WorldWideScience

Sample records for endosomal membrane traffic

  1. Membrane tethering complexes in the endosomal system

    Directory of Open Access Journals (Sweden)

    Anne eSpang

    2016-05-01

    Full Text Available Vesicles that are generated by endocytic events at the plasma membrane are destined to early endosomes. A prerequisite for proper fusion is the tethering of two membrane entities. Tethering of vesicles to early endosomes is mediated by the CORVET complex, while fusion of late endosomes with lysosomes depends on the HOPS complex. Recycling through the TGN and to the plasma membrane is facilitated by the GARP and EARP complexes, respectively. However, there are other tethering functions in the endosomal system as there are multiple pathways through which proteins can be delivered from endosomes to either the TGN or the plasma membrane. Furthermore, complexes that may be part of novel tethering complexes have been recently identified. Thus it is likely that more tethering factors exist. In this review, I will provide an overview of different tethering complexes of the endosomal system and discuss how they may provide specificity in membrane traffic.

  2. Pannexin2 oligomers localize into endosomal vesicles in mammalian cells while Pannexin1 channels traffic to the plasma membrane

    Directory of Open Access Journals (Sweden)

    Daniela eBoassa

    2015-02-01

    Full Text Available Pannexin2 (Panx2 is the largest of three members of the pannexin proteins. Pannexins are topologically related to connexins and innexins, but serve different functional roles than forming gap junctions. We previously showed that pannexins form oligomeric channels but unlike connexins and innexins, they form only single membrane channels. High levels of Panx2 mRNA and protein in the Central Nervous System (CNS have been documented. Whereas Pannexin1 (Panx1 is fairly ubiquitous and Pannexin3 (Panx3 is found in skin and connective tissue, both are fully glycosylated, traffic to the plasma membrane and have functions correlated with extracellular ATP release. Here, we describe trafficking and subcellular localizations of exogenous Panx2 and Panx1 protein expression in MDCK, HeLa and HEK293T cells as well as endogenous Panx1 and Panx2 patterns in the CNS. Panx2 was found in intracellular localizations, was partially N-glycosylated, and localizations were non-overlapping with Panx1. Confocal images of hippocampal sections immunolabeled for the astrocytic protein GFAP, Panx1 and Panx2 demonstrated that the two isoforms, Panx1 and Panx2, localized at different subcellular compartments in both astrocytes and neurons. Using recombinant fusions of Panx2 with appended genetic tags developed for correlated light and electron microscopy and then expressed in different cell lines, we determined that Panx2 is localized in the membrane of intracellular vesicles and not in the endoplasmic reticulum as initially indicated by calnexin colocalization experiments. Dual immunofluorescence imaging with protein markers for specific vesicle compartments showed that Panx2 vesicles are early endosomal in origin. In electron tomographic volumes, cross-sections of these vesicles displayed fine structural details and close proximity to actin filaments. Thus, pannexins expressed at different subcellular compartments likely exert distinct functional roles, particularly in the

  3. Pannexin2 oligomers localize in the membranes of endosomal vesicles in mammalian cells while Pannexin1 channels traffic to the plasma membrane.

    Science.gov (United States)

    Boassa, Daniela; Nguyen, Phuong; Hu, Junru; Ellisman, Mark H; Sosinsky, Gina E

    2014-01-01

    Pannexin2 (Panx2) is the largest of three members of the pannexin proteins. Pannexins are topologically related to connexins and innexins, but serve different functional roles than forming gap junctions. We previously showed that pannexins form oligomeric channels but unlike connexins and innexins, they form only single membrane channels. High levels of Panx2 mRNA and protein in the Central Nervous System (CNS) have been documented. Whereas Pannexin1 (Panx1) is fairly ubiquitous and Pannexin3 (Panx3) is found in skin and connective tissue, both are fully glycosylated, traffic to the plasma membrane and have functions correlated with extracellular ATP release. Here, we describe trafficking and subcellular localizations of exogenous Panx2 and Panx1 protein expression in MDCK, HeLa, and HEK 293T cells as well as endogenous Panx1 and Panx2 patterns in the CNS. Panx2 was found in intracellular localizations, was partially N-glycosylated, and localizations were non-overlapping with Panx1. Confocal images of hippocampal sections immunolabeled for the astrocytic protein GFAP, Panx1 and Panx2 demonstrated that the two isoforms, Panx1 and Panx2, localized at different subcellular compartments in both astrocytes and neurons. Using recombinant fusions of Panx2 with appended genetic tags developed for correlated light and electron microscopy and then expressed in different cell lines, we determined that Panx2 is localized in the membrane of intracellular vesicles and not in the endoplasmic reticulum as initially indicated by calnexin colocalization experiments. Dual immunofluorescence imaging with protein markers for specific vesicle compartments showed that Panx2 vesicles are early endosomal in origin. In electron tomographic volumes, cross-sections of these vesicles displayed fine structural details and close proximity to actin filaments. Thus, pannexins expressed at different subcellular compartments likely exert distinct functional roles, particularly in the nervous system.

  4. Redistribution of Endosomal Membranes to the African Swine Fever Virus Replication Site

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Cuesta-Geijo

    2017-06-01

    Full Text Available African swine fever virus (ASFV infection causes endosomal reorganization. Here, we show that the virus causes endosomal congregation close to the nucleus as the infection progresses, which is necessary to build a compact viral replication organelle. ASFV enters the cell by the endosomal pathway and reaches multivesicular late endosomes. Upon uncoating and fusion, the virus should exit to the cytosol to start replication. ASFV remodels endosomal traffic and redistributes endosomal membranes to the viral replication site. Virus replication also depends on endosomal membrane phosphoinositides (PtdIns synthesized by PIKfyve. Endosomes could act as platforms providing membranes and PtdIns, necessary for ASFV replication. Our study has revealed that ASFV reorganizes endosome dynamics, in order to ensure a productive infection.

  5. Common traffic routes for imported spermine and endosomal glypican-1-derived heparan sulfate in fibroblasts.

    Science.gov (United States)

    Cheng, Fang; Fransson, Lars-Åke; Mani, Katrin

    2018-03-15

    Import of the polyamine spermine from the extracellular environment depends on the presence of cell surface heparan sulfate proteoglycans, such as glypican-1. This proteoglycan is internalized by endocytosis, releases its heparan sulfate chains in endosomes by a nitric oxide-, copper- and amyloid precursor protein-dependent mechanism, then penetrates the membrane and is transported to the nucleus and then to autophagosomes. This process is spontaneous or induced by ascorbate depending on the growth-state of the cell. Here, we have explored possible connections between the heparan sulfate traffic route and spermine uptake and delivery in wild-type and Tg2576 mouse fibroblasts. Cells were examined by deconvolution immunofluorescence microscopy. The antibodies used were specific for spermine, glypican-1-derived heparan sulfate, Rab7, nucleolin and a marker for autophagosomes. Endogenous immunostainable spermine was primarily associated with autophagosomes. When spermine synthesis was inhibited, imported spermine appeared in Rab7-positive endosomes. When ascorbate was added, heparan sulfate and spermine were transported to the nucleus where they colocalized with nucleolin. Spermine also appeared in autophagosomes. In a pulse-chase experiment, heparan sulfate and spermine were first arrested in late endosomes by actinomycin D treatment. During the chase, when arrest was abolished, heparan sulfate and spermine were both transported to the nucleus and targeted nucleolin. In amyloid precursor protein -/- -fibroblasts, ascorbate failed to induce release of heparan sulfate and spermine remained in the endosomes. We propose that cell surface glypican-1 carries spermine to the endosomes and that the released heparan sulfate carries spermine across the membrane into the cytosol and then to the nucleus. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Recycling from endosomes to the plasma membrane

    NARCIS (Netherlands)

    Dam, E.M. van

    2001-01-01

    Summary V Chapter?Summary Many membrane proteins are, after endocytic uptake, efficiently recycled back to the plasma membrane. The aim of the studies presented in this thesis was to determine pathways and molecular mechanisms that are involved in recycling. Plasma membrane-derived clathrin-coated

  7. Vps1 in the late endosome-to-vacuole traffic

    Indian Academy of Sciences (India)

    Consistently, our subcellular localization analysis showed that Vps1 is present at the late endosome. The hyperaccumulation of endosomal intermediates in the vps1 mutant cells appears to be caused by the disruption of integrity of HOPS tethering complexes, manifested by mislocalization of Vps39 to the cytoplasm. Finally ...

  8. Biomechanics and Thermodynamics of Nanoparticle Interactions with Plasma and Endosomal Membrane Lipids in Cellular Uptake and Endosomal Escape

    Science.gov (United States)

    2015-01-01

    To be effective for cytoplasmic delivery of therapeutics, nanoparticles (NPs) taken up via endocytic pathways must efficiently transport across the cell membrane and subsequently escape from the secondary endosomes. We hypothesized that the biomechanical and thermodynamic interactions of NPs with plasma and endosomal membrane lipids are involved in these processes. Using model plasma and endosomal lipid membranes, we compared the interactions of cationic NPs composed of poly(d,l-lactide-co-glycolide) modified with the dichain surfactant didodecyldimethylammonium bromide (DMAB) or the single-chain surfactant cetyltrimethylammonium bromide (CTAB) vs anionic unmodified NPs of similar size. We validated our hypothesis in doxorubicin-sensitive (MCF-7, with relatively fluid membranes) and resistant breast cancer cells (MCF-7/ADR, with rigid membranes). Despite their cationic surface charges, DMAB- and CTAB-modified NPs showed different patterns of biophysical interaction: DMAB-modified NPs induced bending of the model plasma membrane, whereas CTAB-modified NPs condensed the membrane, thereby resisted bending. Unmodified NPs showed no effects on bending. DMAB-modified NPs also induced thermodynamic instability of the model endosomal membrane, whereas CTAB-modified and unmodified NPs had no effect. Since bending of the plasma membrane and destabilization of the endosomal membrane are critical biophysical processes in NP cellular uptake and endosomal escape, respectively, we tested these NPs for cellular uptake and drug efficacy. Confocal imaging showed that in both sensitive and resistant cells DMAB-modified NPs exhibited greater cellular uptake and escape from endosomes than CTAB-modified or unmodified NPs. Further, paclitaxel-loaded DMAB-modified NPs induced greater cytotoxicity even in resistant cells than CTAB-modified or unmodified NPs or drug in solution, demonstrating the potential of DMAB-modified NPs to overcome the transport barrier in resistant cells. In

  9. Membrane-associated cargo recycling by tubule-based endosomal sorting

    NARCIS (Netherlands)

    van Weering, J.R.T.; Cullen, P.J.

    2014-01-01

    The endosome system is a collection of organelles that sort membrane-associated proteins and lipids for lysosomal degradation or recycling back to their target organelle. Recycling cargo is captured in a network of membrane tubules emanating from endosomes where tubular carriers pinch off. These

  10. SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors.

    Science.gov (United States)

    Temkin, Paul; Lauffer, Ben; Jäger, Stefanie; Cimermancic, Peter; Krogan, Nevan J; von Zastrow, Mark

    2011-06-01

    Endocytic sorting of signalling receptors between recycling and degradative pathways is a key cellular process controlling the surface complement of receptors and, accordingly, the cell's ability to respond to specific extracellular stimuli. The β2 adrenergic receptor (β2AR) is a prototypical seven-transmembrane signalling receptor that recycles rapidly and efficiently to the plasma membrane after ligand-induced endocytosis. β2AR recycling is dependent on the receptor's carboxy-terminal PDZ ligand and Rab4. This active sorting process is required for functional resensitization of β2AR-mediated signalling. Here we show that sequence-directed sorting occurs at the level of entry into retromer tubules and that retromer tubules are associated with Rab4. Furthermore, we show that sorting nexin 27 (SNX27) serves as an essential adaptor protein linking β2ARs to the retromer tubule. SNX27 does not seem to directly interact with the retromer core complex, but does interact with the retromer-associated Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) complex. The present results identify a role for retromer in endocytic trafficking of signalling receptors, in regulating a receptor-linked signalling pathway, and in mediating direct endosome-to-plasma membrane traffic.

  11. Retromer guides STxB and CD8-M6PR from early to recycling endosomes, EHD1 guides STxB from recycling endosome to Golgi

    Science.gov (United States)

    McKenzie, Jenna E.; Raisley, Brent; Zhou, Xin; Naslavsky, Naava; Taguchi, Tomohiko; Caplan, Steve; Sheff, David

    2012-01-01

    Retrograde trafficking transports proteins, lipids and toxins from the plasma membrane to the Golgi and ER. To reach the Golgi, these cargos must transit the endosomal system, consisting of early endosomes, recycling endosomes, late endosomes and lysosomes. All cargos pass through early endosomes, but may take different routes to the Golgi. Retromer dependent cargos bypass the late endosomes to reach the Golgi. We compared how two very different retromer dependent cargos negotiate the endosomal sorting system. Shiga toxin B, bound to the external layer of the plasma membrane, and chimeric CD8-Mannose-6-Phosphate Receptor, which is anchored via a transmembrane domain. Both appear to pass through the recycling endosome. Ablation of the recycling endosome diverted both of these cargos to an aberrant compartment and prevented them from reaching the Golgi. Once in the recycling endosome, Shiga toxin required EHD1 to traffic to the TGN, while the CD8-Mannose-6-Phosphate Receptor was not significantly dependent on EHD1. Knockdown of retromer components left cargo in the early endosomes, suggesting that it is required for retrograde exit from this compartment. This work establishes the recycling endosome as a required step in retrograde traffic of at least these two retromer dependent cargos. Along this pathway, retromer is associated with EE to recycling endosome traffic, while EHD1 is associated with recycling endosome to TGN traffic of STxB. PMID:22540229

  12. Endosomal Trafficking of HIV-1 Gag and Genomic RNAs Regulates Viral Egress

    DEFF Research Database (Denmark)

    Molle, Dorothée; Segura-Morales, Carollna; Camus, Gregory

    2009-01-01

    with the plasma membrane. Inhibition of endosomal traffic did not prevent viral release. However, inhibiting lysosomal degradation induced an accumulation of Gag in endosomes and increased viral production 7-fold, indicating that transport of Gag to lysosomes negatively regulates budding. This also suggested...... pathways, either directly from the plasma membrane or through an endosome-dependent route. Endosomal Gag-RNA complexes may be delivered at specific sites to facilitate cell-to-cell viral transmission....

  13. EHD3-Dependent Endosome Pathway Regulates Cardiac Membrane Excitability and Physiology

    Science.gov (United States)

    Curran, Jerry; Makara, Michael A.; Little, Sean C.; Musa, Hassan; Liu, Bin; Wu, Xiangqiong; Polina, Iuliia; Alecusan, Joe; Wright, Patrick; Li, Jingdong; Billman, George E.; Boyden, Penelope A.; Gyorke, Sandor; Band, Hamid; Hund, Thomas J.; Mohler, Peter J.

    2014-01-01

    Rationale Cardiac function is dependent on the coordinate activities of membrane ion channels, transporters, pumps, and hormone receptors to dynamically tune the membrane electrochemical gradient in response to acute and chronic stress. While our knowledge of membrane proteins has rapidly advanced over the past decade, our understanding of the subcellular pathways governing the trafficking and localization of integral membrane proteins is limited, and essentially unstudied in vivo. In heart, to our knowledge, there are no in vivo mechanistic studies that directly link endosome-based machinery with cardiac physiology. Objective Define the in vivo roles of endosome-based cellular machinery for cardiac membrane protein trafficking, myocyte excitability, and cardiac physiology. Methods and Results We identify the endosome-based EHD3 pathway as essential for cardiac physiology. EHD3−/− hearts display structural and functional defects including bradycardia and rate variability, conduction block, and blunted response to adrenergic stimulation. Mechanistically, EHD3 is critical for membrane protein trafficking, as EHD3−/− myocytes display reduced expression/localization of Na/Ca exchanger and Cav1.2 with a parallel reduction in INCX and ICa,L. Functionally, EHD3−/− myocytes show increased sarcoplasmic reticulum [Ca], increased spark frequency, and reduced expression/localization of ankyrin-B, a binding partner for EHD3 and Na/Ca exchanger. Finally, we show that in vivo EHD3−/− defects are due to cardiac-specific roles of EHD3 as mice with cardiac-selective EHD3 deficiency demonstrate both structural and electrical phenotypes. Conclusions These data provide new insight into the critical role of endosome-based pathways in membrane protein targeting and cardiac physiology. EHD3 is a critical component of protein trafficking in heart and is essential for the proper membrane targeting of select cellular proteins that maintain excitability. PMID:24759929

  14. Surface functionalization dependent subcellular localization of Superparamagnetic nanoparticle in plasma membrane and endosome.

    Science.gov (United States)

    Thimiri Govinda Raj, Deepak B; Khan, Niamat Ali

    2018-01-01

    In this article, we elaborate the application of thermal decomposition based synthesis of Fe 3 O 4 superparamagnetic nanoparticle (SPMNP) in subcellular fractionation context. Here, we performed surface functionalization of SPMNP with phospholipids and dimercaptosuccinic acid. Surprisingly, we observed surface functionalization dependent SPMNP localization in subcellular compartments such as plasma membrane, endosomes and lysosomes. By using SPMNP based subcellular localization with pulse-chase methodology, we could use SPMNP for high pure-high yield organelle (plasma membrane, endosomes and lysosome) fractionation. Further, SPMNP that are distinctly localized in subcellular compartments can be used as technology for subcellular fractionation that can complement existing tools for cell biology research. As a future perspective, isolated magnetic organelles can be extended to protein/protein complex purification for biochemical and structural biology studies.

  15. Multi-layered nanoparticles for penetrating the endosome and nuclear membrane via a step-wise membrane fusion process.

    Science.gov (United States)

    Akita, Hidetaka; Kudo, Asako; Minoura, Arisa; Yamaguti, Masaya; Khalil, Ikramy A; Moriguchi, Rumiko; Masuda, Tomoya; Danev, Radostin; Nagayama, Kuniaki; Kogure, Kentaro; Harashima, Hideyoshi

    2009-05-01

    Efficient targeting of DNA to the nucleus is a prerequisite for effective gene therapy. The gene-delivery vehicle must penetrate through the plasma membrane, and the DNA-impermeable double-membraned nuclear envelope, and deposit its DNA cargo in a form ready for transcription. Here we introduce a concept for overcoming intracellular membrane barriers that involves step-wise membrane fusion. To achieve this, a nanotechnology was developed that creates a multi-layered nanoparticle, which we refer to as a Tetra-lamellar Multi-functional Envelope-type Nano Device (T-MEND). The critical structural elements of the T-MEND are a DNA-polycation condensed core coated with two nuclear membrane-fusogenic inner envelopes and two endosome-fusogenic outer envelopes, which are shed in stepwise fashion. A double-lamellar membrane structure is required for nuclear delivery via the stepwise fusion of double layered nuclear membrane structure. Intracellular membrane fusions to endosomes and nuclear membranes were verified by spectral imaging of fluorescence resonance energy transfer (FRET) between donor and acceptor fluorophores that had been dually labeled on the liposome surface. Coating the core with the minimum number of nucleus-fusogenic lipid envelopes (i.e., 2) is essential to facilitate transcription. As a result, the T-MEND achieves dramatic levels of transgene expression in non-dividing cells.

  16. Bacteria-Containing Vacuoles: Subversion of Cellular Membrane Traffic and Autophagy.

    Science.gov (United States)

    Tang, Bor Luen

    2015-01-01

    Intracellular bacterial pathogens drive the formation of host membrane-derived pseudo-organelles that facilitate their replication, survival, or dormancy. The formation and maintenance of these bacteria-containing vacuoles (BCVs) are dependent on the bacteria's ability to usurp the host's intracellular membrane system, in particular dynamic compartments involved in exo-/endocytic membrane traffic and autophagy. Bacteria are typically internalized by phagocytosis, and the compartment matures through endosomal fusion. The bacteria-containing phagosome/endosome often becomes the base for BCV formation. Diverse strategies used by different bacterial pathogens prevent the BCV from being destroyed via the endolysosomal pathway. Furthermore, bacterial survival or proliferation in BCVs could be augmented by host membrane transport processes subverted by secreted bacterial factors, which facilitate the acquisition of membrane sources and nutrients. BCVs may be targeted for destruction by autophagy, and various facultative and obligate intracellular bacteria have evolved ways to evade or even exploit autophagy. Here we review examples of bacterial subversion of host cellular membrane transport and autophagy machinery for a productive invasion.

  17. Tri-membrane nanoparticles produced by combining liposome fusion and a novel patchwork of bicelles to overcome endosomal and nuclear membrane barriers to cargo delivery.

    Science.gov (United States)

    Yamada, Asako; Mitsueda, Asako; Hasan, Mahadi; Ueda, Miho; Hama, Susumu; Warashina, Shota; Nakamura, Takashi; Harashima, Hideyoshi; Kogure, Kentaro

    2016-03-01

    Membrane fusion is a rational strategy for crossing intracellular membranes that present barriers to liposomal nanocarrier-mediated delivery of plasmid DNA into the nucleus of non-dividing cells, such as dendritic cells. Based on this strategy, we previously developed nanocarriers consisting of a nucleic acid core particle coated with four lipid membranes [Akita, et al., Biomaterials, 2009, 30, 2940-2949]. However, including the endosomal membrane and two nuclear membranes, cells possess three intracellular membranous barriers. Thus, after entering the nucleus, nanoparticles coated with four membranes would still have one lipid membrane remaining, and could impede cargo delivery. Until now, coating a core particle with an odd number of lipid membranes was challenging. To produce nanocarriers with an odd number of lipid membranes, we developed a novel coating method involving lipid nano-discs, also known as bicelles, as a material for packaging DNA in a carrier with an odd number of lipid membranes. In this procedure, bicelles fuse to form an outer coating that resembles a patchwork quilt, which allows the preparation of nanoparticles coated with only three lipid membranes. Moreover, the transfection activity of dendritic cells with these three-membrane nanoparticles was higher than that for nanoparticles coated with four lipid membranes. In summary, we developed novel nanoparticles coated with an odd number of lipid membranes using the novel "patchwork-packaging method" to deliver plasmid DNA into the nucleus via membrane fusion.

  18. Chemical genetic screening identifies sulfonamides that raise organellar pH and interfere with membrane traffic.

    Science.gov (United States)

    Nieland, Thomas J F; Feng, Yan; Brown, Jing Xu; Chuang, Tuan Daniel; Buckett, Peter D; Wang, Jin; Xie, Xiao-Song; McGraw, Timothy E; Kirchhausen, Tomas; Wessling-Resnick, Marianne

    2004-07-01

    Chemical genetics seeks to identify small molecules that afford functional dissection of cell biological pathways. Previous screens for small molecule inhibitors of exocytic membrane traffic yielded the identification and characterization of several compounds that block traffic from the Golgi to the cell surface as well as transport from the endoplasmic reticulum to the Golgi network [Feng et al. Proc Natl Acad Sci USA 2003;100:6469-6474; Yarrow et al. Comb Chem High Throughput Screen 2003;6:279-286; Feng et al. EMBO Reports 2004: in press]. Here, we screened these inhibitors for potential effects on endocytic membrane traffic. Two structurally related sulfonamides were found to be potent and reversible inhibitors of transferrin-mediated iron uptake. These inhibitors do not block endoplasmic reticulum-to-Golgi transport, but do disrupt Golgi-to-cell surface traffic. The compounds are members of a novel class of sulfonamides that elevate endosomal and lysosomal pH, down-regulate cell surface receptors, and impair recycling of internalized transferrin receptors to the plasma membrane. In vitro experiments revealed that the sulfonamides directly inhibit adenosine triphosphate (ATP) hydrolysis by the V-ATPase and that they also possess a potent proton ionophore activity. While maintenance of organellar pH is known to be a critical factor in both endocytosis and exocytosis, the precise role of acidification, beyond the uncoupling of ligands from their receptors, remains largely unknown. Identification of this novel class of sulfonamide inhibitors provides new chemical tools to better understand the function of organelle pH in membrane traffic and the activity of V-ATPases in particular.

  19. Chemical Genetic Screening Identifies Sulfonamides That Raise Organellar pH and Interfere with Endocytic and Exocytic Membrane Traffic

    Science.gov (United States)

    Nieland, Thomas J. F.; Feng, Yan; Brown, Jing Xu; Chuang, Tuan Daniel; Buckett, Peter D.; Wang, Jin; Xie, Xiao-Song; McGraw, Timothy E.; Kirchhausen, Tomas; Wessling-Resnick, Marianne

    2008-01-01

    Chemical genetics seeks to identify small molecules that afford functional dissection of cell biological pathways. Previous screens for small molecule inhibitors of exocytic membrane traffic yielded the identification and characterization of several compounds that block traffic from the Golgi to the cell surface as well as transport from the endoplasmic reticulum to the Golgi network. Here, we screened these inhibitors for potential effects on endocytic membrane traffic. Two structurally related sulfonamides were found to be potent and reversible inhibitors of transferrin-mediated iron uptake. These inhibitors do not block endoplasmic reticulum-to-Golgi transport, but do disrupt Golgi-to-cell surface traffic. The compounds are members of a novel class of sulfonamides that elevate endosomal and lysosomal pH, down-regulate cell surface receptors, and impair recycling of internalized transferrin receptors to the plasma membrane. In vitro experiments revealed that the sulfonamides directly inhibit adenosine triphosphate (ATP) hydrolysis by the V-ATPase and that they also possess a potent proton ionophore activity. While maintenance of organellar pH is known to be a critical factor in both endocytosis and exocytosis, the precise role of acidification, beyond the uncoupling of ligands from their receptors, remains largely unknown. Identification of this novel class of sulfonamide inhibitors provides new chemical tools to better understand the function of organelle pH in membrane traffic and the activity of V-ATPases in particular. PMID:15180825

  20. The endosomal trafficking factors CORVET and ESCRT suppress plasma membrane residence of the renal outer medullary potassium channel (ROMK).

    Science.gov (United States)

    Mackie, Timothy D; Kim, Bo-Young; Subramanya, Arohan R; Bain, Daniel J; O'Donnell, Allyson F; Welling, Paul A; Brodsky, Jeffrey L

    2018-03-02

    Protein trafficking can act as the primary regulatory mechanism for ion channels with high open probabilities, such as the r enal o uter m edullary (ROMK) channel. ROMK, also known as Kir1.1 (KCNJ1), is the major route for potassium secretion into the pro-urine and plays an indispensable role in regulating serum potassium and urinary concentrations. However, the cellular machinery that regulates ROMK trafficking has not been fully defined. To identify regulators of the cell-surface population of ROMK, we expressed a pH-insensitive version of the channel in the budding yeast Saccharomyces cerevisiae We determined that ROMK primarily resides in the endoplasmic reticulum (ER), as it does in mammalian cells, and is subject to ER-associated degradation (ERAD). However, sufficient ROMK levels on the plasma membrane rescued growth on low-potassium medium of yeast cells lacking endogenous potassium channels. Next, we aimed to identify the biological pathways most important for ROMK regulation. Therefore, we used a synthetic genetic array to identify non-essential genes that reduce the plasma membrane pool of ROMK in potassium-sensitive yeast cells. Genes identified in this screen included several members of the endosomal complexes required for transport (ESCRT) and the class-C core vacuole/endosome tethering (CORVET) complexes. Mass spectroscopy analysis confirmed that yeast cells lacking an ESCRT component accumulate higher potassium concentrations. Moreover, silencing of ESCRT and CORVET components increased ROMK levels at the plasma membrane in HEK293 cells. Our results indicate that components of the post-endocytic pathway influence the cell-surface density of ROMK and establish that components in this pathway modulate channel activity.

  1. Rabaptin-5 alpha/rabaptin-4 serves as a linker between rab4 and gamma(1)-adaptin in membrane recycling from endosomes

    NARCIS (Netherlands)

    Deneka, M; Neeft, M; Popa, [No Value; van Oort, M; Sprong, H; Oorschot, [No Value; Klumperman, J; Schu, P; van der Sluijs, P

    2003-01-01

    Rab4 regulates recycling from early endosomes. We investigated the role of the rab4 effector rabaptin-5alpha and its putative partner gamma(1)-adaptin in membrane recycling. We found that rabaptin-5alpha forms a ternary complex with the gamma(1)-sigma(1) subcomplex of AP-1, via a direct interaction

  2. Kinetic imaging of NPC1L1 and sterol trafficking between plasma membrane and recycling endosomes in hepatoma cells

    DEFF Research Database (Denmark)

    Hartwig Petersen, Nicole; Færgeman, Nils J; Yu, Liqing

    2008-01-01

    fluorescent protein (NPC1L1-EGFP) and cholesterol analogues in hepatoma cells. At steady state about 42% of NPC1L1 resided in the transferrin (Tf) positive, sterol enriched endocytic recycling compartment (ERC), while time-lapse microscopy demonstrated NPC1L1 traffic between plasma membrane and ERC...... the ERC to the plasma membrane. NPC1L1-EGFP facilitated transport of fluorescent sterols from the plasma membrane to the ERC. Insulin induced translocation of vesicles containing NPC1L1 and fluorescent sterol from the ERC to the cell membrane. Upon polarization of hepatoma cells NPC1L1 resided almost...... exclusively in the canalicular membrane, where the protein is highly mobile. Our study demonstrates dynamic trafficking of NPC1L1 between cell surface and intracellular compartments and suggests that this transport is involved in NPC1L1 mediated cellular sterol uptake....

  3. Recycling Endosome Tubule Morphogenesis from Sorting Endosomes Requires the Kinesin Motor KIF13A

    Directory of Open Access Journals (Sweden)

    Cédric Delevoye

    2014-02-01

    Full Text Available Early endosomes consist of vacuolar sorting and tubular recycling domains that segregate components fated for degradation in lysosomes or reuse by recycling to the plasma membrane or Golgi. The tubular transport intermediates that constitute recycling endosomes function in cell polarity, migration, and cytokinesis. Endosomal tubulation and fission require both actin and intact microtubules, but although factors that stabilize recycling endosomal tubules have been identified, those required for tubule generation from vacuolar sorting endosomes (SEs remain unknown. We show that the microtubule motor KIF13A associates with recycling endosome tubules and controls their morphogenesis. Interfering with KIF13A function impairs the formation of endosomal tubules from SEs with consequent defects in endosome homeostasis and cargo recycling. Moreover, KIF13A interacts and cooperates with RAB11 to generate endosomal tubules. Our data illustrate how a microtubule motor couples early endosome morphogenesis to its motility and function.

  4. Septins as modulators of endo-lysosomal membrane traffic

    Directory of Open Access Journals (Sweden)

    Kyungyeun Song

    2016-11-01

    Full Text Available Septins constitute a family of GTP-binding proteins, which assemble into non-polar filaments in a nucleotide-dependent manner. These filaments can be recruited to negatively charged membrane surfaces. When associated with membranes septin filaments can act as diffusion barriers, which confine subdomains of distinct biological functions. In addition, they serve scaffolding roles by recruiting cytosolic proteins and other cytoskeletal elements. Septins have been implicated in a large variety of membrane-dependent processes, including cytokinesis, signaling, cell migration, and membrane traffic, and several family members have been implicated in disease. However, surprisingly little is known about the molecular mechanisms underlying their biological functions. This review summarizes evidence in support of regulatory roles of septins during endo-lysosomal sorting, with a particular focus on phosphoinositides, which serve as spatial landmarks guiding septin recruitment to distinct subcellular localizations.

  5. An antibody toolkit for the study of membrane traffic in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Falko Riedel

    2016-07-01

    Full Text Available The use of Drosophila melanogaster as a model organism has been pivotal to understanding the developmental processes of metazoans. However, the use of flies for studying subcellular organization is hampered by a paucity of reliable reagents to label specific organelles. Here, we describe the generation of mouse monoclonal antibodies against a set of markers of the secretory and endocytic pathways, along with goat polyclonal antibodies against two Golgi proteins. We show that the monoclonal antibodies are highly specific and sufficiently sensitive to detect endogenous proteins in crude extracts by immunoblotting with little background staining. By immunofluorescence the major compartments of the membrane traffic system (including the endoplasmic reticulum, the Golgi, and early and late endosomes are labeled by at least one antibody. Moreover, the antibodies can be used to label organelles in fly tissues including salivary glands and wing imaginal discs. We anticipate that these antibodies will provide a useful tool kit to facilitate the investigation of how the endomembrane system functions and varies in the diverse tissue types of metazoans.

  6. Endocytosed 2-Microglobulin Amyloid Fibrils Induce Necrosis and Apoptosis of Rabbit Synovial Fibroblasts by Disrupting Endosomal/Lysosomal Membranes: A Novel Mechanism on the Cytotoxicity of Amyloid Fibrils.

    Directory of Open Access Journals (Sweden)

    Tadakazu Okoshi

    Full Text Available Dialysis-related amyloidosis is a major complication in long-term hemodialysis patients. In dialysis-related amyloidosis, β2-microglobulin (β2-m amyloid fibrils deposit in the osteoarticular tissue, leading to carpal tunnel syndrome and destructive arthropathy with cystic bone lesions, but the mechanism by which these amyloid fibrils destruct bone and joint tissue is not fully understood. In this study, we assessed the cytotoxic effect of β2-m amyloid fibrils on the cultured rabbit synovial fibroblasts. Under light microscopy, the cells treated with amyloid fibrils exhibited both necrotic and apoptotic changes, while the cells treated with β2-m monomers and vehicle buffer exhibited no morphological changes. As compared to β2-m monomers and vehicle buffer, β2-m amyloid fibrils significantly reduced cellular viability as measured by the lactate dehydrogenase release assay and the 3-(4,5-di-methylthiazol-2-yl-2,5-diphenyltetrazolium bromide reduction assay and significantly increased the percentage of apoptotic cells as measured by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling method. β2-m amyloid fibrils added to the medium adhered to cell surfaces, but did not disrupt artificial plasma membranes as measured by the liposome dye release assay. Interestingly, when the cells were incubated with amyloid fibrils for several hours, many endosomes/lysosomes filled with amyloid fibrils were observed under confocal laser microscopy and electron microscopy, Moreover, some endosomal/lysosomal membranes were disrupted by intravesicular fibrils, leading to the leakage of the fibrils into the cytosol and adjacent to mitochondria. Inhibition of actin-dependent endocytosis by cytochalasin D attenuated the toxicity of amyloid fibrils. These results suggest that endocytosed β2-m amyloid fibrils induce necrosis and apoptosis by disrupting endosomal/lysosomal membranes, and this novel mechanism on the cytotoxicity of amyloid

  7. Liposome Model Systems to Study the Endosomal Escape of Cell-Penetrating Peptides: Transport across Phospholipid Membranes Induced by a Proton Gradient

    Directory of Open Access Journals (Sweden)

    Fatemeh Madani

    2011-01-01

    Full Text Available Detergent-mediated reconstitution of bacteriorhodopsin (BR into large unilamellar vesicles (LUVs was investigated, and the effects were carefully characterized for every step of the procedure. LUVs were prepared by the extrusion method, and their size and stability were examined by dynamic light scattering. BR was incorporated into the LUVs using the detergent-mediated reconstitution method and octyl glucoside (OG as detergent. The result of measuring pH outside the LUVs suggested that in the presence of light, BR pumps protons from the outside to the inside of the LUVs, creating acidic pH inside the vesicles. LUVs with 20% negatively charged headgroups were used to model endosomes with BR incorporated into the membrane. The fluorescein-labeled cell-penetrating peptide penetratin was entrapped inside these BR-containing LUVs. The light-induced proton pumping activity of BR has allowed us to observe the translocation of fluorescein-labeled penetratin across the vesicle membrane.

  8. Plasma membrane Toll-like receptor activation increases bacterial uptake but abrogates endosomal Lactobacillus acidophilus induction of interferon-β

    DEFF Research Database (Denmark)

    Boye, Louise; Welsby, Iain; Lund, Lisbeth Drozd

    2016-01-01

    of endocytosis in the L. acidophilus-induced IFN-β and IL-12 responses and how TLR2 or TLR4 ligation by lipopolysaccharide and Pam3/4CSK4 influenced endocytosis of L. acidophilus and the induced IFN-β and IL-12 production. Lactobacillus acidophilus was endocytosed by constitutive macropinocytosis taking place...... in the immature cells as well as by spleen tyrosine kinase (Syk) -dependent phagocytosis but without involvement of plasma membrane TLR2. Stimulation with TLR2 or TLR4 ligands increased macropinocytosis in a Syk-independent manner. As a consequence, incubation of DCs with TLR ligands before incubation with L...... to increased macropinocytosis abrogates IFN-β induction we conclude that plasma membrane TLR stimulation leading to increased macropinocytosis decreases endosomal induction of IFN-β and speculate that this is due to competition between compartments for molecules involved in the signal pathways. In summary...

  9. Internal structure of magnetic endosomes.

    Science.gov (United States)

    Rivière, C; Wilhelm, C; Cousin, F; Dupuis, V; Gazeau, F; Perzynski, R

    2007-01-01

    The internal structure of biological vesicles filled with magnetic nanoparticles is investigated using the following complementary analyses: electronic transmission microscopy, dynamic probing by magneto-optical birefringence and structural probing by Small Angle Neutron Scattering (SANS). These magnetic vesicles are magnetic endosomes obtained via a non-specific interaction between cells and anionic magnetic iron oxide nanoparticles. Thanks to a magnetic purification process, they are probed at two different stages of their formation within HeLa cells: (i) adsorption of nanoparticles onto the cellular membrane and (ii) their subsequent internalisation within endosomes. Differences in the microenvironment of the magnetic nanoparticles at those two different stages are highlighted here. The dynamics of magnetic nanoparticles adsorbed onto cellular membranes and confined within endosomes is respectively 3 and 5 orders of magnitude slower than for isolated magnetic nanoparticles in aqueous media. Interestingly, SANS experiments show that magnetic endosomes have an internal structure close to decorated vesicles, with magnetic nanoparticles locally decorating the endosome membrane, inside their inner-sphere. These results, important for future biomedical applications, suggest that multiple fusions of decorated vesicles are the biological processes underlying the endocytosis of that kind of nanometric materials.

  10. Internal structure of magnetic endosomes

    Science.gov (United States)

    Rivière, C.; Wilhelm, C.; Cousin, F.; Dupuis, V.; Gazeau, F.; Perzynski, R.

    2007-01-01

    The internal structure of biological vesicles filled with magnetic nanoparticles is investigated using the following complementary analyses: electronic transmission microscopy, dynamic probing by magneto-optical birefringence and structural probing by Small Angle Neutron Scattering (SANS). These magnetic vesicles are magnetic endosomes obtained via a non-specific interaction between cells and anionic magnetic iron oxide nanoparticles. Thanks to a magnetic purification process, they are probed at two different stages of their formation within HeLa cells: (i) adsorption of nanoparticles onto the cellular membrane and (ii) their subsequent internalisation within endosomes. Differences in the microenvironment of the magnetic nanoparticles at those two different stages are highlighted here. The dynamics of magnetic nanoparticles adsorbed onto cellular membranes and confined within endosomes is respectively 3 and 5 orders of magnitude slower than for isolated magnetic nanoparticles in aqueous media. Interestingly, SANS experiments show that magnetic endosomes have an internal structure close to decorated vesicles, with magnetic nanoparticles locally decorating the endosome membrane, inside their inner-sphere. These results, important for future biomedical applications, suggest that multiple fusions of decorated vesicles are the biological processes underlying the endocytosis of that kind of nanometric materials.

  11. Fusion of Enveloped Viruses in Endosomes

    Science.gov (United States)

    White, Judith M.; Whittaker, Gary R.

    2016-01-01

    Ari Helenius launched the field of enveloped virus fusion in endosomes with a seminal paper in the Journal of Cell Biology in 1980. In the intervening years a great deal has been learned about the structures and mechanisms of viral membrane fusion proteins as well as about the endosomes in which different enveloped viruses fuse and the endosomal cues that trigger fusion. We now recognize three classes of viral membrane fusion proteins based on structural criteria and four mechanisms of fusion triggering. After reviewing general features of viral membrane fusion proteins and viral fusion in endosomes, we delve into three characterized mechanisms for viral fusion triggering in endosomes: by low pH, by receptor binding plus low pH, and by receptor binding plus the action of a protease. We end with a discussion of viruses that may employ novel endosomal fusion triggering mechanisms. A key take home message is that enveloped viruses that enter cells by fusing in endosomes traverse the endocytic pathway until they reach an endosome that has all of the environmental conditions (pH, proteases, ions, intracellular receptors, and lipid composition) to (if needed) prime and (in all cases) trigger the fusion protein and to support membrane fusion. PMID:26935856

  12. A plasma-membrane E-MAP reveals links of the eisosome with sphingolipid metabolism and endosomal trafficking

    DEFF Research Database (Denmark)

    Aguilar, Pablo S; Fröhlich, Florian; Rehman, Michael

    2010-01-01

    The plasma membrane delimits the cell and controls material and information exchange between itself and the environment. How different plasma-membrane processes are coordinated and how the relative abundance of plasma-membrane lipids and proteins is homeostatically maintained are not yet understood...... for Rho1 and Rho2, in the regulation of sphingolipid metabolism....

  13. Late endosomal cholesterol accumulation leads to impaired intra-endosomal trafficking.

    Directory of Open Access Journals (Sweden)

    Komla Sobo

    Full Text Available BACKGROUND: Pathological accumulation of cholesterol in late endosomes is observed in lysosomal storage diseases such as Niemann-Pick type C. We here analyzed the effects of cholesterol accumulation in NPC cells, or as phenocopied by the drug U18666A, on late endosomes membrane organization and dynamics. METHODOLOGY/PRINCIPAL FINDINGS: Cholesterol accumulation did not lead to an increase in the raft to non-raft membrane ratio as anticipated. Strikingly, we observed a 2-3 fold increase in the size of the compartment. Most importantly, properties and dynamics of late endosomal intralumenal vesicles were altered as revealed by reduced late endosomal vacuolation induced by the mutant pore-forming toxin ASSP, reduced intoxication by the anthrax lethal toxin and inhibition of infection by the Vesicular Stomatitis Virus. CONCLUSIONS/SIGNIFICANCE: These results suggest that back fusion of intralumenal vesicles with the limiting membrane of late endosomes is dramatically perturbed upon cholesterol accumulation.

  14. Cytochrome b561, copper, β-cleaved amyloid precursor protein and niemann-pick C1 protein are involved in ascorbate-induced release and membrane penetration of heparan sulfate from endosomal S-nitrosylated glypican-1.

    Science.gov (United States)

    Cheng, Fang; Fransson, Lars-Åke; Mani, Katrin

    2017-11-15

    Ascorbate-induced release of heparan sulfate from S-nitrosylated heparan sulfate proteoglycan glypican-1 takes place in endosomes. Heparan sulfate penetrates the membrane and is transported to the nucleus. This process is dependent on copper and on expression and processing of the amyloid precursor protein. It remains unclear how exogenously supplied ascorbate can generate HS-anMan in endosomes and how passage through the membrane is facilitated. Here we have examined wild-type, Alzheimer Tg2576 and amyloid precursor protein (-/-) mouse fibroblasts and human fetal and Niemann-Pick C1 fibroblasts by using deconvolution immunofluorescence microscopy, siRNA technology and [S 35 ]sulfate-labeling, vesicle isolation and gel chromatography. We found that ascorbate-induced release of heparan sulfate was dependent on expression of endosomal cytochrome b561. Formation and nuclear transport of heparan sulfate was suppressed by inhibition of β-processing of the amyloid precursor protein and formation was restored by copper (I) ions. Membrane penetration was not dependent on amyloid beta channel formation. Inhibition of endosomal exit resulted in accumulation of heparan sulfate in vesicles that exposed the C-terminal of the amyloid precursor protein externally. Endosome-to-nucleus transport was also dependent on expression of the Niemann-Pick C1 protein. We propose that ascorbate is taken up from the medium and is oxidized by cytochrome b561 which, in turn, reduces copper (II) to copper (I) present in the N-terminal, β-cleaved domain of the amyloid precursor protein. Re-oxidation of copper (I) is coupled to reductive, deaminative release of heparan sulfate from glypican-1. Passage through the membrane may be facilitated by the C-terminal, β-cleaved fragment of the amyloid precursor protein and the Niemann-Pick C1 protein. Copyright © 2017. Published by Elsevier Inc.

  15. The structure and function of presynaptic endosomes

    Energy Technology Data Exchange (ETDEWEB)

    Jähne, Sebastian, E-mail: sebastian.jaehne1@stud.uni-goettingen.de [Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Humboldtallee 23, 37073 Göttingen (Germany); International Max Planck Research School for Neurosciences, 37077 Göttingen (Germany); Rizzoli, Silvio O. [Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Humboldtallee 23, 37073 Göttingen (Germany); Helm, Martin S., E-mail: martin.helm@med.uni-goettingen.de [Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Humboldtallee 23, 37073 Göttingen (Germany); International Max Planck Research School for Molecular Biology, 37077 Göttingen (Germany)

    2015-07-15

    The function of endosomes and of endosome-like structures in the presynaptic compartment is still controversial. This is in part due to the absence of a consensus on definitions and markers for these compartments. Synaptic endosomes are sometimes seen as stable organelles, permanently present in the synapse. Alternatively, they are seen as short-lived intermediates in synaptic vesicle recycling, arising from the endocytosis of large vesicles from the plasma membrane, or from homotypic fusion of small vesicles. In addition, the potential function of the endosome is largely unknown in the synapse. Some groups have proposed that the endosome is involved in the sorting of synaptic vesicle proteins, albeit others have produced data that deny this possibility. In this review, we present the existing evidence for synaptic endosomes, we discuss their potential functions, and we highlight frequent technical pitfalls in the analysis of this elusive compartment. We also sketch a roadmap to definitely determine the role of synaptic endosomes for the synaptic vesicle cycle. Finally, we propose a common definition of synaptic endosome-like structures.

  16. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro

    Directory of Open Access Journals (Sweden)

    Alberto Canfrán-Duque

    2016-03-01

    Full Text Available First- and second-generation antipsychotics (FGAs and SGAs, respectively, have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanineperchlorate (DiI-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2 and LBPA (lysobisphosphatidic acid, which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1 and coatomer subunit β (β-COP were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes’ internal milieu induced by haloperidol affects lysosomal functionality.

  17. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro

    Science.gov (United States)

    Canfrán-Duque, Alberto; Barrio, Luis C.; Lerma, Milagros; de la Peña, Gema; Serna, Jorge; Pastor, Oscar; Lasunción, Miguel A.; Busto, Rebeca

    2016-01-01

    First- and second-generation antipsychotics (FGAs and SGAs, respectively), have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL)-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanineperchlorate (DiI)-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2) and LBPA (lysobisphosphatidic acid), which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1) and coatomer subunit β (β-COP) were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes’ internal milieu induced by haloperidol affects lysosomal functionality. PMID:26999125

  18. A Novel Type III Endosome Transmembrane Protein, TEMP

    Directory of Open Access Journals (Sweden)

    Rohan D. Teasdale

    2012-11-01

    Full Text Available As part of a high-throughput subcellular localisation project, the protein encoded by the RIKEN mouse cDNA 2610528J11 was expressed and identified to be associated with both endosomes and the plasma membrane. Based on this, we have assigned the name TEMP for Type III Endosome Membrane Protein. TEMP encodes a short protein of 111 amino acids with a single, alpha-helical transmembrane domain. Experimental analysis of its membrane topology demonstrated it is a Type III membrane protein with the amino-terminus in the lumenal, or extracellular region, and the carboxy-terminus in the cytoplasm. In addition to the plasma membrane TEMP was localized to Rab5 positive early endosomes, Rab5/Rab11 positive recycling endosomes but not Rab7 positive late endosomes. Video microscopy in living cells confirmed TEMP's plasma membrane localization and identified the intracellular endosome compartments to be tubulovesicular. Overexpression of TEMP resulted in the early/recycling endosomes clustering at the cell periphery that was dependent on the presence of intact microtubules. The cellular function of TEMP cannot be inferred based on bioinformatics comparison, but its cellular distribution between early/recycling endosomes and the plasma membrane suggests a role in membrane transport.

  19. Hrs recruits clathrin to early endosomes

    OpenAIRE

    Raiborg, Camilla; Grønvold Bache, Kristi; Mehlum, Anja; Stang, Espen; Stenmark, Harald

    2001-01-01

    The hepatocyte growth factor-regulated tyrosine kinase substrate, Hrs, has been implicated in intracellular trafficking and signal transduction. Hrs contains a phosphatidylinositol 3-phosphate-binding FYVE domain that contributes to its endosomal targeting. Here we show that Hrs and EEA1, a FYVE domain protein involved in endocytic membrane fusion, are localized to different regions of early endosomes. We demonstrate that Hrs co-localizes with clathrin, and that the C-terminus of Hrs contains...

  20. Niemann-Pick C2 protein regulates sterol transport between plasma membrane and late endosomes in human fibroblasts

    DEFF Research Database (Denmark)

    Berzina, Zane; Solanko, Lukasz M.; Mehadi, Ahmed S.

    2018-01-01

    /LYSs is currently unknown. We show that the close cholesterol analog dehydroergosterol (DHE), when delivered to the plasma membrane (PM) accumulates in LE/LYSs of human fibroblasts lacking functional NPC2. We measured two different time scales of sterol diffusion; while DHE rich LE/LYSs moved by slow anomalous...... but not of DHE is reduced 10-fold in disease fibroblasts compared to control cells. Internalized NPC2 rescued the sterol storage phenotype and strongly expanded the dynamic sterol pool seen in FRAP experiments. Together, our study shows that cholesterol esterification and trafficking of sterols between the PM...

  1. Traffic

    International Nuclear Information System (INIS)

    Lichtblau, G.

    2001-01-01

    This chapter deals with passenger and freight traffic, public and private transportation, traffic related environmental impacts, future developments, traffic indicators, regional traffic planning, health costs due to road traffic related air pollution, noise pollution, measures and regulations for traffic control and fuels for traffic. In particular energy consumption, energy efficiency, pollutant emissions ( CO 2 , SO 2 , NO x , HC, CO, N 2 O, NH 3 and particulates) and environmental effects of the different types of traffic and different types of fuels are compared and studied. Legal regulations and measures for an effective traffic control are discussed. (a.n.)

  2. Endosome-mediated autophagy

    Science.gov (United States)

    Kondylis, Vangelis; van Nispen tot Pannerden, Hezder E.; van Dijk, Suzanne; ten Broeke, Toine; Wubbolts, Richard; Geerts, Willie J.; Seinen, Cor; Mutis, Tuna; Heijnen, Harry F.G.

    2013-01-01

    Activation of TLR signaling has been shown to induce autophagy in antigen-presenting cells (APCs). Using high-resolution microscopy approaches, we show that in LPS-stimulated dendritic cells (DCs), autophagosomes emerge from MHC class II compartments (MIICs) and harbor both the molecular machinery for antigen processing and the autophagosome markers LC3 and ATG16L1. This ENdosome-Mediated Autophagy (ENMA) appears to be the major type of autophagy in DCs, as similar structures were observed upon established autophagy-inducing conditions (nutrient deprivation, rapamycin) and under basal conditions in the presence of bafilomycin A1. Autophagosome formation was not significantly affected in DCs expressing ATG4BC74A mutant and atg4b−/− bone marrow DCs, but the degradation of the autophagy substrate SQSTM1/p62 was largely impaired. Furthermore, we demonstrate that the previously described DC aggresome-like LPS-induced structures (DALIS) contain vesicular membranes, and in addition to SQSTM1 and ubiquitin, they are positive for LC3. LC3 localization on DALIS is independent of its lipidation. MIIC-driven autophagosomes preferentially engulf the LPS-induced SQSTM1-positive DALIS, which become later degraded in autolysosomes. DALIS-associated membranes also contain ATG16L1, ATG9 and the Q-SNARE VTI1B, suggesting that they may represent (at least in part) a membrane reservoir for autophagosome expansion. We propose that ENMA constitutes an unconventional, APC-specific type of autophagy, which mediates the processing and presentation of cytosolic antigens by MHC class II machinery, and/or the selective clearance of toxic by-products of elevated ROS/RNS production in activated DCs, thereby promoting their survival. PMID:23481895

  3. Phosphatidylinositol 3-phosphates-at the interface between cell signalling and membrane traffic.

    Science.gov (United States)

    Marat, Andrea L; Haucke, Volker

    2016-03-15

    Phosphoinositides (PIs) form a minor class of phospholipids with crucial functions in cell physiology, ranging from cell signalling and motility to a role as signposts of compartmental membrane identity. Phosphatidylinositol 3-phosphates are present at the plasma membrane and within the endolysosomal system, where they serve as key regulators of both cell signalling and of intracellular membrane traffic. Here, we provide an overview of the metabolic pathways that regulate cellular synthesis of PI 3-phosphates at distinct intracellular sites and discuss the mechanisms by which these lipids regulate cell signalling and membrane traffic. Finally, we provide a framework for how PI 3-phosphate metabolism is integrated into the cellular network. © 2016 The Authors.

  4. Chemical Genetic Screening Identifies Sulfonamides That Raise Organellar pH and Interfere with Endocytic and Exocytic Membrane Traffic

    OpenAIRE

    Nieland, Thomas J. F.; Feng, Yan; Brown, Jing Xu; Chuang, Tuan Daniel; Buckett, Peter D.; Wang, Jin; Xie, Xiao-Song; McGraw, Timothy E.; Kirchhausen, Tomas; Wessling-Resnick, Marianne

    2004-01-01

    Chemical genetics seeks to identify small molecules that afford functional dissection of cell biological pathways. Previous screens for small molecule inhibitors of exocytic membrane traffic yielded the identification and characterization of several compounds that block traffic from the Golgi to the cell surface as well as transport from the endoplasmic reticulum to the Golgi network. Here, we screened these inhibitors for potential effects on endocytic membrane traffic. Two structurally rela...

  5. Axon-glia interaction and membrane traffic in myelin formation

    OpenAIRE

    White, Robin; Krämer-Albers, Eva-Maria

    2014-01-01

    In vertebrate nervous systems myelination of neuronal axons has evolved to increase conduction velocity of electrical impulses with minimal space and energy requirements. Myelin is formed by specialized glial cells which ensheath axons with a lipid-rich insulating membrane. Myelination is a multi-step process initiated by axon-glia recognition triggering glial polarization followed by targeted myelin membrane expansion and compaction. Thereby, a myelin sheath of complex subdomain structure is...

  6. Endosome-based protein trafficking and Ca2+ homeostasis in the heart

    Directory of Open Access Journals (Sweden)

    Jerry eCurran

    2015-02-01

    Full Text Available The ability to dynamically regulate, traffic, retain, and recycle proteins within the cell membrane is fundamental to life and central to the normal function of the heart and cardiovascular system. In the heart, these systems are essential for the regulation of cardiac calcium, both at the level of the plasma membrane, but also at local domains of the endoplasmic reticulum, sarcoplasmic reticulum, mitochondria, nucleus, and nuclear envelope. One intracellular pathway often overlooked in relation to cardiovascular calcium regulation and signaling is the endosome-based trafficking pathway. Highlighting its importance, this system and its molecular components are evolutionarily conserved across all metazoans. However, remarkably little is known of how endosome-based protein trafficking and recycling functions within mammalian cells systems, especially in the heart. The vast majority of what is known has been derived from heterologous cell systems. However, recently, more appropriate cell and animal models been developed that have allowed researchers to begin to understand how this system functions within the intact physiological environment. All excitable cells, including cardiomyocytes, depend on the proper expression and organization of multiple ion channels, pumps, exchangers, and transporters within the plasma membrane. As the endosomal system acts to regulate the expression and localization of membrane proteins, understanding the in vivo function of this system in the heart is important. This review will focus on endosome-based protein trafficking in the heart in both health and disease. Special emphasis will be given to the role played by the family of endocytic regulatory proteins, C-terminal Eps15 homology domain -containing proteins (EHDs, as recent data demonstrates that this family of proteins is essential for the proper trafficking and localization and of key proteins involved in excitation-contraction coupling.

  7. Desipramine induces disorder in cholesterol-rich membranes

    DEFF Research Database (Denmark)

    Pakkanen, Kirsi; Salonen, Emppu; Mäkelä, Anna R

    2009-01-01

    S(CD) as well as an increase in the membrane area. Disordering of the membrane suggested DMI to destabilize cholesterol-rich membrane domains (rafts) in cellular conditions. To relate the raft disrupting ability of DMI with novel biological relevance, we studied the intracellular effect of DMI using...... canine parvovirus (CPV), a virus known to interact with endosomal membranes and sphingomyelin, as an intracellular probe. DMI was found to cause retention of the virus in intracellular vesicular structures leading to the inhibition of viral proliferation. This implies that DMI has a deleterious effect...... on the viral traffic. As recycling endosomes and the internal vesicles of multivesicular bodies are known to contain raft components, the effect of desipramine beyond the plasma membrane step could be caused by raft disruption leading to impaired endosomal function and possibly have direct influence...

  8. Glucose regulates clathrin adaptors at the trans-Golgi network and endosomes

    Science.gov (United States)

    Aoh, Quyen L.; Graves, Lee M.; Duncan, Mara C.

    2011-01-01

    Glucose is a rich source of energy and the raw material for biomass increase. Many eukaryotic cells remodel their physiology in the presence and absence of glucose. The yeast Saccharomyces cerevisiae undergoes changes in transcription, translation, metabolism, and cell polarity in response to glucose availability. Upon glucose starvation, translation initiation and cell polarity are immediately inhibited, and then gradually recover. In this paper, we provide evidence that, as in cell polarity and translation, traffic at the trans-Golgi network (TGN) and endosomes is regulated by glucose via an unknown mechanism that depends on protein kinase A (PKA). Upon glucose withdrawal, clathrin adaptors exhibit a biphasic change in localization: they initially delocalize from the membrane within minutes and later partially recover onto membranes. Additionally, the removal of glucose induces changes in posttranslational modifications of adaptors. Ras and Gpr1 signaling pathways, which converge on PKA, are required for changes in adaptor localization and changes in posttranslational modifications. Acute inhibition of PKA demonstrates that inhibition of PKA prior to glucose withdrawal prevents several adaptor responses to starvation. This study demonstrates that PKA activity prior to glucose starvation primes membrane traffic at the TGN and endosomes in response to glucose starvation. PMID:21832155

  9. Axon-glia interaction and membrane traffic in myelin formation

    Directory of Open Access Journals (Sweden)

    Robin eWhite

    2014-01-01

    Full Text Available In vertebrate nervous systems myelination of neuronal axons has evolved to increase conduction velocity of electrical impulses with minimal space and energy requirements. Myelin is formed by specialised glial cells which ensheath axons with a lipid-rich insulating membrane. Myelination is a multi-step process initiated by axon-glia recognition triggering glial polarisation followed by targeted myelin membrane expansion and compaction. Thereby, a myelin sheath of complex subdomain structure is established. Continuous communication between neurons and glial cells is essential for myelin maintenance and axonal integrity. A diverse group of diseases, from multiple sclerosis to schizophrenia, have been linked to malfunction of myelinating cells reflecting the physiological importance of the axon-glial unit. This review describes the mechanisms of axonal signal integration by oligodendrocytes emphasising the central role of the Src-family kinase Fyn during CNS myelination. Furthermore, we discuss myelin membrane trafficking with particular focus on endocytic recycling and the control of PLP (proteolipid protein transport by SNARE proteins. Finally, PLP mistrafficking is considered in the context of myelin diseases.

  10. The Aspergillus nidulans syntaxin PepA(Pep12) is regulated by two Sec1/Munc-18 proteins to mediate fusion events at early endosomes, late endosomes and vacuoles.

    Science.gov (United States)

    López-Berges, Manuel S; Pinar, Mario; Abenza, Juan F; Arst, Herbert N; Peñalva, Miguel A

    2016-01-01

    Syntaxins are target-SNAREs that crucially contribute to determine membrane compartment identity. Three syntaxins, Tlg2p, Pep12p and Vam3p, organize the yeast endovacuolar system. Remarkably, filamentous fungi lack the equivalent of the yeast vacuolar syntaxin Vam3p, making unclear how these organisms regulate vacuole fusion. We show that the nearly essential Aspergillus nidulans syntaxin PepA(Pep12) , present in all endocytic compartments between early endosomes and vacuoles, shares features of Vam3p and Pep12p, and is capable of forming compositional equivalents of all known yeast endovacuolar SNARE bundles including that formed by yeast Vam3p for vacuolar fusion. Our data further indicate that regulation by two Sec1/Munc-18 proteins, Vps45 in early endosomes and Vps33 in early and late endosomes/vacuoles contributes to the wide domain of PepA(Pep12) action. The syntaxin TlgB(Tlg2) localizing to the TGN appears to mediate retrograde traffic connecting post-Golgi (sorting) endosomes with the TGN. TlgB(Tlg2) is dispensable for growth but becomes essential if the early Golgi syntaxin SedV(Sed5) is compromised, showing that the Golgi can function with a single syntaxin, SedV(Sed5) . Remarkably, its pattern of associations with endosomal SNAREs is consistent with SedV(Sed5) playing roles in retrograde pathway(s) connecting endocytic compartments downstream of the post-Golgi endosome with the Golgi, besides more conventional intra-Golgi roles. © 2015 John Wiley & Sons Ltd.

  11. Cytoplasmic capes are nuclear envelope intrusions that are enriched in endosomal proteins and depend upon βH-spectrin and Annexin B9.

    Science.gov (United States)

    Wu, Juan; Bakerink, Katelyn J; Evangelista, Meagan E; Thomas, Graham H

    2014-01-01

    It is increasingly recognized that non-erythroid spectrins have roles remote from the plasma membrane, notably in endomembrane trafficking. The large spectrin isoform, βH, partners with Annexin B9 to modulate endosomal processing of internalized proteins. This modulation is focused on the early endosome through multivesicular body steps of endocytic processing and loss of either protein appears to cause a traffic jam before removal of ubiquitin at the multivesicular body. We previously reported that βH/Annexin B9 influenced EGF receptor signaling. While investigating this effect we noticed that mSptiz, the membrane bound precursor of the secreted EGF receptor ligand sSpitz, is located in striking intrusions of the nuclear membrane. Here we characterize these structures and identify them as 'cytoplasmic capes', which were previously identified in old ultrastructural studies and probably coincide with recently recognized sites of non-nuclear-pore RNA export. We show that cytoplasmic capes contain multiple endosomal markers and that their existence is dependent upon βH and Annexin B9. Diminution of these structures does not lead to a change in mSpitz processing. These results extend the endosomal influence of βH and its partner Annexin B9 to this unusual compartment at the nuclear envelope.

  12. Cytoplasmic capes are nuclear envelope intrusions that are enriched in endosomal proteins and depend upon βH-spectrin and Annexin B9.

    Directory of Open Access Journals (Sweden)

    Juan Wu

    Full Text Available It is increasingly recognized that non-erythroid spectrins have roles remote from the plasma membrane, notably in endomembrane trafficking. The large spectrin isoform, βH, partners with Annexin B9 to modulate endosomal processing of internalized proteins. This modulation is focused on the early endosome through multivesicular body steps of endocytic processing and loss of either protein appears to cause a traffic jam before removal of ubiquitin at the multivesicular body. We previously reported that βH/Annexin B9 influenced EGF receptor signaling. While investigating this effect we noticed that mSptiz, the membrane bound precursor of the secreted EGF receptor ligand sSpitz, is located in striking intrusions of the nuclear membrane. Here we characterize these structures and identify them as 'cytoplasmic capes', which were previously identified in old ultrastructural studies and probably coincide with recently recognized sites of non-nuclear-pore RNA export. We show that cytoplasmic capes contain multiple endosomal markers and that their existence is dependent upon βH and Annexin B9. Diminution of these structures does not lead to a change in mSpitz processing. These results extend the endosomal influence of βH and its partner Annexin B9 to this unusual compartment at the nuclear envelope.

  13. A-RAF kinase functions in ARF6 regulated endocytic membrane traffic.

    Directory of Open Access Journals (Sweden)

    Elena Nekhoroshkova

    Full Text Available BACKGROUND: RAF kinases direct ERK MAPK signaling to distinct subcellular compartments in response to growth factor stimulation. METHODOLOGY/PRINCIPAL FINDINGS: Of the three mammalian isoforms A-RAF is special in that one of its two lipid binding domains mediates a unique pattern of membrane localization. Specific membrane binding is retained by an N-terminal fragment (AR149 that corresponds to a naturally occurring splice variant termed DA-RAF2. AR149 colocalizes with ARF6 on tubular endosomes and has a dominant negative effect on endocytic trafficking. Moreover actin polymerization of yeast and mammalian cells is abolished. AR149/DA-RAF2 does not affect the internalization step of endocytosis, but trafficking to the recycling compartment. CONCLUSIONS/SIGNIFICANCE: A-RAF induced ERK activation is required for this step by activating ARF6, as A-RAF depletion or inhibition of the A-RAF controlled MEK-ERK cascade blocks recycling. These data led to a new model for A-RAF function in endocytic trafficking.

  14. Degradation of parathyroid hormone in macrophage endosomes

    International Nuclear Information System (INIS)

    Diment, S.; Martin, K.J.; Stahl, P.D.

    1986-01-01

    Parathyroid hormone (PTH) is secreted as an 84 amino acid protein that is rapidly cleaved between amino acids 34 and 35 by Kupffer cells in liver. The resulting amino terminal peptide (1-34) is active at PTH target organs (kidney and bone). Cathepsin D can process PTH to 1-34 in vitro, and a cathepsin D-like protease, which may rapidly process proteins, is present in endosomes of alveolar macrophages. The authors set out to determine whether PTH is degraded to 1-34 in endosomes, and to elucidate the mechanism of hormone processing in vivo. Intracellular transport of 125 I-PTH was assessed by binding to alveolar macrophages at 4 0 C, followed by internalization at 37 0 C. Distribution of PTH among plasma membranes, endosomes and lysosomes was determined by subcellular fractionation. Degradation of the ligand to TCA-soluble fragments in each compartment was assayed at neutral and acid pH. 1-34 in supernatants was separated from undergraded PTH by gel filtration and detected by bioassay on kidney membranes. The authors data suggest that: 1) macrophages rapidly degrade PTH to TCA-soluble fragments. 2) macrophages do not secrete proteases that degrade extracellular PTH. 3) PTH is internalized into endocytic vesicles after 5 mins, but not delivered to lysosomes within 30 mins. 4) A bioactive peptide is released into the extracellular medium after 20 mins. 5) PTH is degraded in endosomes at acid pH by a pepstatin-sensitive protease

  15. Role of the AP-5 adaptor protein complex in late endosome-to-Golgi retrieval.

    Science.gov (United States)

    Hirst, Jennifer; Itzhak, Daniel N; Antrobus, Robin; Borner, Georg H H; Robinson, Margaret S

    2018-01-01

    The AP-5 adaptor protein complex is presumed to function in membrane traffic, but so far nothing is known about its pathway or its cargo. We have used CRISPR-Cas9 to knock out the AP-5 ζ subunit gene, AP5Z1, in HeLa cells, and then analysed the phenotype by subcellular fractionation profiling and quantitative mass spectrometry. The retromer complex had an altered steady-state distribution in the knockout cells, and several Golgi proteins, including GOLIM4 and GOLM1, were depleted from vesicle-enriched fractions. Immunolocalisation showed that loss of AP-5 led to impaired retrieval of the cation-independent mannose 6-phosphate receptor (CIMPR), GOLIM4, and GOLM1 from endosomes back to the Golgi region. Knocking down the retromer complex exacerbated this phenotype. Both the CIMPR and sortilin interacted with the AP-5-associated protein SPG15 in pull-down assays, and we propose that sortilin may act as a link between Golgi proteins and the AP-5/SPG11/SPG15 complex. Together, our findings suggest that AP-5 functions in a novel sorting step out of late endosomes, acting as a backup pathway for retromer. This provides a mechanistic explanation for why mutations in AP-5/SPG11/SPG15 cause cells to accumulate aberrant endolysosomes, and highlights the role of endosome/lysosome dysfunction in the pathology of hereditary spastic paraplegia and other neurodegenerative disorders.

  16. Role of the AP-5 adaptor protein complex in late endosome-to-Golgi retrieval.

    Directory of Open Access Journals (Sweden)

    Jennifer Hirst

    2018-01-01

    Full Text Available The AP-5 adaptor protein complex is presumed to function in membrane traffic, but so far nothing is known about its pathway or its cargo. We have used CRISPR-Cas9 to knock out the AP-5 ζ subunit gene, AP5Z1, in HeLa cells, and then analysed the phenotype by subcellular fractionation profiling and quantitative mass spectrometry. The retromer complex had an altered steady-state distribution in the knockout cells, and several Golgi proteins, including GOLIM4 and GOLM1, were depleted from vesicle-enriched fractions. Immunolocalisation showed that loss of AP-5 led to impaired retrieval of the cation-independent mannose 6-phosphate receptor (CIMPR, GOLIM4, and GOLM1 from endosomes back to the Golgi region. Knocking down the retromer complex exacerbated this phenotype. Both the CIMPR and sortilin interacted with the AP-5-associated protein SPG15 in pull-down assays, and we propose that sortilin may act as a link between Golgi proteins and the AP-5/SPG11/SPG15 complex. Together, our findings suggest that AP-5 functions in a novel sorting step out of late endosomes, acting as a backup pathway for retromer. This provides a mechanistic explanation for why mutations in AP-5/SPG11/SPG15 cause cells to accumulate aberrant endolysosomes, and highlights the role of endosome/lysosome dysfunction in the pathology of hereditary spastic paraplegia and other neurodegenerative disorders.

  17. The A/ENTH Domain-Containing Protein AtECA4 Is an Adaptor Protein Involved in Cargo Recycling from the trans-Golgi Network/Early Endosome to the Plasma Membrane.

    Science.gov (United States)

    Nguyen, Hong Hanh; Lee, Myoung Hui; Song, Kyungyoung; Ahn, Gyeongik; Lee, Jihyeong; Hwang, Inhwan

    2018-01-06

    Endocytosis and subsequent trafficking pathways are crucial for regulating the activity of plasma membrane-localized proteins. Depending on cellular and physiological conditions, the internalized cargoes are sorted at (and transported from) the trans-Golgi network/early endosome (TGN/EE) to the vacuole for degradation or recycled back to the plasma membrane. How this occurs at the molecular level remains largely elusive. Here, we provide evidence that the ENTH domain-containing protein AtECA4 plays a crucial role in recycling cargoes from the TGN/EE to the plasma membrane in Arabidopsis thaliana. AtECA4:sGFP primarily localized to the TGN/EE and plasma membrane (at low levels). Upon NaCl or mannitol treatment, AtECA4:sGFP accumulated at the TGN/EE at an early time point but was released from the TGN/EE to the cytosol at later time points. The ateca4 mutant showed higher resistance to osmotic stress and more sensitive to exogenous abscisic acid (ABA) than the wild type, as well as increased expression of ABA-inducible genes RD29A and RD29B. Consistently, ABCG25, a plasma membrane-localized ABA exporter, accumulated at the prevacuolar compartment in ateca4, indicating a defect in recycling to the plasma membrane. However, the role of AtECA4 in cargo recycling is not specific to ABCG25, as it also functions in the recycling of BRI1. These results suggest that AtECA4 plays a crucial role in the recycling of endocytosed cargoes from the TGN/EE to the plasma membrane. Copyright © 2018 The Author. Published by Elsevier Inc. All rights reserved.

  18. Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes

    OpenAIRE

    Bache, Kristi G.; Brech, Andreas; Mehlum, Anja; Stenmark, Harald

    2003-01-01

    Hrs and the endosomal sorting complexes required for transport, ESCRT-I, -II, and -III, are involved in the endosomal sorting of membrane proteins into multivesicular bodies and lysosomes or vacuoles. The ESCRT complexes are also required for formation of intraluminal endosomal vesicles and for budding of certain enveloped RNA viruses such as HIV. Here, we show that Hrs binds to the ESCRT-I subunit Tsg101 via a PSAP motif that is conserved in Tsg101-binding viral proteins. Depletion of Hrs ca...

  19. Unconventional secretion of tissue transglutaminase involves phospholipid-dependent delivery into recycling endosomes.

    Directory of Open Access Journals (Sweden)

    Evgeny A Zemskov

    2011-04-01

    Full Text Available Although endosomal compartments have been suggested to play a role in unconventional protein secretion, there is scarce experimental evidence for such involvement. Here we report that recycling endosomes are essential for externalization of cytoplasmic secretory protein tissue transglutaminase (tTG. The de novo synthesized cytoplasmic tTG does not follow the classical ER/Golgi-dependent secretion pathway, but is targeted to perinuclear recycling endosomes, and is delivered inside these vesicles prior to externalization. On its route to the cell surface tTG interacts with internalized β1 integrins inside the recycling endosomes and is secreted as a complex with recycled β1 integrins. Inactivation of recycling endosomes, blocking endosome fusion with the plasma membrane, or downregulation of Rab11 GTPase that controls outbound trafficking of perinuclear recycling endosomes, all abrogate tTG secretion. The initial recruitment of cytoplasmic tTG to recycling endosomes and subsequent externalization depend on its binding to phosphoinositides on endosomal membranes. These findings begin to unravel the unconventional mechanism of tTG secretion which utilizes the long loop of endosomal recycling pathway and indicate involvement of endosomal trafficking in non-classical protein secretion.

  20. Use of fluorescent probes to follow membrane traffic in nerve terminals

    Directory of Open Access Journals (Sweden)

    Guatimosim C.

    1998-01-01

    Full Text Available Optical tracers in conjunction with fluorescence microscopy have become widely used to follow the movement of synaptic vesicles in nerve terminals. The present review discusses the use of these optical methods to understand the regulation of exocytosis and endocytosis of synaptic vesicles. The maintenance of neurotransmission depends on the constant recycling of synaptic vesicles and important insights have been gained by visualization of vesicles with the vital dye FM1-43. A number of questions related to the control of recycling of synaptic vesicles by prolonged stimulation and the role of calcium to control membrane internalization are now being addressed. It is expected that optical monitoring of presynaptic activity coupled to appropriate genetic models will contribute to the understanding of membrane traffic in synaptic terminals.

  1. Arf6, Rab11 and transferrin receptor define distinct populations of recycling endosomes.

    Science.gov (United States)

    Kobayashi, Hotaka; Fukuda, Mitsunori

    2013-09-01

    Recycling endosomes are key platforms for endocytic recycling that return internalized molecules back to the plasma membrane. To determine how recycling endosomes perform their functions, searching for proteins and lipids that specifically localized at recycling endosomes has often been performed by colocalization analyses between candidate molecules and conventional recycling endosome markers. However, it remains unclear whether all the conventional markers have identical localizations. Here we report finding that three well-known recycling endosome markers, i.e., Arf6, Rab11 and transferrin receptor (TfR), have different intracellular localizations in PC12 cells. The results of immunofluorescence analyses showed that the signals of endogenous Arf6, Rab11 and TfR in nerve growth factor-stimulated PC12 cells generally differed, although there was some overlapping. Our findings provide new information about recycling endosome markers, and they highlight the heterogeneity of recycling endosomes.

  2. Positioning of AMPA Receptor-Containing Endosomes Regulates Synapse Architecture

    Directory of Open Access Journals (Sweden)

    Marta Esteves da Silva

    2015-11-01

    Full Text Available Lateral diffusion in the membrane and endosomal trafficking both contribute to the addition and removal of AMPA receptors (AMPARs at postsynaptic sites. However, the spatial coordination between these mechanisms has remained unclear, because little is known about the dynamics of AMPAR-containing endosomes. In addition, how the positioning of AMPAR-containing endosomes affects synapse organization and functioning has never been directly explored. Here, we used live-cell imaging in hippocampal neuron cultures to show that intracellular AMPARs are transported in Rab11-positive recycling endosomes, which frequently enter dendritic spines and depend on the microtubule and actin cytoskeleton. By using chemically induced dimerization systems to recruit kinesin (KIF1C or myosin (MyosinV/VI motors to Rab11-positive recycling endosomes, we controlled their trafficking and found that induced removal of recycling endosomes from spines decreases surface AMPAR expression and PSD-95 clusters at synapses. Our data suggest a mechanistic link between endosome positioning and postsynaptic structure and composition.

  3. Benzyl alcohol induces a reversible fragmentation of the Golgi apparatus and inhibits membrane trafficking between endosomes and the trans-Golgi network

    DEFF Research Database (Denmark)

    Simm, Roger; Kvalvaag, Audun Sverre; van Deurs, Bo

    2017-01-01

    OH is a membrane fluidizing agent that can affect membrane protein activity and cellular processes such as ligand binding to cell surface receptors, endocytosis and degradation of lysosomal cargo. In this study, we examined the effects of BnOH on intracellular transport using Shiga toxin (Stx), diphtheria toxin...

  4. Rab GTPases and kinesin motors in endosomal trafficking.

    Science.gov (United States)

    Delevoye, Cédric; Goud, Bruno

    2015-01-01

    The endocytic pathway is composed of distinct types of endosomes that vary in shape, function, and molecular composition. In addition, endosomes are highly dynamic structures that continuously receive, sort, and deliver molecules to other organelles. Among organizing machineries that contribute to endosomal functions, Rab GTPases and kinesin motors play critical roles. Rab proteins define the identity of endosomal subdomains by recruiting set of effectors among which kinesins shape and transport membranous carriers along the microtubule network. In this review, we provide detailed protocols from live cell imaging to electron microscopy and biochemical approaches to address how Rab and kinesin proteins cooperate molecularly and functionally within the endocytic pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Rabaptin5 is recruited to endosomes by Rab4 and Rabex5 to regulate endosome maturation.

    Science.gov (United States)

    Kälin, Simone; Hirschmann, David T; Buser, Dominik P; Spiess, Martin

    2015-11-15

    Rab GTPases control membrane identity, fusion and transport by interaction with effector proteins. Effectors that influence the activation-inactivation cycle of their own or other Rab proteins contribute to the timely conversion of Rab membrane identities. Rab5 and its effector rabaptin5 (Rbpt5, also known as RABEP1) are generally considered the prime example for a positive-feedback loop in which Rab5-GTP recruits Rbpt5 in complex with Rabex5 (also known as RABGEF1), the GDP/GTP exchange factor of Rab5, to early endosomes, thus maintaining the Rab5 membrane identity. By deletion analysis, we found that the membrane recruitment of Rabaptin5 required binding to Rab4 and Rabex5, but not Rab5. Deletion of either one of the two Rab5-binding domains or silencing of Rab5 expression did not affect Rabaptin5 recruitment, but produced giant endosomes with early and late endosomal characteristics. The results contradict the model of feedback activation of Rab5 and instead indicate that Rbpt5 is recruited by both Rabex5 recognizing ubiquitylated cargo and by Rab4 to activate Rab5 in a feed-forward manner. © 2015. Published by The Company of Biologists Ltd.

  6. Rab9-dependent retrograde transport and endosomal sorting of the endopeptidase furin

    Science.gov (United States)

    Chia, Pei Zhi Cheryl; Gasnereau, Isabelle; Lieu, Zi Zhao; Gleeson, Paul A.

    2011-01-01

    The endopeptidase furin and the trans-Golgi network protein TGN38 are membrane proteins that recycle between the TGN and plasma membrane. TGN38 is transported by a retromer-dependent pathway from early endosomes to the TGN, whereas the intracellular transport of furin is poorly defined. Here we have identified the itinerary and transport requirements of furin. Using internalisation assays, we show that furin transits the early and late endosomes en route to the TGN. The GTPase Rab9 and the TGN golgin GCC185, components of the late endosome-to-TGN pathway, were required for efficient TGN retrieval of furin. By contrast, TGN38 trafficking was independent of Rab9 and GCC185. To identify the sorting signals for the early endosome-to-TGN pathway, the trafficking of furin–TGN38 chimeras was investigated. The diversion of furin from the Rab9-dependent late-endosome-to-TGN pathway to the retromer-dependent early-endosome-to-TGN pathway required both the transmembrane domain and cytoplasmic tail of TGN38. We present evidence to suggest that the length of the transmembrane domain is a contributing factor in endosomal sorting. Overall, these data show that furin uses the Rab9-dependent pathway from late endosomes and that retrograde transport directly from early endosomes is dependent on both the transmembrane domain and the cytoplasmic tail. PMID:21693586

  7. Substance P dependence of endosomal fusion during bladder inflammation.

    Science.gov (United States)

    Hammond, T G; Saban, R; Bost, K L; Harris, H W; Kaysen, J H; Goda, F O; Wang, X C; Lewis, F C; Navar, G L; Campbell, W C; Bjorling, D E; Saban, M; Zeidel, M L

    2000-03-01

    , demonstrating a role for NK1R in this process; and 3) the NK1R is present in higher amounts in apical endosomes of inflamed bladder, suggesting changes in translation or trafficking of the NK1R during the inflammatory process. This suggests that NK1R can change the fusion properties of membranes in which it resides.

  8. An Essential Role of Hrs/Vps27 in Endosomal Cholesterol Trafficking

    Directory of Open Access Journals (Sweden)

    Ximing Du

    2012-01-01

    Full Text Available The endosomal sorting complex required for transport (ESCRT plays a crucial role in the degradation of ubiquitinated endosomal membrane proteins. Here, we report that Hrs, a key protein of the ESCRT-0 complex, is required for the transport of low-density lipoprotein-derived cholesterol from endosomes to the endoplasmic reticulum. This function of Hrs in cholesterol transport is distinct from its previously defined role in lysosomal sorting and downregulation of membrane receptors via the ESCRT pathway. In line with this, knocking down other ESCRT proteins does not cause prominent endosomal cholesterol accumulation. Importantly, the localization and biochemical properties of key cholesterol-sorting proteins, NPC1 and NPC2, appear to be unchanged upon Hrs knockdown. Our data identify Hrs as a regulator of endosomal cholesterol trafficking and provide additional insights into the budding of intralumenal vesicles.

  9. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery

    Science.gov (United States)

    Chu, Zhiqin; Miu, Kaikei; Lung, Pingsai; Zhang, Silu; Zhao, Saisai; Chang, Huan-Cheng; Lin, Ge; Li, Quan

    2015-06-01

    The prickly nanodiamonds easily entered cells via endocytosis followed by unique intracellular translocation characteristics—quick endosomal escape followed by stable residence in cytoplasm. Endosomal membrane rupturing is identified as the major route of nanodiamonds’ escaping the vesicle confinement and to the cytoplasm. Little cytotoxicity is observed to associate with the nanodiamonds’ cytosolic release. Such features enable its application for gene delivery, which requires both effective cellular uptake and cytosolic release of the gene. Taking green fluorescent protein gene as an example, we demonstrate the successful cytosolic delivery and expression of such a gene using the prickly nanodiamonds as carrier.

  10. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery.

    Science.gov (United States)

    Chu, Zhiqin; Miu, Kaikei; Lung, Pingsai; Zhang, Silu; Zhao, Saisai; Chang, Huan-Cheng; Lin, Ge; Li, Quan

    2015-06-30

    The prickly nanodiamonds easily entered cells via endocytosis followed by unique intracellular translocation characteristics—quick endosomal escape followed by stable residence in cytoplasm. Endosomal membrane rupturing is identified as the major route of nanodiamonds' escaping the vesicle confinement and to the cytoplasm. Little cytotoxicity is observed to associate with the nanodiamonds' cytosolic release. Such features enable its application for gene delivery, which requires both effective cellular uptake and cytosolic release of the gene. Taking green fluorescent protein gene as an example, we demonstrate the successful cytosolic delivery and expression of such a gene using the prickly nanodiamonds as carrier.

  11. Comprehensive analysis reveals dynamic and evolutionary plasticity of Rab GTPases and membrane traffic in Tetrahymena thermophila.

    Directory of Open Access Journals (Sweden)

    Lydia J Bright

    2010-10-01

    Full Text Available Cellular sophistication is not exclusive to multicellular organisms, and unicellular eukaryotes can resemble differentiated animal cells in their complex network of membrane-bound structures. These comparisons can be illuminated by genome-wide surveys of key gene families. We report a systematic analysis of Rabs in a complex unicellular Ciliate, including gene prediction and phylogenetic clustering, expression profiling based on public data, and Green Fluorescent Protein (GFP tagging. Rabs are monomeric GTPases that regulate membrane traffic. Because Rabs act as compartment-specific determinants, the number of Rabs in an organism reflects intracellular complexity. The Tetrahymena Rab family is similar in size to that in humans and includes both expansions in conserved Rab clades as well as many divergent Rabs. Importantly, more than 90% of Rabs are expressed concurrently in growing cells, while only a small subset appears specialized for other conditions. By localizing most Rabs in living cells, we could assign the majority to specific compartments. These results validated most phylogenetic assignments, but also indicated that some sequence-conserved Rabs were co-opted for novel functions. Our survey uncovered a rare example of a nuclear Rab and substantiated the existence of a previously unrecognized core Rab clade in eukaryotes. Strikingly, several functionally conserved pathways or structures were found to be associated entirely with divergent Rabs. These pathways may have permitted rapid evolution of the associated Rabs or may have arisen independently in diverse lineages and then converged. Thus, characterizing entire gene families can provide insight into the evolutionary flexibility of fundamental cellular pathways.

  12. Two-hybrid-based systems: powerful tools for investigation of membrane traffic machineries.

    Science.gov (United States)

    Stasi, Mariangela; De Luca, Maria; Bucci, Cecilia

    2015-05-20

    Protein-protein interactions regulate biological processes and are fundamental for cell functions. Recently, efforts have been made to define interactomes, which are maps of protein-protein interactions that are useful for understanding biological pathways and networks and for investigating how perturbations of these networks lead to diseases. Therefore, interactomes are becoming fundamental for establishing the molecular basis of human diseases and contributing to the discovery of effective therapies. Interactomes are constructed based on experimental data present in the literature and computational predictions of interactions. Several biochemical, genetic and biotechnological techniques have been used in the past to identify protein-protein interactions. The yeast two-hybrid system has beyond doubt represented a revolution in the field, being a versatile tool and allowing the immediate identification of the interacting proteins and isolation of the cDNA coding for the interacting peptide after in vivo screening. Recently, variants of the yeast two-hybrid assay have been developed, including high-throughput systems that promote the rapidly growing field of proteomics. In this review we will focus on the role of this technique in the discovery of Rab interacting proteins, highlighting the importance of high-throughput two-hybrid screening as a tool to study the complexity of membrane traffic machineries. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Hepatitis C Virus Replication Depends on Endosomal Cholesterol Homeostasis.

    Science.gov (United States)

    Stoeck, Ina Karen; Lee, Ji-Young; Tabata, Keisuke; Romero-Brey, Inés; Paul, David; Schult, Philipp; Lohmann, Volker; Kaderali, Lars; Bartenschlager, Ralf

    2018-01-01

    Similar to other positive-strand RNA viruses, hepatitis C virus (HCV) causes massive rearrangements of intracellular membranes, resulting in a membranous web (MW) composed of predominantly double-membrane vesicles (DMVs), the presumed sites of RNA replication. DMVs are enriched for cholesterol, but mechanistic details on the source and recruitment of cholesterol to the viral replication organelle are only partially known. Here we focused on selected lipid transfer proteins implicated in direct lipid transfer at various endoplasmic reticulum (ER)-membrane contact sites. RNA interference (RNAi)-mediated knockdown identified several hitherto unknown HCV dependency factors, such as steroidogenic acute regulatory protein-related lipid transfer domain protein 3 (STARD3), oxysterol-binding protein-related protein 1A and -B (OSBPL1A and -B), and Niemann-Pick-type C1 (NPC1), all residing at late endosome and lysosome membranes and required for efficient HCV RNA replication but not for replication of the closely related dengue virus. Focusing on NPC1, we found that knockdown or pharmacological inhibition caused cholesterol entrapment in lysosomal vesicles concomitant with decreased cholesterol abundance at sites containing the viral replicase factor NS5A. In untreated HCV-infected cells, unesterified cholesterol accumulated at the perinuclear region, partially colocalizing with NS5A at DMVs, arguing for NPC1-mediated endosomal cholesterol transport to the viral replication organelle. Consistent with cholesterol being an important structural component of DMVs, reducing NPC1-dependent endosomal cholesterol transport impaired MW integrity. This suggests that HCV usurps lipid transfer proteins, such as NPC1, at ER-late endosome/lysosome membrane contact sites to recruit cholesterol to the viral replication organelle, where it contributes to MW functionality. IMPORTANCE A key feature of the replication of positive-strand RNA viruses is the rearrangement of the host cell

  14. Dengue virus ensures its fusion in late endosomes using compartment-specific lipids.

    Directory of Open Access Journals (Sweden)

    Elena Zaitseva

    2010-10-01

    Full Text Available Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN, the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses only in late endosomes, while activation of DEN protein fusogen glycoprotein E is triggered already at pH characteristic for early endosomes. Are there any cofactors that time DEN fusion to virion entry into late endosomes? Here we show that DEN utilizes bis(monoacylglycerophosphate, a lipid specific to late endosomes, as a co-factor for its endosomal acidification-dependent fusion machinery. Effective virus fusion to plasma- and intracellular- membranes, as well as to protein-free liposomes, requires the target membrane to contain anionic lipids such as bis(monoacylglycerophosphate and phosphatidylserine. Anionic lipids act downstream of low-pH-dependent fusion stages and promote the advance from the earliest hemifusion intermediates to the fusion pore opening. To reach anionic lipid-enriched late endosomes, DEN travels through acidified early endosomes, but we found that low pH-dependent loss of fusogenic properties of DEN is relatively slow in the presence of anionic lipid-free target membranes. We propose that anionic lipid-dependence of DEN fusion machinery protects it against premature irreversible restructuring and inactivation and ensures viral fusion in late endosomes, where the virus encounters anionic lipids for the first time during entry. Currently there are neither vaccines nor effective therapies for DEN, and the essential role of the newly identified DEN-bis(monoacylglycerophosphate interactions in viral genome escape from the endosome suggests a novel target for drug design.

  15. Schwann cell-specific deletion of the endosomal PI 3-kinase Vps34 leads to delayed radial sorting of axons, arrested myelination, and abnormal ErbB2-ErbB3 tyrosine kinase signaling.

    Science.gov (United States)

    Logan, Anne M; Mammel, Anna E; Robinson, Danielle C; Chin, Andrea L; Condon, Alec F; Robinson, Fred L

    2017-09-01

    The PI 3-kinase Vps34 (Pik3c3) synthesizes phosphatidylinositol 3-phosphate (PI3P), a lipid critical for both endosomal membrane traffic and macroautophagy. Human genetics have implicated PI3P dysregulation, and endosomal trafficking in general, as a recurring cause of demyelinating Charcot-Marie-Tooth (CMT) peripheral neuropathy. Here, we investigated the role of Vps34, and PI3P, in mouse Schwann cells by selectively deleting Vps34 in this cell type. Vps34-Schwann cell knockout (Vps34 SCKO ) mice show severe hypomyelination in peripheral nerves. Vps34 -/- Schwann cells interact abnormally with axons, and there is a delay in radial sorting, a process by which large axons are selected for myelination. Upon reaching the promyelinating stage, Vps34 -/- Schwann cells are significantly impaired in the elaboration of myelin. Nerves from Vps34 SCKO mice contain elevated levels of the LC3 and p62 proteins, indicating impaired autophagy. However, in the light of recent demonstrations that autophagy is dispensable for myelination, it is unlikely that hypomyelination in Vps34 SCKO mice is caused by impaired autophagy. Endosomal trafficking is also disturbed in Vps34 -/- Schwann cells. We investigated the activation of the ErbB2/3 receptor tyrosine kinases in Vps34 SCKO nerves, as these proteins, which play essential roles in Schwann cell myelination, are known to traffic through endosomes. In Vps34 SCKO nerves, ErbB3 was hyperphosphorylated on a tyrosine known to be phosphorylated in response to neuregulin 1 exposure. ErbB2 protein levels were also decreased during myelination. Our findings suggest that the loss of Vps34 alters the trafficking of ErbB2/3 through endosomes. Abnormal ErbB2/3 signaling to downstream targets may contribute to the hypomyelination observed in Vps34 SCKO mice. © 2017 Wiley Periodicals, Inc.

  16. Endosomal generation of cAMP in GPCR signaling

    Science.gov (United States)

    Vilardaga, Jean-Pierre; Jean-Alphonse, Frederic G.; Gardella, Thomas J.

    2015-01-01

    It has been widely assumed that the production of the ubiquitous second messenger cyclic AMP, which is mediated by cell surface G protein–coupled receptors (GPCRs), and its termination take place exclusively at the plasma membrane. Recent studies reveal that diverse GPCRs do not always follow this conventional paradigm. In the new model, GPCRs mediate G-protein signaling not only from the plasma membrane but also from endosomal membranes. This model proposes that following ligand binding and activation, cell surface GPCRs internalize and redistribute into early endosomes, where trimeric G protein signaling can be maintained for an extended period of time. This Perspective discusses the molecular and cellular mechanistic subtleties as well as the physiological consequences of this unexpected process, which is considerably changing how we think about GPCR signaling and regulation and how we study drugs that target this receptor family. PMID:25271346

  17. Arfophilins Are Dual Arf/Rab 11 Binding Proteins That Regulate Recycling Endosome Distribution and Are Related to Drosophila Nuclear Fallout

    Science.gov (United States)

    Hickson, Gilles R.X.; Matheson, Johanne; Riggs, Blake; Maier, Valerie H.; Fielding, Andrew B.; Prekeris, Rytis; Sullivan, William; Barr, Francis A.; Gould, Gwyn W.

    2003-01-01

    Arfophilin is an ADP ribosylation factor (Arf) binding protein of unknown function. It is identical to the Rab11 binding protein eferin/Rab11-FIP3, and we show it binds both Arf5 and Rab11. We describe a related protein, arfophilin-2, that interacts with Arf5 in a nucleotide-dependent manner, but not Arf1, 4, or 6 and also binds Rab11. Arfophilin-2 localized to a perinuclear compartment, the centrosomal area, and focal adhesions. The localization of arfophilin-2 to the perinuclear compartment was selectively blocked by overexpression of Arf5-T31N. In contrast, a green fluorescent protein-arfophilin-2 chimera or arfophilin-2 deletions were localized around the centrosome in a region that was also enriched for transferrin receptors and Rab11 but not early endosome markers, suggesting that the distribution of the endosomal recycling compartment was altered. The arfophilins belong to a conserved family that includes Drosophila melanogaster nuclear fallout, a centrosomal protein required for cellularization. Expression of green fluorescent protein-nuclear fallout in HeLa cells resulted in a similar phenotype, indicative of functional homology and thus implicating the arfophilins in mitosis/cytokinesis. We suggest that the novel dual GTPase-binding capacity of the arfophilins could serve as an interface of signals from Rab and Arf GTPases to regulate membrane traffic and integrate distinct signals in the late endosomal recycling compartment. PMID:12857874

  18. Charcot–Marie–Tooth disease and intracellular traffic

    Science.gov (United States)

    Bucci, Cecilia; Bakke, Oddmund; Progida, Cinzia

    2012-01-01

    Mutations of genes whose primary function is the regulation of membrane traffic are increasingly being identified as the underlying causes of various important human disorders. Intriguingly, mutations in ubiquitously expressed membrane traffic genes often lead to cell type- or organ-specific disorders. This is particularly true for neuronal diseases, identifying the nervous system as the most sensitive tissue to alterations of membrane traffic. Charcot–Marie–Tooth (CMT) disease is one of the most common inherited peripheral neuropathies. It is also known as hereditary motor and sensory neuropathy (HMSN), which comprises a group of disorders specifically affecting peripheral nerves. This peripheral neuropathy, highly heterogeneous both clinically and genetically, is characterized by a slowly progressive degeneration of the muscle of the foot, lower leg, hand and forearm, accompanied by sensory loss in the toes, fingers and limbs. More than 30 genes have been identified as targets of mutations that cause CMT neuropathy. A number of these genes encode proteins directly or indirectly involved in the regulation of intracellular traffic. Indeed, the list of genes linked to CMT disease includes genes important for vesicle formation, phosphoinositide metabolism, lysosomal degradation, mitochondrial fission and fusion, and also genes encoding endosomal and cytoskeletal proteins. This review focuses on the link between intracellular transport and CMT disease, highlighting the molecular mechanisms that underlie the different forms of this peripheral neuropathy and discussing the pathophysiological impact of membrane transport genetic defects as well as possible future ways to counteract these defects. PMID:22465036

  19. ER network homeostasis is critical for plant endosome streaming and endocytosis

    Science.gov (United States)

    Stefano, Giovanni; Renna, Luciana; Lai, YaShiuan; Slabaugh, Erin; Mannino, Nicole; Buono, Rafael A; Otegui, Marisa S; Brandizzi, Federica

    2015-01-01

    Eukaryotic cells internalize cargo at the plasma membrane via endocytosis, a vital process that is accomplished through a complex network of endosomal organelles. In mammalian cells, the ER is in close association with endosomes and regulates their fission. Nonetheless, the physiological role of such interaction on endocytosis is yet unexplored. Here, we probed the existence of ER–endosome association in plant cells and assayed its physiological role in endocytosis. Through live-cell imaging and electron microscopy studies, we established that endosomes are extensively associated with the plant ER, supporting conservation of interaction between heterotypic organelles in evolutionarily distant kingdoms. Furthermore, by analyzing ER–endosome dynamics in genetic backgrounds with defects in ER structure and movement, we also established that the ER network integrity is necessary for homeostasis of the distribution and streaming of various endosome populations as well as for efficient endocytosis. These results support a novel model that endocytosis homeostasis depends on a spatiotemporal control of the endosome dynamics dictated by the ER membrane network. PMID:27462431

  20. The ESCRT regulator Did2 maintains the balance between long-distance endosomal transport and endocytic trafficking.

    Directory of Open Access Journals (Sweden)

    Carl Haag

    2017-04-01

    Full Text Available In highly polarised cells, like fungal hyphae, early endosomes function in both endocytosis as well as long-distance transport of various cargo including mRNA and protein complexes. However, knowledge on the crosstalk between these seemingly different trafficking processes is scarce. Here, we demonstrate that the ESCRT regulator Did2 coordinates endosomal transport in fungal hyphae of Ustilago maydis. Loss of Did2 results in defective vacuolar targeting, less processive long-distance transport and abnormal shuttling of early endosomes. Importantly, the late endosomal protein Rab7 and vacuolar protease Prc1 exhibit increased shuttling on these aberrant endosomes suggesting defects in endosomal maturation and identity. Consistently, molecular motors fail to attach efficiently explaining the disturbed processive movement. Furthermore, the endosomal mRNP linker protein Upa1 is hardly present on endosomes resulting in defects in long-distance mRNA transport. In conclusion, the ESCRT regulator Did2 coordinates precise maturation of endosomes and thus provides the correct membrane identity for efficient endosomal long-distance transport.

  1. HIV-1 Envelope Glycoprotein Trafficking through the Endosomal Recycling Compartment Is Required for Particle Incorporation.

    Science.gov (United States)

    Kirschman, Junghwa; Qi, Mingli; Ding, Lingmei; Hammonds, Jason; Dienger-Stambaugh, Krista; Wang, Jaang-Jiun; Lapierre, Lynne A; Goldenring, James R; Spearman, Paul

    2018-03-01

    The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) encodes specific trafficking signals within its long cytoplasmic tail (CT) that regulate incorporation into HIV-1 particles. Rab11-family interacting protein 1C (FIP1C) and Rab14 are host trafficking factors required for Env particle incorporation, suggesting that Env undergoes sorting from the endosomal recycling compartment (ERC) to the site of particle assembly on the plasma membrane. We disrupted outward sorting from the ERC by expressing a C-terminal fragment of FIP1C (FIP1C 560-649 ) and examined the consequences on Env trafficking and incorporation into particles. FIP1C 560-649 reduced cell surface levels of Env and prevented its incorporation into HIV-1 particles. Remarkably, Env was trapped in an exaggerated perinuclear ERC in a CT-dependent manner. Mutation of either the Yxxϕ endocytic motif or the YW 795 motif in the CT prevented Env trapping in the ERC and restored incorporation into particles. In contrast, simian immunodeficiency virus SIVmac239 Env was not retained in the ERC, while substitution of the HIV-1 CT for the SIV CT resulted in SIV Env retention in this compartment. These results provide the first direct evidence that Env traffics through the ERC and support a model whereby HIV-1 Env is specifically targeted to the ERC prior to FIP1C- and CT-dependent outward sorting to the particle assembly site on the plasma membrane. IMPORTANCE The HIV envelope protein is an essential component of the viral particle. While many aspects of envelope protein structure and function have been established, the pathway it follows in the cell prior to reaching the site of particle assembly is not well understood. The envelope protein has a very long cytoplasmic tail that interacts with the host cell trafficking machinery. Here, we utilized a truncated form of the trafficking adaptor FIP1C protein to arrest the intracellular transport of the envelope protein, demonstrating that it becomes

  2. RACK-1 Directs Dynactin-dependent RAB-11 Endosomal Recycling during Mitosis in Caenorhabditis elegans

    Science.gov (United States)

    Ai, Erkang; Poole, Daniel S.

    2009-01-01

    Membrane trafficking pathways are necessary for the addition and removal of membrane during cytokinesis. In animal cells, recycling endosomes act as a major source of the additional membranes during furrow progression and abscission. However, the mechanisms and factors that regulate recycling endosomes during the cell cycle remain poorly understood. Here, we show that the Caenorhabditis elegans Receptor of Activated C Kinase 1 (RACK-1) is required for cytokinesis, germline membrane organization, and the recruitment of RAB-11–labeled recycling endosomes to the pericentrosomal region and spindle. RACK-1 is also required for proper chromosome separation and astral microtubule length. RACK-1 localizes to the centrosomes, kinetochores, the midbody, and nuclear envelopes during the cell cycle. We found that RACK-1 directly binds to DNC-2, the C. elegans p50/dynamitin subunit of the dynactin complex. Last, RACK-1 may facilitate the sequestration of recycling endosomes by targeting DNC-2 to centrosomes and the spindle. Our findings suggest a mechanism by which RACK-1 directs the dynactin-dependent redistribution of recycling endosomes during the cell cycle, thus ensuring proper membrane trafficking events during cytokinesis. PMID:19158384

  3. ESCRT-I mediates FLS2 endosomal sorting and plant immunity.

    Directory of Open Access Journals (Sweden)

    Thomas Spallek

    Full Text Available The plant immune receptor FLAGELLIN SENSING 2 (FLS2 is present at the plasma membrane and is internalized following activation of its ligand flagellin (flg22. We show that ENDOSOMAL SORTING COMPLEX REQUIRED FOR TRANSPORT (ESCRT-I subunits play roles in FLS2 endocytosis in Arabidopsis. VPS37-1 co-localizes with FLS2 at endosomes and immunoprecipitates with the receptor upon flg22 elicitation. Vps37-1 mutants are reduced in flg22-induced FLS2 endosomes but not in endosomes labeled by Rab5 GTPases suggesting a defect in FLS2 trafficking rather than formation of endosomes. FLS2 localizes to the lumen of multivesicular bodies, but this is altered in vps37-1 mutants indicating compromised endosomal sorting of FLS2 by ESCRT-I loss-of-function. VPS37-1 and VPS28-2 are critical for immunity against bacterial infection through a role in stomatal closure. Our findings identify that VPS37-1, and likewise VPS28-2, regulate late FLS2 endosomal sorting and reveals that ESCRT-I is critical for flg22-activated stomatal defenses involved in plant immunity.

  4. Post-Golgi anterograde transport requires GARP-dependent endosome-to-TGN retrograde transport

    Science.gov (United States)

    Hirata, Tetsuya; Fujita, Morihisa; Nakamura, Shota; Gotoh, Kazuyoshi; Motooka, Daisuke; Murakami, Yoshiko; Maeda, Yusuke; Kinoshita, Taroh

    2015-01-01

    The importance of endosome-to–trans-Golgi network (TGN) retrograde transport in the anterograde transport of proteins is unclear. In this study, genome-wide screening of the factors necessary for efficient anterograde protein transport in human haploid cells identified subunits of the Golgi-associated retrograde protein (GARP) complex, a tethering factor involved in endosome-to-TGN transport. Knockout (KO) of each of the four GARP subunits, VPS51–VPS54, in HEK293 cells caused severely defective anterograde transport of both glycosylphosphatidylinositol (GPI)-anchored and transmembrane proteins from the TGN. Overexpression of VAMP4, v-SNARE, in VPS54-KO cells partially restored not only endosome-to-TGN retrograde transport, but also anterograde transport of both GPI-anchored and transmembrane proteins. Further screening for genes whose overexpression normalized the VPS54-KO phenotype identified TMEM87A, encoding an uncharacterized Golgi-resident membrane protein. Overexpression of TMEM87A or its close homologue TMEM87B in VPS54-KO cells partially restored endosome-to-TGN retrograde transport and anterograde transport. Therefore GARP- and VAMP4-dependent endosome-to-TGN retrograde transport is required for recycling of molecules critical for efficient post-Golgi anterograde transport of cell-surface integral membrane proteins. In addition, TMEM87A and TMEM87B are involved in endosome-to-TGN retrograde transport. PMID:26157166

  5. Erythroid cell mitochondria receive endosomal iron by a "kiss-and-run" mechanism.

    Science.gov (United States)

    Hamdi, Amel; Roshan, Tariq M; Kahawita, Tanya M; Mason, Anne B; Sheftel, Alex D; Ponka, Prem

    2016-12-01

    In erythroid cells, more than 90% of transferrin-derived iron enters mitochondria where ferrochelatase inserts Fe 2+ into protoporphyrin IX. However, the path of iron from endosomes to mitochondrial ferrochelatase remains elusive. The prevailing opinion is that, after its export from endosomes, the redox-active metal spreads into the cytosol and mysteriously finds its way into mitochondria through passive diffusion. In contrast, this study supports the hypothesis that the highly efficient transport of iron toward ferrochelatase in erythroid cells requires a direct interaction between transferrin-endosomes and mitochondria (the "kiss-and-run" hypothesis). Using a novel method (flow sub-cytometry), we analyze lysates of reticulocytes after labeling these organelles with different fluorophores. We have identified a double-labeled population definitively representing endosomes interacting with mitochondria, as demonstrated by confocal microscopy. Moreover, we conclude that this endosome-mitochondrion association is reversible, since a "chase" with unlabeled holotransferrin causes a time-dependent decrease in the size of the double-labeled population. Importantly, the dissociation of endosomes from mitochondria does not occur in the absence of holotransferrin. Additionally, mutated recombinant holotransferrin, that cannot release iron, significantly decreases the uptake of 59 Fe by reticulocytes and diminishes 59 Fe incorporation into heme. This suggests that endosomes, which are unable to provide iron to mitochondria, cause a "traffic jam" leading to decreased endocytosis of holotransferrin. Altogether, our results suggest that a molecular mechanism exists to coordinate the iron status of endosomal transferrin with its trafficking. Besides its contribution to the field of iron metabolism, this study provides evidence for a new intracellular trafficking pathway of organelles. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. GPCR sorting at multivesicular endosomes.

    Science.gov (United States)

    Dores, Michael Robert; Trejo, JoAnn

    2015-01-01

    The lysosomal degradation of G protein-coupled receptors (GPCRs) is essential for receptor signaling and down regulation. Once internalized, GPCRs are sorted within the endocytic pathway and packaged into intraluminal vesicles (ILVs) that bud inward to form the multivesicular endosome (MVE). The mechanisms that control GPCR sorting and ILV formation are poorly understood. Quantitative strategies are important for evaluating the function of adaptor and scaffold proteins that regulate sorting of GPCRs at MVEs. In this chapter, we outline two strategies for the quantification and visualization of GPCR sorting into the lumen of MVEs. The first protocol utilizes a biochemical approach to assay the sorting of GPCRs in a population of cells, whereas the second strategy examines GPCR sorting in individual cells using immunofluorescence confocal microscopy. Combined, these assays can be used to establish the kinetics of activated GPCR lysosomal trafficking in response to specific ligands, as well as evaluate the contribution of endosomal adaptors to GPCR sorting at MVEs. The protocols presented in this chapter can be adapted to analyze GPCR sorting in a myriad of cell types and tissues, and expanded to analyze the mechanisms that regulate MVE sorting of other cargoes. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. PI(3,5)P2 controls endosomal branched actin dynamics by regulating cortactin–actin interactions

    Science.gov (United States)

    Hong, Nan Hyung; Qi, Aidong

    2015-01-01

    Branched actin critically contributes to membrane trafficking by regulating membrane curvature, dynamics, fission, and transport. However, how actin dynamics are controlled at membranes is poorly understood. Here, we identify the branched actin regulator cortactin as a direct binding partner of phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) and demonstrate that their interaction promotes turnover of late endosomal actin. In vitro biochemical studies indicated that cortactin binds PI(3,5)P2 via its actin filament-binding region. Furthermore, PI(3,5)P2 competed with actin filaments for binding to cortactin, thereby antagonizing cortactin activity. These findings suggest that PI(3,5)P2 formation on endosomes may remove cortactin from endosome-associated branched actin. Indeed, inhibition of PI(3,5)P2 production led to cortactin accumulation and actin stabilization on Rab7+ endosomes. Conversely, inhibition of Arp2/3 complex activity greatly reduced cortactin localization to late endosomes. Knockdown of cortactin reversed PI(3,5)P2-inhibitor–induced actin accumulation and stabilization on endosomes. These data suggest a model in which PI(3,5)P2 binding removes cortactin from late endosomal branched actin networks and thereby promotes net actin turnover. PMID:26323691

  8. The Connecdenn DENN domain: a GEF for Rab35 mediating cargo-specific exit from early endosomes.

    Science.gov (United States)

    Allaire, Patrick D; Marat, Andrea L; Dall'Armi, Claudia; Di Paolo, Gilbert; McPherson, Peter S; Ritter, Brigitte

    2010-02-12

    The DENN domain is an evolutionarily ancient protein module. Mutations in the DENN domain cause developmental defects in plants and human diseases, yet the function of this common module is unknown. We now demonstrate that the connecdenn/DENND1A DENN domain functions as a guanine nucleotide exchange factor (GEF) for Rab35 to regulate endosomal membrane trafficking. Loss of Rab35 activity causes an enlargement of early endosomes and inhibits MHC class I recycling. Moreover, it prevents early endosomal recruitment of EHD1, a common component of tubules involved in endosomal cargo recycling. Our data reveal an enzymatic activity for a DENN domain and demonstrate that distinct Rab GTPases can recruit a common protein machinery to various sites within the endosomal network to establish cargo-selective recycling pathways.

  9. The coordinating role of IQGAP1 in the regulation of local, endosome-specific actin networks.

    Science.gov (United States)

    Samson, Edward B; Tsao, David S; Zimak, Jan; McLaughlin, R Tyler; Trenton, Nicholaus J; Mace, Emily M; Orange, Jordan S; Schweikhard, Volker; Diehl, Michael R

    2017-06-15

    IQGAP1 is a large, multi-domain scaffold that helps orchestrate cell signaling and cytoskeletal mechanics by controlling interactions among a spectrum of receptors, signaling intermediates, and cytoskeletal proteins. While this coordination is known to impact cell morphology, motility, cell adhesion, and vesicular traffic, among other functions, the spatiotemporal properties and regulatory mechanisms of IQGAP1 have not been fully resolved. Herein, we describe a series of super-resolution and live-cell imaging analyses that identified a role for IQGAP1 in the regulation of an actin cytoskeletal shell surrounding a novel membranous compartment that localizes selectively to the basal cortex of polarized epithelial cells (MCF-10A). We also show that IQGAP1 appears to both stabilize the actin coating and constrain its growth. Loss of compartmental IQGAP1 initiates a disassembly mechanism involving rapid and unconstrained actin polymerization around the compartment and dispersal of its vesicle contents. Together, these findings suggest IQGAP1 achieves this control by harnessing both stabilizing and antagonistic interactions with actin. They also demonstrate the utility of these compartments for image-based investigations of the spatial and temporal dynamics of IQGAP1 within endosome-specific actin networks. © 2017. Published by The Company of Biologists Ltd.

  10. The coordinating role of IQGAP1 in the regulation of local, endosome-specific actin networks

    Directory of Open Access Journals (Sweden)

    Edward B. Samson

    2017-06-01

    Full Text Available IQGAP1 is a large, multi-domain scaffold that helps orchestrate cell signaling and cytoskeletal mechanics by controlling interactions among a spectrum of receptors, signaling intermediates, and cytoskeletal proteins. While this coordination is known to impact cell morphology, motility, cell adhesion, and vesicular traffic, among other functions, the spatiotemporal properties and regulatory mechanisms of IQGAP1 have not been fully resolved. Herein, we describe a series of super-resolution and live-cell imaging analyses that identified a role for IQGAP1 in the regulation of an actin cytoskeletal shell surrounding a novel membranous compartment that localizes selectively to the basal cortex of polarized epithelial cells (MCF-10A. We also show that IQGAP1 appears to both stabilize the actin coating and constrain its growth. Loss of compartmental IQGAP1 initiates a disassembly mechanism involving rapid and unconstrained actin polymerization around the compartment and dispersal of its vesicle contents. Together, these findings suggest IQGAP1 achieves this control by harnessing both stabilizing and antagonistic interactions with actin. They also demonstrate the utility of these compartments for image-based investigations of the spatial and temporal dynamics of IQGAP1 within endosome-specific actin networks.

  11. Human ClC-6 is a late endosomal glycoprotein that associates with detergent-resistant lipid domains.

    Directory of Open Access Journals (Sweden)

    Sofie Ignoul

    Full Text Available BACKGROUND: The mammalian CLC protein family comprises nine members (ClC-1 to -7 and ClC-Ka, -Kb that function either as plasma membrane chloride channels or as intracellular chloride/proton antiporters, and that sustain a broad spectrum of cellular processes, such as membrane excitability, transepithelial transport, endocytosis and lysosomal degradation. In this study we focus on human ClC-6, which is structurally most related to the late endosomal/lysomal ClC-7. PRINCIPAL FINDINGS: Using a polyclonal affinity-purified antibody directed against a unique epitope in the ClC-6 COOH-terminal tail, we show that human ClC-6, when transfected in COS-1 cells, is N-glycosylated in a region that is evolutionary poorly conserved between mammalian CLC proteins and that is located between the predicted helices K and M. Three asparagine residues (N410, N422 and N432 have been defined by mutagenesis as acceptor sites for N-glycosylation, but only two of the three sites seem to be simultaneously N-glycosylated. In a differentiated human neuroblastoma cell line (SH-SY5Y, endogenous ClC-6 colocalizes with LAMP-1, a late endosomal/lysosomal marker, but not with early/recycling endosomal markers such as EEA-1 and transferrin receptor. In contrast, when transiently expressed in COS-1 or HeLa cells, human ClC-6 mainly overlaps with markers for early/recycling endosomes (transferrin receptor, EEA-1, Rab5, Rab4 and not with late endosomal/lysosomal markers (LAMP-1, Rab7. Analogously, overexpression of human ClC-6 in SH-SY5Y cells also leads to an early/recycling endosomal localization of the exogenously expressed ClC-6 protein. Finally, in transiently transfected COS-1 cells, ClC-6 copurifies with detergent-resistant membrane fractions, suggesting its partitioning in lipid rafts. Mutating a juxtamembrane string of basic amino acids (amino acids 71-75: KKGRR disturbs the association with detergent-resistant membrane fractions and also affects the segregation of ClC-6

  12. Phagocytosis by neutrophils - studies on phagosome dynamics and membrane traffic modulation by Streptococcus pyogenes

    OpenAIRE

    Nordenfelt, Pontus

    2010-01-01

    Neutrophils are our most numerous and deadly white blood cells and without them we would succumb quickly to infections by pathogens. The main mechanism that the neutrophils employ for our protection is phagocytosis, where they eat and enclose their target inside a membrane-bound organelle, the phagosome. Neutrophil phagosomes are highly dynamic entities, and a large amount of antimicrobial substances are released to their interior within seconds of formation. In most cases this wi...

  13. C9orf72’s interaction with Rab GTPases - modulation of membrane traffic and autophagy

    Directory of Open Access Journals (Sweden)

    Bor Luen Tang

    2016-10-01

    Full Text Available Hexanucleotide repeat expansion in an intron of Chromosome 9 open reading frame 72 (C9orf72 is the most common genetic cause of Amyotrophic Lateral Sclerosis (ALS and Frontotemporal Dementia (FTD. While functional haploinsufficiency of C9orf72 resulting from the mutation may play a role in ALS/FTD, the actual cellular role of the protein has been unclear. Recent findings have now shown that C9orf72 physically and functionally interacts with multiple members of the Rab small GTPases family, consequently exerting important influences on cellular membrane traffic and the process of autophagy. Loss of C9orf72 impairs endocytosis in neuronal cell lines, and attenuated autophagosome formation. Interestingly, C9orf72 could influence autophagy both as part of a Guanine nucleotide exchange factor (GEF complex, or as a Rab effector that facilitates transport of the Unc-51-like Autophagy Activating Kinase 1 (Ulk1 autophagy initiation complex. The cellular function of C9orf72 is discussed in the light of these recent findings

  14. Molecular basis for SNX-BAR-mediated assembly of distinct endosomal sorting tubules

    DEFF Research Database (Denmark)

    van Weering, Jan R.T.; Sessions, Richard B.; Traer, Colin J.

    2012-01-01

    Sorting nexins (SNXs) are regulators of endosomal sorting. For the SNX-BAR subgroup, a Bin/Amphiphysin/Rvs (BAR) domain is vital for formation/stabilization of tubular subdomains that mediate cargo recycling. Here, by analysing the in vitro membrane remodelling properties of all 12 human SNX......-loop' interactions. Overall, the restricted and selective nature of these interactions provide a molecular explanation for how distinct SNX-BAR-decorated tubules are nucleated from the same endosomal vacuole, as observed in living cells. Our data provide insight into the molecular mechanism that generates...

  15. G protein-coupled receptor (GPCR) signaling via heterotrimeric G proteins from endosomes.

    Science.gov (United States)

    Tsvetanova, Nikoleta G; Irannejad, Roshanak; von Zastrow, Mark

    2015-03-13

    Some G protein-coupled receptors (GPCRs), in addition to activating heterotrimeric G proteins in the plasma membrane, appear to elicit a "second wave" of G protein activation after ligand-induced internalization. We briefly summarize evidence supporting this view and then discuss what is presently known about the functional significance of GPCR-G protein activation in endosomes. Endosomal activation can shape the cellular response temporally by prolonging its overall duration, and may shape the response spatially by moving the location of intracellular second messenger production relative to effectors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Endosomal Rab cycles regulate Parkin-mediated mitophagy.

    Science.gov (United States)

    Yamano, Koji; Wang, Chunxin; Sarraf, Shireen A; Münch, Christian; Kikuchi, Reika; Noda, Nobuo N; Hizukuri, Yohei; Kanemaki, Masato T; Harper, Wade; Tanaka, Keiji; Matsuda, Noriyuki; Youle, Richard J

    2018-01-23

    Damaged mitochondria are selectively eliminated by mitophagy. Parkin and PINK1, gene products mutated in familial Parkinson's disease, play essential roles in mitophagy through ubiquitination of mitochondria. Cargo ubiquitination by E3 ubiquitin ligase Parkin is important to trigger selective autophagy. Although autophagy receptors recruit LC3-labeled autophagic membranes onto damaged mitochondria, how other essential autophagy units such as ATG9A-integrated vesicles are recruited remains unclear. Here, using mammalian cultured cells, we demonstrate that RABGEF1, the upstream factor of the endosomal Rab GTPase cascade, is recruited to damaged mitochondria via ubiquitin binding downstream of Parkin. RABGEF1 directs the downstream Rab proteins, RAB5 and RAB7A, to damaged mitochondria, whose associations are further regulated by mitochondrial Rab-GAPs. Furthermore, depletion of RAB7A inhibited ATG9A vesicle assembly and subsequent encapsulation of the mitochondria by autophagic membranes. These results strongly suggest that endosomal Rab cycles on damaged mitochondria are a crucial regulator of mitophagy through assembling ATG9A vesicles. © 2018, Yamano et al.

  17. Basolateral Endocytic Recycling Requires RAB-10 and AMPH-1 Mediated Recruitment of RAB-5 GAP TBC-2 to Endosomes.

    Directory of Open Access Journals (Sweden)

    Ou Liu

    Full Text Available The small GTPase RAB-5/Rab5 is a master regulator of the early endosome, required for a myriad of coordinated activities, including the degradation and recycling of internalized cargo. Here we focused on the recycling function of the early endosome and the regulation of RAB-5 by GAP protein TBC-2 in the basolateral C. elegans intestine. We demonstrate that downstream basolateral recycling regulators, GTPase RAB-10/Rab10 and BAR domain protein AMPH-1/Amphiphysin, bind to TBC-2 and help to recruit it to endosomes. In the absence of RAB-10 or AMPH-1 binding to TBC-2, RAB-5 membrane association is abnormally high and recycling cargo is trapped in early endosomes. Furthermore, the loss of TBC-2 or AMPH-1 leads to abnormally high spatial overlap of RAB-5 and RAB-10. Taken together our results indicate that RAB-10 and AMPH-1 mediated down-regulation of RAB-5 is an important step in recycling, required for cargo exit from early endosomes and regulation of early endosome-recycling endosome interactions.

  18. Lymphocytic choriomeningitis virus uses a novel endocytic pathway for infectious entry via late endosomes

    International Nuclear Information System (INIS)

    Quirin, Katharina; Eschli, Bruno; Scheu, Isabella; Poort, Linda; Kartenbeck, Juergen; Helenius, Ari

    2008-01-01

    The endocytic entry of lymphocytic choriomeningitis virus (LCMV) into host cells was compared to the entry of viruses known to exploit clathrin or caveolae/raft-dependent pathways. Pharmacological inhibitors, expression of pathway-specific dominant-negative constructs, and siRNA silencing of clathrin together with electron and light microscopy provided evidence that although a minority population followed a classical clathrin-mediated mechanism of entry, the majority of these enveloped RNA viruses used a novel endocytic route to late endosomes. The pathway was clathrin, dynamin-2, actin, Arf6, flotillin-1, caveolae, and lipid raft independent but required membrane cholesterol. Unaffected by perturbation of Rab5 or Rab7 and apparently without passing through Rab5/EEA1-positive early endosomes, the viruses reached late endosomes and underwent acid-induced penetration. This membrane trafficking route between the plasma membrane and late endosomes may function in the turnover of a select group of surface glycoproteins such as the dystroglycan complex, which serves as the receptor of LCMV

  19. The Endosome Localized Arf-GAP AGAP1 Modulates Dendritic Spine Morphology Downstream of the Neurodevelopmental Disorder Factor Dysbindin

    Directory of Open Access Journals (Sweden)

    Miranda Arnold

    2016-09-01

    Full Text Available AGAP1 is an Arf1 GTPase activating protein that interacts with the vesicle-associated protein complexes adaptor protein 3 (AP-3 and Biogenesis of Lysosome Related Organelles Complex-1 (BLOC-1. Overexpression of AGAP1 in non-neuronal cells results in an accumulation of endosomal cargoes, which suggests a role in endosome-dependent traffic. In addition, AGAP1 is a candidate susceptibility gene for two neurodevelopmental disorders, autism spectrum disorder (ASD and schizophrenia (SZ; yet its localization and function in neurons have not been described. Here, we describe that AGAP1 localizes to axons, dendrites, dendritic spines, and synapses, colocalizing preferentially with markers of early and recycling endosomes. Functional studies reveal overexpression and down-regulation of AGAP1 affects both neuronal endosomal trafficking and dendritic spine morphology, supporting a role for AGAP1 in the recycling endosomal trafficking involved in their morphogenesis. Finally, we determined the sensitivity of AGAP1 expression to mutations in the DTNBP1 gene, which is associated with neurodevelopmental disorder, and found that AGAP1 mRNA and protein levels are selectively reduced in the null allele of the mouse orthologue of DTNBP1. We postulate that endosomal trafficking contributes to the pathogenesis of neurodevelopmental disorders affecting dendritic spine morphology, and thus excitatory synapse structure and function.

  20. Antigen processing and remodeling of the endosomal pathway: requirements for antigen cross-presentation.

    Directory of Open Access Journals (Sweden)

    Ewoud Bernardus Compeer

    2012-03-01

    Full Text Available The cross-presentation of endocytosed antigen as peptide/class I MHC complexes plays a central role in the elicitation of CD8+ T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells (APC capable of antigen cross-presentation, description of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC, there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlight DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, recycling and maturation including the sorting of membrane proteins, dynamic remodeling of endosomal structures and cell-surface directed endosomal trafficking. We will conclude with description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation.

  1. A fresh look at the function of Rabaptin5 on endosomes

    Science.gov (United States)

    Kälin, Simone; Buser, Dominik P.; Spiess, Martin

    2016-01-01

    ABSTRACT Rab GTPases act as organizers of protein networks defining identities and functions of organelles of the endocytic and secretory pathways. Various modes of coordination between different Rabs drive the timely maturation and conversion of membranes. Endosomal Rab5 has been known as the prime example for self-activation via a feedback loop recruiting Rabaptin5, which is complexed with the Rab5 exchange factor Rabex5, and couples to Rab4-GTP. Among other effectors, Rab5 also recruits the Mon1/SAND1-Ccz1 complex that both activates Rab7 and dissociates Rabex5 for Rab5-to-Rab7 conversion of early-to-late endosomes. A detailed deletion analysis now revealed 2 separate binding sites each for Rab4-GTP and Rab5-GTP and indicates a feedforward mechanism of Rab5 activation. Rabaptin5/Rabex5 is recruited to endosomal membranes positive for Rab4-GTP and ubiquitinated cargo (binding to the ubiquitin binding site of Rabex5). This mechanism also suggests additional criteria for Rab5 inactivation concomitant with increasing Rab7-GTP levels. The disappearance of ubiquitinated cargo upon ESCRT-mediated formation of intraluminal vesicles and inactivation of Rab4 may also contribute to loss of Rab5 activation. Rabaptin5/Rabex5 thus may integrate several cues of maturation to perform Rab conversion. Furthermore Rab5 binding to Rabaptin5 appears to prevent uncontrolled progression to late endosomes. PMID:26940354

  2. Traffic jam hypothesis: Relationship between endocytic dysfunction and Alzheimer's disease.

    Science.gov (United States)

    Kimura, Nobuyuki; Yanagisawa, Katsuhiko

    2017-07-08

    Membrane trafficking pathways, like the endocytic pathway, carry out fundamental cellular processes that are essential for normal functioning. One such process is regulation of cell surface receptor signaling. A growing body of evidence suggests that β-amyloid protein (Aβ) plays a key role in Alzheimer's disease (AD) pathogenesis. Cleavage of Aβ from its precursor, β-amyloid precursor protein (APP), occurs through the endocytic pathway in neuronal cells. In early-stage AD, intraneuronal accumulation of abnormally enlarged endosomes is common, indicating that endosome trafficking is disrupted. Strikingly, genome-wide association studies reveal that several endocytosis-related genes are associated with AD onset. Also, recent studies demonstrate that alteration in endocytosis induces not only Aβ pathology but also the propagation of tau protein pathology, another key pathological feature of AD. Endocytic dysfunction can disrupt neuronal physiological functions, such as synaptic vesicle transport and neurotransmitter release. Thus, "traffic jams" in the endocytic pathway may be involved in AD pathogenesis and may serve as a novel target for the development of new therapeutics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Basolateral Endocytic Recycling Requires RAB-10 and AMPH-1 Mediated Recruitment of RAB-5 GAP TBC-2 to Endosomes

    Science.gov (United States)

    Liu, Ou; Grant, Barth D.

    2015-01-01

    The small GTPase RAB-5/Rab5 is a master regulator of the early endosome, required for a myriad of coordinated activities, including the degradation and recycling of internalized cargo. Here we focused on the recycling function of the early endosome and the regulation of RAB-5 by GAP protein TBC-2 in the basolateral C. elegans intestine. We demonstrate that downstream basolateral recycling regulators, GTPase RAB-10/Rab10 and BAR domain protein AMPH-1/Amphiphysin, bind to TBC-2 and help to recruit it to endosomes. In the absence of RAB-10 or AMPH-1 binding to TBC-2, RAB-5 membrane association is abnormally high and recycling cargo is trapped in early endosomes. Furthermore, the loss of TBC-2 or AMPH-1 leads to abnormally high spatial overlap of RAB-5 and RAB-10. Taken together our results indicate that RAB-10 and AMPH-1 mediated down-regulation of RAB-5 is an important step in recycling, required for cargo exit from early endosomes and regulation of early endosome–recycling endosome interactions. PMID:26393361

  4. Rotational magnetic endosome microrheology: Viscoelastic architecture inside living cells

    Science.gov (United States)

    Wilhelm, C.; Gazeau, F.; Bacri, J.-C.

    2003-06-01

    The previously developed technique of magnetic rotational microrheology [Phys. Rev. E 67, 011504 (2003)] is proposed to investigate the rheological properties of the cell interior. An endogeneous magnetic probe is obtained inside living cells by labeling intracellular compartments with magnetic nanoparticles, following the endocytosis mechanism, the most general pathway used by eucaryotic cells to internalize substances from an extracellular medium. Primarily adsorbed on the plasma membrane, the magnetic nanoparticles are first internalized within submicronic membrane vesicles (100 nm diameter) to finally concentrate inside endocytotic intracellular compartments (0.6 μm diameter). These magnetic endosomes attract each other and form chains within the living cell when submitted to an external magnetic field. Here we demonstrate that these chains of magnetic endosomes are valuable tools to probe the intracellular dynamics at very local scales. The viscoelasticity of the chain microenvironment is quantified in terms of a viscosity η and a relaxation time τ by analyzing the rotational dynamics of each tested chain in response to a rotation of the external magnetic field. The viscosity η governs the long time flow of the medium surrounding the chains and the relaxation time τ reflects the proportion of solidlike versus liquidlike behavior (τ=η/G, where G is the high-frequency shear modulus). Measurements in HeLa cells show that the cell interior is a highly heterogeneous structure, with regions where chains are embedded inside a dense viscoelastic matrix and other domains where chains are surrounded by a less rigid viscoelastic material. When one compound of the cell cytoskeleton is disrupted (microfilaments or microtubules), the intracellular viscoelasticity becomes less heterogeneous and more fluidlike, in the sense of both a lower viscosity and a lower relaxation time.

  5. Direct binding of retromer to human papillomavirus type 16 minor capsid protein L2 mediates endosome exit during viral infection.

    Directory of Open Access Journals (Sweden)

    Andreea Popa

    2015-02-01

    Full Text Available Trafficking of human papillomaviruses to the Golgi apparatus during virus entry requires retromer, an endosomal coat protein complex that mediates the vesicular transport of cellular transmembrane proteins from the endosome to the Golgi apparatus or the plasma membrane. Here we show that the HPV16 L2 minor capsid protein is a retromer cargo, even though L2 is not a transmembrane protein. We show that direct binding of retromer to a conserved sequence in the carboxy-terminus of L2 is required for exit of L2 from the early endosome and delivery to the trans-Golgi network during virus entry. This binding site is different from known retromer binding motifs and can be replaced by a sorting signal from a cellular retromer cargo. Thus, HPV16 is an unconventional particulate retromer cargo, and retromer binding initiates retrograde transport of viral components from the endosome to the trans-Golgi network during virus entry. We propose that the carboxy-terminal segment of L2 protein protrudes through the endosomal membrane and is accessed by retromer in the cytoplasm.

  6. Fluorescence microscopy colocalization of lipid-nucleic acid nanoparticles with wildtype and mutant Rab5-GFP: A platform for investigating early endosomal events.

    Science.gov (United States)

    Majzoub, Ramsey N; Chan, Chia-Ling; Ewert, Kai K; Silva, Bruno F B; Liang, Keng S; Safinya, Cyrus R

    2015-06-01

    Endosomal entrapment is known to be a major bottleneck to successful cytoplasmic delivery of nucleic acids (NAs) using cationic liposome-NA nanoparticles (NPs). Quantitative measurements of distributions of NPs within early endosomes (EEs) have proven difficult due to the sub-resolution size and short lifetime of wildtype EEs. In this study we used Rab5-GFP, a member of the large family of GTPases which cycles between the plasma membrane and early endosomes, to fluorescently label early endosomes. Using fluorescence microscopy and quantitative image analysis of cells expressing Rab5-GFP, we found that at early time points (t<1h), only a fraction (≈35%) of RGD-tagged NPs (which target cell surface integrins) colocalize with wildtype EEs, independent of the NP's membrane charge density. In comparison, a GTP-hydrolysis deficient mutant, Rab5-Q79L, which extends the size and lifetime of EEs yielding giant early endosomes (GEEs), enabled us to resolve and localize individual NPs found within the GEE lumen. Remarkably, nearly all intracellular NPs are found to be trapped within GEEs implying little or no escape at early time points. The observed small degree of colocalization of NPs and wildtype Rab5 is consistent with recycling of Rab5-GDP to the plasma membrane and not indicative of NP escape from EEs. Taken together, our results show that endosomal escape of PEGylated nanoparticles occurs downstream of EEs i.e., from late endosomes/lysosomes. Our studies also suggest that Rab5-Q79L could be used in a robust imaging assay which allows for direct visualization of NP interactions with the luminal membrane of early endosomes. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. TLR2 ligands induce NF-κB activation from endosomal compartments of human monocytes.

    Directory of Open Access Journals (Sweden)

    Karim J Brandt

    Full Text Available Localization of Toll-like receptors (TLR in subcellular organelles is a major strategy to regulate innate immune responses. While TLR4, a cell-surface receptor, signals from both the plasma membrane and endosomal compartments, less is known about the functional role of endosomal trafficking upon TLR2 signaling. Here we show that the bacterial TLR2 ligands Pam3CSK4 and LTA activate NF-κB-dependent signaling from endosomal compartments in human monocytes and in a NF-κB sensitive reporter cell line, despite the expression of TLR2 at the cell surface. Further analyses indicate that TLR2-induced NF-κB activation is controlled by a clathrin/dynamin-dependent endocytosis mechanism, in which CD14 serves as an important upstream regulator. These findings establish that internalization of cell-surface TLR2 into endosomal compartments is required for NF-κB activation. These observations further demonstrate the need of endocytosis in the activation and regulation of TLR2-dependent signaling pathways.

  8. A distinct endosomal Ca2+/Mn2+ pump affects root growth through the secretory process.

    Science.gov (United States)

    Li, Xiyan; Chanroj, Salil; Wu, Zhongyi; Romanowsky, Shawn M; Harper, Jeffrey F; Sze, Heven

    2008-08-01

    Ca(2+) is required for protein processing, sorting, and secretion in eukaryotic cells, although the particular roles of the transporters involved in the secretory system of plants are obscure. One endomembrane-type Ca-ATPase from Arabidopsis (Arabidopsis thaliana), AtECA3, diverges from AtECA1, AtECA2, and AtECA4 in protein sequence; yet, AtECA3 appears similar in transport activity to the endoplasmic reticulum (ER)-bound AtECA1. Expression of AtECA3 in a yeast (Saccharomyces cerevisiae) mutant defective in its endogenous Ca(2+) pumps conferred the ability to grow on Ca(2+)-depleted medium and tolerance to toxic levels of Mn(2+). A green fluorescent protein-tagged AtECA3 was functionally competent and localized to intracellular membranes of yeast, suggesting that Ca(2+) and Mn(2+) loading into internal compartment(s) enhanced yeast proliferation. In mesophyll protoplasts, AtECA3-green fluorescent protein associated with a subpopulation of endosome/prevacuolar compartments based on partial colocalization with the Ara7 marker. Interestingly, three independent eca3 T-DNA disruption mutants showed severe reduction in root growth normally stimulated by 3 mm Ca(2+), indicating that AtECA3 function cannot be replaced by an ER-associated AtECA1. Furthermore, root growth of mutants is sensitive to 50 microm Mn(2+), indicating that AtECA3 is also important for the detoxification of excess Mn(2+). Curiously, Ateca3 mutant roots produced 65% more apoplastic protein than wild-type roots, as monitored by peroxidase activity, suggesting that the secretory process was altered. Together, these results demonstrate that the role of AtECA3 is distinct from that of the more abundant ER AtECA1. AtECA3 supports Ca(2+)-stimulated root growth and the detoxification of high Mn(2+), possibly through activities mediated by post-Golgi compartments that coordinate membrane traffic and sorting of materials to the vacuole and the cell wall.

  9. Traffic theory

    National Research Council Canada - National Science Library

    Gazis, Denos C

    2002-01-01

    ... of traffic signal settings The vehicle-actuated traffic signal 87 89 77 CHAPTER 3. TRAFFIC CONTROL 101 Objectives of Traffic Control 103 Single, Isolated Intersection 105 Synchronization Scheme...

  10. Studying endosomes in cultured neurons by live-cell imaging.

    Science.gov (United States)

    Lasiecka, Zofia M; Winckler, Bettina

    2016-01-01

    Endosomes play critical roles on regulating surface receptor levels as well as signaling cascades in all cell types, including neurons. Endocytosis and endosomal trafficking is routinely studied after fixation, but live imaging is increasingly being used to capture the dynamic nature of endosomes and is allowing increasingly sophisticated glimpses into trafficking processes in live neurons. In this chapter, we describe the basics of neuronal primary cultures, methods for expressing fluorescent proteins, and live imaging of cargos and endosomal regulators. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. A fluorescence resonance energy transfer-based approach for investigating late endosome-lysosome retrograde fusion events.

    Science.gov (United States)

    Kaufmann, A M; Goldman, S D B; Krise, J P

    2009-03-01

    Traditionally, lysosomes have been considered to be a terminal endocytic compartment. Recent studies suggest that lysosomes are quite dynamic, being able to fuse with other late endocytic compartments as well as with the plasma membrane. Here we describe a quantitative fluorescence energy transfer (FRET)-based method for assessing rates of retrograde fusion between terminal lysosomes and late endosomes in living cells. Late endosomes were specifically labeled with 800-nm latex beads that were conjugated with streptavidin and Alexa Fluor 555 (FRET donor). Terminal lysosomes were specifically labeled with 10,000-MW dextran polymers conjugated with biotin and Alexa Fluor 647 (FRET acceptor). Following late endosome-lysosome fusion, the strong binding affinity between streptavidin and biotin brought the donor and acceptor fluorophore molecules into close proximity, thereby facilitating the appearance of a FRET emission signal. Because apparent size restrictions in the endocytic pathway do not permit endocytosed latex beads from reaching terminal lysosomes in an anterograde fashion, the appearance of the FRET signal is consistent with retrograde transport of lysosomal cargo back to late endosomes. We assessed the efficiency of this transport step in fibroblasts affected by different lysosome storage disorders-Niemann-Pick type C, mucolipidosis type IV, and Sandhoff's disease, all of which have a similar lysosomal lipid accumulation phenotype. We report here, for the first time, that these disorders can be distinguished by their rate of transfer of lysosome cargos to late endosomes, and we discuss the implications of these findings for developing new therapeutic strategies.

  12. Early to Late Endosome Trafficking Controls Secretion and Zymogen Activation in Rodent and Human Pancreatic Acinar Cells.

    Science.gov (United States)

    Messenger, Scott W; Thomas, Diana Dh; Cooley, Michelle M; Jones, Elaina K; Falkowski, Michelle A; August, Benjamin K; Fernandez, Luis A; Gorelick, Fred S; Groblewski, Guy E

    2015-11-01

    Pancreatic acinar cells have an expanded apical endosomal system, the physiological and pathophysiological significance of which is still emerging. Phosphatidylinositol-3,5-bisphosphate (PI(3,5)P 2 ) is an essential phospholipid generated by PIKfyve, which phosphorylates phosphatidylinositol-3-phosphate (PI(3)P). PI(3,5)P 2 is necessary for maturation of early endosomes (EE) to late endosomes (LE). Inhibition of EE to LE trafficking enhances anterograde endosomal trafficking and secretion at the plasma membrane by default through a recycling endosome (RE) intermediate. We assessed the effects of modulating PIKfyve activity on apical trafficking and pancreatitis responses in pancreatic acinar cells. Inhibition of EE to LE trafficking was achieved using pharmacological inhibitors of PIKfyve, expression of dominant negative PIKfyve K1877E, or constitutively active Rab5-GTP Q79L. Anterograde endosomal trafficking was manipulated by expression of constitutively active and dominant negative Rab11a mutants. The effects of these agents on secretion, endolysosomal exocytosis of lysosome associated membrane protein (LAMP1), and trypsinogen activation in response to high-dose CCK-8, bile acids and cigarette toxin was determined. PIKfyve inhibition increased basal and stimulated secretion. Adenoviral overexpression of PIKfyve decreased secretion leading to cellular death. Expression of Rab5-GTP Q79L or Rab11a-GTP Q70L enhanced secretion. Conversely, dominant-negative Rab11a-GDP S25N reduced secretion. High-dose CCK inhibited endolysosomal exocytosis that was reversed by PIKfyve inhibition. PIKfyve inhibition blocked intracellular trypsin accumulation and cellular damage responses to high CCK-8, tobacco toxin, and bile salts in both rodent and human acini. These data demonstrate that EE-LE trafficking acutely controls acinar secretion and the intracellular activation of zymogens leading to the pathogenicity of acute pancreatitis.

  13. LMTK1 regulates dendritic formation by regulating movement of Rab11A-positive endosomes.

    Science.gov (United States)

    Takano, Tetsuya; Urushibara, Tomoki; Yoshioka, Nozomu; Saito, Taro; Fukuda, Mitsunori; Tomomura, Mineko; Hisanaga, Shin-Ichi

    2014-06-01

    Neurons extend two types of neurites-axons and dendrites-that differ in structure and function. Although it is well understood that the cytoskeleton plays a pivotal role in neurite differentiation and extension, the mechanisms by which membrane components are supplied to growing axons or dendrites is largely unknown. We previously reported that the membrane supply to axons is regulated by lemur kinase 1 (LMTK1) through Rab11A-positive endosomes. Here we investigate the role of LMTK1 in dendrite formation. Down-regulation of LMTK1 increases dendrite growth and branching of cerebral cortical neurons in vitro and in vivo. LMTK1 knockout significantly enhances the prevalence, velocity, and run length of anterograde movement of Rab11A-positive endosomes to levels similar to those expressing constitutively active Rab11A-Q70L. Rab11A-positive endosome dynamics also increases in the cell body and growth cone of LMTK1-deficient neurons. Moreover, a nonphosphorylatable LMTK1 mutant (Ser34Ala, a Cdk5 phosphorylation site) dramatically promotes dendrite growth. Thus LMTK1 negatively controls dendritic formation by regulating Rab11A-positive endosomal trafficking in a Cdk5-dependent manner, indicating the Cdk5-LMTK1-Rab11A pathway as a regulatory mechanism of dendrite development as well as axon outgrowth. © 2014 Takano et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. Nanoparticles Escaping RES and Endosome: Challenges for siRNA Delivery for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Shutao Guo

    2011-01-01

    Full Text Available Small interfering RNAs (siRNAs technology has emerged as a promising potential treatment for viral, genetic diseases and cancers. Despite the powerful therapeutic potential of siRNA, there are challenges for developing efficient and specific delivery systems for systemic administration. There are extracellular and intracellular barriers for nanoparticle-mediated delivery. First, nanoparticles are rapidly cleared from the circulation by the reticuloendothelial system (RES. Second, following their cellular uptake, nanoparticles are trapped in endosomes/lysosomes, where siRNA would be degraded by enzymes. In this review, we describe strategies for grafting a polyethylene glycol (PEG brush to the nanoparticles for evading RES, such that they may effectively accumulate in the tumor by the enhanced permeability and retention (EPR effect. PEG has to shed from the nanoparticles to allow close interaction with the tumor cells. Current strategies for facilitating endosome escape, such as ion pair formation, “proton sponge effect”, destabilizing endosome membrane, and hydrophobic modification of the vector, are discussed.

  15. Augmenting the Efficacy of Immunotoxins and Other Targeted Protein Toxins by Endosomal Escape Enhancers

    Directory of Open Access Journals (Sweden)

    Hendrik Fuchs

    2016-07-01

    Full Text Available The toxic moiety of almost all protein-based targeted toxins must enter the cytosol of the target cell to mediate its fatal effect. Although more than 500 targeted toxins have been investigated in the past decades, no antibody-targeted protein toxin has been approved for tumor therapeutic applications by the authorities to date. Missing efficacy can be attributed in many cases to insufficient endosomal escape and therefore subsequent lysosomal degradation of the endocytosed toxins. To overcome this drawback, many strategies have been described to weaken the membrane integrity of endosomes. This comprises the use of lysosomotropic amines, carboxylic ionophores, calcium channel antagonists, various cell-penetrating peptides of viral, bacterial, plant, animal, human and synthetic origin, other organic molecules and light-induced techniques. Although the efficacy of the targeted toxins was typically augmented in cell culture hundred or thousand fold, in exceptional cases more than million fold, the combination of several substances harbors new problems including additional side effects, loss of target specificity, difficulties to determine the therapeutic window and cell type-dependent variations. This review critically scrutinizes the chances and challenges of endosomal escape enhancers and their potential role in future developments.

  16. African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes.

    Directory of Open Access Journals (Sweden)

    Bruno Hernáez

    2016-04-01

    Full Text Available African swine fever virus (ASFV is a nucleocytoplasmic large DNA virus (NCLDV that causes a highly lethal disease in domestic pigs. As other NCLDVs, the extracellular form of ASFV possesses a multilayered structure consisting of a genome-containing nucleoid successively wrapped by a thick protein core shell, an inner lipid membrane, an icosahedral protein capsid and an outer lipid envelope. This structural complexity suggests an intricate mechanism of internalization in order to deliver the virus genome into the cytoplasm. By using flow cytometry in combination with pharmacological entry inhibitors, as well as fluorescence and electron microscopy approaches, we have dissected the entry and uncoating pathway used by ASFV to infect the macrophage, its natural host cell. We found that purified extracellular ASFV is internalized by both constitutive macropinocytosis and clathrin-mediated endocytosis. Once inside the cell, ASFV particles move from early endosomes or macropinosomes to late, multivesicular endosomes where they become uncoated. Virus uncoating requires acidic pH and involves the disruption of the outer membrane as well as of the protein capsid. As a consequence, the inner viral membrane becomes exposed and fuses with the limiting endosomal membrane to release the viral core into the cytosol. Interestingly, virus fusion is dependent on virus protein pE248R, a transmembrane polypeptide of the inner envelope that shares sequence similarity with some members of the poxviral entry/fusion complex. Collective evidence supports an entry model for ASFV that might also explain the uncoating of other multienveloped icosahedral NCLDVs.

  17. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation.

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-07-22

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation*

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-01-01

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. PMID:27302062

  19. Reorganization of the Endosomal System in Salmonella-Infected Cells: The Ultrastructure of Salmonella-Induced Tubular Compartments

    Science.gov (United States)

    Krieger, Viktoria; Liebl, David; Zhang, Yuying; Rajashekar, Roopa; Chlanda, Petr; Giesker, Katrin; Chikkaballi, Deepak; Hensel, Michael

    2014-01-01

    During the intracellular life of Salmonella enterica, a unique membrane-bound compartment termed Salmonella-containing vacuole, or SCV, is formed. By means of translocated effector proteins, intracellular Salmonella also induce the formation of extensive, highly dynamic membrane tubules termed Salmonella-induced filaments or SIF. Here we report the first detailed ultrastructural analyses of the SCV and SIF by electron microscopy (EM), EM tomography and live cell correlative light and electron microscopy (CLEM). We found that a subset of SIF is composed of double membranes that enclose portions of host cell cytosol and cytoskeletal filaments within its inner lumen. Despite some morphological similarities, we found that the formation of SIF double membranes is independent from autophagy and requires the function of the effector proteins SseF and SseG. The lumen of SIF network is accessible to various types of endocytosed material and our CLEM analysis of double membrane SIF demonstrated that fluid phase markers accumulate only between the inner and outer membrane of these structures, a space continual with endosomal lumen. Our work reveals how manipulation of the endosomal membrane system by an intracellular pathogen results in a unique tubular membrane compartmentalization of the host cell, generating a shielded niche permissive for intracellular proliferation of Salmonella. PMID:25254663

  20. Sphingolipids activate membrane fusion of Semliki Forest virus in a stereospecific manner

    DEFF Research Database (Denmark)

    Moesby, Lise; Corver, J; Erukulla, R K

    1995-01-01

    The alphavirus Semliki Forest virus (SFV) enters cells through receptor-mediated endocytosis. Subsequently, triggered by the acid pH in endosomes, the viral envelope fuses with the endosomal membrane. Membrane fusion of SFV has been shown previously to be dependent on the presence of cholesterol ...

  1. Plasma membrane is the site of productive HIV-1 particle assembly.

    Directory of Open Access Journals (Sweden)

    Nolwenn Jouvenet

    2006-12-01

    Full Text Available Recently proposed models that have gained wide acceptance posit that HIV-1 virion morphogenesis is initiated by targeting the major structural protein (Gag to late endosomal membranes. Thereafter, late endosome-based secretory pathways are thought to deliver Gag or assembled virions to the plasma membrane (PM and extracellular milieu. We present several findings that are inconsistent with this model. Specifically, we demonstrate that HIV-1 Gag is delivered to the PM, and virions are efficiently released into the extracellular medium, when late endosome motility is abolished. Furthermore, we show that HIV-1 virions are efficiently released when assembly is rationally targeted to the PM, but not when targeted to late endosomes. Recently synthesized Gag first accumulates and assembles at the PM, but a proportion is subsequently internalized via endocytosis or phagocytosis, thus accounting for observations of endosomal localization. We conclude that HIV-1 assembly is initiated and completed at the PM, and not at endosomal membranes.

  2. Association with AflR in Endosomes Reveals New Functions for AflJ in Aflatoxin Biosynthesis

    Directory of Open Access Journals (Sweden)

    John E. Linz

    2012-12-01

    Full Text Available Aflatoxins are the most potent naturally occurring carcinogens of fungal origin. Biosynthesis of aflatoxin involves the coordinated expression of more than 25 genes. The function of one gene in the aflatoxin gene cluster, aflJ, is not entirely understood but, because previous studies demonstrated a physical interaction between the Zn2Cys6 transcription factor AflR and AflJ, AflJ was proposed to act as a transcriptional co-activator. Image analysis revealed that, in the absence of aflJ in A. parasiticus, endosomes cluster within cells and near septa. AflJ fused to yellow fluorescent protein complemented the mutation in A. parasiticus ΔaflJ and localized mainly in endosomes. We found that AflJ co-localizes with AflR both in endosomes and in nuclei. Chromatin immunoprecipitation did not detect AflJ binding at known AflR DNA recognition sites suggesting that AflJ either does not bind to these sites or binds to them transiently. Based on these data, we hypothesize that AflJ assists in AflR transport to or from the nucleus, thus controlling the availability of AflR for transcriptional activation of aflatoxin biosynthesis cluster genes. AflJ may also assist in directing endosomes to the cytoplasmic membrane for aflatoxin export.

  3. IL4/PGE2 induction of an enlarged early endosomal compartment in mouse macrophages is Rab5-dependent

    International Nuclear Information System (INIS)

    Wainszelbaum, Marisa J.; Proctor, Brandon M.; Pontow, Suzanne E.; Stahl, Philip D.; Barbieri, M. Alejandro

    2006-01-01

    The endosomal compartment and the plasma membrane form a complex partnership that controls signal transduction and trafficking of different molecules. The specificity and functionality of the early endocytic pathway are regulated by a growing number of Rab GTPases, particularly Rab5. In this study, we demonstrate that IL4 (a Th-2 cytokine) and prostaglandin E 2 (PGE 2 ) synergistically induce Rab5 and several Rab effector proteins, including Rin1 and EEA1, and promote the formation of an enlarged early endocytic (EEE) compartment. Endosome enlargement is linked to a substantial induction of the mannose receptor (MR), a well-characterized macrophage endocytic receptor. Both MR levels and MR-mediated endocytosis are enhanced approximately 7-fold. Fluid-phase endocytosis is also elevated in treated cells. Light microscopy and fractionation studies reveal that MR colocalizes predominantly with Rab5a and partially with Rab11, an endosomal recycling pathway marker. Using retroviral expression of Rab5a:S34N, a dominant negative mutant, and siRNA Rab5a silencing, we demonstrate that Rab5a is essential for the large endosome phenotype and for localization of MR in these structures. We speculate that the EEE is maintained by activated Rab5, and that the EEE phenotype is part of some macrophage developmental program such as cell fusion, a characteristic of IL4-stimulated cells

  4. Effective photo-enhancement of cellular activity of fluorophore-octaarginine antisense PNA conjugates correlates with singlet oxygen formation, endosomal escape and chromophore lipophilicity

    DEFF Research Database (Denmark)

    Yarani, Reza; Shiraishi, Takehiko; Nielsen, Peter E.

    2018-01-01

    Photochemical internalization (PCI) is a cellular drug delivery method based on the generation of light-induced reactive oxygen species (ROS) causing damage to the endosomal membrane and thereby resulting in drug release to the cytoplasm. In our study a series of antisense fluorophore octaarginine...

  5. Augmented internalisation of ferroportin to late endosomes impairs iron uptake by enterocyte-like IEC-6 cells.

    Science.gov (United States)

    Oates, Phillip S; Thomas, Carla

    2005-08-01

    Absorption of iron occurs by duodenal enterocytes, involving uptake by the divalent metal transporter-1 (DMT1) and release by ferroportin. Ferroportin responds to the hepatocyte-produced 25-amino-acid-peptide hepcidin-25 by undergoing internalisation to late endosomes that impair iron release. Ferroportin is also expressed on the apical membrane of polarised Caco-2 cells, rat intestinal cells and in IEC-6 cells (an intestinal epithelial cell line). A blocking antibody to ferroportin also impairs the uptake, but not the release, of iron. In this study IEC-6 cells were used to study the mechanism of impairment or recovery from impairment produced by the blocking antibody and the fate of DMT1 and ferroportin. Uptake of 1 muM Fe(II) was studied by adding the antibody from time 0 and after adding or removing the antibody once a steady state had been reached. Surface binding, maximum iron transport rate V(max) and transporter affinity (K(m)) were measured after impairment of iron uptake. Ferroportin and DMT1 distribution were assessed by immunofluorescence microscopy. Antibody-mediated impairment, or recovery from impairment, of Fe(II) uptake occurred within minutes. Impairment was lost when the antibody was combined with the immunizing peptide. DMT1 and ferroportin undergo internalisation to late endosomes and, in the presence of the antibody, augmented internalisation of DMT1 and ferroportin caused swelling of late endosomes. Surface binding of Fe(II) and iron transport V(max) were reduced by 50%, indicating that the antibody removed membrane-bound DMT1. The ferroportin antibody induced rapid turnover of membrane ferroportin and DMT1 and its internalisation to late endosomes, resulting in impaired Fe(II) uptake.

  6. A Distinct Endosomal Ca2+/Mn2+ Pump Affects Root Growth through the Secretory Process1[C][W][OA

    Science.gov (United States)

    Li, Xiyan; Chanroj, Salil; Wu, Zhongyi; Romanowsky, Shawn M.; Harper, Jeffrey F.; Sze, Heven

    2008-01-01

    Ca2+ is required for protein processing, sorting, and secretion in eukaryotic cells, although the particular roles of the transporters involved in the secretory system of plants are obscure. One endomembrane-type Ca-ATPase from Arabidopsis (Arabidopsis thaliana), AtECA3, diverges from AtECA1, AtECA2, and AtECA4 in protein sequence; yet, AtECA3 appears similar in transport activity to the endoplasmic reticulum (ER)-bound AtECA1. Expression of AtECA3 in a yeast (Saccharomyces cerevisiae) mutant defective in its endogenous Ca2+ pumps conferred the ability to grow on Ca2+-depleted medium and tolerance to toxic levels of Mn2+. A green fluorescent protein-tagged AtECA3 was functionally competent and localized to intracellular membranes of yeast, suggesting that Ca2+ and Mn2+ loading into internal compartment(s) enhanced yeast proliferation. In mesophyll protoplasts, AtECA3-green fluorescent protein associated with a subpopulation of endosome/prevacuolar compartments based on partial colocalization with the Ara7 marker. Interestingly, three independent eca3 T-DNA disruption mutants showed severe reduction in root growth normally stimulated by 3 mm Ca2+, indicating that AtECA3 function cannot be replaced by an ER-associated AtECA1. Furthermore, root growth of mutants is sensitive to 50 μm Mn2+, indicating that AtECA3 is also important for the detoxification of excess Mn2+. Curiously, Ateca3 mutant roots produced 65% more apoplastic protein than wild-type roots, as monitored by peroxidase activity, suggesting that the secretory process was altered. Together, these results demonstrate that the role of AtECA3 is distinct from that of the more abundant ER AtECA1. AtECA3 supports Ca2+-stimulated root growth and the detoxification of high Mn2+, possibly through activities mediated by post-Golgi compartments that coordinate membrane traffic and sorting of materials to the vacuole and the cell wall. PMID:18567829

  7. pH regulation in early endosomes and interferon-inducible transmembrane proteins control avian retrovirus fusion.

    Science.gov (United States)

    Desai, Tanay M; Marin, Mariana; Mason, Caleb; Melikyan, Gregory B

    2017-05-12

    Enveloped viruses infect host cells by fusing their membranes with those of the host cell, a process mediated by viral glycoproteins upon binding to cognate host receptors or entering into acidic intracellular compartments. Whereas the effect of receptor density on viral infection has been well studied, the role of cell type-specific factors/processes, such as pH regulation, has not been characterized in sufficient detail. Here, we examined the effects of cell-extrinsic factors (buffer environment) and cell-intrinsic factors (interferon-inducible transmembrane proteins, IFITMs), on the pH regulation in early endosomes and on the efficiency of acid-dependent fusion of the avian sarcoma and leukosis virus (ASLV), with endosomes. First, we found that a modest elevation of external pH can raise the pH in early endosomes in a cell type-dependent manner and thereby delay the acid-induced fusion of endocytosed ASLV. Second, we observed a cell type-dependent delay between the low pH-dependent and temperature-dependent steps of viral fusion, consistent with the delayed enlargement of the fusion pore. Third, ectopic expression of IFITMs, known to potently block influenza virus fusion with late compartments, was found to only partially inhibit ASLV fusion with early endosomes. Interestingly, IFITM expression promoted virus uptake and the acidification of endosomal compartments, resulting in an accelerated fusion rate when driven by the glycosylphosphatidylinositol-anchored, but not by the transmembrane isoform of the ASLV receptor. Collectively, these results highlight the role of cell-extrinsic and cell-intrinsic factors in regulating the efficiency and kinetics of virus entry and fusion with target cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Conformational biosensors reveal GPCR signalling from endosomes

    DEFF Research Database (Denmark)

    Irannejad, R; Tomshine, Jin C; Tomshine, Jon R

    2013-01-01

    -domain antibodies (nanobodies) to directly probe activation of the β2-adrenoceptor, a prototypical GPCR, and its cognate G protein, Gs (ref. 12), in living mammalian cells. We show that the adrenergic agonist isoprenaline promotes receptor and G protein activation in the plasma membrane as expected, but also...

  9. Structure and Function of Vps15 in the Endosomal G Protein Signaling Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Heenan, Erin J.; Vanhooke, Janeen L.; Temple, Brenda R.; Betts, Laurie; Sondek, John E.; Dohlman, Henrik G.; (UNC)

    2009-09-11

    G protein-coupled receptors mediate cellular responses to a wide variety of stimuli, including taste, light, and neurotransmitters. In the yeast Saccharomyces cerevisiae, activation of the pheromone pathway triggers events leading to mating. The view had long been held that the G protein-mediated signal occurs principally at the plasma membrane. Recently, it has been shown that the G protein {alpha} subunit Gpa1 can promote signaling at endosomes and requires two components of the sole phosphatidylinositol-3-kinase in yeast, Vps15 and Vps34. Vps15 contains multiple WD repeats and also binds to Gpa1 preferentially in the GDP-bound state; these observations led us to hypothesize that Vps15 may function as a G protein {beta} subunit at the endosome. Here we show an X-ray crystal structure of the Vps15 WD domain that reveals a seven-bladed propeller resembling that of typical G{beta} subunits. We show further that the WD domain is sufficient to bind Gpa1 as well as to Atg14, a potential G{gamma} protein that exists in a complex with Vps15. The Vps15 kinase domain together with the intermediate domain (linking the kinase and WD domains) also contributes to Gpa1 binding and is necessary for Vps15 to sustain G protein signaling. These findings reveal that the Vps15 G{beta}-like domain serves as a scaffold to assemble Gpa1 and Atg14, whereas the kinase and intermediate domains are required for proper signaling at the endosome.

  10. Munc13-4 functions as a Ca2+ sensor for homotypic secretory granule fusion to generate endosomal exocytic vacuoles.

    Science.gov (United States)

    Woo, Sang Su; James, Declan J; Martin, Thomas F J

    2017-03-15

    Munc13-4 is a Ca 2+ -dependent SNARE (soluble N -ethylmaleimide-sensitive factor attachment protein receptor)- and phospholipid-binding protein that localizes to and primes secretory granules (SGs) for Ca 2+ -evoked secretion in various secretory cells. Studies in mast cell-like RBL-2H3 cells provide direct evidence that Munc13-4 with its two Ca 2+ -binding C2 domains functions as a Ca 2+ sensor for SG exocytosis. Unexpectedly, Ca 2+ stimulation also generated large (>2.4 μm in diameter) Munc13-4 + /Rab7 + /Rab11 + endosomal vacuoles. Vacuole generation involved the homotypic fusion of Munc13-4 + /Rab7 + SGs, followed by a merge with Rab11 + endosomes, and depended on Ca 2+ binding to Munc13-4. Munc13-4 promoted the Ca 2+ -stimulated fusion of VAMP8-containing liposomes with liposomes containing exocytic or endosomal Q-SNAREs and directly interacted with late endosomal SNARE complexes. Thus Munc13-4 is a tethering/priming factor and Ca 2+ sensor for both heterotypic SG-plasma membrane and homotypic SG-SG fusion. Total internal reflection fluorescence microscopy imaging revealed that vacuoles were exocytic and mediated secretion of β-hexosaminidase and cytokines accompanied by Munc13-4 diffusion onto the plasma membrane. The results provide new molecular insights into the mechanism of multigranular compound exocytosis commonly observed in various secretory cells. © 2017 Woo et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. An Inside Job: How Endosomal Na+/H+ Exchangers Link to Autism and Neurological Disease

    Directory of Open Access Journals (Sweden)

    Kalyan C. Kondapalli

    2014-06-01

    Full Text Available Autism imposes a major impediment to childhood development and a huge emotional and financial burden on society. In recent years, there has been rapidly accumulating genetic evidence that links the eNHE, a subset of Na+/H+ exchangers that localize to intracellular vesicles, to a variety of neurological conditions including autism, attention deficit hyperactivity disorder, intellectual disability and epilepsy. By providing a leak pathway for protons pumped by the V-ATPase, eNHE determine luminal pH and regulate cation (Na+, K+ content in early and recycling endosomal compartments. Loss-of-function mutations in eNHE cause hyperacidification of endosomal lumen, as a result of imbalance in pump and leak pathways. Two isoforms, NHE6 and NHE9 are highly expressed in brain, including hippocampus and cortex. Here, we summarize evidence for the importance of luminal cation content and pH on processing, delivery and fate of cargo and on the surface expression and function of membrane receptors and neurotransmitter transporters, drawing upon insights from model organisms and mammalian cells. These studies lead to cellular models of eNHE activity in pre- and post-synaptic neurons and astrocytes, where they could impact synapse development and plasticity. The study of eNHE has provided new insight on the mechanism of autism and other debilitating neurological disorders and opened up new possibilities for therapeutic intervention.

  12. Physical, Functional and Genetic Interactions between the BEACH Domain Protein SPIRRIG and LIP5 and SKD1 and Its Role in Endosomal Trafficking to the Vacuole in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Alexandra Steffens

    2017-11-01

    Full Text Available Beige and Chediak Higashi (BEACH domain-containing proteins (BDCPs are facilitators of membrane-dependent cellular processes in eukaryotes. Mutations in BDCPs cause malfunctions of endosomal compartments in various cell types. Recently, the molecular analysis of the BDCP homolog gene SPIRRIG (SPI has revealed a molecular function in P-bodies and the regulation of RNA stability. We therefore aimed to analyze, whether SPI has also a role in membrane-dependent processes. In this study, we show that SPI physically interacts with endosomal sorting complex required for transport associated ATPase Suppressor of K+-transport growth defect1 (SKD1 and its positive regulator, LYST Interacting Protein 5 (LIP5 and report genetic interactions between SPI and SKD1 and LIP5. We further show that the endosomal transport route of soluble proteins to the lytic vacuole is disturbed in spi lip5 double mutants but not in the single mutants. These vacuolar transport defects were suppressed by additional expression of SKD1. Our results indicate that the BEACH domain protein SPI has in addition to a role in P-bodies a function in endosomal transport routes.

  13. Internalization, lysosomal degradation and new synthesis of surface membrane CD4 in phorbol ester-activated T-lymphocytes and U-937 cells

    DEFF Research Database (Denmark)

    Petersen, C M; Christensen, E I; Andresen, B S

    1992-01-01

    Protein kinase C activating phorbol esters downregulated membrane CD4 by endocytosis in U-937 and human T-cells. Half-time for internalization (approximately 15 min at 50 ng/ml PMA) was determined by FACS. CD4-bound 125I-labeled anti-CD4 mAb was rapidly degraded in PMA-activated cells, whereas...... degradation was low in resting cells. Endocytosis and/or degradation of anti-CD4 mAb was suppressed by H7, and by inhibitors of membrane traffic (Monensin) and lysosome function (methylamine, chloroquine). Immunocytochemistry localized CD4 to the surface of unstimulated T-cells. Upon PMA stimulation...... occasional labeling was seen in endosomes but whole cell CD4 decreased dramatically. However, methylamine-treated PMA blasts showed accumulation of CD4 in lysosomes and accordingly, pulse-chase experiments in biolabeled cell cultures suggested a manifest reduction of CD4 half-life in response to PMA. Despite...

  14. Structural Basis for Endosomal Targeting by the Bro1 Domain

    Science.gov (United States)

    Kim, Jaewon; Sitaraman, Sujatha; Hierro, Aitor; Beach, Bridgette M.; Odorizzi, Greg; Hurley, James H.

    2010-01-01

    Summary Proteins delivered to the lysosome or the yeast vacuole via late endosomes are sorted by the ESCRT complexes and by associated proteins, including Alix and its yeast homolog Bro1. Alix, Bro1, and several other late endosomal proteins share a conserved 160 residue Bro1 domain whose boundaries, structure, and function have not been characterized. The crystal structure of the Bro1 domain of Bro1 reveals a folded core of 367 residues. The extended Bro1 domain is necessary and sufficient for binding to the ESCRT-III subunit Snf7 and for the recruitment of Bro1 to late endosomes. The structure resembles a boomerang with its concave face filled in and contains a triple tetratricopeptide repeat domain as a substructure. Snf7 binds to a conserved hydrophobic patch on Bro1 that is required for protein complex formation and for the protein-sorting function of Bro1. These results define a conserved mechanism whereby Bro1 domain-containing proteins are targeted to endosomes by Snf7 and its orthologs. PMID:15935782

  15. Endosomes: multipurpose designs for integrating housekeeping and specialized tasks

    NARCIS (Netherlands)

    Sachse, M.; Ramm, G.; Strous, G.J.; Klumperman, J.

    2002-01-01

    In most cells the endocytic system is organized following a common concept that allows for the integrative handling of a variety of housekeeping functions. In addition, variations on the general scheme provide for specialized endosome-based pathways that occur only in specific cell types. The

  16. PTP1B targets the endosomal sorting machinery

    DEFF Research Database (Denmark)

    Stuible, Matthew; Abella, Jasmine V; Feldhammer, Matthew

    2010-01-01

    STAM2 specifically suppressed Akt activation, and a phosphorylation-deficient STAM2 mutant displayed prolonged localization on endosomes following EGF stimulation. These results reveal a novel link between the dephosphorylation and endocytic machinery and suggest that PTP1B can affect RTK signaling...

  17. Rab11 Regulates the Compartmentalization of Early Endosomes Required for Efficient Transport from Early Endosomes to the Trans-Golgi Network

    OpenAIRE

    Wilcke, Mona; Johannes, Ludger; Galli, Thierry; Mayau, Véronique; Goud, Bruno; Salamero, Jean

    2000-01-01

    Several GTPases of the Rab family, known to be regulators of membrane traffic between organelles, have been described and localized to various intracellular compartments. Rab11 has previously been reported to be associated with the pericentriolar recycling compartment, post-Golgi vesicles, and the trans-Golgi network (TGN). We compared the effect of overexpression of wild-type and mutant forms of Rab11 on the different intracellular transport steps in the endocytic/degradative and the biosynt...

  18. Trisomy for synaptojanin1 in Down syndrome is functionally linked to the enlargement of early endosomes

    NARCIS (Netherlands)

    Cossec, J.C.; Lavaur, J.; Berman, D.E.; Rivals, I.; Hoischen, A.; Stora, S.; Ripoll, C.; Mircher, C.; Grattau, Y.; Olivomarin, J.C.; de Chaumont, F.; Lecourtois, M.; Antonarakis, S.E.; Veltman, J.A.; Delabar, J.M.; Duyckaerts, C.; Di Paolo, G.; Potier, M.C.

    2012-01-01

    Enlarged early endosomes have been observed in neurons and fibroblasts in Down syndrome (DS). These endosome abnormalities have been implicated in the early development of Alzheimer's disease (AD) pathology in these subjects. Here, we show the presence of enlarged endosomes in blood mononuclear

  19. Characterization of the Mammalian CORVET and HOPS Complexes and Their Modular Restructuring for Endosome Specificity

    NARCIS (Netherlands)

    van der Kant, Rik; Jonker, Caspar T. H.; Wijdeven, Ruud H.; Bakker, Jeroen; Janssen, Lennert; Klumperman, Judith; Neefjes, Jacques

    2015-01-01

    Trafficking of cargo through the endosomal system depends on endosomal fusion events mediated by SNARE proteins, Rab-GTPases, and multisubunit tethering complexes. The CORVET and HOPS tethering complexes, respectively, regulate early and late endosomal tethering and have been characterized in detail

  20. LITAF mutations associated with Charcot-Marie-Tooth disease 1C show mislocalization from the late endosome/lysosome to the mitochondria.

    Directory of Open Access Journals (Sweden)

    Andressa Ferreira Lacerda

    Full Text Available Charcot-Marie-Tooth (CMT disease is one of the most common heritable neuromuscular disorders, affecting 1 in every 2500 people. Mutations in LITAF have been shown to be causative for CMT type 1C disease. In this paper we explore the subcellular localization of wild type LITAF and mutant forms of LITAF known to cause CMT1C (T49M, A111G, G112S, T115N, W116G, L122V and P135T. The results show that LITAF mutants A111G, G112S, W116G, and T115N mislocalize from the late endosome/lysosome to the mitochondria while the mutants T49M, L122V, and P135T show partial mislocalization with a portion of the total protein present in the late endosome/lysosome and the remainder of the protein localized to the mitochondria. This suggests that different mutants of LITAF will produce differing severity of disease. We also explored the effect of the presence of mutant LITAF on wild-type LITAF localization. We showed that in cells heterozygous for LITAF, CMT1C mutants T49M and G112S are dominant since wild-type LITAF localized to the mitochondria when co-transfected with a LITAF mutant. Finally, we demonstrated how LITAF transits to the endosome and mitochondria compartments of the cell. Using Brefeldin A to block ER to Golgi transport we demonstrated that wild type LITAF traffics through the secretory pathway to the late endosome/lysosome while the LITAF mutants transit to the mitochondria independent of the secretory pathway. In addition, we demonstrated that the C-terminus of LITAF is necessary and sufficient for targeting of wild-type LITAF to the late endosome/lysosome and the mutants to the mitochondria. Together these data provide insight into how mutations in LITAF cause CMT1C disease.

  1. Endosomal "sort" of signaling control: The role of ESCRT machinery in regulation of receptor-mediated signaling pathways.

    Science.gov (United States)

    Szymanska, Ewelina; Budick-Harmelin, Noga; Miaczynska, Marta

    2018-02-01

    The endosomal sorting complexes required for transport (ESCRTs) machinery consists of four protein assemblies (ESCRT-0 to -III subcomplexes) which mediate various processes of membrane remodeling in the cell. In the endocytic pathway, ESCRTs sort cargo destined for degradation into intraluminal vesicles (ILVs) of endosomes. Cargos targeted by ESCRTs include various signaling molecules, mainly internalized cell-surface receptors but also some cytosolic proteins. It is therefore expected that aberrant trafficking caused by ESCRT dysfunction affects different signaling pathways. Here we review how perturbation of ESCRT activity alters intracellular transport of membrane receptors, causing their accumulation on endocytic compartments, decreased degradation and/or altered recycling to the plasma membrane. We further describe how perturbed trafficking of receptors impacts the activity of their downstream signaling pathways, with or without changes in transcriptional responses. Finally, we present evidence that ESCRT components can also control activity and intracellular distribution of cytosolic signaling proteins (kinases, other effectors and soluble receptors). The underlying mechanisms involve sequestration of such proteins in ILVs, their sorting for degradation or towards non-lysosomal destinations, and regulating their availability in various cellular compartments. All these ESCRT-mediated processes can modulate final outputs of multiple signaling pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Niemann-Pick type C mutations cause lipid traffic jam.

    Science.gov (United States)

    Liscum, L

    2000-03-01

    The Niemann-Pick C protein (NPC1) is required for cholesterol transport from late endosomes and lysosomes to other cellular membranes. Mutations in NPC1 cause lysosomal lipid storage and progressive neurological degeneration. Cloning of the NPC1 gene has given us tools with which to investigate the function of this putative cholesterol transporter. Here, we discuss recent studies indicating that NPC1 is not a cholesterol-specific transport molecule. Instead, NPC1 appears to be required for the vesicular shuttling of both lipids and fluid-phase constituents from multivesicular late endosomes to destinations such as the trans-Golgi network.

  3. Promyelocytic leukemia bodies tether to early endosomes during mitosis.

    Science.gov (United States)

    Palibrk, Vuk; Lång, Emma; Lång, Anna; Schink, Kay Oliver; Rowe, Alexander D; Bøe, Stig Ove

    2014-01-01

    During mitosis the nuclear envelope breaks down, leading to potential interactions between cytoplasmic and nuclear components. PML bodies are nuclear structures with tumor suppressor and antiviral functions. Early endosomes, on the other hand, are cytoplasmic vesicles involved in transport and growth factor signaling. Here we demonstrate that PML bodies form stable interactions with early endosomes immediately following entry into mitosis. The 2 compartments remain stably associated throughout mitosis and dissociate in the cytoplasm of newly divided daughter cells. We also show that a minor subset of PML bodies becomes anchored to the mitotic spindle poles during cell division. The study demonstrates a stable mitosis-specific interaction between a cytoplasmic and a nuclear compartment.

  4. Enhancing endosomal escape of transduced proteins by photochemical internalisation.

    Directory of Open Access Journals (Sweden)

    Kevin Mellert

    Full Text Available Induced internalisation of functional proteins into cultured cells has become an important aspect in a rising number of in vitro and in vivo assays. The endo-lysosomal entrapment of the transduced proteins remains the major problem in all transduction protocols. In this study we compared the efficiency, cytotoxicity and protein targeting of different commercially available transduction reagents by transducing a well-studied fluorescently labelled protein (Atto488-bovine serum albumin into cultured human sarcoma cells. The amount of internalised protein and toxicity differed between the different reagents, but the percentage of transduced cells was consistently high. Furthermore, in all protocols the signals of the transduced Atto488-BSA were predominantly punctual consistent with an endosomal localisation. To overcome the endosomal entrapment, the transduction protocols were combined with a photochemical internalisation (PCI treatment. Using this combination revealed that an endosomal disruption is highly effective in cell penetrating peptide (CPP mediated transduction, whereas lipid-mediated transductions lead to a lower signal spreading throughout the cytosol. No change in the signal distribution could be achieved in treatments using non-lipid polymers as a transduction reagent. Therefore, the combination of protein transduction protocols based on CPPs with the endosomolytic treatment PCI can facilitate protein transduction experiments in vitro.

  5. Enhancing endosomal escape of transduced proteins by photochemical internalisation.

    Science.gov (United States)

    Mellert, Kevin; Lamla, Markus; Scheffzek, Klaus; Wittig, Rainer; Kaufmann, Dieter

    2012-01-01

    Induced internalisation of functional proteins into cultured cells has become an important aspect in a rising number of in vitro and in vivo assays. The endo-lysosomal entrapment of the transduced proteins remains the major problem in all transduction protocols. In this study we compared the efficiency, cytotoxicity and protein targeting of different commercially available transduction reagents by transducing a well-studied fluorescently labelled protein (Atto488-bovine serum albumin) into cultured human sarcoma cells. The amount of internalised protein and toxicity differed between the different reagents, but the percentage of transduced cells was consistently high. Furthermore, in all protocols the signals of the transduced Atto488-BSA were predominantly punctual consistent with an endosomal localisation. To overcome the endosomal entrapment, the transduction protocols were combined with a photochemical internalisation (PCI) treatment. Using this combination revealed that an endosomal disruption is highly effective in cell penetrating peptide (CPP) mediated transduction, whereas lipid-mediated transductions lead to a lower signal spreading throughout the cytosol. No change in the signal distribution could be achieved in treatments using non-lipid polymers as a transduction reagent. Therefore, the combination of protein transduction protocols based on CPPs with the endosomolytic treatment PCI can facilitate protein transduction experiments in vitro.

  6. Protein complexes and cholesterol in the control of late endosomal dynamicsCholesterol and multi-protein complexes in the control of late endosomal dynamics

    NARCIS (Netherlands)

    Kant, Rik Henricus Nicolaas van der

    2013-01-01

    Late endosomal transport is disrupted in several diseases such as Niemann-Pick type C, ARC syndrome and Alzheimer’s disease. This thesis describes the regulation of late endosomal dynamics by cholesterol and multi-protein complexes. We find that cholesterol acts as a cellular tomtom that steers the

  7. Activation mobilizes the cholesterol in the late endosomes-lysosomes of Niemann Pick type C cells.

    Directory of Open Access Journals (Sweden)

    Yvonne Lange

    Full Text Available A variety of intercalating amphipaths increase the chemical activity of plasma membrane cholesterol. To test whether intracellular cholesterol can be similarly activated, we examined NPC1 and NPC2 fibroblasts, since they accumulate large amounts of cholesterol in their late endosomes and lysosomes (LE/L. We gauged the mobility of intracellular sterol from its appearance at the surface of the intact cells, as determined by its susceptibility to cholesterol oxidase and its isotope exchange with extracellular 2-(hydroxypropyl-β-cyclodextrin-cholesterol. The entire cytoplasmic cholesterol pool in these cells was mobile, exchanging with the plasma membrane with an apparent half-time of ∼3-4 hours, ∼4-5 times slower than that for wild type human fibroblasts (half-time ∼0.75 hours. The mobility of the intracellular cholesterol was increased by the membrane-intercalating amphipaths chlorpromazine and 1-octanol. Chlorpromazine also promoted the net transfer of LE/L cholesterol to serum and cyclodextrin. Surprisingly, the mobility of LE/L cholesterol was greatly stimulated by treating intact NPC cells with glutaraldehyde or formaldehyde. Similar effects were seen with wild type fibroblasts in which the LE/L cholesterol pool had been expanded using U18666A. We also showed that the cholesterol in the intracellular membranes of fixed wild-type fibroblasts was mobile; it was rapidly oxidized by cholesterol oxidase and was rapidly replenished by exogenous sterol. We conclude that a the cholesterol in NPC cells can exit the LE/L (and the extensive membranous inclusions therein over a few hours; b this mobility is stimulated by the activation of the cholesterol with intercalating amphipaths; c intracellular cholesterol is even more mobile in fixed cells; and d amphipaths that activate cholesterol might be useful in treating NPC disease.

  8. Decoupling internalization, acidification and phagosomal-endosomal/lysosomal fusion during phagocytosis of InlA coated beads in epithelial cells.

    Directory of Open Access Journals (Sweden)

    Craig D Blanchette

    Full Text Available BACKGROUND: Phagocytosis has been extensively examined in 'professional' phagocytic cells using pH sensitive dyes. However, in many of the previous studies, a separation between the end of internalization, beginning of acidification and completion of phagosomal-endosomal/lysosomal fusion was not clearly established. In addition, very little work has been done to systematically examine phagosomal maturation in 'non-professional' phagocytic cells. Therefore, in this study, we developed a simple method to measure and decouple particle internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in Madin-Darby Canine Kidney (MDCK and Caco-2 epithelial cells. METHODOLOGY/PRINCIPAL FINDINGS: Our method was developed using a pathogen mimetic system consisting of polystyrene beads coated with Internalin A (InlA, a membrane surface protein from Listeria monocytogenes known to trigger receptor-mediated phagocytosis. We were able to independently measure the rates of internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in epithelial cells by combining the InlA-coated beads (InlA-beads with antibody quenching, a pH sensitive dye and an endosomal/lysosomal dye. By performing these independent measurements under identical experimental conditions, we were able to decouple the three processes and establish time scales for each. In a separate set of experiments, we exploited the phagosomal acidification process to demonstrate an additional, real-time method for tracking bead binding, internalization and phagosomal acidification. CONCLUSIONS/SIGNIFICANCE: Using this method, we found that the time scales for internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion ranged from 23-32 min, 3-4 min and 74-120 min, respectively, for MDCK and Caco-2 epithelial cells. Both the static and real-time methods developed here are expected to be readily and broadly applicable, as they simply

  9. Human Papillomavirus 16 Infection Induces VAP-Dependent Endosomal Tubulation.

    Science.gov (United States)

    Siddiqa, Abida; Massimi, Paola; Pim, David; Broniarczyk, Justyna; Banks, Lawrence

    2018-03-15

    Human papillomavirus (HPV) infection involves complex interactions with the endocytic transport machinery, which ultimately facilitates the entry of the incoming viral genomes into the trans -Golgi network (TGN) and their subsequent nuclear entry during mitosis. The endosomal pathway is a highly dynamic intracellular transport system, which consists of vesicular compartments and tubular extensions, although it is currently unclear whether incoming viruses specifically alter the endocytic machinery. In this study, using MICAL-L1 as a marker for tubulating endosomes, we show that incoming HPV-16 virions induce a profound alteration in global levels of endocytic tubulation. In addition, we also show a critical requirement for the endoplasmic reticulum (ER)-anchored protein VAP in this process. VAP plays an essential role in actin nucleation and endosome-to-Golgi transport. Indeed, the loss of VAP results in a dramatic decrease in the level of endosomal tubulation induced by incoming HPV-16 virions. This is also accompanied by a marked reduction in virus infectivity. In VAP knockdown cells, we see that the defect in virus trafficking occurs after capsid disassembly but prior to localization at the trans -Golgi network, with the incoming virion-transduced DNA accumulating in Vps29/TGN46-positive hybrid vesicles. Taken together, these studies demonstrate that infection with HPV-16 virions induces marked alterations of endocytic transport pathways, some of which are VAP dependent and required for the endosome-to-Golgi transport of the incoming viral L2/DNA complex. IMPORTANCE Human papillomavirus infectious entry involves multiple interactions with the endocytic transport machinery. In this study, we show that incoming HPV-16 virions induce a dramatic increase in endocytic tubulation. This tubulation requires ER-associated VAP, which plays a critical role in ensuring the delivery of cargoes from the endocytic compartments to the trans -Golgi network. Indeed, the loss of

  10. Strategies for the Activation and Release of the Membranolytic Peptide Melittin from Liposomes Using Endosomal pH as a Trigger.

    Science.gov (United States)

    Oude Blenke, E; Sleszynska, M; Evers, M J W; Storm, G; Martin, N I; Mastrobattista, E

    2017-02-15

    Endosomolytic peptides are often coupled to drug delivery systems to enhance endosomal escape, which is crucial for the delivery of macromolecular drugs that are vulnerable to degradation in the endolysosomal pathway. Melittin is a 26 amino acid peptide derived from bee venom that has a very high membranolytic activity. However, such lytic peptides also impose a significant safety risk when applied in vivo as they often have similar activity against red blood cells and other nontarget cell membranes. Our aim is to control the membrane-disrupting capacity of these peptides in time and space by physically constraining them to a nanocarrier surface in such a way that they only become activated when delivered inside acidic endosomes. To this end, a variety of chemical approaches for the coupling of lytic peptides to liposomes via functionalized PEG-lipids were explored, including maleimide-thiol chemistry, click-chemistry, and aldehyde-hydrazide chemistry. The latter enables reversible conjugation via a hydrazone bond, allowing for release of the peptide under endosomal conditions. By carefully choosing the conjugation site and by using a pH activated analog of the melittin peptide, lytic activity toward a model membrane is completely inhibited at physiological pH. At endosomal pH the activity is restored by hydrolysis of the acid-labile hydrazone bond, releasing the peptide in its most active, free form. Furthermore, using an analogue containing a nonhydrolyzable bond as a control, it was shown that the activity observed can be completely attributed to release of the peptide, validating dynamic covalent conjugation as a suitable strategy to maintain safety during circulation.

  11. Membrane localization and dynamics of geranylgeranylated Rab5 hypervariable region.

    Science.gov (United States)

    Edler, Eileen; Schulze, Eric; Stein, Matthias

    2017-08-01

    The small GTPase Rab5 is a key regulator of endosomal trafficking processes and a marker for the early endosome. The C-terminal hypervariable region (HVR) of Rab5 is post-translationally modified at residues Cys 212 and Cys 213 to accommodate two geranylgeranyl anchors (C20 carbon chain length) in order to associate Rab5 with the membrane. The structural role of the HVR regarding protein-early endosome membrane recruitment is not resolved due to its high degree of flexibility and lack of crystallographic information. Here, full-atomistic and coarse-grained molecular dynamics simulations of the truncated Rab5 HVR 206-215 in three model membranes of increasing complexity (pure phospholipid bilayer, ternary membrane with cholesterol, six-component early endosome) were performed. Specific electrostatic interactions between the HVR 206-215 Arg 209 residue and the phosphate group of the inositol ring of PI(3)P were detected. This shows that PI(3)P acts as a first contact site of protein recruitment to the early endosome. The free energy change of HVR 206-215 extraction from the bilayer was largest for the physiological negatively charged membrane. 5μs coarse-grained simulations revealed an active recruitment of PI(3)P to the HVR 206-215 supporting the formation of Rab5- and PI(3)P enriched signaling platforms. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A Rab11A/myosin Vb/Rab11-FIP2 complex frames two late recycling steps of langerin from the ERC to the plasma membrane.

    Science.gov (United States)

    Gidon, Alexandre; Bardin, Sabine; Cinquin, Bertrand; Boulanger, Jerome; Waharte, François; Heliot, Laurent; de la Salle, Henri; Hanau, Daniel; Kervrann, Charles; Goud, Bruno; Salamero, Jean

    2012-06-01

    A large body of knowledge relating to the constitution of Rab GTPase/Rab effector complexes and their impact on both membrane domain organization and overall membrane trafficking has been built up in recent years. However in the context of the live cell there are still many questions that remain to be answered, such as where and when these complexes assemble and where they perform their primary function(s). We describe here the dynamic processes that take place in the final steps of the Rab11A dependent recycling pathway, in the context of the membrane platform constituted by Myosin Vb, Rab11A, and Rab11-FIP2. We first confirm that a series of previously reported observations obtained during the study of a number of trafficking cargoes also apply to langerin. Langerin is a cargo molecule that traffics through Rab11A-positive membrane domains of the endosomal recycling pathway. In order to explore the relative dynamics of this set of partners, we make extensive use of a combinatory approach of Live-FRET, fast FRAP video, fast confocal and TIRF microscopy modalities. Our data show that the Myosin Vb/Rab11A/Rab11-FIP2 platform is spatially involved in the regulation of langerin trafficking at two distinct sites within live cells, first at the sorting site in the endosomal recycling compartment (ERC) where transport vesicles are formed, and subsequently, in a strict time-defined order, at the very late stage of docking/tethering and fusion of these langerin recycling vesicles to the plasma membrane. © 2012 John Wiley & Sons A/S.

  13. Regulation of the V-ATPase along the endocytic pathway occurs through reversible subunit association and membrane localization.

    Directory of Open Access Journals (Sweden)

    Céline Lafourcade

    2008-07-01

    Full Text Available The lumen of endosomal organelles becomes increasingly acidic when going from the cell surface to lysosomes. Luminal pH thereby regulates important processes such as the release of internalized ligands from their receptor or the activation of lysosomal enzymes. The main player in endosomal acidification is the vacuolar ATPase (V-ATPase, a multi-subunit transmembrane complex that pumps protons from the cytoplasm to the lumen of organelles, or to the outside of the cell. The active V-ATPase is composed of two multi-subunit domains, the transmembrane V(0 and the cytoplasmic V(1. Here we found that the ratio of membrane associated V(1/Vo varies along the endocytic pathway, the relative abundance of V(1 being higher on late endosomes than on early endosomes, providing an explanation for the higher acidity of late endosomes. We also found that all membrane-bound V-ATPase subunits were associated with detergent resistant membranes (DRM isolated from late endosomes, raising the possibility that association with lipid-raft like domains also plays a role in regulating the activity of the proton pump. In support of this, we found that treatment of cells with U18666A, a drug that leads to the accumulation of cholesterol in late endosomes, affected acidification of late endosome. Altogether our findings indicate that the activity of the vATPase in the endocytic pathway is regulated both by reversible association/dissociation and the interaction with specific lipid environments.

  14. Role of the Small GTPase Rho3 in Golgi/Endosome trafficking through functional interaction with adaptin in Fission Yeast.

    Directory of Open Access Journals (Sweden)

    Ayako Kita

    Full Text Available BACKGROUND: We had previously identified the mutant allele of apm1(+ that encodes a homolog of the mammalian µ1A subunit of the clathrin-associated adaptor protein-1 (AP-1 complex, and we demonstrated the role of Apm1 in Golgi/endosome trafficking, secretion, and vacuole fusion in fission yeast. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we isolated rho3(+, which encodes a Rho-family small GTPase, an important regulator of exocystosis, as a multicopy-suppressor of the temperature-sensitive growth of the apm1-1 mutant cells. Overexpression of Rho3 suppressed the Cl(- sensitivity and immunosuppressant sensitivity of the apm1-1 mutant cells. Overexpression of Rho3 also suppressed the fragmentation of vacuoles, and the accumulation of v-SNARE Syb1 in Golgi/endosomes and partially suppressed the defective secretion associated with apm1-deletion cells. Notably, electron microscopic observation of the rho3-deletion cells revealed the accumulation of abnormal Golgi-like structures, vacuole fragmentation, and accumulation of secretory vesicles; these phenotypes were very similar to those of the apm1-deletion cells. Furthermore, the rho3-deletion cells and apm1-deletion cells showed very similar phenotypic characteristics, including the sensitivity to the immunosuppressant FK506, the cell wall-damaging agent micafungin, Cl(-, and valproic acid. Green fluorescent protein (GFP-Rho3 was localized at Golgi/endosomes as well as the plasma membrane and division site. Finally, Rho3 was shown to form a complex with Apm1 as well as with other subunits of the clathrin-associated AP-1 complex in a GTP- and effector domain-dependent manner. CONCLUSIONS/SIGNIFICANCE: Taken together, our findings reveal a novel role of Rho3 in the regulation of Golgi/endosome trafficking and suggest that clathrin-associated adaptor protein-1 and Rho3 co-ordinate in intracellular transport in fission yeast. To the best of our knowledge, this study provides the first evidence

  15. Decoupling Internalization, Acidification and Phagosmal-Endosomal/Iysosomal Phagocytosis of Internalin A coated Beads in epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Blanchette, C D; Woo, Y; Thomas, C; Shen, N; Sulchek, T A; Hiddessen, A L

    2008-12-22

    Phagocytosis has been extensively examined in 'professional' phagocytic cells using pH sensitive dyes. However, in many of the previous studies, a separation between the end of internalization, beginning of acidification and completion of phagosomal-endosomal/lysosomal fusion was not clearly established, and in several cases, it was treated as a one-step process. In addition, very little work has been done to systematically examine phagosomal maturation in 'non-professional' phagocytic cells, such as epithelial cells. Therefore, in this study, we developed a simple and novel method to decouple and accurately measure particle internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in Madin-Darby Canine Kidney (MDCK) and Caco-2 epithelial cells. Our method was developed using a pathogen mimetic system consisting of polystyrene beads coated with Internalin A (InlA), a membrane surface protein from Listeria monocytogenes known to trigger receptor-mediated internalization. We achieved independent measurements of the rates of internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in epithelial cells by combining the InlA-coated beads (InlA-beads) with antibody quenching, pH sensitive dyes and endosomal/lysosomal dyes, as follows: the rate of InlA bead internalization was measured via antibody quenching of a pH independent dye (Alexa488) conjugated to InlA-beads, the rate at which phagosomes containing internalized InlA beads became acidified was measured using a pH dependent dye (FITC) conjugated to the beads and the rate of phagosomal-endosomal/lysosomal fusion was measured using a combination of unlabeled InlA-beads and an endosomal/lysosomal dye. By performing these independent measurements under identical experimental conditions, we were able to decouple the three processes and establish time scales for each. In a separate set of experiments, we also exploited the phagosomal acidification

  16. Upregulation of μ3A Drives Homeostatic Plasticity by Rerouting AMPAR into the Recycling Endosomal Pathway

    Directory of Open Access Journals (Sweden)

    Celine C. Steinmetz

    2016-09-01

    Full Text Available Synaptic scaling is a form of homeostatic plasticity driven by transcription-dependent changes in AMPA-type glutamate receptor (AMPAR trafficking. To uncover the pathways involved, we performed a cell-type-specific screen for transcripts persistently altered during scaling, which identified the μ subunit (μ3A of the adaptor protein complex AP-3A. Synaptic scaling increased μ3A (but not other AP-3 subunits in pyramidal neurons and redistributed dendritic μ3A and AMPAR to recycling endosomes (REs. Knockdown of μ3A prevented synaptic scaling and this redistribution, while overexpression (OE of full-length μ3A or a truncated μ3A that cannot interact with the AP-3A complex was sufficient to drive AMPAR to REs. Finally, OE of μ3A acted synergistically with GRIP1 to recruit AMPAR to the dendritic membrane. These data suggest that excess μ3A acts independently of the AP-3A complex to reroute AMPAR to RE, generating a reservoir of receptors essential for the regulated recruitment to the synaptic membrane during scaling up.

  17. Diacylglycerol kinase α regulates tubular recycling endosome biogenesis and major histocompatibility complex class I recycling.

    Science.gov (United States)

    Xie, Shuwei; Naslavsky, Naava; Caplan, Steve

    2014-11-14

    Major histocompatibility complex class I (MHC I) presents intracellular-derived peptides to cytotoxic T lymphocytes and its subcellular itinerary is important in regulating the immune response. While a number of diacylglycerol kinase isoforms have been implicated in clathrin-dependent internalization, MHC I lacks the typical motifs known to mediate clathrin-dependent endocytosis. Here we show that depletion of diacylglycerol kinase α (DGKα), a kinase devoid of a clathrin-dependent adaptor protein complex 2 binding site, caused a delay in MHC I recycling to the plasma membrane without affecting the rate of MHC I internalization. We demonstrate that DGKα knock-down causes accumulation of intracellular and surface MHC I, resulting from decreased degradation. Furthermore, we provide evidence that DGKα is required for the generation of phosphatidic acid required for tubular recycling endosome (TRE) biogenesis. Moreover, we show that DGKα forms a complex with the TRE hub protein, MICAL-L1. Given that MICAL-L1 and the F-BAR-containing membrane-tubulating protein Syndapin2 associate selectively with phosphatidic acid, we propose a positive feedback loop in which DGKα generates phosphatidic acid to drive its own recruitment to TRE via its interaction with MICAL-L1. Our data support a novel role for the involvement of DGKα in TRE biogenesis and MHC I recycling. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. TRAFFIC SIMULATION FOR MIXED TRAFFIC SYSTEMS

    African Journals Online (AJOL)

    EGETE

    2012-05-04

    2002). Description of a microscopic traffic model of an urban district and the analysis and problem solving traffic congestion based on actual data is its objective. There suggested models for a vehicular traffic flow based on partial ...

  19. Bidirectional apical-basal traffic of the cation-independent mannose-6-phosphate receptor in brain endothelial cells.

    Science.gov (United States)

    Siupka, Piotr; Hersom, Maria Ns; Lykke-Hartmann, Karin; Johnsen, Kasper B; Thomsen, Louiza B; Andresen, Thomas L; Moos, Torben; Abbott, N Joan; Brodin, Birger; Nielsen, Morten S

    2017-07-01

    Brain capillary endothelium mediates the exchange of nutrients between blood and brain parenchyma. This barrier function of the brain capillaries also limits passage of pharmaceuticals from blood to brain, which hinders treatment of several neurological disorders. Receptor-mediated transport has been suggested as a potential pharmaceutical delivery route across the brain endothelium, e.g. reports have shown that the transferrin receptor (TfR) facilitates transcytosis of TfR antibodies, but it is not known whether this recycling receptor itself traffics from apical to basal membrane in the process. Here, we elucidate the endosomal trafficking of the retrograde transported cation-independent mannose-6-phosphate receptor (MPR300) in primary cultures of brain endothelial cells (BECs) of porcine and bovine origin. Receptor expression and localisation of MPR300 in the endo-lysosomal system and trafficking of internalised receptor are analysed. We also demonstrate that MPR300 can undergo bidirectional apical-basal trafficking in primary BECs in co-culture with astrocytes. This is, to our knowledge, the first detailed study of retrograde transported receptor trafficking in BECs, and the study demonstrates that MPR300 can be transported from the luminal to abluminal membrane and reverse. Such trafficking of MPR300 suggests that retrograde transported receptors in general may provide a mechanism for transport of pharmaceuticals into the brain.

  20. Arf6-Dependent Intracellular Trafficking of Pasteurella multocida Toxin and pH-Dependent Translocation from Late Endosomes

    Directory of Open Access Journals (Sweden)

    Tracy P. M. Chong

    2011-03-01

    Full Text Available The potent mitogenic toxin from Pasteurella multocida (PMT is the major virulence factor associated with a number of epizootic and zoonotic diseases caused by infection with this respiratory pathogen. PMT is a glutamine-specific protein deamidase that acts on its intracellular G-protein targets to increase intracellular calcium, cytoskeletal, and mitogenic signaling. PMT enters cells through receptor-mediated endocytosis and then translocates into the cytosol through a pH-dependent process that is inhibited by NH4Cl or bafilomycin A1. However, the detailed mechanisms that govern cellular entry, trafficking, and translocation of PMT remain unclear. Co-localization studies described herein revealed that while PMT shares an initial entry pathway with transferrin (Tfn and cholera toxin (CT, the trafficking pathways of Tfn, CT, and PMT subsequently diverge, as Tfn is trafficked to recycling endosomes, CT is trafficked retrograde to the ER, and PMT is trafficked to late endosomes. Our studies implicate the small regulatory GTPase Arf6 in the endocytic trafficking of PMT. Translocation of PMT from the endocytic vesicle occurs through a pH-dependent process that is also dependent on both microtubule and actin dynamics, as evidenced by inhibition of PMT activity in our SRE-based reporter assay, with nocodazole and cytochalasin D, respectively, suggesting that membrane translocation and cytotoxicity of PMT is dependent on its transfer to late endosomal compartments. In contrast, disruption of Golgi-ER trafficking with brefeldin A increased PMT activity, suggesting that inhibiting PMT trafficking to non-productive compartments that do not lead to translocation, while promoting formation of an acidic tubulovesicle system more conducive to translocation, enhances PMT translocation and activity.

  1. Effect of diphtheria toxin T-domain on endosomal pH

    Directory of Open Access Journals (Sweden)

    A. J. Labyntsev

    2015-08-01

    Full Text Available A key step in the mode of cytotoxic action of diphtheria toxin (DT is the transfer of its catalytic domain (Cd from endosomes into the cytosol. The main activity in this process is performed by the transport domain (Td, but the molecular mechanism of its action remains unknown. We have previously shown that Td can have some influence on the endosomal transport of DT. The aim of this work was to study the effect of diphtheria toxin on the toxin compartmentalization in the intracellular transporting pathway and endosomal pH. We used recombinant fragments of DT, which differed only by the presence of Td in their structure, fused with fluorescent proteins. It was shown that the toxin fragment with Td moved slower by the pathway early-late endosomes-lysosomes, and had a slightly different pattern of colocalization with endosomal markers than DT fragment without Td. In addition, endosomes containing DT fragments with Td had a constant pH of about 6.5 from the 10th to 50th minute of observation, for the same time endosomes containing DT fragments without Td demons­trated a decrease in pH from 6.3 to 5.5. These results indicate that Td inhibits acidification of endosomal medium. One of possible explanations for this may be the effect of the ion channel formed by the T-domain on the process of the endosomal acidification. This property of Td may not only inhibit maturation of endosomes but also inhibit activation of endosomal pH-dependent proteases, and this promotes successful transport of Cd into the cell cytosol.

  2. A role for endosomal proteins in alphavirus dissemination in mosquitoes

    Science.gov (United States)

    Campbell, Corey L.; Lehmann, Christopher J.; Gill, Sargeet S.; Dunn, W. A.; James, Anthony A.; Foy, Brian D.

    2011-01-01

    Little is known about endosomal pathway proteins involved in arthropod-borne virus (arbovirus) assembly and cell-to-cell spread in vector mosquitoes. UNC93A and Synaptic vesicle-2 (SV2) proteins are involved in intracellular transport in mammals. They show amino acid sequence conservation from mosquitoes to humans, and their transcripts are highly-enriched in Aedes aegypti during arbovirus infection. Transient gene silencing of SV2 or UNC93A in mosquitoes infected with the recombinant alphavirus Sindbis MRE16-eGFP (SINV; family Togaviridae) resulted in the accumulation of viral positive- and negative-strand RNA, congregation of virus envelope antigen in intracellular networks, and reduced virus dissemination outside of the midgut. Further, UNC93A silencing, but not SV2 silencing, resulted in a 10-fold reduction in viral titers at 4 days post-infection. Together, these data support a role for UNC93A and SV2 in virus assembly or budding. Cis-regulatory elements (CREs) were identified at the 5′-ends of genes from the original dataset in which SV2 and UNC93A were identified. Common CREs at the 5′-end genomic regions of a subset of enriched transcripts support the hypothesis that UNC93A transcription may be co-regulated with that of other ion transport and endosomal trafficking proteins. PMID:21496127

  3. Cytomegalovirus immune evasion by perturbation of endosomal trafficking.

    Science.gov (United States)

    Lučin, Pero; Mahmutefendić, Hana; Blagojević Zagorac, Gordana; Ilić Tomaš, Maja

    2015-03-01

    Cytomegaloviruses (CMVs), members of the herpesvirus family, have evolved a variety of mechanisms to evade the immune response to survive in infected hosts and to establish latent infection. They effectively hide infected cells from the effector mechanisms of adaptive immunity by eliminating cellular proteins (major histocompatibility Class I and Class II molecules) from the cell surface that display viral antigens to CD8 and CD4 T lymphocytes. CMVs also successfully escape recognition and elimination of infected cells by natural killer (NK) cells, effector cells of innate immunity, either by mimicking NK cell inhibitory ligands or by downregulating NK cell-activating ligands. To accomplish these immunoevasion functions, CMVs encode several proteins that function in the biosynthetic pathway by inhibiting the assembly and trafficking of cellular proteins that participate in immune recognition and thereby, block their appearance at the cell surface. However, elimination of these proteins from the cell surface can also be achieved by perturbation of their endosomal route and subsequent relocation from the cell surface into intracellular compartments. Namely, the physiological route of every cellular protein, including immune recognition molecules, is characterized by specific features that determine its residence time at the cell surface. In this review, we summarize the current understanding of endocytic trafficking of immune recognition molecules and perturbations of the endosomal system during infection with CMVs and other members of the herpesvirus family that contribute to their immune evasion mechanisms.

  4. Endosome-mediated autophagy: an unconventional MIIC-driven autophagic pathway operational in dendritic cells.

    Science.gov (United States)

    Kondylis, Vangelis; van Nispen Tot Pannerden, Hezder E; van Dijk, Suzanne; Ten Broeke, Toine; Wubbolts, Richard; Geerts, Willie J; Seinen, Cor; Mutis, Tuna; Heijnen, Harry F G

    2013-06-01

    Activation of TLR signaling has been shown to induce autophagy in antigen-presenting cells (APCs). Using high-resolution microscopy approaches, we show that in LPS-stimulated dendritic cells (DCs), autophagosomes emerge from MHC class II compartments (MIICs) and harbor both the molecular machinery for antigen processing and the autophagosome markers LC3 and ATG16L1. This ENdosome-Mediated Autophagy (ENMA) appears to be the major type of autophagy in DCs, as similar structures were observed upon established autophagy-inducing conditions (nutrient deprivation, rapamycin) and under basal conditions in the presence of bafilomycin A1. Autophagosome formation was not significantly affected in DCs expressing ATG4B (C74A) mutant and atg4b (-/-) bone marrow DCs, but the degradation of the autophagy substrate SQSTM1/p62 was largely impaired. Furthermore, we demonstrate that the previously described DC aggresome-like LPS-induced structures (DALIS) contain vesicular membranes, and in addition to SQSTM1 and ubiquitin, they are positive for LC3. LC3 localization on DALIS is independent of its lipidation. MIIC-driven autophagosomes preferentially engulf the LPS-induced SQSTM1-positive DALIS, which become later degraded in autolysosomes. DALIS-associated membranes also contain ATG16L1, ATG9 and the Q-SNARE VTI1B, suggesting that they may represent (at least in part) a membrane reservoir for autophagosome expansion. We propose that ENMA constitutes an unconventional, APC-specific type of autophagy, which mediates the processing and presentation of cytosolic antigens by MHC class II machinery, and/or the selective clearance of toxic by-products of elevated ROS/RNS production in activated DCs, thereby promoting their survival.

  5. Mouse polyomavirus enters early endosomes, requires their acidic pH for productive infection, and meets transferrin cargo in rab11-positive endosomes

    Czech Academy of Sciences Publication Activity Database

    Liebl, D.; Difato, F.; Horníková, L.; Mannová, P.; Štokrová, Jitka; Forstová, J.

    2006-01-01

    Roč. 80, č. 9 (2006), s. 4610-4622 ISSN 0022-538X R&D Projects: GA ČR(CZ) GA204/03/0593; GA MŠk(CZ) LC545 Institutional research plan: CEZ:AV0Z50520514 Keywords : Polyomavirus internalization and trafficking * Early endosomes * Dependence of infection on endosomal pH Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.341, year: 2006

  6. Phospholipidosis in rats treated with amiodarone: serum biochemistry and whole genome micro-array analysis supporting the lipid traffic jam hypothesis and the subsequent rise of the biomarker BMP.

    Science.gov (United States)

    Mesens, Natalie; Desmidt, Miek; Verheyen, Geert R; Starckx, Sofie; Damsch, Siegrid; De Vries, Ronald; Verhemeldonck, Marc; Van Gompel, Jacky; Lampo, Ann; Lammens, Lieve

    2012-04-01

    To provide mechanistic insight in the induction of phospholipidosis and the appearance of the proposed biomarker di-docosahexaenoyl (C22:6)-bis(monoacylglycerol) phosphate (BMP), rats were treated with 150 mg/kg amiodarone for 12 consecutive days and analyzed at three different time points (day 4, 9, and 12). Biochemical analysis of the serum revealed a significant increase in cholesterol and phospholipids at the three time points. Bio-analysis on the serum and urine detected a time-dependent increase in BMP, as high as 10-fold compared to vehicle-treated animals on day 12. Paralleling these increases, micro-array analysis on the liver of treated rats identified cholesterol biosynthesis and glycerophospholipid metabolism as highly modulated pathways. This modulation indicates that during phospholipidosis-induction interactions take place between the cationic amphiphilic drug and phospholipids at the level of BMP-rich internal membranes of endosomes, impeding cholesterol sorting and leading to an accumulation of internal membranes, converting into multilamellar bodies. This process shows analogy to Niemann-Pick disease type C (NPC). Whereas the NPC-induced lipid traffic jam is situated at the cholesterol sorting proteins NPC1 and NPC2, the amiodarone-induced traffic jam is thought to be located at the BMP level, demonstrating its role in the mechanism of phospholipidosis-induction and its significance for use as a biomarker.

  7. Differences in the signaling pathways of α(1A- and α(1B-adrenoceptors are related to different endosomal targeting.

    Directory of Open Access Journals (Sweden)

    Vanessa Segura

    Full Text Available AIMS: To compare the constitutive and agonist-dependent endosomal trafficking of α(1A- and α(1B-adrenoceptors (ARs and to establish if the internalization pattern determines the signaling pathways of each subtype. METHODS: Using CypHer5 technology and VSV-G epitope tagged α(1A- and α(1B-ARs stably and transiently expressed in HEK 293 cells, we analyzed by confocal microscopy the constitutive and agonist-induced internalization of each subtype, and the temporal relationship between agonist induced internalization and the increase in intracellular calcium (determined by FLUO-3 flouorescence, or the phosphorylation of ERK1/2 and p38 MAP kinases (determined by Western blot. RESULTS AND CONCLUSIONS: Constitutive as well as agonist-induced trafficking of α(1A and α(1B ARs maintain two different endosomal pools of receptors: one located close to the plasma membrane and the other deeper into the cytosol. Each subtype exhibited specific characteristics of internalization and distribution between these pools that determines their signaling pathways: α(1A-ARs, when located in the plasma membrane, signal through calcium and ERK1/2 pathways but, when translocated to deeper endosomes, through a mechanism sensitive to β-arrestin and concanavalin A, continue signaling through ERK1/2 and also activate the p38 pathway. α(1B-ARs signal through calcium and ERK1/2 only when located in the membrane and the signals disappear after endocytosis and by disruption of the membrane lipid rafts by methyl-β-cyclodextrin.

  8. Toxoplasma gondii Syntaxin 6 Is Required for Vesicular Transport Between Endosomal-Like Compartments and the Golgi Complex

    Science.gov (United States)

    Jackson, Allison J; Clucas, Caroline; Mamczur, Nicola J; Ferguson, David J; Meissner, Markus

    2013-01-01

    Apicomplexans are obligate intracellular parasites that invade the host cell in an active process that relies on unique secretory organelles (micronemes, rhoptries and dense granules) localized at the apical tip of these highly polarized eukaryotes. In order for the contents of these specialized organelles to reach their final destination, these proteins are sorted post-Golgi and it has been speculated that they pass through endosomal-like compartments (ELCs), where they undergo maturation. Here, we characterize a Toxoplasma gondii homologue of Syntaxin 6 (TgStx6), a well-established marker for the early endosomes and trans Golgi network (TGN) in diverse eukaryotes. Indeed, TgStx6 appears to have a role in the retrograde transport between ELCs, the TGN and the Golgi, because overexpression of TgStx6 results in the development of abnormally shaped parasites with expanded ELCs, a fragmented Golgi and a defect in inner membrane complex maturation. Interestingly, other organelles such as the micronemes, rhoptries and the apicoplast are not affected, establishing the TGN as a major sorting compartment where several transport pathways intersect. It therefore appears that Toxoplasma has retained a plant-like secretory pathway. PMID:23962112

  9. Genetic reconstitution of the human Adenovirus type 2 temperature-sensitive 1 mutant defective in endosomal escape

    Directory of Open Access Journals (Sweden)

    Gastaldelli Michele

    2009-10-01

    Full Text Available Abstract Human Adenoviruses infect the upper and lower respiratory tracts, the urinary and digestive tracts, lymphoid systems and heart, and give rise to epidemic conjunctivitis. More than 51 human serotypes have been identified to-date, and classified into 6 species A-F. The species C Adenoviruses Ad2 and Ad5 (Ad2/5 cause upper and lower respiratory disease, but how viral structure relates to the selection of particular infectious uptake pathways is not known. An adenovirus mutant, Ad2-ts1 had been isolated upon chemical mutagenesis in the past, and shown to have unprocessed capsid proteins. Ad2-ts1 fails to package the viral protease L3/p23, and Ad2-ts1 virions do not efficiently escape from endosomes. It had been suggested that the C22187T point mutation leading to the substitution of the conserved proline 137 to leucine (P137L in the L3/p23 protease was at least in part responsible for this phenotype. To clarify if the C22187T mutation is necessary and sufficient for the Ad2-ts1 phenotype, we sequenced the genes encoding the structural proteins of Ad2-ts1, and confirmed that the Ad2-ts1 DNA carries the point mutation C22187T. Introduction of C22187T to the wild-type Ad2 genome in a bacterial artificial chromosome (Ad2-BAC gave Ad2-BAC46 virions with the full Ad2-ts1 phenotype. Reversion of Ad2-BAC46 gave wild-type Ad2 particles indicating that P137L is necessary and sufficient for the Ad2-ts1 phenotype. The kinetics of Ad2-ts1 uptake into cells were comparable to Ad2 suggesting similar endocytic uptake mechanisms. Surprisingly, infectious Ad2 or Ad5 but not Ad2-ts1 uptake required CALM (clathrin assembly lymphoid myeloid protein, which controls clathrin-mediated endocytosis and membrane transport between endosomes and the trans-Golgi-network. The data show that no other mutations than P137L in the viral protease are necessary to give rise to particles that are defective in capsid processing and endosomal escape. This provides a basis for

  10. mTORC1 activity repression by late endosomal phosphatidylinositol 3,4-bisphosphate.

    Science.gov (United States)

    Marat, Andrea L; Wallroth, Alexander; Lo, Wen-Ting; Müller, Rainer; Norata, Giuseppe Danilo; Falasca, Marco; Schultz, Carsten; Haucke, Volker

    2017-06-02

    Nutrient sensing by mechanistic target of rapamycin complex 1 (mTORC1) on lysosomes and late endosomes (LyLEs) regulates cell growth. Many factors stimulate mTORC1 activity, including the production of phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P 3 ] by class I phosphatidylinositol 3-kinases (PI3Ks) at the plasma membrane. We investigated mechanisms that repress mTORC1 under conditions of growth factor deprivation. We identified phosphatidylinositol 3,4-bisphosphate [PI(3,4)P 2 ], synthesized by class II PI3K β (PI3KC2β) at LyLEs, as a negative regulator of mTORC1, whereas loss of PI3KC2β hyperactivated mTORC1. Growth factor deprivation induced the association of PI3KC2β with the Raptor subunit of mTORC1. Local PI(3,4)P 2 synthesis triggered repression of mTORC1 activity through association of Raptor with inhibitory 14-3-3 proteins. These results unravel an unexpected function for local PI(3,4)P 2 production in shutting off mTORC1. Copyright © 2017, American Association for the Advancement of Science.

  11. Apical transport of influenza A virus ribonucleoprotein requires Rab11-positive recycling endosome.

    Directory of Open Access Journals (Sweden)

    Fumitaka Momose

    Full Text Available Influenza A virus RNA genome exists as eight-segmented ribonucleoprotein complexes containing viral RNA polymerase and nucleoprotein (vRNPs. Packaging of vRNPs and virus budding take place at the apical plasma membrane (APM. However, little is known about the molecular mechanisms of apical transport of newly synthesized vRNP. Transfection of fluorescent-labeled antibody and subsequent live cell imaging revealed that punctate vRNP signals moved along microtubules rapidly but intermittently in both directions, suggestive of vesicle trafficking. Using a series of Rab family protein, we demonstrated that progeny vRNP localized to recycling endosome (RE in an active/GTP-bound Rab11-dependent manner. The vRNP interacted with Rab11 through viral RNA polymerase. The localization of vRNP to RE and subsequent accumulation to the APM were impaired by overexpression of Rab binding domains (RBD of Rab11 family interacting proteins (Rab11-FIPs. Similarly, no APM accumulation was observed by overexpression of class II Rab11-FIP mutants lacking RBD. These results suggest that the progeny vRNP makes use of Rab11-dependent RE machinery for APM trafficking.

  12. Rac1-Rab11-FIP3 regulatory hub coordinates vesicle traffic with actin remodeling and T-cell activation.

    Science.gov (United States)

    Bouchet, Jérôme; Del Río-Iñiguez, Iratxe; Lasserre, Rémi; Agüera-Gonzalez, Sonia; Cuche, Céline; Danckaert, Anne; McCaffrey, Mary W; Di Bartolo, Vincenzo; Alcover, Andrés

    2016-06-01

    The immunological synapse generation and function is the result of a T-cell polarization process that depends on the orchestrated action of the actin and microtubule cytoskeleton and of intracellular vesicle traffic. However, how these events are coordinated is ill defined. Since Rab and Rho families of GTPases control intracellular vesicle traffic and cytoskeleton reorganization, respectively, we investigated their possible interplay. We show here that a significant fraction of Rac1 is associated with Rab11-positive recycling endosomes. Moreover, the Rab11 effector FIP3 controls Rac1 intracellular localization and Rac1 targeting to the immunological synapse. FIP3 regulates, in a Rac1-dependent manner, key morphological events, like T-cell spreading and synapse symmetry. Finally, Rab11-/FIP3-mediated regulation is necessary for T-cell activation leading to cytokine production. Therefore, Rac1 endosomal traffic is key to regulate T-cell activation. © 2016 The Authors.

  13. Stochastic acidification, activation of hemagglutinin and escape of influenza viruses from an endosome

    Science.gov (United States)

    Lagache, Thibault; Sieben, Christian; Meyer, Tim; Herrmann, Andreas; Holcman, David

    2017-06-01

    Influenza viruses enter the cell inside an endosome. During the endosomal journey, acidification triggers a conformational change of the virus spike protein hemagglutinin (HA) that results in escape of the viral genome from the endosome into the cytoplasm. It is still unclear how the interplay between acidification and HA conformation changes affects the kinetics of the viral endosomal escape. We develop here a stochastic model to estimate the change of conformation of HAs inside the endosome nanodomain. Using a Markov process, we model the arrival of protons to HA binding sites and compute the kinetics of their accumulation. We compute the Mean First Passage Time (MFPT) of the number of HA bound sites to a threshold, which is used to estimate the HA activation rate for a given pH concentration. The present analysis reveals that HA proton binding sites possess a high chemical barrier, ensuring a stability of the spike protein at sub-acidic pH. We predict that activating more than 3 adjacent HAs is necessary to trigger endosomal fusion and this configuration prevents premature release of viruses from early endosomes

  14. The Serotonin Transporter Undergoes Constitutive Internalization and Is Primarily Sorted to Late Endosomes and Lysosomal Degradation*

    Science.gov (United States)

    Rahbek-Clemmensen, Troels; Bay, Tina; Eriksen, Jacob; Gether, Ulrik; Jørgensen, Trine Nygaard

    2014-01-01

    The serotonin transporter (SERT) plays a critical role in regulating serotonin signaling by mediating reuptake of serotonin from the extracellular space. The molecular and cellular mechanisms controlling SERT levels in the membrane remain poorly understood. To study trafficking of the surface resident SERT, two functional epitope-tagged variants were generated. Fusion of a FLAG-tagged one-transmembrane segment protein Tac to the SERT N terminus generated a transporter with an extracellular epitope suited for trafficking studies (TacSERT). Likewise, a construct with an extracellular antibody epitope was generated by introducing an HA (hemagglutinin) tag in the extracellular loop 2 of SERT (HA-SERT). By using TacSERT and HA-SERT in antibody-based internalization assays, we show that SERT undergoes constitutive internalization in a dynamin-dependent manner. Confocal images of constitutively internalized SERT demonstrated that SERT primarily co-localized with the late endosomal/lysosomal marker Rab7, whereas little co-localization was observed with the Rab11, a marker of the “long loop” recycling pathway. This sorting pattern was distinct from that of a prototypical recycling membrane protein, the β2-adrenergic receptor. Furthermore, internalized SERT co-localized with the lysosomal marker LysoTracker and not with transferrin. The sorting pattern was further confirmed by visualizing internalization of SERT using the fluorescent cocaine analog JHC1-64 and by reversible and pulse-chase biotinylation assays showing evidence for lysosomal degradation of the internalized transporter. Finally, we found that SERT internalized in response to stimulation with 12-myristate 13-acetate co-localized primarily with Rab7- and LysoTracker-positive compartments. We conclude that SERT is constitutively internalized and that the internalized transporter is sorted mainly to degradation. PMID:24973209

  15. TrafficTurk evaluation.

    Science.gov (United States)

    2014-04-01

    This report summarizes a project undertaken by the University of Illinois on behalf of the Illinois Department of : Transportation to evaluate a smartphone application called TrafficTurk for traffic safety and traffic monitoring : applications. Traff...

  16. On the entry of an emerging arbovirus into host cells: Mayaro virus takes the highway to the cytoplasm through fusion with early endosomes and caveolae-derived vesicles

    Directory of Open Access Journals (Sweden)

    Carlos A.M. Carvalho

    2017-04-01

    Full Text Available Mayaro virus (MAYV is an emergent sylvatic alphavirus in South America, related to sporadic outbreaks of a chikungunya-like human febrile illness accompanied by severe arthralgia. Despite its high potential for urban emergence, MAYV is still an obscure virus with scarce information about its infection cycle, including the corresponding early events. Even for prototypical alphaviruses, the cell entry mechanism still has some rough edges to trim: although clathrin-mediated endocytosis is quoted as the putative route, alternative paths as distinct as direct virus genome injection through the cell plasma membrane seems to be possible. Our aim was to clarify crucial details on the entry route exploited by MAYV to gain access into the host cell. Tracking the virus since its first contact with the surface of Vero cells by fluorescence microscopy, we show that its entry occurs by a fast endocytic process and relies on fusion with acidic endosomal compartments. Moreover, blocking clathrin-mediated endocytosis or depleting cholesterol from the cell membrane leads to a strong inhibition of viral infection, as assessed by plaque assays. Following this clue, we found that early endosomes and caveolae-derived vesicles are both implicated as target membranes for MAYV fusion. Our findings unravel the very first events that culminate in a productive infection by MAYV and shed light on potential targets for a rational antiviral therapy, besides providing a better comprehension of the entry routes exploited by alphaviruses to get into the cell.

  17. Spatiotemporal dynamics of membrane remodeling and fusion proteins during endocytic transport.

    Science.gov (United States)

    Arlt, Henning; Auffarth, Kathrin; Kurre, Rainer; Lisse, Dominik; Piehler, Jacob; Ungermann, Christian

    2015-04-01

    Organelles of the endolysosomal system undergo multiple fission and fusion events to combine sorting of selected proteins to the vacuole with endosomal recycling. This sorting requires a consecutive remodeling of the organelle surface in the course of endosomal maturation. Here we dissect the remodeling and fusion machinery on endosomes during the process of endocytosis. We traced selected GFP-tagged endosomal proteins relative to exogenously added fluorescently labeled α-factor on its way from the plasma membrane to the vacuole. Our data reveal that the machinery of endosomal fusion and ESCRT proteins has similar temporal localization on endosomes, whereas they precede the retromer cargo recognition complex. Neither deletion of retromer nor the fusion machinery with the vacuole affects this maturation process, although the kinetics seems to be delayed due to ESCRT deletion. Of importance, in strains lacking the active Rab7-like Ypt7 or the vacuolar SNARE fusion machinery, α-factor still proceeds to late endosomes with the same kinetics. This indicates that endosomal maturation is mainly controlled by the early endosomal fusion and remodeling machinery but not the downstream Rab Ypt7 or the SNARE machinery. Our data thus provide important further understanding of endosomal biogenesis in the context of cargo sorting. © 2015 Arlt et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Membrane anchors effectively traffic recombinant human glucocerebrosidase to the protein storage vacuole of Arabidopsis seeds but do not adequately control N-glycan maturation.

    Science.gov (United States)

    He, Xu; Galpin, Jason D; Miao, Yansong; Jiang, Liwen; Grabowski, Gregory A; Kermode, Allison R

    2014-12-01

    Human glucocerebrosidase with vacuolar anchoring domains was targeted to protein storage vacuoles (PSVs) of Arabidopsis seeds, but unexpectedly via the Golgi complex. PSV-targeting to effectively avoid problematic N-glycans is protein dependent. Plant-specific N-glycosylation patterns elaborated within the Golgi complex are a major limitation of using plants to produce biopharmaceuticals as the presence of β1,2 xylose and/or α1,3 fucose residues on the recombinant glycoprotein can render the product immunogenic if administrated parenterally. A reporter protein fused to a vacuolar membrane targeting motif comprised of the BP-80 transmembrane domain (TMD), and the cytoplasmic tail (CT) of α-tonoplast intrinsic protein (α-TIP) is delivered to protein storage vacuoles (PSVs) of tobacco seeds by ER-derived transport vesicles that bypass the Golgi complex. This prompted us to investigate whether a pharmaceutical glycoprotein is targeted to PSVs using the same targeting sequences, thus avoiding the unwanted plant-Golgi-specific complex N-glycan modifications. The human lysosomal acid β-glucosidase (glucocerebrosidase; GCase) (EC 3.2.1.45) fused to the BP-80 TMD and α-TIP CT was produced in Arabidopsis thaliana wild-type (Col-0) seeds. The chimeric GCase became localized in PSVs but transited through the Golgi complex, as indicated by biochemical analyses of the recombinant protein's N-glycans. Our findings suggest that use of this PSV-targeting strategy to avoid problematic N-glycan maturation on recombinant therapeutic proteins is not consistently effective, as it is likely protein- and/or species-specific.

  19. Direct targeting of membrane fusion by SNARE mimicry: Convergent evolution of Legionella effectors.

    Science.gov (United States)

    Shi, Xingqi; Halder, Partho; Yavuz, Halenur; Jahn, Reinhard; Shuman, Howard A

    2016-08-02

    Legionella pneumophila, the Gram-negative pathogen causing Legionnaires' disease, infects host cells by hijacking endocytic pathways and forming a Legionella-containing vacuole (LCV) in which the bacteria replicate. To promote LCV expansion and prevent lysosomal targeting, effector proteins are translocated into the host cell where they alter membrane traffic. Here we show that three of these effectors [LegC2 (Legionella eukaryotic-like gene C2)/YlfB (yeast lethal factor B), LegC3, and LegC7/YlfA] functionally mimic glutamine (Q)-SNARE proteins. In infected cells, the three proteins selectively form complexes with the endosomal arginine (R)-SNARE vesicle-associated membrane protein 4 (VAMP4). When reconstituted in proteoliposomes, these proteins avidly fuse with liposomes containing VAMP4, resulting in a stable complex with properties resembling canonical SNARE complexes. Intriguingly, however, the LegC/SNARE hybrid complex cannot be disassembled by N-ethylmaleimide-sensitive factor. We conclude that LegCs use SNARE mimicry to divert VAMP4-containing vesicles for fusion with the LCV, thus promoting its expansion. In addition, the LegC/VAMP4 complex avoids the host's disassembly machinery, thus effectively trapping VAMP4 in an inactive state.

  20. Traffic planning for non-homogeneous traffic

    Indian Academy of Sciences (India)

    2.3c Data summary The summarization of the density data based on videotape obser- vations is in table 1 which shows average, 30-second, sampled densities. Using the non- homogeneous traffic continuity equation of (2), the resultant traffic concentrations appear in table 2. Comparing the traffic concentrations in table 1 to ...

  1. Latex beads internalization and quantitative proteomics join forces to decipher the endosomal proteome.

    Science.gov (United States)

    Guimarães de Araújo, Mariana Eça; Huber, Lukas Alfons; Stasyk, Taras

    2011-06-01

    The proteome analysis of endocytic compartments has been constrained by the limited purity of the organelle fractions obtained by current biochemical methods. Duclos and coworkers have developed a novel method to isolate highly purified endosomal organelles based on small latex beads internalization followed by gradient centrifugation and successfully combined it with a redundant peptide counting method to compare the relative abundance of proteins in organelles. The presence of bona fide markers in their respective subcellular organelles and the identification of several new endosomal-associated proteins, attested the applicability of their combinatory approach. Future applications of this strategy may deliver a comprehensive endosomal proteome chart: from the identification of the key players to the determination of time and signaling-dependent proteome changes. As a long-term perspective, such an approach may unveil new clues to the molecular mechanisms underlining human diseases associated with endosomal biogenesis defects.

  2. Facilitation of Endosomal Recycling by an IRG Protein Homolog Maintains Apical Tubule Structure in Caenorhabditis elegans

    Science.gov (United States)

    Grussendorf, Kelly A.; Trezza, Christopher J.; Salem, Alexander T.; Al-Hashimi, Hikmat; Mattingly, Brendan C.; Kampmeyer, Drew E.; Khan, Liakot A.; Hall, David H.; Göbel, Verena; Ackley, Brian D.; Buechner, Matthew

    2016-01-01

    Determination of luminal diameter is critical to the function of small single-celled tubes. A series of EXC proteins, including EXC-1, prevent swelling of the tubular excretory canals in Caenorhabditis elegans. In this study, cloning of exc-1 reveals it to encode a homolog of mammalian IRG proteins, which play roles in immune response and autophagy and are associated with Crohn’s disease. Mutants in exc-1 accumulate early endosomes, lack recycling endosomes, and exhibit abnormal apical cytoskeletal structure in regions of enlarged tubules. EXC-1 interacts genetically with two other EXC proteins that also affect endosomal trafficking. In yeast two-hybrid assays, wild-type and putative constitutively active EXC-1 binds to the LIM-domain protein EXC-9, whose homolog, cysteine-rich intestinal protein, is enriched in mammalian intestine. These results suggest a model for IRG function in forming and maintaining apical tubule structure via regulation of endosomal recycling. PMID:27334269

  3. An ER-Associated Pathway Defines Endosomal Architecture for Controlled Cargo Transport

    NARCIS (Netherlands)

    Jongsma, Marlieke L. M.; Berlin, Ilana; Wijdeven, Ruud H. M.; Janssen, Lennert; Janssen, George M. C.; Garstka, Malgorzata A.; Janssen, Hans; Mensink, Mark; van Veelen, Peter A.; Spaapen, Robbert M.; Neefjes, Jacques

    2016-01-01

    Through a network of progressively maturing vesicles, the endosomal system connects the cell's interior with extracellular space. Intriguingly, this network exhibits a bilateral architecture, comprised of a relatively immobile perinuclear vesicle "cloud" and a highly dynamic peripheral contingent.

  4. Inhibition of HIV-1 endocytosis allows lipid mixing at the plasma membrane, but not complete fusion

    Directory of Open Access Journals (Sweden)

    de la Vega Michelle

    2011-12-01

    Full Text Available Abstract Background We recently provided evidence that HIV-1 enters HeLa-derived TZM-bl and lymphoid CEMss cells by fusing with endosomes, whereas its fusion with the plasma membrane does not proceed beyond the lipid mixing step. The mechanism of restriction of HIV-1 fusion at the cell surface and/or the factors that aid the virus entry from endosomes remain unclear. Results We examined HIV-1 fusion with a panel of target cells lines and with primary CD4+ T cells. Kinetic measurements of fusion combined with time-resolved imaging of single viruses further reinforced the notion that HIV-1 enters the cells via endocytosis and fusion with endosomes. Furthermore, we attempted to deliberately redirect virus fusion to the plasma membrane, using two experimental strategies. First, the fusion reaction was synchronized by pre-incubating the viruses with cells at reduced temperature to allow CD4 and coreceptors engagement, but not the virus uptake or fusion. Subsequent shift to a physiological temperature triggered accelerated virus uptake followed by entry from endosomes, but did not permit fusion at the cell surface. Second, blocking HIV-1 endocytosis by a small-molecule dynamin inhibitor, dynasore, resulted in transfer of viral lipids to the plasma membrane without any detectable release of the viral content into the cytosol. We also found that a higher concentration of dynasore is required to block the HIV-endosome fusion compared to virus internalization. Conclusions Our results further support the notion that HIV-1 enters disparate cell types through fusion with endosomes. The block of HIV-1 fusion with the plasma membrane at a post-lipid mixing stage shows that this membrane is not conducive to fusion pore formation and/or enlargement. The ability of dynasore to interfere with the virus-endosome fusion suggests that dynamin could be involved in two distinct steps of HIV-1 entry - endocytosis and fusion within intracellular compartments.

  5. Queueing and traffic

    NARCIS (Netherlands)

    Baër, Niek

    2015-01-01

    Traffic jams are everywhere, some are caused by constructions or accidents but a large portion occurs naturally. These "natural" traffic jams are a result of variable driving speeds combined with a high number of vehicles. To prevent these traffic jams, we must understand traffic in general, and to

  6. Jamitons: Phantom Traffic Jams

    Science.gov (United States)

    Kowszun, Jorj

    2013-01-01

    Traffic on motorways can slow down for no apparent reason. Sudden changes in speed by one or two drivers can create a chain reaction that causes a traffic jam for the vehicles that are following. This kind of phantom traffic jam is called a "jamiton" and the article discusses some of the ways in which traffic engineers produce…

  7. Aggregation of endosomal-vacuolar compartments in the Aovps24-deleted strain in the filamentous fungus Aspergillus oryzae

    International Nuclear Information System (INIS)

    Tatsumi, Akinori; Shoji, Jun-ya; Kikuma, Takashi; Arioka, Manabu; Kitamoto, Katsuhiko

    2007-01-01

    Previously, we found that deletion of Aovps24, an ortholog of Saccharomyces cerevisiae VPS24, that encodes an ESCRT (endosomal sorting complex required for transport)-III component required for late endosomal function results in fragmented and aggregated vacuoles. Although defective late endosomal function is likely responsible for this phenotype, critical lack of our knowledge on late endosomes in filamentous fungi prevented us from further characterization. In this study, we identified late endosomes of Aspergillus oryzae, by expressing a series of fusion proteins of fluorescent proteins with orthologs of late endosomal proteins. Using these fusion proteins as markers, we observed late endosomes in the wild type strain and the Aovps24 disruptant and demonstrated that late endosomes are aberrantly aggregated in the Aovps24 disruptant. Moreover, we revealed that the aggregated late endosomes have features of vacuoles as well. As deletion of another ESCRT-III component-encoding gene, Aovps2, resulted in similar phenotypes to that in the Aovps24 disruptant, phenotypes of the Aovps24 disruptant are probably due to defective late endosomal function

  8. Adenovirus RIDalpha regulates endosome maturation by mimicking GTP-Rab7.

    Science.gov (United States)

    Shah, Ankur H; Cianciola, Nicholas L; Mills, Jeffrey L; Sönnichsen, Frank D; Carlin, Cathleen

    2007-12-03

    The small guanosine triphosphatase Rab7 regulates late endocytic trafficking. Rab7-interacting lysosomal protein (RILP) and oxysterol-binding protein-related protein 1L (ORP1L) are guanosine triphosphate (GTP)-Rab7 effectors that instigate minus end-directed microtubule transport. We demonstrate that RILP and ORP1L both interact with the group C adenovirus protein known as receptor internalization and degradation alpha (RIDalpha), which was previously shown to clear the cell surface of several membrane proteins, including the epidermal growth factor receptor and Fas (Carlin, C.R., A.E. Tollefson, H.A. Brady, B.L. Hoffman, and W.S. Wold. 1989. Cell. 57:135-144; Shisler, J., C. Yang, B. Walter, C.F. Ware, and L.R. Gooding. 1997. J. Virol. 71:8299-8306). RIDalpha localizes to endocytic vesicles but is not homologous to Rab7 and is not catalytically active. We show that RIDalpha compensates for reduced Rab7 or dominant-negative (DN) Rab7(T22N) expression. In vitro, Cu(2+) binding to RIDalpha residues His75 and His76 facilitates the RILP interaction. Site-directed mutagenesis of these His residues results in the loss of RIDalpha-RILP interaction and RIDalpha activity in cells. Additionally, expression of the RILP DN C-terminal region hinders RIDalpha activity during an acute adenovirus infection. We conclude that RIDalpha coordinates recruitment of these GTP-Rab7 effectors to compartments that would ordinarily be perceived as early endosomes, thereby promoting the degradation of selected cargo.

  9. Downregulation of a GPCR by β-Arrestin2-Mediated Switch from an Endosomal to a TGN Recycling Pathway.

    Science.gov (United States)

    Abdullah, Nazish; Beg, Muheeb; Soares, David; Dittman, Jeremy S; McGraw, Timothy E

    2016-12-13

    Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone involved in nutrient homeostasis. GIP receptor (GIPR) is constitutively internalized and returned to the plasma membrane, atypical behavior for a G-protein-coupled receptor (GPCR). GIP promotes GIPR downregulation from the plasma membrane by inhibiting recycling without affecting internalization. This transient desensitization is achieved by altered intracellular trafficking of activated GIPR. GIP stimulation induces a switch in GIPR recycling from a rapid endosomal to a slow trans-Golgi network (TGN) pathway. GPCR kinases and β-arrestin2 are required for this switch in recycling. A coding sequence variant of GIPR, which has been associated with metabolic alterations, has altered post-activation trafficking characterized by enhanced downregulation and prolonged desensitization. Downregulation of the variant requires β-arrestin2 targeting to the TGN but is independent of GPCR kinases. The single amino acid substitution in the variant biases the receptor to promote GIP-stimulated β-arrestin2 recruitment without receptor phosphorylation, thereby enhancing downregulation. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Mobility of tethering factor EEA1 on endosomes is decreased upon stimulation of EGF receptor endocytosis in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Kosheverova, Vera V., E-mail: kosheverova_vera@incras.ru [Institute of Cytology of RAS, 4, Tikhoretsky Ave, St. Petersburg, 194064 (Russian Federation); Kamentseva, Rimma S., E-mail: rkamentseva@yandex.ru [Institute of Cytology of RAS, 4, Tikhoretsky Ave, St. Petersburg, 194064 (Russian Federation); St. Petersburg State University, 7-9, Universitetskaya nab, St. Petersburg, 199034 (Russian Federation); Gonchar, Ilya V., E-mail: ample@mail.ru [Institute of Cytology of RAS, 4, Tikhoretsky Ave, St. Petersburg, 194064 (Russian Federation); Kharchenko, Marianna V., E-mail: mariannakharchenko@gmail.com [Institute of Cytology of RAS, 4, Tikhoretsky Ave, St. Petersburg, 194064 (Russian Federation); Kornilova, Elena S., E-mail: lenkor@mail.cytspb.rssi.ru [Institute of Cytology of RAS, 4, Tikhoretsky Ave, St. Petersburg, 194064 (Russian Federation); St. Petersburg State University, 7-9, Universitetskaya nab, St. Petersburg, 199034 (Russian Federation); Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, 29, Polytechnicheskaya, St.Petersburg, 195251 (Russian Federation)

    2016-04-22

    Tethering factor EEA1, mediating homotypic fusion of early endosomes, was shown to be localized in membrane-bound state both in serum-deprived and stimulated for EGF receptor endocytosis cells. However, it is not known whether dynamics behavior of EEA1 is affected by EGF stimulation. We investigated EEA1 cytosol-to-membrane exchange rate in interphase HeLa cells by FRAP analysis. The data obtained fitted two-states binding model, with the bulk of membrane-associated EEA1 protein represented by the mobile fraction both in serum-starved and EGF-stimulated cells. Fast recovery state had similar half-times in the two cases: about 1.6 s and 2.8 s, respectively. However, the recovery half-time of slowly cycled EEA1 fraction significantly increased in EGF-stimulated comparing to serum-starved cells (from 21 to 99 s). We suppose that the retardation of EEA1 fluorescence recovery upon EGF-stimulation may be due to the increase of activated Rab5 on endosomal membranes, the growth of the number of tethering events between EEA1-positive vesicles and their clustering. - Highlights: • EEA1 mobility was compared in serum-starved and EGF-stimulated interphase HeLa cells. • FRAP analysis revealed fast and slow components of EEA1 recovery in both cases. • Stimulation of EGFR endocytosis did not affect fast EEA1 turnover. • EGF stimulation significantly increased half-time of slowly exchanged EEA1 fraction.

  11. RAB-10-Dependent Membrane Transport Is Required for Dendrite Arborization

    Science.gov (United States)

    Zou, Wei; Yadav, Smita; DeVault, Laura; Jan, Yuh Nung; Sherwood, David R.

    2015-01-01

    Formation of elaborately branched dendrites is necessary for the proper input and connectivity of many sensory neurons. Previous studies have revealed that dendritic growth relies heavily on ER-to-Golgi transport, Golgi outposts and endocytic recycling. How new membrane and associated cargo is delivered from the secretory and endosomal compartments to sites of active dendritic growth, however, remains unknown. Using a candidate-based genetic screen in C. elegans, we have identified the small GTPase RAB-10 as a key regulator of membrane trafficking during dendrite morphogenesis. Loss of rab-10 severely reduced proximal dendritic arborization in the multi-dendritic PVD neuron. RAB-10 acts cell-autonomously in the PVD neuron and localizes to the Golgi and early endosomes. Loss of function mutations of the exocyst complex components exoc-8 and sec-8, which regulate tethering, docking and fusion of transport vesicles at the plasma membrane, also caused proximal dendritic arborization defects and led to the accumulation of intracellular RAB-10 vesicles. In rab-10 and exoc-8 mutants, the trans-membrane proteins DMA-1 and HPO-30, which promote PVD dendrite stabilization and branching, no longer localized strongly to the proximal dendritic membranes and instead were sequestered within intracellular vesicles. Together these results suggest a crucial role for the Rab10 GTPase and the exocyst complex in controlling membrane transport from the secretory and/or endosomal compartments that is required for dendritic growth. PMID:26394140

  12. Neuropilin-2 Regulates Endosome Maturation and EGFR Trafficking to Support Cancer Cell Pathobiology.

    Science.gov (United States)

    Dutta, Samikshan; Roy, Sohini; Polavaram, Navatha S; Stanton, Marissa J; Zhang, Heyu; Bhola, Tanvi; Hönscheid, Pia; Donohue, Terrence M; Band, Hamid; Batra, Surinder K; Muders, Michael H; Datta, Kaustubh

    2016-01-15

    Neuropilin-2 (NRP2) is a non-tyrosine kinase receptor frequently overexpressed in various malignancies, where it has been implicated in promoting many protumorigenic behaviors, such as imparting therapeutic resistance to metastatic cancer cells. Here, we report a novel function of NRP2 as a regulator of endocytosis, which is enhanced in cancer cells and is often associated with increased metastatic potential and drug resistance. We found that NRP2 depletion in human prostate and pancreatic cancer cells resulted in the accumulation of EEA1/Rab5-positive early endosomes concomitant with a decrease in Rab7-positive late endosomes, suggesting a delay in early-to-late endosome maturation. NRP2 depletion also impaired the endocytic transport of cell surface EGFR, arresting functionally active EGFR in endocytic vesicles that consequently led to aberrant ERK activation and cell death. Mechanistic investigations revealed that WD-repeat- and FYVE-domain-containing protein 1 (WDFY1) functioned downstream of NRP2 to promote endosome maturation, thereby influencing the endosomal trafficking of EGFR and the formation of autolysosomes responsible for the degradation of internalized cargo. Overall, our results indicate that the NRP2/WDFY1 axis is required for maintaining endocytic activity in cancer cells, which supports their oncogenic activities and confers drug resistance. Therefore, therapeutically targeting endocytosis may represent an attractive strategy to selectively target cancer cells in multiple malignancies. ©2015 American Association for Cancer Research.

  13. Traffic management simulation development : summary.

    Science.gov (United States)

    2011-01-01

    Increasingly, Florida traffic is monitored electronically by components of the Intelligent Traffic System (ITS), which send data to regional traffic management centers and assist management of traffic flows and incident response using software called...

  14. National guidelines for traffic calming

    CSIR Research Space (South Africa)

    Schermers, G

    1998-03-01

    Full Text Available This document serves as a comprehensive national traffic calming guideline, compiled to assist traffic engineering practitioners and road authorities with the implementation of traffic calming. It outlines the different objectives of traffic calming...

  15. Traffic management simulation development.

    Science.gov (United States)

    2011-01-03

    Microscopic simulation can provide significant support to traffic management center (TMC) operations. However, traffic simulation applications require data that are expensive and time-consuming to collect. Data collected by TMCs can be used as a prim...

  16. Traffic signal timing manual

    Science.gov (United States)

    2008-06-01

    This report serves as a comprehensive guide to traffic signal timing and documents the tasks completed in association with its development. The focus of this document is on traffic signal control principles, practices, and procedures. It describes th...

  17. An intelligent traffic controller

    Science.gov (United States)

    1995-11-01

    Advances in computing sciences have not been applied to traffic control. This paper describes the development of an intelligent controller. A controller with advanced control logic can significantly improve traffic flows at intersections. In this vei...

  18. Generation of stable lipid raft microdomains in the enterocyte brush border by selective endocytic removal of non-raft membrane

    DEFF Research Database (Denmark)

    Danielsen, E Michael; Hansen, Gert H

    2013-01-01

    functions to enrich the contents of lipid raft components in the brush border. The lipophilic fluorescent marker FM, taken up into early endosomes in the terminal web region (TWEEs), was absent from detergent resistant membranes (DRMs), implying an association with non-raft membrane. Furthermore, neither...

  19. Thermoresponsive pegylated bubble liposome nanovectors for efficient siRNA delivery via endosomal escape

    KAUST Repository

    Alamoudi, Kholod

    2017-05-19

    Improving the delivery of siRNA into cancer cells via bubble liposomes. Designing a thermoresponsive pegylated liposome through the introduction of ammonium bicarbonate salt into liposomes so as to control their endosomal escape for gene therapy.A sub-200 nm nanovector was fully characterized and examined for cellular uptake, cytotoxicity, endosomal escape and gene silencing.The siRNA-liposomes were internalized into cancer cells within 5 min and then released siRNAs in the cytosol prior to lysosomal degradation upon external temperature elevation. This was confirmed by confocal bioimaging and gene silencing reaching up to 90% and further demonstrated by the protein inhibition of both target genes.The thermoresponsiveness of ammonium bicarbonate containing liposomes enabled the rapid endosomal escape of the particles and resulted in an efficient gene silencing.

  20. Live cell imaging reveals novel functions of Salmonella enterica SPI2-T3SS effector proteins in remodeling of the host cell endosomal system.

    Science.gov (United States)

    Rajashekar, Roopa; Liebl, David; Chikkaballi, Deepak; Liss, Viktoria; Hensel, Michael

    2014-01-01

    Intracellular Salmonella enterica induce a massive remodeling of the endosomal system in infected host cells. One dramatic consequence of this interference is the induction of various extensive tubular aggregations of membrane vesicles, and tubules positive for late endosomal/lysosomal markers are referred to as Salmonella-induced filaments or SIF. SIF are highly dynamic in nature with extension and collapse velocities of 0.4-0.5 µm x sec-1. The induction of SIF depends on the function of the Salmonella Pathogenicity Island 2 (SPI2) encoded type III secretion system (T3SS) and a subset of effector proteins. In this study, we applied live cell imaging and electron microscopy to analyze the role of individual effector proteins in SIF morphology and dynamic properties of SIF. SIF in cells infected with sifB, sseJ, sseK1, sseK2, sseI, sseL, sspH1, sspH2, slrP, steC, gogB or pipB mutant strains showed a morphology and dynamics comparable to SIF induced by WT Salmonella. SIF were absent in cells infected with the sifA-deficient strain and live cell analyses allowed tracking of the loss of the SCV membrane of intracellular sifA Salmonella. In contrast to analyses in fixed cells, in living host cells SIF induced by sseF- or sseG-deficient strains were not discontinuous, but rather continuous and thinner in diameter. A very dramatic phenotype was observed for the pipB2-deficient strain that induced very bulky, non-dynamic aggregations of membrane vesicles. Our study underlines the requirement of the study of Salmonella-host interaction in living systems and reveals new phenotypes due to the intracellular activities of Salmonella.

  1. Rab5 Activity Regulates GLUT4 Sorting Into Insulin-Responsive and Non-Insulin-Responsive Endosomal Compartments: A Potential Mechanism for Development of Insulin Resistance

    Science.gov (United States)

    Tessneer, Kandice L.; Jackson, Robert M.; Griesel, Beth A.

    2014-01-01

    Glucose transporter isoform 4 (GLUT4) is the insulin-responsive glucose transporter mediating glucose uptake in adipose and skeletal muscle. Reduced GLUT4 translocation from intracellular storage compartments to the plasma membrane is a cause of peripheral insulin resistance. Using a chronic hyperinsulinemia (CHI)-induced cell model of insulin resistance and Rab5 mutant overexpression, we determined these manipulations altered endosomal sorting of GLUT4, thus contributing to the development of insulin resistance. We found that CHI induced insulin resistance in 3T3-L1 adipocytes by retaining GLUT4 in a Rab5-activity-dependent compartment that is unable to equilibrate with the cell surface in response to insulin. Furthermore, CHI-mediated retention of GLUT4 in this non-insulin-responsive compartment impaired filling of the transferrin receptor (TfR)-positive and TfR-negative insulin-responsive storage compartments. Our data suggest that hyperinsulinemia may inhibit GLUT4 by chronically maintaining GLUT4 in the Rab5 activity-dependent endosomal pathway and impairing formation of the TfR-negative and TfR-positive insulin-responsive GLUT4 pools. This model suggests that an early event in the development of insulin-resistant glucose transport in adipose tissue is to alter the intracellular localization of GLUT4 to a compartment that does not efficiently equilibrate with the cell surface when insulin levels are elevated for prolonged periods of time. PMID:24932807

  2. Traffic Light Options

    DEFF Research Database (Denmark)

    Jørgensen, Peter Løchte

    This paper introduces, prices, and analyzes traffic light options. The traffic light option is an innovative structured OTC derivative developed independently by several London-based investment banks to suit the needs of Danish life and pension (L&P) companies, which must comply with the traffic...... 2006, and supervisory authorities in many other European countries have implemented similar regulation. Traffic light options are therefore likely to attract the attention of a wider audience of pension fund managers in the future. Focusing on the valuation of the traffic light option we set up a Black...... light scenarios. These stress scenarios entail drops in interest rates as well as in stock prices, and traffic light options are thus designed to pay off and preserve sufficient capital when interest rates and stock prices fall simultaneously. Sweden's FSA implemented a traffic light system in January...

  3. Translocation of the papillomavirus L2/vDNA complex across the limiting membrane requires the onset of mitosis.

    Science.gov (United States)

    Calton, Christine M; Bronnimann, Matthew P; Manson, Ariana R; Li, Shuaizhi; Chapman, Janice A; Suarez-Berumen, Marcela; Williamson, Tatum R; Molugu, Sudheer K; Bernal, Ricardo A; Campos, Samuel K

    2017-05-01

    The human papillomavirus type 16 (HPV16) L2 protein acts as a chaperone to ensure that the viral genome (vDNA) traffics from endosomes to the trans-Golgi network (TGN) and eventually the nucleus, where HPV replication occurs. En route to the nucleus, the L2/vDNA complex must translocate across limiting intracellular membranes. The details of this critical process remain poorly characterized. We have developed a system based on subcellular compartmentalization of the enzyme BirA and its cognate substrate to detect membrane translocation of L2-BirA from incoming virions. We find that L2 translocation requires transport to the TGN and is strictly dependent on entry into mitosis, coinciding with mitotic entry in synchronized cells. Cell cycle arrest causes retention of L2/vDNA at the TGN; only release and progression past G2/M enables translocation across the limiting membrane and subsequent infection. Microscopy of EdU-labeled vDNA reveals a rapid and dramatic shift in vDNA localization during early mitosis. At late G2/early prophase vDNA egresses from the TGN to a pericentriolar location, accumulating there through prometaphase where it begins to associate with condensed chromosomes. By metaphase and throughout anaphase the vDNA is seen bound to the mitotic chromosomes, ensuring distribution into both daughter nuclei. Mutations in a newly defined chromatin binding region of L2 potently blocked translocation, suggesting that translocation is dependent on chromatin binding during prometaphase. This represents the first time a virus has been shown to functionally couple the penetration of limiting membranes to cellular mitosis, explaining in part the tropism of HPV for mitotic basal keratinocytes.

  4. Translocation of the papillomavirus L2/vDNA complex across the limiting membrane requires the onset of mitosis.

    Directory of Open Access Journals (Sweden)

    Christine M Calton

    2017-05-01

    Full Text Available The human papillomavirus type 16 (HPV16 L2 protein acts as a chaperone to ensure that the viral genome (vDNA traffics from endosomes to the trans-Golgi network (TGN and eventually the nucleus, where HPV replication occurs. En route to the nucleus, the L2/vDNA complex must translocate across limiting intracellular membranes. The details of this critical process remain poorly characterized. We have developed a system based on subcellular compartmentalization of the enzyme BirA and its cognate substrate to detect membrane translocation of L2-BirA from incoming virions. We find that L2 translocation requires transport to the TGN and is strictly dependent on entry into mitosis, coinciding with mitotic entry in synchronized cells. Cell cycle arrest causes retention of L2/vDNA at the TGN; only release and progression past G2/M enables translocation across the limiting membrane and subsequent infection. Microscopy of EdU-labeled vDNA reveals a rapid and dramatic shift in vDNA localization during early mitosis. At late G2/early prophase vDNA egresses from the TGN to a pericentriolar location, accumulating there through prometaphase where it begins to associate with condensed chromosomes. By metaphase and throughout anaphase the vDNA is seen bound to the mitotic chromosomes, ensuring distribution into both daughter nuclei. Mutations in a newly defined chromatin binding region of L2 potently blocked translocation, suggesting that translocation is dependent on chromatin binding during prometaphase. This represents the first time a virus has been shown to functionally couple the penetration of limiting membranes to cellular mitosis, explaining in part the tropism of HPV for mitotic basal keratinocytes.

  5. A Marine Traffic Flow Model

    Directory of Open Access Journals (Sweden)

    Tsz Leung Yip

    2013-03-01

    Full Text Available A model is developed for studying marine traffic flow through classical traffic flow theories, which can provide us with a better understanding of the phenomenon of traffic flow of ships. On one hand, marine traffic has its special features and is fundamentally different from highway, air and pedestrian traffic. The existing traffic models cannot be simply extended to marine traffic without addressing marine traffic features. On the other hand, existing literature on marine traffic focuses on one ship or two ships but does not address the issues in marine traffic flow.

  6. Viral membrane fusion

    International Nuclear Information System (INIS)

    Harrison, Stephen C.

    2015-01-01

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism

  7. Endosomal gene expression: a new indicator for prostate cancer patient prognosis?

    LENUS (Irish Health Repository)

    Johnson, Ian R D

    2015-11-10

    Prostate cancer continues to be a major cause of morbidity and mortality in men, but a method for accurate prognosis in these patients is yet to be developed. The recent discovery of altered endosomal biogenesis in prostate cancer has identified a fundamental change in the cell biology of this cancer, which holds great promise for the identification of novel biomarkers that can predict disease outcomes. Here we have identified significantly altered expression of endosomal genes in prostate cancer compared to non-malignant tissue in mRNA microarrays and confirmed these findings by qRT-PCR on fresh-frozen tissue. Importantly, we identified endosomal gene expression patterns that were predictive of patient outcomes. Two endosomal tri-gene signatures were identified from a previously published microarray cohort and had a significant capacity to stratify patient outcomes. The expression of APPL1, RAB5A, EEA1, PDCD6IP, NOX4 and SORT1 were altered in malignant patient tissue, when compared to indolent and normal prostate tissue. These findings support the initiation of a case-control study using larger cohorts of prostate tissue, with documented patient outcomes, to determine if different combinations of these new biomarkers can accurately predict disease status and clinical progression in prostate cancer patients.

  8. Natural Modulators of Endosomal Toll-Like Receptor-Mediated Psoriatic Skin Inflammation

    Directory of Open Access Journals (Sweden)

    Chao-Yang Lai

    2017-01-01

    Full Text Available Psoriasis is a chronic inflammatory autoimmune disease that can be initiated by excessive activation of endosomal toll-like receptors (TLRs, particularly TLR7, TLR8, and TLR9. Therefore, inhibitors of endosomal TLR activation are being investigated for their ability to treat this disease. The currently approved biological drugs adalimumab, etanercept, infliximab, ustekinumab, ixekizumab, and secukizumab are antibodies against effector cytokines that participate in the initiation and development of psoriasis. Several immune modulatory oligonucleotides and small molecular weight compounds, including IMO-3100, IMO-8400, and CPG-52364, that block the interaction between endosomal TLRs and their ligands are under clinical investigation for their effectiveness in the treatment of psoriasis. In addition, several chemical compounds, including AS-2444697, PF-05387252, PF-05388169, PF-06650833, ML120B, and PHA-408, can inhibit TLR signaling. Although these compounds have demonstrated anti-inflammatory activity in animal models, their therapeutic potential for the treatment of psoriasis has not yet been tested. Recent studies demonstrated that natural compounds derived from plants, fungi, and bacteria, including mustard seed, Antrodia cinnamomea extract, curcumin, resveratrol, thiostrepton, azithromycin, and andrographolide, inhibited psoriasis-like inflammation induced by the TLR7 agonist imiquimod in animal models. These natural modulators employ different mechanisms to inhibit endosomal TLR activation and are administered via different routes. Therefore, they represent candidate psoriasis drugs and might lead to the development of new treatment options.

  9. Disrupting Vesicular Trafficking at the Endosome Attenuates Transcriptional Activation by Gcn4

    Czech Academy of Sciences Publication Activity Database

    Zhang, F.; Gaur, N. A.; Hašek, Jiří; Kim, S.-j.; Qiu, H.; Swanson, M. J.; Hinnebusch, A. G.

    2008-01-01

    Roč. 28, č. 22 (2008), s. 6796-6818 ISSN 0270-7306 R&D Projects: GA MŠk LC545; GA MŠk ME 939 Institutional research plan: CEZ:AV0Z50200510 Keywords : endosome * vesicular * gcn4 Subject RIV: EE - Microbiology, Virology Impact factor: 5.942, year: 2008

  10. Investigation of endosome and lysosome biology by ultra pH-sensitive nanoprobes.

    Science.gov (United States)

    Wang, Chensu; Zhao, Tian; Li, Yang; Huang, Gang; White, Michael A; Gao, Jinming

    2017-04-01

    Endosomes and lysosomes play a critical role in various aspects of cell physiology such as nutrient sensing, receptor recycling, protein/lipid catabolism, and cell death. In drug delivery, endosomal release of therapeutic payloads from nanocarriers is also important in achieving efficient delivery of drugs to reach their intracellular targets. Recently, we invented a library of ultra pH-sensitive (UPS) nanoprobes with exquisite fluorescence response to subtle pH changes. The UPS nanoprobes also displayed strong pH-specific buffer effect over small molecular bases with broad pH responses (e.g., chloroquine and NH 4 Cl). Tunable pH transitions from 7.4 to 4.0 of UPS nanoprobes cover the entire physiological pH of endocytic organelles (e.g., early and late endosomes) and lysosomes. These unique physico-chemical properties of UPS nanoprobes allowed a 'detection and perturbation' strategy for the investigation of luminal pH in cell signaling and metabolism, which introduces a nanotechnology-enabled paradigm for the biological studies of endosomes and lysosomes. Published by Elsevier B.V.

  11. Role of receptor-mediated endocytosis, endosomal acidification and cathepsin D in cholera toxin cytotoxicity.

    Science.gov (United States)

    El Hage, Tatiana; Merlen, Clémence; Fabrega, Sylvie; Authier, François

    2007-05-01

    Using the in situ liver model system, we have recently shown that, after cholera toxin binding to hepatic cells, cholera toxin accumulates in a low-density endosomal compartment, and then undergoes endosomal proteolysis by the aspartic acid protease cathepsin-D [Merlen C, Fayol-Messaoudi D, Fabrega S, El Hage T, Servin A, Authier F (2005) FEBS J272, 4385-4397]. Here, we have used a subcellular fractionation approach to address the in vivo compartmentalization and cytotoxic action of cholera toxin in rat liver parenchyma. Following administration of a saturating dose of cholera toxin to rats, rapid endocytosis of both cholera toxin subunits was observed, coincident with massive internalization of both the 45 kDa and 47 kDa Gsalpha proteins. These events coincided with the endosomal recruitment of ADP-ribosylation factor proteins, especially ADP-ribosylation factor-6, with a time course identical to that of toxin and the A subunit of the stimulatory G protein (Gsalpha) translocation. After an initial lag phase of 30 min, these constituents were linked to NAD-dependent ADP-ribosylation of endogenous Gsalpha, with maximum accumulation observed at 30-60 min postinjection. Assessment of the subsequent postendosomal fate of internalized Gsalpha revealed sustained endolysosomal transfer of the two Gsalpha isoforms. Concomitantly, cholera toxin increased in vivo endosome acidification rates driven by the ATP-dependent H(+)-ATPase pump and in vitro vacuolar acidification in hepatoma HepG2 cells. The vacuolar H(+)-ATPase inhibitor bafilomycin and the cathepsin D inhibitor pepstatin A partially inhibited, both in vivo and in vitro, the cAMP response to cholera toxin. This cathepsin D-dependent action of cholera toxin under the control of endosomal acidity was confirmed using cellular systems in which modification of the expression levels of cathepsin D, either by transfection of the cathepsin D gene or small interfering RNA, was followed by parallel changes in the cytotoxic

  12. Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER.

    Science.gov (United States)

    Heusermann, Wolf; Hean, Justin; Trojer, Dominic; Steib, Emmanuelle; von Bueren, Stefan; Graff-Meyer, Alexandra; Genoud, Christel; Martin, Katrin; Pizzato, Nicolas; Voshol, Johannes; Morrissey, David V; Andaloussi, Samir E L; Wood, Matthew J; Meisner-Kober, Nicole C

    2016-04-25

    Exosomes are nanovesicles released by virtually all cells, which act as intercellular messengers by transfer of protein, lipid, and RNA cargo. Their quantitative efficiency, routes of cell uptake, and subcellular fate within recipient cells remain elusive. We quantitatively characterize exosome cell uptake, which saturates with dose and time and reaches near 100% transduction efficiency at picomolar concentrations. Highly reminiscent of pathogenic bacteria and viruses, exosomes are recruited as single vesicles to the cell body by surfing on filopodia as well as filopodia grabbing and pulling motions to reach endocytic hot spots at the filopodial base. After internalization, exosomes shuttle within endocytic vesicles to scan the endoplasmic reticulum before being sorted into the lysosome as their final intracellular destination. Our data quantify and explain the efficiency of exosome internalization by recipient cells, establish a new parallel between exosome and virus host cell interaction, and suggest unanticipated routes of subcellular cargo delivery. © 2016 Heusermann et al.

  13. Sec61 blockade by mycolactone inhibits antigen cross-presentation independently of endosome-to-cytosol export.

    Science.gov (United States)

    Grotzke, Jeff E; Kozik, Patrycja; Morel, Jean-David; Impens, Francis; Pietrosemoli, Natalia; Cresswell, Peter; Amigorena, Sebastian; Demangel, Caroline

    2017-07-18

    Although antigen cross-presentation in dendritic cells (DCs) is critical to the initiation of most cytotoxic immune responses, the intracellular mechanisms and traffic pathways involved are still unclear. One of the most critical steps in this process, the export of internalized antigen to the cytosol, has been suggested to be mediated by Sec61. Sec61 is the channel that translocates signal peptide-bearing nascent polypeptides into the endoplasmic reticulum (ER), and it was also proposed to mediate protein retrotranslocation during ER-associated degradation (a process called ERAD). Here, we used a newly identified Sec61 blocker, mycolactone, to analyze Sec61's contribution to antigen cross-presentation, ERAD, and transport of internalized antigens into the cytosol. As shown previously in other cell types, mycolactone prevented protein import into the ER of DCs. Mycolactone-mediated Sec61 blockade also potently suppressed both antigen cross-presentation and direct presentation of synthetic peptides to CD8 + T cells. In contrast, it did not affect protein export from the ER lumen or from endosomes into the cytosol, suggesting that the inhibition of cross-presentation was not related to either of these trafficking pathways. Proteomic profiling of mycolactone-exposed DCs showed that expression of mediators of antigen presentation, including MHC class I and β2 microglobulin, were highly susceptible to mycolactone treatment, indicating that Sec61 blockade affects antigen cross-presentation indirectly. Together, our data suggest that the defective translocation and subsequent degradation of Sec61 substrates is the cause of altered antigen cross-presentation in Sec61-blocked DCs.

  14. Costs of traffic injuries

    DEFF Research Database (Denmark)

    Kruse, Marie

    2015-01-01

    OBJECTIVE: The aim of this study was to analyse the socioeconomic costs of traffic injuries in Denmark, notably the healthcare costs and the productivity costs related to traffic injuries, in a bottom-up, register-based perspective. METHOD: Traffic injury victims were identified using national...... emergency room data and police records. Victims were matched with five controls per case by means of propensity score, nearest-neighbour matching. In the cohort, consisting of the 52 526 individuals that experienced a traffic injury in 2000 and 262 630 matched controls, attributable healthcare costs were...... assessed using Danish national healthcare registers. Productivity costs were computed using duration analysis (Cox regression models). In a subanalysis, cost per severe traffic injury was computed for the 12 995 individuals that experienced a severe injury. RESULTS: The socioeconomic cost of a traffic...

  15. Traffic Signs Inventory System

    Directory of Open Access Journals (Sweden)

    J. Ružbarský

    2013-06-01

    Full Text Available The paper is focused on practical application of Cambridge Correlator. The goal is to propose a traffic signs inventory system by using excellent characteristics of correlator in the rapid optical correlation. The proposal of this inventory system includes obtaining of traffic signs to create the database either collecting the GPS coordinates. It is necessary to know the traffic signs position and also to document the entire surface route for later evaluation in offline mode.

  16. modified traffic s modified traffic signal phasing at traffic warden ...

    African Journals Online (AJOL)

    eobe

    obtained as being adequate for the critical approach. A 5 tained as being adequate for the critical approach. A 5 tained as being adequate for the critical approach. A 5-phase scheme is proposed with the fifth phase being an phase scheme is .... Other examples include traffic light signalized crossing with or without ...

  17. Membrane association of the Arabidopsis ARF exchange factor GNOM involves interaction of conserved domains

    DEFF Research Database (Denmark)

    Anders, Nadine; Nielsen, Michael M.; Keicher, Jutta

    2008-01-01

    The GNOM protein plays a fundamental role in Arabidopsis thaliana development by regulating endosome-to-plasma membrane trafficking required for polar localization of the auxin efflux carrier PIN1. GNOM is a family member of large ARF guanine nucleotide exchange factors (ARF-GEFs), which regulate...

  18. Influenza-virus membrane fusion by cooperative fold-back of stochastically induced hemagglutinin intermediates

    NARCIS (Netherlands)

    Ivanovic, Tijana; Choi, Jason L.; Whelan, Sean P.; Oijen, Antoine M. van; Harrison, Stephen C.

    2013-01-01

    Influenza virus penetrates cells by fusion of viral and endosomal membranes catalyzed by the viral hemagglutinin (HA). Structures of the initial and final states of the HA trimer define the fusion endpoints, but do not specify intermediates. We have characterized these transitions by analyzing

  19. Road Traffic in China

    NARCIS (Netherlands)

    Jie, L.; Van Zuylen, H.J.

    2014-01-01

    Traffic is tightly related to the social and economic development in a country. In China the development of the economy has been very fast in the past 30 years and this is still continuing. The transport infrastructure shows a similar pattern, while traffic is also rapidly growing. In urban areas

  20. Traffic Light Options

    DEFF Research Database (Denmark)

    Jørgensen, Peter Løchte

    2007-01-01

    This paper introduces, prices, and analyzes traffic light options. The traffic light option is an innovative structured OTC derivative developed independently by several London-based investment banks to suit the needs of Danish life and pension (L&P) companies, which must comply with the traffic...... light solvency stress test system introduced by the Danish Financial Supervisory Authority (DFSA) in June 2001. This monitoring system requires L&P companies to submit regular reports documenting the sensitivity of the companies' base capital to certain pre-defined market shocks - the red and yellow...... light scenarios. These stress scenarios entail drops in interest rates as well as in stock prices, and traffic light options are thus designed to pay off and preserve sufficient capital when interest rates and stock prices fall simultaneously. Sweden's FSA implemented a traffic light system in January...

  1. The Msb3/Gyp3 GAP controls the activity of the Rab GTPases Vps21 and Ypt7 at endosomes and vacuoles

    Science.gov (United States)

    Lachmann, Jens; Barr, Francis A.; Ungermann, Christian

    2012-01-01

    Fusion of organelles in the endomembrane system depends on Rab GTPases that interact with tethering factors before lipid bilayer mixing. In yeast, the Rab5 GTPase Vps21 controls fusion and membrane dynamics between early and late endosomes. Here we identify Msb3/Gyp3 as a specific Vps21 GTPase-activating protein (GAP). Loss of Msb3 results in an accumulation of Vps21 and one of its effectors Vps8, a subunit of the CORVET complex, at the vacuole membrane in vivo. In agreement, Msb3 forms a specific transition complex with Vps21, has the highest activity of all recombinant GAPs for Vps21 in vitro, and is found at vacuoles despite its predominant localization to bud tips and bud necks at the plasma membrane. Surprisingly, Msb3 also inhibits vacuole fusion, which can be rescued by the Ypt7 GDP–GTP exchange factor (GEF), the Mon1–Ccz1 complex. Consistently, msb3∆ vacuoles fuse more efficiently than wild-type vacuoles in vitro, suggesting that GAP can also act on Ypt7. Our data indicate that GAPs such as Msb3 can act on multiple substrates in vivo at both ends of a trafficking pathway. This ensures specificity of the subsequent GEF-mediated activation of the Rab that initiates the next transport event. PMID:22593206

  2. Solubilization of lipids and membrane proteins into nanodiscs : Mode of action and applications of SMA copolymers

    NARCIS (Netherlands)

    Scheidelaar, S.

    2016-01-01

    Cell membranes separate the inside and outside of cells. Membrane proteins in the cell membrane control the traffic of molecules across the membrane and are therefore targets for a lot of drugs: about 50 % of all approved drugs target a membrane protein! Unfortunately, scientists only know little

  3. Involvement of the endosomal-lysosomal system correlates with regional pathology in Creutzfeldt-Jakob disease

    DEFF Research Database (Denmark)

    Kovács, Gábor G; Gelpi, Ellen; Ströbel, Thomas

    2007-01-01

    . Combined with stereologic techniques, we examined components of the ELS in human sporadic Creutzfeldt-Jakob disease brains. We immunostained for the early endosomal marker Rab5 and lysosomal enzymes cathepsin D and B. We determined neuron-specific changes in their expression and correlated......-immunoreactive lysosomes. The intraneuronal distribution of cathepsin D and B diverges between Purkinje cells and frontal cortical neurons in sporadic Creutzfeldt-Jakob disease brains. We demonstrated focal intra- and perineuronal colocalization of cathepsin D and PrP. Our results indicate that effects in the ELS......The endosomal-lysosomal system (ELS) has been suggested to play a role in the pathogenesis of prion diseases. The purpose of this study was to examine how experimental observations can be translated to human neuropathology and whether alterations of the ELS relate to neuropathologic changes...

  4. Enhanced protein internalization and efficient endosomal escape using polyampholyte-modified liposomes and freeze concentration

    OpenAIRE

    Ahmed, Sana; Fujita, Satoshi; Matsumura, Kazuaki

    2016-01-01

    Here we show a new strategy for efficient freeze concentration-mediated cytoplasmic delivery of proteins, obtained via the endosomal escape property of polyampholyte-modified liposomes. The freeze concentration method successfully induces the efficient internalization of proteins simply by freezing cells with protein and nanocarrier complexes. However, the mechanism of protein internalization remains unclear. Here, we designed a novel protein delivery carrier by modifying liposomes through in...

  5. Traffic planning for non-homogeneous traffic

    Indian Academy of Sciences (India)

    Transport professionals can use these PCU values for accurate capacity, safety, and operational ... Most transportation engineering work depends on the use of continuity equations and pas- senger car units ...... of a service lane can serve slow and local traffic, as a capacity enhancement strategy would have higher benefit ...

  6. ABMA, a small molecule that inhibits intracellular toxins and pathogens by interfering with late endosomal compartments.

    Science.gov (United States)

    Wu, Yu; Pons, Valérie; Goudet, Amélie; Panigai, Laetitia; Fischer, Annette; Herweg, Jo-Ana; Kali, Sabrina; Davey, Robert A; Laporte, Jérôme; Bouclier, Céline; Yousfi, Rahima; Aubenque, Céline; Merer, Goulven; Gobbo, Emilie; Lopez, Roman; Gillet, Cynthia; Cojean, Sandrine; Popoff, Michel R; Clayette, Pascal; Le Grand, Roger; Boulogne, Claire; Tordo, Noël; Lemichez, Emmanuel; Loiseau, Philippe M; Rudel, Thomas; Sauvaire, Didier; Cintrat, Jean-Christophe; Gillet, Daniel; Barbier, Julien

    2017-11-14

    Intracellular pathogenic microorganisms and toxins exploit host cell mechanisms to enter, exert their deleterious effects as well as hijack host nutrition for their development. A potential approach to treat multiple pathogen infections and that should not induce drug resistance is the use of small molecules that target host components. We identified the compound 1-adamantyl (5-bromo-2-methoxybenzyl) amine (ABMA) from a cell-based high throughput screening for its capacity to protect human cells and mice against ricin toxin without toxicity. This compound efficiently protects cells against various toxins and pathogens including viruses, intracellular bacteria and parasite. ABMA provokes Rab7-positive late endosomal compartment accumulation in mammalian cells without affecting other organelles (early endosomes, lysosomes, the Golgi apparatus, the endoplasmic reticulum or the nucleus). As the mechanism of action of ABMA is restricted to host-endosomal compartments, it reduces cell infection by pathogens that depend on this pathway to invade cells. ABMA may represent a novel class of broad-spectrum compounds with therapeutic potential against diverse severe infectious diseases.

  7. Molecular determinants of the interaction between Doa1 and Hse1 involved in endosomal sorting.

    Science.gov (United States)

    Han, Seungsu; Shin, Donghyuk; Choi, Hoon; Lee, Sangho

    2014-03-28

    Yeast Doa1/Ufd3 is an adaptor protein for Cdc48 (p97 in mammal), an AAA type ATPase associated with endoplasmic reticulum-associated protein degradation pathway and endosomal sorting into multivesicular bodies. Doa1 functions in the endosomal sorting by its association with Hse1, a component of endosomal sorting complex required for transport (ESCRT) system. The association of Doa1 with Hse1 was previously reported to be mediated between PFU domain of Doa1 and SH3 of Hse1. However, it remains unclear which residues are specifically involved in the interaction. Here we report that Doa1/PFU interacts with Hse1/SH3 with a moderate affinity of 5 μM. Asn-438 of Doa1/PFU and Trp-254 of Hse1/SH3 are found to be critical in the interaction while Phe-434, implicated in ubiquitin binding via a hydrophobic interaction, is not. Small-angle X-ray scattering measurements combined with molecular docking and biochemical analysis yield the solution structure of the Doa1/PFU:Hse1/SH3 complex. Taken together, our results suggest that hydrogen bonding is a major determinant in the interaction of Doa1/PFU with Hse1/SH3. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Endocytosis and Endosomal Trafficking of DNA After Gene Electrotransfer In Vitro

    Directory of Open Access Journals (Sweden)

    Christelle Rosazza

    2016-01-01

    Full Text Available DNA electrotransfer is a successful technique for gene delivery into cells and represents an attractive alternative to virus-based methods for clinical applications including gene therapy and DNA vaccination. However, little is currently known about the mechanisms governing DNA internalization and its fate inside cells. The objectives of this work were to investigate the role of endocytosis and to quantify the contribution of different routes of cellular trafficking during DNA electrotransfer. To pursue these objectives, we performed flow cytometry and single-particle fluorescence microscopy experiments using inhibitors of endocytosis and endosomal markers. Our results show that ≃50% of DNA is internalized by caveolin/raft-mediated endocytosis, 25% by clathrin-mediated endocytosis, and 25% by macropinocytosis. During active transport, DNA is routed through multiple endosomal compartments with, in the hour following electrotransfer, 70% found in Rab5 structures, 50% in Rab11-containing organelles and 30% in Rab9 compartments. Later, 60% of DNA colocalizes with Lamp1 vesicles. Because these molecular markers can overlap while following organelles through several steps of trafficking, the percentages do not sum up to 100%. We conclude that electrotransferred DNA uses the classical endosomal trafficking pathways. Our results are important for a generalized understanding of gene electrotransfer, which is crucial for its safe use in clinics.

  9. Cholesterol Regulates Syntaxin 6 Trafficking at trans-Golgi Network Endosomal Boundaries

    Directory of Open Access Journals (Sweden)

    Meritxell Reverter

    2014-05-01

    Full Text Available Inhibition of cholesterol export from late endosomes causes cellular cholesterol imbalance, including cholesterol depletion in the trans-Golgi network (TGN. Here, using Chinese hamster ovary (CHO Niemann-Pick type C1 (NPC1 mutant cell lines and human NPC1 mutant fibroblasts, we show that altered cholesterol levels at the TGN/endosome boundaries trigger Syntaxin 6 (Stx6 accumulation into VAMP3, transferrin, and Rab11-positive recycling endosomes (REs. This increases Stx6/VAMP3 interaction and interferes with the recycling of αVβ3 and α5β1 integrins and cell migration, possibly in a Stx6-dependent manner. In NPC1 mutant cells, restoration of cholesterol levels in the TGN, but not inhibition of VAMP3, restores the steady-state localization of Stx6 in the TGN. Furthermore, elevation of RE cholesterol is associated with increased amounts of Stx6 in RE. Hence, the fine-tuning of cholesterol levels at the TGN-RE boundaries together with a subset of cholesterol-sensitive SNARE proteins may play a regulatory role in cell migration and invasion.

  10. Transient binding of dynein controls bidirectional long-range motility of early endosomes.

    Science.gov (United States)

    Schuster, Martin; Lipowsky, Reinhard; Assmann, Marcus-Alexander; Lenz, Peter; Steinberg, Gero

    2011-03-01

    In many cell types, bidirectional long-range endosome transport is mediated by the opposing motor proteins dynein and kinesin-3. Here we use a fungal model system to investigate how both motors cooperate in early endosome (EE) motility. It was previously reported that Kin3, a member of the kinesin-3 family, and cytoplasmic dynein mediate bidirectional motility of EEs in the fungus Ustilago maydis. We fused the green fluorescent protein to the endogenous dynein heavy chain and the kin3 gene and visualized both motors and their cargo in the living cells. Whereas kinesin-3 was found on anterograde and retrograde EEs, dynein motors localize only to retrograde organelles. Live cell imaging shows that binding of retrograde moving dynein to anterograde moving endosomes changes the transport direction of the organelles. When dynein is leaving the EEs, the organelles switch back to anterograde kinesin-3-based motility. Quantitative photobleaching and comparison with nuclear pores as an internal calibration standard show that single dynein motors and four to five kinesin-3 motors bind to the organelles. These data suggest that dynein controls kinesin-3 activity on the EEs and thereby determines the long-range motility behavior of the organelles.

  11. Deficient Peptide Loading and MHC Class II Endosomal Sorting in a Human Genetic Immunodeficiency Disease: the Chediak-Higashi Syndrome

    Science.gov (United States)

    Faigle, Wolfgang; Raposo, Graça; Tenza, Daniele; Pinet, Valérie; Vogt, Anne B.; Kropshofer, Harald; Fischer, Alain; de Saint-Basile, Geneviève; Amigorena, Sebastian

    1998-01-01

    The Chediak-Higashi syndrome (CHS) is a human recessive autosomal disease caused by mutations in a single gene encoding a protein of unknown function, called lysosomal-trafficking regulator. All cells in CHS patients bear enlarged lysosomes. In addition, T- and natural killer cell cytotoxicity is defective in these patients, causing severe immunodeficiencies. We have analyzed major histocompatibility complex class II functions and intracellular transport in Epstein Barr Virus–transformed B cells from CHS patients. Peptide loading onto major histocompatibility complex class II molecules and antigen presentation are strongly delayed these cells. A detailed electron microscopy analysis of endocytic compartments revealed that only lysosomal multilaminar compartments are enlarged (reaching 1–2 μm), whereas late multivesicular endosomes have normal size and morphology. In contrast to giant multilaminar compartments that bear most of the usual lysosomal markers in these cells (HLA-DR, HLA-DM, Lamp-1, CD63, etc.), multivesicular late endosomes displayed reduced levels of all these molecules, suggesting a defect in transport from the trans-Golgi network and/or early endosomes into late multivesicular endosomes. Further insight into a possible mechanism of this transport defect came from immunolocalizing the lysosomal trafficking regulator protein, as antibodies directed to a peptide from its COOH terminal domain decorated punctated structures partially aligned along microtubules. These results suggest that the product of the Lyst gene is required for sorting endosomal resident proteins into late multivesicular endosomes by a mechanism involving microtubules. PMID:9606205

  12. VBR video traffic models

    CERN Document Server

    Tanwir, Savera

    2014-01-01

    There has been a phenomenal growth in video applications over the past few years. An accurate traffic model of Variable Bit Rate (VBR) video is necessary for performance evaluation of a network design and for generating synthetic traffic that can be used for benchmarking a network. A large number of models for VBR video traffic have been proposed in the literature for different types of video in the past 20 years. Here, the authors have classified and surveyed these models and have also evaluated the models for H.264 AVC and MVC encoded video and discussed their findings.

  13. Comsat's TDMA traffic terminal

    Science.gov (United States)

    Benjamin, M. C.; Bogaert, W. M.

    1985-06-01

    Comsat has installed two traffic terminals in the Etam earth-station and is currently installing a third in the new Roaring Creek earth-station to access the Intelsat TDMA network. This paper describes the Comsat TDMA traffic terminal equipment from the supergroup interface to the antenna. Comsat's 1: N redundancy approach for terrestrial interface equipment and DSI unit back-up is described as well as electrical path length, amplitude and group delay equalization techniques, special on-line RF monitoring and failure reporting facilities and the operation and maintenance center which can operate and perform diagnostic testing on up to four traffic terminals from a central location.

  14. Light-controlled endosomal escape of the novel CD133-targeting immunotoxin AC133-saporin by photochemical internalization - A minimally invasive cancer stem cell-targeting strategy.

    Science.gov (United States)

    Bostad, Monica; Olsen, Cathrine Elisabeth; Peng, Qian; Berg, Kristian; Høgset, Anders; Selbo, Pål Kristian

    2015-05-28

    The cancer stem cell (CSC) marker CD133 is an attractive target to improve antitumor therapy. We have used photochemical internalization (PCI) for the endosomal escape of the novel CD133-targeting immunotoxin AC133-saporin (PCIAC133-saporin). PCI employs an endocytic vesicle-localizing photosensitizer, which generates reactive oxygen species upon light-activation causing a rupture of the vesicle membranes and endosomal escape of entrapped drugs. Here we show that AC133-saporin co-localizes with the PCI-photosensitizer TPCS2a, which upon light exposure induces cytosolic release of AC133-saporin. PCI of picomolar levels of AC133-saporin in colorectal adenocarcinoma WiDr cells blocked cell proliferation and induced 100% inhibition of cell viability and colony forming ability at the highest light doses, whereas no cytotoxicity was obtained in the absence of light. Efficient PCI-based CD133-targeting was in addition demonstrated in the stem-cell-like, triple negative breast cancer cell line MDA-MB-231 and in the aggressive malignant melanoma cell line FEMX-1, whereas no enhanced targeting was obtained in the CD133-negative breast cancer cell line MCF-7. PCIAC133-saporin induced mainly necrosis and a minimal apoptotic response based on assessing cleavage of caspase-3 and PARP, and the TUNEL assay. PCIAC133-saporin resulted in S phase arrest and reduced LC3-II conversion compared to control treatments. Notably, co-treatment with Bafilomycin A1 and PCIAC133-saporin blocked LC3-II conversion, indicating a termination of the autophagic flux in WiDr cells. For the first time, we demonstrate laser-controlled targeting of CD133 in vivo. After only one systemic injection of AC133-saporin and TPCS2a, a strong anti-tumor response was observed after PCIAC133-saporin. The present PCI-based endosomal escape technology represents a minimally invasive strategy for spatio-temporal, light-controlled targeting of CD133+ cells in localized primary tumors or metastasis. Copyright © 2015

  15. Hrs and SNX3 functions in sorting and membrane invagination within multivesicular bodies.

    Directory of Open Access Journals (Sweden)

    Véronique Pons

    2008-09-01

    Full Text Available After internalization, ubiquitinated signaling receptors are delivered to early endosomes. There, they are sorted and incorporated into the intralumenal invaginations of nascent multivesicular bodies, which function as transport intermediates to late endosomes. Receptor sorting is achieved by Hrs--an adaptor--like protein that binds membrane PtdIns3P via a FYVE motif-and then by ESCRT complexes, which presumably also mediate the invagination process. Eventually, intralumenal vesicles are delivered to lysosomes, leading to the notion that EGF receptor sorting into multivesicular bodies mediates lysosomal targeting. Here, we report that Hrs is essential for lysosomal targeting but dispensable for multivesicular body biogenesis and transport to late endosomes. By contrast, we find that the PtdIns3P-binding protein SNX3 is required for multivesicular body formation, but not for EGF receptor degradation. PtdIns3P thus controls the complementary functions of Hrs and SNX3 in sorting and multivesicular body biogenesis.

  16. Photochemical internalisation, a minimally invasive strategy for light-controlled endosomal escape of cancer stem cell-targeting therapeutics.

    Science.gov (United States)

    Selbo, Pål Kristian; Bostad, Monica; Olsen, Cathrine Elisabeth; Edwards, Victoria Tudor; Høgset, Anders; Weyergang, Anette; Berg, Kristian

    2015-08-01

    Despite progress in radio-, chemo- and photodynamic-therapy (PDT) of cancer, treatment resistance still remains a major problem for patients with aggressive tumours. Cancer stem cells (CSCs) or tumour-initiating cells are intrinsically and notoriously resistant to conventional cancer therapies and are proposed to be responsible for the recurrence of tumours after therapy. According to the CSC hypothesis, it is imperative to develop novel anticancer agents or therapeutic strategies that take into account the biology and role of CSCs. The present review outlines our recent study on photochemical internalisation (PCI) using the clinically relevant photosensitiser TPCS2a/Amphinex® as a rational, non-invasive strategy for the light-controlled endosomal escape of CSC-targeting drugs. PCI is an intracellular drug delivery method based on light-induced ROS-generation and a subsequent membrane-disruption of endocytic vesicles, leading to cytosolic release of the entrapped drugs of interest. In different proof-of-concept studies we have demonstrated that PCI of CSC-directed immunotoxins targeting CD133, CD44, CSPG4 and EpCAM is a highly specific and effective strategy for killing cancer cells and CSCs. CSCs overexpressing CD133 are PDT-resistant; however, this is circumvented by PCI of CD133-targeting immunotoxins. In view of the fact that TPCS2a is not a substrate of the efflux pumps ABCG2 and P-glycoprotein (ABCB1), the PCI-method is a promising anti-CSC therapeutic strategy. Due to a laser-controlled exposure, PCI of CSC-targeting drugs will be confined exclusively to the tumour tissue, suggesting that this drug delivery method has the potential to spare distant normal stem cells.

  17. Multifunctional Cationic Lipid-Based Nanoparticles Facilitate Endosomal Escape and Reduction-Triggered Cytosolic siRNA Release

    Science.gov (United States)

    Gujrati, Maneesh; Malamas, Anthony; Shin, Tesia; Jin, Erlei; Sun, Lulu; Lu, Zheng-Rong

    2015-01-01

    Small interfering RNA (siRNA) has garnered much attention in recent years as a promising avenue for cancer gene therapy due to its ability to silence disease-related genes. Effective gene silencing is contingent upon the delivery of siRNA into the cytosol of target cells and requires the implementation of delivery systems possessing multiple functionalities to overcome delivery barriers. The present work explores the multifunctional properties and biological activity of a recently developed cationic lipid carrier, (1-aminoethyl)iminobis[N-(oleicylcysteinyl-1-amino-ethyl)propionamide]) (ECO). The physicochemical properties and biological activity of ECO/siRNA nanoparticles were assessed over a range of N/P ratios to optimize the formulation. Potent and sustained luciferase silencing in a U87 glioblastoma cell line was observed, even in the presence of serum proteins. ECO/siRNA nanoparticles exhibited pH-dependent membrane disruption at pH levels corresponding to various stages of the intracellular trafficking pathway. It was found that disulfide linkages created during nanoparticle formation enhanced the protection of siRNA from degradation and facilitated site-specific siRNA release in the cytosol by glutathione-mediated reduction. Confocal microscopy confirmed that ECO/siRNA nanoparticles readily escaped from late endosomes prior to cytosolic release of the siRNA cargo. These results demonstrate that the rationally designed multifunctionality of ECO/siRNA nanoparticles is critical for intracellular siRNA delivery and the continuing development of safe and effective delivery systems. PMID:25020033

  18. Tourism Traffic Management

    OpenAIRE

    Ioan Cosmescu

    2001-01-01

    Tourism traffic must be quantified through four observing units’ categories: custom houses; quartering units; internal and external travel agencies on home teritory; familiy budgets. These observing units allow to quantify the statistical observation’s object and its cyclicity.

  19. Driver behavior in traffic.

    Science.gov (United States)

    2012-02-01

    Existing traffic analysis and management tools do not model the ability of drivers to recognize their environment and respond to it with behaviors that vary according to the encountered driving situation. The small body of literature on characterizin...

  20. Non-Traffic Citations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Non-traffic citations (NTCs, also known as "summary offenses") document low-level criminal offenses where a law enforcement officer or other authorized official...

  1. Allegheny County Traffic Counts

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Traffic sensors at over 1,200 locations in Allegheny County collect vehicle counts for the Pennsylvania Department of Transportation. Data included in the Health...

  2. Traffic Signal Cycle Lengths

    Data.gov (United States)

    Town of Chapel Hill, North Carolina — Traffic signal location list for the town of Chapel Hill. This data set includes light cycle information as well as as intersection information.The Town of Chapel...

  3. On the mechanism of intracellular membrane fusion : In search of the genuine fusion factor

    NARCIS (Netherlands)

    Pecheur, EI; Maier, O; Hoekstra, D

    2000-01-01

    Intracellular membrane Fusion events require a general protein machinery that functions in vesicular traffic and in assembly and maintenance of organelles. An array of cytosolic and integral membrane proteins are currently identified, and in conjunction with ongoing detailed structural studies,

  4. Intracellular mediators of transforming growth factor β superfamily signaling localize to endosomes in chicken embryo and mouse lenses in vivo

    Directory of Open Access Journals (Sweden)

    Ishii Shunsuke

    2007-06-01

    Full Text Available Abstract Background Endocytosis is a key regulator of growth factor signaling pathways. Recent studies showed that the localization to endosomes of intracellular mediators of growth factor signaling may be required for their function. Although there is substantial evidence linking endocytosis and growth factor signaling in cultured cells, there has been little study of the endosomal localization of signaling components in intact tissues or organs. Results Proteins that are downstream of the transforming growth factor-β superfamily signaling pathway were found on endosomes in chicken embryo and postnatal mouse lenses, which depend on signaling by members of the TGFβ superfamily for their normal development. Phosphorylated Smad1 (pSmad1, pSmad2, Smad4, Smad7, the transcriptional repressors c-Ski and TGIF and the adapter molecules Smad anchor for receptor activation (SARA and C184M, localized to EEA-1- and Rab5-positive vesicles in chicken embryo and/or postnatal mouse lenses. pSmad1 and pSmad2 also localized to Rab7-positive late endosomes. Smad7 was found associated with endosomes, but not caveolae. Bmpr1a conditional knock-out lenses showed decreased nuclear and endosomal localization of pSmad1. Many of the effectors in this pathway were distributed differently in vivo from their reported distribution in cultured cells. Conclusion Based on the findings reported here and data from other signaling systems, we suggest that the localization of activated intracellular mediators of the transforming growth factor-β superfamily to endosomes is important for the regulation of growth factor signaling.

  5. Traffic pollution and countermeasures of urban traffic environment

    Science.gov (United States)

    He, Yuhong; Zheng, Chaocheng

    2018-01-01

    Background: Traffic environment has become a serious social problem in China currently, therefore, urban traffic environment governance is the requirement to solve this issue because as an important place in people's social life, urban traffic environment shows a strong city's energy. Objective: Based on analysis on social function of city traffic environment and its influence of traffic on urban environment in this paper, the goal to establish a healthy urban traffic environment must be included under the aim of sustainable development eternally and feasible measures were put forward afterwards. Method, result, conclusion and possible applications.

  6. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...

  7. Sphingolipids activate membrane fusion of Semliki Forest virus in a stereospecific manner

    DEFF Research Database (Denmark)

    Moesby, Lise; Corver, J; Erukulla, R K

    1995-01-01

    on degradation of the viral capsid protein by trypsin encapsulated in the target liposomes. Fusion mediated by D-erythro-ceramide was not affected by the additional presence in the target liposomes of ceramide stereoisomers incapable of fusion activation. Binding of the virus to the liposomes, as assessed...... by flotation on sucrose density gradients, was not dependent on the presence of fusion-competent or fusion-incompetent sphingolipids in the liposomes. The results of this study support the notion that a stereospecific interaction of the viral fusion protein with D-erythro sphingolipids in the target membrane......The alphavirus Semliki Forest virus (SFV) enters cells through receptor-mediated endocytosis. Subsequently, triggered by the acid pH in endosomes, the viral envelope fuses with the endosomal membrane. Membrane fusion of SFV has been shown previously to be dependent on the presence of cholesterol...

  8. MHC class I endosomal and lysosomal trafficking coincides with exogenous antigen loading in dendritic cells.

    Directory of Open Access Journals (Sweden)

    Genc Basha

    Full Text Available BACKGROUND: Cross-presentation by dendritic cells (DCs is a crucial prerequisite for effective priming of cytotoxic T-cell responses against bacterial, viral and tumor antigens; however, this antigen presentation pathway remains poorly defined. METHODOLOGY/PRINCIPAL FINDINGS: In order to develop a comprehensive understanding of this process, we tested the hypothesis that the internalization of MHC class I molecules (MHC-I from the cell surface is directly involved in cross-presentation pathway and the loading of antigenic peptides. Here we provide the first examination of the internalization of MHC-I in DCs and we demonstrate that the cytoplasmic domain of MHC-I appears to act as an addressin domain to route MHC-I to both endosomal and lysosomal compartments of DCs, where it is demonstrated that loading of peptides derived from exogenously-derived proteins occurs. Furthermore, by chasing MHC-I from the cell surface of normal and transgenic DCs expressing mutant forms of MHC-I, we observe that a tyrosine-based endocytic trafficking motif is required for the constitutive internalization of MHC-I molecules from the cell surface into early endosomes and subsequently deep into lysosomal peptide-loading compartments. Finally, our data support the concept that multiple pathways of peptide loading of cross-presented antigens may exist depending on the chemical nature and size of the antigen requiring processing. CONCLUSIONS/SIGNIFICANCE: We conclude that DCs have 'hijacked' and adapted a common vacuolar/endocytic intracellular trafficking pathway to facilitate MHC I access to the endosomal and lysosomal compartments where antigen processing and loading and antigen cross-presentation takes place.

  9. Dysfunction of autophagy and endosomal-lysosomal pathways: Roles in pathogenesis of Down syndrome and Alzheimer's Disease.

    Science.gov (United States)

    Colacurcio, Daniel J; Pensalfini, Anna; Jiang, Ying; Nixon, Ralph A

    2018-01-01

    Individuals with Down syndrome (DS) have an increased risk of early-onset Alzheimer's Disease (AD), largely owing to a triplication of the APP gene, located on chromosome 21. In DS and AD, defects in endocytosis and lysosomal function appear at the earliest stages of disease development and progress to widespread failure of intraneuronal waste clearance, neuritic dystrophy and neuronal cell death. The same genetic factors that cause or increase AD risk are also direct causes of endosomal-lysosomal dysfunction, underscoring the essential partnership between this dysfunction and APP metabolites in AD pathogenesis. The appearance of APP-dependent endosome anomalies in DS beginning in infancy and evolving into the full range of AD-related endosomal-lysosomal deficits provides a unique opportunity to characterize the earliest pathobiology of AD preceding the classical neuropathological hallmarks. Facilitating this characterization is the authentic recapitulation of this endosomal pathobiology in peripheral cells from people with DS and in trisomy mouse models. Here, we review current research on endocytic-lysosomal dysfunction in DS and AD, the emerging importance of APP/βCTF in initiating this dysfunction, and the potential roles of additional trisomy 21 genes in accelerating endosomal-lysosomal impairment in DS. Collectively, these studies underscore the growing value of investigating DS to probe the biological origins of AD as well as to understand and ameliorate the developmental disability of DS. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Intelligent Traffic Quantification System

    Science.gov (United States)

    Mohanty, Anita; Bhanja, Urmila; Mahapatra, Sudipta

    2017-08-01

    Currently, city traffic monitoring and controlling is a big issue in almost all cities worldwide. Vehicular ad-hoc Network (VANET) technique is an efficient tool to minimize this problem. Usually, different types of on board sensors are installed in vehicles to generate messages characterized by different vehicle parameters. In this work, an intelligent system based on fuzzy clustering technique is developed to reduce the number of individual messages by extracting important features from the messages of a vehicle. Therefore, the proposed fuzzy clustering technique reduces the traffic load of the network. The technique also reduces congestion and quantifies congestion.

  11. Traffic speed management

    Directory of Open Access Journals (Sweden)

    Subotić Jovana Lj.

    2014-01-01

    Full Text Available Speed, and vehicles themselves, affect the level of service and road safety, quality of life, noise from traffic, the environment, health, air pollution, emission of carbon dioxide, global warming, the economy and consumption of non-renewable energy such as oil. Therefore, the speed management of the traffic of multiple significance and that should be primarily to provide effective and economical conditions of the modern and preventive protection of human life as the greatest treasure and then the material resources. The way to accomplish this is by using various (different measures such as: appropriate planning and projecting roads and streets, speed control, the legislation, enforcement, campaigns, education, advanced technologies (ITS.

  12. Apolipoprotein E4 Impairs Neuronal Insulin Signaling by Trapping Insulin Receptor in the Endosomes.

    Science.gov (United States)

    Zhao, Na; Liu, Chia-Chen; Van Ingelgom, Alexandra J; Martens, Yuka A; Linares, Cynthia; Knight, Joshua A; Painter, Meghan M; Sullivan, Patrick M; Bu, Guojun

    2017-09-27

    Diabetes and impaired brain insulin signaling are linked to the pathogenesis of Alzheimer's disease (AD). The association between diabetes and AD-associated amyloid pathology is stronger among carriers of the apolipoprotein E (APOE) ε4 gene allele, the strongest genetic risk factor for late-onset AD. Here we report that apoE4 impairs neuronal insulin signaling in human apoE-targeted replacement (TR) mice in an age-dependent manner. High-fat diet (HFD) accelerates these effects in apoE4-TR mice at middle age. In primary neurons, apoE4 interacts with insulin receptor and impairs its trafficking by trapping it in the endosomes, leading to impaired insulin signaling and insulin-stimulated mitochondrial respiration and glycolysis. In aging brains, the increased apoE4 aggregation and compromised endosomal function further exacerbate the inhibitory effects of apoE4 on insulin signaling and related functions. Together, our study provides novel mechanistic insights into the pathogenic mechanisms of apoE4 and insulin resistance in AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. 2016 Traffic Safety Culture Index

    Science.gov (United States)

    ... SEARCH Driver Behavior & Performance 2016 Traffic Safety Culture Index This report presents the results of our annual Traffic Safety Culture Index survey, providing data on the attitudes and behaviors ...

  14. Texas traffic thermostat marketing package.

    Science.gov (United States)

    2013-04-01

    The traffic thermostat decision tool is built to help guide the user through a logical, step-wise, process of examining potential changes to their Manage Lane/toll facility. : **NOTE: Project Title: Application of the Traffic Thermostat Framework. Ap...

  15. Texas traffic thermostat software tool.

    Science.gov (United States)

    2013-04-01

    The traffic thermostat decision tool is built to help guide the user through a logical, step-wise, process of examining potential changes to their Manage Lane/toll facility. : **NOTE: Project Title: Application of the Traffic Thermostat Framework. Ap...

  16. Traffic Engineering in Metro Ethernet

    OpenAIRE

    Padmaraj Nair; Suku Nair; Girish Chiruvolu

    2010-01-01

    Traffic engineering is one of the major issues that has to be addressed in Metro Ethernet networks for quality of service and efficient resource utilization. This paper aims at understanding the relevant issues and outlines novel algorithms for multipoint traffic engineering in Metro Ethernet. We present an algorithmic solution for traffic engineering in Metro Ethernet using optimal multiple spanning trees. This iterative approach distributes traffic across the network uniformly without overl...

  17. The NKG2D ligand ULBP2 is specifically regulated through an invariant chain-dependent endosomal pathway

    DEFF Research Database (Denmark)

    Uhlenbrock, Franziska Katharina; Hagemann-Jensen, Michael Henrik; Kehlet, Stephanie

    2014-01-01

    by affecting endosomal/lysosomal integrity and protein kinase C activity. The invariant chain was further essential for endosomal transport of ULBP2. This novel pathway was identified through screening experiments by which methylselenic acid was found to possess notable NKG2D ligand regulatory properties....... The protein kinase C inhibitor methylselenic acid induced MICA/B surface expression but dominantly blocked ULBP2 surface transport. Remarkably, by targeting this novel pathway we could specifically block the production of soluble ULBP2 from different, primary melanomas. Our findings strongly suggest...

  18. Framework for Traffic Congestion Prediction

    NARCIS (Netherlands)

    Zaki, J.F.W.; Ali-Eldin, A.M.T.; Hussein, S.E.; Saraya, S.F.; Areed, F.F.

    2016-01-01

    Traffic Congestion is a complex dilemma facing most major cities. It has undergone a lot of research since the early 80s in an attempt to predict traffic in the short-term. Recently, Intelligent Transportation Systems (ITS) became an integral part of traffic research which helped in modeling and

  19. Traffic light intensity meter, TIM®

    NARCIS (Netherlands)

    Leden, N. van der; Varkevisser, J.; Vroom, J. de; Oijen, T van

    2005-01-01

    The intensity of traffic lights decreases over time as a result of pollution and ageing. The Dutch Traffic Research Centre of the Ministry of Transport, Public Works and Water Management is searching for a convenient method for measuring the luminous intensity of traffic lights on the road, in order

  20. Traffic Flow Visualization and Control

    National Research Council Canada - National Science Library

    Larson, Robert

    1999-01-01

    .... Vehicle count, flow speed, headway, queue length and occupancy are some of the information that can be collected. The processed traffic data is then sent to a control center for further analysis and used by traffic operators attempting to analyze traffic on the highway.

  1. Traffic sign detection and analysis

    DEFF Research Database (Denmark)

    Møgelmose, Andreas; Trivedi, Mohan M.; Moeslund, Thomas B.

    2012-01-01

    Traffic sign recognition (TSR) is a research field that has seen much activity in the recent decade. This paper introduces the problem and presents 4 recent papers on traffic sign detection and 4 recent papers on traffic sign classification. It attempts to extract recent trends in the field and t...

  2. The Classroom Traffic Jam

    Science.gov (United States)

    Edwards, Arthur W.

    1977-01-01

    The importance of energy conservation is developed in this simulation. Children draw an automobile and then are asked to drive it through the classroom roadways. When a traffic jam results, students offer ways to eliminate it. The importance of mass transportation and car pools is stressed by the teacher. (MA)

  3. Inaccuracy in traffic forecasts

    DEFF Research Database (Denmark)

    Flyvbjerg, Bent; Holm, Mette K. Skamris; Buhl, Søren Ladegaard

    2006-01-01

    , the difference between actual and forecasted traffic is more than +-20%; for 25% of road projects, the difference is larger than +-40%. Forecasts for roads are more accurate and more balanced than for rail, with no significant difference between the frequency of inflated versus deflated forecasts. But for both...

  4. Alcohol and Traffic Safety.

    Science.gov (United States)

    Dickman, Frances Baker, Ed.

    1988-01-01

    Seven papers discuss current issues and applied social research concerning alcohol traffic safety. Prevention, policy input, methodology, planning strategies, anti-drinking/driving programs, social-programmatic orientations of Mothers Against Drunk Driving, Kansas Driving Under the Influence Law, New Jersey Driving While Impaired Programs,…

  5. Impact of traffic noise on railway traffic safety

    Directory of Open Access Journals (Sweden)

    Zdravko TOŠ

    2008-01-01

    Full Text Available Traffic noise is one of the dominant factors of ergo-assessment. The harmful impact of traffic noise on the engine driver as target group can be studied in isolation from other ergo-assessment factors only in the initial phase of research. The simultaneous action of several related factors in the system of ergo-assessment factors has cumulative effect on the perception and psychomotoric status of the railway traffic participants in the appropriate traffic situation. The initial partial research of traffic noise by a combination of several scientific methods needs to be eventually upgraded by studying the relations among several concurrent important or dominant ergo-assessment factors.

  6. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  7. Biobased Membrane

    NARCIS (Netherlands)

    Koenders, E.A.B.; Zlopasa, J.; Picken, S.J.

    2015-01-01

    The present invention is in the field of a composition for forming a bio-compatible membrane applicable to building material, such as concrete, cement, etc., to a meth od of applying said composition for forming a bio-compatible membrane, a biocompatible membrane, use of said membrane for various

  8. Stochastic Model of Traffic Jam and Traffic Signal Control

    Science.gov (United States)

    Shin, Ji-Sun; Cui, Cheng-You; Lee, Tae-Hong; Lee, Hee-Hyol

    Traffic signal control is an effective method to solve the traffic jam. and forecasting traffic density has been known as an important part of the Intelligent Transportation System (ITS). The several methods of the traffic signal control are known such as random walk method, Neuron Network method, Bayesian Network method, and so on. In this paper, we propose a new method of a traffic signal control using a predicted distribution of traffic jam based on a Dynamic Bayesian Network model. First, a forecasting model to predict a probabilistic distribution of the traffic jam during each period of traffic lights is built. As the forecasting model, the Dynamic Bayesian Network is used to predict the probabilistic distribution of a density of the traffic jam. According to measurement of two crossing points for each cycle, the inflow and outflow of each direction and the number of standing vehicles at former cycle are obtained. The number of standing vehicle at k-th cycle will be calculated synchronously. Next, the probabilistic distribution of the density of standing vehicle in each cycle will be predicted using the Dynamic Bayesian Network constructed for the traffic jam. And then a control rule to adjust the split and the cycle to increase the probability between a lower limit and ceiling of the standing vehicles is deduced. As the results of the simulation using the actual traffic data of Kitakyushu city, the effectiveness of the method is shown.

  9. The protein transportation pathway from Golgi to vacuoles via endosomes plays a role in enhancement of methylmercury toxicity

    Science.gov (United States)

    Hwang, Gi-Wook; Murai, Yasutaka; Takahashi, Tsutomu; Naganuma, Akira

    2014-07-01

    Methylmercury causes serious damage to the central nervous system, but the molecular mechanisms of methylmercury toxicity are only marginally understood. In this study, we used a gene-deletion mutant library of budding yeast to conduct genome-wide screening for gene knockouts affecting the sensitivity of methylmercury toxicity. We successfully identified 31 genes whose deletions confer resistance to methylmercury in yeast, and 18 genes whose deletions confer hypersensitivity to methylmercury. Yeast genes whose deletions conferred resistance to methylmercury included many gene encoding factors involved in protein transport to vacuoles. Detailed examination of the relationship between the factors involved in this transport system and methylmercury toxicity revealed that mutants with loss of the factors involved in the transportation pathway from the trans-Golgi network (TGN) to the endosome, protein uptake into the endosome, and endosome-vacuole fusion showed higher methylmercury resistance than did wild-type yeast. The results of our genetic engineering study suggest that this vesicle transport system (proteins moving from the TGN to vacuole via endosome) is responsible for enhancing methylmercury toxicity due to the interrelationship between the pathways. There is a possibility that there may be proteins in the cell that enhance methylmercury toxicity through the protein transport system.

  10. The protein transportation pathway from Golgi to vacuoles via endosomes plays a role in enhancement of methylmercury toxicity.

    Science.gov (United States)

    Hwang, Gi-Wook; Murai, Yasutaka; Takahashi, Tsutomu; Naganuma, Akira

    2014-07-30

    Methylmercury causes serious damage to the central nervous system, but the molecular mechanisms of methylmercury toxicity are only marginally understood. In this study, we used a gene-deletion mutant library of budding yeast to conduct genome-wide screening for gene knockouts affecting the sensitivity of methylmercury toxicity. We successfully identified 31 genes whose deletions confer resistance to methylmercury in yeast, and 18 genes whose deletions confer hypersensitivity to methylmercury. Yeast genes whose deletions conferred resistance to methylmercury included many gene encoding factors involved in protein transport to vacuoles. Detailed examination of the relationship between the factors involved in this transport system and methylmercury toxicity revealed that mutants with loss of the factors involved in the transportation pathway from the trans-Golgi network (TGN) to the endosome, protein uptake into the endosome, and endosome-vacuole fusion showed higher methylmercury resistance than did wild-type yeast. The results of our genetic engineering study suggest that this vesicle transport system (proteins moving from the TGN to vacuole via endosome) is responsible for enhancing methylmercury toxicity due to the interrelationship between the pathways. There is a possibility that there may be proteins in the cell that enhance methylmercury toxicity through the protein transport system.

  11. Kinesin-3 and dynein cooperate in long-range retrograde endosome motility along a nonuniform microtubule array

    NARCIS (Netherlands)

    Schuster, M.; Kilaru, S.; Fink, G.; Collemare, J.A.R.; Roger, Y.; Steinberg, G.

    2011-01-01

    The polarity of microtubules (MTs) determines the motors for intracellular motility, with kinesins moving to plus ends and dynein to minus ends. In elongated cells of Ustilago maydis, dynein is thought to move early endosomes (EEs) toward the septum (retrograde), whereas kinesin-3 transports them to

  12. Serum glycomarkers of endoplasmic reticulum and lysosomal-endosomal system stress in human healthy aging and diseases

    Directory of Open Access Journals (Sweden)

    I. U. Pismenetskaya

    2017-02-01

    Full Text Available To verify the idea that extracellular free oligosaccharides might be able to reflect the functional status of the endoplasmic reticulum (ER and lysosomal-endosomal system, HPLC-profiles of serum-derived free oligosaccharides (FOS in human healthy aging, acute myeloproliferative neoplasms, and cardiovascular pathologies were compared with intracellular glycans. After plasma deproteinization and FOS purification the oligosaccharides were labelled with anthranilic acid, separated into the neutral and charged with QAE Sephadex (Q25-120 chromatography and analysed using high-performance liquid chromatography (HPLC. The charged FOS were digested with a sialidase and compared with free oligosaccharides from transferrin for structural decoding. HPLC-profiles of serum-derived FOS revealed mild delay of the dolichol phosphate cycle in ER, moderate intensification of ER-associated degradation (ERAD and degradation in endosomal-lysosomal system with aging; an inhibition of the dolichol phosphate cycle, intensification of ERAD and increasing of lysosomal exocytosis in acute myeloproliferative neoplasms; intensification of ERAD and glycocojugate degradation with endosomal-lysosomal system in cardiovascular diseases. As serum free oligosaccharides are able to reflect specifically perturbations in ER and endosomal-lysosomal system under wide range of stressors they can serve as extracellular markers of functionality of these organelles.

  13. COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A

    NARCIS (Netherlands)

    Phillips-Krawczak, Christine A.; Singla, Amika; Starokadomskyy, Petro; Deng, Zhihui; Osborne, Douglas G.; Li, Haiying; Dick, Christopher J.; Gomez, Timothy S.; Koenecke, Megan; Zhang, Jin-San; Dai, Haiming; Sifuentes-Dominguez, Luis F.; Geng, Linda N.; Kaufmann, Scott H.; Hein, Marco Y.; Wallis, Mathew; McGaughran, Julie; Gecz, Jozef; De Sluis, Bart van; Billadeau, Daniel D.; Burstein, Ezra

    2015-01-01

    COMMD1 deficiency results in defective copper homeostasis, but the mechanism for this has remained elusive. Here we report that COMMD1 is directly linked to early endosomes through its interaction with a protein complex containing CCDC22, CCDC93, and C16orf62. This COMMD/CCDC22/CCDC93 (CCC) complex

  14. Characterization of PEBBLEs as a Tool for Real-Time Measurement of Dictyostelium discoideum Endosomal pH

    Directory of Open Access Journals (Sweden)

    Everett Moding

    2009-01-01

    Full Text Available The measurement of intracellular ion concentration change is important for understanding the cellular mechanisms for communication. Recently developed nanosensors, (Photonic Explorers for Biomedical use with Biologically Localized Embedding PEBBLEs, have a number of advantages for measuring ions in cells over established methods using microelectrodes, unbound fluorescent dyes, or NMR. PEBBLE sensors have been shown to work in principle for measuring dynamic ion changes, but few in vivo applications have been demonstrated. We modified the protocol for the fabrication of pH sensing PEBBLEs and developed a protocol for the utilization of these sensors for the monitoring of dynamic pH changes in the endosomes of slime mold Dictyostelium discoideum (D. discoideum. Oregon Green 514-CdSe Quantum Dot PEBBLEs were used to measure real-time pH inside D. discoideum endosomes during cAMP stimulation. Endosomal pH was shown to decrease during cAMP signaling, demonstrating a movement of protons into the endosomes of D. discoideum amoebae.

  15. Secretion of novel SEL1L endogenous variants is promoted by ER stress/UPR via endosomes and shed vesicles in human cancer cells.

    Directory of Open Access Journals (Sweden)

    Monica Cattaneo

    Full Text Available We describe here two novel endogenous variants of the human endoplasmic reticulum (ER cargo receptor SEL1LA, designated p38 and p28. Biochemical and RNA interference studies in tumorigenic and non-tumorigenic cells indicate that p38 and p28 are N-terminal, ER-anchorless and more stable relative to the canonical transmembrane SEL1LA. P38 is expressed and constitutively secreted, with increase after ER stress, in the KMS11 myeloma line and in the breast cancer lines MCF7 and SKBr3, but not in the non-tumorigenic breast epithelial MCF10A line. P28 is detected only in the poorly differentiated SKBr3 cell line, where it is secreted after ER stress. Consistently with the presence of p38 and p28 in culture media, morphological studies of SKBr3 and KMS11 cells detect N-terminal SEL1L immunolabeling in secretory/degradative compartments and extracellularly-released membrane vesicles. Our findings suggest that the two new SEL1L variants are engaged in endosomal trafficking and secretion via vesicles, which could contribute to relieve ER stress in tumorigenic cells. P38 and p28 could therefore be relevant as diagnostic markers and/or therapeutic targets in cancer.

  16. Interplay of Endosomal pH and Ligand Occupancy in Integrin α5β1 Ubiquitination, Endocytic Sorting, and Cell Migration

    Directory of Open Access Journals (Sweden)

    Dmitri Kharitidi

    2015-10-01

    Full Text Available Membrane trafficking of integrins plays a pivotal role in cell proliferation and migration. How endocytosed integrins are targeted either for recycling or lysosomal delivery is not fully understood. Here, we show that fibronectin (FN binding to α5β1 integrin triggers ubiquitination and internalization of the receptor complex. Acidification facilitates FN dissociation from integrin α5β1 in vitro and in early endosomes, promoting receptor complex deubiquitination by the USP9x and recycling to the cell surface. Depending on residual ligand occupancy of receptors, some α5β1 integrins remain ubiquitinated and are captured by ESCRT-0/I, containing histidine domain-containing protein tyrosine phosphatase (HD-PTP and ubiquitin-associated protein 1 (UBAP1, and are directed for lysosomal proteolysis, limiting receptor downstream signaling and cell migration. Thus, HD-PTP or UBAP1 depletion confers a pro-invasive phenotype. Thus, pH-dependent FN-integrin dissociation and deubiquitination of the activated integrin α5β1 are required for receptor resensitization and cell migration, representing potential targets to modulate tumor invasiveness.

  17. Distinct mechanisms of recognizing endosomal sorting complex required for transport III (ESCRT-III) protein IST1 by different microtubule interacting and trafficking (MIT) domains.

    Science.gov (United States)

    Guo, Emily Z; Xu, Zhaohui

    2015-03-27

    The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). Here, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed that IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. These observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Distinct Mechanisms of Recognizing Endosomal Sorting Complex Required for Transport III (ESCRT-III) Protein IST1 by Different Microtubule Interacting and Trafficking (MIT) Domains*

    Science.gov (United States)

    Guo, Emily Z.; Xu, Zhaohui

    2015-01-01

    The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). Here, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed that IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. These observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode. PMID:25657007

  19. Detection of the Endosomal Sorting Complex Required for Transport in Entamoeba histolytica and Characterization of the EhVps4 Protein

    Directory of Open Access Journals (Sweden)

    Israel López-Reyes

    2010-01-01

    Full Text Available Eukaryotic endocytosis involves multivesicular bodies formation, which is driven by endosomal sorting complexes required for transport (ESCRT. Here, we showed the presence and expression of homologous ESCRT genes in Entamoeba histolytica. We cloned and expressed the Ehvps4 gene, an ESCRT member, to obtain the recombinant EhVps4 and generate specific antibodies, which immunodetected EhVps4 in cytoplasm of trophozoites. Bioinformatics and biochemical studies evidenced that rEhVps4 is an ATPase, whose activity depends on the conserved E211 residue. Next, we generated trophozoites overexpressing EhVps4 and mutant EhVps4-E211Q FLAG-tagged proteins. The EhVps4-FLAG was located in cytosol and at plasma membrane, whereas the EhVps4-E211Q-FLAG was detected as abundant cytoplasmic dots in trophozoites. Erythrophagocytosis, cytopathic activity, and hepatic damage in hamsters were not improved in trophozoites overexpressing EhVps4-FLAG. In contrast, EhVps4-E211Q-FLAG protein overexpression impaired these properties. The localization of EhVps4-FLAG around ingested erythrocytes, together with our previous results, strengthens the role for EhVps4 in E. histolytica phagocytosis and virulence.

  20. Traffic Light Detection

    DEFF Research Database (Denmark)

    Philipsen, Mark Philip; Jensen, Morten Bornø; Møgelmose, Andreas

    2015-01-01

    Traffic light recognition (TLR) is an integral part of any intelligent vehicle, which must function in the existing infrastructure. Pedestrian and sign detection have recently seen great improvements due to the introduction of learning based detectors using integral channel features. A similar push...... have not yet been seen for the detection sub-problem of TLR, where detection is dominated by methods based on heuristic models. Evaluation of existing systems is currently limited primarily to small local datasets. In order to provide a common basis for comparing future TLR research an extensive public...... database is collected based on footage from US roads. The database consists of both test and training data, totaling 46,418 frames and 112,971 annotated traffic lights, captured in continuous sequences under a varying light and weather conditions. The learning based detector achieves an AUC of 0.4 and 0...

  1. Physics of Traffic Flow

    Science.gov (United States)

    Davis, L. C.

    2015-03-01

    The Texas A&M Transportation Institute estimated that traffic congestion cost the United States 121 billion in 2011 (the latest data available). The cost is due to wasted time and fuel. In addition to accidents and road construction, factors contributing to congestion include large demand, instability of high-density free flow and selfish behavior of drivers, which produces self-organized traffic bottlenecks. Extensive data collected on instrumented highways in various countries have led to a better understanding of traffic dynamics. From these measurements, Boris Kerner and colleagues developed a new theory called three-phase theory. They identified three major phases of flow observed in the data: free flow, synchronous flow and wide moving jams. The intermediate phase is called synchronous because vehicles in different lanes tend to have similar velocities. This congested phase, characterized by lower velocities yet modestly high throughput, frequently occurs near on-ramps and lane reductions. At present there are only two widely used methods of congestion mitigation: ramp metering and the display of current travel-time information to drivers. To find more effective methods to reduce congestion, researchers perform large-scale simulations using models based on the new theories. An algorithm has been proposed to realize Wardrop equilibria with real-time route information. Such equilibria have equal travel time on alternative routes between a given origin and destination. An active area of current research is the dynamics of connected vehicles, which communicate wirelessly with other vehicles and the surrounding infrastructure. These systems show great promise for improving traffic flow and safety.

  2. Modeling of Spacewire Traffic

    Science.gov (United States)

    Liebgott, Emmanuelle; Fourtier, Philippe; Jameux, David

    2011-08-01

    The Spacewire technology allows embarking high speed data networks on board spacecraft and become widely adopted by agencies and industries missions. Need for new tool to support conception, development and validation of such high speed data network has increased with Spacewire standard development. In that frame, MOST is a representative traffic spacewire simulator which presents great interests for both system engineers and spacewire experts:• It offers the possibility to build SpW network model, selecting and configuring SpW components, and to test defined design without waiting for HW,• It allows to keep control on traffic load and identify weak parts of the network topology,• It gives load margins and traffic performances,• It allows failures simulation and give the possibility to run various scenarios• MOST supports design risks decrease and secures planning thanks to early verification,• In addition, MOST is a progressive tool which allows testing of SpW standard evolutions.

  3. Assessing Road Traffic Expression

    Directory of Open Access Journals (Sweden)

    Fábio Silva

    2014-12-01

    Full Text Available Road traffic is a problem which is increasing in cities with large population. Unrelated to this fact the number of portable and wearable devices has also been increasing throughout the population of most countries. With this advent, the capacity to monitor and register data about people habits and locations as well as more complex data such as intensity and strength of movements has created an opportunity to contribute to the general wealth and comfort within these environments. Ambient Intelligence and Intelligent Decision Making processes can benefit from the knowledge gathered by these devices to improve decisions on everyday tasks such as deciding navigation routes by car, bicycle or other means of transportation and avoiding route perils. The concept of computational sustainability may also be applied to this problem. Current applications in this area demonstrate the usefulness of real time system that inform the user of certain conditions in the surrounding area. On the other hand, the approach presented in this work aims to describe models and approaches to automatically identify current states of traffic inside cities and use methods from computer science to improve overall comfort and the sustainability of road traffic both with the user and the environment in mind. Such objective is delivered by analyzing real time contributions from those mobile ubiquitous devices to identifying problematic situations and areas under a defined criteria that have significant influence towards a sustainable use of the road transport infrastructure.

  4. Effects of traffic noise

    Energy Technology Data Exchange (ETDEWEB)

    Gottlob, D.

    1986-02-01

    One of the main sources of noise is road traffic. In 1984 there were over 25 million cars, 1.2 million lorries, 1.3 million motor cycles and 1.6 million mopeds using our roads. Opinion polls showed that 21% of the population felt that they were affected by traffic noise as a nuisance factor. An outline of the effects of this noise on the affected population is given, illustrated by diagrams. Details about noise emissions (drive-past level) of the different types of vehicles in city traffic are stated and the effects of noise described. The author goes into the nuisance effect (noise is not a physical factor, but a psychosocial one), changes in behaviour (ways of speaking, reduction of stress on households in proportion to rising income and higher educational levels) and the consequences for health (the reaction of the body to noise is primarily a consequence of the psychosomatic organisation of ow bodies). In conclusion, the author deals with the subjective efficiency of noise protection measures. (HWJ).

  5. Compliance with traffic laws by traffic police officers, non-traffic police officers, and civilian drivers.

    Science.gov (United States)

    Rosenbloom, Tova; Pereg, Avihu; Perlman, Amotz

    2014-01-01

    The policy of a public organization, such as police, may shape the norms and the behavior of the citizens. In line with this, police officers are expected by the public to comply with traffic laws and serve as an example for the citizenry. This study used on-site observations of civilian and police driver, comparing police officers' compliance with traffic laws to that of civilians. We compared driver compliance with traffic laws for drivers in 3 groups of vehicles: traffic police cars, non-traffic police cars, and civilian cars. Four hundred sixty-six vehicles were observed and compared by vehicle type and whether a uniform was worn by the driver. We observed safety belt usage, signaling before turning, cellular phone usage, and giving way to traffic (measured by merging time). We found evidence that generally drivers in police cars use seat belts while driving more that drivers in civilian cars do. In particular, more traffic police car drivers used seat belts than non-traffic police car drivers do. In addition, drivers in civilian cars and non-traffic police cars waited longer periods of time before merging right into traffic compared to traffic police car drivers. Our findings supported the notion that on-duty police officers, and traffic police officers in particular, adhere more closely to traffic laws compared to civilian drivers. As the general public compliance with traffic laws is affected by the police perceived legitimacy, the publication of these results can both boost public cooperation with the police and encourage police officers to continue providing positive role models to the public.

  6. Membranous nephropathy

    Science.gov (United States)

    ... check for hepatitis B, hepatitis C, and syphilis Complement levels Cryoglobulin test Treatment The goal of treatment ... not as helpful for people with membranous nephropathy. Medicines used treat membranous nephropathy include: Angiotensin-converting enzyme ( ...

  7. Picornavirus RNA is protected from cleavage by ribonuclease during virion uncoating and transfer across cellular and model membranes.

    Directory of Open Access Journals (Sweden)

    Elisabetta Groppelli

    2017-02-01

    Full Text Available Picornaviruses are non-enveloped RNA viruses that enter cells via receptor-mediated endocytosis. Because they lack an envelope, picornaviruses face the challenge of delivering their RNA genomes across the membrane of the endocytic vesicle into the cytoplasm to initiate infection. Currently, the mechanism of genome release and translocation across membranes remains poorly understood. Within the enterovirus genus, poliovirus, rhinovirus 2, and rhinovirus 16 have been proposed to release their genomes across intact endosomal membranes through virally induced pores, whereas one study has proposed that rhinovirus 14 releases its RNA following disruption of endosomal membranes. For the more distantly related aphthovirus genus (e.g. foot-and-mouth disease viruses and equine rhinitis A virus acidification of endosomes results in the disassembly of the virion into pentamers and in the release of the viral RNA into the lumen of the endosome, but no details have been elucidated as how the RNA crosses the vesicle membrane. However, more recent studies suggest aphthovirus RNA is released from intact particles and the dissociation to pentamers may be a late event. In this study we have investigated the RNase A sensitivity of genome translocation of poliovirus using a receptor-decorated-liposome model and the sensitivity of infection of poliovirus and equine-rhinitis A virus to co-internalized RNase A. We show that poliovirus genome translocation is insensitive to RNase A and results in little or no release into the medium in the liposome model. We also show that infectivity is not reduced by co-internalized RNase A for poliovirus and equine rhinitis A virus. Additionally, we show that all poliovirus genomes that are internalized into cells, not just those resulting in infection, are protected from RNase A. These results support a finely coordinated, directional model of viral RNA delivery that involves viral proteins and cellular membranes.

  8. Traffic Games: Modeling Freeway Traffic with Game Theory.

    Science.gov (United States)

    Cortés-Berrueco, Luis E; Gershenson, Carlos; Stephens, Christopher R

    2016-01-01

    We apply game theory to a vehicular traffic model to study the effect of driver strategies on traffic flow. The resulting model inherits the realistic dynamics achieved by a two-lane traffic model and aims to incorporate phenomena caused by driver-driver interactions. To achieve this goal, a game-theoretic description of driver interaction was developed. This game-theoretic formalization allows one to model different lane-changing behaviors and to keep track of mobility performance. We simulate the evolution of cooperation, traffic flow, and mobility performance for different modeled behaviors. The analysis of these results indicates a mobility optimization process achieved by drivers' interactions.

  9. The TIP30 protein complex, arachidonic acid and coenzyme A are required for vesicle membrane fusion.

    Directory of Open Access Journals (Sweden)

    Chengliang Zhang

    Full Text Available Efficient membrane fusion has been successfully mimicked in vitro using artificial membranes and a number of cellular proteins that are currently known to participate in membrane fusion. However, these proteins are not sufficient to promote efficient fusion between biological membranes, indicating that critical fusogenic factors remain unidentified. We have recently identified a TIP30 protein complex containing TIP30, acyl-CoA synthetase long-chain family member 4 (ACSL4 and Endophilin B1 (Endo B1 that promotes the fusion of endocytic vesicles with Rab5a vesicles, which transport endosomal acidification enzymes vacuolar (H⁺-ATPases (V-ATPases to the early endosomes in vivo. Here, we demonstrate that the TIP30 protein complex facilitates the fusion of endocytic vesicles with Rab5a vesicles in vitro. Fusion of the two vesicles also depends on arachidonic acid, coenzyme A and the synthesis of arachidonyl-CoA by ACSL4. Moreover, the TIP30 complex is able to transfer arachidonyl groups onto phosphatidic acid (PA, producing a new lipid species that is capable of inducing close contact between membranes. Together, our data suggest that the TIP30 complex facilitates biological membrane fusion through modification of PA on membranes.

  10. Compressive membrane action in concrete decks

    NARCIS (Netherlands)

    Amir, S.

    2012-01-01

    One of the major challenges facing the designers today is to investigate if the old bridges are still safe for modern traffic. The current research deals with this question by taking into account compressive membrane action (CMA) in determining the capacity of reinforced and transversely prestressed

  11. Membrane Biophysics

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2013-01-01

    Physics, mathematics and chemistry all play a vital role in understanding the true nature and functioning of biological membranes, key elements of living processes. Besides simple spectroscopic observations and electrical measurements of membranes we address in this book the phenomena of coexistence and independent existence of different membrane components using various theoretical approaches. This treatment will be helpful for readers who want to understand biological processes by applying both simple observations and fundamental scientific analysis. It provides a deep understanding of the causes and effects of processes inside membranes, and will thus eventually open new doors for high-level pharmaceutical approaches towards fighting membrane- and cell-related diseases.

  12. OPTIMASI BANDWITH MENGGUNAKAN TRAFFIC SHAPPING

    Directory of Open Access Journals (Sweden)

    Imam Riadi

    2010-01-01

    Full Text Available Perkembangan layanan komunikasi telah berkembang sangat pesat. Salah satunya adalah pemanfaatan penggunaan bandwith untuk mengakases jaringan Internet. Traffic shapping bandwidth dapat memberikan efesiensi dalam hal pemanfaatan bandwidth pada instansi yang melakukan manajemen dalam lalulintas jaringannya. Metode yang digunakan dalam penelitian ini adalah metode literatur yaitu metode pengumpulan data yang dilakukan dengan mengumpulkan sumber- sumber data yang terkait dan metode eksperimen yaitu melakukan penelitian dengan mengkonfigurasi Mikrotik RouterOS untuk melakukan traffic shapping bandwidth. Hasil penelitian ini adalah router yang dapat melakukan traffic shapping sehingga kualitas koneksi menjadi lebih baik untuk mengakses dan mengambil data dari sebuah website. Kata kunci : Optimasi, Bandwith, Traffic Shapping, MikroTik. 

  13. Bicycle traffic in urban areas

    Directory of Open Access Journals (Sweden)

    Anđelković Zorica

    2015-01-01

    Full Text Available Cycling is a term describing the use of bicycles, but also any mean of transport driven solely by human power. Development of bicycle traffic in urban areas involves construction of cycling infrastructure, adapting streets and other traffic infrastructure to a form suitable for cycling and other means of transport (individual motorized traffic, public transport, walking, ensuring the adequate budget and systematic planning and development of sustainable transport in cities. The paper presents basic settings and conditions as input elements to plan bicycle traffic in urban areas, as well as program- design conditions which lead the activities of planners and designers of urban roads in connection with cyclists.

  14. Inaccuracy in traffic forecasts

    DEFF Research Database (Denmark)

    Flyvbjerg, Bent; Holm, Mette K. Skamris; Buhl, Søren Ladegaard

    2006-01-01

    that forecasters generally do a poor job of estimating the demand for transportation infrastructure projects. The result is substantial downside financial and economic risk. Forecasts have not become more accurate over the 30-year period studied. If techniques and skills for arriving at accurate demand forecasts...... forecasting. Highly inaccurate traffic forecasts combined with large standard deviations translate into large financial and economic risks. But such risks are typically ignored or downplayed by planners and decision-makers, to the detriment of social and economic welfare. The paper presents the data...

  15. Traffic simulation for mixed traffic systems | Mbam | Global Journal of ...

    African Journals Online (AJOL)

    Traffic problem is classified into single and mixed, especially in most developing countries, where motorbikes are used as the most popular transportation system. The aim of this paper is to introduce the motorbike symbol into the traffic light control system to separate cars/lorries indicator from that of motorbike. This is likely ...

  16. Real time traffic models, decision support for traffic management

    NARCIS (Netherlands)

    Wismans, Luc Johannes Josephus; de Romph, E.; Friso, K.; Zantema, K.

    2014-01-01

    Reliable and accurate short-term traffic state prediction can improve the performance of real-time traffic management systems significantly. Using this short-time prediction based on current measurements delivered by advanced surveillance systems will support decision-making processes on various

  17. Real Time Traffic Models, Decision Support for Traffic Management

    NARCIS (Netherlands)

    Wismans, L.; De Romph, E.; Friso, K.; Zantema, K.

    2014-01-01

    Reliable and accurate short-term traffic state prediction can improve the performance of real-time traffic management systems significantly. Using this short-time prediction based on current measurements delivered by advanced surveillance systems will support decision-making processes on various

  18. Traffic Infrastructure in the Development of the Croatian Traffic System

    Directory of Open Access Journals (Sweden)

    Damir Šimulčik

    2012-10-01

    Full Text Available The absence of a long-term traffic policy and of the policyof financing the constntction and maintenance of traffic infrastructurefacilities, represents a synthesis of numerous unresolvedrelations whose negative effects are felt in the overalleconomic and traffic development and consequently theevaluation of national potentials in the field. Adverse aspectcaused by the lack of a clear and feasible policy of financing thetraffic infrastructure facilities, is also a result of not having definedan adequate traffic policy, programme and strategiccourses of development, nor financing models that would be inaccordance with the market and economy system.This indicates that it is necessary to determine a policy forfinancing the constntction and maintenance of traffic infrastntcture,which has to be based on scientific development,team work, availability of plans and programmes to scientistsand experts, determined methodology based on marketing andeconomic logic in defining the programme and strategic tasksand assignments so as to make them feasible.In the near future, intensive preparations for investments inthe overall traffic sysiem are necessary, especially regarding thetraffic infrastntcture facilities - the pivotal points in the processof evaluating the traffic in our national tenitory. Croatia needsto define clearly its strategy in constructing and maintaining thegeneral traffic infrastructure, appointing at the same time thosewho will carry out the given tasks.

  19. Herpesvirus glycoproteins undergo multiple antigenic changes before membrane fusion.

    Directory of Open Access Journals (Sweden)

    Daniel L Glauser

    Full Text Available Herpesvirus entry is a complicated process involving multiple virion glycoproteins and culminating in membrane fusion. Glycoprotein conformation changes are likely to play key roles. Studies of recombinant glycoproteins have revealed some structural features of the virion fusion machinery. However, how the virion glycoproteins change during infection remains unclear. Here using conformation-specific monoclonal antibodies we show in situ that each component of the Murid Herpesvirus-4 (MuHV-4 entry machinery--gB, gH/gL and gp150--changes in antigenicity before tegument protein release begins. Further changes then occurred upon actual membrane fusion. Thus virions revealed their final fusogenic form only in late endosomes. The substantial antigenic differences between this form and that of extracellular virions suggested that antibodies have only a limited opportunity to block virion membrane fusion.

  20. European Traffic Connections and Croatia

    Directory of Open Access Journals (Sweden)

    Ivan Vuković

    2012-10-01

    Full Text Available The overall traffic connections within Europe are particularlyimportant from the economic point of view of eve1y Europeancountry. Therefore, the development of traffic and trafficinfrastructure in the European Union are considered with specialattention. The main aim of traffic development in the EuropeanUnion is full possible freedom of movement both fromthe technical and organisational aspect, with continuous improvementin traffic safety and environmental protection.Traffic development and connections are one of the essentieddevelopment factors of eve1y modem counlly. Every COU/1-try tends to organise traffic system in the way that suits her best.The same holds for the European Union as well. The leadingbodies in the European Union agree that the EU traffic systemneeds to be set upon such fundamentals that it can follow furtherdevelopment of the community. EU connects 15 membercountries into a single community, and it also plans soon to expandonto new members.The aims set by the Maastricht Agreement have been realisedby announcing the traffic guidelines on infrastructure projectsthat should be realised. In the Commission's proposal tothe Council and the Parliament in 1994, on the development ofTrans-European traffic networks, a ve1y efficient plan was presentedof connecting national traffic networks into a singleTrans-European network, to be realised until 2010.Overall economic and political connections of the EuropeanUnion and the countries in transition are becoming strongereve1y day. Several countries in transition are already preparingfor joining the European Union. This brings to the fore theneed for better traffic connections of EU and the countries intransition.In some sections the adopted Crete corridors pass alsothrough Croatia. Moreover, Croatia is located on the main Europeantraffic routes from the North to the South, and from theEast to the West.

  1. Reports on internet traffic statistics

    NARCIS (Netherlands)

    Hoogesteger, Martijn; de Oliveira Schmidt, R.; Sperotto, Anna; Pras, Aiko

    2013-01-01

    Internet traffic statistics can provide valuable information to network analysts and researchers about the way nowadays networks are used. In the past, such information was provided by Internet2 in a public website called Internet2 NetFlow: Weekly Reports. The website reported traffic statistics

  2. Probabilistic description of traffic flow

    International Nuclear Information System (INIS)

    Mahnke, R.; Kaupuzs, J.; Lubashevsky, I.

    2005-01-01

    A stochastic description of traffic flow, called probabilistic traffic flow theory, is developed. The general master equation is applied to relatively simple models to describe the formation and dissolution of traffic congestions. Our approach is mainly based on spatially homogeneous systems like periodically closed circular rings without on- and off-ramps. We consider a stochastic one-step process of growth or shrinkage of a car cluster (jam). As generalization we discuss the coexistence of several car clusters of different sizes. The basic problem is to find a physically motivated ansatz for the transition rates of the attachment and detachment of individual cars to a car cluster consistent with the empirical observations in real traffic. The emphasis is put on the analogy with first-order phase transitions and nucleation phenomena in physical systems like supersaturated vapour. The results are summarized in the flux-density relation, the so-called fundamental diagram of traffic flow, and compared with empirical data. Different regimes of traffic flow are discussed: free flow, congested mode as stop-and-go regime, and heavy viscous traffic. The traffic breakdown is studied based on the master equation as well as the Fokker-Planck approximation to calculate mean first passage times or escape rates. Generalizations are developed to allow for on-ramp effects. The calculated flux-density relation and characteristic breakdown times coincide with empirical data measured on highways. Finally, a brief summary of the stochastic cellular automata approach is given

  3. Steering Kids to Traffic Safety.

    Science.gov (United States)

    PTA Today, 1991

    1991-01-01

    Guidelines to help parents explain traffic safety to children cover the following: school bus safety (e.g., remain seated, do not shout); walking (e.g., obey traffic signals, cross at crosswalks); driving (e.g., wear seatbelts, enter and exit from the curb side); and biking (e.g., wear helmets, do not ride at night). (SM)

  4. Road traffic noise and stroke

    DEFF Research Database (Denmark)

    Sørensen, Mette; Hvidberg, Martin; Andersen, Zorana J

    2011-01-01

    Epidemiological studies suggest that long-term exposure to road traffic noise increases the risk of cardiovascular disorders. The aim of this study was to investigate the relation between exposure to road traffic noise and risk for stroke, which has not been studied before....

  5. Web traffic and firm performance

    DEFF Research Database (Denmark)

    Farooq, Omar; Aguenaou, Samir

    2013-01-01

    -traffic on firm performance in civil law countries, firms with concentrated ownership, and firms with more intangible assets. All of these groups are characterized by higher agency problems. Our results, therefore, indicate that web-traffic can play a substitute for traditional governance mechanisms in the MENA...

  6. Spatial cycles mediated by UNC119 solubilisation maintain Src family kinases plasma membrane localisation.

    Science.gov (United States)

    Konitsiotis, Antonios D; Roßmannek, Lisaweta; Stanoev, Angel; Schmick, Malte; Bastiaens, Philippe I H

    2017-07-24

    The peripheral membrane proto-oncogene Src family protein tyrosine kinases relay growth factor signals to the cytoplasm of mammalian cells. We unravel the spatial cycles of solubilisation, trapping on perinuclear membrane compartments and vesicular transport that counter entropic equilibration to endomembranes for maintaining the enrichment and activity of Src family protein tyrosine kinases at the plasma membrane. The solubilising factor UNC119 sequesters myristoylated Src family protein tyrosine kinases from the cytoplasm, enhancing their diffusion to effectively release Src family protein tyrosine kinases on the recycling endosome by localised Arl2/3 activity. Src is then trapped on the recycling endosome via electrostatic interactions, whereas Fyn is quickly released to be kinetically trapped on the Golgi by palmitoyl acyl-transferase activity. Vesicular trafficking from these compartments restores enrichment of the Src family protein tyrosine kinases to the plasma membrane. Interference with these spatial cycles by UNC119 knockdown disrupts Src family protein tyrosine kinase localisation and signalling activity, indicating that UNC119 could be a drug target to affect oncogenic Src family protein tyrosine kinase signalling.The peripheral membrane proto-oncogene Src family protein tyrosine kinases (SFKs) transmit growth factor signals to the cytoplasm. Here the authors show that the solubilising factor UNC119 sequesters myristoylated SFKs to maintain its enrichment at the plasma membrane to enable signal transduction.

  7. Dissociative Tendencies and Traffic Incidents

    Directory of Open Access Journals (Sweden)

    Valle, Virginia

    2012-01-01

    Full Text Available This paper analyses the relationship between dissociative experiences and road traffic incidents (crashes and traffic tickets in drivers (n=295 from Mar del Plata (Argentina city. A self-report questionnaire was applied to assess traffic crash involvement and sociodemographic variables. Dissociative tendencies were assessed by a modified version of the DES scale. To examine differences in DES scores tests of the difference of means were applied. Drivers who reported to be previously involved in traffic incidents obtained higher puntuations in the dissociative experiences scale than drivers who did not report such events. This result is observed for the total scale and for the three sub-scales (absorption, amnesia and depersonalization. However, differences appeared mainly for minor damage collisions. Further studies are needed to evaluate the role of dissociative tendencies as a risk factor in road traffic safety.

  8. Gas Kinetics of Traffic Jam

    Science.gov (United States)

    Nagatani, Takashi

    1997-04-01

    The kinetics of one-dimensional traffic flow is descibed in terms of Boltzmann-like gas kinetic equation. Paveri-Fontana's gas kinetic equation is modified to take into account the desired velocity depending on the car density. A discrete version of the gas kinetic equation is derived to numerically solve the equation. The velocity distributions are calculated by a numerical method. It is found that the traffic jam is formed in the congested traffic flow when the car density is higher than the critical value. The traffic jam propagates backward, its propagation velocity increases with the accerelation and the density within the jam decreases with increasing accerelation. It is shown that the velocity distributions change significantly before and after the traffic jam.

  9. Model for traffic emissions estimation

    Science.gov (United States)

    Alexopoulos, A.; Assimacopoulos, D.; Mitsoulis, E.

    A model is developed for the spatial and temporal evaluation of traffic emissions in metropolitan areas based on sparse measurements. All traffic data available are fully employed and the pollutant emissions are determined with the highest precision possible. The main roads are regarded as line sources of constant traffic parameters in the time interval considered. The method is flexible and allows for the estimation of distributed small traffic sources (non-line/area sources). The emissions from the latter are assumed to be proportional to the local population density as well as to the traffic density leading to local main arteries. The contribution of moving vehicles to air pollution in the Greater Athens Area for the period 1986-1988 is analyzed using the proposed model. Emissions and other related parameters are evaluated. Emissions from area sources were found to have a noticeable share of the overall air pollution.

  10. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease.

    Science.gov (United States)

    Nixon, Ralph A

    2017-07-01

    Abnormalities of the endosomal-lysosomal network (ELN) are a signature feature of Alzheimer's disease (AD). These include the earliest known cytopathology that is specific to AD and that affects endosomes and induces the progressive failure of lysosomes, each of which are directly linked by distinct mechanisms to neurodegeneration. The origins of ELN dysfunction and β-amyloidogenesis closely overlap, which reflects their common genetic basis, the established early involvement of endosomes and lysosomes in amyloid precursor protein (APP) processing and clearance, and the pathologic effect of certain APP metabolites on ELN functions. Genes that promote β-amyloidogenesis in AD (APP, PSEN1/2, and APOE4) have primary effects on ELN function. The importance of primary ELN dysfunction to pathogenesis is underscored by the mutations in more than 35 ELN-related genes that, thus far, are known to cause familial neurodegenerative diseases even though different pathogenic proteins may be involved. In this article, I discuss growing evidence that implicates AD gene-driven ELN disruptions as not only the antecedent pathobiology that underlies β-amyloidogenesis but also as the essential partner with APP and its metabolites that drive the development of AD, including tauopathy, synaptic dysfunction, and neurodegeneration. The striking amelioration of diverse deficits in animal AD models by remediating ELN dysfunction further supports a need to integrate APP and ELN relationships, including the role of amyloid-β, into a broader conceptual framework of how AD arises, progresses, and may be effectively therapeutically targeted.-Nixon, R. A. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease. © FASEB.

  11. The NASA Air Traffic Management Ontology (atmonto)

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA ATM (Air Traffic Management) Ontology describes classes, properties, and relationships relevant to the domain of air traffic management, and represents...

  12. Traffic information computing platform for big data

    Science.gov (United States)

    Duan, Zongtao; Li, Ying; Zheng, Xibin; Liu, Yan; Dai, Jiting; Kang, Jun

    2014-10-01

    Big data environment create data conditions for improving the quality of traffic information service. The target of this article is to construct a traffic information computing platform for big data environment. Through in-depth analysis the connotation and technology characteristics of big data and traffic information service, a distributed traffic atomic information computing platform architecture is proposed. Under the big data environment, this type of traffic atomic information computing architecture helps to guarantee the traffic safety and efficient operation, more intelligent and personalized traffic information service can be used for the traffic information users.

  13. Traffic information computing platform for big data

    International Nuclear Information System (INIS)

    Duan, Zongtao; Li, Ying; Zheng, Xibin; Liu, Yan; Dai, Jiting; Kang, Jun

    2014-01-01

    Big data environment create data conditions for improving the quality of traffic information service. The target of this article is to construct a traffic information computing platform for big data environment. Through in-depth analysis the connotation and technology characteristics of big data and traffic information service, a distributed traffic atomic information computing platform architecture is proposed. Under the big data environment, this type of traffic atomic information computing architecture helps to guarantee the traffic safety and efficient operation, more intelligent and personalized traffic information service can be used for the traffic information users

  14. Peroxisomes, lipid droplets, and endoplasmic reticulum "hitchhike" on motile early endosomes.

    Science.gov (United States)

    Guimaraes, Sofia C; Schuster, Martin; Bielska, Ewa; Dagdas, Gulay; Kilaru, Sreedhar; Meadows, Ben R A; Schrader, Michael; Steinberg, Gero

    2015-12-07

    Intracellular transport is mediated by molecular motors that bind cargo to be transported along the cytoskeleton. Here, we report, for the first time, that peroxisomes (POs), lipid droplets (LDs), and the endoplasmic reticulum (ER) rely on early endosomes (EEs) for intracellular movement in a fungal model system. We show that POs undergo kinesin-3- and dynein-dependent transport along microtubules. Surprisingly, kinesin-3 does not colocalize with POs. Instead, the motor moves EEs that drag the POs through the cell. PO motility is abolished when EE motility is blocked in various mutants. Most LD and ER motility also depends on EE motility, whereas mitochondria move independently of EEs. Covisualization studies show that EE-mediated ER motility is not required for PO or LD movement, suggesting that the organelles interact with EEs independently. In the absence of EE motility, POs and LDs cluster at the growing tip, whereas ER is partially retracted to subapical regions. Collectively, our results show that moving EEs interact transiently with other organelles, thereby mediating their directed transport and distribution in the cell. © 2015 Guimaraes et al.

  15. Smart DNA vectors based on cyclodextrin polymers: compaction and endosomal release.

    Science.gov (United States)

    Wintgens, Véronique; Leborgne, Christian; Baconnais, Sonia; Burckbuchler, Virginie; Le Cam, Eric; Scherman, Daniel; Kichler, Antoine; Amiel, Catherine

    2012-02-01

    Neutral β-cyclodextrin polymers (polyβCD) associated with cationic adamantyl derivatives (Ada) can be used to deliver plasmid DNA into cells. In absence of an endosomolytic agent, transfection efficiency remains low because most complexes are trapped in the endosomal compartment. We asked whether addition of an imidazole-modified Ada can increase efficiency of polyβCD/cationic Ada-based delivery system. We synthesized two adamantyl derivatives: Ada5, which has a spacer arm between the Ada moiety and a bi-cationic polar head group, and Ada6, which presents an imidazole group. Strength of association between polyβCD and Ada derivatives was evaluated by fluorimetric titration. Gel mobility shift assay, zeta potential, and dark field transmission electron microscopy experiments demonstrated the system allowed for efficient DNA compaction. In vitro transfection experiments performed on HepG2 and HEK293 cells revealed the quaternary system polyβCD/Ada5/Ada6/DNA has efficiency comparable to cationic lipid DOTAP. We successfully designed fine-tuned DNA vectors based on cyclodextrin polymers combined with two new adamantyl derivatives, leading to significant transfection associated with low toxicity.

  16. Vascular endothelial growth factor A-stimulated signaling from endosomes in primary endothelial cells.

    Science.gov (United States)

    Fearnley, Gareth W; Smith, Gina A; Odell, Adam F; Latham, Antony M; Wheatcroft, Stephen B; Harrison, Michael A; Tomlinson, Darren C; Ponnambalam, Sreenivasan

    2014-01-01

    The vascular endothelial growth factor A (VEGF-A) is a multifunctional cytokine that stimulates blood vessel sprouting, vascular repair, and regeneration. VEGF-A binds to VEGF receptor tyrosine kinases (VEGFRs) and stimulates intracellular signaling leading to changes in vascular physiology. An important aspect of this phenomenon is the spatiotemporal coordination of VEGFR trafficking and intracellular signaling to ensure that VEGFR residence in different organelles is linked to downstream cellular outputs. Here, we describe a series of assays to evaluate the effects of VEGF-A-stimulated intracellular signaling from intracellular compartments such as the endosome-lysosome system. These assays include the initial isolation and characterization of primary human endothelial cells, performing reverse genetics for analyzing protein function; methods used to study receptor trafficking, signaling, and proteolysis; and assays used to measure changes in cell migration, proliferation, and tubulogenesis. Each of these assays has been exemplified with studies performed in our laboratories. In conclusion, we describe necessary techniques for studying the role of VEGF-A in endothelial cell function. © 2014 Elsevier Inc. All rights reserved.

  17. Niclosamide is a proton carrier and targets acidic endosomes with broad antiviral effects.

    Directory of Open Access Journals (Sweden)

    Andreas Jurgeit

    Full Text Available Viruses use a limited set of host pathways for infection. These pathways represent bona fide antiviral targets with low likelihood of viral resistance. We identified the salicylanilide niclosamide as a broad range antiviral agent targeting acidified endosomes. Niclosamide is approved for human use against helminthic infections, and has anti-neoplastic and antiviral effects. Its mode of action is unknown. Here, we show that niclosamide, which is a weak lipophilic acid inhibited infection with pH-dependent human rhinoviruses (HRV and influenza virus. Structure-activity studies showed that antiviral efficacy and endolysosomal pH neutralization co-tracked, and acidification of the extracellular medium bypassed the virus entry block. Niclosamide did not affect the vacuolar H(+-ATPase, but neutralized coated vesicles or synthetic liposomes, indicating a proton carrier mode-of-action independent of any protein target. This report demonstrates that physico-chemical interference with host pathways has broad range antiviral effects, and provides a proof of concept for the development of host-directed antivirals.

  18. Acid-sensing ion channel (ASIC) 4 predominantly localizes to an early endosome-related organelle upon heterologous expression.

    Science.gov (United States)

    Schwartz, Verena; Friedrich, Katharina; Polleichtner, Georg; Gründer, Stefan

    2015-12-15

    Acid-sensing ion channels (ASICs) are voltage-independent proton-gated amiloride sensitive sodium channels, belonging to the DEG/ENaC gene family. Six different ASICs have been identified (ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3, ASIC4) that are activated by a drop in extracellular pH, either as homo- or heteromers. An exception is ASIC4, which is not activated by protons as a homomer and which does not contribute to functional heteromeric ASICs. Insensitivity of ASIC4 to protons and its comparatively low sequence identity to other ASICs (45%) raises the question whether ASIC4 may have different functions than other ASICs. In this study, we therefore investigated the subcellular localization of ASIC4 in heterologous cell lines, which revealed a surprising accumulation of the channel in early endosome-related vacuoles. Moreover, we identified an unique amino-terminal motif as important for forward-trafficking from the ER/Golgi to the early endosome-related compartment. Collectively, our results show that heterologously expressed ASIC4 predominantly resides in an intracellular endosomal compartment.

  19. Manipulating the membrane penetration mechanism of helical polypeptides via aromatic modification for efficient gene delivery.

    Science.gov (United States)

    Zheng, Nan; Song, Ziyuan; Yang, Jiandong; Liu, Yang; Li, Fangfang; Cheng, Jianjun; Yin, Lichen

    2017-08-01

    The delivery performance of non-viral gene vectors is greatly related to their intracellular kinetics. Cationic helical polypeptides with potent membrane penetration properties and gene transfection efficiencies have been recently developed by us. However, they suffer from severe drawbacks in terms of their membrane penetration mechanisms that mainly include endocytosis and pore formation. The endocytosis mechanism leads to endosomal entrapment of gene cargos, while the charge- and helicity-induced pore formation causes appreciable cytotoxicity at high concentrations. With the attempt to overcome such critical challenges, we incorporated aromatic motifs into the design of helical polypeptides to enhance their membrane activities and more importantly, to manipulate their membrane penetration mechanisms. The aromatically modified polypeptides exhibited higher cellular internalization level than the unmodified analogue by up to 2.5 folds. Such improvement is possibly because aromatic domains promoted the polypeptides to penetrate cell membranes via direct transduction, a non-endocytosis and non-pore formation mechanism. As such, gene cargos were more efficiently delivered into cells by bypassing endocytosis and subsequently avoiding endosomal entrapment, and the material toxicity associated with excessive pore formation was also reduced. The top-performing aromatic polypeptide containing naphthyl side chains at the incorporated content of 20mol% revealed notably higher transfection efficiencies than commercial reagents in melanoma cells in vitro (by 11.7 folds) and in vivo (by 9.1 folds), and thus found potential utilities toward topical gene delivery for cancer therapy. Cationic helical polypeptides, as efficient gene delivery materials, suffer from severe drawbacks in terms of their membrane penetration mechanisms. The main cell penetration mechanisms involved are endocytosis and pore formation. However, the endocytosis mechanism has the limitation of endosomal

  20. Framework for Traffic Congestion Management

    Directory of Open Access Journals (Sweden)

    Mahmud Hassan TALUKDAR

    2013-06-01

    Full Text Available Traffic Congestion is one of many serious global problems in all great cities resulted from rapid urbanization which always exert negative externalities upon society. The solution of traffic congestion is highly geocentric and due to its heterogeneous nature, curbing congestion is one of the hard tasks for transport planners. It is not possible to suggest unique traffic congestion management framework which could be absolutely applied for every great cities. Conversely, it is quite feasible to develop a framework which could be used with or without minor adjustment to deal with congestion problem. So, the main aim of this paper is to prepare a traffic congestion mitigation framework which will be useful for urban planners, transport planners, civil engineers, transport policy makers, congestion management researchers who are directly or indirectly involved or willing to involve in the task of traffic congestion management. Literature review is the main source of information of this study. In this paper, firstly, traffic congestion is defined on the theoretical point of view and then the causes of traffic congestion are briefly described. After describing the causes, common management measures, using world- wide, are described and framework for supply side and demand side congestion management measures are prepared.

  1. Membrane paradigm

    International Nuclear Information System (INIS)

    Price, R.H.; Thorne, K.S.

    1986-01-01

    The membrane paradigm is a modified frozen star approach to modeling black holes, with particles and fields assuming a complex, static, boundary-layer type structure (membrane) near the event horizon. The membrane has no effects on the present or future evolution of particles and fields above itself. The mathematical representation is a combination of a formalism containing terms for the shear and bulk viscosity, surface pressure, momentum, temperature, entropy, etc., of the horizon and the 3+1 formalism. The latter model considers a family of three-dimensional spacelike hypersurfaces in one-dimensional time. The membrane model considers a magnetic field threading the hole and undergoing torque from the hole rotation. The field is cleaned by the horizon and distributed over the horizon so that ohmic dissipation is minimized. The membrane paradigm is invalid inside the horizon, but is useful for theoretically probing the properties of slowly evolving black holes

  2. Membrane processes

    Science.gov (United States)

    Staszak, Katarzyna

    2017-11-01

    The membrane processes have played important role in the industrial separation process. These technologies can be found in all industrial areas such as food, beverages, metallurgy, pulp and paper, textile, pharmaceutical, automotive, biotechnology and chemical industry, as well as in water treatment for domestic and industrial application. Although these processes are known since twentieth century, there are still many studies that focus on the testing of new membranes' materials and determining of conditions for optimal selectivity, i. e. the optimum transmembrane pressure (TMP) or permeate flux to minimize fouling. Moreover the researchers proposed some calculation methods to predict the membrane processes properties. In this article, the laboratory scale experiments of membrane separation techniques, as well their validation by calculation methods are presented. Because membrane is the "heart" of the process, experimental and computational methods for its characterization are also described.

  3. Spreading of Traffic Jam in a Traffic Flow Model

    Science.gov (United States)

    Nagatani, Takashi

    1993-04-01

    A cellular automaton (CA) model is presented to simulate the traffic jam induced by a traffic accident. The spreading of jamming cars induced by a car crash is investigated by computer simulation. An analogy is proposed between the crystal growth and the traffic-jam spreading. The scaling behavior of the traffic-jam spreading is studied. It is shown that the number N of jamming cars scales as N≈t2.34± 0.03 for p above the dynamical jamming transition pc{=}0.35 and N≈t1.07 below pc where t is the time and p is the density of cars. The time constant ts, which is the time required for all cars to stop, scales as ts≈p-1.07± 0.03 for p

  4. Traffic jams: dynamics and control.

    Science.gov (United States)

    Orosz, Gábor; Wilson, R Eddie; Stépán, Gábor

    2010-10-13

    This introductory paper reviews the current state-of-the-art scientific methods used for modelling, analysing and controlling the dynamics of vehicular traffic. Possible mechanisms underlying traffic jam formation and propagation are presented from a dynamical viewpoint. Stable and unstable motions are described that may give the skeleton of traffic dynamics, and the effects of driver behaviour are emphasized in determining the emergent state in a vehicular system. At appropriate points, references are provided to the papers published in the corresponding Theme Issue.

  5. OPTIMASI BANDWITH MENGGUNAKAN TRAFFIC SHAPPING

    Directory of Open Access Journals (Sweden)

    Imam Riadi

    2012-05-01

    Full Text Available Perkembangan layanan komunikasi telah berkembang sangat pesat. Salah satunya adalah pemanfaatan penggunaan bandwith untuk mengakases jaringan Internet. Traffic shapping bandwidth dapat memberikan efesiensi dalam hal pemanfaatan bandwidth pada instansi yang melakukan manajemen dalam lalulintas jaringannya. Metode yang digunakan dalam penelitian ini adalah metode literatur yaitu metode pengumpulan data yang dilakukan dengan mengumpulkan sumber-sumber data yang terkait dan metode eksperimen yaitu melakukan penelitian dengan mengkonfigurasi Mikrotik RouterOS untuk melakukan traffic shapping bandwidth. Hasil penelitian ini adalah router yang dapat melakukan traffic shapping sehingga kualitas koneksi menjadi lebih baik untuk mengakses dan mengambil data dari sebuah website.

  6. Traffic Light Detection at Night

    DEFF Research Database (Denmark)

    Jensen, Morten Bornø; Philipsen, Mark Philip; Bahnsen, Chris

    2015-01-01

    of three detectors based on heuristic models and one learning-based detector. Evaluation is done on night-time data from the public LISA Traffic Light Dataset. The learning-based detector out- performs the model-based detectors in both precision and recall. The learning-based detector achieves an average......Traffic light recognition (TLR) is an integral part of any in- telligent vehicle, it must function both at day and at night. However, the majority of TLR research is focused on day-time scenarios. In this paper we will focus on detection of traffic lights at night and evalu- ate the performance...

  7. Purification of highly active alphavirus replication complexes demonstrates altered fractionation of multiple cellular membranes.

    Science.gov (United States)

    Pietilä, Maija K; van Hemert, Martijn J; Ahola, Tero

    2018-01-24

    Positive-strand RNA viruses replicate their genomes in membrane-associated structures; alphaviruses and many other groups induce membrane invaginations called spherules. Here, we established a protocol to purify these membranous replication complexes (RCs) from cells infected with Semliki Forest virus (SFV). We isolated SFV spherules located on the plasma membrane and further purified them using two consecutive density gradients. This revealed that SFV infection strongly modifies cellular membranes. We removed soluble proteins, the Golgi and most of the mitochondria, but plasma membrane, endoplasmic reticulum (ER) and late endosome markers enriched in the membrane fraction that contained viral RNA synthesizing activity, replicase proteins and minus- and plus-strand RNA. Electron microscopy revealed that the purified membranes displayed spherule-like structures with a narrow neck. This membrane enrichment was specific to viral replication as such a distribution of membrane markers was only observed after infection. Besides the plasma membrane, SFV infection remodeled the ER, and the co-fractionation of the RC-carrying plasma membrane and ER suggests that SFV may recruit ER proteins or membrane to the site of replication. The purified RCs were highly active in synthesizing both genomic and subgenomic RNA. Detergent solubilization destroyed the replication activity demonstrating that the membrane association of the complex is essential. Most of the newly made RNA was in double-stranded replicative molecules but the purified complexes also produced single-stranded RNA as well as released newly made RNA. This indicates that the purification established here maintained the functionality of RCs and thus enables further structural and functional studies of active RCs. IMPORTANCE Similar to all positive-strand RNA viruses, the arthropod-borne alphaviruses induce membranous genome factories but little is known about the arrangement of viral replicase proteins and the

  8. Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes.

    Directory of Open Access Journals (Sweden)

    Mohammad F Saeed

    2010-09-01

    Full Text Available Zaire ebolavirus (ZEBOV, a highly pathogenic zoonotic virus, poses serious public health, ecological and potential bioterrorism threats. Currently no specific therapy or vaccine is available. Virus entry is an attractive target for therapeutic intervention. However, current knowledge of the ZEBOV entry mechanism is limited. While it is known that ZEBOV enters cells through endocytosis, which of the cellular endocytic mechanisms used remains unclear. Previous studies have produced differing outcomes, indicating potential involvement of multiple routes but many of these studies were performed using noninfectious surrogate systems such as pseudotyped retroviral particles, which may not accurately recapitulate the entry characteristics of the morphologically distinct wild type virus. Here we used replication-competent infectious ZEBOV as well as morphologically similar virus-like particles in specific infection and entry assays to demonstrate that in HEK293T and Vero cells internalization of ZEBOV is independent of clathrin, caveolae, and dynamin. Instead the uptake mechanism has features of macropinocytosis. The binding of virus to cells appears to directly stimulate fluid phase uptake as well as localized actin polymerization. Inhibition of key regulators of macropinocytosis including Pak1 and CtBP/BARS as well as treatment with the drug EIPA, which affects macropinosome formation, resulted in significant reduction in ZEBOV entry and infection. It is also shown that following internalization, the virus enters the endolysosomal pathway and is trafficked through early and late endosomes, but the exact site of membrane fusion and nucleocapsid penetration in the cytoplasm remains unclear. This study identifies the route for ZEBOV entry and identifies the key cellular factors required for the uptake of this filamentous virus. The findings greatly expand our understanding of the ZEBOV entry mechanism that can be applied to development of new

  9. [Comics for traffic education: evaluation of a traffic safety campaign].

    Science.gov (United States)

    Bonfadelli, H

    1989-01-01

    Traffic safety campaigns often are ineffective to change driving behavior because they don't reach the target group or are recognized only by people who are already interested or concerned. The evaluation of a traffic safety campaign called "Leo Lässig", addressed to young new drivers, shows that recognition and acceptance by the target group were stimulated by the age-conform means of comic-strips.

  10. 49 CFR 1139.2 - Traffic study.

    Science.gov (United States)

    2010-10-01

    ... “base-calendar year—actual.” The study shall include a probability sampling of the actual traffic... 49 Transportation 8 2010-10-01 2010-10-01 false Traffic study. 1139.2 Section 1139.2... of General Commodities § 1139.2 Traffic study. (a) The respondents shall submit a traffic study for...

  11. Real-Time Traffic Signal Control for Optimization of Traffic Jam Probability

    Science.gov (United States)

    Cui, Cheng-You; Shin, Ji-Sun; Miyazaki, Michio; Lee, Hee-Hyol

    Real-time traffic signal control is an integral part of urban traffic control system. It can control traffic signals online according to variation of traffic flow. In this paper, we propose a new method for the real-time traffic signal control system. The system uses a Cellular Automaton model and a Bayesian Network model to predict probabilistic distributions of standing vehicles, and uses a Particle Swarm Optimization method to calculate optimal traffic signals. A simulation based on real traffic data was carried out to show the effectiveness of the proposed real-time traffic signal control system CAPSOBN using a micro traffic simulator.

  12. Eps homology domain endosomal transport proteins differentially localize to the neuromuscular junction

    Directory of Open Access Journals (Sweden)

    Mate Suzanne E

    2012-09-01

    Full Text Available Abstract Background Recycling of endosomes is important for trafficking and maintenance of proteins at the neuromuscular junction (NMJ. We have previously shown high expression of the endocytic recycling regulator Eps15 homology domain-containing (EHD1 proteinin the Torpedo californica electric organ, a model tissue for investigating a cholinergic synapse. In this study, we investigated the localization of EHD1 and its paralogs EHD2, EHD3, and EHD4 in mouse skeletal muscle, and assessed the morphological changes in EHD1−/− NMJs. Methods Localization of the candidate NMJ protein EHD1 was assessed by confocal microscopy analysis of whole-mount mouse skeletal muscle fibers after direct gene transfer and immunolabeling. The potential function of EHD1 was assessed by specific force measurement and α-bungarotoxin-based endplate morphology mapping in EHD1−/− mouse skeletal muscle. Results Endogenous EHD1 localized to primary synaptic clefts of murine NMJ, and this localization was confirmed by expression of recombinant green fluorescent protein labeled-EHD1 in murine skeletal muscle in vivo. EHD1−/− mouse skeletal muscle had normal histology and NMJ morphology, and normal specific force generation during muscle contraction. The EHD 1–4 proteins showed differential localization in skeletal muscle: EHD2 to muscle vasculature, EHD3 to perisynaptic regions, and EHD4 to perinuclear regions and to primary synaptic clefts, but at lower levels than EHD1. Additionally, specific antibodies raised against mammalian EHD1-4 recognized proteins of the expected mass in the T. californica electric organ. Finally, we found that EHD4 expression was more abundant in EHD1−/− mouse skeletal muscle than in wild-type skeletal muscle. Conclusion EHD1 and EHD4 localize to the primary synaptic clefts of the NMJ. Lack of obvious defects in NMJ structure and muscle function in EHD1−/− muscle may be due to functional compensation by other EHD paralogs.

  13. Characterization and Modeling of Network Traffic

    DEFF Research Database (Denmark)

    Shawky, Ahmed; Bergheim, Hans; Ragnarsson, Olafur

    2011-01-01

    This paper attempts to characterize and model backbone network traffic, using a small number of statistics. In order to reduce cost and processing power associated with traffic analysis. The parameters affecting the behaviour of network traffic are investigated and the choice is that inter......-arrival time, IP addresses, port numbers and transport protocol are the only necessary parameters to model network traffic behaviour. In order to recreate this behaviour, a complex model is needed which is able to recreate traffic behaviour based on a set of statistics calculated from the parameters values....... The model investigates the traffic generation mechanisms, and grouping traffic into flows and applications....

  14. Membrane Trafficking in the Yeast Saccharomyces cerevisiae Model

    Directory of Open Access Journals (Sweden)

    Serge Feyder

    2015-01-01

    Full Text Available The yeast Saccharomyces cerevisiae is one of the best characterized eukaryotic models. The secretory pathway was the first trafficking pathway clearly understood mainly thanks to the work done in the laboratory of Randy Schekman in the 1980s. They have isolated yeast sec mutants unable to secrete an extracellular enzyme and these SEC genes were identified as encoding key effectors of the secretory machinery. For this work, the 2013 Nobel Prize in Physiology and Medicine has been awarded to Randy Schekman; the prize is shared with James Rothman and Thomas Südhof. Here, we present the different trafficking pathways of yeast S. cerevisiae. At the Golgi apparatus newly synthesized proteins are sorted between those transported to the plasma membrane (PM, or the external medium, via the exocytosis or secretory pathway (SEC, and those targeted to the vacuole either through endosomes (vacuolar protein sorting or VPS pathway or directly (alkaline phosphatase or ALP pathway. Plasma membrane proteins can be internalized by endocytosis (END and transported to endosomes where they are sorted between those targeted for vacuolar degradation and those redirected to the Golgi (recycling or RCY pathway. Studies in yeast S. cerevisiae allowed the identification of most of the known effectors, protein complexes, and trafficking pathways in eukaryotic cells, and most of them are conserved among eukaryotes.

  15. Automatic Traffic Recorder (ATR) Stations

    Data.gov (United States)

    Department of Homeland Security — The data included in the GIS Traffic Stations Version database have been assimilated from station description files provided by FHWA for Weigh-in-Motion (WIM), and...

  16. Traffic safety in the future

    OpenAIRE

    EKKEHARD, Brühning; OKAMURA, Kazuko; FLEURY, Dominique; BRILON, Werner; DINGES, David F.; ABE, Takashi

    2013-01-01

    This booklet is divided in 4 parts : Traffic Safety in Japan and Germany - Success, Deficiencies, Future Potentials. Research on the Territorial Approach to Safety. Reliability of Motorway Operation. Transportation Safety and Operator Sleepiness: Where Biology Needs Technology.

  17. Traffic fatalities and economic growth

    Science.gov (United States)

    2003-04-01

    As countries develop death rates usually fall, especially for diseases that affect the young and result in substantial life-years lost. Deaths due to traffic accidents are a notable exception: the growth in motor vehicles that accompanies economic gr...

  18. Traffic behavior at freeway bottlenecks.

    Science.gov (United States)

    2014-09-01

    This study examines traffic behavior in the vicinity of a freeway bottleneck, revisiting commonly held : assumptions and uncovering systematic biases that likely have distorted empirical studies of bottleneck : formation, capacity drop, and the funda...

  19. Assessment of Traffic Noise Impacts

    DEFF Research Database (Denmark)

    Rich, Jeppe Husted; Nielsen, Otto Anker

    2004-01-01

    A steady growth in traffic intensities in most urban areas throughout the world has forced planners and politicians to seriously consider the resulting environmental impact, such as traffic noise, accidents and air pollution. The assessment of such negative factors is needed in order to reveal...... the true social benefit of infrastructure plans. The paper presents a noise assessment model for the Copenhagen region, which brings together GIS technology and non-linear hedonic regression models to reveal the implicit costs of traffic noise measured as the marginal percentage loss in property values...... with respect to the decibel traffic noise. The model distinguishes between houses and apartments and shows that the ability to include refined accessibility variables have significant impact on estimated prices....

  20. Estimating Emissions from Railway Traffic

    DEFF Research Database (Denmark)

    Jørgensen, Morten W.; Sorenson, Spencer C.

    1998-01-01

    Several parameters of importance for estimating emissions from railway traffic are discussed, and typical results presented. Typical emissions factors from diesel engines and electrical power generation are presented, and the effect of differences in national electrical generation sources illustr...

  1. Game theory and traffic assignment.

    Science.gov (United States)

    2013-09-01

    Traffic assignment is used to determine the number of users on roadway links in a network. While this problem has : been widely studied in transportation literature, its use of the concept of equilibrium has attracted considerable interest : in the f...

  2. Primordial membranes

    DEFF Research Database (Denmark)

    Hanczyc, Martin M; Monnard, Pierre-Alain

    2017-01-01

    Cellular membranes, which are self-assembled bilayer structures mainly composed of lipids, proteins and conjugated polysaccharides, are the defining feature of cell physiology. It is likely that the complexity of contemporary cells was preceded by simpler chemical systems or protocells during...... the various evolutionary stages that led from inanimate to living matter. It is also likely that primitive membranes played a similar role in protocell 'physiology'. The composition of such ancestral membranes has been proposed as mixtures of single hydrocarbon chain amphiphiles, which are simpler versions...

  3. Stochastic control of traffic patterns

    DEFF Research Database (Denmark)

    Gaididei, Yuri B.; Gorria, Carlos; Berkemer, Rainer

    2013-01-01

    A stochastic modulation of the safety distance can reduce traffic jams. It is found that the effect of random modulation on congestive flow formation depends on the spatial correlation of the noise. Jam creation is suppressed for highly correlated noise. The results demonstrate the advantage...... of heterogeneous performance of the drivers in time as well as individually. This opens the possibility for the construction of technical tools to control traffic jam formation....

  4. Estimating emissions from railway traffic

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, M.W.; Sorenson, C.

    1997-07-01

    The report discusses methods that can be used to estimate the emissions from various kinds of railway traffic. The methods are based on the estimation of the energy consumption of the train, so that comparisons can be made between electric and diesel driven trains. Typical values are given for the necessary traffic parameters, emission factors, and train loading. Detailed models for train energy consumption are presented, as well as empirically based methods using average train speed and distance between stop. (au)

  5. Future Emissions from Railway Traffic

    DEFF Research Database (Denmark)

    Sorenson, Spencer C.

    1998-01-01

    In investigation of the expected development in factors which influence railway energy consumption and emissions. Traffic factors such as train speed, load, an occupancy were considered. Tehcnical factors such an emissions factors, fleet composition and train weight were also considered. An estim......In investigation of the expected development in factors which influence railway energy consumption and emissions. Traffic factors such as train speed, load, an occupancy were considered. Tehcnical factors such an emissions factors, fleet composition and train weight were also considered...

  6. An analysis of the traffic safety phenomenon.

    OpenAIRE

    Asmussen, E. & Kranenburg, A.

    1982-01-01

    The lack of traffic safety is a combination of the critical coincidence of circumstances in the traffic of incidents (near-accidents) and accidents with unwanted (permanent) consequences, such as fatalities, injured and disabled persons and material damage. This definition covers the whole of the critical coincidence of circumstances in traffic. In order to elucidate the phenomenon of traffic safety or the lack of traffic safety, accidents and incidents can be analysed.

  7. Economic Efficacy of Road Traffic Safety Measures

    OpenAIRE

    Gul, Ejaz

    2013-01-01

    The number of road traffic casualties is still very lofty and the trend shows a boost with each passing day. The road traffic accidents involve fatalities due to which economic resources are damaged and the productivity of the economy is correspondingly impaired. Costs resulting from traffic accidents represent the largest single part of the overall cost of traffic to the economy. Knowledge about the harm of these traffic accidents to the economy is essential if measures to reduce road traffi...

  8. Economic Evaluation of Road Traffic Safety Measures

    OpenAIRE

    Gul, Ejaz

    2013-01-01

    The number of road traffic casualties is still very lofty and the trend shows a boost with each passing day. The road traffic accidents involve fatalities due to which economic resources are damaged and the productivity of the economy is correspondingly impaired. Costs resulting from traffic accidents represent the largest single part of the overall cost of traffic to the economy. Knowledge about the harm of these traffic accidents to the economy is essential if measures to reduce road traffi...

  9. Simulation Model of Traffic Jam at Crossroads

    OpenAIRE

    Mladen Kalajžić; Katica Miloš; Mirela Muić

    2002-01-01

    Traffic congestion is one of the major problems in most cities.It is the consequence of unavoidable motorization, butalso, in many cases, of improper solutions considering constructionof roads or organisation of traffic.This paper deals with one problematic crossroad in thetown of Zadar in which traffic jams occur due to poor organisationof traffic. Using mathematical simulation, the first partproves that traffic jams will certainly occur, and in the secondpart, crossroads signalling is consi...

  10. Regulatory measures for traffic safety

    International Nuclear Information System (INIS)

    Veerapur, R.D.; Bharambe, S.D.; Patnaik, S.K.; Tandle, A.K.; Sonawane, K.A.; Kumar, Rajesh; Venkat Subramanian, K.

    2017-01-01

    Traffic safety is an issue related to occupational safety not restricted alone to the transportation but extends beyond. BARC has many facilities spread across large area in Mumbai and outside Mumbai. BARC deploys large number of buses, mini buses, jeeps and cars for commuting its employees to reach BARC and for commuting within BARC premises. Additionally, trucks, fire tenders, trailers etc. are also deployed for transportation of materials. No moving vehicle is ever free of the possibility of involvement in an accident. Vehicular accidents and the fatalities on road are the result of inter-play of a number of factors. The vehicle population has been steadily increasing with the pace picking up significantly in recent past. Increase in vehicle population in the face of limited road space used by a large variety of traffic has heightened the need and urgency for a well-thought-out road safety. Therefore, existence of regulatory authority to regulate traffic and vehicles to ensure safety of its employees and vehicles is very essential. BARC Traffic Safety Committee (BTSC), which is the regulating body for traffic safety is responsible for ensuring overall traffic safety. (author)

  11. Ebola virus glycoprotein needs an additional trigger, beyond proteolytic priming for membrane fusion.

    Directory of Open Access Journals (Sweden)

    Shridhar Bale

    2011-11-01

    Full Text Available Ebolavirus belongs to the family filoviridae and causes severe hemorrhagic fever in humans with 50-90% lethality. Detailed understanding of how the viruses attach to and enter new host cells is critical to development of medical interventions. The virus displays a trimeric glycoprotein (GP(1,2 on its surface that is solely responsible for membrane attachment, virus internalization and fusion. GP(1,2 is expressed as a single peptide and is cleaved by furin in the host cells to yield two disulphide-linked fragments termed GP1 and GP2 that remain associated in a GP(1,2 trimeric, viral surface spike. After entry into host endosomes, GP(1,2 is enzymatically cleaved by endosomal cathepsins B and L, a necessary step in infection. However, the functional effects of the cleavage on the glycoprotein are unknown.We demonstrate by antibody binding and Hydrogen-Deuterium Exchange Mass Spectrometry (DXMS of glycoproteins from two different ebolaviruses that although enzymatic priming of GP(1,2 is required for fusion, the priming itself does not initiate the required conformational changes in the ectodomain of GP(1,2. Further, ELISA binding data of primed GP(1,2 to conformational antibody KZ52 suggests that the low pH inside the endosomes also does not trigger dissociation of GP1 from GP2 to effect membrane fusion.The results reveal that the ebolavirus GP(1,2 ectodomain remains in the prefusion conformation upon enzymatic cleavage in low pH and removal of the glycan cap. The results also suggest that an additional endosomal trigger is necessary to induce the conformational changes in GP(1,2 and effect fusion. Identification of this trigger will provide further mechanistic insights into ebolavirus infection.

  12. The regulated expression, intracellular trafficking, and membrane recycling of the P2Y-like receptor GPR17 in Oli-neu oligodendroglial cells.

    Science.gov (United States)

    Fratangeli, Alessandra; Parmigiani, Elena; Fumagalli, Marta; Lecca, Davide; Benfante, Roberta; Passafaro, Maria; Buffo, Annalisa; Abbracchio, Maria P; Rosa, Patrizia

    2013-02-15

    GPR17 is a G-protein-coupled receptor that is activated by two classes of molecules: uracil-nucleotides and cysteinyl-leukotrienes. GPR17 is required for initiating the differentiation of oligodendrocyte precursors but has to be down-regulated to allow cells to undergo terminal maturation. Although a great deal has been learned about GPR17 expression and signaling, no information is currently available about the trafficking of native receptors after the exposure of differentiating oligodendrocytes to endogenous agonists. Here, we demonstrate that neuron-conditioned medium induces the transcriptionally mediated, time-regulated expression of GPR17 in Oli-neu, an oligodendrocyte precursor cell line, making these cells suitable for studying the endocytic traffic of the native receptor. Agonist-induced internalization, intracellular trafficking, and membrane recycling of GPR17 were analyzed by biochemical and immunofluorescence assays using an ad hoc-developed antibody against the extracellular N-terminal of GPR17. Both UDP-glucose and LTD(4) increased GPR17 internalization, although with different efficiency. At early time points, internalized GPR17 co-localized with transferrin receptor, whereas at later times it partially co-localized with the lysosomal marker Lamp1, suggesting that a portion of GPR17 is targeted to lysosomes upon ligand binding. An analysis of receptor recycling and degradation demonstrated that a significant aliquot of GPR17 is recycled to the cell surface. Furthermore, internalized GPR17 displayed a co-localization with the marker of the "short loop" recycling endosomes, Rab4, while showing very minor co-localization with the "long loop" recycling marker, Rab11. Our results provide the first data on the agonist-induced trafficking of native GPR17 in oligodendroglial cells and may have implications for both physiological and pathological myelination.

  13. Endosomes: guardians against [Ru(Phen)3]2+ photo-action in endothelial cells during in vivo pO2 detection?

    Science.gov (United States)

    Huntosova, Veronika; Stroffekova, Katarina; Wagnieres, Georges; Novotova, Marta; Nichtova, Zuzana; Miskovsky, Pavol

    2014-12-01

    Phototoxicity is a side-effect of in vitro and in vivo oxygen partial pressure (pO2) detection by luminescence lifetime measurement methods. Dichlorotris(1,10-phenanthroline)-ruthenium(ii) hydrate ([Ru(Phen)3]2+) is a water soluble pO2 probe associated with low phototoxicity, which we investigated in vivo in the chick's chorioallantoic membrane (CAM) after intravenous or topical administration and in vitro in normal human coronary artery endothelial cells (HCAEC). In vivo, the level of intravenously injected [Ru(Phen)3]2+ decreases within several minutes, whereas the maximum of its biodistribution is observed during the first 2 h after topical application. Both routes are followed by convergence to almost identical "intra/extra-vascular" levels of [Ru(Phen)3]2+. In vitro, we observed that [Ru(Phen)3]2+ enters cells via endocytosis and is then redistributed. None of the studied conditions induced modification of lysosomal or mitochondrial membranes without illumination. No nuclear accumulation was observed. Without illumination [Ru(Phen)3]2+ induces changes in endoplasmic reticulum (ER)-to-Golgi transport. The phototoxic effect of [Ru(Phen)3]2+ leads to more marked ultrastructural changes than administration of [Ru(Phen)3]2+ only (in the dark). These could lead to disruption of Ca2+ homeostasis accompanied by mitochondrial changes or to changes in secretory pathways. In conclusion, we have demonstrated that the intravenous injection of [Ru(Phen)3]2+ into the CAM model mostly leads to extracellular localization of [Ru(Phen)3]2+, while its topical application induces intracellular localization. We have shown in vivo that [Ru(Phen)3]2+ induces minimal photo-damage after illumination with light doses larger by two orders of magnitude than those used for pO2 measurements. This low phototoxicity is due to the fact that [Ru(Phen)3]2+ enters endothelial cells via endocytosis and is then redistributed towards peroxisomes and other endosomal and secretory vesicles before it

  14. Endosomal accumulation of APP in wobbler motor neurons reflects impaired vesicle trafficking: implications for human motor neuron disease.

    Science.gov (United States)

    Palmisano, Ralf; Golfi, Panagiota; Heimann, Peter; Shaw, Christopher; Troakes, Claire; Schmitt-John, Thomas; Bartsch, Jörg W

    2011-03-07

    The cause of sporadic amyotrophic lateral sclerosis (ALS) is largely unknown but hypotheses about disease mechanisms include oxidative stress, defective axonal transport, mitochondrial dysfunction and disrupted RNA processing. Whereas familial ALS is well represented by transgenic mutant SOD1 mouse models, the mouse mutant wobbler (WR) develops progressive motor neuron degeneration due to a point mutation in the Vps54 gene, and provides an animal model for sporadic ALS. VPS54 protein as a component of a protein complex is involved in vesicular Golgi trafficking; impaired vesicle trafficking might also be mechanistic in the pathogenesis of human ALS. In motor neurons of homozygous symptomatic WR mice, a massive number of endosomal vesicles significantly enlarged (up to 3 μm in diameter) were subjected to ultrastructural analysis and immunohistochemistry for the endosome-specific small GTPase protein Rab7 and for amyloid precursor protein (APP). Enlarged vesicles were neither detected in heterozygous WR nor in transgenic SOD1(G93A) mice; in WR motor neurons, numerous APP/Rab7-positive vesicles were observed which were mostly LC3-negative, suggesting they are not autophagosomes. We conclude that endosomal APP/Rab7 staining reflects impaired vesicle trafficking in WR mouse motor neurons. Based on these findings human ALS tissues were analysed for APP in enlarged vesicles and were detected in spinal cord motor neurons in six out of fourteen sporadic ALS cases. These enlarged vesicles were not detected in any of the familial ALS cases. Thus our study provides the first evidence for wobbler-like aetiologies in human ALS and suggests that the genes encoding proteins involved in vesicle trafficking should be screened for pathogenic mutations.

  15. The late endosomal HOPS complex anchors active G-protein signaling essential for pathogenesis in magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Ravikrishna Ramanujam

    Full Text Available In Magnaporthe oryzae, the causal ascomycete of the devastating rice blast disease, the conidial germ tube tip must sense and respond to a wide array of requisite cues from the host in order to switch from polarized to isotropic growth, ultimately forming the dome-shaped infection cell known as the appressorium. Although the role for G-protein mediated Cyclic AMP signaling in appressorium formation was first identified almost two decades ago, little is known about the spatio-temporal dynamics of the cascade and how the signal is transmitted through the intracellular network during cell growth and morphogenesis. In this study, we demonstrate that the late endosomal compartments, comprising of a PI3P-rich (Phosphatidylinositol 3-phosphate highly dynamic tubulo-vesicular network, scaffold active MagA/GαS, Rgs1 (a GAP for MagA, Adenylate cyclase and Pth11 (a non-canonical GPCR in the likely absence of AKAP-like anchors during early pathogenic development in M. oryzae. Loss of HOPS component Vps39 and consequently the late endosomal function caused a disruption of adenylate cyclase localization, cAMP signaling and appressorium formation. Remarkably, exogenous cAMP rescued the appressorium formation defects associated with VPS39 deletion in M. oryzae. We propose that sequestration of key G-protein signaling components on dynamic late endosomes and/or endolysosomes, provides an effective molecular means to compartmentalize and control the spatio-temporal activation and rapid downregulation (likely via vacuolar degradation of cAMP signaling amidst changing cellular geometry during pathogenic development in M. oryzae.

  16. Real-Time Microscopic Traffic Simulation and Optimization at Intersections with Video Traffic Detection

    OpenAIRE

    Liang, Zijun; Flötteröd, Yun-Pang; Chen, Hong; Sohr, Alexander; Bei, Xiaoxu; Bottazzi, Maximiliano; Trumpold, Jan

    2018-01-01

    In this paper, real-time vehicular data from video traffic detection (VTD) are used for minimizing the travel delay at intersections and a real-time traffic optimization model, based on the SUMO traffic simulation software, is established accordingly. The proposed model is implemented in a small industrial control computer which serves as the communication interface between the traffic signal control system, the traffic simulation and optimization model and the real-time video traffic detecti...

  17. Viral miRNAs exploiting the endosomal-exosomal pathway for intercellular cross-talk and immune evasion.

    Science.gov (United States)

    Pegtel, D Michiel; van de Garde, Martijn D B; Middeldorp, Jaap M

    2011-01-01

    The class of persistent gamma-herpesviruses has developed a variety of strategies that exploit host-cell regulatory pathways to ensure a long-lasting, well-balanced infection of their host. However when these pathways are deregulated, an otherwise harmless infection can lead to disease including cancer. We recently demonstrated that the human herpes virus 4 (HHV4) also known as Epstein-Barr virus (EBV), encodes for small regulatory non-coding microRNAs (miRNAs) that can be transferred from an infected cell to uninfected neighboring cells. Upon arrival these miRNAs are functional in the recipient cell, in that they are able to down regulate specific target genes. These secreted miRNAs are transported to recipient cells via small nano-sized vesicles (known as exosomes) that are of endosomal origin, formed as intraluminal vesicles (ILV) inside multivesicular bodies (MVB). One question that needs to be addressed is how viral miRNAs are sorted into these exosomes. Mature miRNAs, including those of viral origin, are loaded into RNA-induced silencing complexes (RISC) for gene silencing via blocking mRNA translation and/or initiating mRNA decay. Recent insights indicate that cytoplasmic RNA granules rich in RISC complexes are closely associated with endosomes. In fact, selective components of RISC, including GW182 and Argonaut proteins, miRNAs and mRNAs are present in exosomes. Thus miRNA function, mRNA stability and exosome-mediated intercellular communication converge at the level of endosomes. Since endosomes can be considered as key intracellular cross-roads that regulate communication of cells with their exterior, including neighboring cells, it is perhaps not surprising that viruses have found means to exploit this pathway to their benefit. Little is known however, how and if (micro) RNA species are specifically sorted into ILVs and what (micro)RNA-binding proteins are involved. Here we discuss recent developments relating to intracellular trafficking and function of

  18. Intelligent Traffic Light Based on PLC Control

    Science.gov (United States)

    Mei, Lin; Zhang, Lijian; Wang, Lingling

    2017-11-01

    The traditional traffic light system with a fixed control mode and single control function is contradicted with the current traffic section. The traditional one has been unable to meet the functional requirements of the existing flexible traffic control system. This paper research and develop an intelligent traffic light called PLC control system. It uses PLC as control core, using a sensor module for receiving real-time information of vehicles, traffic control mode for information to select the traffic lights. Of which control mode is flexible and changeable, and it also set the countdown reminder to improve the effectiveness of traffic lights, which can realize the goal of intelligent traffic diversion, intelligent traffic diversion.

  19. Traffic analysis and control using image processing

    Science.gov (United States)

    Senthilkumar, K.; Ellappan, Vijayan; Arun, A. R.

    2017-11-01

    This paper shows the work on traffic analysis and control till date. It shows an approach to regulate traffic the use of image processing and MATLAB systems. This concept uses computational images that are to be compared with original images of the street taken in order to determine the traffic level percentage and set the timing for the traffic signal accordingly which are used to reduce the traffic stoppage on traffic lights. They concept proposes to solve real life scenarios in the streets, thus enriching the traffic lights by adding image receivers like HD cameras and image processors. The input is then imported into MATLAB to be used. as a method for calculating the traffic on roads. Their results would be computed in order to adjust the traffic light timings on a particular street, and also with respect to other similar proposals but with the added value of solving a real, big instance.

  20. KSHV Entry and Trafficking in Target Cells—Hijacking of Cell Signal Pathways, Actin and Membrane Dynamics

    Directory of Open Access Journals (Sweden)

    Binod Kumar

    2016-11-01

    Full Text Available Kaposi’s sarcoma associated herpesvirus (KSHV is etiologically associated with human endothelial cell hyperplastic Kaposi’s sarcoma and B-cell primary effusion lymphoma. KSHV infection of adherent endothelial and fibroblast cells are used as in vitro models for infection and KSHV enters these cells by host membrane bleb and actin mediated macropinocytosis or clathrin endocytosis pathways, respectively. Infection in endothelial and fibroblast cells is initiated by the interactions between multiple viral envelope glycoproteins and cell surface associated heparan sulfate (HS, integrins (α3β1, αVβ3 and αVβ5, and EphA2 receptor tyrosine kinase (EphA2R. This review summarizes the accumulated studies demonstrating that KSHV manipulates the host signal pathways to enter and traffic in the cytoplasm of the target cells, to deliver the viral genome into the nucleus, and initiate viral gene expression. KSHV interactions with the cell surface receptors is the key platform for the manipulations of host signal pathways which results in the simultaneous induction of FAK, Src, PI3-K, Rho-GTPase, ROS, Dia-2, PKC ζ, c-Cbl, CIB1, Crk, p130Cas and GEF-C3G signal and adaptor molecules that play critical roles in the modulation of membrane and actin dynamics, and in the various steps of the early stages of infection such as entry and trafficking towards the nucleus. The Endosomal Sorting Complexes Required for Transport (ESCRT proteins are also recruited to assist in viral entry and trafficking. In addition, KSHV interactions with the cell surface receptors also induces the host transcription factors NF-κB, ERK1/2, and Nrf2 early during infection to initiate and modulate viral and host gene expression. Nuclear delivery of the viral dsDNA genome is immediately followed by the host innate responses such as the DNA damage response (DDR, inflammasome and interferon responses. Overall, these studies form the initial framework for further studies of

  1. KSHV Entry and Trafficking in Target Cells—Hijacking of Cell Signal Pathways, Actin and Membrane Dynamics

    Science.gov (United States)

    Kumar, Binod; Chandran, Bala

    2016-01-01

    Kaposi’s sarcoma associated herpesvirus (KSHV) is etiologically associated with human endothelial cell hyperplastic Kaposi’s sarcoma and B-cell primary effusion lymphoma. KSHV infection of adherent endothelial and fibroblast cells are used as in vitro models for infection and KSHV enters these cells by host membrane bleb and actin mediated macropinocytosis or clathrin endocytosis pathways, respectively. Infection in endothelial and fibroblast cells is initiated by the interactions between multiple viral envelope glycoproteins and cell surface associated heparan sulfate (HS), integrins (α3β1, αVβ3 and αVβ5), and EphA2 receptor tyrosine kinase (EphA2R). This review summarizes the accumulated studies demonstrating that KSHV manipulates the host signal pathways to enter and traffic in the cytoplasm of the target cells, to deliver the viral genome into the nucleus, and initiate viral gene expression. KSHV interactions with the cell surface receptors is the key platform for the manipulations of host signal pathways which results in the simultaneous induction of FAK, Src, PI3-K, Rho-GTPase, ROS, Dia-2, PKC ζ, c-Cbl, CIB1, Crk, p130Cas and GEF-C3G signal and adaptor molecules that play critical roles in the modulation of membrane and actin dynamics, and in the various steps of the early stages of infection such as entry and trafficking towards the nucleus. The Endosomal Sorting Complexes Required for Transport (ESCRT) proteins are also recruited to assist in viral entry and trafficking. In addition, KSHV interactions with the cell surface receptors also induces the host transcription factors NF-κB, ERK1/2, and Nrf2 early during infection to initiate and modulate viral and host gene expression. Nuclear delivery of the viral dsDNA genome is immediately followed by the host innate responses such as the DNA damage response (DDR), inflammasome and interferon responses. Overall, these studies form the initial framework for further studies of simultaneous targeting of

  2. The physics of traffic jams

    Science.gov (United States)

    Nagatani, Takashi

    2002-09-01

    Traffic flow is a kind of many-body system of strongly interacting vehicles. Traffic jams are a typical signature of the complex behaviour of vehicular traffic. Various models are presented to understand the rich variety of physical phenomena exhibited by traffic. Analytical and numerical techniques are applied to study these models. Particularly, we present detailed results obtained mainly from the microscopic car-following models. A typical phenomenon is the dynamical jamming transition from the free traffic (FT) at low density to the congested traffic at high density. The jamming transition exhibits the phase diagram similar to a conventional gas-liquid phase transition: the FT and congested traffic correspond to the gas and liquid phases, respectively. The dynamical transition is described by the time-dependent Ginzburg-Landau equation for the phase transition. The jamming transition curve is given by the spinodal line. The metastability exists in the region between the spinodal and phase separation lines. The jams in the congested traffic reveal various density waves. Some of these density waves show typical nonlinear waves such as soliton, triangular shock and kink. The density waves are described by the nonlinear wave equations: the Korteweg-de-Vries (KdV) equation, the Burgers equation and the Modified KdV equation. Subjects like the traffic flow such as bus-route system and pedestrian flow are touched as well. The bus-route system with many buses exhibits the bunching transition where buses bunch together with proceeding ahead. Such dynamic models as the car-following model are proposed to investigate the bunching transition and bus delay. A recurrent bus exhibits the dynamical transition between the delay and schedule-time phases. The delay transition is described in terms of the nonlinear map. The pedestrian flow also reveals the jamming transition from the free flow at low density to the clogging at high density. Some models are presented to study the

  3. Road traffic injuries in Colombia.

    Science.gov (United States)

    Rodríguez, Deysi Yasmin; Fernández, Francisco José; Acero Velásquez, Hugo

    2003-01-01

    Road traffic injuries are a leading public health problem in Colombia. Pedestrians are the most vulnerable road users, especially in the main urban centers of Bogotá, Medellin and Cali. Data analyzed in this report include official statistics from the National Police and the National Institute of Legal Medicine and Forensic Sciences for 1996-2000, and results of a study conducted at the National University of Colombia in 2000. Methods from the Highway Capacity Manual were used for determining physical and technical variables, and a Geographical Information System tool was used for the location and spatial analysis of the road traffic crashes. Pedestrians accounted for close to 32% of injuries and 40% of the deaths from road traffic crashes. The problem of road traffic crashes existed predominately in urban areas. In the main urban centers, pedestrians constituted nearly 68% of road traffic crash victims. The high level of risky road use behaviors demonstrated by pedestrians and drivers, and inadequate infrastructure for safe mobility of pedestrians in some sections of the road network were the main contributing factors. Major improvements were achieved in Bogotá following enhancements to the municipal transport system and other policies introduced since 1995. In conclusion, policies and programs for improving road safety, in particular pedestrian safety, and strengthening urban planning are top priority.

  4. Structuring of Road Traffic Flows

    Directory of Open Access Journals (Sweden)

    Planko Rožić

    2005-09-01

    Full Text Available Systemic traffic count on the Croatian road network hasbeen carried out for more than three decades in different ways.During this period a large number of automatic traffic countershave been installed, and they operate on different principles.The traffic count has been analyzed from the aspect of vehicleclassification. The count results can be only partly comparedsince they yield different structures of traffic flows. Special analysisrefers to the classification of vehicles by automatic trafficcounters.During the research, a database has been formed with physicalelements of vehicles of over five thousand vehicle types. Theresearch results prove that the vehicle length only is not sufficientfor the classification of vehicles, the way it is used in thepresent automatic traffic counts, but rather the number of axles,the wheelbase as well as the front and rear overhangs needto be considered as well. Therefore, the detector system shouldapply also the detector of axles.The results have been presented that were obtained as partof the program TEST- Technological, research, developmentproject supported by the Minist1y of Science, Education andSport.

  5. Simulation Model of Traffic Jam at Crossroads

    Directory of Open Access Journals (Sweden)

    Mladen Kalajžić

    2002-11-01

    Full Text Available Traffic congestion is one of the major problems in most cities.It is the consequence of unavoidable motorization, butalso, in many cases, of improper solutions considering constructionof roads or organisation of traffic.This paper deals with one problematic crossroad in thetown of Zadar in which traffic jams occur due to poor organisationof traffic. Using mathematical simulation, the first partproves that traffic jams will certainly occur, and in the secondpart, crossroads signalling is considered as a possible solutionwhich, if combined with intelligent control could significantlyimprove the organisation of traffic at this crossroads.

  6. Differential subcellular membrane recruitment of Src may specify its downstream signalling

    International Nuclear Information System (INIS)

    Diesbach, Philippe de; Medts, Thierry; Carpentier, Sarah; D'Auria, Ludovic; Van Der Smissen, Patrick; Platek, Anna; Mettlen, Marcel; Caplanusi, Adrian; Hove, Marie-France van den; Tyteca, Donatienne; Courtoy, Pierre J.

    2008-01-01

    Most Src family members are diacylated and constitutively associate with membrane 'lipid rafts' that coordinate signalling. Whether the monoacylated Src, frequently hyperactive in carcinomas, also localizes at 'rafts' remains controversial. Using polarized MDCK cells expressing the thermosensitive v-Src/tsLA31 variant, we here addressed how Src tyrosine-kinase activation may impact on its (i) membrane recruitment, in particular to 'lipid rafts'; (ii) subcellular localization; and (iii) signalling. The kinetics of Src-kinase thermoactivation correlated with its recruitment from the cytosol to sedimentable membranes where Src largely resisted solubilisation by non-ionic detergents at 4 deg. C and floated into sucrose density gradients like caveolin-1 and flotillin-2, i.e. 'lipid rafts'. By immunofluorescence, activated Src showed a dual localization, at apical endosomes/macropinosomes and at the apical plasma membrane. The plasma membrane Src pool did not colocalize with caveolin-1 and flotillin-2, but extensively overlapped GM1 labelling by cholera toxin. Severe (∼ 70%) cholesterol extraction with methyl-β-cyclodextrin (MβCD) did not abolish 'rafts' floatation, but strongly decreased Src association with floating 'rafts' and abolished its localization at the apical plasma membrane. Src activation independently activated first the MAP-kinase - ERK1/2 pathway, then the PI3-kinase - Akt pathway. MAP-kinase - ERK1/2 activation was insensitive to MβCD, which suppressed Akt phosphorylation and apical endocytosis induced by Src, both depending on the PI3-kinase pathway. We therefore suggest that activated Src is recruited at two membrane compartments, allowing differential signalling, first via ERK1/2 at 'non-raft' domains on endosomes, then via PI3-kinase-Akt on a distinct set of 'rafts' at the apical plasma membrane. Whether this model is applicable to c-Src remains to be examined

  7. Air traffic security act unconstitutional

    International Nuclear Information System (INIS)

    Heller, W.

    2006-01-01

    In the interest of more effective protective measures against terrorist attacks, the German federal parliament inter alia added a clause to the Air Traffic Security Act (Sec. 14, Para. 3, Air Traffic Security Act) empowering the armed forces to shoot down aircraft to be used as a weapon against human lives. In Germany, this defense possibility has been discussed also in connection with deliberate crashes of hijacked aircraft on nuclear power plants. The 1 st Division of the German Federal Constitutional Court, in its decision of February 15, 2006, ruled that Sec. 14, Para. 3, Air Traffic Security Act was incompatible with the Basic Law and thus was null and void (file No. 1 BvR 357/05) for two reasons: - There was no legislative authority on the part of the federal government. - The provision was incompatible with the basic right of life and the guarantee of human dignity as enshrined in the Basic Law. (orig.)

  8. On vehicular traffic data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brics, Martins; Mahnke, Reinhard [Institute of Physics, Rostock University (Germany)

    2011-07-01

    This contribution consists of analysis of empirical vehicular traffic flow data. The main focus lies on the Next Generation Simulation (NGSIM) data. The first findings show that there are artificial structures within the data due to errors of monitoring as well as smoothing position measurement data. As a result speed data show discretisation in 5 feet per second. The aim of this investigation is to construct microscopic traffic flow models which are in agreement to the analysed empirical data. The ongoing work follows the subject of research summarized by Christof Liebe in his PhD thesis entitled ''Physics of traffic flow: Empirical data and dynamical models'' (Rostock, 2010).

  9. Endosomal MR1 Trafficking Plays a Key Role in Presentation of Mycobacterium tuberculosis Ligands to MAIT Cells.

    Directory of Open Access Journals (Sweden)

    Melanie J Harriff

    2016-03-01

    Full Text Available Mucosal-Associated Invariant T (MAIT cells, present in high frequency in airway and other mucosal tissues, have Th1 effector capacity positioning them to play a critical role in the early immune response to intracellular pathogens, including Mycobacterium tuberculosis (Mtb. MR1 is a highly conserved Class I-like molecule that presents vitamin B metabolites to MAIT cells. The mechanisms for loading these ubiquitous small molecules are likely to be tightly regulated to prevent inappropriate MAIT cell activation. To define the intracellular localization of MR1, we analyzed the distribution of an MR1-GFP fusion protein in antigen presenting cells. We found that MR1 localized to endosomes and was translocated to the cell surface upon addition of 6-formyl pterin (6-FP. To understand the mechanisms by which MR1 antigens are presented, we used a lentiviral shRNA screen to identify trafficking molecules that are required for the presentation of Mtb antigen to HLA-diverse T cells. We identified Stx18, VAMP4, and Rab6 as trafficking molecules regulating MR1-dependent MAIT cell recognition of Mtb-infected cells. Stx18 but not VAMP4 or Rab6 knockdown also resulted in decreased 6-FP-dependent surface translocation of MR1 suggesting distinct pathways for loading of exogenous ligands and intracellular mycobacterially-derived ligands. We postulate that endosome-mediated trafficking of MR1 allows for selective sampling of the intracellular environment.

  10. Agent Based Individual Traffic guidance

    DEFF Research Database (Denmark)

    Wanscher, Jørgen Bundgaard

    2004-01-01

    can be obtained through cellular phone tracking or GPS systems. This information can then be used to provide individual traffic guidance as opposed to the mass information systems of today -- dynamic roadsigns and trafficradio. The goal is to achieve better usage of road and time. The main topic......When working with traffic planning or guidance it is common practice to view the vehicles as a combined mass. >From this models are employed to specify the vehicle supply and demand for each region. As the models are complex and the calculations are equally demanding the regions and the detail...

  11. Intelligent Ambulance Traffic Assistance System

    OpenAIRE

    RONOJOY GHOSH; VIVEK SHAH; HITESH AGARWAL; ASHUTOSH BHUSHAN; PRASUN KANTI GHOSH

    2013-01-01

    With the increase in traffic road density, several causalities occur due to delay in taking a patient to the hospital in an ambulance. In this paper, we have developed an algorithm to find the shortest path to reach the required destination. As required the software will identify the present location of the vehicle and ask the user for the destination. Then it will show all the available paths, highlighting the shortest one or in several cases the most optimum one. Further we made the traffic...

  12. Traffic and Granular Flow '11

    CERN Document Server

    Buslaev, Alexander; Bugaev, Alexander; Yashina, Marina; Schadschneider, Andreas; Schreckenberg, Michael; TGF11

    2013-01-01

    This book continues the biannual series of conference proceedings, which has become a classical reference resource in traffic and granular research alike. It addresses new developments at the interface between physics, engineering and computational science. Complex systems, where many simple agents, be they vehicles or particles, give rise to surprising and fascinating phenomena.   The contributions collected in these proceedings cover several research fields, all of which deal with transport. Topics include highway, pedestrian and internet traffic, granular matter, biological transport, transport networks, data acquisition, data analysis and technological applications. Different perspectives, i.e. modeling, simulations, experiments and phenomenological observations, are considered.

  13. Developmentally regulated GTP-binding protein 2 is required for stabilization of Rac1-positive membrane tubules.

    Science.gov (United States)

    Mani, Muralidharan; Lee, Unn Hwa; Yoon, Nal Ae; Yoon, Eun Hye; Lee, Byung Ju; Cho, Wha Ja; Park, Jeong Woo

    2017-11-04

    Previously we have reported that developmentally regulated GTP-binding protein 2 (DRG2) localizes on Rab5 endosomes and plays an important role in transferrin (Tfn) recycling. We here identified DRG2 as a key regulator of membrane tubule stability. At 30 min after Tfn treatment, DRG2 localized to membrane tubules which were enriched with phosphatidylinositol 4-monophosphate [PI(4)P] and did not contain Rab5. DRG2 interacted with Rac1 more strongly with GTP-bound Rac1 and tubular localization of DRG2 depended on Rac1 activity. DRG2 depletion led to destabilization of membrane tubules, while ectopic expression of DRG2 rescued the stability of the membrane tubules in DRG2-depleted cells. Our results reveal a novel mechanism for regulation of membrane tubule stability mediated by DRG2. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Robotic membranes

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette

    2008-01-01

    , Vivisection and Strange Metabolisms, were developed at the Centre for Information Technology and Architecture (CITA) at the Royal Danish Academy of Fine Arts in Copenhagen as a means of engaging intangible digital data with tactile physical material. As robotic membranes, they are a dual examination...

  15. Wireless traffic steering for green cellular networks

    CERN Document Server

    Zhang, Shan; Zhou, Sheng; Niu, Zhisheng; Shen, Xuemin (Sherman)

    2016-01-01

    This book introduces wireless traffic steering as a paradigm to realize green communication in multi-tier heterogeneous cellular networks. By matching network resources and dynamic mobile traffic demand, traffic steering helps to reduce on-grid power consumption with on-demand services provided. This book reviews existing solutions from the perspectives of energy consumption reduction and renewable energy harvesting. Specifically, it explains how traffic steering can improve energy efficiency through intelligent traffic-resource matching. Several promising traffic steering approaches for dynamic network planning and renewable energy demand-supply balancing are discussed. This book presents an energy-aware traffic steering method for networks with energy harvesting, which optimizes the traffic allocated to each cell based on the renewable energy status. Renewable energy demand-supply balancing is a key factor in energy dynamics, aimed at enhancing renewable energy sustainability to reduce on-grid energy consum...

  16. Highway and traffic engineering in developing countries

    DEFF Research Database (Denmark)

    Jørgensen, N O

    1996-01-01

    Describes road and traffic engineering methods and problems in developing countries as opposed to similar problems in industrialized countries......Describes road and traffic engineering methods and problems in developing countries as opposed to similar problems in industrialized countries...

  17. Active Traffic Capture for Network Forensics

    Science.gov (United States)

    Slaviero, Marco; Granova, Anna; Olivier, Martin

    Network traffic capture is an integral part of network forensics, but current traffic capture techniques are typically passive in nature. Under heavy loads, it is possible for a sniffer to miss packets, which affects the quality of forensic evidence.

  18. Genetic algorithms for air traffic assignment

    OpenAIRE

    Delahaye , Daniel; Alliot , Jean-Marc; Schoenauer , Marc; Farges , Jean-Loup

    1994-01-01

    International audience; In this paper, we show how genetic algorithms can be used to compute automatically a traffic assignment of aircraft on the air network to increase Air Traffic Control capacity in high density areas.

  19. Theoretical Considerations of Interdisciplinary Expertise in Traffic

    Directory of Open Access Journals (Sweden)

    Zdravko Peran

    2012-10-01

    Full Text Available Jnterdisciplinwy traffic expertise is being increasingly appliedin road traffic. It is not possible to determine whether anaccident had been intentionally set up without such expertise.The interdisciplinary expertise is the result of mutual work ofseveral different interdisciplinary experts. The paper analysesthe basic characteristics of interdisciplinary investigation ofset-up traffic accidents. Special attention has been paid to interdisciplinwyexpertise of set-up traffic accidents involving injuredpersons or fatalities.

  20. Holonic Models for Traffic Control Systems

    Science.gov (United States)

    Ciufudean, Calin; Filote, Constantin

    This paper proposes a new time-placed net model for traffic control systems, respectively railway control traffic systems. This model can be interpreted as a holonic one, and contains three modules: Transport Planning Module, Transport Control Module and Priority Control Module. For railway traffic systems we introduce a strategy in a timed-place Petri net model to solve collision and traffic jam problems.

  1. Continuous Change in Membrane and Membrane-Skeleton Organization During Development From Proerythroblast to Senescent Red Blood Cell

    Directory of Open Access Journals (Sweden)

    Giampaolo Minetti

    2018-03-01

    Full Text Available Within the context of erythropoiesis and the possibility of producing artificial red blood cells (RBCs in vitro, a most critical step is the final differentiation of enucleated erythroblasts, or reticulocytes, to a fully mature biconcave discocyte, the RBC. Reviewed here is the current knowledge about this fundamental maturational process. By combining literature data with our own experimental evidence we propose that the early phase in the maturation of reticulocytes to RBCs is driven by a membrane raft-based mechanism for the sorting of disposable membrane proteins, mostly the no longer needed transferrin receptor (TfR, to the multivesicular endosome (MVE as cargo of intraluminal vesicles that are subsequently exocytosed as exosomes, consistently with the seminal and original observation of Johnstone and collaborators of more than 30 years ago (Pan BT, Johnstone RM. Cell. 1983;33:967-978. According to a strikingly selective sorting process, the TfR becomes cargo destined to exocytosis while other molecules, including the most abundant RBC transmembrane protein, band 3, are completely retained in the cell membrane. It is also proposed that while this process could be operating in the early maturational steps in the bone marrow, additional mechanism(s must be at play for the final removal of the excess reticulocyte membrane that is observed to occur in the circulation. This processing will most likely require the intervention of the spleen, whose function is also necessary for the continuous remodeling of the RBC membrane all along this cell's circulatory life.

  2. Some random models in traffic science

    Energy Technology Data Exchange (ETDEWEB)

    Hjorth, U.

    1996-06-01

    We give an overview of stochastic models for the following traffic phenomena. Models for traffic flow including gaps and capacities for lanes, crossings and roundabouts. Models for wanted and achieved speed distributions. Mode selection models including dispersed equilibrium models and traffic accident models. Also some statistical questions are discussed. 60 refs, 1 tab

  3. Predicting Information Flows in Network Traffic.

    Science.gov (United States)

    Hinich, Melvin J.; Molyneux, Robert E.

    2003-01-01

    Discusses information flow in networks and predicting network traffic and describes a study that uses time series analysis on a day's worth of Internet log data. Examines nonlinearity and traffic invariants, and suggests that prediction of network traffic may not be possible with current techniques. (Author/LRW)

  4. Empirical analysis of heterogeneous traffic flow

    NARCIS (Netherlands)

    Ambarwati, L.; Pel, A.J.; Verhaeghe, R.J.; Van Arem, B.

    2013-01-01

    Traffic flow in many developing countries is strongly mixed comprising vehicle types, such as motorcycles, cars, (mini) buses, and trucks; furthermore, traffic flow typically exhibits free inter-lane exchanges. This phenomenon causes a complex vehicle interaction, rendering most existing traffic

  5. Models for Predictive Railway Traffic Management

    NARCIS (Netherlands)

    Kecman, P.

    2014-01-01

    The potential growth in transport demand in the next decade and beyond requires a change from reactive to proactive traffic control to maintain and improve the reliability of railway traffic. In order to enable an anticipative approach to traffic management, it is necessary to develop the tools for

  6. NEW POSSIBILITIES OF RAILWAY TRAFFIC CONTROL SYSTEMS

    Directory of Open Access Journals (Sweden)

    Lionginas LIUDVINAVIČIUS

    2016-06-01

    Full Text Available This article analyses the train traffic control systems in 1435 mm and 1520 mm gauge railways. The article analyses the aspects of train traffic control and locomotive energy saving by using the coordinates of track profile change that have been received from GPS. In the article, achievements of Lithuanian railways (LG in the area of train traffic control optimisation are presented.

  7. Light signals for road traffic control.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1981-01-01

    Signals for road traffic control are a major constituent of the modern traffic scene, particularly in built-up areas. A vast amount of research has been executed in the last two decennia, resulting in a fairly generally accepted view on what the requirements for effective traffic lights are. For the

  8. 30 CFR 56.9100 - Traffic control.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Traffic control. 56.9100 Section 56.9100 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Dumping Traffic Safety § 56.9100 Traffic control. To provide for the safe movement of self-propelled...

  9. ReFlow: Reports on Internet Traffic

    NARCIS (Netherlands)

    Hoogesteger, Martijn; de Oliveira Schmidt, R.; Sperotto, Anna; Pras, Aiko

    Internet traffic statistics can provide valuable information to network analysts and researchers about the traffic, technologies and main characteristics of today’s networks. For many years Internet2 maintained a public website with statistics about the traffic in the Abilene network. This site was

  10. TRAFFIC SIGN RECOGNATION WITH VIDEO PROCESSING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Musa AYDIN

    2013-01-01

    Full Text Available In this study, traffic signs are aimed to be recognized and identified from a video image which is taken through a video camera. To accomplish our aim, a traffic sign recognition program has been developed in MATLAB/Simulink environment. The target traffic sign are recognized in the video image with the developed program.

  11. Phase diagram distortion from traffic parameter averaging.

    NARCIS (Netherlands)

    Stipdonk, H. Toorenburg, J. van & Postema, M.

    2010-01-01

    Motorway traffic congestion is a major bottleneck for economic growth. Therefore, research of traffic behaviour is carried out in many countries. Although well describing the undersaturated free flow phase as an almost straight line in a (k,q)-phase diagram, congested traffic observations and

  12. Capturing Internet Traffic Dynamics through Graph Distances

    NARCIS (Netherlands)

    Uhlig, S.; Fu, B.; Jamakovic, A.

    2009-01-01

    Studies of the Internet have typically focused either on the routing system, i.e. the paths chosen to reach a given destination, or on the evolution of traffic on a physical link. In this paper, we combine routing and traffic, and study for the first time the evolution of the traffic on the Internet

  13. Multi-Layer Traffic Steering

    DEFF Research Database (Denmark)

    Fotiadis, Panagiotis; Polignano, Michele; Gimenez, Lucas Chavarria

    2013-01-01

    This paper investigates the potentials of traffic steering in the Radio Resource Control (RRC) Idle state by evaluating the Absolute Priorities (AP) framework in a multilayer Long Term Evolution (LTE) macrocell scenario. Frequency priorities are broadcast on the system information and RRC Idle...

  14. Next generation traffic management centers.

    Science.gov (United States)

    2013-05-01

    Traffic management centers (TMCs) are critical to providing mobility to millions of people travelling on high-volume roadways. In Virginia, as with most regions of the United States, TMCs were aggressively deployed in the late 1990s and early 2000s. ...

  15. Traffic at risk in Mediterranean

    International Nuclear Information System (INIS)

    Bilardo, U.; Mureddu, G.

    1993-01-01

    The Mediterranean Sea represents only about 0.7% of the planet's total water surface area, yet it is host to as much as one-quarter of the world's total maritime oil traffic. Statistics indicate that from 47 to 77,000 tonnes of crude oil are now being released annually into the Sea through accidental spills; and over the last decade, its tourism dependent coastlines have been fouled by the highest levels of tar contamination in the world. Oil carrier traffic, routed within the Sea's already overcrowded shipping lanes, is intense and this traffic is expected to increase, as a result of rises in world energy demand, to levels of from 7 to 8 million barrels a day. It has been estimated that, at the end of 1992, 90% of all large tankers operating in this area, will have reached a service life of 15-16 years which is very close to the average recommended life cycle limit of 15-20 years. Only 20% of the world's 3,000 tankers are currently equipped with double bottomed hulls. This paper uses these and other facts and figures to argue that the risks of future severe oil tanker accidents in the Mediterranean Sea are high, and that these must be countered with the development of a new set of stricter marine traffic safety regulations at the Italian, national, as well as, European level

  16. Statistical variances in traffic data

    OpenAIRE

    Krbalek, Milan; Seba, Petr

    2006-01-01

    We perform statistical analysis of the single-vehicle data measured on the Dutch freeway A9 and discussed in Ref. [2]. Using tools originating from the Random Matrix Theory we show that the significant changes in the statistics of the traffic data can be explained applying equilibrium statistical physics of interacting particles.

  17. Learning to Detect Traffic Signs

    DEFF Research Database (Denmark)

    Møgelmose, Andreas; Trivedi, Mohan M.; Moeslund, Thomas B.

    2012-01-01

    This study compares the performance of sign detection based on synthetic training data to the performance of detection based on real-world training images. Viola-Jones detectors are created for 4 different traffic signs with both synthetic and real data, and varying numbers of training samples. T...

  18. 2008 Michigan traffic crash facts

    Science.gov (United States)

    2009-03-18

    In keeping with recent trends, traffic fatalities in 2008 were down to 980, a 9.6 : percent decrease from last year. The total number of persons injured also declined : 7.5 percent to 74,568 and total crashes dropped 2.5 percent to 316,057. Most : no...

  19. 2009 Michigan traffic crash facts

    Science.gov (United States)

    2010-01-01

    In keeping with recent trends, traffic fatalities in 2009 were down to 871, a 11.1 : percent decrease from last year. The total number of persons injured also declined : 4.9 percent to 70,931 and total crashes dropped 7.9 percent to 290,978. Most : n...

  20. Variations in urban traffic volumes

    NARCIS (Netherlands)

    Thomas, Tom; Weijermars, Wendy; van Berkum, Eric C.

    2008-01-01

    Over the past few decades passenger transport has grown rapidly resulting in a multitude of problems including severe traffic congestion and pollution. It is expected that passenger transport will continue to grow rapidly in the future, which will worsen the situation even further. The traditional

  1. Strategies for the Activation and Release of the Membranolytic Peptide Melittin from Liposomes Using Endosomal pH as a Trigger

    NARCIS (Netherlands)

    Oude Blenke, E.; Sleszynska, M.; Evers, M. J W; Storm, G.; Martin, Nathaniel; Mastrobattista, E.

    2017-01-01

    Endosomolytic peptides are often coupled to drug delivery systems to enhance endosomal escape, which is crucial for the delivery of macromolecular drugs that are vulnerable to degradation in the endolysosomal pathway. Melittin is a 26 amino acid peptide derived from bee venom that has a very high

  2. Evolution of Traffic Jam in Traffic Flow Model

    Science.gov (United States)

    Fukui, Minoru; Ishibashi, Yoshihiro

    1993-11-01

    Traffic flow is simulated in a three-state cellular automaton model. In a two-dimensional cell without a crashed car, the ensemble average of the velocity of the cars is enhanced by the self-organization in the low-density phase of cars. In the high-density phase above p{=}0.5 of car density, the velocity is decreased and the system then degenerates into a global jamming phase in which all cars are stopped. A crashed car provides the seed of a jamming cluster, which grows into a global traffic jam even in the low-density phase. The growth of the jamming cluster is studied, and the time dependence of the number of jamming cars and the scaling law for the cell sizes are discussed.

  3. Mimicking cellular transport mechanism in stem cells through endosomal escape of new peptide-coated quantum dots.

    Science.gov (United States)

    Narayanan, Karthikeyan; Yen, Swee Kuan; Dou, Qingqing; Padmanabhan, Parasuraman; Sudhaharan, Thankiah; Ahmed, Sohail; Ying, Jackie Y; Selvan, Subramanian Tamil

    2013-01-01

    Protein transport is an important phenomenon in biological systems. Proteins are transported via several mechanisms to reach their destined compartment of cell for its complete function. One such mechanism is the microtubule mediated protein transport. Up to now, there are no reports on synthetic systems mimicking the biological protein transport mechanism. Here we report a highly efficient method of mimicking the microtubule mediated protein transport using newly designed biotinylated peptides encompassing a microtubule-associated sequence (MTAS) and a nuclear localization signaling (NLS) sequence, and their final conjugation with streptavidin-coated CdSe/ZnS quantum dots (QDs). Our results demonstrate that these novel bio-conjugated QDs enhance the endosomal escape and promote targeted delivery into the nucleus of human mesenchymal stem cells via microtubules. Mimicking the cellular transport mechanism in stem cells is highly desirable for diagnostics, targeting and therapeutic applications, opening up new avenues in the area of drug delivery.

  4. Endosomal Escape and Delivery of CRISPR/Cas9 Genome Editing Machinery Enabled by Nanoscale Zeolitic Imidazolate Framework

    KAUST Repository

    Alsaiari, Shahad K.

    2017-12-22

    CRISPR/Cas9 is a combined protein (Cas9) and an engineered single guide RNA (sgRNA) genome editing platform that offers revolutionary solutions to genetic diseases. It has, however, a double delivery problem owning to the large protein size and the highly charged RNA component. In this work, we report the first example of CRISPR/Cas9 encapsulated by nanoscale zeolitic imidazole frameworks (ZIFs) with a loading efficiency of 17% and enhanced endosomal escape promoted by the protonated imidazole moieties. The gene editing potential of CRISPR/Cas9 encapsulated by ZIF-8 (CC-ZIFs) is further verified by knocking down the gene expression of green fluorescent protein by 37% over 4 days employing CRISPR/Cas9 machinery. The nanoscale CC-ZIFs are biocompatible and easily scaled-up offering excellent loading capacity and controlled co-delivery of intact Cas9 protein and sgRNA.

  5. Structure and Function of the Membrane Deformation AAA ATPase Vps4

    Science.gov (United States)

    Hill, Christopher P.; Babst, Markus

    2011-01-01

    The ATPase Vps4 belongs to the type-I AAA family of proteins. Vps4 functions together with a group of proteins referred to as ESCRTs in membrane deformation and fission events. These cellular functions include vesicle formation at the endosome, cytokinesis and viral budding. The highly dynamic quaternary structure of Vps4 and its interactions with a network of regulators and co-factors have made the analysis of this ATPase challenging. Nevertheless, recent advances in the understanding of the cell biology of Vps4 together with structural information and in vitro studies are guiding mechanistic models of this ATPase. PMID:21925211

  6. The car following model considering traffic jerk

    Science.gov (United States)

    Ge, Hong-Xia; Zheng, Peng-jun; Wang, Wei; Cheng, Rong-Jun

    2015-09-01

    Based on optimal velocity car following model, a new model considering traffic jerk is proposed to describe the jamming transition in traffic flow on a highway. Traffic jerk means the sudden braking and acceleration of vehicles, which has a significant impact on traffic movement. The nature of the model is researched by using linear and nonlinear analysis method. A thermodynamic theory is formulated to describe the phase transition and critical phenomenon in traffic flow. The time-dependent Ginzburg-Landau (TDGL) equation and the modified Korteweg-de Vries (mKdV) equation are derived to describe the traffic flow near the critical point and the traffic jam. In addition, the connection between the TDGL and the mKdV equations are also given.

  7. Traffic pathways of Plasmodium vivax antigens during intraerythrocytic parasite development.

    Science.gov (United States)

    Bracho, Carmen; Dunia, Irene; De, La Rosa Mercedes; Benedetti, Ennio-Lucio; Perez, Hilda A

    2002-03-01

    We investigated the secretory traffic of a Plasmodium vivax antigen (Pv-148) synthesised by the parasite during the blood cycle, exported into the host cell cytosol and then transported to the surface membrane of the infected erythrocyte. Studies of the ultrastructure of erythrocytes infected with P. vivax showed that intracellular schizogony is accompanied by the generation of parasite-induced membrane profiles in the erythrocyte cytoplasm. These structures are detectable soon after the parasite invades the erythrocyte and develop an elaborate organisation, leading to a tubovesicular membrane (TVM) network, in erythrocytes infected with mature trophozoites. Interestingly, the clefts formed stacked, flattened cisternae resembling a classical Golgi apparatus. The TVM network stained with the fluorescent Golgi marker Bodipy-ceramide. Specific immunolabelling showed that Pv-148 was transferred from the parasite to the erythrocyte surface membrane via the clefts and the TVM network. These findings suggest that the TVM network is part of the secretory pathways involved in parasite protein transport across the Plasmodium-infected erythrocyte and that Pv- 148 may represent a marker that links the parasite with the host cell cytoplasm and, in turn, with the extracellular milieu.

  8. Agent Based Individual Traffic Guidance

    DEFF Research Database (Denmark)

    Wanscher, Jørgen

    This thesis investigates the possibilities in applying Operations Research (OR) to autonomous vehicular traffic. The explicit difference to most other research today is that we presume that an agent is present in every vehicle - hence Agent Based Individual Traffic guidance (ABIT). The next...... evolutionary step for the in-vehicle route planners is the introduction of two-way communication. We presume that the agent is capable of exactly this. Based on this presumption we discuss the possibilities and define a taxonomy and use this to discuss the ABIT system. Based on a set of scenarios we conclude...... that the system can be divided into two separate constituents. The immediate dispersion, which is used for small areas and quick response, and the individual alleviation, which considers the longer distance decision support. Both of these require intrinsicate models and cost functions which at the beginning...

  9. Modelling traffic pollution in streets

    Energy Technology Data Exchange (ETDEWEB)

    Berkowicz, R.; Hertel, O. [National Environmental Research Inst., Dept. of Atmospheric Environment, Roskilde (Denmark); Larsen, S.E.; Soerensen, N.N.; Nielsen, M. [Risoe National Lab., Dept. of Meteorology and Wind Energy, Roskilde (Denmark)

    1997-01-01

    This report concerns mainly the subject related to modelling air pollution from traffic in urban streets. A short overview is presented over the theoretical aspects and examples of most commonly used methods and models are given. Flow and dispersion conditions in street canyons are discussed and the presentation is substantiated with the analysis of the experimental data. The main emphasis is on the modelling methods that are suitable for routine applications and a more detailed presentation is given of the Operational Street Pollution Model (OSPM), which was developed by the National Environmental Research Institute. The model is used for surveillance of air pollution from traffic in Danish cities and also for special air pollution studies. (au) 76 refs.

  10. Container Traffic In European Ports

    Directory of Open Access Journals (Sweden)

    Elen Twrdy

    2004-03-01

    Full Text Available Over the last fifteen years the European transport markethas witnessed a growth of container traffic which today reachesapproximately 50 million TEU per year. From 1997 to 2002,container traffic in the northern European ports increased from14 to 20.6 million TEU per year, in the ports of the westernMedite"anean from 6 to 10 million TEU per year, and in thenorthern Adriatic ports from 0. 69 to 0. 74 million TEU per year.The ports of the northern Adriatic are located in three states(Slovenia, Croatia and Italy with different statuses in relationto the common European market. In addition, different developmentlevels of these states are reflected in different levels ofinternational commercial exchange, the development of the existinginfrastructure and plans for the construction of new infrastructures.However, all three countries share a common goaltoincrease their competitiveness in comparison with the westemEuropean ports.

  11. Crowding effects in vehicular traffic.

    Directory of Open Access Journals (Sweden)

    Jay Samuel L Combinido

    Full Text Available While the impact of crowding on the diffusive transport of molecules within a cell is widely studied in biology, it has thus far been neglected in traffic systems where bulk behavior is the main concern. Here, we study the effects of crowding due to car density and driving fluctuations on the transport of vehicles. Using a microscopic model for traffic, we found that crowding can push car movement from a superballistic down to a subdiffusive state. The transition is also associated with a change in the shape of the probability distribution of positions from a negatively-skewed normal to an exponential distribution. Moreover, crowding broadens the distribution of cars' trap times and cluster sizes. At steady state, the subdiffusive state persists only when there is a large variability in car speeds. We further relate our work to prior findings from random walk models of transport in cellular systems.

  12. Sintesis Membran Silika Kitosan Dari Abu Ampas Tebu (Bagasse

    Directory of Open Access Journals (Sweden)

    Sjamsiah Sjamsiah

    2017-06-01

    Full Text Available Membrane is a polymer layer that can be used in the process adsorbsi metal ions. Membrane can be synthesized from silica dust bagasse that termodifikasi kitosan. The purpose of this research is to know the impact of the addition of a variety of silicate on the characteristics of the membrane silika-kitosan the bagasse to the adsorpsi metal ions Pb. The content of silica in the bagasse to 73, 80 %. Membrane kitosan-silika be made with different variations of the composition of which is 1 : 1 ; 1 : 1, 5 ; 1 : 2 ; 1 : 2, 5 and 1 : 3 and the ability of the adsorpsi the metal Pb in a row of 41 %, 43, 76 %, 54, 88 %, 38, 36 % and 39, 6 %.. The application of membrane to the process adsorpsi metal ions Pb by membrane said with a ratio of 1 : 2 to concentrate Pb the beginning of the 50 parts per million. The use of membrane to the process readsorpsi to do with how to choose a membrane that has the adsorpsi of the membrane with a ratio of 1:2 be able to absorb metal Pb of 1 ppm. Membrane that has been used can be used with traffic readsorpsi, 2 % in the membrane of every 1 : 2.

  13. Traffic control: nursing practice calendar.

    Science.gov (United States)

    Rus, Linda; Cheesebro, Kathy; Nagra, Erica; Neff, Alaina

    2013-01-01

    Educating nurses on the multitude of new and updated best practices, changes in regulatory standards, new equipment, and enhanced technology creates an "information traffic jam." Multiple practice changes occurring simultaneously pose challenges for nurses to retain information to practice safely and effectively. An absence of coordination between various nursing and allied health teaching initiatives compounds this problem. A nursing practice calendar was developed to facilitate the prioritization, communication, and education of hospital-wide initiatives affecting nursing practice.

  14. Active Traffic Management in Michigan

    OpenAIRE

    Johnson, Pat

    2018-01-01

    The US 23 Flex Route is the first active traffic management (ATM) project in the state of Michigan. This route utilizes overhead lane control gantries equipped with various intelligent transportation system (ITS) equipment to facilitate the following ATM strategies: dynamic shoulder use, dynamic lane control, variable speed advisories, and queue warning. The focus of this presentation is how the project team overcame several challenges during the planning, design, and system management phases...

  15. A Leak Pathway for Luminal Protons in Endosomes Drives Oncogenic Signaling in Glioblastoma

    Science.gov (United States)

    Kondapalli, Kalyan C.; Llongueras, Jose P.; Capilla-González, Vivian; Prasad, Hari; Hack, Anniesha; Smith, Christopher; Guerrero-Cázares, Hugo; Quiñones-Hinojosa, Alfredo; Rao, Rajini

    2015-01-01

    Epidermal growth factor receptor (EGFR) signaling is a potent driver of glioblastoma, a malignant and lethal form of brain cancer. Disappointingly, inhibitors targeting receptor tyrosine kinase activity are not clinically effective, and EGFR persists on the plasma membrane to maintain tumor growth and invasiveness. Here we show that endolysosomal pH is critical for receptor sorting and turnover. By functioning as a leak pathway for protons, the Na+/H+ exchanger NHE9 limits luminal acidification to circumvent EGFR turnover and prolong downstream signaling pathways that drive tumor growth and migration. In glioblastoma, NHE9 expression is associated with stem/progenitor characteristics, radiochemoresistance, poor prognosis and invasive growth in vitro and in vivo. Silencing or inhibition of NHE9 in brain tumor initiating cells attenuates tumorsphere formation and improves efficacy of EGFR inhibitor. Thus, NHE9 mediates inside-out control of oncogenic signaling and is a highly druggable target for pan-specific receptor clearance in cancer therapy. PMID:25662504

  16. Traffic Conflict Detection and Resolution (CDR) in ERTMS System

    OpenAIRE

    Zhu, Taomei

    2016-01-01

    This thesis addresses the conflict problem in railway traffic. Although the railway traffic management nowadays can partly be carried out by a traffic control system (or a traffic management system), the control system is insufficient to make operational decisions once the occurrence of disturbance gets frequent, particularly at the junctions with dense traffic. Traffic conflicts may arise along with the disturbances. The traffic controllers (and dispatchers) are often required to handle thes...

  17. Endocytosis of GPI-linked membrane folate receptor-alpha.

    Science.gov (United States)

    Rijnboutt, S; Jansen, G; Posthuma, G; Hynes, J B; Schornagel, J H; Strous, G J

    1996-01-01

    GPI-linked membrane folate receptors (MFRs) have been implicated in the receptor-mediated uptake of reduced folate cofactors and folate-based chemotherapeutic drugs. We have studied the biosynthetic transport to and internalization of MFR isoform alpha in KB-cells. MFR-alpha was synthesized as a 32-kD protein and converted in a maturely glycosylated 36-38-kD protein 1 h after synthesis. 32-kD MFR-alpha was completely soluble in Triton X-100 at 0 degree C. In contrast, only 33% of the 36-38-kD species could be solubilized at these conditions whereas complete solubilization was obtained in Triton X-100 at 37 degrees C or in the presence of saponin at 0 degree C. Similar solubilization characteristics were found when MFR-alpha at the plasma membrane was labeled with a crosslinkable 125I-labeled photoaffinity-analog of folic acid as a ligand. Triton X-100-insoluble membrane domains containing MFR-alpha could be separated from soluble MFR-alpha on sucrose flotation gradients. Only Triton X-100 soluble MFR-alpha was internalized from the plasma membrane. The reduced-folate-carrier, an integral membrane protein capable of translocating (anti-)folates across membranes, was completely excluded from the Triton X-100-resistant membrane domains. Internalized MFR-alpha recycled slowly to the cell surface during which it remained soluble in Triton X-100 at 0 degree C. Using immunoelectron microscopy, we found MFR-alpha along the entire endocytic pathway: in clathrin-coated buds and vesicles, and in small and large endosomal vacuoles. In conclusion, our data indicate that a large fraction, if not all, of internalizing MFR-alpha bypasses caveolae.

  18. Membrane proteomics of phagosomes suggests a connection to autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Wenqing; Sheu, Leslie; Liu, Jun; Smart, Brian; Petzold, Christopher J.; Hsieh, Tsung-yen; Pitcher, Austin; Keasling*, Jay D.; Bertozzi*, Carolyn R.

    2008-11-25

    Phagocytosis is the central process by which macrophage cellsinternalize and eliminate infectious microbes as well as apoptoticcells. During maturation, phagosomes containing engulfed particlesfuse with various endosomal compartments through theaction of regulatory molecules on the phagosomal membrane. Inthis study, we performed a proteomic analysis of the membranefraction from latex bead-containing (LBC) phagosomes isolatedfrom macrophages. The profile, which comprised 546 proteins,suggests diverse functions of the phagosome and potential connectionsto secretory processes, toll-like receptor signaling, andautophagy. Many identified proteins were not previously knownto reside in the phagosome. We characterized several proteins inLBC phagosomes that change in abundance on induction of autophagy,a process that has been previously implicated in the hostdefense against microbial pathogens. These observations suggestcrosstalk between autophagy and phagocytosis that may be relevantto the innate immune response of macrophages.

  19. Evolutionary analysis of the ENTH/ANTH/VHS protein superfamily reveals a coevolution between membrane trafficking and metabolism

    Directory of Open Access Journals (Sweden)

    De Craene Johan-Owen

    2012-07-01

    Full Text Available Abstract Background Membrane trafficking involves the complex regulation of proteins and lipids intracellular localization and is required for metabolic uptake, cell growth and development. Different trafficking pathways passing through the endosomes are coordinated by the ENTH/ANTH/VHS adaptor protein superfamily. The endosomes are crucial for eukaryotes since the acquisition of the endomembrane system was a central process in eukaryogenesis. Results Our in silico analysis of this ENTH/ANTH/VHS superfamily, consisting of proteins gathered from 84 complete genomes representative of the different eukaryotic taxa, revealed that genomic distribution of this superfamily allows to discriminate Fungi and Metazoa from Plantae and Protists. Next, in a four way genome wide comparison, we showed that this discriminative feature is observed not only for other membrane trafficking effectors, but also for proteins involved in metabolism and in cytokinesis, suggesting that metabolism, cytokinesis and intracellular trafficking pathways co-evolved. Moreover, some of the proteins identified were implicated in multiple functions, in either trafficking and metabolism or trafficking and cytokinesis, suggesting that membrane trafficking is central to this co-evolution process. Conclusions Our study suggests that membrane trafficking and compartmentalization were not only key features for the emergence of eukaryotic cells but also drove the separation of the eukaryotes in the different taxa.

  20. Regulation of B cell differentiation by intracellular membrane associated proteins and microRNAs: role in the antibody response

    Directory of Open Access Journals (Sweden)

    Zheng eLou

    2015-10-01

    Full Text Available B cells are central to adaptive immunity and their functions in antibody responses are exquisitely regulated. As suggested by recent findings, B cell differentiation is mediated by intracellular membrane structures (including endosomes, lysosomes and autophagosomes and protein factors specifically associated with these membranes, including Rab7, Atg5 and Atg7. These factors participate in vesicle formation/trafficking, signal transduction and induction of gene expression to promote antigen presentation, CSR/SHM, and generation/maintenance of plasma cells and memory B cells. Their expression is induced in B cells activated to differentiate and further fine-tuned by immune-modulating microRNAs, which coordinates CSR/SHM, plasma cell differentiation and memory B cell differentiation. These short non-coding RNAs would individually target multiple factors associated with the same intracellular membrane compartments and collaboratively target a single factor in addition to regulate AID and Blimp-1. These, together with regulation of microRNA biogenesis and activities by endosomes and autophagosomes, show that intracellular membranes and microRNAs, two broadly relevant cell constituents, play important roles in balancing gene expression to specify B cell differentiation processes for optimal antibody responses.

  1. Analysis of vehicular traffic flow in the major areas of Kuala Lumpur utilizing open-traffic

    Science.gov (United States)

    Manogaran, Saargunawathy; Ali, Muhammad; Yusof, Kamaludin Mohamad; Suhaili, Ramdhan

    2017-09-01

    Vehicular traffic congestion occurs when a large number of drivers are overcrowded on the road and the traffic flow does not run smoothly. Traffic congestion causes chaos on the road and interruption to daily activities of users. Time consumed on road give lots of negative effects on productivity, social behavior, environmental and cost to economy. Congestion is worsens and leads to havoc during the emergency such as flood, accidents, road maintenance and etc., where behavior of traffic flow is always unpredictable and uncontrollable. Real-time and historical traffic data are critical inputs for most traffic flow analysis applications. Researcher attempt to predict traffic using simulations as there is no exact model of traffic flow exists due to its high complexity. Open Traffic is an open source platform available for traffic data analysis linked to Open Street Map (OSM). This research is aimed to study and understand the Open Traffic platform. The real-time traffic flow pattern in Kuala Lumpur area was successfully been extracted and analyzed using Open Traffic. It was observed that the congestion occurs on every major road in Kuala Lumpur and most of it owes to the offices and the economic and commercial centers during rush hours. At some roads the congestion occurs at night due to the tourism activities.

  2. Traffic and Granular Flow ’07

    CERN Document Server

    Chevoir, François; Gondret, Philippe; Lassarre, Sylvain; Lebacque, Jean-Patrick; Schreckenberg, Michael

    2009-01-01

    This book covers several research fields, all of which deal with transport. Three main topics are treated: road traffic, granular matter, and biological transport. Different points of view, i.e. modelling, simulations, experiments, and phenomenological observations, are considered. Sub-topics include: highway or urban vehicular traffic (dynamics of traffic, macro/micro modelling, measurements, data analysis, security issues, psychological issues), pedestrian traffic, animal traffic (e.g. social insects), collective motion in biological systems (molecular motors...), granular flow (dense flows, intermittent flows, solid/liquid transition, jamming, force networks, fluid and solid friction), networks (biological networks, urban traffic, the internet, vulnerability of networks, optimal transport networks) and cellular automata applied to the various aforementioned fields.

  3. 11th Traffic and Granular Flow Conference

    CERN Document Server

    Daamen, Winnie

    2016-01-01

    The Conference on Traffic and Granular Flow brings together international researchers from different fields ranging from physics to computer science and engineering to discuss the latest developments in traffic-related systems. Originally conceived to facilitate new ideas by considering the similarities of traffic and granular flow, TGF'15, organised by Delft University of Technology, now covers a broad range of topics related to driven particle and transport systems. Besides the classical topics of granular flow and highway traffic, its scope includes data transport (Internet traffic), pedestrian and evacuation dynamics, intercellular transport, swarm behaviour and the collective dynamics of other biological systems. Recent advances in modelling, computer simulation and phenomenology are presented, and prospects for applications, for example to traffic control, are discussed. The conference explores the interrelations between the above-mentioned fields and offers the opportunity to stimulate interdisciplinar...

  4. A System for Traffic Violation Detection

    Directory of Open Access Journals (Sweden)

    Nourdine Aliane

    2014-11-01

    Full Text Available This paper describes the framework and components of an experimental platform for an advanced driver assistance system (ADAS aimed at providing drivers with a feedback about traffic violations they have committed during their driving. The system is able to detect some specific traffic violations, record data associated to these faults in a local data-base, and also allow visualization of the spatial and temporal information of these traffic violations in a geographical map using the standard Google Earth tool. The test-bed is mainly composed of two parts: a computer vision subsystem for traffic sign detection and recognition which operates during both day and nighttime, and an event data recorder (EDR for recording data related to some specific traffic violations. The paper covers firstly the description of the hardware architecture and then presents the policies used for handling traffic violations.

  5. Traffic Flow Management Wrap-Up

    Science.gov (United States)

    Grabbe, Shon

    2011-01-01

    Traffic Flow Management involves the scheduling and routing of air traffic subject to airport and airspace capacity constraints, and the efficient use of available airspace. Significant challenges in this area include: (1) weather integration and forecasting, (2) accounting for user preferences in the Traffic Flow Management decision making process, and (3) understanding and mitigating the environmental impacts of air traffic on the environment. To address these challenges, researchers in the Traffic Flow Management area are developing modeling, simulation and optimization techniques to route and schedule air traffic flights and flows while accommodating user preferences, accounting for system uncertainties and considering the environmental impacts of aviation. This presentation will highlight some of the major challenges facing researchers in this domain, while also showcasing recent innovations designed to address these challenges.

  6. Classification and Analysis of Computer Network Traffic

    DEFF Research Database (Denmark)

    Bujlow, Tomasz

    2014-01-01

    for traffic classification, which can be used for nearly real-time processing of big amounts of data using affordable CPU and memory resources. Other questions are related to methods for real-time estimation of the application Quality of Service (QoS) level based on the results obtained by the traffic...... to create realistic traffic profiles of the selected applications, which can server as the training data for MLAs. We assessed the usefulness of C5.0 Machine Learning Algorithm (MLA) in the classification of computer network traffic. We showed that the application-layer payload is not needed to train the C5......Traffic monitoring and analysis can be done for multiple different reasons: to investigate the usage of network resources, assess the performance of network applications, adjust Quality of Service (QoS) policies in the network, log the traffic to comply with the law, or create realistic models...

  7. Traffic analysis toolbox volume XI : weather and traffic analysis, modeling and simulation.

    Science.gov (United States)

    2010-12-01

    This document presents a weather module for the traffic analysis tools program. It provides traffic engineers, transportation modelers and decisions makers with a guide that can incorporate weather impacts into transportation system analysis and mode...

  8. Real-Time Corrected Traffic Correlation Model for Traffic Flow Forecasting

    Directory of Open Access Journals (Sweden)

    Hua-pu Lu

    2015-01-01

    Full Text Available This paper focuses on the problems of short-term traffic flow forecasting. The main goal is to put forward traffic correlation model and real-time correction algorithm for traffic flow forecasting. Traffic correlation model is established based on the temporal-spatial-historical correlation characteristic of traffic big data. In order to simplify the traffic correlation model, this paper presents correction coefficients optimization algorithm. Considering multistate characteristic of traffic big data, a dynamic part is added to traffic correlation model. Real-time correction algorithm based on Fuzzy Neural Network is presented to overcome the nonlinear mapping problems. A case study based on a real-world road network in Beijing, China, is implemented to test the efficiency and applicability of the proposed modeling methods.

  9. Seat belt, DWI, and other traffic violations among recent immigrants in Florida and Tennessee : traffic tech.

    Science.gov (United States)

    2013-05-01

    The rapidly changing racial and ethnic composition of the : U.S. population is important to traffic safety specialists : because involvement in fatal traffic crashes varies across : racial and ethnic groups. Some research suggests that certain : mino...

  10. Traffic Management for Satellite-ATM Networks

    Science.gov (United States)

    Goyal, Rohit; Jain, Raj; Fahmy, Sonia; Vandalore, Bobby; Goyal, Mukul

    1998-01-01

    Various issues associated with "Traffic Management for Satellite-ATM Networks" are presented in viewgraph form. Specific topics include: 1) Traffic management issues for TCP/IP based data services over satellite-ATM networks; 2) Design issues for TCP/IP over ATM; 3) Optimization of the performance of TCP/IP over ATM for long delay networks; and 4) Evaluation of ATM service categories for TCP/IP traffic.

  11. The Technical Issues Of Traffic Analysis

    Directory of Open Access Journals (Sweden)

    Pavel Vladimirovich Yegorov

    2016-03-01

    Full Text Available The main problem in the analysis of Internet traffic associated with a large number of network applications, complex patterns of communication and a significant amounts of information. The definition of the category of traffic using the analysis of the number of port is irrelevant for P2P applications, streaming data and many other types of network applications. The article describes some of technical issues related to the analysis of Internet traffic.

  12. Methuosis: nonapoptotic cell death associated with vacuolization of macropinosome and endosome compartments.

    Science.gov (United States)

    Maltese, William A; Overmeyer, Jean H

    2014-06-01

    Apoptosis is the most widely recognized form of physiological programmed cell death. During the past three decades, various nonapoptotic forms of cell death have gained increasing attention, largely because of their potential importance in pathological processes, toxicology, and cancer therapy. A recent addition to the panoply of cell death phenotypes is methuosis. The neologism is derived from the Greek methuo (to drink to intoxication) because the hallmark of this form of cell death is displacement of the cytoplasm by large fluid-filled vacuoles derived from macropinosomes. The demise of the cell resembles many forms of necrosis, insofar as there is a loss of metabolic capacity and plasma membrane integrity, without the cell shrinkage and nuclear fragmentation associated with apoptosis. Methuosis was initially defined in glioblastoma cells after ectopic expression of activated Ras, but recent reports have described small molecules that can induce the features of methuosis in a broad spectrum of cancer cells, including those that are resistant to conventional apoptosis-inducing drugs. This review summarizes the available information about the distinguishing morphological characteristics and underlying mechanisms of methuosis. We compare and contrast methuosis with other cytopathological conditions in which accumulation of clear cytoplasmic vacuoles is a prominent feature. Finally, we highlight key questions that need to be answered to determine whether methuosis truly represents a unique form of regulated cell death. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. The negative effects of homogeneous traffic on merging sections

    NARCIS (Netherlands)

    Elbers, Bart; van Berkum, Eric C.

    2003-01-01

    Homogeneous traffic flows are believed to be better in absorbing disturbances, raise capacity and stimulate traffic safety. Measures to make traffic more homogeneous are therefore often taken to increase capacity. This paper shows that the ability of a traffic flow to deal with traffic coming from

  14. Traffic light control by multiagent reinforcement learning systems

    NARCIS (Netherlands)

    Bakker, B.; Whiteson, S.; Kester, L.; Groen, F.C.A.; Babuška, R.; Groen, F.C.A.

    2010-01-01

    Traffic light control is one of the main means of controlling road traffic. Improving traffic control is important because it can lead to higher traffic throughput and reduced traffic congestion. This chapter describes multiagent reinforcement learning techniques for automatic optimization of

  15. Traffic Light Control by Multiagent Reinforcement Learning Systems

    NARCIS (Netherlands)

    Bakker, B.; Whiteson, S.; Kester, L.J.H.M.; Groen, F.C.A.

    2010-01-01

    Traffic light control is one of the main means of controlling road traffic. Improving traffic control is important because it can lead to higher traffic throughput and reduced traffic congestion. This chapter describes multiagent reinforcement learning techniques for automatic optimization of

  16. On traffic modelling in GPRS networks

    DEFF Research Database (Denmark)

    Madsen, Tatiana Kozlova; Schwefel, Hans-Peter; Prasad, Ramjee

    2005-01-01

    Optimal design and dimensioning of wireless data networks, such as GPRS, requires the knowledge of traffic characteristics of different data services. This paper presents an in-detail analysis of an IP-level traffic measurements taken in an operational GPRS network. The data measurements reported...... here are done at the Gi interface. The aim of this paper is to reveal some key statistics of GPRS data applications and to validate if the existing traffic models can adequately describe traffic volume and inter-arrival time distribution for different services. Additionally, we present a method of user...

  17. A queuing model for road traffic simulation

    International Nuclear Information System (INIS)

    Guerrouahane, N.; Aissani, D.; Bouallouche-Medjkoune, L.; Farhi, N.

    2015-01-01

    We present in this article a stochastic queuing model for the raod traffic. The model is based on the M/G/c/c state dependent queuing model, and is inspired from the deterministic Godunov scheme for the road traffic simulation. We first propose a variant of M/G/c/c state dependent model that works with density-flow fundamental diagrams rather than density-speed relationships. We then extend this model in order to consider upstream traffic demand as well as downstream traffic supply. Finally, we show how to model a whole raod by concatenating raod sections as in the deterministic Godunov scheme

  18. From biological membranes to biomimetic model membranes

    Directory of Open Access Journals (Sweden)

    Eeman, M.

    2010-01-01

    Full Text Available Biological membranes play an essential role in the cellular protection as well as in the control and the transport of nutrients. Many mechanisms such as molecular recognition, enzymatic catalysis, cellular adhesion and membrane fusion take place into the biological membranes. In 1972, Singer et al. provided a membrane model, called fluid mosaic model, in which each leaflet of the bilayer is formed by a homogeneous environment of lipids in a fluid state including globular assembling of proteins and glycoproteins. Since its conception in 1972, many developments were brought to this model in terms of composition and molecular organization. The main development of the fluid mosaic model was made by Simons et al. (1997 and Brown et al. (1997 who suggested that membrane lipids are organized into lateral microdomains (or lipid rafts with a specific composition and a molecular dynamic that are different to the composition and the dynamic of the surrounding liquid crystalline phase. The discovery of a phase separation in the plane of the membrane has induced an explosion in the research efforts related to the biology of cell membranes but also in the development of new technologies for the study of these biological systems. Due to the high complexity of biological membranes and in order to investigate the biological processes that occur on the membrane surface or within the membrane lipid bilayer, a large number of studies are performed using biomimicking model membranes. This paper aims at revisiting the fundamental properties of biological membranes in terms of membrane composition, membrane dynamic and molecular organization, as well as at describing the most common biomimicking models that are frequently used for investigating biological processes such as membrane fusion, membrane trafficking, pore formation as well as membrane interactions at a molecular level.

  19. Evidence that membrane transduction of oligoarginine does not require vesicle formation

    International Nuclear Information System (INIS)

    Zaro, Jennica L.; Shen Weichiang

    2005-01-01

    The involvement of vesicular formation processes in the membrane transduction and nuclear transport of oligoarginine is currently a subject of controversy. In this report, a novel quantitative method which allows for the selective measurement of membrane transduction excluding concurrent endocytosis was used to determine the effects of temperature, endosomal acidification, endosomolysis, and several known inhibitors of endocytic pathways on the internalization of oligoarginine. The results show that, unlike endocytosis, transduction of oligoarginine was not affected by incubation at 16 deg. C as compared to the 37 deg. C control, and was only partially inhibited at 4 deg. C incubation. Additionally, membrane transduction was not inhibited to the same extent as endocytosis following treatment with ammonium chloride, hypertonic medium, amiloride, or filipin. The endosomolytic activity of oligoarginine was investigated by examining the leakage of FITC-dextran into the cytosolic compartment, which was not higher in the presence of oligoarginine. Furthermore, ammonium chloride showed no effect on the nuclear transport of oligoarginine. The data presented in this report indicate that membrane transduction is likely to occur at the plasma membrane without the formation of membrane vesicles, and the nuclear localization involves membrane transduction, rather than endocytosis of oligoarginine

  20. Air traffic management evaluation tool

    Science.gov (United States)

    Sridhar, Banavar (Inventor); Sheth, Kapil S. (Inventor); Chatterji, Gano Broto (Inventor); Bilimoria, Karl D. (Inventor); Grabbe, Shon (Inventor); Schipper, John F. (Inventor)

    2012-01-01

    Methods for evaluating and implementing air traffic management tools and approaches for managing and avoiding an air traffic incident before the incident occurs. A first system receives parameters for flight plan configurations (e.g., initial fuel carried, flight route, flight route segments followed, flight altitude for a given flight route segment, aircraft velocity for each flight route segment, flight route ascent rate, flight route descent route, flight departure site, flight departure time, flight arrival time, flight destination site and/or alternate flight destination site), flight plan schedule, expected weather along each flight route segment, aircraft specifics, airspace (altitude) bounds for each flight route segment, navigational aids available. The invention provides flight plan routing and direct routing or wind optimal routing, using great circle navigation and spherical Earth geometry. The invention provides for aircraft dynamics effects, such as wind effects at each altitude, altitude changes, airspeed changes and aircraft turns to provide predictions of aircraft trajectory (and, optionally, aircraft fuel use). A second system provides several aviation applications using the first system. Several classes of potential incidents are analyzed and averted, by appropriate change en route of one or more parameters in the flight plan configuration, as provided by a conflict detection and resolution module and/or traffic flow management modules. These applications include conflict detection and resolution, miles-in trail or minutes-in-trail aircraft separation, flight arrival management, flight re-routing, weather prediction and analysis and interpolation of weather variables based upon sparse measurements. The invention combines these features to provide an aircraft monitoring system and an aircraft user system that interact and negotiate changes with each other.

  1. Traffic Information Unit, Traffic Information System, Vehicle Management System, Vehicle, and Method of Controlling a Vehicle

    NARCIS (Netherlands)

    Papp, Z.; Doodeman, G.J.N.; Nelisse, M.W.; Sijs, J.; Theeuwes, J.A.C.; Driessen, B.J.F.

    2010-01-01

    A traffic information unit (MD1, MD2, MD3) according to the invention comprises a facility (MI) for tracking vehicle state information of individual vehicles present at a traffic infrastructure and a facility (T) for transmitting said vehicle state information to a vehicle (70B, 70E). A traffic

  2. Forecasting Multivariate Road Traffic Flows Using Bayesian Dynamic Graphical Models, Splines and Other Traffic Variables

    NARCIS (Netherlands)

    Anacleto, Osvaldo; Queen, Catriona; Albers, Casper J.

    Traffic flow data are routinely collected for many networks worldwide. These invariably large data sets can be used as part of a traffic management system, for which good traffic flow forecasting models are crucial. The linear multiregression dynamic model (LMDM) has been shown to be promising for

  3. Travelers ability to observe changes in traffic intensities and traffic light settings

    NARCIS (Netherlands)

    Vreeswijk, Jacob Dirk; Do, Michael; Middag, Wilco; Martens, Marieke Hendrikje; van Berkum, Eric C.; van Arem, Bart; ITSC,

    2011-01-01

    Travel choice behavior is an important determinant in traffic and subject to human imperfection and bounded rationality. In decision-making processes travelers seldom act perfectly rational. Traffic models and traffic network management measure could become more realistic and effective, if

  4. Remark on the Causes of Traffic Accidents and Traffic Awareness: Examples of Usak Province

    Directory of Open Access Journals (Sweden)

    Ercan ÖZEN

    2014-01-01

    Full Text Available Traffic accidents cause important losses on the social and economics structure of countries. While economic losses are able to be compensated in a short time, it isn’t possible to compensate social and communal losses. This study tackles with not the economic aspect of traffic accidents but the social dimension, evaluates the causes of the traffic accidents with respect to views of individuals on traffic and aims to measure the levels of awareness of individuals about traffic. To achieve these goals, a group of 506 people were surveyed in Uşak province and the acquired data were analyzed via one-way ANOVA test in SPSS 16 program. According to the analysis results, drivers and pedestrians are considered to have significant flaws in traffic accidents. But alongside this thought, the idea that traffic accidents are caused by the road having technical and physical problems has come to the fore. This results present a valid motive for the established approach “Vision Zero” , being practised in Sweden, to be adopted in Turkey. When the level of awareness about traffic is examined, it is seen that individuals generally have got inadequate information related traffic rules and traffic authorities. Besides, the fact that individuals are inadequate in terms of courtesy and respect in traffic and that more serious efforts on traffic education is needed to be spent come out as the important findings of this study. The findings of this study can be thought as a directive tool to the policy makers.

  5. Scaling in Computer Network Traffic

    Science.gov (United States)

    2005-01-07

    behaviour, measurement .... 29 The Self-Similar Traffic Model Fractional Gaussian Noise (fGn) and Fractional Brownian Motion (fBm) The unique...AVAILABILITY STATEMENT Approved for public release, distribution unlimited 13. SUPPLEMENTARY NOTES See also ADM001750, Wavelets and Multifractal Analysis... Multifractality Wavelet qth order moments: IE|dX(j, k)|q ∼ C 2αqj, j → 0. Estimating the LHS from data using Sq(j) = 1 nj ∑ k |dX(j, k)|q, and measure the slopes

  6. Plasma membrane cholesterol level and agonist-induced internalization of δ-opioid receptors; colocalization study with intracellular membrane markers of Rab family.

    Science.gov (United States)

    Brejchova, Jana; Vosahlikova, Miroslava; Roubalova, Lenka; Parenti, Marco; Mauri, Mario; Chernyavskiy, Oleksandr; Svoboda, Petr

    2016-08-01

    Decrease of cholesterol level in plasma membrane of living HEK293 cells transiently expressing FLAG-δ-OR by β-cyclodextrin (β-CDX) resulted in a slight internalization of δ-OR. Massive internalization of δ-OR induced by specific agonist DADLE was diminished in cholesterol-depleted cells. These results suggest that agonist-induced internalization of δ-OR, which has been traditionally attributed exclusively to clathrin-mediated pathway, proceeds at least partially via membrane domains. Identification of internalized pools of FLAG-δ-OR by colocalization studies with proteins of Rab family indicated the decreased presence of receptors in early endosomes (Rab5), late endosomes and lysosomes (Rab7) and fast recycling vesicles (Rab4). Slow type of recycling (Rab11) was unchanged by cholesterol depletion. As expected, agonist-induced internalization of oxytocin receptors was totally suppressed in β-CDX-treated cells. Determination of average fluorescence lifetime of TMA-DPH, the polar derivative of hydrophobic membrane probe diphenylhexatriene, in live cells by FLIM indicated a significant alteration of the overall PM structure which may be interpreted as an increased "water-accessible space" within PM area. Data obtained by studies of HEK293 cells transiently expressing FLAG-δ-OR by "antibody feeding" method were extended by analysis of the effect of cholesterol depletion on distribution of FLAG-δ-OR in sucrose density gradients prepared from HEK293 cells stably expressing FLAG-δ-OR. Major part of FLAG-δ-OR was co-localized with plasma membrane marker Na,K-ATPase and β-CDX treatment resulted in shift of PM fragments containing both FLAG-δ-OR and Na,K-ATPase to higher density. Thus, the decrease in content of the major lipid constituent of PM resulted in increased density of resulting PM fragments.

  7. Functional links between mucolipin-1 and Ca2+-dependent membrane trafficking in mucolipidosis IV

    International Nuclear Information System (INIS)

    LaPlante, Janice M.; Ye, C.P.; Quinn, Stephen J.; Goldin, Ehud; Brown, Edward M.; Slaugenhaupt, Susan A.; Vassilev, Peter M.

    2004-01-01

    Most of the membrane trafficking phenomena including those involving the interactions between endosomes and lysosomes are regulated by changes in intracellular Ca 2+ (Ca i ). These processes are disturbed in some types of mucolipidoses and other lysosomal storage disorders, such as mucolipidosis IV (MLIV), a neurological disorder that usually presents during the first year of life with blindness, cognitive impairment, and psychomotor delays. It is caused by mutations in MCOLN1, the gene encoding mucolipin-1 (MLN1), which we have recently established to represent a Ca 2+ -permeable cation channel that is transiently modulated by changes in Ca i . The cells of MLIV patients contain enlarged lysosomes that are likely associated with abnormal sorting and trafficking of these and related organelles. We studied fibroblasts from MLIV patients and found disturbed Ca 2+ signaling and large acidic organelles such as late endosomes and lysosomes (LEL) with altered cellular localization in these cells. The fusion between LEL vesicles in these cells was defective. This is a Ca 2+ -dependent process related to signaling pathways involved in regulation of Ca 2+ homeostasis and trafficking. The MLN1 channels could play a key role in Ca 2+ release from LEL vesicles, which triggers the fusion and trafficking of these organelles. The characterization of this MLN1-mediated Ca 2+ -dependent process should provide new insights into the pathophysiological mechanisms that lead to the development of MLIV and other mucolipidoses associated with similar disturbances in membrane trafficking

  8. Alternative fates of newly formed PrPSc upon prion conversion on the plasma membrane.

    Science.gov (United States)

    Goold, Rob; McKinnon, Chris; Rabbanian, Samira; Collinge, John; Schiavo, Giampietro; Tabrizi, Sarah J

    2013-08-15

    Prion diseases are fatal neurodegenerative diseases characterised by the accumulation of misfolded prion protein (PrP(Sc)) in the brain. They are caused by the templated misfolding of normal cellular protein, PrP(C), by PrP(Sc). We have recently generated a unique cell system in which epitope-tagged PrP(C) competent to produce bona fide PrP(Sc) is expressed in neuroblastoma cells. Using this system we demonstrated that PrP(Sc) forms on the cell surface within minutes of prion exposure. Here, we describe the intracellular trafficking of newly formed PrP(Sc). After formation in GM1-enriched lipid microdomains at the plasma membrane, PrP(Sc) is rapidly internalised to early endosomes containing transferrin and cholera toxin B subunit. Following endocytosis, PrP(Sc) intracellular trafficking diverges: some is recycled to the plasma membrane via Rab11-labelled recycling endosomes; the remaining PrP(Sc) is subject to retromer-mediated retrograde transport to the Golgi. This pathway leads to lysosomal degradation, and we show that this is the dominant PrP(Sc) degradative mechanism in the early stages of prion infection.

  9. Nitrogen deposition and traffic. State-of-the-art

    International Nuclear Information System (INIS)

    Teeuwisse, S.

    2010-01-01

    Nitrogen deposition is caused, among other things, by road traffic. This article addresses the relation between traffic and nitrogen deposition and the manner in which the contribution of traffic to nitrogen deposition can be quantified. [nl

  10. Symbols and warrants for major traffic generator guide signing.

    Science.gov (United States)

    2009-09-01

    The Texas Manual on Uniform Traffic Control Devices (TMUTCD) provides the definition of regular traffic generators based on four population types but not for major traffic generators (MTGs). MTG signs have been considered to supplement the overall si...

  11. Traffic flow characteristic and capacity in intelligent work zones.

    Science.gov (United States)

    2009-10-15

    Intellgent transportation system (ITS) technologies are utilized to manage traffic flow and safety in : highway work zones. Traffic management plans for work zones require queuing analyses to determine : the anticipated traffic backups, but the predi...

  12. Advanced Traffic Management Systems (ATMS) research analysis database system

    Science.gov (United States)

    2001-06-01

    The ATMS Research Analysis Database Systems (ARADS) consists of a Traffic Software Data Dictionary (TSDD) and a Traffic Software Object Model (TSOM) for application to microscopic traffic simulation and signal optimization domains. The purpose of thi...

  13. Alsin and SOD1G93A Proteins Regulate Endosomal Reactive Oxygen Species Production by Glial Cells and Proinflammatory Pathways Responsible for Neurotoxicity*

    Science.gov (United States)

    Li, Qiang; Spencer, Netanya Y.; Pantazis, Nicholas J.; Engelhardt, John F.

    2011-01-01

    Recent studies have implicated enhanced Nox2-mediated reactive oxygen species (ROS) by microglia in the pathogenesis of motor neuron death observed in familial amyotrophic lateral sclerosis (ALS). In this context, ALS mutant forms of SOD1 enhance Rac1 activation, leading to increased Nox2-dependent microglial ROS production and neuron cell death in mice. It remains unclear if other genetic mutations that cause ALS also function through similar Nox-dependent pathways to enhance ROS-mediate motor neuron death. In the present study, we sought to understand whether alsin, which is mutated in an inherited juvenile form of ALS, functionally converges on Rac1-dependent pathways acted upon by SOD1G93A to regulate Nox-dependent ROS production. Our studies demonstrate that glial cell expression of SOD1G93A or wild type alsin induces ROS production, Rac1 activation, secretion of TNFα, and activation of NFκB, leading to decreased motor neuron survival in co-culture. Interestingly, coexpression of alsin, or shRNA against Nox2, with SOD1G93A in glial cells attenuated these proinflammatory indicators and protected motor neurons in co-culture, although shRNAs against Nox1 and Nox4 had little effect. SOD1G93A expression dramatically enhanced TNFα-mediated endosomal ROS in glial cells in a Rac1-dependent manner and alsin overexpression inhibited SOD1G93A-induced endosomal ROS and Rac1 activation. SOD1G93A expression enhanced recruitment of alsin to the endomembrane compartment in glial cells, suggesting that these two proteins act to modulate Nox2-dependent endosomal ROS and proinflammatory signals that modulate NFκB. These studies suggest that glial proinflammatory signals regulated by endosomal ROS are influenced by two gene products known to cause ALS. PMID:21937428

  14. Imaging endosomes and autophagosomes in whole mammalian cells using correlative cryo-fluorescence and cryo-soft X-ray microscopy (cryo-CLXM)

    Energy Technology Data Exchange (ETDEWEB)

    Duke, Elizabeth M.H. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Razi, Minoo [Secretory Pathways Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Weston, Anne [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Guttmann, Peter; Werner, Stephan; Henzler, Katja; Schneider, Gerd [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Soft Matter and Functional Materials, 12489 Berlin (Germany); Tooze, Sharon A. [Secretory Pathways Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Collinson, Lucy M., E-mail: lucy.collinson@cancer.org.uk [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom)

    2014-08-01

    Cryo-soft X-ray tomography (cryo-SXT) is a powerful imaging technique that can extract ultrastructural information from whole, unstained mammalian cells as close to the living state as possible. Subcellular organelles including the nucleus, the Golgi apparatus and mitochondria have been identified by morphology alone, due to the similarity in contrast to transmission electron micrographs. In this study, we used cryo-SXT to image endosomes and autophagosomes, organelles that are particularly susceptible to chemical fixation artefacts during sample preparation for electron microscopy. We used two approaches to identify these compartments. For early and recycling endosomes, which are accessible to externally-loaded markers, we used an anti-transferrin receptor antibody conjugated to 10 nm gold particles. For autophagosomes, which are not accessible to externally-applied markers, we developed a correlative cryo-fluorescence and cryo-SXT workflow (cryo-CLXM) to localise GFP-LC3 and RFP-Atg9. We used a stand-alone cryo-fluorescence stage in the home laboratory to localise the cloned fluorophores, followed by cryo-soft X-ray tomography at the synchrotron to analyse cellular ultrastructure. We mapped the 3D ultrastructure of the endocytic and autophagic structures, and discovered clusters of omegasomes arising from ‘hotspots’ on the ER. Thus, immunogold markers and cryo-CLXM can be used to analyse cellular processes that are inaccessible using other imaging modalities. - Highlights: • We image whole, unstained mammalian cells using cryo-soft X-ray tomography. • Endosomes are identified using a gold marker for the transferrin receptor. • A new workflow for correlative cryo-fluorescence and cryo-SXT is used to locate early autophagosomes. • Interactions between endosomes, endoplasmic reticulum and forming autophagosomes are mapped in 3D. • Multiple omegasomes are shown to form at ‘hotspots’ on the endoplasmic reticulum.

  15. Endosomal-lysosomal Cholesterol Sequestration by U18666A Differentially Regulates APP Metabolism in Normal and APP Overexpressing Cells.

    Science.gov (United States)

    Chung, J; Phukan, G; Vergote, D; Mohamed, A; Maulik, M; Stahn, M; Andrew, R J; Thinakaran, G; Posse de Chaves, E; Kar, S

    2018-03-12

    Amyloid β (Aβ) peptide derived from amyloid precursor protein (APP) plays a critical role in the development of Alzheimer's disease. Current evidence indicates that altered levels/subcellular distribution of cholesterol can regulate Aβ production/clearance, but it remains unclear how cholesterol sequestration within the endosomal-lysosomal (EL) system can influence APP metabolism. Thus, we evaluated the effects of U18666A, which triggers cholesterol redistribution within EL system, on mouse N2a cells expressing different levels of APP in the presence or absence of extracellular cholesterol/lipids provided by fetal bovine serum (FBS). Our results reveal that U18666A and FBS differentially increase the levels of APP and its cleaved products α/β/η-C-terminal fragments in N2a cells expressing normal levels of mouse APP (N2awt) or higher levels of human wild-type APP (APPwt) or "Swedish" mutant APP (APPsw). The cellular levels of Aβ 1-40 /Aβ 1-42 were markedly increased in U18666A-treated APPwt and APPsw cells. Our studies further demonstrate that APP and its cleaved products are partly accumulated in the lysosomes possibly due to decreased clearance. Finally, we show that autophagy inhibition plays a role in mediating U18666A effects. Collectively, these results suggest that altered levels/distribution of cholesterol/lipids can differentially regulate APP metabolism depending on the nature of APP expression. Copyright © 2018 American Society for Microbiology.

  16. Diphtheria toxin translocation across cellular membranes is regulated by sphingolipids

    International Nuclear Information System (INIS)

    Spilsberg, Bjorn; Hanada, Kentaro; Sandvig, Kirsten

    2005-01-01

    Diphtheria toxin is translocated across cellular membranes when receptor-bound toxin is exposed to low pH. To study the role of sphingolipids for toxin translocation, both a mutant cell line lacking the first enzyme in de novo sphingolipid synthesis, serine palmitoyltransferase, and a specific inhibitor of the same enzyme, myriocin, were used. The serine palmitoyltransferase-deficient cell line (LY-B) was found to be 10-15 times more sensitive to diphtheria toxin than the genetically complemented cell line (LY-B/cLCB1) and the wild-type cell line (CHO-K1), both when toxin translocation directly across the plasma membrane was induced by exposing cells with surface-bound toxin to low pH, and when the toxin followed its normal route via acidified endosomes into the cytosol. Toxin binding was similar in these three cell lines. Furthermore, inhibition of serine palmitoyltransferase activity by addition of myriocin sensitized the two control cell lines (LY-B/cLCB1 and CHO-K1) to diphtheria toxin, whereas, as expected, no effect was observed in cells lacking serine palmitoyltransferase (LY-B). In conclusion, diphtheria toxin translocation is facilitated by depletion of membrane sphingolipids

  17. Rab35 promotes the recruitment of Rab8, Rab13 and Rab36 to recycling endosomes through MICAL-L1 during neurite outgrowth

    Directory of Open Access Journals (Sweden)

    Hotaka Kobayashi

    2014-08-01

    Full Text Available Small GTPase Rab35 is an important molecular switch for endocytic recycling that regulates various cellular processes, including cytokinesis, cell migration, and neurite outgrowth. We previously showed that active Rab35 promotes nerve growth factor (NGF-induced neurite outgrowth of PC12 cells by recruiting MICAL-L1, a multiple Rab-binding protein, to Arf6-positive recycling endosomes. However, the physiological significance of the multiple Rab-binding ability of MICAL-L1 during neurite outgrowth remained completely unknown. Here we report that Rab35 and MICAL-L1 promote the recruitment of Rab8, Rab13, and Rab36 to Arf6-positive recycling endosomes during neurite outgrowth. We found that Rab35 functions as a master Rab that determines the intracellular localization of MICAL-L1, which in turn functions as a scaffold for Rab8, Rab13, and Rab36. We further showed by functional ablation experiments that each of these downstream Rabs regulates neurite outgrowth in a non-redundant manner downstream of Rab35 and MICAL-L1, e.g. by showing that knockdown of Rab36 inhibited recruitment of Rab36-specific effector JIP4 to Arf6-positive recycling endosomes, and caused inhibition of neurite outgrowth without affecting accumulation of Rab8 and Rab13 in the same Arf6-positive area. Our findings suggest the existence of a novel mechanism that recruits multiple Rab proteins at the Arf6-positive compartment by MICAL-L1.

  18. The functional interplay of Rab11, FIP3 and Rho proteins on the endosomal recycling pathway controls cell shape and symmetry.

    Science.gov (United States)

    Bouchet, Jérôme; McCaffrey, Mary W; Graziani, Andrea; Alcover, Andrés

    2016-08-17

    Several families of small GTPases regulate a variety of fundamental cellular processes, encompassing growth factor signal transduction, vesicular trafficking and control of the cytoskeleton. Frequently, their action is hierarchical and complementary, but much of the detail of their functional interactions remains to be clarified. It is well established that Rab family members regulate a variety of intracellular vesicle trafficking pathways. Moreover, Rho family GTPases are pivotal for the control of the actin and microtubule cytoskeleton. However, the interplay between these 2 types of GTPases has been rarely reported. We discuss here our recent findings showing that Rab11, a key regulator of endosomal recycling, and Rac1, a central actin cytoskeleton regulator involved in lamellipodium formation and cell migration, interplay on endosomes through the Rab11 effector FIP3. In the context of the rapidly reactive T lymphocytes, Rab11-Rac1 endosomal functional interplay is important to control cell shape changes and cell symmetry during lymphocyte spreading and immunological synapse formation and ultimately modulate T cell activation.

  19. An analysis of the traffic safety phenomenon.

    NARCIS (Netherlands)

    Asmussen, E. & Kranenburg, A.

    1982-01-01

    The lack of traffic safety is a combination of the critical coincidence of circumstances in the traffic of incidents (near-accidents) and accidents with unwanted (permanent) consequences, such as fatalities, injured and disabled persons and material damage. This definition covers the whole of the

  20. Formation and Propagation of Local Traffic Jam

    Directory of Open Access Journals (Sweden)

    Hong-sheng Qi

    2013-01-01

    Full Text Available Large scale traffic congestion often stems from local traffic jam in single road or intersection. In this paper, macroscopic method was used to explore the formation and propagation of local traffic jam. It is found that (1 the propagation of traffic jam can be seen as the propagation of traffic signal parameters, that is, virtual split and virtual green time; (2 for a road with endogenous flow, entrance location influences the jam propagation. With the same demand (upstream links flow and entrance flow, the upstream got more influence; (3 when a one-lane road is thoroughly congested, virtual signal parameters everywhere are the same as that at stop line; for a basic road, the virtual signals work in a cooperative manner; (4 phase sequence is one important parameter that influences traffic performances during peak hour where spill back of channelization takes place. The same phase plan for left-turn flow and through flow would be preferred; (5 signal coordination plays an important role in traffic jam propagation and hence effective network signal parameters should be designed to prevent jam from propagation to the whole network. These findings would serve as a basis for future network traffic congestion control.

  1. Distraction-related road traffic collisions

    African Journals Online (AJOL)

    Abstract. Objectives: We aimed to prospectively study distraction-related road traffic collision injuries, their contributory factors, severity, and outcome. Methods: Data were prospectively collected on all hospitalized road traffic collision trauma patients in Al-Ain City who were drivers at the collision time over one and half years ...

  2. Symbols for cockpit displays of traffic information

    Science.gov (United States)

    2009-10-25

    A web-based study assessed pilots ability to learn and remember traffic symbols that may be shown on a Cockpit Display of Traffic Information (CDTI). These displays convey data obtained from Automatic Dependent Surveillance-Broadcast (ADS B) and rela...

  3. GPS queues with heterogeneous traffic classes

    NARCIS (Netherlands)

    Borst, Sem; Mandjes, M.R.H.; van Uitert, Miranda

    2002-01-01

    We consider a queue fed by a mixture of light-tailed and heavy-tailed traffic. The two traffic classes are served in accordance with the generalized processor sharing (GPS) discipline. GPS-based scheduling algorithms, such as weighted fair queueing (WFQ), have emerged as an important mechanism for

  4. 36 CFR 1004.13 - Obstructing traffic.

    Science.gov (United States)

    2010-07-01

    ... road, except as authorized by the Executive Director, or in the event of an accident or other condition... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Obstructing traffic. 1004.13 Section 1004.13 Parks, Forests, and Public Property PRESIDIO TRUST VEHICLES AND TRAFFIC SAFETY § 1004.13...

  5. 36 CFR 4.13 - Obstructing traffic.

    Science.gov (United States)

    2010-07-01

    ... VEHICLES AND TRAFFIC SAFETY § 4.13 Obstructing traffic. The following are prohibited: (a) Stopping or parking a vehicle upon a park road, except as authorized by the superintendent, or in the event of an accident or other condition beyond the control of the operator. (b) Operating a vehicle so slowly as to...

  6. Environmental protection and traffic regulation in Slovenia

    Directory of Open Access Journals (Sweden)

    Aljaš Plevnik

    1998-01-01

    Full Text Available The article summarises the proposed chapter on traffic in the National programme for environmental protection. The main theme focuses on the suggested goals and measures to reach sustainable development in Slovenia. The goals and measures are derived from the current situation and traffic development trends and their influence on the environment, from international guidelines and the current Slovene policies.

  7. Floating car data for traffic monitoring

    DEFF Research Database (Denmark)

    Torp, Kristian; Lahrmann, Harry Spaabæk

    2005-01-01

    This paper describes a complete prototype system that uses Floating Car Data (FCD) for both automatic and manual detection of queues in traffic. The system is developed under EU’s Tempo program. The systems consists of small hardware units placed in mobile traffic report units (we use taxis...

  8. Visual Analysis in Traffic & Re-identification

    DEFF Research Database (Denmark)

    Møgelmose, Andreas

    Automated analysis of traffic situations - be it cars, signs, or pedestrians - is becoming increasingly relevant and feasible with the advent of powerful sensors, computers, and algorithms. This PhD thesis tackles three themes within this realm: Traffic sign detection, pedestrian detection...

  9. Gaussian queues in light and heavy traffic

    NARCIS (Netherlands)

    Dębicki, K.; Kosiński, K.M.; Mandjes, M.

    2012-01-01

    In this paper we investigate Gaussian queues in the light-traffic and in the heavy-traffic regime. Let $Q^{(c)}_{X}\\equiv\\{Q^{(c)}_{X}(t):t\\ge0\\}$ denote a stationary buffer content process for a fluid queue fed by the centered Gaussian process X≡{X(t):t∈ℝ} with stationary increments, X(0)=0,

  10. 7110.65H Air Traffic Control

    Science.gov (United States)

    1993-09-16

    these functions, it is rec. 2-75a2 Example.- ommended combining them on local control. The ATIS may be "Attention all aircraft. False air traffic...all aircraft. False air traffic control instructions used to specify the desired frequency. have been received in the area of Long Beach Airport

  11. Proportional green time scheduling for traffic lights

    NARCIS (Netherlands)

    P. Kovacs; Le, T. (Tung); R. Núñez Queija (Rudesindo); Vu, H. (Hai); N. Walton

    2016-01-01

    textabstractWe consider the decentralized scheduling of a large number of urban traffic lights. We investigate factors determining system performance, in particular, the length of the traffic light cycle and the proportion of green time allocated to each junction. We study the effect of the length

  12. Stochastic models for road traffic control

    NARCIS (Netherlands)

    Kovács, P.

    2016-01-01

    In this dissertation we make use of the theories of stochastic processes and operations research to develop models and methods to be applied for the analysis and control of road traffic networks. Within this field three subjects are considered: individual routing, urban traffic light networks and

  13. Traffic calming schemes : opportunities and implementation strategies.

    NARCIS (Netherlands)

    Schagen, I.N.L.G. van (ed.)

    2003-01-01

    Commissioned by the Swedish National Road Authority, this report aims to provide a concise overview of knowledge of and experiences with traffic calming schemes in urban areas, both on a technical level and on a policy level. Traffic calming refers to a combination of network planning and

  14. Dynamic traffic assignment on parallel computers

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, K.; Frye, R.; Jakob, R.; Rickert, M.; Stretz, P.

    1998-12-01

    The authors describe part of the current framework of the TRANSIMS traffic research project at the Los Alamos National Laboratory. It includes parallel implementations of a route planner and a microscopic traffic simulation model. They present performance figures and results of an offline load-balancing scheme used in one of the iterative re-planning runs required for dynamic route assignment.

  15. resource allocation methodology for internet heterogeneous traffic

    African Journals Online (AJOL)

    Dr Obe

    buffer capacity in switches - that are required for heterogeneous internet traffic which guarantees a given QoS, even under high network loading conditions. This paper, therefore, presents a method for determining the optimum internet resources required for heterogeneous (data and voice only) traffic services to guarantee ...

  16. Will Automated Vehicles Negatively Impact Traffic Flow?

    Directory of Open Access Journals (Sweden)

    S. C. Calvert

    2017-01-01

    Full Text Available With low-level vehicle automation already available, there is a necessity to estimate its effects on traffic flow, especially if these could be negative. A long gradual transition will occur from manual driving to automated driving, in which many yet unknown traffic flow dynamics will be present. These effects have the potential to increasingly aid or cripple current road networks. In this contribution, we investigate these effects using an empirically calibrated and validated simulation experiment, backed up with findings from literature. We found that low-level automated vehicles in mixed traffic will initially have a small negative effect on traffic flow and road capacities. The experiment further showed that any improvement in traffic flow will only be seen at penetration rates above 70%. Also, the capacity drop appeared to be slightly higher with the presence of low-level automated vehicles. The experiment further investigated the effect of bottleneck severity and truck shares on traffic flow. Improvements to current traffic models are recommended and should include a greater detail and understanding of driver-vehicle interaction, both in conventional and in mixed traffic flow. Further research into behavioural shifts in driving is also recommended due to limited data and knowledge of these dynamics.

  17. Traffic load effects in prestrssed concrete bridges

    NARCIS (Netherlands)

    Vrouwenvelder, A.C.W.M.; Allaix, D.L.; Courage, W.M.G.

    2007-01-01

    The traffic load effect of a two-span prestressed concrete bridge with two traffic lanes is analyzed in this paper. The design value of the result-ing bending moment in some prescribed sections is estimated by means of a Monte Carlo simulation. The model for the vehicular loads is derived from a set

  18. Evaluating Performances of Traffic Noise Models | Oyedepo ...

    African Journals Online (AJOL)

    Traffic noise in decibel dB(A) were measured at six locations using 407780A Integrating Sound Level Meter, while spot speed and traffic volume were collected with cine-camera. The predicted sound exposure level (SEL) was evaluated using Burgess, British and FWHA model. The average noise level obtained are 77.64 ...

  19. Consistency analysis of network traffic repositories

    NARCIS (Netherlands)

    Lastdrager, Elmer; Lastdrager, E.E.H.; Pras, Aiko

    Traffic repositories with TCP/IP header information are very important for network analysis. Researchers often assume that such repositories reliably represent all traffic that has been flowing over the network; little thoughts are made regarding the consistency of these repositories. Still, for

  20. Survivable Impairment-Aware Traffic Grooming

    NARCIS (Netherlands)

    Beshir, A.; Nuijts, R.; Malhotra, R.; Kuipers, F.

    2011-01-01

    Traffic grooming allows efficient utilization of network capacity by aggregating several independent traffic streams into a wavelength. In addition, survivability and impairment-awareness (i.e., taking into account the effect of physical impairments) are two important issues that have gained a lot

  1. Calculating Traffic based on Road Sensor Data

    NARCIS (Netherlands)

    Bisseling, Rob; Gao, Fengnan; Hafkenscheid, Patrick; Idema, Reijer; Jetka, Tomasz; Guerra Ones, Valia; Rata, Debanshu; Sikora, Monika

    2014-01-01

    Road sensors gather a lot of statistical data about traffic. In this paper, we discuss how a measure for the amount of traffic on the roads can be derived from this data, such that the measure is independent of the number and placement of sensors, and the calculations can be performed quickly for

  2. Epidemiology o.f· Traffic Accidents

    African Journals Online (AJOL)

    Accidents. An analysis of some 2 100 fatal traffic accidents gave the following results: males-79%; females-21%; a ratio of 4: 1. The high proportion of males to females killed in traffic accidents may be due to the fact that (a) more males commute daily in private and commercial vehicles;. (b) more females commute daily in ...

  3. Parkinson's Disease: A Traffic Jam?

    Science.gov (United States)

    Clague, Michael J; Rochin, Leila

    2016-04-25

    Recent large-scale proteomic analyses of two protein kinases that are linked to Parkinson's disease have identified a remarkable convergence between their respective impacts on the phosphoproteome: activation of both LRRK2 and PINK1 leads to phosphorylation of several members of the Rab family of small GTPases, which regulate membrane trafficking. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Molecular Interactions at Membranes

    DEFF Research Database (Denmark)

    Jagalski, Vivien

    Biological membranes are essential and complex structures in every living cell consisting of a fluid lipid bilayer sheet and membrane proteins. Its significance makes biological membranes not only interesting for medical research, but also has made it a target for toxins in the course of evolution....... Today, we know more than ever before about the properties of biological membranes. Advanced biophysical techniques and sophisticated membrane models allow us to answer specific questions about the structure of the components within membranes and their interactions. However, many detailed structural...... mechanisms of membrane compounds, including compounds associated with membranes, are still unknown due to the challenges that arise when probing the hydrophobic nature of the membrane's interior. For integral membrane proteins that span through the entire membrane, the amphiphilic environment is essential...

  5. Modeling Network Traffic in Wavelet Domain

    Directory of Open Access Journals (Sweden)

    Sheng Ma

    2004-12-01

    Full Text Available This work discovers that although network traffic has the complicated short- and long-range temporal dependence, the corresponding wavelet coefficients are no longer long-range dependent. Therefore, a "short-range" dependent process can be used to model network traffic in the wavelet domain. Both independent and Markov models are investigated. Theoretical analysis shows that the independent wavelet model is sufficiently accurate in terms of the buffer overflow probability for Fractional Gaussian Noise traffic. Any model, which captures additional correlations in the wavelet domain, only improves the performance marginally. The independent wavelet model is then used as a unified approach to model network traffic including VBR MPEG video and Ethernet data. The computational complexity is O(N for developing such wavelet models and generating synthesized traffic of length N, which is among the lowest attained.

  6. Traffic and Granular Flow ’03

    CERN Document Server

    Luding, Stefan; Bovy, Piet; Schreckenberg, Michael; Wolf, Dietrich

    2005-01-01

    These proceedings are the fifth in the series Traffic and Granular Flow, and we hope they will be as useful a reference as their predecessors. Both the realistic modelling of granular media and traffic flow present important challenges at the borderline between physics and engineering, and enormous progress has been made since 1995, when this series started. Still the research on these topics is thriving, so that this book again contains many new results. Some highlights addressed at this conference were the influence of long range electric and magnetic forces and ambient fluids on granular media, new precise traffic measurements, and experiments on the complex decision making of drivers. No doubt the “hot topics” addressed in granular matter research have diverged from those in traffic since the days when the obvious analogies between traffic jams on highways and dissipative clustering in granular flow intrigued both c- munities alike. However, now just this diversity became a stimulating feature of the ...

  7. A Traffic Restriction Scheme for Enhancing Carpooling

    Directory of Open Access Journals (Sweden)

    Dong Ding

    2017-01-01

    Full Text Available For the purpose of alleviating traffic congestion, this paper proposes a scheme to encourage travelers to carpool by traffic restriction. By a variational inequity we describe travelers’ mode (solo driving and carpooling and route choice under user equilibrium principle in the context of fixed demand and detect the performance of a simple network with various restriction links, restriction proportions, and carpooling costs. Then the optimal traffic restriction scheme aiming at minimal total travel cost is designed through a bilevel program and applied to a Sioux Fall network example with genetic algorithm. According to various requirements, optimal restriction regions and proportions for restricted automobiles are captured. From the results it is found that traffic restriction scheme is possible to enhance carpooling and alleviate congestion. However, higher carpooling demand is not always helpful to the whole network. The topology of network, OD demand, and carpooling cost are included in the factors influencing the performance of the traffic system.

  8. Review on Driverless Traffic from Management Perspective

    Directory of Open Access Journals (Sweden)

    Chen Tingting

    2017-01-01

    Full Text Available The move towards automated driving is gaining ground. This paper reviews the development process of self-driving technology and discusses the safety and efficiency advantages of autonomous vehicles. The discussion shows that the existing traffic management system, including transport infrastructures and regulations, should be changed accordingly to maximize the advantages of autonomous driving. Thus, this paper subsequently gives an insight of the traffic management from three aspects: fully self-driving traffic infrastructures, mixed traffic infrastructures and regulations. First, it is summarized in detail what should be adjusted in intersections, parking lots, pedestrian crossings, ramps, signs and markings. With the transformation of traffic infrastructures, the advantages of driverless car will be more pronounced on account of increased capacity, reduced delay and land use. Also, this paper indicates that the implementations of strict product liability for self-driving car manufacturers and no-fault tort liability for users are applicable to automated vehicle accidents.

  9. Traffic flow dynamics data, models and simulation

    CERN Document Server

    Treiber, Martin

    2013-01-01

    This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on ...

  10. Study of air traffic over KLFIR

    Science.gov (United States)

    Nusyirwan, I. F.; Rohani, J. Mohd

    2017-12-01

    This paper shares the overview of the work currently being conducted with the Department of Civil Aviation Malaysia related to the air traffic. The aim is to study air traffic performance over KL and KK FIR, and the area of interest in this paper is the Kuala Lumpur Flight Information Region (KLFIR). The air traffic performance parameters includes general air traffic movement such as level allocation, number of movements, sector load analysis and also more specific parameters such as airborne delays, effects of weather to the air movements as well as ground delays. To achieve this, a huge effort has been undertaken that includes live data collection algorithm development and real time statistical analysis algorithm development. The main outcome from this multi-disciplinary work is the long-term analysis on the air traffic performance in Malaysia, which will put the country at par in the aviation community, namely the International Civil Aviation Organization (ICAO).

  11. Distributed traffic signal control using fuzzy logic

    Science.gov (United States)

    Chiu, Stephen

    1992-01-01

    We present a distributed approach to traffic signal control, where the signal timing parameters at a given intersection are adjusted as functions of the local traffic condition and of the signal timing parameters at adjacent intersections. Thus, the signal timing parameters evolve dynamically using only local information to improve traffic flow. This distributed approach provides for a fault-tolerant, highly responsive traffic management system. The signal timing at an intersection is defined by three parameters: cycle time, phase split, and offset. We use fuzzy decision rules to adjust these three parameters based only on local information. The amount of change in the timing parameters during each cycle is limited to a small fraction of the current parameters to ensure smooth transition. We show the effectiveness of this method through simulation of the traffic flow in a network of controlled intersections.

  12. The Stability of Multi-modal Traffic Network

    International Nuclear Information System (INIS)

    Han Linghui; Sun Huijun; Zhu Chengjuan; Jia Bin; Wu Jianjun

    2013-01-01

    There is an explicit and implicit assumption in multimodal traffic equilibrium models, that is, if the equilibrium exists, then it will also occur. The assumption is very idealized; in fact, it may be shown that the quite contrary could happen, because in multimodal traffic network, especially in mixed traffic conditions the interaction among traffic modes is asymmetric and the asymmetric interaction may result in the instability of traffic system. In this paper, to study the stability of multimodal traffic system, we respectively present the travel cost function in mixed traffic conditions and in traffic network with dedicated bus lanes. Based on a day-to-day dynamical model, we study the evolution of daily route choice of travelers in multimodal traffic network using 10000 random initial values for different cases. From the results of simulation, it can be concluded that the asymmetric interaction between the cars and buses in mixed traffic conditions can lead the traffic system to instability when traffic demand is larger. We also study the effect of travelers' perception error on the stability of multimodal traffic network. Although the larger perception error can alleviate the effect of interaction between cars and buses and improve the stability of traffic system in mixed traffic conditions, the traffic system also become instable when the traffic demand is larger than a number. For all cases simulated in this study, with the same parameters, traffic system with dedicated bus lane has better stability for traffic demand than that in mixed traffic conditions. We also find that the network with dedicated bus lane has higher portion of travelers by bus than it of mixed traffic network. So it can be concluded that building dedicated bus lane can improve the stability of traffic system and attract more travelers to choose bus reducing the traffic congestion. (general)

  13. Neuron Membrane Trafficking and Protein Kinases Involved in Autism and ADHD

    Directory of Open Access Journals (Sweden)

    Yasuko Kitagishi

    2015-01-01

    Full Text Available A brain-enriched multi-domain scaffolding protein, neurobeachin has been identified as a candidate gene for autism patients. Mutations in the synaptic adhesion protein cell adhesion molecule 1 (CADM1 are also associated with autism spectrum disorder, a neurodevelopmental disorder of uncertain molecular origin. Potential roles of neurobeachin and CADM1 have been suggested to a function of vesicle transport in endosomal trafficking. It seems that protein kinase B (AKT and cyclic adenosine monophosphate (cAMP-dependent protein kinase A (PKA have key roles in the neuron membrane trafficking involved in the pathogenesis of autism. Attention deficit hyperactivity disorder (ADHD is documented to dopaminergic insufficiencies, which is attributed to synaptic dysfunction of dopamine transporter (DAT. AKT is also essential for the DAT cell-surface redistribution. In the present paper, we summarize and discuss the importance of several protein kinases that regulate the membrane trafficking involved in autism and ADHD, suggesting new targets for therapeutic intervention.

  14. The dengue virus type 2 envelope protein fusion peptide is essential for membrane fusion

    International Nuclear Information System (INIS)

    Huang, Claire Y.-H.; Butrapet, Siritorn; Moss, Kelly J.; Childers, Thomas; Erb, Steven M.; Calvert, Amanda E.; Silengo, Shawn J.; Kinney, Richard M.; Blair, Carol D.; Roehrig, John T.

    2010-01-01

    The flaviviral envelope (E) protein directs virus-mediated membrane fusion. To investigate membrane fusion as a requirement for virus growth, we introduced 27 unique mutations into the fusion peptide of an infectious cDNA clone of dengue 2 virus and recovered seven stable mutant viruses. The fusion efficiency of the mutants was impaired, demonstrating for the first time the requirement for specific FP AAs in optimal fusion. Mutant viruses exhibited different growth kinetics and/or genetic stabilities in different cell types and adult mosquitoes. Virus particles could be recovered following RNA transfection of cells with four lethal mutants; however, recovered viruses could not re-infect cells. These viruses could enter cells, but internalized virus appeared to be retained in endosomal compartments of infected cells, thus suggesting a fusion blockade. Mutations of the FP also resulted in reduced virus reactivity with flavivirus group-reactive antibodies, confirming earlier reports using virus-like particles.

  15. Magnetically controlled permeability membranes

    KAUST Repository

    Kosel, Jurgen

    2013-10-31

    A bioactive material delivery system can include a thermoresponsive polymer membrane and nanowires distributed within the thermoresponsive polymer membrane. Magnetic activation of a thermoresponsive polymer membrane can take place via altering the magnetization or dimensions of nanowires dispersed or ordered within the membrane matrix.

  16. The international traffic in uranium

    International Nuclear Information System (INIS)

    Sharma, S.K.

    1982-01-01

    How the international traffic in uranium, contrary to the spirit of the Non-Proliferation Treaty (NPT), is being carried out by the very nations who are signatories to the NPT is described. The US did not supply enriched uranium for commissioning Koeberg nuclear power plant of South Africa, because South Africa refused to accept full scope safeguards. However, South Africa could procure necessary supplies of enriched uranium, probably from the surplus stocks of enriched uranium of European countries. In contravention of UN sanctions, many European nations are also collaborating with South Africa in illegal mining of uranium in Namibia. All these goings on indicate that the NPT's main objective is not to prevent or reduce proliferation, but to deny nuclear technology to those brown and black nations which do not sign the NPT or do not accept the full scope safeguards. (M.G.B.)

  17. Traffic Dynamics of Computer Networks

    Science.gov (United States)

    Fekete, Attila

    2008-10-01

    Two important aspects of the Internet, namely the properties of its topology and the characteristics of its data traffic, have attracted growing attention of the physics community. My thesis has considered problems of both aspects. First I studied the stochastic behavior of TCP, the primary algorithm governing traffic in the current Internet, in an elementary network scenario consisting of a standalone infinite-sized buffer and an access link. The effect of the fast recovery and fast retransmission (FR/FR) algorithms is also considered. I showed that my model can be extended further to involve the effect of link propagation delay, characteristic of WAN. I continued my thesis with the investigation of finite-sized semi-bottleneck buffers, where packets can be dropped not only at the link, but also at the buffer. I demonstrated that the behavior of the system depends only on a certain combination of the parameters. Moreover, an analytic formula was derived that gives the ratio of packet loss rate at the buffer to the total packet loss rate. This formula makes it possible to treat buffer-losses as if they were link-losses. Finally, I studied computer networks from a structural perspective. I demonstrated through fluid simulations that the distribution of resources, specifically the link bandwidth, has a serious impact on the global performance of the network. Then I analyzed the distribution of edge betweenness in a growing scale-free tree under the condition that a local property, the in-degree of the "younger" node of an arbitrary edge, is known in order to find an optimum distribution of link capacity. The derived formula is exact even for finite-sized networks. I also calculated the conditional expectation of edge betweenness, rescaled for infinite networks.

  18. ALCOHOL RELATED TRAFFIC SAFETY LEGISLATION

    Directory of Open Access Journals (Sweden)

    E.B.R. DESAPRIYA

    2002-01-01

    Full Text Available There is a substantial amount of evidence from experimental studies to indicate that a variety of individual skills are impaired at blood alcohol concentrations (BACs well below 0.05%. Epidemiological studies indicate that the risk of a crash increases sharply for drivers with BACs below 0.05%. The correlation between drunk driving and the risk of traffic accidents has been established on the individual as well as the aggregate level. The BAC level legally permitted is a public policy decision by legislators, while scientists can present experimental and epidemiological evidence indicating the BAC level at which psychomotor skills deteriorate and accident probabilities increase. There is considerable epidemiological evidence to support the fact that the risk of alcohol impaired drivers being involved in traffic crashes rises with increasing BAC's. By contrast, the evidence on the BAC at which a driver should be regarded as committing an offence has been the subject of much debate and various legislative decisions. Historically, per se laws specify BAC levels which are a compromise figure intended to reflect both the point at which a driver becomes significantly more likely to be involved in an accident than a comparative driver with a zero BAC and that which is politically acceptable, but falls within the BAC region of increased accident liability. Therefore, the per se legislation in most countries has not kept pace with scientific progress. This study suggests that if saving lives on the road is an important issue, then, passing laws that incorporate scientific and epidemiological studies, is necessary.

  19. MOBILIDADE URBANA E TRAFFIC CALMING

    Directory of Open Access Journals (Sweden)

    Priscilla Alves

    2014-09-01

    Full Text Available O objetivo do presente trabalho é o de analisar e compreender, a partir de uma discussão teórica, o conceito e aplicação das medidas moderadoras de tráfego, conhecidas como traffic calming e sua relação com a mobilidade urbana sustentável. Buscou-se conhecer a aplicação da técnica no cenário mundial assim como algumas medidas adotadas no Brasil. Os procedimentos metodológicos aqui utilizados envolvem uma pesquisa exploratória, através da literatura atual e disponível, acerca dos temas mobilidade urbana sustentável e aplicação das medidas traffic calming. Conclui-se que as medidas de moderação atuam em conformidade com os princípios da mobilidade urbana sustentável na medida em que prioriza ações para redução do tráfego motorizado, e incentiva o uso e a segurança nos deslocamentos não motorizados. Contudo, a aplicação das técnicas sem estudos prévios e um planejamento estratégico não reduz os conflitos de mobilidade existentes nas localidades. No caso do Brasil para que se tenha sucesso com implantação da técnica é preciso uma análise mais abrangente, articulada e ser passível de aplicação de forma completa, assim como ocorre nos países desenvolvidos.

  20. Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication.

    Science.gov (United States)

    Romero-Brey, Inés; Merz, Andreas; Chiramel, Abhilash; Lee, Ji-Young; Chlanda, Petr; Haselman, Uta; Santarella-Mellwig, Rachel; Habermann, Anja; Hoppe, Simone; Kallis, Stephanie; Walther, Paul; Antony, Claude; Krijnse-Locker, Jacomine; Bartenschlager, Ralf

    2012-01-01

    All positive strand RNA viruses are known to replicate their genomes in close association with intracellular membranes. In case of the hepatitis C virus (HCV), a member of the family Flaviviridae, infected cells contain accumulations of vesicles forming a membranous web (MW) that is thought to be the site of viral RNA replication. However, little is known about the biogenesis and three-dimensional structure of the MW. In this study we used a combination of immunofluorescence- and electron microscopy (EM)-based methods to analyze the membranous structures induced by HCV in infected cells. We found that the MW is derived primarily from the endoplasmic reticulum (ER) and contains markers of rough ER as well as markers of early and late endosomes, COP vesicles, mitochondria and lipid droplets (LDs). The main constituents of the MW are single and double membrane vesicles (DMVs). The latter predominate and the kinetic of their appearance correlates with kinetics of viral RNA replication. DMVs are induced primarily by NS5A whereas NS4B induces single membrane vesicles arguing that MW formation requires the concerted action of several HCV replicase proteins. Three-dimensional reconstructions identify DMVs as protrusions from the ER membrane into the cytosol, frequently connected to the ER membrane via a neck-like structure. In addition, late in infection multi-membrane vesicles become evident, presumably as a result of a stress-induced reaction. Thus, the morphology of the membranous rearrangements induced in HCV-infected cells resemble those of the unrelated picorna-, corona- and arteriviruses, but are clearly distinct from those of the closely related flaviviruses. These results reveal unexpected similarities between HCV and distantly related positive-strand RNA viruses presumably reflecting similarities in cellular pathways exploited by these viruses to establish their membranous replication factories.