WorldWideScience

Sample records for endoscopic optical coherence

  1. In vivo endoscopic multi-beam optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Standish, Beau A; Mariampillai, Adrian; Munce, Nigel R; Leung, Michael K K; Vitkin, I Alex [Deptartment of Medical Biophysics, University of Toronto, Toronto (Canada); Lee, Kenneth K C; Yang, Victor X D [Ontario Cancer Institute/University Health Network, Toronto (Canada)], E-mail: standish@ee.ryerson.ca

    2010-02-07

    A multichannel optical coherence tomography (multi-beam OCT) system and an in vivo endoscopic imaging probe were developed using a swept-source OCT system. The distal optics were micro-machined to produce a high numerical aperture, multi-focus fibre optic array. This combination resulted in a transverse design resolution of <10 {mu}m full width half maximum (FWHM) throughout the entire imaging range, while also increasing the signal intensity within the focus of the individual channels. The system was used in a pre-clinical rabbit study to acquire in vivo structural images of the colon and ex vivo images of the oesophagus and trachea. A good correlation between the structural multi-beam OCT images and H and E histology was achieved, demonstrating the feasibility of this high-resolution system and its potential for in vivo human endoscopic imaging.

  2. In vivo endoscopic multi-beam optical coherence tomography

    International Nuclear Information System (INIS)

    Standish, Beau A; Mariampillai, Adrian; Munce, Nigel R; Leung, Michael K K; Vitkin, I Alex; Lee, Kenneth K C; Yang, Victor X D

    2010-01-01

    A multichannel optical coherence tomography (multi-beam OCT) system and an in vivo endoscopic imaging probe were developed using a swept-source OCT system. The distal optics were micro-machined to produce a high numerical aperture, multi-focus fibre optic array. This combination resulted in a transverse design resolution of <10 μm full width half maximum (FWHM) throughout the entire imaging range, while also increasing the signal intensity within the focus of the individual channels. The system was used in a pre-clinical rabbit study to acquire in vivo structural images of the colon and ex vivo images of the oesophagus and trachea. A good correlation between the structural multi-beam OCT images and H and E histology was achieved, demonstrating the feasibility of this high-resolution system and its potential for in vivo human endoscopic imaging.

  3. Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography

    Science.gov (United States)

    Herz, P. R.; Chen, Y.; Aguirre, A. D.; Schneider, K.; Hsiung, P.; Fujimoto, J. G.; Madden, K.; Schmitt, J.; Goodnow, J.; Petersen, C.

    2004-10-01

    A distally actuated, rotational-scanning micromotor endoscope catheter probe is demonstrated for ultrahigh-resolution in vivo endoscopic optical coherence tomography (OCT) imaging. The probe permits focus adjustment for visualization of tissue morphology at varying depths with improved transverse resolution compared with standard OCT imaging probes. The distal actuation avoids nonuniform scanning motion artifacts that are present with other probe designs and can permit a wider range of imaging speeds. Ultrahigh-resolution endoscopic imaging is demonstrated in a rabbit with micromotor endoscope catheter probe promises to improve OCT imaging performance in future endoscopic imaging applications.

  4. Full optical model of micro-endoscope with optical coherence microscopy, multiphoton microscopy and visible capabilities

    Science.gov (United States)

    Vega, David; Kiekens, Kelli C.; Syson, Nikolas C.; Romano, Gabriella; Baker, Tressa; Barton, Jennifer K.

    2018-02-01

    While Optical Coherence Microscopy (OCM), Multiphoton Microscopy (MPM), and narrowband imaging are powerful imaging techniques that can be used to detect cancer, each imaging technique has limitations when used by itself. Combining them into an endoscope to work in synergy can help achieve high sensitivity and specificity for diagnosis at the point of care. Such complex endoscopes have an elevated risk of failure, and performing proper modelling ensures functionality and minimizes risk. We present full 2D and 3D models of a multimodality optical micro-endoscope to provide real-time detection of carcinomas, called a salpingoscope. The models evaluate the endoscope illumination and light collection capabilities of various modalities. The design features two optical paths with different numerical apertures (NA) through a single lens system with a scanning optical fiber. The dual path is achieved using dichroic coatings embedded in a triplet. A high NA optical path is designed to perform OCM and MPM while a low NA optical path is designed for the visible spectrum to navigate the endoscope to areas of interest and narrowband imaging. Different tests such as the reflectance profile of homogeneous epithelial tissue were performed to adjust the models properly. Light collection models for the different modalities were created and tested for efficiency. While it is challenging to evaluate the efficiency of multimodality endoscopes, the models ensure that the system is design for the expected light collection levels to provide detectable signal to work for the intended imaging.

  5. MEMS-based non-rotatory circumferential scanning optical probe for endoscopic optical coherence tomography

    Science.gov (United States)

    Xu, Yingshun; Singh, Janak; Siang, Teo Hui; Ramakrishna, Kotlanka; Premchandran, C. S.; Sheng, Chen Wei; Kuan, Chuah Tong; Chen, Nanguang; Olivo, Malini C.; Sheppard, Colin J. R.

    2007-07-01

    In this paper, we present a non-rotatory circumferential scanning optical probe integrated with a MEMS scanner for in vivo endoscopic optical coherence tomography (OCT). OCT is an emerging optical imaging technique that allows high resolution cross-sectional imaging of tissue microstructure. To extend its usage to endoscopic applications, a miniaturized optical probe based on Microelectromechanical Systems (MEMS) fabrication techniques is currently desired. A 3D electrothermally actuated micromirror realized using micromachining single crystal silicon (SCS) process highlights its very large angular deflection, about 45 degree, with low driving voltage for safety consideration. The micromirror is integrated with a GRIN lens into a waterproof package which is compatible with requirements for minimally invasive endoscopic procedures. To implement circumferential scanning substantially for diagnosis on certain pathological conditions, such as Barret's esophagus, the micromirror is mounted on 90 degree to optical axis of GRIN lens. 4 Bimorph actuators that are connected to the mirror on one end via supporting beams and springs are selected in this micromirror design. When actuators of the micromirror are driven by 4 channels of sinusoidal waveforms with 90 degree phase differences, beam focused by a GRIN is redirected out of the endoscope by 45 degree tilting mirror plate and achieve circumferential scanning pattern. This novel driving method making full use of very large angular deflection capability of our micromirror is totally different from previously developed or developing micromotor-like rotatory MEMS device for circumferential scanning.

  6. Optical design of an optical coherence tomography and multispectral fluorescence imaging endoscope to detect early stage ovarian cancer

    Science.gov (United States)

    Tate, Tyler; Keenan, Molly; Swan, Elizabeth; Black, John; Utzinger, Urs; Barton, Jennifer

    2014-12-01

    The five year survival rate for ovarian cancer is over 90% if early detection occurs, yet no effective early screening method exists. We have designed and are constructing a dual modality Optical Coherence Tomography (OCT) and Multispectral Fluorescence Imaging (MFI) endoscope to optically screen the Fallopian tube and ovary for early stage cancer. The endoscope reaches the ovary via the natural pathway of the vagina, cervix, uterus and Fallopian tube. In order to navigate the Fallopian tube the endoscope must have an outer diameter of 600 μm, be highly flexible, steerable, tracking and nonperforating. The imaging systems consists of six optical subsystems, two from OCT and four from MFI. The optical subsystems have independent and interrelated design criteria. The endoscope will be tested on realistic tissue models and ex vivo tissue to prove feasibility of future human trials. Ultimately the project aims to provide women the first effective ovarian cancer screening technique.

  7. Endoscopic optical coherence tomography for imaging the tympanic membrane

    Science.gov (United States)

    Burkhardt, Anke; Walther, Julia; Cimalla, Peter; Bornitz, Matthias; Koch, Edmund

    2011-06-01

    Optical coherence tomography (OCT) is an imaging modality that enables micrometer-scale contactless subsurface imaging of biological tissue. Endoscopy, as another imaging method, has the potential of imaging tubular organs and cavities and therefore has opened up several application areas not accessible before. The combination of OCT and endoscopy uses the advantages of both methods and consequently allows additional imaging of structures beneath surfaces inside cavities. Currently, visual investigations on the surface of the human tympanic membrane are possible but only with expert eyes. up to now, visual imaging of the outer ear up to the tympanic membrane can be carried out by an otoscope, an operating microscope or an endoscope. In contrast to these devices, endoscopy has the advantage of imaging the whole tympanic membrane with one view. The intention of this research is the development of an endoscopic optical coherence tomography (EOCT) device for imaging the tympanic membrane depth-resolved and structures behind it. Detection of fluids in the middle ear, which function as an indicator for otitis media, could help to avoid the application of antibiotics. It is possible to detect a congeries of fluids with the otoscope but the ambition is to the early detection by OCT. The developed scanner head allows imaging in working distances in the range from zero up to 5 mm with a field of view of 2 mm. In the next step, the scanner head should be improved to increase the working distance and the field of view.

  8. Endoscopic optical coherence tomography with a modified microelectromechanical systems mirror for detection of bladder cancers

    Science.gov (United States)

    Xie, Tuqiang; Xie, Huikai; Fedder, Gary K.; Pan, Yingtian

    2003-11-01

    Experimental results of a modified micromachined microelectromechanical systems (MEMS) mirror for substantial enhancement of the transverse laser scanning performance of endoscopic optical coherence tomography (EOCT) are presented. Image distortion due to buckling of MEMS mirror in our previous designs was analyzed and found to be attributed to excessive internal stress of the transverse bimorph meshes. The modified MEMS mirror completely eliminates bimorph stress and the resultant buckling effect, which increases the wobbling-free angular optical actuation to greater than 37°, exceeding the transverse laser scanning requirements for EOCT and confocal endoscopy. The new optical coherence tomography (OCT) endoscope allows for two-dimensional cross-sectional imaging that covers an area of 4.2 mm × 2.8 mm (limited by scope size) and at roughly 5 frames/s instead of the previous area size of 2.9 mm × 2.8 mm and is highly suitable for noninvasive and high-resolution imaging diagnosis of epithelial lesions in vivo. EOCT images of normal rat bladders and rat bladder cancers are compared with the same cross sections acquired with conventional bench-top OCT. The results clearly demonstrate the potential of EOCT for in vivo imaging diagnosis and precise guidance for excisional biopsy of early bladder cancers.

  9. Endoscopic optical coherence tomography with a focus-adjustable probe.

    Science.gov (United States)

    Liao, Wenchao; Chen, Tianyuan; Wang, Chengming; Zhang, Wenxin; Peng, Zhangkai; Zhang, Xiao; Ai, Shengnan; Fu, Deyong; Zhou, Tieying; Xue, Ping

    2017-10-15

    We present a focus-adjustable endoscopic probe for optical coherence tomography (OCT), which is able to acquire images with different focal planes and overcome depth-of-focus limitations by image fusing. The use of a two-way shape-memory-alloy spring enables the probe to adjust working distance over 1.5 mm, providing a large scanning range with high resolution and no sensitivity loss. Equipped with a homemade hollow-core ultrasonic motor, the probe is capable of performing an unobstructed 360 deg field-of-view distal scanning. Both the axial resolution and the best lateral resolution are ∼4  μm, with a sensitivity of 100.3 dB. Spectral-domain OCT imaging of phantom and biological tissues with the probe is also demonstrated.

  10. An algorithm for improving the quality of structural images of turbid media in endoscopic optical coherence tomography

    Science.gov (United States)

    Potlov, A. Yu.; Frolov, S. V.; Proskurin, S. G.

    2018-04-01

    High-quality OCT structural images reconstruction algorithm for endoscopic optical coherence tomography of biological tissue is described. The key features of the presented algorithm are: (1) raster scanning and averaging of adjacent Ascans and pixels; (2) speckle level minimization. The described algorithm can be used in the gastroenterology, urology, gynecology, otorhinolaryngology for mucous membranes and skin diagnostics in vivo and in situ.

  11. In-line optical fiber metallic mirror reflector for monolithic common path optical coherence tomography probes.

    Science.gov (United States)

    Singh, Kanwarpal; Reddy, Rohith; Sharma, Gargi; Verma, Yogesh; Gardecki, Joseph A; Tearney, Guillermo

    2018-03-01

    Endoscopic optical coherence tomography probes suffer from various artifacts due to dispersion imbalance and polarization mismatch between reference and sample arm light. Such artifacts can be minimized using a common path approach. In this work, we demonstrate a miniaturized common path probe for optical coherence tomography using an inline fiber mirror. A common path optical fiber probe suitable for performing high-resolution endoscopic optical coherence tomography imaging was developed. To achieve common path functionality, an inline fiber mirror was fabricated using a thin gold layer. A commercially available swept source engine was used to test the designed probe in a cadaver human coronary artery ex vivo. We achieved a sensitivity of 104 dB for this probe using a swept source optical coherence tomography system. To test the probe, images of a cadaver human coronary artery were obtained, demonstrating the quality that is comparable to those obtained by OCT systems with separate reference arms. Additionally, we demonstrate recovery of ranging depth by use of a Michelson interferometer in the detection path. We developed a miniaturized monolithic inline fiber mirror-based common path probe for optical coherence tomography. Owing to its simplicity, our design will be helpful in endoscopic applications that require high-resolution probes in a compact form factor while reducing system complexity. Lasers Surg. Med. 50:230-235, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. 3D handheld endoscope for optical coherence tomography of the human oral mucosa in vivo

    Science.gov (United States)

    Walther, Julia; Schnabel, Christian; Ebert, Nadja; Baumann, Michael; Koch, Edmund

    2017-07-01

    The early non-invasive diagnosis of epithelial tissue alterations in daily clinical routine is still challenging. Since optical coherence tomography (OCT) shows the potential to differentiate between benign and malignant tissue of primal endothelium, OCT could be beneficial for the early diagnosis of malignancies in routine health checks. In this research, a new handheld endoscopic scanning unit was designed and connected to a spectral domain OCT system of our workgroup for the in vivo imaging of the human oral mucosa.

  13. Ultrahigh speed endoscopic optical coherence tomography for gastroenterology.

    Science.gov (United States)

    Tsai, Tsung-Han; Lee, Hsiang-Chieh; Ahsen, Osman O; Liang, Kaicheng; Giacomelli, Michael G; Potsaid, Benjamin M; Tao, Yuankai K; Jayaraman, Vijaysekhar; Figueiredo, Marisa; Huang, Qin; Cable, Alex E; Fujimoto, James; Mashimo, Hiroshi

    2014-12-01

    We describe an ultrahigh speed endoscopic swept source optical coherence tomography (OCT) system for clinical gastroenterology using a vertical-cavity surface-emitting laser (VCSEL) and micromotor imaging catheter. The system had a 600 kHz axial scan rate and 8 µm axial resolution in tissue. Imaging was performed with a 3.2 mm diameter imaging catheter at 400 frames per second with a 12 µm spot size. Three-dimensional OCT (3D-OCT) imaging was performed in patients with a cross section of pathologies undergoing upper and lower endoscopy. The use of distally actuated imaging catheters enabled OCT imaging with more flexibility, such as volumetric imaging in the small intestine and the assessment of hiatal hernia using retroflex imaging. The high rotational scanning stability of the micromotor enabled 3D volumetric imaging with micron scale volumetric accuracy for both en face OCT and cross-sectional imaging, as well as OCT angiography (OCTA) for 3D visualization of subsurface microvasculature. The ability to perform both structural and functional 3D OCT imaging in the GI tract with microscopic accuracy should enable a wide range of studies and enhance the sensitivity and specificity of OCT for detecting pathology.

  14. Enhancing early bladder cancer detection with fluorescence-guided endoscopic optical coherence tomography

    Science.gov (United States)

    Pan, Y. T.; Xie, T. Q.; Du, C. W.; Bastacky, S.; Meyers, S.; Zeidel, M. L.

    2003-12-01

    We report an experimental study of the possibility of enhancing early bladder cancer diagnosis with fluorescence-image-guided endoscopic optical coherence tomography (OCT). After the intravesical instillation of a 10% solution of 5-aminolevulinic acid, simultaneous fluorescence imaging (excitation of 380-420 nm, emission of 620-700 nm) and OCT are performed on rat bladders to identify the photochemical and morphological changes associated with uroepithelial tumorigenesis. The preliminary results of our ex vivo study reveal that both fluorescence and OCT can identify early uroepithelial cancers, and OCT can detect precancerous lesions (e.g., hyperplasia) that fluorescence may miss. This suggests that a cystoscope combining 5-aminolevulinic acid fluorescence and OCT imaging has the potential to enhance the efficiency and sensitivity of early bladder cancer diagnosis.

  15. Proximal design for a multimodality endoscope with multiphoton microscopy, optical coherence microscopy and visual modalities

    Science.gov (United States)

    Kiekens, Kelli C.; Talarico, Olivia; Barton, Jennifer K.

    2018-02-01

    A multimodality endoscope system has been designed for early detection of ovarian cancer. Multiple illumination and detection systems must be integrated in a compact, stable, transportable configuration to meet the requirements of a clinical setting. The proximal configuration presented here supports visible light navigation with a large field of view and low resolution, high resolution multiphoton microscopy (MPM), and high resolution optical coherence microscopy (OCM). All modalities are integrated into a single optical system in the endoscope. The system requires two light sources: a green laser for visible light navigation and a compact fiber based femtosecond laser for MPM and OCM. Using an inline wavelength division multiplexer, the two sources are combined into a single mode fiber. To accomplish OCM, a fiber coupler is used to separate the femtosecond laser into a reference arm and signal arm. The reflected reference arm and the signal from the sample are interfered and wavelength separated by a reflection grating and detected using a linear array. The MPM signal is collimated and goes through a series of filters to separate the 2nd and 3rd harmonics as well as twophoton excitation florescence (2PEF) and 3PEF. Each signal is independently detected on a photo multiplier tube and amplified. The visible light is collected by multiple high numerical aperture fibers at the endoscope tip which are bundled into one SMA adapter at the proximal end and connected to a photodetector. This integrated system design is compact, efficient and meets both optical and mechanical requirements for clinical applications.

  16. Optical transfection using an endoscope-like system.

    Science.gov (United States)

    Ma, Nan; Gunn-Moore, Frank; Dholakia, Kishan

    2011-02-01

    Optical transfection is a powerful method for targeted delivery of therapeutic agents to biological cells. A tightly focused pulsed laser beam may transiently change the permeability of a cell membrane to facilitate the delivery of foreign genetic material into cells. We report the first realization of an endoscope-like integrated system for optical transfection. An imaging fiber (coherent optical fiber bundle) with ∼ 6000 cores (pixels) embedded in a fiber cladding of ∼ 300 μm in diameter, produces an image circle (area) of ∼ 270 μm diam. This imaging fiber, with an ordered axicon lens array chemically etched at its exit face, is used for the delivery of a femtosecond laser to the cell membrane for optical transfection along with subcellular resolution imaging. A microcapillary-based microfluidic system for localized drug delivery was also combined in this miniature, flexible system. Using this novel system, a plasmid transfection efficiency up to ∼ 72% was obtained for CHO-K1 cells. This endoscope-like system opens a range of exciting applications, in particular, in the targeted in vivo optical microsurgery area.

  17. Miniature endoscopic optical coherence tomography for calculus detection.

    Science.gov (United States)

    Kao, Meng-Chun; Lin, Chun-Li; Kung, Che-Yen; Huang, Yi-Fung; Kuo, Wen-Chuan

    2015-08-20

    The effective treatment of periodontitis involves the detection and removal of subgingival dental calculus. However, subgingival calculus is more difficult to detect than supragingival calculus because it is firmly attached to root surfaces within periodontal pockets. To achieve a smooth root surface, clinicians often remove excessive amounts of root structure because of decreased visibility. In addition, enamel pearl, a rare type of ectopic enamel formation on the root surface, can easily be confused with dental calculus in the subgingival environment. In this study, we developed a fiber-probe swept-source optical coherence tomography (SSOCT) technique and combined it with the quantitative measurement of an optical parameter [standard deviation (SD) of the optical coherence tomography (OCT) intensity] to differentiate subgingival calculus from sound enamel, including enamel pearl. Two-dimensional circumferential images were constructed by rotating the miniprobe (0.9 mm diameter) while acquiring image lines, and the adjacent lines in each rotation were stacked to generate a three-dimensional volume. In OCT images, compared to sound enamel and enamel pearls, dental calculus showed significant differences (Pdental calculus.

  18. Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology.

    Science.gov (United States)

    Tsai, Tsung-Han; Potsaid, Benjamin; Tao, Yuankai K; Jayaraman, Vijaysekhar; Jiang, James; Heim, Peter J S; Kraus, Martin F; Zhou, Chao; Hornegger, Joachim; Mashimo, Hiroshi; Cable, Alex E; Fujimoto, James G

    2013-07-01

    We developed a micromotor based miniature catheter with an outer diameter of 3.2 mm for ultrahigh speed endoscopic swept source optical coherence tomography (OCT) using a vertical cavity surface-emitting laser (VCSEL) at a 1 MHz axial scan rate. The micromotor can rotate a micro-prism at several hundred frames per second with less than 5 V drive voltage to provide fast and stable scanning, which is not sensitive to the bending of the catheter. The side-viewing probe can be pulled back to acquire a three-dimensional (3D) data set covering a large area on the specimen. The VCSEL provides a high axial scan rate to support dense sampling under high frame rate operation. Using a high speed data acquisition system, in vivo 3D-OCT imaging in the rabbit GI tract and ex vivo imaging of a human colon specimen with 8 μm axial resolution, 8 μm lateral resolution and 1.2 mm depth range in tissue at a frame rate of 400 fps was demonstrated.

  19. Optical coherence tomography in gastroenterology: a review and future outlook

    Science.gov (United States)

    Tsai, Tsung-Han; Leggett, Cadman L.; Trindade, Arvind J.; Sethi, Amrita; Swager, Anne-Fré; Joshi, Virendra; Bergman, Jacques J.; Mashimo, Hiroshi; Nishioka, Norman S.; Namati, Eman

    2017-12-01

    Optical coherence tomography (OCT) is an imaging technique optically analogous to ultrasound that can generate depth-resolved images with micrometer-scale resolution. Advances in fiber optics and miniaturized actuation technologies allow OCT imaging of the human body and further expand OCT utilization in applications including but not limited to cardiology and gastroenterology. This review article provides an overview of current OCT development and its clinical utility in the gastrointestinal tract, including disease detection/differentiation and endoscopic therapy guidance, as well as a discussion of its future applications.

  20. Optical coherence tomography of dental structures

    Science.gov (United States)

    Baumgartner, Angela; Hitzenberger, Christoph K.; Dichtl, Sabine; Sattmann, Harald; Moritz, Andreas; Sperr, Wolfgang; Fercher, Adolf F.

    1998-04-01

    In the past ten years Partial Coherence Interferometry (PCI) and Optical Coherence Tomography (OCT) have been successfully developed for high precision biometry and tomography of biological tissues. OCT employs the partial coherence properties of a superluminescent diode and the Doppler principle yielding resolution and precision figures of the order of a few microns. Presently, the main application fields of this technique are biometry and imaging of ocular structures in vivo, as well as its clinical use in dermatology and endoscopic applications. This well established length measuring and imaging technique has now been applied to dentistry. First in vitro OCT images of the cemento (dentine) enamel junction of extracted sound and decayed human teeth have been recorded. These images distinguish dentine and enamel structures that are important for assessing enamel thickness and diagnosing caries. Individual optical A-Scans show that the penetration depth into enamel is considerably larger than into dentine. First polarization sensitive OCT recordings show localized changes of the polarization state of the light backscattered by dental material. Two-dimensional maps of the magnitude of the interference intensity and of the total phase difference between two orthogonal polarization states as a function of depth can reveal important structural information.

  1. Ultrahigh speed endoscopic swept source optical coherence tomography using a VCSEL light source and micromotor catheter

    Science.gov (United States)

    Tsai, Tsung-Han; Ahsen, Osman O.; Lee, Hsiang-Chieh; Liang, Kaicheng; Giacomelli, Michael G.; Potsaid, Benjamin M.; Tao, Yuankai K.; Jayaraman, Vijaysekhar; Kraus, Martin F.; Hornegger, Joachim; Figueiredo, Marisa; Huang, Qin; Mashimo, Hiroshi; Cable, Alex E.; Fujimoto, James G.

    2014-03-01

    We developed an ultrahigh speed endoscopic swept source optical coherence tomography (OCT) system for clinical gastroenterology using a vertical-cavity surface-emitting laser (VCSEL) and micromotor based imaging catheter, which provided an imaging speed of 600 kHz axial scan rate and 8 μm axial resolution in tissue. The micromotor catheter was 3.2 mm in diameter and could be introduced through the 3.7 mm accessory port of an endoscope. Imaging was performed at 400 frames per second with an 8 μm spot size using a pullback to generate volumetric data over 16 mm with a pixel spacing of 5 μm in the longitudinal direction. Three-dimensional OCT (3D-OCT) imaging was performed in patients with a cross section of pathologies undergoing standard upper and lower endoscopy at the Veterans Affairs Boston Healthcare System (VABHS). Patients with Barrett's esophagus, dysplasia, and inflammatory bowel disease were imaged. The use of distally actuated imaging catheters allowed OCT imaging with more flexibility such as volumetric imaging in the terminal ileum and the assessment of the hiatal hernia using retroflex imaging. The high rotational stability of the micromotor enabled 3D volumetric imaging with micron scale volumetric accuracy for both en face and cross-sectional imaging. The ability to perform 3D OCT imaging in the GI tract with microscopic accuracy should enable a wide range of studies to investigate the ability of OCT to detect pathology as well as assess treatment response.

  2. Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Pier Alberto Testoni

    2007-01-01

    Full Text Available Optical coherence tomography (OCT is an optical imaging modality that performs high-resolution, cross-sectional, subsurface tomographic imaging of the microstructure of tissues. The physical principle of OCT is similar to that of B-mode ultrasound imaging, except that it uses infrared light waves rather than acoustic waves. The in vivo resolution is 10–25 times better (about 10 µm than with high-frequency ultrasound imaging, but the depth of penetration is limited to 1–3 mm, depending on tissue structure, depth of focus of the probe used, and pressure applied to the tissue surface. In the last decade, OCT technology has evolved from an experimental laboratory tool to a new diagnostic imaging modality with a wide spectrum of clinical applications in medical practice, including the gastrointestinal tract and pancreatico-biliary ductal system. OCT imaging from the gastrointestinal tract can be done in humans by using narrow-diameter, catheter-based probes that can be inserted through the accessory channel of either a conventional front-view endoscope, for investigating the epithelial structure of the gastrointestinal tract, or a side-view endoscope, inside a standard transparent ERCP (endoscopic retrograde cholangiopancreatography catheter, for investigating the pancreatico-biliary ductal system. The esophagus and esophagogastric junction have been the most widely investigated organs so far; more recently, duodenum, colon, and the pancreatico-biliary ductal system have also been extensively investigated. OCT imaging of the gastrointestinal wall structure is characterized by a multiple-layer architecture that permits an accurate evaluation of the mucosa, lamina propria, muscularis mucosae, and part of the submucosa. The technique may therefore be used to identify preneoplastic conditions of the gastrointestinal tract, such as Barrett's epithelium and dysplasia, and evaluate the depth of penetration of early-stage neoplastic lesions. OCT imaging

  3. Detection of bladder tumors using optical coherence tomography

    Science.gov (United States)

    Pan, Yingtian; Xie, Tuqiang; Wang, Zhenguo

    2004-07-01

    This paper summarizes the engineering development of our lab for endoscopic optical coherence tomography toward the ultimate goal to image bladder micro architecture and to diagnose bladder cancers. To test the utility and potential limitations of OCT setups for bladder tumor diagnosis, we used a rat bladder cancer model to track the morphological changes following tumor growth. Image results are presented, suggesting that OCT is able to differentiate cancerous lesions from inflammatory lesions based on OCT characterizations of epithelial thickness and backscattering changes of bladder tissue.

  4. Optical Coherence and Quantum Optics

    CERN Document Server

    Mandel, Leonard

    1995-01-01

    This book presents a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different states of coherence, foundations of radiometry, effects of source coherence on the spectra of radiated fields, coherence theory of laser modes, and scattering of partially coherent light by random media. The book starts with a full mathematical introduction to the subject area and each chapter concludes with a set of exercises. The authors are renowned scientists and have made substantial contributions to many of the topi

  5. Optical Biopsy Using Tissue Spectroscopy and Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Norman S Nishioka

    2003-01-01

    Full Text Available ‘Optical biopsy’ or ‘optical diagnostics’ is a technique whereby light energy is used to obtain information about the structure and function of tissues without disrupting them. In fluorescence spectroscopy, light energy (usually provided by a laser is used to excite tissues and the resulting fluorescence provides information about the target tissue. Its major gastrointestinal application has been in the evaluation of colonic polyps, in which it can reliably distinguish malignant from benign lesions. Optical coherence tomography (OCT has been used in the investigation of Barrett’s epithelium (and dysplasia, although a variety of other applications are feasible. For example, OCT could assist in the identification and staging of mucosal and submucosal neoplasms, the grading of inflammation in the stomach and intestine, the diagnosis of biliary tumours and the assessment of villous architecture. OCT differs from endoscopic ultrasound, a complementary modality, in that it has a much higher resolution but lesser depth of penetration. The images correlate with the histopathological appearance of tissues, and the addition of Doppler methods may enable it to evaluate the vascularity of tumours and the amount of blood flow in varices. Refinements in these new optical techniques will likely make them valuable in clinical practice, although their specific roles have yet to be determined.

  6. Optical coherence tomography in the diagnosis of dysplasia and adenocarcinoma in Barret's esophagus

    Science.gov (United States)

    Gladkova, N. D.; Zagaynova, E. V.; Zuccaro, G.; Kareta, M. V.; Feldchtein, F. I.; Balalaeva, I. V.; Balandina, E. B.

    2007-02-01

    Statistical analysis of endoscopic optical coherence tomography (EOCT) surveillance of 78 patients with Barrett's esophagus (BE) is presented in this study. The sensitivity of OCT device in retrospective open detection of early malignancy (including high grade dysplasia and intramucosal adenocarcinoma (IMAC)) was 75%, specificity 82%, diagnostic accuracy - 80%, positive predictive value- 60%, negative predictive value- 87%. In the open recognition of IMAC sensitivity was 81% and specificity were 85% each. Results of a blind recognition with the same material were similar: sensitivity - 77%, specificity 85%, diagnostic accuracy - 82%, positive predictive value- 70%, negative predictive value- 87%. As the endoscopic detection of early malignancy is problematic, OCT holds great promise in enhancing the diagnostic capability of clinical GI endoscopy.

  7. Experimental generation of optical coherence lattices

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yahong; Cai, Yangjian, E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Ponomarenko, Sergey A., E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn [Department of Electrical and Computer Engineering, Dalhousie University, Halifax, Nova Scotia B3J 2X4 (Canada)

    2016-08-08

    We report experimental generation and measurement of recently introduced optical coherence lattices. The presented optical coherence lattice realization technique hinges on a superposition of mutually uncorrelated partially coherent Schell-model beams with tailored coherence properties. We show theoretically that information can be encoded into and, in principle, recovered from the lattice degree of coherence. Our results can find applications to image transmission and optical encryption.

  8. Coherent anti-Stokes Raman scattering rigid endoscope toward robot-assisted surgery.

    Science.gov (United States)

    Hirose, K; Aoki, T; Furukawa, T; Fukushima, S; Niioka, H; Deguchi, S; Hashimoto, M

    2018-02-01

    Label-free visualization of nerves and nervous plexuses will improve the preservation of neurological functions in nerve-sparing robot-assisted surgery. We have developed a coherent anti-Stokes Raman scattering (CARS) rigid endoscope to distinguish nerves from other tissues during surgery. The developed endoscope, which has a tube with a diameter of 12 mm and a length of 270 mm, achieved 0.91% image distortion and 8.6% non-uniformity of CARS intensity in the whole field of view (650 μm diameter). We demonstrated CARS imaging of a rat sciatic nerve and visualization of the fine structure of nerve fibers.

  9. Integrated endoscopic OCT system and in-vivo images of human internal organs

    Science.gov (United States)

    Sergeev, Alexander M.; Gelikonov, Valentin M.; Gelikonov, Grigory V.; Feldchtein, Felix I.; Kuranov, Roman V.; Gladkova, Natalia D.; Shakhova, Natalia M.; Snopova, Ludmila; Shakhov, Andrei; Kuznetzova, Irina N.; Denisenko, Arkady; Pochinko, Vitaly; Chumakov, Yuri; Almasov, Valentin

    1998-04-01

    First results of endoscopic applications of optical coherence tomography (OCT) for in vivo studies of human mucosa in respiratory, gastrointestinal, urinary and genital tracts are presented. A novel endoscopic OCT (EOCT) system has been created that is based on the integration of a sampling arm of an all-optical-fiber interferometer into standard endoscopic devices using their biopsy channel to transmit low-coherence radiation to investigated tissue. We have studied mucous membranes of esophagus, larynx, stomach, urinary bladder, uterine cervix and endometrium as typical localization for carcinomatous processes. Images of tumor tissues versus healthy tissues have been recorded and analyzed. Violations of well-defined stratified healthy mucosa structure in cancered tissue is distinctly seen by EOCT, thus making this technique promising for early diagnosis of tumors and precise guiding of excisional biopsy.

  10. Transnasal Endoscopic Optic Nerve Decompression in Post Traumatic Optic Neuropathy.

    Science.gov (United States)

    Gupta, Devang; Gadodia, Monica

    2018-03-01

    To quantify the successful outcome in patients following optic nerve decompression in post traumatic unilateral optic neuropathy in form of improvement in visual acuity. A prospective study was carried out over a period of 5 years (January 2011 to June 2016) at civil hospital Ahmedabad. Total 20 patients were selected with optic neuropathy including patients with direct and indirect trauma to unilateral optic nerve, not responding to conservative management, leading to optic neuropathy and subsequent impairment in vision and blindness. Decompression was done via Transnasal-Ethmo-sphenoidal route and outcome was assessed in form of post-operative visual acuity improvement at 1 month, 6 months and 1 year follow up. After surgical decompression complete recovery of visual acuity was achieved in 16 (80%) patients and partial recovery in 4 (20%). Endoscopic transnasal approach is beneficial in traumatic optic neuropathy not responding to steroid therapy and can prevent permanent disability if earlier intervention is done prior to irreversible damage to the nerve. Endoscopic optic nerve surgery can decompress the traumatic and oedematous optic nerve with proper exposure of orbital apex and optic canal without any major intracranial, intraorbital and transnasal complications.

  11. Endoscopic OCT for in-vivo imaging of precancer and cancer states of human mucosa

    Science.gov (United States)

    Sergeev, Alexander M.; Gelikonov, Valentin M.; Gelikonov, Grigory V.; Feldchtein, Felix I.; Kuranov, Roman V.; Gladkova, Natalia D.; Shakhova, Natalia M.; Kuznetzova, Irina N.; Snopova, Ludmila; Denisenko, Arkady; Almasov, Valentin

    1998-01-01

    First results of endoscopic applications of optical coherence tomography for in vivo studies of human mucosa in gastrointestinal and genital tracts are presented. A novel endoscopic OCT system has ben created that is based on the integration of a sampling arm of an all-optical-fiber interferometer into standard endoscopic devices using their biopsy channel to transmit low-coherence radiation to investigated tissue. We have studied mucous membranes of esophagus, stomach and uterine cervix as typical localization for carcinomatous processes. Images of tumor tissues versus healthy tissues have been recorded and analyzed. Violations of well-defined stratified healthy mucosa structure in cancerous tissue is distinctly seen by EOCT, thus making this technique promising for early diagnosis of tumors and precise guiding of excisional biopsy.

  12. Cycloid scanning for wide field optical coherence tomography endomicroscopy and angiography in vivo

    Science.gov (United States)

    Liang, Kaicheng; Wang, Zhao; Ahsen, Osman O.; Lee, Hsiang-Chieh; Potsaid, Benjamin M.; Jayaraman, Vijaysekhar; Cable, Alex; Mashimo, Hiroshi; Li, Xingde; Fujimoto, James G.

    2018-01-01

    Devices that perform wide field-of-view (FOV) precision optical scanning are important for endoscopic assessment and diagnosis of luminal organ disease such as in gastroenterology. Optical scanning for in vivo endoscopic imaging has traditionally relied on one or more proximal mechanical actuators, limiting scan accuracy and imaging speed. There is a need for rapid and precise two-dimensional (2D) microscanning technologies to enable the translation of benchtop scanning microscopies to in vivo endoscopic imaging. We demonstrate a new cycloid scanner in a tethered capsule for ultrahigh speed, side-viewing optical coherence tomography (OCT) endomicroscopy in vivo. The cycloid capsule incorporates two scanners: a piezoelectrically actuated resonant fiber scanner to perform a precision, small FOV, fast scan and a micromotor scanner to perform a wide FOV, slow scan. Together these scanners distally scan the beam circumferentially in a 2D cycloid pattern, generating an unwrapped 1 mm × 38 mm strip FOV. Sequential strip volumes can be acquired with proximal pullback to image centimeter-long regions. Using ultrahigh speed 1.3 μm wavelength swept-source OCT at a 1.17 MHz axial scan rate, we imaged the human rectum at 3 volumes/s. Each OCT strip volume had 166 × 2322 axial scans with 8.5 μm axial and 30 μm transverse resolution. We further demonstrate OCT angiography at 0.5 volumes/s, producing volumetric images of vasculature. In addition to OCT applications, cycloid scanning promises to enable precision 2D optical scanning for other imaging modalities, including fluorescence confocal and nonlinear microscopy. PMID:29682598

  13. In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa

    Science.gov (United States)

    Sergeev, Alexander M.; Gelikonov, V. M.; Gelikonov, G. V.; Feldchtein, Felix I.; Kuranov, R. V.; Gladkova, N. D.; Shakhova, N. M.; Snopova, L. B.; Shakhov, A. V.; Kuznetzova, I. A.; Denisenko, A. N.; Pochinko, V. V.; Chumakov, Yu P.; Streltzova, O. S.

    1997-12-01

    First results of endoscopic applications of optical coherence tomography for in vivo studies of human mucosa in respiratory, gastrointestinal, urinary and genital tracts are presented. A novel endoscopic OCT (EOCT) system has been created that is based on the integration of a sampling arm of an all-optical-fiber interferometer into standard endoscopic devices using their biopsy channel to transmit low-coherence radiation to investigated tissue. We have studied mucous membranes of esophagus, larynx, stomach, urinary bladder, uterine cervix and body as typical localization for carcinomatous processes. Images of tumor tissues versus healthy tissues have been recorded and analyzed. Violations of well-defined stratified healthy mucosa structure in cancered tissue are distinctly seen by EOCT, thus making this technique promising for early diagnosis of tumors and precise guiding of excisional biopsy.

  14. Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Mogensen, Mette; Themstrup, Lotte; Banzhaf, Christina

    2014-01-01

    Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease. OCT is an interferometric technique that detects reflected and backscattered light from tissue and is often described as the o......Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease. OCT is an interferometric technique that detects reflected and backscattered light from tissue and is often described...

  15. Atmospheric free-space coherent optical communications with adaptive optics

    Science.gov (United States)

    Ting, Chueh; Zhang, Chengyu; Yang, Zikai

    2017-02-01

    Free-space coherent optical communications have a potential application to offer last mile bottleneck solution in future local area networks (LAN) because of their information carrier, information security and license-free status. Coherent optical communication systems using orthogonal frequency division multiplexing (OFDM) digital modulation are successfully demonstrated in a long-haul tens Giga bits via optical fiber, but they are not yet available in free space due to atmospheric turbulence-induced channel fading. Adaptive optics is recognized as a promising technology to mitigate the effects of atmospheric turbulence in free-space optics. In this paper, a free-space coherent optical communication system using an OFDM digital modulation scheme and adaptive optics (FSO OFDM AO) is proposed, a Gamma-Gamma distribution statistical channel fading model for the FSO OFDM AO system is examined, and FSO OFDM AO system performance is evaluated in terms of bit error rate (BER) versus various propagation distances.

  16. Optical Coherence Tomography of the Aging Kidney.

    Science.gov (United States)

    Andrews, Peter M; Wang, Hsing-Wen; Guo, Hengchang; Anderson, Erik; Falola, Reuben; Chen, Yu

    2016-12-01

    The aging kidney exhibits a progressive decline in renal function with characteristic histopathologic changes and is a risk factor for renal transplant. However, the degree to which the kidney exhibits this decline depends on several factors that vary from one individual to the next. Optical coherence tomography is an evolving noninvasive imaging technology that has recently been used to evaluate acute tubular necrosis of living-human donor kidneys before their transplant. With the increasing use of kidneys from older individuals, it is important to determine whether optical coherence tomography also can distinguish the histopathology associated with aging. In this investigation, we used Munich-Wistar rats to evaluate the ability of optical coherence tomography to detect histopathologic changes associated with aging. Optical coherence tomography observations were correlated with renal function and conventional light microscopic evaluation of these same kidneys. With the onset of severe proteinuria at 10 to 12 months of age, optical coherence tomography revealed tubular necrosis/atrophy, interstitial fibrosis, tubular dilation, and glomerulosclerosis. With a further deterioration in kidney function at 16 to 18 months of age (as indicated by rising creatinine levels), optical coherence tomography revealed more extensive interstitial fibrosis and tubular atrophy, increased tubular dilation with cyst formation and more sclerotic glomeruli. The foregoing observations suggest that optical coherence tomography can be used to detect the histopathology of progressive nephropathy associated with aging.

  17. Digital processing optical transmission and coherent receiving techniques

    CERN Document Server

    Binh, Le Nguyen

    2013-01-01

    With coherent mixing in the optical domain and processing in the digital domain, advanced receiving techniques employing ultra-high speed sampling rates have progressed tremendously over the last few years. These advances have brought coherent reception systems for lightwave-carried information to the next stage, resulting in ultra-high capacity global internetworking. Digital Processing: Optical Transmission and Coherent Receiving Techniques describes modern coherent receiving techniques for optical transmission and aspects of modern digital optical communications in the most basic lines. The

  18. An All-Fiber-Optic Combined System of Noncontact Photoacoustic Tomography and Optical Coherence Tomography.

    Science.gov (United States)

    Eom, Jonghyun; Shin, Jun Geun; Park, Soongho; Rim, Sunghwan; Lee, Byeong Ha

    2016-05-20

    We propose an all-fiber-based dual-modal imaging system that combines noncontact photoacoustic tomography (PAT) and optical coherence tomography (OCT). The PAT remotely measures photoacoustic (PA) signals with a 1550-nm laser on the surface of a sample by utilizing a fiber interferometer as an ultrasound detector. The fiber-based OCT, employing a swept-source laser centered at 1310 nm, shares the sample arm of the PAT system. The fiber-optic probe for the combined system was homemade with a lensed single-mode fiber (SMF) and a large-core multimode fiber (MMF). The compact and robust common probe is capable of obtaining both the PA and the OCT signals at the same position without any physical contact. Additionally, the MMF of the probe delivers the short pulses of a Nd:YAG laser to efficiently excite the PA signals. We experimentally demonstrate the feasibility of the proposed dual-modal system with a phantom made of a fishing line and a black polyethylene terephthalate fiber in a tissue mimicking solution. The all-fiber-optic system, capable of providing complementary information about absorption and scattering, has a promising potential in minimally invasive and endoscopic imaging.

  19. An All-Fiber-Optic Combined System of Noncontact Photoacoustic Tomography and Optical Coherence Tomography

    Science.gov (United States)

    Eom, Jonghyun; Shin, Jun Geun; Park, Soongho; Rim, Sunghwan; Lee, Byeong Ha

    2016-01-01

    We propose an all-fiber-based dual-modal imaging system that combines noncontact photoacoustic tomography (PAT) and optical coherence tomography (OCT). The PAT remotely measures photoacoustic (PA) signals with a 1550-nm laser on the surface of a sample by utilizing a fiber interferometer as an ultrasound detector. The fiber-based OCT, employing a swept-source laser centered at 1310 nm, shares the sample arm of the PAT system. The fiber-optic probe for the combined system was homemade with a lensed single-mode fiber (SMF) and a large-core multimode fiber (MMF). The compact and robust common probe is capable of obtaining both the PA and the OCT signals at the same position without any physical contact. Additionally, the MMF of the probe delivers the short pulses of a Nd:YAG laser to efficiently excite the PA signals. We experimentally demonstrate the feasibility of the proposed dual-modal system with a phantom made of a fishing line and a black polyethylene terephthalate fiber in a tissue mimicking solution. The all-fiber-optic system, capable of providing complementary information about absorption and scattering, has a promising potential in minimally invasive and endoscopic imaging. PMID:27213392

  20. An All-Fiber-Optic Combined System of Noncontact Photoacoustic Tomography and Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Jonghyun Eom

    2016-05-01

    Full Text Available We propose an all-fiber-based dual-modal imaging system that combines noncontact photoacoustic tomography (PAT and optical coherence tomography (OCT. The PAT remotely measures photoacoustic (PA signals with a 1550-nm laser on the surface of a sample by utilizing a fiber interferometer as an ultrasound detector. The fiber-based OCT, employing a swept-source laser centered at 1310 nm, shares the sample arm of the PAT system. The fiber-optic probe for the combined system was homemade with a lensed single-mode fiber (SMF and a large-core multimode fiber (MMF. The compact and robust common probe is capable of obtaining both the PA and the OCT signals at the same position without any physical contact. Additionally, the MMF of the probe delivers the short pulses of a Nd:YAG laser to efficiently excite the PA signals. We experimentally demonstrate the feasibility of the proposed dual-modal system with a phantom made of a fishing line and a black polyethylene terephthalate fiber in a tissue mimicking solution. The all-fiber-optic system, capable of providing complementary information about absorption and scattering, has a promising potential in minimally invasive and endoscopic imaging.

  1. Dental optical coherence domain reflectometry explorer

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Matthew J. (Livermore, CA); Colston, Jr., Billy W. (Livermore, CA); Sathyam, Ujwal S. (Livermore, CA); Da Silva, Luiz B. (Pleasanton, CA)

    2001-01-01

    A hand-held, fiber optic based dental device with optical coherence domain reflectometry (OCDR) sensing capabilities provides a profile of optical scattering as a function of depth in the tissue at the point where the tip of the dental explorer touches the tissue. This system provides information on the internal structure of the dental tissue, which is then used to detect caries and periodontal disease. A series of profiles of optical scattering or tissue microstructure are generated by moving the explorer across the tooth or other tissue. The profiles are combined to form a cross-sectional, or optical coherence tomography (OCT), image.

  2. Polymer Optical Fibre Sensors for Endoscopic Opto-Acoustic Imaging

    DEFF Research Database (Denmark)

    Broadway, Christian; Gallego, Daniel; Woyessa, Getinet

    2015-01-01

    in existing publications. A great advantage can be obtained for endoscopy due to a small size and array potential to provide discrete imaging speed improvements. Optical fibre exhibits numerous advantages over conventional piezo-electric transducers, such as immunity from electromagnetic interference...... is the physical size of the device, allowing compatibility with current technology, while governing flexibility of the distal end of the endoscope based on the needs of the sensor. Polymer optical fibre (POF) presents a novel approach for endoscopic applications and has been positively discussed and compared...... and a higher resolution at small sizes. Furthermore, micro structured polymer optical fibres offer over 12 times the sensitivity of silica fibre. We present a polymer fibre Bragg grating ultrasound detector with a core diameter of 125 microns. We discuss the ultrasonic signals received and draw conclusions...

  3. Overlapped optics induced perfect coherent effects

    Science.gov (United States)

    Li, Jian Jie; Zang, Xiao Fei; Mao, Jun Fa; Tang, Min; Zhu, Yi Ming; Zhuang, Song Lin

    2013-12-01

    For traditional coherent effects, two separated identical point sources can be interfered with each other only when the optical path difference is integer number of wavelengths, leading to alternate dark and bright fringes for different optical path difference. For hundreds of years, such a perfect coherent condition seems insurmountable. However, in this paper, based on transformation optics, two separated in-phase identical point sources can induce perfect interference with each other without satisfying the traditional coherent condition. This shifting illusion media is realized by inductor-capacitor transmission line network. Theoretical analysis, numerical simulations and experimental results are performed to confirm such a kind of perfect coherent effect and it is found that the total radiation power of multiple elements system can be greatly enhanced. Our investigation may be applicable to National Ignition Facility (NIF), Inertial Confined Fusion (ICF) of China, LED lighting technology, terahertz communication, and so on.

  4. 10-channel fiber array fabrication technique for parallel optical coherence tomography system

    Science.gov (United States)

    Arauz, Lina J.; Luo, Yuan; Castillo, Jose E.; Kostuk, Raymond K.; Barton, Jennifer

    2007-02-01

    Optical Coherence Tomography (OCT) shows great promise for low intrusive biomedical imaging applications. A parallel OCT system is a novel technique that replaces mechanical transverse scanning with electronic scanning. This will reduce the time required to acquire image data. In this system an array of small diameter fibers is required to obtain an image in the transverse direction. Each fiber in the array is configured in an interferometer and is used to image one pixel in the transverse direction. In this paper we describe a technique to package 15μm diameter fibers on a siliconsilica substrate to be used in a 2mm endoscopic probe tip. Single mode fibers are etched to reduce the cladding diameter from 125μm to 15μm. Etched fibers are placed into a 4mm by 150μm trench in a silicon-silica substrate and secured with UV glue. Active alignment was used to simplify the lay out of the fibers and minimize unwanted horizontal displacement of the fibers. A 10-channel fiber array was built, tested and later incorporated into a parallel optical coherence system. This paper describes the packaging, testing, and operation of the array in a parallel OCT system.

  5. Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Fercher, A.F.; Andersen, Peter E.

    2017-01-01

    Optical coherence tomography (OCT) is a technique that is used to peer inside a body noninvasively. Tissue structure defined by tissue absorption and scattering coefficients, and the speed of blood flow, are derived from the characteristics of light remitted by the body. Singly backscattered light...... detected by partial coherence interferometry (PCI) is used to synthesize the tomographic image coded in false colors. A prerequisite of this technique is a low time-coherent but high space-coherent light source, for example, a superluminescent diode or a supercontinuum source. Alternatively, the imaging...... technique can be realized by using ultrafast wavelength scanning light sources. For tissue imaging, the light source wavelengths are restricted to the red and near-infrared (NIR) region from about 600 to 1300 nm, the so-called therapeutic window, where absorption (μa ≈ 0.01 mm−1) is small enough. Transverse...

  6. Extracting subsurface fingerprints using optical coherence tomography

    CSIR Research Space (South Africa)

    Akhoury, SS

    2015-02-01

    Full Text Available Subsurface Fingerprints using Optical Coherence Tomography Sharat Saurabh Akhoury, Luke Nicholas Darlow Modelling and Digital Science, Council for Scientific and Industrial Research, Pretoria, South Africa Abstract Physiologists have found... approach to extract the subsurface fingerprint representation using a high-resolution imaging technology known as Optical Coherence Tomography (OCT). ...

  7. Imaging granulomatous lesions with optical coherence tomography

    DEFF Research Database (Denmark)

    Banzhaf, Christina; Jemec, Gregor B E

    2012-01-01

    To investigate and compare the presentation of granulomatous lesions in optical coherence tomography (OCT) images and compare this to previous studies of nonmelanoma skin tumors.......To investigate and compare the presentation of granulomatous lesions in optical coherence tomography (OCT) images and compare this to previous studies of nonmelanoma skin tumors....

  8. Digital Signal Processing for Optical Coherent Communication Systems

    DEFF Research Database (Denmark)

    Zhang, Xu

    spectrum narrowing tolerance 112-Gb/s DP-QPSK optical coherent systems using digital adaptive equalizer. The demonstrated results show that off-line DSP algorithms are able to reduce the bit error rate (BER) penalty induced by signal spectrum narrowing. Third, we also investigate bi...... wavelength division multiplex (U-DWDM) optical coherent systems based on 10-Gbaud QPSK. We report U-DWDM 1.2-Tb/s QPSK coherent system achieving spectral efficiency of 4.0-bit/s/Hz. In the experimental demonstration, digital decision feed back equalizer (DFE) algorithms and a finite impulse response (FIR......In this thesis, digital signal processing (DSP) algorithms are studied to compensate for physical layer impairments in optical fiber coherent communication systems. The physical layer impairments investigated in this thesis include optical fiber chromatic dispersion, polarization demultiplexing...

  9. Autofluorescence and spectral-domain optical coherence tomography of optic disk melanocytoma.

    Science.gov (United States)

    Guerra, Ricardo Luz Leitão; Marback, Eduardo Ferrari; Silva, Igor Sandes Pessoa da; Maia Junior, Otacílio de Oliveira; Marback, Roberto Lorens

    2014-01-01

    The authors report fundus autofluorescence (FAF) and spectral-domain optical coherence tomography (OCT) findings of two consecutive patients who presented with optic disk melanocytoma (ODM). A retrospective study was performed by reviewing medical records and ophthalmic imaging examinations. Optical coherence tomography findings were sloped and brightly reflective anterior tumor surface, adjacent retinal desorganization and abrupt posterior optical shadowing. Vitreous seeds were found in one patient. Fundus autofluorescence revealed outstanding hypoautofluorescence at the tumor area and isoautofluorescence at the remaining retina. Optical coherence tomography findings of the reported cases are consistent with those reported in the reviewed literature. Fundus autofluorescence has been used in the assessment of choroidal melanocytic tumors, but not yet in melanocytomas. We assume that this is the first report of these findings and believe that when its pattern has become clearly defined, fundus autofluorescence will be a useful tool to avoid misdiagnosis in suspicious cases and for follow-up.

  10. Autofluorescence and spectral-domain optical coherence tomography of optic disk melanocytoma

    Directory of Open Access Journals (Sweden)

    Ricardo Luz Leitão Guerra

    2014-12-01

    Full Text Available The authors report fundus autofluorescence (FAF and spectral-domain optical coherence tomography (OCT findings of two consecutive patients who presented with optic disk melanocytoma (ODM. A retrospective study was performed by reviewing medical records and ophthalmic imaging examinations. Optical coherence tomography findings were sloped and brightly reflective anterior tumor surface, adjacent retinal desorganization and abrupt posterior optical shadowing. Vitreous seeds were found in one patient. Fundus autofluorescence revealed outstanding hypoautofluorescence at the tumor area and isoautofluorescence at the remaining retina. Optical coherence tomography findings of the reported cases are consistent with those reported in the reviewed literature. Fundus autofluorescence has been used in the assessment of choroidal melanocytic tumors, but not yet in melanocytomas. We assume that this is the first report of these findings and believe that when its pattern has become clearly defined, fundus autofluorescence will be a useful tool to avoid misdiagnosis in suspicious cases and for follow-up.

  11. Intracoronary optical coherence tomography

    DEFF Research Database (Denmark)

    Tenekecioglu, Erhan; Albuquerque, Felipe N; Sotomi, Yohei

    2017-01-01

    By providing valuable information about the coronary artery wall and lumen, intravascular imaging may aid in optimizing interventional procedure results and thereby could improve clinical outcomes following percutaneous coronary intervention (PCI). Intravascular optical coherence tomography (OCT...

  12. Intra-operative application of optical coherence tomography with an operating microscope.

    Science.gov (United States)

    Just, T; Lankenau, E; Hüttmann, G; Pau, H W

    2009-09-01

    To introduce the use of optical coherence tomography with an operating microscope for intra-operative evaluation of the human larynx. A specially equipped operating microscope with integrated spectral domain optical coherence tomography apparatus was used during microlaryngoscopy. Technical improvements in optical coherence tomography equipment (e.g. pilot beam, variable focal distance, improved image quality and integration into an operating microscope) have enabled greater sensitivity and imaging speed and a non-contact approach. Spectral domain optical coherence tomography now enables a better correlation between optical coherence tomography images and histological findings. With this new technology, the precision of biopsy can be improved during microlaryngoscopy. Use of this new optical coherence tomography technology, integrated into an operating microscope, enables the surgeon to define the biopsy site location and resection plane precisely, while the optical zoom of the operating microscope can be used over the complete range.

  13. Optics for coherent X-ray applications

    Energy Technology Data Exchange (ETDEWEB)

    Yabashi, Makina, E-mail: yabashi@spring8.or.jp [RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan); Tono, Kensuke [Japan Synchrotron Radiation Research Institute (JASRI), Kouto 1-1-1, Sayo, Hyogo 679-5198 (Japan); Mimura, Hidekazu [The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656 (Japan); Matsuyama, Satoshi; Yamauchi, Kazuto [Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji [RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan); Ohashi, Haruhiko; Goto, Shunji [Japan Synchrotron Radiation Research Institute (JASRI), Kouto 1-1-1, Sayo, Hyogo 679-5198 (Japan); Ishikawa, Tetsuya [RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan)

    2014-08-27

    Developments of optics for coherent X-ray applications and their role in diffraction-limited storage rings are described. Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed.

  14. [Gradient-index (GRIN) endoscopic examinations from the inner structures of the optic nerve meninges].

    Science.gov (United States)

    Sens, Frank Michael; Killer, Hanspeter Esriel; Meyer, Peter

    2003-03-01

    Due to the excellent image quality and the small outer diameter of the GRIN-(gradient index) endoscope tips we were able to examine the subdural and the subarachnoidal space of the optic nerve meninges by endoscopy. This examination was performed to obtain more information about the inner structure of the optic nerve meninges. In this post-mortem study 7 optic nerves were examined from the chiasm to the globe by GRIN endoscopy (Volpi, Schlieren, Switzerland), with an outer diameter of 0.89 mm, integrated optic of 0.5 mm diameter and an integrated fluid channel of 0.2 mm diameter. In all cases the endoscopic examination of the optic nerve meninges was technically easy to perform. It was possible to study the inner surface of the nerve sheaths and the nerve sheath spaces in close-up. We found horizontal and vertical cords on the inner surface of the dura mater, which could tighten by movements of the optic nerve. With a gradient-index (GRIN) endoscope we obtained new information about the inner structure of the optic nerve meninges. New theories about the changes of the optic nerve meninges during movements of the optic nerve may evolve from this study. Further studies with this new method should be encouraged.

  15. Doppler optical coherence microscopy and tomography applied to inner ear mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Page, Scott; Freeman, Dennis M. [Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Ghaffari, Roozbeh [Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States)

    2015-12-31

    While it is clear that cochlear traveling waves underlie the extraordinary sensitivity, frequency selectivity, and dynamic range of mammalian hearing, the underlying micromechanical mechanisms remain unresolved. Recent advances in low coherence measurement techniques show promise over traditional laser Doppler vibrometry and video microscopy, which are limited by low reflectivities of cochlear structures and restricted optical access. Doppler optical coherence tomography (DOCT) and Doppler optical coherence microscopy (DOCM) both utilize a broadband source to limit constructive interference of scattered light to a small axial depth called a coherence gate. The coherence gate can be swept axially to image and measure sub-nanometer motions of cochlear structures throughout the cochlear partition. The coherence gate of DOCT is generally narrower than the confocal gate of the focusing optics, enabling increased axial resolution (typically 15 μm) within optical sections of the cochlear partition. DOCM, frequently implemented in the time domain, centers the coherence gate on the focal plane, achieving enhanced lateral and axial resolution when the confocal gate is narrower than the coherence gate. We compare these two complementary systems and demonstrate their utility in studying cellular and micromechanical mechanisms involved in mammalian hearing.

  16. Coherence-Multiplexed Optical RF Feeder Networks

    NARCIS (Netherlands)

    Meijerink, Arjan; Taniman, R.O.; van Etten, Wim

    2007-01-01

    An optical RF feeding system for wireless access is proposed, in which the radio access points are distinguished by means of coherence multiplexing (CM). CM is a rather unknown and potentially inexpensive optical code division multiple access technique, which is particularly suitable for relatively

  17. Optical characterization and polarization calibration for rigid endoscopes

    Science.gov (United States)

    Garcia, Missael; Gruev, Viktor

    2017-02-01

    Polarization measurements give orthogonal information to spectral images making them a great tool in the characterization of environmental parameters in nature. Thus, polarization imagery has proven to be remarkably useful in a vast range of biomedical applications. One such application is the early diagnosis of flat cancerous lesions in murine colorectal tumor models, where polarization data complements NIR fluorescence analysis. Advances in nanotechnology have led to compact and precise bio-inspired imaging sensors capable of accurately co-registering multidimensional spectral and polarization information. As more applications emerge for these imagers, the optics used in these instruments get very complex and can potentially compromise the original polarization state of the incident light. Here we present a complete optical and polarization characterization of three rigid endoscopes of size 1.9mm x 10cm (Karl Storz, Germany), 5mm x 30cm, and 10mm x 33cm (Olympus, Germany), used in colonoscopy for the prevention of colitis-associated cancer. Characterization results show that the telescope optics act as retarders and effectively depolarize the linear component. These incorrect readings can cause false-positives or false-negatives leading to an improper diagnosis. In this paper, we offer a polarization calibration scheme for these endoscopes based on Mueller calculus. By modeling the optical properties from training data as real-valued Mueller matrices, we are able to successfully reconstruct the initial polarization state acquired by the imaging system.

  18. Optical coherence tomography in conjunction with bronchoscopy

    International Nuclear Information System (INIS)

    Rodrigues, Ascedio Jose; Takimura, Celso Kiyochi; Lemos Neto, Pedro Alves; Figueiredo, Viviane Rossi

    2012-01-01

    To evaluate the feasibility of and the potential for using optical coherence tomography in conjunction with conventional bronchoscopy in the evaluation of the airways. Methods: This was a pilot study based on an ex vivo experimental model involving three animals: one adult New Zealand rabbit and two Landrace pigs. An optical coherence tomography imaging catheter was inserted through the working channel of a flexible bronchoscope in order to reach the distal trachea of the animals. Images of the walls of the trachea were systematically taken along its entire length, from the distal to the proximal portion. Results: The imaging catheter was easily adapted to the working channel of the bronchoscope. High-resolution images of cross sections of the trachea were taken in real time, precisely delineating microstructures, such as the epithelium, submucosa, and cartilage, as well as the adventitia of the anterior and lateral tracheal walls. The corresponding layers of the epithelium, mucosa, and cartilage were clearly differentiated. The mucosa, submucosa, and trachealis muscle were clearly identified in the posterior wall. Conclusions: It is feasible to use an optical coherence tomography imaging catheter in combination with a flexible bronchoscope. Optical coherence tomography produces high resolution images that reveal the microanatomy of the trachea, including structures that are typically seen only on images produced by conventional histology. (author)

  19. Optical coherence tomography in conjunction with bronchoscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Ascedio Jose; Takimura, Celso Kiyochi; Lemos Neto, Pedro Alves; Figueiredo, Viviane Rossi, E-mail: ascedio@gmail.com [Servico de Endoscopia Respiratoria, Hospital das Clinicas, Universidade de Sao Paulo (FM/USP), SP (Brazil)

    2012-07-01

    To evaluate the feasibility of and the potential for using optical coherence tomography in conjunction with conventional bronchoscopy in the evaluation of the airways. Methods: This was a pilot study based on an ex vivo experimental model involving three animals: one adult New Zealand rabbit and two Landrace pigs. An optical coherence tomography imaging catheter was inserted through the working channel of a flexible bronchoscope in order to reach the distal trachea of the animals. Images of the walls of the trachea were systematically taken along its entire length, from the distal to the proximal portion. Results: The imaging catheter was easily adapted to the working channel of the bronchoscope. High-resolution images of cross sections of the trachea were taken in real time, precisely delineating microstructures, such as the epithelium, submucosa, and cartilage, as well as the adventitia of the anterior and lateral tracheal walls. The corresponding layers of the epithelium, mucosa, and cartilage were clearly differentiated. The mucosa, submucosa, and trachealis muscle were clearly identified in the posterior wall. Conclusions: It is feasible to use an optical coherence tomography imaging catheter in combination with a flexible bronchoscope. Optical coherence tomography produces high resolution images that reveal the microanatomy of the trachea, including structures that are typically seen only on images produced by conventional histology. (author)

  20. High-definition optical coherence tomography

    DEFF Research Database (Denmark)

    Boone, Marc; Norrenberg, Sarah; Jemec, Gregor

    2013-01-01

    to those described for reflectance confocal microscopy but with the advantages not only to visualize individual cells up to a depth of 570 μm but also in both slice and en face mode. An adapted algorithmic method for pattern analysis of common inflammatory skin diseases could be proposed. This new......High-definition optical coherence tomography (HD-OCT) is a non-invasive technique for morphological investigation of tissue with cellular resolution filling the imaging gap between reflectance confocal microscopy and conventional optical coherence tomography. The aim of this study is first...... dermatitis. Additional studies to test the sensitivity and specificity of the proposed algorithm for pattern analysis are essential. The other categories of Ackerman's pattern recognition need to be evaluated. This study provides a set of morphological features generated by HD-OCT imaging very similar...

  1. Wigner distribution, partial coherence, and phase-space optics

    NARCIS (Netherlands)

    Bastiaans, M.J.

    2009-01-01

    The Wigner distribution is presented as a perfect means to treat partially coherent optical signals and their propagation through first-order optical systems from a radiometric and phase-space optical perspective

  2. Characterisation of optically cleared paper by optical coherence tomography

    International Nuclear Information System (INIS)

    Fabritius, T; Alarousu, E; Prykaeri, T; Hast, J; Myllylae, Risto

    2006-01-01

    Due to the highly light scattering nature of paper, the imaging depth of optical methods such as optical coherence tomography (OCT) is limited. In this work, we study the effect of refractive index matching on improving the imaging depth of OCT in paper. To this end, four different refractive index matching liquids (ethanol, 1-pentanol, glycerol and benzyl alcohol) with a refraction index between 1.359 and 1.538 were used in experiments. Low coherent light transmission was studied in commercial copy paper sheets, and the results indicate that benzyl alcohol offers the best improvement in imaging depth, while also being sufficiently stable for the intended purpose. Constructed cross-sectional images demonstrate visually that the imaging depth of OCT is considerably improved by optical clearing. Both surfaces of paper sheets can be detected along with information about the sheet's inner structure. (laser applications and other topics in quantum electronics)

  3. Audio frequency in vivo optical coherence elastography

    Science.gov (United States)

    Adie, Steven G.; Kennedy, Brendan F.; Armstrong, Julian J.; Alexandrov, Sergey A.; Sampson, David D.

    2009-05-01

    We present a new approach to optical coherence elastography (OCE), which probes the local elastic properties of tissue by using optical coherence tomography to measure the effect of an applied stimulus in the audio frequency range. We describe the approach, based on analysis of the Bessel frequency spectrum of the interferometric signal detected from scatterers undergoing periodic motion in response to an applied stimulus. We present quantitative results of sub-micron excitation at 820 Hz in a layered phantom and the first such measurements in human skin in vivo.

  4. Audio frequency in vivo optical coherence elastography

    International Nuclear Information System (INIS)

    Adie, Steven G; Kennedy, Brendan F; Armstrong, Julian J; Alexandrov, Sergey A; Sampson, David D

    2009-01-01

    We present a new approach to optical coherence elastography (OCE), which probes the local elastic properties of tissue by using optical coherence tomography to measure the effect of an applied stimulus in the audio frequency range. We describe the approach, based on analysis of the Bessel frequency spectrum of the interferometric signal detected from scatterers undergoing periodic motion in response to an applied stimulus. We present quantitative results of sub-micron excitation at 820 Hz in a layered phantom and the first such measurements in human skin in vivo.

  5. Optical Coherence Tomography Technology and Quality Improvement Methods for Optical Coherence Tomography Images of Skin: A Short Review

    Science.gov (United States)

    Adabi, Saba; Turani, Zahra; Fatemizadeh, Emad; Clayton, Anne; Nasiriavanaki, Mohammadreza

    2017-01-01

    Optical coherence tomography (OCT) delivers 3-dimensional images of tissue microstructures. Although OCT imaging offers a promising high-resolution method, OCT images experience some artifacts that lead to misapprehension of tissue structures. Speckle, intensity decay, and blurring are 3 major artifacts in OCT images. Speckle is due to the low coherent light source used in the configuration of OCT. Intensity decay is a deterioration of light with respect to depth, and blurring is the consequence of deficiencies of optical components. In this short review, we summarize some of the image enhancement algorithms for OCT images which address the abovementioned artifacts. PMID:28638245

  6. Optical Coherence Tomography Technology and Quality Improvement Methods for Optical Coherence Tomography Images of Skin: A Short Review

    Directory of Open Access Journals (Sweden)

    Saba Adabi

    2017-06-01

    Full Text Available Optical coherence tomography (OCT delivers 3-dimensional images of tissue microstructures. Although OCT imaging offers a promising high-resolution method, OCT images experience some artifacts that lead to misapprehension of tissue structures. Speckle, intensity decay, and blurring are 3 major artifacts in OCT images. Speckle is due to the low coherent light source used in the configuration of OCT. Intensity decay is a deterioration of light with respect to depth, and blurring is the consequence of deficiencies of optical components. In this short review, we summarize some of the image enhancement algorithms for OCT images which address the abovementioned artifacts.

  7. Machine learning concepts in coherent optical communication systems

    DEFF Research Database (Denmark)

    Zibar, Darko; Schäffer, Christian G.

    2014-01-01

    Powerful statistical signal processing methods, used by the machine learning community, are addressed and linked to current problems in coherent optical communication. Bayesian filtering methods are presented and applied for nonlinear dynamic state tracking. © 2014 OSA.......Powerful statistical signal processing methods, used by the machine learning community, are addressed and linked to current problems in coherent optical communication. Bayesian filtering methods are presented and applied for nonlinear dynamic state tracking. © 2014 OSA....

  8. Optical technologies for extreme-ultraviolet and soft X-ray coherent sources

    International Nuclear Information System (INIS)

    Canova, Federico; Poletto, Luca

    2015-01-01

    The book reviews the most recent achievements in optical technologies for XUV and X-ray coherent sources. Particular attention is given to free-electron-laser facilities, but also to other sources available at present, such as synchrotrons, high-order laser harmonics and X-ray lasers. The optical technologies relevant to each type of source are discussed. In addition, the main technologies used for photon handling and conditioning, namely multilayer mirrors, adaptive optics, crystals and gratings are explained. Experiments using coherent light received during the last decades a lot of attention for the X-ray regime. Strong efforts were taken for the realization of almost fully coherent sources, e.g. the free-electron lasers, both as independent sources in the femtosecond and attosecond regimes and as seeding sources for free-electron-lasers and X-ray gas lasers. In parallel to the development of sources, optical technologies for photon handling and conditioning of such coherent and intense X-ray beams advanced. New problems were faced for the realization of optical components of beamlines demanding to manage coherent X-ray photons, e.g. the preservation of coherence and time structure of ultra short pulses.

  9. Optical generation and control of quantum coherence in semiconductor nanostructures

    CERN Document Server

    Slavcheva, Gabriela

    2010-01-01

    The unprecedented control of coherence that can be exercised in quantum optics of atoms and molecules has stimulated increasing efforts in extending it to solid-state systems. One motivation to exploit the coherent phenomena comes from the emergence of the quantum information paradigm, however many more potential device applications ranging from novel lasers to spintronics are all bound up with issues in coherence. The book focuses on recent advances in the optical control of coherence in excitonic and polaritonic systems as model systems for the complex semiconductor dynamics towards the goal

  10. Probing myocardium biomechanics using quantitative optical coherence elastography

    Science.gov (United States)

    Wang, Shang; Lopez, Andrew L.; Morikawa, Yuka; Tao, Ge; Li, Jiasong; Larina, Irina V.; Martin, James F.; Larin, Kirill V.

    2015-03-01

    We present a quantitative optical coherence elastographic method for noncontact assessment of the myocardium elasticity. The method is based on shear wave imaging optical coherence tomography (SWI-OCT), where a focused air-puff system is used to induce localized tissue deformation through a low-pressure short-duration air stream and a phase-sensitive OCT system is utilized to monitor the propagation of the induced tissue displacement with nanoscale sensitivity. The 1-D scanning of M-mode OCT imaging and the application of optical phase retrieval and mapping techniques enable the reconstruction and visualization of 2-D depth-resolved shear wave propagation in tissue with ultra-high frame rate. The feasibility of this method in quantitative elasticity measurement is demonstrated on tissue-mimicking phantoms with the estimated Young's modulus compared with uniaxial compression tests. We also performed pilot experiments on ex vivo mouse cardiac muscle tissues with normal and genetically altered cardiomyocytes. Our results indicate this noncontact quantitative optical coherence elastographic method can be a useful tool for the cardiac muscle research and studies.

  11. INTRASURGICAL MICROSCOPE-INTEGRATED SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY-ASSISTED MEMBRANE PEELING.

    Science.gov (United States)

    Falkner-Radler, Christiane I; Glittenberg, Carl; Gabriel, Max; Binder, Susanne

    2015-10-01

    To evaluate microscope-integrated intrasurgical spectral domain optical coherence tomography during macular surgery in a prospective monocenter study. Before pars plana vitrectomy and before, during, and after membrane peeling, 512 × 128 macular cube scans were performed using a Carl Zeiss Meditec Cirrus high-definition OCT system adapted to the optical pathway of a Zeiss OPMI VISU 200 surgical microscope and compared with retinal staining. The study included 51 patients with epiretinal membranes, with 8 of those having additional lamellar macular holes, 11 patients with vitreomacular traction, and 8 patients with full-thickness macular holes. Intraoperative spectral domain optical coherence tomography allowed performing membrane peeling without using retinal dyes in 40% of cases (28 of 70 patients). No residual membranes were found in 94.3% of patients (66 of 70 patients) in intrasurgical spectral domain optical coherence tomography and subsequent (re)staining. In patients with vitreomacular traction, intrasurgical spectral domain optical coherence tomography scans facilitated decisions on the need for an intraocular tamponade after membrane peeling. Intraoperative spectral domain optical coherence tomography was comparable with retinal dyes in confirming success after membrane peeling. However, the visualization of flat membranes was better after staining.

  12. Laser tissue coagulation and concurrent optical coherence tomography through a double-clad fiber coupler

    Science.gov (United States)

    Beaudette, Kathy; Baac, Hyoung Won; Madore, Wendy-Julie; Villiger, Martin; Godbout, Nicolas; Bouma, Brett E.; Boudoux, Caroline

    2015-01-01

    Double-clad fiber (DCF) is herein used in conjunction with a double-clad fiber coupler (DCFC) to enable simultaneous and co-registered optical coherence tomography (OCT) and laser tissue coagulation. The DCF allows a single channel fiber-optic probe to be shared: i.e. the core propagating the OCT signal while the inner cladding delivers the coagulation laser light. We herein present a novel DCFC designed and built to combine both signals within a DCF (>90% of single-mode transmission; >65% multimode coupling). Potential OCT imaging degradation mechanisms are also investigated and solutions to mitigate them are presented. The combined DCFC-based system was used to induce coagulation of an ex vivo swine esophagus allowing a real-time assessment of thermal dynamic processes. We therefore demonstrate a DCFC-based system combining OCT imaging with laser coagulation through a single fiber, thus enabling both modalities to be performed simultaneously and in a co-registered manner. Such a system enables endoscopic image-guided laser marking of superficial epithelial tissues or laser thermal therapy of epithelial lesions in pathologies such as Barrett’s esophagus. PMID:25909013

  13. Optical coherence tomography of basal cell carcinoma

    DEFF Research Database (Denmark)

    Yücel, D.; Themstrup, L.; Manfredi, Maddalena

    2016-01-01

    Background: Basal cell carcinoma (BCC) is the most prevalent malignancy in Caucasians. Optical coherence tomography (OCT) is a non-invasive optical imaging technology using the principle of interferometry. OCT has shown a great potential in diagnosing, monitoring, and follow-up of BCC. So far most...

  14. Transverse Micro-structuring of Photonic Crystal Fibers for Industrial Sensors and Side Viewing Probes for Optical Coherence Tomography Applications

    Directory of Open Access Journals (Sweden)

    Sanjay KHER

    2010-05-01

    Full Text Available In this work, we report a simple and easily adaptable technique of lateral micro-machining of Photonic Crystal fibers (PCFs using modulated CO2-laser in conjunction with electrical arc system. The technique is controlled, convenient and precise over wide dimensions (50-250 mm. Lateral access to the holes of PCF provides additional flexibility for sensitive real time detection of gases such as green-house gases. Long period gratings are made in PCF through inscription of micro-grooves for sensitive detection of longitudinal strain. A unique and versatile PCF based probe for possible endoscopic Optical Coherence Tomography (OCT applications is reported.

  15. The Development, Commercialization, and Impact of Optical Coherence Tomography.

    Science.gov (United States)

    Fujimoto, James; Swanson, Eric

    2016-07-01

    This review was written for the special issue of IOVS to describe the history of optical coherence tomography (OCT) and its evolution from a nonscientific, historic perspective. Optical coherence tomography has become a standard of care in ophthalmology, providing real-time information on structure and function - diagnosing disease, evaluating progression, and assessing response to therapy, as well as helping to understand disease pathogenesis and create new therapies. Optical coherence tomography also has applications in multiple clinical specialties, fundamental research, and manufacturing. We review the early history of OCT describing how research and development evolves and the important role of multidisciplinary collaboration and expertise. Optical coherence tomography had its origin in femtosecond optics, but used optical communications technologies and required advanced engineering for early OCT prototypes, clinical feasibility studies, entrepreneurship, and corporate development in order to achieve clinical acceptance and clinical impact. Critical advances were made by early career researchers, clinician scientists, engineering experts, and business leaders, which enabled OCT to have a worldwide impact on health care. We introduce the concept of an "ecosystem" consisting of research, government funding, collaboration and competition, clinical studies, innovation, entrepreneurship and industry, and impact - all of which must work synergistically. The process that we recount is long and challenging, but it is our hope that it might inspire early career professionals in science, engineering, and medicine, and that the clinical and research community will find this review of interest.

  16. The Development, Commercialization, and Impact of Optical Coherence Tomography

    Science.gov (United States)

    Fujimoto, James; Swanson, Eric

    2016-01-01

    This review was written for the special issue of IOVS to describe the history of optical coherence tomography (OCT) and its evolution from a nonscientific, historic perspective. Optical coherence tomography has become a standard of care in ophthalmology, providing real-time information on structure and function – diagnosing disease, evaluating progression, and assessing response to therapy, as well as helping to understand disease pathogenesis and create new therapies. Optical coherence tomography also has applications in multiple clinical specialties, fundamental research, and manufacturing. We review the early history of OCT describing how research and development evolves and the important role of multidisciplinary collaboration and expertise. Optical coherence tomography had its origin in femtosecond optics, but used optical communications technologies and required advanced engineering for early OCT prototypes, clinical feasibility studies, entrepreneurship, and corporate development in order to achieve clinical acceptance and clinical impact. Critical advances were made by early career researchers, clinician scientists, engineering experts, and business leaders, which enabled OCT to have a worldwide impact on health care. We introduce the concept of an “ecosystem” consisting of research, government funding, collaboration and competition, clinical studies, innovation, entrepreneurship and industry, and impact – all of which must work synergistically. The process that we recount is long and challenging, but it is our hope that it might inspire early career professionals in science, engineering, and medicine, and that the clinical and research community will find this review of interest. PMID:27409459

  17. Characterization of dynamic physiology of the bladder by optical coherence tomography

    Science.gov (United States)

    Yuan, Zhijia; Keng, Kerri; Pan, Rubin; Ren, Hugang; Du, Congwu; Kim, Jason; Pan, Yingtian

    2012-03-01

    Because of its high spatial resolution and noninvasive imaging capabilities, optical coherence tomography has been used to characterize the morphological details of various biological tissues including urinary bladder and to diagnose their alternations (e.g., cancers). In addition to static morphology, the dynamic features of tissue morphology can provide important information that can be used to diagnose the physiological and functional characteristics of biological tissues. Here, we present the imaging studies based on optical coherence tomography to characterize motion related physiology and functions of rat bladder detrusor muscles and compared the results with traditional biomechanical measurements. Our results suggest that optical coherence tomography is capable of providing quantitative evaluation of contractile functions of intact bladder (without removing bladder epithelium and connective tissue), which is potentially of more clinical relevance for future clinical diagnosis - if incorporated with cystoscopic optical coherence tomography.

  18. Endoscopic optic nerve decompression for nontraumatic compressive optic neuropathy

    Directory of Open Access Journals (Sweden)

    Cheng-long REN

    2015-11-01

    Full Text Available Objective To describe the preliminary experience with endoscopic optic nerve decompression (EOND for nontraumatic compressive optic neuropathies (NCONs. Methods The clinical data of 10 patients, male 5 and female 5, with a mean age of 44.3±5.1 years, who underwent EOND for visual loss (n=5 or visual deterioration (n=5 due to tumor compression in General Hospital of Armed Police Forces of China in the period from April 2013 to April 2014 were analyzed retrospectively. Preoperative and 6-month-postoperative clinical and imaging data of these patients were reviewed and analyzed. Results Among 5 patients who lost light perception (including 2 patients with bilateral optic nerve compression before operation, 4 of them showed visual improvement to different degrees on the 7th day after operation (with improvement of bilateral visual acuity. The other 5 patients with visual impairment before operation recovered their visual acuity to different extent after the operation. All of the patients had no obvious post-operative complications. Conclusion EOND is a safe, effective, and minimally invasive surgical technique affording recovery of visual function to NCON patients. DOI: 10.11855/j.issn.0577-7402.2015.11.12

  19. Optical coherence tomography angiography in age-related macular degeneration: The game changer.

    Science.gov (United States)

    Lupidi, Marco; Cerquaglia, Alessio; Chhablani, Jay; Fiore, Tito; Singh, Sumit Randhir; Cardillo Piccolino, Felice; Corbucci, Roberta; Coscas, Florence; Coscas, Gabriel; Cagini, Carlo

    2018-04-01

    Optical coherence tomography angiography is one of the biggest advances in ophthalmic imaging. It enables a depth-resolved assessment of the retinal and choroidal blood flow, far exceeding the levels of detail commonly obtained with dye angiographies. One of the first applications of optical coherence tomography angiography was in detecting the presence of choroidal neovascularization in age-related macular degeneration and establishing its position in relation to the retinal pigmented epithelium and Bruch's membrane, and thereby classifying the CNV as type 1, type 2, type 3, or mixed lesions. Optical coherence tomography angiograms, due to the longer wavelength used by optical coherence tomography, showed a more distinct choroidal neovascularization vascular pattern than fluorescein angiography, since there is less suffering from light scattering or is less obscured by overlying subretinal hemorrhages or exudation. Qualitative and quantitative assessments of optical coherence tomography angiography findings in exudative and nonexudative age-related macular degeneration have been largely investigated within the past 3 years both in clinical and experimental settings. This review constitutes an up-to-date of all the potential applications of optical coherence tomography angiography in age-related macular degeneration in order to better understand how to translate its theoretical usefulness into the current clinical practice.

  20. Fourier phase in Fourier-domain optical coherence tomography

    Science.gov (United States)

    Uttam, Shikhar; Liu, Yang

    2015-01-01

    Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided. PMID:26831383

  1. Fourier phase in Fourier-domain optical coherence tomography.

    Science.gov (United States)

    Uttam, Shikhar; Liu, Yang

    2015-12-01

    Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided.

  2. Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography (Conference Presentation)

    Science.gov (United States)

    Tang, Qinggong; Frank, Aaron; Wang, Jianting; Chen, Chao-wei; Jin, Lily; Lin, Jon; Chan, Joanne M.; Chen, Yu

    2016-03-01

    Early detection of neoplastic changes remains a critical challenge in clinical cancer diagnosis and treatment. Many cancers arise from epithelial layers such as those of the gastrointestinal (GI) tract. Current standard endoscopic technology is unable to detect those subsurface lesions. Since cancer development is associated with both morphological and molecular alterations, imaging technologies that can quantitative image tissue's morphological and molecular biomarkers and assess the depth extent of a lesion in real time, without the need for tissue excision, would be a major advance in GI cancer diagnostics and therapy. In this research, we investigated the feasibility of multi-modal optical imaging including high-resolution optical coherence tomography (OCT) and depth-resolved high-sensitivity fluorescence laminar optical tomography (FLOT) for structural and molecular imaging. APC (adenomatous polyposis coli) mice model were imaged using OCT and FLOT and the correlated histopathological diagnosis was obtained. Quantitative structural (the scattering coefficient) and molecular imaging parameters (fluorescence intensity) from OCT and FLOT images were developed for multi-parametric analysis. This multi-modal imaging method has demonstrated the feasibility for more accurate diagnosis with 87.4% (87.3%) for sensitivity (specificity) which gives the most optimal diagnosis (the largest area under receiver operating characteristic (ROC) curve). This project results in a new non-invasive multi-modal imaging platform for improved GI cancer detection, which is expected to have a major impact on detection, diagnosis, and characterization of GI cancers, as well as a wide range of epithelial cancers.

  3. [Evaluation of diabetic microangiopathy using optical coherence tomography angiography].

    Science.gov (United States)

    Czakó, Cecília; Sándor, Gábor László; Ecsedy, Mónika; Szepessy, Zsuzsanna; Borbándy, Ágnes; Resch, Miklós; Papp, András; Récsán, Zsuzsa; Horváth, Hajnalka; Nagy, Zoltán Zsolt; Kovács, Illés

    2018-02-01

    Optical coherence tomography angiography is a non-invasive imaging technique that is able to visualize the different retinal vascular layers using motion contrast to detect blood flow without intravenous dye injection. This method might help to assess microangiopathy in diabetic retinopathy during screening and follow-up. To quantify retinal microvasculature alterations in both eyes of diabetic patients in relation to systemic risk factors using optical coherence tomography angiography. Both eyes of 36 diabetic patients and 45 individuals without diabetes were examined. Duration of diabetes, insulin therapy, blood pressure, HbA 1c , dyslipidemia, axial length and the presence of diabetic retinopathy were recorded. Retinal vessel density was measured by optical coherence tomography angiography. The effect of risk factors on vessel density and between-eye asymmetry was assessed using multivariable regression analysis. Vessel density was significantly lower and between-eye difference was significantly higher in diabetic patients compared to controls (pdiabetes duration (pdiabetic retinopathy compared to control subjects (pdiabetes compared to healthy subjects. By using optical coherence tomography angiography, the detection of these microvascular alterations is possible before clinically detectable diabetic retinopathy and might serve as a useful tool in both screening and timing of treatment. Orv Hetil. 2018; 159(8): 320-326.

  4. Optical biopsy of lymph node morphology using optical coherence tomography.

    Science.gov (United States)

    Luo, Wei; Nguyen, Freddy T; Zysk, Adam M; Ralston, Tyler S; Brockenbrough, John; Marks, Daniel L; Oldenburg, Amy L; Boppart, Stephen A

    2005-10-01

    Optical diagnostic imaging techniques are increasingly being used in the clinical environment, allowing for improved screening and diagnosis while minimizing the number of invasive procedures. Diffuse optical tomography, for example, is capable of whole-breast imaging and is being developed as an alternative to traditional X-ray mammography. While this may eventually be a very effective screening method, other optical techniques are better suited for imaging on the cellular and molecular scale. Optical Coherence Tomography (OCT), for instance, is capable of high-resolution cross-sectional imaging of tissue morphology. In a manner analogous to ultrasound imaging except using optics, pulses of near-infrared light are sent into the tissue while coherence-gated reflections are measured interferometrically to form a cross-sectional image of tissue. In this paper we apply OCT techniques for the high-resolution three-dimensional visualization of lymph node morphology. We present the first reported OCT images showing detailed morphological structure and corresponding histological features of lymph nodes from a carcinogen-induced rat mammary tumor model, as well as from a human lymph node containing late stage metastatic disease. The results illustrate the potential for OCT to visualize detailed lymph node structures on the scale of micrometastases and the potential for the detection of metastatic nodal disease intraoperatively.

  5. Orbital apex cyst: a rare cause of compressive optic neuropathy post-functional endoscopic sinus surgery

    Directory of Open Access Journals (Sweden)

    Koh YN

    2017-07-01

    Full Text Available Yi Ni Koh,1,2 Shu Fen Ho,2 Letchumanan Pathma,3 Harvinder Singh,3 Embong Zunaina1 1Department of Ophthalmology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia; 2Department of Ophthalmology, 3Department of Otorhinolaryngology, Hospital Raja Permaisuri Bainun, Ipoh, Perak, Malaysia Abstract: There are various causes that can lead to compressive optic neuropathy. We present here orbital apex cyst as an unusual cause of compressive optic neuropathy in a 49-year-old male. He presented with 2 weeks painless loss of vision in the left eye with left-sided headache. He had had left functional endoscopic sinus surgery for left nasal polyps 4 years earlier. Magnetic resonance imaging of brain and orbit revealed a left discrete orbital nodule, possibly orbital cyst or mucocele, which was compressing on the left optic nerve. Left eye vision improved markedly from hand movement to 6/36 pinhole 6/18 after initiation of intravenous dexamethasone. A subsequent endoscopic endonasal left optic nerve decompression found the orbital nodule lesion to be an orbital cyst. Marsupialization was performed instead of excision, as the cyst ruptured intraoperatively. Postoperative vision improved to 6/7.5 with normal optic nerve function postoperatively. Possible cause of orbital apex cyst is discussed. Keywords: orbital cyst, compressive optic neuropathy, functional endoscopic sinus surgery

  6. COHERENT DETECTION FOR SPECTRAL AMPLITUDE-CODED OPTICAL LABEL SWITCHING SYSTEMS

    DEFF Research Database (Denmark)

    Osadchiy, Alexey Vladimirovich; Tafur Monroy, Idelfonso

    2010-01-01

    Coherent detection for spectrally encoded optical labels is proposed and experimentally demonstrated for three label tones spectrally spaced at 1 GHz. The proposed method utilizes a frequency swept local oscillator in a coherent receiver supported by digital signal processing for improved...... flexibility and upgradeability while reducing label detection subsystem complexity as compared with the conventional optical autocorrelation based approaches....

  7. IQ imbalance tolerable parallel-channel DMT transmission for coherent optical OFDMA access network

    Science.gov (United States)

    Jung, Sang-Min; Mun, Kyoung-Hak; Jung, Sun-Young; Han, Sang-Kook

    2016-12-01

    Phase diversity of coherent optical communication provides spectrally efficient higher-order modulation for optical communications. However, in-phase/quadrature (IQ) imbalance in coherent optical communication degrades transmission performance by introducing unwanted signal distortions. In a coherent optical orthogonal frequency division multiple access (OFDMA) passive optical network (PON), IQ imbalance-induced signal distortions degrade transmission performance by interferences of mirror subcarriers, inter-symbol interference (ISI), and inter-channel interference (ICI). We propose parallel-channel discrete multitone (DMT) transmission to mitigate transceiver IQ imbalance-induced signal distortions in coherent orthogonal frequency division multiplexing (OFDM) transmissions. We experimentally demonstrate the effectiveness of parallel-channel DMT transmission compared with that of OFDM transmission in the presence of IQ imbalance.

  8. Optical coherence tomography and optical coherence domain reflectometry for deep brain stimulation probe guidance

    Science.gov (United States)

    Jeon, Sung W.; Shure, Mark A.; Baker, Kenneth B.; Chahlavi, Ali; Hatoum, Nagi; Turbay, Massud; Rollins, Andrew M.; Rezai, Ali R.; Huang, David

    2005-04-01

    Deep Brain Stimulation (DBS) is FDA-approved for the treatment of Parkinson's disease and essential tremor. Currently, placement of DBS leads is guided through a combination of anatomical targeting and intraoperative microelectrode recordings. The physiological mapping process requires several hours, and each pass of the microelectrode into the brain increases the risk of hemorrhage. Optical Coherence Domain Reflectometry (OCDR) in combination with current methodologies could reduce surgical time and increase accuracy and safety by providing data on structures some distance ahead of the probe. For this preliminary study, we scanned a rat brain in vitro using polarization-insensitive Optical Coherence Tomography (OCT). For accurate measurement of intensity and attenuation, polarization effects arising from tissue birefringence are removed by polarization diversity detection. A fresh rat brain was sectioned along the coronal plane and immersed in a 5 mm cuvette with saline solution. OCT images from a 1294 nm light source showed depth profiles up to 2 mm. Light intensity and attenuation rate distinguished various tissue structures such as hippocampus, cortex, external capsule, internal capsule, and optic tract. Attenuation coefficient is determined by linear fitting of the single scattering regime in averaged A-scans where Beer"s law is applicable. Histology showed very good correlation with OCT images. From the preliminary study using OCT, we conclude that OCDR is a promising approach for guiding DBS probe placement.

  9. Handbook of coherent domain optical methods biomedical diagnostics, environmental and material science

    CERN Document Server

    2004-01-01

    For the first time in one set of books, coherent-domain optical methods are discussed in the framework of various applications, which are characterized by a strong light scattering. A few chapters describe basic research containing the updated results on coherent and polarized light non-destructive interactions with a scattering medium, in particular, diffraction, interference, and speckle formation at multiple scattering. These chapters allow for understanding coherent-domain diagnostic techniques presented in later chapters. A large portion of Volume I is dedicated to analysis of various aspects of optical coherence tomography (OCT) - a very new and growing field of coherent optics. Two chapters on laser scanning confocal microscopy give insight to recent extraordinary results on in vivo imaging and compare the possibilities and achievements of confocol, excitation multiphoton, and OCT microscopy. This two volume reference contains descriptions of holography, interferometry and optical heterodyning techniqu...

  10. Emerging Endoscopic and Photodynamic Techniques for Bladder Cancer Detection and Surveillance

    Directory of Open Access Journals (Sweden)

    Prashant Patel

    2011-01-01

    Full Text Available This review provides an overview of emerging techniques, namely, photodynamic diagnosis (PDD, narrow band imaging (NBI, Raman spectroscopy, optical coherence tomography, virtual cystoscopy, and endoscopic microscopy for its use in the diagnosis and surveillance of bladder cancer. The technology, clinical evidence and future applications of these approaches are discussed with particular emphasis on PDD and NBI. These approaches show promise to optimise cystoscopy and transurethral resection of bladder tumours.

  11. Optical Coherence Tomography Angiography of Retinal Cavernous Hemangioma.

    Science.gov (United States)

    Pierro, Luisa; Marchese, Alessandro; Gagliardi, Marco; Bandello, Francesco

    2017-08-01

    Retinal cavernous hemangioma is a rare, benign, retinal tumor characterized by angiomatous proliferation of vessels within the inner retina or the optic disc.1 Here we report a case of retinal cavernous hemangioma on the margin of the optic disc in the right eye of a 61-year-old asymptomatic female. The lesion was studied with multimodal imaging which included structural optical coherence tomography, fluorescein angiography, blue fundus auto-fluorescence, optical coherence tomography angiography (OCTA) (DRI OCT Triton; Topcon, Tokyo, Japan) and visual field examination. Blood circulation inside retinal cavernous hemangioma lesion is typically low-stagnant.2 However, OCTA demonstrated blood flow inside the lesion, illustrating its vascular circulation.3 Visual field was within the normal limits, except from a slight enlargement of the blind spot. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:684-685.]. Copyright 2017, SLACK Incorporated.

  12. Optical laser systems at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; Edstrom, Steve; Gilevich, Sasha; Glownia, James M.; Granados, Eduardo; Hering, Philippe; Hoffmann, Matthias C.; Miahnahri, Alan; Milathianaki, Despina; Polzin, Wayne; Ratner, Daniel; Tavella, Franz; Vetter, Sharon; Welch, Marc; White, William E.; Fry, Alan R., E-mail: alanfry@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-22

    This manuscript serves as a reference to describe the optical laser sources and capabilities at the Linac Coherent Light Source. Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  13. Optical Coherence Tomography Technology and Quality Improvement Methods for Optical Coherence Tomography Images of Skin: A Short Review

    OpenAIRE

    Adabi, Saba; Turani, Zahra; Fatemizadeh, Emad; Clayton, Anne; Nasiriavanaki, Mohammadreza

    2017-01-01

    Optical coherence tomography (OCT) delivers 3-dimensional images of tissue microstructures. Although OCT imaging offers a promising high-resolution method, OCT images experience some artifacts that lead to misapprehension of tissue structures. Speckle, intensity decay, and blurring are 3 major artifacts in OCT images. Speckle is due to the low coherent light source used in the configuration of OCT. Intensity decay is a deterioration of light with respect to depth, and blurring is the conseque...

  14. All-optically integrated photoacoustic and optical coherence tomography: A review

    Directory of Open Access Journals (Sweden)

    Wei Qiao

    2017-07-01

    Full Text Available All-optically integrated photoacoustic (PA and optical coherence tomography (OCT dual-mode imaging technology that could offer comprehensive pathological information for accurate diagnosis in clinic has gradually become a promising imaging technology in the aspect of biomedical imaging during the recent years. This review refers to the technology aspects of all-optical PA detection and system evolution of optically integrated PA and OCT, including Michelson interferometer dual-mode imaging system, Fabry–Perot (FP interferometer dual-mode imaging system and Mach–Zehnder interferometer dual-mode imaging system. It is believed that the optically integrated PA and OCT has great potential applications in biomedical imaging.

  15. Acute Solar Retinopathy Imaged With Adaptive Optics, Optical Coherence Tomography Angiography, and En Face Optical Coherence Tomography.

    Science.gov (United States)

    Wu, Chris Y; Jansen, Michael E; Andrade, Jorge; Chui, Toco Y P; Do, Anna T; Rosen, Richard B; Deobhakta, Avnish

    2018-01-01

    Solar retinopathy is a rare form of retinal injury that occurs after direct sungazing. To enhance understanding of the structural changes that occur in solar retinopathy by obtaining high-resolution in vivo en face images. Case report of a young adult woman who presented to the New York Eye and Ear Infirmary with symptoms of acute solar retinopathy after viewing the solar eclipse on August 21, 2017. Results of comprehensive ophthalmic examination and images obtained by fundus photography, microperimetry, spectral-domain optical coherence tomography (OCT), adaptive optics scanning light ophthalmoscopy, OCT angiography, and en face OCT. The patient was examined after viewing the solar eclipse. Visual acuity was 20/20 OD and 20/25 OS. The patient was left-eye dominant. Spectral-domain OCT images were consistent with mild and severe acute solar retinopathy in the right and left eye, respectively. Microperimetry was normal in the right eye but showed paracentral decreased retinal sensitivity in the left eye with a central absolute scotoma. Adaptive optics images of the right eye showed a small region of nonwaveguiding photoreceptors, while images of the left eye showed a large area of abnormal and nonwaveguiding photoreceptors. Optical coherence tomography angiography images were normal in both eyes. En face OCT images of the right eye showed a small circular hyperreflective area, with central hyporeflectivity in the outer retina of the right eye. The left eye showed a hyperreflective lesion that intensified in area from inner to middle retina and became mostly hyporeflective in the outer retina. The shape of the lesion on adaptive optics and en face OCT images of the left eye corresponded to the shape of the scotoma drawn by the patient on Amsler grid. Acute solar retinopathy can present with foveal cone photoreceptor mosaic disturbances on adaptive optics scanning light ophthalmoscopy imaging. Corresponding reflectivity changes can be seen on en face OCT, especially

  16. Optical coherence tomography findings of quinine poisoning

    Directory of Open Access Journals (Sweden)

    John Christoforidis

    2011-01-01

    Full Text Available John Christoforidis, Robert Ricketts, Theodore Loizos, Susie ChangThe Ohio State University College of Medicine, Columbus, OH, USAPurpose: To report a case of acute quinine poisoning, document acute and chronic macular changes with optical coherence tomography imaging and fluorescein angiography (FA, and to review the literature on ocular toxicity of quinine.Methods: A 32-year-old white female presented to our Emergency Department after ingesting over 7.5 g of quinine. She underwent a complete ophthalmologic examination, fluorescein angiography, Stratus time-domain optical coherence tomography (OCT, and electroretinography at 72 hours and 15 months postingestion. Stratus time-domain and Cirrus spectral-domain OCT, fundus autofluorescence, and FA were obtained at 28 months postingestion.Results: Fluorescein angiography at 72 hours postingestion revealed normal filling times and vasculature. OCT showed marked thickening of the inner retina bilaterally. At 15 and 28 months follow-up, fundus photography and fluorescein angiography demonstrated optic nerve pallor, severely attenuated retinal vessels while OCT showed inner retinal atrophy. Fundus autofluorescence did not reveal any retinal pigmentary abnormalities.Conclusions: Quinine toxicity as seen by OCT reveals increased thickness with inner retinal hyperreflectivity acutely with development of significant retinal atrophy in the long-term. Fundus autofluorescence reveals an intact retinal pigment epithelial layer at 28 months. These findings suggest that quinine poisoning may produce a direct toxic effect on the inner retina in the acute phase resulting in long-term retinal atrophy.Keywords: retinal, optical coherence tomography, quinine toxicity 

  17. Optical pulse shaping approaches to coherent control

    International Nuclear Information System (INIS)

    Goswami, Debabrata

    2003-01-01

    The last part of the twentieth century has experienced a huge resurge of activity in the field of coherent light-matter interaction, more so in attempting to exert control over such interactions. Birth of coherent control was originally spurred by the theoretical understanding of the quantum interferences that lead to energy randomization and experimental developments in ultrafast laser spectroscopy. The theoretical predictions on control of reaction channels or energy randomization processes are still more dramatic than the experimental demonstrations, though this gap between the two is consistently reducing over the recent years with realistic theoretical models and technological developments. Experimental demonstrations of arbitrary optical pulse shaping have made some of the previously impracticable theoretical predictions possible to implement. Starting with the simple laser modulation schemes to provide proof-of-the-principle demonstrations, feedback loop pulse shaping systems have been developed that can actively manipulate some atomic and molecular processes. This tremendous experimental boost of optical pulse shaping developments has prospects and implications into many more new directions, such as quantum computing and terabit/sec data communications. This review captures certain aspects and impacts of optical pulse shaping into the fast developing areas of coherent control and other related fields. Currently available reviews focus on one or the other detailed aspects of coherent control, and the reader will be referred to such details as and when necessary for issues that are dealt in brief here. We will focus on the current issues including control of intramolecular dynamics and make connections to the future concepts, such as, quantum computation, biomedical applications, etc

  18. Spectral domain optical coherence tomography findings in tamoxifen retinopathy--a case report.

    Science.gov (United States)

    Nair, Sandhya Narayanan; Anantharaman, Giridhar; Gopalakrishnan, Mahesh; Vyas, Jyothiprakash

    2013-01-01

    To report spectral domain optical coherence tomography findings in a case of typical tamoxifen retinopathy. In this observational case report, a patient with tamoxifen retinopathy was imaged with spectral domain optical coherence tomography and fundus auto fluorescence. Spectral domain optical coherence tomography showed numerous hyperreflective spots within the retina, mainly in the inner retinal layers in both the eyes. The external limiting membrane, the Inner Segment-Outer Segment junction, and the photoreceptors were not discernable at the fovea in the right eye. In the left eye, there was foveal atrophy with total loss of photoreceptors. The autofluorescent images showed macular hypofluorescence with foveal hyperfluorescence. Spectral domain optical coherence tomography demonstrated abnormalities in the outer retinal layers in tamoxifen retinopathy. There were also characteristic alterations in the autofluorescence pattern at the macula in tamoxifen retinopathy.

  19. Miniature, minimally invasive, tunable endoscope for investigation of the middle ear.

    Science.gov (United States)

    Pawlowski, Michal E; Shrestha, Sebina; Park, Jesung; Applegate, Brian E; Oghalai, John S; Tkaczyk, Tomasz S

    2015-06-01

    We demonstrate a miniature, tunable, minimally invasive endoscope for diagnosis of the auditory system. The probe is designed to sharply image anatomical details of the middle ear without the need for physically adjusting the position of the distal end of the endoscope. This is achieved through the addition of an electrowetted, tunable, electronically-controlled lens to the optical train. Morphological imaging is enabled by scanning light emanating from an optical coherence tomography system. System performance was demonstrated by imaging part of the ossicular chain and wall of the middle ear cavity of a normal mouse. During the experiment, we electronically moved the plane of best focus from the incudo-stapedial joint to the stapedial artery. Repositioning the object plane allowed us to image anatomical details of the middle ear beyond the depth of field of a static optical system. We also demonstrated for the first time to our best knowledge, that an optical system with an electrowetted, tunable lens may be successfully employed to measure sound-induced vibrations within the auditory system by measuring the vibratory amplitude of the tympanic membrane in a normal mouse in response to pure tone stimuli.

  20. Optical coherent tomography in diagnoses of peripheral retinal degenarations

    Directory of Open Access Journals (Sweden)

    O. G. Pozdeyeva

    2013-01-01

    Full Text Available Purpose: Studying the capabilities of optical coherence tomography (RTVue-100, OPTOVUE, USA in evaluation of peripheral retinal degenerations, vitreoretinal adhesions, adjacent vitreous body as well as measurement of morphometric data.Methods: The study included 189 patients (239 eyes with peripheral retinal degeneration. 77 men and 112 women aged 18 to 84 underwent an ophthalmologic examination since November 2012 until October 2013. The peripheral retina was visualized with the help of optical coherence tomography («RTVue-100,» USA. The fundography was carried out using a Nikon NF505‑AF (Japan fundus camera. All patients were examined with a Goldmann lens.Results: Optical coherence tomography was used to evaluate different kinds of peripheral retinal degenerations, such as lattice and snail track degeneration, isolated retinal tears, cystoid retinal degeneration, pathological hyperpigmentation, retinoschisis and cobblestone degeneration. The following morphometric data were studied: dimensions of the lesion (average length, retinal thickness along the edge of the lesion, retinal thickness at the base of the lesion and the vitreoretinal interface.Conclusion: Optical coherence tomography is a promising in vivo visualization method which is useful in evaluation of peripheral retinal degenerations, vitreoretinal adhesions and tractions. It also provides a comprehensive protocolling system and monitoring. It will enable ophthalmologists to better define laser and surgical treatment indications and evaluate therapy effectiveness.

  1. Optical coherent tomography in diagnoses of peripheral retinal degenarations

    Directory of Open Access Journals (Sweden)

    O. G. Pozdeyeva

    2014-07-01

    Full Text Available Purpose: Studying the capabilities of optical coherence tomography (RTVue-100, OPTOVUE, USA in evaluation of peripheral retinal degenerations, vitreoretinal adhesions, adjacent vitreous body as well as measurement of morphometric data.Methods: The study included 189 patients (239 eyes with peripheral retinal degeneration. 77 men and 112 women aged 18 to 84 underwent an ophthalmologic examination since November 2012 until October 2013. The peripheral retina was visualized with the help of optical coherence tomography («RTVue-100,» USA. The fundography was carried out using a Nikon NF505‑AF (Japan fundus camera. All patients were examined with a Goldmann lens.Results: Optical coherence tomography was used to evaluate different kinds of peripheral retinal degenerations, such as lattice and snail track degeneration, isolated retinal tears, cystoid retinal degeneration, pathological hyperpigmentation, retinoschisis and cobblestone degeneration. The following morphometric data were studied: dimensions of the lesion (average length, retinal thickness along the edge of the lesion, retinal thickness at the base of the lesion and the vitreoretinal interface.Conclusion: Optical coherence tomography is a promising in vivo visualization method which is useful in evaluation of peripheral retinal degenerations, vitreoretinal adhesions and tractions. It also provides a comprehensive protocolling system and monitoring. It will enable ophthalmologists to better define laser and surgical treatment indications and evaluate therapy effectiveness.

  2. Simultaneous measurement of group refractive index and thickness of optical samples using optical coherence tomography

    International Nuclear Information System (INIS)

    Cheng, Hsu-Chih; Liu, Yi-Cheng

    2010-01-01

    Optical coherence tomography (OCT), based on a Michelson interferometer and utilizing low coherence light as the optical source, is a novel technique for the noninvasive imaging of optical scattering media. A simple OCT scheme based on a 3x3 fiber coupler is presented for the simultaneous measurement of the refractive index and thickness of optical samples. The proposed system enables the refractive index and thickness to be determined without any prior knowledge of the sample parameters and is characterized by a simple and compact configuration, a straightforward measurement procedure, and a low cost. The feasibility of the proposed approach is demonstrated experimentally using BK7 and B270 optical glass samples.

  3. Coherent phonon optics in a chip with an electrically controlled active device.

    Science.gov (United States)

    Poyser, Caroline L; Akimov, Andrey V; Campion, Richard P; Kent, Anthony J

    2015-02-05

    Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale.

  4. Phase-coherent all-optical frequency division by three

    NARCIS (Netherlands)

    Lee, Dong-Hoon; Klein, M.E.; Meyn, Jan-Peter; Wallenstein, Richard; Gross, P.; Boller, Klaus J.

    2003-01-01

    The properties of all-optical phase-coherent frequency division by 3, based on a self-phase-locked continuous-wave (cw) optical parametric oscillator (OPO), are investigated theoretically and experimentally. The frequency to be divided is provided by a diode laser master-oscillator power-amplifier

  5. Optical Coherence Tomography for Material Characterization

    NARCIS (Netherlands)

    Liu, P.

    2014-01-01

    Optical coherence tomography (OCT) is a non-invasive, contactless and high resolution imaging method, which allows the reconstruction of two or three dimensional depth-resolved images in turbid media. In the past 20 years, OCT has been extensively developed in the field of biomedical diagnostics,

  6. Coherent hard x-ray focusing optics and applications

    Energy Technology Data Exchange (ETDEWEB)

    Yun, W.B.; Viccaro, P.J.; Chrzas, J.; Lai, B.

    1991-01-01

    Coherent hard x-ray beams with a flux exceeding 10{sup 9} photons/second with a bandwidth of 0.1% will be provided by the undulator at the third generation synchrotron radiation sources such as APS, ESRF, and Spring-8. The availability of such high flux coherent x-ray beams offers excellent opportunities for extending the coherence-based techniques developed in the visible and soft x-ray part of the electromagnetic spectrum to the hard x-rays. These x-ray techniques (e.g., diffraction limited microfocusing, holography, interferometry, phase contrast imaging and signal enhancement), may offer substantial advantages over non-coherence-based x-ray techniques currently used. For example, the signal enhancement technique may be used to enhance an anomalous x-ray or magnetic x-ray scattering signal by several orders of magnitude. Coherent x-rays can be focused to a very small (diffraction-limited) spot size, thus allowing high spatial resolution microprobes to be constructed. The paper will discuss the feasibility of the extension of some coherence-based techniques to the hard x-ray range and the significant progress that has been made in the development of diffraction-limited focusing optics. Specific experimental results for a transmission Fresnel phase zone plate that can focus 8.2 keV x-rays to a spot size of about 2 microns will be briefly discussed. The comparison of measured focusing efficiency of the zone plate with that calculated will be made. Some specific applications of zone plates as coherent x-ray optics will be discussed. 17 refs., 4 figs.

  7. Towards spectral-domain optical coherence tomography on a silicon chip

    NARCIS (Netherlands)

    Akça, B.I.; Worhoff, Kerstin; Nguyen, V.D.; Kalkman, J.; van Leeuwen, Ton; de Ridder, R.M.; Pollnau, Markus

    Optical coherence tomography (OCT) is a widely used optical imaging technology, particularly in the medical field, since it can provide non-invasive, sub-micrometer resolution diagnostic images of tissue. Current OCT systems contain optical fibers and free-space optical components which make these

  8. Submicron Resolution Spectral-Domain Optical Coherence Tomography

    KAUST Repository

    Alarousu, Erkki; Jabbour, Ghassan

    2013-01-01

    Apparatuses and systems for submicron resolution spectral-domain optical coherence tomography (OCT) are disclosed. The system may use white light sources having wavelengths within 400-1000 nanometers, and achieve resolution below 1 .mu

  9. Dynamic Optical Coherence Tomography in Dermatology

    DEFF Research Database (Denmark)

    Ulrich, Martina; Themstrup, Lotte; De Carvalho, Nathalie

    2016-01-01

    Optical coherence tomography (OCT) represents a non-invasive imaging technology, which may be applied to the diagnosis of non-melanoma skin cancer and which has recently been shown to improve the diagnostic accuracy of basal cell carcinoma. Technical developments of OCT continue to expand the app...

  10. High-speed asynchronous optical sampling for high-sensitivity detection of coherent phonons

    International Nuclear Information System (INIS)

    Dekorsy, T; Taubert, R; Hudert, F; Schrenk, G; Bartels, A; Cerna, R; Kotaidis, V; Plech, A; Koehler, K; Schmitz, J; Wagner, J

    2007-01-01

    A new optical pump-probe technique is implemented for the investigation of coherent acoustic phonon dynamics in the GHz to THz frequency range which is based on two asynchronously linked femtosecond lasers. Asynchronous optical sampling (ASOPS) provides the performance of on all-optical oscilloscope and allows us to record optically induced lattice dynamics over nanosecond times with femtosecond resolution at scan rates of 10 kHz without any moving part in the set-up. Within 1 minute of data acquisition time signal-to-noise ratios better than 10 7 are achieved. We present examples of the high-sensitivity detection of coherent phonons in superlattices and of the coherent acoustic vibration of metallic nanoparticles

  11. Optical coherence tomography: Technique and applications

    DEFF Research Database (Denmark)

    Thomsen, Jakob Borup; Sander, Birgit; Mogensen, Mette

    2009-01-01

    Optical coherence tomography (OCT) is a noninvasive optical imaging modality providing real-time video rate images in two and three dimensions of biological tissues with micrometer resolution. OCT fills the gap between ultrasound and confocal microscopy, since it has a higher resolution than...... of retinal diseases. The potential of OCT in many other applications is currently being explored, such as in developmental biology, skin cancer diagnostics, vulnerable plaque detection in cardiology, esophageal diagnostics and a number of other applications within oncology....

  12. A first demonstration of audio-frequency optical coherence elastography of tissue

    Science.gov (United States)

    Adie, Steven G.; Alexandrov, Sergey A.; Armstrong, Julian J.; Kennedy, Brendan F.; Sampson, David D.

    2008-12-01

    Optical elastography is aimed at using the visco-elastic properties of soft tissue as a contrast mechanism, and could be particularly suitable for high-resolution differentiation of tumour from surrounding normal tissue. We present a new approach to measure the effect of an applied stimulus in the kilohertz frequency range that is based on optical coherence tomography. We describe the approach and present the first in vivo optical coherence elastography measurements in human skin at audio excitation frequencies.

  13. [Dome-shaped macula: appearance on ultrasound and optical coherence tomography].

    Science.gov (United States)

    Chéour, M; Ben Aleya, N; Brour, J; Falfoul, Y; Agrebi, S; Skhiri, M; Kraïem, A

    2013-10-01

    The purpose of our work is to demonstrate the role of optical coherence tomography and ocular ultrasound in the diagnosis of the dome-shaped macula in high myopia. We report the case of a patient with high myopia who presented with a decrease in visual acuity and metamorphopsia in the left eye. She underwent visual acuity measurement, biomicroscopic examination and measurement of axial length. B-mode ultrasound and optical coherence tomography showed a projection of the macula in the convexity of the myopic staphyloma confirming the diagnosis of dome-shaped macula. Dome-shaped macula is a recently discovered entity, which may be responsible for a decrease in visual acuity in patients with high myopic posterior staphyloma. Ultrasound and optical coherence tomography are very helpful in making the diagnosis. Copyright © 2013. Published by Elsevier Masson SAS.

  14. Fiber optic coherent laser radar 3d vision system

    International Nuclear Information System (INIS)

    Sebastian, R.L.; Clark, R.B.; Simonson, D.L.

    1994-01-01

    Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic of coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system

  15. Three-dimensional optical coherence micro-elastography of skeletal muscle tissue

    OpenAIRE

    Chin, Lixin; Kennedy, Brendan F.; Kennedy, Kelsey M.; Wijesinghe, Philip; Pinniger, Gavin J.; Terrill, Jessica R.; McLaughlin, Robert A.; Sampson, David D.

    2014-01-01

    In many muscle pathologies, impairment of skeletal muscle function is closely linked to changes in the mechanical properties of the muscle constituents. Optical coherence micro-elastography (OCME) uses optical coherence tomography (OCT) imaging of tissue under a quasi-static, compressive mechanical load to map variations in tissue mechanical properties on the micro-scale. We present the first study of OCME on skeletal muscle tissue. We show that this technique can resolve features of muscle t...

  16. Optical Coherent Receiver Enables THz Wireless Bridge

    DEFF Research Database (Denmark)

    Yu, Xianbin; Liu, Kexin; Zhang, Hangkai

    2016-01-01

    We experimentally demonstrated a 45 Gbit/s 400 GHz photonic wireless communication system enabled by an optical coherent receiver, which has a high potential in fast recovery of high data rate connections, for example, in disaster....

  17. Thermo-elastic optical coherence tomography.

    Science.gov (United States)

    Wang, Tianshi; Pfeiffer, Tom; Wu, Min; Wieser, Wolfgang; Amenta, Gaetano; Draxinger, Wolfgang; van der Steen, Antonius F W; Huber, Robert; Soest, Gijs van

    2017-09-01

    The absorption of nanosecond laser pulses induces rapid thermo-elastic deformation in tissue. A sub-micrometer scale displacement occurs within a few microseconds after the pulse arrival. In this Letter, we investigate the laser-induced thermo-elastic deformation using a 1.5 MHz phase-sensitive optical coherence tomography (OCT) system. A displacement image can be reconstructed, which enables a new modality of phase-sensitive OCT, called thermo-elastic OCT. An analysis of the results shows that the optical absorption is a dominating factor for the displacement. Thermo-elastic OCT is capable of visualizing inclusions that do not appear on the structural OCT image, providing additional tissue type information.

  18. Comparison of optic area measurement using fundus photography and optical coherence tomography between optic nerve head drusen and control subjects.

    Science.gov (United States)

    Flores-Rodríguez, Patricia; Gili, Pablo; Martín-Ríos, María Dolores; Grifol-Clar, Eulalia

    2013-03-01

    To compare optic disc area measurement between optic nerve head drusen (ONHD) and control subjects using fundus photography, time-domain optical coherence tomography (TD-OCT) and spectral-domain optical coherence tomography (SD-OCT). We also made a comparison between each of the three techniques. We performed our study on 66 eyes (66 patients) with ONHD and 70 healthy control subjects (70 controls) with colour ocular fundus photography at 20º (Zeiss FF 450 IR plus), TD-OCT (Stratus OCT) with the Fast Optic Disc protocol and SD-OCT (Cirrus OCT) with the Optic Disc Cube 200 × 200 protocol for measurement of the optic disc area. The measurements were made by two observers and in each measurement a correction of the image magnification factor was performed. Measurement comparison using the Student's t-test/Mann-Whitney U test, the intraclass correlation coefficient, Pearson/Spearman rank correlation coefficient and the Bland-Altman plot was performed in the statistical analysis. Mean and standard deviation (SD) of the optic disc area in ONHD and in controls was 2.38 (0.54) mm(2) and 2.54 (0.42) mm(2), respectively with fundus photography; 2.01 (0.56) mm(2) and 1.66 (0.37) mm(2), respectively with TD-OCT, and 2.03 (0.49) mm(2) and 1.75 (0.38) mm(2), respectively with SD-OCT. In ONHD and controls, repeatability of optic disc area measurement was excellent with fundus photography and optical coherence tomography (TD-OCT and SD-OCT), but with a low degree of agreement between both techniques. Optic disc area measurement is smaller in ONHD compared to healthy subjects with fundus photography, unlike time-domain and spectral-domain optical coherence tomography in which the reverse is true. Both techniques offer good repeatability, but a low degree of correlation and agreement, which means that optic disc area measurement is not interchangeable or comparable between techniques. Ophthalmic & Physiological Optics © 2013 The College of Optometrists.

  19. Fundus autofluorescence and optical coherence tomography findings in thiamine responsive megaloblastic anemia.

    Science.gov (United States)

    Ach, Thomas; Kardorff, Rüdiger; Rohrschneider, Klaus

    2015-01-01

    To report ophthalmologic fundus autofluorescence and spectral domain optical coherence tomography findings in a patient with thiamine responsive megaloblastic anemia (TRMA). A 13-year-old girl with genetically proven TRMA was ophthalmologically (visual acuity, funduscopy, perimetry, electroretinogram) followed up over >5 years. Fundus imaging also included autofluorescence and spectral domain optical coherence tomography. During a 5-year follow-up, visual acuity and visual field decreased, despite a special TRMA diet. Funduscopy revealed bull's eye appearance, whereas fundus autofluorescence showed central and peripheral hyperfluorescence and perifoveal hypofluorescence. Spectral domain optical coherence tomography revealed affected inner segment ellipsoid band and irregularities in the retinal pigment epithelium and choroidea. Autofluorescence and spectral domain optical coherence tomography findings in a patient with TRMA show retinitis pigmentosa-like retina, retinal pigment epithelium, and choroid alterations. These findings might progress even under special TRMA diet, indispensable to life. Ophthalmologist should consider TRMA in patients with deafness and ophthalmologic disorders.

  20. Robust intravascular optical coherence elastography by line correlations

    International Nuclear Information System (INIS)

    Soest, Gijs van; Mastik, Frits; Jong, Nico de; Steen, Anton F W van der

    2007-01-01

    We present a new method for intravascular optical coherence elastography, which is robust against motion artefacts. It employs the correlation between adjacent lines, instead of subsequent frames. Pressure to deform the tissue is applied synchronously with the line scan rate of the optical coherence tomography (OCT) instrument. The viability of the method is demonstrated with a simulation study. We find that the root mean square (rms) error of the displacement estimate is 0.55 μm, and the rms error of the strain is 0.6%. It is shown that high-strain spots in the vessel wall, such as observed at the sites of vulnerable atherosclerotic lesions, can be detected with the technique

  1. Physical-layer network coding in coherent optical OFDM systems.

    Science.gov (United States)

    Guan, Xun; Chan, Chun-Kit

    2015-04-20

    We present the first experimental demonstration and characterization of the application of optical physical-layer network coding in coherent optical OFDM systems. It combines two optical OFDM frames to share the same link so as to enhance system throughput, while individual OFDM frames can be recovered with digital signal processing at the destined node.

  2. Unconditional quantum cloning of coherent states with linear optics

    International Nuclear Information System (INIS)

    Leuchs, G.; Andersen, U.L.; Josse, V.

    2005-01-01

    Intense light pulses with non-classical properties are used to implement protocols for quantum communication. Most of the elements in the tool box needed to assemble the experimental set-ups for these protocols are readily described by Bogoliubov transformations corresponding to Gaussian transformations that map Gaussian states onto Gaussian states. One particularly interesting application is quantum cloning of a coherent state. A scheme for optimal Gaussian cloning of optical coherent states is proposed and experimentally demonstrated. Its optical realization is based entirely on simple linear optical elements and homodyne detection. The optimality of the presented scheme is only limited by detection inefficiencies. Experimentally we achieved a cloning fidelity of about 65%, which almost touches the optimal value of 2/3. (author)

  3. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.

    Science.gov (United States)

    Verhagen, E; Deléglise, S; Weis, S; Schliesser, A; Kippenberg, T J

    2012-02-01

    Optical laser fields have been widely used to achieve quantum control over the motional and internal degrees of freedom of atoms and ions, molecules and atomic gases. A route to controlling the quantum states of macroscopic mechanical oscillators in a similar fashion is to exploit the parametric coupling between optical and mechanical degrees of freedom through radiation pressure in suitably engineered optical cavities. If the optomechanical coupling is 'quantum coherent'--that is, if the coherent coupling rate exceeds both the optical and the mechanical decoherence rate--quantum states are transferred from the optical field to the mechanical oscillator and vice versa. This transfer allows control of the mechanical oscillator state using the wide range of available quantum optical techniques. So far, however, quantum-coherent coupling of micromechanical oscillators has only been achieved using microwave fields at millikelvin temperatures. Optical experiments have not attained this regime owing to the large mechanical decoherence rates and the difficulty of overcoming optical dissipation. Here we achieve quantum-coherent coupling between optical photons and a micromechanical oscillator. Simultaneously, coupling to the cold photon bath cools the mechanical oscillator to an average occupancy of 1.7 ± 0.1 motional quanta. Excitation with weak classical light pulses reveals the exchange of energy between the optical light field and the micromechanical oscillator in the time domain at the level of less than one quantum on average. This optomechanical system establishes an efficient quantum interface between mechanical oscillators and optical photons, which can provide decoherence-free transport of quantum states through optical fibres. Our results offer a route towards the use of mechanical oscillators as quantum transducers or in microwave-to-optical quantum links.

  4. Phase retrieval from coherent soft X-ray optics

    International Nuclear Information System (INIS)

    Peele, A.G.; Mancuso, A.P.; Tran, C.Q.; Paterson, D.; McNulty, I.; Hayes, J.P.; Nugent, K.A.

    2005-01-01

    We have recently probed the coherence of soft X-ray flux from a third generation synchrotron source [D. Paterson, B.E. Allman, P.J. McMahon, J. Lin, N. Moldovan, K.A. Nugent, I. McNulty, C.T. Chantler, C.C. Retsch, T.H.K. Irving, D.C. Mancini, Opt. Commun. 195 (2001) 79; C.Q. Tran, A.G. Peele, D. Paterson, A. Roberts, I. McNulty, K.A. Nugent, Opt. Lett. 30 (2005) 204.]. The 1-2 keV radiation exhibits transverse coherence lengths of 60 μm, which means that coherent optical effects may be observed in reasonably sized objects. We present experimental results demonstrating the creation of a phase singularity in a synchrotron beam by passing the beam through a phase mask at similarly low X-ray energies. This complements our earlier work at higher energies and demonstrates that we can now produce phase singularities across a range of energies where we have tested certain intensity-based phase recovery methods. These methods fail when the field contains phase singularities. We describe the X-ray optical vortex and outline its use as a pathological test object for phase retrieval methods. We also present recent progress towards overcoming the problem of phase retrieval in singular optics

  5. IMAGING WITH MULTIMODAL ADAPTIVE-OPTICS OPTICAL COHERENCE TOMOGRAPHY IN MULTIPLE EVANESCENT WHITE DOT SYNDROME: THE STRUCTURE AND FUNCTIONAL RELATIONSHIP.

    Science.gov (United States)

    Labriola, Leanne T; Legarreta, Andrew D; Legarreta, John E; Nadler, Zach; Gallagher, Denise; Hammer, Daniel X; Ferguson, R Daniel; Iftimia, Nicusor; Wollstein, Gadi; Schuman, Joel S

    2016-01-01

    To elucidate the location of pathological changes in multiple evanescent white dot syndrome (MEWDS) with the use of multimodal adaptive optics (AO) imaging. A 5-year observational case study of a 24-year-old female with recurrent MEWDS. Full examination included history, Snellen chart visual acuity, pupil assessment, intraocular pressures, slit lamp evaluation, dilated fundoscopic exam, imaging with Fourier-domain optical coherence tomography (FD-OCT), blue-light fundus autofluorescence (FAF), fundus photography, fluorescein angiography, and adaptive-optics optical coherence tomography. Three distinct acute episodes of MEWDS occurred during the period of follow-up. Fourier-domain optical coherence tomography and adaptive-optics imaging showed disturbance in the photoreceptor outer segments (PR OS) in the posterior pole with each flare. The degree of disturbance at the photoreceptor level corresponded to size and extent of the visual field changes. All findings were transient with delineation of the photoreceptor recovery from the outer edges of the lesion inward. Hyperautofluorescence was seen during acute flares. Increase in choroidal thickness did occur with each active flare but resolved. Although changes in the choroid and RPE can be observed in MEWDS, Fourier-domain optical coherence tomography, and multimodal adaptive optics imaging localized the visually significant changes seen in this disease at the level of the photoreceptors. These transient retinal changes specifically occur at the level of the inner segment ellipsoid and OS/RPE line. En face optical coherence tomography imaging provides a detailed, yet noninvasive method for following the convalescence of MEWDS and provides insight into the structural and functional relationship of this transient inflammatory retinal disease.

  6. Contribution to coherent atom optics - Design of multiple wave devices

    International Nuclear Information System (INIS)

    Impens, F.

    2008-03-01

    The theoretical work presented in this manuscript addresses two complementary issues in coherent atom optics. The first part addresses the perspectives offered by coherent atomic sources through the design of two experiment involving the levitation of a cold atomic sample in a periodic series of light pulses, and for which coherent atomic clouds are particularly well-suited. These systems appear as multiple wave atom interferometers. A striking feature of these experiments is that a unique system performs both the sample trapping and interrogation. To obtain a transverse confinement, a novel atomic lens is proposed, relying on the interaction between an atomic wave with a spherical light wave. The sensitivity of the sample trapping towards the gravitational acceleration and towards the pulse frequencies is exploited to perform the desired measurement. These devices constitute atomic wave resonators in momentum space, which is a novel concept in atom optics. A second part develops new theoretical tools - most of which inspired from optics - well-suited to describe the propagation of coherent atomic sources. A phase-space approach of the propagation, relying on the evolution of moments, is developed and applied to study the low-energy dynamics of Bose-Einstein condensates. The ABCD method of propagation for atomic waves is extended beyond the linear regime to account perturbatively for mean-field atomic interactions in the atom-optical aberration-less approximation. A treatment of the atom laser extraction enabling one to describe aberrations in the atomic beam, developed in collaboration with the Atom Optics group at the Institute of Optics, is exposed. Last, a quality factor suitable for the characterization of diluted matter waves in a general propagation regime has been proposed. (author)

  7. Fundus autofluorescence and optical coherence tomography of congenital grouped albinotic spots.

    Science.gov (United States)

    Kim, David Y; Hwang, John C; Moore, Anthony T; Bird, Alan C; Tsang, Stephen H

    2010-09-01

    The purpose of this study was to describe the findings of fundus autofluores-cence (FAF) and optical coherence tomography in a series of patients with congenital grouped albinotic spots. Three eyes of three patients with congenital grouped albinotic spots were evaluated with FAF and optical coherence tomography imaging to evaluate the nature of the albinotic spots. In all three eyes with congenital grouped albinotic spots, FAF imaging showed autofluorescent spots corresponding to the albinotic spots seen on stereo biomicroscopy. One eye also had additional spots detected on FAF imaging that were not visible on stereo biomicroscopy or color fundus photographs. Fundus autofluorescence imaging of the spots showed decreased general autofluorescence and decreased peripheral autofluorescence surrounding central areas of retained or increased autofluorescence. Optical coherence tomography showed a disruption in signal from the hyperreflective layer corresponding to the inner and outer segment junction and increased signal backscattering from the choroid in the area of the spots. Fluorescein angiography showed early and stable hyperfluorescence of the spots without leakage. In this case series, FAF showed decreased autofluorescence of the spots consistent with focal retinal pigment epithelium atrophy or abnormal material blocking normal autofluorescence and areas of increased autofluorescence suggesting retinal pigment epithelium dysfunction. The findings of optical coherence tomography and fluorescein angiography suggest photoreceptor and retinal pigment epithelium layer abnormalities. Fundus autofluorescence and optical coherence tomography are useful noninvasive diagnostic adjuncts that can aid in the diagnosis of congenital grouped albinotic spots, help determine extent of disease, and contribute to our understanding of its pathophysiology.

  8. Morpho-functional evaluation of torpedo maculopathy with optical coherence tomography angiography and microperimetry

    Directory of Open Access Journals (Sweden)

    Gabriela Grimaldi

    2018-06-01

    Full Text Available Purpose: To report the case of a 13-year-old girl with torpedo maculopathy, evaluated with multimodal morpho-functional retinal imaging, including fundus photography, infra-red and blue fundus autofluorescence, swept-source optical coherence tomography (OCT, en face OCT, OCT angiography and microperimetry (MP. Observations: On fundus examination, a torpedo-like hypopigmented lesion was observed temporal to the fovea in the left eye. OCT showed disruption of outer retinal layers and the presence of a subretinal cleft. On OCTA, a diffuse attenuation of signal from choriocapillaris was observed along the lesion. Functional analysis with MP revealed a reduction of retinal sensitivity over the lesion. Conclusions: and importance: On OCTA, torpedo maculopathy is characterized by vascular alterations of the choriocapillaris along the lesion. Keywords: Optical coherence tomography angiography, Torpedo maculopathy, Microperimetry, Swept-source optical coherence tomography, En face optical coherence tomography

  9. Optical coherence tomography findings and retinal changes after vitrectomy for optic disc pit maculopathy

    Directory of Open Access Journals (Sweden)

    Gaurav Sanghi

    2014-01-01

    Full Text Available Purpose : To study the optical coherence tomography (OCT patterns in optic disc pit maculopathy and retinal changes after vitreous surgery. Materials and Methods : Retrospective review of consecutive cases with optic disc pit maculopathy seen at two tertiary eye institutes from January 2005 to June 2009. Results : Twenty-four eyes of 23 patients are included. The presenting visual acuity ranged from 20/400 to 20/20 (median:20/80. The median age at presentation was 24 years (range, 6-57 years. Optical coherence tomography demonstrated a combination of retinoschisis and outer layer detachment (OLD in 19 (79.17% eyes, OLD only in 3 (12.5% eyes and retinoschisis only in 2 (8.33% eyes. An obvious communication (outer layer hole between the schisis and OLD was seen in 14 (73.68% of the 19 eyes with both features. Of the 21 eyes with retinoschisis, schisis was present in multiple layers in 15 (71.43% and single layer in 6 (28.57% eyes. Eleven eyes underwent pars plana vitrectomy including creation of posterior vitreous detachment (PVD, fluid-air exchange, low intensity laser photocoagulation at the temporal edge of the optic disc pit and non-expansile perfluoropropane gas (14% injection. Five (45.45% of 11 eyes undergoing vitrectomy had complete resolution and 4 (36.36% eyes had partial resolution of maculopathy. Visual acuity improved in 8 (72.72% of 11 eyes. Conclusion : Optical coherence tomography demonstrates multiple layer schisis and outer layer detachment as main features of optic disc pit maculopathy. Vitrectomy with PVD induction, laser photocoagulation and gas tamponade results in anatomical and visual improvement in most cases with optic disc pit maculopathy.

  10. Dental diagnostics using optical coherence techniques

    Energy Technology Data Exchange (ETDEWEB)

    Nathel, H. [Lawrence Livermore National Lab., CA (United States); Colston, B. [Univ. of California, San Francisco, CA (United States); Armitage, G. [Univ. of California, Davis, CA (United States)] [and others

    1994-11-15

    Optical radiation can be used for diagnostic purposes in oral medicine. However, due to the turbid, amorphous, and inhomogeneous nature of dental tissue conventional techniques used to transilluminate materials are not well suited to dental tissues. Optical coherence techniques either in the time- of frequency-domain offer the capabilities of discriminating scattered from unscattered light, thus allowing for imaging through turbid tissue. Currently, using optical time-domain reflectometry we are able to discriminate specular from diffuse reflections occurring at tissue boundaries. We have determined the specular reflectivity of enamel and dentin to be approximately 6.6 x 10{sup -5} and 1.3 x 10{sup -6}, respectively. Implications to periodontal imaging will be discussed.

  11. Diffraction coherence in optics

    CERN Document Server

    Françon, M; Green, L L

    2013-01-01

    Diffraction: Coherence in Optics presents a detailed account of the course on Fraunhofer diffraction phenomena, studied at the Faculty of Science in Paris. The publication first elaborates on Huygens' principle and diffraction phenomena for a monochromatic point source and diffraction by an aperture of simple form. Discussions focus on diffraction at infinity and at a finite distance, simplified expressions for the field, calculation of the path difference, diffraction by a rectangular aperture, narrow slit, and circular aperture, and distribution of luminous flux in the airy spot. The book th

  12. Imaging actinic keratosis by high-definition optical coherence tomography. Histomorphologic correlation

    DEFF Research Database (Denmark)

    Boone, Marc A L M; Norrenberg, Sarah; Jemec, Gregor B E

    2013-01-01

    With the continued development of non-invasive therapies for actinic keratosis such as PDT and immune therapies, the non-invasive diagnosis and monitoring become increasingly relevant. High-definition optical coherence tomography is a high-resolution imaging tool, with micrometre resolution in both...... transversal and axial directions, enable to visualize individual cells up to a depth of around 570 μm filling the imaging gap between conventional optical coherence tomography and reflectance confocal microscopy. We sought to determine the feasibility of detecting and grading of actinic keratosis...... by this technique using criteria defined for reflectance confocal microscopy compared to histology. In this pilot study, skin lesions of 17 patients with a histologically proven actinic keratosis were imaged by high-definition optical coherence tomography just before excision and images analysed qualitatively...

  13. Evaluation of coherence interference in optical wireless communication through multiscattering channels.

    Science.gov (United States)

    Kedar, Debbie; Arnon, Shlomi

    2006-05-10

    Optical wireless communication has been the subject of much research in recent years because of the increasing interest in laser satellite-ground links and urban optical wireless communication. The major sources of performance degradation have been identified as the spatial, angular, and temporal spread of the propagating beam when the propagation channel is multiscattering, resulting in reduced power reception and intersignal interference, as well as turbulence-induced scintillations and noise due to receiver circuitry and background illumination. However, coherence effects due to multipath interference caused by a scattering propagation channel do not appear to have been treated in detail in the scientific literature. We attempt a theoretical analysis of coherence interference in optical wireless communication through scattering channels and try to quantify the resultant performance degradation for different media. We conclude that coherence interference is discernible in optical wireless communication through scattering channels and is highly dependent on the microscopic nature of the propagation medium.

  14. Posterior lattice degeneration characterized by spectral domain optical coherence tomography.

    Science.gov (United States)

    Manjunath, Varsha; Taha, Mohammed; Fujimoto, James G; Duker, Jay S

    2011-03-01

    The purpose of this study was to use high-resolution spectral domain optical coherence tomography in the characterization of retinal and vitreal morphological changes overlying posterior lattice degeneration. A cross-sectional retrospective analysis was performed on 13 eyes of 13 nonconsecutive subjects with posterior lattice degeneration seen at the New England Eye Center, Tufts Medical Center between October 2009 and January 2010. Spectral domain optical coherence tomography images taken through the region of lattice degeneration were qualitatively analyzed. Four characteristic changes of the retina and vitreous were seen in the 13 eyes with lattice degeneration: 1) anterior/posterior U-shaped vitreous traction; 2) retinal breaks; 3) focal retinal thinning; and 4) vitreous membrane formation. The morphologic appearance of vitreous traction and retinal breaks were found to be consistent with previous histologic reports. It is possible to image posterior lattice degeneration in many eyes using spectral domain optical coherence tomography and to visualize the spectrum of retinal and vitreous changes throughout the area of lattice degeneration.

  15. Spectral-domain optical coherence tomography on a silicon chip

    NARCIS (Netherlands)

    Akça, B.I.

    2012-01-01

    Optical coherence tomography (OCT) is a non-invasive optical technique for high-resolution cross-sectional imaging of specimens, with many applications in clinical medicine and industry (e.g. materials testing, quality assurance, and process control). Current state-of-the-art OCT systems operate in

  16. Investigation of optical currents in coherent and partially coherent vector fields

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Gorsky, M. P.; Maksimyak, P. P.

    2011-01-01

    We present the computer simulation results of the spatial distri-bution of the Poynting vector and illustrate motion of micro and nanopar-ticles in spatially inhomogeneously polarized fields. The influence of phase relations and the degree of mutual coherence of superimposing waves...... by polarization characteristics of an optical field alone, using nanoscale me-tallic particles has been shown experimentally....

  17. Optical coherence tomography as a diagnostic tool

    CSIR Research Space (South Africa)

    Singh, A

    2011-07-01

    Full Text Available Optical Coherence Tomography (OCT) has been used in biomedical applications as a method to non-invasively detect changes occurring in tissue such as the detection of skin cancer. The effect of skin tone on detection of skin cancer has however...

  18. Widely Linear Equalization for IQ Imbalance and Skew Compensation in Optical Coherent Receivers

    DEFF Research Database (Denmark)

    Porto da Silva, Edson; Zibar, Darko

    2016-01-01

    In this paper, an alternative approach to design linear equalization algorithms for optical coherent receivers is introduced. Using widely linear complex analysis, a general analytical model it is shown, where In-phase/quadrature (IQ) imbalances and IQ skew at the coherent receiver front-end are ......In this paper, an alternative approach to design linear equalization algorithms for optical coherent receivers is introduced. Using widely linear complex analysis, a general analytical model it is shown, where In-phase/quadrature (IQ) imbalances and IQ skew at the coherent receiver front...

  19. Dispersion free full range spectral intensity optical coherence tomography

    DEFF Research Database (Denmark)

    Jensen, Mikkel; Israelsen, Niels Møller; Maria, Michael

    2017-01-01

    Optical coherence tomography (OCT) is a non-invasive imaging technique with many applications and widespread use in ophthalmology [1]. The axial resolution in OCT is inversely proportional to the bandwidth of the optical source used, but the improved axial resolution comes at the price of more...

  20. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope.

    Science.gov (United States)

    Feist, Armin; Echternkamp, Katharina E; Schauss, Jakob; Yalunin, Sergey V; Schäfer, Sascha; Ropers, Claus

    2015-05-14

    Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven 'quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.

  1. Optimized phase gradient measurements and phase-amplitude interplay in optical coherence elastography

    Science.gov (United States)

    Zaitsev, Vladimir Y.; Matveyev, Alexander L.; Matveev, Lev A.; Gelikonov, Grigory V.; Sovetsky, Aleksandr A.; Vitkin, Alex

    2016-11-01

    In compressional optical coherence elastography, phase-variation gradients are used for estimating quasistatic strains created in tissue. Using reference and deformed optical coherence tomography (OCT) scans, one typically compares phases from pixels with the same coordinates in both scans. Usually, this limits the allowable strains to fairly small values advantages of the proposed optimized phase-variation methodology.

  2. High-speed optical coherence tomography by circular interferometric ranging

    Science.gov (United States)

    Siddiqui, Meena; Nam, Ahhyun S.; Tozburun, Serhat; Lippok, Norman; Blatter, Cedric; Vakoc, Benjamin J.

    2018-02-01

    Existing three-dimensional optical imaging methods excel in controlled environments, but are difficult to deploy over large, irregular and dynamic fields. This means that they can be ill-suited for use in areas such as material inspection and medicine. To better address these applications, we developed methods in optical coherence tomography to efficiently interrogate sparse scattering fields, that is, those in which most locations (voxels) do not generate meaningful signal. Frequency comb sources are used to superimpose reflected signals from equispaced locations through optical subsampling. This results in circular ranging, and reduces the number of measurements required to interrogate large volumetric fields. As a result, signal acquisition barriers that have limited speed and field in optical coherence tomography are avoided. With a new ultrafast, time-stretched frequency comb laser design operating with 7.6 MHz to 18.9 MHz repetition rates, we achieved imaging of multi-cm3 fields at up to 7.5 volumes per second.

  3. Fiber optic-based optical coherence tomography (OCT) for dental applications

    Science.gov (United States)

    Everett, Matthew J.; Colston, Bill W., Jr.; Da Silva, Luiz B.; Otis, Linda L.

    1998-09-01

    We have developed a hand-held fiber optic based optical coherence tomography (OCT) system for scanning of the oral cavity. We have produced, using this scanning device, in vivo cross-sectional images of hard and soft dental tissues in human volunteers. Clinically relevant anatomical structures, including the gingival margin, periodontal sulcus, and dento- enamel junction, were visible in all the images. The cemento- enamel junction and the alveolar bone were identified in approximately two thirds of the images. These images represent, or our knowledge, the first in vivo OCT images of human dental tissue.

  4. Fiber optic based optical coherence tomography (OCT) for dental applications

    Energy Technology Data Exchange (ETDEWEB)

    Everett, M. J., LLNL

    1998-06-02

    We have developed a hand-held fiber optic based optical coherence tomography (OCT) system for scanning of the oral cavity We have produced, using this scanning device, in viva cross-sectional images of hard and soft dental tissues in human volunteers Clinically relevant anatomical structures, including the gingival margin, periodontal sulcus, and dento-enamel junction, were visible in all the images The dento-enamel junction and the alveolar bone were identifiable in approximately two thirds of the images These images represent, to our knowledge, the first in viva OCT images of human dental tissue.

  5. Fiber-optic polarization diversity detection for rotary probe optical coherence tomography.

    Science.gov (United States)

    Lee, Anthony M D; Pahlevaninezhad, Hamid; Yang, Victor X D; Lam, Stephen; MacAulay, Calum; Lane, Pierre

    2014-06-15

    We report a polarization diversity detection scheme for optical coherence tomography with a new, custom, miniaturized fiber coupler with single mode (SM) fiber inputs and polarization maintaining (PM) fiber outputs. The SM fiber inputs obviate matching the optical lengths of the X and Y OCT polarization channels prior to interference and the PM fiber outputs ensure defined X and Y axes after interference. Advantages for this scheme include easier alignment, lower cost, and easier miniaturization compared to designs with free-space bulk optical components. We demonstrate the utility of the detection system to mitigate the effects of rapidly changing polarization states when imaging with rotating fiber optic probes in Intralipid suspension and during in vivo imaging of human airways.

  6. XIX International Youth School on Coherent Optics and Optical Spectroscopy

    International Nuclear Information System (INIS)

    2016-01-01

    The XIX International Youth School on Coherent Optics and Optical Spectroscopy (COOS2015) was held in Kazan, Russia, from October 5 to October 7 at the Nikolai Lobachevsky Scientific Library of Kazan Federal University. The School follows the global tendency toward comprehensive studies of matter properties and its interaction with electromagnetic fields. Since 1997 more than 100 famous scientists from USA, Germany, Ukraine, Belarussia and Russia had plenary lecture presentations. This is the right place, where over 1000 young scientists had an opportunity to participate in hot discussions regarding the latest scientific news. Many young people have submitted interesting reports on photonics, quantum electronics, laser physics, quantum optics, traditional optical and laser spectroscopy, non-linear optics, material science and nanotechnology. Here we are publishing the full-size papers prepared from the most interesting lectures and reports selected by the Program Committee of the School. (paper)

  7. Classifying murine glomerulonephritis using optical coherence tomography and optical coherence elastography.

    Science.gov (United States)

    Liu, Chih-Hao; Du, Yong; Singh, Manmohan; Wu, Chen; Han, Zhaolong; Li, Jiasong; Chang, Anthony; Mohan, Chandra; Larin, Kirill V

    2016-08-01

    Acute glomerulonephritis caused by antiglomerular basement membrane marked by high mortality. The primary reason for this is delayed diagnosis via blood examination, urine analysis, tissue biopsy, or ultrasound and X-ray computed tomography imaging. Blood, urine, and tissue-based diagnoses can be time consuming, while ultrasound and CT imaging have relatively low spatial resolution, with reduced sensitivity. Optical coherence tomography is a noninvasive and high-resolution imaging technique that provides superior spatial resolution (micrometer scale) as compared to ultrasound and CT. Changes in tissue properties can be detected based on the optical metrics analyzed from the OCT signals, such as optical attenuation and speckle variance. Furthermore, OCT does not rely on ionizing radiation as with CT imaging. In addition to structural changes, the elasticity of the kidney can significantly change due to nephritis. In this work, OCT has been utilized to quantify the difference in tissue properties between healthy and nephritic murine kidneys. Although OCT imaging could identify the diseased tissue, its classification accuracy is clinically inadequate. By combining optical metrics with elasticity, the classification accuracy improves from 76% to 95%. These results show that OCT combined with OCE can be a powerful tool for identifying and classifying nephritis. Therefore, the OCT/OCE method could potentially be used as a minimally invasive tool for longitudinal studies during the progression and therapy of glomerulonephritis as well as complement and, perhaps, substitute highly invasive tissue biopsies. Elastic-wave propagation in mouse healthy and nephritic kidneys. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Optical coherence tomography a clinical and technical update

    CERN Document Server

    Cunha-Vaz, José

    2012-01-01

    Optical Coherence Tomography represents the ultimate noninvasive  ocular imaging technique although being in the field for over two-decades. This book encompasses both medical and technical developments and recent achievements. Here, the authors cover the field of application from the anterior to the posterior ocular segments (Part I) and present a comprehensive review on the development of OCT. Important developments towards  clinical applications are covered in Part II, ranging from the adaptive optics to the integration on a slit-lamp, and passing through new structural  and functional information extraction from OCT data. The book is intended to be informative, coherent and comprehensive for both the medical and technical communities and aims at easing the communication between the two fields and bridging the gap between the two scientific communities.

  9. Principles of optical fibre communication techniques: Noncoherent and coherent

    International Nuclear Information System (INIS)

    Jain, V.K.

    1990-01-01

    In this paper a brief historical description of optical fibre communication system (OFCS) has been presented and the main characteristics of the basic components used in it are summarized. Introduction of noncoherent and coherent (homodyne and heterodyne) system is given. In coherent OFCS, source linewidth requirement, phase and polarization - diversity and combined phase and polarization - diversity receivers are described. (author). 16 refs, 8 figs, 1 tab

  10. Imaging of basal cell carcinoma by high-definition optical coherence tomography

    DEFF Research Database (Denmark)

    Boone, M A L M; Norrenberg, S; Jemec, G B E

    2012-01-01

    With the continued development of noninvasive therapies for basal cell carcinoma (BCC) such as photodynamic therapy and immune therapies, noninvasive diagnosis and monitoring become increasingly relevant. High-definition optical coherence tomography (HD-OCT) is a high-resolution imaging tool, wit......, with micrometre resolution in both transversal and axial directions, enabling visualization of individual cells up to a depth of around 570 μm, and filling the imaging gap between conventional optical coherence tomography (OCT) and reflectance confocal microscopy (RCM)....

  11. Squeezed light in an optical parametric oscillator network with coherent feedback quantum control.

    Science.gov (United States)

    Crisafulli, Orion; Tezak, Nikolas; Soh, Daniel B S; Armen, Michael A; Mabuchi, Hideo

    2013-07-29

    We present squeezing and anti-squeezing spectra of the output from a degenerate optical parametric oscillator (OPO) network arranged in different coherent quantum feedback configurations. One OPO serves as a quantum plant, the other as a quantum controller. The addition of coherent feedback enables shaping of the output squeezing spectrum of the plant, and is found to be capable of pushing the frequency of maximum squeezing away from the optical driving frequency and broadening the spectrum over a wider frequency band. The experimental results are in excellent agreement with the developed theory, and illustrate the use of coherent quantum feedback to engineer the quantum-optical properties of the plant OPO output.

  12. Optical coherence tomographic view of persistent primary fetal vasculature

    International Nuclear Information System (INIS)

    Shenoy, R.; Al-Kharousi, Nadia S.; Bialasiewicz, Alexander A.

    2006-01-01

    Purpose was to report on the posterior segment changes in a patient with bilateral persistent primary fetal vasculature as detected by optical coherence tomography. An 18-year-old lady with poor vision, left esotropia and bilateral posterior polar cataract was found to have dysplasia of the macula in the both eyes. Fundus fluorescein angiography, optical coherence tomography, ''A'' scan biometry and genetic work up was performed as a part of investigation. There was increase in thickness of the macular area in both the eyes (450-500mm). The left eye showed a ''sail like'' fold extending over macula, from nasal to temporal side. The tissue had the same sensitivity and thickness as inner the retinal layers (180-200). There was no detectable nerve fibre layer in the macula of either eye. Fundus fluorescein angiography was normal in the right eye, and showed hyperfluorescence at the inferior pole of the disk in the left eye corresponding to the Bergmeister papilla. There was no staining of the membrane with the dye. Evaluation of the posterior segment is important in predicting the visual outcome in patients with any from of PFV. Optical coherence tomography is an adjuvant to direct visualization and aids in further delineating posterior segment changes seen in this condition. (author)

  13. MMIC tuned front-end for a coherent optical receiver

    DEFF Research Database (Denmark)

    Petersen, Anders Kongstad; Jagd, A. M.; Ebskamp, F.

    1993-01-01

    A low-noise transformer tuned optical front-end for a coherent optical receiver is described. The front-end is based on a GaInAs/InP p-i-n photodiode and a full custom designed GaAs monolithic microwave integrated circuit (MMIC). The measured equivalent input noise current density is between 5-16 p...

  14. XX International Youth Scientific School “Coherent Optics and Optical Spectroscopy”

    International Nuclear Information System (INIS)

    2017-01-01

    The XX International Youth School on Coherent Optics and Optical Spectroscopy (COOS2016) was held in Kazan, Russia, from October 18 to October 20 on the Nikolai Lobachevsky Scientific Library of Kazan Federal University. The School follows the global tendency to comprehensive studies of matter properties and its interaction with electromagnetic fields. Since 1997 more than 100 famous scientists from USA, Germany, Ukraine, Belarus and Russia had plenary lectures presentations. This is the right place, where over 1000 young scientists had an opportunity to participate in hot discussions of the latest scientific news. Many young people have submitted interesting reports on photonics, quantum electronics, laser physics, quantum optics, traditional optical and laser spectroscopy, non-linear optics, material science and nanotechnology. Here we are publishing the full-size papers prepared from the most interesting lectures and reports selected by the Program Committee of the School. Plenary sessions were offered by the following invited speakers: Ildar Gabitov, University of Arizona, USA. • Error statistics in coherent communication lines Andrei Naumov, Institute for Spectroscopy RAS, Troitsk, Moscow, Russia. • Revisiting the question of the experimental realization of a nonclassical light source on the basis of single organic molecules of dyes Gerd Hermann, University of Giessien, Germany. • Applications of Coherent Spectroscopy Askhat Basharov, National Research Center ‘Kurchatov Institute’, Moscow, Russia. • Low-frequency emission in resonant processes • Evolution of a two-level quantum particle in the noise classical e.-m. field within and beyond the resonant approximation Anastas Bukharaev, Kazan E. K. Zavoisky Physical-Technical Institute, Kazan, Russia. • Straintronics Maxim Gladush, Institute for Spectroscopy RAS, Troitsk, Moscow, Russia. • Fluorescent properties of single quantum emitters and their ensembles in dielectric media Sergey Sazonov

  15. Multiple Scattering Model for Optical Coherence Tomography with Rytov Approximation

    KAUST Repository

    Li, Muxingzi

    2017-04-24

    Optical Coherence Tomography (OCT) is a coherence-gated, micrometer-resolution imaging technique that focuses a broadband near-infrared laser beam to penetrate into optical scattering media, e.g. biological tissues. The OCT resolution is split into two parts, with the axial resolution defined by half the coherence length, and the depth-dependent lateral resolution determined by the beam geometry, which is well described by a Gaussian beam model. The depth dependence of lateral resolution directly results in the defocusing effect outside the confocal region and restricts current OCT probes to small numerical aperture (NA) at the expense of lateral resolution near the focus. Another limitation on OCT development is the presence of a mixture of speckles due to multiple scatterers within the coherence length, and other random noise. Motivated by the above two challenges, a multiple scattering model based on Rytov approximation and Gaussian beam optics is proposed for the OCT setup. Some previous papers have adopted the first Born approximation with the assumption of small perturbation of the incident field in inhomogeneous media. The Rytov method of the same order with smooth phase perturbation assumption benefits from a wider spatial range of validity. A deconvolution method for solving the inverse problem associated with the first Rytov approximation is developed, significantly reducing the defocusing effect through depth and therefore extending the feasible range of NA.

  16. Optical imaging modalities: From design to diagnosis of skin cancer

    Science.gov (United States)

    Korde, Vrushali Raj

    This study investigates three high resolution optical imaging modalities to better detect and diagnose skin cancer. The ideal high resolution optical imaging system can visualize pre-malignant tissue growth non-invasively with resolution comparable to histology. I examined 3 modalities which approached this goal. The first method examined was high magnification microscopy of thin stained tissue sections, together with a statistical analysis of nuclear chromatin patterns termed Karyometry. This method has subcellular resolution, but it necessitates taking a biopsy at the desired tissue site and imaging the tissue ex-vivo. My part of this study was to develop an automated nuclear segmentation algorithm to segment cell nuclei in skin histology images for karyometric analysis. The results of this algorithm were compared to hand segmented cell nuclei in the same images, and it was concluded that the automated segmentations can be used for karyometric analysis. The second optical imaging modality I investigated was Optical Coherence Tomography (OCT). OCT is analogous to ultrasound, in which sound waves are delivered into the body and the echo time and reflected signal magnitude are measured. Due to the fast speed of light and detector temporal integration times, low coherence interferometry is needed to gate the backscattered light. OCT acquires cross sectional images, and has an axial resolution of 1-15 mum (depending on the source bandwidth) and a lateral resolution of 10-20 mum (depending on the sample arm optics). While it is not capable of achieving subcellular resolution, it is a non-invasive imaging modality. OCT was used in this study to evaluate skin along a continuum from normal to sun damaged to precancer. I developed algorithms to detect statistically significant differences between images of sun protected and sun damaged skin, as well as between undiseased and precancerous skin. An Optical Coherence Microscopy (OCM) endoscope was developed in the third

  17. Benign familial fleck retina: multimodal imaging including optical coherence tomography angiography.

    Science.gov (United States)

    Garcia, Jose Mauricio Botto de Barros; Isaac, David Leonardo Cruvinel; Sardeiro, Tainara; Aquino, Érika; Avila, Marcos

    2017-01-01

    This report presents multimodal imaging of a 27-year-old woman diagnosed with benign familial fleck retina (OMIM 228980), an uncommon disorder. Fundus photographs revealed retinal flecks that affected her post-equatorial retina but spared the macular area. Fundus autofluorescence and infrared imaging demonstrated a symmetrical pattern of yellow-white fleck lesions that affected both eyes. Her full-field electroretinogram and electrooculogram were normal. An optical coherence tomography B-scan was performed for both eyes, revealing increased thickness of the retinal pigmented epithelium leading to multiple small pigmented epithelium detachments. The outer retina remained intact in both eyes. Spectral-domain optical coherence tomography angiography with split-spectrum amplitude decorrelation algorithm and 3 × 3 mm structural en face optical coherence tomography did not show macular lesions. Benign familial fleck retina belongs to a heterogenous group of so-called flecked retina syndromes, and should be considered in patients with yellowish-white retinal lesions without involvement of the macula.

  18. Benign familial fleck retina: multimodal imaging including optical coherence tomography angiography

    Directory of Open Access Journals (Sweden)

    Jose Mauricio Botto de Barros Garcia

    Full Text Available ABSTRACT This report presents multimodal imaging of a 27-year-old woman diagnosed with benign familial fleck retina (OMIM 228980, an uncommon disorder. Fundus photographs revealed retinal flecks that affected her post-equatorial retina but spared the macular area. Fundus autofluorescence and infrared imaging demonstrated a symmetrical pattern of yellow-white fleck lesions that affected both eyes. Her full-field electroretinogram and electrooculogram were normal. An optical coherence tomography B-scan was performed for both eyes, revealing increased thickness of the retinal pigmented epithelium leading to multiple small pigmented epithelium detachments. The outer retina remained intact in both eyes. Spectral-domain optical coherence tomography angiography with split-spectrum amplitude decorrelation algorithm and 3 × 3 mm structural en face optical coherence tomography did not show macular lesions. Benign familial fleck retina belongs to a heterogenous group of so-called flecked retina syndromes, and should be considered in patients with yellowish-white retinal lesions without involvement of the macula.

  19. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    Science.gov (United States)

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  20. Retinal pigment epithelium findings in patients with albinism using wide-field polarization-sensitive optical coherence tomography.

    Science.gov (United States)

    Schütze, Christopher; Ritter, Markus; Blum, Robert; Zotter, Stefan; Baumann, Bernhard; Pircher, Michael; Hitzenberger, Christoph K; Schmidt-Erfurth, Ursula

    2014-11-01

    To investigate pigmentation characteristics of the retinal pigment epithelium (RPE) in patients with albinism using wide-field polarization-sensitive optical coherence tomography compared with intensity-based spectral domain optical coherence tomography and fundus autofluorescence imaging. Five patients (10 eyes) with previously genetically diagnosed albinism and 5 healthy control subjects (10 eyes) were imaged by a wide-field polarization-sensitive optical coherence tomography system (scan angle: 40 × 40° on the retina), sensitive to melanin contained in the RPE, based on the polarization state of backscattered light. Conventional intensity-based spectral domain optical coherence tomography and fundus autofluorescence examinations were performed. Retinal pigment epithelium-pigmentation was analyzed qualitatively and quantitatively based on depolarization assessed by polarization-sensitive optical coherence tomography. This study revealed strong evidence of polarization-sensitive optical coherence tomography to specifically image melanin in the RPE. Depolarization of light backscattered by the RPE in patients with albinism was reduced compared with normal subjects. Heterogeneous RPE-specific depolarization characteristics were observed in patients with albinism. Reduction of depolarization observed in the light backscattered by the RPE in patients with albinism corresponds to expected decrease of RPE pigmentation. The degree of depigmentation of the RPE is possibly associated with visual acuity. Findings suggest that different albinism genotypes result in heterogeneous levels of RPE pigmentation. Polarization-sensitive optical coherence tomography showed a heterogeneous appearance of RPE pigmentation in patients with albinism depending on different genotypes.

  1. method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands

    NARCIS (Netherlands)

    Boer, JF De; Tearney, G. J.; Bouma, BE

    2008-01-01

    Apparatus and method for increasing the sensitivity in the detection of optical coherence tomography and loW coher ence interferometry (“LCI”) signals by detecting a parallel set of spectral bands, each band being a unique combination of optical frequencies. The LCI broad bandwidth source is split

  2. Optical coherence tomography technology and applications

    CERN Document Server

    Fujimoto, James

    2015-01-01

    Optical coherence tomography (OCT) is the optical analog of ultrasound imaging and is a powerful imaging technique that enables non-invasive, in vivo, high resolution, cross-sectional imaging in biological tissue.  Between 30 to 40 Million OCT imaging procedures are performed per year in ophthalmology.  The overall market is estimated at more than 0.5 Billion USD.  A new generation OCT technology was developed, dramatically increasing resolution and speed, achieving in vivo optical biopsy, i.e. the visualization of tissue architectural morphology in situ and in real time.  Functional extensions of OCT technology enable non-invasive, depth resolved functional assessment and imaging of tissue.  The book introduces OCT technology and applications not only from an optical and technological viewpoint, but also from the biomedical and clinical perspective. This second edition is widely extended and covers significantly more topics then the first edition of this book. The chapters are written leading intern...

  3. Using optical coherence tomography to detect bacterial biofilms on foley catheters (Conference Presentation)

    Science.gov (United States)

    Heidari, Andrew E.; Oh, Kyungjin; Chen, Zhongping

    2017-02-01

    Urinary tract infections(UTI) pose a serious problem for hospital patients accounting for 33% of all hospital acquired(nosocomial) infections with indwelling foley catheters. The presence of an indwelling foley catheter provides a scaffolding for circulating planktonic bacteria to adhere to and to form microbial biofilm communities that would typically be hindered by the body's innate immune system response. It is these biofilm communities that form on the inner lumen of foley catheters that provide a reservoir of pathogenic bacteria that could dislodge or disperse from the biofilm and infect urethra or bladder mucosal tissue in the urinary tract. Current diagnostic techniques of urine microbiological cultures are lacking in differentiating asymptomatic bacteriuria and symptomatic catheter-associated urinary tract infection(CAUTI) since almost all patients with chronic indwelling catheters are almost universally bacteriuruic. There is an unmet need of a diagnostic tool to assess the difference between the pathogenesis of asymptomatic bacteriuria and CAUTI, specifically at the site of the native biofilm formation. Optical Coherence Tomography(OCT) is an emerging high resolution, minimally invasive tomographic imaging technique that has shown promise in imaging biofilm structures previously in an endoscopic setting of the airway in-vivo and in microfluidic chambers. OCT can be adapted to image various sized biological surfaces and orifices such as airway branches and blood vessels by using a variety of minature endoscopic probes. In this work OCT will be used to image biofilm structure in-vitro on the inner lumen of extravasated critical care patient's foley catheters. Scanning electron microscopy will be conducted post OCT to confirm the presence of bacterial biofilm in OCT images.

  4. Optical coherence tomography of the rat cochlea

    NARCIS (Netherlands)

    Wong, B. J. F.; de Boer, JF; Park, B.H.; Chen, ZP; Nelson, JS

    2000-01-01

    Optical coherence tomography (OCT) was used to image the internal structure of a rat cochlea (ex vivo). Immediately following sacrifice, the temporal bone of a Sprague-Dawley rat was harvested. Axial OCT cross sectional images lover regions of interest, 1x1 mm-2x8 mm) were obtained with a spatial

  5. Coherence properties and quantum state transportation in an optical conveyor belt.

    Science.gov (United States)

    Kuhr, S; Alt, W; Schrader, D; Dotsenko, I; Miroshnychenko, Y; Rosenfeld, W; Khudaverdyan, M; Gomer, V; Rauschenbeutel, A; Meschede, D

    2003-11-21

    We have prepared and detected quantum coherences of trapped cesium atoms with long dephasing times. Controlled transport by an "optical conveyor belt" over macroscopic distances preserves the atomic coherence with slight reduction of coherence time. The limiting dephasing effects are experimentally identified, and we present an analytical model of the reversible and irreversible dephasing mechanisms. Our experimental methods are applicable at the single-atom level. Coherent quantum bit operations along with quantum state transport open the route towards a "quantum shift register" of individual neutral atoms.

  6. Simple and versatile long range swept source for optical coherence tomography applications

    International Nuclear Information System (INIS)

    Bräuer, Bastian; Lippok, Norman; Murdoch, Stuart G; Vanholsbeeck, Frédérique

    2015-01-01

    We present a versatile long coherence length swept-source laser design for optical coherence tomography applications. This design consists of a polygonal spinning mirror and an optical gain chip in a modified Littman–Metcalf cavity. A narrowband intra-cavity filter is implemented through multiple passes off a diffraction grating set at grazing incidence. The key advantage of this design is that it can be readily adapted to any wavelength regions for which broadband gain chips are available. We demonstrate this by implementing sources at 1650 nm, 1550 nm, 1310 nm and 1050 nm. In particular, we present a 1310 nm swept source laser with 24 mm coherence length, 95 nm optical bandwidth, 2 kHz maximum sweep frequency and 7.5 mW average output power. These parameters make it a suitable source for the imaging of biological samples. (paper)

  7. Functional optical coherence tomography: principles and progress

    International Nuclear Information System (INIS)

    Kim, Jina; Levinson, Howard; Brown, William; Maher, Jason R.; Wax, Adam

    2015-01-01

    In the past decade, several functional extensions of optical coherence tomography (OCT) have emerged, and this review highlights key advances in instrumentation, theoretical analysis, signal processing and clinical application of these extensions. We review five principal extensions: Doppler OCT (DOCT), polarization-sensitive OCT (PS-OCT), optical coherence elastography (OCE), spectroscopic OCT (SOCT), and molecular imaging OCT. The former three have been further developed with studies in both ex vivo and in vivo human tissues. This review emphasizes the newer techniques of SOCT and molecular imaging OCT, which show excellent potential for clinical application but have yet to be well reviewed in the literature. SOCT elucidates tissue characteristics, such as oxygenation and carcinogenesis, by detecting wavelength-dependent absorption and scattering of light in tissues. While SOCT measures endogenous biochemical distributions, molecular imaging OCT detects exogenous molecular contrast agents. These newer advances in functional OCT broaden the potential clinical application of OCT by providing novel ways to understand tissue activity that cannot be accomplished by other current imaging methodologies. (topical review)

  8. Common-path low-coherence interferometry fiber-optic sensor guided microincision

    Science.gov (United States)

    Zhang, Kang; Kang, Jin U.

    2011-09-01

    We propose and demonstrate a common-path low-coherence interferometry (CP-LCI) fiber-optic sensor guided precise microincision. The method tracks the target surface and compensates the tool-to-surface relative motion with better than +/-5 μm resolution using a precision micromotor connected to the tool tip. A single-fiber distance probe integrated microdissector was used to perform an accurate 100 μm incision into the surface of an Intralipid phantom. The CP-LCI guided incision quality in terms of depth was evaluated afterwards using three-dimensional Fourier-domain optical coherence tomography imaging, which showed significant improvement of incision accuracy compared to free-hand-only operations.

  9. Coherent optical communication detection device based on modified balanced optical phase-locked loop

    Science.gov (United States)

    Zhang, Bo; Sun, Jianfeng; Xu, Mengmeng; Li, Guangyuan; Zhang, Guo; Lao, Chenzhe; He, Hongyu; Lu, Zhiyong

    2017-08-01

    In the field of satellite communication, space laser communication technology is famous for its high communication rate, good confidentiality, small size, low power consumption and so on. The design of coherent optical communication detection device based on modified balanced optical phase-locked loop (OPLL) is presented in the paper. It combined by local oscillator beam, modulator, voltage controlled oscillator, signal beam, optical filter, 180 degree hybrid, balanced detector, loop filter and signal receiver. Local oscillator beam and voltage controlled oscillator trace the phase variation of signal beam simultaneously. That taking the advantage of voltage controlled oscillator which responses sensitively and tunable local oscillator laser source with large tuning range can trace the phase variation of signal beam rapidly and achieve phase locking. The demand of the phase deviation is very low, and the system is easy to adjust. When the transmitter transmits the binary phase shift keying (BPSK) signal, the receiver can demodulate the baseband signal quickly, which has important significance for the free space coherent laser communication.

  10. Online monitoring of printed electronics by Spectral-Domain Optical Coherence Tomography

    KAUST Repository

    Alarousu, Erkki; Alsaggaf, Ahmed; Jabbour, Ghassan E.

    2013-01-01

    Spectral-Domain Optical Coherence Tomography (SD-OCT) is an optical method capable of 3D imaging of object's internal structure with micron-scale resolution. Modern SD-OCT tools offer the speed capable of online monitoring of printed devices

  11. Research progress of free space coherent optical communication

    Science.gov (United States)

    Tan, Zhenkun; Ke, Xizheng

    2018-02-01

    This paper mainly introduces the research progress of free space coherent optical communication in Xi'an University of Technology. In recent years, the research on the outer modulation technology of the laser, free-space-to-fiber coupling technique, the design of transmitting and receiving optical antenna, adaptive optical technology with or without wave-front sensor, automatic polarization control technology, frequency stabilization technology, heterodyne detection technology and high speed signal processing technology. Based on the above related research, the digital signal modulation, transmission, detection and data recovery are realized by the heterodyne detection technology in the free space optical communication system, and finally the function of smooth viewing high-definition video is realized.

  12. Fabrication of Shatter-Proof Metal Hollow-Core Optical Fibers for Endoscopic Mid-Infrared Laser Applications

    Directory of Open Access Journals (Sweden)

    Katsumasa Iwai

    2018-04-01

    Full Text Available A method for fabricating robust and thin hollow-core optical fibers that carry mid-infrared light is proposed for use in endoscopic laser applications. The fiber is made of stainless steel tubing, eliminating the risk of scattering small glass fragments inside the body if the fiber breaks. To reduce the inner surface roughness of the tubing, a polymer base layer is formed prior to depositing silver and optical-polymer layers that confine light inside the hollow core. The surface roughness is greatly decreased by re-coating thin polymer base layers. Because of this smooth base layer surface, a uniform optical-polymer film can be formed around the core. As a result, clear interference peaks are observed in both the visible and mid-infrared regions. Transmission losses were also low for the carbon dioxide laser used for medical treatments as well as the visible laser diode used for an aiming beam. Measurements of bending losses for these lasers demonstrate the feasibility of the designed fiber for endoscopic applications.

  13. Quantitative assessment of hyaline cartilage elasticity during optical clearing using optical coherence elastography

    Science.gov (United States)

    Liu, Chih-Hao; Singh, Manmohan; Li, Jiasong; Han, Zhaolong; Wu, Chen; Wang, Shang; Idugboe, Rita; Raghunathan, Raksha; Zakharov, Valery P.; Sobol, Emil N.; Tuchin, Valery V.; Twa, Michael; Larin, Kirill V.

    2015-03-01

    We report the first study on using optical coherence elastography (OCE) to quantitatively monitor the elasticity change of the hyaline cartilage during the optical clearing administrated by glucose solution. The measurement of the elasticity is verified using uniaxial compression test, demonstrating the feasibility of using OCE to quantify the Young's modulus of the cartilage tissue. As the results, we found that the stiffness of the hyaline cartilage increases during the optical clearing of the tissue. This study might be potentially useful for the early detection of osteoarthritis disease.

  14. Analysis of parallel optical sampling rate and ADC requirements in digital coherent receivers

    DEFF Research Database (Denmark)

    Lorences Riesgo, Abel; Galili, Michael; Peucheret, Christophe

    2012-01-01

    We comprehensively assess analog-to-digital converter requirements in coherent digital receiver schemes with parallel optical sampling. We determine the electronic requirements in accordance with the properties of the free running local oscillator.......We comprehensively assess analog-to-digital converter requirements in coherent digital receiver schemes with parallel optical sampling. We determine the electronic requirements in accordance with the properties of the free running local oscillator....

  15. Engineering of Nanoscale Contrast Agents for Optical Coherence Tomography.

    Science.gov (United States)

    Gordon, Andrew Y; Jayagopal, Ashwath

    2014-01-30

    Optical coherence tomography has emerged as valuable imaging modalityin ophthalmology and other fields by enabling high-resolution three-dimensional imaging of tissue. In this paper, we review recent progress in the field of contrast-enhanced optical coherence tomography (OCT). We discuss exogenous and endogenous sources of OCT contrast, focusing on their use with standard OCT systems as well as emerging OCT-based imaging modalities. We include advances in the processing of OCT data that generate improved tissue contrast, including spectroscopic OCT (SOCT), as well as work utilizing secondary light sources and/or detection mechanisms to create and detect enhanced contrast, including photothermal OCT (PTOCT) and photoacoustic OCT (PAOCT). Finally, we conclude with a discussion of the translational potential of these developments as well as barriers to their clinical use.

  16. Perfect-crystal x-ray optics to treat x-ray coherence

    International Nuclear Information System (INIS)

    Yamazaki, Hiroshi; Ishikawa, Tetsuya

    2007-01-01

    X-ray diffraction of perfect crystals, which serve as x-ray monochromator and collimator, modifies coherence properties of x-ray beams. From the time-dependent Takagi-Taupin equations that x-ray wavefields obey in crystals, the reflected wavefield is formulated as an integral transform of a general incident wavefield with temporal and spatial inhomogeneity. A reformulation of rocking-curve profiles from the field solution of the Takagi-Taupin equations allows experimental evaluation of the mutual coherence function of x-ray beam. The rigorous relationship of the coherence functions between before and after reflection clarifies how the coherence is transferred by a crystal. These results will be beneficial to developers of beamline optics for the next generation synchrotron sources. (author)

  17. Optical coherence tomography angiography changes in radial peripapillary capillaries in Leber hereditary optic neuropathy

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Matsuzaki

    2018-03-01

    Conclusions and importance: Optical coherence tomography angiography showed LHON from the presymptomatic stage. The results indicate that temporal RPC defects and RFT thinning start to spread once the pseudoedema begins to resolve.

  18. Spectral-domain optical coherence tomography of roth spots.

    Science.gov (United States)

    Giovinazzo, Jerome; Mrejen, Sarah; Freund, K Bailey

    2013-01-01

    To describe the retinal findings of subacute bacterial endocarditis, their evolution after treatment, and analysis with spectral-domain optical coherence tomography. Retrospective chart review. A 21-year-old man presented with the sudden onset of a central scotoma in his left eye because of a sub-internal limiting membrane hemorrhage overlying the left fovea. When examined 2 weeks later, Roth spots were noted in his right eye. The patient was immediately referred to his internist and diagnosed with subacute bacterial endocarditis with cultures positive for Streptococcus viridans. He subsequently underwent aortic valve replacement surgery after 4 weeks of intravenous antibiotic therapy. When examined 4 weeks after valve replacement surgery, there was regression of the Roth spots. The present case demonstrates the importance of a funduscopic examination in the early diagnosis and management of subacute bacterial endocarditis. The analysis of Roth spots with spectral-domain optical coherence tomography suggested that they were septic emboli.

  19. Parametric imaging of viscoelasticity using optical coherence elastography

    Science.gov (United States)

    Wijesinghe, Philip; McLaughlin, Robert A.; Sampson, David D.; Kennedy, Brendan F.

    2015-03-01

    We demonstrate imaging of soft tissue viscoelasticity using optical coherence elastography. Viscoelastic creep deformation is induced in tissue using step-like compressive loading and the resulting time-varying deformation is measured using phase-sensitive optical coherence tomography. From a series of co-located B-scans, we estimate the local strain rate as a function of time, and parameterize it using a four-parameter Kelvin-Voigt model of viscoelastic creep. The estimated viscoelastic strain and time constant are used to visualize viscoelastic creep in 2D, dual-parameter viscoelastograms. We demonstrate our technique on six silicone tissue-simulating phantoms spanning a range of viscoelastic parameters. As an example in soft tissue, we report viscoelastic contrast between muscle and connective tissue in fresh, ex vivo rat gastrocnemius muscle and mouse abdominal transection. Imaging viscoelastic creep deformation has the potential to provide complementary contrast to existing imaging modalities, and may provide greater insight into disease pathology.

  20. Coherent feedback control of multipartite quantum entanglement for optical fields

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhihui; Jia, Xiaojun; Xie, Changde; Peng, Kunchi [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006 (China)

    2011-12-15

    Coherent feedback control (CFC) of multipartite optical entangled states produced by a nondegenerate optical parametric amplifier is theoretically studied. The features of the quantum correlations of amplitude and phase quadratures among more than two entangled optical modes can be controlled by tuning the transmissivity of the optical beam splitter in the CFC loop. The physical conditions to enhance continuous variable multipartite entanglement of optical fields utilizing the CFC loop are obtained. The numeric calculations based on feasible physical parameters of realistic systems provide direct references for the design of experimental devices.

  1. Endoscopes with latest technology and concept.

    Science.gov (United States)

    Gotoh

    2003-09-01

    Endoscopic imaging systems that perform as the "eye" of the operator during endoscopic surgical procedures have developed rapidly due to various technological developments. In addition, since the most recent turn of the century robotic surgery has increased its scope through the utilization of systems such as Intuitive Surgical's da Vinci System. To optimize the imaging required for precise robotic surgery, a unique endoscope has been developed, consisting of both a two dimensional (2D) image optical system for wider observation of the entire surgical field, and a three dimensional (3D) image optical system for observation of the more precise details at the operative site. Additionally, a "near infrared radiation" endoscopic system is under development to detect the sentinel lymph node more readily. Such progress in the area of endoscopic imaging is expected to enhance the surgical procedure from both the patient's and the surgeon's point of view.

  2. CAPILLARY NETWORK ANOMALIES IN BRANCH RETINAL VEIN OCCLUSION ON OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY.

    Science.gov (United States)

    Rispoli, Marco; Savastano, Maria Cristina; Lumbroso, Bruno

    2015-11-01

    To analyze the foveal microvasculature features in eyes with branch retinal vein occlusion (BRVO) using optical coherence tomography angiography based on split spectrum amplitude decorrelation angiography technology. A total of 10 BRVO eyes (mean age 64.2 ± 8.02 range between 52 years and 76 years) were evaluated by optical coherence tomography angiography (XR-Avanti; Optovue). The macular angiography scan protocol covered a 3 mm × 3 mm area. The focus of angiography analysis were two retinal layers: superficial vascular network and deep vascular network. The following vascular morphological congestion parameters were assessed in the vein occlusion area in both the superficial and deep networks: foveal avascular zone enlargement, capillary non-perfusion occurrence, microvascular abnormalities appearance, and vascular congestion signs. Image analyses were performed by 2 masked observers and interobserver agreement of image analyses was 0.90 (κ = 0.225, P network of BRVO, a decrease in capillary density with foveal avascular zone enlargement, capillary non-perfusion occurrence, and microvascular abnormalities appearance was observed (P network showed the main vascular congestion at the boundary between healthy and nonperfused retina. Optical coherence tomography angiography in BRVO allows to detect foveal avascular zone enlargement, capillary nonperfusion, microvascular abnormalities, and vascular congestion signs both in the superficial and deep capillary network in all eyes. Optical coherence tomography angiography technology is a potential clinical tool for BRVO diagnosis and follow-up, providing stratigraphic vascular details that have not been previously observed by standard fluorescein angiography. The normal retinal vascular nets and areas of nonperfusion and congestion can be identified at various retinal levels. Optical coherence tomography angiography provides noninvasive images of the retinal capillaries and vascular networks.

  3. Optical coherence tomography in the diagnosis of actinic keratosis

    DEFF Research Database (Denmark)

    Friis, K B E; Themstrup, L; Jemec, G B E

    2017-01-01

    BACKGROUND: Optical coherence tomography (OCT) is a real-time non-invasive imaging tool, introduced in dermatology in the late 1990s. OCT uses near-infrared light impulses to produce images which can be displayed in cross-sectional and en-face mode. The technique has been used to image skin...... of layers consistent with absence of normal layered architecture in the skin. Thickened epidermis was found in 14/16 studies and white (hyperreflective) streaks and dots were described in 11/16 studies. In High-definition optical coherence tomography (HD-OCT) images disarranged epidermis (cross......-sectional images) along with an atypical honeycomb pattern (en-face images) was found in 5/5 studies and well-demarcated dermo-epithelial junction (DEJ) (cross-sectional images) was described in 3/5 studies. CONCLUSION: Several morphological characteristics of AKs were identified using Conventional OCT and HD...

  4. Fast Industrial Inspection of Optical Thin Film Using Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Muhammad Faizan Shirazi

    2016-09-01

    Full Text Available An application of spectral domain optical coherence tomography (SD-OCT was demonstrated for a fast industrial inspection of an optical thin film panel. An optical thin film sample similar to a liquid crystal display (LCD panel was examined. Two identical SD-OCT systems were utilized for parallel scanning of a complete sample in half time. Dual OCT inspection heads were utilized for transverse (fast scanning, while a stable linear motorized translational stage was used for lateral (slow scanning. The cross-sectional and volumetric images of an optical thin film sample were acquired to detect the defects in glass and other layers that are difficult to observe using visual inspection methods. The rapid inspection enabled by this setup led to the early detection of product defects on the manufacturing line, resulting in a significant improvement in the quality assurance of industrial products.

  5. An intelligent despeckling method for swept source optical coherence tomography images of skin

    Science.gov (United States)

    Adabi, Saba; Mohebbikarkhoran, Hamed; Mehregan, Darius; Conforto, Silvia; Nasiriavanaki, Mohammadreza

    2017-03-01

    Optical Coherence Optical coherence tomography is a powerful high-resolution imaging method with a broad biomedical application. Nonetheless, OCT images suffer from a multiplicative artefacts so-called speckle, a result of coherent imaging of system. Digital filters become ubiquitous means for speckle reduction. Addressing the fact that there still a room for despeckling in OCT, we proposed an intelligent speckle reduction framework based on OCT tissue morphological, textural and optical features that through a trained network selects the winner filter in which adaptively suppress the speckle noise while preserve structural information of OCT signal. These parameters are calculated for different steps of the procedure to be used in designed Artificial Neural Network decider that select the best denoising technique for each segment of the image. Results of training shows the dominant filter is BM3D from the last category.

  6. Submicron Resolution Spectral-Domain Optical Coherence Tomography

    KAUST Repository

    Alarousu, Erkki

    2013-11-14

    Apparatuses and systems for submicron resolution spectral-domain optical coherence tomography (OCT) are disclosed. The system may use white light sources having wavelengths within 400-1000 nanometers, and achieve resolution below 1 .mu.m. The apparatus is aggregated into a unitary piece, and a user can connect the apparatus to a user provided controller and/or light source. The light source may be a supercontinuum source.

  7. Advances in optical coherence tomography in dermatology-a review

    Science.gov (United States)

    Olsen, Jonas; Holmes, Jon; Jemec, Gregor B. E.

    2018-04-01

    Optical coherence tomography (OCT) was introduced as an imaging system, but like ultrasonography, other measures, such as blood perfusion and polarization of light, have enabled the technology to approach clinical utility. This review aims at providing an overview of the advances in clinical research based on the improving technical aspects. OCT provides cross-sectional and en face images down to skin depths of 0.4 to 2.00 mm with optical resolution of 3 to 15 μm. Dynamic optical coherence tomography (D-OCT) enables the visualization of cutaneous microvasculature via detection of rapid changes in the interferometric signal of blood flow. Nonmelanoma skin cancer (NMSC) is the most comprehensively investigated topic, resulting in improved descriptions of morphological features and diagnostic criteria. A refined scoring system for diagnosing NMSC, taking findings from conventional and D-OCT into account, is warranted. OCT diagnosis of melanoma is hampered by the resolution and the optical properties of melanin. D-OCT may be of value in diseases characterized with dynamic changes in the vasculature of the skin and the addition of functional measures is strongly encouraged. In conclusion, OCT in dermatology is still an emerging technology that has great potential for improving further in the future.

  8. Optical coherence tomography and subclinical optical neuritis in longitudinally extensive transverse myelitis

    Directory of Open Access Journals (Sweden)

    Prakash Kumar Sinha

    2017-01-01

    Full Text Available Objective: The aim is to compare the retinal nerve fiber layer (RNFL thickness of longitudinally extensive transverse myelitis (LETM eyes without previous optic neuritis with that of healthy control subjects. Methods: Over 20 LETM eyes and 20 normal control eyes were included in the study and subjected to optical coherence tomography to evaluate and compare the RNFL thickness. Result: Significant RNFL thinning was observed at 8 o'clock position in LETM eyes as compared to the control eyes (P = 0.038. No significant differences were seen in other RNFL measurements. Conclusion: Even in the absence of previous optic neuritis LETM can lead to subclinical axonal damage leading to focal RNFL thinning.

  9. Modeling light–tissue interaction in optical coherence tomography systems

    DEFF Research Database (Denmark)

    Andersen, Peter E.; Jørgensen, Thomas Martini; Thrane, Lars

    2015-01-01

    Optical coherence tomography (OCT) performs high-resolution, cross-sectional tomographic imaging of the internal tissue microstructure by measuring backscattered or backreflected light. The scope of this chapter is to present analytical and numerical models that are able to describe light-tissue ...

  10. Coherent optical DFT-spread OFDM transmission using orthogonal band multiplexing.

    Science.gov (United States)

    Yang, Qi; He, Zhixue; Yang, Zhu; Yu, Shaohua; Yi, Xingwen; Shieh, William

    2012-01-30

    Coherent optical OFDM (CO-OFDM) combined with orthogonal band multiplexing provides a scalable and flexible solution for achieving ultra high-speed rate. Among many CO-OFDM implementations, digital Fourier transform spread (DFT-S) CO-OFDM is proposed to mitigate fiber nonlinearity in long-haul transmission. In this paper, we first illustrate the principle of DFT-S OFDM. We then experimentally evaluate the performance of coherent optical DFT-S OFDM in a band-multiplexed transmission system. Compared with conventional clipping methods, DFT-S OFDM can reduce the OFDM peak-to-average power ratio (PAPR) value without suffering from the interference of the neighboring bands. With the benefit of much reduced PAPR, we successfully demonstrate 1.45 Tb/s DFT-S OFDM over 480 km SSMF transmission.

  11. Spectral-domain optical coherence tomography staging and autofluorescence imaging in achromatopsia.

    Science.gov (United States)

    Greenberg, Jonathan P; Sherman, Jerome; Zweifel, Sandrine A; Chen, Royce W S; Duncker, Tobias; Kohl, Susanne; Baumann, Britta; Wissinger, Bernd; Yannuzzi, Lawrence A; Tsang, Stephen H

    2014-04-01

    IMPORTANCE Evidence is mounting that achromatopsia is a progressive retinal degeneration, and treatments for this condition are on the horizon. OBJECTIVES To categorize achromatopsia into clinically identifiable stages using spectral-domain optical coherence tomography and to describe fundus autofluorescence imaging in this condition. DESIGN, SETTING, AND PARTICIPANTS A prospective observational study was performed between 2010 and 2012 at the Edward S. Harkness Eye Institute, New York-Presbyterian Hospital. Participants included 17 patients (aged 10-62 years) with full-field electroretinography-confirmed achromatopsia. MAIN OUTCOMES AND MEASURES Spectral-domain optical coherence tomography features and staging system, fundus autofluorescence and near-infrared reflectance features and their correlation to optical coherence tomography, and genetic mutations served as the outcomes and measures. RESULTS Achromatopsia was categorized into 5 stages on spectral-domain optical coherence tomography: stage 1 (2 patients [12%]), intact outer retina; stage 2 (2 patients [12%]), inner segment ellipsoid line disruption; stage 3 (5 patients [29%]), presence of an optically empty space; stage 4 (5 patients [29%]), optically empty space with partial retinal pigment epithelium disruption; and stage 5 (3 patients [18%]), complete retinal pigment epithelium disruption and/or loss of the outer nuclear layer. Stage 1 patients showed isolated hyperreflectivity of the external limiting membrane in the fovea, and the external limiting membrane was hyperreflective above each optically empty space. On near infrared reflectance imaging, the fovea was normal, hyporeflective, or showed both hyporeflective and hyperreflective features. All patients demonstrated autofluorescence abnormalities in the fovea and/or parafovea: 9 participants (53%) had reduced or absent autofluorescence surrounded by increased autofluorescence, 4 individuals (24%) showed only reduced or absent autofluorescence, 3

  12. Applications of expectation maximization algorithm for coherent optical communication

    DEFF Research Database (Denmark)

    Carvalho, L.; Oliveira, J.; Zibar, Darko

    2014-01-01

    In this invited paper, we present powerful statistical signal processing methods, used by machine learning community, and link them to current problems in optical communication. In particular, we will look into iterative maximum likelihood parameter estimation based on expectation maximization...... algorithm and its application in coherent optical communication systems for linear and nonlinear impairment mitigation. Furthermore, the estimated parameters are used to build the probabilistic model of the system for the synthetic impairment generation....

  13. Investigation of optical coherence tomography as an imaging modality in tissue engineering

    International Nuclear Information System (INIS)

    Yang Ying; Dubois, Arnaud; Qin Xiangpei; Li Jian; Haj, Alicia El; Wang, Ruikang K

    2006-01-01

    Monitoring cell profiles in 3D porous scaffolds presents a major challenge in tissue engineering. In this study, we investigate optical coherence tomography (OCT) as an imaging modality to monitor non-invasively both structures and cells in engineered tissue constructs. We employ time-domain OCT to visualize macro-structural morphology, and whole-field optical coherence microscopy to delineate the morphology of cells and constructs in a developing in vitro engineered bone tissue. The results show great potential for the use of OCT in non-invasive monitoring of cellular activities in 3D developing engineered tissues

  14. Extended depth of focus adaptive optics spectral domain optical coherence tomography

    Science.gov (United States)

    Sasaki, Kazuhiro; Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki

    2012-01-01

    We present an adaptive optics spectral domain optical coherence tomography (AO-SDOCT) with a long focal range by active phase modulation of the pupil. A long focal range is achieved by introducing AO-controlled third-order spherical aberration (SA). The property of SA and its effects on focal range are investigated in detail using the Huygens-Fresnel principle, beam profile measurement and OCT imaging of a phantom. The results indicate that the focal range is extended by applying SA, and the direction of extension can be controlled by the sign of applied SA. Finally, we demonstrated in vivo human retinal imaging by altering the applied SA. PMID:23082278

  15. Tuned Optical Front-End MMIC Amplifiers for a Coherent Optical Receiver

    DEFF Research Database (Denmark)

    Petersen, Anders Kongstad; Jagd, A M

    1992-01-01

    Two low noise tuned optical front-end GaAs MESFET MMIC amplifiers for a coherent optical CPFSK (Continuous Phase Frequency Shift Keying) receiver are presented. The receiver operates at 2.5 Gbit/s at an IF of approx. 9 GHz. The front-ends are based on full-custom designed MMICs and a commercially...... available GaInAs/InP pin photo diode. The procedure for measuring the transimpedance and the equivalent input noise current density is outlined in this paper and demonstrated using one of the MMICs. The MMICs were fabricated using the Plessey F20 process by GEC-Marconi through the ESPRIT programme EUROCHIP...

  16. Three-Dimensional Optical Coherence Tomography (3D OCT), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Applied Science Innovations, Inc. proposes a new tool of 3D optical coherence tomography (OCT) for cellular level imaging at video frame rates and dramatically...

  17. Agreement of angle closure assessments between gonioscopy, anterior segment optical coherence tomography and spectral domain optical coherence tomography

    OpenAIRE

    Tay, Elton Lik Tong; Yong, Vernon Khet Yau; Lim, Boon Ang; Sia, Stelson; Wong, Elizabeth Poh Ying; Yip, Leonard Wei Leon

    2015-01-01

    AIM: To determine angle closure agreements between gonioscopy and anterior segment optical coherence tomography (AS-OCT), as well as gonioscopy and spectral domain OCT (SD-OCT). A secondary objective was to quantify inter-observer agreements of AS-OCT and SD-OCT assessments. METHODS: Seventeen consecutive subjects (33 eyes) were recruited from the study hospital’s Glaucoma clinic. Gonioscopy was performed by a glaucomatologist masked to OCT results. OCT images were read independently by 2 ...

  18. Technical note: Endoscopic resection of a dermoid cyst anchored to the anterior optic chiasm

    Directory of Open Access Journals (Sweden)

    Yuichiro Yoneoka, MD, PhD

    2014-06-01

    Conclusion: To the best of our knowledge, ours is the only case of a dermoid cyst anchored to the anterior optic chiasma, which was visually confirmed under endoscopic observation. After surgery, the patient presented a transient impairment of the visual field, which was not evident at four month follow-up. It will contribute to a similar case, in which surgeons hesitate to make an incision in the optic chiasm. A subtotal excision should be considered in cases of dermoid cysts anchored to the anterior optic chiasm, because all the previously reported cases of suprasellar dermoid cysts are young people or those who have a relatively long life expectancy.

  19. Heartbeat OCT: In vivo intravascular megahertz-optical coherence tomography

    NARCIS (Netherlands)

    T. Wang (Tianshi); A.F.H. Pfeiffer (Andreas); E.S. Regar (Eveline); W. Wieser (Wolfgang); H.M.M. van Beusekom (Heleen); C.T. Lancée (Charles); T. Springeling (Tirza); I. Krabbendam (Ilona); A.F.W. van der Steen (Ton); R. Huber (Roman); G. van Soest (Gijs)

    2015-01-01

    textabstractCardiac motion artifacts, non-uniform rotational distortion and undersampling affect the image quality and the diagnostic impact of intravascular optical coherence tomography (IV-OCT). In this study we demonstrate how these limitations of IV-OCT can be addressed by using an imaging

  20. Interferometric microstructured polymer optical fiber ultrasound sensor for optoacoustic endoscopic imaging in biomedical applications

    DEFF Research Database (Denmark)

    Gallego, Daniel; Sáez-Rodríguez, David; Webb, David

    2014-01-01

    to conventional piezoelectric transducers. These kind of sensors, made of biocompatible polymers, are good candidates for the sensing element in an optoacoustic endoscope because of its high sensitivity, its shape and its non-brittle and non-electric nature. The acoustic sensitivity of the intrinsic fiber optic......We report a characterization of the acoustic sensitivity of microstructured polymer optical fiber interferometric sensors at ultrasonic frequencies from 100kHz to 10MHz. The use of wide-band ultrasonic fiber optic sensors in biomedical ultrasonic and optoacoustic applications is an open alternative...... interferometric sensors depends strongly of the material which is composed of. In this work we compare experimentally the intrinsic ultrasonic sensitivities of a PMMA mPOF with other three optical fibers: a singlemode silica optical fiber, a single-mode polymer optical fiber and a multimode graded...

  1. Application of optical coherence tomography angiography for diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Qing Liu

    2016-04-01

    Full Text Available Optical coherence tomography angiography(OCTAis a new emerging technology of the optical coherence tomography(OCTin recent years. It's a noninvasive and fast retinal vascular imaging technology with high resolution, and has been gradually applied to make diagnosis, gives treatment and follow-up for various types of retinal vascular diseases, such as diabetic retinopathy, choroid neovascularization, etc. OCTA has the unique advantages of layered observing the structure and shape of the chorioretinal vascular at different levels, and quantifying the blood flow index of designated scope and the flow area of lesions. However, OCTA requires high solid vision and good cooperation of patients, even has the limitations to observe the retinal scope and retinal vascular barrier function. With overcoming these limitations, it's helpful for us to improve the understanding of retinal vascular diseases, consummate the diagnosis and treatment and observation of retinal vascular diseases.

  2. Wide-field phase imaging for the endoscopic detection of dysplasia and early-stage esophageal cancer

    Science.gov (United States)

    Fitzpatrick, C. R. M.; Gordon, G. S. D.; Sawyer, T. W.; Wilkinson, T. D.; Bohndiek, S. E.

    2018-02-01

    Esophageal cancer has a 5-year survival rate below 20%, but can be curatively resected if it is detected early. At present, poor contrast for early lesions in white light imaging leads to a high miss rate in standard-of- care endoscopic surveillance. Early lesions in the esophagus, referred to as dysplasia, are characterized by an abundance of abnormal cells with enlarged nuclei. This tissue has a different refractive index profile to healthy tissue, which results in different light scattering properties and provides a source of endogenous contrast that can be exploited for advanced endoscopic imaging. For example, point measurements of such contrast can be made with scattering spectroscopy, while optical coherence tomography generates volumetric data. However, both require specialist interpretation for diagnostic decision making. We propose combining wide-field phase imaging with existing white light endoscopy in order to provide enhanced contrast for dysplasia and early-stage cancer in an image format that is familiar to endoscopists. Wide-field phase imaging in endoscopy can be achieved using coherent illumination combined with phase retrieval algorithms. Here, we present the design and simulation of a benchtop phase imaging system that is compatible with capsule endoscopy. We have undertaken preliminary optical modelling of the phase imaging setup, including aberration correction simulations and an investigation into distinguishing between different tissue phantom scattering coefficients. As our approach is based on phase retrieval rather than interferometry, it is feasible to realize a device with low-cost components for future clinical implementation.

  3. Donor disc attachment assessment with intraoperative spectral optical coherence tomography during descemet stripping automated endothelial keratoplasty

    Directory of Open Access Journals (Sweden)

    Edward Wylegala

    2013-01-01

    Full Text Available Optical coherence tomography has already been proven to be useful for pre- and post-surgical anterior eye segment assessment, especially in lamellar keratoplasty procedures. There is no evidence for intraoperative usefulness of optical coherence tomography (OCT. We present a case report of the intraoperative donor disc attachment assessment with spectral-domain optical coherence tomography in case of Descemet stripping automated endothelial keratoplasty (DSAEK surgery combined with corneal incisions. The effectiveness of the performed corneal stab incisions was visualized directly by OCT scan analysis. OCT assisted DSAEK allows the assessment of the accuracy of the Descemet stripping and donor disc attachment.

  4. Low-cost coherent receiver for long-reach optical access network using single-ended detection.

    Science.gov (United States)

    Zhang, Xuebing; Li, Zhaohui; Li, Jianping; Yu, Changyuan; Lau, Alan Pak Tao; Lu, Chao

    2014-09-15

    A low-cost coherent receiver using two 2×3 optical hybrids and single-ended detection is proposed for long-reach optical access network. This structure can detect the two polarization components of polarization division multiplexing (PDM) signals. Polarization de-multiplexing and signal-to-signal beat interference (SSBI) cancellation are realized by using only three photodiodes. Simulation results for 40 Gb/s PDM-OFDM transmissions indicate that the low-cost coherent receiver has 3.2 dB optical signal-to-noise ratio difference compared with the theoretical value.

  5. LDRD final report on theory and exploration of quantum-dot optical nonlinearities and coherences

    International Nuclear Information System (INIS)

    Chow, Weng Wah

    2008-01-01

    A microscopic theory for investigating quantum-dot optical properties was developed. The theory incorporated advances on various aspects of quantum-dot physics developed at Sandia and elsewhere. Important components are a non-Markovian treatment of polarization dephasing due to carrier-carrier scattering (developed at Sandia) and a nonperturbative treatment within a polaron picture of the scattering of carriers by longitudinal-optical phonons (developed at Bremen University). A computer code was also developed that provides a detailed accounting of electronic structure influences and a consistent treatment of many-body effects, the latter via the incorporation of results from the microscopic theory. This code was used to explore quantum coherence physics in a quantum-dot system. The investigation furthers the understanding of the underlying differences between atomic quantum coherence and semiconductor quantum coherence, and helps improve the potential of using quantum coherences in quantum computing, coherent control and high-resolution spectroscopy

  6. In vivo sweat film layer thickness measured with Fourier-domain optical coherence tomography

    CSIR Research Space (South Africa)

    Jonathan, E

    2008-01-01

    Full Text Available s Centre form the f th s pr t fi d id Keywords: Fourier-domain optical coherence tomography; Human sweat secretion; Sweat gland; Sweat duct; Hyperhidrosis growing list of triggers include cancer, glucose control disorder, mental stress, social..., that is, the gland, duct and pore(s). However, due to a slow imaging time, COCT is largely restricted to morphometry of human tissue and thickness measurement of biologic and biologic samples [12,13]. ARTICLE IN PRESS Fourier-domain optical coherence...

  7. Optical coherence tomography of the newborn airway.

    Science.gov (United States)

    Ridgway, James M; Su, Jianping; Wright, Ryan; Guo, Shuguang; Kim, David C; Barretto, Roberto; Ahuja, Gurpreet; Sepehr, Ali; Perez, Jorge; Sills, Jack H; Chen, Zhongping; Wong, Brian J F

    2008-05-01

    Acquired subglottic stenosis in a newborn is often associated with prolonged endotracheal intubation. This condition is generally diagnosed during operative endoscopy after airway injury has occurred. Unfortunately, endoscopy is unable to characterize the submucosal changes observed in such airway injuries. Other modalities, such as magnetic resonance imaging, computed tomography, and ultrasound, do not possess the necessary level of resolution to differentiate scar, neocartilage, and edema. Optical coherence tomography (OCT) is an imaging modality that produces high-resolution, cross-sectional images of living tissue (8 to 20 microm). We examined the ability of this noninvasive technique to characterize the newborn airway in a prospective clinical trial. Twelve newborn patients who required ventilatory support underwent OCT airway imaging. Comparative analysis of intubated and non-intubated states was performed. Imaging of the supraglottis, glottis, subglottis, and trachea was performed in 12 patients, revealing unique tissue characteristics as related to turbidity, signal backscattering, and architecture. Multiple structures were identified, including the vocal folds, cricoid cartilage, tracheal rings, ducts, glands, and vessels. Optical coherence tomography clearly identifies in vivo tissue layers and regional architecture while offering detailed information concerning tissue microstructures. The diagnostic potential of this technology makes OCT a promising modality in the study and surveillance of the neonatal airway.

  8. Detection and Diagnosis of Oral Neoplasia with an Optical Coherence Microscope

    National Research Council Canada - National Science Library

    Clark, Anne

    2003-01-01

    .... The technique combines the sub-cellular resolution of high numerical aperture (NA) confocal microscopy with the increased sensitivity and penetration depth of optical coherence tomography (OCT...

  9. Contribution of optical coherence tomography imaging in management of iatrogenic coronary dissection

    Energy Technology Data Exchange (ETDEWEB)

    Barber-Chamoux, Nicolas, E-mail: nbarber-chamoux@chu-clermontferrand.fr [Department of Cardiology, Gabriel Montpied University Hospital, Clermont-Ferrand (France); Souteyrand, Géraud; Combaret, Nicolas [Department of Cardiology, Gabriel Montpied University Hospital, Clermont-Ferrand (France); ISIT, CaVITI, CNRS (UMR-6284), Auvergne University, Clermont-Ferrand (France); Ouedraogo, Edgar; Lusson, Jean René [Department of Cardiology, Gabriel Montpied University Hospital, Clermont-Ferrand (France); Motreff, Pascal [Department of Cardiology, Gabriel Montpied University Hospital, Clermont-Ferrand (France); ISIT, CaVITI, CNRS (UMR-6284), Auvergne University, Clermont-Ferrand (France)

    2016-03-15

    Iatrogenic coronary dissection is a rare but potentially serious complication of coronary angiography and angioplasty. Treatment with angioplasty guided only by angiography is often difficult. Optical coherence tomography imaging seems to be an interesting technique to lead the management of iatrogenic coronary dissection. Diagnosis can be made by optical coherence tomography; it can also eliminate differential diagnosis. Furthermore, this technique can guide safely the endovascular treatment. - Highlights: • Iatrogenic coronary dissection remains a challenging problem in angiography. • Endocoronary imaging is helpful for the diagnosis of iatrogenic coronary dissection. • OCT is a safe option to manage the endovascular treatment of coronary dissection.

  10. Diffusion tensor optical coherence tomography

    Science.gov (United States)

    Marks, Daniel L.; Blackmon, Richard L.; Oldenburg, Amy L.

    2018-01-01

    In situ measurements of diffusive particle transport provide insight into tissue architecture, drug delivery, and cellular function. Analogous to diffusion-tensor magnetic resonance imaging (DT-MRI), where the anisotropic diffusion of water molecules is mapped on the millimeter scale to elucidate the fibrous structure of tissue, here we propose diffusion-tensor optical coherence tomography (DT-OCT) for measuring directional diffusivity and flow of optically scattering particles within tissue. Because DT-OCT is sensitive to the sub-resolution motion of Brownian particles as they are constrained by tissue macromolecules, it has the potential to quantify nanoporous anisotropic tissue structure at micrometer resolution as relevant to extracellular matrices, neurons, and capillaries. Here we derive the principles of DT-OCT, relating the detected optical signal from a minimum of six probe beams with the six unique diffusion tensor and three flow vector components. The optimal geometry of the probe beams is determined given a finite numerical aperture, and a high-speed hardware implementation is proposed. Finally, Monte Carlo simulations are employed to assess the ability of the proposed DT-OCT system to quantify anisotropic diffusion of nanoparticles in a collagen matrix, an extracellular constituent that is known to become highly aligned during tumor development.

  11. Early detection of tooth wear by en-face optical coherence tomography

    Science.gov (United States)

    Mărcăuteanu, Corina; Negrutiu, Meda; Sinescu, Cosmin; Demjan, Eniko; Hughes, Mike; Bradu, Adrian; Dobre, George; Podoleanu, Adrian G.

    2009-02-01

    Excessive dental wear (pathological attrition and/or abfractions) is a frequent complication in bruxing patients. The parafunction causes heavy occlusal loads. The aim of this study is the early detection and monitoring of occlusal overload in bruxing patients. En-face optical coherence tomography was used for investigating and imaging of several extracted tooth, with a normal morphology, derived from patients with active bruxism and from subjects without parafunction. We found a characteristic pattern of enamel cracks in patients with first degree bruxism and with a normal tooth morphology. We conclude that the en-face optical coherence tomography is a promising non-invasive alternative technique for the early detection of occlusal overload, before it becomes clinically evident as tooth wear.

  12. Resonant acoustic radiation force optical coherence elastography

    OpenAIRE

    Qi, Wenjuan; Li, Rui; Ma, Teng; Li, Jiawen; Kirk Shung, K.; Zhou, Qifa; Chen, Zhongping

    2013-01-01

    We report on a resonant acoustic radiation force optical coherence elastography (ARF-OCE) technique that uses mechanical resonant frequency to characterize and identify tissues of different types. The linear dependency of the resonant frequency on the square root of Young's modulus was validated on silicone phantoms. Both the frequency response spectrum and the 3D imaging results from the agar phantoms with hard inclusions confirmed the feasibility of deploying the resonant frequency as a mec...

  13. Circumferential optical coherence tomography angiography imaging of the swine esophagus using a micromotor balloon catheter.

    Science.gov (United States)

    Lee, Hsiang-Chieh; Ahsen, Osman Oguz; Liang, Kaicheng; Wang, Zhao; Cleveland, Cody; Booth, Lucas; Potsaid, Benjamin; Jayaraman, Vijaysekhar; Cable, Alex E; Mashimo, Hiroshi; Langer, Robert; Traverso, Giovanni; Fujimoto, James G

    2016-08-01

    We demonstrate a micromotor balloon imaging catheter for ultrahigh speed endoscopic optical coherence tomography (OCT) which provides wide area, circumferential structural and angiographic imaging of the esophagus without contrast agents. Using a 1310 nm MEMS tunable wavelength swept VCSEL light source, the system has a 1.2 MHz A-scan rate and ~8.5 µm axial resolution in tissue. The micromotor balloon catheter enables circumferential imaging of the esophagus at 240 frames per second (fps) with a ~30 µm (FWHM) spot size. Volumetric imaging is achieved by proximal pullback of the micromotor assembly within the balloon at 1.5 mm/sec. Volumetric data consisting of 4200 circumferential images of 5,000 A-scans each over a 2.6 cm length, covering a ~13 cm(2) area is acquired in <18 seconds. A non-rigid image registration algorithm is used to suppress motion artifacts from non-uniform rotational distortion (NURD), cardiac motion or respiration. En face OCT images at various depths can be generated. OCT angiography (OCTA) is computed using intensity decorrelation between sequential pairs of circumferential scans and enables three-dimensional visualization of vasculature. Wide area volumetric OCT and OCTA imaging of the swine esophagus in vivo is demonstrated.

  14. Coherence enhanced quantum metrology in a nonequilibrium optical molecule

    Science.gov (United States)

    Wang, Zhihai; Wu, Wei; Cui, Guodong; Wang, Jin

    2018-03-01

    We explore the quantum metrology in an optical molecular system coupled to two environments with different temperatures, using a quantum master equation beyond secular approximation. We discover that the steady-state coherence originating from and sustained by the nonequilibrium condition can enhance quantum metrology. We also study the quantitative measures of the nonequilibrium condition in terms of the curl flux, heat current and entropy production at the steady state. They are found to grow with temperature difference. However, an apparent paradox arises considering the contrary behaviors of the steady-state coherence and the nonequilibrium measures in relation to the inter-cavity coupling strength. This paradox is resolved by decomposing the heat current into a population part and a coherence part. Only the latter, the coherence part of the heat current, is tightly connected to the steady-state coherence and behaves similarly with respect to the inter-cavity coupling strength. Interestingly, the coherence part of the heat current flows from the low-temperature reservoir to the high-temperature reservoir, opposite to the direction of the population heat current. Our work offers a viable way to enhance quantum metrology for open quantum systems through steady-state coherence sustained by the nonequilibrium condition, which can be controlled and manipulated to maximize its utility. The potential applications go beyond quantum metrology and extend to areas such as device designing, quantum computation and quantum technology in general.

  15. The fundus photo has met its match: optical coherence tomography and adaptive optics ophthalmoscopy are here to stay.

    Science.gov (United States)

    Morgan, Jessica I W

    2016-05-01

    Over the past 25 years, optical coherence tomography (OCT) and adaptive optics (AO) ophthalmoscopy have revolutionised our ability to non-invasively observe the living retina. The purpose of this review is to highlight the techniques and human clinical applications of recent advances in OCT and adaptive optics scanning laser/light ophthalmoscopy (AOSLO) ophthalmic imaging. Optical coherence tomography retinal and optic nerve head (ONH) imaging technology allows high resolution in the axial direction resulting in cross-sectional visualisation of retinal and ONH lamination. Complementary AO ophthalmoscopy gives high resolution in the transverse direction resulting in en face visualisation of retinal cell mosaics. Innovative detection schemes applied to OCT and AOSLO technologies (such as spectral domain OCT, OCT angiography, confocal and non-confocal AOSLO, fluorescence, and AO-OCT) have enabled high contrast between retinal and ONH structures in three dimensions and have allowed in vivo retinal imaging to approach that of histological quality. In addition, both OCT and AOSLO have shown the capability to detect retinal reflectance changes in response to visual stimuli, paving the way for future studies to investigate objective biomarkers of visual function at the cellular level. Increasingly, these imaging techniques are being applied to clinical studies of the normal and diseased visual system. Optical coherence tomography and AOSLO technologies are capable of elucidating the structure and function of the retina and ONH noninvasively with unprecedented resolution and contrast. The techniques have proven their worth in both basic science and clinical applications and each will continue to be utilised in future studies for many years to come. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.

  16. Generating single-photon catalyzed coherent states with quantum-optical catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xue-xiang, E-mail: xuxuexiang@jxnu.edu.cn [Center for Quantum Science and Technology, Jiangxi Normal University, Nanchang 330022 (China); Yuan, Hong-chun [College of Electrical and Optoelectronic Engineering, Changzhou Institute of Technology, Changzhou 213002 (China)

    2016-07-15

    We theoretically generate single-photon catalyzed coherent states (SPCCSs) by means of quantum-optical catalysis based on the beam splitter (BS) or the parametric amplifier (PA). These states are obtained in one of the BS (or PA) output channels if a coherent state and a single-photon Fock state are present in two input ports and a single photon is registered in the other output port. The success probabilities of the detection (also the normalization factors) are discussed, which is different for BS and PA catalysis. In addition, we prove that the generated states catalyzed by BS and PA devices are actually the same quantum states after analyzing photon number distribution of the SPCCSs. The quantum properties of the SPCCSs, such as sub-Poissonian distribution, anti-bunching effect, quadrature squeezing effect, and the negativity of the Wigner function are investigated in detail. The results show that the SPCCSs are non-Gaussian states with an abundance of nonclassicality. - Highlights: • We generate single-photon catalyzed coherent states with quantum-optical catalysis. • We prove the equivalent effects of the lossless beam splitter and the non-degenerate parametric amplifier. • Some nonclassical properties of the generated states are investigated in detail.

  17. Precision spectral manipulation: A demonstration using a coherent optical memory

    Energy Technology Data Exchange (ETDEWEB)

    Sparkes, B. M.; Cairns, C.; Hosseini, M.; Higginbottom, D.; Campbell, G. T.; Lam, P. K.; Buchler, B. C. [Centre for Quantum Computation and Communication Technology, The Australian National University, Canberra (Australia)

    2014-12-04

    The ability to coherently spectrally manipulate quantum information has the potential to improve qubit rates across quantum channels and find applications in optical quantum computing. Here we present experiments that use a multi-element solenoid combined with the three-level gradient echo memory scheme to perform precision spectral manipulation of optical pulses. If applied in a quantum information network, these operations would enable frequency-based multiplexing of qubits.

  18. Advanced X-ray Optics Metrology for Nanofocusing and Coherence Preservation

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A.; Yashchuk, Valeriy

    2007-12-01

    What is the point of developing new high-brightness light sources if beamline optics won't be available to realize the goals of nano-focusing and coherence preservation? That was one of the central questions raised during a workshop at the 2007 Advanced Light Source Users Meeting. Titled, 'Advanced X-Ray Optics Metrology for Nano-focusing and Coherence Preservation', the workshop was organized by Kenneth Goldberg and Valeriy Yashchuk (both of Lawrence Berkeley National Laboratory, LBNL), and it brought together industry representatives and researchers from Japan, Europe, and the US to discuss the state of the art and to outline the optics requirements of new light sources. Many of the presentations are viewable on the workshop website http://goldberg.lbl.gov/MetrologyWorkshop07/. Many speakers shared the same view of one of the most significant challenges facing the development of new high-brightness third and fourth generation x-ray, soft x-ray, and EUV light sources: these sources place extremely high demands on the surface quality of beamline optics. In many cases, the 1-2-nm surface error specs that define the outer bounds of 'diffraction-limited' quality are beyond the reach of leading facilities and optics vendors. To focus light to 50-nm focal spots, or smaller, from reflective optics and to preserve the high coherent flux that new sources make possible, the optical surface quality and alignment tolerances must be measured in nano-meters and nano-radians. Without a significant, well-supported research effort, including the development of new metrology techniques for use both on and off the beamline, these goals will likely not be met. The scant attention this issue has garnered is evident in the stretched budgets and limited manpower currently dedicated to metrology. With many of the world's leading groups represented at the workshop, it became clear that Japan and Europe are several steps ahead of the US in this critical area

  19. Advanced integrated spectrometer designs for miniaturized optical coherence tomography systems

    NARCIS (Netherlands)

    Akça, B.I.; Povazay, B.; Chang, Lantian; Alex, A.; Worhoff, Kerstin; de Ridder, R.M.; Drexler, W.; Pollnau, Markus

    Optical coherence tomography (OCT) has enabled clinical applications that revolutionized in vivo medical diagnostics. Nevertheless, its current limitations owing to cost, size, complexity, and the need for accurate alignment must be overcome by radically novel approaches. Exploiting integrated

  20. Experimental demonstration of spatially coherent beam combining using optical parametric amplification.

    Science.gov (United States)

    Kurita, Takashi; Sueda, Keiichi; Tsubakimoto, Koji; Miyanaga, Noriaki

    2010-07-05

    We experimentally demonstrated coherent beam combining using optical parametric amplification with a nonlinear crystal pumped by random-phased multiple-beam array of the second harmonic of a Nd:YAG laser at 10-Hz repetition rate. In the proof-of-principle experiment, the phase jump between two pump beams was precisely controlled by a motorized actuator. For the demonstration of multiple-beam combining a random phase plate was used to create random-phased beamlets as a pump pulse. Far-field patterns of the pump, the signal, and the idler indicated that the spatially coherent signal beams were obtained on both cases. This approach allows scaling of the intensity of optical parametric chirped pulse amplification up to the exa-watt level while maintaining diffraction-limited beam quality.

  1. Optical coherence tomography in otolaryngology: original results and review of the literature

    Science.gov (United States)

    Bibas, Athanasios G.; Podoleanu, Adrian Gh.; Cucu, Radu G.; Dobre, George M.; Odell, Edward; Boxer, Aaron B.; O'Connors, Alec F.; Gleeson, Michael J.

    2004-07-01

    Optical coherence tomography is a diagnostic imaging technique allowing two dimensional tomographic imaging of tissue architecture. This is a review article on the use of optical coherence tomography in Otolaryngology including original images from human laryngeal tissue and temporal bones (cochlea) in our laboratory. Tissue specimens from normal larynges were imaged with an 850 nm OCT system. Our results showed good correlation between OCT image s and the corresponding haematoxylin-eosin stained histology sections in the normal larynx. Human temporal bones were also imaged using an 1300 nm OCT system. Limited morphological details were obtained due to the high scattering properties of the bony labyrinth.

  2. Optical coherent control in semiconductors: Fringe contrast and inhomogeneous broadening

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Vadim, Lyssenko; Hvam, Jørn Märcher

    2001-01-01

    in the interplay between the homogeneous and inhomogeneous broadenings are measured. Based on these experiments, a coherent control model describing the optical fringe contrast using different detection schemes, such as photoluminescence or four-wave mixing, is established. Significant spectral modulation...

  3. Multiple Scattering Model for Optical Coherence Tomography with Rytov Approximation

    KAUST Repository

    Li, Muxingzi

    2017-01-01

    of speckles due to multiple scatterers within the coherence length, and other random noise. Motivated by the above two challenges, a multiple scattering model based on Rytov approximation and Gaussian beam optics is proposed for the OCT setup. Some previous

  4. Dynamic light scattering optical coherence tomography.

    Science.gov (United States)

    Lee, Jonghwan; Wu, Weicheng; Jiang, James Y; Zhu, Bo; Boas, David A

    2012-09-24

    We introduce an integration of dynamic light scattering (DLS) and optical coherence tomography (OCT) for high-resolution 3D imaging of heterogeneous diffusion and flow. DLS analyzes fluctuations in light scattered by particles to measure diffusion or flow of the particles, and OCT uses coherence gating to collect light only scattered from a small volume for high-resolution structural imaging. Therefore, the integration of DLS and OCT enables high-resolution 3D imaging of diffusion and flow. We derived a theory under the assumption that static and moving particles are mixed within the OCT resolution volume and the moving particles can exhibit either diffusive or translational motion. Based on this theory, we developed a fitting algorithm to estimate dynamic parameters including the axial and transverse velocities and the diffusion coefficient. We validated DLS-OCT measurements of diffusion and flow through numerical simulations and phantom experiments. As an example application, we performed DLS-OCT imaging of the living animal brain, resulting in 3D maps of the absolute and axial velocities, the diffusion coefficient, and the coefficient of determination.

  5. On coherent optical evaluation of autoradiographs

    International Nuclear Information System (INIS)

    Birkholz, W.; Freyer, K.

    1978-01-01

    The autoradiography imaging process can be described through the imaging equation s(y 1 ,y 2 ) = ∫ a(x 1 ,y 2 )h(y 1 ,y 2 ,x 1 ,x 2 )dx 1 dx 2 where s(y 1 ,y 2 ) in the density distribution of the autoradiograph, a(x 1 ,x 2 ) is the activity distribution over a plane sample and h(y 1 ,y 2 ,x 1 ,x 2 ) transfer fuction of the system. Light transfer through a lens system may be characterized in an analogous way. By application of the Fourier transformation to the imaging equation, the autoradiographic imaging process becomes a filter process with the function H (= Fourier transformer of h). If autoradiographs are imaged through a lens system by means of coherent light the Fourier transform of the autoradiograph is formed in the Fourier plane. Through suitable arrangement of filters in the Fourier plane, systematic imaging errors can be corrected or the autoradiographic imaging be changed. The possibilities of coherent-optical filtration in the evaluation of autoradiographs are considered. (author)

  6. Spectral domain optical coherence tomography morphology in optic disc pit associated maculopathy

    Directory of Open Access Journals (Sweden)

    Janusz Michalewski

    2014-01-01

    Full Text Available Purpose: Our purpose was to study the clinical manifestation and course of optic pit maculopathy using Spectral Domain Optical Coherence Tomography (SD- OCT images. Materials and Methods: We used SD-OCT to examine 20 eyes of 19 patients with a macular detachment in combination with an optic. Results: We observed five different fovea appearances in regard to fluid localization. In five eyes, we recorded changes in the fluid distribution with SD-OCT. In 17/20 eyes, we noted a communication between the perineural and subretinal and/or intraretinal space at the margin of the optic disc. Conclusion: 3-dimensional SD-OCT (3D-SDOCT scans revealed a three-fold connection, between subretinal and intraretinal space, perineural space, and the vitreous cavity. Therefore, we suppose that intraretinal or subretinal fluid in optic pit maculopathy may have both a vitreous and cerebrospinal origin. A membrane, covering the optic nerve was noted in 14 cases. Even if it seems intact in some B-scans, it is not complete in others several micrometers apart. Additionally, we observed fluid accumulation below the margin of the optic disc and hyperreflective porous tissue in the optic disc excavation. Those findings do not influence the course of maculopathy.

  7. Corneal thickness and elevation measurements using swept-source optical coherence tomography and slit scanning topography in normal and keratoconic eyes.

    Science.gov (United States)

    Jhanji, Vishal; Yang, Bingzhi; Yu, Marco; Ye, Cong; Leung, Christopher K S

    2013-11-01

    To compare corneal thickness and corneal elevation using swept source optical coherence tomography and slit scanning topography. Prospective study. 41 normal and 46 keratoconus subjects. All eyes were imaged using swept source optical coherence tomography and slit scanning tomography during the same visit. Mean corneal thickness and best-fit sphere measurements were compared between the instruments. Agreement of measurements between swept source optical coherence tomography and scanning slit topography was analyzed. Intra-rater reproducibility coefficient and intraclass correlation coefficient were evaluated. In normal eyes, central corneal thickness measured by swept source optical coherence tomography was thinner compared with slit scanning topography (p topography. In keratoconus eyes, central corneal thickness was thinner on swept source optical coherence tomography than slit scanning topography (p = 0.081) and ultrasound pachymetry (p = 0.001). There were significant differences between thinnest corneal thickness, and, anterior and posterior best-fit sphere measurements between both instruments (p topography. With better reproducibility coefficients and intraclass correlation coefficients, swept source optical coherence tomography may provide a reliable alternative for measurement of corneal parameters. © 2013 The Authors. Clinical and Experimental Ophthalmology © 2013 Royal Australian and New Zealand College of Ophthalmologists.

  8. Quantum theory of optical coherence selected papers and lectures

    CERN Document Server

    Glauber, Roy J

    2007-01-01

    A summary of the pioneering work of Glauber in the field of optical coherence phenomena and photon statistics, this book describes the fundamental ideas of modern quantum optics and photonics in a tutorial style. It is thus not only intended as a reference for researchers in the field, but also to give graduate students an insight into the basic theories of the field. Written by the Nobel Laureate himself, the concepts described in this book have formed the basis for three further Nobel Prizes in Physics within the last decade

  9. Three-dimensional multifunctional optical coherence tomography for skin imaging

    Science.gov (United States)

    Li, En; Makita, Shuichi; Hong, Young-Joo; Kasaragod, Deepa; Sasaoka, Tomoko; Yamanari, Masahiro; Sugiyama, Satoshi; Yasuno, Yoshiaki

    2016-02-01

    Optical coherence tomography (OCT) visualizes cross-sectional microstructures of biological tissues. Recent developments of multifunctional OCT (MF-OCT) provides multiple optical contrasts which can reveal currently unknown tissue properties. In this contribution we demonstrate multifunctional OCT specially designed for dermatological investigation. And by utilizing it to measure four different body parts of in vivo human skin, three-dimensional scattering OCT, OCT angiography, polarization uniformity tomography, and local birefringence tomography images were obtained by a single scan. They respectively contrast the structure and morphology, vasculature, melanin content and collagen traits of the tissue.

  10. The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography

    International Nuclear Information System (INIS)

    Ugryumova, Nadya; Attenburrow, Don P; Winlove, C Peter; Matcher, Stephen J

    2005-01-01

    Optical coherence tomography and polarization-sensitive optical coherence tomography images of equine articular cartilage are presented. Measurements were made on intact joint surfaces. Significant (e.g. x 2) variations in the intrinsic birefringence were found over spatial scales of a few millimetres, even on samples taken from young (18 month) animals that appeared visually homogeneous. A comparison of data obtained on a control tissue (equine flexor tendon) further suggests that significant variations in the orientation of the collagen fibres relative to the plane of the joint surface exist. Images of visually damaged cartilage tissue show characteristic features both in terms of the distribution of optical scatterers and of the birefringent components

  11. The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ugryumova, Nadya; Attenburrow, Don P; Winlove, C Peter; Matcher, Stephen J [Biomedical Physics Group, School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2005-08-07

    Optical coherence tomography and polarization-sensitive optical coherence tomography images of equine articular cartilage are presented. Measurements were made on intact joint surfaces. Significant (e.g. x 2) variations in the intrinsic birefringence were found over spatial scales of a few millimetres, even on samples taken from young (18 month) animals that appeared visually homogeneous. A comparison of data obtained on a control tissue (equine flexor tendon) further suggests that significant variations in the orientation of the collagen fibres relative to the plane of the joint surface exist. Images of visually damaged cartilage tissue show characteristic features both in terms of the distribution of optical scatterers and of the birefringent components.

  12. FABRICATION OF TISSUE-SIMULATIVE PHANTOMS AND CAPILLARIES AND THEIR INVESTIGATION BY OPTICAL COHERENCE TOMOGRAPHY TECHNIQUES

    Directory of Open Access Journals (Sweden)

    A. V. Bykov

    2013-03-01

    Full Text Available Methods of tissue-simulative phantoms and capillaries fabrication from PVC-plastisol and silicone for application as test-objects in optical coherence tomography (OCT and skin and capillary emulation are considered. Comparison characteristics of these materials and recommendations for their application are given. Examples of phantoms visualization by optical coherence tomography method are given. Possibility of information using from B-scans for refractive index evaluation is shown.

  13. Fundamental characteristics of a synthesized light source for optical coherence tomography.

    Science.gov (United States)

    Sato, Manabu; Wakaki, Ichiro; Watanabe, Yuuki; Tanno, Naohiro

    2005-05-01

    We describe the fundamental characteristics of a synthesized light source (SLS) consisting of two low-coherence light sources to enhance the spatial resolution for optical coherence tomography (OCT). The axial resolution of OCT is given by half the coherence length of the light source. We fabricated a SLS with a coherence length of 2.3 microm and a side-lobe intensity of 45% with an intensity ratio of LED1:LED2 = 1:0.5 by combining two light sources, LED1, with a central wavelength of 691 nm and a spectral bandwidth of 99 nm, and LED2, with a central wavelength of 882 nm and a spectral bandwidth of 76 nm. The coherence length of 2.3 microm was 56% of the shorter coherence length in the two LEDs, which indicates that the axial resolution is 1.2 microm. The lateral resolution was measured at less than 4.4 microm by use of the phase-shift method and with a test pattern as a sample. The measured rough surfaces of a coin are illustrated and discussed.

  14. Measurement of Sub-Picosecond Electron Bunches via Electro-Optic Sampling of Coherent Transition Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Timothy John [Northern Illinois U.

    2012-01-01

    Future collider applications as well as present high-gradient laser plasma wakefield accelerators and free-electron lasers operating with picosecond bunch durations place a higher demand on the time resolution of bunch distribution diagnostics. This demand has led to significant advancements in the field of electro-optic sampling over the past ten years. These methods allow the probing of diagnostic light such as coherent transition radiation or the bunch wakefields with sub-picosecond time resolution. We present results on the single-shot electro-optic spectral decoding of coherent transition radiation from bunches generated at the Fermilab A0 photoinjector laboratory. A longitudinal double-pulse modulation of the electron beam is also realized by transverse beam masking followed by a transverse-to-longitudinal phase-space exchange beamline. Live profile tuning is demonstrated by upstream beam focusing in conjunction with downstream monitoring of single-shot electro-optic spectral decoding of the coherent transition radiation.

  15. High-speed optical coherence tomography signal processing on GPU

    International Nuclear Information System (INIS)

    Li Xiqi; Shi Guohua; Zhang Yudong

    2011-01-01

    The signal processing speed of spectral domain optical coherence tomography (SD-OCT) has become a bottleneck in many medical applications. Recently, a time-domain interpolation method was proposed. This method not only gets a better signal-to noise ratio (SNR) but also gets a faster signal processing time for the SD-OCT than the widely used zero-padding interpolation method. Furthermore, the re-sampled data is obtained by convoluting the acquired data and the coefficients in time domain. Thus, a lot of interpolations can be performed concurrently. So, this interpolation method is suitable for parallel computing. An ultra-high optical coherence tomography signal processing can be realized by using graphics processing unit (GPU) with computer unified device architecture (CUDA). This paper will introduce the signal processing steps of SD-OCT on GPU. An experiment is performed to acquire a frame SD-OCT data (400A-linesx2048 pixel per A-line) and real-time processed the data on GPU. The results show that it can be finished in 6.208 milliseconds, which is 37 times faster than that on Central Processing Unit (CPU).

  16. Optical coherence tomography: technology and applications (biological and medical physics, biomedical engineering)

    CERN Document Server

    2013-01-01

    Optical coherence tomography (OCT) is the optical analog of ultrasound imaging and is emerging as a powerful imaging technique that enables non-invasive, in vivo, high resolution, cross-sectional imaging in biological tissue. This book introduces OCT technology and applications not only from an optical and technological viewpoint, but also from biomedical and clinical perspectives. The chapters are written by leading research groups, in a style comprehensible to a broad audience.

  17. Phase-conjugate optical coherence tomography

    International Nuclear Information System (INIS)

    Erkmen, Baris I.; Shapiro, Jeffrey H.

    2006-01-01

    Quantum optical coherence tomography (Q-OCT) offers a factor-of-2 improvement in axial resolution and the advantage of even-order dispersion cancellation when it is compared to conventional OCT (C-OCT). These features have been ascribed to the nonclassical nature of the biphoton state employed in the former, as opposed to the classical state used in the latter. Phase-conjugate OCT (PC-OCT) shows that nonclassical light is not necessary to reap Q-OCT's advantages. PC-OCT uses classical-state signal and reference beams, which have a phase-sensitive cross correlation, together with phase conjugation to achieve the axial resolution and even-order dispersion cancellation of Q-OCT with a signal-to-noise ratio that can be comparable to that of C-OCT

  18. Nanoparticles displacement analysis using optical coherence tomography

    Science.gov (United States)

    StrÄ kowski, Marcin R.; Kraszewski, Maciej; StrÄ kowska, Paulina

    2016-03-01

    Optical coherence tomography (OCT) is a versatile optical method for cross-sectional and 3D imaging of biological and non-biological objects. Here we are going to present the application of polarization sensitive spectroscopic OCT system (PS-SOCT) for quantitative measurements of materials containing nanoparticles. The PS-SOCT combines the polarization sensitive analysis with time-frequency analysis. In this contribution the benefits of using the combination of timefrequency and polarization sensitive analysis are being expressed. The usefulness of PS-SOCT for nanoparticles evaluation is going to be tested on nanocomposite materials with TiO2 nanoparticles. The OCT measurements results have been compared with SEM examination of the PMMA matrix with nanoparticles. The experiment has proven that by the use of polarization sensitive and spectroscopic OCT the nanoparticles dispersion and size can be evaluated.

  19. Clinical experiences with optical coherence tomography in epithelial (pre)malignancies

    NARCIS (Netherlands)

    Wessels, R.

    2015-01-01

    This thesis describes the potential of optical coherence tomography (OCT) to differentiate between normal tissue and (pre)malignant tissue in epithelial cancers. It can be divided in research performed in the genital area and the field of melanoma. Chapter 2 describes the principles of the

  20. Optical bistability induced by quantum coherence in a negative index atomic medium

    International Nuclear Information System (INIS)

    Zhang Hong-Jun; Sun Hui; Li Jin-Ping; Yin Bao-Yin; Guo Hong-Ju

    2013-01-01

    Bistability behaviors in an optical ring cavity filled with a dense V-type four-level atomic medium are theoretically investigated. It is found that the optical bistability can appear in the negative refraction frequency band, while both the bistability and multi-stability can occur in the positive refraction frequency bands. Therefore, optical bistability can be realized from conventional material to negative index material due to quantum coherence in our scheme. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  1. Clinical manifestations of optic pit maculopathy as demonstrated by spectral domain optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Tzu JH

    2013-01-01

    Full Text Available Jonathan H Tzu, Harry W Flynn Jr, Audina M Berrocal, William E Smiddy, Timothy G Murray, Yale L FisherDepartment of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USAPurpose: The purpose of this retrospective study was to evaluate the characteristic features, including spectral-domain optical coherence tomography (SD-OCT, clinical course, and outcome of treatment if given for patients with optic disc pit maculopathy.Methods: We investigated a consecutive series of patients with a diagnosis of optic pit maculopathy treated between 2001 and 2012 at the Bascom Palmer Eye Institute. Patients were divided into two main groups, ie, patients who were observed without surgery and patients who received surgical intervention. The main outcome measures were presenting and final visual acuity, and changes in SD-OCT imaging were recorded. Other data including age, gender, eye, age of onset, length of follow-up, location of optic pit, and location of fluid by OCT were also recorded.Results: On OCT, 67% (12/18 of the eyes showed schisis-like cavities, 22% (4/18 had only subretinal fluid, and 17% (3/18 had only a schisis-like cavity without subretinal fluid. In the patients managed by observation, visual acuity was ≥20/200 in 6/8 eyes initially and 6/8 eyes at last follow-up. Ten of 18 patients received either focal laser, surgery or both. Six of 10 eyes undergoing surgery had initial visual acuity ≥ 20/200, and 8 of 10 eyes undergoing surgery had a visual acuity of ≥20/200 at last follow-up.Conclusion: In this study, many eyes were observed and remained stable during follow-up. In eyes with reduced vision, surgical intervention produced variable outcomes, and persistent intraretinal/subretinal fluid was a common occurrence.Keywords: optic pit maculopathy, spectral-domain optical coherence tomography

  2. Continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics

    International Nuclear Information System (INIS)

    Chen, Haixia; Zhang, Jing

    2007-01-01

    We propose a scheme for continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics. The quantum cloning machine yields M identical optimal clones from N replicas of a coherent state and N replicas of its phase conjugate. This scheme can be straightforwardly implemented with the setups accessible at present since its optical implementation only employs simple linear optical elements and homodyne detection. Compared with the original scheme for continuous-variable quantum cloning with phase-conjugate input modes proposed by Cerf and Iblisdir [Phys. Rev. Lett. 87, 247903 (2001)], which utilized a nondegenerate optical parametric amplifier, our scheme loses the output of phase-conjugate clones and is regarded as irreversible quantum cloning

  3. Testing of Piezo-Actuated Glass Micro-Membranes by Optical Low-Coherence Reflectometry.

    Science.gov (United States)

    Merlo, Sabina; Poma, Paolo; Crisà, Eleonora; Faralli, Dino; Soldo, Marco

    2017-02-25

    In this work, we have applied optical low-coherence reflectometry (OLCR), implemented with infra-red light propagating in fiberoptic paths, to perform static and dynamic analyses on piezo-actuated glass micro-membranes. The actuator was fabricated by means of thin-film piezoelectric MEMS technology and was employed for modifying the micro-membrane curvature, in view of its application in micro-optic devices, such as variable focus micro-lenses. We are here showing that OLCR incorporating a near-infrared superluminescent light emitting diode as the read-out source is suitable for measuring various parameters such as the micro-membrane optical path-length, the membrane displacement as a function of the applied voltage (yielding the piezo-actuator hysteresis) as well as the resonance curve of the fundamental vibration mode. The use of an optical source with short coherence-time allows performing interferometric measurements without spurious resonance effects due to multiple parallel interfaces of highly planar slabs, furthermore selecting the plane/layer to be monitored. We demonstrate that the same compact and flexible setup can be successfully employed to perform spot optical measurements for static and dynamic characterization of piezo-MEMS in real time.

  4. Dynamical model of coherent circularly polarized optical pulse interactions with two-level quantum systems

    International Nuclear Information System (INIS)

    Slavcheva, G.; Hess, O.

    2005-01-01

    We propose and develop a method for theoretical description of circularly (elliptically) polarized optical pulse resonant coherent interactions with two-level atoms. The method is based on the time-evolution equations of a two-level quantum system in the presence of a time-dependent dipole perturbation for electric dipole transitions between states with total angular-momentum projection difference (ΔJ z =±1) excited by a circularly polarized electromagnetic field [Feynman et al., J. Appl. Phys. 28, 49 (1957)]. The adopted real-vector representation approach allows for coupling with the vectorial Maxwell's equations for the optical wave propagation and thus the resulting Maxwell pseudospin equations can be numerically solved in the time domain without any approximations. The model permits a more exact study of the ultrafast coherent pulse propagation effects taking into account the vector nature of the electromagnetic field and hence the polarization state of the optical excitation. We demonstrate self-induced transparency effects and formation of polarized solitons. The model represents a qualitative extension of the well-known optical Maxwell-Bloch equations valid for linearly polarized light and a tool for studying coherent quantum control mechanisms

  5. Capacity of optical communications over a lossy bosonic channel with a receiver employing the most general coherent electro-optic feedback control

    Science.gov (United States)

    Chung, Hye Won; Guha, Saikat; Zheng, Lizhong

    2017-07-01

    We study the problem of designing optical receivers to discriminate between multiple coherent states using coherent processing receivers—i.e., one that uses arbitrary coherent feedback control and quantum-noise-limited direct detection—which was shown by Dolinar to achieve the minimum error probability in discriminating any two coherent states. We first derive and reinterpret Dolinar's binary-hypothesis minimum-probability-of-error receiver as the one that optimizes the information efficiency at each time instant, based on recursive Bayesian updates within the receiver. Using this viewpoint, we propose a natural generalization of Dolinar's receiver design to discriminate M coherent states, each of which could now be a codeword, i.e., a sequence of N coherent states, each drawn from a modulation alphabet. We analyze the channel capacity of the pure-loss optical channel with a general coherent-processing receiver in the low-photon number regime and compare it with the capacity achievable with direct detection and the Holevo limit (achieving the latter would require a quantum joint-detection receiver). We show compelling evidence that despite the optimal performance of Dolinar's receiver for the binary coherent-state hypothesis test (either in error probability or mutual information), the asymptotic communication rate achievable by such a coherent-processing receiver is only as good as direct detection. This suggests that in the infinitely long codeword limit, all potential benefits of coherent processing at the receiver can be obtained by designing a good code and direct detection, with no feedback within the receiver.

  6. Generation of optical coherent state superpositions for quantum information processing

    DEFF Research Database (Denmark)

    Tipsmark, Anders

    2012-01-01

    I dette projektarbejde med titlen “Generation of optical coherent state superpositions for quantum information processing” har målet været at generere optiske kat-tilstande. Dette er en kvantemekanisk superpositions tilstand af to koherente tilstande med stor amplitude. Sådan en tilstand er...

  7. Training course on optical telecommunication and multimedia technologies for specialists in endoscopic video surgery

    Science.gov (United States)

    Agliullin, Arthur F.; Gusev, Valery F.; Morozov, Oleg G.; Samigullin, Rustem R.; Akul'shin, Alexander, Iv.; Bagapov, Nail N.

    2011-04-01

    The program of courses is recommended for the experts working in endoscopy area, surgery, diagnostics, to developers of optical, optoelectronic and electronic equipment, and also for students and the post-graduate students of telecommunication high schools in addition trained on specializations of biomedical engineering. It urged to help the future researcher, engineer and doctor to understand mechanisms of images formation and display, to understand more deeply procedures of their processing and transfer on telecommunication channels of the various natures, to master modern reports of record and video and audio information reproduction. The separate section is devoted to questions of designing of surgical toolkit compatible with fiber-optical endoscopes.

  8. Measurement of ciliary beat frequency using Doppler optical coherence tomography.

    Science.gov (United States)

    Lemieux, Bryan T; Chen, Jason J; Jing, Joseph; Chen, Zhongping; Wong, Brian J F

    2015-11-01

    Measuring ciliary beat frequency (CBF) is a technical challenge and difficult to perform in vivo. Doppler optical coherence tomography (D-OCT) is a mesoscopic noncontact imaging modality that provides high-resolution tomographic images and detects micromotion simultaneously in living tissues. In this work we used D-OCT to measure CBF in ex vivo tissue as the first step toward translating this technology to clinical use. Fresh ex vivo samples of rabbit tracheal mucosa were imaged using both D-OCT and phase-contrast microscopy (n = 5). The D-OCT system was designed and built to specification in our lab (1310-nm swept source vertical-cavity surface-emitting laser [VCSEL], 6-μm axial resolution). The samples were placed in culture and incubated at 37°C. A fast Fourier transform was performed on the D-OCT signal recorded on the surface of the samples to gauge CBF. High-speed digital video of the epithelium recorded via phase-contrast microscopy was analyzed to confirm the CBF measurements. The D-OCT system detected Doppler signal at the epithelial layer of ex vivo rabbit tracheal samples suggestive of ciliary motion. CBF was measured at 9.36 ± 1.22 Hz using D-OCT and 9.08 ± 0.48 Hz using phase-contrast microscopy. No significant differences were found between the 2 methods (p > 0.05). D-OCT allows for the quantitative measurement of CBF without the need to resolve individual cilia. Furthermore, D-OCT technology can be incorporated into endoscopic platforms that allow clinicians to readily measure CBF in the office and provide a direct measurement of mucosal health. © 2015 ARS-AAOA, LLC.

  9. Coherent transport of matter waves in disordered optical potentials

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Robert

    2007-07-01

    The development of modern techniques for the cooling and the manipulation of atoms in recent years, and the possibility to create Bose-Einstein condensates and degenerate Fermi gases and to load them into regular optical lattices or disordered optical potentials, has evoked new interest for the disorder-induced localization of ultra-cold atoms. This work studies the transport properties of matter waves in disordered optical potentials, which are also known as speckle potentials. The effect of correlated disorder on localization is first studied numerically in the framework of the Anderson model. The relevant transport parameters in the configuration average over many different realizations of the speckle potential are then determined analytically, using self-consistent diagrammatic perturbation techniques. This allows to make predictions for a possible experimental observation of coherent transport phenomena for cold atoms in speckle potentials. Of particular importance are the spatial correlations of the speckle fluctuations, which are responsible for the anisotropic character of the single scattering processes in the effective medium. Coherent multiple scattering leads to quantum interference effects, which entail a renormalization of the diffusion constant as compared to the classical description. This so-called weak localization of matter waves is studied as the underlying mechanism for the disorder-driven transition to the Anderson-localization regime, explicitly taking into account the correlations of the speckle fluctuations. (orig.)

  10. Coherent transport of matter waves in disordered optical potentials

    International Nuclear Information System (INIS)

    Kuhn, Robert

    2007-01-01

    The development of modern techniques for the cooling and the manipulation of atoms in recent years, and the possibility to create Bose-Einstein condensates and degenerate Fermi gases and to load them into regular optical lattices or disordered optical potentials, has evoked new interest for the disorder-induced localization of ultra-cold atoms. This work studies the transport properties of matter waves in disordered optical potentials, which are also known as speckle potentials. The effect of correlated disorder on localization is first studied numerically in the framework of the Anderson model. The relevant transport parameters in the configuration average over many different realizations of the speckle potential are then determined analytically, using self-consistent diagrammatic perturbation techniques. This allows to make predictions for a possible experimental observation of coherent transport phenomena for cold atoms in speckle potentials. Of particular importance are the spatial correlations of the speckle fluctuations, which are responsible for the anisotropic character of the single scattering processes in the effective medium. Coherent multiple scattering leads to quantum interference effects, which entail a renormalization of the diffusion constant as compared to the classical description. This so-called weak localization of matter waves is studied as the underlying mechanism for the disorder-driven transition to the Anderson-localization regime, explicitly taking into account the correlations of the speckle fluctuations. (orig.)

  11. Towards deterministic optical quantum computation with coherently driven atomic ensembles

    International Nuclear Information System (INIS)

    Petrosyan, David

    2005-01-01

    Scalable and efficient quantum computation with photonic qubits requires (i) deterministic sources of single photons, (ii) giant nonlinearities capable of entangling pairs of photons, and (iii) reliable single-photon detectors. In addition, an optical quantum computer would need a robust reversible photon storage device. Here we discuss several related techniques, based on the coherent manipulation of atomic ensembles in the regime of electromagnetically induced transparency, that are capable of implementing all of the above prerequisites for deterministic optical quantum computation with single photons

  12. Numerical modeling of optical coherent transient processes with complex configurations-III: Noisy laser source

    International Nuclear Information System (INIS)

    Chang Tiejun; Tian Mingzhen

    2007-01-01

    A previously developed numerical model based on Maxwell-Bloch equations was modified to simulate optical coherent transient and spectral hole burning processes with noisy laser sources. Random walk phase noise was simulated using laser-phase sequences generated numerically according to the normal distribution of the phase shift. The noise model was tested by comparing the simulated spectral hole burning effect with the analytical solution. The noise effects on a few typical optical coherence transient processes were investigated using this numerical tool. Flicker and random walk frequency noises were considered in accumulation process

  13. Histologic correlation of in vivo optical coherence tomography images of the human retina

    NARCIS (Netherlands)

    Chen, T.; Cense, B.; Miller, J.S.; Rubin, P. A. D.; Deschler, D. G.; Gragoudas, E. S.; de Boer, J.F.

    2006-01-01

    Purpose: To correlate in vivo human retina optical coherence tomography (OCT)3 images with histology. Design: Case series. Methods: Linear OCT3 scans through the macula and optic nerve were obtained in three eyes of three patients who then underwent exenteration surgery for orbital cancers. OCT3

  14. Handbook of Coherent-Domain Optical Methods Biomedical Diagnostics, Environmental Monitoring, and Materials Science

    CERN Document Server

    2013-01-01

    This Handbook provides comprehensive coverage of laser and coherent-domain methods as applied to biomedicine, environmental monitoring, and materials science. Worldwide leaders in these fields describe the fundamentals of light interaction with random media and present an overview of basic research. The latest results on coherent and polarization properties of light scattered by random media, including tissues and blood, speckles formation in multiple scattering media, and other non-destructive interactions of coherent light with rough surfaces and tissues, allow the reader to understand the principles and applications of coherent diagnostic techniques. The expanded second edition has been thoroughly updated with particular emphasis on novel coherent-domain techniques and their applications in medicine and environmental science. Volume 1 describes state-of-the-art methods of coherent and polarization optical imaging, tomography and spectroscopy; diffusion wave spectroscopy; elastic, quasi-elastic and inelasti...

  15. All-fiber probe for optical coherence tomography with an extended depth of focus by a high-efficient fiber-based filter

    Science.gov (United States)

    Qiu, Jianrong; Shen, Yi; Shangguan, Ziwei; Bao, Wen; Yang, Shanshan; Li, Peng; Ding, Zhihua

    2018-04-01

    Although methods have been proposed to maintain high transverse resolution over an increased depth range, it is not straightforward to scale down the bulk-optic solutions to minimized probes of optical coherence tomography (OCT). In this paper, we propose a high-efficient fiber-based filter in an all-fiber OCT probe to realize an extended depth of focus (DOF) while maintaining a high transverse resolution. Mode interference in the probe is exploited to modulate the complex field with controllable radial distribution. The principle of DOF extension by the fiber-based filter is theoretically analyzed. Numerical simulations are conducted to evaluate the performances of the designed probes. A DOF extension ratio of 2.6 over conventional Gaussian beam is obtainable in one proposed probe under a focused beam diameter of 4 . 6 μm. Coupling efficiencies of internal interfaces of the proposed probe are below -40 dB except the last probe-air interface, which can also be depressed to be -44 dB after minor modification in lengths for the filter. Length tolerance of the proposed probe is determined to be - 28 / + 20 μm, which is readily satisfied in fabrication. With the merits of extended-DOF, high-resolution, high-efficiency and easy-fabrication, the proposed probe is promising in endoscopic applications.

  16. Gabor fusion master slave optical coherence tomography

    DEFF Research Database (Denmark)

    Cernat, Ramona; Bradu, Adrian; Israelsen, Niels Møller

    2017-01-01

    This paper describes the application of the Gabor filtering protocol to a Master/Slave (MS) swept source optical coherence tomography (SS)-OCT system at 1300 nm. The MS-OCT system delivers information from selected depths, a property that allows operation similar to that of a time domain OCT system......, where dynamic focusing is possible. The Gabor filtering processing following collection of multiple data from different focus positions is different from that utilized by a conventional swept source OCT system using a Fast Fourier transform (FFT) to produce an A-scan. Instead of selecting the bright...

  17. Visible-light optical coherence tomography: a review

    Science.gov (United States)

    Shu, Xiao; Beckmann, Lisa; Zhang, Hao F.

    2017-12-01

    Visible-light optical coherence tomography (vis-OCT) is an emerging imaging modality, providing new capabilities in both anatomical and functional imaging of biological tissue. It relies on visible light illumination, whereas most commercial and investigational OCTs use near-infrared light. As a result, vis-OCT requires different considerations in engineering design and implementation but brings unique potential benefits to both fundamental research and clinical care of several diseases. Here, we intend to provide a summary of the development of vis-OCT and its demonstrated applications. We also provide perspectives on future technology improvement and applications.

  18. Experimental characterization of X-ray transverse coherence in the presence of beam transport optics

    DEFF Research Database (Denmark)

    Chubar, O.; Fluerasu, A.; Chu, Y.S.

    2013-01-01

    A simple Boron fiber based interference scheme [1] and other similar schemes are currently routinely used for X-ray coherence estimation at 3rd generation synchrotron radiation sources. If such a scheme is applied after a perfect monochromator and without any focusing / transport optics...... in the optical path, the interpretation of the measured interference pattern is relatively straightforward and can be done in terms of the basic parameters of the source [2]. However, if the interference scheme is used after some focusing optics, e.g. close to the X-ray beam waist, the visibility of fringes can...... be significantly affected by the new shape of the focused beam phase-space. At the same time, optical element imperfections still have a negative impact on the transverse coherence. In such situations, which are frequently encountered in experiments at beamlines, the quantitative interpretation of a measured...

  19. Optical coherence tomography in dermatology

    Science.gov (United States)

    Sattler, Elke; Kästle, Raphaela; Welzel, Julia

    2013-06-01

    Optical coherence tomography (OCT) is a noninvasive diagnostic method that offers a view into the superficial layers of the skin in vivo in real-time. An infrared broadband light source allows the investigation of skin architecture and changes up to a depth of 1 to 2 mm with a resolution between 15 and 3 μm, depending on the system used. Thus OCT enables evaluation of skin lesions, especially nonmelanoma skin cancers and inflammatory diseases, quantification of skin changes, visualization of parasitic infestations, and examination of other indications such as the investigation of nails. OCT provides a quick and useful diagnostic imaging technique for a number of clinical questions and is a valuable addition or complement to other noninvasive imaging tools such as dermoscopy, high-frequency ultrasound, and confocal laser scan microscopy.

  20. On the performance of joint iterative detection and decoding in coherent optical channels with laser frequency fluctuations

    Science.gov (United States)

    Castrillón, Mario A.; Morero, Damián A.; Agazzi, Oscar E.; Hueda, Mario R.

    2015-08-01

    The joint iterative detection and decoding (JIDD) technique has been proposed by Barbieri et al. (2007) with the objective of compensating the time-varying phase noise and constant frequency offset experienced in satellite communication systems. The application of JIDD to optical coherent receivers in the presence of laser frequency fluctuations has not been reported in prior literature. Laser frequency fluctuations are caused by mechanical vibrations, power supply noise, and other mechanisms. They significantly degrade the performance of the carrier phase estimator in high-speed intradyne coherent optical receivers. This work investigates the performance of the JIDD algorithm in multi-gigabit optical coherent receivers. We present simulation results of bit error rate (BER) for non-differential polarization division multiplexing (PDM)-16QAM modulation in a 200 Gb/s coherent optical system that includes an LDPC code with 20% overhead and net coding gain of 11.3 dB at BER = 10-15. Our study shows that JIDD with a pilot rate ⩽ 5 % compensates for both laser phase noise and laser frequency fluctuation. Furthermore, since JIDD is used with non-differential modulation formats, we find that gains in excess of 1 dB can be achieved over existing solutions based on an explicit carrier phase estimator with differential modulation. The impact of the fiber nonlinearities in dense wavelength division multiplexing (DWDM) systems is also investigated. Our results demonstrate that JIDD is an excellent candidate for application in next generation high-speed optical coherent receivers.

  1. Imaging of macrophage dynamics with optical coherence tomography in anterior ischemic optic neuropathy.

    Science.gov (United States)

    Kokona, Despina; Häner, Nathanael U; Ebneter, Andreas; Zinkernagel, Martin S

    2017-01-01

    Anterior ischemic optic neuropathy (AION) is a relatively common cause of visual loss and results from hypoperfusion of the small arteries of the anterior portion of the optic nerve. AION is the leading cause of sudden optic nerve related vision loss with approximately 10 cases per 100'000 in the population over 50 years. To date there is no established treatment for AION and therefore a better understanding of the events occurring at the level of the optic nerve head (ONH) would be important to design future therapeutic strategies. The optical properties of the eye allow imaging of the optic nerve in vivo, which is a part of the CNS, during ischemia. Experimentally laser induced optic neuropathy (eLiON) displays similar anatomical features as anterior ischemic optic neuropathy in humans. After laser induced optic neuropathy we show that hyperreflective dots in optical coherence tomography correspond to mononuclear cells in histology. Using fluorescence-activated flow cytometry (FACS) we found these cells to peak one week after eLiON. These observations were translated to OCT findings in patients with AION, where similar dynamics of hyperreflective dots at the ONH were identified. Our data suggests that activated macrophages can be identified as hyperreflective dots in OCT. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Near-infrared optical coherence tomography for the inspection of fiber composites

    NARCIS (Netherlands)

    Liu, P.; Yao, L.; Groves, R.M.

    2015-01-01

    Optical coherence tomography (OCT) is a non-invasive imaging method, which allows the econstruction of three dimensional depth-resolved images with microscale resolution. Originally developed for biomedical diagnostics, nowadays it also shows a high potential for applications in the field of

  3. Measurement of biofilm growth and local hydrodynamics using optical coherence tomography

    NARCIS (Netherlands)

    Weiss, Nicolas; El Tayeb El Obied, Khalid; Kalkman, Jeroen; Lammertink, Rob G.H.; van Leeuwen, Ton G.

    2016-01-01

    We report on localized and simultaneous measurement of biofilm growth and local hydrodynamics in a microfluidic channel using optical coherence tomography. We measure independently with high spatio-temporal resolution the longitudinal flow velocity component parallel to the imaging beam and the

  4. Novelty detection-based internal fingerprint segmentation in optical coherence tomography images

    CSIR Research Space (South Africa)

    Khutlang, R

    2014-12-01

    Full Text Available present an automatic segmentation of the papillary layer method, in 3-D swept source optical coherence tomography (SS-OCT) images. The papillary contour represents the internal fingerprint, which does not suffer external skin problems. The slices composing...

  5. Novelty detection-based internal fingerprint segmentation in optical coherence tomography images

    CSIR Research Space (South Africa)

    Khutlang, Rethabile

    2017-08-01

    Full Text Available present an automatic segmentation of the papillary layer method, from images acquired using contact-less 3-D swept source optical coherence tomography (OCT). The papillary contour represents the internal fingerprint, which does not suffer from the external...

  6. Evolution of optic nerve and retina alterations in a child with indirect traumatic neuropathy as assessed by optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Julia Dutra Rossetto

    Full Text Available ABSTRACT Herein, we describe the case of a 4-year-old child with indirect traumatic optic neuropathy and serial changes of the optic nerve head and retinal nerve fiber layer (RNFL documented using optical coherence tomography (OCT. Visual acuity improved despite progressive RNFL thinning and optic disc pallor. We concluded that OCT may be useful for monitoring axonal loss but may not predict the final visual outcome.

  7. Optical Coherence Tomography-Guided Decisions in Retinoblastoma Management.

    Science.gov (United States)

    Soliman, Sameh E; VandenHoven, Cynthia; MacKeen, Leslie D; Héon, Elise; Gallie, Brenda L

    2017-06-01

    Assess the role of handheld optical coherence tomography (OCT) in guiding management decisions during diagnosis, treatment, and follow-up of eyes affected by retinoblastoma. Retrospective, noncomparative, single-institution case series. All children newly diagnosed with retinoblastoma from January 2011 to December 2015 who had an OCT session during their active treatment at The Hospital for Sick Children (SickKids) in Toronto, Canada. The OCT sessions for fellow eyes of unilateral retinoblastoma without any suspicious lesion and those performed more than 6 months after the last treatment were excluded. Data collected included age at presentation, sex, family history, RB1 mutation status, 8th edition TNMH cancer staging and International Intraocular Retinoblastoma Classification (IIRC), and number of OCT sessions per eye. Details of each session were scored for indication-related details (informative or not) and assessed for guidance (directive or not), diagnosis (staging changed, new tumors found or excluded), treatment (modified, stopped, or modality shifted), or follow-up modified. Frequency of OCT-guided management decisions, stratified by indication and type of guidance (confirmatory vs. influential). Sixty-three eyes of 44 children had 339 OCT sessions over the course of clinical management (median number of OCT scans per eye, 5; range, 1-15). The age at presentation and presence of a heritable RB1 mutation significantly correlated with an increased number of OCT sessions. Indications included evaluation of post-treatment scar (55%) or fovea (16%), and posterior pole scanning for new tumors (11%). Of all sessions, 92% (312/339) were informative; 19 of 27 noninformative sessions had large, elevated lesions; of these, 14 of 19 were T2a or T2b (IIRC group C or D) eyes. In 94% (293/312) of the informative sessions, OCT directed treatment decisions (58%), diagnosis (16%), and follow-up (26%). Optical coherence tomography influenced and changed management from pre

  8. Optical Design in Phase-Space for the I13L X-Ray Imaging and Coherence Beamline at Diamond using XPHASY

    International Nuclear Information System (INIS)

    Wagner, Ulrich H.; Rau, Christoph

    2010-01-01

    I13L is a 250 m long beamline for imaging and coherent diffraction currently under construction at the Diamond Light Source. For modeling the beamline optics the phase-space based ray-tracing code XPHASY was developed, as general ray-tracing codes for x-rays do not easily allow studying the propagation of coherence along the beamline. In contrast to computational intensive wave-front propagation codes, which fully describe the propagation of a photon-beam along a beamline but obscure the impact of individual optical components onto the beamline performance, this code allows to quickly calculate the photon-beam propagation along the beamline and estimate the impact of individual components.In this paper we will discuss the optical design of the I13L coherence branch from the perspective of phase-space by using XPHASY. We will demonstrate how the phase-space representation of a photon-beam allows estimating the coherence length at any given position along the beamline. The impact of optical components on the coherence length and the effect of vibrations on the beamline performance will be discussed. The paper will demonstrate how the phase-space representation of photon-beams allows a more detailed insight into the optical performance of a coherence beamline than ray-tracing in real space.

  9. Imaging of dental material by polarization-sensitive optical coherence tomography

    Science.gov (United States)

    Dichtl, Sabine; Baumgartner, Angela; Hitzenberger, Christoph K.; Moritz, Andreas; Wernisch, Johann; Robl, Barbara; Sattmann, Harald; Leitgeb, Rainer; Sperr, Wolfgang; Fercher, Adolf F.

    1999-05-01

    Partial coherence interferometry (PCI) and optical coherence tomography (OCT) are noninvasive and noncontact techniques for high precision biometry and for obtaining cross- sectional images of biologic structures. OCT was initially introduced to depict the transparent tissue of the eye. It is based on interferometry employing the partial coherence properties of a light source with high spatial coherence ut short coherence length to image structures with a resolution of the order of a few microns. Recently this technique has been modified for cross section al imaging of dental and periodontal tissues. In vitro and in vivo OCT images have been recorded, which distinguish enamel, cemento and dentin structures and provide detailed structural information on clinical abnormalities. In contrast to convention OCT, where the magnitude of backscattered light as a function of depth is imaged, polarization sensitive OCT uses backscattered light to image the magnitude of the birefringence in the sample as a function of depth. First polarization sensitive OCT recordings show, that changes in the mineralization status of enamel or dentin caused by caries or non-caries lesions can result in changes of the polarization state of the light backscattered by dental material. Therefore polarization sensitive OCT might provide a new diagnostic imaging modality in clinical and research dentistry.

  10. Urgent Optic Nerve Decompression via an Endoscopic Endonasal Transsphenoidal Approach for Craniopharyngioma in a 12-Month-Old Infant: A Case Report.

    Science.gov (United States)

    Shibata, Teishiki; Tanikawa, Motoki; Sakata, Tomohiro; Mase, Mitsuhito

    2018-01-01

    Craniopharyngiomas are benign tumors and account for approximately 5.6-13% of all intracranial tumors in children. Diagnosis of pediatric craniopharyngioma is often delayed until the tumor becomes relatively large and manifests severe visual and/or endocrine disturbance. Endoscopic endonasal approaches have recently been introduced to surgery for craniopharyngioma. These techniques, however, have rarely been utilized in patients affected with craniopharyngioma as young as 1 year old. This report documents a 12-month-old male infant with sellar craniopharyngioma who presented with acute total vision loss. To increase the chances of visual recovery, an endoscopic endonasal optic nerve decompression was performed as an urgent procedure. After decompression, which resulted in improvement of his visual disturbance, gross total resection of the tumor was undertaken through an anterior interhemispheric approach at a later date. Tumor mass reduction through an endoscopic endonasal transsphenoidal approach followed by secondary radical total resection under craniotomy was considered to be useful in cases such as this when urgent optic nerve decompression is required. © 2018 S. Karger AG, Basel.

  11. Spectral shaping for non-Gaussian source spectra in optical coherence tomography

    NARCIS (Netherlands)

    Tripathi, R; Nassif, N. A.; Nelson, JS; Park, B.H.; de Boer, JF

    2002-01-01

    We present a digital spectral shaping technique to reduce the sidelobes (ringing) of the axial point-spread function in optical coherence tomography for non-Gaussian-shaped source spectra. The spectra of two superluminescent diodes were combined to generate a spectrum with significant modulation.

  12. Optical coherence tomography of the preterm eye: from retinopathy of prematurity to brain development

    Science.gov (United States)

    Rothman, Adam L; Mangalesh, Shwetha; Chen, Xi; Toth, Cynthia A

    2016-01-01

    Preterm infants with retinopathy of prematurity are at increased risk of poor neurodevelopmental outcomes. Because the neurosensory retina is an extension of the central nervous system, anatomic abnormalities in the anterior visual pathway often relate to system and central nervous system health. We describe optical coherence tomography as a powerful imaging modality that has recently been adapted to the infant population and provides noninvasive, high-resolution, cross-sectional imaging of the infant eye at the bedside. Optical coherence tomography has increased understanding of normal eye development and has identified several potential biomarkers of brain abnormalities and poorer neurodevelopment. PMID:28539807

  13. Optical coherence tomography imaging of colonic crypts in a mouse model of colorectal cancer

    Science.gov (United States)

    Welge, Weston A.; Barton, Jennifer K.

    2016-03-01

    Aberrant crypt foci (ACF) are abnormal epithelial lesions that precede development of colonic polyps. As the earliest morphological change in the development of colorectal cancer, ACF is a highly studied phenomenon. The most common method of imaging ACF is chromoendoscopy using methylene blue as a contrast agent. Narrow- band imaging is a contrast-agent-free modality for imaging the colonic crypts. Optical coherence tomography (OCT) is an attractive alternative to chromoendoscopy and narrow-band imaging because it can resolve the crypt structure at sufficiently high sampling while simultaneously providing depth-resolved data. We imaged in vivo the distal 15 mm of colon in the azoxymethane (AOM) mouse model of colorectal cancer using a commercial swept-source OCT system and a miniature endoscope designed and built in-house. We present en face images of the colonic crypts and demonstrate that different patterns in healthy and adenoma tissue can be seen. These patterns correspond to those reported in the literature. We have previously demonstrated early detection of colon adenoma using OCT by detecting minute thickening of the mucosa. By combining mucosal thickness measurement with imaging of the crypt structure, OCT can be used to correlate ACF and adenoma development in space and time. These results suggest that OCT may be a superior imaging modality for studying the connection between ACF and colorectal cancer.

  14. Correlation characteristics of optical coherence tomography images of turbid media with statistically inhomogeneous optical parameters

    International Nuclear Information System (INIS)

    Dolin, Lev S.; Sergeeva, Ekaterina A.; Turchin, Ilya V.

    2012-01-01

    Noisy structure of optical coherence tomography (OCT) images of turbid medium contains information about spatial variations of its optical parameters. We propose analytical model of statistical characteristics of OCT signal fluctuations from turbid medium with spatially inhomogeneous coefficients of absorption and backscattering. Analytically predicted correlation characteristics of OCT signal from spatially inhomogeneous medium are in good agreement with the results of correlation analysis of OCT images of different biological tissues. The proposed model can be efficiently applied for quantitative evaluation of statistical properties of absorption and backscattering fluctuations basing on correlation characteristics of OCT images.

  15. Optical coherence tomography as an accurate inspection and quality evaluation technique in paper industry

    Science.gov (United States)

    Prykäri, Tuukka; Czajkowski, Jakub; Alarousu, Erkki; Myllylä, Risto

    2010-05-01

    Optical coherence tomography (OCT), a technique for the noninvasive imaging of turbid media, based on low-coherence interferometry, was originally developed for the imaging of biological tissues. Since the development of the technique, most of its applications have been related to the area of biomedicine. However, from early stages, the vertical resolution of the technique has already been improved to a submicron scale. This enables new possibilities and applications. This article presents the possible applications of OCT in paper industry, where submicron or at least a resolution close to one micron is required. This requirement comes from the layered structure of paper products, where layer thickness may vary from single microns to tens of micrometers. This is especially similar to the case with high-quality paper products, where several different coating layers are used to obtain a smooth surface structure and a high gloss. In this study, we demonstrate that optical coherence tomography can be used to measure and evaluate the quality of the coating layer of a premium glossy photopaper. In addition, we show that for some paper products, it is possible to measure across the entire thickness range of a paper sheet. Furthermore, we suggest that in addition to topography and tomography images of objects, it is possible to obtain information similar to gloss by tracking the magnitude of individual interference signals in optical coherence tomography.

  16. SILDENAFIL CITRATE INDUCED RETINAL TOXICITY-ELECTRORETINOGRAM, OPTICAL COHERENCE TOMOGRAPHY, AND ADAPTIVE OPTICS FINDINGS.

    Science.gov (United States)

    Yanoga, Fatoumata; Gentile, Ronald C; Chui, Toco Y P; Freund, K Bailey; Fell, Millie; Dolz-Marco, Rosa; Rosen, Richard B

    2018-02-27

    To report a case of persistent retinal toxicity associated with a high dose of sildenafil citrate intake. Single retrospective case report. A 31-year-old white man with no medical history presented with complaints of bilateral multicolored photopsias and erythropsia (red-tinted vision), shortly after taking sildenafil citrate-purchased through the internet. Patient was found to have cone photoreceptor damage, demonstrated using electroretinogram, optical coherence tomography, and adaptive optics imaging. The patient's symptoms and the photoreceptor structural changes persisted for several months. Sildenafil citrate is a widely used erectile dysfunction medication that is typically associated with transient visual symptoms in normal dosage. At high dosage, sildenafil citrate can lead to persistent retinal toxicity in certain individuals.

  17. Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency

    Science.gov (United States)

    Hsiao, Ya-Fen; Tsai, Pin-Ju; Chen, Hung-Shiue; Lin, Sheng-Xiang; Hung, Chih-Chiao; Lee, Chih-Hsi; Chen, Yi-Hsin; Chen, Yong-Fan; Yu, Ite A.; Chen, Ying-Cheng

    2018-05-01

    Quantum memory is an important component in the long-distance quantum communication based on the quantum repeater protocol. To outperform the direct transmission of photons with quantum repeaters, it is crucial to develop quantum memories with high fidelity, high efficiency and a long storage time. Here, we achieve a storage efficiency of 92.0 (1.5)% for a coherent optical memory based on the electromagnetically induced transparency scheme in optically dense cold atomic media. We also obtain a useful time-bandwidth product of 1200, considering only storage where the retrieval efficiency remains above 50%. Both are the best record to date in all kinds of schemes for the realization of optical memory. Our work significantly advances the pursuit of a high-performance optical memory and should have important applications in quantum information science.

  18. Coherent optical transients observed in rubidium atomic line filtered Doppler velocimetry experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, Mario E., E-mail: mario.fajardo@eglin.af.mil; Molek, Christopher D.; Vesely, Annamaria L. [Air Force Research Laboratory, Munitions Directorate, Ordnance Division, Energetic Materials Branch, AFRL/RWME, 2306 Perimeter Road, Eglin AFB, Florida 32542-5910 (United States)

    2015-10-14

    We report the first successful results from our novel Rubidium Atomic Line Filtered (RALF) Doppler velocimetry apparatus, along with unanticipated oscillatory signals due to coherent optical transients generated within pure Rb vapor cells. RALF is a high-velocity and high-acceleration extension of the well-known Doppler Global Velocimetry (DGV) technique for constructing multi-dimensional flow velocity vector maps in aerodynamics experiments [H. Komine, U.S. Patent No. 4,919,536 (24 April 1990)]. RALF exploits the frequency dependence of pressure-broadened Rb atom optical absorptions in a heated Rb/N{sub 2} gas cell to encode the Doppler shift of reflected near-resonant (λ{sub 0} ≈ 780.24 nm) laser light onto the intensity transmitted by the cell. The present RALF apparatus combines fiber optic and free-space components and was built to determine suitable operating conditions and performance parameters for the Rb/N{sub 2} gas cells. It yields single-spot velocities of thin laser-driven-flyer test surfaces and incorporates a simultaneous Photonic Doppler Velocimetry (PDV) channel [Strand et al., Rev. Sci. Instrum. 77, 083108 (2006)] for validation of the RALF results, which we demonstrate here over the v = 0 to 1 km/s range. Both RALF and DGV presume the vapor cells to be simple Beer's Law optical absorbers, so we were quite surprised to observe oscillatory signals in experiments employing low pressure pure Rb vapor cells. We interpret these oscillations as interference between the Doppler shifted reflected light and the Free Induction Decay (FID) coherent optical transient produced within the pure Rb cells at the original laser frequency; this is confirmed by direct comparison of the PDV and FID signals. We attribute the different behaviors of the Rb/N{sub 2} vs. Rb gas cells to efficient dephasing of the atomic/optical coherences by Rb-N{sub 2} collisions. The minimum necessary N{sub 2} buffer gas density ≈0.3 amagat translates into a

  19. Dynamic focus optical coherence tomography: feasibility for improved basal cell carcinoma investigation

    Science.gov (United States)

    Nasiri-Avanaki, M. R.; Aber, Ahmed; Hojjatoleslami, S. A.; Sira, Mano; Schofield, John B.; Jones, Carole; Podoleanu, A. Gh.

    2012-03-01

    Basal cell carcinoma (BCC) is the most common form of skin cancer. To improve the diagnostic accuracy, additional non-invasive methods of making a preliminary diagnosis have been sought. We have implemented an En-Face optical coherence tomography (OCT) for this study in which the dynamic focus was integrated into it. With the dynamic focus scheme, the coherence gate moves synchronously with the peak of confocal gate determined by the confocal interface optics. The transversal resolution is then conserved throughout the depth range and an enhanced signal is returned from all depths. The Basal Cell Carcinoma specimens were obtained from the eyelid a patient. The specimens under went analysis by DF-OCT imaging. We searched for remarkable features that were visualized by OCT and compared these findings with features presented in the histology slices.

  20. Optical Coherence Tomography for the Assessment of Coronary Atherosclerosis and Vessel Response after Stent Implantation

    NARCIS (Netherlands)

    N. Gonzalo (Nieves)

    2010-01-01

    textabstractOptical Coherence Tomography (OCT) is a light-based imaging modality that can provide in vivo high-resolution images of the coronary artery with a level of resolution (axial 10-20 µm) ten times higher than intravascular ultrasound. The technique, uses low-coherent near infrarred light

  1. Optical coherence tomography: Monte Carlo simulation and improvement by optical amplification

    DEFF Research Database (Denmark)

    Tycho, Andreas

    2002-01-01

    An advanced novel Monte Carlo simulation model of the detection process of an optical coherence tomography (OCT) system is presented. For the first time it is shown analytically that the applicability of the incoherent Monte Carlo approach to model the heterodyne detection process of an OCT system...... is firmly justified. This is obtained by calculating the heterodyne mixing of the reference and sample beams in a plane conjugate to the discontinuity in the sample probed by the system. Using this approach, a novel expression for the OCT signal is derived, which only depends uopon the intensity...... flexibility of Monte Carlo simulations, this new model is demonstrated to be excellent as a numerical phantom, i.e., as a substitute for otherwise difficult experiments. Finally, a new model of the signal-to-noise ratio (SNR) of an OCT system with optical amplification of the light reflected from the sample...

  2. Fundus autofluorescence and optical coherence tomographic findings in acute zonal occult outer retinopathy.

    Science.gov (United States)

    Fujiwara, Takamitsu; Imamura, Yutaka; Giovinazzo, Vincent J; Spaide, Richard F

    2010-09-01

    The purpose of this study was to investigate the fundus autofluorescence and optical coherence tomography findings in eyes with acute zonal occult outer retinopathy (AZOOR). A retrospective observational case series of the fundus autofluorescence and spectral domain optical coherence tomography in a series of patients with AZOOR. There were 19 eyes of 11 patients (10 women), who had a mean age of 49.1 +/- 13.9 years. Fundus autofluorescence abnormalities were seen in 17 of the 19 eyes, were more common in the peripapillary area, and were smaller in extent than the optical coherence tomography abnormalities. Nine eyes showed progression of hypoautofluorescence area during the mean follow-up of 69.7 months. The mean thickness of the photoreceptor layer at fovea was 177 microm in eyes with AZOOR, which was significantly thinner than controls (193 microm, P = 0.049). Abnormal retinal laminations were found in 12 eyes and were located over areas of loss of the photoreceptors. The subfoveal choroidal thickness was 243 microm, which is normal. Fundus autofluorescence abnormalities in AZOOR showed distinct patterns of retinal pigment epithelial involvement, which may be progressive. Thinning of photoreceptor cell layer with loss of the outer segments and abnormal inner retinal lamination in the context of a normal choroid are commonly found in AZOOR.

  3. Optical coherence tomography: a potential tool to predict premature rupture of fetal membranes.

    Science.gov (United States)

    Micili, Serap C; Valter, Markus; Oflaz, Hakan; Ozogul, Candan; Linder, Peter; Föckler, Nicole; Artmann, Gerhard M; Digel, Ilya; Artmann, Aysegul T

    2013-04-01

    A fundamental question addressed in this study was the feasibility of preterm birth prediction based on a noncontact investigation of fetal membranes in situ. Although the phenomena of preterm birth and the premature rupture of the fetal membrane are well known, currently, there are no diagnostic tools for their prediction. The aim of this study was to assess whether optical coherence tomography could be used for clinical investigations of high-risk pregnancies. The thickness of fetal membranes was measured in parallel by optical coherence tomography and histological techniques for the following types of birth: normal births, preterm births without premature ruptures and births at full term with premature rupture of membrane. Our study revealed that the membrane thickness correlates with the birth type. Normal births membranes were statistically significantly thicker than those belonging to the other two groups. Thus, in spite of almost equal duration of gestation of the normal births and the births at full term with premature rupture, the corresponding membrane thicknesses differed. This difference is possibly related to previously reported water accumulation in the membranes. The optical coherence tomography results were encouraging, suggesting that this technology could be used in future to predict and distinguish between different kinds of births.

  4. Demonstration of full 4×4 Mueller polarimetry through an optical fiber for endoscopic applications.

    Science.gov (United States)

    Manhas, Sandeep; Vizet, Jérémy; Deby, Stanislas; Vanel, Jean-Charles; Boito, Paola; Verdier, Mireille; De Martino, Antonello; Pagnoux, Dominique

    2015-02-09

    A novel technique to measure the full 4 × 4 Mueller matrix of a sample through an optical fiber is proposed, opening the way for endoscopic applications of Mueller polarimetry for biomedical diagnosis. The technique is based on two subsequent Mueller matrices measurements: one for characterizing the fiber only, and another for the assembly of fiber and sample. From this differential measurement, we proved theoretically that the polarimetric properties of the sample can be deduced. The proof of principle was experimentally validated by measuring various polarimetric parameters of known optical components. Images of manufactured and biological samples acquired by using this approach are also presented.

  5. Full-field parallel interferometry coherence probe microscope for high-speed optical metrology.

    Science.gov (United States)

    Safrani, A; Abdulhalim, I

    2015-06-01

    Parallel detection of several achromatic phase-shifted images is used to obtain a high-speed, high-resolution, full-field, optical coherence probe tomography system based on polarization interferometry. The high enface imaging speed, short coherence gate, and high lateral resolution provided by the system are exploited to determine microbump height uniformity in an integrated semiconductor chip at 50 frames per second. The technique is demonstrated using the Linnik microscope, although it can be implemented on any polarization-based interference microscopy system.

  6. Optic disc size and other parameters from optical coherence tomography in Vietnamese-Americans.

    Science.gov (United States)

    Peng, Pai-Huei; Fu, Sheena; Nguyen, Ngoc; Porco, Travis; Lin, Shan C

    2011-08-01

    To investigate the optic disc parameters by optical coherence tomography (OCT) in Vietnamese with various types of glaucoma. Medical charts of Vietnamese and White patients within a single practice were reviewed. Disc and rim areas by OCT were compared among nonglaucoma controls, different types of glaucoma, and glaucoma suspect. The association of these parameters with demographic and ocular features was evaluated. Data from 1416 Vietnamese and 57 White patients were included. A larger mean disc area was observed in eyes with primary angle-closure glaucoma than in eyes with primary angle-closure and primary angle-closure suspect (both PVietnamese patients with glaucoma and glaucoma suspicion had larger discs than diagnosis-matched Whites (P=0.043 and 0.021, respectively). Vietnamese patients with glaucoma seem to have larger optic discs than White patients. Central corneal thickness had no association with disc area in this study population.

  7. NONINVASIVE DIAGNOSIS OF BLADDER CANCER BY CROSS-POLARIZATION OPTICAL COHERENCE TOMOGRAPHY: A BLIND STATISTICAL STUDY

    Directory of Open Access Journals (Sweden)

    O. S. Streltsova

    2014-07-01

    Full Text Available Whether cross-polarization (CP optical coherence tomography (OCT could be used to detect early bladder cancer was ascertained; it was compared with traditional OCT within the framework of blind (closed clinical statistical studies. One hundred and sixteen patients with local nonexophytic (flat pathological processes of the bladder were examined; 360 CP OCT images were obtained and analyzed. The study used an OCT 1300-U CP optical coherence tomographer. CP OCT showed a high (94% sensitivity and a high (84% specificity in the identification of suspected nonexophytic areas in the urinary bladder.

  8. High resolution coherence domain depth-resolved nailfold capillaroscopy based on correlation mapping optical coherence tomography

    Science.gov (United States)

    Subhash, Hrebesh M.; O'Gorman, Sean; Neuhaus, Kai; Leahy, Martin

    2014-03-01

    In this paper we demonstrate a novel application of correlation mapping optical coherence tomography (cm-OCT) for volumetric nailfold capillaroscopy (NFC). NFC is a widely used non-invasive diagnostic method to analyze capillary morphology and microvascular abnormalities of nailfold area for a range of disease conditions. However, the conventional NFC is incapable of providing volumetric imaging, when volumetric quantitative microangiopathic parameters such as plexus morphology, capillary density, and morphologic anomalies of the end row loops most critical. cm-OCT is a recently developed well established coherence domain magnitude based angiographic modality, which takes advantage of the time-varying speckle effect, which is normally dominant in the vicinity of vascular regions compared to static tissue region. It utilizes the correlation coefficient as a direct measurement of decorrelation between two adjacent B-frames to enhance the visibility of depth-resolved microcirculation.

  9. Measuring optical properties of a blood vessel model using optical coherence tomography

    Science.gov (United States)

    Levitz, David; Hinds, Monica T.; Tran, Noi; Vartanian, Keri; Hanson, Stephen R.; Jacques, Steven L.

    2006-02-01

    In this paper we develop the concept of a tissue-engineered optical phantom that uses engineered tissue as a phantom for calibration and optimization of biomedical optics instrumentation. With this method, the effects of biological processes on measured signals can be studied in a well controlled manner. To demonstrate this concept, we attempted to investigate how the cellular remodeling of a collagen matrix affected the optical properties extracted from optical coherence tomography (OCT) images of the samples. Tissue-engineered optical phantoms of the vascular system were created by seeding smooth muscle cells in a collagen matrix. Four different optical properties were evaluated by fitting the OCT signal to 2 different models: the sample reflectivity ρ and attenuation parameter μ were extracted from the single scattering model, and the scattering coefficient μ s and root-mean-square scattering angle θ rms were extracted from the extended Huygens-Fresnel model. We found that while contraction of the smooth muscle cells was clearly evident macroscopically, on the microscopic scale very few cells were actually embedded in the collagen. Consequently, no significant difference between the cellular and acellular samples in either set of measured optical properties was observed. We believe that further optimization of our tissue-engineering methods is needed in order to make the histology and biochemistry of the cellular samples sufficiently different from the acellular samples on the microscopic level. Once these methods are optimized, we can better verify whether the optical properties of the cellular and acellular collagen samples differ.

  10. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation

    DEFF Research Database (Denmark)

    Falk, Erling

    2012-01-01

    The purpose of this document is to make the output of the International Working Group for Intravascular Optical Coherence Tomography (IWG-IVOCT) Standardization and Validation available to medical and scientific communities, through a peer-reviewed publication, in the interest of improving...

  11. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies : A report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation

    NARCIS (Netherlands)

    G.J. Tearney (Guillermo); E.S. Regar (Eveline); T. Akasaka (Takashi); S. Adriaenssens (Stef); P. Barlis (Peter); H.G. Bezerra (Hiram); B.E. Bouma (Brett); N. Bruining (Nico); J.-M. Cho (Jin-Man); S. Chowdhary (Saqib); M.A. Costa (Marco); R. de Silva (Ranil); J. Dijkstra (Jouke); C. di Mario (Carlo); D. Dudeck (Darius); E. Falk (Erling); M.D. Feldman (Marc); P.J. Fitzgerald (Peter); H.M. Garcia-Garcia (Hector); N. Gonzalo (Nieves); J.F. Granada (Juan); G. Guagliumi (Giulio); N.R. Holm (Niels); Y. Honda (Yasuhiro); F. Ikeno (Fumiaki); Y. Kawasaki; W. Kochman (Waclav); L. Koltowski (Lukasz); T. Kubo (Takashi); T. Kume (Teruyoshi); H. Kyono (Hiroyuki); C.C.S. Lam (Cheung Chi Simon); G. Lamouche (Guy); D.P. Lee (David); M.B. Leon (Martin); A. Maehara (Akiko); O. Manfrini (Olivia); G.S. Mintz (Gary); K. Mizuno (Kyiouchi); M-A.M. Morel (Marie-Angèle); S. Nadkarni (Seemantini); H. Okura (Hiroyuki); H. Otake (Hiromasa); A. Pietrasik (Arkadiusz); F. Prati (Francesco); L. Rber (Lorenz); M. Radu (Maria); N. Rieber (Nikolaus); M. Riga (Maria); S.M. Rollins; M. Rosenberg (Mireille); V. Sirbu (Vasile); P.W.J.C. Serruys (Patrick); K. Shimada; T. Shinke (Toshiro); J. Shite (Junya); E. Siegel (Eliot); S. Sonada (Shinjo); U. Suter (Ueli); S. Takarada (Shigeho); A. Tanaka (Atsushi); M. Terashima (Mitsuyasu); T. Troels (Thim); M. Uemura (Mayu); G.J. Ughi (Giovanni); H.M.M. van Beusekom (Heleen); A.F.W. van der Steen (Ton); G.A. van Es (Gerrit Anne); G. van Soest (Gijs); R. Virmani (Renu); S. Waxman (Sergio); N.J. Weissman (Neil); G. Weisz (Giora)

    2012-01-01

    textabstractObjectives: The purpose of this document is to make the output of the International Working Group for Intravascular Optical Coherence Tomography (IWG-IVOCT) Standardization and Validation available to medical and scientific communities, through a peer-reviewed publication, in the

  12. Extended Endoscopic Endonasal Resection of a Suprasellar and Third Ventricular Retrochiasmatic Craniopharyngioma with a Narrow Pituitary Gland-Optic Chiasm Interval: Techniques to Optimize Resection.

    Science.gov (United States)

    Kenning, Tyler J; Pinheiro-Neto, Carlos D

    2018-04-01

    The extended endoscopic endonasal approach can be utilized to surgically treat pathology within the suprasellar space. This relies on a sufficient corridor and interval between the superior aspect of the pituitary gland and the optic chiasm. Tumors located in the retrochiasmatic space and within the third ventricle, however, may not have a widened interval through which to work. With mass effect on the superior and posterior aspect of the optic chiasm, the corridor between the chiasm and the pituitary gland might even be further narrowed. This may negate the possibility of utilizing the endoscopic endonasal approach for the management of pathology in this location. We present a case of a retrochiasmatic craniopharyngioma with a narrow resection corridor that was treated with the extended endoscopic approach and we review techniques to potentially overcome this limitation. The link to the video can be found at: https://youtu.be/ogRZj-aBqeQ .

  13. Speckle-modulating optical coherence tomography in living mice and humans

    Science.gov (United States)

    Liba, Orly; Lew, Matthew D.; Sorelle, Elliott D.; Dutta, Rebecca; Sen, Debasish; Moshfeghi, Darius M.; Chu, Steven; de La Zerda, Adam

    2017-06-01

    Optical coherence tomography (OCT) is a powerful biomedical imaging technology that relies on the coherent detection of backscattered light to image tissue morphology in vivo. As a consequence, OCT is susceptible to coherent noise (speckle noise), which imposes significant limitations on its diagnostic capabilities. Here we show speckle-modulating OCT (SM-OCT), a method based purely on light manipulation that virtually eliminates speckle noise originating from a sample. SM-OCT accomplishes this by creating and averaging an unlimited number of scans with uncorrelated speckle patterns without compromising spatial resolution. Using SM-OCT, we reveal small structures in the tissues of living animals, such as the inner stromal structure of a live mouse cornea, the fine structures inside the mouse pinna, and sweat ducts and Meissner's corpuscle in the human fingertip skin--features that are otherwise obscured by speckle noise when using conventional OCT or OCT with current state of the art speckle reduction methods.

  14. Theoretical and Experimental Study of Optical Coherence Tomography (OCT) Signals Using an Analytical Transport Model

    International Nuclear Information System (INIS)

    Vazquez Villa, A.; Delgado Atencio, J. A.; Vazquez y Montiel, S.; Cunill Rodriguez, M.; Martinez Rodriguez, A. E.; Ramos, J. Castro; Villanueva, A.

    2010-01-01

    Optical coherence tomography (OCT) is a non-invasive low coherent interferometric technique that provides cross-sectional images of turbid media. OCT is based on the classical Michelson interferometer where the mirror of the reference arm is oscillating and the signal arm contains a biological sample. In this work, we analyzed theoretically the heterodyne optical signal adopting the so called extended Huygens-Fresnel principle (EHFP). We use simulated OCT images with known optical properties to test an algorithm developed by ourselves to recover the scattering coefficient and we recovered the scattering coefficient with a relative error less than 5% for noisy signals. In addition, we applied this algorithm to OCT images from phantoms of known optical properties; in this case curves were indistinguishable. A revision of the validity of the analytical model applied to our system should be done.

  15. Quantifying Optical Microangiography Images Obtained from a Spectral Domain Optical Coherence Tomography System

    Directory of Open Access Journals (Sweden)

    Roberto Reif

    2012-01-01

    Full Text Available The blood vessel morphology is known to correlate with several diseases, such as cancer, and is important for describing several tissue physiological processes, like angiogenesis. Therefore, a quantitative method for characterizing the angiography obtained from medical images would have several clinical applications. Optical microangiography (OMAG is a method for obtaining three-dimensional images of blood vessels within a volume of tissue. In this study we propose to quantify OMAG images obtained with a spectral domain optical coherence tomography system. A technique for determining three measureable parameters (the fractal dimension, the vessel length fraction, and the vessel area density is proposed and validated. Finally, the repeatability for acquiring OMAG images is determined, and a new method for analyzing small areas from these images is proposed.

  16. Dental calculus image based on optical coherence tomography

    Science.gov (United States)

    Hsieh, Yao-Sheng; Ho, Yi-Ching; Lee, Shyh-Yuan; Chuang, Ching-Cheng; Wang, Chun-Yang; Sun, Chia-Wei

    2011-03-01

    In this study, the dental calculus was characterized and imaged by means of swept-source optical coherence tomography (SSOCT). The refractive indices of enamel, dentin, cementum and calculus were measured as 1.625+/-0.024, 1.534+/-0.029, 1.570+/-0.021 and 1.896+/-0.085, respectively. The dental calculus lead strong scattering property and thus the region can be identified under enamel with SSOCT imaging. An extracted human tooth with calculus was covered by gingiva tissue as in vitro sample for SSOCT imaging.

  17. Method of optical coherence tomography with parallel depth-resolved signal reception and fibre-optic phase modulators

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, A N; Turchin, I V [Institute of Applied Physics, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation)

    2013-12-31

    The method of optical coherence tomography with the scheme of parallel reception of the interference signal (P-OCT) is developed on the basis of spatial paralleling of the reference wave by means of a phase diffraction grating producing the appropriate time delay in the Mach–Zehnder interferometer. The absence of mechanical variation of the optical path difference in the interferometer essentially reduces the time required for 2D imaging of the object internal structure, as compared to the classical OCT that uses the time-domain method of the image construction, the sensitivity and the dynamic range being comparable in both approaches. For the resulting field of the interfering object and reference waves an analytical expression is derived that allows the calculation of the autocorrelation function in the plane of photodetectors. For the first time a method of linear phase modulation by 2π is proposed for P-OCT systems, which allows the use of compact high-frequency (a few hundred kHz) piezoelectric cell-based modulators. For the demonstration of the P-OCT method an experimental setup was created, using which the images of the inner structure of biological objects at the depth up to 1 mm with the axial spatial resolution of 12 μm were obtained. (optical coherence tomography)

  18. Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits

    Science.gov (United States)

    Balram, Krishna C.; Davanço, Marcelo I.; Song, Jin Dong; Srinivasan, Kartik

    2016-01-01

    Optomechanical cavities have been studied for applications ranging from sensing to quantum information science. Here, we develop a platform for nanoscale cavity optomechanical circuits in which optomechanical cavities supporting co-localized 1550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. Working in GaAs facilitates manipulation of the localized mechanical mode either with a radio frequency (RF) field through the piezo-electric effect, which produces acoustic waves that are routed and coupled to the optomechanical cavity by phononic crystal waveguides, or optically through the strong photoelastic effect. Along with mechanical state preparation and sensitive readout, we use this to demonstrate an acoustic wave interference effect, similar to atomic coherent population trapping, in which RF-driven coherent mechanical motion is cancelled by optically-driven motion. Manipulating cavity optomechanical systems with equal facility through both photonic and phononic channels enables new architectures for signal transduction between the optical, electrical, and mechanical domains. PMID:27446234

  19. Liquid sorption investigation of porous media by optical coherence tomography

    International Nuclear Information System (INIS)

    Fabritius, Tapio; Myllylae, Risto

    2006-01-01

    This paper introduces an alternative optical method to measuring liquid penetration into porous highly scattering media. Using pure glycerol, the method was tested by measuring glycerol sorption into cellulose fibre tissue with a grammage of 115 g m -2 . During the wetting process, dynamical changes in the scattering properties of the fibre tissue were detected by optical coherence tomography. Measurements were made from a single point on the front and back surface of a sample. Although the effect of penetration on the optical properties of a porous structure can be seen independent of measurement direction, the border between the dry and wetted area is detectable only in front surface measurements. In addition, the paper experimentally investigates the temporally and spatially dependent swelling behaviour of paper

  20. Optical coherence tomography visualizes neurons in human entorhinal cortex

    Science.gov (United States)

    Magnain, Caroline; Augustinack, Jean C.; Konukoglu, Ender; Frosch, Matthew P.; Sakadžić, Sava; Varjabedian, Ani; Garcia, Nathalie; Wedeen, Van J.; Boas, David A.; Fischl, Bruce

    2015-01-01

    Abstract. The cytoarchitecture of the human brain is of great interest in diverse fields: neuroanatomy, neurology, neuroscience, and neuropathology. Traditional histology is a method that has been historically used to assess cell and fiber content in the ex vivo human brain. However, this technique suffers from significant distortions. We used a previously demonstrated optical coherence microscopy technique to image individual neurons in several square millimeters of en-face tissue blocks from layer II of the human entorhinal cortex, over 50  μm in depth. The same slices were then sectioned and stained for Nissl substance. We registered the optical coherence tomography (OCT) images with the corresponding Nissl stained slices using a nonlinear transformation. The neurons were then segmented in both images and we quantified the overlap. We show that OCT images contain information about neurons that is comparable to what can be obtained from Nissl staining, and thus can be used to assess the cytoarchitecture of the ex vivo human brain with minimal distortion. With the future integration of a vibratome into the OCT imaging rig, this technique can be scaled up to obtain undistorted volumetric data of centimeter cube tissue blocks in the near term, and entire human hemispheres in the future. PMID:25741528

  1. In vivo assessment of optical properties of basal cell carcinoma and differentiation of BCC subtypes by high-definition optical coherence tomography

    DEFF Research Database (Denmark)

    Boone, Marc; Suppa, Mariano; Miyamoto, Makiko

    2016-01-01

    High-definition optical coherence tomography (HD-OCT) features of basal cell carcinoma (BCC) have recently been defined. We assessed in vivo optical properties (IV-OP) of BCC, by HD-OCT. Moreover their critical values for BCC subtype differentiation were determined. The technique of semi-log plot...

  2. Controllable optical bistability and multistability in asymmetric double quantum wells via spontaneously generated coherence

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuan; Deng, Li [Department of Applied Physics, East China Jiaotong University, Nanchang, 330013 (China); Chen, Aixi, E-mail: aixichen@ecjtu.jx.cn [Department of Applied Physics, East China Jiaotong University, Nanchang, 330013 (China); Institute for Quantum Computing, University of Waterloo, Ontario N2L 3G1 (Canada)

    2015-02-15

    We investigate the nonlinear optical phenomena of the optical bistability and multistability via spontaneously generated coherence in an asymmetric double quantum well structure coupled by a weak probe field and a controlling field. It is shown that the threshold and hysteresis cycle of the optical bistability can be conveniently controlled only by adjusting the intensity of the SGC or the controlling field. Moreover, switching between optical bistability and multistability can be achieved. These studies may have practical significance for the preparation of optical bistable switching device.

  3. Controllable optical bistability and multistability in asymmetric double quantum wells via spontaneously generated coherence

    International Nuclear Information System (INIS)

    Chen, Yuan; Deng, Li; Chen, Aixi

    2015-01-01

    We investigate the nonlinear optical phenomena of the optical bistability and multistability via spontaneously generated coherence in an asymmetric double quantum well structure coupled by a weak probe field and a controlling field. It is shown that the threshold and hysteresis cycle of the optical bistability can be conveniently controlled only by adjusting the intensity of the SGC or the controlling field. Moreover, switching between optical bistability and multistability can be achieved. These studies may have practical significance for the preparation of optical bistable switching device

  4. Intense coherent longitudinal optical phonons in CuI thin films under exciton-excitation conditions

    International Nuclear Information System (INIS)

    Kojima, O.; Mizoguchi, K.; Nakayama, M..

    2005-01-01

    We have investigated the dynamical properties of the coherent longitudinal optical (LO) phonon in CuI thin films grown on a NaCl substrate by vacuum deposition. The intense coherent LO phonon in the CuI thin film is observed under the exciton-excitation conditions. Moreover, the pump-energy dependence of the amplitude of the coherent LO phonon shows peaks at the heavy-hole and light-hole exciton energies. The enhancement of the coherent LO phonon under the exciton-resonance condition is much larger than that in an ordinary semiconductor quantum well system such as a GaAs/AlAs one. These facts demonstrate that the intense coherent LO phonon is generated under the exciton-excitation condition in a material with a strong exciton-phonon interaction such as CuI

  5. Optical coherence tomography--a new imaging method in ophthalmology.

    Science.gov (United States)

    Svorenova, I; Strmen, P; Olah, Z

    2010-01-01

    An improvement of examination methods in ophthalmology, technical digitalisation and knowledge of validity of examinations in various diseases contributes to early diagnostics, thereby leading to an opportunity for early treatment of eye disorders. Standard introduction of the so-called optical coherence tomography into the ophthamological clinical practice facilitated new options for a detailed analysis of pathological processes in the particular layers of the retina (Fig. 2, Ref. 5). Full Text (Free, PDF) www.bmj.sk.

  6. Optical coherent tomography in diagnoses of peripheral retinal degenarations

    OpenAIRE

    O. G. Pozdeyeva; T. B. Shaimov; A. Yu. Galin; R. B. Shaimov; T. A. Shaimova; A. V. Zolotova; A. V. Fomin

    2014-01-01

    Purpose: Studying the capabilities of optical coherence tomography (RTVue-100, OPTOVUE, USA) in evaluation of peripheral retinal degenerations, vitreoretinal adhesions, adjacent vitreous body as well as measurement of morphometric data.Methods: The study included 189 patients (239 eyes) with peripheral retinal degeneration. 77 men and 112 women aged 18 to 84 underwent an ophthalmologic examination since November 2012 until October 2013. The peripheral retina was visualized with the help of op...

  7. All fiber optics circular-state swept source polarization-sensitive optical coherence tomography.

    Science.gov (United States)

    Lin, Hermann; Kao, Meng-Chun; Lai, Chih-Ming; Huang, Jyun-Cin; Kuo, Wen-Chuan

    2014-02-01

    A swept source (SS)-based circular-state (CS) polarization-sensitive optical coherence tomography (PS-OCT) constructed entirely with polarization-maintaining fiber optics components is proposed with the experimental verification. By means of the proposed calibration scheme, bulk quarter-wave plates can be replaced by fiber optics polarization controllers to, therefore, realize an all-fiber optics CS SSPS-OCT. We also present a numerical dispersion compensation method, which can not only enhance the axial resolution, but also improve the signal-to-noise ratio of the images. We demonstrate that this compact and portable CS SSPS-OCT system with an accuracy comparable to bulk optics systems requires less stringent lens alignment and can possibly serve as a technology to realize PS-OCT instrument for clinical applications (e.g., endoscopy). The largest deviations in the phase retardation (PR) and fast-axis (FA) angle due to sample probe in the linear scanning and a rotation angle smaller than 65 deg were of the same order as those in stationary probe setups. The influence of fiber bending on the measured PR and FA is also investigated. The largest deviations of the PR were 3.5 deg and the measured FA change by ~12 to 21 deg. Finally, in vivo imaging of the human fingertip and nail was successfully demonstrated with a linear scanning probe.

  8. Alterations of the outer retina in non-arteritic anterior ischaemic optic neuropathy detected using spectral-domain optical coherence tomography.

    Science.gov (United States)

    Ackermann, Philipp; Brachert, Maike; Albrecht, Philipp; Ringelstein, Marius; Finis, David; Geerling, Gerd; Aktas, Orhan; Guthoff, Rainer

    2017-07-01

    A characteristic disease pattern may be reflected by retinal layer thickness changes in non-arteritic anterior ischaemic optic neuropathy measured using spectraldomain optical coherence tomography. Retinal layer segmentation is enabled by advanced software. In this study, retinal layer thicknesses in acute and chronic non-arteritic anterior ischaemic optic neuropathy were compared. A single-centre cross-sectional analysis was used. A total of 27 patients (20 age-matched healthy eyes) were included: 14 with acute (optic neuropathy. Macular volume and 12° peripapillary ring optical coherence tomography scans were used. The peripapillary thicknesses of the following layers were determined by manual segmentation: retinal nerve fibres, ganglion cells + inner plexiform layer, inner nuclear layer + outer plexiform layer, outer nuclear layer + inner segments of the photoreceptors and outer segments of the photoreceptors to Bruch's membrane. Macular retinal layer thicknesses were automatically determined in volume cubes centred on the fovea. Peripapillary retinal swelling in acute nonarteritic anterior ischaemic optic neuropathy was attributable to retinal nerve fibre layer, ganglion cell layer/inner plexiform layer and outer nuclear layer/segments of the photoreceptors thickening. In chronic cases, peripapillary retinal nerve fibre layer, macular ganglion cell layer and inner plexiform layer thinning were observed. In acute non-arteritic anterior ischaemic optic neuropathy, the inner and outer peripapillary retinal layers are affected by thickness changes. In chronic cases, atrophy of the ganglion cells and their axons and dendrites is evident by inner retinal layer thinning. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  9. Noise-immune complex correlation for optical coherence angiography based on standard and Jones matrix optical coherence tomography.

    Science.gov (United States)

    Makita, Shuichi; Kurokawa, Kazuhiro; Hong, Young-Joo; Miura, Masahiro; Yasuno, Yoshiaki

    2016-04-01

    This paper describes a complex correlation mapping algorithm for optical coherence angiography (cmOCA). The proposed algorithm avoids the signal-to-noise ratio dependence and exhibits low noise in vasculature imaging. The complex correlation coefficient of the signals, rather than that of the measured data are estimated, and two-step averaging is introduced. Algorithms of motion artifact removal based on non perfusing tissue detection using correlation are developed. The algorithms are implemented with Jones-matrix OCT. Simultaneous imaging of pigmented tissue and vasculature is also achieved using degree of polarization uniformity imaging with cmOCA. An application of cmOCA to in vivo posterior human eyes is presented to demonstrate that high-contrast images of patients' eyes can be obtained.

  10. Noise-immune complex correlation for optical coherence angiography based on standard and Jones matrix optical coherence tomography

    Science.gov (United States)

    Makita, Shuichi; Kurokawa, Kazuhiro; Hong, Young-Joo; Miura, Masahiro; Yasuno, Yoshiaki

    2016-01-01

    This paper describes a complex correlation mapping algorithm for optical coherence angiography (cmOCA). The proposed algorithm avoids the signal-to-noise ratio dependence and exhibits low noise in vasculature imaging. The complex correlation coefficient of the signals, rather than that of the measured data are estimated, and two-step averaging is introduced. Algorithms of motion artifact removal based on non perfusing tissue detection using correlation are developed. The algorithms are implemented with Jones-matrix OCT. Simultaneous imaging of pigmented tissue and vasculature is also achieved using degree of polarization uniformity imaging with cmOCA. An application of cmOCA to in vivo posterior human eyes is presented to demonstrate that high-contrast images of patients’ eyes can be obtained. PMID:27446673

  11. Infrared imaging and spectral-domain optical coherence tomography findings correlate with microperimetry in acute macular neuroretinopathy: a case report

    Directory of Open Access Journals (Sweden)

    Grover Sandeep

    2011-10-01

    Full Text Available Abstract Introduction Spectral-domain optical coherence tomography findings in a patient with acute macular neuroretinopathy, and correlation with functional defects on microperimetry, are presented. Case presentation A 25-year old Caucasian woman presented with bitemporal field defects following an upper respiratory tract infection. Her visual acuity was 20/20 in both eyes and a dilated fundus examination revealed bilateral hyperpigmentary changes in the papillomacular bundle. Our patient underwent further evaluation with spectral-domain optical coherence tomography, infrared and fundus autofluorescence imaging. Functional changes were assessed by microperimetry. Infrared imaging showed the classic wedge-shaped defects and spectral-domain optical coherence tomography exhibited changes at the inner segment-outer segment junction, with a thickened outer plexiform layer overlying these areas. Fluorescein and indocyanine green angiography did not demonstrate any perfusion defects or any other abnormality. Microperimetry demonstrated focal elevation in threshold correlating with the wedge-shaped defects in both eyes. Conclusion Spectral-domain optical coherence tomography findings provide new evidence of the involvement of the outer plexiform layer of the retina in acute macular neuroretinopathy.

  12. CAPILLARY NETWORK ALTERATIONS IN X-LINKED RETINOSCHISIS IMAGED ON OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY.

    Science.gov (United States)

    Romano, Francesco; Arrigo, Alessandro; Chʼng, Soon Wai; Battaglia Parodi, Maurizio; Manitto, Maria Pia; Martina, Elisabetta; Bandello, Francesco; Stanga, Paulo E

    2018-06-05

    To assess foveal and parafoveal vasculature at the superficial capillary plexus, deep capillary plexus, and choriocapillaris of patients with X-linked retinoschisis by means of optical coherence tomography angiography. Six patients with X-linked retinoschisis (12 eyes) and seven healthy controls (14 eyes) were recruited and underwent complete ophthalmologic examination, including best-corrected visual acuity, dilated fundoscopy, and 3 × 3-mm optical coherence tomography angiography macular scans (DRI OCT Triton; Topcon Corp). After segmentation and quality review, optical coherence tomography angiography slabs were imported into ImageJ 1.50 (NIH; Bethesda) and digitally binarized. Quantification of vessel density was performed after foveal avascular zone area measurement and exclusion. Patients were additionally divided into "responders" and "nonresponders" to dorzolamide therapy. Foveal avascular zone area resulted markedly enlarged at the deep capillary plexus (P < 0.001), particularly in nonresponders. Moreover, patients disclosed a significant deep capillary plexus rarefaction, when compared with controls (P: 0.04); however, a subanalysis revealed that this damage was limited to the fovea (P: 0.006). Finally, the enlargement of foveal avascular zone area positively correlated with a decline in best-corrected visual acuity (P: 0.01). Prominent foveal vascular impairment is detectable in the deep capillary plexus of patients with X-linked retinoschisis. Our results correlate with functional outcomes, suggesting a possible vascular role in X-linked retinoschisis clinical manifestations.

  13. Fiber optic coherent laser radar 3D vision system

    International Nuclear Information System (INIS)

    Clark, R.B.; Gallman, P.G.; Slotwinski, A.R.; Wagner, K.; Weaver, S.; Xu, Jieping

    1996-01-01

    This CLVS will provide a substantial advance in high speed computer vision performance to support robotic Environmental Management (EM) operations. This 3D system employs a compact fiber optic based scanner and operator at a 128 x 128 pixel frame at one frame per second with a range resolution of 1 mm over its 1.5 meter working range. Using acousto-optic deflectors, the scanner is completely randomly addressable. This can provide live 3D monitoring for situations where it is necessary to update once per second. This can be used for decontamination and decommissioning operations in which robotic systems are altering the scene such as in waste removal, surface scarafacing, or equipment disassembly and removal. The fiber- optic coherent laser radar based system is immune to variations in lighting, color, or surface shading, which have plagued the reliability of existing 3D vision systems, while providing substantially superior range resolution

  14. CHARACTERISTICS OF EPIRETINAL MEMBRANE REMNANT EDGE BY OPTICAL COHERENCE TOMOGRAPHY AFTER PARS PLANA VITRECTOMY.

    Science.gov (United States)

    Gaber, Raouf; You, Qi Sheng; Muftuoglu, Ilkay Kilic; Alam, Mostafa; Tsai, Frank F; Mendoza, Nadia; Freeman, William R

    2017-11-01

    To evaluate the incidence, characteristics, and the progression of epiretinal membrane (ERM) remnant edge seen by optical coherence tomography after ERM peeling. A retrospective chart review was conducted for 86 eyes of 85 consecutive patients who were diagnosed with ERM and underwent pars plana vitrectomy for epiretinal membrane peeling between 2013 and 2014. Data collected and analyzed included age, gender, preoperative and postoperative visual acuity, use of indocyanine green dye to stain internal limiting membrane, tamponade used after vitrectomy, ERM edge boundaries, presence of cystoid macular edema, and central foveal thickness. An ERM remnant edge was detected in 33/86 study eyes (38.4%) at the first postoperative optical coherence tomography scan. Compared with those without an ERM remnant, patients with an ERM remnant after surgery were significantly older at baseline and had a higher incidence of ERM recurrence at their last visit. They were not significantly different in terms of gender, preoperative and postoperative visual acuity, reduction of central foveal thickness from baseline, proportion of eyes with preoperative ERM elevation on optical coherence tomography, presence of macular edema before surgery, intraoperative use of indocyanine green staining for ILM peeling, or tamponade used. Based on the edge morphology, we classified the ERM remnant into three types: Type 1 was flat and blended with the retina (14/33 eyes, 42.4%), Type 2 was flat but stepped (17/33 eyes, 51.5%), and Type 3 was elevated (2/33 eyes, 6.0%). A significantly higher risk of ERM recurrence was seen in Type 2 and Type 3 ERM remnants (75% and 100%, respectively) than Type 1 ERM remnants (10%). An ERM remnant edge was detected by optical coherence tomography after ERM peeling in 38.4% of eyes. The presence of a postoperative ERM edge was associated with a higher risk of ERM recurrence, particularly in Type 2 and Type 3 ERM remnants.

  15. Optical coherence tomography for glucose monitoring in blood

    Science.gov (United States)

    Ullah, Hafeez; Hussain, Fayyaz; Ikram, Masroor

    2015-08-01

    In this review, we have discussed the potential application of the emerging imaging modality, i.e., optical coherence tomography (OCT) for glucose monitoring in biological tissues. OCT provides monitoring of glucose diffusion in different fibrous tissues like in sclera by determining the permeability rate with acceptable accuracy both in type 1 and in type 2 diabetes. The maximum precision of glucose measurement in Intralipid suspensions, for example, with the OCT technique yields the accuracy up to 4.4 mM for 10 % Intralipid and 2.2 mM for 3 % Intralipid.

  16. Longitudinal three-dimensional visualisation of autoimmune diabetes by functional optical coherence imaging

    DEFF Research Database (Denmark)

    Berclaz, Corinne; Schmidt-Christensen, Anja; Szlag, Daniel

    2016-01-01

    AIMS/HYPOTHESIS: It is generally accepted that structural and functional quantitative imaging of individual islets would be beneficial to elucidate the pathogenesis of type 1 diabetes. We here introduce functional optical coherence imaging (FOCI) for fast, label-free monitoring of beta cell destr...

  17. Assessment of a liquid lens enabled in vivo optical coherence microscope.

    Science.gov (United States)

    Murali, Supraja; Meemon, Panomsak; Lee, Kye-Sung; Kuhn, William P; Thompson, Kevin P; Rolland, Jannick P

    2010-06-01

    The optical aberrations induced by imaging through skin can be predicted using formulas for Seidel aberrations of a plane-parallel plate. Knowledge of these aberrations helps to guide the choice of numerical aperture (NA) of the optics we can use in an implementation of Gabor domain optical coherence microscopy (GD-OCM), where the focus is the only aberration adjustment made through depth. On this basis, a custom-designed, liquid-lens enabled dynamic focusing optical coherence microscope operating at 0.2 NA is analyzed and validated experimentally. As part of the analysis, we show that the full width at half-maximum metric, as a characteristic descriptor for the point spread function, while commonly used, is not a useful metric for quantifying resolution in non-diffraction-limited systems. Modulation transfer function (MTF) measurements quantify that the liquid lens performance is as predicted by design, even when accounting for the effect of gravity. MTF measurements in a skinlike scattering medium also quantify the performance of the microscope in its potential applications. To guide the fusion of images across the various focus positions of the microscope, as required in GD-OCM, we present depth of focus measurements that can be used to determine the effective number of focusing zones required for a given goal resolution. Subcellular resolution in an onion sample, and high-definition in vivo imaging in human skin are demonstrated with the custom-designed and built microscope.

  18. Quantitative contrast-enhanced optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Winetraub, Yonatan; SoRelle, Elliott D. [Molecular Imaging Program at Stanford, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Bio-X Program, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Biophysics Program, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Department of Structural Biology, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Liba, Orly [Molecular Imaging Program at Stanford, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Bio-X Program, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Department of Structural Biology, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Department of Electrical Engineering, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Zerda, Adam de la [Molecular Imaging Program at Stanford, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Bio-X Program, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Biophysics Program, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Department of Structural Biology, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Department of Electrical Engineering, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States)

    2016-01-11

    We have developed a model to accurately quantify the signals produced by exogenous scattering agents used for contrast-enhanced Optical Coherence Tomography (OCT). This model predicts distinct concentration-dependent signal trends that arise from the underlying physics of OCT detection. Accordingly, we show that real scattering particles can be described as simplified ideal scatterers with modified scattering intensity and concentration. The relation between OCT signal and particle concentration is approximately linear at concentrations lower than 0.8 particle per imaging voxel. However, at higher concentrations, interference effects cause signal to increase with a square root dependence on the number of particles within a voxel. Finally, high particle concentrations cause enough light attenuation to saturate the detected signal. Predictions were validated by comparison with measured OCT signals from gold nanorods (GNRs) prepared in water at concentrations ranging over five orders of magnitude (50 fM to 5 nM). In addition, we validated that our model accurately predicts the signal responses of GNRs in highly heterogeneous scattering environments including whole blood and living animals. By enabling particle quantification, this work provides a valuable tool for current and future contrast-enhanced in vivo OCT studies. More generally, the model described herein may inform the interpretation of detected signals in modalities that rely on coherence-based detection or are susceptible to interference effects.

  19. Biological elements carry out optical tasks in coherent imaging systems

    Science.gov (United States)

    Ferraro, P.; Bianco, V.; Paturzo, M.; Miccio, L.; Memmolo, P.; Merola, F.; Marchesano, V.

    2016-03-01

    We show how biological elements, like live bacteria species and Red Blood Cells (RBCs) can accomplish optical functionalities in DH systems. Turbid media allow coherent microscopy despite the strong light scattering these provoke, acting on light just as moving diffusers. Furthermore, a turbid medium can have positive effects on a coherent imaging system, providing resolution enhancement and mimicking the action of noise decorrelation devices, thus yielding an image quality significantly higher than the quality achievable through a transparent medium in similar recording conditions. Besides, suspended RBCs are demonstrated to behave as controllable liquid micro-lenses, opening new possibilities in biophotonics for endoscopy imaging purposes, as well as telemedicine for point-of-care diagnostics in developing countries and low-resource settings.

  20. Noninvasive measurement of glucose concentration on human fingertip by optical coherence tomography

    Science.gov (United States)

    Chen, Tseng-Lin; Lo, Yu-Lung; Liao, Chia-Chi; Phan, Quoc-Hung

    2018-04-01

    A method is proposed for determining the glucose concentration on the human fingertip by extracting two optical parameters, namely the optical rotation angle and the depolarization index, using a Mueller optical coherence tomography technique and a genetic algorithm. The feasibility of the proposed method is demonstrated by measuring the optical rotation angle and depolarization index of aqueous glucose solutions with low and high scattering, respectively. It is shown that for both solutions, the optical rotation angle and depolarization index vary approximately linearly with the glucose concentration. As a result, the ability of the proposed method to obtain the glucose concentration by means of just two optical parameters is confirmed. The practical applicability of the proposed technique is demonstrated by measuring the optical rotation angle and depolarization index on the human fingertip of healthy volunteers under various glucose conditions.

  1. Experimental study of coherence vortices: Local properties of phase singularities in a spatial coherence function

    DEFF Research Database (Denmark)

    Wang, W.; Duan, Z.H.; Hanson, Steen Grüner

    2006-01-01

    By controlling the irradiance of an extended quasimonochromatic, spatially incoherent source, an optical field is generated that exhibits spatial coherence with phase singularities, called coherence vortices. A simple optical geometry for direct visualization of coherence vortices is proposed, an...

  2. Transient spectral domain optical coherence tomography findings in classic MEWDS: a case report.

    Science.gov (United States)

    Lavigne, Luciana Castro; Isaac, David Leonardo Cruvinel; Duarte Júnior, José Osório; Avila, Marcos Pereira de

    2014-01-01

    The purpose of this study was to describe a patient with multiple evanescent white dot syndrome (MEWDS) who presented with classic retinal findings and transient changes in outer retinal anatomy. A 20-year-old man presented with mild blurred vision in the left eye, reporting flu-like symptoms 1 week before the visual symptoms started. Fundus examination of the left eye revealed foveal granularity and multiple scattered spots deep to the retina in the posterior pole. Fluorescein angiography and indocyanine green angiography showed typical MEWDS findings. Spectral Domain Optical Coherence Tomography has shown transient changes in outer retinal anatomy with disappearance of inner segment-outer segment junction and mild attenuation of external limiting membrane. Six months later, Spectral Domain Optical Coherence Tomography has shown complete resolution with recovery of normal outer retinal aspect.

  3. The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Ken R. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Department of Applied Physics, Stanford University, 348 Via Pueblo, Stanford, CA 94305 (United States); Bucher, Maximilian; Bozek, John D.; Carron, Sebastian; Castagna, Jean-Charles [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Coffee, Ryan [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Pulse Institute, Stanford University and SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Curiel, G. Ivan; Holmes, Michael; Krzywinski, Jacek; Messerschmidt, Marc; Minitti, Michael; Mitra, Ankush; Moeller, Stefan; Noonan, Peter; Osipov, Timur; Schorb, Sebastian; Swiggers, Michele; Wallace, Alexander; Yin, Jing [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Bostedt, Christoph, E-mail: bostedt@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Pulse Institute, Stanford University and SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-17

    A description of the Atomic, Molecular and Optical Sciences (AMO) instrument at the Linac Coherent Light Source is presented. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument. The Atomic, Molecular and Optical Science (AMO) instrument at the Linac Coherent Light Source (LCLS) provides a tight soft X-ray focus into one of three experimental endstations. The flexible instrument design is optimized for studying a wide variety of phenomena requiring peak intensity. There is a suite of spectrometers and two photon area detectors available. An optional mirror-based split-and-delay unit can be used for X-ray pump–probe experiments. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument.

  4. Production of coherent XUV and soft x-rays using a transverse optical klystron

    International Nuclear Information System (INIS)

    Freeman, R.R.; Kincaid, B.J.

    1984-01-01

    An optical klystron is a device in which a relativistic electron beam produces coherent electromagnetic radiation by interacting with an external laser beam in an undulator magnetic field. Such a device represents the relativistic generalization of the microwave klystron. The device is called transverse optical klystron (TOK), because the energy exchange between the electrons and the light in this case is due to the transverse electric field of the laser. The generation of coherent light by the TOK can be considered as a three step process, including energy modulation, compaction or bunching, and radiation. In the present paper, a description is provided of the general physical principles underlying the operation of each of the three sections of the TOK, taking into account the modulator, the compactor, and the radiator. 14 references

  5. Enhancement of the resolution of full-field optical coherence tomography by using a colour image sensor

    Energy Technology Data Exchange (ETDEWEB)

    Kalyanov, A L; Lychagov, V V; Smirnov, I V; Ryabukho, V P [N.G. Chernyshevsky Saratov State University, Saratov (Russian Federation)

    2013-08-31

    The influence of white balance in a colour image detector on the resolution of a full-field optical coherence tomograph (FFOCT) is studied. The change in the interference pulse width depending on the white balance tuning is estimated in the cases of a thermal radiation source (incandescent lamp) and a white light emitting diode. It is shown that by tuning white balance of the detector in a certain range, the FFOCT resolution can be increased by 20 % as compared to the resolution, attained with the use of a monochrome detector. (optical coherence tomography)

  6. Enhancement of the resolution of full-field optical coherence tomography by using a colour image sensor

    International Nuclear Information System (INIS)

    Kalyanov, A L; Lychagov, V V; Smirnov, I V; Ryabukho, V P

    2013-01-01

    The influence of white balance in a colour image detector on the resolution of a full-field optical coherence tomograph (FFOCT) is studied. The change in the interference pulse width depending on the white balance tuning is estimated in the cases of a thermal radiation source (incandescent lamp) and a white light emitting diode. It is shown that by tuning white balance of the detector in a certain range, the FFOCT resolution can be increased by 20 % as compared to the resolution, attained with the use of a monochrome detector. (optical coherence tomography)

  7. Coherent optical effect on time-resolved vibrational SFG spectrum of adsorbates

    Science.gov (United States)

    Ueba, H.; Sawabu, T.; Mii, T.

    2002-04-01

    We present a theory to study the influence of the coherent mixing between pump-infrared and probe-visible pulse on a time-resolved sum-frequency generation (TR-SFG) spectrum for vibrations at surfaces. The general formula of the time-dependent and its Fourier transform of the SFG polarization and its Fourier transform allows us to calculate the time-resolved vibrational SFG spectrum and the transient characteristics of the SFG intensity as a function of the delay time td between the pump-infrared and probe-visible pulse. It is found the coherent optical effect manifests itself in the broadening and narrowing of the SFG spectrum with the intrinsic width of T2 at negative and positive td, respectively, being in qualitative agreement with recent experimental results. The influence of the coherent mixing on the transient behavior of the SFG intensity is also discussed in conjunction to the T2 determination.

  8. Polarimetry noise in fiber-based optical coherence tomography instrumentation

    Science.gov (United States)

    Zhang, Ellen Ziyi; Vakoc, Benjamin J.

    2011-01-01

    High noise levels in fiber-based polarization-sensitive optical coherence tomography (PS-OCT) have broadly limited its clinical utility. In this study we investigate contribution of polarization mode dispersion (PMD) to the polarimetry noise. We develop numerical models of the PS-OCT system including PMD and validate these models with empirical data. Using these models, we provide a framework for predicting noise levels, for processing signals to reduce noise, and for designing an optimized system. PMID:21935044

  9. Partial coherence and imperfect optics at a synchrotron radiation source modeled by wavefront propagation

    Science.gov (United States)

    Laundy, David; Alcock, Simon G.; Alianelli, Lucia; Sutter, John P.; Sawhney, Kawal J. S.; Chubar, Oleg

    2014-09-01

    A full wave propagation of X-rays from source to sample at a storage ring beamline requires simulation of the electron beam source and optical elements in the beamline. The finite emittance source causes the appearance of partial coherence in the wave field. Consequently, the wavefront cannot be treated exactly with fully coherent wave propagation or fully incoherent ray tracing. We have used the wavefront code Synchrotron Radiation Workshop (SRW) to perform partially coherent wavefront propagation using a parallel computing cluster at the Diamond Light Source. Measured mirror profiles have been used to correct the wavefront for surface errors.

  10. Electrically tunable coherent optical absorption in graphene with ion gel.

    Science.gov (United States)

    Thareja, Vrinda; Kang, Ju-Hyung; Yuan, Hongtao; Milaninia, Kaveh M; Hwang, Harold Y; Cui, Yi; Kik, Pieter G; Brongersma, Mark L

    2015-03-11

    We demonstrate electrical control over coherent optical absorption in a graphene-based Salisbury screen consisting of a single layer of graphene placed in close proximity to a gold back reflector. The screen was designed to enhance light absorption at a target wavelength of 3.2 μm by using a 600 nm-thick, nonabsorbing silica spacer layer. An ionic gel layer placed on top of the screen was used to electrically gate the charge density in the graphene layer. Spectroscopic reflectance measurements were performed in situ as a function of gate bias. The changes in the reflectance spectra were analyzed using a Fresnel based transfer matrix model in which graphene was treated as an infinitesimally thin sheet with a conductivity given by the Kubo formula. The analysis reveals that a careful choice of the ionic gel layer thickness can lead to optical absorption enhancements of up to 5.5 times for the Salisbury screen compared to a suspended sheet of graphene. In addition to these absorption enhancements, we demonstrate very large electrically induced changes in the optical absorption of graphene of ∼3.3% per volt, the highest attained so far in a device that features an atomically thick active layer. This is attributable in part to the more effective gating achieved with the ion gel over the conventional dielectric back gates and partially by achieving a desirable coherent absorption effect linked to the presence of the thin ion gel that boosts the absorption by 40%.

  11. Clinical utility of anterior segment swept-source optical coherence tomography in glaucoma

    Directory of Open Access Journals (Sweden)

    Dewang Angmo

    2016-01-01

    Full Text Available Optical coherence tomography (OCT, a noninvasive imaging modality that uses low-coherence light to obtain a high-resolution cross-section of biological structures, has evolved dramatically over the years. The Swept-source OCT (SS-OCT makes use of a single detector with a rapidly tunable laser as a light source. The Casia SS-1000 OCT is a Fourier-domain, SS-OCT designed specifically for imaging the anterior segment. This system achieves high resolution imaging of 10΅m (Axial and 30΅m (Transverse and high speed scanning of 30,000 A-scans per second. With a substantial improvement in scan speed, the anterior chamber angles can be imaged 360 degrees in 128 cross sections (each with 512 A-scans in about 2.4 seconds. We summarize the clinical applications of anterior segment SS-OCT in Glaucoma. Literature search: We searched PubMed and included Medline using the phrases anterior segment optical coherence tomography in ophthalmology, swept-source OCT, use of AS-OCT in glaucoma, use of swept-source AS-OCT in glaucoma, quantitative assessment of angle, filtering bleb in AS-OCT, comparison of AS-OCT with gonioscopy and comparison of AS-OCT with UBM. Search was made for articles dating 1990 to August 2015.

  12. Atomic and molecular spectroscopy with optical-frequency-comb-referenced IR coherent sources

    International Nuclear Information System (INIS)

    Cancio, P.; Bartalini, S.; De Rosa, M.; Giusfredi, G.; Mazzotti, D.; Maddaloni, P.; Vitiello, M. S.; De Natale, P.

    2013-01-01

    We provide a review of progress in the development of metrological-grade measurements in atomic and molecular systems through the extension, in the mid-infrared and far-infrared range, of optical frequency combs (OFCs) and the introduction of new techniques and highly coherent sources. (authors)

  13. High speed all optical shear wave imaging optical coherence elastography (Conference Presentation)

    Science.gov (United States)

    Song, Shaozhen; Hsieh, Bao-Yu; Wei, Wei; Shen, Tueng; O'Donnell, Matthew; Wang, Ruikang K.

    2016-03-01

    Optical Coherence Elastography (OCE) is a non-invasive testing modality that maps the mechanical property of soft tissues with high sensitivity and spatial resolution using phase-sensitive optical coherence tomography (PhS-OCT). Shear wave OCE (SW-OCE) is a leading technique that relies on the speed of propagating shear waves to provide a quantitative elastography. Previous shear wave imaging OCT techniques are based on repeated M-B scans, which have several drawbacks such as long acquisition time and repeated wave stimulations. Recent developments of Fourier domain mode-locked high-speed swept-source OCT system has enabled enough speed to perform KHz B-scan rate OCT imaging. Here we propose ultra-high speed, single shot shear wave imaging to capture single-shot transient shear wave propagation to perform SW-OCE. The frame rate of shear wave imaging is 16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of high-frequency shear wave of up to 8 kHz. The shear wave is generated photothermal-acoustically, by ultra-violet pulsed laser, which requires no contact to OCE subjects, while launching high frequency shear waves that carries rich localized elasticity information. The image acquisition and processing can be performed at video-rate, which enables real-time 3D elastography. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine ocular tissue. This approach opens up the feasibility to perform real-time 3D SW-OCE in clinical applications, to obtain high-resolution localized quantitative measurement of tissue biomechanical property.

  14. Optical coherence tomography findings in methanol toxicity.

    Science.gov (United States)

    Klein, Kendra A; Warren, Alexis K; Baumal, Caroline R; Hedges, Thomas R

    2017-01-01

    Methanol toxicity poses a significant public health problem in developing countries, and in Southeast Asia, where the most common source of poisoning is via adulterated liquor in local drinks. Methanol toxicity can have devastating visual consequences and retinal specialists should be aware of the features of this toxic optic neuropathy. The authors report a case of severe systemic methanol toxicity and relatively mild optic neuropathy demonstrating unique retinal changes on optical coherence tomography (OCT). A previously healthy student developed ataxia, difficulty breathing and loss of consciousness hours after drinking homemade alcohol while traveling in Indonesia. She was found to have a serum pH of 6.79 and elevated methanol levels. She was treated with intravenous ethanol, methylprednisolone and sodium bicarbonate. When she awoke she had bilateral central scotomas. At presentation, she had central depression on visual field testing. OCT of the retinal nerve fiber layer (RNFL) was normal but ganglion cell layer analysis (GCL) showed highly selective loss of the nasal fibers in both eyes. Further, OCT of the macula demonstrated inner nuclear layer (INL) microcysts in the corresponding area of selective GCL loss in both eyes. The selective involvement of the papillomacular bundle fibers is common in toxic optic neuropathies and represents damage to the small caliber axons rich in mitochondria. Despite severe systemic toxicity, the relative sparing of the optic nerve in this case enabled characterization of the evolution of methanol toxicity with segmental GCL involvement and preservation of the RNFL, corresponding to the papillomacular bundle. This is the first reported case of INL microcysts in methanol optic neuropathy and supports that they are a non-specific finding, and may represent preferential damage to the papillomacular bundle.

  15. Simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography

    Science.gov (United States)

    Dubey, Satish Kumar; Singh Mehta, Dalip; Anand, Arun; Shakher, Chandra

    2008-01-01

    We demonstrate simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography (OCT). The swept-source OCT system comprises a superluminescent diode (SLD) as broad-band light source, an acousto-optic tunable filter (AOTF) as frequency tuning device, and a compact, nearly common-path interferometer. Both the amplitude and the phase map of the interference fringe signal are reconstructed. Optical sectioning of the latent fingerprint sample is obtained by selective Fourier filtering and the topography is retrieved from the phase map. Interferometry, selective filtering, low coherence and hence better resolution are some of the advantages of the proposed system over the conventional fingerprint detection techniques. The present technique is non-invasive in nature and does not require any physical or chemical processing. Therefore, the quality of the sample does not alter and hence the same fingerprint can be used for other types of forensic test. Exploitation of low-coherence interferometry for fingerprint detection itself provides an edge over other existing techniques as fingerprints can even be lifted from low-reflecting surfaces. The proposed system is very economical and compact.

  16. Extraction of optical scattering parameters and attenuation compensation in optical coherence tomography images of multi-layered tissue structures

    DEFF Research Database (Denmark)

    Thrane, Lars; Frosz, Michael Henoch; Tycho, Andreas

    2004-01-01

    A recently developed analytical optical coherence tomography (OCT) model [Thrane et al., J. Opt. Soc. Am. A 17, 484 (2000)] allows the extraction of optical scattering parameters from OCT images, thereby permitting attenuation compensation in those images. By expanding this theoretical model, we...... have developed a new method for extracting optical scattering parameters from multilayered tissue structures in vivo. To verify this, we used a Monte Carlo (MC) OCT model as a numerical phantom to simulate the OCT signal for het-erogeneous multilayered tissue. Excellent agreement between the extracted......, and the results hold promise for expanding the functional imaging capabilities of OCT....

  17. The effect of jitter on the performance of space coherent optical communication system with Costas loop

    Science.gov (United States)

    Li, Xin; Hong, Yifeng; Wang, Jinfang; Liu, Yang; Sun, Xun; Li, Mi

    2018-01-01

    Numerous communication techniques and optical devices successfully applied in space optical communication system indicates a good portability of it. With this good portability, typical coherent demodulation technique of Costas loop can be easily adopted in space optical communication system. As one of the components of pointing error, the effect of jitter plays an important role in the communication quality of such system. Here, we obtain the probability density functions (PDF) of different jitter degrees and explain their essential effect on the bit error rate (BER) space optical communication system. Also, under the effect of jitter, we research the bit error rate of space coherent optical communication system using Costas loop with different system parameters of transmission power, divergence angle, receiving diameter, avalanche photodiode (APD) gain, and phase deviation caused by Costas loop. Through a numerical simulation of this kind of communication system, we demonstrate the relationship between the BER and these system parameters, and some corresponding methods of system optimization are presented to enhance the communication quality.

  18. Optical coherence tomography used for internal biometrics

    Science.gov (United States)

    Chang, Shoude; Sherif, Sherif; Mao, Youxin; Flueraru, Costel

    2007-06-01

    Traditional biometric technologies used for security and person identification essentially deal with fingerprints, hand geometry and face images. However, because all these technologies use external features of human body, they can be easily fooled and tampered with by distorting, modifying or counterfeiting these features. Nowadays, internal biometrics which detects the internal ID features of an object is becoming increasingly important. Being capable of exploring under-skin structure, optical coherence tomography (OCT) system can be used as a powerful tool for internal biometrics. We have applied fiber-optic and full-field OCT systems to detect the multiple-layer 2D images and 3D profile of the fingerprints, which eventually result in a higher discrimination than the traditional 2D recognition methods. More importantly, the OCT based fingerprint recognition has the ability to easily distinguish artificial fingerprint dummies by analyzing the extracted layered surfaces. Experiments show that our OCT systems successfully detected the dummy, which was made of plasticene and was used to bypass the commercially available fingerprint scanning system with a false accept rate (FAR) of 100%.

  19. Optical coherence tomography angiography in acute arteritic and non-arteritic anterior ischemic optic neuropathy.

    Science.gov (United States)

    Balducci, Nicole; Morara, Mariachiara; Veronese, Chiara; Barboni, Piero; Casadei, Nicoletta Lelli; Savini, Giacomo; Parisi, Vincenzo; Sadun, Alfredo A; Ciardella, Antonio

    2017-11-01

    The purpose of our study was to describe the feature of acute non-arteritic or arteritic anterior ischemic optic neuropathy (NA-AION and A-AION) using optical coherence tomography angiography (OCT-A) and to compare it with fluorescein angiography (FA) and indocyanine green angiography (ICGA). In this retrospective, observational case-control study four NA-AION patients and one A-AION patient were examined by FA, ICGA and OCT-A within 2 weeks from disease presentation. The characteristics of the images were analyzed. Optic nerve head (ONH) and radial peripapillary capillaries (RPC) vessel densities (VDs) were compared between NA-AION and controls. In two of four NA-AION cases and in the A-AION patient, OCT-A clearly identified the boundary of the ischemic area at the level of the optic nerve head, which was comparable to optic disc filling defects detected by FA. In the other two NA-AION cases, a generalized leakage from the disc was visible with FA, yet OCT-A still demonstrated sectorial peripapillary capillary network reduction. Both ONH and RPC VDs were reduced in NA-AION patients, when compared to controls. OCT-A was able to identify microvascular defects and VD reduction in cases of acute optic disc edema due to NA-AION and A-AION. OCT-A provides additional information in ischemic conditions of the optic nerve head.

  20. Optical coherence tomography imaging of the basal ganglia: feasibility and brief review

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, W. O. Contreras; Ângelos, J. S. [Divisão de Neurocirurgia Funcional, Departamento de Neurologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Martinez, R. C. R. [Laboratório de Neuromodulação e Dor Experimental, Hospital Sírio-Libanes, São Paulo, SP (Brazil); Takimura, C. K. [Instituto do Coração, Universidade de São Paulo, São Paulo, SP (Brazil); Teixeira, M. J. [Divisão de Neurocirurgia Funcional, Departamento de Neurologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Lemos, P. A. Neto [Instituto do Coração, Universidade de São Paulo, São Paulo, SP (Brazil); Fonoff, E. T., E-mail: fonoffet@usp.br [Divisão de Neurocirurgia Funcional, Departamento de Neurologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil)

    2015-09-29

    Optical coherence tomography (OCT) is a promising medical imaging technique that uses light to capture real-time cross-sectional images from biological tissues in micrometer resolution. Commercially available optical coherence tomography systems are employed in diverse applications, including art conservation and diagnostic medicine, notably in cardiology and ophthalmology. Application of this technology in the brain may enable distinction between white matter and gray matter, and obtainment of detailed images from within the encephalon. We present, herein, the in vivo implementation of OCT imaging in the rat brain striatum. For this, two male 60-day-old rats (Rattus norvegicus, Albinus variation, Wistar) were stereotactically implanted with guide cannulas into the striatum to guide a 2.7-French diameter high-definition OCT imaging catheter (Dragonfly™, St. Jude Medical, USA). Obtained images were compared with corresponding histologically stained sections to collect imaging samples. A brief analysis of OCT technology and its current applications is also reported, as well as intra-cerebral OCT feasibility on brain mapping during neurosurgical procedures.

  1. In-vivo dynamic characterization of microneedle skin penetration using optical coherence tomography

    Science.gov (United States)

    Enfield, Joey; O'Connell, Marie-Louise; Lawlor, Kate; Jonathan, Enock; O'Mahony, Conor; Leahy, Martin

    2010-07-01

    The use of microneedles as a method of circumventing the barrier properties of the stratum corneum is receiving much attention. Although skin disruption technologies and subsequent transdermal diffusion rates are being extensively studied, no accurate data on depth and closure kinetics of microneedle-induced skin pores are available, primarily due to the cumbersome techniques currently required for skin analysis. We report on the first use of optical coherence tomography technology to image microneedle penetration in real time and in vivo. We show that optical coherence tomography (OCT) can be used to painlessly measure stratum corneum and epidermis thickness, as well as microneedle penetration depth after microneedle insertion. Since OCT is a real-time, in-vivo, nondestructive technique, we also analyze skin healing characteristics and present quantitative data on micropore closure rate. Two locations (the volar forearm and dorsal aspect of the fingertip) have been assessed as suitable candidates for microneedle administration. The results illustrate the applicability of OCT analysis as a tool for microneedle-related skin characterization.

  2. Optical coherence tomography patterns as predictors of visual outcome in dengue-related maculopathy.

    Science.gov (United States)

    Teoh, Stephen C; Chee, Caroline K; Laude, Augustinus; Goh, Kong Y; Barkham, Timothy; Ang, Brenda S

    2010-03-01

    The purpose of this study was to characterize the presentations, long-term outcomes, and visual prognostic factors in dengue-related maculopathy of 41 patients with dengue fever and impaired vision from dengue-related maculopathy in a retrospective noninterventional and observational series. The medical records of patients with dengue-related maculopathy diagnosed over 18 months between July 2004 and December 2005 at The Eye Institute, Tan Tock Seng Hospital and Communicable Disease Center, Singapore, were reviewed and followed up for 24 months. Visual acuity and symptoms (presence of scotoma on automated visual fields and Amsler grid) were correlated with optical coherence tomography evaluation. Mean age was 28.7 years and there were more men (53.7%). The most common visual complaints were blurring of vision (51.2%) and central scotoma (34.1%). Most patients recovered best-corrected visual acuity >20/40. Optical coherence tomography showed 3 patterns of maculopathy: 1) diffuse retinal thickening; 2) cystoid macular edema; and 3) foveolitis. The visual outcome was independent of the extent of edema, but scotomata persisted longest in patients with foveolitis and shortest with those with diffuse retinal thickening. Dengue-associated ocular inflammation is an emerging ophthalmic condition and often involves the posterior segment. Prognosis is variable. Patients usually regain good vision but may retain persistent scotomata even at 2 years despite clinical resolution of the disease. Optical coherence tomography patterns in dengue maculopathy are useful for characterization, monitoring, and prognostication of the visual defect.

  3. Optical coherence tomography for diagnosing periodontal disease

    Science.gov (United States)

    Colston, Bill W., Jr.; Everett, Matthew J.; Da Silva, Luiz B.; Otis, Linda L.; Nathel, Howard

    1997-05-01

    We have, in this preliminary study, investigated the use of optical coherence tomography for diagnosis of periodontal disease. We took in vitro OCT images of the dental and periodontal tissues from a young pig and compared them to histological sections. These images distinguish tooth and soft tissue relationships that are important in diagnosing and assessing periodontal disease. We have imaged the attachment of gingiva to the tooth surface and located the cemento-enamel junction. This junction is an important reference point for defining attachment level in the diagnosis of periodontal disease. the boundary between enamel and dentin is also visible for most of the length of the anatomical crown, allowing quantitation of enamel thickness and character.

  4. Assessment of Optical Coherence Tomography Imaging in the Diagnosis of Non-Melanoma Skin Cancer and Benign Lesions Versus Normal Skin:

    DEFF Research Database (Denmark)

    Mogensen, Mette; Jørgensen, Thomas Martini; Nürnberg, Birgit Meincke

    2009-01-01

    BACKGROUND Optical coherence tomography (OCT) is an optical imaging technique that may be useful in diagnosis of non-melanoma skin cancer (NMSC). OBJECTIVES To describe OCT features in NMSC such as actinic keratosis (AK) and basal cell carcinoma (BCC) and in benign lesions and to assess the diagn......BACKGROUND Optical coherence tomography (OCT) is an optical imaging technique that may be useful in diagnosis of non-melanoma skin cancer (NMSC). OBJECTIVES To describe OCT features in NMSC such as actinic keratosis (AK) and basal cell carcinoma (BCC) and in benign lesions and to assess...

  5. Currently available methodologies for the processing of intravascular ultrasound and optical coherence tomography images.

    Science.gov (United States)

    Athanasiou, Lambros; Sakellarios, Antonis I; Bourantas, Christos V; Tsirka, Georgia; Siogkas, Panagiotis; Exarchos, Themis P; Naka, Katerina K; Michalis, Lampros K; Fotiadis, Dimitrios I

    2014-07-01

    Optical coherence tomography and intravascular ultrasound are the most widely used methodologies in clinical practice as they provide high resolution cross-sectional images that allow comprehensive visualization of the lumen and plaque morphology. Several methods have been developed in recent years to process the output of these imaging modalities, which allow fast, reliable and reproducible detection of the luminal borders and characterization of plaque composition. These methods have proven useful in the study of the atherosclerotic process as they have facilitated analysis of a vast amount of data. This review presents currently available intravascular ultrasound and optical coherence tomography processing methodologies for segmenting and characterizing the plaque area, highlighting their advantages and disadvantages, and discusses the future trends in intravascular imaging.

  6. Optical coherence elastography assesses tissue modifications in laser reshaping of cornea and cartilages

    Science.gov (United States)

    Zaitsev, V. Y.; Matveyev, A. L.; Matveev, L. A.; Gelikonov, G. V.; Omelchenko, A. I.; Shabanov, D. V.; Sovetsky, A. A.; Baum, O. I.; Vitkin, A.; Sobol, E. N.

    2018-02-01

    Non-surgical thermo-mechanical reshaping of avascular collagenous tissues (cartilages and cornea) using moderate heating by IR-laser irradiation is an emerging technology that can find important applications in visioncorrection problems and preparation of cartilaginous implants in otolaryngology. To estimate both transient interframe strains and cumulative resultant strains produced by the laser irradiation of the tissue we use and improved version of strain mapping developed in our previous work related to compressional phase-sensitive optical coherence tomography. To reveal microstructural changes in the tissue regions where irradiation-produced strains do not disappear after temperature equilibration, we apply compressional optical coherence elastography in order to visualize the resultant variations in the tissue stiffness. The so-found regions of the stiffness reduction are attributed to formation of microscopic pores, existence of which agree with independent data obtained using methods of high-resolution microscopy.

  7. Optical coherence tomography-enhanced microlaryngoscopy: preliminary report of a noncontact optical coherence tomography system integrated with a surgical microscope.

    Science.gov (United States)

    Vokes, David E; Jackson, Ryan; Guo, Shuguang; Perez, Jorge A; Su, Jianping; Ridgway, James M; Armstrong, William B; Chen, Zhongping; Wong, Brian J F

    2008-07-01

    Optical coherence tomography (OCT) is a new imaging modality that uses near-infrared light to produce cross-sectional images of tissue with a resolution approaching that of light microscopy. We have previously reported use of OCT imaging of the vocal folds (VFs) during direct laryngoscopy with a probe held in contact or near-contact with the VFs. This aim of this study was to develop and evaluate a novel OCT system integrated with a surgical microscope to allow hands-free OCT imaging of the VFs, which could be performed simultaneously with microscopic visualization. We performed a prospective evaluation of a new method of acquiring OCT images of the VFs. An OCT system was successfully integrated with a surgical microscope to permit noncontact OCT imaging of the VFs of 10 patients. With this novel device we were able to identify VF epithelium and lamina propria; however, the resolution was reduced compared to that achieved with the standard contact or near-contact OCT. Optical coherence tomography is able to produce high-resolution images of vocal fold mucosa to a maximum depth of 1.6 mm. It may be used in the diagnosis of VF lesions, particularly early squamous cell carcinoma, in which OCT can show disruption of the basement membrane. Mounting the OCT device directly onto the operating microscope allows hands-free noncontact OCT imaging and simultaneous conventional microscopic visualization of the VFs. However, the lateral resolution of the OCT microscope system is 50 microm, in contrast to the conventional handheld probe system (10 microm). Although such images at this resolution are still useful clinically, improved resolution would enhance the system's performance, potentially enabling real-time OCT-guided microsurgery of the larynx.

  8. Multi-aperture digital coherent combining for free-space optical communication receivers.

    Science.gov (United States)

    Geisler, David J; Yarnall, Timothy M; Stevens, Mark L; Schieler, Curt M; Robinson, Bryan S; Hamilton, Scott A

    2016-06-13

    Space-to-ground optical communication systems can benefit from reducing the size, weight, and power profiles of space terminals. One way of reducing the required power-aperture product on a space platform is to implement effective, but costly, single-aperture ground terminals with large collection areas. In contrast, we present a ground terminal receiver architecture in which many small less-expensive apertures are efficiently combined to create a large effective aperture while maintaining excellent receiver sensitivity. This is accomplished via coherent detection behind each aperture followed by digitization. The digitized signals are then combined in a digital signal processing chain. Experimental results demonstrate lossless coherent combining of four lasercom signals, at power levels below 0.1 photons/bit/aperture.

  9. Mechanisms of Very Late Drug-Eluting Stent Thrombosis Assessed by Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Taniwaki, Masanori; Radu, Maria D; Zaugg, Serge

    2016-01-01

    BACKGROUND: The pathomechanisms underlying very late stent thrombosis (VLST) after implantation of drug-eluting stents (DES) are incompletely understood. Using optical coherence tomography, we investigated potential causes of this adverse event. METHODS AND RESULTS: Between August 2010 and Decemb...

  10. Numerical Simulation of Partially-Coherent Broadband Optical Imaging Using the FDTD Method

    Science.gov (United States)

    Çapoğlu, İlker R.; White, Craig A.; Rogers, Jeremy D.; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim

    2012-01-01

    Rigorous numerical modeling of optical systems has attracted interest in diverse research areas ranging from biophotonics to photolithography. We report the full-vector electromagnetic numerical simulation of a broadband optical imaging system with partially-coherent and unpolarized illumination. The scattering of light from the sample is calculated using the finite-difference time-domain (FDTD) numerical method. Geometrical optics principles are applied to the scattered light to obtain the intensity distribution at the image plane. Multilayered object spaces are also supported by our algorithm. For the first time, numerical FDTD calculations are directly compared to and shown to agree well with broadband experimental microscopy results. PMID:21540939

  11. Polarization sensitive optical coherence tomography in dentistry

    International Nuclear Information System (INIS)

    Dichtl, S.

    1998-01-01

    Optical coherence tomography (OCT) is a noninvasive and noncontact technique for obtaining cross-sectional images of biologic structure, which was initially introduced to depict the transparent tissue of the eye. It employs the partial coherence properties of a light source to image structures with high resolution (< 20 (m). Recently, this technique has also been applied in turbid media. This tomographic imaging is analogous to conventional ultrasound B mode imaging, except that OCT measures the intensity of backreflected infrared light rather than acoustical waves. First applications, of OCT in dentistry for diagnosing periodontal disease have been reported by Colston et al. presenting in vitro OCT images of the dental and periodontal tissues of porcine premolar teeth. In this work, the feasibility of polarisation sensitive OCT for dental material is suggested. In contrast with conventional OCT, where the magnitude of backscattered light as a function of depth is imaged, backscattered light is used to image the magnitude of the birefringence in the sample as a function of depth. Partial loss of birefringence is known to be an early indication of incipient caries or tissue thermal damage. Applying this technique for caries diagnosis or guidance regarding optimal dosimetry for thermally mediated laser therapeutic procedures, polarisation sensitive OCT would represent a promising new technology for dentistry. (author)

  12. INFORMATIVITY OF SPECTRAL OPTICAL COHERENT TOMOGRAPHY IN AGGRESSIVE POSTERIOR RETINOPATHY OF PREMATURITY

    Directory of Open Access Journals (Sweden)

    A. V. Tereshchenko

    2017-01-01

    Full Text Available The purpose: to evaluate the informativity of optical coherence tomography in patients with aggressive posterior retinopathy of prematurity. Patients and methods. spectral optical coherence tomography using portable device iVue-100 with a removable camera (Optovue, USA was held in 32 children (64 eyes with aggressive posterior retinopathy of prematurity with a gestational period 26–31 week. Results. Children with aggressive posterior retinopathy of prematurity at the stage of early clinical manifestations, in addition to the indication that the immaturity of the retina, according to the spectral optical coherence tomography revealed only a few areas of epiretinal proliferation, which are not visualized with a digital retinoscopy and binocular indirect ophthalmoscopy. When the process is more pronounced in children with retinopathy of prematurity aggressive rear stage manifestation already determined multiple zones epiretinal proliferation as a "mushroom" and "flake" conglomerates with rear zone hyaloid membrane had an uneven seal. Coarser structural disorders of the retina and the vitreoretinal interface have been identified in patients with advancedstage aggressive posterior retinopathy of prematurity. We determined the shaft extraretinal proliferation as a "comb", as well as portions of epiretinal proliferation on the border of vascularized and avascular retina, which tended to merge, and the formation of massive hyperreflection complexes, lifted back hyaloid membrane, which was not only uneven sealed, but in some places is stratified. Conclusion. Despite the complexity of the procedure and the complexity of its implementation, the data obtained are particularly valuable and informative because they allow to complement the clinical picture and objectify it. It helps to choose the optimal tactics and improvement of a differentiated approach to the treatment of aggressive posterior retinopathy of prematurity.

  13. Neuromyelitis optica and multiple sclerosis: Seeing differences through optical coherence tomography

    Science.gov (United States)

    Bennett, JL; de Seze, J; Lana-Peixoto, M; Palace, J; Waldman, A; Schippling, S; Tenembaum, S; Banwell, B; Greenberg, B; Levy, M; Fujihara, K; Chan, KH; Kim, HJ; Asgari, N; Sato, DK; Saiz, A; Wuerfel, J; Zimmermann, H; Green, A; Villoslada, P

    2015-01-01

    Neuromyelitis optica (NMO) is an inflammatory autoimmune disease of the central nervous system that preferentially targets the optic nerves and spinal cord. The clinical presentation may suggest multiple sclerosis (MS), but a highly specific serum autoantibody against the astrocytic water channel aquaporin-4 present in up to 80% of NMO patients enables distinction from MS. Optic neuritis may occur in either condition resulting in neuro-anatomical retinal changes. Optical coherence tomography (OCT) has become a useful tool for analyzing retinal damage both in MS and NMO. Numerous studies showed that optic neuritis in NMO typically results in more severe retinal nerve fiber layer (RNFL) and ganglion cell layer thinning and more frequent development of microcystic macular edema than in MS. Furthermore, while patients’ RNFL thinning also occurs in the absence of optic neuritis in MS, subclinical damage seems to be rare in NMO. Thus, OCT might be useful in differentiating NMO from MS and serve as an outcome parameter in clinical studies. PMID:25662342

  14. Neurofibromatosis: an update of ophthalmic characteristics and applications of optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Abdolrahimzadeh B

    2016-05-01

    Full Text Available Barmak Abdolrahimzadeh,1 Domenica Carmen Piraino,2 Giorgio Albanese,2 Filippo Cruciani,2 Siavash Rahimi3 1Polimed Beltramelli Medical Center, Rome, Italy; 2Section of Ophthalmology, Department of Sense Organs, University of Rome “Sapienza”, Rome, Italy; 3Pathology Centre, Queen Alexandra Hospital, Portsmouth, UK Abstract: Neurofibromatosis (NF is a multisystem disorder and tumor predisposition syndrome caused by genetic mutation on chromosome 17-17q11.2 in NF type 1 (NF1, and on chromosome 22-22q12.2 in NF type 2. The disorder is characterized by considerable heterogeneity of clinical expression. NF1 is the form with the most characteristic ocular manifestations. Lisch nodules of the iris are among the well-known diagnostic criteria for the disease. Glaucoma and associated globe enlargement have been described in a significant proportion of patients with NF1 and orbital–facial involvement. Optic nerve glioma may cause strabismus and proptosis, and palpebral neurofibroma may reach considerable size and occasionally show malignant transformation. Near infrared reflectance has greatly contributed to enhancing our knowledge on choroidal alterations in NF1. Indeed, some authors have proposed to include these among the diagnostic criteria. Optical coherence tomography has given new insight on retinal alterations and is a noninvasive tool in the management of optic nerve gliomas in children. Ocular manifestations in NF type 2 can range from early-onset cataracts in up to 80% of cases to optic nerve hamartomas and combined pigment epithelial and retinal hamartomas. Keywords: neurofibromatosis, ophthalmic, optical coherence tomography, infrared reflectance, choroideal nodules, Lisch nodules

  15. Identification and tunable optical coherent control of transition-metal spins in silicon carbide

    NARCIS (Netherlands)

    Bosma, Tom; Lof, Gerrit J. J.; Gilardoni, Carmem M.; Zwier, Olger V.; Hendriks, Freddie; Ellison, Alexandre; Magnusson, Björn; Gällström, Andreas; Ivanov, Ivan G.; Son, N. T.; Havenith, Remco W. A.; Wal, Caspar H. van der

    2018-01-01

    Color centers in wide-bandgap semiconductors are attractive systems for quantum technologies since they can combine long-coherent electronic spin and bright optical properties. Several suitable centers have been identified, most famously the nitrogen-vacancy defect in diamond. However, integration

  16. Adaptive restoration of a partially coherent blurred image using an all-optical feedback interferometer with a liquid-crystal device.

    Science.gov (United States)

    Shirai, Tomohiro; Barnes, Thomas H

    2002-02-01

    A liquid-crystal adaptive optics system using all-optical feedback interferometry is applied to partially coherent imaging through a phase disturbance. A theoretical analysis based on the propagation of the cross-spectral density shows that the blurred image due to the phase disturbance can be restored, in principle, irrespective of the state of coherence of the light illuminating the object. Experimental verification of the theory has been performed for two cases when the object to be imaged is illuminated by spatially coherent light originating from a He-Ne laser and by spatially incoherent white light from a halogen lamp. We observed in both cases that images blurred by the phase disturbance were successfully restored, in agreement with the theory, immediately after the adaptive optics system was activated. The origin of the deviation of the experimental results from the theory, together with the effect of the feedback misalignment inherent in our optical arrangement, is also discussed.

  17. The Optic Disc Drusen Studies Consortium Recommendations for Diagnosis of Optic Disc Drusen Using Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Malmqvist, Lasse; Bursztyn, Lulu; Costello, Fiona

    2018-01-01

    imaging optical coherence tomography (EDI-OCT) has improved the visualization of more deeply buried ODD. There is, however, no consensus regarding the diagnosis of ODD using OCT. The purpose of this study was to develop a consensus recommendation for diagnosing ODD using OCT. METHODS: The members...... of the Optic Disc Drusen Studies (ODDS) Consortium are either fellowship trained neuro-ophthalmologists with an interest in ODD, or researchers with an interest in ODD. Four standardization steps were performed by the consortium members with a focus on both image acquisition and diagnosis of ODD. RESULTS......: Based on prior knowledge and experiences from the standardization steps, the ODDS Consortium reached a consensus regarding OCT acquisition and diagnosis of ODD. The recommendations from the ODDS Consortium include scanning protocol, data selection, data analysis, and nomenclature. CONCLUSIONS: The ODDS...

  18. Visible light optical coherence microscopy imaging of the mouse cortex with femtoliter volume resolution

    Science.gov (United States)

    Merkle, Conrad W.; Chong, Shau Poh; Kho, Aaron M.; Zhu, Jun; Kholiqov, Oybek; Dubra, Alfredo; Srinivasan, Vivek J.

    2018-02-01

    Most flying-spot Optical Coherence Tomography (OCT) and Optical Coherence Microscopy (OCM) systems use a symmetric confocal geometry, where the detection path retraces the illumination path starting from and ending with the spatial mode of a single mode optical fiber. Here, we describe a visible light OCM instrument that breaks this symmetry to improve transverse resolution without sacrificing collection efficiency in scattering tissue. This was achieved by overfilling a 0.3 numerical aperture (NA) water immersion objective on the illumination path, while maintaining a conventional Gaussian mode detection path (1/e2 intensity diameter 0.82 Airy disks), enabling 1.1 μm full-width at half-maximum (FWHM) transverse resolution. At the same time, a 0.9 μm FWHM axial resolution in tissue, achieved by a broadband visible light source, enabled femtoliter volume resolution. We characterized this instrument according to paraxial coherent microscopy theory, and then used it to image the meningeal layers, intravascular red blood cell-free layer, and myelinated axons in the mouse neocortex in vivo through the thinned skull. Finally, by introducing a 0.8 NA water immersion objective, we improved the lateral resolution to 0.44 μm FWHM, which provided a volumetric resolution of 0.2 fL, revealing cell bodies in cortical layer I of the mouse brain with OCM for the first time.

  19. Coherent Pound-Drever-Hall technique for high resolution fiber optic strain sensor at very low light power

    Science.gov (United States)

    Wu, Mengxin; Liu, Qingwen; Chen, Jiageng; He, Zuyuan

    2017-04-01

    Pound-Drever-Hall (PDH) technique has been widely adopted for ultrahigh resolution fiber-optic sensors, but its performance degenerates seriously as the light power drops. To solve this problem, we developed a coherent PDH technique for weak optical signal detection, with which the signal-to-noise ratio (SNR) of demodulated PDH signal is dramatically improved. In the demonstrational experiments, a high resolution fiber-optic sensor using the proposed technique is realized, and n"-order strain resolution at a low light power down to -43 dBm is achieved, which is about 15 dB lower compared with classical PDH technique. The proposed coherent PDH technique has great potentials in longer distance and larger scale sensor networks.

  20. Precision Spectral Manipulation: A Demonstration Using a Coherent Optical Memory

    Directory of Open Access Journals (Sweden)

    B. M. Sparkes

    2012-06-01

    Full Text Available The ability to coherently spectrally manipulate quantum information has the potential to improve qubit rates across quantum channels and find applications in optical quantum computing. In this paper, we present experiments that use a multielement solenoid combined with the three-level gradient echo memory scheme to perform precision spectral manipulation of optical pulses. These operations include separate bandwidth and frequency manipulation with precision down to tens of kHz, spectral filtering of up to three separate frequency components, as well as time-delayed interference between pulses with both the same, and different, frequencies. If applied in a quantum information network, these operations would enable frequency-based multiplexing of qubits.

  1. Three-dimensional imaging of artificial fingerprint by optical coherence tomography

    Science.gov (United States)

    Larin, Kirill V.; Cheng, Yezeng

    2008-03-01

    Fingerprint recognition is one of the popular used methods of biometrics. However, due to the surface topography limitation, fingerprint recognition scanners are easily been spoofed, e.g. using artificial fingerprint dummies. Thus, biometric fingerprint identification devices need to be more accurate and secure to deal with different fraudulent methods including dummy fingerprints. Previously, we demonstrated that Optical Coherence Tomography (OCT) images revealed the presence of the artificial fingerprints (made from different household materials, such as cement and liquid silicone rubber) at all times, while the artificial fingerprints easily spoofed the commercial fingerprint reader. Also we demonstrated that an analysis of the autocorrelation of the OCT images could be used in automatic recognition systems. Here, we exploited the three-dimensional (3D) imaging of the artificial fingerprint by OCT to generate vivid 3D image for both the artificial fingerprint layer and the real fingerprint layer beneath. With the reconstructed 3D image, it could not only point out whether there exists an artificial material, which is intended to spoof the scanner, above the real finger, but also could provide the hacker's fingerprint. The results of these studies suggested that Optical Coherence Tomography could be a powerful real-time noninvasive method for accurate identification of artificial fingerprints real fingerprints as well.

  2. The application of optical coherence tomography angiography in retinal diseases.

    Science.gov (United States)

    Sambhav, Kumar; Grover, Sandeep; Chalam, Kakarla V

    Optical coherence tomography angiography (OCTA) is a new, noninvasive imaging technique that generates real-time volumetric data on chorioretinal vasculature and its flow pattern. With the advent of high-speed optical coherence tomography, established enface chorioretinal segmentation, and efficient algorithms, OCTA generates images that resemble an angiogram. The principle of OCTA involves determining the change in backscattering between consecutive B-scans and then attributing the differences to the flow of erythrocytes through retinal blood vessels. OCTA has shown promise in the evaluation of common ophthalmologic diseases such as diabetic retinopathy, age-related macular degeneration, and retinal vascular occlusions. It quantifies vascular compromise reflecting the severity of diabetic retinopathy. OCTA detects the presence of choroidal neovascularization in exudative age-related macular degeneration and maps loss of choriocapillaris in nonexudative age-related macular degeneration. We describe principles of OCTA and findings in common and some uncommon retinal pathologies. Finally, we summarize its potential future applications. Its current limitations include a relatively small field of view, inability to show leakage, and a tendency for image artifacts. Further larger studies will define OCTAs utility in clinical settings and establish if the technology may offer its utility in decreasing morbidity through early detection and guide therapeutic interventions in retinal diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Retinal nerve fiber layer thickness map determined from optical coherence tomography images

    NARCIS (Netherlands)

    Mujat, M.; Chan, R. C.; Cense, B.; Park, B.H.; Joo, C.; Akkin, T.; Chen, TC; de Boer, JF

    2005-01-01

    We introduce a method to determine the retinal nerve fiber layer (RNFL) thickness in OCT images based on anisotropic noise suppression and deformable splines. Spectral-Domain Optical Coherence Tomography (SDOCT) data was acquired at 29 kHz A-line rate with a depth resolution of 2.6 mum and a depth

  4. Coherence of light. 2. ed.

    International Nuclear Information System (INIS)

    Perina, J.

    1985-01-01

    This book puts the theory of coherence of light on a rigorous mathematical footing. It deals with the classical and quantum theories and with their inter-relationships, including many results from the author's own research. Particular attention is paid to the detection of optical fields, using the correlation functions, photocount statistics and coherent state. Radiometry with light fields of arbitrary states of coherence is discussed and the coherent state methods are demonstrated by photon statistics of radiation in random and nonlinear media, using the Heisenberg-Langevin and Fokker-Planck approaches to the interaction of radiation with matter. Many experimental and theoretical results are compared. A full list of references to theoretical and experimental literature is provided. The book is intended for researchers and postgraduate students in the fields of quantum optics, quantum electronics, statistical optics, nonlinear optics, optical communication and optoelectronics. (Auth.)

  5. Assessment of laser-induced acceleration effects in optical clearing of in vivo human skin by optical coherence tomography

    International Nuclear Information System (INIS)

    Zhan, Zhigang; Wei, Huajiang; Jin, Ying

    2015-01-01

    Laser irradiation is considered to be a promising innovative technology which has been developed in an attempt to increase transdermal drug delivery. In this study, a near-infrared CW diode laser (785 nm) was applied to increase permeability of glycerol solutions in human skin in vivo and improve the optical clearing efficacy. Results show that for both 15%v/v and 30%v/v glycerol, the permeability coefficient increased significantly if the detected area of the skin tissue was treated with laser irradiation before optical clearing agents (OCAs) were applied. This study based on optical coherence tomography imaging technique and optical clearing effect finds laser irradiation a new approach for enhancing the penetration of OCAs and accelerating the rate of transdermal drug delivery. (paper)

  6. Assessment of laser-induced acceleration effects in optical clearing of in vivo human skin by optical coherence tomography

    Science.gov (United States)

    Zhan, Zhigang; Wei, Huajiang; Jin, Ying

    2015-02-01

    Laser irradiation is considered to be a promising innovative technology which has been developed in an attempt to increase transdermal drug delivery. In this study, a near-infrared CW diode laser (785 nm) was applied to increase permeability of glycerol solutions in human skin in vivo and improve the optical clearing efficacy. Results show that for both 15%v/v and 30%v/v glycerol, the permeability coefficient increased significantly if the detected area of the skin tissue was treated with laser irradiation before optical clearing agents (OCAs) were applied. This study based on optical coherence tomography imaging technique and optical clearing effect finds laser irradiation a new approach for enhancing the penetration of OCAs and accelerating the rate of transdermal drug delivery.

  7. Using spectral-domain optical coherence tomography to detect optic neuropathy in patients with craniosynostosis.

    Science.gov (United States)

    Dagi, Linda R; Tiedemann, Laura M; Heidary, Gena; Robson, Caroline D; Hall, Amber M; Zurakowski, David

    2014-12-01

    Detecting and monitoring optic neuropathy in patients with craniosynostosis is a clinical challenge due to limited cooperation, and subjective measures of visual function. The purpose of this study was to appraise the correlation of peripapillary retinal nerve fiber layer (RNFL) thickness measured by spectral-domain ocular coherence tomography (SD-OCT) with indication of optic neuropathy based on fundus examination. The medical records of all patients with craniosynostosis presenting for ophthalmic evaluation during 2013 were retrospectively reviewed. The following data were abstracted from the record: diagnosis, historical evidence of elevated intracranial pressure, current ophthalmic evaluation and visual field results, and current peripapillary RNFL thickness. A total of 54 patients were included (mean age, 10.6 years [range, 2.4-33.8 years]). Thirteen (24%) had evidence of optic neuropathy based on current fundus examination. Of these, 10 (77%) demonstrated either peripapillary RNFL elevation and papilledema or depression with optic atrophy. Sensitivity for detecting optic atrophy was 88%; for papilledema, 60%; and for either form of optic neuropathy, 77%. Specificity was 94%, 90%, and 83%, respectively. Kappa agreement was substantial for optic atrophy (κ = 0.73) and moderate for papilledema (κ = 0.39) and for either form of optic neuropathy (κ = 0.54). Logistic regression indicated that peripapillary RNFL thickness was predictive of optic neuropathy (P optic neuropathy than visual field testing (likelihood ratio = 10.02; P = 0.002). Sensitivity and specificity of logMAR visual acuity in detecting optic neuropathy were 15% and 95%, respectively. Peripapillary RNFL thickness measured by SD-OCT provides adjunctive evidence for identifying optic neuropathy in patients with craniosynostosis and appears more sensitive at detecting optic atrophy than papilledema. Copyright © 2014 American Association for Pediatric Ophthalmology and Strabismus. Published by

  8. Radio over fiber link with adaptive order n‐QAM optical phase modulated OFDM and digital coherent detection

    DEFF Research Database (Denmark)

    Arlunno, Valeria; Borkowski, Robert; Guerrero Gonzalez, Neil

    2011-01-01

    Successful digital coherent demodulation of asynchronous optical phase‐modulated adaptive order QAM (4, 16, and 64) orthogonal frequency division multiplexing signals is achieved by a single reconfigurable digital receiver after 78 km of optical deployed fiber transmission....

  9. Advanced Technologies for Ultrahigh Resolution and Functional Optical Coherence Tomography

    Science.gov (United States)

    2008-04-15

    Gorczynska, "Frequency domain optical coherence tomography techniques in eye imaging," Acta Physica Polonica A , vol. 102, pp. 739-46, 2002/12/ 2002. [57] S...other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a ...SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: a . REPORT b. ABSTRACT c. THIS PAGE 17. LIMITATION OF ABSTRACT

  10. Offline fusion of co-registered intravascular ultrasound and frequency domain optical coherence tomography images for the analysis of human atherosclerotic plaques

    DEFF Research Database (Denmark)

    Räber, Lorenz; Heo, Jung Ho; Radu, Maria D

    2012-01-01

    To demonstrate the feasibility and potential usefulness of an offline fusion of matched optical coherence tomography (OCT) and intravascular ultrasound (IVUS)/virtual histology (IVUS-VH) images.......To demonstrate the feasibility and potential usefulness of an offline fusion of matched optical coherence tomography (OCT) and intravascular ultrasound (IVUS)/virtual histology (IVUS-VH) images....

  11. Performance analysis of a hybrid fingerprint extracted from optical coherence tomography fingertip scans

    CSIR Research Space (South Africa)

    Darlow, Luke N

    2016-06-01

    Full Text Available The Hybrid fingerprint is a local-quality-specific blend of the surface and internal fingerprints, extracted from optical coherence tomography scans. Owing to its origin, and the manner in which it is obtained, the Hybrid fingerprint is a high...

  12. Frequency-swept Light Sources for Optical Coherence Tomography in the 1060nm range

    DEFF Research Database (Denmark)

    Marschall, Sebastian

    Optical coherence tomography (OCT) is a non-invasive imaging technique for visualizing the internal structure of scattering materials, such as biological tissues. It generates two- or three-dimensional images of the sample with cellular (micrometer) resolution. OCT has become an important instrum...

  13. NONINVASIVE DIAGNOSIS OF URINARY BLADDER CANCER BY CROSS-POLARIZATION OPTICAL COHERENCE TOMOGRAPHY: CLINICAL RESULTS

    Directory of Open Access Journals (Sweden)

    O. S. Streltsova

    2014-07-01

    Full Text Available The investigation examined the feasibility of cross-polarization optical cohe-rence tomography (CP OCT to detect early urinary bladder cancer (UBC. Studies were performed in 376 patients; 5290 images were obtained using an OCT 133-U optical coherence tomograph. To acquire and compare intrared-light scattering images in baseline and orthogonal polarizations is the basis of CP OCT; their analysis makes it possible to judge from the state of the epithelium/connective tissue system and to obtain information on changes in tissue depolarizing components, collagen in particular. The authors elaborated criteria as determinants of the nature of CP OCT changes in direct and orthogonal polarizations in health, inflammatory changes, and UBC at its early stage - urothelial dysplasia and carcinoma in situ in flat suspected areas.

  14. Numerical modeling of optical coherent transient processes with complex configurations - I. Angled beam geometry

    International Nuclear Information System (INIS)

    Chang Tiejun; Tian Mingzhen; Randall Babbitt, Wm.

    2004-01-01

    We present a theoretical model for optical coherent transient (OCT) processes based on Maxwell-Bloch equations for angled beam geometry. This geometry is critical in various OCT applications where the desired coherence outputs need to be spatially separated from the rest of the field. The model takes into account both the local interactions between inhomogeneously broadened two-level atoms and the laser fields, and the field propagation in optically thick media. Under the small-angle condition, the spatial dimensions transversing to the main propagation direction were treated with spatial Fourier transform to make the numerical computations for the practical settings confined within a reasonable time frame. The simulations for analog correlators and continuous processing based on stimulated photon echo have been performed using the simulator developed using the theory

  15. Strain Wave Acquisition by a Fiber Optic Coherent Sensor for Impact Monitoring.

    Science.gov (United States)

    Sbarufatti, Claudio; Beligni, Alessio; Gilioli, Andrea; Ferrario, Maddalena; Mattarei, Marco; Martinelli, Mario; Giglio, Marco

    2017-07-13

    A novel fiber optic sensing technology for high frequency dynamics detection is proposed in this paper, specifically tailored for structural health monitoring applications based on strain wave analysis, for both passive impact identification and active Lamb wave monitoring. The sensing solution relies on a fiber optic-based interferometric architecture associated to an innovative coherent detection scheme, which retrieves in a completely passive way the high-frequency phase information of the received optical signal. The sensing fiber can be arranged into different layouts, depending on the requirement of the specific application, in order to enhance the sensor sensitivity while still ensuring a limited gauge length if punctual measures are required. For active Lamb wave monitoring, this results in a sensing fiber arranged in multiple loops glued on an aluminum thin panel in order to increase the phase signal only in correspondence to the sensing points of interest. Instead, for passive impact identification, the required sensitivity is guaranteed by simply exploiting a longer gauge length glued to the structure. The fiber optic coherent (FOC) sensor is exploited to detect the strain waves emitted by a piezoelectric transducer placed on the aluminum panel or generated by an impulse hammer, respectively. The FOC sensor measurements have been compared with both a numerical model based on Finite Elements and traditional piezoelectric sensors, confirming a good agreement between experimental and simulated results for both active and passive impact monitoring scenarios.

  16. Cystoid macular edema diagnosed with optical coherent tomography in patients operated on from cataract

    International Nuclear Information System (INIS)

    Diaz Arencibia, Omar; Rodriguez Rodriguez, Beatriz; Eguias Martinez, Frank; Alemany Rubio, Ernesto; Guerra, Roberto Alejandro

    2009-01-01

    Refers frequency of cystoid macular edema diagnosed with optical coherence tomography in patients operated on from senile cataract at 'Ramon Pando Ferrer' Cuban Institute of Ophthalmology in the period from December 2006 to February 2007

  17. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography.

    Science.gov (United States)

    Wong, Kevin S K; Jian, Yifan; Cua, Michelle; Bonora, Stefano; Zawadzki, Robert J; Sarunic, Marinko V

    2015-02-01

    Wavefront sensorless adaptive optics optical coherence tomography (WSAO-OCT) is a novel imaging technique for in vivo high-resolution depth-resolved imaging that mitigates some of the challenges encountered with the use of sensor-based adaptive optics designs. This technique replaces the Hartmann Shack wavefront sensor used to measure aberrations with a depth-resolved image-driven optimization algorithm, with the metric based on the OCT volumes acquired in real-time. The custom-built ultrahigh-speed GPU processing platform and fast modal optimization algorithm presented in this paper was essential in enabling real-time, in vivo imaging of human retinas with wavefront sensorless AO correction. WSAO-OCT is especially advantageous for developing a clinical high-resolution retinal imaging system as it enables the use of a compact, low-cost and robust lens-based adaptive optics design. In this report, we describe our WSAO-OCT system for imaging the human photoreceptor mosaic in vivo. We validated our system performance by imaging the retina at several eccentricities, and demonstrated the improvement in photoreceptor visibility with WSAO compensation.

  18. Inflammatory Papillitis in Uveitis: Response to Treatment and Use of Optic Nerve Optical Coherence Tomography for Monitoring.

    Science.gov (United States)

    Cho, Heeyoon; Pillai, Parvathy; Nicholson, Laura; Sobrin, Lucia

    2016-01-01

    To describe the clinical course of uveitis-associated inflammatory papillitis and evaluate the utility and reproducibility of optic nerve spectral domain optical coherence tomography (SD-OCT). Data on 22 eyes of 14 patients with uveitis-related papillitis and optic nerve imaging were reviewed. SD-OCT measure reproducibility was determined and parameters were compared in active vs. inactive uveitis. Papillitis resolution lagged behind uveitis resolution in three patients. For SD-OCT measures, the intraclass correlation coefficients were 99.1-100% and 86.9-100% for intraobserver and interobserver reproducibility, respectively. All SD-OCT optic nerve measures except inferior and nasal peripapillary retinal thicknesses were significantly higher in active vs. inactive uveitis after correction for multiple hypotheses testing. Mean optic nerve central thickness decreased from 545.1 to 362.9 µm (p = 0.01). Resolution of inflammatory papillitis can lag behind resolution of uveitis. SD-OCT assessment of papillitis is reproducible and correlates with presence vs. resolution of uveitis.

  19. Mechanical design of thin-film diamond crystal mounting apparatus for coherence preservation hard x-ray optics

    International Nuclear Information System (INIS)

    Shu, Deming; Shvyd’ko, Yuri V.; Stoupin, Stanislav; Kim, Kwang-Je

    2016-01-01

    A new thin-film diamond crystal mounting apparatus has been designed at the Advanced Photon Source (APS) for coherence preservation hard x-ray optics with optimized thermal contact and minimized crystal strain. This novel mechanical design can be applied to new development in the field of: x-ray optics cavities for hard x-ray free-electron laser oscillators (XFELOs), self-seeding monochromators for hard x-ray free-electron laser (XFEL) with high average thermal loading, high heat load diamond crystal monochromators and beam-sharing/beam-split-and-delay devices for XFEL facilities and future upgraded high-brightness coherent x-ray source in the MBA lattice configuration at the APS.

  20. Mechanical design of thin-film diamond crystal mounting apparatus for coherence preservation hard x-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Deming, E-mail: shu@aps.anl.gov; Shvyd’ko, Yuri V.; Stoupin, Stanislav; Kim, Kwang-Je [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, U.S.A (United States)

    2016-07-27

    A new thin-film diamond crystal mounting apparatus has been designed at the Advanced Photon Source (APS) for coherence preservation hard x-ray optics with optimized thermal contact and minimized crystal strain. This novel mechanical design can be applied to new development in the field of: x-ray optics cavities for hard x-ray free-electron laser oscillators (XFELOs), self-seeding monochromators for hard x-ray free-electron laser (XFEL) with high average thermal loading, high heat load diamond crystal monochromators and beam-sharing/beam-split-and-delay devices for XFEL facilities and future upgraded high-brightness coherent x-ray source in the MBA lattice configuration at the APS.

  1. Quantitative comparison of analysis methods for spectroscopic optical coherence tomography: reply to comment

    NARCIS (Netherlands)

    Bosschaart, Nienke; van Leeuwen, Ton; Aalders, Maurice C.G.; Faber, Dirk

    2014-01-01

    We reply to the comment by Kraszewski et al on “Quantitative comparison of analysis methods for spectroscopic optical coherence tomography.” We present additional simulations evaluating the proposed window function. We conclude that our simulations show good qualitative agreement with the results of

  2. Spectral domain optical coherence tomography characteristics in diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Laxmi Gella

    2014-01-01

    Full Text Available Purpose: To report the appearance of diabetic retinopathy lesions using spectral domain optical coherence tomography (SD-OCT. Materials and Methods: A total of 287 eyes of 199 subjects were included. All the subjects underwent complete ophthalmic examination including SD-OCT. Results: The appearance of various lesions of diabetic retinopathy and the retinal layers involved were reported. In subjects with macular edema the prevalence of incomplete PVD was 55.6%. Conclusion: SD-OCT brings new insights into the morphological changes of the retina in diabetic retinopathy.

  3. Laser-ablated silicon nanoparticles: optical properties and perspectives in optical coherence tomography

    International Nuclear Information System (INIS)

    Kirillin, M Yu; Sergeeva, E A; Agrba, P D; Krainov, A D; Ezhov, A A; Shuleiko, D V; Kashkarov, P K; Zabotnov, S V

    2015-01-01

    Due to their biocompatibility silicon nanoparticles have high potential in biomedical applications, especially in optical diagnostics. In this paper we analyze properties of the silicon nanoparticles formed via laser ablation in water and study the possibility of their application as contrasting agents in optical coherence tomography (OCT). The nanoparticles suspension was produced by picosecond laser irradiation of monocrystalline silicon wafers in water. According to transmission electron microcopy analysis the silicon nanoparticles in the obtained suspension vary in size from 2 to 200 nm while concentration of the particles is estimated as 10 13 cm −3 . The optical properties of the suspension in the range from 400 to 1000 nm were studied by spectrophotometry measurements revealing a scattering coefficient of about 0.1 mm −1 and a scattering anisotropy factor in the range of 0.2–0.4. In OCT study a system with a central wavelength of 910 nm was employed. Potential of the silicon nanoparticles as a contrasting agent for OCT is studied in experiments with agarose gel phantoms. Topical application of the nanoparticles suspension allowed the obtaining of the contrast of structural features of phantom up to 14 dB in the OCT image. (paper)

  4. ULTRAHIGH SPEED SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF RETINAL AND CHORIOCAPILLARIS ALTERATIONS IN DIABETIC PATIENTS WITH AND WITHOUT RETINOPATHY.

    Science.gov (United States)

    Choi, WooJhon; Waheed, Nadia K; Moult, Eric M; Adhi, Mehreen; Lee, ByungKun; De Carlo, Talisa; Jayaraman, Vijaysekhar; Baumal, Caroline R; Duker, Jay S; Fujimoto, James G

    2017-01-01

    To investigate the utility of ultrahigh speed, swept source optical coherence tomography angiography in visualizing retinal microvascular and choriocapillaris (CC) changes in diabetic patients. The study was prospective and cross-sectional. A 1,050 nm wavelength, 400 kHz A-scan rate swept source optical coherence tomography prototype was used to perform volumetric optical coherence tomography angiography of the retinal and CC vasculatures in diabetic patients and normal subjects. Sixty-three eyes from 32 normal subjects, 9 eyes from 7 patients with proliferative diabetic retinopathy, 29 eyes from 16 patients with nonproliferative diabetic retinopathy, and 51 eyes from 28 diabetic patients without retinopathy were imaged. Retinal and CC microvascular abnormalities were observed in all stages of diabetic retinopathy. In nonproliferative diabetic retinopathy and proliferative diabetic retinopathy, optical coherence tomography angiography visualized a variety of vascular abnormalities, including clustered capillaries, dilated capillary segments, tortuous capillaries, regions of capillary dropout, reduced capillary density, abnormal capillary loops, and foveal avascular zone enlargement. In proliferative diabetic retinopathy, retinal neovascularization above the inner limiting membrane was visualized. Regions of CC flow impairment in patients with proliferative diabetic retinopathy and nonproliferative diabetic retinopathy were also observed. In 18 of the 51 of eyes from diabetic patients without retinopathy, retinal mircrovascular abnormalities were observed and CC flow impairment was found in 24 of the 51 diabetic eyes without retinopathy. The ability of optical coherence tomography angiography to visualize retinal and CC microvascular abnormalities suggests it may be a useful tool for understanding pathogenesis, evaluating treatment response, and earlier detection of vascular abnormalities in patients with diabetes.

  5. Optical Coherence Tomography Study of Experimental Anterior Ischemic Optic Neuropathy and Histologic Confirmation

    Science.gov (United States)

    Ho, Joyce K.; Stanford, Madison P.; Shariati, Mohammad A.; Dalal, Roopa; Liao, Yaping Joyce

    2013-01-01

    Purpose. The optic nerve is part of the central nervous system, and interruption of this pathway due to ischemia typically results in optic atrophy and loss of retinal ganglion cells. In this study, we assessed in vivo retinal changes following murine anterior ischemic optic neuropathy (AION) by using spectral-domain optical coherence tomography (SD-OCT) and compared these anatomic measurements to that of histology. Methods. We induced ischemia at the optic disc via laser-activated photochemical thrombosis, performed serial SD-OCT and manual segmentation of the retinal layers to measure the ganglion cell complex (GCC) and total retinal thickness, and correlated these measurements with that of histology. Results. There was impaired perfusion and leakage at the optic disc on fluorescein angiography immediately after AION and severe swelling and distortion of the peripapillary retina on day-1. We used SD-OCT to quantify the changes in retinal thickness following experimental AION, which revealed significant thickening of the GCC on day-1 after ischemia followed by gradual thinning that plateaued by week-3. Thickness of the peripapillary sensory retina was also increased on day-1 and thinned chronically. This pattern of acute retinal swelling and chronic thinning on SD-OCT correlated well with changes seen in histology and corresponded to loss of retinal ganglion layer cells after ischemia. Conclusions. This was a serial SD-OCT quantification of acute and chronic changes following experimental AION, which revealed changes in the GCC similar to that of human AION, but over a time frame of weeks rather than months. PMID:23887804

  6. Dynamic gonioscopy using optical coherence tomography.

    Science.gov (United States)

    Matonti, Frederic; Chazalon, Elodie; Trichet, Elodie; Khaled, El Samak; Denis, Danièle; Hoffart, Louis

    2012-01-01

    To describe the use of anterior segment optical coherence tomography (AS-OCT) in studying the dynamic changes of the anterior chamber angle by corneal indentation. In a prospective observational study, the anterior segments of 21 eyes were imaged using AS-OCT. After the initial scan, a second scan was executed on the same areas with a central corneal indentation. An evaluation of the reopening of the angle and its measurement were performed. With AS-OCT, the indirect signs were accurate enough to guide the diagnosis in all plateau iris confirmed by ultrabiomicroscopy. The angle widths were significantly increased after indentation. This method would appear to offer a convenient and rapid method of assessing the configuration of the anterior chamber; it may help during the routine clinical assessment and treatment of patients with narrow or closed angles, particularly when gonioscopy is difficult to interpret. Copyright 2012, SLACK Incorporated.

  7. Probing molecular chirality by coherent optical absorption spectra

    Energy Technology Data Exchange (ETDEWEB)

    Jia, W. Z. [Quantum Optoelectronics Laboratory, School of Physics and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Wei, L. F. [Quantum Optoelectronics Laboratory, School of Physics and Technology, Southwest Jiaotong University, Chengdu 610031 (China); State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2011-11-15

    We propose an approach to sensitively probe the chirality of molecules by measuring their coherent optical-absorption spectra. It is shown that quantum dynamics of the cyclic three-level chiral molecules driven by appropriately designed external fields is total-phase dependent. This will result in chirality-dependent absorption spectra for the probe field. As a consequence, the charality-dependent information in the spectra (such as the locations and relative heights of the characteristic absorption peaks) can be utilized to identify molecular chirality and determinate enantiomer excess (i.e., the percentages of different enantiomers). The feasibility of the proposal with chiral molecules confined in hollow-core photonic crystal fiber is also discussed.

  8. Autofluorescence and high-definition optical coherence tomography of retinal artery occlusions

    OpenAIRE

    Mathew, Raeba; Papavasileiou, Evangelia; Sivaprasad, Sobha

    2010-01-01

    Raeba Mathew, Evangelia Papavasileiou, Sobha SivaprasadLaser and Retinal Research Unit, Department of Ophthalmology, King’s College Hospital, Denmark Hill, London, UKBackground: The purpose of this study is to illustrate the fundus autofluorescence and high-definition optical coherence tomography (HD-OCT) features of acute and long-standing retinal artery occlusions.Design: Retrospective case series.Participants: Patients with acute and chronic retinal and cilioretinal artery occlus...

  9. Optical Coherence Tomography Angiography Features of Iris Racemose Hemangioma in 4 Cases.

    Science.gov (United States)

    Chien, Jason L; Sioufi, Kareem; Ferenczy, Sandor; Say, Emil Anthony T; Shields, Carol L

    2017-10-01

    Optical coherence tomography angiography (OCTA) allows visualization of iris racemose hemangioma course and its relation to the normal iris microvasculature. To describe OCTA features of iris racemose hemangioma. Descriptive, noncomparative case series at a tertiary referral center (Ocular Oncology Service of Wills Eye Hospital). Patients diagnosed with unilateral iris racemose hemangioma were included in the study. Features of iris racemose hemangioma on OCTA. Four eyes of 4 patients with unilateral iris racemose hemangioma were included in the study. Mean patient age was 50 years, all patients were white, and Snellen visual acuity was 20/20 in each case. All eyes had sectoral iris racemose hemangioma without associated iris or ciliary body solid tumor on clinical examination and ultrasound biomicroscopy. By anterior segment OCT, the racemose hemangioma was partially visualized in all cases. By OCTA, the hemangioma was clearly visualized as a uniform large-caliber vascular tortuous loop with intense flow characteristics superimposed over small-caliber radial iris vessels against a background of low-signal iris stroma. The vascular course on OCTA resembled a light bulb filament (filament sign), arising from the peripheral iris (base of light bulb) and forming a tortuous loop on reaching its peak (midfilament) near the pupil (n = 3) or midzonal iris (n = 1), before returning to the peripheral iris (base of light bulb). Intravenous fluorescein angiography performed in 1 eye depicted the iris hemangioma; however, small-caliber radial iris vessels were more distinct on OCTA than intravenous fluorescein angiography. Optical coherence tomography angiography is a noninvasive vascular imaging modality that clearly depicts the looping course of iris racemose hemangioma. Optical coherence tomography angiography depicted fine details of radial iris vessels, not distinct on intravenous fluorescein angiography.

  10. Anterior Segment Optical Coherence Tomography for Tear Meniscus Evaluation and its Correlation with other Tear Variables in Healthy Individuals

    Science.gov (United States)

    Dhasmana, Renu; Nagpal, Ramesh Chander

    2016-01-01

    Introduction Dry eye is one of the most common ocular diseases in this cyber era. Despite availability of multiple tests, no single test is accurate for the diagnosis of dry eye. Anterior segment optical coherence tomography is the recent tool which can be added in the armentarium of dry eye tests. Aim To evaluate tear meniscus with anterior segment optical coherence tomography and its correlation with other tear variables in normal healthy individuals. Materials and Methods In this prospective cross-sectional observational study, right eye of 203 consecutive patients were studied. All the patients were divided into three groups Group 1, 2 and 3 according to their age ≤20 years, 21-40 years and >40 years respectively. All patients underwent routine ophthalmologic examinations along with slit-lamp bio-microscopy for tear meniscus height measurement, tear film break up time, Schirmer’s I test (with anaesthesia) and optical coherence tomography imaging of inferior tear meniscus height. After focusing of the instrument with a Cross Line (CL) centered on lower tear meniscus at 6’0 clock of cornea, a 6 mm long scan was obtained. The tear meniscus height (μm) and tear meniscus area (mm2) were measured manually with help of callipers by joining upper corneo-meniscus junction to the lower lid-meniscus junction and tear meniscus height and area within the plotted line respectively and calculated by using the integrated analysis available in the custom software. Results There was significant decrease in the all tear variables with the increase in the age. According to age groups in group 1, the mean Schirmer’s (24.0±4.9)mm, tear film break up time (11.1±1.9) sec, tear meniscus height on slit lamp (600.2±167.3)mm were higher but decreased in group 2 (21.5±5.4,10.8±1.4, 597.5±186.3) and group 3 (19.8 ± 5.1, 10.2 ± 1.6, 485.6 ± 157.7) respectively. Schirmer’s test values and tear film break up time were similar in both sexes (p=0.1 and p= 0.9). Tear meniscus

  11. Teleophthalmology with optical coherence tomography imaging in community optometry. Evaluation of a quality improvement for macular patients

    Directory of Open Access Journals (Sweden)

    Kelly SP

    2011-12-01

    Full Text Available Simon P Kelly1, Ian Wallwork2, David Haider1, Kashif Qureshi11Ophthalmology Department, Royal Bolton Hospital National Health Service Foundation Trust, Bolton, 2Wallwork Opticians, Salford, UKPurpose: To describe a quality improvement for referral of National Health Service patients with macular disorders from a community optometry setting in an urban area.Methods: Service evaluation of teleophthalmology consultation based on spectral domain optical coherence tomography images acquired by the community optometrist and transmitted to hospital eye services.Results: Fifty patients with suspected macular conditions were managed via telemedicine consultation over 1 year. Responses were provided by hospital eye service-based ophthalmologists to the community optometrist or patient within the next day in 48 cases (96% and in 34 (68% patients on the same day. In the consensus opinion of the optometrist and ophthalmologist, 33 (66% patients required further “face-to-face” medical examination and were triaged on clinical urgency. Seventeen cases (34% were managed in the community and are a potential cost improvement. Specialty trainees were supervised in telemedicine consultations.Conclusion: Innovation and quality improvement were demonstrated in both optometry to ophthalmology referrals and in primary optometric care by use of telemedicine with spectral domain optical coherence tomography images. E-referral of spectral domain optical coherence tomography images assists triage of macular patients and swifter care of urgent cases. Teleophthalmology is also, in the authors’ opinion, a tool to improve interdisciplinary professional working with community optometrists. Implications for progress are discussed.Keywords: telemedicine, teleophthalmology, innovation, community referral, optical coherence tomography, service evaluation

  12. Online monitoring of printed electronics by Spectral-Domain Optical Coherence Tomography

    KAUST Repository

    Alarousu, Erkki

    2013-03-28

    Spectral-Domain Optical Coherence Tomography (SD-OCT) is an optical method capable of 3D imaging of object\\'s internal structure with micron-scale resolution. Modern SD-OCT tools offer the speed capable of online monitoring of printed devices. This paper demonstrates the use of SD-OCT in a simulated roll-to-roll (R2R) process through monitoring some structural properties of moving screen printed interdigitated electrodes. It is shown that structural properties can be resolved for speeds up to ca. 1m/min, which is the first step towards application of this method in real manufacturing processes, including roll-to-roll (R2R) printing.

  13. Three-dimensional ophthalmic optical coherence tomography with a refraction correction algorithm

    Science.gov (United States)

    Zawadzki, Robert J.; Leisser, Christoph; Leitgeb, Rainer; Pircher, Michael; Fercher, Adolf F.

    2003-10-01

    We built an optical coherence tomography (OCT) system with a rapid scanning optical delay (RSOD) line, which allows probing full axial eye length. The system produces Three-dimensional (3D) data sets that are used to generate 3D tomograms of the model eye. The raw tomographic data were processed by an algorithm, which is based on Snell"s law to correct the interface positions. The Zernike polynomials representation of the interfaces allows quantitative wave aberration measurements. 3D images of our results are presented to illustrate the capabilities of the system and the algorithm performance. The system allows us to measure intra-ocular distances.

  14. In situ gold nanoparticles formation: contrast agent for dental optical coherence tomography

    Science.gov (United States)

    Braz, Ana K. S.; Araujo, Renato E. de; Ohulchanskyy, Tymish Y.; Shukla, Shoba; Bergey, Earl J.; Gomes, Anderson S. L.; Prasad, Paras N.

    2012-06-01

    In this work we demonstrate the potential use of gold nanoparticles as contrast agents for the optical coherence tomography (OCT) imaging technique in dentistry. Here, a new in situ photothermal reduction procedure was developed, producing spherical gold nanoparticles inside dentinal layers and tubules. Gold ions were dispersed in the primer of commercially available dental bonding systems. After the application and permeation in dentin by the modified adhesive systems, the dental bonding materials were photopolymerized concurrently with the formation of gold nanoparticles. The gold nanoparticles were visualized by scanning electron microscopy (SEM). The SEM images show the presence of gold nanospheres in the hybrid layer and dentinal tubules. The diameter of the gold nanoparticles was determined to be in the range of 40 to 120 nm. Optical coherence tomography images were obtained in two- and three-dimensions. The distribution of nanoparticles was analyzed and the extended depth of nanosphere production was determined. The results show that the OCT technique, using in situ formed gold nanoparticles as contrast enhancers, can be used to visualize dentin structures in a non-invasive and non-destructive way.

  15. Design of coherent receiver optical front end for unamplified applications.

    Science.gov (United States)

    Zhang, Bo; Malouin, Christian; Schmidt, Theodore J

    2012-01-30

    Advanced modulation schemes together with coherent detection and digital signal processing has enabled the next generation high-bandwidth optical communication systems. One of the key advantages of coherent detection is its superior receiver sensitivity compared to direct detection receivers due to the gain provided by the local oscillator (LO). In unamplified applications, such as metro and edge networks, the ultimate receiver sensitivity is dictated by the amount of shot noise, thermal noise, and the residual beating of the local oscillator with relative intensity noise (LO-RIN). We show that the best sensitivity is achieved when the thermal noise is balanced with the residual LO-RIN beat noise, which results in an optimum LO power. The impact of thermal noise from the transimpedance amplifier (TIA), the RIN from the LO, and the common mode rejection ratio (CMRR) from a balanced photodiode are individually analyzed via analytical models and compared to numerical simulations. The analytical model results match well with those of the numerical simulations, providing a simplified method to quantify the impact of receiver design tradeoffs. For a practical 100 Gb/s integrated coherent receiver with 7% FEC overhead, we show that an optimum receiver sensitivity of -33 dBm can be achieved at GFEC cliff of 8.55E-5 if the LO power is optimized at 11 dBm. We also discuss a potential method to monitor the imperfections of a balanced and integrated coherent receiver.

  16. Visibility of solid and liquid fiducial markers used for image-guided radiation therapy on optical coherence tomography: an esophageal phantom study (Conference Presentation)

    Science.gov (United States)

    Jelvehgaran, Pouya; Alderliesten, Tanja; Weda, Jelmer J. A.; de Bruin, Daniel M.; Faber, Dirk J.; Hulshof, Maarten C. C. M.; van Leeuwen, Ton G.; van Herk, Marcel B.; de Boer, Johannes F.

    2017-03-01

    Radiation therapy (RT) is used in operable and inoperable esophageal cancer patients. Endoscopic ultrasound-guided fiducial marker placement allows improved translation of the disease extent on endoscopy to computed tomography (CT) images used for RT planning and enables image-guided RT. However, microscopic tumor extent at the time of RT planning is unknown. Endoscopic optical coherence tomography (OCT) is a high-resolution (10-30µm) imaging modality with the potential for accurately determining the longitudinal disease extent. Visibility of fiducial markers on OCT is crucial for integrating OCT findings with the RT planning CT. We investigated the visibility on OCT (NinePoint Medical, Inc.) of 13 commercially available solid (Visicoil, Gold Anchor, Flexicoil, Polymark, and QLRAD) and liquid (BioXmark, Lipiodol, and Hydrogel) fiducial markers of different diameter. We designed and manufactured a set of dedicated Silicone-based esophageal phantoms to perform imaging in a controlled environment. The esophageal phantoms consist of several layers with different TiO2 concentrations to simulate the scattering properties of a typical healthy human esophagus. Markers were placed at various depths (0.5, 1.1, 2.0, and 3.0mm). OCT imaging allowed detection of all fiducial markers and phantom layers. The signal to background ratio was 6-fold higher for the solid fiducial markers than the liquid fiducial markers, yet OCT was capable of visualizing all 13 fiducial markers at all investigated depths. We conclude that RT fiducial markers can be visualized with OCT. This allows integration of OCT findings with CT for image-guided RT.

  17. BER Analysis of Coherent Free-Space Optical Communication Systems with a Focal-Plane-Based Wavefront Sensor

    Science.gov (United States)

    Cao, Jingtai; Zhao, Xiaohui; Liu, Wei; Gu, Haijun

    2018-03-01

    A wavefront sensor is one of most important units for an adaptive optics system. Based on our previous works, in this paper, we discuss the bit-error-rate (BER) performance of coherent free space optical communication systems with a focal-plane-based wavefront sensor. Firstly, the theory of a focal-plane-based wavefront sensor is given. Then the relationship between the BER and the mixing efficiency with a homodyne receiver is discussed on the basis of binary-phase-shift-keying (BPSK) modulation. Finally, the numerical simulation results are shown that the BER will be decreased obviously after aberrations correction with the focal-plane-based wavefront sensor. In addition, the BER will decrease along with increasing number of photons received within a single bit. These analysis results will provide a reference for the design of the coherent Free space optical communication (FSOC) system.

  18. Coherent control of photoabsorption processes and calculation of nonlinear optical processes. Final technical report

    International Nuclear Information System (INIS)

    Lambropoulos, P.

    1998-01-01

    The work on the grant for the entire period of its duration concentrated on two different but related areas, namely coherent control of photoabsorption processes and the calculation of non linear optical processes with short wavelength radiation. On the first topic, the work dealt with the problem of controlling the population transfer from one to another bound state of a system in a route that passes through a continuum. This question is most important in the context of transferring populations between vibrational states of a molecule through a sequence of two pulses taking the system via the dissociation continuum. On the second topic, their work was motivated by the availability of XUV and soft X-ray coherent radiation sources obtained through high order harmonic generation. In addition, a few other techniques based on schemes of photo-pumped X-ray lasers promise to provide in the near-future similarly coherent sources. It is thus important to have an assessment of the possibility of extending non-linear optical processes to this range of wavelengths. This means assessing the relevant magnitude of the susceptibilities for third harmonic generation, stimulated Raman scattering, two-photon absorption, etc

  19. Laser diode technology for coherent communications

    Science.gov (United States)

    Channin, D. J.; Palfrey, S. L.; Toda, M.

    1989-01-01

    The effect of diode laser characteristics on the overall performance capabilities of coherent communication systems is discussed. In particular, attention is given to optical performance issues for diode lasers in coherent systems, measurements of key performance parameters, and optical requirements for coherent single-channel and multichannel communication systems. The discussion also covers limitations imposed by diode laser optical performance on multichannel system capabilities and implications for future developments.

  20. Optical Coherence Tomography for the Assessment of Coronary Atherosclerosis and Vessel Response after Stent Implantation

    OpenAIRE

    Gonzalo, Nieves

    2010-01-01

    textabstractOptical Coherence Tomography (OCT) is a light-based imaging modality that can provide in vivo high-resolution images of the coronary artery with a level of resolution (axial 10-20 µm) ten times higher than intravascular ultrasound. The technique, uses low-coherent near infrarred light to create high-resolution cross sectional images of the vessel. The technology refinement achieved in the last years has made this imaging modality less procedurally demanding opening its possibiliti...

  1. Microscope Integrated Intraoperative Spectral Domain Optical Coherence Tomography for Cataract Surgery: Uses and Applications.

    Science.gov (United States)

    Das, Sudeep; Kummelil, Mathew Kurian; Kharbanda, Varun; Arora, Vishal; Nagappa, Somshekar; Shetty, Rohit; Shetty, Bhujang K

    2016-05-01

    To demonstrate the uses and applications of a microscope integrated intraoperative Optical Coherence Tomography in Micro Incision Cataract Surgery (MICS) and Femtosecond Laser Assisted Cataract Surgery (FLACS). Intraoperative real time imaging using the RESCAN™ 700 (Carl Zeiss Meditec, Oberkochen, Germany) was done for patients undergoing MICS as well as FLACS. The OCT videos were reviewed at each step of the procedure and the findings were noted and analyzed. Microscope Integrated Intraoperative Optical Coherence Tomography was found to be beneficial during all the critical steps of cataract surgery. We were able to qualitatively assess wound morphology in clear corneal incisions, in terms of subclinical Descemet's detachments, tears in the inner or outer wound lips, wound gaping at the end of surgery and in identifying the adequacy of stromal hydration, for both FLACS as well as MICS. It also enabled us to segregate true posterior polar cataracts from suspected cases intraoperatively. Deciding the adequate depth of trenching was made simpler with direct visualization. The final position of the intraocular lens in the capsular bag and the lack of bioadhesivity of hydrophobic acrylic lenses were also observed. Even though Microscope Integrated Intraoperative Optical Coherence Tomography is in its early stages for its application in cataract surgery, this initial assessment does show a very promising role for this technology in the future for cataract surgery both in intraoperative decision making as well as for training purposes.

  2. Volume determination of fresh and dried bloodstains by means of optical coherence tomography

    NARCIS (Netherlands)

    Laan, Nick; Bremmer, Rolf H.; Aalders, Maurice C. G.; de Bruin, Karla G.

    2014-01-01

    The volume of bloodstains found on crime scenes may help forensic investigators reconstruct the location and kinematics of bloodletting events, as stain size, volume, and impact velocity are related. Optical coherence tomography was used as a method to determine the volume and volume ratio of dried

  3. Inclusive bit error rate analysis for coherent optical code-division multiple-access system

    Science.gov (United States)

    Katz, Gilad; Sadot, Dan

    2002-06-01

    Inclusive noise and bit error rate (BER) analysis for optical code-division multiplexing (OCDM) using coherence techniques is presented. The analysis contains crosstalk calculation of the mutual field variance for different number of users. It is shown that the crosstalk noise depends deeply on the receiver integration time, the laser coherence time, and the number of users. In addition, analytical results of the power fluctuation at the received channel due to the data modulation at the rejected channels are presented. The analysis also includes amplified spontaneous emission (ASE)-related noise effects of in-line amplifiers in a long-distance communication link.

  4. Snapshot polarization-sensitive plug-in optical module for a Fourier-domain optical coherence tomography system

    Science.gov (United States)

    Marques, Manuel J.; Rivet, Sylvain; Bradu, Adrian; Podoleanu, Adrian

    2018-02-01

    In this communication, we present a proof-of-concept polarization-sensitive Optical Coherence Tomography (PS-OCT) which can be used to characterize the retardance and the axis orientation of a linear birefringent sample. This module configuration is an improvement from our previous work1, 2 since it encodes the two polarization channels on the optical path difference, effectively carrying out the polarization measurements simultaneously (snapshot measurement), whilst retaining all the advantages (namely the insensitivity to environmental parameters when using SM fibers) of these two previous configurations. Further progress consists in employing Master Slave OCT technology,3 which is used to automatically compensate for the dispersion mismatch introduced by the elements in the module. This is essential given the encoding of the polarization states on two different optical path lengths, each of them having dissimilar dispersive properties. By utilizing this method instead of the commonly used re-linearization and numerical dispersion compensation methods an improvement in terms of the calculation time required can be achieved.

  5. VISUALIZATION FROM INTRAOPERATIVE SWEPT-SOURCE MICROSCOPE-INTEGRATED OPTICAL COHERENCE TOMOGRAPHY IN VITRECTOMY FOR COMPLICATIONS OF PROLIFERATIVE DIABETIC RETINOPATHY.

    Science.gov (United States)

    Gabr, Hesham; Chen, Xi; Zevallos-Carrasco, Oscar M; Viehland, Christian; Dandrige, Alexandria; Sarin, Neeru; Mahmoud, Tamer H; Vajzovic, Lejla; Izatt, Joseph A; Toth, Cynthia A

    2018-01-10

    To evaluate the use of live volumetric (4D) intraoperative swept-source microscope-integrated optical coherence tomography in vitrectomy for proliferative diabetic retinopathy complications. In this prospective study, we analyzed a subgroup of patients with proliferative diabetic retinopathy complications who required vitrectomy and who were imaged by the research swept-source microscope-integrated optical coherence tomography system. In near real time, images were displayed in stereo heads-up display facilitating intraoperative surgeon feedback. Postoperative review included scoring image quality, identifying different diabetic retinopathy-associated pathologies and reviewing the intraoperatively documented surgeon feedback. Twenty eyes were included. Indications for vitrectomy were tractional retinal detachment (16 eyes), combined tractional-rhegmatogenous retinal detachment (2 eyes), and vitreous hemorrhage (2 eyes). Useful, good-quality 2D (B-scans) and 4D images were obtained in 16/20 eyes (80%). In these eyes, multiple diabetic retinopathy complications could be imaged. Swept-source microscope-integrated optical coherence tomography provided surgical guidance, e.g., in identifying dissection planes under fibrovascular membranes, and in determining residual membranes and traction that would benefit from additional peeling. In 4/20 eyes (20%), acceptable images were captured, but they were not useful due to high tractional retinal detachment elevation which was challenging for imaging. Swept-source microscope-integrated optical coherence tomography can provide important guidance during surgery for proliferative diabetic retinopathy complications through intraoperative identification of different complications and facilitation of intraoperative decision making.

  6. Damage invariant and high security acquisition of the internal fingerprint using optical coherence tomography

    CSIR Research Space (South Africa)

    Darlow, Luke N

    2016-11-01

    Full Text Available representation they offer. Using an emerging fingerprint acquisition technology – optical coherence tomography – to access an internal fingerprint under the skin surface, this paper serves to address two limitations of conventional scanners: fingertip skin damage...

  7. Digital adaptive optics for achieving space-invariant lateral resolution in optical coherence tomography

    International Nuclear Information System (INIS)

    Kumar, A.

    2015-01-01

    Optical coherence tomography (OCT) is a non-invasive optical interferometric imaging technique that provides reflectivity profiles of the sample structures with high axial resolution. The high axial resolution is due to the use of low coherence (broad-band) light source. However, the lateral resolution in OCT depends on the numerical aperture (NA) of the focusing/imaging optics and it is affected by defocus and other higher order optical aberrations induced by the imperfect optics, or by the sample itself.Hardware based adaptive optics (AO) has been successfully combined with OCT to achieve high lateral resolution in combination with high axial resolution provided by OCT. AO, which conventionally uses Shack-Hartmann wavefront sensor (SH WFS) and deformable mirror for wavefront sensing and correction respectively, can compensate for optical aberration and can enable diffraction-limited resolution in OCT. Visualization of cone photoreceptors in 3-D has been successfully demonstrated using AO-OCT. However, OCT being an interferometric imaging technique can provide access to phase information.This phase information can be exploited by digital adaptive optics (DAO) techniques to correct optical aberration in the post-processing step to obtain diffraction-limited space invariant lateral resolution throughout the image volume. Thus, the need for hardware based AO can be eliminated, which in turn can reduce the system complexity and economical cost. In the first paper of this thesis, a novel DAO method based on sub-aperture correlation is presented which is the digital equivalent of SH WFS. The advantage of this method is that it is non-iterative in nature and it does not require a priori knowledge of any system parameters such wavelength, focal length, NA or detector pixel size. For experimental proof, a FF SS OCT system was used and the sample consisted of resolution test target and a plastic plate that introduced random optical aberration. Experimental results show that

  8. Engineering aspects of a fully mirrored endoscope

    International Nuclear Information System (INIS)

    Terra, A.; Huber, A.; Schweer, B.; Mertens, Ph.; Arnoux, G.; Balshaw, N.; Brezinsek, S.; Egner, S.; Hartl, M.; Kampf, D.; Klammer, J.; Lambertz, H.T.; Morlock, C.; Murari, A.; Reindl, M.; Sanders, S.; Sergienko, G.; Spencer, G.

    2013-01-01

    Highlights: ► Replacement of JET diagnostics to match the new ITER-like Wall. ► The endoscope test ITER-like design with only mirror based optics. ► Withstanding and diagnostic capability during Plasma operation and disruptions. ► Engineering process from design to installation and procurement. -- Abstract: The development of optical diagnostics, like endoscopes, compatible with the ITER environment (metallic plasma facing components, neutron proof optics, etc.) is a challenge, but current tokamaks such as JET provide opportunities to test fully working concepts. This paper describes the engineering aspects of a fully mirrored endoscope that has recently been designed, procured and installed on JET. The system must operate in a very strict environment with high temperature, high magnetic fields up to B = 4 T and rapid field variations (∂B/∂t ∼ 100 T/s) that induce high stresses due to eddy currents in the front mirror assembly. It must be designed to withstand high mechanical loads especially during disruptions, which lead to acceleration of about 7 g at 14 Hz. For the JET endoscope, when the plasma thermal loading, direct and indirect, was added to the assumed disruption loads, the reserve factor, defined as a ratio of yield strength over summed up von Mises stresses, was close to 1 for the mirror components. To ensure reliable operation, several analyses were performed to evaluate the thermo-mechanical performance of the endoscope and a final validation was obtained from mechanical and thermal tests, before the system's final installation in May 2011. During the tests, stability of the field of view angle variation was kept below 1° despite the high thermal gradient on endoscope head (∂T/∂x ∼ 500 K/m). In parallel, to ensure long time operation and to prevent undesirable performance degradation, a shutter system was also implemented in order to reduce impurity deposition on in-vessel mirrors but also to allow in situ transmission calibration

  9. Crack detection with an eddy-current probe integrated into an endoscope

    International Nuclear Information System (INIS)

    Elfinger, F.X.

    1982-01-01

    Objective and quantitive crack detection in inaccessible machine internals is possible without dismantling the equipment through the combination of endoscopic and eddy-current techniques, whereby the endoscope is used both as an optical and a mechanical manipulator. Thus the availability of machinery can be increased and the overhaul costs lowered. The integrated endoscope/eddy-current probe should be utilised whenever normal endoscopic inspection indicates a possible crack location which cannot be assessed definitively through visual observation alone. Its use is also advantageous in monitoring crack propagation within a component. (orig.) [de

  10. Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060 nm

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Klein, Thomas; Wieser, Wolfgang

    2012-01-01

    Optical coherence tomography (OCT) in the 1060nm range is interesting for in vivo imaging of the human posterior eye segment (retina, choroid, sclera) due to low absorption in water and deep penetration into the tissue. Rapidly tunable light sources, such as Fourier domain mode-locked (FDML) lasers...

  11. Celebrating the Year of Light….. from medicine to security with Optical Coherence Tomography

    CSIR Research Space (South Africa)

    Singh, A

    2015-10-01

    Full Text Available medicine to security with Optical Coherence Tomography Ann Singh1, Ameeth Sharma1, Ted Roberts1, Rethabile Khutlang2, Rocky Ramokolo1, Nico Marome1, Leandra Webb2, Natasha Botha2,Aletta Karsten3, Hencharl Strauss1 1 CSIR, National Laser Centre, P.O Box...

  12. Efficient trigger signal generation from wasted backward amplified stimulated emission at optical amplifiers for optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Kim Seung Taek

    2015-01-01

    Full Text Available This paper propose an optical structure to generate trigger signals for optical coherence tomography (OCT using backward light which is usually disposed. The backward light is called backward amplified stimulated emission generated from semiconductor optical amplifier (SOA when using swept wavelength tunable laser (SWTL. A circulator is applied to block undesirable lights in the SWTL instead of an isolator in common SWTL. The circulator also diverts backward amplified spontaneous lights, which finally bring out trigger signals for a high speed digitizer. The spectra of the forward lights at SOA and the waveform of the backward lights were measured to check the procedure of the trigger formation in the experiment. The results showed that the trigger signals from the proposed SWTL with the circulator was quite usable in OCT.

  13. Intracoronary Optical Coherence Tomography: A Comprehensive Review: Clinical and Research Applications

    OpenAIRE

    Bezerra, Hiram G.; Costa, Marco A.; Guagliumi, Giulio; Rollins, Andrew M.; Simon, Daniel I.

    2009-01-01

    Cardiovascular optical coherence tomography (OCT) is a catheter-based invasive imaging system. Using light rather than ultrasound, OCT produces high-resolution in vivo images of coronary arteries and deployed stents. This comprehensive review will assist practicing interventional cardiologists in understanding the technical aspects of OCT based upon the physics of light and will also highlight the emerging research and clinical applications of OCT. Semi-automated imaging analyses of OCT syste...

  14. Subgingival calculus imaging based on swept-source optical coherence tomography

    Science.gov (United States)

    Hsieh, Yao-Sheng; Ho, Yi-Ching; Lee, Shyh-Yuan; Lu, Chih-Wei; Jiang, Cho-Pei; Chuang, Ching-Cheng; Wang, Chun-Yang; Sun, Chia-Wei

    2011-07-01

    We characterized and imaged dental calculus using swept-source optical coherence tomography (SS-OCT). The refractive indices of enamel, dentin, cementum, and calculus were measured as 1.625 +/- 0.024, 1.534 +/- 0.029, 1.570 +/- 0.021, and 2.097 +/- 0.094, respectively. Dental calculus leads strong scattering properties, and thus, the region can be identified from enamel with SS-OCT imaging. An extracted human tooth with calculus is covered with gingiva tissue as an in vitro sample for tomographic imaging.

  15. Fiber-Based Polarization Diversity Detection for Polarization-Sensitive Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Hamid Pahlevaninezhad

    2014-09-01

    Full Text Available We present a new fiber-based polarization diversity detection (PDD scheme for polarization sensitive optical coherence tomography (PSOCT. This implementation uses a new custom miniaturized polarization-maintaining fiber coupler with single mode (SM fiber inputs and polarization maintaining (PM fiber outputs. The SM fiber inputs obviate matching the optical lengths of the two orthogonal OCT polarization channels prior to interference while the PM fiber outputs ensure defined orthogonal axes after interference. Advantages of this detection scheme over those with bulk optics PDD include lower cost, easier miniaturization, and more relaxed alignment and handling issues. We incorporate this PDD scheme into a galvanometer-scanned OCT system to demonstrate system calibration and PSOCT imaging of an achromatic quarter-wave plate, fingernail in vivo, and chicken breast, salmon, cow leg, and basa fish muscle samples ex vivo.

  16. Potential applications of optical coherence tomography angiography in glaucoma.

    Science.gov (United States)

    Dastiridou, Anna; Chopra, Vikas

    2018-05-01

    Optical coherence tomography angiography (OCTA) is a novel, noninvasive imaging modality that allows assessment of the retinal and choroidal vasculature. The scope of this review is to summarize recent studies using OCTA in glaucoma and highlight potential applications of this new technology in the field of glaucoma. OCTA studies have shown that retinal vascular changes may not develop solely as a result of advanced glaucoma damage. OCTA-derived measurements have provided evidence for lower retinal vascular densities at the optic nerve head, peripapillary and macula in preperimetric-glaucoma and early-glaucoma, as well as, in more advanced glaucoma, in comparison to with normal eyes. OCTA is a novel imaging modality that has already started to expand our knowledge base regarding the role of ocular blood flow in glaucoma. Future studies will better elucidate the role of OCTA-derived measurements in clinical practice, research, and clinical trials in glaucoma.

  17. Imaging of oral pathological tissue using optical coherence tomography

    Science.gov (United States)

    Canjau, Silvana; Todea, Carmen; Sinescu, Cosmin; Duma, Virgil-Florin; Topala, Florin I.; Podoleanu, Adrian G.

    2014-01-01

    Oral squamous cell carcinoma (OSCC) constitutes 90% of oral cancer. Early detection is a cornerstone to improve survival. Interaction of light with tissues may highlight changes in tissue structure and metabolism. We propose optical coherence tomography (OCT), as a non-invasive diagnosis method, being a new high-resolution optical technique that permits tri-dimensional (3-D), real-time imaging of near surface abnormalities in complex tissues. In this study half of the excisional biopsy was directed to the pathologist and the other half was assigned for OCT investigation. Histopathology validated the results. Areas of OSCC of the buccal mucosa were identified in the OCT images. The elements obserced included extensive epithelial down-growth, the disruption of the basement membrane, with areas of erosion, an epithelial layer that was highly variable in thickness and invasion into the sub-epithelial layers. Therefore, OCT appears to be a highly promising imaging modality.

  18. Imaging choroidal neovascular membrane using en face swept-source optical coherence tomography angiography

    Directory of Open Access Journals (Sweden)

    Moussa M

    2017-10-01

    Full Text Available Magdy Moussa,1,2 Mahmoud Leila,3 Hagar Khalid1,2 1Ophthalmology Department, Faculty of Medicine, Tanta University, Tanta, Egypt; 2MEDIC Eye Center, Tanta, Egypt; 3Retina Department, Research Institute of Ophthalmology, Giza, Egypt Purpose: The aim of this study was to assess the efficacy of swept-source optical coherence tomography angiography (SS-OCTA in delineating the morphology of choroidal neovascular membrane (CNV. Patients and methods: This was a retrospective observational case series reviewing clinical data and fundus fluorescein angiography (FFA, swept-source optical coherence tomography (SS-OCT, and SS-OCTA images of patients with CNV and comparing the findings. The swept-source technology enables deeper penetration and superior axial resolution. The incorporated blood flow detection algorithm, optical coherence tomography angiography ratio analysis (OCTARA, enables visualization of CNV in vivo without the need for dye injection. Results: The study included 136 eyes of 105 patients. Active lesions on SS-OCTA images showed increased capillary density, extensive arborization, vascular anastomosis and looping, and peri-lesional hollow. Inactive lesions showed decreased capillary density, presence of large linear vessels, and presence of feeder vessels supplying the CNV. We detected positive correlation between SS-OCTA, FFA, and SS-OCT images in 97% of eyes. In the remaining 3%, SS-OCTA confirmed the absence of CNV, whereas FFA and SS-OCT either were inconclusive in the diagnosis of CNV or yielded false-positive results. Conclusion: SS-OCT and SS-OCTA represent a reproducible risk-free analog for FFA in imaging CNV. SS-OCTA is particularly versatile in cases where FFA and SS-OCT are inconclusive. Keywords: swept-source OCT, OCT angiography, imaging of CNV, OCTARA algorithm

  19. Observation of Biological Tissues Using Common Path Optical Coherence Tomography with Gold Coated Conical Tip Lens Fiber

    International Nuclear Information System (INIS)

    Taguchi, K; Sugiyama, J; Totsuka, M; Imanaka, S

    2012-01-01

    In this paper, we proposed a high lateral resolution common-path Fourier domain optical coherence tomography(OCT) system with the use of a chemically etched single mode fiber. In our experiments, single mode optical fiber for 1310nm was used for preparing the tapered tips. Our system used a conical microlens that was chemically etched by selective chemical etching technique using an etching solution of buffered hydrofluoric acid (BHF). From experimental results, we verified that our proposed optical coherence tomography system could operate as a common-path Fourier domain OCT system and conical tip lens fiber was very useful for a high lateral resolution common-path Fourier domain OCT system. Furthermore, we could observe a surface of paramecium bursaria and symbiotic chlorella in the paramecium bursaria using gold coated conical-tip fiber in the water.

  20. Macular detachment associated with an optic pit: optical coherence tomography patterns and surgical outcomes.

    Science.gov (United States)

    Skaat, Alon; Moroz, Iris; Moisseiev, Joseph

    2013-01-01

    To describe the different optical coherence tomography (OCT) patterns in macular detachment associated with an optic disc pit and their long-term evolution following vitrectomy.
 The data of 5 patients (9-43 years of age) with unilateral macular detachment associated with an optic disc pit, who had at least 1 year of follow-up, were compiled. Pars plana vitrectomy combined with gas tamponade was performed as the primary procedure in all patients. The OCT scans, best-corrected visual acuity (BCVA), and anatomic outcomes were documented.
 Two main OCT patterns were identified: a multilayer schisis pattern and a serous detachment pattern. Patients with multilayer schisis pattern were older and demonstrated worse mean preoperative (20/160) and postoperative (20/50) BCVA compared to serous detachment pattern patients (20/30 and 20/20, respectively). An average of 2.3 procedures per patient was needed in the multilayer schisis pattern compared to just one procedure in the serous detachment pattern. In 3 patients, additional pneumatic retinopexy was performed with full resolution of the subretinal fluid achieved.
 Two distinct OCT patterns were observed in eyes with macular detachments with an optic pit, with different clinical features and prognoses. Excellent final visual acuity was obtained in all eyes, including those that required several surgical procedures.

  1. Characterizing the optical properties of human brain tissue with high numerical aperture optical coherence tomography.

    Science.gov (United States)

    Wang, Hui; Magnain, Caroline; Sakadžić, Sava; Fischl, Bruce; Boas, David A

    2017-12-01

    Quantification of tissue optical properties with optical coherence tomography (OCT) has proven to be useful in evaluating structural characteristics and pathological changes. Previous studies primarily used an exponential model to analyze low numerical aperture (NA) OCT measurements and obtain the total attenuation coefficient for biological tissue. In this study, we develop a systematic method that includes the confocal parameter for modeling the depth profiles of high NA OCT, when the confocal parameter cannot be ignored. This approach enables us to quantify tissue optical properties with higher lateral resolution. The model parameter predictions for the scattering coefficients were tested with calibrated microsphere phantoms. The application of the model to human brain tissue demonstrates that the scattering and back-scattering coefficients each provide unique information, allowing us to differentially identify laminar structures in primary visual cortex and distinguish various nuclei in the midbrain. The combination of the two optical properties greatly enhances the power of OCT to distinguish intricate structures in the human brain beyond what is achievable with measured OCT intensity information alone, and therefore has the potential to enable objective evaluation of normal brain structure as well as pathological conditions in brain diseases. These results represent a promising step for enabling the quantification of tissue optical properties from high NA OCT.

  2. Optical fiber-based full Mueller polarimeter for endoscopic imaging using a two-wavelength simultaneous measurement method.

    Science.gov (United States)

    Vizet, Jérémy; Manhas, Sandeep; Tran, Jacqueline; Validire, Pierre; Benali, Abdelali; Garcia-Caurel, Enric; Pierangelo, Angelo; De Martino, Antonello; Pagnoux, Dominique

    2016-07-01

    This paper reports a technique based on spectrally differential measurement for determining the full Mueller matrix of a biological sample through an optical fiber. In this technique, two close wavelengths were used simultaneously, one for characterizing the fiber and the other for characterizing the assembly of fiber and sample. The characteristics of the fiber measured at one wavelength were used to decouple its contribution from the measurement on the assembly of fiber and sample and then to extract sample Mueller matrix at the second wavelength. The proof of concept was experimentally validated by measuring polarimetric parameters of various calibrated optical components through the optical fiber. Then, polarimetric images of histological cuts of human colon tissues were measured, and retardance, diattenuation, and orientation of the main axes of fibrillar regions were displayed. Finally, these images were successfully compared with images obtained by a free space Mueller microscope. As the reported method does not use any moving component, it offers attractive integration possibilities with an endoscopic probe.

  3. Optical coherence tomography at follow-up after percutaneous coronary intervention: relationship between procedural dissections, stent strut malapposition and stent healing

    DEFF Research Database (Denmark)

    Radu, Maria; Jørgensen, Erik; Kelbæk, Henning

    2011-01-01

    To analyse the relationship between strut apposition as visualised with optical coherence tomography (OCT) at follow-up and clinical and procedural characteristics at stent implantation, and to examine the relationship between strut apposition and stent healing.......To analyse the relationship between strut apposition as visualised with optical coherence tomography (OCT) at follow-up and clinical and procedural characteristics at stent implantation, and to examine the relationship between strut apposition and stent healing....

  4. Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity

    DEFF Research Database (Denmark)

    Morsy, Hanan; Kamp, Søren; Thrane, Lars

    2010-01-01

    Epidermal thickness (ET) has been suggested as a surrogate measure of psoriasis severity. Optical coherence tomography (OCT) is a recent imaging technology that provides real-time skin images to a depth of 1.8 mm with a micrometre resolution. OCT may provide an accurate in vivo measure of ET. It ...

  5. Optical coherence tomography in gynecology: a narrative review

    Science.gov (United States)

    Kirillin, Mikhail; Motovilova, Tatiana; Shakhova, Natalia

    2017-12-01

    Modern gynecologic practice requires noninvasive diagnostics techniques capable of detecting morphological and functional alterations in tissues of female reproductive organs. Optical coherence tomography (OCT) is a promising tool for providing imaging of biotissues with high resolution at depths up to 2 mm. Design of the customized probes provides wide opportunities for OCT use in gynecology. This paper contains a retrospective insight into the history of OCT employment in gynecology, an overview of the existing gynecologic OCT probes, including those for combination with other diagnostic modalities, and state-of-the-art application of OCT for diagnostics of tumor and nontumor pathologies of female genitalia. Perspectives of OCT both in diagnostics and treatment planning and monitoring in gynecology are overviewed.

  6. Epidermal segmentation in high-definition optical coherence tomography.

    Science.gov (United States)

    Li, Annan; Cheng, Jun; Yow, Ai Ping; Wall, Carolin; Wong, Damon Wing Kee; Tey, Hong Liang; Liu, Jiang

    2015-01-01

    Epidermis segmentation is a crucial step in many dermatological applications. Recently, high-definition optical coherence tomography (HD-OCT) has been developed and applied to imaging subsurface skin tissues. In this paper, a novel epidermis segmentation method using HD-OCT is proposed in which the epidermis is segmented by 3 steps: the weighted least square-based pre-processing, the graph-based skin surface detection and the local integral projection-based dermal-epidermal junction detection respectively. Using a dataset of five 3D volumes, we found that this method correlates well with the conventional method of manually marking out the epidermis. This method can therefore serve to effectively and rapidly delineate the epidermis for study and clinical management of skin diseases.

  7. Colposcopic imaging using visible-light optical coherence tomography

    Science.gov (United States)

    Duan, Lian; McRaven, Michael D.; Liu, Wenzhong; Shu, Xiao; Hu, Jianmin; Sun, Cheng; Veazey, Ronald S.; Hope, Thomas J.; Zhang, Hao F.

    2017-05-01

    High-resolution colposcopic optical coherence tomography (OCT) provides key anatomical measures, such as thickness and minor traumatic injury of vaginal epithelium, of the female reproductive tract noninvasively. This information can be helpful in both fundamental investigations in animal models and disease screenings in humans. We present a fiber-based visible-light OCT and two probe designs for colposcopic application. One probe conducts circular scanning using a DC motor, and the other probe is capable of three-dimensional imaging over a 4.6×4.6-mm2 area using a pair of galvo scanners. Using this colposcopic vis-OCT with both probes, we acquired high-resolution images from whole isolated macaque vaginal samples and identified biopsy lesions.

  8. Harmonic scalpel versus electrocautery for harvest of radial artery conduits: Reduced risk of spasm and intimal injury on optical coherence tomography

    Science.gov (United States)

    Brazio, Philip S.; Laird, Patrick C.; Xu, Chenyang; Gu, Junyan; Burris, Nicholas S.; Brown, Emile N.; Kon, Zachary N.; Poston, Robert S.

    2009-01-01

    Objective Vasospasm is the primary obstacle to widespread adoption of the radial artery as a conduit in coronary artery bypass grafting. We used optical coherence tomography, a catheter-based intravascular imaging modality, to measure the degree of radial artery spasm induced by means of harvest with electrocautery or a harmonic scalpel in patients undergoing coronary artery bypass grafting. Methods Radial arteries were harvested from 44 consecutive patients with a harmonic scalpel (n = 15) or electrocautery (n = 29). Vessels were imaged before harvesting and after removal from the arm, with saphenous vein tracts serving as internal controls. Optical coherence tomographic findings for the degree of harvesting-induced injury were validated against histologic measures. Results Optical coherence tomographic measures of endovascular dimensions and injury correlated strongly with histologic findings. Mean luminal volume, a measure of vasospasm, decreased significantly less after harvesting with a harmonic scalpel (9% ± 7%) than with electrocautery (35% ± 6%, P = .015). Completely intact intima was present in 11 (73%) of 15 radial arteries harvested with a harmonic scalpel (73%) compared with 9 of 29 arteries harvested by means of electrocautery (31%, P = .011). Intraoperative flow measurements and patency rates at 5 days postoperatively were not significantly different among groups. Conclusions Optical coherence tomography provides a level of speed and accuracy for quantifying endothelial injury and vasospasm that has not been described for any other modality, suggesting potential as an intraoperative quality assurance tool. Our optical coherence tomographic findings suggest that the harmonic scalpel induces less spasm and intimal injury compared with electrocautery. PMID:19026820

  9. Determination of characteristics of degenerative joint disease using optical coherence tomography and polarization sensitive optical coherence tomography.

    Science.gov (United States)

    Xie, Tuqiang; Guo, Shuguang; Zhang, Jun; Chen, Zhongping; Peavy, George M

    2006-10-01

    Previous studies have demonstrated that optical coherence tomography (OCT) could be used to delineate alterations in the microstructure of cartilage, and have suggested that changes in the polarization state of light as detected by OCT could provide information on the birefringence properties of articular cartilage as influenced by disease. In this study we have used both OCT and polarization sensitive optical coherence tomography (PS-OCT) technologies to evaluate normal and abnormal bovine articular cartilage according to established structural, organizational, and birefringent characteristics of degenerative joint disease (DJD) in order to determine if this technology can be used to differentiate various stages of DJD as a minimally invasive imaging tool. Fresh bovine femoral-tibial joints were obtained from an abattoir, and 45 cartilage specimens were harvested from 8 tibial plateaus. Whole ex vivo specimens of normal and degenerative articular cartilage were imaged by both OCT and PS-OCT, then fixed and processed for histological evaluation. OCT/PS-OCT images and corresponding histology sections of each specimen were scored according to a modified Mankin structural grading scale and compared. OCT and PS-OCT imaging allowed structural evaluation of intact articular cartilage along a 6 mm surface length to a depth of 2 mm with a transverse resolution of 12 microm and an axial resolution of 10 microm. The OCT and PS-OCT images demonstrated characteristic alterations in the structure of articular cartilage with a high correlation to histological evaluation (kappa = 0.776). The OCT images were able to demonstrate early to advanced structural changes of articular cartilage while the optical phase retardation images obtained by PS-OCT imaging were able to discriminate areas where disorganization of the cartilage matrix was present, however, these characteristics are much different than those reported where OCT images alone were used to characterize tissue

  10. Holonomic Quantum Control by Coherent Optical Excitation in Diamond

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Brian B.; Jerger, Paul C.; Shkolnikov, V. O.; Heremans, F. Joseph; Burkard, Guido; Awschalom, David D.

    2017-10-01

    Although geometric phases in quantum evolution are historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary singlequbit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems.

  11. Holonomic Quantum Control by Coherent Optical Excitation in Diamond.

    Science.gov (United States)

    Zhou, Brian B; Jerger, Paul C; Shkolnikov, V O; Heremans, F Joseph; Burkard, Guido; Awschalom, David D

    2017-10-06

    Although geometric phases in quantum evolution are historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary single-qubit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems.

  12. A prospective, comparative, observational study on optical coherence tomography of the anterior eye segment

    NARCIS (Netherlands)

    Theelen, T.; Hoyng, C.B.

    2013-01-01

    BACKGROUND: We compared two commercially available spectral-domain optical coherence tomography (OCT) devices according to their capacity of imaging the anterior segment of the eye with the same detail and quality. METHODS: A prospective, observational, single-visit study with individuals aged 18

  13. A joint estimation detection of Glaucoma progression in 3D spectral domain optical coherence tomography optic nerve head images

    Science.gov (United States)

    Belghith, Akram; Bowd, Christopher; Weinreb, Robert N.; Zangwill, Linda M.

    2014-03-01

    Glaucoma is an ocular disease characterized by distinctive changes in the optic nerve head (ONH) and visual field. Glaucoma can strike without symptoms and causes blindness if it remains without treatment. Therefore, early disease detection is important so that treatment can be initiated and blindness prevented. In this context, important advances in technology for non-invasive imaging of the eye have been made providing quantitative tools to measure structural changes in ONH topography, an essential element for glaucoma detection and monitoring. 3D spectral domain optical coherence tomography (SD-OCT), an optical imaging technique, has been commonly used to discriminate glaucomatous from healthy subjects. In this paper, we present a new framework for detection of glaucoma progression using 3D SD-OCT images. In contrast to previous works that the retinal nerve fiber layer (RNFL) thickness measurement provided by commercially available spectral-domain optical coherence tomograph, we consider the whole 3D volume for change detection. To integrate a priori knowledge and in particular the spatial voxel dependency in the change detection map, we propose the use of the Markov Random Field to handle a such dependency. To accommodate the presence of false positive detection, the estimated change detection map is then used to classify a 3D SDOCT image into the "non-progressing" and "progressing" glaucoma classes, based on a fuzzy logic classifier. We compared the diagnostic performance of the proposed framework to existing methods of progression detection.

  14. Combination of optical coherence tomography and reflectometry technique for eye measurement

    Science.gov (United States)

    Lu, Hui; Wang, Michael R.

    2013-03-01

    A spectral domain optical coherence tomography system is integrated with an optical reflectometer to provide dualfunctional eye measurement. The system is capable of performing anterior segment imaging and tear film thickness evaluation at the same time. The axial resolution of the anterior segment imaging is 6μm while for tear film thickness measurement the resolution is about 21 nm. We use the integrated device to examine a model eye with artificial tear film. Structures such as the cornea, the ciliary muscle, and the front boundary of the crystalline lens are clearly visible. Artificial tear film thickness is determined simultaneously with anterior segment imaging. The integrated device is also flexible for separated anterior segment imaging or tear thickness evaluation.

  15. Vector method for strain estimation in phase-sensitive optical coherence elastography

    Science.gov (United States)

    Matveyev, A. L.; Matveev, L. A.; Sovetsky, A. A.; Gelikonov, G. V.; Moiseev, A. A.; Zaitsev, V. Y.

    2018-06-01

    A noise-tolerant approach to strain estimation in phase-sensitive optical coherence elastography, robust to decorrelation distortions, is discussed. The method is based on evaluation of interframe phase-variation gradient, but its main feature is that the phase is singled out at the very last step of the gradient estimation. All intermediate steps operate with complex-valued optical coherence tomography (OCT) signals represented as vectors in the complex plane (hence, we call this approach the ‘vector’ method). In comparison with such a popular method as least-square fitting of the phase-difference slope over a selected region (even in the improved variant with amplitude weighting for suppressing small-amplitude noisy pixels), the vector approach demonstrates superior tolerance to both additive noise in the receiving system and speckle-decorrelation caused by tissue straining. Another advantage of the vector approach is that it obviates the usual necessity of error-prone phase unwrapping. Here, special attention is paid to modifications of the vector method that make it especially suitable for processing deformations with significant lateral inhomogeneity, which often occur in real situations. The method’s advantages are demonstrated using both simulated and real OCT scans obtained during reshaping of a collagenous tissue sample irradiated by an IR laser beam producing complex spatially inhomogeneous deformations.

  16. REDUCED GANGLION CELL VOLUME ON OPTICAL COHERENCE TOMOGRAPHY IN PATIENTS WITH GEOGRAPHIC ATROPHY.

    Science.gov (United States)

    Ramkumar, Hema L; Nguyen, Brian; Bartsch, Dirk-Uwe; Saunders, Luke J; Muftuoglu, Ilkay Kilic; You, Qisheng; Freeman, William R

    2017-11-07

    Geographic atrophy (GA) is the sequelae of macular degeneration. Automated inner retinal analysis using optical coherence tomography is flawed because segmentation software is calibrated for normal eyes. The purpose of this study is to determine whether ganglion cell layer (GCL) volume is reduced in GA using manual analysis. Nineteen eyes with subfoveal GA and 22 controls were selected for morphometric analyses. Heidelberg scanning laser ophthalmoscope optical coherence tomography images of the optic nerve and macula were obtained, and the Viewing Module was used to manually calibrate retinal layer segmentation. Retinal layer volumes in the central 3-mm and surrounding 6-mm diameter were measured. Linear mixed models were used for statistics. The GCL volume in the central 3 mm of the macula is less (P = 0.003), and the retinal nerve fiber layer volume is more (P = 0.02) in patients with GA when compared with controls. Ganglion cell layer volume positively correlated with outer nuclear layer volume (P = 0.020). The patients with geographic atrophy have a small significant loss of the GCL. Ganglion cell death may precede axonal loss, and increased macular retinal nerve fiber layer volumes are not indicative of GCL volume. Residual ganglion cell stimulation by interneurons may enable vision in patients with GA.

  17. Optical Coherence Tomography Parameters in Morbidly Obese Patients Who Underwent Laparoscopic Sleeve Gastrectomy

    Directory of Open Access Journals (Sweden)

    Berna Dogan

    2016-01-01

    Full Text Available Purpose. To investigate changes in optical coherence tomography parameters in morbidly obese patients who had undergone laparoscopic sleeve gastrectomy (LSG. Methods. A total of 41 eyes of 41 morbidly obese patients (BMI ≥ 40 who had undergone LSG were included in study. The topographic optic disc parameters, central macular thickness (CMT, total macular volume (TMV, and retinal ganglion cell layer (RGCL were measured by spectral-domain optical coherence tomography (SD-OCT. Subfoveal choroidal thickness (SFCT was measured by enhanced deep imaging-optical coherence tomography (EDI-OCT. Results. The mean CMT was 237.4±24.5 μm, 239.3±24.1 μm, and 240.4±24.5 μm preoperatively, 3 months postoperatively, and 6 months postoperatively, respectively (p<0.01. The mean TMV was 9.88±0.52 mm3, 9.96±0.56 mm3, and 9.99±0.56 mm3 preoperatively, 3 months postoperatively, and 6 months postoperatively, respectively (p<0.01. The mean RGCL was 81.2±6.5 μm, 82.7±6.6 μm, and 82.9±6.5 μm preoperatively, 3 months postoperatively, and 6 months postoperatively, respectively (p<0.01. The mean SFCT was 309.8±71.8 μm, 331.0±81.4 μm, and 352.7±81.4 μm preoperatively, 3 months postoperatively, and 6 months postoperatively, respectively (p<0.01. No statistically significant differences were found between the preoperative values and 3- and 6-month postoperative values in rim area (p=0.34, disc area (p=0.64, vertical cup/disc ratio (p=0.39, cup volume (p=0.08, or retinal nerve fiber layer (p=0.90. Conclusions. Morbidly obese patients who undergo LSG experience a statistically significant increase in CMT, TMV, SFCT, and RGCL at 3 months and 6 months after surgery.

  18. Limits of the endoscopic transnasal transtubercular approach.

    Science.gov (United States)

    Gellner, Verena; Tomazic, Peter V

    2018-06-01

    The endoscopic transnasal trans-sphenoidal transtubercular approach has become a standard alternative approach to neurosurgical transcranial routes for lesions of the anterior skull base in particular pathologies of the anterior tubercle, sphenoid plane, and midline lesions up to the interpeduncular cistern. For both the endoscopic and the transcranial approach indications must strictly be evaluated and tailored to the patients' morphology and condition. The purpose of this review was to evaluate the evidence in literature of the limitations of the endoscopic transtubercular approach. A PubMed/Medline search was conducted in January 2018 entering following keywords. Upon initial screening 7 papers were included in this review. There are several other papers describing the endoscopic transtubercular approach (ETTA). We tried to list the limitation factors according to the actual existing literature as cited. The main limiting factors are laterally extending lesions in relation to the optic canal and vascular encasement and/or unfavorable tumor tissue consistency. The ETTA is considered as a high level transnasal endoscopic extended skull base approach and requires excellent training, skills and experience.

  19. Study of the Radial Peripapillary Capillary Network in Congenital Optic Disc Anomalies With Optical Coherence Tomography Angiography.

    Science.gov (United States)

    Cennamo, Gilda; Rossi, Claudia; Ruggiero, Pasquale; de Crecchio, Giuseppe; Cennamo, Giovanni

    2017-04-01

    To evaluate the radial peripapillary capillary network with optical coherence tomography angiography (angio-OCT) in morning glory syndrome (MGS), optic disc colobomas, and optic disc pits, and to explore possible correlations between the neural vascular structure and the pathogenesis of congenital optic disc anomalies. Prospective observational comparative case series. Fifteen eyes of 15 patients with congenital optic disc anomalies were enrolled in this study. All patients underwent angio-OCT. The scans were centered on optic discs. The mean age at presentation was 33 years (range: 19-50 years). Congenital optic disc anomalies were identified in all 15 eyes. Three eyes had the characteristic funduscopic signs of MGS, and angio-OCT scans of the peripapillary retina revealed a dense microvascular network. Optic disc colobomas were found in 5 eyes, and the characteristic funduscopic signs of optic pits were found in 7 eyes. Angio-OCT showed the absence of a radial peripapillary microvascular network in these 12 eyes. The finding that angio-OCT scans confirmed the presence of a peripapillary microvascular network only in MGS cases supports the hypothesis that a primary neuroectodermal abnormality and a secondary mesenchymal abnormality leads to MGS. Angio-OCT is a safe, rapid imaging technique that could shed light on the pathogenesis of rare diseases of the optic disc. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Long axial imaging range using conventional swept source lasers in optical coherence tomography via re-circulation loops

    Science.gov (United States)

    Bradu, Adrian; Jackson, David A.; Podoleanu, Adrian

    2018-03-01

    Typically, swept source optical coherence tomography (SS-OCT) imaging instruments are capable of a longer axial range than their camera based (CB) counterpart. However, there are still various applications that would take advantage for an extended axial range. In this paper, we propose an interferometer configuration that can be used to extend the axial range of the OCT instruments equipped with conventional swept-source lasers up to a few cm. In this configuration, the two arms of the interferometer are equipped with adjustable optical path length rings. The use of semiconductor optical amplifiers in the two rings allows for compensating optical losses hence, multiple paths depth reflectivity profiles (Ascans) can be combined axially. In this way, extremely long overall axial ranges are possible. The use of the recirculation loops produces an effect equivalent to that of extending the coherence length of the swept source laser. Using this approach, the achievable axial imaging range in SS-OCT can reach values well beyond the limit imposed by the coherence length of the laser, to exceed in principle many centimeters. In the present work, we demonstrate axial ranges exceeding 4 cm using a commercial swept source laser and reaching 6 cm using an "in-house" swept source laser. When used in a conventional set-up alone, both these lasers can provide less than a few mm axial range.

  1. Diagnostic value of optical coherence tomography for intracranial pressure in idiopathic intracranial hypertension

    DEFF Research Database (Denmark)

    Skau, M; Yri, H; Sander, B

    2013-01-01

    BACKGROUND: Idiopathic intracranial hypertension (IIH) is a condition of raised intracranial pressure (ICP) in the absence of space-occupying lesions or other known etiology. It primarily affects young obese females, and potentially causes permanent visual loss due to papilledema and secondary...... optic atrophy. The aim of this study was to evaluate the diagnostic value of optical coherence tomography (OCT) as a marker for CSF opening pressure in patients with idiopathic intracranial hypertension (IIH). METHODS: We conducted a case-control study of 20 newly diagnosed, 21 long-term IIH patients...

  2. DS-OCDMA Encoder/Decoder Performance Analysis Using Optical Low-Coherence Reflectometry

    Science.gov (United States)

    Fsaifes, Ihsan; Lepers, Catherine; Obaton, Anne-Francoise; Gallion, Philippe

    2006-08-01

    Direct-sequence optical code-division multiple-access (DS-OCDMA) encoder/decoder based on sampled fiber Bragg gratings (S-FBGs) is characterized using phase-sensitive optical low-coherence reflectometry (OLCR). The OLCR technique allows localized measurements of FBG wavelength and physical length inside one S-FBG. This paper shows how the discrepancies between specifications and measurements of the different FBGs have some impact on spectral and temporal pulse responses of the OCDMA encoder/decoder. The FBG physical lengths lower than the specified ones are shown to affect the mean optical power reflected by the OCDMA encoder/decoder. The FBG wavelengths that are detuned from each other induce some modulations of S-FBG reflectivity resulting in encoder/decoder sensitivity to laser wavelength drift of the OCDMA system. Finally, highlighted by this OLCR study, some solutions to overcome limitations in performance with the S-FBG technology are suggested.

  3. Comparison of Glaucoma Progression Detection by Optical Coherence Tomography and Visual Field.

    Science.gov (United States)

    Zhang, Xinbo; Dastiridou, Anna; Francis, Brian A; Tan, Ou; Varma, Rohit; Greenfield, David S; Schuman, Joel S; Huang, David

    2017-12-01

    To compare longitudinal glaucoma progression detection using optical coherence tomography (OCT) and visual field (VF). Validity assessment. We analyzed subjects with more than 4 semi-annual follow-up visits (every 6 months) in the multicenter Advanced Imaging for Glaucoma Study. Fourier-domain optical coherence tomography (OCT) was used to map the thickness of the peripapillary retinal nerve fiber layer (NFL) and ganglion cell complex (GCC). OCT-based progression detection was defined as a significant negative trend for either NFL or GCC. VF progression was reached if either the event or trend analysis reached significance. The analysis included 356 glaucoma suspect/preperimetric glaucoma (GS/PPG) eyes and 153 perimetric glaucoma (PG) eyes. Follow-up length was 54.1 ± 16.2 months for GS/PPG eyes and 56.7 ± 16.0 for PG eyes. Progression was detected in 62.1% of PG eyes and 59.8% of GS/PPG eyes by OCT, significantly (P glaucoma. While the utility of NFL declines in advanced glaucoma, GCC remains a sensitive progression detector from early to advanced stages. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Optical coherence elastography for evaluating customized riboflavin/UV-A corneal collagen crosslinking

    Science.gov (United States)

    Singh, Manmohan; Li, Jiasong; Vantipalli, Srilatha; Han, Zhaolong; Larin, Kirill V.; Twa, Michael D.

    2017-09-01

    UV-induced collagen cross-linking is a promising treatment for keratoconus that stiffens corneal tissue and prevents further degeneration. Since keratoconus is generally localized, the efficacy of collagen cross-linking (CXL) treatments could be improved by stiffening only the weakened parts of the cornea. Here, we demonstrate that optical coherence elastography (OCE) can spatially resolve transverse variations in corneal stiffness. A short duration (≤1 ms) focused air-pulse induced low amplitude (≤10 μm) deformations in the samples that were detected using a phase-stabilized optical coherence tomography system. A two-dimensional map of material stiffness was generated by measuring the damped natural frequency (DNF) of the air-pulse induced response at various transverse locations of a heterogeneous phantom mimicking a customized CXL treatment. After validation on the phantoms, similar OCE measurements were made on spatially selective CXL-treated in situ rabbit corneas. The results showed that this technique was able to clearly distinguish the untreated and CXL-treated regions of the cornea, where CXL increased the DNF of the cornea by ˜51%. Due to the noncontact nature and minimal excitation force, this technique may be valuable for in vivo assessments of corneal biomechanical properties.

  5. 8th Rochester Conference on Coherence and Quantum Optics

    CERN Document Server

    2001-01-01

    The Eighth Rochester Conference on Coherence and Quantum Optics was held on the campus of the University of Rochester during the period June 13-16,2001. This volume contains the proceedings of the meeting. The meeting was preceded by an affiliated conference, the International Conference on Quantum Information, with some overlapping sessions on June 13. The proceedings of the affiliated conference will be published separately by the Optical Society of America. A few papers that were presented in common plenary sessions of the two conferences will be published in both proceedings volumes. More than 268 scientists from 28 countries participated in the week long discussions and presentations. This Conference differed from the previous seven in the CQO series in several ways, the most important of which was the absence of Leonard Mandel. Professor Mandel died a few months before the conference. A special memorial symposium in his honor was held at the end of the conference. The presentations from that sym...

  6. 7th Rochester Conference on Coherence and Quantum Optics

    CERN Document Server

    Mandel, Leonard; Wolf, Emil

    1996-01-01

    The Seventh Rochester Conference on Coherence and Quantum Optics was held on the campus of the University of Rochester during the four-day period June 7 - 10, 1996. More than 280 scientists from 33 countries participated. This book contains the Proceedings of the meeting. This Conference differed from the previous six in the series in having only a limited number of oral presentations, in order to avoid too many parallel sessions. Another new feature was the introduction of tutorial lectures. Most contributed papers were presented in poster sessions. The Conference was sponsored by the American Physical Society, by the Optical Society of America, by the International Union of Pure and Applied Physics and by the University of Rochester. We wish to express our appreciation to these organizations for their support and we especially extend our thanks to the International Union of Pure and Applied Physics for providing financial assistance to a number of speakers from Third World countries, to enable them to take ...

  7. Optimization of coronary optical coherence tomography imaging using the attenuation-compensated technique: a validation study.

    NARCIS (Netherlands)

    Teo, Jing Chun; Foin, Nicolas; Otsuka, Fumiyuki; Bulluck, Heerajnarain; Fam, Jiang Ming; Wong, Philip; Low, Fatt Hoe; Leo, Hwa Liang; Mari, Jean-Martial; Joner, Michael; Girard, Michael J A; Virmani, Renu; Bezerra, HG.; Costa, MA.; Guagliumi, G.; Rollins, AM.; Simon, D.; Gutiérrez-Chico, JL.; Alegría-Barrero, E.; Teijeiro-Mestre, R.; Chan, PH.; Tsujioka, H.; de Silva, R.; Otsuka, F.; Joner, M.; Prati, F.; Virmani, R.; Narula, J.; Members, WC.; Levine, GN.; Bates, ER.; Blankenship, JC.; Bailey, SR.; Bittl, JA.; Prati, F.; Guagliumi, G.; Mintz, G.S.; Costa, Marco; Regar, E.; Akasaka, T.; Roleder, T.; Jąkała, J.; Kałuża, GL.; Partyka, Ł.; Proniewska, K.; Pociask, E.; Girard, MJA.; Strouthidis, NG.; Ethier, CR.; Mari, JM.; Mari, JM.; Strouthidis, NG.; Park, SC.; Girard, MJA.; van der Lee, R.; Foin, N.; Otsuka, F.; Wong, P.K.; Mari, J-M.; Joner, M.; Nakano, M.; Vorpahl, M.; Otsuka, F.; Taniwaki, M.; Yazdani, SK.; Finn, AV.; Nakano, M.; Yahagi, K.; Yamamoto, H.; Taniwaki, M.; Otsuka, F.; Ladich, ER.; Girard, MJ.; Ang, M.; Chung, CW.; Farook, M.; Strouthidis, N.; Mehta, JS.; Foin, N.; Mari, JM.; Nijjer, S.; Sen, S.; Petraco, R.; Ghione, M.; Liu, X.; Kang, JU.; Virmani, R.; Kolodgie, F.D.; Burke, AP.; Farb, A.; Schwartz, S.M.; Yahagi, K.; Kolodgie, F.D.; Otsuka, F.; Finn, AV.; Davis, HR.; Joner, M.; Kume, T.; Akasaka, T.; Kawamoto, T.; Watanabe, N.; Toyota, E.; Neishi, Y.; Rieber, J.; Meissner, O.; Babaryka, G.; Reim, S.; Oswald, M.E.; Koenig, A.S.; Tearney, G. J.; Regar, E.; Akasaka, T.; Adriaenssens, T.; Barlis, P.; Bezerra, HG.; Yabushita, H.; Bouma, BE.; Houser, S. L.; Aretz, HT.; Jang, I-K.; Schlendorf, KH.; Guo, J.; Sun, L.; Chen, Y.D.; Tian, F.; Liu, HB.; Chen, L.; Kawasaki, M.; Bouma, BE.; Bressner, J. E.; Houser, S. L.; Nadkarni, S. K.; MacNeill, BD.; Jansen, CHP.; Onthank, DC.; Cuello, F.; Botnar, RM.; Wiethoff, AJ.; Warley, A.; von Birgelen, C.; Hartmann, A. M.; Kubo, T.; Akasaka, T.; Shite, J.; Suzuki, T.; Uemura, S.; Yu, B.; Habara, M.; Nasu, K.; Terashima, M.; Kaneda, H.; Yokota, D.; Ko, E.; Virmani, R.; Burke, AP.; Kolodgie, F.D.; Farb, A.; Takarada, S.; Imanishi, T.; Kubo, T.; Tanimoto, T.; Kitabata, H.; Nakamura, N.; Hattori, K.; Ozaki, Y.; Ismail, TF.; Okumura, M.; Naruse, H.; Kan, S.; Nishio, R.; Shinke, T.; Otake, H.; Nakagawa, M.; Nagoshi, R.; Inoue, T.; Sinclair, H.D.; Bourantas, C.; Bagnall, A.; Mintz, G.S.; Kunadian, V.; Tearney, G. J.; Yabushita, H.; Houser, S. L.; Aretz, HT.; Jang, I-K.; Schlendorf, KH.; van Soest, G.; Goderie, T.; Regar, E.; Koljenović, S.; Leenders, GL. van; Gonzalo, N.; Xu, C.; Schmitt, JM.; Carlier, SG.; Virmani, R.; van der Meer, FJ; Faber, D.J.; Sassoon, DMB.; Aalders, M.C.; Pasterkamp, G.; Leeuwen, TG. van; Schmitt, JM.; Knuttel, A.; Yadlowsky, M.; Eckhaus, MA.; Karamata, B.; Laubscher, M.; Leutenegger, M.; Bourquin, S.; Lasser, T.; Lambelet, P.; Vermeer, K.A.; Mo, J.; Weda, J.J.A.; Lemij, H.G.; Boer, JF. de

    2016-01-01

    PURPOSE To optimize conventional coronary optical coherence tomography (OCT) images using the attenuation-compensated technique to improve identification of plaques and the external elastic lamina (EEL) contour. METHOD The attenuation-compensated technique was optimized via manipulating contrast

  8. Optical Coherence Tomography for Tracking Canvas Deformation

    International Nuclear Information System (INIS)

    Targowski, P.; Gora, M.; Bajraszewski, T.; Szkulmowski, M.; Rouba, B.; Lekawa-Wyslouch, T.; Tyminska-Widmer, L.

    2006-01-01

    Preliminary results of the application of optical coherence tomography (OCT), in particular in its spectral mode (SOCT), to tracking of deformations in paintings on canvas caused by periodical humidity changes are presented. The setup is able to monitor the position of a chosen point at the surface of a painting with micrometre precision, simultaneously in three dimensions, every 100 seconds. This allows recording of deformations associated with crack formation. For the particular painting model examined, it was shown that the surface moves in-plane towards the corner, and bulges outwards (Z-direction) in response to a rise in humidity. Subsequent to the first humidification/drying cycle, translation in the Z-direction is decreased, whilst in-plane translations increase somewhat. It was also shown that the response of the painting on canvas begins immediately on changing the relative humidity in the surroundings.

  9. Application of optical coherence tomography attenuation imaging for quantification of optical properties in medulloblastoma

    Science.gov (United States)

    Vuong, Barry; Skowron, Patryk; Kiehl, Tim-Rasmus; Kyan, Matthew; Garzia, Livia; Genis, Helen; Sun, Cuiru; Taylor, Michael D.; Yang, Victor X. D.

    2015-03-01

    The hemodynamic environment is known to play a crucial role in the progression, rupture, and treatment of intracranial aneurysms. Currently there is difficulty assessing and measuring blood flow profiles in vivo. An emerging high resolution imaging modality known as split spectrum Doppler optical coherence tomography (ssDOCT) has demonstrated the capability to quantify hemodynamic patterns as well as arterial microstructural changes. In this study, we present a novel in vitro method to acquire precise blood flow patterns within a patient- specific aneurysm silicone flow models using ssDOCT imaging. Computational fluid dynamics (CFD) models were generated to verify ssDOCT results.

  10. Ultra-High Resolution Optical Coherence Tomography Imaging of Unilateral Drusen in a 31 Year Old Woman.

    Science.gov (United States)

    de Carlo, Talisa E; Adhi, Mehreen; Lu, Chen D; Duker, Jay S; Fujimoto, James G; Waheed, Nadia K

    We report a case of widespread unilateral drusen in a healthy 31 year old Caucasian woman using multi-modal imaging including ultra-high resolution optical coherence tomography (UHR-OCT). Dilated fundus exam showed multiple drusen-like lesions in the posterior pole without heme or fluid. Fundus auto fluorescence demonstrated hyperautofluorescent at the deposits. Fluorescein angiography revealed mild hyperfluorescence and staining of the lesions. Spectral-domain optical coherence tomography (SD-OCT) OS showed accumulations in the temporal macula at Bruch's membrane. UHR-OCT provided improved axial resolution compared to the standard 5 μm on the commercial SD-OCT and confirmed the presence of deposits in Bruch's membrane, consistent with drusen. The retinal layers were draped over the excrescences but did not show any disruption.

  11. Increasing signal-to-noise ratio of swept-source optical coherence tomography by oversampling in k-space

    Science.gov (United States)

    Nagib, Karim; Mezgebo, Biniyam; Thakur, Rahul; Fernando, Namal; Kordi, Behzad; Sherif, Sherif

    2018-03-01

    Optical coherence tomography systems suffer from noise that could reduce ability to interpret reconstructed images correctly. We describe a method to increase the signal-to-noise ratio of swept-source optical coherence tomography (SSOCT) using oversampling in k-space. Due to this oversampling, information redundancy would be introduced in the measured interferogram that could be used to reduce white noise in the reconstructed A-scan. We applied our novel scaled nonuniform discrete Fourier transform to oversampled SS-OCT interferograms to reconstruct images of a salamander egg. The peak-signal-to-noise (PSNR) between the reconstructed images using interferograms sampled at 250MS/s andz50MS/s demonstrate that this oversampling increased the signal-to-noise ratio by 25.22 dB.

  12. Phase-controlled all-optical switching based on coherent population oscillation in a two-level system

    International Nuclear Information System (INIS)

    Liao, Ping; Yu, Song; Luo, Bin; Shen, Jing; Gu, Wanyi; Guo, Hong

    2011-01-01

    We theoretically propose a scheme of phase-controlled all-optical switching due to the effect of degenerate four-wave mixing (FWM) and coherent population oscillation (CPO) in a two-level system driven by a strong coupling field and two weak symmetrically detuned fields. The results show that the phase of the FWM field can be utilized to switch between constructive and destructive interference, which can lead to the transmission or attenuation of the probe field and thus switch the field on or off. We also find the intensity of the coupling field and the propagation distance have great influence on the performance of the switching. In our scheme, due to the quick response in semiconductor systems, a fast all-optical switching can be realized at low light level. -- Highlights: ► We study a new all-optical switching based on coherent population oscillation. ► The phase of the FWM field can be utilized to switch the probe field on or off. ► A fast and low-light-level switching can be realized in semiconductors.

  13. Comparison of optical coherence tomography and fundus photography for measuring the optic disc size.

    Science.gov (United States)

    Neubauer, Aljoscha S; Krieglstein, Tina R; Chryssafis, Christos; Thiel, Martin; Kampik, Anselm

    2006-01-01

    To assess the agreement and repeatability of optic nerve head (ONH) size measurements by optical coherence tomography (OCT) as compared to conventional planimetry of fundus photographs in normal eyes. For comparison with planimetry the absolute size of the ONH of 25 eyes from 25 normal subjects were measured by both OCT and digital fundus photography (Zeiss FF camera 450). Repeatability of automated Stratus OCT measurements were investigated by repeatedly measuring the optic disc in five normal subjects. Mean disc size was 1763 +/- 186 vertically and 1632 +/- 160 microm horizontally on planimetry. On OCT, values of 1772 +/- 317 microm vertically (p = 0.82) and a significantly smaller horizontal diameter of 1492 +/- 302 microm (p = 0.04) were obtained. The 95% limits of agreement were (-546 microm; +527 microm) for vertical and (-502 microm; +782 microm) for horizontal planimetric compared to OCT measurements. In some cases large discrepancies existed. Repeatability of automatic measurements of the optic disc by OCT was moderately good with intra-class correlation coefficients (ICC) of 0.78 horizontally and 0.83 vertically. The coefficient of repeatability indicating instrument precision was 80 microm for horizontal and 168 microm for vertical measurements. OCT can be used to determine optic disc margins in moderate agreement with planimetry in normal subjects. However, in some cases significant disagreement with photographic assessment may occur making manual inspection advisable. Automatic disc detection by OCT is moderately repeatable.

  14. Optic axis determination by fibre-based polarization-sensitive swept-source optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lu Zenghai; Kasaragod, Deepa K; Matcher, Stephen J, E-mail: z.lu@sheffield.ac.uk, E-mail: s.j.matcher@sheffield.ac.uk [Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, North Campus, Broad Lane, Sheffield, S3 7HQ (United Kingdom)

    2011-02-21

    We describe a fibre-based variable-incidence angle (VIA) polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) system to determine the 3D optical axis of birefringent biological tissues. Single-plane VIA-PS-OCT is also explored which requires measurement of the absolute fast-axis orientation. A state-of-the-art PS-SS-OCT system with some improvements both in hardware and software was used to determine the apparent optical birefringence of equine tendon for a number of different illumination directions. Polar and azimuthal angles of cut equine tendon were produced by the VIA method and compared with the nominal values. A quarter waveplate (QWP) and equine tendon were used as test targets to validate the fast-axis measurements using the system. Polar and azimuthal angles of cut equine tendon broadly agreed with the expected values within about 8% of the nominal values. A theoretical and experimental analysis of the effect of the sample arm fibre on determination of optical axis orientation using a proposed definition based on the orientation of the eigenpolarization ellipse experimentally confirms that this algorithm only works correctly for special settings of the sample arm fibre. A proposed algorithm based on the angle between Stokes vectors on the Poincare sphere is confirmed to work for all settings of the sample arm fibre. A calibration procedure is proposed to remove the sign ambiguity of the measured orientation and was confirmed experimentally by using the QWP.

  15. Optic axis determination by fibre-based polarization-sensitive swept-source optical coherence tomography

    International Nuclear Information System (INIS)

    Lu Zenghai; Kasaragod, Deepa K; Matcher, Stephen J

    2011-01-01

    We describe a fibre-based variable-incidence angle (VIA) polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) system to determine the 3D optical axis of birefringent biological tissues. Single-plane VIA-PS-OCT is also explored which requires measurement of the absolute fast-axis orientation. A state-of-the-art PS-SS-OCT system with some improvements both in hardware and software was used to determine the apparent optical birefringence of equine tendon for a number of different illumination directions. Polar and azimuthal angles of cut equine tendon were produced by the VIA method and compared with the nominal values. A quarter waveplate (QWP) and equine tendon were used as test targets to validate the fast-axis measurements using the system. Polar and azimuthal angles of cut equine tendon broadly agreed with the expected values within about 8% of the nominal values. A theoretical and experimental analysis of the effect of the sample arm fibre on determination of optical axis orientation using a proposed definition based on the orientation of the eigenpolarization ellipse experimentally confirms that this algorithm only works correctly for special settings of the sample arm fibre. A proposed algorithm based on the angle between Stokes vectors on the Poincare sphere is confirmed to work for all settings of the sample arm fibre. A calibration procedure is proposed to remove the sign ambiguity of the measured orientation and was confirmed experimentally by using the QWP.

  16. Coherent Femtosecond Spectroscopy and Nonlinear Optical Imaging on the Nanoscale

    Science.gov (United States)

    Kravtsov, Vasily

    four-wave mixing response from the tip apex and investigate its microscopic mechanism. Our results reveal a significant contribution to the third order nonlinearity of plasmonic structures due to large near-field gradients associated with nanofocused plasmons. In combination with scanning probe imaging and femtosecond pulse shaping, the nanofocused four-wave mixing response provides a basis for a novel type of ultrafast optical microscopy on the nanoscale. We demonstrate its capabilities by nano-imaging the coherent dynamics of localized plasmonic modes in a rough gold film edge with simultaneous sub-50 nm spatial and sub-5 fs temporal resolution. We capture the coherent decay and extract the dephasing times of individual plasmonic modes. Lastly, we apply our technique to study nanoscale spatial heterogeneity of the nonlinear optical response in novel two-dimensional materials: monolayer and few-layer graphene. An enhanced four-wave mixing signal is revealed on the edges of graphene flakes. We investigate the mechanism of this enhancement by performing nano-imaging on a graphene field-effect transistor with the variable carrier density controlled by electrostatic gating.

  17. Silver nanoparticles as optical clearing agent enhancers to improve caries diagnostic by optical coherence tomography

    Science.gov (United States)

    Carneiro, Vanda S. M.; Mota, Cláudia C. B. O.; Souza, Alex F.; da Silva, Evair J.; da Silva, Andrea F.; Gerbi, Marleny E. M. M.; Gomes, Anderson S. L.

    2018-02-01

    The use of silver nanoparticles as optical clearing agent (OCA) enhancers to improve caries diagnostic by optical coherence tomography (OCT) is demonstrated here. Five molars with no evident cavitation were selected. The OCAs were based on aqueous solution of silver nanoparticles (AgNP, 1.18x 1014 particles/mL, ø ≈ 10nm) and its dilution at 10% in glycerol. Teeth were placed on a platform with a micrometric screw, and after applying the OCAs, they were scanned with a Callisto SD-OCT system operating ate 930nm central wavelength. The occlusal surfaces were scanned by OCT, capturing crosssectional images with 8 mm transversal scanning, generating numerical matrices (2000x512). The OCT images had their transverse dimension preserved. AgNP-OCAs promoted image stretching due to the modification in the light optical path caused by AgNP-OCAs refractive indices close to that of the enamel. AgNP-OCAs evidenced the enamel birefringence and highlighted initial demineralization areas, that presented defined margins with higher contrast between sound and demineralized regions, with higher OCT signal intensity in those areas.

  18. Noise study of all-normal dispersion supercontinuum sources for potential application in optical coherence tomography

    DEFF Research Database (Denmark)

    Bravo Gonzalo, Ivan; Engelsholm, Rasmus Dybbro; Bang, Ole

    2017-01-01

    bandwidths, such sources are characterized by large intensity fluctuations, limiting their performance for applications in imaging such as optical coherence tomography (OCT). An approach to eliminate the influence of noise sensitive effects is to use a so-called all-normal dispersion (ANDi) fiber, in which...... the dispersion is normal for all the wavelengths of interest. Pumping these types of fibers with short enough femtosecond pulses allows to suppress stimulated Raman scattering (SRS), which is known to be as noisy process as modulation instability (MI), and coherent SC is generated through self-phase modulation...... (SPM) and optical wave breaking (OWB). In this study, we show the importance of the pump laser and fiber parameters in the design of low-noise ANDi based SC sources, for application in OCT. We numerically investigate the pulse-to-pulse fluctuations of the SC, calculating the relative intensity noise...

  19. Creation of Long-Term Coherent Optical Memory via Controlled Nonlinear Interactions in Bose-Einstein Condensates

    International Nuclear Information System (INIS)

    Zhang Rui; Garner, Sean R.; Hau, Lene Vestergaard

    2009-01-01

    A Bose-Einstein condensate confined in an optical dipole trap is used to generate long-term coherent memory for light, and storage times of more than 1 s are observed. Phase coherence of the condensate as well as controlled manipulations of elastic and inelastic atomic scattering processes are utilized to increase the storage fidelity by several orders of magnitude over previous schemes. The results have important applications for creation of long-distance quantum networks and for generation of entangled states of light and matter.

  20. Design of Optical I/Q Modulator Using Dual-drive Mach-Zehnder Modulators in Coherent Optical-OFDM System

    Science.gov (United States)

    Nehra, Monika; Kedia, Deepak

    2018-04-01

    A CO-OFDM system combines the advantages of both coherent detection and OFDM modulation for future high speed fiber transmission. In this paper, we propose an I/Q modulation technique using dual-drive MZMs for high rate 10 Gb/s CO-OFDM system. The proposed modulator provides 10.63 dBm improved optical spectra compared to a single dual-drive MZM. The simulation results in terms of BER and Q factor are quite satisfactory upto a transmission reach of 3,000 km and that to without making use of any dispersion compensation. A BER of about 8.03×10-10 and 15.06 dB Q factor have been achieved at -10.43 dBm received optical power.

  1. VARIABILITY IN FOVEAL AVASCULAR ZONE AND CAPILLARY DENSITY USING OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY MACHINES IN HEALTHY EYES.

    Science.gov (United States)

    Magrath, George N; Say, Emil Anthony T; Sioufi, Kareem; Ferenczy, Sandor; Samara, Wasim A; Shields, Carol L

    2017-11-01

    To evaluate the variability in foveal avascular zone (FAZ) and capillary density measurements on optical coherence tomography angiography using Optovue RTVue XR Avanti (OA) (Optovue) and Zeiss Cirrus HD-OCT 5000 (ZC) (Carl Zeiss Meditec). In this prospective, comparative case series, parafoveal (3 × 3 mm) optical coherence tomography angiography scans were obtained on healthy volunteers using both the Avanti and Cirrus. The FAZ area and capillary density at the level of both the superficial and deep capillary plexus were measured automatically using the built-in ReVue software (Optovue) with the Avanti as well as manually using ImageJ (National Institutes of Health) with both machines. There were 50 eyes in 25 healthy volunteers included in the analysis. Mean subject age was 33 years and there were 14 women (56%). On optical coherence tomography, mean central macular thickness was significantly greater on OA (259.1 μm) than ZC (257.6 μm, P = 0.0228). On optical coherence tomography angiography, mean superficial and deep plexus FAZ measured 0.2855 mm and 0.3465 mm on Avanti automated (A-A), 0.2739 mm and 0.3637 mm on Avanti manual (A-M), and 0.2657 mm and 0.3993 mm on Cirrus manual (C-M), respectively. There were no statistically significant differences in superficial plexus FAZ measurements between the A-A and A-M (P = 0.4019) or A-A and C-M (P = 0.1336). The A-M measured significantly larger than C-M (P = 0.0396). Deep plexus FAZ measurements were similar on A-A and A-M (P = 0.6299), but both were significantly less compared with C-M (P machine and technique are consistent and reliable between fellow eyes, significant variability exists in FAZ and capillary density measurements among different machines and techniques. Comparison of measurements across machines and techniques should be considered with caution.

  2. New variational image decomposition model for simultaneously denoising and segmenting optical coherence tomography images

    International Nuclear Information System (INIS)

    Duan, Jinming; Bai, Li; Tench, Christopher; Gottlob, Irene; Proudlock, Frank

    2015-01-01

    Optical coherence tomography (OCT) imaging plays an important role in clinical diagnosis and monitoring of diseases of the human retina. Automated analysis of optical coherence tomography images is a challenging task as the images are inherently noisy. In this paper, a novel variational image decomposition model is proposed to decompose an OCT image into three components: the first component is the original image but with the noise completely removed; the second contains the set of edges representing the retinal layer boundaries present in the image; and the third is an image of noise, or in image decomposition terms, the texture, or oscillatory patterns of the original image. In addition, a fast Fourier transform based split Bregman algorithm is developed to improve computational efficiency of solving the proposed model. Extensive experiments are conducted on both synthesised and real OCT images to demonstrate that the proposed model outperforms the state-of-the-art speckle noise reduction methods and leads to accurate retinal layer segmentation. (paper)

  3. Optical coherence tomography for imaging of skin and skin diseases

    DEFF Research Database (Denmark)

    Mogensen, Mette; Thrane, Lars; Jørgensen, Thomas Martini

    2009-01-01

    Optical coherence tomography (OCT) is an emerging imaging technology based on light reflection. It provides real-time images with up to 2-mm penetration into the skin and a resolution of approximately 10 μm. It is routinely used in ophthalmology. The normal skin and its appendages have been studi...... technical solutions are being pursued to further improve the quality of the images and the data provided, and OCT is being integrated in multimodal imaging devices that would potentially be able to provide a quantum leap to the imaging of skin in vivo....

  4. Full-field optical coherence tomography using immersion Mirau interference microscope.

    Science.gov (United States)

    Lu, Sheng-Hua; Chang, Chia-Jung; Kao, Ching-Fen

    2013-06-20

    In this study, an immersion Mirau interference microscope was developed for full-field optical coherence tomography (FFOCT). Both the reference and measuring arms of the Mirau interferometer were filled with water to prevent the problems associated with imaging a sample in air with conventional FFOCT systems. The almost-common path interferometer makes the tomographic system less sensitive to environmental disturbances. En face OCT images at various depths were obtained with phase-shifting interferometry and Hariharan algorithm. This immersion interferometric method improves depth and quality in three-dimensional OCT imaging of scattering tissue.

  5. Evaluation of microfluidic channels with optical coherence tomography

    KAUST Repository

    Czajkowski, J.; Prykä ri, T.; Alarousu, E.; Lauri, J.; Myllylä , R.

    2010-01-01

    Application of time domain, ultra high resolution optical coherence tomography (UHR-OCT) in evaluation of microfluidic channels is demonstrated. Presented study was done using experimental UHR-OCT device based on a Kerr-lens mode locked Ti:sapphire femtosecond laser, a photonic crystal fibre and modified, free-space Michelson interferometer. To show potential of the technique, microfluidic chip fabricated by VTT Center for Printed Intelligence (Oulu, Finland) was measured. Ability for full volumetric reconstruction in non-contact manner enabled complete characterization of closed entity of a microfluidic channel without contamination and harm for the sample. Measurement, occurring problems, and methods of postprocessing for raw data are described. Results present completely resolved physical structure of the channel, its spatial dimensions, draft angles and evaluation of lamination quality.

  6. Optical Coherence Tomographic Findings in Berlin′s Edema

    Directory of Open Access Journals (Sweden)

    Leila El Matri

    2010-01-01

    Full Text Available Purpose: To describe optical coherence tomography (OCT findings in a patient with Berlin′s edema following blunt ocular trauma. Case Report: A 26-year-old man presented with acute loss of vision in his left eye following blunt trauma. He underwent a complete ophthalmologic examination and OCT. Fundus examination revealed abnormal yellow discoloration in the macula. OCT disclosed thickening of outer retinal structures and increased reflectivity in the area of photoreceptor outer segments with preservation of inner retinal architecture. Re-examination was conducted one month later at the time which OCT changes resolved leading to a surprisingly normal appearance. Conclusion: OCT can be a useful tool in the diagnosis and follow-up of eyes with Berlin′s edema and may reveal ultrastructural macular changes.

  7. Evaluation of microfluidic channels with optical coherence tomography

    KAUST Repository

    Czajkowski, J.

    2010-06-25

    Application of time domain, ultra high resolution optical coherence tomography (UHR-OCT) in evaluation of microfluidic channels is demonstrated. Presented study was done using experimental UHR-OCT device based on a Kerr-lens mode locked Ti:sapphire femtosecond laser, a photonic crystal fibre and modified, free-space Michelson interferometer. To show potential of the technique, microfluidic chip fabricated by VTT Center for Printed Intelligence (Oulu, Finland) was measured. Ability for full volumetric reconstruction in non-contact manner enabled complete characterization of closed entity of a microfluidic channel without contamination and harm for the sample. Measurement, occurring problems, and methods of postprocessing for raw data are described. Results present completely resolved physical structure of the channel, its spatial dimensions, draft angles and evaluation of lamination quality.

  8. Evaluation of microfluidic channels with optical coherence tomography

    Science.gov (United States)

    Czajkowski, J.; Prykäri, T.; Alarousu, E.; Lauri, J.; Myllylä, R.

    2010-11-01

    Application of time domain, ultra high resolution optical coherence tomography (UHR-OCT) in evaluation of microfluidic channels is demonstrated. Presented study was done using experimental UHR-OCT device based on a Kerr-lens mode locked Ti:sapphire femtosecond laser, a photonic crystal fibre and modified, free-space Michelson interferometer. To show potential of the technique, microfluidic chip fabricated by VTT Center for Printed Intelligence (Oulu, Finland) was measured. Ability for full volumetric reconstruction in non-contact manner enabled complete characterization of closed entity of a microfluidic channel without contamination and harm for the sample. Measurement, occurring problems, and methods of postprocessing for raw data are described. Results present completely resolved physical structure of the channel, its spatial dimensions, draft angles and evaluation of lamination quality.

  9. High-resolution optical coherence tomography, autofluorescence, and infrared reflectance imaging in Sjögren reticular dystrophy.

    Science.gov (United States)

    Schauwvlieghe, Pieter-Paul; Torre, Kara Della; Coppieters, Frauke; Van Hoey, Anneleen; De Baere, Elfride; De Zaeytijd, Julie; Leroy, Bart P; Brodie, Scott E

    2013-01-01

    To describe the phenotype of three cases of Sjögren reticular dystrophy in detail, including high-resolution optical coherence tomography, autofluorescence imaging, and near-infrared reflectance imaging. Two unrelated teenagers were independently referred for ophthalmologic evaluation. Both underwent a full ophthalmologic workup, including electrophysiologic and extensive imaging with spectral-domain optical coherence tomography, autofluorescence imaging, and near-infrared reflectance imaging. In addition, mutation screening of ABCA4, PRPH2, and the mitochondrial tRNA gene was performed in Patient 1. Subsequently, the teenage sister of Patient 2 was examined. Strikingly similar phenotypes were present in these three patients. Fundoscopy showed bilateral foveal pigment alterations, and a lobular network of deep retinal, pigmented deposits throughout the posterior pole, tapering toward the midperiphery, with relative sparing of the immediate perifoveal macula and peripapillary area. This network is mildly to moderately hyperautofluorescent on autofluorescence and bright on near-infrared reflectance imaging. Optical coherence tomography showed abnormalities of the retinal pigment epithelium-Bruch membrane complex, photoreceptor outer segments, and photoreceptor inner/outer segment interface. The results of retinal function test were entirely normal. No molecular cause was detected in Patient 1. Imaging suggested that the lobular network of deep retinal deposits in Sjögren reticular dystrophy is the result of accumulation of both pigment and lipofuscin between photoreceptors and retinal pigment epithelium, as well as within the retinal pigment epithelium.

  10. Extracting structural features of rat sciatic nerve using polarization-sensitive spectral domain optical coherence tomography

    NARCIS (Netherlands)

    Islam, M.S.; Oliveira, M.C.; Wang, Y.; Henry, F.P.; Randolph, M.A.; Park, B. H.; de Boer, J.F.

    2012-01-01

    We present spectral domain polarization-sensitive optical coherence tomography (SD PS-OCT) imaging of peripheral nerves. Structural and polarization-sensitive OCT imaging of uninjured rat sciatic nerves was evaluated both qualitatively and quantitatively. OCT and its functional extension, PS-OCT,

  11. Coherence Phenomena in Coupled Optical Resonators

    Science.gov (United States)

    Smith, D. D.; Chang, H.

    2004-01-01

    We predict a variety of photonic coherence phenomena in passive and active coupled ring resonators. Specifically, the effective dispersive and absorptive steady-state response of coupled resonators is derived, and used to determine the conditions for coupled-resonator-induced transparency and absorption, lasing without gain, and cooperative cavity emission. These effects rely on coherent photon trapping, in direct analogy with coherent population trapping phenomena in atomic systems. We also demonstrate that the coupled-mode equations are formally identical to the two-level atom Schrodinger equation in the rotating-wave approximation, and use this result for the analysis of coupled-resonator photon dynamics. Notably, because these effects are predicted directly from coupled-mode theory, they are not unique to atoms, but rather are fundamental to systems of coherently coupled resonators.

  12. Microscopic theory of coherent and incoherent optical properties of semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Martin

    2008-09-02

    An important question is whether there is a regime in which lasing from indirect semiconductors is possible. Thus, we discuss this question in this thesis. It is shown that under incoherent emission conditions it is possible to create an exciton condensate in multiple-quantum-well (MQW) systems. The influence of a MQW structure on the exciton lifetime is investigated. For the description of the light-matter interaction of a QW in the coherent excitation regime, the semiconductor Bloch equation (SBE) are used. The incoherent regime is described by the semiconductor luminescence equations (SLE). In principle it is even possible to couple SBE and SLE. The resulting theory is able to describe interactions between coherent and incoherent processes we investigate both, the coherent and the incoherent light-emission regime. Thus we define the investigated system and introduce the many-body Hamiltonian that describes consistently the light-matter interaction in the classical and the quantum limit. We introduce the SBE that allow to compute the light-matter interaction in the coherent scenario. The extended scattering model is used to investigate the absorption of a Ge QW for different time delays after the excitations. In this context, we analyze whether there is a regime in which optical gain can be realized. Then we apply a transfer-matrix method to include into our calculations the influence of the dielectric environment on the optical response. Thereafter the SLE for a MQW system are introduced. We derive a scheme that allows for decoupling environmental effects from the pure PL-emission properties of the QW. The PL of the actual QW system is obtained by multiplying this filter function and the free-space PL that describes the quantum emission into a medium with spatially constant background-refractive index. It is studied how the MQW-Bragg structure influences the PL-emission properties compared to the emission of a single QW device. As a last feature, it is shown

  13. Balancing the shortcomings of microscope and endoscope: endoscope-assisted technique in microsurgical removal of recurrent epidermoid cysts in the posterior fossa.

    Science.gov (United States)

    Ebner, F H; Roser, F; Thaher, F; Schittenhelm, J; Tatagiba, M

    2010-10-01

    We report about endoscope-assisted surgery of epidermoid cysts in the posterior fossa focusing on the application of neuro-endoscopy and the clinical outcome in cases of recurrent epidermoid cysts. 25 consecutively operated patients with an epidermoid cyst in the posterior fossa were retrospectively analysed. Surgeries were performed both with an operating microscope (OPMI Pentero or NC 4, Zeiss Company, Oberkochen, Germany) and endoscopic equipment (4 mm rigid endoscopes with 30° and 70° optics; Karl Storz Company, Tuttlingen, Germany) under continuous intraoperative monitoring. Surgical reports and DVD-recordings were evaluated for identification of adhesion areas and surgical details. 7 (28%) of the 25 patients were recurrences of previously operated epidermoid cysts. Mean time to recurrence was 17 years (8-22 years). In 5 cases the endoscope was used as an adjunctive tool for inspection/endoscope-assisted removal of remnants. The effective time of use of the endoscope was limited to the end stage of the procedure, but was very effective. In a modern operative setting and with the necessary surgical experience recurrent epidermoid cysts may be removed with excellent clinical results. The combined use of microscope and endoscope offers relevant advantages in demanding anatomic situations. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Performance analysis of coherent free space optical communications with sequential pyramid wavefront sensor

    Science.gov (United States)

    Liu, Wei; Yao, Kainan; Chen, Lu; Huang, Danian; Cao, Jingtai; Gu, Haijun

    2018-03-01

    Based-on the previous study on the theory of the sequential pyramid wavefront sensor (SPWFS), in this paper, the SPWFS is first applied to the coherent free space optical communications (FSOC) with more flexible spatial resolution and higher sensitivity than the Shack-Hartmann wavefront sensor, and with higher uniformity of intensity distribution and much simpler than the pyramid wavefront sensor. Then, the mixing efficiency (ME) and the bit error rate (BER) of the coherent FSOC are analyzed during the aberrations correction through numerical simulation with binary phase shift keying (BPSK) modulation. Finally, an experimental AO system based-on SPWFS is setup, and the experimental data is used to analyze the ME and BER of homodyne detection with BPSK modulation. The results show that the AO system based-on SPWFS can increase ME and decrease BER effectively. The conclusions of this paper provide a new method of wavefront sensing for designing the AO system for a coherent FSOC system.

  15. Coherence of the vortex Bessel-Gaussian beam in turbulent atmosphere

    Science.gov (United States)

    Lukin, Igor P.

    2017-11-01

    In this paper the theoretical research of coherent properties of the vortex Bessel-Gaussian optical beams propagating in turbulent atmosphere are developed. The approach to the analysis of this problem is based on the analytical solution of the equation for the transverse second-order mutual coherence function of a field of optical radiation. The behavior of integral scale of coherence degree of vortex Bessel-Gaussian optical beams depending on parameters of an optical beam and characteristics of turbulent atmosphere is particularly considered. It is shown that the integral scale of coherence degree of a vortex Bessel-Gaussian optical beam essentially depends on value of a topological charge of a vortex optical beam. With increase in a topological charge of a vortex Bessel-Gaussian optical beam the value of integral scale of coherence degree of a vortex Bessel-Gaussian optical beam are decreased.

  16. Fluorescence-Raman Dual Modal Endoscopic System for Multiplexed Molecular Diagnostics

    Science.gov (United States)

    Jeong, Sinyoung; Kim, Yong-Il; Kang, Homan; Kim, Gunsung; Cha, Myeong Geun; Chang, Hyejin; Jung, Kyung Oh; Kim, Young-Hwa; Jun, Bong-Hyun; Hwang, Do Won; Lee, Yun-Sang; Youn, Hyewon; Lee, Yoon-Sik; Kang, Keon Wook; Lee, Dong Soo; Jeong, Dae Hong

    2015-03-01

    Optical endoscopic imaging, which was recently equipped with bioluminescence, fluorescence, and Raman scattering, allows minimally invasive real-time detection of pathologies on the surface of hollow organs. To characterize pathologic lesions in a multiplexed way, we developed a dual modal fluorescence-Raman endomicroscopic system (FRES), which used fluorescence and surface-enhanced Raman scattering nanoprobes (F-SERS dots). Real-time, in vivo, and multiple target detection of a specific cancer was successful, based on the fast imaging capability of fluorescence signals and the multiplex capability of simultaneously detected SERS signals using an optical fiber bundle for intraoperative endoscopic system. Human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR) on the breast cancer xenografts in a mouse orthotopic model were successfully detected in a multiplexed way, illustrating the potential of FRES as a molecular diagnostic instrument that enables real-time tumor characterization of receptors during routine endoscopic procedures.

  17. Polarization sensitive optical coherence tomography in equine bone

    Science.gov (United States)

    Jacobs, J. W.; Matcher, S. J.

    2009-02-01

    Optical coherence tomography (OCT) has been used to image equine bone samples. OCT and polarization sensitive OCT (PS-OCT) images of equine bone samples, before and after demineralization, are presented. Using a novel approach, taking a series of images at different angles of illumination, the polar angle and true birefringence of collagen within the tissue is determined, at one site in the sample. The images were taken before and after the bones were passed through a demineralization process. The images show an improvement in depth penetration after demineralization allowing better visualization of the internal structure of the bone and the optical orientation of the collagen. A quantitative measurement of true birefringence has been made of the bone; true birefringence was shown to be 1.9x10-3 before demineralization increasing to 2.7x10-3 after demineralization. However, determined collagen fiber orientation remains the same before and after demineralization. The study of bone is extensive within the field of tissue engineering where an understanding of the internal structures is essential. OCT in bone, and improved depth penetration through demineralization, offers a useful approach to bone analysis.

  18. Dynamic Optical Coherence Tomography in Dermatology.

    Science.gov (United States)

    Ulrich, Martina; Themstrup, Lotte; de Carvalho, Nathalie; Manfredi, Marco; Grana, Costantino; Ciardo, Silvana; Kästle, Raphaela; Holmes, Jon; Whitehead, Richard; Jemec, Gregor B E; Pellacani, Giovanni; Welzel, Julia

    2016-01-01

    Optical coherence tomography (OCT) represents a non-invasive imaging technology, which may be applied to the diagnosis of non-melanoma skin cancer and which has recently been shown to improve the diagnostic accuracy of basal cell carcinoma. Technical developments of OCT continue to expand the applicability of OCT for different neoplastic and inflammatory skin diseases. Of these, dynamic OCT (D-OCT) based on speckle variance OCT is of special interest as it allows the in vivo evaluation of blood vessels and their distribution within specific lesions, providing additional functional information and consequently greater density of data. In an effort to assess the potential of D-OCT for future scientific and clinical studies, we have therefore reviewed the literature and preliminary unpublished data on the visualization of the microvasculature using D-OCT. Information on D-OCT in skin cancers including melanoma, as well as in a variety of other skin diseases, is presented in an atlas. Possible diagnostic features are suggested, although these require additional validation. © 2016 S. Karger AG, Basel.

  19. Complex regression Doppler optical coherence tomography

    Science.gov (United States)

    Elahi, Sahar; Gu, Shi; Thrane, Lars; Rollins, Andrew M.; Jenkins, Michael W.

    2018-04-01

    We introduce a new method to measure Doppler shifts more accurately and extend the dynamic range of Doppler optical coherence tomography (OCT). The two-point estimate of the conventional Doppler method is replaced with a regression that is applied to high-density B-scans in polar coordinates. We built a high-speed OCT system using a 1.68-MHz Fourier domain mode locked laser to acquire high-density B-scans (16,000 A-lines) at high enough frame rates (˜100 fps) to accurately capture the dynamics of the beating embryonic heart. Flow phantom experiments confirm that the complex regression lowers the minimum detectable velocity from 12.25 mm / s to 374 μm / s, whereas the maximum velocity of 400 mm / s is measured without phase wrapping. Complex regression Doppler OCT also demonstrates higher accuracy and precision compared with the conventional method, particularly when signal-to-noise ratio is low. The extended dynamic range allows monitoring of blood flow over several stages of development in embryos without adjusting the imaging parameters. In addition, applying complex averaging recovers hidden features in structural images.

  20. Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography

    International Nuclear Information System (INIS)

    Boer, J.F. de; Milner, T.E.; Nelson, J.S.

    1999-01-01

    Polarization-sensitive optical coherence tomography (PS-OCT) was used to characterize completely the polarization state of light backscattered from turbid media. Using a low-coherence light source, one can determine the Stokes parameters of backscattered light as a function of optical path in turbid media. To demonstrate the application of this technique we determined the birefringence and the optical axis in fibrous tissue (rodent muscle) and in vivo rodent skin. PS-OCT has potentially useful applications in biomedical optics by imaging simultaneously the structural properties of turbid biological materials and their effects on the polarization state of backscattered light. This method may also find applications in material science for investigation of polarization properties (e.g., birefringence) in opaque media such as ceramics and crystals. copyright 1999 Optical Society of America

  1. Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography

    Science.gov (United States)

    Klyen, Blake R.; Shavlakadze, Thea; Radley-Crabb, Hannah G.; Grounds, Miranda D.; Sampson, David D.

    2011-07-01

    Three-dimensional optical coherence tomography (3D-OCT) was used to image the structure and pathology of skeletal muscle tissue from the treadmill-exercised mdx mouse model of human Duchenne muscular dystrophy. Optical coherence tomography (OCT) images of excised muscle samples were compared with co-registered hematoxylin and eosin-stained and Evans blue dye fluorescence histology. We show, for the first time, structural 3D-OCT images of skeletal muscle dystropathology well correlated with co-located histology. OCT could identify morphological features of interest and necrotic lesions within the muscle tissue samples based on intrinsic optical contrast. These findings demonstrate the utility of 3D-OCT for the evaluation of small-animal skeletal muscle morphology and pathology, particularly for studies of mouse models of muscular dystrophy.

  2. Coherent x-rays from PEP

    International Nuclear Information System (INIS)

    Baird, S.; Nuhn, H.-D.; Tatchyn, R.; Winick, H.; Fisher, A.S.; Gallardo, J.C.; Pellegrini, C.

    1991-01-01

    This paper explores the use of a large-circumference, high-energy, electron-positron collider such as PEP to drive a free-electron laser (FEL), producing high levels of coherent power at short wavelengths. The author consider Self-Amplified Spontaneous Emission (SASE), in which electron bunches with low emittance, high peak current and small energy spread radiate coherently in a single passthrough a long undulator. As the electron beam passes down the undulator, its interaction with the increasingly intense spontaneous radiation causes a bunch density modulation at the optical wavelength, resulting in stimulated emissional growth of coherent power in a single pass. The need for optical-cavity mirrors, which place a lower limit on the wavelength of a conventional FEL oscillator, is avoided. The authors explore various combinations of electron-beam and undulator parameters, as well as special undulator designs and optical klystrons (OK), to reach high average or peak coherent power at wavelengths around 40 angstrom by achieving significant exponential gain or full saturation. Examples are presented for devices that achieve high peak coherent power (up to about 400 MW) with lower average coherent power (about 20 mW) and other devices which produce a few watts of average coherent power

  3. Remote Raman microimaging using an AOTF and a spatially coherent microfiber optical probe

    International Nuclear Information System (INIS)

    Trey Skinner, H.; Cooney, T.F.; Sharma, S.K.; Angel, S.M.

    1996-01-01

    A fiber-optic Raman microimaging probe is described that is suitable for acquiring high-spatial-resolution Raman images in sampling situations with no clear line of sight. A high-power near-infrared diode laser combined with an acousto-optic tunable filter and a spatially coherent optical fiber bundle allow fluorescence-free Raman images of remotely located samples to be acquired at distances up to several meters. The feasibility of this technique is demonstrated with Raman images of (1) a pellet containing a mixture of a highly scattering sample, bis-methylstyrylbenzene (BMSB), KCl, and graphite, and (2) a partially graphitized diamond. These images clearly show phase boundaries over an area of approximately 0.1 mm 2 with ∼4-μm resolution. copyright 1996 Society for Applied Spectroscopy

  4. Linear and Nonlinear Impairment Compensation in Coherent Optical Transmission with Digital Signal Processing

    DEFF Research Database (Denmark)

    Porto da Silva, Edson

    Digital signal processing (DSP) has become one of the main enabling technologies for the physical layer of coherent optical communication networks. The DSP subsystems are used to implement several functionalities in the digital domain, from synchronization to channel equalization. Flexibility...... nonlinearity compensation, (II) spectral shaping, and (III) adaptive equalization. For (I), original contributions are presented to the study of the nonlinearity compensation (NLC) with digital backpropagation (DBP). Numerical and experimental performance investigations are shown for different application...... scenarios. Concerning (II), it is demonstrated how optical and electrical (digital) pulse shaping can be allied to improve the spectral confinement of a particular class of optical time-division multiplexing (OTDM) signals that can be used as a building block for fast signaling single-carrier transceivers...

  5. Generation of equal-intensity coherent optical beams by binary geometrical phase on metasurface

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zheng-Han; Jiang, Shang-Chi; Xiong, Xiang; Peng, Ru-Wen, E-mail: rwpeng@nju.edu.cn, E-mail: muwang@nju.edu.cn; Wang, Mu, E-mail: rwpeng@nju.edu.cn, E-mail: muwang@nju.edu.cn [National Laboratory of Solid State Microstructures and School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2016-06-27

    We report here the design and realization of a broadband, equal-intensity optical beam splitter with a dispersion-free binary geometric phase on a metasurface with unit cell consisting of two mirror-symmetric elements. We demonstrate experimentally that two identical beams can be efficiently generated with incidence of any polarization. The efficiency of the device reaches 80% at 1120 nm and keeps larger than 70% in the range of 1000–1400 nm. We suggest that this approach for generating identical, coherent beams have wide applications in diffraction optics and in entangled photon light source for quantum communication.

  6. Flow patterns on spectral-domain optical coherence tomography reveal flow directions at retinal vessel bifurcations

    DEFF Research Database (Denmark)

    Willerslev, Anne; Li, Xiao Q; Munch, Inger C

    2014-01-01

    PURPOSE: To study intravascular characteristics of flowing blood in retinal vessels using spectral-domain optical coherence tomography (SD-OCT). METHODS: Examination of selected arterial bifurcations and venous sites of confluence in 25 healthy 11-year-old children recruited as an ad hoc subsample...

  7. An elegant technique for ex vivo imaging in experimental research—Optical coherence tomography (OCT)

    DEFF Research Database (Denmark)

    Tschernig, T.; Thrane, Lars; Jørgensen, Thomas Martini

    2013-01-01

    Optical coherence tomography (OCT) is an elegant technology for imaging of tissues and organs and has been established for clinical use for around a decade. Thus, it is used in vivo but can also serve as a valuable ex vivo imaging tool in experimental research. Here, a brief overview is given...

  8. Production of Coherent xuv and soft-x-ray light using a transverse optical klystron

    International Nuclear Information System (INIS)

    Kincaid, B.M.; Freeman, R.R.

    1984-01-01

    This section describes the theory of the production of coherent xuv radiation and soft x rays using a transverse optical klystron (TOK). A TOK uses a high-power laser in conjunction with an undulator magnet to produce laserlike output of xuv radiation from a relativistic electron beam. 16 references, 5 figures

  9. The Diagnosis of Spontaneous Coronary Artery Dissection by Optical Coherence Tomography.

    Science.gov (United States)

    Kanda, Takahiro; Tawarahara, Kei; Matsukura, Gaku; Matsunari, Masayoshi; Takabayashi, Rumi; Tamura, Jun; Ozeki, Mariko; Ukigai, Hiroshi

    2018-02-15

    Spontaneous coronary artery dissection (SCAD) is rare, but it frequently presents as acute myocardial infarction. It is frequently fatal and most cases are diagnosed at autopsy. We herein present the case of a 65-year-old woman with ST-elevation and myocardial infarction due to SCAD. Optical coherence tomography (OCT) helped us to confirm the diagnosis. The information on the intravascular morphology provided by OCT imaging is much more detailed in comparison to that provided by coronary angiography (CAG) and intravascular ultrasound (IVUS).

  10. Partially coherent X-ray wavefront propagation simulations including grazing-incidence focusing optics.

    Science.gov (United States)

    Canestrari, Niccolo; Chubar, Oleg; Reininger, Ruben

    2014-09-01

    X-ray beamlines in modern synchrotron radiation sources make extensive use of grazing-incidence reflective optics, in particular Kirkpatrick-Baez elliptical mirror systems. These systems can focus the incoming X-rays down to nanometer-scale spot sizes while maintaining relatively large acceptance apertures and high flux in the focused radiation spots. In low-emittance storage rings and in free-electron lasers such systems are used with partially or even nearly fully coherent X-ray beams and often target diffraction-limited resolution. Therefore, their accurate simulation and modeling has to be performed within the framework of wave optics. Here the implementation and benchmarking of a wave-optics method for the simulation of grazing-incidence mirrors based on the local stationary-phase approximation or, in other words, the local propagation of the radiation electric field along geometrical rays, is described. The proposed method is CPU-efficient and fully compatible with the numerical methods of Fourier optics. It has been implemented in the Synchrotron Radiation Workshop (SRW) computer code and extensively tested against the geometrical ray-tracing code SHADOW. The test simulations have been performed for cases without and with diffraction at mirror apertures, including cases where the grazing-incidence mirrors can be hardly approximated by ideal lenses. Good agreement between the SRW and SHADOW simulation results is observed in the cases without diffraction. The differences between the simulation results obtained by the two codes in diffraction-dominated cases for illumination with fully or partially coherent radiation are analyzed and interpreted. The application of the new method for the simulation of wavefront propagation through a high-resolution X-ray microspectroscopy beamline at the National Synchrotron Light Source II (Brookhaven National Laboratory, USA) is demonstrated.

  11. Quantitative Fourier Domain Optical Coherence Tomography Imaging of the Ocular Anterior Segment

    Science.gov (United States)

    McNabb, Ryan Palmer

    Clinical imaging within ophthalmology has had transformative effects on ocular health over the last century. Imaging has guided clinicians in their pharmaceutical and surgical treatments of macular degeneration, glaucoma, cataracts and numerous other pathologies. Many of the imaging techniques currently used are photography based and are limited to imaging the surface of ocular structures. This limitation forces clinicians to make assumptions about the underlying tissue which may reduce the efficacy of their diagnoses. Optical coherence tomography (OCT) is a non-invasive, non-ionizing imaging modality that has been widely adopted within the field of ophthalmology in the last 15 years. As an optical imaging technique, OCT utilizes low-coherence interferometry to produce micron-scale three-dimensional datasets of a tissue's structure. Much of the human body consists of tissues that significantly scatter and attenuate optical signals limiting the imaging depth of OCT in those tissues to only 1-2mm. However, the ocular anterior segment is unique among human tissue in that it is primarily transparent or translucent. This allows for relatively deep imaging of tissue structure with OCT and is no longer limited by the optical scattering properties of the tissue. This goal of this work is to develop methods utilizing OCT that offer the potential to reduce the assumptions made by clinicians in their evaluations of their patients' ocular anterior segments. We achieved this by first developing a method to reduce the effects of patient motion during OCT volume acquisitions allowing for accurate, three dimensional measurements of corneal shape. Having accurate corneal shape measurements then allowed us to determine corneal spherical and astigmatic refractive contribution in a given individual. This was then validated in a clinical study that showed OCT better measured refractive change due to surgery than other clinical devices. Additionally, a method was developed to combine

  12. Spectral domain optical coherence tomography imaging of spectacular ecdysis in the royal python (Python regius).

    Science.gov (United States)

    Tusler, Charlotte A; Maggs, David J; Kass, Philip H; Paul-Murphy, Joanne R; Schwab, Ivan R; Murphy, Christopher J

    2015-01-01

    To describe using spectral domain optical coherence tomography (SD-OCT), digital slit-lamp biomicroscopy, and external photography, changes in the ophidian cuticle, spectacle, and cornea during ecdysis. Four normal royal pythons (Python regius). Snakes were assessed once daily throughout a complete shed cycle using nasal, axial, and temporal SD-OCT images, digital slit-lamp biomicroscopy, and external photography. Spectral domain optical coherence tomography (SD-OCT) images reliably showed the spectacular cuticle and stroma, subcuticular space (SCS), cornea, anterior chamber, iris, and Schlemm's canal. When visible, the subspectacular space (SSS) was more distended peripherally than axially. Ocular surface changes throughout ecdysis were relatively conserved among snakes at all three regions imaged. From baseline (7 days following completion of a full cycle), the spectacle gradually thickened before separating into superficial cuticular and deep, hyper-reflective stromal components, thereby creating the SCS. During spectacular separation, the stroma regained original reflectivity, and multiple hyper-reflective foci (likely fragments from the cuticular-stromal interface) were noted within the SCS. The cornea was relatively unchanged in character or thickness throughout all stages of ecdysis. Slit-lamp images did not permit observation of these changes. Spectral domain optical coherence tomography (SD-OCT) provided excellent high-resolution images of the snake anterior segment, and especially the cuticle, spectacle, and cornea of manually restrained normal snakes at all stages of ecdysis and warrants investigation in snakes with anterior segment disease. The peripheral spectacle may be the preferred entry point for diagnostic or therapeutic injections into the SSS and for initiating spectacular surgery. © 2014 American College of Veterinary Ophthalmologists.

  13. Integration of Optical Coherence Tomography Scan Patterns to Augment Clinical Data Suite

    Science.gov (United States)

    Mason, S.; Patel, N.; Van Baalen, M.; Tarver, W.; Otto, C.; Samuels, B.; Koslovsky, M.; Schaefer, C.; Taiym, W.; Wear, M.; hide

    2018-01-01

    Vision changes identified in long duration spaceflight astronauts has led Space Medicine at NASA to adopt a more comprehensive clinical monitoring protocol. Optical Coherence Tomography (OCT) was recently implemented at NASA, including on board the International Space Station in 2013. NASA is collaborating with Heidelberg Engineering to increase the fidelity of the current OCT data set by integrating the traditional circumpapillary OCT image with radial and horizontal block images at the optic nerve head. The retinal nerve fiber layer was segmented by two experienced individuals. Intra-rater (N=4 subjects and 70 images) and inter-rater (N=4 subjects and 221 images) agreement was performed. The results of this analysis and the potential benefits will be presented.

  14. Coherent Microwave-to-Optical Conversion via Six-Wave Mixing in Rydberg Atoms

    Science.gov (United States)

    Han, Jingshan; Vogt, Thibault; Gross, Christian; Jaksch, Dieter; Kiffner, Martin; Li, Wenhui

    2018-03-01

    We present an experimental demonstration of converting a microwave field to an optical field via frequency mixing in a cloud of cold 87Rb atoms, where the microwave field strongly couples to an electric dipole transition between Rydberg states. We show that the conversion allows the phase information of the microwave field to be coherently transferred to the optical field. With the current energy level scheme and experimental geometry, we achieve a photon-conversion efficiency of ˜0.3 % at low microwave intensities and a broad conversion bandwidth of more than 4 MHz. Theoretical simulations agree well with the experimental data, and they indicate that near-unit efficiency is possible in future experiments.

  15. Optical coherence tomography in diagnostics of precancer and cancer of human bladder

    Science.gov (United States)

    Zagaynova, Elena V.; Streltsova, Olga S.; Gladkova, Natalia D.; Shakhova, Natalia M.; Feldchtein, Felix I.; Kamensky, Vladislav A.; Gelikonov, Grigory V.; Snopova, Ludmila B.; Donchenko, Ekaterina V.

    2004-07-01

    Our goal was statistical assessment of the in vivo cystoscopic optical coherence tomography (OCT) ability to detect neoplasia in human urinary bladder. We analyzed major reasons of false positive and false negative image recognition results. Optical coherence tomography was performed to image the bladder during cystoscopy. The study enrolled 63 patients with suspicion for bladder cancer and scheduled for cystoscopy. The diagnosis was established by histopathology examination of a biopsy. Each biopsy site was examined by OCT. Benign conditions were diagnosed for 31 patients, and dysplasia or carcinoma were diagnosed for 32 patients. Six physicians blinded to all clinical data participated in the dichotomy recognition (malignant or benign) of the OCT images. 98% sensitivity and 72% specificity for the OCT recognition of dysplastic/malignant versus benign/reactive conditions of the bladder are demonstrated. Total error rate was 14.8%. The interobserver agreement multi-rater kappa coefficient is 0.80. The superficial and invasive bladder cancer and high-grade dysplasia were recognized with minimum error rate ranging from 0 to 3.3%. High sensitivity and good specificity of the OCT method in the diagnostics of bladder neoplasia makes OCT a promising complementary cystoscopic technique for non-invasive evaluation of zones suspicious for high-grade dysplasia and cancer.

  16. Photoreceptor inner segment ellipsoid band integrity on spectral domain optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Saxena S

    2014-12-01

    Full Text Available Sandeep Saxena,1 Khushboo Srivastav,1 Chui M Cheung,2 Joanne YW Ng,3 Timothy YY Lai3 1Retina Service, Department of Ophthalmology, King George’s Medical University Lucknow, India; 2Singapore National Eye Centre, Singapore; 3Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong Abstract: Spectral domain optical coherence tomography cross-sectional imaging of the macula has conventionally been resolved into four bands. However, some doubts were raised regarding authentication of the existence of these bands. Recently, a number of studies have suggested that the second band appeared to originate from the inner segment ellipsoids of the foveal cone photoreceptors, and therefore the previously called inner segment-outer segment junction is now referred to as inner segment ellipsoidband. Photoreceptor dysfunction may be a significant predictor of visual acuity in a spectrum of surgical and medical retinal diseases. This review aims to provide an overview and summarizes the role of the photoreceptor inner segment ellipsoid band in the management and prognostication of various vitreoretinal diseases. Keywords: spectral domain optical coherence tomography, inner segment-outer segment junction, external limiting membrane, macular hole, diabetic macular edema, age relate macular degeneration

  17. A pilot study on slit lamp-adapted optical coherence tomography imaging of trabeculectomy filtering blebs.

    NARCIS (Netherlands)

    Theelen, T.; Wesseling, P.; Keunen, J.E.E.; Klevering, B.J.

    2007-01-01

    BACKGROUND: Our study aims to identify anatomical characteristics of glaucoma filtering blebs by means of slit lamp-adapted optical coherence tomography (SL-OCT) and to identify new parameters for the functional prognosis of the filter in the early post-operative period. METHODS: Patients with

  18. DETECTION OF MICROVASCULAR CHANGES IN EYES OF PATIENTS WITH DIABETES BUT NOT CLINICAL DIABETIC RETINOPATHY USING OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY.

    Science.gov (United States)

    de Carlo, Talisa E; Chin, Adam T; Bonini Filho, Marco A; Adhi, Mehreen; Branchini, Lauren; Salz, David A; Baumal, Caroline R; Crawford, Courtney; Reichel, Elias; Witkin, Andre J; Duker, Jay S; Waheed, Nadia K

    2015-11-01

    To evaluate the ability of optical coherence tomography angiography to detect early microvascular changes in eyes of diabetic individuals without clinical retinopathy. Prospective observational study of 61 eyes of 39 patients with diabetes mellitus and 28 control eyes of 22 age-matched healthy subjects that received imaging using optical coherence tomography angiography between August 2014 and March 2015. Eyes with concomitant retinal, optic nerve, and vitreoretinal interface diseases and/or poor-quality images were excluded. Foveal avascular zone size and irregularity, vessel beading and tortuosity, capillary nonperfusion, and microaneurysm were evaluated. Foveal avascular zone size measured 0.348 mm² (0.1085-0.671) in diabetic eyes and 0.288 mm² (0.07-0.434) in control eyes (P = 0.04). Foveal avascular zone remodeling was seen more often in diabetic than control eyes (36% and 11%, respectively; P = 0.01). Capillary nonperfusion was noted in 21% of diabetic eyes and 4% of control eyes (P = 0.03). Microaneurysms and venous beading were noted in less than 10% of both diabetic and control eyes. Both diabetic and healthy control eyes demonstrated tortuous vessels in 21% and 25% of eyes, respectively. Optical coherence tomography angiography was able to image foveal microvascular changes that were not detected by clinical examination in diabetic eyes. Changes to the foveal avascular zone and capillary nonperfusion were more prevalent in diabetic eyes, whereas vessel tortuosity was observed with a similar frequency in normal and diabetic eyes. Optical coherence tomography angiography may be able to detect diabetic eyes at risk of developing retinopathy and to screen for diabetes quickly and noninvasively before the systemic diagnosis is made.

  19. Source coherence impairments in a direct detection direct sequence optical code-division multiple-access system.

    Science.gov (United States)

    Fsaifes, Ihsan; Lepers, Catherine; Lourdiane, Mounia; Gallion, Philippe; Beugin, Vincent; Guignard, Philippe

    2007-02-01

    We demonstrate that direct sequence optical code- division multiple-access (DS-OCDMA) encoders and decoders using sampled fiber Bragg gratings (S-FBGs) behave as multipath interferometers. In that case, chip pulses of the prime sequence codes generated by spreading in time-coherent data pulses can result from multiple reflections in the interferometers that can superimpose within a chip time duration. We show that the autocorrelation function has to be considered as the sum of complex amplitudes of the combined chip as the laser source coherence time is much greater than the integration time of the photodetector. To reduce the sensitivity of the DS-OCDMA system to the coherence time of the laser source, we analyze the use of sparse and nonperiodic quadratic congruence and extended quadratic congruence codes.

  20. Source coherence impairments in a direct detection direct sequence optical code-division multiple-access system

    Science.gov (United States)

    Fsaifes, Ihsan; Lepers, Catherine; Lourdiane, Mounia; Gallion, Philippe; Beugin, Vincent; Guignard, Philippe

    2007-02-01

    We demonstrate that direct sequence optical code- division multiple-access (DS-OCDMA) encoders and decoders using sampled fiber Bragg gratings (S-FBGs) behave as multipath interferometers. In that case, chip pulses of the prime sequence codes generated by spreading in time-coherent data pulses can result from multiple reflections in the interferometers that can superimpose within a chip time duration. We show that the autocorrelation function has to be considered as the sum of complex amplitudes of the combined chip as the laser source coherence time is much greater than the integration time of the photodetector. To reduce the sensitivity of the DS-OCDMA system to the coherence time of the laser source, we analyze the use of sparse and nonperiodic quadratic congruence and extended quadratic congruence codes.