16 ApoE-/- mice were exposed to a 6-week-intermittent hypoxia either immediately (early preatherosclerosis) or after 5 weeks of high-cholesterol diet (advanced preatherosclerosis). Another 16 ApoE-/- mice under normoxia served as corresponding controls. Endothelial function was measured by an organ bath technique. Blood plasma CD31+/annexin V+ endothelial microparticles as well as sca1/flk1+ endothelial progenitor cells in blood and bone marrow were analyzed by flow cytometry. The findings were that intermittent hypoxia impaired endothelial function (56.6±6.2% of maximal phenylephrine-induced vasoconstriction vs. 35.2±4.1% in control) and integrity (increased percentage of endothelial microparticles: 0.28±0.05% vs. 0.15±0.02% in control) in early preatherosclerosis. Peripheral repair capacity expressed as the number of endothelial progenitor cells in blood was attenuated under hypoxia (2.0±0.5% vs. 5.3±1.9% in control), despite the elevated number of these cells in the bone marrow (2.0±0.4% vs. 1.1±0.2% in control). In contrast, endothelial function, as well as microparticle and endothelial progenitor cell levels were similar under hypoxia vs. control in advanced preatherosclerosis. We conclude that hypoxia aggravates endothelial dysfunction and destruction in early preatherosclerosis.

  19. Procoagulant, tissue factor-bearing microparticles in bronchoalveolar lavage of interstitial lung disease patients: an observational study.

    Federica Novelli

    Full Text Available Coagulation factor Xa appears involved in the pathogenesis of pulmonary fibrosis. Through its interaction with protease activated receptor-1, this protease signals myofibroblast differentiation in lung fibroblasts. Although fibrogenic stimuli induce factor X synthesis by alveolar cells, the mechanisms of local posttranslational factor X activation are not fully understood. Cell-derived microparticles are submicron vesicles involved in different physiological processes, including blood coagulation; they potentially activate factor X due to the exposure on their outer membrane of both phosphatidylserine and tissue factor. We postulated a role for procoagulant microparticles in the pathogenesis of interstitial lung diseases. Nineteen patients with interstitial lung diseases and 11 controls were studied. All subjects underwent bronchoalveolar lavage; interstitial lung disease patients also underwent pulmonary function tests and high resolution CT scan. Microparticles were enumerated in the bronchoalveolar lavage fluid with a solid-phase assay based on thrombin generation. Microparticles were also tested for tissue factor activity. In vitro shedding of microparticles upon incubation with H₂O₂ was assessed in the human alveolar cell line, A549 and in normal bronchial epithelial cells. Tissue factor synthesis was quantitated by real-time PCR. Total microparticle number and microparticle-associated tissue factor activity were increased in interstitial lung disease patients compared to controls (84±8 vs. 39±3 nM phosphatidylserine; 293±37 vs. 105±21 arbitrary units of tissue factor activity; mean±SEM; p<.05 for both comparisons. Microparticle-bound tissue factor activity was inversely correlated with lung function as assessed by both diffusion capacity and forced vital capacity (r² = .27 and .31, respectively; p<.05 for both correlations. Exposure of lung epithelial cells to H₂O₂ caused an increase in microparticle-bound tissue factor

  20. Human Stem Cell Derived Cardiomyocytes: An Alternative ...

    Chemical spills and associated deaths in the US has increased 2.6-fold and 16-fold from 1983 to 2012, respectfully. In addition, the number of chemicals to which humans are exposed to in the environment has increased almost 10-fold from 2001 to 2013 within the US. Internationally, a WHO report on the global composite impact of chemicals on health reported that 16% of the total burden of cardiovascular disease was attributed to environmental chemical exposure with 2.5 million deaths per year. Clearly, the cardiovascular system, at all its various developmental and life stages, represents a critical target organ system that can be adversely affected by existing and emerging chemicals (e.g., engineered nanomaterials) in a variety of environmental media. The ability to assess chemical cardiac risk and safety is critically needed but extremely challenging due to the number and categories of chemicals in commerce, as indicated. This presentation\\session will evaluate the use of adult human stem cell derived cardiomyocytes, and existing platforms, as an alternative model to evaluate environmental chemical cardiac toxicity as well as provide key information for the development of predictive adverse outcomes pathways associated with environmental chemical exposures. (This abstract does not represent EPA policy) Rapid and translatable chemical safety screening models for cardiotoxicity current status for informing regulatory decisions, a workshop sponsored by the Society

  1. Interaction Force Estimation During Manipulation of Microparticles

    Khalil, I.S.M.; Metz, R.M.P.; Abelmann, L.; Misra, S.


    This work investigates the utilization of microparticles for the wireless sensing of interaction forces in magneticbased manipulation systems. The proposed force estimation approach allows for using microparticles in sensing the interaction forces at hard-to-reach regions to avoid the mechanical and

  2. Interaction Force Estimation During Manipulation of Microparticles

    Khalil, I.S.M.; Metz, R.M.P.; Abelmann, Leon; Misra, Sarthak


    This work investigates the utilization of microparticles for the wireless sensing of interaction forces in magneticbased manipulation systems. The proposed force estimation approach allows for using microparticles in sensing the interaction forces at hard-to-reach regions to avoid the mechanical and

  3. Transplantation of human stem cell-derived hepatocytes in an animal model of acute liver failure.

    Ramanathan, Rajesh; Pettinato, Giuseppe; Beeston, John T; Lee, David D; Wen, Xuejun; Mangino, Martin J; Fisher, Robert A


    Hepatocyte cell transplantation can be life-saving in patients with acute liver failure (ALF); however, primary human hepatocyte transplantation is limited by the scarcity of donor hepatocytes. We investigated the effect of stem cell-derived, hepatocyte-like cells in an animal xenotransplant model of ALF. Intraperitoneal d-galactosamine was used to develop a lethal model of ALF in the rat. Human induced pluripotent stem cells (iPSC), human mesenchymal stem cells, and human iPSC combined with human endothelial cells (iPSC + EC) were differentiated into hepatocyte-like cells and transplanted into the spleens of athymic nude rats with ALF. A reproducible lethal model of ALF was achieved with nearly 90% death within 3 days. Compared with negative controls, rats transplanted with stem cell-derived, hepatocyte-like cells were associated with increased survival. Human albumin was detected in the rat serum 3 days after transplantation in more than one-half the animals transplanted with hepatocyte-like cells. Only animals transplanted with iPSC + EC-derived hepatocytes had serum human albumin at 14 days posttransplant. Transplanted hepatocyte-like cells homed to the injured rat liver, whereas the ECs were only detected in the spleen. Transplantation of stem cell-derived, hepatocyte-like cells improved survival with evidence of in vivo human albumin production. Combining ECs may prolong cell function after transplantation. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Orodispersible films and tablets with prednisolone microparticles.

    Brniak, Witold; Maślak, Ewelina; Jachowicz, Renata


    Orodispersible tablets (ODTs) and orodispersible films (ODFs) are solid oral dosage forms disintegrating or dissolving rapidly when placed in the mouth. One of the main issues related to their preparation is an efficient taste masking of a bitter drug substance. Therefore, the aim of this study was to prepare and evaluate the microparticles intended to mask a bitter taste of the prednisolone and use them in further preparation of two orodispersible dosage forms. Microparticles based on the Eudragit E PO or E 100 as a taste-masking agent were prepared with spray-drying technique. Tablets containing microparticles, co-processed ODT excipient Pharmaburst, and lubricant were directly compressed with single-punch tablet press. Orodispersible films were prepared by casting polymeric solutions of hydroxypropyl methylcellulose containing uniformly dispersed microparticles. Physicochemical properties of microparticles were evaluated, as well as mechanical properties analysis, disintegration time measurements and dissolution tests were performed for prepared dosage forms. Both formulations showed good mechanical resistance while maintaining excellent disintegration properties. The dissolution studies showed good masking properties of microparticles with Eudragit E 100. The amount of prednisolone released during the first minute in phosphate buffer 6.8 was around 0.1%. After incorporation into the orodispersible forms, the amount of released prednisolone increased significantly. It was probably the effect of faster microparticles wetting in orodispersible forms and their partial destruction by compression force during tableting process.

  5. Transgene Reactivation in Induced Pluripotent Stem Cell Derivatives and Reversion to Pluripotency of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells

    Galat, Yekaterina; Perepitchka, Mariana; Jennings, Lawrence J.; Iannaccone, Philip M.; Hendrix, Mary J.C.


    Induced pluripotent stem cells (iPSCs) have enormous potential in regenerative medicine and disease modeling. It is now felt that clinical trials should be performed with iPSCs derived with nonintegrative constructs. Numerous studies, however, including those describing disease models, are still being published using cells derived from iPSCs generated with integrative constructs. Our experimental work presents the first evidence of spontaneous transgene reactivation in vitro in several cellular types. Our results show that the transgenes were predominantly silent in parent iPSCs, but in mesenchymal and endothelial iPSC derivatives, the transgenes experienced random upregulation of Nanog and c-Myc. Additionally, we provide evidence of spontaneous secondary reprogramming and reversion to pluripotency in mesenchymal stem cells derived from iPSCs. These findings strongly suggest that the studies, which use cellular products derived from iPSCs generated with retro- or lentiviruses, should be evaluated with consideration of the possibility of transgene reactivation. The in vitro model described here provides insight into the earliest events of culture transformation and suggests the hypothesis that reversion to pluripotency may be responsible for the development of tumors in cell replacement experiments. The main goal of this work, however, is to communicate the possibility of transgene reactivation in retro- or lenti-iPSC derivatives and the associated loss of cellular fidelity in vitro, which may impact the outcomes of disease modeling and related experimentation. PMID:27193052

  6. Cross-sectional study of soluble selectins, fractions of circulating microparticles and their relationship to lung and skin involvement in systemic sclerosis

    Iversen, Line V; Ullman, Susanne; Østergaard, Ole


    BACKGROUND: Endothelial damage and activation may play central roles in the pathogenesis of systemic sclerosis (SSc) and are reflected by microparticles (MPs) and soluble selectins. The objective of this study was to determine if these potential biomarkers are associated with specific organ...

  7. Mononuclear Phagocyte-Derived Microparticulate Caspase-1 Induces Pulmonary Vascular Endothelial Cell Injury.

    Srabani Mitra

    Full Text Available Lung endothelial cell apoptosis and injury occurs throughout all stages of acute lung injury (ALI/ARDS and impacts disease progression. Lung endothelial injury has traditionally been focused on the role of neutrophil trafficking to lung vascular integrin receptors induced by proinflammatory cytokine expression. Although much is known about the pathogenesis of cell injury and death in ALI/ARDS, gaps remain in our knowledge; as a result of which there is currently no effective pharmacologic therapy. Enzymes known as caspases are essential for completion of the apoptotic program and secretion of pro-inflammatory cytokines. We hypothesized that caspase-1 may serve as a key regulator of human pulmonary microvascular endothelial cell (HPMVEC apoptosis in ALI/ARDS. Our recent experiments confirm that microparticles released from stimulated monocytic cells (THP1 induce lung endothelial cell apoptosis. Microparticles pretreated with the caspase-1 inhibitor, YVAD, or pan-caspase inhibitor, ZVAD, were unable to induce cell death of HPMVEC, suggesting the role of caspase-1 or its substrate in the induction of HPMVEC cell death. Neither un-induced microparticles (control nor direct treatment with LPS induced apoptosis of HPMVEC. Further experiments showed that caspase-1 uptake into HPMVEC and the induction of HPMVEC apoptosis was facilitated by caspase-1 interactions with microparticulate vesicles. Altering vesicle integrity completely abrogated apoptosis of HPMVEC suggesting an encapsulation requirement for target cell uptake of active caspase-1. Taken together, we confirm that microparticle centered caspase-1 can play a regulator role in endothelial cell injury.

  8. Nitric Oxide Scavenging by Red Cell Microparticles

    Liu, Chen; Zhao, Weixin; George J Christ; Gladwin, Mark T.; Kim-Shapiro, Daniel B.


    Red cell microparticles form during the storage of red blood cells and in diseases associated with red cell breakdown and asplenia, including hemolytic anemias such as sickle cell disease. These small phospholipid vesicles that are derived from red blood cells have been implicated in the pathogenesis of transfusion of aged stored blood and hemolytic diseases, via activation of the hemostatic system and effects on nitric oxide (NO) bioavailability. Red cell microparticles react with the import...

  9. Trojan Microparticles for Drug Delivery

    Thierry F. Vandamme


    Full Text Available During the last decade, the US Food and Drug Administration (FDA have regulated a wide range of products, (foods, cosmetics, drugs, devices, veterinary, and tobacco which may utilize micro and nanotechnology or contain nanomaterials. Nanotechnology allows scientists to create, explore, and manipulate materials in nano-regime. Such materials have chemical, physical, and biological properties that are quite different from their bulk counterparts. For pharmaceutical applications and in order to improve their administration (oral, pulmonary and dermal, the nanocarriers can be spread into microparticles. These supramolecular associations can also modulate the kinetic releases of drugs entrapped in the nanoparticles. Different strategies to produce these hybrid particles and to optimize the release kinetics of encapsulated drugs are discussed in this review.

  10. Microparticles: A New Perspective in Central Nervous System Disorders

    Stephanie M. Schindler


    Full Text Available Microparticles (MPs are a heterogeneous population of small cell-derived vesicles, ranging in size from 0.1 to 1 μm. They contain a variety of bioactive molecules, including proteins, biolipids, and nucleic acids, which can be transferred between cells without direct cell-to-cell contact. Consequently, MPs represent a novel form of intercellular communication, which could play a role in both physiological and pathological processes. Growing evidence indicates that circulating MPs contribute to the development of cancer, inflammation, and autoimmune and cardiovascular diseases. Most cell types of the central nervous system (CNS have also been shown to release MPs, which could be important for neurodevelopment, CNS maintenance, and pathologies. In disease, levels of certain MPs appear elevated; therefore, they may serve as biomarkers allowing for the development of new diagnostic tools for detecting the early stages of CNS pathologies. Quantification and characterization of MPs could also provide useful information for making decisions on treatment options and for monitoring success of therapies, particularly for such difficult-to-treat diseases as cerebral malaria, multiple sclerosis, and Alzheimer’s disease. Overall, studies on MPs in the CNS represent a novel area of research, which promises to expand the knowledge on the mechanisms governing some of the physiological and pathophysiological processes of the CNS.

  11. Cellular origin of platelet-derived microparticles in vivo

    A. Rank; R. Nieuwland; R. Delker; A. Köhler; B. Toth; V. Pihusch; R. Wilkowski; R. Pihusch


    Introduction: Microparticles (MP), presumably of platelet origin, are the most abundant microparticles in blood. To which extent such MP may also directly originate from megakaryocytes, however, is unknown. During hematopoietic stem cell transplantation, patients undergo total body irradiation which

  12. The phenotype and tissue-specific nature of multipotent cells derived from human mature adipocytes.

    Kou, Liang; Lu, Xiao-Wen; Wu, Min-Ke; Wang, Hang; Zhang, Yu-Jiao; Sato, Soh; Shen, Jie-Fei


    Dedifferentiated fat (DFAT) cells derived from mature adipocytes have been considered to be a homogeneous group of multipotent cells, which present to be an alternative source of adult stem cells for regenerative medicine. However, many aspects of the cellular nature about DFAT cells remained unclarified. This study aimed to elucidate the basic characteristics of DFAT cells underlying their functions and differentiation potentials. By modified ceiling culture technique, DFAT cells were converted from human mature adipocytes from the human buccal fat pads. Flow cytometry analysis revealed that those derived cells were a homogeneous population of CD13(+) CD29(+) CD105(+) CD44(+) CD31(-) CD34(-) CD309(-) α-SMA(-) cells. DFAT cells in this study demonstrated tissue-specific differentiation properties with strong adipogenic but much weaker osteogenic capacity. Neither did they express endothelial markers under angiogenic induction.

  13. Increased plasma levels of microparticles expressing CD39 and CD133 in acute liver injury

    Schmelzle, Moritz; Splith, Katrin; Wiuff Andersen, Lars;


    BACKGROUND: We have previously demonstrated that CD133 and CD39 are expressed by hematopoietic stem cells (HSC), which are mobilized after liver injury and target sites of injury, limit vascular inflammation, and boost hepatic regeneration. Plasma microparticles (MP) expressing CD39 can block...... endothelial activation. Here, we tested whether CD133 MP might be shed in a CD39-dependent manner in a model of liver injury and could potentially serve as biomarkers of liver failure in the clinic. METHODS: Wild-type and Cd39-null mice were subjected to acetaminophen-induced liver injury. Mice were...

  14. Clinical CVVH model removes endothelium-derived microparticles from circulation

    Abdelhafeez H. Abdelhafeez


    Full Text Available Background: Endothelium-derived microparticles (EMPs are submicron vesicles released from the plasma membrane of endothelial cells in response to injury, apoptosis or activation. We have previously demonstrated EMP-induced acute lung injury (ALI in animal models and endothelial barrier dysfunction in vitro. Current treatment options for ALI are limited and consist of supportive therapies. We hypothesize that standard clinical continuous venovenous hemofiltration (CVVH reduces serum EMP levels and may be adapted as a potential therapeutic intervention. Materials and methods: EMPs were generated from plasminogen activation inhibitor-1 (PAI-1-stimulated human umbilical vein endothelial cells (HUVECs. Flow cytometric analysis was used to characterize EMPs as CD31- and annexin V-positive events in a submicron size gate. Enumeration was completed against a known concentration of latex beads. Ultimately, a concentration of ~650,000 EMP/mL perfusate fluid (total 470 mL was circulated through a standard CVVH filter (pore size 200 μm, flow rate 250 mL/hr for a period of 70 minutes. 0.5 mL aliquots were removed at 5- to 10-minute intervals for flow cytometric analysis. EMP concentration in the dialysate was measured at the end of 4 hours to better understand the fate of EMPs. Results: A progressive decrease in circulating EMP concentration was noted using standard CVVH at 250 mL/hr (a clinical standard rate from a 470 mL volume modelling a patient's circulation. A 50% reduction was noted within the first 30 minutes. EMPs entering the dialysate after 4 hours were 5.7% of the EMP original concentration. Conclusion: These data demonstrate that standard CVVH can remove EMPs from circulation in a circuit modelling a patient. An animal model of hemofiltration with induction of EMP release is required to test the therapeutic potential of this finding and potential of application in early treatment of ALI.

  15. Association of mast cell-derived VEGF and proteases in Dengue shock syndrome.

    Takahisa Furuta

    Full Text Available BACKGROUND: Recent in-vitro studies have suggested that mast cells are involved in Dengue virus infection. To clarify the role of mast cells in the development of clinical Dengue fever, we compared the plasma levels of several mast cell-derived mediators (vascular endothelial cell growth factor [VEGF], soluble VEGF receptors [sVEGFRs], tryptase, and chymase and -related cytokines (IL-4, -9, and -17 between patients with differing severity of Dengue fever and healthy controls. METHODOLOGY/PRINCIPAL FINDINGS: The study was performed at Children's Hospital No. 2, Ho Chi Minh City, and Vinh Long Province Hospital, Vietnam from 2002 to 2005. Study patients included 103 with Dengue fever (DF, Dengue hemorrhagic fever (DHF, and Dengue shock syndrome (DSS, as diagnosed by the World Health Organization criteria. There were 189 healthy subjects, and 19 febrile illness patients of the same Kinh ethnicity. The levels of mast cell-derived mediators and -related cytokines in plasma were measured by ELISA. VEGF and sVEGFR-1 levels were significantly increased in DHF and DSS compared with those of DF and controls, whereas sVEGFR-2 levels were significantly decreased in DHF and DSS. Significant increases in tryptase and chymase levels, which were accompanied by high IL-9 and -17 concentrations, were detected in DHF and DSS patients. By day 4 of admission, VEGF, sVEGFRs, and proteases levels had returned to similar levels as DF and controls. In-vitro VEGF production by mast cells was examined in KU812 and HMC-1 cells, and was found to be highest when the cells were inoculated with Dengue virus and human Dengue virus-immune serum in the presence of IL-9. CONCLUSIONS: As mast cells are an important source of VEGF, tryptase, and chymase, our findings suggest that mast cell activation and mast cell-derived mediators participate in the development of DHF. The two proteases, particularly chymase, might serve as good predictive markers of Dengue disease severity.

  16. Influence of microparticle size on cavitation noise during ultrasonic vibration

    H. Ge


    Full Text Available The cavitation noise in the ultrasonic vibration system was found to be influenced by the size of microparticles added in water. The SiO2 microparticles with the diameter smaller than 100 μm reduced the cavitation noise, and the reason was attributed to the constrained oscillation of the cavitation bubbles, which were stabilized by the microparticles.

  17. Microparticle Assembly Pathways on Lipid Membranes

    van der Wel, Casper; Heinrich, Doris; Kraft, Daniela J.


    Understanding interactions between microparticles and lipid membranes is of increasing importance, especially for unraveling the influence of microplastics on our health and environment. Here, we study how a short-ranged adhesive force between microparticles and model lipid membranes causes membrane-mediated particle assembly. Using confocal microscopy, we observe the initial particle attachment to the membrane, then particle wrapping, and in rare cases spontaneous membrane tubulation. In the attached state, we measure that the particle mobility decreases by 26%. If multiple particles adhere to the same vesicle, their initial single-particle state determines their interactions and subsequent assembly pathways: 1) attached particles only aggregate when small adhesive vesicles are present in solution, 2) wrapped particles reversibly attract one another by membrane deformation, and 3) a combination of wrapped and attached particles form membrane-mediated dimers, which further assemble into a variety of complex structures. The experimental observation of distinct assembly pathways induced only by a short ranged membrane-particle adhesion, shows that a cellular cytoskeleton or other active components are not required for microparticle aggregation. We suggest that this membrane-mediated microparticle aggregation is a reason behind reported long retention times of polymer microparticles in organisms.

  18. An overview of the role of microparticles/microvesicles in blood components: Are they clinically beneficial or harmful?

    Burnouf, Thierry; Chou, Ming-Li; Goubran, Hadi; Cognasse, Fabrice; Garraud, Olivier; Seghatchian, Jerard


    Blood cells and tissues generate heterogeneous populations of cell-derived vesicles, ranging from approximately 50 nm to 1 µm in diameter. Under normal physiological conditions and as an essential part of an energy-dependent natural process, microparticles (MPs) are continuously shed into the circulation from membranes of all viable cells such as megakaryocytes, platelets, red blood cells, white blood cells and endothelial cells. MP shedding can also be triggered by pathological activation of inflammatory processes and activation of coagulation or complement systems, or even by shear stress in the circulation. Structurally, MPs have a bilayered phospholipid structure exposing coagulant-active phosphatidylserine and expressing various membrane receptors, and they serve as cell-to-cell shuttles for bioactive molecules such as lipids, growth factors, microRNAs, and mitochondria. It was established that ex vivo processing of blood into its components, involving centrifugation, processing by various apheresis procedures, leucoreduction, pathogen reduction, and finally storage in different media and different types of blood bags, can impact MP generation and content. This is mostly due to exposure of the collected blood to anticoagulant/storage media and due to shear stresses or activation, contact with artificial surfaces, or exposure to various leucocyte-removal filters and pathogen-reduction treatments. Such artificially generated MPs, which are added to the original pool of MPs collected from the donor, may exhibit specific functional characteristics, as MPs are not an inert element of blood components. Not surprisingly, MPs' roles and functionality are therefore increasingly seen to be fully relevant to the field of transfusion medicine, and as a parameter of blood safety that must be considered in haemovigilance programmes. Continual advancements in assessment methods of MPs and storage lesions are gradually leading to a better understanding of the impacts of

  19. Agglomeration of microparticles in complex plasmas

    Du, Cheng-Ran; Ivlev, Alexei; Konopka, Uwe; Morfill, Gregor


    Agglomeration of highly charged microparticles was observed and studied in complex plasma experiments carried out in a capacitively coupled rf discharge. The agglomeration was caused by strong dust density waves triggered in a particle cloud by decreasing neutral gas pressure. Using a high-speed camera during this unstable regime, it was possible to resolve the motion of individual microparticles and to show that the relative velocities of some particles were sufficiently high to overcome the mutual Coulomb repulsion and hence to result in agglomeration. After stabilising the cloud again through the increase of the pressure, we were able to observe the aggregates directly with a long-distance microscope. We show that the agglomeration rate deduced from our experiments is in good agreement with theoretical estimates. In addition, we briefly discuss the mechanisms that can provide binding of highly charged microparticles in a plasma.

  20. Aging-associated oxidized albumin promotes cellular senescence and endothelial damage

    Luna C


    Full Text Available Carlos Luna,1,* Matilde Alique,2,* Estefanía Navalmoral,2 Maria-Victoria Noci,3 Lourdes Bohorquez-Magro,2 Julia Carracedo,1 Rafael Ramírez2 1Nephrology Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC, Reina Sofía University Hospital, Córdoba, Spain; 2Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Madrid, Spain; 3Anesthesia Unit, Reina sofía University Hospital, Córdoba, Spain*These authors contributed equally to this work Abstract: Increased levels of oxidized proteins with aging have been considered a cardiovascular risk factor. However, it is unclear whether oxidized albumin, which is the most abundant serum protein, induces endothelial damage. The results of this study indicated that with aging processes, the levels of oxidized proteins as well as endothelial microparticles release increased, a novel marker of endothelial damage. Among these, oxidized albumin seems to play a principal role. Through in vitro studies, endothelial cells cultured with oxidized albumin exhibited an increment of endothelial damage markers such as adhesion molecules and apoptosis levels. In addition, albumin oxidation increased the amount of endothelial microparticles that were released. Moreover, endothelial cells with increased oxidative stress undergo senescence. In addition, endothelial cells cultured with oxidized albumin shown a reduction in endothelial cell migration measured by wound healing. As a result, we provide the first evidence that oxidized albumin induces endothelial injury which then contributes to the increase of cardiovascular disease in the elderly subjects.Keywords: elderly, oxidative stress, microparticles, vascular damage

  1. Enhanced gene delivery in porcine vasculature tissue following incorporation of adeno-associated virus nanoparticles into porous silicon microparticles.

    McConnell, Kellie I; Rhudy, Jessica; Yokoi, Kenji; Gu, Jianhua; Mack, Aaron; Suh, Junghae; La Francesca, Saverio; Sakamoto, Jason; Serda, Rita E


    There is an unmet clinical need to increase lung transplant successes, patient satisfaction and to improve mortality rates. We offer the development of a nanovector-based solution that will reduce the incidence of lung ischemic reperfusion injury (IRI) leading to graft organ failure through the successful ex vivo treatment of the lung prior to transplantation. The innovation is in the integrated application of our novel porous silicon (pSi) microparticles carrying adeno-associated virus (AAV) nanoparticles, and the use of our ex vivo lung perfusion/ventilation system for the modulation of pro-inflammatory cytokines initiated by ischemic pulmonary conditions prior to organ transplant that often lead to complications. Gene delivery of anti-inflammatory agents to combat the inflammatory cascade may be a promising approach to prevent IRI following lung transplantation. The rationale for the device is that the microparticle will deliver a large payload of virus to cells and serve to protect the AAV from immune recognition. The microparticle-nanoparticle hybrid device was tested both in vitro on cell monolayers and ex vivo using either porcine venous tissue or a pig lung transplantation model, which recapitulates pulmonary IRI that occurs clinically post-transplantation. Remarkably, loading AAV vectors into pSi microparticles increases gene delivery to otherwise non-permissive endothelial cells.

  2. Ordering of solid microparticles at liquid crystal-water interfaces.

    Lin, I-Hsin; Koenig, Gary M; de Pablo, Juan J; Abbott, Nicholas L


    We report a study of the organization of solid microparticles at oil-water interfaces, where the oil is a thermotropic liquid crystal (LC). The study was motivated by the proposition that microparticle organization and LC ordering would be coupled at these interfaces. Surfactant-functionalized polystyrene microparticles were spread at air-water interfaces at prescribed densities and then raised into contact with supported films of nematic 4-pentyl-4'-cyanobiphenyl (5CB). Whereas this method of sample preparation led to quantitative transfer of microparticles from the air-water interface to an isotropic oil-water interface, forces mediated by the nematic order of 5CB were observed to rapidly displace microparticles laterally across the interface of the water upon contact with nematic 5CB, thus leading to a 65% decrease in the density of microparticles at the LC-water interface. These lateral forces were determined to be caused by microparticle-induced deformation of the LC, the energy of which was estimated to be approximately 10(4) kT. We also observed microparticles transferred to the LC-water interface to assemble into chainlike structures that were not seen when using isotropic oils, indicating the presence of LC-mediated interparticle interactions at this interface. Optical textures of the LC in the vicinity of the microparticles were consistent with formation of topological defects with dipolar symmetry capable of promoting the chaining of the microparticles. The presence of microparticles at the interface also impacted the ordering of the LCs, including a transition from parallel to perpendicular ordering of the LC with increasing microparticle density. These observations, when combined, demonstrate that LC-mediated interactions can direct the assembly of solid microparticles at LC-water interfaces and that the ordering of the LC is also strongly coupled to the presence of microparticles.

  3. Characterizing human pluripotent-stem-cell-derived vascular cells for tissue engineering applications.

    Kusuma, Sravanti; Facklam, Amanda; Gerecht, Sharon


    Tissue-engineered constructs are rendered useless without a functional vasculature owing to a lack of nutrients and oxygen. Cell-based approaches to reconstruct blood vessels can yield structures that mimic native vasculature and aid transplantation. Vascular derivatives of human induced pluripotent stem cells (hiPSCs) offer opportunities to generate patient-specific therapies and potentially provide unlimited amounts of vascular cells. To be used in engineered vascular constructs and confer therapeutic benefit, vascular derivatives must exhibit additional key properties, including extracellular matrix (ECM) production to confer structural integrity and growth factor production to facilitate integration. In this study, we examine the hypothesis that vascular cells derived from hiPSCs exhibit these critical properties to facilitate their use in engineered tissues. hiPSCs were codifferentiated toward early vascular cells (EVCs), a bicellular population of endothelial cells (ECs) and pericytes, under varying low-oxygen differentiation conditions; subsequently, ECs were isolated and passaged. We found that EVCs differentiated under low-oxygen conditions produced copious amounts of collagen IV and fibronectin as well as vascular endothelial growth factor and angiopoietin 2. EVCs differentiated under atmospheric conditions did not demonstrate such abundant ECM expression, but exhibited greater expression of angiopoietin 1. Isolated ECs could proliferate up to three passages while maintaining the EC marker vascular endothelial cadherin. Isolated ECs demonstrated an increased propensity to produce ECM compared with their EVC correlates and took on an arterial-like fate. These findings illustrate that hiPSC vascular derivates hold great potential for therapeutic use and should continue to be a preferred cell source for vascular construction.

  4. Comprehensive proteomic characterization of stem cell-derived extracellular matrices.

    Ragelle, Héloïse; Naba, Alexandra; Larson, Benjamin L; Zhou, Fangheng; Prijić, Miralem; Whittaker, Charles A; Del Rosario, Amanda; Langer, Robert; Hynes, Richard O; Anderson, Daniel G


    In the stem-cell niche, the extracellular matrix (ECM) serves as a structural support that additionally provides stem cells with signals that contribute to the regulation of stem-cell function, via reciprocal interactions between cells and components of the ECM. Recently, cell-derived ECMs have emerged as in vitro cell culture substrates to better recapitulate the native stem-cell microenvironment outside the body. Significant changes in cell number, morphology and function have been observed when mesenchymal stem cells (MSC) were cultured on ECM substrates as compared to standard tissue-culture polystyrene (TCPS). As select ECM components are known to regulate specific stem-cell functions, a robust characterization of cell-derived ECM proteomic composition is critical to better comprehend the role of the ECM in directing cellular processes. Here, we characterized and compared the protein composition of ECM produced in vitro by bone marrow-derived MSC, adipose-derived MSC and neonatal fibroblasts from different donors, employing quantitative proteomic methods. Each cell-derived ECM displayed a specific and unique matrisome signature, yet they all shared a common set of proteins. We evaluated the biological response of cells cultured on the different matrices and compared them to cells on standard TCPS. The matrices lead to differential survival and gene-expression profiles among the cell types and as compared to TCPS, indicating that the cell-derived ECMs influence each cell type in a different manner. This general approach to understanding the protein composition of different tissue-specific and cell-derived ECM will inform the rational design of defined systems and biomaterials that recapitulate critical ECM signals for stem-cell culture and tissue engineering.

  5. Hydrophobicity of silver surfaces with microparticle geometry

    Macko, Ján; Oriňaková, Renáta; Oriňak, Andrej; Kovaľ, Karol; Kupková, Miriam; Erdélyi, Branislav; Kostecká, Zuzana; Smith, Roger M.


    The effect of the duration of the current deposition cycle and the number of current pulses on the geometry of silver microstructured surfaces and on the free surface energy, polarizability, hydrophobicity and thus adhesion force of the silver surfaces has been investigated. The changes in surface hydrophobicity were entirely dependent on the size and density of the microparticles on the surface. The results showed that formation of the silver microparticles was related to number of current pulses, while the duration of one current pulse played only a minor effect on the final surface microparticle geometry and thus on the surface tension and hydrophobicity. The conventional geometry of the silver particles has been transformed to the fractal dimension D. The surface hydrophobicity depended predominantly on the length of the dendrites not on their width. The highest silver surface hydrophobicity was observed on a surface prepared by 30 current pulses with a pulse duration of 1 s, the lowest one when deposition was performed by 10 current pulses with a duration of 0.1 s. The partial surface tension coefficients γDS and polarizability kS of the silver surfaces were calculated. Both parameters can be applied in future applications in living cells adhesion prediction and spectral method selection. Silver films with microparticle geometry showed a lower variability in final surface hydrophobicity when compared to nanostructured surfaces. The comparisons could be used to modify surfaces and to modulate human cells and bacterial adhesion on body implants, surgery instruments and clean surfaces.

  6. Red wine ingestion prevents microparticle formation after a single high-fat meal--a crossover study in healthy humans.

    Bulut, Daniel; Jelich, Uta; Dacanay-Schwarz, Roland; Mügge, Andreas


    : The postprandial state after a high-fat meal favors endothelial dysfunction and contributes to the development of atherosclerosis. Little is known about the course of circulating microparticles (MPs) and endothelial progenitor cells (EPCs) after the consumption of a high-fat meal. Both are important for the maintenance and function of endothelial cells. : Ten healthy males consumed a meal with French fries and hot pork sausage. In a crossover design (4 weeks, 1 meal per week) they coingested a drink (mineral water, coke, red wine, liquor). Before and 1 and 2 hours after the meal, blood samples were drawn and endothelial function (expressed as reactive hyperemia index) was measured by a peripheral arterial tone technology. Number of EPCs, total MPs, and endothelial-derived MPs were measured using flow cytometry. : Reactive hyperemia index decreased by about 5% in those tests drinking mineral water, and by about 20% in the coke group, but remained unaffected in the red wine and liquor group. The number of EPCs were not significantly affected. The number of total and endothelial-derived MPs increased after a single meal, most in the coke group (increase by about 62%), and less in the red wine group (by about 5%). : A single high-fat meal deteriorates endothelial function, associated with a significant increase in circulating MPs. These changes were modified by the drink coindigested to the meal. The postprandial state was getting worse when a cola was consumed, but less hazardous when red wine was consumed.

  7. Development of a Sustainable Release System for a Ranibizumab Biosimilar Using Poly(lactic-co-glycolic acid) Biodegradable Polymer-Based Microparticles as a Platform.

    Tanetsugu, Yusuke; Tagami, Tatsuaki; Terukina, Takayuki; Ogawa, Takaya; Ohta, Masato; Ozeki, Tetsuya


    Ranibizumab is a humanized monoclonal antibody fragment against vascular endothelial growth factor (VEGF)-A and is widely used to treat age-related macular degeneration (AMD) caused by angiogenesis. Ranibizumab has a short half-life in the eye due to its low molecular weight and susceptibility to proteolysis. Monthly intravitreal injection of a large amount of ranibizumab formulation is a burden for both patients and medical staff. We therefore sought to develop a sustainable release system for treating the eye with ranibizumab using a drug carrier. A ranibizumab biosimilar (RB) was incorporated into microparticles of poly(lactic-co-glycolic acid) (PLGA) biodegradable polymer. Ranibizumab was sustainably released from PLGA microparticles (80+% after 3 weeks). Assay of tube formation by endothelial cells indicated that RB released from PLGA microparticles inhibited VEGF-induced tube formation and this tendency was confirmed by a cell proliferation assay. These results indicate that RB-loaded PLGA microparticles are useful for sustainable RB release and suggest the utility of intraocular sustainable release systems for delivering RB site-specifically to AMD patients.

  8. Characterization of microparticles after hepatic ischemia-reperfusion injury.

    Christopher M Freeman

    Full Text Available BACKGROUND: Hepatic ischemia-reperfusion (I/R is a well-studied model of liver injury and has demonstrated a biphasic injury followed by recovery and regeneration. Microparticles (MPs are a developing field of study and these small membrane bound vesicles have been shown to have effector function in other physiologic and pathologic states. This study was designed to quantify the levels of MPs from various cell origins-platelets, neutrophils, and endolethial cells-following hepatic ischemia-reperfusion injury. METHODS: A murine model was used with mice undergoing 90 minutes of partial hepatic ischemia followed by various times of reperfusion. Following reperfusion, plasma samples were taken and MPs of various cell origins were labeled and levels were measured using flow cytometry. Additionally, cell specific MPs were further assessed by Annexin V, which stains for the presence of phosphatidylserine, a cell surface marker linked to apoptosis. Statistical analysis was performed using one-way analysis of variance with subsequent Student-Newman-Keuls test with data presented as the mean and standard error of the mean. RESULTS: MPs from varying sources show an increase in circulating levels following hepatic I/R injury. However, the timing of the appearance of different MP subtypes differs for each cell type. Platelet and neutrophil-derived MP levels demonstrated an acute elevation following injury whereas endothelial-derived MP levels demonstrated a delayed elevation. CONCLUSION: This is the first study to characterize circulating levels of cell-specific MPs after hepatic I/R injury and suggests that MPs derived from platelets and neutrophils serve as markers of inflammatory injury and may be active participants in this process. In contrast, MPs derived from endothelial cells increase after the injury response during the reparative phase and may be important in angiogenesis that occurs in the regenerating liver.

  9. Defined MicroRNAs Induce Aspects of Maturation in Mouse and Human Embryonic-Stem-Cell-Derived Cardiomyocytes

    Desy S. Lee


    Full Text Available Pluripotent-cell-derived cardiomyocytes have great potential for use in research and medicine, but limitations in their maturity currently constrain their usefulness. Here, we report a method for improving features of maturation in murine and human embryonic-stem-cell-derived cardiomyocytes (m/hESC-CMs. We found that coculturing m/hESC-CMs with endothelial cells improves their maturity and upregulates several microRNAs. Delivering four of these microRNAs, miR-125b-5p, miR-199a-5p, miR-221, and miR-222 (miR-combo, to m/hESC-CMs resulted in improved sarcomere alignment and calcium handling, a more negative resting membrane potential, and increased expression of cardiomyocyte maturation markers. Although this could not fully phenocopy all adult cardiomyocyte characteristics, these effects persisted for two months following delivery of miR-combo. A luciferase assay demonstrated that all four miRNAs target ErbB4, and siRNA knockdown of ErbB4 partially recapitulated the effects of miR-combo. In summary, a combination of miRNAs induced via endothelial coculture improved ESC-CM maturity, in part through suppression of ErbB4 signaling.

  10. Encapsulation of sorbitan ester-based organogels in alginate microparticles.

    Sagiri, Sai S; Pal, Kunal; Basak, Piyali; Rana, Usman Ali; Shakir, Imran; Anis, Arfat


    Leaching of the internal apolar phase from the biopolymeric microparticles during storage is a great concern as it undoes the beneficial effects of encapsulation. In this paper, a novel formulation was prepared by encapsulating the sunflower oil-based organogels in alginate microparticles. Salicylic acid and metronidazole were used as the model drugs. The microparticles were prepared by double emulsion methodology. Physico-chemical characterization of the microparticles was done by microscopy, FTIR, XRD, and DSC studies. Oil leaching studies, biocompatibility, mucoadhesivity, in vitro drug release, and the antimicrobial efficiency of the microparticles were also performed. The microparticles were found to be spherical in shape. Gelation of the sunflower oil prevented leaching of the internal phase from the microparticles. Release of drugs from the microparticles followed Fickian kinetics and non-Fickian kinetics in gastric and intestinal environments, respectively. Microparticles showed good antimicrobial activity against both Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria. The results suggested that the developed formulations hold promise to carry oils without leakage of the internal phase. Encapsulation of organogels within the microparticles has improved the drug entrapment efficiency and improved characteristics for controlled delivery applications.

  11. Aerogel Microparticles from Oil-in-Oil Emulsion Systems.

    Gu, Senlong; Zhai, Chunhao; Jana, Sadhan C


    This paper reports preparation of polymer aerogel microparticles via sol-gel reactions inside micrometer size droplets created in an oil-in-oil emulsion system. The oil-in-oil emulsion system is obtained by dispersing in cyclohexane the droplets of the sols of polybenzoxazine (PBZ) or polyimide (PI) prepared in dimethylformamide. The sol droplets transform into harder gel microparticles due to sol-gel reactions. Finally, the aerogel microparticles are recovered using supercritical drying of the gel microparticles. The PBZ and PI aerogel microparticles prepared in this manner show mean diameter 32.7 and 40.0 μm, respectively, mesoporous internal structures, and surface area 55.4 and 512.0 m(2)/g, respectively. Carbonization of PBZ aerogel microparticles maintains the mesoporous internal structures but yields narrower pore size distribution.

  12. Levels of Circulating Microparticles in Lung Cancer Patients and Possible Prognostic Value

    Chia-Cheng Tseng


    Full Text Available Background. Endothelial-derived microparticles (EDMPs and platelet-derived microparticles (PDMPs have been reported to be increasing in various diseases including malignant diseases. Here, we investigated whether these MPs may be useful biomarkers for predicting lung cancer (LC disease status, cell type, or metastasis. Methods and Results. One hundred and thirty LC patients were prospectively enrolled into the study between April 2011 and February 2012. Flow cytometric analysis demonstrated that the circulating levels of platelet-derived activated MPs (PDAc-MPs, platelet-derived apoptotic MPs (PDAp-MPs, endothelial-derived activated MPs (EDAc-MPs, and endothelial-derived apoptotic MPs (EDAp-MPs were significantly higher in LC patients than in 30 age- and gender-matched normal control subjects (all P0.1 in early stage versus late stage LC patients. Furthermore, the circulating levels of the four types of MPs did not differ among patients with different disease statuses (i.e., disease controlled, disease progression, and disease without treatment, i.e., fresh case (all P>0.2 or between patients with or without LC metastasis (all P>0.5. Moreover, only the circulating level of EDAp-MPs was significantly associated with the different cell types (i.e., squamous cell carcinoma, adenocarcinoma, and small cell carcinoma of LC (P=0.045. Conclusion. Circulating MP levels are significantly increased in LC patients as compared with normal subjects. Among the MPs, only an increased level of EDAp-MPs was significantly associated with different LC cell types.

  13. Encapsulation of Hydrocortisone and Mesalazine in Zein Microparticles

    Peter J. Halley


    Full Text Available Zein was investigated for use as an oral-drug delivery system by loading prednisolone into zein microparticles using coacervation. To investigate the adaptability of this method to other drugs, zein microparticles were loaded with hydrocortisone, which is structurally related to prednisolone; or mesalazine, which is structurally different having a smaller LogP and ionizable functional groups. Investigations into the in vitro digestibility, and the electrophoretic profile of zein, and zein microparticles were conducted to shed further insight on using this protein as a drug delivery system. Hydrocortisone loading into zein microparticles was comparable with that reported for prednisolone, but mesalazine loading was highly variable. Depending on the starting quantities of hydrocortisone and zein, the average amount of microparticles equivalent to 4 mg hydrocortisone, (a clinically used dose, ranged from 60–115 mg, which is realistic and practical for oral dosing. Comparatively, an average of 2.5 g of microparticles was required to deliver 250 mg of mesalazine (a clinically used dose, so alternate encapsulation methods that can produce higher and more precise mesalazine loading are required. In vitro protein digestibility revealed that zein microparticles were more resistant to digestion compared to the zein raw material, and that individual zein peptides are not preferentially coacervated into the microparticles. In combination, these results suggest that there is potential to formulate a delivery system based on zein microparticles made using specific subunits of zein that is more resistant to digestion as starting material, to deliver drugs to the lower gastrointestinal tract.

  14. Herbal carrier-based floating microparticles of diltiazem ...

    Various physicochemical properties of the floating microspheres were characterized, including ... Keywords: Diltiazem, Cardiac disease, Psyllium husk, Sodium alginate, Microsphere, Microparticle,. Controlled ..... solvent removal methods.

  15. Therapeutic Strategies Based on Polymeric Microparticles

    C. Vilos


    Full Text Available The development of the field of materials science, the ability to perform multidisciplinary scientific work, and the need for novel administration technologies that maximize therapeutic effects and minimize adverse reactions to readily available drugs have led to the development of delivery systems based on microencapsulation, which has taken one step closer to the target of personalized medicine. Drug delivery systems based on polymeric microparticles are generating a strong impact on preclinical and clinical drug development and have reached a broad development in different fields supporting a critical role in the near future of medical practice. This paper presents the foundations of polymeric microparticles based on their formulation, mechanisms of drug release and some of their innovative therapeutic strategies to board multiple diseases.

  16. Adsorption of monoclonal antibodies to glass microparticles.

    Hoehne, Matthew; Samuel, Fauna; Dong, Aichun; Wurth, Christine; Mahler, Hanns-Christian; Carpenter, John F; Randolph, Theodore W


    Microparticulate glass represents a potential contamination to protein formulations that may occur as a result of processing conditions or glass types. The effect of added microparticulate glass to formulations of three humanized antibodies was tested. Under the three formulation conditions tested, all three antibodies adsorbed irreversibly at near monolayer surface coverages to the glass microparticles. Analysis of the secondary structure of the adsorbed antibodies by infrared spectroscopy reveal only minor perturbations as a result of adsorption. Likewise, front-face fluorescence quenching measurements reflected minimal tertiary structural changes upon adsorption. In contrast to the minimal effects on protein structure, adsorption of protein to suspensions of glass microparticles induced significant colloidal destabilization and flocculation of the suspension.

  17. Porphyrin Microparticles for Biological and Biomedical Applications

    Huynh, Elizabeth

    Lipids are one of the critical building blocks of life, forming the plasma membrane of cells. In addition, porphyrins also play an equally important role in life, for example, through carrying oxygen in blood. The importance of both these components is evident through the biological and biomedical applications of supramolecular structures generated from lipids and porphyrins. This thesis investigates new porphyrin microparticles based on porphyrin-lipid architecture and their potential applications in biology and medicine. In Chapter 1, a background on lipid and porphyrin-based supramolecular structures is presented and design considerations for generating multifunctional agents. Chapter 2 describes the generation of a monolayer porphyrin microparticle as a dual-modal ultrasound and photoacoustic contrast agent and subsequently, a trimodal ultrasound, photoacoustic and fluorescence contrast agent. Chapter 3 examines the optical and morphological response of these multimodality ultrasound-based contrast agents to low frequency, high duty cycle ultrasound that causes the porphyrin microparticles to convertinto nanoparticles. Chapter 4 examines the generation of bilayer micrometer-sized porphyrin vesicles and their properties. Chapter 5 presents a brief summary and potential future directions. Although these microscale structures are similar in structure, the applications of these structures greatly differ with potential applications in biology and also imaging and therapy of disease. This thesis aims to explore and demonstrate the potential of new simplified, supramolecular structures based on one main building block, porphyrin-lipid.

  18. Inertial Focusing of Microparticles in Curvilinear Microchannels

    Özbey, Arzu; Karimzadehkhouei, Mehrdad; Akgönül, Sarp; Gozuacik, Devrim; Koşar, Ali


    A passive, continuous and size-dependent focusing technique enabled by “inertial microfluidics”, which takes advantage of hydrodynamic forces, is implemented in this study to focus microparticles. The objective is to analyse the decoupling effects of inertial forces and Dean drag forces on microparticles of different sizes in curvilinear microchannels with inner radius of 800 μm and curvature angle of 280°, which have not been considered in the literature related to inertial microfluidics. This fundamental approach gives insight into the underlying physics of particle dynamics and offers continuous, high-throughput, label-free and parallelizable size-based particle separation. Our design allows the same footprint to be occupied as straight channels, which makes parallelization possible with optical detection integration. This feature is also useful for ultrahigh-throughput applications such as flow cytometers with the advantages of reduced cost and size. The focusing behaviour of 20, 15 and 10 μm fluorescent polystyrene microparticles was examined for different channel Reynolds numbers. Lateral and vertical particle migrations and the equilibrium positions of these particles were investigated in detail, which may lead to the design of novel microfluidic devices with high efficiency and high throughput for particle separation, rapid detection and diagnosis of circulating tumour cells with reduced cost.

  19. Neural stem cell-derived exosomes mediate viral entry

    Sims B


    Full Text Available Brian Sims,1,2,* Linlin Gu,3,* Alexandre Krendelchtchikov,3 Qiana L Matthews3,4 1Division of Neonatology, Department of Pediatrics, 2Department of Cell, Developmental, and Integrative Biology, 3Division of Infectious Diseases, Department of Medicine, 4Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL, USA *These authors contributed equally to this work Background: Viruses enter host cells through interactions of viral ligands with cellular receptors. Viruses can also enter cells in a receptor-independent fashion. Mechanisms regarding the receptor-independent viral entry into cells have not been fully elucidated. Exosomal trafficking between cells may offer a mechanism by which viruses can enter cells.Methods: To investigate the role of exosomes on cellular viral entry, we employed neural stem cell-derived exosomes and adenovirus type 5 (Ad5 for the proof-of-principle study. Results: Exosomes significantly enhanced Ad5 entry in Coxsackie virus and adenovirus receptor (CAR-deficient cells, in which Ad5 only had very limited entry. The exosomes were shown to contain T-cell immunoglobulin mucin protein 4 (TIM-4, which binds phosphatidylserine. Treatment with anti-TIM-4 antibody significantly blocked the exosome-mediated Ad5 entry.Conclusion: Neural stem cell-derived exosomes mediated significant cellular entry of Ad5 in a receptor-independent fashion. This mediation may be hampered by an antibody specifically targeting TIM-4 on exosomes. This set of results will benefit further elucidation of virus/exosome pathways, which would contribute to reducing natural viral infection by developing therapeutic agents or vaccines. Keywords: neural stem cell-derived exosomes, adenovirus type 5, TIM-4, viral entry, phospholipids

  20. Human pluripotent stem cell-derived neural constructs for predicting neural toxicity.

    Schwartz, Michael P; Hou, Zhonggang; Propson, Nicholas E; Zhang, Jue; Engstrom, Collin J; Santos Costa, Vitor; Jiang, Peng; Nguyen, Bao Kim; Bolin, Jennifer M; Daly, William; Wang, Yu; Stewart, Ron; Page, C David; Murphy, William L; Thomson, James A


    Human pluripotent stem cell-based in vitro models that reflect human physiology have the potential to reduce the number of drug failures in clinical trials and offer a cost-effective approach for assessing chemical safety. Here, human embryonic stem (ES) cell-derived neural progenitor cells, endothelial cells, mesenchymal stem cells, and microglia/macrophage precursors were combined on chemically defined polyethylene glycol hydrogels and cultured in serum-free medium to model cellular interactions within the developing brain. The precursors self-assembled into 3D neural constructs with diverse neuronal and glial populations, interconnected vascular networks, and ramified microglia. Replicate constructs were reproducible by RNA sequencing (RNA-Seq) and expressed neurogenesis, vasculature development, and microglia genes. Linear support vector machines were used to construct a predictive model from RNA-Seq data for 240 neural constructs treated with 34 toxic and 26 nontoxic chemicals. The predictive model was evaluated using two standard hold-out testing methods: a nearly unbiased leave-one-out cross-validation for the 60 training compounds and an unbiased blinded trial using a single hold-out set of 10 additional chemicals. The linear support vector produced an estimate for future data of 0.91 in the cross-validation experiment and correctly classified 9 of 10 chemicals in the blinded trial.

  1. Generating and characterizing the mechanical properties of cell-derived matrices using atomic force microscopy.

    Tello, Marta; Spenlé, Caroline; Hemmerlé, Joseph; Mercier, Luc; Fabre, Roxane; Allio, Guillaume; Simon-Assmann, Patricia; Goetz, Jacky G


    Mechanical interaction between cells and their surrounding extracellular matrix (ECM) controls key processes such as proliferation, differentiation and motility. For many years, two-dimensional (2D) models were used to better understand the interactions between cells and their surrounding ECM. More recently, variation of the mechanical properties of tissues has been reported to play a major role in physiological and pathological scenarios such as cancer progression. The 3D architecture of the ECM finely tunes cellular behavior to perform physiologically relevant tasks. Technical limitations prevented scientists from obtaining accurate assessment of the mechanical properties of physiologically realistic matrices. There is therefore a need for combining the production of high-quality cell-derived 3D matrices (CDMs) and the characterization of their topographical and mechanical properties. Here, we describe methods that allow to accurately measure the young modulus of matrices produced by various cellular types. In the first part, we will describe and review several protocols for generating CDMs matrices from endothelial, epithelial, fibroblastic, muscle and mesenchymal stem cells. We will discuss tools allowing the characterization of the topographical details as well as of the protein content of such CDMs. In a second part, we will report the methodologies that can be used, based on atomic force microscopy, to accurately evaluate the stiffness properties of the CDMs through the quantification of their young modulus. Altogether, such methodologies allow characterizing the stiffness and topography of matrices deposited by the cells, which is key for the understanding of cellular behavior in physiological conditions.


    Xianqiao Liu; Huizhou Liu; Jianmin Xing; Yueping Guan; Zhiya Ma; Guobin Shan; Chengli Yang


    Superparamagnetic poly(styrene-divinylbenzene-glycidyl methacrylate) (Pst-DVB-GMA) microparticles were prepared via a modified suspension polymerization process. A magnetic fluid was first prepared by a chemical co-precipitation method. Then magnetic microparticles were produced by mixing the monomers and the magnetic fluid with water in the presence of a stabilizer poly(vinyl pyrrolidone) (PVP) to form a suspension, and finally benzoyl peroxide was added to initiate the co-polymerization. The morphology and magnetic properties of the microparticles were examined by TEM and VSM. The spherically shaped microparticles, with a size range of 4 to 7 μm, showed distinct superparamagnetic characteristics. XRD was used to investigate the structure of the magnetite particles dispersed in the polymer matrix. The microparticles with epoxy groups on their surface can be applied directly to the separation of biomolecules.

  3. Evaluating conditions for the formation of chitosan/gelatin microparticles

    Marcia C. Silva


    Full Text Available Chitosan/gelatin microparticles were prepared by complex coacervation. Three chitosan (CH samples, with different acetylation degrees and intrinsic viscosities, were used together with commercial gelatin (G samples. Microparticles formation was investigated at various CH/G ratios, within the pH range of 3.5 to 6.0. Reactions were carried out at 40 and 60 ºC, for 2, 4, and 6 hours. Turbidity measurements performed at 633 nm were used to monitor the process. The resulting curves revealed maximum values, which were correlated to the glucosamine content of CH samples. After isolation, yields were determined, and the microparticles were characterized by infrared spectroscopy (FTIR and thermogravimetry (TGA. Both techniques evidenced the formation of coacervate microparticles. The highest yields in microparticles were determined for the system comprising the CH sample with the lowest degree of acetylation and intrinsic viscosity, and the gelatin sample with the lowest bloom strength.

  4. Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane

    Barnkob, Rune; Augustsson, Per; Laurell, Thomas


    We present microparticle image velocimetry measurements of suspended microparticles of diameters from 0.6 to 10μm undergoing acoustophoresis in an ultrasound symmetry plane in a microchannel. The motion of the smallest particles is dominated by the Stokes drag from the induced acoustic streaming...

  5. Endothelial Repair in Childhood Arterial Ischaemic Stroke with Cerebral Arteriopathy

    Despina Eleftheriou


    Full Text Available Background: We have previously shown that recurrent arterial ischaemic stroke (AIS in children with cerebral arteriopathy is associated with increased circulating endothelial cells and endothelial microparticles, consistent with ongoing endothelial injury. To date, however, little is known about endothelial repair responses in childhood AIS. We examined the relationship between the number and function of circulating endothelial progenitor cells (EPC, the levels of brain-derived neurotrophic factor (BDNF and AIS recurrence. Methods: Flow cytometry was used to identify peripheral blood mononuclear cells positive for CD34/kinase insert domain-containing receptor (KDR. In a subgroup of patients (5 in each group selected at random, monocytic EPC function was assessed by colony-forming unit (EPC-CFU capacity and incorporation into endothelial cell networks in Matrigel. BDNF was measured using ELISA. Results: Thirty-five children, aged 12 years (range: 5-16.5; 9 males, with AIS and cerebral arteriopathy were studied; 10 had recurrent AIS. CD34+/KDR+ cells were significantly higher in recurrent AIS compared to non-recurrent AIS patients (p = 0.005 and controls (p = 0.0002. EPC-CFU and EPC incorporation into endothelial cell networks were significantly reduced in recurrent compared to non-recurrent AIS patients (p = 0.04 and p = 0.01, respectively. Levels of BDNF were significantly higher in recurrent compared to non-recurrent AIS patients (p = 0.0008 and controls (p = 0.0002. Conclusions: Children with recurrent AIS and cerebral arteriopathy had increased circulating CD34+/KDR+ cells and BDNF consistent with an endothelial repair response. However, EPC function was impaired. Future studies are needed to examine whether suboptimal endothelial repair contributes to childhood AIS recurrence.

  6. Detection of microparticles in dynamic processes

    Ten, K. A.; Pruuel, E. R.; Kashkarov, A. O.; Rubtsov, I. A.; Shechtman, L. I.; Zhulanov, V. V.; Tolochko, B. P.; Rykovanov, G. N.; Muzyrya, A. K.; Smirnov, E. B.; Stolbikov, M. Yu; Prosvirnin, K. M.


    When a metal plate is subjected to a strong shock impact, its free surface emits a flow of particles of different sizes (shock-wave “dusting”). Traditionally, the process of dusting is investigated by the methods of pulsed x-ray or piezoelectric sensor or via an optical technique. The particle size ranges from a few microns to hundreds of microns. The flow is assumed to include also finer particles, which cannot be detected with the existing methods yet. On the accelerator complex VEPP-3-VEPP-4 at the BINP there are two experiment stations for research on fast processes, including explosion ones. The stations enable measurement of both passed radiation (absorption) and small-angle x-ray scattering on synchrotron radiation (SR). Radiation is detected with a precision high-speed detector DIMEX. The detector has an internal memory of 32 frames, which enables recording of the dynamics of the process (shooting of movies) with intervals of 250 ns to 2 μs. Flows of nano- and microparticles from free surfaces of various materials (copper and tin) have been examined. Microparticle flows were emitted from grooves of 50-200 μs in size and joints (gaps) between metal parts. With the soft x-ray spectrum of SR one can explore the dynamics of a single microjet of micron size. The dynamics of density distribution along micro jets were determined. Under a shock wave (∼ 60 GPa) acting on tin disks, flows of microparticles from a smooth surface were recorded.

  7. Measurement of refractive index of single microparticles

    Knoener, G; Nieminen, T A; Heckenberg, N R; Rubinsztein-Dunlop, H; Knoener, Gregor; Parkin, Simon; Nieminen, Timo A.; Heckenberg, Norman R.; Rubinsztein-Dunlop, Halina


    The refractive index of single microparticles is derived from precise measurement and rigorous modeling of the stiffness of a laser trap. We demonstrate the method for particles of four different materials with diameters from 1.6 to 5.2 microns and achieve an accuracy of better than 1%. The method greatly contributes as a new characterization technique because it works best under conditions (small particle size, polydispersion) where other methods, such as absorption spectroscopy, start to fail. Particles need not be transferred to a particular fluid, which prevents particle degradation or alteration common in index matching techniques. Our results also show that advanced modeling of laser traps accurately reproduces experimental reality.

  8. Endothelial cells, tissue factor and infectious diseases

    Lopes-Bezerra L.M.


    Full Text Available Tissue factor is a transmembrane procoagulant glycoprotein and a member of the cytokine receptor superfamily. It activates the extrinsic coagulation pathway, and induces the formation of a fibrin clot. Tissue factor is important for both normal homeostasis and the development of many thrombotic diseases. A wide variety of cells are able to synthesize and express tissue factor, including monocytes, granulocytes, platelets and endothelial cells. Tissue factor expression can be induced by cell surface components of pathogenic microorganisms, proinflammatory cytokines and membrane microparticles released from activated host cells. Tissue factor plays an important role in initiating thrombosis associated with inflammation during infection, sepsis, and organ transplant rejection. Recent findings suggest that tissue factor can also function as a receptor and thus may be important in cell signaling. The present minireview will focus on the role of tissue factor in the pathogenesis of septic shock, infectious endocarditis and invasive aspergillosis, as determined by both in vivo and in vitro models.

  9. Contribution of cells derived from the area pellucida to extraembryonic mesodermal cell lineages in heterospecific quail chick blastodermal chimeras.

    Karagenç, Levent; Sandikci, Mustafa


    The current study has two main objectives: first, to determine if cells derived from the area pellucida are able to populate extraembryonic membranes, and second, to determine if donor cells have the potential to differentiate to endothelial (EC) and hematopoietic cells (HC) in the yolk sac and allantois, the two extraembryonic membranes functioning as hematopoietic organs in the avian embryo. To this end, quail chick chimeras were constructed by transferring dissociated cells from the areae pellucidae of the stage X-XII (EG&K) quail embryo into the subgerminal cavity of the unincubated chick blastoderm. The distribution of quail cells in the allantois, yolk sac, amnion, and chorion of resulting putative chimeras was examined using quail cell-specific antibody against a perinuclear antigen (QCPN) after 6 days of incubation. The presence of EC, HC, and smooth muscle cells among the QCPN(+) donor cells was examined using QH-1, a quail-specific marker identifying HC and EC and an anti-α-smooth muscle actin antibody. Evidence gathered in the present study demonstrates that quail cells derived from the areae pellucidae are able to populate all of the extraembryonic membranes of resulting heterospecific quail chick chimeras and, most importantly, give rise to HC, EC, and smooth muscle cells, all of the three main mesodermal lineages derived from the posterior mesoderm both in the yolk sac and allantois.

  10. Stromal cell-derived factor 1α (SDF-1α)

    Li, Dana; Bjørnager, Louise; Langkilde, Anne


    OBJECTIVES: Stromal cell-derived factor 1a (SDF-1α), is a chemokine and is able to home hematopoietic progenitor cells to injured areas of heart tissue for structural repair. Previous studies have found increased levels of SDF-1α in several cardiac diseases, but only few studies have investigated...... SDF-1α in patients with atrial fibrillation (AF). We aimed to test SDF-1α in a large cohort of patients with AF and its role as a prognostic marker. DESIGN: Between January 1st 2008 to December 1st 2012, 290 patients with ECG documented AF were enrolled from the in- and outpatient clinics...... at the Department of Cardiology, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark. Plasma levels of SDF-1α were measured using ELISA technique. Clinical data were registered and patient follow-up was conducted. RESULTS: Patients with permanent AF had significantly higher SDF-1α levels (2199.5 pg...

  11. Balancing Ethical Pros and Cons of Stem Cell Derived Gametes.

    Segers, Seppe; Mertes, Heidi; de Wert, Guido; Dondorp, Wybo; Pennings, Guido


    In this review we aim to provide an overview of the most important ethical pros and cons of stem cell derived gametes (SCD-gametes), as a contribution to the debate about reproductive tissue engineering. Derivation of gametes from stem cells holds promising applications both for research and for clinical use in assisted reproduction. We explore the ethical issues connected to gametes derived from embryonic stem cells (both patient specific and non-patient specific) as well as those related to gametes derived from induced pluripotent stem cells. The technology of SCD-gametes raises moral concerns of how reproductive autonomy relates to issues of embryo destruction, safety, access, and applications beyond clinical infertility.

  12. Leukocyte-derived microparticles and scanning electron microscopic structures in two fractions of fresh cerebrospinal fluid in amyotrophic lateral sclerosis: a case report

    Zachau Anne C


    Full Text Available Abstract Introduction Amyotrophic lateral sclerosis is a progressive neurodegenerative disorder characterized by degeneration of motoneuron cells in anterior spinal horns. There is a need for early and accurate diagnosis with this condition. In this case report we used two complementary methods: scanning electron microscopy and fluorescence-activated cell sorting. This is the first report to our knowledge of microparticles in the cerebrospinal fluid of a patient with amyotrophic lateral sclerosis. Case presentation An 80-year-old Swedish man of Caucasian ethnicity presented to our facility with symptoms of amyotrophic lateral sclerosis starting a year before his first hospital examination, such as muscle weakness and twitching in his right hand progressing to arms, body and leg muscles. Electromyography showed classical neurophysiological findings of amyotrophic lateral sclerosis. Routine blood sample results were normal. A lumbar puncture was performed as a routine investigation and his cerebrospinal fluid was normal with regard to cell count and protein levels, and there were no signs of inflammation. However, scanning electron microscopy and fluorescence-activated cell sorting showed pronounced abnormalities compared to healthy controls. Flow cytometry analysis of two fractions of cerebrospinal fluid from our patient with amyotrophic lateral sclerosis was used to measure the specific binding of antibodies to CD42a, CD144 and CD45, and of phosphatidylserine to lactadherin. Our patient displayed over 100 times more phosphatidylserine-positive microparticles and over 400 times more cell-derived microparticles of leukocyte origin in his cerebrospinal fluid compared to healthy control subjects. The first cerebrospinal fluid fraction contained about 50% more microparticles than the second fraction. The scanning electron microscopy filters used with cerebrospinal fluid from our patient were filled with compact aggregates of spherical particles of

  13. Trophoblast lineage cells derived from human induced pluripotent stem cells

    Chen, Ying, E-mail: [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Wang, Kai; Chandramouli, Gadisetti V.R. [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Knott, Jason G. [Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University (United States); Leach, Richard, E-mail: [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Department of Obstetrics, Gynecology and Women’s Health, Spectrum Health Medical Group (United States)


    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  14. Neo-vascularization of the stroke cavity by implantation of human neural stem cells on VEGF-releasing PLGA microparticles.

    Bible, Ellen; Qutachi, Omar; Chau, David Y S; Alexander, Morgan R; Shakesheff, Kevin M; Modo, Michel


    Replacing the tissue lost after a stroke potentially provides a new neural substrate to promote recovery. However, significant neurobiological and biotechnological challenges need to be overcome to make this possibility into a reality. Human neural stem cells (hNSCs) can differentiate into mature brain cells, but require a structural support that retains them within the cavity and affords the formation of a de novo tissue. Nevertheless, in our previous work, even after a week, this primitive tissue is void of a vasculature that could sustain its long-term viability. Therefore, tissue engineering strategies are required to develop a vasculature. Vascular endothelial growth factor (VEGF) is known to promote the proliferation and migration of endothelial cells during angio- and arteriogenesis. VEGF by itself here did not affect viability or differentiation of hNSCs, whereas growing cells on poly(D,L-lactic acid-co-glycolic acid) (PLGA) microparticles, with or without VEGF, doubled astrocytic and neuronal differentiation. Secretion of a burst and a sustained delivery of VEGF from the microparticles in vivo attracted endothelial cells from the host into this primitive tissue and in parts established a neovasculature, whereas in other parts endothelial cells were merely interspersed with hNSCs. There was also evidence of a hypervascularization indicating that further work will be required to establish an adequate level of vascularization. It is therefore possible to develop a putative neovasculature within de novo tissue that is forming inside a tissue cavity caused by a stroke. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Chitosan microparticles for sustaining the topical delivery of minoxidil sulphate.

    Gelfuso, Guilherme Martins; Gratieri, Taís; Simão, Patrícia Sper; de Freitas, Luís Alexandre Pedro; Lopez, Renata Fonseca Vianna


    Given the hypothesis that microparticles can penetrate the skin barrier along the transfollicular route, this work aimed to obtain and characterise chitosan microparticles loaded with minoxidil sulphate (MXS) and to study their ability to sustain the release of the drug, attempting a further application utilising them in a targeted delivery system for the topical treatment of alopecia. Chitosan microparticles, containing different proportions of MXS/polymer, were prepared by spray drying and were characterised by yield, encapsulation efficiency, size and morphology. Microparticles selected for further studies showed high encapsulation efficiency (∼82%), a mean diameter of 3.0 µm and a spherical morphology without porosities. When suspended in an ethanol/water solution, chitosan microparticles underwent instantaneous swelling, increasing their mean diameter by 90%. Release studies revealed that the chitosan microparticles were able to sustain about three times the release rate of MXS. This feature, combined with suitable size, confers to these microparticles the potential to target and improve topical therapy of alopecia with minoxidil.

  16. Shock wave driven microparticles for pharmaceutical applications

    Menezes, V.; Takayama, K.; Gojani, A.; Hosseini, S. H. R.


    Ablation created by a Q-switched Nd:Yttrium Aluminum Garnet (Nd:YAG) laser beam focusing on a thin aluminum foil surface spontaneously generates a shock wave that propagates through the foil and deforms it at a high speed. This high-speed foil deformation can project dry micro- particles deposited on the anterior surface of the foil at high speeds such that the particles have sufficient momentum to penetrate soft targets. We used this method of particle acceleration to develop a drug delivery device to deliver DNA/drug coated microparticles into soft human-body targets for pharmaceutical applications. The device physics has been studied by observing the process of particle acceleration using a high-speed video camera in a shadowgraph system. Though the initial rate of foil deformation is over 5 km/s, the observed particle velocities are in the range of 900-400 m/s over a distance of 1.5-10 mm from the launch pad. The device has been tested by delivering microparticles into liver tissues of experimental rats and artificial soft human-body targets, modeled using gelatin. The penetration depths observed in the experimental targets are quite encouraging to develop a future clinical therapeutic device for treatments such as gene therapy, treatment of cancer and tumor cells, epidermal and mucosal immunizations etc.

  17. Microfluidics assisted generation of innovative polysaccharide hydrogel microparticles.

    Marquis, M; Davy, J; Cathala, B; Fang, A; Renard, D


    Capillary flow-based approach such as microfluidic devices offer a number of advantages over conventional flow control technology because they ensure highly versatile geometry and can be used to produce monodisperse spherical and non-spherical polymeric microparticles. Based on the principle of a flow-focusing device to emulsify the coflow of aqueous solutions in an organic phase, we were able to produce the following innovative polysaccharide hydrogel microparticles: - Janus hydrogel microparticles made of pectin–pectin (homo Janus) and pectin–alginate (hetero Janus) were produced. The efficiency of separation of the two hemispheres was investigated by confocal scanning laser microscopy (CSLM) of previously labelled biopolymers. The Janus structure was confirmed by subjecting each microparticle hemisphere to specific enzymatic degradation. As a proof of concept, free BSA or BSA grafted with dextran, were encapsulated in each hemisphere of the hetero Janus hydrogel microparticles. While BSA, free or grafted with dextran, was always confined in the alginate hemisphere, a fraction of BSA diffused from the pectin to the alginate hemisphere. Methoxy groups along the pectin chain will be responsible of the decrease of the number of attractive electrostatic interactions occurring between amino groups of BSA and carboxylic groups of pectin. - Pectin hydrogel microparticles of complex shapes were successfully produced by combining on-chip the phenomenon of gelation and water diffusion induced self-assembly, using dimethyl carbonate as continuous phase, or by deformation of the pre-gelled droplets off-chip at a fluid–fluid interface. Sphere, oblate ellipsoid, torus or mushroom-type morphologies were thus obtained. Moreover, it was established that after crossing the interface during their collect, mushroom-type microparticles did not migrate in the calcium or DMC phase but stayed at the liquid–liquid interface. These new and original hydrogel microparticles will

  18. Platelet-derived stromal cell-derived factor-1 is required for the transformation of circulating monocytes into multipotential cells.

    Noriyuki Seta

    Full Text Available BACKGROUND: We previously described a primitive cell population derived from human circulating CD14(+ monocytes, named monocyte-derived multipotential cells (MOMCs, which are capable of differentiating into mesenchymal and endothelial lineages. To generate MOMCs in vitro, monocytes are required to bind to fibronectin and be exposed to soluble factor(s derived from circulating CD14(- cells. The present study was conducted to identify factors that induce MOMC differentiation. METHODS: We cultured CD14(+ monocytes on fibronectin in the presence or absence of platelets, CD14(- peripheral blood mononuclear cells, platelet-conditioned medium, or candidate MOMC differentiation factors. The transformation of monocytes into MOMCs was assessed by the presence of spindle-shaped adherent cells, CD34 expression, and the potential to differentiate in vitro into mesenchymal and endothelial lineages. RESULTS: The presence of platelets or platelet-conditioned medium was required to generate MOMCs from monocytes. A screening of candidate platelet-derived soluble factors identified stromal cell-derived factor (SDF-1 as a requirement for generating MOMCs. Blocking an interaction between SDF-1 and its receptor CXCR4 inhibited MOMC generation, further confirming SDF-1's critical role in this process. Finally, circulating MOMC precursors were found to reside in the CD14(+CXCR4(high cell population. CONCLUSION: The interaction of SDF-1 with CXCR4 is essential for the transformation of circulating monocytes into MOMCs.

  19. Ceruloplasmin copper induces oxidant damage by a redox process utilizing cell-derived superoxide as reductant

    Mukhopadhyay, C. K.; Fox, P. L.


    Oxidative damage by transition metals bound to proteins may be an important pathogenic mechanism. Ceruloplasmin (Cp) is a Cu-containing plasma protein thought to be involved in oxidative modification of lipoproteins. We have previously shown that Cp increased cell-mediated low-density lipoprotein (LDL) oxidation by a process requiring cell-derived superoxide, but the underlying chemical mechanism(s) is (are) unknown. We now show that superoxide reduction of Cp Cu is a critical reaction in cellular LDL oxidation. By bathocuproine disulfonate (BCS) binding and by superoxide utilization, we showed that exogenous superoxide reduces a single Cp Cu atom, the same Cu required for LDL oxidation. The Cu atom remained bound to Cp during the redox cycle. Three avenues of evidence showed that vascular cells reduce Cp Cu by a superoxide-dependent process. The 2-fold higher rate of Cp Cu reduction by smooth muscle cells (SMC) compared to endothelial cells (EC) was consistent with their relative rates of superoxide release. Furthermore, Cp Cu reduction by cells was blocked by Cu,Zn superoxide dismutase (SOD1). Finally, the level of superoxide produced by EC and SMC was sufficient to cause the amount of Cu reduction observed. An important role of Cp Cu reduction in LDL oxidation was suggested by results showing that SOD1 inhibited Cp Cu reduction and LDL oxidation by SMC with equal potency, while tumor necrosis factor-alpha stimulated both processes. In summary, these results show that superoxide is a critical cellular reductant of divalent transition metals involved in oxidation, and that protein-bound Cu is a substrate for this reaction. The role of these mechanisms in oxidative processes in vivo has yet to be defined.

  20. Enhancement of laminar convective heat transfer using microparticle suspensions

    Zhu, Jiu Yang; Tang, Shiyang; Yi, Pyshar; Baum, Thomas; Khoshmanesh, Khashayar; Ghorbani, Kamran


    This paper investigates the enhancement of convective heat transfer within a sub-millimetre diameter copper tube using Al2O3, Co3O4 and CuO microparticle suspensions. Experiments are conducted at different particle concentrations of 1.0, 2.0 and 5.0 wt% and at various flow rates ranging from 250 to 1000 µl/min. Both experimental measurements and numerical analyses are employed to obtain the convective heat transfer coefficient. The results indicate a significant enhancement in convective heat transfer coefficient due to the implementation of microparticle suspensions. For the case of Al2O3 microparticle suspension with 5.0 wt% concentration, a 20.3 % enhancement in convective heat transfer coefficient is obtained over deionised water. This is comparable to the case of Al2O3 nanofluid at the same concentration. Hence, there is a potential for the microparticle suspensions to be used for cooling of compact integrated systems.

  1. Enhancement of laminar convective heat transfer using microparticle suspensions

    Zhu, Jiu Yang; Tang, Shiyang; Yi, Pyshar; Baum, Thomas; Khoshmanesh, Khashayar; Ghorbani, Kamran


    This paper investigates the enhancement of convective heat transfer within a sub-millimetre diameter copper tube using Al2O3, Co3O4 and CuO microparticle suspensions. Experiments are conducted at different particle concentrations of 1.0, 2.0 and 5.0 wt% and at various flow rates ranging from 250 to 1000 µl/min. Both experimental measurements and numerical analyses are employed to obtain the convective heat transfer coefficient. The results indicate a significant enhancement in convective heat transfer coefficient due to the implementation of microparticle suspensions. For the case of Al2O3 microparticle suspension with 5.0 wt% concentration, a 20.3 % enhancement in convective heat transfer coefficient is obtained over deionised water. This is comparable to the case of Al2O3 nanofluid at the same concentration. Hence, there is a potential for the microparticle suspensions to be used for cooling of compact integrated systems.

  2. Enriched retinal ganglion cells derived from human embryonic stem cells

    Gill, Katherine P.; Hung, Sandy S. C.; Sharov, Alexei; Lo, Camden Y.; Needham, Karina; Lidgerwood, Grace E.; Jackson, Stacey; Crombie, Duncan E.; Nayagam, Bryony A.; Cook, Anthony L.; Hewitt, Alex W.; Pébay, Alice; Wong, Raymond C. B.


    Optic neuropathies are characterised by a loss of retinal ganglion cells (RGCs) that lead to vision impairment. Development of cell therapy requires a better understanding of the signals that direct stem cells into RGCs. Human embryonic stem cells (hESCs) represent an unlimited cellular source for generation of human RGCs in vitro. In this study, we present a 45-day protocol that utilises magnetic activated cell sorting to generate enriched population of RGCs via stepwise retinal differentiation using hESCs. We performed an extensive characterization of these stem cell-derived RGCs by examining the gene and protein expressions of a panel of neural/RGC markers. Furthermore, whole transcriptome analysis demonstrated similarity of the hESC-derived RGCs to human adult RGCs. The enriched hESC-RGCs possess long axons, functional electrophysiological profiles and axonal transport of mitochondria, suggestive of maturity. In summary, this RGC differentiation protocol can generate an enriched population of functional RGCs from hESCs, allowing future studies on disease modeling of optic neuropathies and development of cell therapies. PMID:27506453

  3. Large-scale generation of cell-derived nanovesicles

    Jo, W.; Kim, J.; Yoon, J.; Jeong, D.; Cho, S.; Jeong, H.; Yoon, Y. J.; Kim, S. C.; Gho, Y. S.; Park, J.


    Exosomes are enclosed compartments that are released from cells and that can transport biological contents for the purpose of intercellular communications. Research into exosomes is hindered by their rarity. In this article, we introduce a device that uses centrifugal force and a filter with micro-sized pores to generate a large quantity of cell-derived nanovesicles. The device has a simple polycarbonate structure to hold the filter, and operates in a common centrifuge. Nanovesicles are similar in size and membrane structure to exosomes. Nanovesicles contain intracellular RNAs ranging from microRNA to mRNA, intracellular proteins, and plasma membrane proteins. The quantity of nanovesicles produced using the device is 250 times the quantity of naturally secreted exosomes. Also, the quantity of intracellular contents in nanovesicles is twice that in exosomes. Nanovesicles generated from murine embryonic stem cells can transfer RNAs to target cells. Therefore, this novel device and the nanovesicles that it generates are expected to be used in exosome-related research, and can be applied in various applications such as drug delivery and cell-based therapy.

  4. Droplet-based microfluidic method for synthesis of microparticles

    Mbanjwa, MB


    Full Text Available Droplet-based microfluidics has, in recent years, received increased attention as an important tool for performing numerous methods in modern day chemistry and biology such as the synthesis of hydrogel microparticles. Hydrogels have been used in many..., in recent years, received increased attention as an important tool for performing numerous methods in modern day chemistry and biology, such as synthesis of hydrogel microparticles. CONCLUSION AND OUTLOOK The droplet-based microfluidic method offers...

  5. Method for producing nano-embedded microparticles


    (EN)The present invention relates to a rapid, high-throughput and continuous method for producing nano-embedded microparticles in powder form, thereby providing a cost- effective process which can be performed aseptically. The invention further relates to an apparatus for performing the method...... of the invention. (FR)La présente invention concerne un procédé rapide, à haut rendement et continu de production de nano-microparticules intégrées sous forme de poudre, ce qui permet d'obtenir un procédé économique qui peut être mis en oeuvre de manière aseptique. L'invention concerne, en outre, un appareil pour...

  6. From Single Microparticles to Microfluidic Emulsification

    Kinoshita, K.; Ortiz, Elisa Parra; Hussein, Abdirazak


    level, the micropipette technique was used to form and characterize the encapsulation of Ibuprofen (Ibp) into poly(lactic-co-glycolic acid) (PLGA) microspheres from dichloromethane (DCM) solutions, measuring the loading capacity and solubility limits of Ibp in typical PLGA microspheres. Formed...... time of pure Ibp microspheres in the buffer or in detergent micelle solutions, as a function of the microsphere size and compare that to calculated dissolution times using the Epstein-Plesset (EP) model. Single, pure Ibp microparticles precipitated as liquid phase microdroplets that then gradually......) micelles was directly visualized microscopically for the first time by the micropipette technique, showing that such micellization could increase the solubility of Ibp from 4 to 80 mM at 100 mM SDS. We also introduce a particular microfluidic device that has recently been used to make PLGA microspheres...

  7. Supercritical Antisolvent Precipitation of Microparticles of Quercetin

    刘学武; 李志义; 韩冰; 苑塔亮


    Supercritical antisolvent (SAS) process is a recently developed technology to produce micro- and nanoparticles. This paper presents a continuous apparatus to conduct experiment of SAS process. With the apparatus,the effects of pressure, temperature and flow ratio of CO2 to the solution on the shape and size of particles are studied for the quercetin-ethanol-CO2 system. Spherical quercetin microparticles with diameters ranging form i μm to 6μm can be obtained while ethanol is used as organic solvent. The most effective fact on the shape and size of particles is pressure, the next is temperature and the last is the flow ratio of CO2 to solution.

  8. Diving with microparticles in acoustic fields


    Sound can move particles. A good example of this phenomenon is the Chladni plate, in which an acoustic wave is induced in a metallic plate and particles migrate to the nodes of the acoustic wave. For several years, acoustophoresis has been used to manipulate microparticles in microscopic scales....... In this fluid dynamics video, submitted to the 30th Annual Gallery of Fluid Motion, we show the basic mechanism of the technique and a simple way of visualize it. Since acoustophoretic phenomena is essentially a three-dimensional effect, we employ a simple technique to visualize the particles in 3D...... particle motion that would otherwise be missed. The technique not only permits visualization but also precise quantitative measurements that can be compared with theory and simulations....

  9. The picobalance for single microparticle measurements

    Davis, E. James

    The picobalance or quadrupole levitator is an outgrowth of the classical Millikan oil drop experiment and has been used for a wide variety of studies of micron and submicron size particles and droplets. A new version of the picobalance, which uses automatic feedback control for particle suspension and a linear photodiode array for light-scattering measurements, is described. The instrument has been used to measure the aerodynamic drag on microparticles suspended in a flow field and to measure evaporation rates and optical properties of liquid droplets. The instrument can also be used to examine spectroscopically the optical and chemical properties of atmospheric and interplanetary particles and any number of phoretic forces on such particles.

  10. Circulating microparticles and endogenous estrogen in newly menopausal women.

    Jayachandran, M; Litwiller, R D; Owen, W G; Miller, V M


    Estrogen modulates antithrombotic characteristics of the vascular endothelium and the interaction of blood elements with the vascular surface. A marker of these modulatory activities is formation of cell-specific microparticles. This study examined the relationship between blood-borne microparticles and endogenous estrogen at menopause. Platelet activation and plasma microparticles were characterized from women being screened (n = 146) for the Kronos Early Estrogen Prevention Study. Women were grouped according to serum estrogen ( 40 pg/ml; high estrogen, n = 11). Age, body mass index, blood pressure and blood chemistries were the same in both groups. No woman was hypertensive, diabetic or a current smoker. Platelet counts, basal and activated expression of P-selectin on platelet membranes were the same, but activated expression of glycoprotein IIb/IIIa was greater in the high-estrogen group. Numbers of endothelium-, platelet-, monocyte- and granulocyte-derived microparticles were greater in the low-estrogen group. Of the total numbers of microparticles, those positive for phosphatidylserine and tissue factor were also greater in the low-estrogen group. These results suggest that, with declines in endogenous estrogen at menopause, numbers of procoagulant microparticles increase and thus may provide a means to explore mechanisms for cardiovascular risk development in newly menopausal women.

  11. Acid sphingomyelinase activity triggers microparticle release from glial cells.

    Bianco, Fabio; Perrotta, Cristiana; Novellino, Luisa; Francolini, Maura; Riganti, Loredana; Menna, Elisabetta; Saglietti, Laura; Schuchman, Edward H; Furlan, Roberto; Clementi, Emilio; Matteoli, Michela; Verderio, Claudia


    We have earlier shown that microglia, the immune cells of the CNS, release microparticles from cell plasma membrane after ATP stimulation. These vesicles contain and release IL-1beta, a crucial cytokine in CNS inflammatory events. In this study, we show that microparticles are also released by astrocytes and we get insights into the mechanism of their shedding. We show that, on activation of the ATP receptor P2X7, microparticle shedding is associated with rapid activation of acid sphingomyelinase, which moves to plasma membrane outer leaflet. ATP-induced shedding and IL-1beta release are markedly reduced by the inhibition of acid sphingomyelinase, and completely blocked in glial cultures from acid sphingomyelinase knockout mice. We also show that p38 MAPK cascade is relevant for the whole process, as specific kinase inhibitors strongly reduce acid sphingomyelinase activation, microparticle shedding and IL-1beta release. Our results represent the first demonstration that activation of acid sphingomyelinase is necessary and sufficient for microparticle release from glial cells and define key molecular effectors of microparticle formation and IL-1beta release, thus, opening new strategies for the treatment of neuroinflammatory diseases.

  12. Microparticles: Facile and High-Throughput Synthesis of Functional Microparticles with Quick Response Codes (Small 24/2016).

    Ramirez, Lisa Marie S; He, Muhan; Mailloux, Shay; George, Justin; Wang, Jun


    Microparticles carrying quick response (QR) barcodes are fabricated by J. Wang and co-workers on page 3259, using a massive coding of dissociated elements (MiCODE) technology. Each microparticle can bear a special custom-designed QR code that enables encryption or tagging with unlimited multiplexity, and the QR code can be easily read by cellphone applications. The utility of MiCODE particles in multiplexed DNA detection and microtagging for anti-counterfeiting is explored.

  13. Production, fate and pathogenicity of plasma microparticles in murine cerebral malaria.

    Fatima El-Assaad


    Full Text Available In patients with cerebral malaria (CM, higher levels of cell-specific microparticles (MP correlate with the presence of neurological symptoms. MP are submicron plasma membrane-derived vesicles that express antigens of their cell of origin and phosphatidylserine (PS on their surface, facilitating their role in coagulation, inflammation and cell adhesion. In this study, the in vivo production, fate and pathogenicity of cell-specific MP during Plasmodium berghei infection of mice were evaluated. Using annexin V, a PS ligand, and flow cytometry, analysis of platelet-free plasma from infected mice with cerebral involvement showed a peak of MP levels at the time of the neurological onset. Phenotypic analyses showed that MP from infected mice were predominantly of platelet, endothelial and erythrocytic origins. To determine the in vivo fate of MP, we adoptively transferred fluorescently labelled MP from mice with CM into healthy or infected recipient mice. MP were quickly cleared following intravenous injection, but microscopic examination revealed arrested MP lining the endothelium of brain vessels of infected, but not healthy, recipient mice. To determine the pathogenicity of MP, we transferred MP from activated endothelial cells into healthy recipient mice and this induced CM-like brain and lung pathology. This study supports a pathogenic role for MP in the aggravation of the neurological lesion and suggests a causal relationship between MP and the development of CM.

  14. Elevated cell-specific microparticles are a biological marker for cerebral dysfunctions in human severe malaria.

    Joël Bertrand Pankoui Mfonkeu

    Full Text Available Cerebral malaria (CM and severe anemia (SA are the most severe complications of Plasmodium falciparum infections. Although increased release of endothelial microparticles (MP correlates with malaria severity, the full extent of vascular cell vesiculation remains unknown. Here, we characterize the pattern of cell-specific MP in patients with severe malaria. We tested the hypothesis that systemic vascular activation contributes to CM by examining origins and levels of plasma MP in relation to clinical syndromes, disease severity and outcome. Patients recruited in Douala, Cameroon, were assigned to clinical groups following WHO criteria. MP quantitation and phenotyping were carried out using cell-specific markers by flow cytometry using antibodies recognizing cell-specific surface markers. Platelet, erythrocytic, endothelial and leukocytic MP levels were elevated in patients with cerebral dysfunctions and returned to normal by discharge. In CM patients, platelet MP were the most abundant and their levels significantly correlated with coma depth and thrombocytopenia. This study shows for the first time a widespread enhancement of vesiculation in the vascular compartment appears to be a feature of CM but not of SA. Our data underpin the role of MP as a biomarker of neurological involvement in severe malaria. Therefore, intervention to block MP production in severe malaria may provide a new therapeutic pathway.

  15. Dendritic Cell-Derived Exosomes Stimulate Stronger CD8+ CTL Responses and Antitumor Immunity than Tumor Cell-Derived Exosomes

    Siguo Hao; Ou Bai; Jinying Yuan; Mabood Qureshi; Jim Xiang


    Exosomes (EXO) derived from dendritic cells (DC) and tumor cells have been used to stimulate antitumor immune responses in animal models and in clinical trials. However, there has been no side-by-side comparison of the stimulatory efficiency of the antitumor immune responses induced by these two commonly used EXO vaccines. In this study, we selected to study the phenotype characteristics of EXO derived from a transfected EG7 tumor cells expressing ovalbumin (OVA) and OVA-pulsed DC by flow cytometry. We compared the stimulatory effect in induction of OVA-specific immune responses between these two types of EXO. We found that OVA protein-pulsed DCovA-derived EXO (EXODC) can more efficiently stimulate naive OVA-specific CD8+ T cell proliferation and differentiation into cytotoxic T lymphocytes in vivo, and induce more efficient antitumor immunity than EG7 tumor cell-derived EXO (EXOEG7). In addition, we elucidated the important role of the host DC in EXO vaccines that the stimulatory effect of EXO is delivered to T cell responses by the host DC. Therefore, DC-derived EXO may represent a more effective EXO-based vaccine in induction of antitumor immunity.

  16. Functional Differences in Engineered Myocardium from Embryonic Stem Cell-Derived versus Neonatal Cardiomyocytes

    Feinberg, Adam W.; Ripplinger, Crystal M.; van der Meer, Peter; Sheehy, Sean P.; Domian, Ibrahim; Chien, Kenneth R.; Parker, Kevin Kit


    Stem cell-derived cardiomyocytes represent unique tools for cell-and tissue-based regenerative therapies, drug discovery and safety, and studies of fundamental heart-failure mechanisms. However, the degree to which stem cell-derived cardiomyocytes compare to mature cardiomyocytes is often debated.

  17. [Vascular endothelial Barrier Function].

    Ivanov, A N; Puchinyan, D M; Norkin, I A


    Endothelium is an important regulator of selective permeability of the vascular wall for different molecules and cells. This review summarizes current data on endothelial barrier function. Endothelial glycocalyx structure, its function and role in the molecular transport and leukocytes migration across the endothelial barrier are discussed. The mechanisms of transcellular transport of macromolecules and cell migration through endothelial cells are reviewed. Special section of this article addresses the structure and function of tight and adherens endothelial junction, as well as their importance for the regulation of paracellular transport across the endothelial barrier. Particular attention is paid to the signaling mechanism of endothelial barrier function regulation and the factors that influence on the vascular permeability.

  18. Agglomerates containing pantoprazole microparticles: modulating the drug release.

    Raffin, Renata P; Colombo, Paolo; Sonvico, Fabio; Rossi, Alessandra; Jornada, Denise S; Pohlmann, Adriana R; Guterres, Silvia S


    Pantoprazole-loaded microparticles were prepared using a blend of Eudragit S100 and Methocel F4M. The accelerated stability was carried out during 6 months at 40 degrees C and 75% relative humidity. In order to improve technological characteristics of the pantoprazole-loaded microparticles, soft agglomerates were prepared viewing an oral delayed release and gastro-resistant solid dosage form. The agglomeration was performed by mixing the pantoprazole microparticles with spray-dried mannitol/lecithin powders. The effects of factors such as the amount of lecithin in the spray-dried mannitol/lecithin powders and the ratio between pantoprazole microparticles and spray-dried mannitol/lecithin powders were evaluated. The pantoprazole-loaded microparticles present no significant degradation in 6 months. The agglomerates presented spherical shape, with smooth surface and very small quantity of non-agglomerated particles. The agglomerates presented different yields (35.5-79.0%), drug loading (58-101%), and mechanical properties (tensile strength varied from 44 to 69 mN mm(-2)), when the spray-dried mannitol/lecithin powders with different lecithin amounts were used. The biopharmaceutical characteristics of pantoprazole microparticles, i.e., their delayed-release properties, were not affected by the agglomeration process. The gastro-resistance of the agglomerates was affected by the amount of spray-dried mannitol/lecithin powders. The ratio of lecithin in the spray-dried mannitol/lecithin powders was the key factor in the agglomerate formation and in the drug release profiles. The agglomerates presenting better mechanical and biopharmaceutical characteristics were prepared with 1:2 (w/w) ratio of pantoprazole-loaded microparticles and mannitol/lecithin (80:20) powder.

  19. Pluripotent stem cell-derived hepatocyte-like cells.

    Schwartz, R E; Fleming, H E; Khetani, S R; Bhatia, S N


    Liver disease is an important clinical problem, impacting over 30 million Americans and over 600 million people worldwide. It is the 12th leading cause of death in the United States and the 16th worldwide. Due to a paucity of donor organs, several thousand Americans die yearly while waiting for liver transplantation. Unfortunately, alternative tissue sources such as fetal hepatocytes and hepatic cell lines are unreliable, difficult to reproduce, and do not fully recapitulate hepatocyte phenotype and functions. As a consequence, alternative cell sources that do not have these limitations have been sought. Human embryonic stem (hES) cell- and induced pluripotent stem (iPS) cell-derived hepatocyte-like cells may enable cell based therapeutics, the study of the mechanisms of human disease and human development, and provide a platform for screening the efficacy and toxicity of pharmaceuticals. iPS cells can be differentiated in a step-wise fashion with high efficiency and reproducibility into hepatocyte-like cells that exhibit morphologic and phenotypic characteristics of hepatocytes. In addition, iPS-derived hepatocyte-like cells (iHLCs) possess some functional hepatic activity as they secrete urea, alpha-1-antitrypsin, and albumin. However, the combined phenotypic and functional traits exhibited by iHLCs resemble a relatively immature hepatic phenotype that more closely resembles that of fetal hepatocytes rather than adult hepatocytes. Specifically, iHLCs express fetal markers such as alpha-fetoprotein and lack key mature hepatocyte functions, as reflected by drastically reduced activity (~0.1%) of important detoxification enzymes (i.e. CYP2A6, CYP3A4). These key differences between iHLCs and primary adult human hepatocytes have limited the use of stem cells as a renewable source of functional adult hepatocytes for in vitro and in vivo applications. Unfortunately, the developmental pathways that control hepatocyte maturation from a fetal into an adult hepatocyte are

  20. Microvesicles: potential markers and mediators of endothelial dysfunction.

    Liu, Ming-Lin; Williams, Kevin Jon


    Microvesicles (also known as microparticles) are small membranous structures that are released from platelets and cells upon activation or during apoptosis. Microvesicles have been found in blood, urine, synovial fluid, extracellular spaces of solid organs, atherosclerotic plaques, tumors, and elsewhere. Here, we focus on new clinical and basic work that implicates microvesicles as markers and mediators of endothelial dysfunction and hence novel contributors to cardiovascular and other diseases. Advances in the detection of microvesicles and the use of cell type-specific markers to determine their origin have allowed studies that associated plasma concentrations of specific microvesicles with major types of endothelial dysfunction - namely, inappropriate or maladaptive vascular tone, leukocyte recruitment, and thrombosis. Recent investigations have highlighted microvesicular transport of key biologically active molecules besides tissue factor, such as ligands for pattern-recognition receptors, elements of the inflammasome, and morphogens. Microvesicles generated from human cells under different pathologic circumstances, for example, during cholesterol loading or exposure to endotoxin, carry different subsets of these molecules and thereby alter endothelial function through several distinct, well characterized molecular pathways. Clinical and basic studies indicate that microvesicles may be novel markers and mediators of endothelial dysfunction. This work has advanced our understanding of the development of cardiovascular and other diseases. Opportunities and obstacles to clinical applications are discussed.

  1. Microparticles Novel Mechanisms of Intracellular Communication: Implication in Health and Disease

    Anna Meiliana


    Full Text Available BACKGROUND: The prevailing view that eukaryotic cells are restrained from intercellular exchange of genetic information has been challenged by recent reports on nanotubes, exosomes, apoptotic bodies, and nucleic acid—binding peptides that provide novel pathways for cell—cell communication, with implications in health and disease. CONTENT: Microparticles (MPs are a heterogeneous population of small plasma membrane structures that serve as important signaling structures between cells. MPs are composed of a phospholipid bilayer that exposes transmembrane proteins and receptors and encloses cytosolic components such as enzymes, transcription factors, and mRNA derived from their parent cells. Growing evidence suggests that MPs regulate inflammation, stimulate coagulation, affect vascular functions and apoptosis, and can also play a role in cell proliferation or differentiation. MPs circulate in the bloodstream, can be detected in the peripheral blood, and may originate from different vascular cell types (eg, platelets, monocytes, endothelial cells, red blood cells, and granulocytes. SUMMARY: Cells of various types release small membrane vesicles called MP on their activation, as well as during the process of apoptosis. The properties and roles of MP generated in different contexts are diverse and are determined by their parent cell and the pathway of their generation, which affects their content. MP are involved in multiple cellular functions, including immunomodulation, inflammation, coagulation, and intercellular communication. MPs are able to deliver molecular signals in the form of lipids, proteins, nucleic acids, or functional trans-membrane proteins from the parent cell to distantly located targets. From a clinical point of view, MP may serve as biomarkers for disease status and may be found useful for developing novel therapeutic strategies. KEYWORDS: microparticles, microvesicle, membrane remodeling, intercellular communication.

  2. Microparticles as biomarkers of osteonecrosis of the hip in sickle cell disease

    Marsh, Anne; Schiffelers, Raymond; Kuypers, Frans; Larkin, Sandra; Gildengorin, Ginny; van Solinge, Wouter; Hoppe, Carolyn


    Osteonecrosis of the femoral head (ONFH) is a common complication of sickle cell disease (SCD). To examine the association between microparticles and ONFH in SCD, we compared plasma microparticle levels in 20 patients with and without ONFH. Microparticles were quantified using nanoparticle tracking

  3. Reducing the stiffness of concentrated whey protein isolate (WPI) gels by using WPI microparticles

    Purwanti, N.; Moerkens, A.; Goot, van der A.J.; Boom, R.M.


    Concentrated protein gels were prepared using native whey protein isolate (WPI) and WPI based microparticles. WPI microparticles were produced by making gel pieces from a concentrated WPI suspension (40% w/w), which were dried and milled. The protein within the microparticles was denatured and the

  4. Formation of monodisperse mesoporous silica microparticles via spray-drying.

    Waldron, Kathryn; Wu, Winston Duo; Wu, Zhangxiong; Liu, Wenjie; Selomulya, Cordelia; Zhao, Dongyuan; Chen, Xiao Dong


    In this work, a protocol to synthesize monodisperse mesoporous silica microparticles via a unique microfluidic jet spray-drying route is reported for the first time. The microparticles demonstrated highly ordered hexagonal mesostructures with surface areas ranging from ~900 up to 1500 m(2)/g and pore volumes from ~0.6 to 0.8 cm(3)/g. The particle size could be easily controlled from ~50 to 100 μm from the same diameter nozzle via changing the initial solute content, or changing the drying temperature. The ratio of the surfactant (CTAB) and silica (TEOS), and the amount of water in the precursor were found to affect the degree of ordering of mesopores by promoting either the self-assembly of the surfactant-silica micelles or the condensation of the silica as two competing processes in evaporation induced self-assembly. The drying rate and the curvature of particles also affected the self-assembly of the mesostructure. The particle mesostructure is not influenced by the inlet drying temperature in the range of 92-160 °C, with even a relatively low temperature of 92 °C producing highly ordered mesoporous microparticles. The spray-drying derived mesoporous silica microparticles, while of larger sizes and more rapidly synthesized, showed a comparable performance with the conventional mesoporous silica MCM-41 in controlled release of a dye, Rhodamine B, indicating that these spray dried microparticles could be used for the immobilisation and controlled release of small molecules.

  5. Novel injectable, self-gelling hydrogel-microparticle composites for bone regeneration consisting of gellan gum and calcium and magnesium carbonate microparticles.

    Douglas, Timothy E L; Łapa, Agata; Reczyńska, Katarzyna; Krok-Borkowicz, Małgorzata; Pietryga, Krzysztof; Samal, Sangram Keshari; Declercq, Heidi A; Schaubroeck, David; Boone, Marijn; Van der Voort, Pascal; De Schamphelaere, Karel; Stevens, Christian V; Bliznuk, Vitaliy; Balcaen, Lieve; Parakhonskiy, Bogdan V; Vanhaecke, Frank; Cnudde, Veerle; Pamuła, Elżbieta; Skirtach, Andre G


    The suitability of hydrogel biomaterials for bone regeneration can be improved by incorporation of an inorganic phase in particle form, thus maintaining hydrogel injectability. In this study, carbonate microparticles containing different amounts of calcium (Ca) and magnesium (Mg) were added to solutions of the anionic polysaccharide gellan gum (GG) to crosslink GG by release of Ca(2+) and Mg(2+) from microparticles and thereby induce formation of hydrogel-microparticle composites. It was hypothesized that increasing Mg content of microparticles would promote GG hydrogel formation. The effect of Mg incorporation on cytocompatibility and cell growth was also studied. Microparticles were formed by mixing Ca(2+) and Mg(2+) and [Formula: see text] ions in varying concentrations. Microparticles were characterized physiochemically and subsequently mixed with GG solution to form hydrogel-microparticle composites. The elemental Ca:Mg ratio in the mineral formed was similar to the Ca:Mg ratio of the ions added. In the absence of Mg, vaterite was formed. At low Mg content, magnesian calcite was formed. Increasing the Mg content further caused formation of amorphous mineral. Microparticles of vaterite and magnesium calcite did not induce GG hydrogel formation, but addition of Mg-richer amorphous microparticles induced gelation within 20 min. Microparticles were dispersed homogeneously in hydrogels. MG-63 osteoblast-like cells were cultured in eluate from hydrogel-microparticle composites and on the composites themselves. All composites were cytocompatible. Cell growth was highest on composites containing particles with an equimolar Ca:Mg ratio. In summary, carbonate microparticles containing a sufficient amount of Mg induced GG hydrogel formation, resulting in injectable, cytocompatible hydrogel-microparticle composites.

  6. Human embryonic stem cell derivation and directed differentiation.

    Trounson, A


    Human embryonic stem cells (hESCs) are produced from normal, chromosomally aneuploid and mutant human embryos, which are available from in vitro fertilisation (IVF) for infertility or preimplantation diagnosis. These hESC lines are an important resource for functional genomics, drug screening and eventually cell and gene therapy. The methods for deriving hESCs are well established and repeatable, and are relatively successful, with a ratio of 1:10 to 1:2 hESC lines established to embryos used. hESCs can be formed from morula and blastocyst-stage embryos and from isolated inner cell mass cell (ICM) clusters. The hESCs can be formed and maintained on mouse or human somatic cells in serum-free conditions, and for several passages in cell-free cultures. The hESCs can be transfected with DNA constructs. Their gene expression profiles are being described and immunological characteristics determined. They may be grown indefinitely in culture while maintaining their original karyotype but this must be confirmed from time to time. hESCs spontaneously differentiate in the absence of the appropriate cell feeder layer, when overgrown in culture and when isolated from the ESC colony. All three major embryonic lineages are produced in differentiating attachment cultures and in unattached embryoid bodies. Cell progenitors of interest can be identified by markers, expression of reporter genes and characteristic morphology, and the culture thereafter enriched for further culture to more mature cell types. The most advanced directed differentiation pathways have been developed for neural cells and cardiac muscle cells, but many other cell types including haematopoietic progenitors, endothelial cells, lung alveoli, keratinocytes, pigmented retinal epithelium, neural crest cells and motor neurones, hepatic progenitors and cells that have some markers of gut tissue and pancreatic cells have been produced. The prospects for regenerative medicine are significant and there is much

  7. Bead mediated separation of microparticles in droplets

    Sung, Ki-Joo; Lin, Xiaoxia Nina; Burns, Mark A.


    Exchange of components such as particles and cells in droplets is important and highly desired in droplet microfluidic assays, and many current technologies use electrical or magnetic fields to accomplish this process. Bead-based microfluidic techniques offer an alternative approach that uses the bead’s solid surface to immobilize targets like particles or biological material. In this paper, we demonstrate a bead-based technique for exchanging droplet content by separating fluorescent microparticles in a microfluidic device. The device uses posts to filter surface-functionalized beads from a droplet and re-capture the filtered beads in a new droplet. With post spacing of 7 μm, beads above 10 μm had 100% capture efficiency. We demonstrate the efficacy of this system using targeted particles that bind onto the functionalized beads and are, therefore, transferred from one solution to another in the device. Binding capacity tests performed in the bulk phase showed an average binding capacity of 5 particles to each bead. The microfluidic device successfully separated the targeted particles from the non-targeted particles with up to 98% purity and 100% yield. PMID:28282412

  8. Shape-tunable core-shell microparticles.

    Klein, Matthias K; Saenger, Nicolai R; Schuetter, Stefan; Pfleiderer, Patrick; Zumbusch, Andreas


    Colloidal polymer particles are an important class of materials finding use in both everyday and basic research applications. Tailoring their composition, shape, and functionality is of key importance. In this article, we describe a new class of shape-tunable core-shell microparticles. They are composed of a cross-linked polystyrene (PS) core and a poly(methyl methacrylate) (PMMA) shell of varying thickness. In the first step, we prepared highly cross-linked PS cores, which are subsequently transferred into a nonpolar dispersant. They serve as the seed dispersion for a nonaqueous dispersion polymerization to generate the PMMA shell. The shape of the particles can subsequently be manipulated. After the shell growth stage, the spherical PS/PMMA core-shell colloids exhibit an uneven and wrinkled surface. An additional tempering procedure allows for smoothing the surface of the core-shell colloids. This results in polymer core-shell particles with a perfectly spherical shape. In addition to this thermal smoothing of the PMMA shell, we generated a selection of shape-anisotropic core-shell particles using a thermomechanical stretching procedure. Because of the unique constitution, we can selectively interrogate molecular vibrations in the PS core or the PMMA shell of the colloids using nonlinear optical microscopy techniques. This is of great interest because no photobleaching occurs, such that the particles can be tracked in real space over long times.

  9. Diving with microparticles in acoustic fields

    Marin, Alvaro; Barnkob, Rune; Augustsson, Per; Muller, Peter; Bruus, Henrik; Laurell, Thomas; Kaehler, Christian


    Sound can move particles. A good example of this phenomenon is the Chladni plate, in which an acoustic wave is induced in a metallic plate and particles migrate to the nodes of the acoustic wave. For several years, acoustophoresis has been used to manipulate microparticles in microscopic scales. In this fluid dynamics video, submitted to the 30th Annual Gallery of Fluid Motion, we show the basic mechanism of the technique and a simple way of visualize it. Since acoustophoretic phenomena is essentially a three-dimensional effect, we employ a simple technique to visualize the particles in 3D. The technique is called Astigmatism Particle Tracking Velocimetry and it consists in the use of cylindrical lenses to induce a deformation in the particle shape, which will be then correlated with its distance from the observer. With this method we are able to dive with the particles and observe in detail particle motion that would otherwise be missed. The technique not only permits visualization but also precise quantitat...

  10. Polymethacrylate microparticles gel for topical drug delivery.

    Labouta, Hagar Ibrahim; El-Khordagui, Labiba K


    Evaluating the potentials of particulate delivery systems in topical drug delivery. Polymethacrylate microparticles (MPs) incorporating verapamil hydrochloride (VRP) as a model hydrophilic drug with potential topical clinical uses, using Eudragit RS100 and Eudragit L100 were prepared for the formulation of a composite topical gel. The effect of initial drug loading, polymer composition, particularly the proportion of Eudragit L100 as an interacting polymer component and the HLB of the dispersing agent on MPs characteristics was investigated. A test MPs formulation was incorporated in gel and evaluated for drug release and human skin permeation. MPs showed high % incorporation efficiency and % yield. Composition of the hybrid polymer matrix was a main determinant of MPs characteristics, particularly drug release. Factors known to influence drug release such as MPs size and high drug solubility were outweighed by strong VRP-Eudragit L100 interaction. The developed MPs gel showed controlled VRP release and reduced skin retention compared to a free drug gel. Topical drug delivery and skin retention could be modulated using particulate delivery systems. From a practical standpoint, the VRP gel developed may offer advantage in a range of dermatological conditions, in response to the growing off-label topical use of VRP.

  11. Dextran-based hydrogel containing chitosan microparticles loaded with growth factors to be used in wound healing

    Ribeiro, M.P. [CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã (Portugal); UDI-IPG, Research Unit for Inland Development, Polytechnic Institute of Guarda, Guarda (Portugal); Morgado, P.I.; Miguel, S.P. [CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã (Portugal); Coutinho, P. [CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã (Portugal); UDI-IPG, Research Unit for Inland Development, Polytechnic Institute of Guarda, Guarda (Portugal); Correia, I.J., E-mail: [CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã (Portugal)


    Skin injuries are traumatic events, which are seldom accompanied by complete structural and functional restoration of the original tissue. Different strategies have been developed in order to make the wound healing process faster and less painful. In the present study in vitro and in vivo assays were carried out to evaluate the applicability of a dextran hydrogel loaded with chitosan microparticles containing epidermal and vascular endothelial growth factors, for the improvement of the wound healing process. The carriers' morphology was characterized by scanning electron microscopy. Their cytotoxicity profile and degradation by-products were evaluated through in vitro assays. In vivo experiments were also performed to evaluate their applicability for the treatment of skin burns. The wound healing process was monitored through macroscopic and histological analysis. The macroscopic analysis showed that the period for wound healing occurs in animals treated with microparticle loaded hydrogels containing growth factors that were considerably smaller than that of control groups. Moreover, the histological analysis revealed the absence of reactive or granulomatous inflammatory reaction in skin lesions. The results obtained both in vitro and in vivo disclosed that these systems and its degradation by-products are biocompatible, contributed to the re-establishment of skin architecture and can be used in a near future for the controlled delivery of other bioactive agents used in regenerative medicine. - Highlights: • Evaluation of a hydrogel loaded with microparticles containing growth factors for wound healing • In vitro and in vivo assays were performed to characterize the properties of the skin substitute. • The monitoring of the wound healing process was done by macroscopic and histological analysis.

  12. Endothelium dependent vasomotion and in vitro markers of endothelial repair in patients with severe sepsis: an observational study.

    Sabrina H van Ierssel

    Full Text Available BACKGROUND: Outcome in sepsis is mainly defined by the degree of organ failure, for which endothelial dysfunction at the macro- and microvascular level is an important determinant. In this study we evaluated endothelial function in patients with severe sepsis using cellular endothelial markers and in vivo assessment of reactive hyperaemia. MATERIALS AND METHODS: Patients with severe sepsis (n = 30 and 15 age- and gender- matched healthy volunteers were included in this study. Using flow cytometry, CD34+/KDR+ endothelial progenitor cells (EPC, CD31+ T-cells, and CD31+/CD42b- endothelial microparticles (EMP were enumerated. Migratory capacity of cultured circulating angiogenic cells (CAC was assessed in vitro. Endothelial function was determined using peripheral arterial tonometry at the fingertip. RESULTS: In patients with severe sepsis, a lower number of EPC, CD31+ T-cells and a decreased migratory capacity of CAC coincided with a blunted reactive hyperaemia response compared to healthy subjects. The number of EMP, on the other hand, did not differ. The presence of organ failure at admission (SOFA score was inversely related with the number of CD31+ T-cells. Furthermore, the number of EPC at admission was decreased in patients with progressive organ failure within the first week. CONCLUSION: In patients with severe sepsis, in vivo measured endothelial dysfunction coincides with lower numbers and reduced function of circulating cells implicated in endothelial repair. Our results suggest that cellular markers of endothelial repair might be valuable in the assessment and evolution of organ dysfunction.

  13. Characterization of spray dried bioadhesive metformin microparticles for oromucosal administration

    Sander, Camilla; Madsen, Katrine Dragsbæk; Hyrup, Birgitte


    delivery systems are considered a promising approach as they facilitate a close contact between the drug and the oral mucosa. In this study, bioadhesive chitosan-based microparticles of metformin hydrochloride were prepared by spray drying aqueous dispersions with different chitosan:metformin ratios...... and chitosan grades with increasing molecular weights. A recently developed ex vivo flow retention model with porcine buccal mucosa was used to evaluate the bioadhesive properties of spray dried microparticles. An important outcome of this study was that microparticles with the desired metformin content could...... be prepared and analyzed using the ex vivo retention model. We observed an increase in metformin retention on porcine mucosa with increasing chitosan:metformin ratios, while no effect of increasing the chitosan molecular weight was found. Rheological characterization of feeds for spray drying was performed...

  14. Shape-based separation of microparticles with magnetic fields

    Wang, Cheng; Zhou, Ran


    Precise manipulations, e.g., sorting and focusing, of nonspherical micro-particles in fluidic environment has important applications in the fields of biology sciences and biomedical engineering. However, non-spherical microparticles are hard to manipulate because they tumble in shear flows. Most of existing techniques, including traditional filtration and centrifugation, and recent microfluidic technology, have difficulty in separating microparticles by shape. We demonstrate a novel shape-based separation technique by combining external magnetic fields with pressure-driven flows in a microchannel. Due to the magnetic field, prolate ellipsoidal particles migrate laterally at different speeds than the spherical ones, leading to effective separation. Our experimental investigations reveal the underlying physical mechanism of the observed shape-dependent migration. We find that the magnetic field breaks the rotational symmetry of the nonspherical particles, and induces shape-dependent lift force and migration velocity.

  15. RDX-based nanocomposite microparticles for significantly reduced shock sensitivity

    Qiu Hongwei, E-mail: [Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Stepanov, Victor; Di Stasio, Anthony R. [U.S. Army - Armament Research, Development, and Engineering Center, Picatinny, NJ 07806 (United States); Chou, Tsengming; Lee, Woo Y. [Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030 (United States)


    Cyclotrimethylenetrinitramine (RDX)-based nanocomposite microparticles were produced by a simple, yet novel spray drying method. The microparticles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and high performance liquid chromatography (HPLC), which shows that they consist of small RDX crystals ({approx}0.1-1 {mu}m) uniformly and discretely dispersed in a binder. The microparticles were subsequently pressed to produce dense energetic materials which exhibited a markedly lower shock sensitivity. The low sensitivity was attributed to small crystal size as well as small void size ({approx}250 nm). The method developed in this work may be suitable for the preparation of a wide range of insensitive explosive compositions.

  16. Quality control of residual solvent content in polymeric microparticles.

    Dixit, Kalpana; Athawale, Rajani B; Singh, Sarabjit


    Organic solvents are the innate part of pharmaceutical industry, playing vital role in the bulk drug substance as well as finished product manufacturing. Even though they are used for various crucial purposes, they still lack therapeutic beneficial effect and can be toxic if present in unacceptable limits in final product. Hence, their concentration must be regulated in the final pharmaceutical formulation. With the major development in the market of polymeric microparticles in past few decades, drug product manufacturers are paying more attention towards the development of new techniques for reducing residual solvent content of microparticles. This article sheds light on the importance of removal of organic volatile impurities from the formulation and its regulatory aspects. It also highlights how residual solvent affects various physicochemical characteristics of polymeric microparticles and suggests certain solutions as per the current state of art for limiting organic solvent content in the final product.

  17. Electrosprayed inulin microparticles for microbiota triggered targeting of colon.

    Jain, Arvind K; Sood, Vishesh; Bora, Meghali; Vasita, Rajesh; Katti, Dhirendra S


    Inulin, a naturally occurring polysaccharide, was acetylated to make it processable by electrospraying, a facile and single step method for microparticle fabrication. Electrospraying process parameters were optimized for fabrication of spherical and monodisperse indomethacin (IDM) loaded inulin acetate (INA) microparticles. The apparent entrapment efficiency of IDM was determined to be 100%, whereas working encapsulation efficiency was estimated to be 35.39 ± 1.63%. Differential scanning calorimetry and X-ray diffraction analysis confirmed molecular dispersion of IDM in an amorphous state within the INA matrix. Finally, the results from in vitro release study performed in simulated gastro-intestinal fluids demonstrated that IDM was released only in simulated colonic fluid that contained inulinase. Therefore, this study demonstrates that acetylation of inulin does not alter its susceptibility to inulinase and that microparticles fabricated from INA can be developed as a colon targeting drug delivery system.

  18. Cells derived from porcine aorta tunica media show mesenchymal stromal-like cell properties in in vitro culture.

    Zaniboni, Andrea; Bernardini, Chiara; Alessandri, Marco; Mangano, Chiara; Zannoni, Augusta; Bianchi, Francesca; Sarli, Giuseppe; Calzà, Laura; Bacci, Maria Laura; Forni, Monica


    Several studies have already described the presence of specialized niches of precursor cells in vasculature wall, and it has been shown that these populations share several features with mesenchymal stromal cells (MSCs). Considering the relevance of MSCs in the cardiovascular physiopathology and regenerative medicine, and the usefulness of the pig animal model in this field, we reported a new method for MSC-like cell isolation from pig aorta. Filling the vessel with a collagenase solution for 40 min, all endothelial cells were detached and discarded and then collagenase treatment was repeated for 4 h to digest approximately one-third of the tunica media. The ability of our method to select a population of MSC-like cells from tunica media could be ascribed in part to the elimination of contaminant cells from the intimal layer and in part to the overnight culture in the high antibiotic/antimycotic condition and to the starvation step. Aortic-derived cells show an elongated, spindle shape, fibroblast-like morphology, as reported for MSCs, stain positively for CD44, CD56, CD90, and CD105; stain negatively for CD34 and CD45; and express CD73 mRNA. Moreover, these cells show the classical mesenchymal trilineage differentiation potential. Under our in vitro culture conditions, aortic-derived cells share some phenotypical features with pericytes and are able to take part in the formation of network-like structures if cocultured with human umbilical vein endothelial cells. In conclusion, our work reports a simple and highly suitable method for obtaining large numbers of precursor MSC-like cells derived from the porcine aortic wall.

  19. Multimodal delivery of irinotecan from microparticles with two distinct compartments.

    Rahmani, Sahar; Park, Tae-Hong; Dishman, Acacia Frances; Lahann, Joerg


    In the last several decades, research in the field of drug delivery has been challenged with the fabrication of carrier systems engineered to deliver therapeutics to the target site with sustained and controlled release kinetics. Herein, we report the fabrication of microparticles composed of two distinct compartments: i) one compartment containing a pH responsive polymer, acetal-modified dextran, and PLGA (polylactide-co-glycolide), and ii) one compartment composed entirely of PLGA. We demonstrate the complete release of dextran from the microparticles during a 10-hour period in an acidic pH environment and the complete degradation of one compartment in less than 24h. This is in congruence with the stability of the same microparticles in neutral pH over the 24-hour period. Such microparticles can be used as pH responsive carrier systems for drug delivery applications where their cargo will only be released when the optimum pH window is reached. The feasibility of the microparticle system for such an application was confirmed by encapsulating a cancer therapeutic, irinotecan, in the compartment containing the acetal-modified dextran polymer and the pH dependent release over a 5-day period was studied. It was found that upon pH change to an acidic environment, over 50% of the drug was first released at a rapid rate for 10h, similar to that observed for the dextran release, before continuing at a more controlled rate for 4 days. As such, these microparticles can play an important role in the fabrication of novel drug delivery systems due to the selective, controlled, and pH responsive release of their encapsulated therapeutics.

  20. [Endothelial cell adhesion molecules].

    Ivanov, A N; Norkin, I A; Puchin'ian, D M; Shirokov, V Iu; Zhdanova, O Iu


    The review presents current data concerning the functional role of endothelial cell adhesion molecules belonging to different structural families: integrins, selectins, cadherins, and the immunoglobulin super-family. In this manuscript the regulatory mechanisms and factors of adhesion molecules expression and distribution on the surface of endothelial cells are discussed. The data presented reveal the importance of adhesion molecules in the regulation of structural and functional state of endothelial cells in normal conditions and in pathology. Particular attention is paid to the importance of these molecules in the processes of physiological and pathological angiogenesis, regulation of permeability of the endothelial barrier and cell transmigration.

  1. Effect of endothelial progenitor cells in neovascularization and their application in tumor therapy

    DONG Fang; HA Xiao-qin


    Objective To review the effect of endothelial progenitor cells in neovascularization as well as their application to the therapy of tumors.Data sources The data used in this review were mainly from PubMed for relevant English language articles published from 1997 to 2009. The search term was "endothelial progenitor cells".Study selection Articles regarding the role of endothelial progenitor cells in neovascularization and their application to the therapy of tumors were selected.Results Endothelial progenitor cells isolated from bone marrow, umbilical cord blood and peripheral blood can proliferate, mobilize and differentiate into mature endothelial cells. Experiments suggest endothelial progenitor cells take part in forming the tumor vascular through a variety of mechanisms related to vascular endothelial growth factor, matrix metalloproteinases, chemokine stromal cell-derived factor 1 and its receptor C-X-C receptor-4, erythropoietin, Notchsignal pathway and so on. Evidence demonstrates that the number and function change of endothelial progenitor cells in peripheral blood can be used as a biomarker of the response of cancer patients to anti-tumor therapy and predict the prognosis and recurrence. In addition, irradiation temporarily increased endothelial cells number and decreased the endothelial progenitor cell counts in animal models. Meanwhile, in preclinical experiments, therapeutic gene-modified endothelial progenitor cells have been approved to attenuate tumor growth and offer a novel strategy for cell therapy and gene therapy of cancer.Conclusions Endothelial progenitor cells play a particular role in neovascularization and have attractively potential prognostic and therapeutic applications to malignant tumors. However, a series of problems, such as the definitive biomarkers of endothelial progenitor cells, their interrelationship with radiotherapy and their application in cell therapy and gene therapy of tumors, need further investigation.

  2. Kinetics of release of methylene blue immobilized in calcium alginate microparticles

    Inal Bakhytkyzy


    Full Text Available The swelling kinetics of microparticles obtained with different concentrations of calcium chloride was studied to learn the ability of sodium alginate to gelation. To increase the effect of prolongation it is necessary to obtain microparticles with sustained release of drugs. For this purpose the drying kinetics of alginate microparticles was investigated. Also the kinetics of release of methylene blue immobilized in calcium alginate microparticles was studied. It was found that the release of methylene blue from the microparticles depends on the amount of immobilized material.

  3. Homing of circulating blood endothelial progenitor cells after myocardial infarction is mediated by Akt-SDF-1-signal pathway



    Objective To investigate the expressions of protein kinase B(Akt) and stromal cell-derived factor-1(SDF-1) and their relations with circulating blood endothelial progenitor cell homing after myocardial infarction(MI). Methods MI was induced in the

  4. Tumour exosomes display different differential mechanical and complement activation properties dependent on malignant state: implications in endothelial leakiness

    Whitehead, Bradley Joseph; Wu, Linping; Hvam, Michael Lykke


    Background : Exosomes have been implicated in tumour progression and metastatic spread. Little is known of the effect of mechanical and innate immune interactions of malignant cell-derived exosomes on endothelial integrity, which may relate to increased extravasation of circulating tumour cells a...

  5. Complement Interactions with Blood Cells, Endothelial Cells and Microvesicles in Thrombotic and Inflammatory Conditions.

    Karpman, Diana; Ståhl, Anne-lie; Arvidsson, Ida; Johansson, Karl; Loos, Sebastian; Tati, Ramesh; Békássy, Zivile; Kristoffersson, Ann-Charlotte; Mossberg, Maria; Kahn, Robin


    The complement system is activated in the vasculature during thrombotic and inflammatory conditions. Activation may be associated with chronic inflammation on the endothelial surface leading to complement deposition. Complement mutations allow uninhibited complement activation to occur on platelets, neutrophils, monocytes, and aggregates thereof, as well as on red blood cells and endothelial cells. Furthermore, complement activation on the cells leads to the shedding of cell derived-microvesicles that may express complement and tissue factor thus promoting inflammation and thrombosis. Complement deposition on red blood cells triggers hemolysis and the release of red blood cell-derived microvesicles that are prothrombotic. Microvesicles are small membrane vesicles ranging from 0.1 to 1 μm, shed by cells during activation, injury and/or apoptosis that express components of the parent cell. Microvesicles are released during inflammatory and vascular conditions. The repertoire of inflammatory markers on endothelial cell-derived microvesicles shed during inflammation is large and includes complement. These circulating microvesicles may reflect the ongoing inflammatory process but may also contribute to its propagation. This overview will describe complement activation on blood and endothelial cells and the release of microvesicles from these cells during hemolytic uremic syndrome, thrombotic thrombocytopenic purpura and vasculitis, clinical conditions associated with enhanced thrombosis and inflammation.

  6. Microparticles and acute coronary syndrome%微颗粒与急性冠脉综合征

    易铁慈; 郑乐民; 李建平


    Coronary heart disease (CHD) is an important cause of death in the world.Among them,acute coronary syndrome (ACS) is a type of CHD that has a high mortality rate.Microparticles (MPs) are tiny particles formed in the process of cell activation and apoptosis,carrying specific markers of their mother cells.There is more and more evidence that MPs derived from endothelial cells,platelets,white blood cells and other cells are closely related to the formation of ACS.Through a variety of pathways,they take part in endotheial cell damage,vascular dysfunction,plaque erosion and rupture,and thrombosis.The findings of MPs enrich our knowledge about ACS,and may provide a new approach to the treatment of ACS.

  7. Multitarget sensing of glucose and cholesterol based on Janus hydrogel microparticles.

    Sun, Xiao-Ting; Zhang, Ying; Zheng, Dong-Hua; Yue, Shuai; Yang, Chun-Guang; Xu, Zhang-Run


    A visualized sensing method for glucose and cholesterol was developed based on the hemispheres of the same Janus hydrogel microparticles. Single-phase and Janus hydrogel microparticles were both generated using a centrifugal microfluidic chip. For glucose sensing, concanavalin A and fluorescein labeled dextran used for competitive binding assay were encapsulated in alginate microparticles, and the fluorescence of the microparticles was positively correlated with glucose concentration. For cholesterol sensing, the microparticles embedded with γ-Fe2O3 nanoparticles were used as catalyst for the oxidation of 3,3',5,5'-Tetramethylbenzidine by H2O2, an enzymatic hydrolysis product of cholesterol. And the color transition was more sensitive in the microparticles than in solutions, indicating the microparticles are more applicable for visualized determination. Furthermore, Janus microparticles were employed for multitarget sensing in the two hemespheres, and glucose and cholesterol were detected within the same microparticles without obvious interference. Besides, the particles could be manipulated by an external magnetic field. The glucose and cholesterol levels were measured in human serum utilizing the microparticles, which confirmed the potential application of the microparticles in real sample detection.

  8. Human iPSC-Derived Endothelial Cell Sprouting Assay in ...

    Activation of vascular endothelial cells (ECs) by growth factors initiates a cascade of events in vivo consisting of EC tip cell selection, sprout formation, EC stalk cell proliferation, and ultimately vascular stabilization by support cells. Although EC functional assays can recapitulate one or more aspects of angiogenesis in vitro, they are often limited by a lack of definition to the substratum and lack of dependence on key angiogenic signaling axes. Here, we designed and characterized a chemically-defined model of endothelial sprouting behavior in vitro using human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs). Thiol-ene photopolymerization was used to rapidly encapsulate iPSC-ECs at high density in poly(ethylene glycol) (PEG) hydrogel spheres and subsequently to rapidly encapsulate iPSC-EC-containing hydrogel spheres in a cell-free over-layer. The hydrogel sprouting array here maintained pro-angiogenic phenotype of iPSC-ECs and supported growth factor-dependent proliferation and sprouting behavior. The sprouting model responded appropriately to several reference pharmacological angiogenesis inhibitors, which suggests the functional role of vascular endothelial growth factor, NF-κB, matrix metalloproteinase-2/9, protein kinase activity, and β-tubulin in endothelial sprouting. A blinded screen of 38 putative vascular disrupting compounds (pVDCs) from the US Environmental Protection Agency’s ToxCast library identified five compounds th

  9. Micro-particle in surface snow at Princess Elizabeth Land,East Antarctica


    During the Austral summer of 1996/1997, the First Chinese Antarctic Inland Expedition reached the inland area about 330 km along the direction around 76°E from Zhongshan Station, and collected 84 surface snow samples at an interval of 4 kin. Micro-particle analysis of the samples indicates that the micro-particle concentration apparently decreases with the increasing of altitude, and the amplitudes of micro-particle concentration is much larger in the lower altitude than in the higher altitude. Further analysis of grain-size distributions of micro-particle, percentage of micro-particles from different sources and variations with altitude suggest that microparticles in this area are from a considerably dominant source. Although this area is controlled by polar easterly wind and katabatic wind, transportation and deposition of the micro-particles are mainly influenced by marine transportation in coastal area.

  10. Interfacial tension based on-chip extraction of microparticles confined in microfluidic Stokes flows

    Huang, Haishui; He, Xiaoming


    Microfluidics involving two immiscible fluids (oil and water) has been increasingly used to produce hydrogel microparticles with wide applications. However, it is difficult to extract the microparticles out of the microfluidic Stokes flows of oil that have a Reynolds number (the ratio of inertia to viscous force) much less than one, where the dominant viscous force tends to drive the microparticles to move together with the surrounding oil. Here, we present a passive method for extracting hydrogel microparticles in microfluidic Stokes flow from oil into aqueous extracting solution on-chip by utilizing the intrinsic interfacial tension between oil and the microparticles. We further reveal that the thickness of an "extended confining layer" of oil next to the interface between oil and aqueous extracting solution must be smaller than the radius of microparticles for effective extraction. This method uses a simple planar merging microchannel design that can be readily fabricated and further integrated into a fluidic system to extract microparticles for wide applications.

  11. Nicotine–magnesium aluminum silicate microparticle surface modified with chitosan for mucosal delivery

    Kanjanakawinkul, Watchara [Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Rades, Thomas [School of Pharmacy, University of Otago, Dunedin 9054 (New Zealand); Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen (Denmark); Puttipipatkhachorn, Satit [Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400 (Thailand); Pongjanyakul, Thaned, E-mail: [Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand)


    Magnesium aluminum silicate (MAS), a negatively charged clay, and nicotine (NCT), a basic drug, can interact electrostatically to form microparticles. Chitosan (CS) was used for the surface modification of the microparticles, and a lyophilization method was used to preserve the original particle morphology. The microparticles were characterized in terms of their physicochemical properties, NCT content, mucoadhesive properties, and release and permeation across porcine esophageal mucosa. The results showed that the microparticles formed via electrostatic interaction between MAS and protonated NCT had an irregular shape and that their NCT content increased with increasing NCT ratios in the microparticle preparation solution. High molecular weight CS (800 kDa) adsorbed to the microparticle surface and induced a positive surface charge. CS molecules intercalated into the MAS silicate layers and decreased the crystallinity of the microparticles, leading to an increase in the release rate and diffusion coefficient of NCT from the microparticles. Moreover, the microparticle surface modified with CS was found to have higher NCT permeation fluxes and mucoadhesive properties, which indicated the significant role of CS for NCT mucosal delivery. However, the enhancement of NCT permeation and of mucoadhesive properties depended on the molecular weight and concentration of CS. These findings suggest that NCT-MAS microparticle surface modified with CS represents a promising mucosal delivery system for NCT. Highlights: ► Nicotine–magnesium aluminum silicate microparticles were prepared using electrostatic interaction. ► Lyophilization was used for drying and maintaining an original morphology of the microparticles. ► Chitosan (CS) was used for surface modification of the microparticles at acidic pH. ► Surface modification using CS caused an increase in release and permeation of nicotine. ► Microparticle surface-modified with CS presented better mucoadhesive properties.

  12. Cell-Derived Extracellular Matrix: Basic Characteristics and Current Applications in Orthopedic Tissue Engineering.

    Zhang, Weixiang; Zhu, Yun; Li, Jia; Guo, Quanyi; Peng, Jiang; Liu, Shichen; Yang, Jianhua; Wang, Yu


    The extracellular matrix (ECM) is a dynamic and intricate microenvironment with excellent biophysical, biomechanical, and biochemical properties, which can directly or indirectly regulate cell proliferation, adhesion, migration, and differentiation, as well as plays key roles in homeostasis and regeneration of tissues and organs. The ECM has attracted a great deal of attention with the rapid development of tissue engineering in the field of regenerative medicine. Tissue-derived ECM scaffolds (also referred to as decellularized tissues and whole organs) are considered a promising therapy for the repair of musculoskeletal defects, including those that are widely used in orthopedics, although there are a few shortcomings. Similar to tissue-derived ECM scaffolds, cell-derived ECM scaffolds also have highly advantageous biophysical and biochemical properties, in particular their ability to be produced in vitro from a number of different cell types. Furthermore, cell-derived ECM scaffolds more closely resemble native ECM microenvironments. The products of cell-derived ECM have a wide range of biomedical applications; these include reagents for cell culture substrates and biomaterials for scaffolds, hybrid scaffolds, and living cell sheet coculture systems. Although cell-derived ECM has only just begun to be investigated, it has great potential as a novel approach for cell-based tissue repair in orthopedic tissue engineering. This review summarizes and analyzes the various types of cell-derived ECM products applied in cartilage, bone, and nerve tissue engineering in vitro or in vivo and discusses future directions for investigation of cell-derived ECM.

  13. Leukocyte Activation and Circulating Leukocyte-Derived Microparticles in Preeclampsia

    Lok, Christianne A. R.; Jebbink, Jiska; Nieuwland, Rienk; Faas, Marijke M.; Boer, Kees; Sturk, Augueste; Van Der Post, Joris A. M.


    Preeclampsia shows characteristics of an inflammatory disease including leukocyte activation. Analyses of leukocyte-derived microparticles (MP) and mRNA expression of inflammation-related genes in leukocytes may establish which subgroups of leukocytes contribute to the development of preeclampsia. B

  14. Alginate-based hybrid aerogel microparticles for mucosal drug delivery.

    Gonçalves, V S S; Gurikov, P; Poejo, J; Matias, A A; Heinrich, S; Duarte, C M M; Smirnova, I


    The application of biopolymer aerogels as drug delivery systems (DDS) has gained increased interest during the last decade since these structures have large surface area and accessible pores allowing for high drug loadings. Being biocompatible, biodegradable and presenting low toxicity, polysaccharide-based aerogels are an attractive carrier to be applied in pharmaceutical industry. Moreover, some polysaccharides (e.g. alginate and chitosan) present mucoadhesive properties, an important feature for mucosal drug delivery. This feature allows to extend the contact of DDS with biological membranes, thereby increasing the absorption of drugs through the mucosa. Alginate-based hybrid aerogels in the form of microparticles (alginate and further dried with supercritical CO2 (sc-CO2). Spherical mesoporous aerogel microparticles were obtained for alginate, hybrid alginate/pectin and alginate/κ-carrageenan aerogels, presenting high specific surface area (370-548m(2)g(-1)) and mucoadhesive properties. The microparticles were loaded with ketoprofen via adsorption from its solution in sc-CO2, and with quercetin via supercritical anti-solvent precipitation. Loading of ketoprofen was in the range between 17 and 22wt% whereas quercetin demonstrated loadings of 3.1-5.4wt%. Both the drugs were present in amorphous state. Loading procedure allowed the preservation of antioxidant activity of quercetin. Release of both drugs from alginate/κ-carrageenan aerogel was slightly faster compared to alginate/pectin. The results indicate that alginate-based aerogel microparticles can be viewed as promising matrices for mucosal drug delivery applications.

  15. Biodegradable nanocomposite microparticles as drug delivering injectable cell scaffolds.

    Wen, Yanhong; Gallego, Monica Ramos; Nielsen, Lene Feldskov; Jorgensen, Lene; Everland, Hanne; Møller, Eva Horn; Nielsen, Hanne Mørck


    Injectable cell scaffolds play a dual role in tissue engineering by supporting cellular functions and delivering bioactive molecules. The present study aimed at developing biodegradable nanocomposite microparticles with sustained drug delivery properties thus potentially being suitable for autologous stem cell therapy. Semi-crystalline poly(l-lactide/dl-lactide) (PLDL70) and poly(l-lactide-co-glycolide) (PLGA85) were used to prepare nanoparticles by the double emulsion method. Uniform and spherical nanoparticles were obtained at an average size of 270-300 nm. The thrombin receptor activator peptide-6 (TRAP-6) was successfully loaded in PLDL70 and PLGA85 nanoparticles. During the 30 days' release, PLDL70 nanoparticles showed sustainable release with only 30% TRAP-6 released within the first 15 days, while almost 80% TRAP-6 was released from PLGA85 nanoparticles during the same time interval. The release mechanism was found to depend on the crystallinity and composition of the nanoparticles. Subsequently, mPEG-PLGA nanocomposite microparticles containing PLDL70 nanoparticles were produced by the ultrasonic atomization method and evaluated to successfully preserve the intrinsic particulate properties and the sustainable release profile, which was identical to that of the nanoparticles. Good cell adhesion of the human fibroblasts onto the nanocomposite microparticles was observed, indicating the desired cell biocompatibility. The presented results thus demonstrate the development of nanocomposite microparticles tailored for sustainable drug release for application as injectable cell scaffolds.

  16. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles.

    Wischke, Christian; Schwendeman, Steven P


    Injectable biodegradable and biocompatible copolymers of lactic and glycolic acid (PLGA) are an important advanced delivery system for week-to-month controlled release of hydrophobic drugs (e.g., from biopharmaceutical classification system class IV), which often display poor oral bioavailability. The basic principles and considerations to develop such microparticle formulations is reviewed here based on a comprehensive study of papers and patents from the beginnings of hydrophobic drug encapsulation in polylactic acid and PLGA up through the very recent literature. Challenges with the diversity of drug properties, microencapsulation methods, and organic solvents are evaluated in light of the precedence of commercialized formulations and with a focus on decreasing the time to lab-scale encapsulation of water-insoluble drug candidates in the early stage of drug development. The influence of key formulation variables on final microparticle characteristics, and how best to avoid undesired microparticle properties, is analyzed mechanistically. Finally, concepts are developed to manage the common issues of maintaining sink conditions for in vitro drug release assays of hydrophobic compounds. Overall, against the backdrop of an increasing number of new, poorly orally available drug entities entering development, microparticle delivery systems may be a viable strategy to rescue an otherwise undeliverable substance.

  17. Non-paraxial beam to push and pull microparticles

    Novitsky, Andrey; Qiu, C.-W.


    We discuss a feasibility of the pulling (backward) force acting on a spherical microparticle in a non-paraxial Bessel beam. The effect can be explained by the strong interaction of particle's multipoles or by the conservation of momentum in the system “photons-particle.” It is remarkable that the...

  18. Mechanically robust microfluidics and bulk wave acoustics to sort microparticles

    Dauson, Erin R.; Gregory, Kelvin B.; Greve, David W.; Healy, Gregory P.; Oppenheim, Irving J.


    Sorting microparticles (or cells, or bacteria) is significant for scientific, medical and industrial purposes. Research groups have used lithium niobate SAW devices to produce standing waves, and then to align microparticles at the node lines in polydimethylsiloxane (PDMS, silicone) microfluidic channels. The "tilted angle" (skewed) configuration is a recent breakthrough producing particle trajectories that cross multiple node lines, making it practical to sort particles. However, lithium niobate wafers and PDMS microfluidic channels are not mechanically robust. We demonstrate "tilted angle" microparticle sorting in novel devices that are robust, rapidly prototyped, and manufacturable. We form our microfluidic system in a rigid polymethyl methacrylate (PMMA, acrylic) prism, sandwiched by lead-zirconium-titanate (PZT) wafers, operating in through-thickness mode with inertial backing, that produce standing bulk waves. The overall configuration is compact and mechanically robust, and actuating PZT wafers in through-thickness mode is highly efficient. Moving to this novel configuration introduced new acoustics questions involving internal reflections, but we show experimental images confirming the intended nodal geometry. Microparticles in "tilted angle" devices display undulating trajectories, where deviation from the straight path increases with particle diameter and with excitation voltage to create the mechanism by which particles are sorted. We show a simplified analytical model by which a "phase space" is constructed to characterize effective particle sorting, and we compare our experimental data to the predictions from that simplified model; precise correlation is not expected and is not observed, but the important physical trends from the model are paralleled in the measured particle trajectories.

  19. A novel minimally-invasive method to sample human endothelial cells for molecular profiling.

    Stephen W Waldo

    Full Text Available The endothelium is a key mediator of vascular homeostasis and cardiovascular health. Molecular research on the human endothelium may provide insight into the mechanisms underlying cardiovascular disease. Prior methodology used to isolate human endothelial cells has suffered from poor yields and contamination with other cell types. We thus sought to develop a minimally invasive technique to obtain endothelial cells derived from human subjects with higher yields and purity.Nine healthy volunteers underwent endothelial cell harvesting from antecubital veins using guidewires. Fluorescence-activated cell sorting (FACS was subsequently used to purify endothelial cells from contaminating cells using endothelial surface markers (CD34/CD105/CD146 with the concomitant absence of leukocyte and platelet specific markers (CD11b/CD45. Endothelial lineage in the purified cell population was confirmed by expression of endothelial specific genes and microRNA using quantitative polymerase chain reaction (PCR.A median of 4,212 (IQR: 2161-6583 endothelial cells were isolated from each subject. Quantitative PCR demonstrated higher expression of von Willebrand Factor (vWF, P<0.001, nitric oxide synthase 3 (NOS3, P<0.001 and vascular cell adhesion molecule 1 (VCAM-1, P<0.003 in the endothelial population compared to similarly isolated leukocytes. Similarly, the level of endothelial specific microRNA-126 was higher in the purified endothelial cells (P<0.001.This state-of-the-art technique isolates human endothelial cells for molecular analysis in higher purity and greater numbers than previously possible. This approach will expedite research on the molecular mechanisms of human cardiovascular disease, elucidating its pathophysiology and potential therapeutic targets.

  20. A Novel Minimally-Invasive Method to Sample Human Endothelial Cells for Molecular Profiling

    Waldo, Stephen W.; Brenner, Daniel A.; McCabe, James M.; Dela Cruz, Mark; Long, Brian; Narla, Venkata A.; Park, Joseph; Kulkarni, Ameya; Sinclair, Elizabeth; Chan, Stephen Y.; Schick, Suzaynn F.; Malik, Namita; Ganz, Peter; Hsue, Priscilla Y.


    Objective The endothelium is a key mediator of vascular homeostasis and cardiovascular health. Molecular research on the human endothelium may provide insight into the mechanisms underlying cardiovascular disease. Prior methodology used to isolate human endothelial cells has suffered from poor yields and contamination with other cell types. We thus sought to develop a minimally invasive technique to obtain endothelial cells derived from human subjects with higher yields and purity. Methods Nine healthy volunteers underwent endothelial cell harvesting from antecubital veins using guidewires. Fluorescence-activated cell sorting (FACS) was subsequently used to purify endothelial cells from contaminating cells using endothelial surface markers (CD34 / CD105 / CD146) with the concomitant absence of leukocyte and platelet specific markers (CD11b / CD45). Endothelial lineage in the purified cell population was confirmed by expression of endothelial specific genes and microRNA using quantitative polymerase chain reaction (PCR). Results A median of 4,212 (IQR: 2161 – 6583) endothelial cells were isolated from each subject. Quantitative PCR demonstrated higher expression of von Willebrand Factor (vWF, P<0.001), nitric oxide synthase 3 (NOS3, P<0.001) and vascular cell adhesion molecule 1 (VCAM-1, P<0.003) in the endothelial population compared to similarly isolated leukocytes. Similarly, the level of endothelial specific microRNA-126 was higher in the purified endothelial cells (P<0.001). Conclusion This state-of-the-art technique isolates human endothelial cells for molecular analysis in higher purity and greater numbers than previously possible. This approach will expedite research on the molecular mechanisms of human cardiovascular disease, elucidating its pathophysiology and potential therapeutic targets. PMID:25679506

  1. Issues in long-term protein delivery using biodegradable microparticles.

    Ye, Mingli; Kim, Sungwon; Park, Kinam


    Recently, a variety of bioactive protein drugs have been available in large quantities as a result of advances in biotechnology. Such availability has prompted development of long-term protein delivery systems. Biodegradable microparticulate systems have been used widely for controlled release of protein drugs for days and months. The most widely used biodegradable polymer has been poly(d,l-lactic-co-glycolic acid) (PLGA). Protein-containing microparticles are usually prepared by the water/oil/water (W/O/W) double emulsion method, and variations of this method, such as solid/oil/water (S/O/W) and water/oil/oil (W/O/O), have also been used. Other methods of preparation include spray drying, ultrasonic atomization, and electrospray methods. The important factors in developing biodegradable microparticles for protein drug delivery are protein release profile (including burst release, duration of release, and extent of release), microparticle size, protein loading, encapsulation efficiency, and bioactivity of the released protein. Many studies used albumin as a model protein, and thus, the bioactivity of the release protein has not been examined. Other studies which utilized enzymes, insulin, erythropoietin, and growth factors have suggested that the right formulation to preserve bioactivity of the loaded protein drug during the processing and storage steps is important. The protein release profiles from various microparticle formulations can be classified into four distinct categories (Types A, B, C, and D). The categories are based on the magnitude of burst release, the extent of protein release, and the protein release kinetics followed by the burst release. The protein loading (i.e., the total amount of protein loaded divided by the total weight of microparticles) in various microparticles is 6.7+/-4.6%, and it ranges from 0.5% to 20.0%. Development of clinically successful long-term protein delivery systems based on biodegradable microparticles requires

  2. Magnetic microparticles for harvesting Dunaliella tertiolecta microalgae

    Manousakis, Emmanouil; Manariotis, Ioannis D.


    Microalgae based biofuels have been considered as a sustainable alternative to traditional fuels due to the higher biomass yield and lipid productivity, and the ability to be cultivated in non arable land making them not antagonistic with food supply chain. Due to the dilute nature of algal cultures and the small size of algae cells, the cost of microalgae harvesting is so far a bottleneck in microalgal based biofuel production. It is estimated that the algal recovery cost is at least 20-30% of the total biomass production cost. Various processes have been employed for the recovery of microalgal biomass, which include centrifugation, gravity separation, filtration, flocculation, and flotation. Recently, magnetophoric harvesting has received increased attention for algal separation, although it has been first applied for algal removal since the mid of 1970s. The magnetic separation process is based on bringing in contact the algal cells with the magnetic particles, and separating them from the liquid by an external magnetic force. The aim of this work was to investigate the harvesting of microalgae cells using Fe3O4 magnetic microparticles (MPs). Dunaliella tertiolecta was selected as a representative for marine microalgae. D. tertiolecta was cultivated under continuous artificial light, in 20 L flasks. Fe3O4 MPs were prepared by microwave irradiation of FeSO4 7H2O in an alkaline solution. Numerous batch and flow-through experiments were conducted in order to investigate the effect of the magnetic material addition on microalgae removal. Batch experiments were conducted examining different initial algal and MPs concentration, and algal culture volume. Flow-through experiments were conducted in a laboratory scale column made of Plexiglass. External magnetic field was applied by arranging at various points across the column length NdFeB magnets. Algal removal in flow-through experiments ranged from 70 to 85% depending on the initial MPs concentration and the hydraulic

  3. Blood platelet-derived microparticles release and bubble formation after an open-sea air dive.

    Pontier, Jean-Michel; Gempp, Emmanuel; Ignatescu, Mihaela


    Bubble-induced platelet aggregation offers an index for evaluating decompression severity in humans and in a rat model of decompression sickness. Endothelial cells, blood platelets, or leukocytes shed microparticles (MP) upon activation and during cell apoptosis. The aim was to study blood platelet MP (PMP) release and bubble formation after a scuba-air dive in field conditions. Healthy, experienced divers were assigned to 1 experimental group (n = 10) with an open-sea air dive to 30 msw for 30 min and 1 control group (n = 5) during head-out water immersion for the same period. Bubble grades were monitored with a pulsed doppler according to Kissman Integrated Severity Score (KISS). Blood samples for platelet count (PC) and PMP (annexin V and CD41) were taken 1 h before and after exposure in both groups. The result showed a decrease in post-dive PC compared with pre-dive values in experimental group with no significant change in the control group. We observed a significant increase in PMP values after the dive while no change was revealed in the control group. There was a significant positive correlation between the PMP values after the dive and the KISS bubble score. The present study highlighted a relationship between the post-dive decrease in PC, platelet MP release, and bubble formation. Release of platelet MPs could reflect bubble-induced platelet aggregation and could play a key role in alteration of the coagulation. Further studies must investigate endothelial and leukocyte MP release in the same field conditions.

  4. Microparticle-Induced Coagulation Relates to Coronary Artery Atherosclerosis in Severe Aortic Valve Stenosis.

    Patrick Horn

    Full Text Available Circulating microparticles (MPs derived from endothelial cells and blood cells bear procoagulant activity and promote thrombin generation. Thrombin exerts proinflammatory effects mediating the progression of atherosclerosis. Aortic valve stenosis may represent an atherosclerosis-like process involving both the aortic valve and the vascular system. The aim of this study was to investigate whether MP-induced thrombin generation is related to coronary atherosclerosis and aortic valve calcification.In a cross-sectional study of 55 patients with severe aortic valve stenosis, we assessed the coronary calcification score (CAC as indicator of total coronary atherosclerosis burden, and aortic valve calcification (AVC by computed tomography. Thrombin-antithrombin complex (TATc levels were measured as a marker for thrombin formation. Circulating MPs were characterized by flow cytometry according to the expression of established surface antigens and by measuring MP-induced thrombin generation.Patients with CAC score below the median were classified as patients with low CAC, patients with CAC Score above the median as high CAC. In patients with high CAC compared to patients with low CAC we detected higher levels of TATc, platelet-derived MPs (PMPs, endothelial-derived MPs (EMPs and MP-induced thrombin generation. Increased level of PMPs and MP-induced thrombin generation were independent predictors for the severity of CAC. In contrast, AVC Score did not differ between patients with high and low CAC and did neither correlate with MPs levels nor with MP-induced thrombin generation.In patients with severe aortic valve stenosis MP-induced thrombin generation was independently associated with the severity of CAC but not AVC indicating different pathomechanisms involved in coronary artery and aortic valve calcification.


    Zhang, Yan; Meng, Huan; Ma, Ruishuang; He, Zhangxiu; Wu, Xiaoming; Cao, Muhua; Yao, Zhipeng; Zhao, Lu; Li, Tao; Deng, Ruijuan; Dong, Zengxiang; Tian, Ye; Bi, Yayan; Kou, Junjie; Thatte, Hemant S; Zhou, Jin; Shi, Jialan


    Sepsis is invariably accompanied by altered coagulation cascade; however, the precise role of phosphatidylserine (PS) in inflammation-associated coagulopathy in sepsis has not been well elucidated. We explored the possibility of exposed PS on microparticles (MPs), blood cells, as well as on endothelium, and defined its role in procoagulant activity (PCA) in sepsis. PS-positive MPs and cells were detected by flow cytometry, while PCA was assessed with clotting time, purified coagulation complex, and fibrin formation assays. Plasma levels of PS MPs derived from platelets, leukocytes (including neutrophils, monocytes, and lymphocytes), erythrocytes, and endothelial cells were elevated by 1.49-, 1.60-, 2.93-, and 1.53-fold, respectively, in septic patients. Meanwhile, PS exposure on blood cells was markedly higher in septic patients than in controls. Additionally, we found that the endothelial cells (ECs) treated with septic serum in vitro exposed more PS than with healthy serum. Isolated MPs/blood cells from septic patients and cultured ECs treated with septic serum in vitro demonstrated significantly shortened coagulation time, greatly enhanced intrinsic/extrinsic FXa generation, and increased thrombin formation. Importantly, confocal imaging of MPs or septic serum-treated ECs identified binding sites for FVa and FXa to form prothrombinase, and further supported fibrin formation in the area where PS exposure was abundant. Pretreatment with lactadherin blocked PS on MPs/blood cells/ECs, prolonged coagulation time by at least 25%, reduced FXa/thrombin generation, and inhibited fibrin formation by approximately 85%. Our findings suggest a key role for PS exposed on MPs, blood cells, and endothelium in augmenting coagulation in sepsis. Therefore, therapies targeting PS may be of particular importance.

  6. Assessing the biodegradability of microparticles disposed down the drain.

    McDonough, Kathleen; Itrich, Nina; Casteel, Kenneth; Menzies, Jennifer; Williams, Tom; Krivos, Kady; Price, Jason


    Microparticles made from naturally occurring materials or biodegradable plastics such as poly(3-hydroxy butyrate)-co-(3-hydroxy valerate), PHBV, are being evaluated as alternatives to microplastics in personal care product applications but limited data is available on their ultimate biodegradability (mineralization) in down the drain environmental compartments. An OECD 301B Ready Biodegradation Test was used to quantify ultimate biodegradability of microparticles made of PHBV foam, jojoba wax, beeswax, rice bran wax, stearyl stearate, blueberry seeds and walnut shells. PHBV polymer was ready biodegradable reaching 65.4 ± 4.1% evolved CO2 in 5 d and 90.5 ± 3.1% evolved CO2 in 80 d. PHBV foam microparticles (125-500 μm) were mineralized extensively with >66% CO2 evolution in 28 d and >82% CO2 evolution in 80 d. PHBV foam microparticles were mineralized at a similar rate and extent as microparticles made of jojoba wax, beeswax, rice bran wax, and stearyl stearate which reached 84.8  ± 4.8, 84.9  ± 2.2, 82.7  ± 4.7, and 86.4 ± 3.2% CO2 evolution respectively in 80 d. Blueberry seeds and walnut shells mineralized more slowly only reaching 39.3  ± 6.9 and 5.1 ± 2.8% CO2 evolution in 80 d respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Functional analysis of carboxylesterase in human induced pluripotent stem cell-derived enterocytes.

    Kabeya, Tomoki; Matsumura, Wakana; Iwao, Takahiro; Hosokawa, Masakiyo; Matsunaga, Tamihide


    Human carboxylesterase (CES) is a key esterase involved in the metabolism and biotransformation of drugs. Hydrolysis activity in the human small intestine is predominantly mediated by CES2A1 rather than CES1A. In drug development studies, Caco-2 cells are commonly used as a model to predict drug absorption in the human small intestine. However, the expression patterns of CES2A1 and CES1A in Caco-2 cells differ from those in the human small intestine. There are also species-specific differences in CES expression patterns between human and experimental animals. Furthermore, it is difficult to obtain primary human intestinal epithelial cells. Therefore, there is currently no system that can precisely predict features of drug absorption, such as CES-mediated metabolism, in the human intestine. To develop a novel system to evaluate intestinal pharmacokinetics, we analyzed CES expression and function in human induced pluripotent stem (iPS) cell-derived enterocytes. CES2A1 mRNA and protein levels in human iPS cell-derived enterocytes were comparable to Caco-2 cells, whereas CES1A levels were lower in human iPS cell-derived enterocytes compared with Caco-2 cells. p-nitrophenyl acetate hydrolysis in human iPS cell-derived enterocytes was significantly inhibited by the CES2A1-specific inhibitor telmisartan. Hydrolysis levels of the CES2A1-specific substrate aspirin were similar in human iPS cell-derived enterocytes and Caco-2 cells, whereas hydrolysis of the CES1A-specific substrate monoethylglycylxylidine was observed in Caco-2 cells but not in human iPS cell-derived enterocytes. These findings demonstrated that the expression and activity of CES isozymes in human iPS cell-derived enterocytes are more similar to the human small intestine compared with Caco-2 cells.

  8. Platelet-derived microparticles and platelet function profile in children with congenital heart disease.

    Ismail, Eman Abdel Rahman; Youssef, Omneya Ibrahim


    Platelet microparticles (PMPs) and function profile in children with congenital heart disease (CHD) have not been widely explored. We investigated platelet aggregation, flow cytometric platelet surface receptors (P-selectin and glycoprotein (GP) IIb/IIIa) and PMPs in 23 children with cyanotic CHD (CCHD), 30 children with acyanotic CHD (ACHD) and 30 healthy controls correlating these variables to hematological and coagulation parameters including von Willebrand factor antigen (vWF Ag) as a marker of endothelial dysfunction. Hemoglobin, hematocrit (HCT), D-dimer, and vWF Ag were significantly higher in CCHD than ACHD group. Platelet MPs and P-selectin expression were increased in patients than controls, particularly in CCHD and positively correlated to HCT, D-dimer, and vWF Ag while platelet count, aggregation, and GP IIb/IIIa expression were decreased in CCHD compared with ACHD group and negatively correlated to HCT. The overproduction of PMPs and platelet activation with suppressed aggregation may be implicated in the pathogenesis of coagulation/hemostatic abnormalities in children with CCHD.

  9. Microparticle-Induced Activation of the Vascular Endothelium Requires Caveolin-1/Caveolae.

    Allison M Andrews

    Full Text Available Microparticles (MPs are small membrane fragments shed from normal as well as activated, apoptotic or injured cells. Emerging evidence implicates MPs as a causal and/or contributing factor in altering normal vascular cell phenotype through initiation of proinflammatory signal transduction events and paracrine delivery of proteins, mRNA and miRNA. However, little is known regarding the mechanism by which MPs influence these events. Caveolae are important membrane microdomains that function as centers of signal transduction and endocytosis. Here, we tested the concept that the MP-induced pro-inflammatory phenotype shift in endothelial cells (ECs depends on caveolae. Consistent with previous reports, MP challenge activated ECs as evidenced by upregulation of intracellular adhesion molecule-1 (ICAM-1 expression. ICAM-1 upregulation was mediated by activation of NF-κB, Poly [ADP-ribose] polymerase 1 (PARP-1 and the epidermal growth factor receptor (EGFR. This response was absent in ECs lacking caveolin-1/caveolae. To test whether caveolae-mediated endocytosis, a dynamin-2 dependent process, is a feature of the proinflammatory response, EC's were pretreated with the dynamin-2 inhibitor dynasore. Similar to observations in cells lacking caveolin-1, inhibition of endocytosis significantly attenuated MPs effects including, EGFR phosphorylation, activation of NF-κB and upregulation of ICAM-1 expression. Thus, our results indicate that caveolae play a role in mediating the pro-inflammatory signaling pathways which lead to EC activation in response to MPs.

  10. IGF-1 release kinetics from chitosan microparticles fabricated using environmentally benign conditions

    Mantripragada, Venkata P. [Biomedical Engineering Program, The University of Toledo, Toledo, OH 43614-5807 (United States); Jayasuriya, Ambalangodage C., E-mail: [Biomedical Engineering Program, The University of Toledo, Toledo, OH 43614-5807 (United States); Department of Orthopaedic Surgery, The University of Toledo, Toledo, OH 43614-5807 (United States)


    The main objective of this study is to maximize growth factor encapsulation efficiency into microparticles. The novelty of this study is to maximize the encapsulated growth factors into microparticles by minimizing the use of organic solvents and using relatively low temperatures. The microparticles were fabricated using chitosan biopolymer as a base polymer and cross-linked with tripolyphosphate (TPP). Insulin like-growth factor-1 (IGF-1) was encapsulated into microparticles to study release kinetics and bioactivity. In order to authenticate the harms of using organic solvents like hexane and acetone during microparticle preparation, IGF-1 encapsulated microparticles prepared by the emulsification and coacervation methods were compared. The microparticles fabricated by emulsification method have shown a significant decrease (p < 0.05) in IGF-1 encapsulation efficiency, and cumulative release during the two-week period. The biocompatibility of chitosan microparticles and the bioactivity of the released IGF-1 were determined in vitro by live/dead viability assay. The mineralization data observed with von Kossa assay, was supported by mRNA expression levels of osterix and runx2, which are transcription factors necessary for osteoblasts differentiation. Real time RT-PCR data showed an increased expression of runx2 and a decreased expression of osterix over time, indicating differentiating osteoblasts. Chitosan microparticles prepared in optimum environmental conditions are a promising controlled delivery system for cells to attach, proliferate, differentiate and mineralize, thereby acting as a suitable bone repairing material. - Highlights: • Coacervation chitosan microparticles were biocompatible and biodegradable. • IGF-1 encapsulation efficiency increased with coacervation chitosan microparticles. • Coacervation chitosan microparticles support osteoblast attachment and differentiation. • Coacervation chitosan microparticles support osteoblast mineralization.

  11. Myocardial Tissue Engineering With Cells Derived From Human-Induced Pluripotent Stem Cells and a Native-Like, High-Resolution, 3-Dimensionally Printed Scaffold.

    Gao, Ling; Kupfer, Molly E; Jung, Jangwook P; Yang, Libang; Zhang, Patrick; Da Sie, Yong; Tran, Quyen; Ajeti, Visar; Freeman, Brian T; Fast, Vladimir G; Campagnola, Paul J; Ogle, Brenda M; Zhang, Jianyi


    Conventional 3-dimensional (3D) printing techniques cannot produce structures of the size at which individual cells interact. Here, we used multiphoton-excited 3D printing to generate a native-like extracellular matrix scaffold with submicron resolution and then seeded the scaffold with cardiomyocytes, smooth muscle cells, and endothelial cells that had been differentiated from human-induced pluripotent stem cells to generate a human-induced pluripotent stem cell-derived cardiac muscle patch (hCMP), which was subsequently evaluated in a murine model of myocardial infarction. The scaffold was seeded with ≈50 000 human-induced pluripotent stem cell-derived cardiomyocytes, smooth muscle cells, and endothelial cells (in a 2:1:1 ratio) to generate the hCMP, which began generating calcium transients and beating synchronously within 1 day of seeding; the speeds of contraction and relaxation and the peak amplitudes of the calcium transients increased significantly over the next 7 days. When tested in mice with surgically induced myocardial infarction, measurements of cardiac function, infarct size, apoptosis, both vascular and arteriole density, and cell proliferation at week 4 after treatment were significantly better in animals treated with the hCMPs than in animals treated with cell-free scaffolds, and the rate of cell engraftment in hCMP-treated animals was 24.5% at week 1 and 11.2% at week 4. Thus, the novel multiphoton-excited 3D printing technique produces extracellular matrix-based scaffolds with exceptional resolution and fidelity, and hCMPs fabricated with these scaffolds may significantly improve recovery from ischemic myocardial injury. © 2017 American Heart Association, Inc.

  12. Breaking the mold: transcription factors in the anucleate platelet and platelet-derived microparticles

    Katie L Lannan


    Full Text Available Platelets are small anucleate blood cells derived from megakaryocytes. In addition to their pivotal roles in hemostasis, platelets are the smallest, yet most abundant, immune cell and regulate inflammation, immunity, and disease progression. Although platelets lack DNA, and thus no functional transcriptional activities, they are nonetheless rich sources of RNAs, possess an intact spliceosome, and are thus capable of synthesizing proteins. Previously, it was thought that platelet RNAs and translational machinery were remnants from the megakaryocyte. We now know that the initial description of platelets as cellular fragments is an antiquated notion, as mounting evidence suggests otherwise. Therefore, it is reasonable to hypothesize that platelet transcription factors are not vestigial remnants from megakaryoctes, but have important, if only partly understood functions. Proteins play multiple cellular roles to minimize energy expenditure for maximum cellular function; thus, the same can be expected for transcription factors. In fact, numerous transcription factors have non-genomic roles, both in platelets and in nucleated cells. Our lab and others have discovered the presence and nongenomic roles of transcription factors in platelets, such as the nuclear factor kappa β (NFκB family of proteins and peroxisome proliferator activated receptor gamma (PPARγ. In addition to numerous roles in regulating platelet activation, functional transcription factors can be transferred to vascular and immune cells through platelet microparticles. This method of transcellular delivery of key immune molecules may be a vital mechanism by which platelet transcription factors regulate inflammation and immunity. At the very least, platelets are an ideal model cell to dissect out the nongenomic roles of transcription factors in nucleated cells. There is abundant evidence to suggest that transcription factors in platelets play key roles in regulating inflammatory and

  13. Exosomes Secreted from Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Prevent Osteonecrosis of the Femoral Head by Promoting Angiogenesis

    Liu, Xiaolin; Li, Qing; Niu, Xin; Hu, Bin; Chen, Shengbao; Song, Wenqi; Ding, Jian; Zhang, Changqing; Wang, Yang


    Background: Local ischemia is the main pathological performance in osteonecrosis of the femoral head (ONFH). There is currently no effective therapy to promote angiogenesis in the femoral head. Recent studies revealed that exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells (iPS-MSC-Exos) have great therapeutic potential in ischemic tissues, but whether they could promote angiogenesis in ONFH has not been reported, and little is known regarding the underlying mechanism. Methods: iPS-MSC-Exos were intravenously injected to a steroid-induced rat osteonecrosis model. Samples of the femoral head were obtained 3 weeks after all the injections. The effects were assessed by measuring local angiogenesis and bone loss through histological and immunohistochemical (IHC) staining, micro-CT and three-dimensional microangiography. The effects of exosomes on endothelial cells were studied through evaluations of proliferation, migration and tube-forming analyses. The expression levels of angiogenic related PI3K/Akt signaling pathway of endothelial cells were evaluated following stimulation of iPS-MSC-Exos. The promoting effects of exosomes were re-evaluated following blockade of PI3K/Akt. Results: The in vivo study revealed that administration of iPS-MSC-Exos significantly prevented bone loss, and increased microvessel density in the femoral head compared with control group. We found that iPS-MSC-Exos significantly enhanced the proliferation, migration and tube-forming capacities of endothelial cells in vitro. iPS-MSC-Exos could activate PI3K/Akt signaling pathway in endothelial cells. Moreover, the promoting effects of iPS-MSC-Exos were abolished after blockade of PI3K/Akt on endothelial cells. Conclusions: Our findings suggest that transplantation of iPS-MSC-Exos exerts a preventative effect on ONFH by promoting local angiogenesis and preventing bone loss. The promoting effect might be attributed to activation of the PI3K/Akt signaling pathway on

  14. 间充质干细胞来源微泡的研究进展%Research Progress of Mesenchymal Stem Cell-derived Microvesicle——Review

    王晓庆; 朱晓健; 邹萍


    间充质干细胞来源的微泡(MSC-MV)是MSC在静息或活化状态下释放到胞外的膜分泌体系,包括直径在100-1000 nm的微粒(microparticle)和40-100 nm的外来体(exosome).MSC-MV由脂质双分子层膜包被,其内选择性包裹脂质、蛋白质、mRNA及miRNA等多种生物活性物质.MSC-MV膜表面携带MSC的某些表面标记,可以通过配受体结合等方式被靶细胞摄取,并具有明确的减轻组织损伤程度、促进损伤组织形态学及功能学修复的作用,且该作用可能由其内含的miRNA外源传递所介导;MSC-MV可能还具有潜在的调节机体免疫、调控细胞生长分化等生物学功能.本文就MSC-MV的产生机制、组分及生物学功能作一综述.%Mesenchymal stem cell-derived microvesicle (MSC-MV) is a membrane secretory system which includs microparticle and exosome, and MSC-MV is released by MSC in resting or activated state. MSC-MV selectively package the biological active substances such as lipids, proteins, mRNA and miRNA but not loads them randomly. It has definitive effect of reducing tissue injury, promoting morphological and functional recovery of the injured tissue, and this effect is probablely mediated by miRNA. What is more, the MSC-MV may also possess the biological function of immunological regulation, modulation of cell growth and differentiation. The generation, constitution, and function of MSC-MV are reviewed in this article.

  15. Cytotoxic and Immunochemical Properties of Viscumin Encapsulated 
in Polylactide Microparticles.

    Kolotova, E S; Egorova, S G; Ramonova, A A; Bogorodski, S E; Popov, V K; Agapov, I I; Kirpichnikov, M P


    Biodegradable polylactide microparticles with encapsulated cytotoxic protein viscumin were obtained via the ultrasound-assisted supercritical fluid technique. The size of the microparticles was 10-50 µM, as shown by electron microscopy. The time course of viscumin release from microparticles was studied using an immunoenzyme test system with anti-viscumin monoclonal antibodies. It was found that 99.91% of the cytotoxic protein was incorporated into polymer microparticles. Only 0.08% of the initially encapsulated viscumin was released from the microparticles following incubation for 120 h in a phosphate-buffered saline at neutral pH. Importantly, the method of ultrasonic dry supercritical fluid encapsulation failed to alter both the cytotoxic potency and the immunochemical properties of the encapsulated viscumin. Thus, this procedure can be used to generate biodegradable polylactide microparticles with encapsulated bioactive substances.

  16. Reduction in microparticle adsorption using a lateral interconnection method in a PDMS-based microfluidic device.

    Lee, Do-Hyun; Park, Je-Kyun


    Microparticle adsorption on microchannel walls occurs frequently due to nonspecific interactions, decreasing operational performance in pressure-driven microfluidic systems. However, it is essential for delicate manipulation of microparticles or cells to maintain smooth fluid traffic. Here, we report a novel microparticle injection technique, which prevents particle loss, assisted by sample injection along the direction of fluid flow. Sample fluids, including microparticles, mammalian (U937), and green algae (Chlorella vulgaris) cells, were injected directly via a through hole drilled in the lateral direction, resulting in a significant reduction in microparticle attachment. For digital microfluidic application, the proposed regime achieved a twofold enhancement of single-cell encapsulation compared to the conventional encapsulation rate, based on a Poisson distribution, by reducing the number of empty droplets. This novel interconnection method can be straightforwardly integrated as a microparticle or cell injection component in integrated microfluidic systems.

  17. Synthesis and morphology of triangular pyramid-shaped puerarin microparticle with nanostructure


    A type of triangular pyramid-shaped microparticles of puerarin was synthesized by using oil-in-oil microemulsion approach which is simple and economical under the action of copper substrate.The pyramid-shaped microparticles would be made up of deposit of nanospheres or nanorods and have two significant characters.One is its complex surface morphology like coral reef.The other is a lot of nanopores in existence in the microparticle body.Two possible formation routes were speculated.

  18. Classification of follicular cell-derived thyroid cancer by global RNA profiling

    Rossing, Maria


    The incidence of thyroid cancer is increasing worldwide and thyroid nodules are a frequent clinical finding. Diagnosing follicular cell-derived cancers is, however, challenging both histopathologically and especially cytopathologically. The advent of high-throughput molecular technologies has...... profiling of follicular cell-derived thyroid cancers....... prompted many researchers to explore the transcriptome and, in recent years, also the miRNome in order to generate new molecular classifiers capable of classifying thyroid tumours more accurately than by conventional cytopathological and histopathological methods. This has led to a number of molecular...

  19. Microparticles from kidney-derived mesenchymal stem cells act as carriers of proangiogenic signals and contribute to recovery from acute kidney injury.

    Hoon Young Choi

    Full Text Available We recently demonstrated the use of in vitro expanded kidney-derived mesenchymal stem cells (KMSC protected peritubular capillary endothelial cells in acute renal ischemia-reperfusion injury. Herein, we isolated and characterized microparticles (MPs from KMSC. We investigated their in vitro biologic effects on human endothelial cells and in vivo renoprotective effects in acute ischemia-reperfusion renal injury. MPs were isolated from the supernatants of KMSC cultured in anoxic conditions in serum-deprived media for 24 hours. KMSC-derived MPs demonstrated the presence of several adhesion molecules normally expressed on KMSC membranes, such as CD29, CD44, CD73, α4, 5, and 6 integrins. Quantitative real time PCR confirmed the presence of 3 splicing variants of VEGF-A (120, 164, 188, bFGF and IGF-1 in isolated MPs. MPs labeled with PKH26 red fluorescence dye were incorporated by cultured human umbilical vein endothelial cells (HUVEC via surface molecules such as CD44, CD29, and α4, 5, and 6 integrins. MP dose dependently improved in vitro HUVEC proliferation and promoted endothelial tube formation on growth factor reduced Matrigel. Moreover, apoptosis of human microvascular endothelial cell was inhibited by MPs. Administration of KMSC-derived MPs into mice with acute renal ischemia was followed by selective engraftment in ischemic kidneys and significant improvement in renal function. This was achieved by improving proliferation, of peritubular capillary endothelial cell and amelioration of peritubular microvascular rarefaction. Our results support the hypothesis that KMSC-derived MPs may act as a source of proangiogenic signals and confer renoprotective effects in ischemic kidneys.

  20. Fabrication of pseudo-ceramide-based lipid microparticles for recovery of skin barrier function.

    Kim, Do-Hoon; Park, Woo Ram; Kim, Jeong Hwan; Cho, Eun Chul; An, Eun Jung; Kim, Jin-Woong; Oh, Seong-Geun


    The recovery of skin barrier functions was investigated with pseudo-ceramide-based lipid microparticles. The microparticles were prepared by using a fluid bed technique where lipid components (a pseudo-ceramide, cholesterol and a fatty acid) were coated on a sugar seed, and a polymer was subsequently coated on the lipid microparticles. The microparticles contained large amount of pseudo-ceramide, and the pseudo-ceramide was in the form of lamellar structures mixed with other lipid components. In addition, the microparticles were stably dispersed in aqueous media or emulsion systems without any disruption of the microparticles' structures, thereby supplying sufficient amount of the pseudo-ceramide to skins for improving skin barrier functions such as preventing water loss. Such a role of the microparticles was proven by evaluating in vivo the efficacy of the lipid microparticles in reducing a trans-epidermal water loss (TEWL) of impaired murine skins. As a result, the novel pseudo-ceramide-based lipid microparticles for barrier recovery may potentially be applied in the field of dermatology, cosmetics and pharmaceuticals. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Encapsulation of antigen-loaded silica nanoparticles into microparticles for intradermal powder injection.

    Deng, Yibin; Mathaes, Roman; Winter, Gerhard; Engert, Julia


    Epidermal powder immunisation (EPI) is being investigated as a promising needle-free delivery methods for vaccination. The objective of this work was to prepare a nanoparticles-in-microparticles (nano-in-micro) system, integrating the advantages of nanoparticles and microparticles into one vaccine delivery system for epidermal powder immunisation. Cationic mesoporous silica nanoparticles (MSNP-NH2) were prepared and loaded with ovalbumin as a model antigen. Loading was driven by electrostatic interactions. Ovalbumin-loaded silica nanoparticles were subsequently formulated into sugar-based microparticles by spray-freeze-drying. The obtained microparticles meet the size requirement for EPI. Confocal microscopy was used to demonstrate that the nanoparticles are homogeneously distributed in the microparticles. Furthermore, the silica nanoparticles in the dry microparticles can be re-dispersed in aqueous solution showing no aggregation. The recovered ovalbumin shows integrity compared to native ovalbumin. The present nano-in-micro system allows (1) nanoparticles to be immobilized and finely distributed in microparticles, (2) microparticle formation and (3) re-dispersion of nanoparticles without subsequent aggregation. The nanoparticles inside microparticles can (1) adsorb proteins to cationic shell/surface voids in spray-dried products without detriment to ovalbumin stability, (2) deliver antigens in nano-sized modes to allow recognition by the immune system.

  2. On the origin of microparticles: From "platelet dust" to mediators of intercellular communication.

    Hargett, Leslie A; Bauer, Natalie N


    Microparticles are submicron vesicles shed from a variety of cells. Peter Wolf first identified microparticles in the midst of ongoing blood coagulation research in 1967 as a product of platelets. He termed them platelet dust. Although initially thought to be useless cellular trash, decades of research focused on the tiny vesicles have defined their roles as participators in coagulation, cellular signaling, vascular injury, and homeostasis. The purpose of this review is to highlight the science leading up to the discovery of microparticles, feature discoveries made by key contributors to the field of microparticle research, and discuss their positive and negative impact on the pulmonary circulation.

  3. Spray-dried chitosan/acid/NaCl microparticles enhance saltiness perception.

    Yi, Cheng; Tsai, Min-Lang; Liu, Tristan


    The composition, physicochemical properties and salinity of spray-dried chitosan/acid/NaCl microparticles were tested to ensure a low-sodium and high-salinity salty agent. The spray-dried chitosan/acid/NaCl microparticles were hollow and had a favourable hygroscopicity, and increased NaCl content and decreased organic acid content. Their size of the microparticles was 15.4-32.0μm and increased with NaCl concentration. The microparticles of acetic and lactic acid groups had a NaCl crystal size of 1-2 and 1-4μm, respectively. The NaCl crystals of acetic, lactic and citric acid group microparticles were distributed on the microparticle matrices, mostly on the microparticle surface and mainly on the inner walls of the microparticles walls, respectively. The acetic and lactic acid group microparticles were relatively smaller than general salt, with NaCl crystals distributed on the particle surfaces. Consequently, they were perceived as saltier than general salt and could potentially be regarded as a low-sodium salt for surface-salted foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. pH-Sensitive Microparticles with Matrix-Dispersed Active Agent

    Li, Wenyan (Inventor); Buhrow, Jerry W. (Inventor); Jolley, Scott T. (Inventor); Calle, Luz M. (Inventor)


    Methods to produce pH-sensitive microparticles that have an active agent dispersed in a polymer matrix have certain advantages over microcapsules with an active agent encapsulated in an interior compartment/core inside of a polymer wall. The current invention relates to pH-sensitive microparticles that have a corrosion-detecting or corrosion-inhibiting active agent or active agents dispersed within a polymer matrix of the microparticles. The pH-sensitive microparticles can be used in various coating compositions on metal objects for corrosion detecting and/or inhibiting.

  5. Refractory absorber/emitter using monolayer of ceramic microparticles

    Dyachenko, P. N.; do Rosário, J. J.; Leib, E. W.; Petrov, A. Y.; Störmer, M.; Weller, H.; Vossmeyer, T.; Schneider, G. A.; Eich, M.


    We present a self-assembled refractory absorber/emitter without the necessity to structure the metallic surface itself, still retaining the feature of tailored optical properties for visible light emission and thermophotovoltaic (TPV) applications. We have demonstrated theoretically and experimentally that monolayers of zirconium dioxide (ZrO2) microparticles on a tungsten layer can be used as large area, efficient and thermally stable selective absorbers/emitters. The band edge of the absorption is based on critically coupled microsphere resonances. It can be tuned from visible to near-infrared range by varying the diameter of the microparticles. We demonstrated the optical functionality of the structure after annealing up to temperatures of 1000°C under vacuum conditions. In particular it opens up the route towards high efficiency TPV systems with emission matched to the photovoltaic cell.

  6. Microparticles based on natural and synthetic polymers for ophthalmic applications.

    Tataru, G; Popa, M; Costin, D; Desbrieres, J


    Sodium salt of carboxymethylcellulose/poly(vinyl alcohol) particles suitable for application in ocular drug administration were prepared by crosslinking with epichlorohydrin in an alkaline medium, in reverse emulsion. The influence of parameters related with the particles elaboration process (ratio between polymer mixture and crosslinking agent, concentration of polymer solution, duration of crosslinking reaction, stirring intensity, etc.) based on their composition, size, and swelling ability was studied. Obtained microparticles fulfill the requirements for biomaterials-they are formed from biocompatible polymers; the acute toxicity value (LD(50)) is high enough to consider these materials as weakly toxic (hence able to introduce within the organism); they are able to include and release drugs in a controlled way. The in vivo adrenalin ocular delivery from the microparticles was tested on voluntary human patient. The particles showed good adhesion properties without irritation to the patient and proved the capability to treat the ocular congestion. Copyright © 2012 Wiley Periodicals, Inc.

  7. Self-organized internal architectures of chiral micro-particles


    The internal architecture of polymeric self-assembled chiral micro-particles is studied by exploring the effect of the chirality, of the particle sizes, and of the interface/surface properties in the ordering of the helicoidal planes. The experimental investigations, performed by means of different microscopy techniques, show that the polymeric beads, resulting from light induced polymerization of cholesteric liquid crystal droplets, preserve both the spherical shape and the internal self-org...

  8. Possible roles of platelet-derived microparticles in atherosclerosis.

    Wang, Zhi-Ting; Wang, Zi; Hu, Yan-Wei


    Platelets and platelet-derived microparticles (PMPs) play important roles in cardiovascular diseases, especially atherosclerosis. Continued research has revealed that PMPs have numerous functions in atherosclerosis, not only in thrombosis formation, but also by induction of inflammation. PMPs also induce formation of foam cells. Recent evidence strongly indicates a significant role of PMPs in atherosclerosis. Here, current research on the function of PMPs in atherosclerosis is reviewed.

  9. Optical coherence tomography-based micro-particle image velocimetry.

    Mujat, Mircea; Ferguson, R Daniel; Iftimia, Nicusor; Hammer, Daniel X; Nedyalkov, Ivaylo; Wosnik, Martin; Legner, Hartmut


    We present a new application of optical coherence tomography (OCT), widely used in biomedical imaging, to flow analysis in near-wall hydrodynamics for marine research. This unique capability, called OCT micro-particle image velocimetry, provides a high-resolution view of microscopic flow phenomena and measurement of flow statistics within the first millimeter of a boundary layer. The technique is demonstrated in a small flow cuvette and in a water tunnel.

  10. Incorporation of iodine in polymeric microparticles and emulsions

    Kolontaeva, Olga A.; Khokhlova, Anastasia R.; Markina, Natalia E.; Markin, Alexey V.; Burmistrova, Natalia A.


    Application of different methods for formation of microcontainers containing iodine is proposed in this paper. Two types of microcontainers: microemulsions and microparticles have been investigated, conditions and methods for obtaining microcontainers were optimized. Microparticles were formed by layer-by-layer method with cores of calcium carbonate (CaCO3) as templates. Incorporation of complexes of iodine with polymers (chitosan, starch, polyvinyl alcohol) into core, shell and hollow capsules was investigated and loadings of microparticles with iodine were estimated. It was found that the complex of iodine with chitosan adsorbed at CaCO3 core is the most stable under physiological conditions and its value of loading can be 450 μg of I2 per 1 g of CaCO3. Moreover, chitosan was chosen as a ligand because of its biocompatibility and biodegradability as well as very low toxicity while its complex with iodine is very stable. A small amount of microparticles containing a iodine-chitosan complex can be used for prolonged release of iodine in the human body since iodine daily intake for adults is around 100 μg. "Oil-in-water" emulsions were prepared by ultrasonication of iodinated oils (sunflower and linseed) with sodium laurilsulfate (SLS) as surfactant solution. At optimal conditions, the homogenous emulsions remained stable for weeks, with total content of iodine in such emulsion being up to 1% (w/w). The oil:SLS ratio was equal to 1:10 (w/w), optimal duration and power of ultrasound exposure were 1.5 min and 7 W, correspondingly. Favorable application of iodized linseed oil for emulsion preparation with suitable oil microdroplets size was proved.

  11. Pneumatic capillary gun for ballistic delivery of microparticles

    Rinberg, D; Groisman, A; Rinberg, Dmitry; Simonnet, Claire; Groisman, Alex


    A pneumatic gun for ballistic delivery of microparticles to soft targets is proposed and demonstrated. The particles are accelerated by a high speed flow of Helium in a capillary tube. Vacuum suction applied to a concentric, larger diameter tube is used to completely divert the flow of Helium from the gun nozzle and prevent it from hitting the target. Depths of penetration of micron-sized gold particles into agarose gels and their speeds of ejection from the gun nozzle are measured.

  12. Characterization of immortalized human umbilical and iliac vein endothelial cell lines after transfection with SV40 large T-antigen.

    van Leeuwen, E B; Veenstra, R; van Wijk, R; Molema, G; Hoekstra, A; Ruiters, M H; van der Meer, J


    Most in vitro studies of human endothelial cells have relied on cells derived from human umbilical veins (HUVEC); however, heterogeneity of primary cultured endothelial cells can make critical interpretation of results difficult. Several endothelial cell lines have been produced to serve as a more constant source of endothelial cells. In this study, we characterized the endothelial cell lines EVLB3 and EVLC2 derived from HUVEC, and EVLK1 and EVLK2 derived from human iliac vein endothelial cells (HIVEC). These cell lines maintained the typical endothelial cell cobblestone morphology and appeared to be growth factor independent. They lost PECAM-1 and von Willebrand factor, GP96 was reduced to the level of vascular smooth muscle cells (SMC), but aSMC-actin was far less than in vascular SMC. Antigen levels of tissue-type plasminogen activator (tPA) and plasminogen activator inhibitor (PAI-1) were comparable with young endothelial cells, and mRNA was present for tPA, PAI-1, tissue factor (TF), tissue factor pathway inhibitor and thrombomodulin. This study revealed that mRNA and protein expression of coagulation and fibrinolytic factors was influenced by the stage of cell confluence. No differences could be detected between the endothelial cell lines derived from HUVEC and HIVEC. These cell lines may be a useful tool for studies on cellular interactions of fibrinolytic components or exploring the regulation of TF expression.

  13. Glucose and angiotensin II-derived endothelial extracellular vesicles regulate endothelial dysfunction via ERK1/2 activation.

    Taguchi, Kumiko; Hida, Mari; Narimatsu, Haruka; Matsumoto, Takayuki; Kobayashi, Tsuneo


    In various diseases, including diabetes, extracellular vesicles (EVs) have been detected in circulation and tissues. EVs are small membrane vesicles released from various cell types under varying conditions. Recently, endothelial cell-derived EVs (EEVs) were identified as a marker of endothelial dysfunction in diabetes, but the ensuing mechanisms remain poorly understood. In this study, we dissected the ensuing pathways with respect to nitric oxide (NO) production under the condition of type 2 diabetes. Human umbilical vein endothelial cells (HUVECs) were stimulated with glucose alone and with glucose in combination with angiotensin II (Ang II) for 48 h. In supernatants from glucose + Ang II-stimulated HUVECs, release of EEVs was assessed using Western blotting with an anti-CD144 antibody. EEV release was significantly increased after stimulation of HUVECs, and high glucose + Ang II-derived EEVs impaired ACh-induced vascular relaxation responses and NO production in mice aortic rings. Furthermore, high glucose + Ang II-derived EEVs induced ERK1/2 signalling and decreased endothelial NO synthase (eNOS) protein expression in mice aortas. Furthermore, in the presence of the MEK/ERK1/2 inhibitor PD98059, high glucose plus Ang II treatment stimulated EEVs in HUVECs and those EEVs prevented the impairments of ACh-induced relaxation and NO production in mice aortas. These data strongly indicate that high glucose and Ang II directly affect endothelial cells and the production of EEVs; the resultant EEVs aggravate endothelial dysfunction by regulating eNOS protein levels and ERK1/2 signalling in mice aortas.

  14. Differences in Cell Activation by Chlamydophila pneumoniae and Chlamydia trachomatis Infection in Human Endothelial Cells

    Krüll, M.; Kramp, J.; Petrov, T.; Klucken, A. C.; Hocke, A. C.; Walter, C.; Schmeck, B.; Seybold, J.; Maass, M.; Ludwig, S.; Kuipers, Jens G.; Suttorp, N.; Hippenstiel, S.


    Seroepidemiological studies and demonstration of viable bacteria in atherosclerotic plaques have linked Chlamydophila pneumoniae infection to the development of chronic vascular lesions and coronary heart disease. In this study, we characterized C. pneumoniae-mediated effects on human endothelial cells and demonstrated enhanced phosphorylation and activation of the endothelial mitogen-activated protein kinase (MAPK) family members extracellular receptor kinase (ERK1/2), p38-MAPK, and c-Jun-NH2 kinase (JNK). Subsequent interleukin-8 (IL-8) expression was dependent on p38-MAPK and ERK1/2 activation as demonstrated by preincubation of endothelial cells with specific inhibitors for the p38-MAPK (SB202190) or ERK (U0126) pathway. Inhibition of either MAPK had almost no effect on intercellular cell adhesion molecule 1 (ICAM-1) expression. While Chlamydia trachomatis was also able to infect endothelial cells, it did not induce the expression of endothelial IL-8 or ICAM-1. These effects were specific for a direct stimulation with viable C. pneumoniae and independent of paracrine release of endothelial cell-derived mediators like platelet-activating factor, NO, prostaglandins, or leukotrienes. Thus, C. pneumoniae triggers an early signal transduction cascade in target cells that could lead to endothelial cell activation, inflammation, and thrombosis, which in turn may result in or promote atherosclerosis. PMID:15501794

  15. Hydroxyapatite microparticles as feedback-active reservoirs of corrosion inhibitors.

    Snihirova, D; Lamaka, S V; Taryba, M; Salak, A N; Kallip, S; Zheludkevich, M L; Ferreira, M G S; Montemor, M F


    This work contributes to the development of new feedback-active anticorrosion systems. Inhibitor-doped hydroxyapatite microparticles (HAP) are used as reservoirs, storing corrosion inhibitor to be released on demand. Release of the entrapped inhibitor is triggered by redox reactions associated with the corrosion process. HAP were used as reservoirs for several inhibiting species: cerium(III), lanthanum(III), salicylaldoxime, and 8-hydroxyquinoline. These species are effective corrosion inhibitors for a 2024 aluminum alloy (AA2024), used here as a model metallic substrate. Dissolution of the microparticles and release of the inhibitor are triggered by local acidification resulting from the anodic half-reaction during corrosion of AA2024. Calculated values and experimentally measured local acidification over the aluminum anode (down to pH = 3.65) are presented. The anticorrosion properties of inhibitor-doped HAP were assessed using electrochemical impedance spectroscopy. The microparticles impregnated with the corrosion inhibitors were introduced into a hybrid silica-zirconia sol-gel film, acting as a thin protective coating for AA2024, an alloy used for aeronautical applications. The protective properties of the sol-gel films were improved by the addition of HAP, proving their applicability as submicrometer-sized reservoirs of corrosion inhibitors for active anticorrosion coatings.

  16. Moldless PEGDA-Based Optoelectrofluidic Platform for Microparticle Selection

    Shih-Mo Yang


    Full Text Available This paper reports on an optoelectrofluidic platform which consists of the organic photoconductive material, titanium oxide phthalocyanine (TiOPc, and the photocrosslinkable polymer, poly (ethylene glycol diacrylate (PEGDA. TiOPc simplifies the fabrication process of the optoelectronic chip due to requiring only a single spin-coating step. PEGDA is applied to embed the moldless PEGDA-based microchannel between the top ITO glass and the bottom TiOPc substrate. A real-time control interface via a touch panel screen is utilized to select the target 15 μm polystyrene particles. When the microparticles flow to an illuminating light bar, which is oblique to the microfluidic flow path, the lateral driving force diverts the microparticles. Two light patterns, the switching oblique light bar and the optoelectronic ladder phenomenon, are designed to demonstrate the features. This work integrating the new material design, TiOPc and PEGDA, and the ability of mobile microparticle manipulation demonstrates the potential of optoelectronic approach.

  17. Functionalized diatom silica microparticles for removal of mercury ions

    Yang Yu, Jonas Addai-Mensah and Dusan Losic


    Full Text Available Diatom silica microparticles were chemically modified with self-assembled monolayers of 3-mercaptopropyl-trimethoxysilane (MPTMS, 3-aminopropyl-trimethoxysilane (APTES and n-(2-aminoethyl-3-aminopropyl-trimethoxysilane (AEAPTMS, and their application for the adsorption of mercury ions (Hg(II is demonstrated. Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy analyses revealed that the functional groups (–SH or –NH2 were successfully grafted onto the diatom silica surface. The kinetics and efficiency of Hg(II adsorption were markedly improved by the chemical functionalization of diatom microparticles. The relationship among the type of functional groups, pH and adsorption efficiency of mercury ions was established. The Hg(II adsorption reached equilibrium within 60 min with maximum adsorption capacities of 185.2, 131.7 and 169.5 mg g-1 for particles functionalized with MPTMS, APTES and AEAPTMS, respectively. The adsorption behavior followed a pseudo-second-order reaction model and Langmuirian isotherm. These results show that mercapto- or amino-functionalized diatom microparticles are promising natural, cost-effective and environmentally benign adsorbents suitable for the removal of mercury ions from aqueous solutions.

  18. Thulium-170-labeled microparticles for local radiotherapy: preliminary studies.

    Polyak, Andras; Das, Tapas; Chakraborty, Sudipta; Kiraly, Reka; Dabasi, Gabriella; Joba, Robert Peter; Jakab, Csaba; Thuroczy, Julianna; Postenyi, Zita; Haasz, Veronika; Janoki, Gergely; Janoki, Gyozo A; Pillai, Maroor R A; Balogh, Lajos


    The present article describes the preparation, characterization, and biological evaluation of Thulium-170 ((170)Tm) [T1/2 = 128.4 days; Eβmax = 968 keV; Eγ = 84 keV (3.26%)] labeled tin oxide microparticles for its possible use in radiation synovectomy (RSV) of medium-sized joints. (170)Tm was produced by irradiation of natural thulium oxide target. 170Tm-labeled microparticles were synthesized with high yield and radionuclidic purity (> 99%) along with excellent in vitro stability by following a simple process. Particle sizes and morphology of the radiolabeled particles were examined by light microscope, dynamic light scattering, and transmission electron microscope and found to be of stable spherical morphology within the range of 1.4-3.2 μm. The preparation was injected into the knee joints of healthy Beagle dogs intraarticularly for biological studies. Serial whole-body and regional images were taken by single-photon-emission computed tomography (SPECT) and SPECT-CT cameras up to 9 months postadministration, which showed very low leakage (< 8% of I.D.) of the instilled particles. The majority of leaked radiocolloid particles were found in inguinal lymph nodes during the 9 months of follow-up. All the animals tolerated the treatment well; the compound did not show any possible radiotoxicological effect. These preliminary studies showed that 170Tm-labeled microparticles could be a promising nontoxic and effective radiopharmaceutical for RSV applications or later local antitumor therapy.

  19. Promoting optofluidic actuation of microparticles with plasmonic nanoparticles

    Burgin, Julien; Si, Satyabrata; Delville, Marie-Hélène; Delville, Jean-Pierre


    The amplitude of optical forces on flowing dielectric microparticles can be actuated by coating them partially with metallic nanospheres and exposing them to laser light within the surface plasmon resonance. Here, optical forces on both pure silica particles and silica-gold raspberries are characterized within an optical chromatography setup by measuring the Stokes drag versus laser beam power. Results are compared to Mie theory predictions for both core dielectric particles and core-shell ones where the shell is described by a continuous dielectricmetal composite of dielectric constant determined from the Maxwell Garnett approach. The nice observed quantitative agreement demonstrates that radiation pressure forces are directly related to the metal concentration present at the microparticle surface and that nano-metallic objects increase the magnitude of optical forces compared to pure dielectric particles of the same overall size, even at very low metal concentration. Behaving as "micro-sized nanoparticles", the benefit of microparticles coated with metallic nanospheres is thus twofold: (i) to enhance optofluidic manipulation and transport at the microscale and (ii) to increase sensing capabilities at the nanoscale, compared to separated pure dielectric particles and single metallic nanosystems.

  20. Floating microparticles based on low density foam powder.

    Streubel, A; Siepmann, J; Bodmeier, R


    The aim of this study was to develop a novel multiparticulate gastroretentive drug delivery system and to demonstrate its performance in vitro. Floating microparticles consisting of (i) polypropylene foam powder; (ii) verapamil HCl as model drug; and (iii) Eudragit RS, ethylcellulose (EC) or polymethyl methacrylate (PMMA) as polymers were prepared with an O/W solvent evaporation method. The effect of various formulation and processing parameters on the internal and external particle morphology, drug loading, in vitro floating behavior, in vitro drug release kinetics, particle size distribution and physical state of the incorporated drug was studied. The microparticles were irregular in shape and highly porous. The drug encapsulation efficiency was high and almost independent of the theoretical loading. Encapsulation efficiencies close to 100% could be achieved by varying either the ratio 'amount of ingredients: volume of the organic phase' or the relative amount of polymer. In all cases, good in vitro floating behavior was observed. The release rate increased with increasing drug loading and with decreasing polymer amounts. The type of polymer significantly affected the drug release rate, which increased in the following rank order: PMMAmicroparticles was almost independent of the drug loading, but strongly depended on the amount of polymer. The drug was partly dissolved and partly in the amorphous form distributed throughout the system.

  1. Concave Pit-Containing Scaffold Surfaces Improve Stem Cell-Derived Osteoblast Performance and Lead to Significant Bone Tissue Formation

    Cusella-De Angelis, Maria Gabriella; Laino, Gregorio; Piattelli, Adriano; Pacifici, Maurizio; De Rosa, Alfredo; Papaccio, Gianpaolo


    Background Scaffold surface features are thought to be important regulators of stem cell performance and endurance in tissue engineering applications, but details about these fundamental aspects of stem cell biology remain largely unclear. Methodology and Findings In the present study, smooth clinical-grade lactide-coglyolic acid 85:15 (PLGA) scaffolds were carved as membranes and treated with NMP (N-metil-pyrrolidone) to create controlled subtractive pits or microcavities. Scanning electron and confocal microscopy revealed that the NMP-treated membranes contained: (i) large microcavities of 80–120 µm in diameter and 40–100 µm in depth, which we termed primary; and (ii) smaller microcavities of 10–20 µm in diameter and 3–10 µm in depth located within the primary cavities, which we termed secondary. We asked whether a microcavity-rich scaffold had distinct bone-forming capabilities compared to a smooth one. To do so, mesenchymal stem cells derived from human dental pulp were seeded onto the two types of scaffold and monitored over time for cytoarchitectural characteristics, differentiation status and production of important factors, including bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF). We found that the microcavity-rich scaffold enhanced cell adhesion: the cells created intimate contact with secondary microcavities and were polarized. These cytological responses were not seen with the smooth-surface scaffold. Moreover, cells on the microcavity-rich scaffold released larger amounts of BMP-2 and VEGF into the culture medium and expressed higher alkaline phosphatase activity. When this type of scaffold was transplanted into rats, superior bone formation was elicited compared to cells seeded on the smooth scaffold. Conclusion In conclusion, surface microcavities appear to support a more vigorous osteogenic response of stem cells and should be used in the design of therapeutic substrates to improve bone repair and

  2. Computational protein design to reengineer stromal cell-derived factor-1α generates an effective and translatable angiogenic polypeptide analog.

    Hiesinger, William; Perez-Aguilar, Jose Manuel; Atluri, Pavan; Marotta, Nicole A; Frederick, John R; Fitzpatrick, J Raymond; McCormick, Ryan C; Muenzer, Jeffrey R; Yang, Elaine C; Levit, Rebecca D; Yuan, Li-Jun; Macarthur, John W; Saven, Jeffery G; Woo, Y Joseph


    Experimentally, exogenous administration of recombinant stromal cell-derived factor-1α (SDF) enhances neovasculogenesis and cardiac function after myocardial infarction. Smaller analogs of SDF may provide translational advantages including enhanced stability and function, ease of synthesis, lower cost, and potential modulated delivery via engineered biomaterials. In this study, computational protein design was used to create a more efficient evolution of the native SDF protein. Protein structure modeling was used to engineer an SDF polypeptide analog (engineered SDF analog [ESA]) that splices the N-terminus (activation and binding) and C-terminus (extracellular stabilization) with a diproline segment designed to limit the conformational flexibility of the peptide backbone and retain the relative orientation of these segments observed in the native structure of SDF. Endothelial progenitor cells (EPCs) in ESA gradient, assayed by Boyden chamber, showed significantly increased migration compared with both SDF and control gradients. EPC receptor activation was evaluated by quantification of phosphorylated AKT, and cells treated with ESA yielded significantly greater phosphorylated AKT levels than SDF and control cells. Angiogenic growth factor assays revealed a distinct increase in angiopoietin-1 expression in the ESA- and SDF-treated hearts. In addition, CD-1 mice (n=30) underwent ligation of the left anterior descending coronary artery and peri-infarct intramyocardial injection of ESA, SDF-1α, or saline. At 2 weeks, echocardiography demonstrated a significant gain in ejection fraction, cardiac output, stroke volume, and fractional area change in mice treated with ESA compared with controls. Compared with native SDF, a novel engineered SDF polypeptide analog (ESA) more efficiently induces EPC migration and improves post-myocardial infarction cardiac function and thus offers a more clinically translatable neovasculogenic therapy.

  3. Derivation and characterization of a pig embryonic stem cell-derived exocrine pancreatic cell line

    The establishment and initial characterization of a pig embryonic stem cell-derived pancreatic cell line, PICM-31, and a colony-cloned derivative cell line, PICM-31A, is described. The cell lines were propagated for several months at split ratios of 1:3 or 1:5 at each passage on STO feeder cells af...

  4. Two Polymorphisms in the Epithelial Cell-Derived Neutrophil-Activating Peptide (ENA-78 Gene

    Mahsa M. Amoli


    Full Text Available Increased expression of epithelial cell-derived neutrophil-activating peptide (ENA-78 has been reported in several immune and inflammatory conditions suggesting its role in inflammatory response. We have identified two single nucleotide polymorphisms in the promoter and exon 2 of the ENA-78 gene by scanning the full length gene using DHPLC DNA fragment analysis and DNA sequencing.

  5. Erythrocyte-derived microparticles supporting activated protein C-mediated regulation of blood coagulation.

    Koshiar, Ruzica Livaja; Somajo, Sofia; Norström, Eva; Dahlbäck, Björn


    Elevated levels of erythrocyte-derived microparticles are present in the circulation in medical conditions affecting the red blood cells. Erythrocyte-derived microparticles expose phosphatidylserine thus providing a suitable surface for procoagulant reactions leading to thrombin formation via the tenase and prothrombinase complexes. Patients with elevated levels of circulating erythrocyte-derived microparticles have increased thrombin generation in vivo. The aim of the present study was to investigate whether erythrocyte-derived microparticles are able to support the anticoagulant reactions of the protein C system. Erythrocyte-derived microparticles were isolated using ultracentrifugation after incubation of freshly prepared erythrocytes with the ionophore A23187 or from outdated erythrocyte concentrates, the different microparticles preparations yielding similar results. According to flow cytometry analysis, the microparticles exposed phoshatidylserine and bound lactadherin, annexin V, and protein S, which is a cofactor to activated protein C. The microparticles were able to assemble the tenase and prothrombinase complexes and to stimulate the formation of thrombin in plasma-based thrombin generation assay both in presence and absence of added tissue factor. The addition of activated protein C in the thrombin generation assay inhibited thrombin generation in a dose-dependent fashion. The anticoagulant effect of activated protein C in the thrombin generation assay was inhibited by a monoclonal antibody that prevents binding of protein S to microparticles and also attenuated by anti-TFPI antibodies. In the presence of erythrocyte-derived microparticles, activated protein C inhibited tenase and prothrombinase by degrading the cofactors FVIIIa and FVa, respectively. Protein S stimulated the Arg306-cleavage in FVa, whereas efficient inhibition of FVIIIa depended on the synergistic cofactor activity of protein S and FV. In summary, the erythrocyte-derived microparticle

  6. The Novel Methods for Analysis of Exosomes Released from Endothelial Cells and Endothelial Progenitor Cells

    Jinju Wang


    Full Text Available Exosomes (EXs are cell-derived vesicles that mediate cell-cell communication and could serve as biomarkers. Here we described novel methods for purification and phenotyping of EXs released from endothelial cells (ECs and endothelial progenitor cells (EPCs by combining microbeads and fluorescence quantum dots (Q-dots® techniques. EXs from the culture medium of ECs and EPCs were isolated and detected with cell-specific antibody conjugated microbeads and second antibody conjugated Q-dots by using nanoparticle tracking analysis (NTA system. The sensitivities of the cell origin markers for ECs (CD105, CD144 and EPCs (CD34, KDR were evaluated. The sensitivity and specificity were determined by using positive and negative markers for EXs (CD63, platelets (CD41, erythrocytes (CD235a, and microvesicles (Annexin V. Moreover, the methods were further validated in particle-free plasma and patient samples. Results showed that anti-CD105/anti-CD144 and anti-CD34/anti-KDR had the highest sensitivity and specificity for isolating and detecting EC-EXs and EPC-EXs, respectively. The methods had the overall recovery rate of over 70% and were able to detect the dynamical changes of circulating EC-EXs and EPC-EXs in acute ischemic stroke. In conclusion, we have developed sensitive and specific microbeads/Q-dots fluorescence NTA methods for EC-EX and EPC-EX isolation and detection, which will facilitate the functional study and biomarker discovery.

  7. Principle and Method of Preparation of Explosive Micro-particles Through the Supercritical Anti-solvent Process

    JIN Liang-an; LIU Xue-wu; LI Zhi-yi; WANG Xiao-tong; YIN Xing-bo


    In explosive research area, one of important trends is to study on the preparation technology of explosive microparticles. A new principle and method based on supercritical anti-solvent (SAS) process is put forward and discussed for the preparation of explosive micro-particles. The satisfactory micro-particles of explosives can be obtained easily by its particular mechanism of creating micro-particles, and operating conditions at normal temperature. This method is good for further study and development.

  8. Activation of the Inflammasome and Enhanced Migration of Microparticle-Stimulated Dendritic Cells to the Draining Lymph Node

    Meraz, Ismail M.; Melendez, Brenda; Gu, Jianhua; Wong, Stephen T. C.; Liu, Xuewu; Andersson, Helen A.; Serda, Rita E.


    Porous silicon microparticles presenting pathogen-associated molecular patterns mimic pathogens, enhancing internalization of the microparticles and activation of antigen presenting dendritic cells. We demonstrate abundant uptake of microparticles bound by the TLR-4 ligands LPS and MPL by murine bone marrow-derived dendritic cells (BMDC). Labeled microparticles induce concentration-dependent production of IL-1β, with inhibition by the caspase inhibitor Z-VAD-FMK supporting activation of the N...

  9. Formulation of porous poly(lactic-co-glycolic acid) microparticles by electrospray deposition method for controlled drug release

    Hao, Shilei; Wang, Yazhou; Wang, Bochu, E-mail:; Deng, Jia; Zhu, Liancai; Cao, Yang


    In the present study, the electrospray deposition was successfully applied to prepare the porous poly(lactic-co-glycolic acid) (PLGA) microparticles by one-step processing. Metronidazole was selected as the model drug. The porous PLGA microparticles had high drug loading and low density, and the porous structure can be observed by scanning electron microscope (SEM) and transmission electron microscopy (TEM). The production time has been shortened considerably compared with that of the traditional multi-emulsion method. In addition, no chemical reaction occurred between the drug and polymer in the preparation of porous microparticles, and the crystal structure of drug did not change after entrapment into the porous microparticles. The porous microparticles showed a sustained release in the simulated gastric fluid, and the release followed non-Fickian or case II transport. Furthermore, porous microparticles showed a slight cytotoxicity in vitro. The results indicated that electrospray deposition is a good technique for preparation of porous microparticles, and the low-density porous PLGA microparticles has a potential for the development of gastroretentive systems or for pulmonary drug delivery. - Highlights: • The porous PLGA microparticles were successfully prepared by the electrospray deposition method at one step. • The porous microparticles had high loading capacity and low density. • The microparticle showed a sustained release in the simulated gastric liquid. • The microparticles showed a slight cytotoxicity in vitro.

  10. Distinct features of circulating microparticles and their relationship to clinical manifestations in systemic lupus erythematosus

    Nielsen, Christoffer T; Østergaard, Ole; Johnsen, Christina;


    Characterization of the abundance, origin, and annexin V (AnxV)-binding capabilities of circulating microparticles (MPs) in SLE patients and healthy controls and to determine any associations with clinical parameters.......Characterization of the abundance, origin, and annexin V (AnxV)-binding capabilities of circulating microparticles (MPs) in SLE patients and healthy controls and to determine any associations with clinical parameters....

  11. Development and characterization of gelatin and ethylcellulose microparticles designed as platforms to delivery fluoride.

    de Francisco, Lizziane M B; Cerquetani, Juliana A; Bruschi, Marcos L


    To develop and characterize microparticles containing fluoride sources (FS) from sodium fluoride, sodium monofluorophosphate (MFP) or aminofluoride and evaluate their characteristics as fluoride delivery systems. Ethylcellulose microparticles containing fluoride (EM) were prepared by emulsification of ethyl acetate dispersion containing polymer and FS (ethylcellulose:FS ratio of 1:0.25 wt/wt) with aqueous external phase containing polysorbate 80 (0.8% vol/vol) using the volume ratio (organic:aqueous) of 1:5. The organic solvent was evaporated; microparticles were collected by centrifuging, washed with deionized water and freeze-dried. Gelatin microparticles containing FS (GM) was obtained by dispersion of the natural polymer in water, adding FS (6:1 wt/wt) and 20% (wt/wt) of mannitol. The final dispersions were spray-dried. Particle morphology and size were investigated using optical microscopy. The content of fluoride ions in the microparticles was quantified using a potentiometric method. The encapsulation efficiency and in vitro release profile of fluoride was also determined. Microparticles exhibited polydispersity and mean diameters fluoride ions from microparticles was shown to be modified, fitted first order and guided by Fickian diffusion. Microparticles prepared with ethylcellulose or gelatin can be used as platform for oral delivery of fluoride, providing a means to increase the local supply of this ion in a controlled manner, providing an increased protection against caries. Moreover, further investigations are needed to demonstrate this property in vivo.

  12. Nicotine-magnesium aluminum silicate microparticle surface modified with chitosan for mucosal delivery

    Kanjanakawinkul, Watchara; Rades, Thomas; Puttipipatkhachorn, Satit


    Magnesium aluminum silicate (MAS), a negatively charged clay, and nicotine (NCT), a basic drug, can interact electrostatically to form microparticles. Chitosan (CS) was used for the surface modification of the microparticles, and a lyophilization method was used to preserve the original particle...

  13. Microparticles prepared from biodegradable polyhydroxyalkanoates as matrix for encapsulation of cytostatic drug.

    Murueva, A V; Shishatskaya, E I; Kuzmina, A M; Volova, T G; Sinskey, A J


    Microparticles made from degradable polyhydroxyalkanoates of different chemical compositions a homopolymer of 3-hydroxybutyric acid, copolymers of 3-hydroxybutyric and 4-hydroxybutyric acids (P3HB/4HB), 3-hydroxybutyric and 3-hydroxyvaleric acids (P3HB/3HV), 3-hydroxybutyric and 3-hydroxyhexanoic acids (P3HB/3HHx) were prepared using the solvent evaporation technique, from double emulsions. The study addresses the influence of the chemical compositions on the size and ξ-potential of microparticles. P3HB microparticles loaded with doxorubicin have been prepared and investigated. Their average diameter and ξ-potential have been found to be dependent upon the level of loading (1, 5, and 10 % of the polymer mass). Investigation of the in vitro drug release behavior showed that the total drug released from the microparticle into the medium increased with mass concentration of the drug. In this study mouse fibroblast NIH 3T3 cells were cultivated on PHA microparticles, and results of using fluorescent DAPI DNA stain, and MTT assay showed that microparticles prepared from PHAs of different chemical compositions did not exhibit cytotoxicity to cells cultured on them and proved to be highly biocompatible. Cell attachment and proliferation on PHA microparticles were similar to those on polystyrene. The cytostatic drug encapsulated in P3HB/3HV microparticles has been proven to be effective against HeLa tumor cells.

  14. Facile and High-Throughput Synthesis of Functional Microparticles with Quick Response Codes.

    Ramirez, Lisa Marie S; He, Muhan; Mailloux, Shay; George, Justin; Wang, Jun


    Encoded microparticles are high demand in multiplexed assays and labeling. However, the current methods for the synthesis and coding of microparticles either lack robustness and reliability, or possess limited coding capacity. Here, a massive coding of dissociated elements (MiCODE) technology based on innovation of a chemically reactive off-stoichimetry thiol-allyl photocurable polymer and standard lithography to produce a large number of quick response (QR) code microparticles is introduced. The coding process is performed by photobleaching the QR code patterns on microparticles when fluorophores are incorporated into the prepolymer formulation. The fabricated encoded microparticles can be released from a substrate without changing their features. Excess thiol functionality on the microparticle surface allows for grafting of amine groups and further DNA probes. A multiplexed assay is demonstrated using the DNA-grafted QR code microparticles. The MiCODE technology is further characterized by showing the incorporation of BODIPY-maleimide (BDP-M) and Nile Red fluorophores for coding and the use of microcontact printing for immobilizing DNA probes on microparticle surfaces. This versatile technology leverages mature lithography facilities for fabrication and thus is amenable to scale-up in the future, with potential applications in bioassays and in labeling consumer products.

  15. Bilayer mucoadhesive microparticles for the delivery of metoprolol succinate: Formulation and evaluation.

    Kumar, Krishan; Dhawan, Neha; Sharma, Harshita; Patwal, Pramod S; Vaidya, Shubha; Vaidya, Bhuvaneshwar


    Metoprolol succinate is a very potent drug for the treatment of hypertension but suffers from poor bioavailability due to its erratic absorption in lower GI tract. Therefore, in the present study, it was hypothesized that by formulating mucoadhesive particles, the residence time in the GIT and release of drug may be prolonged that will enhance the bioavailability of metoprolol succinate. Metoprolol succinate loaded chitosan microparticles were prepared by ionic gelation method. The optimized microparticles were coated with sodium alginate to form a layer over chitosan microparticles to increase the mucoadhesive strength and to release the drug in controlled manner. Coated and uncoated microparticles were evaluated for particle size, zeta potential, morphology, entrapment efficiency, drug loading and in vitro drug release. The coated microparticles showed comparatively less drug release in the 0.1 N HCl while sustained release in PBS (pH 6.8) as compared to uncoated microparticles. The in vivo study on albino rats demonstrated an increase in bioavailability of the coated microparticles as compared to marketed formulation. From the study it can be concluded that alginate coated chitosan microparticles could be a useful carrier for the oral delivery of metoprolol succinate.

  16. Eudragit® microparticles for the release of budesonide: A comparative study

    Rita Cortesi


    Full Text Available This study compares the behaviour of budesonide-containing microparticles made of Eudragit® RS or Eudragit® RS/Eudragit® RL 70:30 (w/w prepared either by solvent evaporation or spray-drying technique. The loading efficiency of budesonide within microparticles was about 72% for microparticles prepared by solvent evaporation and around 78% for spray-dried microparticles. Thermal analyses were assessed to collect information about the structural stability of budesonide within the polymeric microspheres. The in vitro release was performed using simulating gastric (fasted state simulated gastric fluid and intestinal (fasted state simulated intestinal fluid fluids as the receiving solutions. After 3 h the drug release from Eudragit® RS/Eudragit® RL microparticles was about 6-fold higher than that obtained in the case of monopolymer microparticles. Using fasted state simulated intestinal fluid the drug was released between 4 and 30% in both types of preparations. Eudragit® RS microparticles showed a better protection of the drug from gastric acidity than those of Eudragit® RS/Eudragit® RL allowing us to propose Eudragit® RS microparticles as a hypothetical system of colon specific controlled delivery.

  17. Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells.

    Lippmann, Ethan S; Azarin, Samira M; Kay, Jennifer E; Nessler, Randy A; Wilson, Hannah K; Al-Ahmad, Abraham; Palecek, Sean P; Shusta, Eric V


    The blood-brain barrier (BBB) is crucial to the health of the brain and is often compromised in neurological disease. Moreover, because of its barrier properties, this endothelial interface restricts uptake of neurotherapeutics. Thus, a renewable source of human BBB endothelium could spur brain research and pharmaceutical development. Here we show that endothelial cells derived from human pluripotent stem cells (hPSCs) acquire BBB properties when co-differentiated with neural cells that provide relevant cues, including those involved in Wnt/β-catenin signaling. The resulting endothelial cells have many BBB attributes, including well-organized tight junctions, appropriate expression of nutrient transporters and polarized efflux transporter activity. Notably, they respond to astrocytes, acquiring substantial barrier properties as measured by transendothelial electrical resistance (1,450 ± 140 Ω cm2), and they possess molecular permeability that correlates well with in vivo rodent blood-brain transfer coefficients.

  18. Cerebral malaria is associated with low levels of circulating endothelial progenitor cells in African children.

    Gyan, Ben; Goka, Bamenla Quarm; Adjei, George O; Tetteh, John K A; Kusi, Kwadwo Asamoah; Aikins, Anastasia; Dodoo, Daniel; Lesser, Martin L; Sison, Cristina P; Das, Sanchita; Howard, Marion E; Milbank, Elizabeth; Fischer, Kimberly; Rafii, Shahin; Jin, David; Golightly, Linnie M


    Damage to the cerebral microvasculature is a feature of cerebral malaria. Circulating endothelial progenitor cells are needed for microvascular repair. Based on this knowledge, we hypothesized that the failure to mobilize sufficient circulating endothelial progenitor cells to the cerebral microvasculature is a pathophysiologic feature of cerebral malaria. To test this hypothesis, we compared peripheral blood levels of CD34 (+)/VEGFR2(+) and CD34 (+)/CD133(+) cells and plasma levels of the chemokine stromal cell-derived growth factor 1 (SDF-1) in 214 children in Accra, Ghana. Children with cerebral malaria had lower levels of CD34 (+)/VEGFR2(+) and CD34 (+)/CD133(+) cells compared with those with uncomplicated malaria, asymptomatic parasitemia, or healthy controls. SDF-1 levels were higher in children with acute malaria compared with healthy controls. Together, these results uncover a potentially novel role for endothelial progenitor cell mobilization in the pathophysiology of cerebral malaria.

  19. Gelatin microparticles containing propolis obtained by spray-drying technique: preparation and characterization.

    Bruschi, M L; Cardoso, M L C; Lucchesi, M B; Gremião, M P D


    Gelatin microparticles containing propolis extractive solution (PES) were prepared by spray-drying technique. The optimization of the spray-drying operating conditions and the proportions of gelatin and mannitol were investigated. Regular particle morphology was obtained when mannitol was used, whereas mannitol absence produced a substantial number of coalesced and agglomerated microparticles. Microparticles had a mean diameter of 2.70 microm without mannitol and 2.50 microm with mannitol. The entrapment efficiency for propolis of the microparticles was upto 41% without mannitol and 39% with mannitol. The microencapsulation by spray-drying technique maintained the activity of propolis against Staphylococcus aureus. These gelatin microparticles containing propolis would be useful for developing intermediary or eventual propolis dosage form without the PES' strong and unpleasant taste, aromatic odour, and presence of ethanol.

  20. Endurance capacity is not correlated with endothelial function in male university students.

    Yan Wang

    Full Text Available BACKGROUND: Endurance capacity, assessed by 1000-meter (1000 m run of male university students, is an indicator of cardiovascular fitness in Chinese students physical fitness surveillance. Although cardiovascular fitness is related to endothelial function closely in patients with cardiovascular diseases, it remains unclear whether endurance capacity correlates with endothelial function, especially with circulating endothelial microparticles (EMPs, a new sensitive marker of endothelial dysfunction in young students. The present study aimed to investigate the relationship between endurance capacity and endothelial function in male university students. METHODS: Forty-seven healthy male university students (mean age, 20.1 ± 0.6 years; mean height, 172.4 ± 6.3 cm; and mean weight, 60.0 ± 8.2 kg were recruited in this study. The measurement procedure of 1000 m run time was followed to Chinese national students Constitutional Health Criterion. Endothelium function was assessed by flow-mediated vasodilation (FMD in the brachial artery measured by ultrasonic imaging, and the level of circulating EMPs was measured by flow cytometry. Cardiovascular fitness indicator--maximal oxygen uptake (VO2max--was also measured on a cycle ergometer using a portable gas analyzer. RESULTS: 1000 m run time was correlated with VO2max (r  =  -0.399, p0.05. CONCLUSION: The correlations between endurance capacity or cardiovascular fitness and endothelial function were not found in healthy Chinese male university students. These results suggest that endurance capacity may not reflect endothelial function in healthy young adults with well preserved FMD and low level of circulating CD31+/CD42-EMPs.

  1. Effects of a nutraceutical combination on lipids, inflammation and endothelial integrity in patients with subclinical inflammation: a randomized clinical trial.

    Pirro, Matteo; Mannarino, Massimo R; Ministrini, Stefano; Fallarino, Francesca; Lupattelli, Graziana; Bianconi, Vanessa; Bagaglia, Francesco; Mannarino, Elmo


    Cholesterol elevations are associated with systemic inflammation and endothelial fragmentation into microparticles. The cholesterol-lowering efficacy of nutraceutical combinations (NC) has not been investigated in patients with low-grade systemic inflammation and normal-borderline cholesterol levels. This is a 3-month prospective randomized open-label interventional study in patients with elevated plasma high sensitivity C-reactive protein (hsCRP) levels (>2 mg/L) and low-density lipoprotein (LDL) cholesterol of 100-160 mg/dL. The effect of either an oral cholesterol-lowering nutraceutical combination (NC) or no active treatment (noNC) was tested on LDL cholesterol, hsCRP and endothelial microparticle (EMPs) levels. Patients taking the NC had a significant reduction of total (-12%) and LDL cholesterol (-23%) compared to those who received noNC (p cholesterol change was positively associated with hsCRP (rho = 0.21, p = 0.04) and EMP changes (rho = 0.56, p cholesterol and hsCRP reduction were those having the greatest EMP decrease. In conclusion, among patients with low-grade systemic inflammation, an oral NC significantly improved cholesterol profile and attenuated the degree of systemic inflammation and endothelial injury.

  2. Assessing consumption of bioactive micro-particles by filter-feeding Asian carp

    Jensen, Nathan R.; Amberg, Jon J.; Luoma, James A.; Walleser, Liza R.; Gaikowski, Mark P.


    Silver carp Hypophthalmichthys molitrix (SVC) and bighead carp H. nobilis (BHC) have impacted waters in the US since their escape. Current chemical controls for aquatic nuisance species are non-selective. Development of a bioactive micro-particle that exploits filter-feeding habits of SVC or BHC could result in a new control tool. It is not fully understood if SVC or BHC will consume bioactive micro-particles. Two discrete trials were performed to: 1) evaluate if SVC and BHC consume the candidate micro-particle formulation; 2) determine what size they consume; 3) establish methods to evaluate consumption of filter-feeders for future experiments. Both SVC and BHC were exposed to small (50-100 μm) and large (150-200 μm) micro-particles in two 24-h trials. Particles in water were counted electronically and manually (microscopy). Particles on gill rakers were counted manually and intestinal tracts inspected for the presence of micro-particles. In Trial 1, both manual and electronic count data confirmed reductions of both size particles; SVC appeared to remove more small particles than large; more BHC consumed particles; SVC had fewer overall particles in their gill rakers than BHC. In Trial 2, electronic counts confirmed reductions of both size particles; both SVC and BHC consumed particles, yet more SVC consumed micro-particles compared to BHC. Of the fish that ate micro-particles, SVC consumed more than BHC. It is recommended to use multiple metrics to assess consumption of candidate micro-particles by filter-feeders when attempting to distinguish differential particle consumption. This study has implications for developing micro-particles for species-specific delivery of bioactive controls to help fisheries, provides some methods for further experiments with bioactive micro-particles, and may also have applications in aquaculture.

  3. Dynamics of rigid microparticles at the interface of co-flowing immiscible liquids in a microchannel.

    Jayaprakash, K S; Banerjee, U; Sen, A K


    We report the dynamical migration behavior of rigid polystyrene microparticles at an interface of co-flowing streams of primary CP1 (aqueous) and secondary CP2 (oils) immiscible phases at low Reynolds numbers (Re) in a microchannel. The microparticles initially suspended in the CP1 either continue to flow in the bulk CP1 or migrate across the interface into CP2, when the stream width of the CP1 approaches the diameter of the microparticles. Experiments were performed with different secondary phases and it is found that the migration criterion depends on the sign of the spreading parameter S and the presence of surfactant at the interface. To substantiate the migration criterion, experiments were also carried out by suspending the microparticles in CP2 (oil phase). Our study reveals that in case of aqueous-silicone oil combination, the microparticles get attached to the interface since S90°. For complete detachment of microparticles from the interface into the secondary phase, additional energy ΔG is needed. We discuss the role of interfacial perturbation, which causes detachment of microparticles from the interface. In case of mineral and olive oils, the surfactants present at the interface prevents attachment of the microparticles to the interface due to the repulsive disjoining pressure. Finally, using a aqueous-silicone oil system, we demonstrate size based sorting of microparticles of size 25μm and 15μm respectively from that of 15μm and 10μm and study the variation of separation efficiency η with the ratio of the width of the aqueous stream to the diameter of the microparticles ρ.

  4. Duality of β-glucan microparticles: antigen carrier and immunostimulants

    Baert K


    Full Text Available Kim Baert,1 Bruno G De Geest,2 Henri De Greve,3,4 Eric Cox,1,* Bert Devriendt1,* 1Department of Virology, Parasitology and Immunology, 2Department of Pharmaceutics, Ghent University, Merelbeke, Ghent, Belgium; 3Structural Biology Research Centre, VIB, Brussels, Belgium; 4Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium *These authors contributed equally to this work Abstract: Designing efficient recombinant mucosal vaccines against enteric diseases is still a major challenge. Mucosal delivery of recombinant vaccines requires encapsulation in potent immunostimulatory particles to induce an efficient immune response. This paper evaluates the capacity of β-glucan microparticles (GPs as antigen vehicles and characterizes their immune-stimulatory effects. The relevant infectious antigen FedF was chosen to be loaded inside the microparticles. The incorporation of FedF inside the particles was highly efficient (roughly 85% and occurred without antigen degradation. In addition, these GPs have immunostimulatory effects as well, demonstrated by the strong reactive oxygen species (ROS production by porcine neutrophils upon their recognition. Although antigen-loaded GPs still induce ROS production, antigen loading decreases this production by neutrophils for reasons yet unknown. However, these antigen-loaded GPs are still able to bind their specific β-glucan receptor, demonstrated by blocking complement receptor 3, which is the major β-glucan receptor on porcine neutrophils. The dual character of these particles is confirmed by a T-cell proliferation assay. FedF-loaded particles induce a significantly higher FedF-specific T-cell proliferation than soluble FedF. Taken together, these results show that GPs are efficient antigen carriers with immune-stimulatory properties. Keywords: β-glucan microparticles, FedF, antigen delivery vehicle, immunostimulants

  5. Laser plasma jet driven microparticles for DNA/drug delivery.

    Viren Menezes

    Full Text Available This paper describes a microparticle delivery device that generates a plasma jet through laser ablation of a thin metal foil and uses the jet to accomplish particle delivery into soft living targets for transferring biological agents. Pure gold microparticles of 1 µm size were coated with a plasmid DNA, pIG121Hm, and were deposited as a thin layer on one surface of an aluminum foil. The laser (Nd:YAG, 1064 nm wavelength ablation of the foil generated a plasma jet that carried the DNA coated particles into the living onion cells. The particles could effectively penetrate the target cells and disseminate the DNA, effecting the transfection of the cells. Generation of the plasma jet on laser ablation of the foil and its role as a carrier of microparticles was visualized using a high-speed video camera, Shimadzu HPV-1, at a frame rate of 500 kfps (2 µs interframe interval in a shadowgraph optical set-up. The particle speed could be measured from the visualized images, which was about 770 m/s initially, increased to a magnitude of 1320 m/s, and after a quasi-steady state over a distance of 10 mm with an average magnitude of 1100 m/s, started declining, which typically is the trend of a high-speed, pulsed, compressible jet. Aluminum launch pad (for the particles was used in the present study to make the procedure cost-effective, whereas the guided, biocompatible launch pads made of gold, silver or titanium can be used in the device during the actual clinical operations. The particle delivery device has a potential to have a miniature form and can be an effective, hand-held drug/DNA delivery device for biological applications.

  6. Accelerating protein release from microparticles for regenerative medicine applications

    White, Lisa J., E-mail:; Kirby, Giles T.S.; Cox, Helen C.; Qodratnama, Roozbeh; Qutachi, Omar; Rose, Felicity R.A.J.; Shakesheff, Kevin M.


    There is a need to control the spatio-temporal release kinetics of growth factors in order to mitigate current usage of high doses. A novel delivery system, capable of providing both structural support and controlled release kinetics, has been developed from PLGA microparticles. The inclusion of a hydrophilic PLGA–PEG–PLGA triblock copolymer altered release kinetics such that they were decoupled from polymer degradation. A quasi zero order release profile over four weeks was produced using 10% w/w PLGA–PEG–PLGA with 50:50 PLGA whereas complete and sustained release was achieved over ten days using 30% w/w PLGA–PEG–PLGA with 85:15 PLGA and over four days using 30% w/w PLGA–PEG–PLGA with 50:50 PLGA. These three formulations are promising candidates for delivery of growth factors such as BMP-2, PDGF and VEGF. Release profiles were also modified by mixing microparticles of two different formulations providing another route, not previously reported, for controlling release kinetics. This system provides customisable, localised and controlled delivery with adjustable release profiles, which will improve the efficacy and safety of recombinant growth factor delivery. Highlights: ► A new delivery system providing controlled release kinetics has been developed. ► Inclusion of hydrophilic PLGA–PEG–PLGA decoupled release kinetics from degradation. ► Using 10% triblock copolymer produced quasi zero order release over four weeks. ► Mixing microparticle formulations provided another route for controlling release. ► This system provides customisable, localised and controlled delivery of growth factors.

  7. hESCCO: development of good practice models for hES cell derivation.

    Franklin, Sarah B; Hunt, Charles; Cornwell, Glenda; Peddie, Valerie; Desousa, Paul; Livie, Morag; Stephenson, Emma L; Braude, Peter R


    One response of the UK research community to the public sensitivity and logistical complexity of embryo donation to stem cell research has been the formation of a national network of 'human embryonic stem cell coordinators' (hESCCO). The aim of hESCCO is to contribute to the formation and implementation of national standards for hES cell derivation and banking, in particular the ethical protocols for patient information and informed consent. The hESCCO project is an innovative practical intervention within the broader attempt to establish greater transparency, consistency, efficiency and standardization of hES derivation in the UK. A major outcome of the hESCCO initiative has been the drafting and implementation of a national consent form. The lessons learned in this context may be relevant to other practitioners and regulators as a model of best practice in hES cell derivation.

  8. Stem cell derived interneuron transplants as a treatment for schizophrenia: preclinical validation in a rodent model

    Donegan, Jennifer J.; Tyson, Jennifer A.; Branch, Sarah Y.; Beckstead, Michael J.; Anderson, Stewart A.; Lodge, Daniel J.


    An increasing literature suggests that schizophrenia is associated with a reduction in hippocampal interneuron function. Thus, we posit that stem cell-derived interneuron transplants may be an effective therapeutic strategy to reduce hippocampal hyperactivity and attenuate behavioral deficits in schizophrenia. Here we used a dual-reporter embryonic stem cell line to generate enriched populations of parvalbumin (PV)- or somatostatin (SST)-positive interneurons, which were transplanted into the ventral hippocampus of the methylazoxymethanol (MAM) rodent model of schizophrenia. These interneuron transplants integrate within the existing circuitry, reduce hippocampal hyperactivity, and normalize aberrant dopamine neuron activity. Further, interneuron transplants alleviate behaviors that model negative and cognitive symptoms, including deficits in social interaction and cognitive inflexibility. Interestingly, PV- and SST-enriched transplants produced differential effects on behavior, with PV-enriched populations effectively normalizing all the behaviors examined. These data suggest that stem cell-derived interneuron transplants may represent a novel therapeutic strategy for schizophrenia. PMID:27480492

  9. Microencapsulation technology by nature: Cell derived extracellular vesicles with therapeutic potential.

    Kittel, A; Falus, A; Buzás, E


    Cell derived extracellular vesicles are submicron structures surrounded by phospholipid bilayer and released by both prokaryotic and eukaryotic cells. The sizes of these vesicles roughly fall into the size ranges of microbes, and they represent efficient delivery platforms targeting complex molecular information to professional antigen presenting cells. Critical roles of these naturally formulated units of information have been described in many physiological and pathological processes. Extracellular vesicles are not only potential biomarkers and possible pathogenic factors in numerous diseases, but they are also considered as emerging therapeutic targets and therapeutic vehicles. Strikingly, current drug delivery systems, designed to convey therapeutic proteins and peptides (such as liposomes), show many similarities to extracellular vesicles. Here we review some aspects of therapeutic implementation of natural, cell-derived extracellular vesicles in human diseases. Exploration of molecular and functional details of extracellular vesicle release and action may provide important lessons for the design of future drug delivery systems.

  10. The allo-epi-endothelial lining of the intervillous space.

    Ockleford, C D


    An unusual monolayer of cells lines the interface between the basal plate and the intervillous space in human term placenta but not the chorionic villi. Our recent descriptions of it are based on advanced microscopy, phenotyping and cytogenetic approaches. The papers show that the layer is partly epithelial (ectoderm) and partly endothelial (mesoderm): it is partly derived from the fetus and partly from the mother. This first accurate description of a naturally occurring human allo-epi-endothelium (monolayer of cells derived from two embryological germ layers and two individuals) is of interest in anatomy, obstetrics and gynaecology, developmental biology, histology and immunology. The most extensive evidence for this mosaic applies to the intervillous space lining layer of the basal plate where the endothelial proportion is of the order of 50%; it extends throughout central, intermediate and peripheral parts of the basal plate and is a consistent feature of the intervillous space lining of the chorionic plate also. Its presence lining chorionic plate is noteworthy as it includes the furthest parts of the sinus from the supplying and draining vessels which are endothelial lined.

  11. Live cell refractometry based on non-SPR microparticle sensor.

    Liu, Chang; Chen, David D Y; Yu, Lirong; Luo, Yong


    Unlike the nanoparticles with surface plasmon resonance, the optical response of polystyrene microparticles (PSMPs) is insensitive to the chemical components of the surrounding medium under the wavelength-dependent differential interference contrast microscopy. This fact is exploited for the measurement of the refractive index of cytoplasm in this study. PSMPs of 400 nm in diameter were loaded into the cell to contact cytoplasm seamlessly, and the refractive index information of cytoplasm could be extracted by differential interference contrast microscopy operated at 420 nm illumination wavelength through the contrast analysis of PSMPs images. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Single microparticles mass measurement using an AFM cantilever resonator

    Mauro, Marco; Ferrini, Gianluca; Puglisi, Roberto; Balduzzi, Donatella; Galli, Andrea


    In this work is presented a microbalance for single microparticle sensing based on resonating AFM cantilever. The variation of the resonator eigenfrequency is related to the particle mass positioned at the free apex of the cantilever. An all-digital phase locked loop (PLL) control system is developed to detect the variations in cantilever eigenfrequency. Two particle populations of different materials are used in the experimental test, demonstrating a mass sensitivity of 15 Hz/pg in ambient conditions. Thereby it is validated the possibility of developing an inexpensive, portable and sensitive microbalance for point-mass sensing.

  13. Interfacial synthesis and widely controllable conductivity of polythiophene microparticles.

    Li, Xin-Gui; Li, Ji; Meng, Qing-Kai; Huang, Mei-Rong


    Fine polythiophene (PTh) microparticles were successfully synthesized by a novel interfacial polymerization at a dynamic interface between two immiscible solvents, i.e., n-hexane and acetonitrile or nitromethane containing thiophene and oxidant, respectively. The polymerization yield, size, and electrical conductivity of the microparticles are optimized by facilely regulating the medium species, oxidant species, oxidant/monomer ratio, monomer concentration, and polymerization temperature. The microparticles were thoroughly characterized by IR, UV-vis spectroscopy, wide-angle X-ray diffractometry, laser particle-size analyzer, and simultaneous TG-DSC technique. The yield rises with increasing oxidant/monomer ratio, monomer concentration, and polymerization temperature. However, low monomer concentration, low polymerization temperature, and modest oxidant/monomer ratio are all favorable for the formation of the PTh with good, large pi-conjugation and high conductivity. With decreasing the thiophene concentration from 200 to 50 mM at a fixed FeCl3/thiophene molar ratio of 3 at 0 degrees C in hexane/nitromethane biphase system, the PTh obtained exhibits a steadily enhanced conductivity from 10(-12) to 0.01 S cm(-1) and gradually darkening color from crimson to black. Under the same conditions, the PTh obtained in hexane/acetonitrile usually possesses lower yield but higher conductivity than that in hexane/nitromethane. The conductivity will be further enhanced to 1.1 and 4.4 S cm(-1) if the PTh powders are doped in iodine vapor and simply carbonized at 25 through 999 degrees C in nitrogen, respectively. The PTh is fine particles with the number-average diameter of 2.67-3.95 microm and low size polydispersity index between 1.12 and 1.23. The black particles carbonized at 25 to 999 degrees C are much smaller than original PTh particles, with the number-average diameter of 279 nm and size polydispersity index of 1.09. This interfacial approach provides an optimal

  14. Equilibrium fluctuations in the theory of surface processes on microparticles

    Tovbin, Yu. K.


    The question of the role of equilibrium fluctuations in the adsorption theory and kinetics of surface processes occurring on the particles of the nanometer size range is discussed. Differences are put forward that need to be introduced to the fluctuation theory of surface processes on microparticles and that generalize Hill's approach to describing the thermodynamic properties of small systems. We show the importance of allowing for the discrete character of adsorption centers on the surfaces and their heterogeneity when describing adsorption isotherms and the rates of adsorption processes.

  15. Manipulation of microparticles and red blood cells using optoelectronic tweezers

    R S Verma; R Dasgupta; N Kumar; S Ahlawat; A Uppal; P K Gupta


    We report the development of an optoelectronic tweezers set-up which works by lightinduced dielectrophoresis mechanism to manipulate microparticles. We used thermal evaporation technique for coating the organic polymer, titanium oxide phthalocyanine (TiOPc), as a photoconductive layer on ITO-coated glass slide. Compare to the conventional optical tweezers, the technique requires optical power in W range and provides a manipulation area of a few mm2. The set-up was used to manipulate the polystyrene microspheres and red blood cells (RBCs). The RBCs could be attracted or repelled by varying the frequency of the applied AC bias.

  16. Radiation response of mesenchymal stem cells derived from bone marrow and human pluripotent stem cells

    Islam, Mohammad S; Stemig, Melissa E.; Takahashi, Yutaka; Hui, Susanta K.


    Mesenchymal stem cells (MSCs) isolated from human pluripotent stem cells are comparable with bone marrow-derived MSCs in their function and immunophenotype. The purpose of this exploratory study was comparative evaluation of the radiation responses of mesenchymal stem cells derived from bone marrow- (BMMSCs) and from human embryonic stem cells (hESMSCs). BMMSCs and hESMSCs were irradiated at 0 Gy (control) to 16 Gy using a linear accelerator commonly used for cancer treatment. Cells were harv...

  17. Endothelial Dysfunction in Resuscitated Cardiac Arrest (ENDO-RCA): safety and efficacy of low-dose prostacyclin administration and blood pressure target in addition to standard therapy, as compared to standard therapy alone, in post-cardiac arrest syndrome patients: study protocol for a randomized controlled trial.

    Meyer, Anna Sina P; Ostrowski, Sisse R; Kjaergaard, Jesper; Johansson, Pär I; Hassager, Christian


    , [soluble thrombomodulin (sTM), sE-selectin, syndecan-1, soluble vascular endothelial growth factor (sVEGF), nucleosomes] and sympathoadrenal over activation (epinephrine/norepinephrine) from baseline to 48 hours post-randomization. The secondary endpoints of this trial will include: (1) the hemostatic profile [change in functional hemostatic blood test (thrombelastography (TEG) and whole blood platelet aggregometry (multiplate)) blood cell and endothelial cell-derived microparticles]; (2) feasibility of blood pressure target intervention (target 90 %); (3) interaction of primary endpoints and blood pressure target; (4) levels of neuron-specific enolase at 48 hours post-inclusion according to blood pressure targets. The ENDO-RCA study is a pilot study trial that investigates safety and efficacy of low-dose infusion of prostacyclin administration as compared to standard therapy in post-cardiac arrest syndrome patients. Trial registration at (identifier NCT02685618 ) on 18 February 2016.

  18. A subpopulation of large granular von Willebrand Ag negative and CD105 positive endothelial cells, isolated from abdominal aortic aneurysms, overexpress ICAM-1 and Fas antigen.

    Páez, Araceli; Archundia, Abel; Méndez Cruz, René; Rodríguez, Emma; López Marure, Rebeca; Masso, Felipe; Aceves, José Luis; Flores, Leopoldo; Montaño, Luis F


    The aim of this work was to determine whether there is a pre-established basal condition of the endothelial cells isolated from aortic abdominal aneurysm that might augment immune effector mechanisms and thus provide us an insight into the possible causes of aneurysm rupture. Endothelial cells isolated from saccular aortic aneurysm fragments were analyzed by cytofluorometry for the expression of different immune response-related molecules. Our results showed that there is a subpopulation of granule-rich, CD105 positive and von Willebrand antigen negative endothelial cells that have an enhanced basal expression of ICAM-1, and Fas antigen, but, interestingly, no apoptotic bodies were detected. Control endothelial cells derived from healthy areas of the same abdominal aortas did not show such enhanced expression. We conclude that in the endothelium that lines abdominal aorta aneurysms there is, at least, one endothelial cell subpopulation with an apparent inhibition of programmed cell death and in a proinflammatory activation status.

  19. iPS-cell derived dendritic cells and macrophages for cancer therapy.

    Senju, Satoru


    Antibody-based anti-cancer immunotherapy was recently recognized as one of the truly effective therapies for cancer patients. Antibodies against cell surface cancer antigens, such as CD20, and also those against immune-inhibitory molecules called "immune checkpoint blockers", such as CTLA4 or PD1, have emerged. Large-scale clinical trials have confirmed that, in some cases, antibody-based drugs are superior to conventional chemotherapeutic agents. These antibody-based drugs are now being manufactured employing a mass-production system by pharmaceutical companies. Anti-cancer therapy by immune cells, i.e. cell-based immunotherapy, is expected to be more effective than antibody therapy, because immune cells can recognize, infiltrate, and act in cancer tissues more directly than antibodies. In order to achieve cell-based anti-cancer immunotherapy, it is necessary to develop manufacturing systems for mass-production of immune cells. Our group has been studying immunotherapy with myeloid cells derived from ES cells or iPS cells. These pluripotent stem cells can be readily propagated under constant culture conditions, with expansion into a large quantity. We consider these stem cells to be the most suitable cellular source for mass-production of immune cells. This review introduces our studies on anti-cancer therapy with iPS cell-derived dendritic cells and iPS cell-derived macrophages.

  20. A strategy to ensure safety of stem cell-derived retinal pigment epithelium cells.

    Choudhary, Parul; Whiting, Paul John


    Cell replacement and regenerative therapy using embryonic stem cell-derived material holds promise for the treatment of several pathologies. However, the safety of this approach is of prime importance given the teratogenic potential of residual stem cells, if present in the differentiated cell product. Using the example of embryonic stem cell-derived retinal pigment epithelium (RPE) for the treatment of age-related macular degeneration, we present a novel strategy for ensuring the absence of stem cells in the RPE population. Based on an unbiased screening approach, we identify and validate the expression of CD59, a cell surface marker expressed on RPE but absent on stem cells. We further demonstrate that flow sorting on the basis of CD59 expression can effectively purify RPE and deplete stem cells, resulting in a population free from stem cell impurity. This purification helps to ensure removal of stem cells and hence increases the safety of cells that may be used for clinical transplantation. This strategy can potentially be applied to other pluripotent stem cell-derived material and help mitigate concerns of using such cells for therapy.

  1. Effect of Human Hepatocellular Carcinoma HepG2 Cell-derived Exosome on the Differentiation of Mesenchymal Stem Cells and Their Interaction.

    Luo, Fei; Sun, Zhao; Han, Qin; Xue, Chunling; Bai, Chunmei


    Objective To investigate the effect of human hepatocellular carcinoma HepG2 cell-derived Exosome on the differentiation of mesenchymal stem cells(MSC)into cancer-associated myofibroblasts(CAF)and the impacts of CAF on liver cancer cell proliferation,migration,and invasion. Methods The protein expression of HepG2 cell-derived Exosome was detected by Western blotting. MSCs were separated from human adipose tissue and cultured with HepG2 cell-derived Exosome(100 ng/nl)to initiate differentiation. The expressions of mesenchymal markers and several interleukins were also detected by Western blotting. HepG2 cells were co-cultured with the conditioned media(CM),in which HepG2 Exosome induced the differentiation of MSC into CAF. The expressions of epithelial and mesenchymal markers were detected by real-time polymerase chain reaction(PCR)and Western blotting. Cell proliferation was assessed using MTS assay. Transwell chambers were used in the in vitro migration and invasion assay. Results HepG2 cell-derived particles expressed CD63,70 kilodalton heat shock proteins,and 90 kilodalton heat shock proteins. With the treatment of HepG2 cell-derived Exosome,the expressions of mesenchymal marker α-smooth muscle actin,fibroblast activation protein α,interleukin(IL)-6,IL-8,and IL-1β were up-regulated,while vascular endothelial growth factor had no significant change. The conditioned media which HepG2 Exosome induced MSC differentiation CAF(CAF-CM)could significantly promote HepG2 cells proliferation(1.075±0.104),compared to BSA control(0.874±0.066,P=0.023)and MSC-CM(0.649±0.034,P=0.0005). CAF-CM could significantly enhance cell migration [(42.5±9.1) cells vs.(18.5±3.1) cells,P=0.001] and invasion [(29.0±3.5) cells vs.(13.1±3.7) cells,P=0.009] compared to its control group. Moreover the conditioned medium which HepG2 Exosome induced MSC to differentiate into CAF could also promote the expressions of mesenchyme-related genes Smad interacting protein 1(P=0.040),

  2. Role of tissue factor positive microparticles in coagulation and thrombosis%组织因子阳性微粒在凝血及血栓形成中的作用

    徐静; 孟文彤


    微粒是真核细胞活化或凋亡时释放的直径约为0.1~1.0 μm的双层脂质膜囊泡,来源于血小板、白细胞、红细胞、单核细胞、内皮细胞及肿瘤细胞等.组织因子(TF)是一种跨膜糖蛋白,是体内凝血途径的启动因子.TF主要以在微粒上表达的形式存在,这种微粒称为组织因子阳性微粒(TF+MPs).TF+ MPs具有较高的促凝活性,其表达水平可在血栓性疾病和相关凝血性疾病中升高.因此,测定TF+MPs可能作为血栓性疾病的有效监测指标.%Microparticles are small intact membrane-bound vesicles measuring 0.1-1.0 μm derived from the plasma membrane during cellular activation and apoptosis.Microparticles were generated by several cell types,including platelets,erythrocytes,monocytes,leucocytes,endothelial cells and cancer cells.Tissue factor (TF) is a transmenbrane glycoprotein that is the primary cellular activator of the clotting cascade.TF mainly expressed on microparticles,as called tissue factor positive microparticles(TF+ MPs).TF+ MPs presents a high anticoagulant activity and increase in disorders related thrombosis and coagulation.Therefore,TF+ MPs are useful indicator for monitor the risk of thrombotic diseases.

  3. Niche-dependent development of functional neuronal networks from embryonic stem cell-derived neural populations

    Siebler Mario


    Full Text Available Abstract Background The present work was performed to investigate the ability of two different embryonic stem (ES cell-derived neural precursor populations to generate functional neuronal networks in vitro. The first ES cell-derived neural precursor population was cultivated as free-floating neural aggregates which are known to form a developmental niche comprising different types of neural cells, including neural precursor cells (NPCs, progenitor cells and even further matured cells. This niche provides by itself a variety of different growth factors and extracellular matrix proteins that influence the proliferation and differentiation of neural precursor and progenitor cells. The second population was cultivated adherently in monolayer cultures to control most stringently the extracellular environment. This population comprises highly homogeneous NPCs which are supposed to represent an attractive way to provide well-defined neuronal progeny. However, the ability of these different ES cell-derived immature neural cell populations to generate functional neuronal networks has not been assessed so far. Results While both precursor populations were shown to differentiate into sufficient quantities of mature NeuN+ neurons that also express GABA or vesicular-glutamate-transporter-2 (vGlut2, only aggregate-derived neuronal populations exhibited a synchronously oscillating network activity 2–4 weeks after initiating the differentiation as detected by the microelectrode array technology. Neurons derived from homogeneous NPCs within monolayer cultures did merely show uncorrelated spiking activity even when differentiated for up to 12 weeks. We demonstrated that these neurons exhibited sparsely ramified neurites and an embryonic vGlut2 distribution suggesting an inhibited terminal neuronal maturation. In comparison, neurons derived from heterogeneous populations within neural aggregates appeared as fully mature with a dense neurite network and punctuated

  4. Pirfenidone inhibits p38-mediated generation of procoagulant microparticles by human alveolar epithelial cells.

    Neri, Tommaso; Lombardi, Stefania; Faìta, Francesca; Petrini, Silvia; Balìa, Cristina; Scalise, Valentina; Pedrinelli, Roberto; Paggiaro, Pierluigi; Celi, Alessandro


    Pirfenidone is a drug recently approved for idiopathic pulmonary fibrosis but its mechanisms of action are partially unknown. We have previously demonstrated that the airways of patients with idiopathic pulmonary fibrosis contain procoagulant microparticles that activate coagulation factor X to its active form, Xa, a proteinase that signals fibroblast growth and differentiation, thus potentially contributing to the pathogenesis of the disease. We also reported that in vitro exposure of human alveolar cells to H2O2 causes microparticle generation. Since p38 activation is involved in microparticle generation in some cell models and p38 inhibition is one of the mechanisms of action of pirfenidone, we investigated the hypothesis that H2O2-induced generation of microparticles by alveolar cells is dependent on p38 phosphorylation and is inhibited by pirfenidone. H2O2 stimulation of alveolar cells caused p38 phosphorylation that was inhibited by pirfenidone. The drug also inhibited H2O2 induced microparticle generation as assessed by two independent methods (solid phase thrombin generation and flow cytometry). The shedding of microparticle-bound tissue factor activity was also inhibited by pirfenidone. Inhibition of p38-mediated generation of procoagulant microparticle is a previously unrecognized mechanism of action of the antifibrotic drug, pirfenidone.

  5. Controlled release behaviour of protein-loaded microparticles prepared via coaxial or emulsion electrospray.

    Wang, Ying; Yang, Xiaoping; Liu, Wentao; Zhang, Feng; Cai, Qing; Deng, Xuliang


    Biodegradable poly (lactic-co-glycolic acid) (PLGA) microparticles are an effective way to achieve sustained drug release. In this study, we investigated a sustained release model of PLGA microparticles with incorporated protein via either emulsion or coaxial electrospray techniques. PLGA (75:25) was used as the carrier, and bovine serum albumin as a model protein. Coaxial electrospray resulted in a type of core-shell structure with mean diameters of 2.41 ± 0.60 µm and a centralised protein distribution within the core. Emulsion electrospray formed bigger microparticles with mean diameters of 22.75 ± 8.05 µm and a heterogeneous protein distribution throughout the microparticles. The coaxial electrospray microparticles presented a much slighter burst release than the emulsion electrospray microparticles. Loading efficiency was significantly higher (p coaxial group than emulsion group. This indicated that both emulsion and coaxial electrospray could produce protein-loaded microparticles with sustained release behaviour, but the former revealed a superior approach for drug delivery.

  6. Incorporation of essential oil in alginate microparticles by multiple emulsion/ionic gelation process.

    Hosseini, Seyede Marzieh; Hosseini, Hedayat; Mohammadifar, Mohammad Amin; Mortazavian, Amir Mohammad; Mohammadi, Abdorreza; Khosravi-Darani, Kianoosh; Shojaee-Aliabadi, Saeedeh; Dehghan, Solmaz; Khaksar, Ramin


    In this study, an o/w/o multiple emulsion/ionic gelation method was developed for production of alginate microparticles loaded with Satureja hortensis essential oil (SEO). It was found that the essential oil concentration has significant influence on encapsulation efficiency (EE), loading capacity (LC) and size of microparticles. The values of EE, LC and particle mean diameter were about 52-66%, 20-26%, and 47-117 μm, respectively, when the initial SEO content was 1-3% (v/v) .The essential oil-loaded microparticles were porous, as displayed by scanning electron micrograph. The presence of SEO in alginate microparticles was confirmed by Fourier transform-infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC) analyses. SEO-loaded microparticles showed good antioxidant (with DPPH radical scavenging activity of 40.7-73.5%) and antibacterial properties; this effect was greatly improved when the concentration of SEO was 3% (v/v). S. aureus was found to be the most sensitive bacterium to SEO and showed a highest inhibition zone of 304.37 mm(2) in the microparticles incorporated with 3% (v/v) SEO. In vitro release studies showed an initial burst release and followed by a slow release. In addition, the release of SEO from the microparticles followed Fickian diffusion with acceptable release.

  7. Novel hierarchical microparticles super-assembled from nanoparticles with the induction of casein micelles

    Xiong, Xiaopeng, E-mail:; Duan, Jiangjiang; Wang, Yong; Yu, Zhaoju [Xiamen University, Department of Materials Science and Engineering, College of Materials (China)


    We have demonstrated a solution-based synthesis of novel waxberry-like hierarchical ZnO microparticles in the presence casein micelles under mild conditions. The microstructures of the sub-micrometer-sized hierarchical microparticles were characterized, and the synthesis conditions were optimized. The formation mechanism of the hierarchical microparticle was analyzed through control experiments. The hierarchical ZnO microparticles are found to be super-assemblies of 30-70 nm ZnO nanoparticles, which are thought to be based on casein micelle induction followed by Ostwald ripening. In the same manner, copper-based hierarchical microparticles with a similar morphology have also been successfully synthesized. By controlling the synthetic time or temperature, solid or hollow microparticles can be fabricated. The narrowly distributed ZnO microparticles have a high specific surface area, exhibiting great potential application in fields such as photocatalytic and energy conversion. Our findings may meanwhile open a new bottom-up strategy in order to construct structurally sophisticated nanomaterials.

  8. Galvanic zinc-copper microparticles inhibit melanogenesis via multiple pigmentary pathways.

    Won, Yen-Kim; Lin, Connie B; Seiberg, Miri; Chen, Nannan; Hu, Yaping; Rossetti, Dianne; Saliou, Claude; Loy, Chong-Jin


    The endogenous electrical field of human skin plays an important role in many skin functions. However, the biological effects and mechanism of action of externally applied electrical stimulation on skin remain unclear. Recent study showed that galvanic zinc-copper microparticles produce electrical stimulation and reduce inflammatory and immune responses in intact skin, suggesting the important role of electrical stimulation in non-wounded skin. The objective of this study is to investigate the biological effect of galvanic zinc-copper microparticles on skin pigmentation. Our findings showed that galvanic zinc-copper microparticles inhibited melanogenesis in a human melanoma cell line (MNT-1), human keratinocytes and melanoma cells co-cultures, and in pigmented epidermal equivalents. Treatment of galvanic zinc-copper microparticles inhibited melanogenesis by reducing the promoter transactivation of tyrosinase and tyrosinase-related protein-1 in human melanoma cells. In a co-culture Transwell system of keratinocytes and melanoma cells, galvanic zinc-copper microparticles reduced melanin production via downregulation of endothelin-1 secretion from keratinocytes and reduced tyrosinase gene expression in melanoma cells. In addition, exposure of pigmented epidermal equivalents to galvanic zinc-copper microparticles resulted in reduced melanin deposition. In conclusion, our data demonstrated for the first time that galvanic zinc-copper microparticles reduced melanogenesis in melanoma cells and melanin deposition in pigmented epidermal equivalents by affecting multiple pigmentary pathways.

  9. Mecanotransduction and Endothelial Cells



    1 IntroductionAtherosclerosis preferentially occurs in areas of complex blood flow where there are disturbed flow and low fluid shear stress, whereas laminar blood flow and high shear stress are atheroprotective~([1]). Reports of others and our studies suggest a steady laminar flow decreases some molecules and genes expression of vascular endothelial cells (EC) that may promote atherosclerosis, as well as it can differentially regulate production of many vasoactive factors at the level of gene expression an...

  10. Recovering endothelial function

    Bryce Moncloa, Alfonso; Médico Cardiólogo, Académico Asociado de la Academia Nacional de Medicina, Presidente del Colegio Panamericano del Endotelio, Miembro del Comité Institucional de Investigaciones del Comité Ejecutivo de la Sociedad Latino Americana de Hipertensión Arterial y del Colegio Americano de Cardiología (ACC).; Morales Villegas, Enrique C.; Médico Internista y Cardiólogo, Fundador y Director del Centro de Investigación Cardiometabólica de Aguascalientes. México; Urquiaga Calderón, Juan; Médico Internista y Cardiólogo, Fundador y Director del Centro de Investigación Cardiometabólica de Aguascalientes. México; Larrauri Vigna, Cesar; Médico Cardiólogo, Miembro de la Sociedad Peruana de Cardiología, Sociedad Peruana de Hipertensión, Sociedad Peruana de Medicina Interna, Colegio Panamericano del Endotelio.


    Atherosclerosis starts early in life. The presence of risk factors like hypertension, smoking, dyslipidemia and diabetes as well as obesity and metabolic syndrome accelerates its progress. These factors generate endothelial dysfunction, oxidative stress and inflammation, with early appearance of foamy cells, fatty streaks and atheromatous plaques. These plaques are vulnerable to erosion and rupture, the so called atherothrombotic phenomenon, leading to acute vascular events like acute coronar...

  11. New alginic acid–atenolol microparticles for inhalatory drug targeting

    Ceschan, Nazareth Eliana; Bucalá, Verónica [Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET, Universidad Nacional del Sur (UNS), Camino La Carrindanga Km 7, 8000 Bahía Blanca (Argentina); Departamento de Ingeniería Química, UNS, Avenida Alem 1253, 8000 Bahía Blanca (Argentina); Ramírez-Rigo, María Verónica, E-mail: [Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET, Universidad Nacional del Sur (UNS), Camino La Carrindanga Km 7, 8000 Bahía Blanca (Argentina); Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000 Bahía Blanca (Argentina)


    The inhalatory route allows drug delivery for local or systemic treatments in a noninvasively way. The current tendency of inhalable systems is oriented to dry powder inhalers due to their advantages in terms of stability and efficiency. In this work, microparticles of atenolol (AT, basic antihypertensive drug) and alginic acid (AA, acid biocompatible polyelectrolyte) were obtained by spray drying. Several formulations, varying the relative composition AT/AA and the total solid content of the atomized dispersions, were tested. The powders were characterized by: Fourier Transform Infrared Spectroscopy, Differential Scanning Calorimetry and Powder X-ray Diffraction, while also the following properties were measured: drug load efficiency, flow properties, particles size and density, moisture content, hygroscopicity and morphology. The ionic interaction between AA and AT was demonstrated, then the new chemical entity could improve the drug targeting to the respiratory membrane and increase its time residence due to the mucoadhesive properties of the AA polymeric chains. Powders exhibited high load efficiencies, low moisture contents, adequate mean aerodynamic diameters and high cumulative fraction of respirable particles (lower than 10 μm). - Highlights: • Novel particulate material to target atenolol to the respiratory membrane was developed. • Crumbled microparticles were obtained by spray drying of alginic–atenolol dispersions. • Ionic interaction between alginic acid and atenolol was demonstrated in the product. • Amorphous solids with low moisture content and high load efficiency were produced. • Relationships between the feed formulation and the product characteristics were found.

  12. Formation of Gold Microparticles by Ablation with Surface Plasmons

    Pal Molian


    Full Text Available The formation of gold microparticles on a silicon substrate through the use of energetic surface plasmons is reported. A laser-assisted plasmonics system was assembled and tested to synthesize gold particles from gold thin film by electrical field enhancement mechanism. A mask containing an array of 200 nm diameter holes with a periodicity of 400 nm was prepared and placed on a silicon substrate. The mask was composed of 60 µm thick porous alumina membrane sputter-coated with 100 nm thin gold film. A Nd:YAG laser with 1064 nm wavelength and 230 µs pulse width (free-running mode was then passed through the mask at an energy fluence of 0.35 J/cm2. The extraordinary transmission of laser light through alumina/gold micro-hole optical antenna created both extended and localized surface plasmons that caused the gold film at the bottom of the mask to fragment into microparticles and deposit on the silicon substrate that is in direct contact with the mask. The surface plasmon method is simpler, quicker, more energy efficient, and environmentally safer than existing physical and chemical methods, as well as being contamination-free, and can be extended to all types of materials that will in turn allow for new possibilities in the formation of structured surfaces.

  13. A Reconfigurable Microfluidics Platform for Microparticle Separation and Fluid Mixing

    Young Ki Hahn


    Full Text Available Microfluidics is an engineering tool used to control and manipulate fluid flows, with practical applications for lab-on-a-chip, point-of-care testing, and biological/medical research. However, microfluidic platforms typically lack the ability to create a fluidic duct, having an arbitrary flow path, and to change the path as needed without additional design and fabrication processes. To address this challenge, we present a simple yet effective approach for facile, on-demand reconfiguration of microfluidic channels using flexible polymer tubing. The tubing provides both a well-defined, cross-sectional geometry to allow reliable fluidic operation and excellent flexibility to achieve a high degree of freedom for reconfiguration of flow pathways. We demonstrate that microparticle separation and fluid mixing can be successfully implemented by reconfiguring the shape of the tubing. The tubing is coiled around a 3D-printed barrel to make a spiral microchannel with a constant curvature for inertial separation of microparticles. Multiple knots are also made in the tubing to create a highly tortuous flow path, which induces transverse secondary flows, Dean flows, and, thus, enhances the mixing of fluids. The reconfigurable microfluidics approach, with advantages including low-cost, simplicity, and ease of use, can serve as a promising complement to conventional microfabrication methods, which require complex fabrication processes with expensive equipment and lack a degree of freedom for reconfiguration.

  14. Polymer encapsulation of amoxicillin microparticles by SAS process.

    Montes, A; Baldauf, E; Gordillo, M D; Pereyra, C M; Martínez de la Ossa, E J


    Encapsulation of amoxicillin (AMC) with ethyl cellulose (EC) by a supercritical antisolvent process (SAS) was investigated. AMC microparticles obtained previously by an SAS process were used as host particles and EC, a biodegradable polymer used for the controlled release of drugs, was chosen as the coating material. In this work, a suspension of AMC microparticles in a solution of ethyl cellulose in dichloromethane (DCM) was sprayed through a nozzle into supercritical CO2. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and HPLC analyses were carried out. The effects of AMC:EC ratio, the initial polymer concentration of the solution, temperature and pressure on the encapsulation process were investigated. Although all the experiments led to powder precipitation, the AMC encapsulation was achieved in only half of the cases, particularly when the lower drug:polymer ratios were assayed. In general, it was observed that the percentages of AMC present in the precipitates were higher on increasing the AMC:EC ratio. In these cases composites rather than encapsulates were obtained. The in vitro release profiles of the resulting materials were evaluated in order to ascertain whether composites can be used as encapsulated systems for drug delivery systems.

  15. [Effect of microparticles on echinocandin B production by Aspergillus nidulans].

    Niu, Kun; Hu, Yibo; Mao, Jian; Zou, Shuping; Zheng, Yuguo


    Anidulafungin is an effective antifungal medicine, which can inhibit activities of candida in vitro and in vivo. Echinocandin B (ECB) is the key precursor of Anidulafungin, thus the price and market prospect of Anidulafungin is directly due to the fermentation titer of ECB. In this study, Aspergillus nidulans was used for ECB fermentation, and the influence of adding microparticles on ECB fermentation was studied, such as talcum powder, Al2O3, and glass beads. The particle size and concentration were the key factors for mycelium morphology and ECB production, and ECB production could reach 1 262.9 mg/L and 1 344.1 mg/L by adding talcum powder of 20 g/L (d50 = 14.2 μm) and 7 glass beads (6 mm), an increase by 33.2% and 41.7%, respectively. The results indicated that the mycelium morphology of filamentous microorganisms and the product yield of fermentation could be improved by adding microparticles remarkably, and it provide an important method for the fermentative optimization of filamentous microorganisms.

  16. Synthesis, characterization and catalytic application of polyhedron zinc oxide microparticles

    Jamil, Saba; Ramzan Saeed Ashraf Janjua, Muhammad; Khan, Shanza Rauf; Jahan, Nazish


    Zinc oxide (ZnO) microparticles of unique morphology were synthesized by the microwave heating method. The composition and morphology of the synthesized microparticles were characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM). It is clear from the XRD pattern that the product is highly pure and crystalline. It is shown from the SEM images that the hexagonal unit cells are arranged in the form of a polyhedral lattice. The length of the sides is equal at the middle of the lattice, and unequal on the terminal sides of the lattice. This is due to the alignment of the hexagonal unit cells. The size distribution histogram of the product possesses a sharp band which shows that it is monodisperse. This means that a monodisperse product can be obtained by the microwave heating method. The synthesized particles were used as a catalyst for the thermal degradation of ammonium perchlorate (AP) and the catalytic reduction of 2-nitrophenol (2-NP) and 4-nitrophenol (4-NP). The effect of temperature on the value of the apparent rate constant was also studied, and the values of the kinetic and thermodynamic parameters were calculated. This shows that the catalyst possesses high efficiency for thermally degrading of substances at low temperatures and rapidly reducing the nitroarenes in an aqueous medium.

  17. Cytotoxicity assessment of porous silicon microparticles for ocular drug delivery.

    Korhonen, Eveliina; Rönkkö, Seppo; Hillebrand, Satu; Riikonen, Joakim; Xu, Wujun; Järvinen, Kristiina; Lehto, Vesa-Pekka; Kauppinen, Anu


    Porous silicon (PSi) is a promising material for the delivery and sustained release of therapeutic molecules in various tissues. Due to the constant rinsing of cornea by tear solution as well as the short half-life of intravitreal drugs, the eye is an attractive target for controlled drug delivery systems, such as PSi microparticles. Inherent barriers ensure that PSi particles are retained in the eye, releasing drugs at the desired speed until they slowly break down into harmless silicic acid. Here, we have examined the in vitro cytotoxicity of positively and negatively charged thermally oxidized (TOPSi) and thermally carbonized (TCPSi) porous silicon microparticles on human corneal epithelial (HCE) and retinal pigment epithelial (ARPE-19) cells. In addition to ocular assessment under an inverted microscope, cellular viability was evaluated using the CellTiter Blue™, CellTiter Fluor™, and lactate dehydrogenase (LDH) assays. CellTiter Fluor proved to be a suitable assay but due to non-specific and interfering responses, neither CellTiter Blue nor LDH assays should be used when evaluating PSi particles. Our results suggest that the toxicity of PSi particles is concentration-dependent, but at least at concentrations less than 200μg/ml, both positively and negatively charged PSi particles are well tolerated by human corneal and retinal epithelial cells and therefore applicable for delivering drug molecules into ocular tissues.

  18. Composite microparticles of halloysite clay nanotubes bound by calcium carbonate.

    Jin, Yi; Yendluri, Raghuvara; Chen, Bin; Wang, Jingbo; Lvov, Yuri


    Natural halloysite clay nanotubes with 15 nm inner and 75 nm outer diameters have been used as vehicles for sustained release of drugs in composite hollow microparticles "glued" with CaCO3. We used a layer-by layer assembly accomplished alginate binding with Ca(2+) followed by CO2 bubbling to prepare the composite microspheres of CaCO3 and polyelectrolytes (PE) modified halloysite nanotubes (HNTs-PE2/CaCO3) with the diameter of about 5-10 μm. These microparticles have empty spherical structure and abundant pore distributions with maxima at 2.5, 3.9, 6.0 and 13.3 nm, and higher surface area of 82.3 m(2) g(-1) as characterized by SEM and BET test. We loaded drugs in these micro-nano carriers of tight piles of halloysite nanotube with end clogged with CaCO3. The sustained release of Nifedipine drug from HNTs-PE2/CaCO3 composite microspheres was slower than for pristine halloysite nanotubes.

  19. In vitro assessment of biopolymer-modified porous silicon microparticles for wound healing applications.

    Mori, Michela; Almeida, Patrick V; Cola, Michela; Anselmi, Giulia; Mäkilä, Ermei; Correia, Alexandra; Salonen, Jarno; Hirvonen, Jouni; Caramella, Carla; Santos, Hélder A


    The wound healing stands as very complex and dynamic process, aiming the re-establishment of the damaged tissue's integrity and functionality. Thus, there is an emerging need for developing biopolymer-based composites capable of actively promoting cellular proliferation and reconstituting the extracellular matrix. The aims of the present work were to prepare and characterize biopolymer-functionalized porous silicon (PSi) microparticles, resulting in the development of drug delivery microsystems for future applications in wound healing. Thermally hydrocarbonized PSi (THCPSi) microparticles were coated with both chitosan and a mixture of chondroitin sulfate/hyaluronic acid, and subsequently loaded with two antibacterial model drugs, vancomycin and resveratrol. The biopolymer coating, drug loading degree and drug release behavior of the modified PSi microparticles were evaluated in vitro. The results showed that both the biopolymer coating and drug loading of the THCPSi microparticles were successfully achieved. In addition, a sustained release was observed for both the drugs tested. The viability and proliferation profiles of a fibroblast cell line exposed to the modified THCPSi microparticles and the subsequent reactive oxygen species (ROS) production were also evaluated. The cytotoxicity and proliferation results demonstrated less toxicity for the biopolymer-coated THCPSi microparticles at different concentrations and time points comparatively to the uncoated counterparts. The ROS production by the fibroblasts exposed to both uncoated and biopolymer-coated PSi microparticles showed that the modified PSi microparticles did not induce significant ROS production at the concentrations tested. Overall, the biopolymer-based PSi microparticles developed in this study are promising platforms for wound healing applications.

  20. Salbutamol sulphate-ethylcellulose microparticles: formulation and in-vitro evaluation with emphasis on mathematical approaches

    G Murtaza


    Full Text Available "n "nBackground and the purpose of the study: This study reports the laboratory optimization for the preparation of salbutamol sulphate-ethylcellulose microparticles by a non-solvent addition coacervation technique through adjustment of the ratio of salbutamol sulphate to ethylcellulose. The variation of drug release between the microparticles and tabletted microparticles was also investigated. "nMethods: In vitro release profiles of developed microparticles and tabletted microparticles were studied using USP XXIV dissolution apparatus I and II, respectively, in 450 ml double distilled water at 50 rpm maintained at 37°C. "nResults: White microparticles with no definite shape having good entrapment efficiency (96.68 to 97.83% and production yield (97.48 ± 1.21 to 98.35 ± 1.08% were obtained. In this investigation, initial burst effect was observed in the drug release behavior. The rate of drug release from microparticles decreased as the concentration of polyisobutylene was increased from 6% to 12% during microencapsulation. The release pattern of tabletted microparticles was affected significantly (p < 0.05 by the addition of hydroxy propyl methyl cellulose (HPMC as excepient and insignificantly (p > 0.05 by the type of dissolution media and stirring speed. Tabletted microparticles showed good stability and reproducibility. Ethylcellulose was found to be compatible with salbutamol sulphate. The drug release from all formulations was best fit to Higuchi's equation and the mechanism of drug release was anomalous diffusion from all formulations. "nConclusion: The results of this study suggest that by using ethylcellulose it is possible to design a single-unit, sustained-release oral dosage form of salbutamol sulphate for indication of twice a day.

  1. Four-dimensional (4D) tracking of high-temperature microparticles

    Wang, Zhehui; Liu, Q.; Waganaar, W.; Fontanese, J.; James, D.; Munsat, T.


    High-speed tracking of hot and molten microparticles in motion provides rich information about burning plasmas in magnetic fusion. An exploding-wire apparatus is used to produce moving high-temperature metallic microparticles and to develop four-dimensional (4D) or time-resolved 3D particle tracking techniques. The pinhole camera model and algorithms developed for computer vision are used for scene calibration and 4D reconstructions. 3D positions and velocities are then derived for different microparticles. Velocity resolution approaches 0.1 m/s by using the local constant velocity approximation.

  2. Pullulan: an advantageous natural polysaccharide excipient to formulate tablets of alendronate-loaded microparticles

    Luana Mota Ferreira


    Full Text Available This work reports the preparation of tablets by direct compression of sodium alendronate-loaded microparticles, using pullulan as filler. The tableting properties of pullulan were compared with those of microcrystalline cellulose and lactose. Pullulan tablets showed low variations in average weight, thickness and drug content. Moreover, these tablets exhibited a higher hardness compared to the other excipients. In vitro release studies showed that only pullulan was capable to maintain gastroresistance and release properties of microparticles, due to its ability to protect particles against damage caused by compression force. Thus, pullulan was considered an advantageous excipient to prepare tableted microparticles.

  3. Early results of microwave transmission experiments through an overly dense rectangular plasma sheet with microparticle injection

    Gillman, Eric D.; Amatucci, W. E.


    These experiments utilize a linear hollow cathode to create a dense, rectangular plasma sheet to simulate the plasma layer surrounding vehicles traveling at hypersonic velocities within the Earth's atmosphere. Injection of fine dielectric microparticles significantly reduces the electron density and therefore lowers the electron plasma frequency by binding a significant portion of the bulk free electrons to the relatively massive microparticles. Measurements show that microwave transmission through this previously overly dense, impenetrable plasma layer increases with the injection of alumina microparticles approximately 60 μm in diameter. This method of electron depletion is a potential means of mitigating the radio communications blackout experienced by hypersonic vehicles.

  4. Microparticles engineered to highly express peroxisome proliferator-activated receptor-γ decreased inflammatory mediator production and increased adhesion of recipient monocytes.

    Julie Sahler

    Full Text Available Circulating blood microparticles are submicron vesicles released primarily by megakaryocytes and platelets that act as transcellular communicators. Inflammatory conditions exhibit elevated blood microparticle numbers compared to healthy conditions. Direct functional consequences of microparticle composition, especially internal composition, on recipient cells are poorly understood. Our objective was to evaluate if microparticle composition could impact the function of recipient cells, particularly during inflammatory provocation. We therefore engineered the composition of megakaryocyte culture-derived microparticles to generate distinct microparticle populations that were given to human monocytes to assay for influences recipient cell function. Herein, we tested the responses of monocytes exposed to either control microparticles or microparticles that contain the anti-inflammatory transcription factor, peroxisome proliferator-activated receptor-γ (PPARγ. In order to normalize relative microparticle abundance from two microparticle populations, we implemented a novel approach that utilizes a Nanodrop Spectrophotometer to assay for microparticle density rather than concentration. We found that when given to peripheral blood mononuclear cells, microparticles were preferentially internalized by CD11b+ cells, and furthermore, microparticle composition had a profound functional impact on recipient monocytes. Specifically, microparticles containing PPARγ reduced activated monocyte production of the proinflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared to activated monocytes exposed to control microparticles. Additionally, treatment with PPARγ microparticles greatly increased monocyte cell adherence. This change in morphology occurred simultaneously with increased production of the key extracellular matrix protein, fibronectin and increased expression of the fibronectin-binding integrin, ITGA5. PPARγ microparticles

  5. Stromal Cell-Derived Growth Factor-1 Alpha-Elastin Like Peptide Fusion Protein Promotes Cell Migration and Revascularization of Experimental Wounds in Diabetic Mice

    Yeboah, Agnes; Maguire, Tim; Schloss, Rene; Berthiaume, Francois; Yarmush, Martin L.


    Objective: In previous work, we demonstrated the development of a novel fusion protein containing stromal cell-derived growth factor-1 alpha juxtaposed to an elastin-like peptide (SDF1-ELP), which has similar bioactivity, but is more stable in elastase than SDF1. Herein, we compare the ability of a single topical application of SDF1-ELP to that of SDF1 in healing 1 × 1 cm excisional wounds in diabetic mice. Approach: Human Leukemia-60 cells were used to demonstrate the chemotactic potential of SDF1-ELP versus SDF1 in vitro. Human umbilical vascular endothelial cells were used to demonstrate the angiogenic potential of SDF1-ELP versus SDF1 in vitro. The bioactivity of SDF1-ELP versus SDF1 after incubation in ex-vivo diabetic wound fluid was compared. The in-vivo effectiveness of SDF1-ELP versus SDF1 was compared in diabetic mice wound model by monitoring for the number of CD31+ cells in harvested wound tissues. Results: SDF1-ELP promotes the migration of cells and induces vascularization similar to SDF1 in vitro. SDF1-ELP is more stable in wound fluids compared to SDF1. In vivo, SDF1-ELP induced a higher number of vascular endothelial cells (CD31+ cells) compared to SDF1 and other controls, suggesting increased vascularization. Innovation: While growth factors have been shown to improve wound healing, this strategy is largely ineffective in chronic wounds. In this work, we show that SDF1-ELP is a promising agent for the treatment of chronic skin wounds. Conclusion: The superior in vivo performance and stability of SDF1-ELP makes it a promising agent for the treatment of chronic skin wounds. PMID:28116224

  6. Epigallocatechin gallate inhibits endothelial exocytosis.

    Yamakuchi, Munekazu; Bao, Clare; Ferlito, Marcella; Lowenstein, Charles J


    Consumption of green tea is associated with a decrease in cardiovascular mortality. The beneficial health effects of green tea are attributed in part to polyphenols, organic compounds found in tea that lower blood pressure, reduce body fat, decrease LDL cholesterol, and inhibit inflammation. We hypothesized that epigallocatechin gallate (EGCG), the most abundant polyphenol in tea, inhibits endothelial exocytosis, the initial step in leukocyte trafficking and vascular inflammation. To test this hypothesis, we treated human umbilical-vein endothelial cells with EGCG and other polyphenols, and then measured endothelial exocytosis. We found that EGCG decreases endothelial exocytosis in a concentration-dependent manner, with the effects most prominent after 4 h of treatment. Other catechin polyphenols had no effect on endothelial cells. By inhibiting endothelial exocytosis, EGCG decreases leukocyte adherence to endothelial cells. In searching for the mechanism by which EGCG affects endothelial cells, we found that EGCG increases Akt phosphorylation, eNOS phosphorylation, and nitric oxide (NO) production. NOS inhibition revealed that NO mediates the anti-inflammatory effects of EGCG. Our data suggest that polyphenols can decrease vascular inflammation by increasing the synthesis of NO, which blocks endothelial exocytosis.

  7. Effect of anxiety and depression on endothelial function and inflammation degree of coronary heart disease patients with angina pectoris

    Lin Ni; Xiang-Yang Xia; Ka Han; Yong-Xin Wu


    Objective:To study the effect of anxiety and depression on endothelial function and inflammation degree of coronary heart disease patients with angina pectoris.Methods: 80 cases of patients diagnosed with angina pectoris of coronary heart disease in our hospital from May 2012 to August 2014 were enrolled for study; anxiety and depression were judged by anxiety subscale (HADS-a) and depression subscale (HADS-d). Endothelial progenitor cell and endothelial microparticle contents in peripheral blood as well as serum ET-1, CGRP, IL-6, IL-6R, IL-18, ADAMTS-1 and NO contents were detected.Results:EPC, NO and CGRP contents of angina pectoris patients with anxiety were lower than those of angina pectoris patients without anxiety, and EMP, ET-1, IL-6, IL-6R, IL-18 and ADAMTS-1 contents were higher than those of angina pectoris patients without anxiety; EPC, NO and CGRP contents of angina pectoris patients with depression were lower than those of angina pectoris patients without depression, and EMP, ET-1, IL-6, IL-6R, IL-18 and ADAMTS-1 contents were higher than those of angina pectoris patients without depression.Conclusions:Angina pectoris of coronary heart disease patients complicated with anxiety and depression have endothelial dysfunction and inflammatory reaction activation; endothelial dysfunction and inflammatory reaction activation are possible pathways that anxiety and depression cause the progression of coronary heart disease.

  8. Effector CD8(+) T cell-derived interleukin-10 enhances acute liver immunopathology.

    Fioravanti, Jessica; Di Lucia, Pietro; Magini, Diletta; Moalli, Federica; Boni, Carolina; Benechet, Alexandre Pierre; Fumagalli, Valeria; Inverso, Donato; Vecchi, Andrea; Fiocchi, Amleto; Wieland, Stefan; Purcell, Robert; Ferrari, Carlo; Chisari, Francis V; Guidotti, Luca G; Iannacone, Matteo


    Besides secreting pro-inflammatory cytokines, chemokines and effector molecules, effector CD8(+) T cells that arise upon acute infection with certain viruses have been shown to produce the regulatory cytokine interleukin (IL)-10 and, therefore, contain immunopathology. Whether the same occurs during acute hepatitis B virus (HBV) infection and role that IL-10 might play in liver disease is currently unknown. Mouse models of acute HBV pathogenesis, as well as chimpanzees and patients acutely infected with HBV, were used to analyse the role of CD8(+) T cell-derived IL-10 in liver immunopathology. Mouse HBV-specific effector CD8(+) T cells produce significant amounts of IL-10 upon in vivo antigen encounter. This is corroborated by longitudinal data in a chimpanzee acutely infected with HBV, where serum IL-10 was readily detectable and correlated with intrahepatic CD8(+) T cell infiltration and liver disease severity. Unexpectedly, mouse and human CD8(+) T cell-derived IL-10 was found to act in an autocrine/paracrine fashion to enhance IL-2 responsiveness, thus preventing antigen-induced HBV-specific effector CD8(+) T cell apoptosis. Accordingly, the use of mouse models of HBV pathogenesis revealed that the IL-10 produced by effector CD8(+) T cells promoted their own intrahepatic survival and, thus supported, rather than suppressed liver immunopathology. Effector CD8(+) T cell-derived IL-10 enhances acute liver immunopathology. Altogether, these results extend our understanding of the cell- and tissue-specific role that IL-10 exerts in immune regulation. Lay summary: Interleukin-10 is mostly regarded as an immunosuppressive cytokine. We show here that HBV-specific CD8(+) T cells produce IL-10 upon antigen recognition and that this cytokine enhances CD8(+) T cell survival. As such, IL-10 paradoxically promotes rather than suppresses liver disease. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  9. Cloning, expression and identification of an isoform of human stromal cell derived factor-1α



    Human stromal cell derived factor-1α (hSDF-1α), a chemotactic factor of stem cells, regulates inflammation, promotes the mobilization of stem cells and induces angiogenesis following ischemia. Six SDF-1 isoforms, SDF-1α, SDF-1β, SDF-1γ, SDF-1δ, SDF-1ε and SDF-1ϕ, which all contain a signal peptide at the N-terminus, have been reported. In the present study a special isoform of hSDF-1α is described that does not contain the N-terminal signal peptide sequence. The hSDF-1α gene was cloned with t...

  10. Preparation of Antheraea pernyi Silk Fibroin Microparticles through a Facile Electrospinning Method

    Xiufang Li


    Full Text Available The goal of this study was to fabricate Antheraea pernyi silk fibroin (ASF microparticles using electrospinning under mild processing conditions. To improve processability of the ASF solution, poly(ethylene oxide (PEO was used to regulate viscosity of ASF solution for electrospinning. It was found that the blend of ASF with PEO could form a bead-on-string structure with well spherical particles. Furthermore, aqueous ethanol and ultrasonic treatments could disrupt the nanofibrillar string structure between particles and ultimately produced water-insoluble ASF particles with submicron scale. Cell viability studies indicated that the ASF microparticles were nontoxic to EA926 cells. Moreover, fluorescent images based on FITC labeling showed that the ASF microparticles were easily uptaken by the cells. Aqueous-based electrospinning provides a potentially useful option for the fabrication of ASF microparticles based on this unique fibrous protein.

  11. Functionalised alginate flow seeding microparticles for use in Particle Image Velocimetry (PIV).

    Varela, Sylvana; Balagué, Isaac; Sancho, Irene; Ertürk, Nihal; Ferrando, Montserrat; Vernet, Anton


    Alginate microparticles as flow seeding fulfil all the requirements that are recommended for the velocity measurements in Particle Image Velocimetry (PIV). These spherical microparticles offer the advantage of being environmentally friendly, having excellent seeding properties and they can be produced via a very simple process. In the present study, the performances of alginate microparticles functionalised with a fluorescent dye, Rhodamine B (RhB), for PIV have been studied. The efficacy of fluorescence is appreciated in a number of PIV applications since it can boost the signal-to-noise ratio. Alginate microparticles functionalised with RhB have high emission efficiency, desirable match with fluid density and controlled size. The study of the particles behaviour in strong acid and basic solutions and ammonia is also included. This type of particles can be used for measurements with PIV and Planar Laser Induced Fluorescence (PLIF) simultaneously, including acid-base reactions.

  12. Probiotic and prebiotic-probiotic PEC microparticles for sustaining and enhancing intestinal probiotic growth.

    Harshitha, K; Kulkarni, P K; Vaghela, Rudra; Kumar Varma, V Naga Sravan; Deshpande, D Rohan; Hani, Umme


    The aim of the study was to develop and evaluate Polyelectrolyte complex (PEC) microparticles composing Lactobacillus Acidophilus (probiotic) and Fructo oligosaccharide-Lactobacillus Acidophilus (prebiotic-probiotic), for sustaining and enhancing intestinal growth of probiotic bacteria. Gum Karaya-Chitosan(GK-CH) was used to fabricate PEC microparticles by extrusion method. The prepared microparticles were characterized for FT-IR, DSC and particle size and evaluated for percentage yield, swelling, surface morphology, entrapment rate and further studied for influence of prebiotic over probiotic growth. The fabricated PEC microparticles composed of Probiotic and Prebiotic- Probiotic have exhibited sustainability of probiotic bacteria for 12 hrs in GIT conditions and presence of prebiotic in the preparation enhanced the probiotic cell growth. Hence, it can be concluded that PEC between GK-CH was found to be successful in sustaining cell release and presence of prebiotic was found to enhance the probiotic cell growth.

  13. Multipole Electrodynamic Ion Trap Geometries for Microparticle Confinement under Standard Ambient Temperature and Pressure Conditions

    Mihalcea, Bogdan M; Stan, Cristina; Visan, Gina T; Ganciu, Mihai; Filinov, Vladimir E; Lapitsky, Dmitry S; Deputatova, Lidiya V; Syrovatka, Roman A


    Trapping of microparticles and aerosols is of great interest for physics and chemistry. We report microparticle trapping in multipole linear Paul trap geometries, operating under Standard Ambient Temperature and Pressure (SATP) conditions. An 8-electrode and a 12-electrode linear trap geometries have been designed and tested with an aim to achieve trapping for larger number of particles and to study microparticle dynamical stability in electrodynamic fields. We report emergence of planar and volume ordered structures of the microparticles, depending on the a.c. trapping frequency and particle specific charge ratio. The electric potential within the trap was mapped using the electrolytic tank method. Particle dynamics was simulated using a stochastic Langevin equation. We emphasize extended regions of stable trapping with respect to quadrupole traps, as well as good agreement between experiment and numerical simulations.

  14. Distinct features of circulating microparticles and their relationship to clinical manifestations in systemic lupus erythematosus

    Nielsen, Christoffer T; Østergaard, Ole; Johnsen, Christina


    Characterization of the abundance, origin, and annexin V (AnxV)-binding capabilities of circulating microparticles (MPs) in SLE patients and healthy controls and to determine any associations with clinical parameters....

  15. Nanostructured Silica–Lipid Hybrid Microparticles: A Supersaturating Carrier for Water- and Lipid-resistant Compounds

    Tan, Angel; Prestidge, Clive


    Nanostructured silica–lipid hybrid (SLH) microparticles, which are fabricated based on Pickering emulsion templates, are reported to enhance the encapsulation efficiency of a weak base anthelmintic, albendazole (ABZ...

  16. Mosquito cell-derived West Nile virus replicon particles mimic arbovirus inoculum and have reduced spread in mice.

    Boylan, Brendan T; Moreira, Fernando R; Carlson, Tim W; Bernard, Kristen A


    Half of the human population is at risk of infection by an arthropod-borne virus. Many of these arboviruses, such as West Nile, dengue, and Zika viruses, infect humans by way of a bite from an infected mosquito. This infectious inoculum is insect cell-derived giving the virus particles distinct qualities not present in secondary infectious virus particles produced by infected vertebrate host cells. The insect cell-derived particles differ in the glycosylation of virus structural proteins and the lipid content of the envelope, as well as their induction of cytokines. Thus, in order to accurately mimic the inoculum delivered by arthropods, arboviruses should be derived from arthropod cells. Previous studies have packaged replicon genome in mammalian cells to produce replicon particles, which undergo only one round of infection, but no studies exist packaging replicon particles in mosquito cells. Here we optimized the packaging of West Nile virus replicon genome in mosquito cells and produced replicon particles at high concentration, allowing us to mimic mosquito cell-derived viral inoculum. These particles were mature with similar genome equivalents-to-infectious units as full-length West Nile virus. We then compared the mosquito cell-derived particles to mammalian cell-derived particles in mice. Both replicon particles infected skin at the inoculation site and the draining lymph node by 3 hours post-inoculation. The mammalian cell-derived replicon particles spread from the site of inoculation to the spleen and contralateral lymph nodes significantly more than the particles derived from mosquito cells. This in vivo difference in spread of West Nile replicons in the inoculum demonstrates the importance of using arthropod cell-derived particles to model early events in arboviral infection and highlights the value of these novel arthropod cell-derived replicon particles for studying the earliest virus-host interactions for arboviruses.

  17. Mosquito cell-derived West Nile virus replicon particles mimic arbovirus inoculum and have reduced spread in mice

    Boylan, Brendan T.; Moreira, Fernando R.; Carlson, Tim W.


    Half of the human population is at risk of infection by an arthropod-borne virus. Many of these arboviruses, such as West Nile, dengue, and Zika viruses, infect humans by way of a bite from an infected mosquito. This infectious inoculum is insect cell-derived giving the virus particles distinct qualities not present in secondary infectious virus particles produced by infected vertebrate host cells. The insect cell-derived particles differ in the glycosylation of virus structural proteins and the lipid content of the envelope, as well as their induction of cytokines. Thus, in order to accurately mimic the inoculum delivered by arthropods, arboviruses should be derived from arthropod cells. Previous studies have packaged replicon genome in mammalian cells to produce replicon particles, which undergo only one round of infection, but no studies exist packaging replicon particles in mosquito cells. Here we optimized the packaging of West Nile virus replicon genome in mosquito cells and produced replicon particles at high concentration, allowing us to mimic mosquito cell-derived viral inoculum. These particles were mature with similar genome equivalents-to-infectious units as full-length West Nile virus. We then compared the mosquito cell-derived particles to mammalian cell-derived particles in mice. Both replicon particles infected skin at the inoculation site and the draining lymph node by 3 hours post-inoculation. The mammalian cell-derived replicon particles spread from the site of inoculation to the spleen and contralateral lymph nodes significantly more than the particles derived from mosquito cells. This in vivo difference in spread of West Nile replicons in the inoculum demonstrates the importance of using arthropod cell-derived particles to model early events in arboviral infection and highlights the value of these novel arthropod cell-derived replicon particles for studying the earliest virus-host interactions for arboviruses. PMID:28187142

  18. Cord blood-circulating endothelial progenitors for treatment of vascular diseases.

    Lavergne, M; Vanneaux, V; Delmau, C; Gluckman, E; Rodde-Astier, I; Larghero, J; Uzan, G


    Adult peripheral blood (PB) endothelial progenitor cells (EPC) are produced in the bone marrow and are able to integrate vascular structures in sites of neoangiogenesis. EPCs thus represent a potential therapeutic tool for ischaemic diseases. However, use of autologous EPCs in cell therapy is limited by their rarity in adult PB. Cord blood (CB) contains more EPCs than PB, and they are functional after expansion. They form primary colonies that give rise to secondary colonies, each yielding more than 10(7) cells after few passages. The number of endothelial cells obtained from one unit of CB is compatible with potential clinical application. EPC colonies can be securely produced, expanded and cryopreserved in close culture devices and endothelial cells produced in these conditions are functional as shown in different in vitro and in vivo assays. As CB EPC-derived endothelial cells would be allogeneic to patients, it would be of interest to prepare them from ready-existing CB banks. We show that not all frozen CB units from a CB bank are able to generate EPC colonies in culture, and when they do so, number of colonies is lower than that obtained with fresh CB units. However, endothelial cells derived from frozen CB have the same phenotypical and functional properties than those derived from fresh CB. This indicates that CB cryopreservation should be improved to preserve integrity of stem cells other than haematopoietic ones. Feasibility of using CB for clinical applications will be validated in porcine models of ischaemia.

  19. Discovery and characterization of novel microRNAs during endothelial differentiation of human embryonic stem cells.

    Yoo, Jung Ki; Kim, Jumi; Choi, Seong-Jun; Noh, Hye Min; Kwon, Young Do; Yoo, Hanna; Yi, Hyo Seon; Chung, Hyung Min; Kim, Jin Kyeoung


    MicroRNAs (miRNAs) are small RNAs that participate in the regulation of genes associated with the differentiation and proliferation. In this study, 5 novel miRNAs were identified from human mesenchymal stem cells and characterized using various analyses. To investigate the potential functions associated with the regulation of cell differentiation, the differences in miRNA expression were examined in undifferentiated and differentiated human embryonic stem (ES) cells using reverse transcription (RT)-PCR analysis. Specifically, 3 miRNAs exhibited decreased expression levels in human umbilical vein endothelial cells (HUVECs) and endothelial cells derived from human ES cells. Putative target genes related to differentiation or maturation of endothelial cells were predicted by seed sequences of 2 novel miRNAs and analyzed for their expression via miRNA-mediated regulation using a luciferase assay. In HUVECs, CDH5 gene expression was directly repressed by hsa-miR-6086. Similarly, hsa-miR-6087 significantly downregulated endoglin expression. Therefore, the roles of these 2 miRNAs may be to directly suppress their target genes, popularly known as endothelial cell markers. Taken together, our results demonstrate that several novel miRNAs perform critical roles in human endothelial cell development.

  20. In Vitro Endothelialization Test of Biomaterials Using Immortalized Endothelial Cells.

    Ken Kono

    Full Text Available Functionalizing biomaterials with peptides or polymers that enhance recruitment of endothelial cells (ECs can reduce blood coagulation and thrombosis. To assess endothelialization of materials in vitro, primary ECs are generally used, although the characteristics of these cells vary among the donors and change with time in culture. Recently, primary cell lines immortalized by transduction of simian vacuolating virus 40 large T antigen or human telomerase reverse transcriptase have been developed. To determine whether immortalized ECs can substitute for primary ECs in material testing, we investigated endothelialization on biocompatible polymers using three lots of primary human umbilical vein endothelial cells (HUVEC and immortalized microvascular ECs, TIME-GFP. Attachment to and growth on polymer surfaces were comparable between cell types, but results were more consistent with TIME-GFP. Our findings indicate that TIME-GFP is more suitable for in vitro endothelialization testing of biomaterials.

  1. Synthesis of Flexible Aerogel Composites Reinforced with Electrospun Nanofibers and Microparticles for Thermal Insulation

    Huijun Wu; Yantao Chen; Qiliang Chen; Yunfei Ding; Xiaoqing Zhou; Haitao Gao


    Flexible silica aerogel composites in intact monolith of 12 cm were successfully fabricated by reinforcing SiO2 aerogel with electrospun polyvinylidene fluoride (PVDF) webs via electrospinning and sol-gel processing. Three electrospun PVDF webs with different microstructures (e.g., nanofibers, microparticles, and combined nanofibers and microparticles) were fabricated by regulating electrospinning parameters. The as-electrospun PVDF webs with various microstructures were impregnated into the ...

  2. Chitosan-DNA microparticles as mucosal delivery system:synthesis, characterization and release in vitro

    LI Yu-hong; FAN Min-wen; BIAN Zhuan; CHEN Zhi; ZHANG Qi; YANG Hai-rui


    Background Mucosal immunity is important to defense against dental caries. To enhance mucosal immunity, a DNA vaccine mucosal delivery system was prepared by encapsulating anticaries DNA vaccine (plasmid pGJA-P/VAX) in chitosan under optimal conditions and the characteristics of the microparticles was investigated. Furthermore, the release properties and protective action of microparticles for plasmid were studied in vitro.Methods Plasmid loaded chitosan microparticles were prepared by complex coacervation. Three factors, concentration of DNA, sodium sulfate, and the chitosan/DNA ratios in complexes [better expressed as N/P ratio: the number of poly nitrogen (N) per DNA phosphate (P)] influencing preparation were optimized by orthogonal test. The characteristics of microparticles were evaluated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). DNA release rate of microparticles in similar gastro fluid (SGF) or similar intestinal fluid (SIF) at 37℃ was determined by ultraviolet spectrophotometry.Results High encapsulation efficiency (96.8%) was obtained with chitosan microparticles made under optimal conditions of 50 mmol/L Na2SO4, 200 μg/ml DNA and N/P ratio of 4. The size of particles was about 4 to 6 μm. The encapsulation process did not destroy the integrity of DNA. When incubated with SIL, after a release of about 10% in the first 60 minutes, no further DNA was released during the following 180 minutes. When incubated with SGL, the microparticles released a small burst (about 11%) in the first 60 minutes, and then slowly released at a constant, but different rate.Conclusions These chitosan microparticles showed suitable characteristics in vitro for mucosal vaccination and are therefore a promising carrier system for DNA vaccine mucosal delivery.

  3. Regulatory T Cell-Enriching Microparticles for Promoting Vascularized Composite Allotransplant Survival


    AWARD NUMBER: W81XWH-15-1-0244 TITLE: Regulatory T Cell-Enriching Microparticles for Promoting Vascularized Composite Allotransplant Survival...2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Regulatory T Cell-Enriching Microparticles for Promoting Vascularized Composite Allotransplant Survival... trauma , sepsis/disease, cancer, and congenital defects. In most cases, current reconstructive strategies are sub-optimal or fail to provide optimal

  4. Double aperture focusing transducer for controlling microparticle motions in trapezoidal microchannels with surface acoustic waves

    Tan, Ming K.; Tjeung, Ricky; Ervin, Hannah; Yeo, Leslie Y.; Friend, James


    We present a method for controlling the motion of microparticles suspended in an aqueous solution, which fills in a microchannel fabricated into a piezoelectric substrate, using propagating surface acoustic waves. The cross-sectional shape of this microchannel is trapezoidal, preventing the formation of acoustic standing waves across the channel width and therefore allowing the steering of microparticles. The induced acoustic streaming transports these particles to eliminate the use of external pumps for fluid actuation.

  5. Volumetric initiation of gaseous detonation by radiant heating of suspended microparticles

    Efremov, V. P.; Ivanov, M. F.; Kiverin, A. D.; Yakovenko, I. S.


    The concept of detonation wave initiation in the local volume of a fuel-gas mixture containing suspended chemically neutral microparticles heated by radiant energy from an external source is proposed. Mechanisms of initiation of the combustion and detonation waves in a region of accumulation of the radiation- heated microparticles have been studied by numerical simulation methods. Criteria that determine geometric dimensions of a region of the two-phase medium, which are necessary for the initiation of detonation waves, are formulated.

  6. Experimental Validation of an Optical System for Interrogation of Dermally-Implanted Microparticle Sensors


    Dermally-implanted microparticle sensors are being developed for on-demand monitoring of blood sugar levels. For these to be deployed in vivo, a matched opto-electronic system for delivery of excitation, collection and analysis of escaping fluorescent signal is needed. Previous studies predicted the characteristics of fluorescence from microparticle sensors to facilitate design of hardware system. Based on the results of simulations, we designed and constructed the optical part of this opto-e...

  7. Magnetophoresis of diamagnetic microparticles in a weak magnetic field.

    Zhu, Gui-Ping; Hejiazan, Majid; Huang, Xiaoyang; Nguyen, Nam-Trung


    Magnetic manipulation is a promising technique for lab-on-a-chip platforms. The magnetic approach can avoid problems associated with heat, surface charge, ionic concentration and pH level. The present paper investigates the migration of diamagnetic particles in a ferrofluid core stream that is sandwiched between two diamagnetic streams in a uniform magnetic field. The three-layer flow is expanded in a circular chamber for characterisation based on imaging of magnetic nanoparticles and fluorescent microparticles. A custom-made electromagnet generates a uniform magnetic field across the chamber. In a relatively weak uniform magnetic field, the diamagnetic particles in the ferrofluid move and spread across the chamber. Due to the magnetization gradient formed by the ferrofluid, diamagnetic particles undergo negative magnetophoresis and move towards the diamagnetic streams. The effects of magnetic field strength and the concentration of diamagnetic particles are studied in detail.

  8. Coaxial electrospray of microparticles and nanoparticles for biomedical applications.

    Zhang, Leilei; Huang, Jiwei; Si, Ting; Xu, Ronald X


    Coaxial electrospray is an electrohydrodynamic process that produces multilayer microparticles and nanoparticles by introducing coaxial electrified jets. In comparison with other microencapsulation/nanoencapsulation processes, coaxial electrospray has several potential advantages such as high encapsulation efficiency, effective protection of bioactivity and uniform size distribution. However, process control in coaxial electrospray is challenged by the multiphysical nature of the process and the complex interplay of multiple design, process and material parameters. This paper reviews the previous works and the recent advances in design, modeling and control of a coaxial electrospray process. The review intends to provide general guidance for coaxial electrospray and stimulate further research and development interests in this promising microencapsulation/nanoencapsulation process.

  9. Controllable precipitation of naproxen micro-particles with different morphologies

    Peng Cheng; Kangkang Jin; Jing Cheng; Fang Yang; Zhigang Shen; Jianfeng Chen; Lixiong Wen


    A simple precipitation method was proposed to prepare naproxen micro-particles with different controllable morphologies,using capillary video microscopy to study the precipitation process.Different particle shapes were obtained including spherical,platelet-like,stick-like,needle-like,and butterfly-like,all in the micro-size range.It was found that the sizes and morphologies of the formed naproxen particles were sensitive to the nature and concentration of the added surfactant,and depended significantly on processing conditions such as temperature,stirring speed,and initial drug concentration.In addition,precipitation with different surfactant types and concentrations would not affect the crystal microstructure of the formed naproxen particles.

  10. Grain size record of microparticles in the Muztagata ice core

    WU; Guangjian; YAO; Tandong; XU; Baiqin; LI; Zheng; TIAN; Lide; DUAN; Keqin; WEN; Linke


    The dust transport and sediment characteristics are discussed based on analysis of microparticle size and size distribution in the Muztagata ice core at 6350 m a.s.l. The finer particles with diameter of 1―5μm are the dominant fraction in number, while middle and coarse particles mainly contribute to the total volume. The lognormal distribution characteristics can be seen for some high concentration samples, showing that model size and standard variation are greater than that in the Greenland ice cores. However, size-volume distribution of some low concentration samples is abnormal. Those distributions reflect the dust deposit process in high mountain glaciers at mid-low latitudes and show differences from those in polar ice sheet.

  11. Ultrasound-induced acoustophoretic motion of microparticles in three dimensions

    Muller, Peter Barkholt; Rossi, M.; Marín, Á. G.;


    We derive analytical expressions for the three-dimensional (3D) acoustophoretic motion of spherical microparticles in rectangular microchannels. The motion is generated by the acoustic radiation force and the acoustic streaming-induced drag force. In contrast to the classical theory of Rayleigh...... streaming in shallow, infinite, parallel-plate channels, our theory does include the effect of the microchannel side walls. The resulting predictions agree well with numerics and experimental measurements of the acoustophoretic motion of polystyrene spheres with nominal diameters of 0.537 and 5.33 μm. The 3......D particle motion was recorded using astigmatism particle tracking velocimetry under controlled thermal and acoustic conditions in a long, straight, rectangular microchannel actuated in one of its transverse standing ultrasound-wave resonance modes with one or two half-wavelengths. The acoustic...

  12. Magnetic microparticle aggregation for viscosity determination by MR.

    Hong, Rui; Cima, Michael J; Weissleder, Ralph; Josephson, Lee


    Micron-sized magnetic particles were induced to aggregate when placed in homogeneous magnetic fields, like those of MR imagers and relaxometers, and then spontaneously returned to their dispersed state when removed from the field. Associated with the aggregation and dispersion of the magnetic particles were time-dependent increases and decreases in the spin-spin relaxation time (T2) of the water. Magnetic nanoparticles, with far smaller magnetic moments per particle, did not undergo magnetically induced aggregation and exhibited time-independent values of T2. The rate of T2 change associated with magnetic microparticle aggregation was used to determine the viscosity of liquid samples, providing a method that can be of particular advantage for determining the viscosity of small volumes of potentially biohazardous samples of blood or blood plasma. (c) 2008 Wiley-Liss, Inc.

  13. Magnetic Microparticle Aggregation For Viscosity Determination By Magnetic Resonance

    Hong, Rui; Cima, Michael J.; Weissleder, Ralph; Josephson, Lee


    Micron-sized magnetic particles were induced to aggregate when placed in homogeneous magnetic fields, like those of magnetic resonance (MR) imagers and relaxometers, and then spontaneously returned to their dispersed state when removed from the field. Associated with the aggregation and dispersion of the magnetic particles were time dependent increases and decreases in the spin-spin relaxation time (T2) of the water. Magnetic nanoparticles, with far smaller magnetic moments per particle, did not undergo magnetically induced aggregation, and exhibited time independent values of T2. The rate of T2 change associated with magnetic micro-particle aggregation was used to determine the viscosity of liquid samples, providing a method that can be of particular advantage for determining the viscosity of small volumes of potentially biohazardous samples of blood or blood plasma. PMID:18306403

  14. Nano and microparticles emission during laser cleaning of stone

    Ostrowski, Roman; Marczak, Jan; Strzelec, Marek; Barcikowski, Stephan


    Air contaminants which emerge during laser ablation often cause health risks if released in the workplace and decrease laser cleaning efficiency if redeposited at the material surface. In addition, ultra-fine particles are generated if short laser pulses are applied. Consequently, a description of the nano and microparticle aerosol generation and the influence of the laser parameters, such as fluence and pulse energy, and type of material surface on the particle size distribution is given in the presented paper. The conducted experiments have shown that for applied laser fluences almost 80% of all emitted particles are in the nanoparticle size range of 30 - 100 nm. The high respirability of such particles can pose health risks, so suitable capture systems near to the processing zone or personal protective equipment such as respiratory masks are required.

  15. Numerical Simulation of Single Microparticle Trajectory in an Electrodynamic Balance

    冯昭华; 朱家骅; 杨雪峰; 夏素兰; 关国强; DavisE.J.


    By introducing Oseen's formula to describe the viscous drag force, a more complete motion equation for a charged microparticle levitated in an electrodynamic balance (EDB) has been put forward and solved numerically by the classic Runge-Kutta method in this paper. The theoretical results have firstly demonstrated the existence of the particle oscillations and their characteristics, especially of the springpoint oscillation at large amplitude .And through the comparisons of theoretical and experimental trajectories, the adopted motion equation has proved to be able to rigorously describe the particle motion in non-Stokes region--the shape of trajectory and frequencycharacteristics are fairlv consistent and the deviations of amnliturla c~n n~llzll~r ho lo~ th~n 1cIfr/~

  16. Distinct proteome pathology of circulating microparticles in systemic lupus erythematosus

    Østergaard, Ole; Nielsen, Christoffer Tandrup; Tanassi, Julia Tanas


    BACKGROUND: The pathogenesis of systemic lupus erythematosus (SLE) is poorly understood but has been linked to defective clearance of subcellular particulate material from the circulation. This study investigates the origin, formation, and specificity of circulating microparticles (MPs) in patients...... with SLE based on comprehensive MP proteome profiling using patients with systemic sclerosis (SSc) and healthy donors (HC) as controls. METHODS: We purified MPs from platelet-poor plasma using differential centrifugation of samples from SLE (n = 45), SSc (n = 38), and two sets of HC (n = 35, n = 25). MP......-MPs (which we propose to call luposomes) are highly specific for SLE, i.e. not found in MP preparations from HC or patients with another autoimmune, systemic disease, SSc. In SLE-MPs platelet proteins and mitochondrial proteins are significantly diminished, cytoskeletal proteins deranged, and glycolytic...

  17. Ultrasound-induced acoustophoretic motion of microparticles in three dimensions

    Muller, Peter B; Marin, Alvaro G; Barnkob, Rune; Augustsson, Per; Laurell, Thomas; Kaehler, Christian J; Bruus, Henrik


    We derive analytical expressions for the three-dimensional (3D) acoustophoretic motion of spherical microparticles in rectangular microchannels. The motion is generated by the acoustic radiation force and the acoustic streaming-induced drag force. In contrast to the classical theory of Rayleigh streaming in shallow, infinite, parallel-plate channels, our theory does include the effect of the microchannel side walls. The resulting predictions agree well with numerics and experimental measurements of the acoustophoretic motion of polystyrene spheres with nominal diameters of 0.537 um and 5.33 um. The 3D particle motion was recorded using astigmatism particle tracking velocimetry under controlled thermal and acoustic conditions in a long, straight, rectangular microchannel actuated in one of its transverse standing ultrasound-wave resonance modes with one or two half-wavelengths. The acoustic energy density is calibrated in situ based on measurements of the radiation dominated motion of large 5-um-diam particles...

  18. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza


    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments.

  19. Rho kinase inhibitor Y-27632 and Accutase dramatically increase mouse embryonic stem cell derivation.

    Zhang, Peng; Wu, Xinglong; Hu, Chunchao; Wang, Pengbo; Li, Xiangyun


    Although it has been 30 yr since the development of derivation methods for mouse embryonic stem (ES) cells, the biology of derivation of ES cells is poorly understood and the efficiency varies dramatically between cell lines. Recently, the Rho kinase inhibitor Y-27632 and the cell dissociation reagent Accutase were reported to significantly inhibit apoptosis of human ES cells during passaging. Therefore, in the current study, C57BL/6×129/Sv mouse blastocysts were used to evaluate the effect of the combination of the two reagents instead of using the conventional 129 line in mouse ES cell derivation. The data presented in this study suggests that the combination of Y-27632 and Accutase significantly increases the efficiency of mouse ES cell derivation; furthermore, no negative side effects were observed with Y-27632 and Accutase treatment. The newly established ES cell lines retain stable karyotype, surface markers expression, formed teratomas, and contributed to viable chimeras and germline transmission by tetraploid complementation assay. In addition, Y-27632 improved embryoid body formation of ES cells. During ES cell microinjection, Y-27632 prevented the formation of dissociation-induced cell blebs and facilitates the selection and the capture of intact cells. The methods presented in this study clearly demonstrate that inhibition of Rho kinase with Y-27632 and Accutase dissociation improve the derivation efficiently and reproducibility of mouse ES cell generation which is essential for reducing variability in the results obtained from different cell lines.

  20. Induced pluripotent stem cell-derived neural stem cell therapies for spinal cord injury

    Corinne A Lee-Kubli; Paul Lu


    The greatest challenge to successful treatment of spinal cord injury is the limited regenerative capacity of the central nervous system and its inability to replace lost neurons and severed axons following injury. Neural stem cell grafts derived from fetal central nervous system tissue or embryonic stem cells have shown therapeutic promise by differentiation into neurons and glia that have the potential to form functional neuronal relays across injured spinal cord segments. However, implementation of fetal-derived or embryonic stem cell-derived neural stem cell ther-apies for patients with spinal cord injury raises ethical concerns. Induced pluripotent stem cells can be generated from adult somatic cells and differentiated into neural stem cells suitable for therapeutic use, thereby providing an ethical source of implantable cells that can be made in an autologous fashion to avoid problems of immune rejection. This review discusses the therapeutic potential of human induced pluripotent stem cell-derived neural stem cell transplantation for treatment of spinal cord injury, as well as addressing potential mechanisms, future perspectives and challenges.

  1. Functional Properties of Human Stem Cell-Derived Neurons in Health and Disease

    Jason P. Weick


    Full Text Available Stem cell-derived neurons from various source materials present unique model systems to examine the fundamental properties of central nervous system (CNS development as well as the molecular underpinnings of disease phenotypes. In order to more accurately assess potential therapies for neurological disorders, multiple strategies have been employed in recent years to produce neuronal populations that accurately represent in vivo regional and transmitter phenotypes. These include new technologies such as direct conversion of somatic cell types into neurons and glia which may accelerate maturation and retain genetic hallmarks of aging. In addition, novel forms of genetic manipulations have brought human stem cells nearly on par with those of rodent with respect to gene targeting. For neurons of the CNS, the ultimate phenotypic characterization lies with their ability to recapitulate functional properties such as passive and active membrane characteristics, synaptic activity, and plasticity. These features critically depend on the coordinated expression and localization of hundreds of ion channels and receptors, as well as scaffolding and signaling molecules. In this review I will highlight the current state of knowledge regarding functional properties of human stem cell-derived neurons, with a primary focus on pluripotent stem cells. While significant advances have been made, critical hurdles must be overcome in order for this technology to support progression toward clinical applications.

  2. Stem cell-derived cell-sheets for connective tissue engineering.

    Neo, Puay Yong; Teh, Thomas Kok Hiong; Tay, Alex Sheng Ru; Asuncion, Maria Christine Tankeh; Png, Si Ning; Toh, Siew Lok; Goh, James Cho-Hong


    Cell-sheet technology involves the recovery of cells with its secreted ECM and cell-cell junctions intact, and thereby harvesting them in a single contiguous layer. Temperature changes coupled with a thermoresponsive polymer grafted culture plate surface are typically used to induce detachment of this cell-matrix layer by controlling the hydrophobicity and hydrophilicity properties of the culture surface. This review article details the genesis and development of this technique as a critical tissue-engineering tool, with a comprehensive discussion on connective tissue applications. This includes applications in the myocardial, vascular, cartilage, bone, tendon/ligament, and periodontal areas among others discussed. In particular, further focus will be given to the use of stem cells-derived cell-sheets, such as those involving bone marrow-derived and adipose tissue-derived mesenchymal stem cells. In addition, some of the associated challenges faced by approaches using stem cells-derived cell-sheets will also be discussed. Finally, recent advances pertaining to technologies forming, detaching, and manipulating cell-sheets will be covered in view of the potential impact they will have on shaping the way cell-sheet technology will be utilized in the future as a tissue-engineering technique.

  3. Decellularized Tissue and Cell-Derived Extracellular Matrices as Scaffolds for Orthopaedic Tissue Engineering

    Cheng, Christina W.; Solorio, Loran D.; Alsberg, Eben


    The reconstruction of musculoskeletal defects is a constant challenge for orthopaedic surgeons. Musculoskeletal injuries such as fractures, chondral lesions, infections and tumor debulking can often lead to large tissue voids requiring reconstruction with tissue grafts. Autografts are currently the gold standard in orthopaedic tissue reconstruction; however, there is a limit to the amount of tissue that can be harvested before compromising the donor site. Tissue engineering strategies using allogeneic or xenogeneic decellularized bone, cartilage, skeletal muscle, tendon and ligament have emerged as promising potential alternative treatment. The extracellular matrix provides a natural scaffold for cell attachment, proliferation and differentiation. Decellularization of in vitro cell-derived matrices can also enable the generation of autologous constructs from tissue specific cells or progenitor cells. Although decellularized bone tissue is widely used clinically in orthopaedic applications, the exciting potential of decellularized cartilage, skeletal muscle, tendon and ligament cell-derived matrices has only recently begun to be explored for ultimate translation to the orthopaedic clinic. PMID:24417915

  4. Gene expression profiling in multipotent DFAT cells derived from mature adipocytes

    Ono, Hiromasa [Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510 (Japan); Database Center for Life Science (DBCLS), Research Organization of Information and Systems (ROIS), Faculty of Engineering Bldg.12 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Oki, Yoshinao [Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510 (Japan); Bono, Hidemasa [Database Center for Life Science (DBCLS), Research Organization of Information and Systems (ROIS), Faculty of Engineering Bldg.12 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Kano, Koichiro, E-mail: [Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510 (Japan)


    Highlights: {yields} Adipocyte dedifferentiation is evident in a significant decrease in typical genes. {yields} Cell proliferation is strongly related to adipocyte dedifferentiation. {yields} Dedifferentiated adipocytes express several lineage-specific genes. {yields} Comparative analyses using publicly available datasets boost the interpretation. -- Abstract: Cellular dedifferentiation signifies the withdrawal of cells from a specific differentiated state to a stem cell-like undifferentiated state. However, the mechanism of dedifferentiation remains obscure. Here we performed comparative transcriptome analyses during dedifferentiation in mature adipocytes (MAs) to identify the transcriptional signatures of multipotent dedifferentiated fat (DFAT) cells derived from MAs. Using microarray systems, we explored similarly expressed as well as significantly differentially expressed genes in MAs during dedifferentiation. This analysis revealed significant changes in gene expression during this process, including a significant reduction in expression of genes for lipid metabolism concomitantly with a significant increase in expression of genes for cell movement, cell migration, tissue developmental processes, cell growth, cell proliferation, cell morphogenesis, altered cell shape, and cell differentiation. Our observations indicate that the transcriptional signatures of DFAT cells derived from MAs are summarized in terms of a significant decrease in functional phenotype-related genes and a parallel increase in cell proliferation, altered cell morphology, and regulation of the differentiation of related genes. A better understanding of the mechanisms involved in dedifferentiation may enable scientists to control and possibly alter the plasticity of the differentiated state, which may lead to benefits not only in stem cell research but also in regenerative medicine.

  5. Gene expression profiling in multipotent DFAT cells derived from mature adipocytes.

    Ono, Hiromasa; Oki, Yoshinao; Bono, Hidemasa; Kano, Koichiro


    Cellular dedifferentiation signifies the withdrawal of cells from a specific differentiated state to a stem cell-like undifferentiated state. However, the mechanism of dedifferentiation remains obscure. Here we performed comparative transcriptome analyses during dedifferentiation in mature adipocytes (MAs) to identify the transcriptional signatures of multipotent dedifferentiated fat (DFAT) cells derived from MAs. Using microarray systems, we explored similarly expressed as well as significantly differentially expressed genes in MAs during dedifferentiation. This analysis revealed significant changes in gene expression during this process, including a significant reduction in expression of genes for lipid metabolism concomitantly with a significant increase in expression of genes for cell movement, cell migration, tissue developmental processes, cell growth, cell proliferation, cell morphogenesis, altered cell shape, and cell differentiation. Our observations indicate that the transcriptional signatures of DFAT cells derived from MAs are summarized in terms of a significant decrease in functional phenotype-related genes and a parallel increase in cell proliferation, altered cell morphology, and regulation of the differentiation of related genes. A better understanding of the mechanisms involved in dedifferentiation may enable scientists to control and possibly alter the plasticity of the differentiated state, which may lead to benefits not only in stem cell research but also in regenerative medicine.

  6. In-vitro stem cell derived red blood cells for transfusion: are we there yet?

    Kim, Hyun Ok


    To date, the use of red blood cells (RBCs) produced from stem cells in vitro has not proved practical for routine transfusion. However, the perpetual and widespread shortage of blood products, problems related to transfusion-transmitted infections, and new emerging pathogens elicit an increasing demand for artificial blood. Worldwide efforts to achieve the goal of RBC production through stem cell research have received vast attention; however, problems with large-scale production and cost effectiveness have yet to prove practical usefulness. Some progress has been made, though, as cord blood stem cells and embryonic stem cells have shown an ability to differentiate and proliferate, and induced pluripotent stem cells have been shown to be an unlimited source for RBC production. However, transfusion of stem cell-derived RBCs still presents a number of challenges to overcome. This paper will summarize an up to date account of research and advances in stem cell-derived RBCs, delineate our laboratory protocol in producing RBCs from cord blood, and introduce the technological developments and limitations to current RBC production practices.

  7. Function of cancer cell-derived extracellular matrix in tumor progression

    Gao-Feng Xiong; Ren Xu


    Extracellular matrix (ECM) is an essential component of the tumor microenvironment. Cancer development and progression are associated with increased ECM deposition and crosslink. The chemical and physical signals elicited from ECM are necessary for cancer cell proliferation and invasion. It is well recognized that stromal cells are a major source of ECM proteins. However, recent studies showed that cancer cells are also an active and important component in ECM remodeling. Cancer cells deposit a signiifcant amount of collagen, ifbronectin, and tenascin C (TNC). Recent studies demonstrate that these cancer cell-derived ECM proteins enhance cancer cell survival and promote cancer cell colonization at distant sites. ECM-related enzymes and chaperone proteins, such as prolyl-4-hydroxylase, lysyl-hydroxylase, lysyl oxidase, and heat shock protein 47, are also highly expressed in cancer cells. Inhibition of these enzymes signiifcantly reduces cancer growth, invasion, and metastasis. These factors suggest that the cancer cell-derived ECM is crucial for cancer progression and metastasis. Therefore, targeting these ECM proteins and ECM-related enzymes is a potential strategy for cancer treatment.

  8. Melanoma cell-derived exosomes alter macrophage and dendritic cell functions in vitro.

    Marton, Annamaria; Vizler, Csaba; Kusz, Erzsebet; Temesfoi, Viktoria; Szathmary, Zsuzsa; Nagy, Krisztina; Szegletes, Zsolt; Varo, Gyorgy; Siklos, Laszlo; Katona, Robert L; Tubak, Vilmos; Howard, O M Zack; Duda, Erno; Minarovits, Janos; Nagy, Katalin; Buzas, Krisztina


    To clarify controversies in the literature of the field, we have purified and characterized B16F1 melanoma cell derived exosomes (mcd-exosomes) then we attempted to dissect their immunological activities. We tested how mcd-exosomes influence CD4+ T cell proliferation induced by bone marrow derived dendritic cells; we quantified NF-κB activation in mature macrophages stimulated with mcd-exosomes, and we compared the cytokine profile of LPS-stimulated, IL-4 induced, and mcd-exosome treated macrophages. We observed that mcd-exosomes helped the maturation of dendritic cells, enhancing T cell proliferation induced by the treated dendritic cells. The exosomes also activated macrophages, as measured by NF-κB activation. The cytokine and chemokine profile of macrophages treated with tumor cell derived exosomes showed marked differences from those induced by either LPS or IL-4, and it suggested that exosomes may play a role in the tumor progression and metastasis formation through supporting tumor immune escape mechanisms.

  9. Precipitation of fluticasone propionate microparticles using supercritical antisolvent

    A Vatanara


    Full Text Available ABSTRACT Background: The ability of supercritical fluids (SCFs, such as carbon dioxide, to dissolve and expand or extract organic solvents and as result lower their solvation power, makes it possible the use of SCFs for the precipitation of solids from organic solutions. The process could be the injection of a solution of the substrate in an organic solvent into a vessel which is swept by a supercritical fluid. The aim of this study was to ascertain the feasibility of supercritical processing to prepare different particulate forms of fluticasone propionate (FP, and to evaluate the influence of different liquid solvents and precipitation temperatures on the morphology, size and crystal habit of particles. Method: The solution of FP in organic solvents, was precipitated by supercritical carbon dioxide (SCCO2 at two pressure and temperature levels. Effects of process parameters on the physicochemical characteristics of harvested microparticles were evaluated. Results: Particle formation was observed only at the lower selected pressure, whilst at the higher pressure, no precipitation of particles was occurred due to dissolution of FP in supercritical antisolvent. The micrographs of the produced particles showed different morphologies for FP obtained from different conditions. The results of thermal analysis of the resulted particles showed that changes in the processing conditions didn't influence thermal behavior of the precipitated particles. Evaluation of the effect of temperature on the size distribution of particles showed that increase in the temperature from 40 oC to 50 oC, resulted in reduction of the mean particle size from about 30 µm to about 12 μm. ‍Conclusion: From the results of this study it may be concluded that, processing of FP by supercritical antisolvent could be an approach for production of diverse forms of the drug and drastic changes in the physical characteristics of microparticles could be achieved by changing the

  10. Carbon monoxide inhalation increases microparticles causing vascular and CNS dysfunction

    Xu, Jiajun; Yang, Ming [Department of Emergency Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Kosterin, Paul [Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Salzberg, Brian M. [Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Milovanova, Tatyana N.; Bhopale, Veena M. [Department of Emergency Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Thom, Stephen R., E-mail: [Department of Emergency Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States)


    We hypothesized that circulating microparticles (MPs) play a role in pro-inflammatory effects associated with carbon monoxide (CO) inhalation. Mice exposed for 1 h to 100 ppm CO or more exhibit increases in circulating MPs derived from a variety of vascular cells as well as neutrophil activation. Tissue injury was quantified as 2000 kDa dextran leakage from vessels and as neutrophil sequestration in the brain and skeletal muscle; and central nervous system nerve dysfunction was documented as broadening of the neurohypophysial action potential (AP). Indices of injury occurred following exposures to 1000 ppm for 1 h or to 1000 ppm for 40 min followed by 3000 ppm for 20 min. MPs were implicated in causing injuries because infusing the surfactant MP lytic agent, polyethylene glycol telomere B (PEGtB) abrogated elevations in MPs, vascular leak, neutrophil sequestration and AP prolongation. These manifestations of tissue injury also did not occur in mice lacking myeloperoxidase. Vascular leakage and AP prolongation were produced in naïve mice infused with MPs that had been obtained from CO poisoned mice, but this did not occur with MPs obtained from control mice. We conclude that CO poisoning triggers elevations of MPs that activate neutrophils which subsequently cause tissue injuries. - Highlights: • Circulating microparticles (MPs) increase in mice exposed to 100 ppm CO or more. • MPs are lysed by infusing the surfactant polyethylene glycol telomere B. • CO-induced MPs cause neutrophil activation, vascular leak and CNS dysfunction. • Similar tissue injuries do not arise with MPs obtained from air-exposed, control mice.

  11. Surface morphology of spray-dried nanoparticle-coated microparticles designed as an oral drug delivery system

    R. C. R. Beck


    Full Text Available This paper was devoted to studying the influence of coating material (nanocapsules or nanospheres, drug model (diclofenac, acid or salt and method of preparation on the morphological characteristics of nanoparticle-coated microparticles. The cores of microparticles were obtained by spray drying or evaporation and the coating was applied by spray drying. SEM analyses showed nanostructures coating the surface of nanocapsule-coated microparticles and a rugged surface for nanosphere-coated microparticles. The decrease in their surface areas was controlled by the nanoparticulated system, which was not dependent on microparticle size. Optical microscopy and X-ray analyses indicated that acid diclofenac crystals were present in formulations prepared with the acid as well as in the nanocapsule-coated microparticles prepared with the salt. The control of coating is dependent on the use of nanocapsules or nanospheres and independent of either the characteristics of the drug or the method of preparing the core.

  12. Enhancing microparticle internalization by nonphagocytic cells through the use of noncovalently conjugated polyethyleneimine.

    Patiño, Tania; Nogués, Carme; Ibáñez, Elena; Barrios, Leonardo


    Development of micro- and nanotechnology for the study of living cells, especially in the field of drug delivery, has gained interest in recent years. Although several studies have reported successful results in the internalization of micro- and nanoparticles in phagocytic cells, when nonphagocytic cells are used, the low internalization efficiency represents a limitation that needs to be overcome. It has been reported that covalent surface modification of micro- and nanoparticles increases their internalization rate. However, this surface modification represents an obstacle for their use as drug-delivery carriers. For this reason, the aim of the present study was to increase the capability for microparticle internalization of HeLa cells through the use of noncovalently bound transfection reagents: polyethyleneimine (PEI) Lipofectamine™ 2000 and FuGENE 6(®). Both confocal microscopy and flow cytometry techniques allowed us to precisely quantify the efficiency of microparticle internalization by HeLa cells, yielding similar results. In addition, intracellular location of microparticles was analyzed through transmission electron microscopy and confocal microscopy procedures. Our results showed that free PEI at a concentration of 0.05 mM significantly increased microparticle uptake by cells, with a low cytotoxic effect. As determined by transmission electron and confocal microscopy analyses, microparticles were engulfed by plasma-membrane projections during internalization, and 24 hours later they were trapped in a lysosomal compartment. These results show the potential use of noncovalently conjugated PEI in microparticle internalization assays.

  13. Control of Alginate Core Size in Alginate-Poly (Lactic-Co-Glycolic) Acid Microparticles

    Lio, Daniel; Yeo, David; Xu, Chenjie


    Core-shell alginate-poly (lactic-co-glycolic) acid (PLGA) microparticles are potential candidates to improve hydrophilic drug loading while facilitating controlled release. This report studies the influence of the alginate core size on the drug release profile of alginate-PLGA microparticles and its size. Microparticles are synthesized through double-emulsion fabrication via a concurrent ionotropic gelation and solvent extraction. The size of alginate core ranges from approximately 10, 50, to 100 μm when the emulsification method at the first step is homogenization, vortexing, or magnetic stirring, respectively. The second step emulsification for all three conditions is performed with magnetic stirring. Interestingly, although the alginate core has different sizes, alginate-PLGA microparticle diameter does not change. However, drug release profiles are dramatically different for microparticles comprising different-sized alginate cores. Specifically, taking calcein as a model drug, microparticles containing the smallest alginate core (10 μm) show the slowest release over a period of 26 days with burst release less than 1 %.

  14. Macroporous Composite Cryogels with Embedded Polystyrene Divinylbenzene Microparticles for the Adsorption of Toxic Metabolites from Blood

    Tanja Eichhorn


    Full Text Available Composite monolithic adsorbents were prepared by the incorporation of neutral polystyrene divinylbenzene (PS-DVB microparticles into macroporous polymer structures produced by cryogelation of agarose or poly(vinyl alcohol. The composite materials exhibited excellent flow-through properties. Scanning electron microscopy of the composite cryogels revealed that the microparticles were covered by thin films of poly(vinyl alcohol or agarose and thus were withheld in the monolith structure. Plain PS-DVB microparticles showed efficient adsorption of albumin-bound toxins related to liver failure (bilirubin and cholic acid and of cytokines (tumor necrosis factor-alpha and interleukin-6. The rates of adsorption and the amount of adsorbed factors were lower for the embedded microparticles as compared to the parent PS-DVB microparticles, indicating the importance of the accessibility of the adsorbent pores. Still, the macroporous composite materials showed efficient adsorption of albumin-bound toxins related to liver failure as well as efficient binding of cytokines, combined with good blood compatibility. Thus, the incorporation of microparticles into macroporous polymer structures may provide an option for the development of adsorption modules for extracorporeal blood purification.

  15. Bioresponsive Materials for Drug Delivery Based on Carboxymethyl Chitosan/Poly(γ-Glutamic Acid) Composite Microparticles.

    Yan, Xiaoting; Tong, Zongrui; Chen, Yu; Mo, Yanghe; Feng, Huaiyu; Li, Peng; Qu, Xiaosai; Jin, Shaohua


    Carboxymethyl chitosan (CMCS) microparticles are a potential candidate for hemostatic wound dressing. However, its low swelling property limits its hemostatic performance. Poly(γ-glutamic acid) (PGA) is a natural polymer with excellent hydrophilicity. In the current study, a novel CMCS/PGA composite microparticles with a dual-network structure was prepared by the emulsification/internal gelation method. The structure and thermal stability of the composite were determined by Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The effects of preparation conditions on the swelling behavior of the composite were investigated. The results indicate that the swelling property of CMCS/PGA composite microparticles is pH sensitive. Levofloxacin (LFX) was immobilized in the composite microparticles as a model drug to evaluate the drug delivery performance of the composite. The release kinetics of LFX from the composite microparticles with different structures was determined. The results suggest that the CMCS/PGA composite microparticles are an excellent candidate carrier for drug delivery.

  16. Starch, inulin and maltodextrin as encapsulating agents affect the quality and stability of jussara pulp microparticles.

    Lacerda, Ellen Cristina Quirino; Calado, Verônica Maria de Araújo; Monteiro, Mariana; Finotelli, Priscilla Vanessa; Torres, Alexandre Guedes; Perrone, Daniel


    The influence of encapsulating carbohydrates (EC) with varying properties on the technological and functional properties of jussara pulp microparticles produced by spray drying were evaluated using experimental design. Microparticles produced with sodium octenyl succinate (OSA) starch at 0.5 core to EC ratio and with mixtures of inulin and maltodextrin at 1.0 and 2.0 core to EC ratio showed darker color, and higher anthocyanins contents and antioxidant activity. Seven microparticles showing high water solubility and desirable surface morphology. Hygroscopicity (10.7% and 11.5%) and wettability (41s and 43s) were improved when OSA starch and mixtures of inulin and maltodextrin were used. The anthocyanins contents and color of the microparticles did not change when exposed to light at 50°C for 38days. Finally, microparticles produced at 1.0 core to EC ratio with 2/3 OSA starch, 1/6 inulin and 1/6 maltodextrin were selected. These microparticles may be applied as colorant in numerous foods, whilst adding prebiotic fiber and anthocyanins.

  17. Coated whey protein/alginate microparticles as oral controlled delivery systems for probiotic yeast.

    Hébrard, Géraldine; Hoffart, Valérie; Beyssac, Eric; Cardot, Jean-Michel; Alric, Monique; Subirade, Muriel


    Viable Saccharomyces boulardii, used as a biotherapeutic agent, was encapsulated in food-grade whey protein isolate (WP) and alginate (ALG) microparticles, in order to protect and vehicle them in gastrointestinal environment. Yeast-loaded microparticles with a WP/ALG ratio of 62/38 were produced with high encapsulation efficiency (95%) using an extrusion/cold gelation method and coated with ALG or WP by a simple immersion method. Swelling, yeast survival, WP loss and yeast release in simulated gastric and intestinal fluids (SGF and SIF, pH 1.2 and 7.5) with and without their respective digestive enzymes (pepsin and pancreatin) were investigated. In SGF, ALG network shrinkage limited enzyme diffusion into the WP/ALG matrix. Coated and uncoated WP/ALG microparticles were resistant in SGF even with pepsin. Survival of yeast cells in microparticles was 40% compared to 10% for free yeast cells and was improved to 60% by coating. In SIF, yeast cell release followed coated microparticle swelling with a desirable delay. Coated WP/ALG microparticles appear to have potential as oral delivery systems for Saccharomyces boulardii or as encapsulation means for probiotic cells in pharmaceutical or food processing applications.

  18. Physical Characterization of Mouse Deep Vein Thrombosis Derived Microparticles by Differential Filtration with Nanopore Filters

    Antonio Peramo


    Full Text Available With the objective of making advancements in the area of pro-thrombotic microparticle characterization in cardiovascular biology, we present a novel method to separate blood circulating microparticles using a membrane-based, nanopore filtration system. In this qualitative study, electron microscopy observations of these pro-thrombotic mouse microparticles, as well as mouse platelets and leukocytes obtained using a mouse inferior vena cava ligation model of deep-vein thrombosis are presented. In particular, we present mouse microparticle morphology and microstructure using SEM and TEM indicating that they appear to be mostly spherical with diameters in the 100 to 350 nm range. The nanopore filtration technique presented is focused on the development of novel methodologies to isolate and characterize blood circulating microparticles that can be used in conjunction with other methodologies. We believe that determination of microparticle size and structure is a critical step for the development of reliable assays with clinical or research application in thrombosis and it will contribute to the field of nanomedicine in thrombosis.

  19. Functionalized Raspberry-Like Microparticles obtained by Assembly of Nanoparticles during Electrospraying

    Cho, Eun Chul; Jeong, Unyong [Hanyang Univ., Seoul (Korea, Republic of); Hwang, Yoon Kyun [Yonsei Univ., Seoul (Korea, Republic of)


    The present study suggests a novel method to produce raspberry-like microparticles containing diverse functional materials inside. The raspberry-like microparticles were produced from a random assembly of uniformly-sized poly(methyl methacrylate) (PMMA) nanoparticles via electrospraying. The solution containing the PMMA nanoparticles were supplied through the inner nozzle and compressed air was emitted through the outer nozzle. The air supply helped fast evaporation of acetone, so it enabled copious amount of microparticles as dry powder. The microparticles were highly porous both on the surface and interiors, hence various materials with a function of UV-blocking (TiO{sub 2} nanoparticles and methoxyphenyl triazine) or anti-aging (ethyl(4-(2,3-dihydro-1H-indene-5-carboxyamido) benzoate)) were loaded in large amount (17 wt % versus PMMA). The surface and interior structures of the microparticles were dependent on the characteristics of functional materials. The results clearly suggest that the process to prepare the raspberry-like microparticles can be an excellent approach to generate functional microstructures.

  20. Preparation, Characterization and Properties of Alginate/Poly(γ-glutamic acid Composite Microparticles

    Zongrui Tong


    Full Text Available Alginate (Alg is a renewable polymer with excellent hemostatic properties and biocapability and is widely used for hemostatic wound dressing. However, the swelling properties of alginate-based wound dressings need to be promoted to meet the requirements of wider application. Poly(γ-glutamic acid (PGA is a natural polymer with high hydrophility. In the current study, novel Alg/PGA composite microparticles with double network structure were prepared by the emulsification/internal gelation method. It was found from the structure characterization that a double network structure was formed in the composite microparticles due to the ion chelation interaction between Ca2+ and the carboxylate groups of Alg and PGA and the electrostatic interaction between the secondary amine group of PGA and the carboxylate groups of Alg and PGA. The swelling behavior of the composite microparticles was significantly improved due to the high hydrophility of PGA. Influences of the preparing conditions on the swelling behavior of the composites were investigated. The porous microparticles could be formed while compositing of PGA. Thermal stability was studied by thermogravimetric analysis method. Moreover, in vitro cytocompatibility test of microparticles exhibited good biocompatibility with L929 cells. All results indicated that such Alg/PGA composite microparticles are a promising candidate in the field of wound dressing for hemostasis or rapid removal of exudates.

  1. Development of biodegradable methylprednisolone microparticles for treatment of articular pathology using a spray-drying technique.

    Tobar-Grande, Blanca; Godoy, Ricardo; Bustos, Paulina; von Plessing, Carlos; Fattal, Elias; Tsapis, Nicolas; Olave, Claudia; Gómez-Gaete, Carolina


    In this work, microparticles were prepared by spray-drying using albumin, chondroitin sulfate, and hyaluronic acid as excipients to create a controlled-release methylprednisolone system for use in inflammatory disorders such as arthritis. Scanning electron microscopy demonstrated that these microparticles were almost spherical, with development of surface wrinkling as the methylprednisolone load in the formulation was increased. The methylprednisolone load also had a direct influence on the mean diameter and zeta potential of the microparticles. Interactions between formulation excipients and the active drug were evaluated by x-ray diffraction, differential scanning calorimetry, and thermal gravimetric analysis, showing limited amounts of methylprednisolone in a crystalline state in the loaded microparticles. The encapsulation efficiency of methylprednisolone was approximately 89% in all formulations. The rate of methylprednisolone release from the microparticles depended on the initial drug load in the formulation. In vitro cytotoxic evaluation using THP-1 cells showed that none of the formulations prepared triggered an inflammatory response on release of interleukin-1β, nor did they affect cellular viability, except for the 9.1% methylprednisolone formulation, which was the maximum test concentration used. The microparticles developed in this study have characteristics amenable to a therapeutic role in inflammatory pathology, such as arthritis.

  2. Gastroresistant microparticles containing sodium alendronate prevent the bone loss in ovariectomized rats.

    Cruz, Letícia; Assumpção, Evelise; Andrade, Sérgio F; Conrado, Daniela J; Kulkamp, Irene C; Guterres, Sílvia S; Pohlmann, Adriana R


    Sodium alendronate, an antiresorptive drug, primarily used in the treatment of osteoporosis was encapsulated in blended microparticles composed of Eudragit S100 and Methocel K15M. The micropowder obtained by spray-drying technique was characterized in terms of its morphology, particle size, encapsulation efficiency and in vitro drug release. In vivo studies were carried out in order to evaluate the pharmacodynamic effect and the ulcerogenic activity of sodium alendronate-loaded microparticles after oral administration in rats. Drug encapsulation efficiency was close to 80% and particle mean diameter of 13.8 microm. SEM analysis showed spherical collapsed shape particles with smooth surface. At pH 1.2, in vitro experiments showed that <10% of the drug was released from the microparticles. At pH 6.8, the microparticles were able to prolong the sodium alendronate release for 12h. In vivo experiments carried out in ovariectomized rats showed bone mineral density significantly higher for the sodium alendronate-loaded microparticles than for the negative control groups. Furthermore, the microencapsulation of the drug showed a significant reduction in the ulcerative lesion index. In conclusion, the blended microparticles are excellent oral carriers for sodium alendronate since they were able to maintain the drug antiresorptive effect and to reduce the gastrointestinal drug toxicity.

  3. Cefazolin-loaded mesoporous silicon microparticles show sustained bactericidal effect against Staphylococcus aureus

    Iman K Yazdi


    Full Text Available Cefazolin is an antibiotic frequently used in preoperative prophylaxis of orthopedic surgery and to fight secondary infections post-operatively. Although its systemic delivery in a bulk or bolus dose is usually effective, the local and controlled release can increase its effectiveness by lowering dosages, minimizing total drug exposure, abating the development of antibiotic resistance and avoiding the cytotoxic effect. A delivery system based on mesoporous silicon microparticles was developed that is capable of efficiently loading and continuously releasing cefazolin over several days. The in vitro release kinetics from mesoporous silicon microparticles with three different nanopore sizes was evaluated, and minimal inhibitory concentration of cefazolin necessary to eliminate a culture of Staphylococcus aureus was identified to be 250 µg/mL. A milder toxicity toward mesenchymal stem cells was observed from mesoporous silicon microparticles over a 7-day period. Medium pore size-loaded mesoporous silicon microparticles exhibited long-lasting bactericidal properties in a zone inhibition assay while they were able to kill all the bacteria growing in suspension cultures within 24 h. This study demonstrates that the sustained release of cefazolin from mesoporous silicon microparticles provides immediate and long-term control over bacterial growth both in suspension and adhesion while causing minimal toxicity to a population of mesenchymal stem cell. Mesoporous silicon microparticles offer significant advantageous properties for drug delivery applications in tissue engineering as it favorably extends drug bioavailability and stability, while reducing concomitant cytotoxicity to the surrounding tissues.

  4. Development of HPMC and Eudragit S100 blended microparticles containing sodium pantoprazole.

    Raffin, R P; Colomé, L M; Haas, S E; Jornada, D S; Pohlmann, A R; Guterres, S S


    Pantoprazole is used in the treatment of acid related disorders and Helicobacter pylori infections. It is activated inside gastric parietal cells binding irreversibly to the H+/K(+)-ATPase. In this way, pantoprazole must be absorbed intact in gastro-intestinal tract, indicating that enteric delivery systems are required. The purpose of this study was to prepare pantoprazole-loaded microparticles by spray-drying using a blend of Eudragit S100 and HPMC, which can provide gastro-resistance and controlled release. Microparticles presented acceptable drug loading (120.4 mgg(-1)), encapsulation efficiency (92.3%), surface area (49.0 m2g(-1)), and particle size (11.3 microm). DSC analyses showed that the drug is molecularly dispersed in the microparticles, and in vivo anti-ulcer evaluation demonstrated that microparticles were effective in protecting stomach against ulceration. Microparticles were successfully tabletted using magnesium stearate. In vitro gastro-resistance study showed that microparticles stabilized pantoprazole in 62.0% and tablets in 97.5% and provided a controlled release of the drug.

  5. Fabrication of hydrophilic paclitaxel-loaded PLA-PEG-PLA microparticles via SEDS process

    Ping OUYANG; Yun-qing KANG; Guang-fu YIN; Zhong-bing HUANG; Ya-dong YAO; Xiao-ming LIAO


    In this work, chemically bonded poly(D, L-lactide)-polyethylene glycol-poly(D, L-lactide) (PLA-PEG-PLA) triblock copolymers with various PEG contents and PLA homopolymer were synthesized via melt polymerization, and were confirmed by FTIR and 1 H-NMR results. The molecular weight and polydispersity of the synthesized PLA and PLA-PEG-PLA copolymers were investigated by gel permeation chromatography. Hydro-philicity of the copolymers was identified by contact angle measurement. PLA-PEG-PLA and PLA microparticles loaded with and without PTX were then produced via solution enhanced dispersion by supercritical CO2 (SEDS) process. The effect of the PEG content on the particle size distribution, morphology, drug load, and encapsulation efficiency of the fabricated microparticles was also studied. Results indicate that PLA and PLA-PEG-PLA micropar-ticles all exhibit sphere-like shape with smooth surface, when PEG content is relatively low. The produced microparticles have narrow particle size distributions and small particle sizes. The drug load and encapsulation efficiency of the produced microparticles decreases with higher PEG content in the copolymer matrix. Moreover, high hydrophilicity is found when PEG is chemically attached to originally hydrophobic PLA, providing the produced drug-loaded microparticles with high hydrophi-licity, biocompatibility, and prolonged circulation time, which are considered of vital importance for vessel-circulating drug delivery system.

  6. Endothelial dysfunction: EDCF revisited

    PAUL M Vanhoutte


    Endothelial cells can initiate contraction (constriction) of the vascular smooth muscle cells that surround them. Such endothelium-dependent, acute increases in contractile tone can be due to the withdrawal of the production of nitric oxide, to the production of vasoconstrictor peptides (angiotensin Ⅱ, endothelin-1), to the formation of oxygen-derived free radicals(superoxide anions) and/or the release of vasoconstrictor metabolites of arachidonic acid. The latter have been termed endothelium-derived contracting factor (EDCF) as they can contribute to moment-to-moment changes in contractile activity of the underlying vascular smooth muscle cells. To judge from animal experiments, EDCF-mediated responses are exacerbated when the production of nitric oxide is impaired as well as by aging, spontaneous hypertension and diabetes. To judge from human studies, they contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive patients. Since EDCF causes vasoconstriction by activation of the TP-receptors on the vascular smooth muscle cells, selective antagonists at these receptors prevent endothelium-dependent contractions, and curtail the endothelial dysfunction in hypertension and diabetes.

  7. The endothelial border to health

    Hansen, Nina Wærling; Hansen, Anker Jon; Sams, Anette


    The endothelial cell (EC) layer constitutes a barrier that controls movements of fluid, solutes and cells between blood and tissue. Further, the endothelial layer regulates vascular tone and directs local humoral and cellular inflammatory processes. The strategic position makes it an important...... for several endothelial dysfunctions. There is also mounting epidemiological evidence that dietary intake of refined sugars is important for the development of a number of diseases beyond obesity and type 2 diabetes. Various diseases involving inflammatory and immunological components are accelerated...... extracellular proteins form epitopes for potential specific antibody formation upon interactions with reducing sugars. This paper reviews the endothelial metabolism, biology, inflammatory processes, physical barrier functions, and summarizes evidence that although stochastic in nature, endothelial responses...

  8. Polymer/bacteria composite nanofiber non-wovens by electrospinning of living bacteria protected by hydrogel microparticles.

    Gensheimer, Marco; Brandis-Heep, Astrid; Agarwal, Seema; Thauer, Rudolf K; Greiner, Andreas


    Physically crosslinked PVA-hydrogel microparticles are utilized for encapsulation of E. coli and M. luteus. The bacteria survive dry storage or treatment with bacteria-hostile organic solvents significantly better than unprotected bacteria as proven by culture-test experiments. The bacteria-protecting PVA microparticles are available for standard polymer-solution-processing techniques, as exemplarily shown by co-electrospinning of living bacteria encapsulated in dry PVA-hydrogel microparticles together with PVB-, PLLA-, and PCL-form organic solvents.

  9. Preparation of Biocatalytic Microparticles by Interfacial Self-Assembly of Enzyme-Nanoparticle Conjugates Around a Cross-Linkable Core.

    Andler, S M; Wang, L-S; Goddard, J M; Rotello, V M


    Rational design of hierarchical interfacial assembly of reusable biocatalytic microparticles is described in this chapter. Specifically, purified enzymes and functionalized nanoparticles are electrostatically assembled at the interface of cross-linked microparticles which are formed through ring opening metathesis polymerization. The diameters of microparticle assemblies average 10μm, and they show enhanced kinetic efficiency as well as improved stability against heat, pH, and solvent denaturation when compared to stabilities of the corresponding native enzymes.

  10. The perivascular phenotype and behaviors of dedifferentiated cells derived from human mature adipocytes.

    Song, Ning; Kou, Liang; Lu, Xiao-Wen; Sugawara, Atsunori; Shimizu, Yutaka; Wu, Min-Ke; Du, Li; Wang, Hang; Sato, Soh; Shen, Jie-Fei


    Derived from mature adipocytes, dedifferentiated fat (DFAT) cells represent a special group of multipotent cells. However, their phenotype and cellular nature remain unclear. Our study found that human DFAT cells adopted perivascular characteristics and behaviors. Flow cytometry and immunofluorescent staining revealed that human DFAT cells positively expressed markers highly related to perivascular cell lineages, such as CD140b, NG2 and desmin, but were negative for common endothelial markers, including CD31, CD34, and CD309. Furthermore, DFAT cells displayed vascular network formation ability in Matrigel, and they noticeably promoted and stabilized the vessel structures formed by human umbilical vascular endothelial cells (HUVECs) in vitro. These results provide novel evidence on the pericyte nature of human DFAT cells, further supporting the recent model for the perivascular origin of adult stem cells, in which tissue-specific progenitor cells in mesenchymal tissues associate with blood vessels, exhibiting perivascular characteristics and functions.

  11. Aerosol-Assisted Fast Formulating Uniform Pharmaceutical Polymer Microparticles with Variable Properties toward pH-Sensitive Controlled Drug Release

    Hong Lei


    Full Text Available Microencapsulation is highly attractive for oral drug delivery. Microparticles are a common form of drug carrier for this purpose. There is still a high demand on efficient methods to fabricate microparticles with uniform sizes and well-controlled particle properties. In this paper, uniform hydroxypropyl methylcellulose phthalate (HPMCP-based pharmaceutical microparticles loaded with either hydrophobic or hydrophilic model drugs have been directly formulated by using a unique aerosol technique, i.e., the microfluidic spray drying technology. A series of microparticles of controllable particle sizes, shapes, and structures are fabricated by tuning the solvent composition and drying temperature. It is found that a more volatile solvent and a higher drying temperature can result in fast evaporation rates to form microparticles of larger lateral size, more irregular shape, and denser matrix. The nature of the model drugs also plays an important role in determining particle properties. The drug release behaviors of the pharmaceutical microparticles are dependent on their structural properties and the nature of a specific drug, as well as sensitive to the pH value of the release medium. Most importantly, drugs in the microparticles obtained by using a more volatile solvent or a higher drying temperature can be well protected from degradation in harsh simulated gastric fluids due to the dense structures of the microparticles, while they can be fast-released in simulated intestinal fluids through particle dissolution. These pharmaceutical microparticles are potentially useful for site-specific (enteric delivery of orally-administered drugs.

  12. Muscle cell derived angiopoietin-1 contributes to both myogenesis and angiogenesis in the ischemic environment

    McClung, Joseph M.; Jessica eReinardy; Sarah eMueller; McCord, Timothy J.; Kontos, Christopher D.; Brown, David A; Hussain, Sabah N. A.; Schmidt, Cameron A.; Ryan, Terence E.; Green, Tom D.


    Recent strategies to treat peripheral arterial disease (PAD) have focused on stem cell based therapies, which are believed to result in local secretion of vascular growth factors. Little is known, however, about the role of ischemic endogenous cells in this context. We hypothesized that ischemic muscle cells (MC) are capable of secreting growth factors that act as potent effectors of the local cellular regenerative environment. Both muscle and endothelial cells (ECs) were subjected to experi...

  13. Proinflammatory Stimulation of Toll-Like Receptor 9 with High Dose CpG ODN 1826 Impairs Endothelial Regeneration and Promotes Atherosclerosis in Mice.

    Alexander O Krogmann

    Full Text Available Toll-like receptors (TLR of the innate immune system have been closely linked with the development of atherosclerotic lesions. TLR9 is activated by unmethylated CpG motifs within ssDNA, but also by CpG motifs in nucleic acids released during vascular apoptosis and necrosis. The role of TLR9 in vascular disease remains controversial and we sought to investigate the effects of a proinflammatory TLR9 stimulation in mice.TLR9-stimulation with high dose CpG ODN at concentrations between 6.25 nM to 30 nM induced a significant proinflammatory cytokine response in mice. This was associated with impaired reendothelialization upon acute denudation of the carotid and increased numbers of circulating endothelial microparticles, as a marker for amplified endothelial damage. Chronic TLR9 agonism in apolipoprotein E-deficient (ApoE-/- mice fed a cholesterol-rich diet increased aortic production of reactive oxygen species, the number of circulating endothelial microparticles, circulating sca-1/flk-1 positive cells, and most importantly augmented atherosclerotic plaque formation when compared to vehicle treated animals. Importantly, high concentrations of CpG ODN are required for these proatherogenic effects.Systemic stimulation of TLR9 with high dose CpG ODN impaired reendothelialization upon acute vascular injury and increased atherosclerotic plaque development in ApoE-/- mice. Further studies are necessary to fully decipher the contradictory finding of TLR9 agonism in vascular biology.

  14. Loss of signalling via Gα13 in germinal centre B-cell-derived lymphoma.

    Muppidi, Jagan R; Schmitz, Roland; Green, Jesse A; Xiao, Wenming; Larsen, Adrien B; Braun, Sterling E; An, Jinping; Xu, Ying; Rosenwald, Andreas; Ott, German; Gascoyne, Randy D; Rimsza, Lisa M; Campo, Elias; Jaffe, Elaine S; Delabie, Jan; Smeland, Erlend B; Braziel, Rita M; Tubbs, Raymond R; Cook, J R; Weisenburger, Dennis D; Chan, Wing C; Vaidehi, Nagarajan; Staudt, Louis M; Cyster, Jason G


    Germinal centre B-cell-like diffuse large B-cell lymphoma (GCB-DLBCL) is a common malignancy, yet the signalling pathways that are deregulated and the factors leading to its systemic dissemination are poorly defined. Work in mice showed that sphingosine-1-phosphate receptor-2 (S1PR2), a Gα12 and Gα13 coupled receptor, promotes growth regulation and local confinement of germinal centre B cells. Recent deep sequencing studies of GCB-DLBCL have revealed mutations in many genes in this cancer, including in GNA13 (encoding Gα13) and S1PR2 (refs 5,6, 7). Here we show, using in vitro and in vivo assays, that GCB-DLBCL-associated mutations occurring in S1PR2 frequently disrupt the receptor's Akt and migration inhibitory functions. Gα13-deficient mouse germinal centre B cells and human GCB-DLBCL cells were unable to suppress pAkt and migration in response to S1P, and Gα13-deficient mice developed germinal centre B-cell-derived lymphoma. Germinal centre B cells, unlike most lymphocytes, are tightly confined in lymphoid organs and do not recirculate. Remarkably, deficiency in Gα13, but not S1PR2, led to germinal centre B-cell dissemination into lymph and blood. GCB-DLBCL cell lines frequently carried mutations in the Gα13 effector ARHGEF1, and Arhgef1 deficiency also led to germinal centre B-cell dissemination. The incomplete phenocopy of Gα13- and S1PR2 deficiency led us to discover that P2RY8, an orphan receptor that is mutated in GCB-DLBCL and another germinal centre B-cell-derived malignancy, Burkitt's lymphoma, also represses germinal centre B-cell growth and promotes confinement via Gα13. These findings identify a Gα13-dependent pathway that exerts dual actions in suppressing growth and blocking dissemination of germinal centre B cells that is frequently disrupted in germinal centre B-cell-derived lymphoma.

  15. Microparticles containing guaraná extract obtained by spray-drying technique: development and characterization

    Traudi Klein


    Full Text Available AbstractGuaraná (Paullinia cupana Kunth, Sapindaceae is well known for its dietary and pharmaceutical potential, and the semipurified extract of guaraná shows antidepressant and panicolytic effects. However, the low solubility, bioavailability and stability of the semipurified extract limit its use as a component of pharmaceutical agents. Delivery of the semipurified extract in a microparticle form could help to optimize its stability. In this study, microparticles containing semipurified extract of guaraná were obtained by the spray-drying technique, using a combination of maltodextrin and gum arabic. The raw materials and microparticles produced were characterized by particle size analysis, differential scanning calorimetry, thermogravimetric analysis, and scanning electron microscopy. The drug content and antioxidant capacity were also evaluated. In vitrodissolution tests using flow cell dissolution apparatus, were carried out to investigate the influence of formulation parameters on the release of semipurified extract of guaraná from the microparticles. The spray-drying technique and the processing conditions selected gave satisfactory encapsulation efficiency (80–110% and product yield (55–60%. The mean diameter of microparticles was around 4.5 µm. The DPPH radical scavenging capacity demonstrated that microparticles can protect the semipurified extract of guaraná from the effect of high temperatures during the process maintained the antioxidant capacity. Differential scanning calorimetry results indicated an interaction between semipurified extract of guaraná and gum arabic: maltodextrin in the microparticles, and thermogravimetric analysis indicate that the profile curves of the microparticles are similar to the adjuvants used in drying, probably due to the higher proportion of adjuvants compared to semipurified extract of guaraná. In vitro dissolution tests demonstrate that all formulations complete dissolution within 60 min

  16. Influence of nanoporous poly(ether imide) particle extracts on human aortic endothelial cells (HAECs).

    Kumar, Reddi K; Basu, Sayantani; Lemke, Horst-Dieter; Jankowski, Joachim; Kratz, Karl; Lendlein, Andreas; Tetali, Sarada D


    Accumulated uremic toxins like indoxyl sulphate, hippuric acid and p-cresyl sulphates in renal failure patients stimulate proinflammatory effects, and consequently kidney and cardiovascular diseases. Low clearance rate of these uremic toxins from the blood of uremic patients by conventional techniques like hemodialysis is due to their strong covalent albumin binding (greater than 95%) and hydrophobic nature, which led to alternatives like usage of hydrophobic adsorber's in removing these toxins from the plasma of kidney patients. Polymers like polyethylene, polyurethane, polymethylmethacrylate, cellophane and polytetrafluoroethylene were already in use as substitutes for metal devices as dialysis membranes. Among new synthetic polymers, one such ideal adsorber material are highly porous microparticles of poly(ether imide) (PEI) with diameters in the range from 50-180μm and a porosity around 88±2% prepared by a spraying and coagulation process.It is essential to make sure that these synthetic polymers should not evoke any inflammatory or apoptotic response during dialysis. Therefore in our study we evaluated in vitro effect of PEI microparticle extracts in human aortic endothelial cells (HEACs) concerning toxicity, inflammation and apoptosis. No cell toxicity was observed when HAECs were treated with PEI extracts and inflammatory/apoptotic markers were not upregulated in presence of PEI extracts. Our results ensure biocompatibility of PEI particles and further hemocompatibility of particles will be tested.

  17. A boost of BMP4 accelerates the commitment of human embryonic stem cells to the endothelial lineage.

    Goldman, Orit; Feraud, Olivier; Boyer-Di Ponio, Julie; Driancourt, Catherine; Clay, Denis; Le Bousse-Kerdiles, Marie-Caroline; Bennaceur-Griscelli, Annelise; Uzan, Georges


    Embryoid bodies (EBs) generated during differentiation of human embryonic stem cells (hESCs) contain vascular-like structures, suggesting that commitment of mesoderm progenitors into endothelial cells occurs spontaneously. We showed that bone morphogenetic protein 4 (BMP4), an inducer of mesoderm, accelerates the peak expression of CD133/kinase insert domain-containing receptor (KDR) and CD144/KDR. Because the CD133(+)KDR(+) population could represent endothelial progenitors, we sorted them at day 7 and cultured them in endothelial medium. These cells were, however, unable to differentiate into endothelial cells. Under standard conditions, the CD144(+)KDR(+) population represents up to 10% of the total cells at day 12. In culture, these cells, if sorted, give rise to a homogeneous population with a morphology typical of endothelial cells and express endothelial markers. These endothelial cells derived from the day 12 sorted population were functional, as assessed by different in vitro assays. When EBs were stimulated by BMP4, the CD144(+)KDR(+) peak was shifted to day 7. Most of these cells, however, were CD31(-), becoming CD31(+) in culture. They then expressed von Willebrand factor and were functional. This suggests that, initially, the BMP4-boosted day 7, CD144(+)KDR(+)CD31(-) population represents immature endothelial cells that differentiate into mature endothelial cells in culture. The expression of OCT3/4, a marker of immaturity for hESCs decreases during EB differentiation, decreasing faster following BMP4 induction. We also show that BMP4 inhibits the global expression of GATA2 and RUNX1, two transcription factors involved in hemangioblast formation, at day 7 and day 12.

  18. Aortic calcified particles modulate valvular endothelial and interstitial cells.

    van Engeland, Nicole C A; Bertazzo, Sergio; Sarathchandra, Padmini; McCormack, Ann; Bouten, Carlijn V C; Yacoub, Magdi H; Chester, Adrian H; Latif, Najma

    Normal and calcified human valve cusps, coronary arteries, and aortae harbor spherical calcium phosphate microparticles of identical composition and crystallinity, and their role remains unknown. The objective was to examine the direct effects of isolated calcified particles on human valvular cells. Calcified particles were isolated from healthy and diseased aortae, characterized, quantitated, and applied to valvular endothelial cells (VECs) and interstitial cells (VICs). Cell differentiation, viability, and proliferation were analyzed. Particles were heterogeneous, differing in size and shape, and were crystallized as calcium phosphate. Diseased donors had significantly more calcified particles compared to healthy donors (Pparticles from healthy and diseased donors. VECs treated with calcified particles showed a significant decrease in CD31 and VE-cadherin and an increase in von Willebrand factor expression, Pparticles. Isolated calcified particles from human aortae are not innocent bystanders but induce a phenotypical and pathological change of VECs and VICs characteristic of activated and pathological cells. Therapy tailored to reduce these calcified particles should be investigated. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Electrophysiological properties and calcium handling of embryonic stem cell-derived cardiomyocytes

    Jae Boum Youm


    Full Text Available Embryonic stem cell-derived cardiomyocytes (ESC-CMs hold great interest in many fields of research including clinical applications such as stem cell and gene therapy for cardiac repair or regeneration. ESC-CMs are also used as a platform tool for pharmacological tests or for investigations of cardiac remodeling. ESC-CMs have many different aspects of morphology, electrophysiology, calcium handling, and bioenergetics compared with adult cardiomyocytes. They are immature in morphology, similar to sinus nodal-like in the electrophysiology, higher contribution of trans-sarcolemmal Ca2+ influx to Ca2+ handling, and higher dependence on anaerobic glycolysis. Here, I review a detailed electrophysiology and Ca2+ handling features of ESC-CMs during differentiation into adult cardiomyocytes to gain insights into how all the developmental changes are related to each other to display cardinal features of developing cardiomyocytes.

  20. Cryopreservation of Human Pluripotent Stem Cell-derived Cardiomyocytes: Strategies, Challenges, and Future Directions

    Preininger, Marcela K.; Singh, Monalisa; Xu, Chunhui


    In recent years, human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have emerged as a vital cell source for in vitro modeling of genetic cardiovascular disorders, drug screening, and in vivo cardiac regeneration research. Looking forward, the ability to efficiently cryopreserve hPSC-CMs without compromising their normal biochemical and physiologic functions will dramatically facilitate their various biomedical applications. Although working protocols for freezing, storing, and thawing hPSC-CMs have been established, the question remains as to whether they are optimal. In this chapter, we discuss our current understanding of cryopreservation appertaining to hPSC-CMs, and proffer key questions regarding the mechanical, contractile, and regenerative properties of cryopreserved hPSC-CMs. PMID:27837559

  1. Stimulation of human embryonic stem cell-derived cardiomyocytes on thin-film microelectrodes.

    Viitanen, Jouko; Heimala, Päivi; Hokkanen, Ari; Iljin, Kristiina; Kerkelä, Erja; Kolari, Kai; Kattelus, Hannu


    We describe successful long-term stimulation of human embryonic stem cell-derived cardiomyocyte clusters on thin-film microelectrode structures in vitro. Interdigitated electrode structures were constructed using plain titanium on glass as the electrode material. Titanium rapidly oxidizes in atmospheric conditions to produce an insulating TiO(χ) layer with high relative permittivity. Capacitive coupling to the incubation medium and to the cells adherent to the electrodes was still efficient, and the dielectric layer prevented electrolysis, allowing a wider window of possible stimulation amplitudes to be used, relative to conducting surfaces. A common hypothesis suggests that to achieve proper differentiation of electroactive cells from the stem cells electrical stimuli are also needed. Spontaneously beating cardiomyocyte clusters were seeded on the glass-electrode surfaces, and we successfully altered and resynchronized a clearly different beat interval. The new pace was reliably maintained for extended periods of several tens of minutes.

  2. NF-κB Regulates B-Cell-Derived Nerve Growth Factor Expression

    Klaus Heese; Noriko Inoue; Tohru Sawada


    In the mammalian brain, four neurotrophins have been identified: nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4/5 (NT-4/5). NGF exerts an important role in the development and functions of the central and peripheral nervous system. However, it has recently been documented that several types of immune cells, such as mast cells, lymphocytes, basophils and eosinophils, produce,store and release NGF. Accumulating preclinical and clinical data indicate that dysfunctions of NGF and the other neurotrophins may contribute to impaired immune responses and concentration of NGF frequently correlates with disease severity. Thus, the aim of this study was to elucidate the potential signaling mechanisms of cytokineneurotrophins interactions contributing to increased NGF levels. Our data show that the transcription factorNF-κB plays a pivotal role in regulating B-cell-derived NGF expression.

  3. A Method for Sectioning and Immunohistochemical Analysis of Stem Cell-Derived 3-D Organoids.

    Wiley, Luke A; Beebe, David C; Mullins, Robert F; Stone, Edwin M; Tucker, Budd A


    This unit describes a protocol for embedding, sectioning, and immunocytochemical analysis of pluripotent stem cell-derived 3-D organoids. Specifically, we describe a method to embed iPSC-derived retinal cups in low-melt agarose, acquire thick sections using a vibratome tissue slicer, and perform immunohistochemical analysis. This method includes an approach for antibody labeling that minimizes the amount of antibody needed for individual experiments and that utilizes large-volume washing to increase the signal-to-noise ratio, allowing for clean, high-resolution imaging of developing cell types. The universal methods described can be employed regardless of the type of pluripotent stem cell used and 3-D organoid generated. © 2016 by John Wiley & Sons, Inc.

  4. PDX1-engineered embryonic stem cell-derived insulin producing cells regulate hyperglycemia in diabetic mice

    Raikwar Sudhanshu P


    Full Text Available Abstract Background Type 1 diabetes can be treated by the transplantation of cadaveric whole pancreata or isolated pancreatic islets. However, this form of treatment is hampered by the chronic shortage of cadaveric donors. Embryonic stem (ES cell-derived insulin producing cells (IPCs offer a potentially novel source of unlimited cells for transplantation to treat type 1 and possibly type 2 diabetes. However, thus far, the lack of a reliable protocol for efficient differentiation of ES cells into IPCs has hindered the clinical exploitation of these cells. Methods To efficiently generate IPCs using ES cells, we have developed a double transgenic ES cell line R1Pdx1AcGFP/RIP-Luc that constitutively expresses pancreatic β-cell-specific transcription factor pancreatic and duodenal homeobox gene 1 (Pdx1 as well as rat insulin promoter (RIP driven luciferase reporter. We have established several protocols for the reproducible differentiation of ES cells into IPCs. The differentiation of ES cells into IPCs was monitored by immunostaining as well as real-time quantitative RT-PCR for pancreatic β-cell-specific markers. Pancreatic β-cell specific RIP became transcriptionally active following the differentiation of ES cells into IPCs and induced the expression of the luciferase reporter. Glucose stimulated insulin secretion by the ES cell-derived IPCs was measured by ELISA. Further, we have investigated the therapeutic efficacy of ES cell-derived IPCs to correct hyperglycemia in syngeneic streptozotocin (STZ-treated diabetic mice. The long term fate of the transplanted IPCs co-expressing luciferase in syngeneic STZ-induced diabetic mice was monitored by real time noninvasive in vivo bioluminescence imaging (BLI. Results We have recently demonstrated that spontaneous in vivo differentiation of R1Pdx1AcGFP/RIP-Luc ES cell-derived pancreatic endoderm-like cells (PELCs into IPCs corrects hyperglycemia in diabetic mice. Here, we investigated whether R1Pdx1Ac

  5. Effect of purine alkaloids on the proliferation of lettuce cells derived from protoplasts.

    Sasamoto, Hamako; Fujii, Yoshiharu; Ashihara, Hiroshi


    To investigate the ecological role of caffeine, theobromine, theophylline and paraxanthine, which are released from purine alkaloid forming plants, the effects of these purine alkaloids on the division and colony formation of lettuce cells were assessed at concentrations up to 1 mM. Five days after treatment with 500 μM caffeine, theophylline and paraxanthine, division of isolated protoplasts was significantly inhibited. Thirteen days treatment with > 250 μM caffeine had a marked inhibitory effect on the colony formation of cells derived from the protoplasts. Other purine alkaloids also acted as inhibitors. The order of the inhibition was caffeine > theophylline > paraxanthine > theobromine. These observations suggest that a relatively low concentration of caffeine is toxic for proliferation of plant cells. In contrast, theobromine is a weak inhibitor of proliferation. Possible allelopathic roles of purine alkaloids in natural ecosystems are discussed.

  6. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Afford New Opportunities in Inherited Cardiovascular Disease Modeling

    Daniel R. Bayzigitov


    Full Text Available Fundamental studies of molecular and cellular mechanisms of cardiovascular disease pathogenesis are required to create more effective and safer methods of their therapy. The studies can be carried out only when model systems that fully recapitulate pathological phenotype seen in patients are used. Application of laboratory animals for cardiovascular disease modeling is limited because of physiological differences with humans. Since discovery of induced pluripotency generating induced pluripotent stem cells has become a breakthrough technology in human disease modeling. In this review, we discuss a progress that has been made in modeling inherited arrhythmias and cardiomyopathies, studying molecular mechanisms of the diseases, and searching for and testing drug compounds using patient-specific induced pluripotent stem cell-derived cardiomyocytes.

  7. Myeloid and T Cell-Derived TNF Protects against Central Nervous System Tuberculosis

    Hsu, Nai-Jen; Francisco, Ngiambudulu M.; Keeton, Roanne; Allie, Nasiema; Quesniaux, Valérie F. J.; Ryffel, Bernhard; Jacobs, Muazzam


    Tuberculosis of the central nervous system (CNS-TB) is a devastating complication of tuberculosis, and tumor necrosis factor (TNF) is crucial for innate immunity and controlling the infection. TNF is produced by many cell types upon activation, in particularly the myeloid and T cells during neuroinflammation. Here we used mice with TNF ablation targeted to myeloid and T cell (MT-TNF−/−) to assess the contribution of myeloid and T cell-derived TNF in immune responses during CNS-TB. These mice exhibited impaired innate immunity and high susceptibility to cerebral Mycobacterium tuberculosis infection, a similar phenotype to complete TNF-deficient mice. Further, MT-TNF−/− mice were not able to control T cell responses and cytokine/chemokine production. Thus, our data suggested that collective TNF production by both myeloid and T cells are required to provide overall protective immunity against CNS-TB infection. PMID:28280495

  8. Genetic strategies to investigate neuronal circuit properties using stem cell-derived neurons

    Isabella eGarcia


    Full Text Available The mammalian brain is anatomically and functionally complex, and prone to diverse forms of injury and neuropathology. Scientists have long strived to develop cell replacement therapies to repair damaged and diseased nervous tissue. However, this goal has remained unrealized for various reasons, including nascent knowledge of neuronal development, the inability to track and manipulate transplanted cells within complex neuronal networks, and host graft rejection. Recent advances in embryonic stem cell (ESC and induced pluripotent stem cell (iPSC technology, alongside novel genetic strategies to mark and manipulate stem cell-derived neurons now provide unprecedented opportunities to investigate complex neuronal circuits in both healthy and diseased brains. Here, we review current technologies aimed at generating and manipulating neurons derived from ESCs and iPSCs towards investigation and manipulation of complex neuronal circuits, ultimately leading to the design and development of novel cell-based therapeutic approaches.

  9. Induced pluripotent stem cell-derived cardiomyocytes: boutique science or valuable arrhythmia model?

    Knollmann, Björn C


    This article reviews the strengths and limitations of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) as models of cardiac arrhythmias. Specifically, the article attempts to answer the following questions: Which clinical arrhythmias can be modeled by iPSC-CM? How well can iPSC-CM model adult ventricular myocytes? What are the strengths and limitations of published iPSC-CM arrhythmia models? What new mechanistic insight has been gained? What is the evidence that would support using iPSC-CM to personalize antiarrhythmic drug therapy? The review also discusses the pros and cons of using the iPSC-CM technology for modeling specific genetic arrhythmia disorders, such as long QT syndrome, Brugada Syndrome, or Catecholaminergic Polymorphic Ventricular Tachycardia.

  10. Cross-Talk between CLL Cells and Bone Marrow Endothelial Cells: Role of Signal Transducer and Activator of Transcription-3

    Badoux, Xavier; Bueso-Ramos, Carlos; Harris, David; Li, Ping; Liu, Zhiming; Burger, Jan; O’Brien, Susan; Ferrajoli, Alessandra; Keating, Michael J.; Estrov, Zeev


    Summary Chronic lymphocytic leukemia (CLL) bone marrow is characterized by increased angiogenesis. However, the molecular mediators of neovascularization and the biological significance of increased endothelial cell proliferation in CLL require further investigation. Because signal transducer and activator of transcription (STAT)-3 is constitutively activated in CLL we studied the role of STAT3 in modulating vascular endothelial growth factor (VEGF) expression and the effect of vascular endothelial cells on CLL cells. Using chromatin immunoprecipitation (ChIP) we found that anti-STAT3 antibodies immunoprecipitated DNA of STAT3, VEGF and other STAT3-regulated genes. In addition, STAT3-short interfering RNA significantly reduced mRNA levels of VEGF in CLL cells suggesting that STAT3 induces VEGF expression in CLL. Remarkably, bone marrow CLL cells expressed high levels of VEGF and high VEGF levels were detected in the plasma of patients with untreated CLL and correlated with white blood cell count. CLL bone marrow biopsies revealed increased microvascular density and attachment of CLL cells to endothelial cells. Co-culture of CLL and human umbilical vein endothelial cells (HUVEC) cells showed a similar attachment. Furthermore, co-culture studies with HUVEC showed that HUVEC protected CLL cells from spontaneous apoptosis by direct cell-to-cell contact as assessed by flow cytometry using Annexin V. Our data suggest that constitutively activated STAT3 induces VEGF production by CLL cells and CLL cells derive a survival advantage from endothelial cells via cell-to cell contact. PMID:21733558

  11. Reorganization of endothelial cord-like structures on basement membrane complex (Matrigel): involvement of transforming growth factor beta 1.

    Kuzuya, M; Kinsella, J L


    The formation of capillary-like network structures by cultured vascular endothelial cells on reconstituted basement membrane matrix, Matrigel, models endothelial cell differentiation, the final step of angiogenesis (Kubota et al., 1988; Grant et al., 1989). When endothelial cells derived from bovine aorta and brain capillaries were plated on Matrigel, DNA synthesis was suppressed and a network of capillary-like structures rapidly formed in 8-12 h. With time, the network broke down, resulting in dense cellular cords radiating from multiple cellular clusters in 16-24 h. Finally, multicellular aggregates of cells were formed as the network underwent further retraction. Network regression was prevented when either dithiothreitol (DTT) or anti-TGF-beta 1 antibodies were added during the assay. The addition of exogenous TGF-beta 1 promoted the regression of endothelial cells into the clusters. This response to TGF-beta 1 was blocked by potent serine threonine protein kinase inhibitors, H-7 and HA100. TGF-beta 1 was released from polymerized Matrigel by incubation with Dulbecco's modified eagle's medium (DMEM) in the absence of cells. The Matrigel-conditioned DMEM inhibited endothelial DNA synthesis even in the presence of anti-TGF-beta 1 antibodies. These results suggest that TGF-beta 1 and possibly other soluble factors from Matrigel may be important for differentiation and remodeling of endothelial cells in a capillary network with possible implications for wound healing and development.

  12. Endothelial dysfunction in morbid obesity.

    Mauricio, Maria Dolores; Aldasoro, Martin; Ortega, Joaquin; Vila, José María


    Morbid obesity is a chronic multifunctional disease characterized by an accumulation of fat. Epidemiological studies have shown that obesity is associated with cardiovascular and metabolic disorders. Endothelial dysfunction, as defined by an imbalance between relaxing and contractile endothelial factors, plays a central role in the pathogenesis of these cardiometabolic diseases. Diminished bioavailability of nitric oxide (NO) contributes to endothelial dysfunction and impairs endothelium- dependent vasodilatation. But this is not the only mechanism that drives to endothelial dysfunction. Obesity has been associated with a chronic inflammatory process, atherosclerosis, and oxidative stress. Moreover levels of asymmetrical dimethyl-L-arginine (ADMA), an endogenous inhibitor of endothelial nitric oxide synthase (eNOS), are elevated in obesity. On the other hand, increasing prostanoid-dependent vasoconstriction and decreasing vasodilator prostanoids also lead to endothelial dysfunction in obesity. Other mechanisms related to endothelin-1 (ET-1) or endothelium derived hyperpolarizing factor (EDHF) have been proposed. Bariatric surgery (BS) is a safe and effective means to achieve significant weight loss, but its use is limited only to patients with severe obesity including morbid obesity. BS also proved efficient in endothelial dysfunction reduction improving cardiovascular and metabolic comorbidities associated with morbid obesity such as diabetes, coronary artery disease, nonalcoholic fatty liver disease and cancer. This review will provide a brief overview of the mechanisms that link obesity with endothelial dysfunction, and how weight loss is a cornerstone treatment for cardiovascular comorbidities obesity-related. A better understanding of the mechanisms of obesity-induced endothelial dysfunction may help develop new therapeutic strategies to reduce cardiovascular morbidity and mortality.

  13. Rett syndrome induced pluripotent stem cell-derived neurons reveal novel neurophysiological alterations.

    Farra, N; Zhang, W-B; Pasceri, P; Eubanks, J H; Salter, M W; Ellis, J


    Rett syndrome (RTT) is a neurodevelopmental autism spectrum disorder caused by mutations in the methyl-CpG-binding protein 2 (MECP2) gene. Here, we describe the first characterization and neuronal differentiation of induced pluripotent stem (iPS) cells derived from Mecp2-deficient mice. Fully reprogrammed wild-type (WT) and heterozygous female iPS cells express endogenous pluripotency markers, reactivate the X-chromosome and differentiate into the three germ layers. We directed iPS cells to produce glutamatergic neurons, which generated action potentials and formed functional excitatory synapses. iPS cell-derived neurons from heterozygous Mecp2(308) mice showed defects in the generation of evoked action potentials and glutamatergic synaptic transmission, as previously reported in brain slices. Further, we examined electrophysiology features not yet studied with the RTT iPS cell system and discovered that MeCP2-deficient neurons fired fewer action potentials, and displayed decreased action potential amplitude, diminished peak inward currents and higher input resistance relative to WT iPS-derived neurons. Deficiencies in action potential firing and inward currents suggest that disturbed Na(+) channel function may contribute to the dysfunctional RTT neuronal network. These phenotypes were additionally confirmed in neurons derived from independent WT and hemizygous mutant iPS cell lines, indicating that these reproducible deficits are attributable to MeCP2 deficiency. Taken together, these results demonstrate that neuronally differentiated MeCP2-deficient iPS cells recapitulate deficits observed previously in primary neurons, and these identified phenotypes further illustrate the requirement of MeCP2 in neuronal development and/or in the maintenance of normal function. By validating the use of iPS cells to delineate mechanisms underlying RTT pathogenesis, we identify deficiencies that can be targeted for in vitro translational screens.

  14. Mesenchymal stem cell derived hematopoietic cells are permissive to HIV-1 infection

    Mondal Debasis


    Full Text Available Abstract Background Tissue resident mesenchymal stem cells (MSCs are multipotent, self-renewing cells known for their differentiation potential into cells of mesenchymal lineage. The ability of single cell clones isolated from adipose tissue resident MSCs (ASCs to differentiate into cells of hematopoietic lineage has been previously demonstrated. In the present study, we investigated if the hematopoietic differentiated (HD cells derived from ASCs could productively be infected with HIV-1. Results HD cells were generated by differentiating clonally expanded cultures of adherent subsets of ASCs (CD90+, CD105+, CD45-, and CD34-. Transcriptome analysis revealed that HD cells acquire a number of elements that increase their susceptibility for HIV-1 infection, including HIV-1 receptor/co-receptor and other key cellular cofactors. HIV-1 infected HD cells (HD-HIV showed elevated p24 protein and gag and tat gene expression, implying a high and productive infection. HD-HIV cells showed decreased CD4, but significant increase in the expression of CCR5, CXCR4, Nef-associated factor HCK, and Vpu-associated factor BTRC. HIV-1 restricting factors like APOBEC3F and TRIM5 also showed up regulation. HIV-1 infection increased apoptosis and cell cycle regulatory genes in HD cells. Although undifferentiated ASCs failed to show productive infection, HIV-1 exposure increased the expression of several hematopoietic lineage associated genes such as c-Kit, MMD2, and IL-10. Conclusions Considering the presence of profuse amounts of ASCs in different tissues, these findings suggest the possible role that could be played by HD cells derived from ASCs in HIV-1 infection. The undifferentiated ASCs were non-permissive to HIV-1 infection; however, HIV-1 exposure increased the expression of some hematopoietic lineage related genes. The findings relate the importance of ASCs in HIV-1 research and facilitate the understanding of the disease process and management strategies.

  15. clickECM: Development of a cell-derived extracellular matrix with azide functionalities.

    Ruff, S M; Keller, S; Wieland, D E; Wittmann, V; Tovar, G E M; Bach, M; Kluger, P J


    In vitro cultured cells produce a complex extracellular matrix (ECM) that remains intact after decellularization. The biological complexity derived from the variety of distinct ECM molecules makes these matrices ideal candidates for biomaterials. Biomaterials with the ability to guide cell function are a topic of high interest in biomaterial development. However, these matrices lack specific addressable functional groups, which are often required for their use as a biomaterial. Due to the biological complexity of the cell-derived ECM, it is a challenge to incorporate such functional groups without affecting the integrity of the biomolecules within the ECM. The azide-alkyne cycloaddition (click reaction, Huisgen-reaction) is an efficient and specific ligation reaction that is known to be biocompatible when strained alkynes are used to avoid the use of copper (I) as a catalyst. In our work, the ubiquitous modification of a fibroblast cell-derived ECM with azides was achieved through metabolic oligosaccharide engineering by adding the azide-modified monosaccharide Ac4GalNAz (1,3,4,6-tetra-O-acetyl-N-azidoacetylgalactosamine) to the cell culture medium. The resulting azide-modified network remained intact after removing the cells by lysis and the molecular structure of the ECM proteins was unimpaired after a gentle homogenization process. The biological composition was characterized in order to show that the functionalization does not impair the complexity and integrity of the ECM. The azides within this "clickECM" could be accessed by small molecules (such as an alkyne-modified fluorophore) or by surface-bound cyclooctynes to achieve a covalent coating with clickECM.

  16. A cloned toy poodle produced from somatic cells derived from an aged female dog.

    Jang, G; Hong, S G; Oh, H J; Kim, M K; Park, J E; Kim, H J; Kim, D Y; Lee, B C


    To date, dogs have been cloned with somatic cell nuclear transfer (SCNT), using donor cells derived from large-breed dogs 2 months to 3 years of age. The objective of the present study was to use SCNT to produce a small-breed dog from ear fibroblasts of an aged poodle, using large-breed oocyte donors and surrogate females, and to determine the origin of its mitochondrial DNA (mtDNA) and the length of its telomeres. Oocytes were derived from large-breed donors, matured in vivo, collected by flushing oviducts, and reconstructed with somatic cells derived from an aged (14-year-old) female toy poodle. Oocytes and donor cells were fused by electric stimuli, activated chemically, and transferred into the oviducts of large-breed recipient females. Overall, 358 activated couplets were surgically transferred into the oviducts of 20 recipient dogs. Two recipients became pregnant; only one maintained pregnancy to term, and a live puppy (weighing 190 g) was delivered by Caesarean section. The cloned poodle was phenotypically and genetically identical to the nuclear donor dog; however, its mtDNA was from the oocyte donor, and its mean telomere length was not significantly different from that of the nuclear donor. In summary, we demonstrated that a small-breed dog could be cloned by transferring activated couplets produced by fusion of somatic cells from a small-breed, aged donor female with enucleated in-vivo-matured oocytes of large-breed females, and transferred into the oviduct of large-breed