WorldWideScience

Sample records for endoradiotherapeutic applications prepared

  1. Nanodiamond applications in skin preparations.

    Science.gov (United States)

    Namdar, Roshanak; Nafisi, Shohreh

    2018-04-13

    The biocompatibility and nontoxicity of nanodiamonds (NDs) in combination with their excellent physical performance have rendered them attractive candidates for biomedical applications. NDs have great potential in drug nanoformulations because of their small size compared with other carbon nanomaterials. They are nontoxic with excellent adsorption properties and can be formulated into skin care products. Even though NDs have shown encouraging potential in skin preparations, only a few studies have reviewed their application in topical drug delivery systems. Therefore, here we focus on the application of NDs in skin care preparations, skin cancer medication, and wound healing. We also highlight the development of topical drug delivery by NDs and their cytotoxicity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Applications Research of Microbial Ecological Preparation in Sea Cucumber Culture

    Science.gov (United States)

    Jiang, Jiahui; Wang, Guangyu

    2017-12-01

    At present, micro ecological preparation is widely applied in aquaculture with good effect. The application of micro ecological preparation in sea cucumber culture can effectively improve the economic benefits. The micro ecological preparation can play the role of inhibiting harmful bacteria, purifying water quality and saving culture cost in the process of sea cucumber culture. We should select appropriate bacteria, guarantee stable environment and use with long-term in the applications of microbial ecological preparation in sea cucumber culture to obtain good effects.

  3. Application of thermotolerant microorganisms for biofertilizer preparation.

    Science.gov (United States)

    Chen, Kuo-Shu; Lin, Yann-Shying; Yang, Shang-Shyng

    2007-12-01

    Intensive agriculture is practised in Taiwan, and compost application is very popular as a means of improving the soil physical properties and supplying plant nutrition. We tested the potential of inoculation with thermotolerant microorganisms to shorten the maturity and improve the quality of biofertilizer prepared by composting. Thermotolerant microorganisms were isolated from compost and reinoculated for the preparation of biofertilizer. The physical, chemical and biological properties of the biofertilizer were determined during composting. The effects of biofertilizer application on the growth and yield of rape were also studied. Among 3823 colonies of thermotolerant microorganisms, Streptomyces thermonitrificans NTU-88, Streptococcus sp. NTU-130 and Aspergillus fumigatus NTU-132 exhibited high growth rates and cellulolytic and proteolytic activities. When a mixture of rice straw and swine manure were inoculated with these isolates and composted for 61 days, substrate temperature increased initially and then decreased gradually during composting. Substrate pH increased from 7.3 to 8.5. Microbial inoculation enhanced the rate of maturity, and increased the content of ash and total and immobilized nitrogen, improved the germination rate of alfalfa seed, and decreased the content of total organic carbon and the carbon/nitrogen ratio. Biofertilizer application increased the growth and yield of rape. Inoculation of thermotolerant and thermophilic microorganisms to agricultural waste for biofertilizer preparation enhances the rate of maturity and improves the quality of the resulting biofertilizer. Inoculation of appropriate microorganisms in biofertilizer preparation might be usefully applied to agricultural situations.

  4. Recent advances in applications of nanomaterials for sample preparation.

    Science.gov (United States)

    Xu, Linnan; Qi, Xiaoyue; Li, Xianjiang; Bai, Yu; Liu, Huwei

    2016-01-01

    Sample preparation is a key step for qualitative and quantitative analysis of trace analytes in complicated matrix. Along with the rapid development of nanotechnology in material science, numerous nanomaterials have been developed with particularly useful applications in analytical chemistry. Benefitting from their high specific areas, increased surface activities, and unprecedented physical/chemical properties, the potentials of nanomaterials for rapid and efficient sample preparation have been exploited extensively. In this review, recent progress of novel nanomaterials applied in sample preparation has been summarized and discussed. Both nanoparticles and nanoporous materials are evaluated for their unusual performance in sample preparation. Various compositions and functionalizations extended the applications of nanomaterials in sample preparations, and distinct size and shape selectivity was generated from the diversified pore structures of nanoporous materials. Such great variety make nanomaterials a kind of versatile tools in sample preparation for almost all categories of analytes. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Preparation and application of various nanoparticles in biology and medicine

    OpenAIRE

    Vardan Gasparyan

    2013-01-01

    The present paper considers prospects for application of various nanoparticles in biology and medicine. Here are presented data on preparation of gold and silver nanoparticles, and effects of shape of these nanoparticles on their optical properties. Application of these nanoparticles in diagnostics, for drug delivery and therapy, and preparation of magnetic nanoparticles from iron and cobalt salts are also discussed. Application of these nanoparticles as magnetic resonance imaging (MRI) contr...

  6. Inorganic nanolayers: structure, preparation, and biomedical applications.

    Science.gov (United States)

    Saifullah, Bullo; Hussein, Mohd Zobir B

    2015-01-01

    Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging.

  7. Applications and Preparation Methods of Copper Chromite Catalysts: A Review

    Directory of Open Access Journals (Sweden)

    Ram Prasad

    2011-11-01

    Full Text Available In this review article various applications and preparation methods of copper chromite catalysts have been discussed. While discussing it is concluded that copper chromite is a versatile catalyst which not only catalyses numerous processes of commercial importance and national program related to defence and space research but also finds applications in the most concerned problem worldwide i.e. environmental pollution control. Several other very useful applications of copper chromite catalysts are in production of clean energy, drugs and agro chemicals, etc. Various preparation methods about 15 have been discussed which depicts clear idea about the dependence of catalytic activity and selectivity on way of preparation of catalyst. In view of the globally increasing interest towards copper chromite catalysis, reexamination on the important applications of such catalysts and their useful preparation methods is thus the need of the time. This review paper encloses 369 references including a well-conceivable tabulation of the newer state of the art. Copyright © 2011 by BCREC UNDIP. All rights reserved.(Received: 19th March 2011, Revised: 03rd May 2011, Accepted: 23rd May 2011[How to Cite: R. Prasad, and P. Singh. (2011. Applications and Preparation Methods of Copper Chromite Catalysts: A Review. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (2: 63-113. doi:10.9767/bcrec.6.2.829.63-113][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.2.829.63-113 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/829 ] | View in 

  8. Preparation of Gold Nanoparticles for Biomedical Applications Using ...

    African Journals Online (AJOL)

    HP

    Tropical Journal of Pharmaceutical Research June 2013; 12 (3): 295-298 ... Applications Using Chemometric Technique. Soheila Honary. 1* ... approach for optimizing and testing the robustness of gold nanoparticle preparation method.

  9. Silicon nanoparticles: Preparation, properties, and applications

    International Nuclear Information System (INIS)

    Chang Huan; Sun Shu-Qing

    2014-01-01

    Silicon nanoparticles have attracted great attention in the past decades because of their intriguing physical properties, active surface state, distinctive photoluminescence and biocompatibility. In this review, we present some of the recent progress in preparation methodologies and surface functionalization approaches of silicon nanoparticles. Further, their promising applications in the fields of energy and electronic engineering are introduced. (invited review — international conference on nanoscience and technology, china 2013)

  10. Sol-gel applications for ceramic membrane preparation

    Science.gov (United States)

    Erdem, I.

    2017-02-01

    Ceramic membranes possessing superior properties compared to polymeric membranes are more durable under severe working conditions and therefore their service life is longer. The ceramic membranes are composed of some layers. The support is the layer composed of coarser ceramic structure and responsible for mechanical durability under filtration pressure and it is prepared by consolidation of ceramic powders. The top layer is composed of a finer ceramic micro-structure mainly responsible for the separation of components present in the fluid to be filtered and sol-gel method is a versatile tool to prepare such a tailor-made ceramic filtration structure with finer pores. Depending on the type of filtration (e.g. micro-filtration, ultra-filtration, nano-filtration) aiming separation of components with different sizes, sols with different particulate sizes should be prepared and consolidated with varying precursors and preparation conditions. The coating of sol on the support layer and heat treatment application to have a stable ceramic micro-structure are also important steps determining the final properties of the top layer. Sol-gel method with various controllable parameters (e.g. precursor type, sol formation kinetics, heat treatment conditions) is a practical tool for the preparation of top layers of ceramic composite membranes with desired physicochemical properties.

  11. Preparation of magnetic carbon nanotubes (Mag-CNTs) for biomedical and biotechnological applications.

    Science.gov (United States)

    Masotti, Andrea; Caporali, Andrea

    2013-12-18

    Carbon nanotubes (CNTs) have been widely studied for their potential applications in many fields from nanotechnology to biomedicine. The preparation of magnetic CNTs (Mag-CNTs) opens new avenues in nanobiotechnology and biomedical applications as a consequence of their multiple properties embedded within the same moiety. Several preparation techniques have been developed during the last few years to obtain magnetic CNTs: grafting or filling nanotubes with magnetic ferrofluids or attachment of magnetic nanoparticles to CNTs or their polymeric coating. These strategies allow the generation of novel versatile systems that can be employed in many biotechnological or biomedical fields. Here, we review and discuss the most recent papers dealing with the preparation of magnetic CNTs and their application in biomedical and biotechnological fields.

  12. Application of electron beam for preparation of membranes

    International Nuclear Information System (INIS)

    Mohamed Mahmoud Nasef

    2004-01-01

    Membranes have generated considerable interest in a number of technologically significant fields, such as chemical, biochemical and biomedical engineering. However, it becomes important to design and develop particular membranes for specific applications. Radiation induced grafting of hydrophilic monomers into polymeric films has been found to be an appealing method for producing various membranes. The method has the flexibility of using various types of radiation, such as γ-rays, electron beam, and plasma, irrespective of the shape and size of the polymer. Of all, electron beam accelerator is an advantageous source of high-energy radiations that can initiate grafting reactions required for preparation of membranes particularly when pilot production and commercial applications are sought. The grafting penetration can be varied from surface to bulk of membranes by applying acceleration energy. This article briefly reviews the use of electron beam radiation to prepare various membranes by radiation induced grafting of vinyl and acrylic monomers onto polymer films. Some basic fundamentals of radiation induced grafting and advantages of electron beam over Co-60 are highlighted. Potential applications of radiation-grafted membranes in various fields are also surveyed. (author)

  13. Data Management Applications for the Service Preparation Subsystem

    Science.gov (United States)

    Luong, Ivy P.; Chang, George W.; Bui, Tung; Allen, Christopher; Malhotra, Shantanu; Chen, Fannie C.; Bui, Bach X.; Gutheinz, Sandy C.; Kim, Rachel Y.; Zendejas, Silvino C.; hide

    2009-01-01

    These software applications provide intuitive User Interfaces (UIs) with a consistent look and feel for interaction with, and control of, the Service Preparation Subsystem (SPS). The elements of the UIs described here are the File Manager, Mission Manager, and Log Monitor applications. All UIs provide access to add/delete/update data entities in a complex database schema without requiring technical expertise on the part of the end users. These applications allow for safe, validated, catalogued input of data. Also, the software has been designed in multiple, coherent layers to promote ease of code maintenance and reuse in addition to reducing testing and accelerating maturity.

  14. Preparation of thin layer materials with macroporous microstructure for SOFC applications

    International Nuclear Information System (INIS)

    Marrero-Lopez, D.; Ruiz-Morales, J.C.; Pena-Martinez, J.; Canales-Vazquez, J.; Nunez, P.

    2008-01-01

    A facile and versatile method using polymethyl methacrylate (PMMA) microspheres as pore formers has been developed to prepare thin layer oxide materials with controlled macroporous microstructure. Several mixed oxides with fluorite and perovskite-type structures, i.e. doped zirconia, ceria, ferrites, manganites, and NiO-YSZ composites have been prepared and characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption and mercury porosimetry. The synthesised materials are nanocrystalline and present a homogeneous pore distribution and relatively high specific surface area, which makes them interesting for SOFC and catalysis applications in the intermediate temperature range. - Graphical abstract: Thin films materials of mixed oxides with potential application in SOFC devices have been prepared with macroporous microstructure using PMMA microspheres as pore formers. Display Omitted

  15. Inorganic nanolayers: structure, preparation, and biomedical applications

    Directory of Open Access Journals (Sweden)

    Saifullah B

    2015-09-01

    Full Text Available Bullo Saifullah, Mohd Zobir B HusseinMaterials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA, Universiti Putra Malaysia, Serdang, MalaysiaAbstract: Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes, high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging.Keywords: inorganic nanolayers, layered double hydroxides, layered hydroxy salts, drug delivery, biosensors, bioimaging

  16. 78 FR 2960 - Request for Comments on Preparation of Patent Applications

    Science.gov (United States)

    2013-01-15

    ... seeking public comment on advantages and disadvantages of applicants employing the following practices... comments on advantages and disadvantages of applicants employing the following practices when preparing... the specification and/or claims, particularly for inventions related to certain technologies, such as...

  17. The application of project management in operations preparation of nuclear power station

    International Nuclear Information System (INIS)

    Zhang Zhixiong; Tang Zhengrong

    2000-01-01

    The author first presents a brief introduction of the concept, history, characteristics of project management. Analysis is performed on the suitability of application of project management approach in nuclear power station operations preparation. Then the application of project management is detailed in order to present the readers authors' study and practice. Theory and practice indicate that the project management is a useful management tool for operations preparation of nuclear power station to achieve a good performance

  18. Application of solar radiation for heating and preparation of warm water in an individual house

    International Nuclear Information System (INIS)

    Kozak, Tadeeusz; Majchrzycka, Anna

    2009-01-01

    The paper is aimed at analysis of application of the solar collectors array for preparing of warm water and space heating in an individual house. Keywords: application of solar radiation, preparation of warm water, heating

  19. Preparation, Modification, Characterization, and Biosensing Application of Nanoporous Gold Using Electrochemical Techniques.

    Science.gov (United States)

    Bhattarai, Jay K; Neupane, Dharmendra; Nepal, Bishal; Mikhaylov, Vasilii; Demchenko, Alexei V; Stine, Keith J

    2018-03-16

    Nanoporous gold (np-Au), because of its high surface area-to-volume ratio, excellent conductivity, chemical inertness, physical stability, biocompatibility, easily tunable pores, and plasmonic properties, has attracted much interested in the field of nanotechnology. It has promising applications in the fields of catalysis, bio/chemical sensing, drug delivery, biomolecules separation and purification, fuel cell development, surface-chemistry-driven actuation, and supercapacitor design. Many chemical and electrochemical procedures are known for the preparation of np-Au. Recently, researchers are focusing on easier and controlled ways to tune the pores and ligaments size of np-Au for its use in different applications. Electrochemical methods have good control over fine-tuning pore and ligament sizes. The np-Au electrodes that are prepared using electrochemical techniques are robust and are easier to handle for their use in electrochemical biosensing. Here, we review different electrochemical strategies for the preparation, post-modification, and characterization of np-Au along with the synergistic use of both electrochemistry and np-Au for applications in biosensing.

  20. Preparation, Modification, Characterization, and Biosensing Application of Nanoporous Gold Using Electrochemical Techniques

    Directory of Open Access Journals (Sweden)

    Jay K. Bhattarai

    2018-03-01

    Full Text Available Nanoporous gold (np-Au, because of its high surface area-to-volume ratio, excellent conductivity, chemical inertness, physical stability, biocompatibility, easily tunable pores, and plasmonic properties, has attracted much interested in the field of nanotechnology. It has promising applications in the fields of catalysis, bio/chemical sensing, drug delivery, biomolecules separation and purification, fuel cell development, surface-chemistry-driven actuation, and supercapacitor design. Many chemical and electrochemical procedures are known for the preparation of np-Au. Recently, researchers are focusing on easier and controlled ways to tune the pores and ligaments size of np-Au for its use in different applications. Electrochemical methods have good control over fine-tuning pore and ligament sizes. The np-Au electrodes that are prepared using electrochemical techniques are robust and are easier to handle for their use in electrochemical biosensing. Here, we review different electrochemical strategies for the preparation, post-modification, and characterization of np-Au along with the synergistic use of both electrochemistry and np-Au for applications in biosensing.

  1. Magnetooptical garnet films: preparation, characterisation, application

    International Nuclear Information System (INIS)

    Goernert, P.; Lorenz, A.; Lindner, M.; Richert, H.

    2007-01-01

    Full text: In contemporary magnetooptics both Kerr effect and Faraday effect are applied. The Kerr effect of metals and alloys - such as Fe, Ni, Co, FePt, CoPt, MnBi, PtMnSb - with thicknesses 300 μm are established as commercial isolators in optical systems and for developments of waveguide applications. Bi-REIG is prepared mostly by conventional liquid phase epitaxy (LPE) in PbO-B 2 O 3 -Bi 2 O 3 based solvents and sometimes by laser ablation and as nanocrystalline powders. In each case high Faraday rotation and low optical absorption is necessary. Additionally, magnetooptical sensors should possess high sensitivity and a large dynamic range. All these demands can be fulfilled with (REBi) 3 (FeGaAl) 5 O 12 LPE layers. Here we discuss some new results concerning preparation, characterisation, and application of Bi-TmIG and Bi-DyIG LPE layers on high-quality gadolinium gallium garnet (GGG) or lattice matched Ca-, Mg-, Zr-substituted GGG substrates. Optimization of flux melt composition and under cooling result in sensor films with a Faraday rotation of e.g. -1.2 0 /μm at a wavelength of l=590 nm and saturation induction of Bs=70 mT. Such films are already applied for forensic investigations. However, the responsivity of the garnet films is restricted by their coercivity Hc. Surface defects are found to give rise to pinned magnetic domains correlated with typical hysteresis. Obviously, Hc and the formation of pits are due to misfit stress and substrate surface quality. Besides, it is shown that an increase of working temperature leads to smaller coercivities. (authors)

  2. Preparation of 3D graphene-based architectures and their applications in supercapacitors

    Directory of Open Access Journals (Sweden)

    Zhuxian Yang

    2015-12-01

    Full Text Available Three dimensional (3D graphene-based architectures such as 3D graphene-based hydrogels, aerogels, foams, and sponges have attracted huge attention owing to the combination of the structural interconnectivities and the outstanding properties of graphene which offer these interesting structures with low density, high porosity, large surface area, stable mechanical properties, fast mass and electron transport. They have been extensively studied for a wide range of applications including capacitors, batteries, sensors, catalyst, etc. There are several reviews focusing on the 3D graphene-based architectures and their applications. In this work, we only summarise the latest development on the preparation of 3D graphene-based architectures and their applications in supercapacitors, with emphasis on the preparation strategies.

  3. Safety of Intravenous Application of Mistletoe (Viscum album L. Preparations in Oncology: An Observational Study

    Directory of Open Access Journals (Sweden)

    Megan L. Steele

    2014-01-01

    Full Text Available Background. Traditional mistletoe therapy in cancer patients involves subcutaneous applications of Viscum album L. preparations, with doses slowly increasing based on patient responses. Intravenous infusion of high doses may improve therapeutic outcomes and is becoming more common. Little is known about the safety of this “off-label” application of mistletoe. Methods. An observational study was performed within the Network Oncology. Treatment with intravenous mistletoe applications is described. The frequency of adverse drug reactions (ADRs to intravenous mistletoe applications was calculated and compared to ADR data from a study on subcutaneous applications. Results. Of 475 cancer patients who received intravenous infusions of Helixor, Abnoba viscum, or Iscador mistletoe preparations, 22 patients (4.6% reported 32 ADRs of mild (59.4% or moderate severity (40.6%. No serious ADRs occurred. ADRs were more frequently reported to i.v. mistletoe administered alone (4.3%, versus prior to chemotherapy (1.6%. ADR frequency differed with respect to preparation type, with Iscador preparations showing a higher relative frequency, compared to Abnoba viscum and Helixor. Overall, patients were almost two times less likely to experience an ADR to intravenous compared to subcutaneous application of mistletoe. Conclusion. Intravenous mistletoe therapy was found to be safe and prospective studies for efficacy are recommended.

  4. The preparation of magnetic nanoparticles for applications in biomedicine

    International Nuclear Information System (INIS)

    Tartaj, Pedro; Morales, Maria del Puerto; Veintemillas-Verdaguer, Sabino; Gonzalez-Carreno, Teresita; Serna, Carlos J

    2003-01-01

    This review is focused on describing state-of-the-art synthetic routes for the preparation of magnetic nanoparticles useful for biomedical applications. In addition to this topic, we have also described in some detail some of the possible applications of magnetic nanoparticles in the field of biomedicine with special emphasis on showing the benefits of using nanoparticles. Finally, we have addressed some relevant findings on the importance of having well-defined synthetic routes to produce materials not only with similar physical features but also with similar crystallochemical characteristics. (topical review)

  5. Technological Advancement in Preparation and Application of Monolithic Refractories

    Institute of Scientific and Technical Information of China (English)

    LIZaigeng; ZHOUNingsheng

    2001-01-01

    This paper highlighted the advancement in preparation and application technologies of monolithic refactories in recent two decaes,in terms of raw materials,processing technology,particle size distrbution,binders,additives,workabiity,installation and applications,Facts and dicussions indicated that monolitihic refractoriesare advancing rapidly,from material point of view,towards higher grade and higher performance mateials and oxide-non-oxide composites;from installation point of view,towards higher efficiency,less man-power and time consuming terchinques;from drying-out point of view,towards quicker or even drying-out free,and from application point of view,towards the working linings of high temperature smelters and vessles under tougher serivce conditions ,and on the other hand,with more functions.

  6. Preparation of Silver Nanoparticles and Their Industrial and Biomedical Applications: A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    Adnan Haider

    2015-01-01

    Full Text Available Silver nanoparticles (Ag-NPs have diverted the attention of the scientific community and industrialist itself due to their wide range of applications in industry for the preparation of consumer products and highly accepted application in biomedical fields (especially their efficacy against microbes, anti-inflammatory effects, and wound healing ability. The governing factor for their potent efficacy against microbes is considered to be the various mechanisms enabling it to prevent microbial proliferation and their infections. Furthermore a number of new techniques have been developed to synthesize Ag-NPs with controlled size and geometry. In this review, various synthetic routes adapted for the preparation of the Ag-NPs, the mechanisms involved in its antimicrobial activity, its importance/application in commercial as well as biomedical fields, and possible application in future have been discussed in detail.

  7. V-amylose structural characteristics, methods of preparation, significance, and potential applications

    CSIR Research Space (South Africa)

    Obiro, WC

    2012-02-01

    Full Text Available , and postprandial hyperglycaemia in diabetics. Various aspects of V-amylose structure, methods of preparation, factors that affect its formation, and the significance and potential applications of the V-amylose complexes are reviewed....

  8. Magnetic carbon nanotubes: preparation, physical properties, and applications in biomedicine.

    Science.gov (United States)

    Samadishadlou, Mehrdad; Farshbaf, Masoud; Annabi, Nasim; Kavetskyy, Taras; Khalilov, Rovshan; Saghfi, Siamak; Akbarzadeh, Abolfazl; Mousavi, Sepideh

    2017-10-18

    Magnetic carbon nanotubes (MCNTs) have been widely studied for their potential applications in medicine, diagnosis, cell biology, analytical chemistry, and environmental technology. Introduction of MCNTs paved the way for the emergence of new approaches in nanobiotechnology and biomedicine as a result of their multifarious properties embedded within either the carbon nanotubes (CNTs) or magnetic parts. Numerous preparation techniques exists for functionalizing CNTs with magnetic nanoparticles, and these versatile strategies lay the ground for the generation of novel and versatile systems which are applicable to many industries and biological areas. Here, we review and discuss the recent papers dealing with MCNTs and their application in biomedical and industrial fields.

  9. Preparation and characterization of thin-film Pd–Ag supported membranes for high-temperature applications

    NARCIS (Netherlands)

    Fernandez Gesalaga, Ekain; Coenen, Kai; Helmi Siasi Farimani, Arash; Melendez, J.; Zuniga, Jon; Pacheco Tanaka, David Alfredo; van Sint Annaland, Martin; Gallucci, Fausto

    2015-01-01

    This paper reports the preparation, characterization and stability tests of thin-film Pd–Ag supported membranes for high-temperature fluidized bed membrane reactor applications. Various thin-film supported membranes have been prepared by simultaneous Pd–Ag electroless plating and have been initially

  10. On-site preparation of technetium-99m labeled human serum albumin for clinical application

    International Nuclear Information System (INIS)

    Wang Yuhfeng; Chuang Meihua; Cham Thauming; Chung Meiing; Chiu Jainnshiun

    2007-01-01

    Technetium-99m labeled human serum albumin (Tc-99m HSA) is an important radiopharmaceutical for clinical applications, such as cardiac function tests or protein-losing gastroenteropathy assessment. However, because of transfusion-induced infectious diseases, the safety of serum products is a serious concern. In this context, serum products acquired from patients themselves are the most ideal tracer. However, the development of rapid separation and easy clinical labeling methods is not yet well established. Under such situation, products from the same ethnic group or country are now recommended by the World Health Organization as an alternative preparation. This article describes the on-site preparation of Tc-99m HSA from locally supplied serum products. Different formulations were prepared and the labeling efficiency and stability were examined. Radio-labeling efficiencies were more than 90% in all preparation protocols, except for one that omitted the stannous solution. The most cost-effective protocol contained HSA 0.1 mg, treated with stannous fluoride 0.2 mg, and mixed with Tc-99m pertechnetate 30 mCi. A biodistribution study was performed in rats using a gamma camera immediately after intravenous administration of radiolabeled HSA. Tissue/organ uptake was obtained by measuring the radioactivity in organs after sacrificing the rats at timed intervals. The biologic half-life was about 32 min, determined from sequential venous blood collections. These data indicate that our preparation of Tc-99m HSA is useful and potentially applicable clinically. In addition, this on-site preparation provides the possibility of labeling a patient's own serum for subsequent clinical application. (author)

  11. Progress in the preparation of magnetic nanoparticles for applications in biomedicine

    Energy Technology Data Exchange (ETDEWEB)

    Roca, A G; Costo, R; Rebolledo, A F; Veintemillas-Verdaguer, S; Tartaj, P; Gonzalez-Carreno, T; Morales, M P; Serna, C J, E-mail: puerto@icmm.csic.e [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid (Spain)

    2009-11-21

    This review summarizes recent advances in synthesis routes for quickly and reliably making and functionalizing magnetic nanoparticles for applications in biomedicine. We put special emphasis on describing synthetic strategies that result in the production of nanosized materials with well-defined physical and crystallochemical characteristics as well as colloidal and magnetic properties. Rather than grouping the information according to the synthetic route, we have described methods to prepare water-dispersible equiaxial magnetic nanoparticles with sizes below about 10 nm, sizes between 10 and 30 nm and sizes around the monodomain-multidomain magnetic transition. We have also described some recent examples reporting the preparation of anisometric nanoparticles as well as methods to prepare magnetic nanosized materials other than iron oxide ferrites, for example Co and Mn ferrite, FePt and manganites. Finally, we have described examples of the preparation of multicomponent systems with purely inorganic or organic-inorganic characteristics. (topical review)

  12. Preparation and highlighted applications of magnetic microparticles and nanoparticles: a review on recent advances

    International Nuclear Information System (INIS)

    Xiao, Deli; Lu, Ting; Zeng, Rong; Bi, Yanping

    2016-01-01

    This review (with 144 refs.) focuses on the recent advances in the preparation and application of magnetic micro/nanoparticles. Specifically, it covers (a) methods for preparation (such as by coprecipitation, pyrolysis, hydrothermal, solvothermal, sol-gel, micro-emulsion, sonochemical, medium dispersing or emulsion polymerization methods), and (b) applications such as magnetic resonance imaging, magnetic separation of biomolecules (nucleic acids; proteins; cells), separation of metal ions and organic analytes, immobilization of enzymes, biological detection, magnetic catalysis and water treatment. Finally, the existing challenges and possible trends in the field are addressed. (author)

  13. Design, preparation, and application of ordered porous polymer materials

    International Nuclear Information System (INIS)

    Liu, Qingquan; Tang, Zhe; Ou, Baoli; Liu, Lihua; Zhou, Zhihua; Shen, Shaohua; Duan, Yinxiang

    2014-01-01

    Ordered porous polymer (OPP) materials have extensively application prospects in the field of separation and purification, biomembrane, solid supports for sensors catalysts, scaffolds for tissue engineering, photonic band gap materials owing to ordered pore arrays, uniform and tunable pore size, high specific surface area, great adsorption capacity, and light weight. The present paper reviewed the preparation techniques of OPP materials like breath figures, hard template, and soft template. Finally, the applications of OPP materials in the field of separation, sensors, and biomedicine are introduced, respectively. - Highlights: • Breath figures involve polymer casting under moist ambience. • Hard template employs monodisperse colloidal spheres as a template. • Soft template utilizes the etched block in copolymers as template

  14. Structural and compositional gradients: basic idea, preparation, applications

    International Nuclear Information System (INIS)

    Ilschner, B.

    1993-01-01

    The term gradient materials refers to gradients of chemical composition and/or microstructural parameters which are intentionally introduced into components of any kind of homogeneous or heterogeneous materials, including metallic alloys, ceramics, glasses, polymers, and composites. After a short review of the development of the gradient materials technology since 1972, some fundamental aspects concerning the effects of such gradients on physical or mechanical properties are discussed. A selection of technical applications which have been discussed recently is presented. Finally, different methods for the preparation of gradients from gaseous, liquid or powder precursors are reviewed. (orig.)

  15. Preparation of size-controlled (30-100 nm) magnetite nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Nishio, K.; Ikeda, M.; Gokon, N.; Tsubouchi, S.; Narimatsu, H.; Mochizuki, Y.; Sakamoto, S.; Sandhu, A.; Abe, M.; Handa, H.

    2007-01-01

    Size-controlled magnetite nanoparticles (MNPs) with several dozen nanometers (nm) were synthesized for biomedical applications. Nanoparticles of single-phase magnetite, as revealed by X-ray analyses and magnetic measurements, were prepared by oxidizing ferrous hydroxide (Fe(OH) 2 ) with a weak oxidant NaNO 3 in an N 2 -deaerated aqueous NaOH solution (pH=12-13) at various temperatures below 37 deg. C. As the synthesis temperature increases from 4 to 37 deg. C, the MNPs are decreased in size (d) from 102±5.6 to 31.7±4.9 nm and widened in size distribution, Δd/d increases from 5.5% to 15%. Prepared without using any surfactant, the MNPs are advantageous for immobilizing functional molecules stably on the surfaces for biomedical applications

  16. Applications of Liquid-Phase Microextraction in the Sample Preparation of Environmental Solid Samples

    OpenAIRE

    Helena Prosen

    2014-01-01

    Solvent extraction remains one of the fundamental sample preparation techniques in the analysis of environmental solid samples, but organic solvents are toxic and environmentally harmful, therefore one of the possible greening directions is its miniaturization. The present review covers the relevant research from the field of application of microextraction to the sample preparation of environmental solid samples (soil, sediments, sewage sludge, dust etc.) published in the last decade. Several...

  17. Preparation of polychlorinated isoxazoles and application to organic synthesis

    OpenAIRE

    Monasterolo, Claudio

    2016-01-01

    The work behind my doctoral thesis has been focused on the study of reactivity of 3,5-dimethyl-4-nitroisoxazole. This compound shows a peculiar reactivity compared to other isoxazole derivatives due to the presence of the nitro group in 4-position. The chemical behavior of 3,5-dimethyl-4-nitroisoxazole has been extensively studied in the last decade with the development of important applications in pharmaceutical chemistry in the preparation of valuable biologically active compounds. The i...

  18. Studies on the lanthanum arsenate ion-exchanger: preparation, physicochemical properties and applications

    International Nuclear Information System (INIS)

    Mukherjee, A.K.; Mandal, S.K.

    1984-01-01

    The cation-exchange behaviour of lanthanum arsenate has been studied. This paper reports the preparation and physicochemical properties of the exchanger. Its analytical utility is compared with that of other arsenate exchangers. Some practical analytical applications are described. (author)

  19. Applications of Liquid-Phase Microextraction in the Sample Preparation of Environmental Solid Samples

    Directory of Open Access Journals (Sweden)

    Helena Prosen

    2014-05-01

    Full Text Available Solvent extraction remains one of the fundamental sample preparation techniques in the analysis of environmental solid samples, but organic solvents are toxic and environmentally harmful, therefore one of the possible greening directions is its miniaturization. The present review covers the relevant research from the field of application of microextraction to the sample preparation of environmental solid samples (soil, sediments, sewage sludge, dust etc. published in the last decade. Several innovative liquid-phase microextraction (LPME techniques that have emerged recently have also been applied as an aid in sample preparation of these samples: single-drop microextraction (SDME, hollow fiber-liquid phase microextraction (HF-LPME, dispersive liquid-liquid microextraction (DLLME. Besides the common organic solvents, surfactants and ionic liquids are also used. However, these techniques have to be combined with another technique to release the analytes from the solid sample into an aqueous solution. In the present review, the published methods were categorized into three groups: LPME in combination with a conventional solvent extraction; LPME in combination with an environmentally friendly extraction; LPME without previous extraction. The applicability of these approaches to the sample preparation for the determination of pollutants in solid environmental samples is discussed, with emphasis on their strengths, weak points and environmental impact.

  20. Applications of liquid-phase microextraction in the sample preparation of environmental solid samples.

    Science.gov (United States)

    Prosen, Helena

    2014-05-23

    Solvent extraction remains one of the fundamental sample preparation techniques in the analysis of environmental solid samples, but organic solvents are toxic and environmentally harmful, therefore one of the possible greening directions is its miniaturization. The present review covers the relevant research from the field of application of microextraction to the sample preparation of environmental solid samples (soil, sediments, sewage sludge, dust etc.) published in the last decade. Several innovative liquid-phase microextraction (LPME) techniques that have emerged recently have also been applied as an aid in sample preparation of these samples: single-drop microextraction (SDME), hollow fiber-liquid phase microextraction (HF-LPME), dispersive liquid-liquid microextraction (DLLME). Besides the common organic solvents, surfactants and ionic liquids are also used. However, these techniques have to be combined with another technique to release the analytes from the solid sample into an aqueous solution. In the present review, the published methods were categorized into three groups: LPME in combination with a conventional solvent extraction; LPME in combination with an environmentally friendly extraction; LPME without previous extraction. The applicability of these approaches to the sample preparation for the determination of pollutants in solid environmental samples is discussed, with emphasis on their strengths, weak points and environmental impact.

  1. Metal nanoparticles (other than gold or silver) prepared using plant extracts for medical applications

    Science.gov (United States)

    Pasca, Roxana-Diana; Santa, Szabolcs; Racz, Levente Zsolt; Racz, Csaba Pal

    2016-12-01

    There are many modalities to prepare metal nanoparticles, but the reducing of the metal ions with plant extracts is one of the most promising because it is considerate less toxic for the environment, suitable for the use of those nanoparticles in vivo and not very expensive. Various metal ions have been already studied such as: cobalt, copper, iron, platinum, palladium, zinc, indium, manganese and mercury and the number of plant extracts used is continuously increasing. The prepared systems were characterized afterwards with a great number of methods of investigation: both spectroscopic (especially UV-Vis spectroscopy) and microscopic (in principal, electron microscopy-TEM) methods. The applications of the metal nanoparticles obtained are diverse and not completely known, but the medical applications of such nanoparticles occupy a central place, due to their nontoxic components, but some diverse industrial applications do not have to be forgotten.

  2. Preparation, Characterization and application of Alumina Powder Produced by advanced Preparation Techniques

    International Nuclear Information System (INIS)

    Khalil, T.; Abou El Nour, F.; Bossert, J.; Ashor, A.H.

    2000-01-01

    Aluminum oxide powders were prepared by advanced chemical techniques. The morphology of the produced powders were examined using scanning electron microscopy (SEM). Surface characteristics of the powders were measured through nitrogen gas adsorption and application of the BET equation at 77 K, through the use of nitrogen gas adsorption at liquid nitrogen temperature and application of the Brunauer-Emett-Teller (BET) equation. The total surface area, total pore volume and pore radius of the powders were calculated through the construction of the plots relating the amount of nitrogen gas adsorbed V 1 and the thickness of the adsorbed layer t(V 1 -t plots). The thermal behaviour of the powders were studied with the help of differential thermal analysis (DTA) and thermogravimetry (TG). Due to the presence of some changes in the DTA base lines, possibly as a result of phase transformations, X-ray diffraction was applied to identify these phases. The sintering behaviour of the compact powders after isostatic pressing was evaluated using dilatometry. The sintering temperature of the studied samples were also determined using heating microscopy. The effect of changing sintering temperature and of applying different isostatic pressures on the density and porosity of the compacts was investigated

  3. New preparations of the elemental diet and the clinical application.

    Science.gov (United States)

    Ogoshi, S; Sato, H

    1981-01-01

    In 1978, we designed a new elemental diet, ED-AC, which modified after Vivonex-HN with the co-operation of Ajinomoto Co., Japan and Morton-Norwich Co., U.S.A.. ED-AC is now being used widely in Japan for enteral hyper-alimentation, even in case of pediatric surgery. We have new prepared another elemental diet, this time for infants, ED-P (pediatric). The ratio of amino acids in both ED was determined according the proposal of Professor Goro Inoue, Department of Nutrition, Tokushima University. The application of ED, particularly for surgical patients, has been most effective. the use of this diet for enteral hyperalimentation should find a wide application in surgical and medical practice.

  4. The Development on the Ultra-hard Honing Oilstones in Preparation and Application

    Science.gov (United States)

    Zhou, Z. C.; Du, J.; Gu, S. Y.

    2018-03-01

    Physical, chemical and mechanical properties of some abrasives such as diamond, CBN are described in this paper. The preparation and application of ultra-hard oilstones such as diamond and CBN are also discussed. They are widely applied in honing and promote great development of honing technology. However, the standardizing binder compositions of diamond and CBN can not easily obtained. In addition, the precision requisition of grinded parts is different from part to part and the grinded material kinds are diverse. Therefore, the oilstone performance is difficult to match reasonably the grinded parts. Those factors result in the complication of the oilstone preparation.

  5. Scientific and technical guidance for the preparation and presentation of a health claim application (Revision 2)

    DEFF Research Database (Denmark)

    Sjödin, Anders Mikael

    2017-01-01

    EFSA asked the Panel on Dietetic Products, Nutrition and Allergies (NDA) to update the scientific and technical guidance for the preparation and presentation of an application for authorisation of a health claim published in 2011. Since then, the NDA Panel has gained considerable experience...... developments in this area. This guidance document presents a common format for the organisation of information for the preparation of a well-structured application for authorisation of health claims which fall under Articles 13(5), 14 and 19 of Regulation (EC) No 1924/2006. This guidance outlines...... the information and scientific data which must be included in the application, the hierarchy of different types of data and study designs, and the key issues which should be addressed in the application to substantiate the health claim....

  6. Recent Advances in Preparation, Structure, Properties and Applications of Graphite Oxide.

    Science.gov (United States)

    Srivastava, Suneel Kumar; Pionteck, Jürgen

    2015-03-01

    Graphite oxide, also referred as graphitic oxide or graphitic acid, is an oxidized bulk product of graphite with a variable composition. However, it did not receive immense attention until it was identified as an important and easily obtainable precursor for the preparation of graphene. This inspired many researchers to explore facts related to graphite oxide in exploiting its fascinating features. The present article culminates up-dated review on different preparative methods, morphology and characterization of physical/chemical properties of graphite oxide by XRD, XPS, FTIR, Raman, NMR, UV-visible, and DRIFT analyses. Finally, recent developments on intercalation and applications of GO in multifaceted areas of catalysis, sensor, supercapacitors, water purification, hydrogen storage and magnetic shielding etc. has also been reviewed.

  7. Preparation and characterization of carbon/nickel oxide nanocomposite coatings for solar absorber applications

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2012-04-01

    Full Text Available Nanocomposite materials have wide range of applications in solar energy conversion. In this work, C/NiO nanocomposite solar energy absorbing surfaces were prepared using sol-gel synthesis and deposited on aluminium substrates using a spin coater...

  8. Nanocomposite Coatings: Preparation, Characterization, Properties, and Applications

    Directory of Open Access Journals (Sweden)

    Phuong Nguyen-Tri

    2018-01-01

    Full Text Available Incorporation of nanofillers into the organic coatings might enhance their barrier performance, by decreasing the porosity and zigzagging the diffusion path for deleterious species. Thus, the coatings containing nanofillers are expected to have significant barrier properties for corrosion protection and reduce the trend for the coating to blister or delaminate. On the other hand, high hardness could be obtained for metallic coatings by producing the hard nanocrystalline phases within a metallic matrix. This article presents a review on recent development of nanocomposite coatings, providing an overview of nanocomposite coatings in various aspects dealing with the classification, preparative method, the nanocomposite coating properties, and characterization methods. It covers potential applications in areas such as the anticorrosion, antiwear, superhydrophobic area, self-cleaning, antifouling/antibacterial area, and electronics. Finally, conclusion and future trends will be also reported.

  9. Preparation of precipitated barium sulphate from Egyptian barytes ore and its application in paints

    International Nuclear Information System (INIS)

    El-Sawy, S.M.; Ahmed, N.M.; Abd El-Ghaffar, M.A.

    2005-01-01

    Precipitated barium sulphate (Blank fixe) was prepared and evaluated as an extender pigment, making use of the naturally occurring Egyptian barytes ore. X-ray diffraction patterns, transmission electron microscope, thermal gravimetric analysis, color measurements, specific gravity, oil absorption, bulking value, bleed resistance, hydrogen ion concentration, permanence for light and heat and chemical resistance were different methods used for characterization and evaluation of the prepared pigment. Medium oil alkyd resin, melamine-alkyd and epoxy resin were used as different binding media for the application and testing of the prepared pigments as an extender- in some paint formulations, this was done in comparison with a commercial imported blank fixe sample and the Egyptian barytes ore that it was prepared from. It was found that; a white bright fine powder of precipitated barium sulfate could be successfully prepared from the locally abundant Egyptian barytes ore. It has a suitable properties as an extender pigment. Paints pigmented with blank fixe offered favourable rheological and protective properties exceeding that of the imported commercial sample and the ore that was prepared from

  10. Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning

    Directory of Open Access Journals (Sweden)

    2011-04-01

    Full Text Available Chitosan is soluble in most acids. The protonation of the amino groups on the chitosan backbone inhibits the electrospinnability of pure chitosan. Recently, electrospinning of nanofibers based on chitosan has been widely researched and numerous nanofibers containing chitosan have been prepared by decreasing the number of the free amino groups of chitosan as the nanofibiers have enormous possibilities for better utilization in various areas. This article reviews the preparations and properties of the nanofibers which were electrospun from pure chitosan, blends of chitosan and synthetic polymers, blends of chitosan and protein, chitosan derivatives, as well as blends of chitosan and inorganic nanoparticles, respectively. The applications of the nanofibers containing chitosan such as enzyme immobilization, filtration, wound dressing, tissue engineering, drug delivery and catalysis are also summarized in detail.

  11. Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications

    Directory of Open Access Journals (Sweden)

    Alain Dufresne

    2010-12-01

    Full Text Available Cellulose is the most abundant biomass material in nature. Extracted from natural fibers, its hierarchical and multi-level organization allows different kinds of nanoscaled cellulosic fillers—called cellulose nanocrystals or microfibrillated cellulose (MFC—to be obtained. Recently, such cellulose nanoparticles have been the focus of an exponentially increasing number of works or reviews devoted to understanding such materials and their applications. Major studies over the last decades have shown that cellulose nanoparticles could be used as fillers to improve mechanical and barrier properties of biocomposites. Their use for industrial packaging is being investigated, with continuous studies to find innovative solutions for efficient and sustainable systems. Processing is more and more important and different systems are detailed in this paper depending on the polymer solubility, i.e., (i hydrosoluble systems, (ii non-hydrosoluble systems, and (iii emulsion systems. This paper intends to give a clear overview of cellulose nanoparticles reinforced composites with more than 150 references by describing their preparation, characterization, properties and applications.

  12. The effect of dentine surface preparation and reduced application time of adhesive on bonding strength.

    Science.gov (United States)

    Saikaew, Pipop; Chowdhury, A F M Almas; Fukuyama, Mai; Kakuda, Shinichi; Carvalho, Ricardo M; Sano, Hidehiko

    2016-04-01

    This study evaluated the effects of surface preparation and the application time of adhesives on the resin-dentine bond strengths with universal adhesives. Sixty molars were cut to exposed mid-coronal dentine and divided into 12 groups (n=5) based on three factors; (1) adhesive: G-Premio Bond (GP, GC Corp., Tokyo, Japan), Clearfil Universal Bond (CU, Kuraray Noritake Dental Inc., Okayama, Japan) and Scotchbond Universal Adhesive (SB, 3M ESPE, St. Paul, MN, USA); (2) smear layer preparation: SiC paper ground dentine or bur-cut dentine; (3) application time: shortened time or as manufacturer's instruction. Fifteen resin-dentine sticks per group were processed for microtensile bond strength test (μTBS) according to non-trimming technique (1mm(2)) after storage in distilled water (37 °C) for 24h. Data were analyzed by three-way ANOVA and Dunnett T3 tests (α=0.05). Fractured surfaces were observed under scanning electron microscope (SEM). Another 12 teeth were prepared and cut into slices for SEM examination of bonded interfaces. μTBS were higher when bonded to SiC-ground dentine according to manufacturer's instruction. Bonding to bur-cut dentine resulted in significantly lower μTBS (padhesive resin interface. This was more pronounced when adhesives were bonded with a reduced application time and on bur cut dentine. The performance of universal adhesives can be compromised on bur cut dentine and when applied with a reduced application time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Preparation and Characterization of Water-Based Nano-fluids for Nuclear Applications

    International Nuclear Information System (INIS)

    Williams, W.C.; Forrest, E.; Hu, L.W.; Buongiorno, J.

    2006-01-01

    As part of an effort to evaluate water-based nano-fluids for nuclear applications, preparation and characterization has been performed for nano-fluids being considered for MIT's nano-fluid heat transfer experiments. Three methods of generating these nano-fluids are available: creating them from chemical precipitation, purchasing the nano-particles in powder form and mixing them with the base fluid, and direct purchase of prepared nano-fluids. Characterization of nano-fluids includes colloidal stability, size distribution, concentration, and elemental composition. Quality control of the nano-fluids to be used for heat transfer testing is crucial; an exact knowledge of the fluid constituents is essential to uncovering mechanisms responsible for heat transport enhancement. Testing indicates that nano-fluids created by mixing a liquid with nano-particles in powder form are often not stable, although some degree of stabilization is obtainable with pH control and/or surfactant addition. Some commercially available prepared nano-fluids have been found to contain unacceptable levels of impurities and/or include a different weight percent of nano-particles compared to vendor specifications. Tools utilized to characterize and qualify nano-fluids for this study include neutron activation analysis (NAA), inductively-coupled plasma spectroscopy (ICP), transmission electron microscopy (TEM) imaging, thermogravimetric analysis (TGA) and dynamic light scattering (DLS). Preparation procedures and characterization results for selected nano-fluids will be discussed in detail. (authors)

  14. "Smart" Materials Based on Cellulose: A Review of the Preparations, Properties, and Applications.

    Science.gov (United States)

    Qiu, Xiaoyun; Hu, Shuwen

    2013-02-28

    Cellulose is the most abundant biomass material in nature, and possesses some promising properties, such as mechanical robustness, hydrophilicity, biocompatibility, and biodegradability. Thus, cellulose has been widely applied in many fields. "Smart" materials based on cellulose have great advantages-especially their intelligent behaviors in reaction to environmental stimuli-and they can be applied to many circumstances, especially as biomaterials. This review aims to present the developments of "smart" materials based on cellulose in the last decade, including the preparations, properties, and applications of these materials. The preparations of "smart" materials based on cellulose by chemical modifications and physical incorporating/blending were reviewed. The responsiveness to pH, temperature, light, electricity, magnetic fields, and mechanical forces, etc. of these "smart" materials in their different forms such as copolymers, nanoparticles, gels, and membranes were also reviewed, and the applications as drug delivery systems, hydrogels, electronic active papers, sensors, shape memory materials and smart membranes, etc. were also described in this review.

  15. Tritium labelled steroids, preparation process and application to synthesis of tritium labelled estrane derivatives

    International Nuclear Information System (INIS)

    1978-01-01

    Process for preparing new steroids labelled with tritium in 6.7 and comprising in 3 a blocked ketonic group as ketal, thioketal or derivatives. Application of these products to the synthesis of tritium labelled estrane derivatives [fr

  16. Preparation of NiFe binary alloy nanocrystals for nonvolatile memory applications

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this work,an idea which applies binary alloy nanocrystal floating gate to nonvolatile memory application was introduced.The relationship between binary alloy’s work function and its composition was discussed theoretically.A nanocrystal floating gate structure with NiFe nanocrystals embedded in SiO2 dielectric layers was fabricated by magnetron sputtering.The micro-structure and composition deviation of the prepared NiFe nanocrystals were also investigated by TEM and EDS.

  17. Preparation and characterization of polyurethane plasticizer for flexible packaging applications: Natural oils affirmed access

    Directory of Open Access Journals (Sweden)

    Mohammed A. Mekewi

    2017-03-01

    Full Text Available Developing bio-renewable feedstock for polyurethane (PU manufacturing and polymer industry as a whole has become highly desirable for both economic and environmental reasons. In this work castor oil (CO and palm olein (PO polyols were synthesized and partially used as renewable feedstock for the manufacturing of polyurethane plasticizing resin for printing ink applications. The chemical structure of the prepared polyols and polyurethanes were characterized using IR spectra and GPC and their solubility in common solvents was tested. As well, properties such as flexibility, mechanical properties, optical properties, heat seal and freeze resistance of these prepared printing inks were determined. The results indicated that the prepared printing inks from 50% synthesized polyurethane have high thermal stability, adhesion and excellent freeze resistance. The net technical properties of the new ink formulations are relatively comparable to the printing ink prepared from standard polyurethane plasticizer.

  18. An assessment on preparation methods and applications of hydrophobic Pt-catalyst in nuclear and environmental field

    International Nuclear Information System (INIS)

    Ionita, Gh.; Stefanescu, I.; Varlam, Carmen

    2001-01-01

    Based on the long experience of the authors in the preparation, testing and evaluation of the performances of hydrophobic catalysts and based on the reviewed references, this paper presents up-to-date R and D activities on the preparation and application of hydrophobic catalysts for use in nuclear and environmental fields. Unlike the conventional hydrophilic catalysts, the hydrophobic catalysts repel the liquid water and allow the transport of the gaseous reactants and reaction products to and from catalytic active centers. For deuterium and tritium separation, over one hundred hydrophobic catalyst types have been prepared in different experimental conditions and by a large diversity of wet proofing methods. The influence of about twenty parameters on catalytic activity have been also studied. The purpose of this paper is: (1) to provide a database for preparation and selection of he most appropriate method for preparing an active hydrophobic catalyst, (2) to show how to use the hydrophobic catalyst and how to operate efficiently the reactor packed with hydrophobic catalyst, (3) to evaluate the performances and potentiality of hydrophobic catalysts in nuclear and environmental field, (4) evaluation of applications of hydrophobic catalysts in nuclear and environmental fields. As result, the following categories are shown: (1) the hydrophobic catalysts based on platinum and Teflon as wet-proofing proved to have the highest activity and the longest stability, (2) the utilization of hydrophobic catalyst as ordered mixed catalytic packing in the trickle bed or separated bed reactors is more efficient and has been entirely proved on industrial scale for tritium separation process, (3) the extension of the applications of hydrophobic catalysts for other processes which take place in the presence of saturated humidity or liquid water in environmental protection field. The merits of hydrophobic Pt-catalysts for tritium separation are discussed in comparison to other

  19. Preparation and application of L-cysteine-doped Keggin polyoxometalate microtubes

    International Nuclear Information System (INIS)

    Shen Yan; Peng Jun; Zhang Huanqiu; Meng Cuili; Zhang Fang

    2012-01-01

    L-cysteine-doped tungstosilicate (Lcys-SiW 12 ) microtubes are prepared, and the amount of L-cysteine doped in the microtubes can be tuned to some extent. The as-prepared Lcys-SiW 12 microtubes are sensitive to ammonia gas exhibited through the distinct color change of the microtubes from light purple to dark blue after exposing to ammonia gas. A possible mechanism of the coloration is that the adsorbed ammonia molecules increase the basicity of the Lcys-SiW 12 microtubes and promote the redox reaction between L-cysteine and polyoxometalate. This is a pH-dependent solid–solid redox reaction, which is triggered by proton capture agent. The Lcys-SiW 12 microtubes show application in chemical sensors for alkaline gases. - Graphical abstract: The Lcys-SiW 12 microtubes were formed during transformation of the monolacunary Keggin-type [α-SiW 11 O 39 ] 8− to the saturated Keggin-type [α-SiW 12 O 40 ] 4− , meanwhile L-cysteine molecules were doped during the growth of the microtubes. Highlights: ► L-cysteine-doped polyoxometalate microtubes are prepared. ► Amount of L-cysteine doped in the microtubes can be tuned to some extent. ► Lcys-SiW 12 microtubes can be applied as a sensor for detecting alkaline gases. ► This is a proton capture agent-triggered solid–solid redox reaction.

  20. Preparation Methods for Improving PEEK’s Bioactivity for Orthopedic and Dental Application: A Review

    Directory of Open Access Journals (Sweden)

    Davood Almasi

    2016-01-01

    Full Text Available There is an increased interest in the use of polyether ether ketone (PEEK for orthopedic and dental implant applications due to its elastic modulus close to that of bone, biocompatibility, and its radiolucent properties. However, PEEK is still categorized as bioinert due to its low integration with surrounding tissues. Many studies have reported on methods to increase the bioactivity of PEEK, but there is still one-preparation method for preparing bioactive PEEK implant where the produced implant with desirable mechanical and bioactivity properties is required. The aim of this review is to present the progress of the preparation methods for improvement of the bioactivity of PEEK and to discuss the strengths and weaknesses of the existing methods.

  1. Preparing as an organization to review a construction license application for a DGR for HLW and SF in the USA

    International Nuclear Information System (INIS)

    Hill, Brittain

    2014-01-01

    Although formally opposed by the State of Nevada, the Yucca Mountain site (Nevada) recommendation was approved by the U.S. Congress and the President, which authorized DOE to prepare and submit a license application for a deep geologic repository for the nation's spent nuclear fuel and high-level waste. In June of 2008, DOE submitted this application to the U.S. Nuclear Regulatory Commission (NRC) for its review and formal adjudication of contested issues during a 3-4 year period. Although subsequent actions by the Administration and Congress have changed the direction for geologic disposal in the U.S., the NRC staff was able to conduct a thorough technical review of the DOE license application and issue technical evaluation reports before the review and hearings were suspended in September 2011. This paper provides the author's perspective on how the NRC prepared for, and conducted, this first-of-a-kind licensing review: planning framework, key preparations for staff and for processes, events after the receipt of a license application, retrospective on staff preparations and on processes. By the end of September 2011, the NRC staff had issued three Technical Evaluation Reports using a risk-informed, performance-based approach to review the DOE license application for this deep geologic repository at Yucca Mountain

  2. Skin sample preparation by collagenase digestion for diclofenac quantification using LC-MS/MS after topical application.

    Science.gov (United States)

    Nirogi, Ramakrishna; Padala, Naga Surya Prakash; Boggavarapu, Rajesh Kumar; Kalaikadhiban, Ilayaraja; Ajjala, Devender Reddy; Bhyrapuneni, Gopinadh; Muddana, Nageswara Rao

    2016-06-01

    Skin is the target site to evaluate the pharmacokinetic parameters of topical applications. Sample preparation is one of the influential steps in the bioanalysis of drugs in the skin. Evaluation of dermatopharmacokinetics at preclinical stage is challenging due to lack of proper sample preparation method. There is a need for an efficient sample preparation procedure for quantification of drugs in the skin using LC-MS/MS. The skin samples treated with collagenase followed by homogenization using a bead beater represents a best-fit method resulting in uniform homogenate for reproducible results. A new approach involving enzymatic treatment and mechanical homogenization techniques were evaluated for efficient sample preparation of skin samples in the bioanalysis.

  3. Preparation and Application of Water-in-Oil Emulsions Stabilized by Modified Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Xiaoma Fei

    2016-08-01

    Full Text Available A series of alkyl chain modified graphene oxides (AmGO with different alkyl chain length and content was fabricated using a reducing reaction between graphene oxide (GO and alkyl amine. Then AmGO was used as a graphene-based particle emulsifier to stabilize Pickering emulsion. Compared with the emulsion stabilized by GO, which was oil-in-water type, all the emulsions stabilized by AmGO were water-in-oil type. The effects of alkyl chain length and alkyl chain content on the emulsion properties of AmGO were investigated. The emulsions stabilized by AmGO showed good stability within a wide range of pH (from pH = 1 to pH = 13 and salt concentrations (from 0.1 to 1000 mM. In addition, the application of water-in-oil emulsions stabilized by AmGO was investigated. AmGO/polyaniline nanocomposite (AmGO/PANi was prepared through an emulsion approach, and its supercapacitor performance was investigated. This research broadens the application of AmGO as a water-in-oil type emulsion stabilizer and in preparing graphene-based functional materials.

  4. Application of artificial intelligence in coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, Y.; Deng, J.; Liu, H. [China University of Mining and Technology, Xuzhou (China). School of Chemical Engineering and Technology

    2001-11-01

    The general situation of using AI (Artificial intelligence) technology in coal preparation was introduced. The expert systems of coal preparation plant design, the expert management system of coal preparation plant, and the intelligent data-drawing bank were discussed. Some opinions about their foundation and method of knowledge expressing, inference, knowledge discovery of databases were presented. It is pointed out that an industrial system such as coal preparation is big and complex, so it is necessary and also difficult to use AI technology in these systems. Because the types of knowledge are different, there are various knowledge expressions and model of knowledge inference, hence only comprehensive methods suitable for the characters of the system may be used. 14 refs., 5 figs.

  5. Easy and industrially applicable impregnation process for preparation of diatomite-based phase change material nanocomposites for thermal energy storage

    International Nuclear Information System (INIS)

    Konuklu, Yeliz; Ersoy, Orkun; Gokce, Ozgur

    2015-01-01

    The high porosity, high oil and water absorption capacity and low density of diatomite make it ideal for industrial applications. The porous structure of diatomite protects phase change materials (PCMs) from environmental factors as a supporting matrix and phase changes occur in nanopores of diatomite. Previous research on diatomite/PCMs composites aimed optimal composite preparation but many methods were feasible only in laboratory scale. In large scale industrial fabrication, easy, continuous and steady state methods are need to be performed. The main purpose of this study was to prepare leakage-free, thermally stable nanocomposite PCMs (nanoCPCMs) by an easy, continuous and steady state method for high temperature thermal energy storage applications. A series of nanoCPCMs with different paraffin:diatomite mass ratios were prepared. The properties of nanoCPCMs have been characterized via scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The leak (exudation) test was performed on prepared composites at higher temperatures (95 °C) in comparison with literature. As the optimum composite for thermal energy storage applications, thermal reliability of nanoCPCM was evaluated after 400 cycles of melting and freezing. NanoCPCM melted at 36.55 °C with latent heat of 53.1 J/g. - Highlights: • Diatomite-based phase change material nanocomposites were prepared. • An easy and industrially applicable impregnation process was developed. • Influence of diatomite: PCM mass ratio on thermal properties reported.

  6. TiO 2 Thin Films Prepared via Adsorptive Self-Assembly for Self-Cleaning Applications

    KAUST Repository

    Xi, Baojuan

    2012-02-22

    Low-cost controllable solution-based processes for preparation of titanium oxide (TiO 2) thin films are highly desirable, because of many important applications of this oxide in catalytic decomposition of volatile organic compounds, advanced oxidation processes for wastewater and bactericidal treatments, self-cleaning window glass for green intelligent buildings, dye-sensitized solar cells, solid-state semiconductor metal-oxide solar cells, self-cleaning glass for photovoltaic devices, and general heterogeneous photocatalysis for fine chemicals etc. In this work, we develop a solution-based adsorptive self-assembly approach to fabricate anatase TiO 2 thin films on different glass substrates such as simple plane glass and patterned glass at variable compositions (normal soda lime glass or solar-grade borofloat glass). By tuning the number of process cycles (i.e., adsorption-then-heating) of TiO 2 colloidal suspension, we could facilely prepare large-area TiO 2 films at a desired thickness and with uniform crystallite morphology. Moreover, our as-prepared nanostructured TiO 2 thin films on glass substrates do not cause deterioration in optical transmission of glass; instead, they improve optical performance of commercial solar cells over a wide range of incident angles of light. Our as-prepared anatase TiO 2 thin films also display superhydrophilicity and excellent photocatalytic activity for self-cleaning application. For example, our investigation of photocatalytic degradation of methyl orange indicates that these thin films are indeed highly effective, in comparison to other commercial TiO 2 thin films under identical testing conditions. © 2012 American Chemical Society.

  7. Preparation, characteristics, convection and applications of magnetic nanofluids: A review

    Science.gov (United States)

    Kumar, Aditya; Subudhi, Sudhakar

    2018-02-01

    Magnetic nanofluids (MNfs), the colloidal suspension of ferromagnetic nanomaterial, have been taken into research fascinatingly. After contemplating its distinctive interesting properties and unique eximious features it offers innumerous application not only in heat transfer field but also immensely prevalent in medical, biological, aerospace, electronics and solar sciences. This review paper epitomizes and perusing the research work done on heat transfer application of MNfs and encapsulate it for the future research support. Moreover, numerical and experimental, both the approaches has been included for the insightful analysis of phenomenon to apprehend augmentation in heat transfer by MNfs. This article first underlines the importance of appropriate methods of preparation of MNfs as well as its effects on the thermophysical properties of MNfs. Subsequently, the paper comprehended the descriptive analysis of augmentation of convection heat transfer and the effect of magnetic field on the behavior MNfs. Additionally, the effect of magnetic field intensity has been taken as a pertinent parameter and correlations have been developed for thermal conductivity, viscosity and heat transfer coefficient based on the reviewed data. The paper concluded with the tremendous applications of the MNfs and the futuristic plan to support the potential areas for future research.

  8. “Smart” Materials Based on Cellulose: A Review of the Preparations, Properties, and Applications

    Science.gov (United States)

    Qiu, Xiaoyun; Hu, Shuwen

    2013-01-01

    Cellulose is the most abundant biomass material in nature, and possesses some promising properties, such as mechanical robustness, hydrophilicity, biocompatibility, and biodegradability. Thus, cellulose has been widely applied in many fields. “Smart” materials based on cellulose have great advantages—especially their intelligent behaviors in reaction to environmental stimuli—and they can be applied to many circumstances, especially as biomaterials. This review aims to present the developments of “smart” materials based on cellulose in the last decade, including the preparations, properties, and applications of these materials. The preparations of “smart” materials based on cellulose by chemical modifications and physical incorporating/blending were reviewed. The responsiveness to pH, temperature, light, electricity, magnetic fields, and mechanical forces, etc. of these “smart” materials in their different forms such as copolymers, nanoparticles, gels, and membranes were also reviewed, and the applications as drug delivery systems, hydrogels, electronic active papers, sensors, shape memory materials and smart membranes, etc. were also described in this review. PMID:28809338

  9. “Smart” Materials Based on Cellulose: A Review of the Preparations, Properties, and Applications

    Directory of Open Access Journals (Sweden)

    Shuwen Hu

    2013-02-01

    Full Text Available Cellulose is the most abundant biomass material in nature, and possesses some promising properties, such as mechanical robustness, hydrophilicity, biocompatibility, and biodegradability. Thus, cellulose has been widely applied in many fields. “Smart” materials based on cellulose have great advantages—especially their intelligent behaviors in reaction to environmental stimuli—and they can be applied to many circumstances, especially as biomaterials. This review aims to present the developments of “smart” materials based on cellulose in the last decade, including the preparations, properties, and applications of these materials. The preparations of “smart” materials based on cellulose by chemical modifications and physical incorporating/blending were reviewed. The responsiveness to pH, temperature, light, electricity, magnetic fields, and mechanical forces, etc. of these “smart” materials in their different forms such as copolymers, nanoparticles, gels, and membranes were also reviewed, and the applications as drug delivery systems, hydrogels, electronic active papers, sensors, shape memory materials and smart membranes, etc. were also described in this review.

  10. Synthesis and application of magnetic molecularly imprinted polymers in sample preparation.

    Science.gov (United States)

    Huang, Shuyao; Xu, Jianqiao; Zheng, Jiating; Zhu, Fang; Xie, Lijun; Ouyang, Gangfeng

    2018-04-12

    Magnetic molecularly imprinted polymers (MMIPs) have superior advantages in sample pretreatment because of their high selectivity for target analytes and the fast and easy isolation from samples. To meet the demand of both good magnetic property and good extraction performance, MMIPs with various structures, from traditional core-shell structures to novel composite structures with a larger specific surface area and more accessible binding sites, are fabricated by different preparation technologies. Moreover, as the molecularly imprinted polymer (MIP) layers determine the affinity, selectivity, and saturated adsorption amount of MMIPs, the development and innovation of the MIP layer are attracting attention and are reviewed here. Many studies that used MMIPs as sorbents in dispersive solid-phase extraction of complex samples, including environmental, food, and biofluid samples, are summarized. Graphical abstract The application of magnetic molecularly imprinted polymers (MIPs) in the sample preparation procedure improves the analytical performances for complex samples. MITs molecular imprinting technologies.

  11. Preparation of multilayer graphene sheets and their applications for particle accelerators

    Science.gov (United States)

    Tatami, Atsushi; Tachibana, Masamitsu; Yagi, Takashi; Murakami, Mutsuaki

    2018-05-01

    Multilayer graphene sheets were prepared by heat treatment of polyimide films at temperatures of up to 3000 °C. The sheets consist of highly oriented graphite layers with excellent mechanical robustness and flexibility. Key features of these sheets include their high thermal conductivity in the in-plane direction, good mechanical properties, and high carbon purity. The results suggest that the multilayer graphene sheets have great potential for charge stripping foils that persist even under the highest ion beam intensities irradiation and can be used for accelerator applications.

  12. 76 FR 63668 - Guidelines for Preparing and Reviewing Licensing Applications for the Production of Radioisotopes

    Science.gov (United States)

    2011-10-13

    ..., Research and Test Reactors Projects Branch, Division of Policy and Rulemaking, Office of Nuclear Reactor... NUCLEAR REGULATORY COMMISSION [NRC-2011-0135] Guidelines for Preparing and Reviewing Licensing Applications for the Production of Radioisotopes AGENCY: Nuclear Regulatory Commission. ACTION: Draft interim...

  13. Computer application in coal preparation industry in China

    Energy Technology Data Exchange (ETDEWEB)

    Lu, M.; Wu, L.; Ni, Q. (China Univ. of Mining and Technology, Xuzhou (China))

    1990-01-01

    This paper describes several packages of microcomputer programs developed for designing and managing the coal preparation plants. Three parts are included: Coal Cleaning Package (CCP), Coal Preparation Optimization Program (CPO) and Coal Preparation Computer Aided Design System (CPCAD). The function of CCP is: evaluating and predicting coal cleaning result. Coal presentation process modelling and optimization; coal preparation flowsheet design and optimization. The CPO is a nonlinear optimization program. It can simulate and optimize the profit for different flowsheet to get the best combination of the final products. The CPCAD was developed based upon AutoCAD and makes full use of AutoLISP, digitizer menus and AutoCAD commands, combining the functions provided by AutoCAD and the principle used in conventional coal preparation plant design, forming a designer-oriented CPCAD system. These packages have proved to be reliable, flexible and easy to learn and use. They are a powerful tool for coal preparation plant design and management. (orig.).

  14. Sustainable preparation of supported metal nanoparticles and their applications in catalysis.

    Science.gov (United States)

    Campelo, Juan M; Luna, Diego; Luque, Rafael; Marinas, José M; Romero, Antonio A

    2009-01-01

    Metal nanoparticles have attracted much attention over the last decade owing to their unique properties as compared to their bulk metal equivalents, including a large surface-to-volume ratio and tunable shapes. To control the properties of nanoparticles with particular respect to shape, size and dispersity is imperative, as these will determine the activity in the desired application. Supported metal nanoparticles are widely employed in catalysis. Recent advances in controlling the shape and size of nanoparticles have opened the possibility to optimise the particle geometry for enhanced catalytic activity, providing the optimum size and surface properties for specific applications. This Review describes the state of the art with respect to the preparation and use of supported metal nanoparticles in catalysis. The main groups of such nanoparticles (noble and transition metal nanoparticles) are highlighted and future prospects are discussed.

  15. Application of a Dual-Arm Robot in Complex Sample Preparation and Measurement Processes.

    Science.gov (United States)

    Fleischer, Heidi; Drews, Robert Ralf; Janson, Jessica; Chinna Patlolla, Bharath Reddy; Chu, Xianghua; Klos, Michael; Thurow, Kerstin

    2016-10-01

    Automation systems with applied robotics have already been established in industrial applications for many years. In the field of life sciences, a comparable high level of automation can be found in the areas of bioscreening and high-throughput screening. Strong deficits still exist in the development of flexible and universal fully automated systems in the field of analytical measurement. Reasons are the heterogeneous processes with complex structures, which include sample preparation and transport, analytical measurements using complex sensor systems, and suitable data analysis and evaluation. Furthermore, the use of nonstandard sample vessels with various shapes and volumes results in an increased complexity. The direct use of existing automation solutions from bioscreening applications is not possible. A flexible automation system for sample preparation, analysis, and data evaluation is presented in this article. It is applied for the determination of cholesterol in biliary endoprosthesis using gas chromatography-mass spectrometry (GC-MS). A dual-arm robot performs both transport and active manipulation tasks to ensure human-like operation. This general robotic concept also enables the use of manual laboratory devices and equipment and is thus suitable in areas with a high standardization grade. © 2016 Society for Laboratory Automation and Screening.

  16. Radiohalogenation of biomolecules. An experimental study on radiohalogen preparation, precursor synthesis, radiolabeling and biodistribution

    International Nuclear Information System (INIS)

    Koziorowski, J.

    1998-01-01

    Radiohalogens are widely used in nuclear medicine, both as tool for diagnostic in vivo imaging, and in radionuclide therapy. This study deals with the use of radiohalogens; separation, precursor synthesis, labeling and biological behavior. The focus is on 211 At and 124 I, the former being a candidate for nuclide therapy and the latter potentially useful for diagnostic imaging and Auger-electron based radiotherapy. For astatine the separation, labeling and some biological behavior is described, and for iodine the latter two. Astatine was separated from an irradiated bismuth target by dry distillation. A novel cryotrap was developed for the isolation of astatine and subsequent synthesis of radiolabeled compounds. 5-[ 211 At]astato-2'-deoxyuridine (AUdR) and N-succinimidyl-4-[ 211 At]astatobenzoate (SAB) were synthesized in 95% respectively 90% radiochemical yields. The former is incorporated into DNA of proliferating cells and can therefore be used as an endoradiotherapeutic agent. The latter is a conjugate for the astatination of proteins. Human epidermal growth factor (hEGF) was tagged with astatine using three approaches: a) direct labeling of native hEGF, b) conjugation with SAB, and c) direct labeling of an hEGF - 7-(3-aminopropyl)-7,8-dicarba-nido-undecaborate(1-) conjugate. The overall labeling yields were 3.5% for direct labeling, 44% for SAB and 70% for the hEGF-nido-carborane conjugate. A new route to N-succinimidyl 3- and 4- [ 124 I]iodobenzoate, two reagents for radioiodination of proteins is described affording 90% radiochemical yield. Three radioiodinated analogs of PK11195, 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)isoquinoline-3-carboxyam ide, a peripheral-type benzodiazepine receptor antagonist, were synthesized. All three analogs were obtained in >90% radiochemical yield. Synthesis and application of 5-[ 124 I]iodo-2'-deoxyuridine (IUdR) is presented. The closo-dodecaborate anion was evaluated as prosthetic group for radioiodination of

  17. Preparing to review the license application of the French geological disposal facility - Issues, challenges and perspectives

    International Nuclear Information System (INIS)

    Dandrieux, Geraldine

    2014-01-01

    This paper briefly describes the French context for GDR authorization, the French dedicated legislative framework (28 June 2006 Act on sustainable management of radioactive materials and waste), the challenges (regulatory issues, long-term project supervision, technical issues, procedural issues), and the preparing for the review of the DGR license application. A planning schedule is propose with Andra to submit license application for DGR in 2015

  18. Preparation and characterization of Sb2Se3 devices for memory applications

    Science.gov (United States)

    Shylashree, N.; Uma B., V.; Dhanush, S.; Abachi, Sagar; Nisarga, A.; Aashith, K.; Sangeetha B., G.

    2018-05-01

    In this paper, A phase change material of Sb2Se3 was proposed for non volatile memory application. The thin film device preparation and characterization were carried out. The deposition method used was vapor evaporation technique and a thickness of 180nm was deposited. The switching between the SET and RESET state is shown by the I-V characterization. The change of phase was studied using R-V characterization. Different fundamental modes were also identified using Raman spectroscopy.

  19. The Prospective Two-Dimensional Graphene Nanosheets: Preparation, Functionalization, and Applications

    Institute of Scientific and Technical Information of China (English)

    Zhi Yang; Rungang Gao; Nantao Hu; Jing Chai; Yingwu Cheng; Liying Zhang; Hao Wei; Eric Siu-Wai Kong; Yafei Zhang

    2012-01-01

    Graphene, as an intermediate phase between fullerene and carbon nanotube, has aroused much interests among the scientific community due to its outstanding electronic, mechanical, and thermal properties.With excellent electrical conductivity of 6000 S/cm, which is independent on chirality, graphene is a promising material for high-performance nanoelectronics, transparent conductor, as well as polymer composites. On account of its Young’s Modulus of 1 TPa and ultimate strength of 130 GPa, isolated graphene sheet is considered to be among the strongest materials ever measured. Comparable with the single-walled carbon nanotube bundle,graphene has a thermal conductivity of 5000 W/(m·K), which suggests a potential application of graphene in polymer matrix for improving thermal properties of the graphene/polymer composite. Furthermore, graphene exhibits a very high surface area, up to a value of 2630 m~2/g. All of these outstanding properties suggest a wide application for this nanometer-thick, two-dimensional carbon material. This review article presents an overview of the significant advancement in graphene research: preparation, functionalization as well as the properties of graphene will be discussed. In addition, the feasibility and potential applications of graphene in areas, such as sensors, nanoelectronics and nanocomposites materials, will also be reviewed.

  20. Confidential patent application with an example of preparation

    Directory of Open Access Journals (Sweden)

    Obrad T. Čabarkapa

    2013-12-01

    Full Text Available In order that the invention solving a technical problem receives a patent protection, it is necessary to file a patent application. For the protection of confidential inventions which are important for defense and national security, a confidential patent application[1] must be filed. A confidential patent application is an important and complex document, the parts of which are,  in principle, exposed in an established order. For the preparation of patent applications, it is necessary to engage experts with higher education, primarily in the technical field the invention relates to. The contents of the patent application is a basis for examining whether the application meets the requirements for patentability and whether the right to patent protection is achieved. Besides theoretical discussions on patent application, the paper gives a short version of an example of an application regarding a protected confidential invention. Introduction The basic condition for the exercise of patent protection is filing a patent application, the test procedure and, eventually, depending on the test results - the recognition or rejection of the patent. The paper gives a description of all parts of the patent application on an example of a confidential invention already patented. The content of the confidential patent application The confidential patent application for confidential invention protection consists of the following parts: The application for a patent; description of the invention; the claims (indication of what is new and what is required to be protected by patenting; abstract (short summary of the invention  and a draft of the invention (to which the description and the claims are referred. The application for a patent The application for patent is filed on Form P-1 and a request for the petty patent on Form MP-1. The data entered in the file is, for example: the applicant; the lawyer; the name of the invention in Serbian and English; the inventor

  1. Application of the bidimensional ion-exchange chromatography for the laboratory preparation of different 15N enrichments and depletions

    International Nuclear Information System (INIS)

    Farjo, K.

    1989-01-01

    The ion-exchange application of the bidimensional solid/liquid technique for the preparation of different 15 N-abundances utilizing the isotope exchange system NH 4 + /NH 3 · aq is reported and the application of the technique for the separation of nitrogen isotopes is briefly discussed. (author)

  2. An assessment concerning the preparation and application of hydrocarbon catalysis for tritium separation

    International Nuclear Information System (INIS)

    Ionita, Gh.; Kitamoto, A.; Shimizu, M.

    2001-01-01

    Based on the long experience of the authors in the preparation, testing and evaluation of the performances of hydrophobic catalysts and on the reviewed references, this paper presents up-to-date R and D activities on the preparation and application of hydrophobic catalysts for tritium separation. Unlike the conventional hydrophilic catalysts, the hydrophobic catalysts repel the liquid water and allow the transport of the gaseous reactants and reaction products to and from catalytic active centers. For deuterium and tritium separation, over one hundred hydrophobic catalyst types have been prepared in different experimental conditions and tested by a large diversity of wet proofing methods. The influence on catalytic activity of about twenty parameters, have been also studied. The purpose of this paper is: (1) to provide a database for preparation and selection of he most appropriate catalyst and catalytic packing for the tritium separation; (2) to find how to use the hydrophobic catalyst and how to operate more efficiently the reactor packed with hydrophobic catalyst; (3) to evaluate the performances and potentiality of hydrophobic catalysts in tritium separation. As result, the following categories are shown: (1) the hydrophobic catalysts based on platinum and teflon as proved to have the highest activity and the longest stability by wet-proofing procedure; (2) the utilization of hydrophobic catalyst as ordered mixed catalytic packing in the trickle bed or separated bed reactors is more efficient and has been entirely tested on industrial scale; (3) the improvement of the inner geometry of the reactors and of the composition of mixed catalytic packing as well as the elaboration of the mathematical models for designing of the reactors and the evaluation of performances of separation processes constitute a major contribution of the authors; (4 ) a high resistance at radiation and chemical impurities of Pt-hydrophobic catalysts. The merits of hydrophobic Pt

  3. Preparation of Laponite Bioceramics for Potential Bone Tissue Engineering Applications

    Science.gov (United States)

    Li, Kai; Ju, Yaping; Li, Jipeng; Zhang, Yongxing; Li, Jinhua; Liu, Xuanyong; Shi, Xiangyang; Zhao, Qinghua

    2014-01-01

    We report a facile approach to preparing laponite (LAP) bioceramics via sintering LAP powder compacts for bone tissue engineering applications. The sintering behavior and mechanical properties of LAP compacts under different temperatures, heating rates, and soaking times were investigated. We show that LAP bioceramic with a smooth and porous surface can be formed at 800°C with a heating rate of 5°C/h for 6 h under air. The formed LAP bioceramic was systematically characterized via different methods. Our results reveal that the LAP bioceramic possesses an excellent surface hydrophilicity and serum absorption capacity, and good cytocompatibility and hemocompatibility as demonstrated by resazurin reduction assay of rat mesenchymal stem cells (rMSCs) and hemolytic assay of pig red blood cells, respectively. The potential bone tissue engineering applicability of LAP bioceramic was explored by studying the surface mineralization behavior via soaking in simulated body fluid (SBF), as well as the surface cellular response of rMSCs. Our results suggest that LAP bioceramic is able to induce hydroxyapatite deposition on its surface when soaked in SBF and rMSCs can proliferate well on the LAP bioceramic surface. Most strikingly, alkaline phosphatase activity together with alizarin red staining results reveal that the produced LAP bioceramic is able to induce osteoblast differentiation of rMSCs in growth medium without any inducing factors. Finally, in vivo animal implantation, acute systemic toxicity test and hematoxylin and eosin (H&E)-staining data demonstrate that the prepared LAP bioceramic displays an excellent biosafety and is able to heal the bone defect. Findings from this study suggest that the developed LAP bioceramic holds a great promise for treating bone defects in bone tissue engineering. PMID:24955961

  4. Desired Student Preparation in the Job Application Process as Perceived by the Business Community.

    Science.gov (United States)

    Allen, Thomas R., Jr., Comp.

    The major purpose of this study was to determine from the business community what competencies in the job application process are needed by students preparing to enter the job market for their first full-time position. Data were collected from 100 human resource administrators (out of a sample of 400). The general feeling of the administrators was…

  5. Processing surface sizing starch using oxidation, enzymatic hydrolysis and ultrasonic treatment methods--Preparation and application.

    Science.gov (United States)

    Brenner, Tobias; Kiessler, Birgit; Radosta, Sylvia; Arndt, Tiemo

    2016-03-15

    The surface application of starch is a well-established method for increasing paper strength. In surface sizing, a solution of degraded starch is applied to the paper. Two procedures have proved valuable for starch degradation in the paper mill: enzymatic and thermo-oxidative degradation. The objective of this study was to determine achievable efficiencies of cavitation in preparing degraded starch for surface application on paper. It was found that ultrasonic-assisted starch degradation can provide a starch solution that is suitable for surface sizing. The molecular composition of starch solutions prepared by ultrasonic treatment differed from that of starch solutions degraded by enzymes or by thermo-oxidation. Compared to commercial degradation processes, this resulted in intensified film formation and in greater penetration during surface sizing and ultimately in a higher starch content of the paper. Paper sized with ultrasonically treated starch solutions show the same strength properties compared to commercially sized paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The Application of Template Selectophores for the Preparation of Molecularly Imprinted Polymers

    Directory of Open Access Journals (Sweden)

    Basil Danylec

    2015-09-01

    Full Text Available Molecularly imprinted polymers are versatile materials with wide application scope for the detection, capture and separation of specific compounds present in complex feed stocks. A major challenge associated with their preparation has been the need to sacrifice one mole equivalent of the template molecule to generate the complementary polymer cavities that selectively bind the target molecule. Moreover, template molecules can often be difficult to synthesise, expensive or lack stability. In this study, we describe a new approach, directed at the use of synthetic selectophores, chosen as readily prepared and low cost structural analogues with recognition groups in similar three-dimensional arrangements as found in the target molecule. To validate the approach, a comparative study of selectophores related to the polyphenolic compound (E-resveratrol has been undertaken using traditional and green chemical synthetic approaches. These molecular mimic compounds were employed as polymer templates and also as binding analytes to interrogate the recognition sites associated with the molecularly imprinted polymers. Importantly, the study confirms that the use of selectophores has the potential to confer practical advantages, including access to more efficient methods for selection and preparation of suitable template molecules with a broader range of molecular diversity, as well as delivering imprinted polymers capable of recognizing the target compound and structurally related products.

  7. 77 FR 21592 - Guidelines for Preparing and Reviewing Licensing Applications for the Production of Radioisotopes

    Science.gov (United States)

    2012-04-10

    ... Licensing of Non-Power Reactors: Format and Content,'' for the production of radioisotopes and NUREG-1537, Part 2, ``Guidelines for Preparing and Reviewing Applications for the Licensing of Non-Power Reactors... by searching on http://www.regulations.gov under Docket ID NRC-2011-0135. You may submit comments by...

  8. Proposed Guidance for Preparing and Reviewing Molten Salt Nonpower Reactor Licence Applications (NUREG-1537)

    Energy Technology Data Exchange (ETDEWEB)

    Belles, Randy [ORNL; Flanagan, George F. [ORNL; Voth, Marcus [Boston Government Services, LLC

    2018-05-01

    Development of non-power molten salt reactor (MSR) test facilities is under consideration to support the analyses needed for development of a full-scale MSR. These non-power MSR test facilities will require review by the US Nuclear Regulatory Commission (NRC) staff. This report proposes chapter adaptations for NUREG-1537 in the form of interim staff guidance to address preparation and review of molten salt non-power reactor license applications. The proposed adaptations are based on a previous regulatory gap analysis of select chapters from NUREG-1537 for their applicability to non-power MSRs operating with a homogeneous fuel salt mixture.

  9. Preparation, characterization and application of novel proton conducting ceramics

    Science.gov (United States)

    Wang, Siwei

    Due to the immediate energy shortage and the requirement of environment protection nowadays, the efficient, effective and environmental friendly use of current energy sources is urgent. Energy conversion and storage is thus an important focus both for industry and academia. As one of the hydrogen energy related materials, proton conducting ceramics can be applied in solid oxide fuel cells and steam electrolysers, as well as high temperature hydrogen separation membranes and hydrogen sensors. For most of the practical applications, both high proton conductivity and chemical stability are desirable. However, the state-of-the-art proton conducting ceramics are facing great challenges in simultaneously fulfilling conductivity and stability requirements for practical applications. Consequently, understanding the properties for the proton conducting ceramics and developing novel materials that possess both high proton conductivity and enhanced chemical stability have both scientific and practical significances. The objective of this study is to develop novel proton conducting ceramics, either by evaluating the doping effects on the state-of-the-art simple perovskite structured barium cerates, or by investigating novel complex perovskite structured Ba3Ca1.18Nb1.82O 9-delta based proton conductors as potential proton conducting ceramics with improved proton conductivity and enhanced chemical stability. Different preparation methods were compared, and their influence on the structure, including the bulk and grain boundary environment has been investigated. In addition, the effects of microstructure on the electrical properties of the proton conducting ceramics have also been characterized. The solid oxide fuel cell application for the proton conducting ceramics performed as electrolyte membranes has been demonstrated.

  10. Microencapsulation of protein drugs for drug delivery: strategy, preparation, and applications.

    Science.gov (United States)

    Ma, Guanghui

    2014-11-10

    Bio-degradable poly(lactide) (PLA)/poly(lactide-glycolide) (PLGA) and chitosan microspheres (or microcapsules) have important applications in Drug Delivery Systems (DDS) of protein/peptide drugs. By encapsulating protein/peptide drugs in the microspheres, the serum drug concentration can be maintained at a higher constant value for a prolonged time, or injection formulation can be changed to orally or mucosally administered formulation. PLA/PLGA and chitosan are most often used in injection formulation and oral formulation. However, in the preparation and applications of PLA/PLGA and chitosan microspheres containing protein/peptide drugs, the problems of broad size distribution and poor reproducibility of microspheres, and deactivation of protein during the preparation, storage and release, are still big challenges. In this article, the techniques for control of the diameter of microspheres and microcapsules will be introduced at first, then the strategies about how to maintain the bioactivity of protein drugs during preparation and drug release will be reviewed and developed in our research group. The membrane emulsification techniques including direct membrane emulsification and rapid membrane emulsification processes were developed to prepare uniform-sized microspheres, the diameter of microspheres can be controlled from submicron to 100μm by these two processes, and the reproducibility of products can be guaranteed. Furthermore, compared with conventional stirring method, the big advantages of membrane emulsification process were that the uniform microspheres with much higher encapsulation efficiency can be obtained, and the release behavior can be adjusted by selecting microsphere size. Mild membrane emulsification condition also can prevent the deactivation of proteins, which frequently occurred under high shear force in mechanical stirring, sonification, and homogenization methods. The strategies for maintaining the bioactivity of protein drug were

  11. Preparing Content-Rich Learning Environments with VPython and Excel, Controlled by Visual Basic for Applications

    Science.gov (United States)

    Prayaga, Chandra

    2008-01-01

    A simple interface between VPython and Microsoft (MS) Office products such as Word and Excel, controlled by Visual Basic for Applications, is described. The interface allows the preparation of content-rich, interactive learning environments by taking advantage of the three-dimensional (3D) visualization capabilities of VPython and the GUI…

  12. A novel method to prepare concentrated conidial biomass formulation of Trichoderma harzianum for seed application.

    Science.gov (United States)

    Singh, P C; Nautiyal, C S

    2012-12-01

    To prepare concentrated formulation of Trichoderma harzianum MTCC-3841 (NBRI-1055) with high colony forming units (CFU), long shelf life and efficient in root colonization by a simple scrapping method. NBRI-1055 spores scrapped from potato dextrose agar plates were used to prepare a concentrated formulation after optimizing carrier material, moisture content and spore harvest time. The process provides an advantage of maintaining optimum moisture level by the addition of water rather than dehydration. The formulation had an initial 11-12 log(10) CFU g(-1). Its concentrated form reduces its application amount by 100 times (10 g 100 kg(-1) seed) and provides 3-4 log(10) CFU seed(-1). Shelf life of the product was experimentally determined at 30 and 40 °C and predicted at other temperatures following Arrhenius equation. The concentrated formulation as compared to similar products provides an extra advantage of smaller packaging for storage and transportation, cutting down product cost. Seed application of the formulation recorded significant increase in plant growth promotion. Stable and effective formulation of Trichoderma harzianum NBRI-1055 was obtained by a simple scrapping method. A new method for the production of concentrated, stable, effective and cost efficient formulation of T. harzianum has been validated for seed application. © 2012 The Society for Applied Microbiology.

  13. Experiences from Refurbishment of Metallography Hot Cells and Application of a New Preparation Concept for Materialography Samples

    International Nuclear Information System (INIS)

    Oberlander, B. C.; Espeland, M.; Solum, N. O.

    2001-01-01

    After more than 30 years of operation the lead shielded metallography hot cells needed a basic renewal and modernisation not least of the specimen preparation equipment. Preparation in hot cells of radioactive samples for metallography and ceramography is challenging and time consuming. It demands a special design and quality of all in-cell equipment and skill and patience from the operator. Essentials in the preparation process are: simplicity and reliability of the machines, and a good quality, reproducibility and efficiency in performance. Desirable is process automation, flexibility and an alara amounto of radioactive waste produced per sample prepared. State of the art preparation equipment for materialography seems to meet most of the demands, however, it cannot be used in hot cells without modifications. Therefore. IFE and Struers in Copenhagen modified a standard model of a Strues precision cutting machine and a microprocessor controlled grinding and polishing machine for Hot Cell application. Hot cell utilisation of the microcomputer controlled grinding and polishing machine and the existing automatic dosing equipment made the task of preparing radioactive samples more attractive. The new grinding and polishing system for hot cells provides good sample preparation quality and reproductibility at reduced preparation time and reduced amount of contaminated waste produced per sample prepared. the sample materials examined were irradiated cladding materials and fuels

  14. PREPARATION, CHARACTERISATION AND APPLICATION OF ...

    African Journals Online (AJOL)

    Polyamine-silica hybrids were prepared by a one-pot sol-gel method via a neutral amine templating route. At low loadings (ca. 1 mmol organic group per g of silica) the resultant materials displayed properties typical of M41S-type materials, namely, high surface area (typically 600 m2 g-1) and controlled porosity with an ...

  15. Preparation of gold nanoparticles for plasmonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Benkovicova, Monika, E-mail: monika.benkovicova@savba.sk [Institute of Physics SAS, Dubravska cesta 9, 845 11 Bratislava (Slovakia); Polymer Institute SAS, Dubravska cesta 9, 845 41 Bratislava (Slovakia); Vegso, Karol; Siffalovic, Peter; Jergel, Matej; Luby, Stefan; Majkova, Eva [Institute of Physics SAS, Dubravska cesta 9, 845 11 Bratislava (Slovakia)

    2013-09-30

    We present a simple hot injection method for the preparation of colloidal solutions of hydrophobic spherical gold nanoparticles with the diameter around 20 nm and size dispersion below 20%. Various surfactants with different lengths of hydrocarbon chains, such as oleylamine, 1-octadecanethiol, poly (N-vinylpyrrolidone), and AgNO{sub 3} in 1,5-pentanediol, were used for sterical stabilization in the colloidal solution. The hydrodynamic nanoparticle size and size dispersion were determined by the dynamic light scattering (DLS) while the small-angle X-ray scattering (SAXS) from the colloidal solution provided information on the size of the metallic nanoparticle core (without surfactant). Plasmon enhanced resonant absorption peaks between 500 nm and 600 nm were detected by the UV–VIS spectrophotometry. The nanoparticle arrays on silicon prepared by solvent evaporation or Langmuir-Schaefer method were inspected by high-resolution scanning electron microscopy and grazing-incidence SAXS (GISAXS). The presence of side maxima in the GISAXS pattern gives evidence of the nanoparticle ordering by self-assembly while very close values of the interparticle distance derived from GISAXS and the nanoparticle size derived from DLS indicate a close-packed order. - Highlights: ► Preparation of gold nanoparticles by use a various of surfactants ► Preparation of monodisperse nanoparticles ► Characterization of nanoparticles on a solid substrate.

  16. Use and safety of intratumoral application of European mistletoe (Viscum album L) preparations in Oncology.

    Science.gov (United States)

    Steele, Megan L; Axtner, Jan; Happe, Antje; Kröz, Matthias; Matthes, Harald; Schad, Friedemann

    2015-03-01

    Intratumoral (IT) injection of European mistletoe (Viscum album L) preparations might induce local tumor response through combined cytotoxic and immunomodulatory actions of the preparations. Although promising in vitro and in vivo data, along with clinical case studies suggest the need for validation of this hypothesis in prospective trials, the safety of IT mistletoe injections has yet to be thoroughly assessed. The present study summarizes the practice and safety of off-label IT mistletoe therapy within the Network Oncology, a conjoint clinical registry of German hospitals and outpatients specialized in anthroposophic and integrative medicine. Demographic, diagnosis and treatment data of cancer patients who received IT mistletoe applications between 2007 and 2013 were assessed. Suspected adverse drug reactions (ADRs) were analyzed in terms of type, frequency, severity, seriousness and potential risk factors. A total of 123 cancer patients received 862 IT mistletoe injections (preparations from Abnoba, Helixor and Iscucin). The most commonly applied preparations were Abnoba viscum Fraxini (71 patients) and Helixor Mali (54 patients). Of the total patients, 26 patients (21.1%) experienced 74 ADRs. All ADRs were in response to either Abnoba viscum Fraxini (25.4% of exposed patients) or Helixor Mali (18.5% of exposed patients). ADRs were mostly body temperature or immune related and of mild (83.8%) or moderate (14.9%) intensity. Only one possible ADR was described as severe (hypertension) and no serious ADRs occurred. The frequency of ADRs to IT mistletoe injections was 3 times and 5 times higher than has previously been found for subcutaneous and intravenous applications of mistletoe, respectively. IT injection of mistletoe preparations resulted in a relatively high frequency of ADRs. Nearly all ADRs were mild to moderate however, and no serious ADRs occurred. Furthermore, it is possible that immune-related ADRs such as pyrexia and local inflammatory reactions might

  17. High temperature superconductivity: Concept, preparation and testing of high Tc superconductor compounds, and applications

    International Nuclear Information System (INIS)

    Harara, Wafik

    1992-06-01

    Many studies have been carried out on high temperature superconductors with transition temperature above that of the liquid nitrogen. In this scientific study the concept and the mechanism of this phenomena are discussed, in addition the examples of preparation and testing of high temperature superconductors compounds are shown. Also the most important applications in industry are explained. (author). 15 refs., 2 tabs., 18 figs

  18. A convenient method to prepare emulsified polyacrylate nanoparticles from powders [corrected] for drug delivery applications.

    Science.gov (United States)

    Garay-Jimenez, Julio C; Turos, Edward

    2011-08-01

    We describe a method to obtain purified, polyacrylate nanoparticles in a homogeneous powdered form that can be readily reconstituted in aqueous media for in vivo applications. Polyacrylate-based nanoparticles can be easily prepared by emulsion polymerization using a 7:3 mixture of butyl acrylate and styrene in water containing sodium dodecyl sulfate as a surfactant and potassium persulfate as a water-soluble radical initiator. The resulting emulsions contain nanoparticles measuring 40-50 nm in diameter with uniform morphology, and can be purified by centrifugation and dialysis to remove larger coagulants as well as residual surfactant and monomers associated with toxicity. These purified emulsions can be lyophilized in the presence of maltose (a non-toxic cryoprotectant) to provide a homogeneous dried powder, which can be reconstituted as an emulsion by addition of an aqueous diluent. Dynamic light scattering and microbiological experiments were carried out on the reconstituted nanoparticles. This procedure allows for ready preparation of nanoparticle emulsions for drug delivery applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Seaweed Polysaccharide-Based Nanoparticles: Preparation and Applications for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Jayachandran Venkatesan

    2016-01-01

    Full Text Available In recent years, there have been major advances and increasing amounts of research on the utilization of natural polymeric materials as drug delivery vehicles due to their biocompatibility and biodegradability. Seaweed polysaccharides are abundant resources and have been extensively studied for several biological, biomedical, and functional food applications. The exploration of seaweed polysaccharides for drug delivery applications is still in its infancy. Alginate, carrageenan, fucoidan, ulvan, and laminarin are polysaccharides commonly isolated from seaweed. These natural polymers can be converted into nanoparticles (NPs by different types of methods, such as ionic gelation, emulsion, and polyelectrolyte complexing. Ionic gelation and polyelectrolyte complexing are commonly employed by adding cationic molecules to these anionic polymers to produce NPs of a desired shape, size, and charge. In the present review, we have discussed the preparation of seaweed polysaccharide-based NPs using different types of methods as well as their usage as carriers for the delivery of various therapeutic molecules (e.g., proteins, peptides, anti-cancer drugs, and antibiotics. Seaweed polysaccharide-based NPs exhibit suitable particle size, high drug encapsulation, and sustained drug release with high biocompatibility, thereby demonstrating their high potential for safe and efficient drug delivery.

  20. Effects of Polysaccharides on the physical properties of Hydrogels prepared by the application of Gamma (-γ) rays

    International Nuclear Information System (INIS)

    Chowdhury, M. N. K.; Alam, A. K. M. M.; Bhattacharia, S. K.; Dafader, N. C.; Haque, M. E.; Akhtar, F.

    2004-06-01

    The effects of polysaccharides as additives on the physical properties of hydrogels prepared by the application of gamma (-γ) rays were investigated. The polysaccharides- sago, barley and rice powder were used as additives for the preparation of hydrogel from polyvinyl alcohol (PVA) having molecular weight 72,000 by applying various doses of gamma rays. The physical properties of the prepared hydrogel, such as gel fraction, degree of swelling, water absorption- and desorption rates were determined. It is found that the gel fraction of hydrogel with barley is higher than that of hydrogel with rice powder and sago. It is also found that the water absorption- and desorption rates of hydrogel with rice powder are higher than those of hydrogel with barley and sago

  1. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS₂ and WSe₂ nanosheets.

    Science.gov (United States)

    Li, Hai; Wu, Jumiati; Yin, Zongyou; Zhang, Hua

    2014-04-15

    Although great progress has been achieved in the study of graphene, the small current ON/OFF ratio in graphene-based field-effect transistors (FETs) limits its application in the fields of conventional transistors or logic circuits for low-power electronic switching. Recently, layered transition metal dichalcogenide (TMD) materials, especially MoS2, have attracted increasing attention. In contrast to its bulk material with an indirect band gap, a single-layer (1L) MoS2 nanosheet is a semiconductor with a direct band gap of ~1.8 eV, which makes it a promising candidate for optoelectronic applications due to the enhancement of photoluminescence and high current ON/OFF ratio. Compared with TMD nanosheets prepared by chemical vapor deposition and liquid exfoliation, mechanically exfoliated ones possess pristine, clean, and high-quality structures, which are suitable for the fundamental study and potential applications based on their intrinsic thickness-dependent properties. In this Account, we summarize our recent research on the preparation, characterization, and applications of 1L and multilayer MoS2 and WSe2 nanosheets produced by mechanical exfoliation. During the preparation of nanosheets, we proposed a simple optical identification method to distinguish 1L and multilayer MoS2 and WSe2 nanosheets on a Si substrate coated with 90 and 300 nm SiO2. In addition, we used Raman spectroscopy to characterize mechanically exfoliated 1L and multilayer WSe2 nanosheets. For the first time, a new Raman peak at 308 cm(-1) was observed in the spectra of WSe2 nanosheets except for the 1L WSe2 nanosheet. Importantly, we found that the 1L WSe2 nanosheet is very sensitive to the laser power during characterization. The high power laser-induced local oxidation of WSe2 nanosheets and single crystals was monitored by Raman spectroscopy and atomic force microscopy (AFM). Hexagonal and monoclinic structured WO3 thin films were obtained from the local oxidization of single- to triple

  2. Study of nano-nitramine explosives: preparation, sensitivity and application

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2014-06-01

    Full Text Available Nano-nitramine explosives (RDX, HMX, CL-20 are produced on a bi-directional grinding mill. The scanning electron microscope (SEM observations show that the prepared particles are semi-spherical, and the narrow size distributions are characterized using the laser particle size analyzer. Compared with the micron-sized samples, the nano-products show obvious decrease in friction and impact sensitivities. In the case of shock sensitivities, nano-products have lower values by 59.9% (RDX, 56.4% (HMX, and 58.1% (CL-20, respectively. When nano-RDX and nano-HMX are used in plastic bonded explosives (PBX as alternative materials of micron-sized particles, their shock sensitivities are significantly decreased by 24.5% (RDX and 22.9% (HMX, and their detonation velocities are increased by about 1.7%. Therefore, it is expected to promote the application of nano-nitramine explosives in PBXs and composite modified double-based propellants (CMDBs so that some of their properties would be improved.

  3. Chitosan-Based Coating with Antimicrobial Agents: Preparation, Property, Mechanism, and Application Effectiveness on Fruits and Vegetables

    Directory of Open Access Journals (Sweden)

    Yage Xing

    2016-01-01

    Full Text Available Chitosan coating is beneficial to maintaining the storage quality and prolonging the shelf life of postharvest fruits and vegetables, which is always used as the carrier film for the antimicrobial agents. This review focuses on the preparation, property, mechanism, and application effectiveness on the fruits and vegetables of chitosan-based coating with antimicrobial agents. Chitosan, derived by deacetylation of chitin, is a modified and natural biopolymer as the coating material. In this article, the safety and biocompatible and antimicrobial properties of chitosan were introduced because these attributes are very important for its application. The methods to prepare the chitosan-based coating with antimicrobial agents, such as essential oils, acid, and nanoparticles, were developed by other researchers. Meanwhile, the application of chitosan-based coating is mainly due to its antimicrobial activity and other functional properties, which were investigated, introduced, and analyzed in this review. Furthermore, the surface and mechanical properties were also investigated by researchers and concluded in this article. Finally, the effects of chitosan-based coating on the storage quality, microbial safety, and shelf life of fruits and vegetables were introduced. Their results indicated that chitosan-based coating with different antimicrobial agents would probably have wide prospect in the preservation of fruits and vegetables in the future.

  4. Guide for the preparation of applications for licenses for the use of sealed sources in portable gauging devices

    International Nuclear Information System (INIS)

    1985-01-01

    The purpose of this regulatory guide is to provide assistance to applicants and licensees in preparing applications for new licenses, license amendments, and license renewals for the use of sealed sources in portable gauging devices. An example of a portable gauging device is a moisture-density gauge that contains a gamma-emitting sealed source, cesium-137, and a sealed neutron source, americium-242-beryllium

  5. Preparation and Characterization of P(MAA-g-EG) Nanospheres for Protein Delivery Applications

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Lugo, Madeline [University of Puerto Rico, Mayagueez Campus, Department of Chemical Engineering (United States); Peppas, Nicholas A. [Purdue University, NSF Program on Therapeutic and Diagnostic Devices, School of Chemical Engineering (United States)], E-mail: peppas@ecn.purdue.edu

    2002-04-15

    Novel complexation hydrogel nanospheres of poly(methacrylic acid-grafted-poly(ethylene glycol)) (P(MAA-g-EG)) were prepared by dispersion polymerization to be used for protein delivery applications. Polymerization was conducted in solvents such as deionized water, ethanol/water, sodium hydroxide, hydrochloric acid, and acetic acid solutions. When polymerizing in deionized water we produced nanospheres without agglomeration. Photon correlation spectroscopy studies revealed that the nanospheres possessed a narrow particle size distribution and the size was inversely proportional to the concentration of poly(ethylene glycol) incorporated in the monomer mixture. These nanospheres exhibited pH-sensitivity comparable to that encountered in hydrogel films with the same composition. The composition of the nanospheres was investigated by transmission Fourier transform infrared spectroscopy. The comparison between hydrogel films and nanospheres with the same monomer composition revealed that nanospheres possessed similar spectral characteristics than hydrogel films prepared by the same techniques. These nanospheres could be used for calcitonin release under physiological conditions.

  6. Sample preparation techniques based on combustion reactions in closed vessels - A brief overview and recent applications

    International Nuclear Information System (INIS)

    Flores, Erico M.M.; Barin, Juliano S.; Mesko, Marcia F.; Knapp, Guenter

    2007-01-01

    In this review, a general discussion of sample preparation techniques based on combustion reactions in closed vessels is presented. Applications for several kinds of samples are described, taking into account the literature data reported in the last 25 years. The operational conditions as well as the main characteristics and drawbacks are discussed for bomb combustion, oxygen flask and microwave-induced combustion (MIC) techniques. Recent applications of MIC techniques are discussed with special concern for samples not well digested by conventional microwave-assisted wet digestion as, for example, coal and also for subsequent determination of halogens

  7. Recent advances in the preparation and application of monolithic capillary columns in separation science

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tingting; Yang, Xi; Xu, Yujing [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009 (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009 (China); Ji, Yibing, E-mail: jiyibing@msn.com [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009 (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009 (China)

    2016-08-10

    Novel column technologies involving various materials and efficient reactions have been investigated for the fabrication of monolithic capillary columns in the field of analytical chemistry. In addition to the development of these miniaturized systems, a variety of microscale separation applications have achieved noteworthy results, providing a stepping stone for new types of chromatographic columns with improved efficiency and selectivity. Three novel strategies for the preparation of capillary monoliths, including ionic liquid-based approaches, nanoparticle-based approaches and “click chemistry”, are highlighted in this review. Furthermore, we present the employment of state-of-the-art capillary monolithic stationary phases for enantioseparation, solid-phase microextraction, mixed-mode separation and immobilized enzyme reactors. The review concludes with recommendations for future studies and improvements in this field of research. - Highlights: • Preparation of novel monolithic capillary columns have shown powerful potential in analytical chemistry field. • Various materials including ionic liquids and nanoparticles involved into capillary monolithic micro-devices are concluded. • Click chemistry strategy applied for preparing monolithic capillary columns is reviewed. • Recent strategies utilized in constructing different capillary monoliths for enantiomeric separation are summarized. • Advancement of capillary monoliths for complex samples analysis is comprehensively described.

  8. Recent advances in the preparation and application of monolithic capillary columns in separation science

    International Nuclear Information System (INIS)

    Hong, Tingting; Yang, Xi; Xu, Yujing; Ji, Yibing

    2016-01-01

    Novel column technologies involving various materials and efficient reactions have been investigated for the fabrication of monolithic capillary columns in the field of analytical chemistry. In addition to the development of these miniaturized systems, a variety of microscale separation applications have achieved noteworthy results, providing a stepping stone for new types of chromatographic columns with improved efficiency and selectivity. Three novel strategies for the preparation of capillary monoliths, including ionic liquid-based approaches, nanoparticle-based approaches and “click chemistry”, are highlighted in this review. Furthermore, we present the employment of state-of-the-art capillary monolithic stationary phases for enantioseparation, solid-phase microextraction, mixed-mode separation and immobilized enzyme reactors. The review concludes with recommendations for future studies and improvements in this field of research. - Highlights: • Preparation of novel monolithic capillary columns have shown powerful potential in analytical chemistry field. • Various materials including ionic liquids and nanoparticles involved into capillary monolithic micro-devices are concluded. • Click chemistry strategy applied for preparing monolithic capillary columns is reviewed. • Recent strategies utilized in constructing different capillary monoliths for enantiomeric separation are summarized. • Advancement of capillary monoliths for complex samples analysis is comprehensively described.

  9. Preparation and Analysis of Platinum Thin Films for High Temperature Sensor Applications

    Science.gov (United States)

    Wrbanek, John D.; Laster, Kimala L. H.

    2005-01-01

    A study has been made of platinum thin films for application as high temperature resistive sensors. To support NASA Glenn Research Center s high temperature thin film sensor effort, a magnetron sputtering system was installed recently in the GRC Microsystems Fabrication Clean Room Facility. Several samples of platinum films were prepared using various system parameters to establish run conditions. These films were characterized with the intended application of being used as resistive sensing elements, either for temperature or strain measurement. The resistances of several patterned sensors were monitored to document the effect of changes in parameters of deposition and annealing. The parameters were optimized for uniformity and intrinsic strain. The evaporation of platinum via oxidation during annealing over 900 C was documented, and a model for the process developed. The film adhesion was explored on films annealed to 1000 C with various bondcoats on fused quartz and alumina. From this compiled data, a list of optimal parameters and characteristics determined for patterned platinum thin films is given.

  10. Literature information applicable to the reaction of uranium oxides with chlorine to prepare uranium tetrachloride

    International Nuclear Information System (INIS)

    Haas, P.A.

    1992-02-01

    The reaction of uranium oxides and chlorine to prepare anhydrous uranium tetrachloride (UCl 4 ) are important to more economical preparation of uranium metal. The most practical reactions require carbon or carbon monoxide (CO) to give CO or carbon dioxide (CO 2 ) as waste gases. The chemistry of U-O-Cl compounds is very complex with valances of 3, 4, 5, and 6 and with stable oxychlorides. Literature was reviewed to collect thermochemical data, phase equilibrium information, and results of experimental studies. Calculations using thermodynamic data can identify the probable reactions, but the results are uncertain. All the U-O-Cl compounds have large free energies of formation and the calculations give uncertain small differences of large numbers. The phase diagram for UCl 4 -UO 2 shows a reaction to form uranium oxychloride (UOCl 2 ) that has a good solubility in molten UCl 4 . This appears more favorable to good rates of reaction than reaction of solids and gases. There is limited information on U-O-Cl salt properties. Information on the preparation of titanium, zirconium, silicon, and thorium tetrachlorides (TiCl 4 , ZrCl 4 , SiCl 4 , ThCl 4 ) by reaction of oxides with chlorine (Cl 2 ) and carbon has application to the preparation of UCl 4

  11. Pharmaceutical studies on and clinical application of olanzapine suppositories prepared as a hospital preparation

    OpenAIRE

    Matsumoto, Kazuaki; Kimura, Satoru; Takahashi, Kenichi; Yokoyama, Yuta; Miyazawa, Masayuki; Kushibiki, Satoko; Katamachi, Morio; Kizu, Junko

    2016-01-01

    Background A new formulation of olanzapine available for terminally ill patients is needed. Rectal administration using suppositories is an alternative for patients for whom administration via the oral route is not feasible. In the present study, we prepared olanzapine suppositories, and confirmed using pharmaceutical tests. Furthermore, we demonstrated the efficacy and safety of olanzapine suppositories in terminally ill patients. Methods We prepared olanzapine suppositories using bases cons...

  12. Use of annotated outlines to prepare guidance for license applications for the MRS and MGDS

    International Nuclear Information System (INIS)

    Roberts, J.; Griffin, W.R.

    1992-01-01

    This paper reports that the Office of Civilian Radioactive Waste Management (OCRWM) has embarked on an aggressive program to develop guidance for preparation of the License Applications for the Mined Geological Disposal System (MGDS) and Monitored Retrievable Storage (MRS). The endeavor is a team effort that will utilize personnel and funding from the Office of Systems and Compliance at DOE Headquarters, the MRS Project (i.e., DOE Office of Storage and Transportation) and the Yucca Mountain Project (i.e., DOE Office of Geologic Disposal). The endeavor was initiated in the Spring of 1991. It will continue via an iterative process until License Applications are completed for the MRS and MGDS projects

  13. The preparation and application of carbon-11 nuclide and its PET imaging agent

    International Nuclear Information System (INIS)

    Wang Mingfang

    2002-01-01

    Carbon-11 is a valuable positron nuclide, for it can be used to replace carbon atom at specific position inside the organic molecules and not change the molecular biochemistry character. Carbon-11 has wide application in the labeling of amino acids, fatty acids, receptor-ligand and neurotransmitter molecular etc, which are used for detecting the blood flow, metabolism, the synthesis of protein and the neurotransmitter function in brain by PET imaging. It is very important in basic science and clinical research to understand and master the preparation of carbon-11 and its labeled compounds

  14. Using the NLN Faculty Preparation for Global Experiences Toolkit for Successful Application for the Fulbright Scholar Award.

    Science.gov (United States)

    Samawi, Zepure; Capps, Lisa; Hansen, Ruth

    With an increasingly global world and the migration of diverse populations, nurse faculty have opportunities to learn and share varied perspectives through involvement internationally in research, teaching, and practice. The National League for Nursing (NLN) joins with the World Health Organization and the International Council of Nurses to promote international nursing standards. One way in which nursing faculty can contribute to this goal is by pursuing international education, research, and service as a Fulbright scholar. The NLN Faculty Preparation for Global Experiences Toolkit complements resources offered through the Fulbright program in the preparation of a competitive Fulbright application.

  15. Preparation and Applications of Amylose Supramolecules by Means of Phosphorylase-Catalyzed Enzymatic Polymerization

    Directory of Open Access Journals (Sweden)

    Jun-ichi Kadokawa

    2012-01-01

    Full Text Available This paper reviews preparation and applications of amylose supramolecules by means of phosphorylase-catalyzed enzymatic polymerization. When the enzymatic polymerization of α-d-glucose 1-phosphate (G-1-P as a monomer was carried out in the presence of poly(tetrahydrofuran (PTHF of a hydrophobic polyether as a guest polymer, the supramolecule, i.e., an amylose-PTHF inclusion complex, was formed in the process of polymerization. Because the representation of propagation in the polymerization is similar to the way that vines of plants grow twining around rods, this polymerization method for the preparation of amylose-polymer inclusion complexes was proposed to be named “vine-twining polymerization”. Various hydrophobic polyethers, polyesters, poly(ester-ether, and polycarbonates were also employed as the guest polymer in the vine-twining polymerization to produce the corresponding inclusion complexes. To obtain the inclusion complex from a strongly hydrophobic guest polymer, the parallel enzymatic polymerization system was developed as an advanced extension of the vine-twining polymerization. In addition, it was found that amylose selectively includes one side of the guest polymer from a mixture of two resemblant guest polymers, as well as a specific range in molecular weights of the guest PTHF. Amylose also exhibited selective inclusion behavior toward stereoisomers of poly(lactides. Moreover, the preparation of hydrogels through the formation of inclusion complexes of amylose in vine-twining polymerization was achieved.

  16. Guidance on the preparation and presentation of an application for authorisation of a novel food in the context of Regulation (EU) 2015/2283

    DEFF Research Database (Denmark)

    Poulsen, Morten

    2016-01-01

    . This guidance presents a common format for the organisation of the information to be presented in order to assist the applicant in preparing a well-structured application to demonstrate the safety of the novel food. The application should be comprehensive and complete. This guidance outlined the data needed......Following the adoption of Regulation (EU) 2015/2283 of the European Parliament and of the Council on novel foods, the European Commission requested EFSA to update and develop scientific and technical guidance for the preparation and presentation of applications for authorisation of novel foods...... for the safety assessments of novel foods. Requirements which should be covered in all applications relate to the description of the novel food, production process, compositional data, specification, proposed uses and use levels, and anticipated intake of the novel food. Further sections on the history of use...

  17. Preparation and Characterization of Biomass-Derived Advanced Carbon Materials for Lithium-Ion Battery Applications

    Science.gov (United States)

    Hardiansyah, Andri; Chaldun, Elsy Rahimi; Nuryadin, Bebeh Wahid; Fikriyyah, Anti Khoerul; Subhan, Achmad; Ghozali, Muhammad; Purwasasmita, Bambang Sunendar

    2018-07-01

    In this study, carbon-based advanced materials for lithium-ion battery applications were prepared by using soybean waste-based biomass material, through a straightforward process of heat treatment followed by chemical modification processes. Various types of carbon-based advanced materials were developed. Physicochemical characteristics and electrochemical performance of the resultant materials were characterized systematically. Scanning electron microscopy observation revealed that the activated carbon and graphene exhibits wrinkles structures and porous morphology. Electrochemical impedance spectroscopy (EIS) revealed that both activated carbon and graphene-based material exhibited a good conductivity. For instance, the graphene-based material exhibited equivalent series resistance value of 25.9 Ω as measured by EIS. The graphene-based material also exhibited good reversibility and cyclic performance. Eventually, it would be anticipated that the utilization of soybean waste-based biomass material, which is conforming to the principles of green materials, could revolutionize the development of advanced material for high-performance energy storage applications, especially for lithium-ion batteries application.

  18. "On-off" switchable tool for food sample preparation: merging molecularly imprinting technology with stimuli-responsive blocks. Current status, challenges and highlighted applications.

    Science.gov (United States)

    Garcia, Raquel; Gomes da Silva, Marco D R; Cabrita, Maria João

    2018-01-01

    Sample preparation still remains a great challenge in the analytical workflow representing the most time-consuming and laborious step in analytical procedures. Ideally, sample pre-treatment procedures must be more selective, cheap, quick and environmental friendly. Molecular imprinting technology is a powerful tool in the development of highly selective sample preparation methodologies enabling to preconcentrate the analytes from a complex food matrix. Actually, the design and development of molecularly imprinted polymers-based functional materials that merge an enhancement of selectivity with a controllable and switchable mode of action by means of specific stimulus constitutes a hot research topic in the field of food analysis. Thus, combining the stimuli responsive mechanism and imprinting technology a new generation of materials are emerging. The application of these smart materials in sample preparation is in early stage of development, nevertheless new improvements will promote a new driven in the demanding field of food sample preparation. The new trends in the advancement of food sample preparation using these smart materials will be presented in this review and highlighted the most relevant applications in this particular area of knowledge. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Guidance for preparing user requirements documents for small and medium reactors and their application

    International Nuclear Information System (INIS)

    2000-08-01

    During the past decade, several countries with highly developed nuclear power programs established user required documents (URDs) to guide the development and implementation of advanced light water reactors. These efforts built upon the extensive experience with operating reactors and included new insights from ongoing research and development to enhance the economic performance and safety of future nuclear power plants. Subsequently, a number of developing countries with plans for introducing nuclear energy into their national programs expressed strong interest in establishing analogous requirements. The IAEA has therefore taken the initiative to assist in the elaboration of such requirements. Building upon relevant documents this report recommends a URD structure and content outline to support developing countries in preparing their URDs for various applications of small and medium reactors (e.g. electricity generation and/or desalination). This report was prepared by representatives from both developing and developed Member States

  20. Scientific and technical guidance for the preparation and presentation of an application for authorisation of a health claim (revision 1)

    DEFF Research Database (Denmark)

    Tetens, Inge

    2011-01-01

    The scientific and technical guidance of the EFSA Panel on Dietetic Products, Nutrition and Allergies for the preparation and presentation of an application for authorisation of a health claim presents a common format for the organisation of information for the preparation of a well......-structured application for authorisation of health claims which fall under Article 14 (referring to children’s development and health, and to disease risk reduction claims), or 13(5) (which are based on newly developed scientific evidence and/or which include a request for the protection of proprietary data......), or for the modification of an existing authorisation in accordance with Article 19 of Regulation (EC) No 1924/2006 on nutrition and health claims made on foods. This guidance outlines: the information and scientific data which must be included in the application, the hierarchy of different types of data and study designs...

  1. Preparation of Polyvinyl Pyrrolidone-Based Hydrogels by Radiation Induced Crosslinking with Potential Application as Wound Dressing

    International Nuclear Information System (INIS)

    Abd EI-Mohdy, H.L.; Hegazy, E.A.

    2009-01-01

    Polyvinyl pyrrolidone l polyethylene glycol hydrogels (PVP/ PEG) and PVP/ PEG/ Starch were prepared by irradiating the mixtures of aqueous solutions of PVP, PEG and starch with electron beam at different doses. Its properties were evaluated to identify their usability in wound dressing applications. Hydrogel dressing can protect injured skin and keep it appropriately moist to speed the healing process. The physical properties of the prepared hydrogels, such as gel content, swelling, water content and degree of water evaporation with varying composition and irradiation dose were examined to evaluate the usefulness of the hydrogels for wound dressing. The gel content increases with increasing PVP concentration due to increased crosslink density, and decreases with increasing the PEG concentration. PEG seems to act not only as plasticizer but also to modify the gel properties as gelation% and maximum swelling. Mechanical experiments were conducted for both of PVP/PEG and PVP/PEG/ Starch. The adding of PEG and starch to PVP significantly improve elongation and tensile strength of prepared hydrogels. The crystallinity of prepared hydrogels was investigated with varying their components. XRD studies indicated that the crystallinity in the gel was mainly due to PVP and decreased with enhanced starch content. The prepared hydrogels had sufficient strength to be used as wound dressing and could be considered as a good barrier against microbes

  2. Literature information applicable to the reaction of uranium oxides with chlorine to prepare uranium tetrachloride

    Energy Technology Data Exchange (ETDEWEB)

    Haas, P.A.

    1992-02-01

    The reaction of uranium oxides and chlorine to prepare anhydrous uranium tetrachloride (UCl{sub 4}) are important to more economical preparation of uranium metal. The most practical reactions require carbon or carbon monoxide (CO) to give CO or carbon dioxide (CO{sub 2}) as waste gases. The chemistry of U-O-Cl compounds is very complex with valances of 3, 4, 5, and 6 and with stable oxychlorides. Literature was reviewed to collect thermochemical data, phase equilibrium information, and results of experimental studies. Calculations using thermodynamic data can identify the probable reactions, but the results are uncertain. All the U-O-Cl compounds have large free energies of formation and the calculations give uncertain small differences of large numbers. The phase diagram for UCl{sub 4}-UO{sub 2} shows a reaction to form uranium oxychloride (UOCl{sub 2}) that has a good solubility in molten UCl{sub 4}. This appears more favorable to good rates of reaction than reaction of solids and gases. There is limited information on U-O-Cl salt properties. Information on the preparation of titanium, zirconium, silicon, and thorium tetrachlorides (TiCl{sub 4}, ZrCl{sub 4}, SiCl{sub 4}, ThCl{sub 4}) by reaction of oxides with chlorine (Cl{sub 2}) and carbon has application to the preparation of UCl{sub 4}.

  3. Surface resistances of 5-cm-diameter YBCO films prepared by MOD for microwave applications

    International Nuclear Information System (INIS)

    Manabe, T.; Sohma, M.; Yamaguchi, I.; Tsukada, K.; Kondo, W.; Kamiya, K.; Tsuchiya, T.; Mizuta, S.; Kumagai, T.

    2006-01-01

    Large-area high-T c superconducting films with low surface resistances R s are required for use in microwave applications such as band pass filters. In this paper, preparation of 5-cm-diameter YBCO films on LaAlO 3 (LAO) and CeO 2 -buffered sapphire (CbS) substrates by metalorganic deposition (MOD) using a fluorine-free coating solution and their superconducting properties are described. The optimum firing conditions for YBCO films greatly depend on the substrate materials; a heating rate at ramp as high as 200 deg. C /min is necessary for films on LAO whereas a lower heating rate, e.g., 20 deg. C /min, is required for films on CbS. Accordingly, the suitable furnace systems for these substrates have been varied. As a result, a YBCO film with high J c (77 K) of 2.7 MA/cm 2 and a low R s (12 GHz, 77 K) of 0.54 mΩ was prepared on LAO by using an infrared image furnace. On the other hand, a YBCO film with a higher J c (77 K) of 4.0 MA/cm 2 and the same R s (12 GHz, 77 K) of 0.54 mΩ was prepared on CbS by using a tube furnace

  4. Application of the PEE Model to essay composition in an IELTS preparation class

    Directory of Open Access Journals (Sweden)

    Ender Orlando Velasco Tovar

    2015-01-01

    Full Text Available Based on two case studies, this study investigates the application of the Point, Explanation, Example (PEE model to essay composition in a multi-lingual IELTS preparation class. This model was incorporated into an eight-week programme of instruction to ESL adults in London, England. Students preparing for the IELTS exam were asked to write pre and post instruction essays on a given topic within 40 minutes. Employing the IELTS band descriptors (IELTS, 2013b and analyses of coherence and cohesion in line with Systemic Functional Linguistic concepts (Halliday and Matthiessen, 2004; McCarthy, 1991, samples of students’ writing were analysed. Data from students’ pre and post instruction interviews was also gathered and analysed. The findings of this study suggest that the PEE model is to some extent effective in improving the essay composition performance of IELTS students, in particular in the area of cohesion and coherence. Students find the PEE model useful in regard to the clarity and structure that the model seems to add to their essays.

  5. Preparation of conductive paper composites based on natural cellulosic fibers for packaging applications.

    Science.gov (United States)

    Youssef, Ahmed M; El-Samahy, Magda Ali; Abdel Rehim, Mona H

    2012-08-01

    Conducting paper based on natural cellulosic fibers and conductive polymers was prepared using unbleached bagasse and/or rice straw fibers (as cellulosic raw materials) and polyaniline (PANi) as conducting polymer. These composites were synthesized by in situ emulsion polymerization using ammonium persulfate (APS) as oxidant in the presence of dodecylbenzene sulfonic acid (DBSA) as emulsifier. The prepared composites were characterized using Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA), differential scanning calorimeter (DSC), and their morphology was investigated using scanning electron microscope (SEM). Electrical conductivity measurements showed that the conductivity of the paper sheets increases by increasing the ratio of PANi in the composite. Mechanical properties of the paper sheets were also investigated, the results revealed that the values of breaking length, burst factor, and tear factor are decreased with increasing ratio of added PANi, and this effect is more pronounced in bagasse-based composites. The new conductive composites can have potential use as anti-static packaging material or anti-bacterial paper for packaging applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Preparation of processed nuclear data libraries for thermal, fast and fusion research and power reactor applications

    International Nuclear Information System (INIS)

    Ganesan, S.

    1994-03-01

    A Consultants Meeting on ''Preparation of Processed Nuclear Data Libraries for Thermal, Fast and Fusion Research and Power Reactor Applications'' was convened by the International Atomic Energy Agency and held during December 13-16, 1993 December 8-10, 1993 at the IAEA Headquarters, Vienna. The detailed agenda, the complete list of participants and the recommendations are presented in this report. (author)

  7. Perspectives of application for nanoparticles prepared by CO2 laser pyrolysis: from ceramic nanocomposites to nanofluids

    International Nuclear Information System (INIS)

    D'Amato, R.; Fabbri, M.; Borsella, E.; Falconieri, M.

    2013-01-01

    Nanoparticles are one of the main ingredients for the realization of a wide range of nanostructured materials and devices with potential applications in several research areas and industrial sectors, hence their synthesis is a critical step in the development of nanotechnologies. Here we report on the preparation of several types of nanoparticles by laser pyrolysis of gas phase or vapour phase precursors, a very flexible and scalable synthesis route. A critical insight is given into the perspectives of practical applications of these nanoparticles in a number of fields ranging from the fabrication of ceramic nanocomposites to wear resistant coatings, from fluorophores for bio-imaging to nanofluids for efficient thermal management, from nanocoatings for cultural heritage preservation to the realization of a new class of inks for ink-jet printing applications.

  8. Application of green chemistry techniques to prepare electrocatalysts for direct methanol fuel cells.

    Science.gov (United States)

    Shimizu, Kenichi; Wang, Joanna S; Wai, Chien M

    2010-03-25

    A series of green techniques for synthesizing carbon nanotube-supported platinum nanoparticles and their high electrocatalytic activity toward methanol fuel cell applications are reported. The techniques utilize either the supercritical fluid carbon dioxide or water as a medium for depositing platinum nanoparticles on surfaces of multiwalled or single-walled carbon nanotubes. The catalytic properties of the carbon nanotubes-supported Pt nanoparticle catalysts prepared by four different techniques are compared for anodic oxidation of methanol and cathodic reduction of oxygen using cyclic voltammetry. One technique using galvanic exchange of Pt(2+) in water with zerovalent iron present on the surfaces of as-grown single-walled carbon nanotubes produces a Pt catalyst that shows an unusually high catalytic activity for reduction of oxygen but a negligible activity for oxidation of methanol. This fuel-selective catalyst may have a unique application as a cathode catalyst in methanol fuel cells to alleviate the problems caused by crossover of methanol through the polymer electrolyte membrane.

  9. Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization

    Science.gov (United States)

    Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi

    2016-02-01

    In this work, composite nanoparticles containing polypyrrole, silver and attapulgite (PPy/Ag/ATP) were prepared via UV-induced dispersion polymerization of pyrrole using ATP clay as a templet and silver nitrate as photoinitiator. The effects of ATP concentration on morphology, structure and electrical conductivity were studied. The obtained composite nanoparticles with an interesting beads-on-a-string morphology can be obtained in a short time (10 min), which indicates the preparation method is facile and feasible. To explore the potential applications of the prepared PPy/Ag/ATP composite nanoparticles, they were served as multifunctional filler and blended with poly(butylene succinate) (PBS) matrix to prepare biodegradable composite material. The distribution of fillers in polymer matrix and the interfacial interaction between fillers and PBS were confirmed by scanning electron microscope, elemental mapping and dynamic mechanical analysis. The well dispersed fillers in PBS matrix impart outstanding antibacterial property to the biodegradable composite material as well as enhanced storage modulus due to Ag nanoparticles and ATP clay. The biodegradable composite material also possesses modest surface resistivity (106 ~ 109 Ω/◻).

  10. Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization.

    Science.gov (United States)

    Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi

    2016-02-03

    In this work, composite nanoparticles containing polypyrrole, silver and attapulgite (PPy/Ag/ATP) were prepared via UV-induced dispersion polymerization of pyrrole using ATP clay as a templet and silver nitrate as photoinitiator. The effects of ATP concentration on morphology, structure and electrical conductivity were studied. The obtained composite nanoparticles with an interesting beads-on-a-string morphology can be obtained in a short time (10 min), which indicates the preparation method is facile and feasible. To explore the potential applications of the prepared PPy/Ag/ATP composite nanoparticles, they were served as multifunctional filler and blended with poly(butylene succinate) (PBS) matrix to prepare biodegradable composite material. The distribution of fillers in polymer matrix and the interfacial interaction between fillers and PBS were confirmed by scanning electron microscope, elemental mapping and dynamic mechanical analysis. The well dispersed fillers in PBS matrix impart outstanding antibacterial property to the biodegradable composite material as well as enhanced storage modulus due to Ag nanoparticles and ATP clay. The biodegradable composite material also possesses modest surface resistivity (10(6)~ 10(9) Ω/◻).

  11. Preparation and application of potassium and sodium titanate for removal of plutonium from basic solution

    International Nuclear Information System (INIS)

    Patil, Prashant; Pathak, Sachin S.; Pius, I.C.; Mukerjee, S.K.

    2014-01-01

    In PUREX process, after extraction and stripping of uranium and plutonium, the extractant, tributyl phosphate is usually washed with sodium carbonate solution before reuse for the removal of radiolytic/hydrolytic degradation products of TBP and small amounts of HNO 3 , uranium and plutonium goes into aqueous phase during carbonate washings. Partial neutralization of carbonate by the acid converts it to bicarbonate. Removal of plutonium from such sodium carbonate/bicarbonate streams facilitates their disposal. In the present work, studies were carried out to prepare inorganic ion-exchangers such as potassium and sodium titanates for their application as ion-exchange material. It is essential to prepare these materials in granular form to obtain good liquid flow property for ion exchange column operations, however, it is also important that the final product is having good surface area and porosity so that they may exhibit good ion exchange capacity

  12. Trends in sample preparation 2002. Development and application. Book of abstracts

    International Nuclear Information System (INIS)

    Wenzl, T.; Eberl, M.; Zischka, M.; Knapp, G.

    2002-01-01

    This conference comprised topics dealing with sample preparation such as: sample decomposition, solvent extraction, derivatization techniques and uncertainty in sample preparation. In particular microwave assisted sample preparation techniques and equipment were discussed. The papers were organized under the general topics: trace element analysis, trace analysis of organic compounds, high performance instrumentation in sample preparation, speciation analysis and posters session. Those papers of INIS interest are cited individually. (nevyjel)

  13. Trends in sample preparation 2002. Development and application. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Wenzl, T; Eberl, M; Zischka, M; Knapp, G [eds.

    2002-07-01

    This conference comprised topics dealing with sample preparation such as: sample decomposition, solvent extraction, derivatization techniques and uncertainty in sample preparation. In particular microwave assisted sample preparation techniques and equipment were discussed. The papers were organized under the general topics: trace element analysis, trace analysis of organic compounds, high performance instrumentation in sample preparation, speciation analysis and posters session. Those papers of INIS interest are cited individually. (nevyjel)

  14. The Impact of Patient Education with a Smartphone Application on the Quality of Bowel Preparation for Screening Colonoscopy.

    Science.gov (United States)

    Cho, JeongHyeon; Lee, SeungHee; Shin, Jung A; Kim, Jeong Ho; Lee, Hong Sub

    2017-09-01

    Few studies have evaluated the use of a smartphone application (app) for educating people undergoing colonoscopy and optimizing bowel preparation. Therefore, this study was designed to develop a smartphone app for people to use as a preparation guide and to evaluate the efficacy of this app when used prior to colonoscopy. In total, 142 patients (male:female=84:58, mean age=43.5±9.3 years), who were scheduled to undergo a colonoscopy at Myongji Hospital, were enrolled in this study. Seventy-one patients were asked to use a smartphone app that we had recently developed to prepare for the colonoscopy, while the 71 patients of the sex and age-matched control group were educated via written and verbal instructions. The quality of bowel cleansing, evaluated using the Boston Bowel Preparation Scale, was significantly higher in the smartphone app group than in the control group (7.70±1.1 vs. 7.24±0.8, respectively, p =0.007 by t -test). No significant differences were found between the two groups regarding work-up time and the number of patients with polyps. In this study, targeting young adults (≤50 years), the bowel preparation achieved by patients using the smartphone app showed significantly better quality than that of the control group.

  15. MEMORANDUM: Application of Best Management Practices to Mechanical Silvicultural Site Preparation Activities for the Establishment of Pine Plantations in the Southeast

    Science.gov (United States)

    Memorandum to the Field, November 28, 1995, clarifying the applicability of forested wetlands best management practices to mechanical silvicultural site preparation activities for the establishment of pine plantations in the Southeast.

  16. Radioisotopes preparation with GA Siwabessy for application in health/medical

    International Nuclear Information System (INIS)

    Sunarhadijoso-Soenarjo

    2003-01-01

    The Center for Development of Radioisotopes and Radiopharmaceuticals (CDRR) has to improve its role and potency to comply domestic demand in radioisotope preparations. The radioisotopes are used as both primary radioisotopes and labeled compounds, especially for medical diagnosis and therapy as radiopharmaceutical preparations. The implementation of capability in production of radioisotopes and radiopharmaceuticals is fully affected by the readiness of operational function of supporting facilities in regard to maintain safety system, process and personnel as well. For those reasons, activities program has been carried out with the aims of : (a). To faithful capability in production of GA Siwabessy reactor based radioisotopes, labeled compounds and radiopharmaceutical kits, (b). To optimize normal operational function of supporting facilities and utilities, and (c). To perform invention and modification of heater and temperature control units on the air handling unit (AHU) system. Some kinds of radioactive products are dominant during the year of 2002, i.e. 153 SmCl 3 , Na 2 99 MoO 4 and Na 186 ReO 4 primary radioisotopes and 153 Sm-EDTMP labeled compound. The main utilization of the products is for research and development of processing technology and medical application as diagnostic or therapeutic agent. The operational function of supporting facilities and utilities was well performed meeting the requirement of the users. Some units of the systems partially showed degradation of working performance but it did not cause trouble in security and safety of the system, process and personnel. A heater device completed with control system has been installed as a modified part of AHU system and has been tested successfully. The operation of the heater device is significantly influential to the air temperature and humidity in working area. The required air condition, e.g. 22 - 25 o C of temperature and 40 - 50 % of humidity, can be complied on the blower motor

  17. Preparation of Raspberry-like Superhydrophobic SiO2 Particles by Sol-gel Method and Its Potential Applications

    Directory of Open Access Journals (Sweden)

    Xu Gui-Long

    2011-12-01

    Full Text Available Raspberry‐like SiO2 particles with a nano‐micro‐binary structure were prepared by a simple sol‐gel method using tetraethoxysilane (TEOS and methyltriethoxysilane (MTES as precursors. The chemical components and morphology of the SiO2 particles were characterized by Fourier transform infrared spectroscopy (FT‐IR and a Transmission electron microscope (TEM. The surface topography and wetting behaviour of the raspberry‐like SiO2 surface were observed with a Scanning electron microscope (SEM and studied by the water/oil contact angle (CA, respectively. The thermal stability of the prepared SiO2 particles was characterized by TGA analysis. The results show that the highly dispersed SiO2 particles initially prepared by the sol‐gel method turn into raspberry‐like particles with during the aging process. The raspberry‐like SiO2 particles show superhydrophobicity and superoleophilicity across a wide range of pH values. The SiO2 particles were thermally stable up to 475°C, while above this temperature the hydrophobicity decreases and finally becomes superhydrophobic when the temperature reaches 600°C. The raspberry‐like SiO2 particles which were prepared have potential applications in the fields of superhydrophobic surfaces, water‐oil separation, anti‐corrosion and fluid transportation.

  18. [Preparation and application on compound excipient of sodium stearyl fumarate and plasdone S-630].

    Science.gov (United States)

    Jiang, Yan-Rong; Zhang, Zhen-Hai; Jia, Xiao-Bin

    2013-01-01

    The compound excipient containing sodium stearyl fumarate and plasdone S-630 was prepared by applying spray drying method. The basic physical properties of compound excipient were studied by solubility test, scanning electron microscope, differential scanning calorimeter, X-ray diffraction and Fourier transform infra-red spectroscopy. The effect of compound excipient on moisture absorption and ferulic acid in vitro dissolution of spray drying power of angelica were investigated. The results showed that the chemical constituents of compound excipient did not change before and after spray drying. The water soluble compound excipient can improve significantly moisture absorption and has application prospect.

  19. Preparation and Characterization of Naringenin-Loaded Elastic Liposomes for Topical Application.

    Directory of Open Access Journals (Sweden)

    Ming-Jun Tsai

    Full Text Available Excessive production of radical oxygen species in skin is a contributor to a variety of skin pathologies. Naringenin is a potent antioxidant. The purpose of the present study was to develop elastic liposomes for naringenin topical application. Naringenin-loaded elastic liposomes containing different amounts of Tween 80 and cholesterol were prepared. The physicochemical properties including vesicle size, surface charge, encapsulation efficiency, and permeability capacity were determined to evaluate the effect of components. The stability of formulation and skin irritation caused by drug-loaded elastic liposomes were also evaluated for assessment of the clinical utility of elastic liposomes. Saturated aqueous solution of naringenin and naringenin dissolved in 10% Tween 80 solution (5 mg/mL were used as the control group. The result showed that in using elastic liposomes as carrier, the deposition amounts in the skin of naringenin were significantly increased about 7.3~11.8-fold and 1.2~1.9-fold respectively, when compared with the saturated aqueous solution and Tween 80 solution-treated groups. The level of drug was more than 98.89±3.90% after 3 months of storage at 4℃. In a skin irritation test, the result showed experimental formulation exhibit considerably less irritating than the positive control (paraformaldehyde-treated group, suggesting its potential therapeutic application.

  20. The microcapsule-type formaldehyde scavenger: the preparation and the application in urea-formaldehyde adhesives.

    Science.gov (United States)

    Duan, Hongyun; Qiu, Teng; Guo, Longhai; Ye, Jun; Li, Xiaoyu

    2015-08-15

    The limitation and regulation of formaldehyde emissions (FE) now shows great importance in wood-based materials such as plywood and particle board manufactured for building and furnishing materials. The widely used formaldehyde-based adhesives are one of the main sources of FE from the wood products. In this work, a new kind of long-term effective formaldehyde scavenger in the microcapsule form was prepared by using an intra-liquid desiccation method. The characterizations of the capsule (UC) were performed including the morphologies, the yields, the loading efficiency as well as its sustained-release of urea in aqueous conditions. The prepared UC could be integrated in urea-formaldehyde resins by simply physical blending, and the mixtures were available to be applied as the adhesives for the manufacture of plywood. The bonding strength (BS) and the FE of the bonded plywood in both short (3h) and long (12 week) period were evaluated in detail. It was found that the FE profile of the plywood behaved following a duple exponential law within 12 week. The addition of UC in the adhesive can effectively depress the FE of the plywood not only in a short period after preparation but also in a long-term period during its practical application. The slow released urea would continuously suppress the emission of toxic formaldehyde in a sustained manner without obviously deteriorating on the BS of the adhesives. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Development of radioisotope preparation and application technology

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hyon Soo; Park, K. B.; Bang, H. S. [and others

    2000-04-01

    The purpose of this project is to develop RI production technology utility 'HANARO' and to construct a sound infra-structure for mass production and supply to domestic users. The developed contents and results are as follows: two types of rig for irradiation in reactor core were designed and manufactured. The safety of OR rig during irradiation was identified through various test and it is used for RI production. The prepared IR rig will be used to performance tests for safety. We prepared two welders and welding jigs for production of sealed sources, and equipments for quality control of the welded materials. Production processes and apparatus Cr-51, P-32, I-125 and Sr-89, were developed. Developed results would be used for routine production and supply of radioisotopes. The automatic Tc-99m extraction apparatus was supplied to Libya under IAEA support. For approval on special form radioactive material of the developed Ir-192 source assembly and projector documents were prepared and submitted to MOST. The high dose rate Ir-192 source(diameter 1.1 mm, length 5.2 mm) for RALS and the laser welding system for its fabrication were developed. Production technologies of Ir-192 sources for destructive test and medical therapy were transferred to private company for commercial supply. The chemical immobilization method based on the self-assemble monolayer of {omega}-functionalized thiol and the sensing scheme based on the beta-emitter labeling method were developed for the fabrication radioimmuno-sensors. Results of this study will be applied to mass production of radioisotopes 'HANARO' and are to contribute the advance of domestic medicine and industry related to radioisotopes.

  2. Development of radioisotope preparation and application technology

    International Nuclear Information System (INIS)

    Han, Hyon Soo; Park, K. B.; Bang, H. S. and others

    2000-04-01

    The purpose of this project is to develop RI production technology utility 'HANARO' and to construct a sound infra-structure for mass production and supply to domestic users. The developed contents and results are as follows: two types of rig for irradiation in reactor core were designed and manufactured. The safety of OR rig during irradiation was identified through various test and it is used for RI production. The prepared IR rig will be used to performance tests for safety. We prepared two welders and welding jigs for production of sealed sources, and equipments for quality control of the welded materials. Production processes and apparatus Cr-51, P-32, I-125 and Sr-89, were developed. Developed results would be used for routine production and supply of radioisotopes. The automatic Tc-99m extraction apparatus was supplied to Libya under IAEA support. For approval on special form radioactive material of the developed Ir-192 source assembly and projector documents were prepared and submitted to MOST. The high dose rate Ir-192 source(diameter 1.1 mm, length 5.2 mm) for RALS and the laser welding system for its fabrication were developed. Production technologies of Ir-192 sources for destructive test and medical therapy were transferred to private company for commercial supply. The chemical immobilization method based on the self-assemble monolayer of ω-functionalized thiol and the sensing scheme based on the beta-emitter labeling method were developed for the fabrication radioimmuno-sensors. Results of this study will be applied to mass production of radioisotopes 'HANARO' and are to contribute the advance of domestic medicine and industry related to radioisotopes

  3. Fluorescent carbon dots and nanodiamonds for biological imaging: preparation, application, pharmacokinetics and toxicity.

    Science.gov (United States)

    Liu, Jia-Hui; Yang, Sheng-Tao; Chen, Xin-Xin; Wang, Haifang

    2012-10-01

    The rapid advancement of nanotechnology has brought us some new types of fluorescent probes, which are indispensable for bioimaging in life sciences. Because of their innate biocompatibility, good resistance against photobleaching, long fluorescence lifetime and wide fluorescence spectral region, fluorescent carbon quantum dots (C-Dots) and nanosized diamonds (nanodiamonds, NDs) are gradually evolving into promising reagents for bioimaging. In this review, we summarize the recent achievements in fluorescent C-Dots and NDs with emphases on their preparation, properties, imaging application, pharmacokinetics and toxicity. Perspectives on further investigations and opportunities to develop C-Dots and NDs into the safer and more sensitive imaging probes for both living cells and animal models are discussed.

  4. Automatically Preparing Safe SQL Queries

    Science.gov (United States)

    Bisht, Prithvi; Sistla, A. Prasad; Venkatakrishnan, V. N.

    We present the first sound program source transformation approach for automatically transforming the code of a legacy web application to employ PREPARE statements in place of unsafe SQL queries. Our approach therefore opens the way for eradicating the SQL injection threat vector from legacy web applications.

  5. Application of liquid-based cytology preparation in micronucleus assay of exfoliated buccal epithelial cells in road construction workers.

    Science.gov (United States)

    Arul, P

    2017-01-01

    Asphalts are bitumens that consist of complex of hydrocarbon mixtures and it is used mainly in road construction and maintenance. This study was undertaken to evaluate the micronucleus (MN) assay of exfoliated buccal epithelial cells in road construction workers using liquid-based cytology (LBC) preparation. Three different stains (May-Grunwald Giemsa, hematoxylin and eosin, and Papanicolaou) were used to evaluate the frequency of MN in exfoliated buccal epithelial of 100 participants (fifty road construction workers and fifty administrative staff) using LBC preparation. Statistical analysis was performed with Student's t-test, and Proad construction exhibit a higher frequency of MN in exfoliated buccal epithelial cells and they are under the significant risk of cytogenetic damage. LBC preparation has potential application for the evaluation of frequency of MN. This technique may be advocated in those who are occupationally exposed to potentially carcinogenic agents in view of improvement in the smear quality and visualization of cell morphology.

  6. Chemical preparation of graphene-based nanomaterials and their applications in chemical and biological sensors.

    Science.gov (United States)

    Jiang, Hongji

    2011-09-05

    Graphene is a flat monolayer of carbon atoms packed tightly into a 2D honeycomb lattice that shows many intriguing properties meeting the key requirements for the implementation of highly excellent sensors, and all kinds of proof-of-concept sensors have been devised. To realize the potential sensor applications, the key is to synthesize graphene in a controlled way to achieve enhanced solution-processing capabilities, and at the same time to maintain or even improve the intrinsic properties of graphene. Several production techniques for graphene-based nanomaterials have been developed, ranging from the mechanical cleavage and chemical exfoliation of high-quality graphene to direct growth onto different substrates and the chemical routes using graphite oxide as a precusor to the newly developed bottom-up approach at the molecular level. The current review critically explores the recent progress on the chemical preparation of graphene-based nanomaterials and their applications in sensors. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Preparation of Modified Kaolin Filler with Cesium and Its Application in Security Paper

    Directory of Open Access Journals (Sweden)

    Houssni El-Saied

    2013-01-01

    Full Text Available In this study, cesium was added intentionally during paper manufacture for protecting the papers against forgery and counterfeiting by sorbing cesium ions (Cs+ on kaolin, used as special filler in papermaking. The sorption of cesium from aqueous solution by kaolin was studied as a function of pH, shaking time, cesium initial concentration, and mass of kaolin using batch technique. The results showed that a solution containing 10 mg/L Cs+ and 250 mg of kaolin at pH 6 can be used to modify the kaolin. Paper handsheets were prepared containing various percentages of the modified kaolin. The mechanical and optical properties of paper handsheets were studied. The prepared paper handsheets were irradiated by gamma irradiation using different doses. Fourier transform infrared (FTIR spectroscopy was used to study the effect of kaolin modification by cesium and gamma irradiation on paper handsheets properties. The results indicated that modified kaolin enhanced the mechanical and optical properties of paper handsheets. Electron spin resonance (ESR spectroscopy and laser-induced breakdown spectroscopy (LIBS were also used. They provided rapid, sensitive and nondestructive techniques in differentiating between different questioned documents. This study presents a new concept in manufacturing security papers and anticounterfeiting applications.

  8. Preparation and evaluation of cerium oxide-bovine hydroxyapatite composites for biomedical engineering applications.

    Science.gov (United States)

    Gunduz, O; Gode, C; Ahmad, Z; Gökçe, H; Yetmez, M; Kalkandelen, C; Sahin, Y M; Oktar, F N

    2014-07-01

    The fabrication and characterization of bovine hydroxyapatite (BHA) and cerium oxide (CeO2) composites are presented. CeO2 (at varying concentrations 1, 5 and 10wt%) were added to calcinated BHA powder. The resulting mixtures were shaped into green cylindrical samples by powder pressing (350MPa) followed by sintering in air (1000-1300°C for 4h). Density, Vickers microhardness (HV), compression strength, scanning electron microscopy (SEM) and X-ray diffraction (XRD) studies were performed on the products. The sintering behavior, microstructural characteristics and mechanical properties were evaluated. Differences in the sintering temperature (for 1wt% CeO2 composites) between 1200 and 1300°C, show a 3.3% increase in the microhardness (564 and 582.75HV, respectively). Composites prepared at 1300°C demonstrate the greatest compression strength with comparable results for 5 and 10wt% CeO2 content (106 and 107MPa) which are significantly better than those for 1wt% and those that do not include any CeO2 (90 and below 60MPa, respectively). The results obtained suggest optimal parameters to be used in preparation of BHA and CeO2 composites, while also highlighting the potential of such materials in several biomedical engineering applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Preparation and performance of lipophilic α-zirconium phosphate with high thermal stability and its application in thermal-plastic polymers

    Directory of Open Access Journals (Sweden)

    Ya Du

    2015-10-01

    Full Text Available To prepare lipophilic α-zirconium phosphate with high grafting ratio and thermal stability (OZrP-HT and explore its potential application in thermal-plastic polymers, a novel method was developed by surface lipophilicity enhancement strategy. The commercial α-zirconium phosphate (α-ZrP was pre-intercalated by n-propylamine (PA and grafted by silane coupling agents. Then the pre-intercalated PA was removed by heat-treatment, and the obtained OZrP-HT was utilized to fabricate the phosphorous-containing polyester (P-co-PET/OZrP-HT nanocomposites by melt-blending method. The prepared OZrP-HT and P-co-PET/OZrP-HT nanocomposites were characterized by Wide Angle X-ray Diffraction (WAXD, Fourier Transform Infrared Spectroscopy (FTIR, Thermogravimetric Analysis (TGA, Transmission Electron Microscope (TEM, etc. The results show that OZrP-HT with high grafting ratio (13.78 wt% and thermal stability (Tonset=368 °C was successfully prepared via this novel method and was uniformly intercalated by P-co-PET molecular chains. OZrP-HT had no significant effect on the fiber processability of P-co-PET polymer, and flame retardant properties of (P-co-PET/OZrP-HT nanocomposites were improved. This method may be suitable for organic modification of general inorganic layered compounds and could extend the potential applications in thermo-plastic polymers.

  10. Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications

    Science.gov (United States)

    Younes, Islem; Rinaudo, Marguerite

    2015-01-01

    This review describes the most common methods for recovery of chitin from marine organisms. In depth, both enzymatic and chemical treatments for the step of deproteinization are compared, as well as different conditions for demineralization. The conditions of chitosan preparation are also discussed, since they significantly impact the synthesis of chitosan with varying degree of acetylation (DA) and molecular weight (MW). In addition, the main characterization techniques applied for chitin and chitosan are recalled, pointing out the role of their solubility in relation with the chemical structure (mainly the acetyl group distribution along the backbone). Biological activities are also presented, such as: antibacterial, antifungal, antitumor and antioxidant. Interestingly, the relationship between chemical structure and biological activity is demonstrated for chitosan molecules with different DA and MW and homogeneous distribution of acetyl groups for the first time. In the end, several selected pharmaceutical and biomedical applications are presented, in which chitin and chitosan are recognized as new biomaterials taking advantage of their biocompatibility and biodegradability. PMID:25738328

  11. Progress involving new techniques for liposome preparation

    Directory of Open Access Journals (Sweden)

    Zhenjun Huang

    2014-08-01

    Full Text Available The article presents a review of new techniques being used for the preparation of liposomes. A total of 28 publications were examined. In addition to the theories, characteristics and problems associated with traditional methods, the advantages and drawbacks of the latest techniques were reviewed. In the light of developments in many relevant areas, a variety of new techniques are being used for liposome preparation and each of these new technique has particular advantages over conventional preparation methods. However, there are still some problems associated with these new techniques that could hinder their applications and further improvements are needed. Generally speaking, due to the introduction of these latest techniques, liposome preparation is now an improved procedure. These applications promote not only advances in liposome research but also the methods for their production on an industrial scale.

  12. Microporous Organic Polymers Based on Hyper-Crosslinked Coal Tar: Preparation and Application for Gas Adsorption.

    Science.gov (United States)

    Gao, Hui; Ding, Lei; Bai, Hua; Li, Lei

    2017-02-08

    Hyper-crosslinked polymers (HCPs) are promising materials for gas capture and storage, but high cost and complicated preparation limit their practical application. In this paper, a new type of HCPs (CTHPs) was synthesized through a one-step mild Friedel-Crafts reaction with low-cost coal tar as the starting material. Chloroform was utilized as both solvent and crosslinker to generate a three-dimensional crosslinked network with abundant micropores. The maximum BET surface area of the prepared CTHPs could reach up to 929 m 2  g -1 . Owing to the high affinity between the heteroatoms on the coal-tar building blocks and the CO 2 molecules, the adsorption capacity of CTHPs towards CO 2 reached up to 14.2 wt % (1.0 bar, 273 K) with a high selectivity (CO 2 /N 2 =32.3). Furthermore, the obtained CTHPs could adsorb 1.27 wt % H 2 at 1.0 bar and 77.3 K, and also showed capacity for the capture of high organic vapors at room temperature. In comparison with other reported porous organic polymers, CTHPs have the advantages of low-cost, easy preparation, and high gas-adsorption performance, making them suitable for mass production and practical use in the future. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. How a regulator is preparing for reviewing a license application file: The case of ASN

    International Nuclear Information System (INIS)

    Tanguy, Loic

    2014-01-01

    The French Nuclear Safety Authority (ASN) is an independent administrative authority. It prepares regulation pertaining to the management of radioactive waste, monitors the control of safety of basic nuclear installations that produce or treat waste or are involved in their disposal and performs inspections of waste producers (EDF, AREVA, CEA, hospitals, research centres, etc.) and Andra, the French National Radioactive Waste Management Agency. It regulates the overall system set up by Andra for accepting waste from producers and assesses waste management policy and the practices of radioactive waste producers. It reviews license applications and authorises commissioning of nuclear installations. In order to review technical documents, ASN benefits from the expertise of technical support organisations. The French Institute for Radiation Protection and Nuclear Safety (IRSN) is the main such organisation. ASN has been making efforts to diversify its experts for several years. In preparing its decisions, ASN also calls on the opinions and recommendations of seven Advisory Committees of Experts (GPE), with expert knowledge in the areas of waste, nuclear pressure equipment, medical exposure, non-medical radiation protection, reactors, transport, and laboratories and nuclear plants. ASN consults the GPEs in preparing its main decisions. In particular, they review the preliminary, provisional and final safety analysis reports for each nuclear installation. They can also be consulted about changes in regulations or doctrine. (authors)

  14. Preparation of electromechanically active silicone composites and some evaluations of their suitability for biomedical applications

    International Nuclear Information System (INIS)

    Iacob, Mihail; Bele, Adrian; Patras, Xenia; Pasca, Sorin; Butnaru, Maria; Alexandru, Mihaela; Ovezea, Dragos; Cazacu, Maria

    2014-01-01

    Some films based on electromechanically active polymer composites have been prepared. Polydimethylsiloxane-α,ω-diols (PDMSs) having different molecular masses (Mv = 60 700 and Mv = 44 200) were used as matrix in which two different active fillers were incorporated: titanium dioxide in situ generated from its titanium isopropoxide precursor and silica particles functionalized with polar aminopropyl groups on surface. A reference sample based on simple crosslinked PDMS was also prepared. The composites processed as films were investigated to evaluate their ability to act as efficient electromechanical actuators for potential biomedical application. Thus, the surface morphology of interest for electrodes compliance was analysed by atomic force microscopy. Mechanical and dielectric characteristics were evaluated by tensile tests and dielectric spectroscopy, respectively. Electromechanical actuation responses were measured by interferometry. The biocompatibility of the obtained materials has been verified through tests in vitro and, for valuable films, in vivo. The experimental, clinical and anatomopathological evaluation of the in vivo tested samples did not reveal significant pathological modifications. - Highlights: • Silicone composites differing by the filler and matrix characteristics were prepared. • Stress–strain curves were registered in normal and cyclic modes for composite films. • The dielectric permittivity, dielectric loss, and conductivity were determined. • Electromechanical response of the films was measured at an applied voltage. • Some biocompatibility tests, both in vitro and in vivo, were performed

  15. Preparation of electromechanically active silicone composites and some evaluations of their suitability for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Iacob, Mihail; Bele, Adrian [“Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi 700487 (Romania); Patras, Xenia [“Apollonia” University, 2 Muzicii Street, 700511 Iasi (Romania); Pasca, Sorin [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine Iaşi, Aleea Mihail Sadoveanu nr. 3, Iasi 700490 (Romania); Butnaru, Maria [“Gr. T. Popa” University of Medicine and Pharmacy, Faculty of Medical Bioengineering, 16 University Street, 700115 Iasi (Romania); Alexandru, Mihaela [“Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi 700487 (Romania); Ovezea, Dragos [National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, Bucharest 030138 (Romania); Cazacu, Maria, E-mail: mcazacu@icmpp.ro [“Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi 700487 (Romania)

    2014-10-01

    Some films based on electromechanically active polymer composites have been prepared. Polydimethylsiloxane-α,ω-diols (PDMSs) having different molecular masses (Mv = 60 700 and Mv = 44 200) were used as matrix in which two different active fillers were incorporated: titanium dioxide in situ generated from its titanium isopropoxide precursor and silica particles functionalized with polar aminopropyl groups on surface. A reference sample based on simple crosslinked PDMS was also prepared. The composites processed as films were investigated to evaluate their ability to act as efficient electromechanical actuators for potential biomedical application. Thus, the surface morphology of interest for electrodes compliance was analysed by atomic force microscopy. Mechanical and dielectric characteristics were evaluated by tensile tests and dielectric spectroscopy, respectively. Electromechanical actuation responses were measured by interferometry. The biocompatibility of the obtained materials has been verified through tests in vitro and, for valuable films, in vivo. The experimental, clinical and anatomopathological evaluation of the in vivo tested samples did not reveal significant pathological modifications. - Highlights: • Silicone composites differing by the filler and matrix characteristics were prepared. • Stress–strain curves were registered in normal and cyclic modes for composite films. • The dielectric permittivity, dielectric loss, and conductivity were determined. • Electromechanical response of the films was measured at an applied voltage. • Some biocompatibility tests, both in vitro and in vivo, were performed.

  16. The Preparation of Carbon Nanotube/MnO2 Composite Fiber and Its Application to Flexible Micro-Supercapacitor

    Directory of Open Access Journals (Sweden)

    Li Li

    2013-01-01

    Full Text Available In recent years, flexible electronic devices pursued for potential applications. The design and the fabrication of a novel flexible nanoarchitecture by coating electrical conductive MWCNT fiber with ultrathin films of MnO2 to achieve high specific capacitance, for micro-supercapacitors electrode applications, are demonstrated here. The MWCNT/MnO2 composite fiber electrode was prepared by the electrochemical deposition which was carried out through using two different methods: cyclic voltammetry and potentiostatic methods. The cyclic voltammetry method can get “crumpled paper ball” morphology MnO2 which has bigger specific capacitances than that achieved by potentiostatic method. The flexible micro-supercapacitor was fabricated by twisting two aligned MWCNT fibers and showed an area specific capacitance of 2.43 mF/cm2. The flexible micro-supercapacitors also enable promising applications in various fields.

  17. Improving the quality of colonoscopy bowel preparation using a smart phone application: a randomized trial.

    Science.gov (United States)

    Lorenzo-Zúñiga, Vicente; Moreno de Vega, Vicente; Marín, Ingrid; Barberá, Marta; Boix, Jaume

    2015-07-01

    Getting ready for a colonoscopy is difficult and involves many steps. Information given to patients is very important for adherence to treatment. We created a novel smart phone application (SPA) aimed to increase bowel preparation quality and patient satisfaction. We carried out a prospective, endoscopist-blinded, randomized, controlled trial. We enrolled 260 outpatient (58% female, age range 21-75 years) owners of a smartphone. Patients were allocated to two different protocols: instructions provided by SPA (SPA group; n = 108) or written instructions with visual aids (control group; n = 152). All procedures were carried out in the afternoon and patients received the same purgative regimen (2 L polyethylene glycol (PEG) solution plus ascorbic acid), in a full-dose same-day regimen. The study was designed to detect an improvement in quality of bowel preparation using the Harefield Cleansing Scale (HCS) scale. Effect of protocol on patient satisfaction was assessed with a specific questionnaire at the time of colonoscopy. Proportion of patients who obtained successful bowel preparation for colonoscopy (HCS A or B) was significantly higher in the SPA group than in the control group (100% vs 96.1%, respectively; P = 0.037). Mean global HCS scores were similar in both groups. Patient-reported tolerability and overall experience with the prescribed bowel preparation were significantly higher for the SPA group than for the control group. Successful cleansing and patient acceptability with the use of SPA were superior to written instructions in outpatients submitted for colonoscopy using 2 L PEG solution plus ascorbic acid. © 2015 The Authors. Digestive Endoscopy © 2015 Japan Gastroenterological Endoscopy Society.

  18. Application of radiochemical methods for development of new biological preparation designed for soil bioremediation

    International Nuclear Information System (INIS)

    Kim, A.A.; Djuraeva, G.T.; Djumaniyazova, G.I.; Yadgarov, Kh.T.

    2006-01-01

    developed complex of radiochemical methods allowed to determine the PCB-destructive activity of bacteria at initial screening, selection and investigation of strains of soil bacteria. Stability of the positive influence of biological preparations is defined by behaviour of introduced population in soil and by status of soil microbial community. We found the good survival rate of bacteria of genus Bacillus (up to 10 8 -10 9 cells / g of soil) from biological preparation which has been introduced in contaminated by HCCH and PCBs soil in dynamics during one year. Besides the introduction of association of active bacteria strains-destructors of organochlorine compounds in contaminated soil makes the positive effect on development of soil microflora - stimulates the development of the useful (ammonifiers, oligonutophiles, nitrogen fixers and actinomyces) and suppresses development of a harmful microflora (micromycetes). We found that microbial processes in the soil contaminated by organochlorine compounds proceeded more intensively at addition of biofertilizer. Hence, biofertilizer appeared suitable organic substrate for stimulation of introduced and natural microflora of contaminated soil. Thus artificial enrichment (introduction) of contaminated soils by the microbial preparation designed on the basis of associations of bacteria - destructors of pesticides can be perspective and economic way of elimination of residual amounts of organochlorine pesticides in soil. Biofertilizer can be recommended as additional organic substrate for stimulation of introduced and natural microflora of contaminated soils. The combined application of bacterial preparation and biofertilizer can be recommended as most efficient way for biodegradation of organochlorine compounds. (author)

  19. Research Progress on Preparation for Biomass-based SiC Ceramic

    Directory of Open Access Journals (Sweden)

    CUI He-shuai

    2017-08-01

    Full Text Available Silicon carbide (SiC ceramics prepared by the conventional process has excellent properties and wide application prospects, but the increased cost of high-temperature preparation process restricts its further development. In contrast, the abundant porous structure of biomass makes itself to be ideal replacement of SiC ceramic prepared at low temperature. This paper reviewed the structure characteristics, preparation methods, pyrolysis mechanism and influence parameters of biomass-based SiC ceramic, and eventually explored the current problems and development trends of the pretreatment of carbon source and silicon source, the pyrolysis process and the application research on the preparation for biomass-based SiC ceramic.

  20. Carbon-Nickel oxide nanocomposites: Preparation and charecterisation

    CSIR Research Space (South Africa)

    Tile, N

    2011-07-01

    Full Text Available Nanocomposite materials have wide range of applications in solar energy conversion. In this work, C-NiO nanocomposite coatings are prepared using sol-gel synthesis and deposited on aluminium substrates using a spin coater. The coatings are prepared...

  1. 131I-m IBG preparation and clinical applications

    International Nuclear Information System (INIS)

    Yassine, T.; Bakeir, M. A.; Al-Shnan, S.; Al-Asad, M.

    2001-12-01

    The factors affecting the preparation of 131 I-mIBG were studied and the optimal labelling and preparation conditions were determined in a manner that the requirements of GRP and GMP are satisfied. The m-IBG was labeled by isotopic exchange method where in situ produced Cu (II) was used as a catalyst. The Cu (II) was in situ produced by the effect of thiosulfate on Cu(II) ions in the presence of acetic acid. The optimal conditions were determined as: (The ratio of acetic acid to the iodide-131 solution is 0.5-1.5, the reaction temperature is (160 Centigrade), the reaction period is 60 minutes, and the quantity of m-IBG must be more than 1mg). At these conditions, high labelling yield of 98% was obtained. Further purification lead to an increase in the RCP to more than 99%. All preparations produced sterile and Pyrogen free solutions. The biodistribution studies in rats showed random distribution, which were slightly higher than that were shown in literature. These differences were attributed to the absence of stable iodine saturation of the rats prior to the injection of 131 I-mIBG in this study. Clinical studies using our products showed high localization in the tumors in case of neuroblastoma patients and in adrenal gland in case of pheochromocytoma patients. (author)

  2. The use of Brazilian vegetable oils in nanoemulsions: an update on preparation and biological applications

    Directory of Open Access Journals (Sweden)

    Lisiane Bajerski

    Full Text Available ABSTRACT Vegetable oils present important pharmacological properties, which gained ground in the pharmaceutical field. Its encapsulation in nanoemulsions is considered a promising strategy to facilitate the applicability of these natural compounds and to potentiate the actions. These formulations offer several advantages for topical and systemic delivery of cosmetic and pharmaceutical agents including controlled droplet size, protection of the vegetable oil to photo, thermal and volatilization instability and ability to dissolve and stabilize lipophilic drugs. For these reasons, the aim of this review is to report on some characteristics, preparation methods, applications and especially analyze recent research available in the literature concerning the use of vegetable oils with therapeutic characteristics as lipid core in nanoemulsions, specially from Brazilian flora, such as babassu (Orbignya oleifera, aroeira (Schinus molle L., andiroba (Carapa guaianiensis, casca-de-anta (Drimys brasiliensis Miers, sucupira (Pterodon emarginatus Vogel and carqueja doce (Stenachaenium megapotamicum oils.

  3. Preparation of electromechanically active silicone composites and some evaluations of their suitability for biomedical applications.

    Science.gov (United States)

    Iacob, Mihail; Bele, Adrian; Patras, Xenia; Pasca, Sorin; Butnaru, Maria; Alexandru, Mihaela; Ovezea, Dragos; Cazacu, Maria

    2014-10-01

    Some films based on electromechanically active polymer composites have been prepared. Polydimethylsiloxane-α,ω-diols (PDMSs) having different molecular masses (Mv=60 700 and Mv=44 200) were used as matrix in which two different active fillers were incorporated: titanium dioxide in situ generated from its titanium isopropoxide precursor and silica particles functionalized with polar aminopropyl groups on surface. A reference sample based on simple crosslinked PDMS was also prepared. The composites processed as films were investigated to evaluate their ability to act as efficient electromechanical actuators for potential biomedical application. Thus, the surface morphology of interest for electrodes compliance was analysed by atomic force microscopy. Mechanical and dielectric characteristics were evaluated by tensile tests and dielectric spectroscopy, respectively. Electromechanical actuation responses were measured by interferometry. The biocompatibility of the obtained materials has been verified through tests in vitro and, for valuable films, in vivo. The experimental, clinical and anatomopathological evaluation of the in vivo tested samples did not reveal significant pathological modifications. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Application of colloidal chemistry in aqueous phase to the preparation of supported metallic catalysts: particles size and aggregation control; Application de la chimie colloidale en phase aqueuse a la preparation de catalyseurs metalliques supportes: controle de la taille et de l`etat d`agregation des particules

    Energy Technology Data Exchange (ETDEWEB)

    Pages, T.

    1998-09-16

    This work is an application of colloidal chemistry in aqueous phase on supported metal catalyst preparation. The objective is the control of particle size and aggregation. The preparation of the materials was achieved in two steps: - the synthesis of PdO hydrosols was obtained by two ways: neutralisation of the solution containing metallic salt by adding alkaline solution or by thermo-hydrolysis; the sols were then deposited on carriers (Al{sub 2}O{sub 3}, SIO{sub 2}). The use of partial charge model allowed us to determine the complexes that were able to generate PdO. The preparation of PdO from Pd(H{sub 2}O){sub 4}{sup 2+} was studied and a mechanism of oxide formation was elaborated. The neutralisation of Pd(H{sub 2}O){sub 4}{sup 2+} obtained by adding alkaline solution led to particles with an average size of 1.8 nm and a narrow particle size distribution. Only the thermo-hydrolysis of Pd(H{sub 2}O){sub 4}{sup 2+} led to particles which size is higher than 3.0 nm. In the last case, particle size is controlled by the precursor concentration (Pd(H{sub 2}O){sub 2}(OH){sub 2}) generated in the medium. We have demonstrated that particle aggregation in the sol depends on the Ph and the way of preparation. It can be controlled by adding complexing anions (Cl{sup -}, NO{sub 2}{sup -}). Concerning the deposition of sols on carriers, it led to isolated or aggregated particles according to experimental conditions. Particle size was not modified during the deposition. Moreover, in our experimental conditions, reduction of particles did not modify particle size and aggregation. An application of this original way of preparation on catalysis allowed us to demonstrate the interest of controlling particle size and aggregation. (author) 186 refs.

  5. Antibody derivatization and conjugation strategies: application in preparation of stealth immunoliposome to target chemotherapeutics to tumor.

    Science.gov (United States)

    Manjappa, Arehalli S; Chaudhari, Kiran R; Venkataraju, Makam P; Dantuluri, Prudhviraju; Nanda, Biswarup; Sidda, Chennakesavulu; Sawant, Krutika K; Murthy, Rayasa S Ramachandra

    2011-02-28

    A great deal of effort has been made over the years to develop liposomes that have targeting vectors (oligosaccharides, peptides, proteins and vitamins) attached to the bilayer surface. Most studies have focused on antibody conjugates since procedures for producing highly specific monoclonal antibodies are well established. Antibody conjugated liposomes have recently attracted a great deal of interest, principally because of their potential use as targeted drug delivery systems and in diagnostic applications. A number of methods have been reported for coupling antibodies to the surface of stealth liposomes. The objective of this review is to enumerate various strategies which are employed in the modification and conjugation of antibodies to the surface of stealth liposomes. This review also describes various derivatization techniques of lipids prior and after their use in the preparation of liposomes. The use of single chain variable fragments and affibodies as targeting ligands in the preparation of immunoliposomes is also discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. A simple method for preparation of macroporous polydimethylsiloxane membrane for microfluidic chip-based isoelectric focusing applications

    Energy Technology Data Exchange (ETDEWEB)

    Ou Junjie [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1 (Canada); Department of Chemistry, University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1 (Canada); Ren, Carolyn L., E-mail: c3ren@mecheng1.uwaterloo.ca [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1 (Canada); Pawliszyn, Janusz [Department of Chemistry, University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1 (Canada)

    2010-03-10

    A new, simple method was reported to prepare PDMS membranes with micrometer size pores for microfluidic chip applications. The pores were formed by adding polystyrene and toluene into PDMS prepolymer solution prior to spin-coating and curing. The resulting PDMS membrane has a thickness of around 10 {mu}m and macropores with a diameter ranging from 1 to 2 {mu}m measured using scanning electron microscope (SEM) imaging. This PDMS membrane was validated by integrating it with PDMS microfluidic chips for protein separation using isoelectric focusing mechanism coupled with whole channel imaging detection (IEF-WCID). It has been shown that five standard pI markers and a mixture of two proteins, myoglobin and {beta}-lactoglobulin, can be separated using these chips. The results indicated that this macroporous PDMS membrane can replace the dialysis membrane in PDMS chips for the IEF-WCID technique. The preparation method of macroporous PDMS membrane may be potentially applied in other fields of microfluidic chips.

  7. Preparation of Chitin-PLA laminated composite for implantable application

    Directory of Open Access Journals (Sweden)

    Romana Nasrin

    2017-12-01

    Full Text Available The present study explores the possibilities of using locally available inexpensive waste prawn shell derived chitin reinforced and bioabsorbable polylactic acid (PLA laminated composites to develop new materials with excellent mechanical and thermal properties for implantable application such as in bone or dental implant. Chitin at different concentration (1–20% of PLA reinforced PLA films (CTP were fabricated by solvent casting process and laminated chitin-PLA composites (LCTP were prepared by laminating PLA film (obtained by hot press method with CTP also by hot press method at 160 °C. The effect of variation of chitin concentration on the resulting laminated composite's behavior was investigated. The detailed physico-mechanical, surface morphology and thermal were assessed with different characterization technique such as FT-IR, XRD, SEM and TGA. The FTIR spectra showed the characteristic peaks for chitin and PLA in the composites. SEM images showed an excellent dispersion of chitin in the films and composites. Thermogravimetric analysis (TGA showed that the complete degradation of chitin, PLA film, 5% chitin reinforced PLA film (CTP2 and LCTP are 98%, 95%, 87% and 98% respectively at temperature of 500 °C. The tensile strength of the LCTP was found 25.09 MPa which is significantly higher than pure PLA film (18.55 MPa and CTP2 film (8.83 MPa. After lamination of pure PLA and CTP2 film, the composite (LCTP yielded 0.265–1.061% water absorption from 30 min to 24 h immerse in water that is much lower than PLA and CTP. The increased mechanical properties of the laminated films with the increase of chitin content indicated good dispersion of chitin into PLA and strong interfacial actions between the polymer and chitin. The improvement of mechanical properties and the results of antimicrobial and cytotoxicity of the composites also evaluated and revealed the composite would be a suitable candidate for implant application in biomedical

  8. Preparation of Chitin-PLA laminated composite for implantable application.

    Science.gov (United States)

    Nasrin, Romana; Biswas, Shanta; Rashid, Taslim Ur; Afrin, Sanjida; Jahan, Rumana Akhter; Haque, Papia; Rahman, Mohammed Mizanur

    2017-12-01

    The present study explores the possibilities of using locally available inexpensive waste prawn shell derived chitin reinforced and bioabsorbable polylactic acid (PLA) laminated composites to develop new materials with excellent mechanical and thermal properties for implantable application such as in bone or dental implant. Chitin at different concentration (1-20% of PLA) reinforced PLA films (CTP) were fabricated by solvent casting process and laminated chitin-PLA composites (LCTP) were prepared by laminating PLA film (obtained by hot press method) with CTP also by hot press method at 160 °C. The effect of variation of chitin concentration on the resulting laminated composite's behavior was investigated. The detailed physico-mechanical, surface morphology and thermal were assessed with different characterization technique such as FT-IR, XRD, SEM and TGA. The FTIR spectra showed the characteristic peaks for chitin and PLA in the composites. SEM images showed an excellent dispersion of chitin in the films and composites. Thermogravimetric analysis (TGA) showed that the complete degradation of chitin, PLA film, 5% chitin reinforced PLA film (CTP2) and LCTP are 98%, 95%, 87% and 98% respectively at temperature of 500 °C. The tensile strength of the LCTP was found 25.09 MPa which is significantly higher than pure PLA film (18.55 MPa) and CTP2 film (8.83 MPa). After lamination of pure PLA and CTP2 film, the composite (LCTP) yielded 0.265-1.061% water absorption from 30 min to 24 h immerse in water that is much lower than PLA and CTP. The increased mechanical properties of the laminated films with the increase of chitin content indicated good dispersion of chitin into PLA and strong interfacial actions between the polymer and chitin. The improvement of mechanical properties and the results of antimicrobial and cytotoxicity of the composites also evaluated and revealed the composite would be a suitable candidate for implant application in biomedical sector.

  9. Preparation and characterization of chondroitin‐sulfate‐A‐coated magnetite nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Tóth, Ildikó Y.; Illés, Erzsébet; Szekeres, Márta; Tombácz, Etelka

    2015-01-01

    Polysaccharides are promising candidates for manufacturing biocompatible core–shell nanoparticles with potential in vivo use. Superparamagnetic magnetite nanoparticles (MNPs) have prospective application in both diagnosis and therapy, and so developing a novel polysaccharide shell on MNP core is of great challenge. MNPs were prepared by co-precipitation, then the surface of purified MNPs was coated with chondroitin-sulfate-A (CSA) to obtain core–shell structured magnetite nanoparticles (CSA@MNP). The effect of the added amount of CSA on the surface charging and the aggregation state of MNPs at various pHs and 10 mM NaCl was measured by electrophoresis and dynamic light scattering. The amphoteric behavior of MNPs was fundamentally modified by adsorption of CSA polyanions. A very low CSA-loading induces the aggregation of MNPs, while four times more stabilizes the dispersions over the whole pH-range studied. The coagulation kinetics experiments measured at pH=6.3±0.3 showed that salt tolerance of CSA@MNPs rises up to ~150 mM NaCl. - Highlights: • Novel CSA-coated core–shell magnetite nanoparticles were prepared successfully. • The aggregation range of MNPs was shifted gradually to the lower pHs by CSA-loading. • CSA stabilizes electrosterically the MNPs over wide pH-range relevant to biosystems. • The salt tolerance of CSA@MNP enables them to use under physiological condition

  10. Preparation and characterization of chondroitin‐sulfate‐A‐coated magnetite nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Tóth, Ildikó Y., E-mail: Ildiko.Toth@chem.u-szeged.hu; Illés, Erzsébet; Szekeres, Márta; Tombácz, Etelka, E-mail: tombacz@chem.u-szeged.hu

    2015-04-15

    Polysaccharides are promising candidates for manufacturing biocompatible core–shell nanoparticles with potential in vivo use. Superparamagnetic magnetite nanoparticles (MNPs) have prospective application in both diagnosis and therapy, and so developing a novel polysaccharide shell on MNP core is of great challenge. MNPs were prepared by co-precipitation, then the surface of purified MNPs was coated with chondroitin-sulfate-A (CSA) to obtain core–shell structured magnetite nanoparticles (CSA@MNP). The effect of the added amount of CSA on the surface charging and the aggregation state of MNPs at various pHs and 10 mM NaCl was measured by electrophoresis and dynamic light scattering. The amphoteric behavior of MNPs was fundamentally modified by adsorption of CSA polyanions. A very low CSA-loading induces the aggregation of MNPs, while four times more stabilizes the dispersions over the whole pH-range studied. The coagulation kinetics experiments measured at pH=6.3±0.3 showed that salt tolerance of CSA@MNPs rises up to ~150 mM NaCl. - Highlights: • Novel CSA-coated core–shell magnetite nanoparticles were prepared successfully. • The aggregation range of MNPs was shifted gradually to the lower pHs by CSA-loading. • CSA stabilizes electrosterically the MNPs over wide pH-range relevant to biosystems. • The salt tolerance of CSA@MNP enables them to use under physiological condition.

  11. Quantitative sample preparation of some heavy elements

    International Nuclear Information System (INIS)

    Jaffey, A.H.

    1977-01-01

    A discussion is given of some techniques that have been useful in quantitatively preparing and analyzing samples used in the half-life determinations of some plutonium and uranium isotopes. Application of these methods to the preparation of uranium and plutonium samples used in neutron experiments is discussed

  12. Organic surfaces exposed by self-assembled organothiol monolayers: Preparation, characterization, and application

    Science.gov (United States)

    Kind, Martin; Wöll, Christof

    2009-07-01

    Organic surfaces play a major role in materials science. Most surfaces that we touch in our daily lives are made from organic materials, e.g., vegetables, fruit, skin, wood, and textiles made from natural fibers. In the context of biology, organic surfaces play a prominent role too, proteins docking onto cell surfaces are a good example. To better understand the characteristics of organic surfaces, including physico-chemical properties like wettability or chemical reactivities and physical properties like friction and lubrication, a structurally well-defined model system that can be investigated with numerous analytical techniques is desirable. In the last two decades, one particular system, self-assembled monolayers or SAMs, have demonstrated their suitability for this purpose. In particular, organothiols consisting of an organic molecule with an attached SH-group are well suited to fabricating structurally well-defined adlayers of monolayer thickness on gold substrates using a simple preparation procedure. These ultrathin monolayers expose an organic surface with properties that can be tailored by varying the type of organothiol employed. After a short introduction into the preparation of SAMs, this article provides an overview of the possibilities and limitations of organic surfaces exposed by Au-thiolate SAMs. Applications are as diverse as the metallization of organic surfaces, a fundamental problem in materials science, and the fabrication of surfaces that resist the adsorption of proteins. In addition to a number of different case studies, we will also discuss the most powerful analytical techniques needed to characterize these important model systems.

  13. Sol-gel preparation of uranium oxide spheres

    International Nuclear Information System (INIS)

    Dolezal, J.; Urbanek, V.

    1978-01-01

    Information is presented on problems of preparing nuclear fuel by the sol-gel method. Basic data on different process types are given. A more detailed description of the method of preparation of spherical particles of uranium oxide gel developed and used at the Nuclear Research Institute at Rez is given. Advantages and disadvantages of sol-gel materials are discussed in comparison with fuel materials prepared by classical precipitation methods. The feasibility of the sol-gel methods for preparing other materials is shortly mentioned and their application outlined. (author)

  14. Preparation of alumina microspheres. Its application as in inorganic exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Santos, W.R. dos; Abrao, A [Instituto de Pesquisas Energeticas e Nucleares, Sao Paulo (Brazil). Centro de Engenharia Quimica

    1980-01-01

    Inorganic exchangers are widely used for adsorption and column partition chromatography. The main difficulty of using commercial alumina (in powder) for column chromatography is related to its packing, and the operations through the column become diffcult and time-consuming; also it turns to be virtually impossible to use large dimension columns. In order to eliminate these problems, a process for the preparation of alumina microspheres was developed as an adaptation of a similar process used to prepare nuclear fuel microspheres (UO/sub 2/, ThO/sub 2/). The flowsheet of this process is presented together with the analytical results of sphericity after calcination, granulometry, density and characterization by X-ray diffractometry. Solubility tests showed that the so-prepared microspheres are well resistant to strong acids and bases; retention tests showed their efficiency, mainly to copper.

  15. Ionic liquids for nano- and microstructures preparation. Part 2: Application in synthesis.

    Science.gov (United States)

    Łuczak, Justyna; Paszkiewicz, Marta; Krukowska, Anna; Malankowska, Anna; Zaleska-Medynska, Adriana

    2016-01-01

    Ionic liquids (ILs) are widely applied to prepare metal nanoparticles and 3D semiconductor microparticles. Generally, they serve as a structuring agent or reaction medium (solvent), however it was also demonstrated that ILs can play a role of a co-solvent, metal precursor, reducing as well as surface modifying agent. The crucial role and possible types of interactions between ILs and growing particles have been presented in the Part 1 of this review paper. Part 2 of the paper gives a comprehensive overview of recent experimental studies dealing with application of ionic liquids for preparation of metal and semiconductor based nano- and microparticles. A wide spectrum of preparation routes using ionic liquids is presented, including precipitation, sol-gel technique, hydrothermal method, nanocasting and ray-mediated methods (microwave, ultrasound, UV-radiation and γ-radiation). It was found that ionic liquids formed of a 1-butyl-3-methylimidazolium [BMIM] combined with tetrafluoroborate [BF4], hexafluorophosphate [PF6], and bis(trifluoromethanesulfonyl)imide [Tf2N] are the most often used ILs in the synthesis of nano- and microparticles, due to their low melting temperature, low viscosity and good transportation properties. Nevertheless, examples of other IL classes with intrinsic nanoparticles stabilizing abilities such as phosphonium and ammonium derivatives are also presented. Experimental data revealed that structure of ILs (both anion and cation type) affects the size and shape of formed metal particles, and in some cases may even determine possibility of particles formation. The nature of the metal precursor determines its affinity to polar or nonpolar domains of ionic liquid, and therefore, the size of the nanoparticles depends on the size of these regions. Ability of ionic liquids to form varied extended interactions with particle precursor as well as other compounds presented in the reaction media (water, organic solvents etc.) provides nano- and

  16. Versatility of Evaporation-Induced Self-Assembly (EISA Method for Preparation of Mesoporous TiO2 for Energy and Environmental Applications

    Directory of Open Access Journals (Sweden)

    Luther Mahoney

    2014-03-01

    Full Text Available Evaporation-Induced Self-Assembly (EISA method for the preparation of mesoporous titanium dioxide materials is reviewed. The versatility of EISA method for the rapid and facile synthesis of TiO2 thin films and powders is highlighted. Non-ionic surfactants such as Pluronic P123, F127 and cationic surfactants such as cetyltrimethylammonium bromide have been extensively employed for the preparation of mesoporous TiO2. In particular, EISA method allows for fabrication of highly uniform, robust, crack-free films with controllable thickness. Eleven characterization techniques for elucidating the structure of the EISA prepared mesoporous TiO2 are discussed in this paper. These many characterization methods provide a holistic picture of the structure of mesoporous TiO2. Mesoporous titanium dioxide materials have been employed in several applications that include Dye Sensitized Solar Cells (DSSCs, photocatalytic degradation of organics and splitting of water, and batteries.

  17. Preparation and application of radioactive soil samples for intercomparison

    International Nuclear Information System (INIS)

    Gao Zequan; Li Zhou; Li Pengxiang; Wang Ruijun; Ren Xiaona

    2014-01-01

    This article summarized the preparation process and intercomparison results of the simulated environmental radioactive soil samples. The components of the matrix were: SiO 2 , Al 2 O 3 , Fe 2 O 3 , MgO, CaO, NaCl, KCl and TiO 2 . All of the components were milled, oven-dried, sieved and then blended together. The homogeneity test was according to GB 15000. 5-1994, and no significant differences were observed. The 3 H analysis soils were spiked natural soils with the moisture content of 15%. Eight laboratories attended this intercomparison. The results proves that the preparation of the simulated soils were suitable for the inter-laboratories comparison. (authors)

  18. Spectrally selective paint coatings. Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Crnjak Orel, Z.C.; Klanjsek Gunde, M. [National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia)

    2001-06-01

    Preparation and characterization of spectrally selective paint coating for photothermal solar energy conversion are discussed. The applied methods for preparation of paints with described measurements and calculations of black-pigmented coatings were reviewed. The article represents not only possible future applications but also past and current applications of spectrally selective paint coating which are used all over the world since the 1980s. Spectrally selective paint coatings based on combinations of two types of resins, various types of pigments and three types of silica, were prepared. The influence of pigment type and pigment volume concentration (PVC) was studied by applying the Kubelka-Munk (K-M) theory. The relation between the degrees of dispersion and distribution of pigment particles across the paint layer is discussed in terms of K-M coefficients.

  19. Preparation and comparative characterization of keratin–chitosan and keratin–gelatin composite scaffolds for tissue engineering applications

    International Nuclear Information System (INIS)

    Balaji, S.; Kumar, Ramadhar; Sripriya, R.; Kakkar, Prachi; Ramesh, D. Vijaya; Reddy, P. Neela Kanta; Sehgal, P.K.

    2012-01-01

    We report fabrication of three dimensional scaffolds with well interconnected matrix of high porosity using keratin, chitosan and gelatin for tissue engineering and other biomedical applications. Scaffolds were fabricated using porous Keratin–Gelatin (KG), Keratin–Chitosan (KC) composites. The morphology of both KG and KC was investigated using SEM. The scaffolds showed high porosity with interconnected pores in the range of 20–100 μm. They were further tested by FTIR, DSC, CD, tensile strength measurement, water uptake and swelling behavior. In vitro cell adhesion and cell proliferation tests were carried out to study the biocompatibility behavior and their application as an artificial skin substitute. Both KG and KC composite scaffolds showed similar properties and patterns for cell proliferation. Due to rapid degradation of gelatin in KG, we found that it has limited application as compared to KC scaffold. We conclude that KC scaffold owing to its slow degradation and antibacterial properties would be a better substrate for tissue engineering and other biomedical application. Highlights: ► Extraction of reduced keratin from horn meal. ► Preparation of keratin–gelatin and keratin–chitosan composite scaffolds. ► Characterizations of the composite scaffolds. ► Comparative cytotoxicity analysis on NIH3T3 fibroblasts.

  20. Co-surfactant free microemulsions: Preparation, characterization and stability evaluation for food application.

    Science.gov (United States)

    Xu, Zhenbo; Jin, Jun; Zheng, Minying; Zheng, Yan; Xu, Xuebing; Liu, Yuanfa; Wang, Xingguo

    2016-08-01

    The aim of the study is to prepare co-surfactant free microalgal oil microemulsions and investigate their properties as well as processing stability for food application. The physicochemical characteristics of the microemulsions were investigated by dynamic light scattering (DLS), turbidity, conductivity, rheological measurements and transmission electron microscopy (TEM). Within the microemulsion region, when the surfactant to oil ratio was 9:1, the hydrodynamic diameter (Dh) was 18nm; when the surfactant to oil ratio was 7.5:1, the hydrodynamic diameter (Dh) was 50nm. Rheological studies proved that the microemulsion system was a pseudoplastic fluid, which followed a shear thinning flow behavior. The loss rate of docosahexaenoic acid (DHA) was less than 5%wt after ultra high temperature (UHT) and high temperature short time (HTST) thermal treatments. A high content of CaCl2 (10.0%wt) could not destroy the microemulsion system, and it could be stored at 4°C for two years. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. 46 CFR Sec. 3 - Preparation of invoices.

    Science.gov (United States)

    2010-10-01

    ... NSA ORDER NO. 47 Sec. 3 Preparation of invoices. (a) Pursuant to Article 4 of the Service Agreement... under the applicable provisions of NSA Order No. 47. (1) Invoices shall be prepared so as to show... provisions of NSA Order No. 47 due the undersigned General Agent for the month of _____ under Service...

  2. Smart magnetic nanovesicles for theranostic application: Preparation and characterization

    International Nuclear Information System (INIS)

    Marianecci, C.; Rinaldi, F.; Carafa, M.; Ingallina, C.; Passeri, D.; Sorbo, A.

    2013-01-01

    Nano medicines are submicrometer-sized carrier materials designed to improve the biodistribution of systemically administered (chemo)therapeutic agents. By delivering pharmacologically active agents more effectively and more selectively to the pathological site nano medicines aim to improve the balance between the efficacy and the toxicity of systemic (chemo)therapeutic administrations. Nano medicine formulations have also been used for imaging applications and, in recent years, for theranostic approaches, that is, for systems and strategies in which disease diagnosis and therapy are combined. On the one hand, 'classical' drug delivery systems are being co-loaded with both drugs and contrast agents. Actually, nanomaterials with an intrinsic ability to be used for imaging purposes, such as iron-oxide–based magnetic nanoparticles (MNP s ), are increasingly being loaded with drugs or alone for combining disease diagnosis and therapy. In this study, non-ionic surfactant vesicles loaded with lipophilic and hydrophilic MNP s have been prepared. Vesicles have been characterized in terms of dimensions, ζ-potential, time stability, bilayer characteristics and overall iron content. The encouraging obtained results confirm that Tween 20 and Span 20 vesicles could be promising carriers for the delivery of hydrophilic and lipophilic MNPs, respectively, thereby prompting various opportunities for the development of suitable theranostic strategies. The analyzed formulations confirm the importance of surfactant chemical-physical characteristics in entrapping the MNPs of different polarity, highlighting the high versatility of niosomal bilayer and structure; property that make them so appealing among drug delivery nanocarriers.

  3. Preparation and characterization of new zeolite membranes. Application to gaseous separation; Preparation et caracterisation de nouvelles membranes de zeolithe application a la separation gazeuse

    Energy Technology Data Exchange (ETDEWEB)

    Anstett, M.

    1996-11-25

    Zeolites are interesting for the preparation of inorganic membranes which could be used for the continuous separation of gas and liquids by gas permeation and pervaporation. Zeolites membranes are obtained by hydrothermal synthesis and are characterized by XRD, SEM, TDA, IR, chemical analysis, EPMA, NMR, MAS NMR and gas permeation. After some tests of preparation of zeolite CHA and MFI self supporting membranes, the work is turned towards the preparation of zeolite MFI membranes supported by porous disks or {alpha} alumina, glass and tubes of carbon covered with a thin layer or zirconium dioxide. It is shown that the characteristics of the support (reactivity, pores dimensions, ...) strongly influence the quality of the prepared membrane. Two originals preparation processes are finalized. For the alumina disks, a gel precursor of zeolite is firs formed at the surface of the support by immersing successively that support in two non miscible liquids before the crystallisation. The gel is then converted into the zeolite by contact with water vapor. The zeolite layer obtained is localized at the surface of the support and present not only at the outside but also at the inside of the support. The characteristics of the zeolite layer can be controlled and the method can be adapted to various porous supports. The membrane obtained is interesting for hydrocarbons separations, for example the separation of methane and isobutane. In the case of Vycor glass disks, the reactivity of the support is first enhanced by contact with saturated water vapour. The temperature of the synthesis is then chosen relatively low in order to limit the attack of the support. With that method, a basic solution can be used without degradation of the support.The basicity leads to the formation of little crystals whose assembling is compact and homogeneous. The membrane obtained is interesting for example for the separation of normal butane and isobutane. (author) 71 refs.

  4. Preparing Methods and Its Influencing Factors about Nanoparticles Based on Dendritic Polymer

    OpenAIRE

    Zhang Jianwei; Li Jeff

    2017-01-01

    Based on the properties, structure and application of dendritic polymer, this paper analysed the methods of the preparation of nanoparticles using dendritic polymer, detailed preparation process, technical parameters and application effect about a single metal nanoparticles, bimetallic nanoparticles, sulfide and halide nanoparticles. The influencing factors of the preparation about nanoparticles were discussed, including the molecular algebra, the molar ratio of the metal ions to the dendriti...

  5. Preparation of conducting solid mixtures

    International Nuclear Information System (INIS)

    Spokas, J.J.

    1978-01-01

    The application of conducting plastic mixtures to the fundamental problem of radiation dosimetry is briefly reviewed. A particular approach to achieving formulations with the necessary characteristics is described. A number of successful mixtures are defined for a number of different specific dosimetry situations. To obtain high quality stable materials requires intense blending and working of the materials at elevated temperatures. One machine that succeeds in this task is the Shonka plastics mixer-extruder. The Shonka mixer is described in complete detail. The procedures used in preparing representative formulations with this device are presented. A number of properties of successful conducting mixtures so prepared are summarized. The conditions required for molding such material are given. Several special welding methods for specific application with these formulations have been devised and are described

  6. Polyferric sulphate: preparation, characterisation and application in coagulation experiments.

    Science.gov (United States)

    Zouboulis, A I; Moussas, P A; Vasilakou, F

    2008-07-15

    The process of coagulation is a core environmental protection technology, which is mainly used in the water or wastewater treatment facilities. Research is now focused on the development of inorganic pre-polymerised coagulants. A characteristic example is PFS (polyferric sulphate), a relatively new pre-polymerised inorganic coagulant with high cationic charge. In this paper, the role of major parameters, including temperature, types of chemical reagents, ratio r=[OH]/[Fe], rate of base addition in the preparation stages of PFS were investigated. Furthermore, the prepared PFS was characterised based on typical properties, such as the percentage of the polymerised iron present in the compound, z-potential, pH, etc. Moreover, dynamics of coagulation process were examined by means of the Photometric Dispersion Analyzer (PDA). Finally, the coagulation efficiency of PFS in treating kaolin suspension and biologically pre-treated wastewater was evaluated in comparison with the respective conventional coagulant agent. The results indicate that certain parameters, such as the r value, the rate of base addition and the duration and temperature of the polymerisation stage, significantly affected the properties of the PFS. Additionally, the prepared PFS polymerised coagulants exhibit a significantly better coagulation performance than the respective non-polymerised one, i.e. ferric sulphate.

  7. Review of porous silicon preparation and its application for lithium-ion battery anodes

    International Nuclear Information System (INIS)

    Ge, M; Fang, X; Rong, J; Zhou, C

    2013-01-01

    Silicon is of great interest for use as the anode material in lithium-ion batteries due to its high capacity. However, certain properties of silicon, such as a large volume expansion during the lithiation process and the low diffusion rate of lithium in silicon, result in fast capacity degradation in limited charge/discharge cycles, especially at high current rate. Therefore, the use of silicon in real battery applications is limited. The idea of using porous silicon, to a large extent, addresses the above-mentioned issues simultaneously. In this review, we discuss the merits of using porous silicon for anodes through both theoretical and experimental study. Recent progress in the preparation of porous silicon through the template-assisted approach and the non-template approach have been highlighted. The battery performance in terms of capacity and cyclability of each structure is evaluated. (topical review)

  8. Gold nanoparticles prepared by laser ablation in aqueous biocompatible solutions: assessment of safety and biological identity for nanomedicine applications

    Directory of Open Access Journals (Sweden)

    Correard F

    2014-11-01

    Full Text Available Florian Correard,1,2 Ksenia Maximova,3 Marie-Anne Estève,1,2 Claude Villard,1 Myriam Roy,4 Ahmed Al-Kattan,3 Marc Sentis,3 Marc Gingras,4 Andrei V Kabashin,3 Diane Braguer1,2 1Aix Marseille Université, INSERM, CR02 UMR_S911, Marseille, France; 2APHM, Hôpital Timone, Marseille, France; 3Aix Marseille Université, CNRS, LP3 UMR 7341, Marseille, France; 4Aix Marseille Université, CNRS, CINAM, UMR 7325 Marseille, France Abstract: Due to excellent biocompatibility, chemical stability, and promising optical properties, gold nanoparticles (Au-NPs are the focus of research and applications in nanomedicine. Au-NPs prepared by laser ablation in aqueous biocompatible solutions present an essentially novel object that is unique in avoiding any residual toxic contaminant. This paper is conceived as the next step in development of laser-ablated Au-NPs for future in vivo applications. The aim of the study was to assess the safety, uptake, and biological behavior of laser-synthesized Au-NPs prepared in water or polymer solutions in human cell lines. Our results showed that laser ablation allows the obtaining of stable and monodisperse Au-NPs in water, polyethylene glycol, and dextran solutions. The three types of Au-NPs were internalized in human cell lines, as shown by transmission electron microscopy. Biocompatibility and safety of Au-NPs were demonstrated by analyzing cell survival and cell morphology. Furthermore, incubation of the three Au-NPs in serum-containing culture medium modified their physicochemical characteristics, such as the size and the charge. The composition of the protein corona adsorbed on Au-NPs was investigated by mass spectrometry. Regarding composition of complement C3 proteins and apolipoproteins, Au-NPs prepared in dextran solution appeared as a promising drug carrier. Altogether, our results revealed the safety of laser-ablated Au-NPs in human cell lines and support their use for theranostic applications. Keywords: protein

  9. Preparation of cotton linter nanowhiskers by high-pressure homogenization process and its application in thermoplastic starch

    Science.gov (United States)

    Savadekar, N. R.; Karande, V. S.; Vigneshwaran, N.; Kadam, P. G.; Mhaske, S. T.

    2015-03-01

    The present work deals with the preparation of cotton linter nanowhiskers (CLNW) by acid hydrolysis and subsequent processing in a high-pressure homogenizer. Prepared CLNW were then used as a reinforcing material in thermoplastic starch (TPS), with an aim to improve its performance properties. Concentration of CLNW was varied as 0, 1, 2, 3, 4 and 5 wt% in TPS. TPS/CLNW nanocomposite films were prepared by solution-casting process. The nanocomposite films were characterized by tensile, differential scanning calorimetry, scanning electron microscopy (SEM), water vapor permeability (WVP), oxygen permeability (OP), X-ray diffraction and light transmittance properties. 3 wt% CLNW-loaded TPS nanocomposite films demonstrated 88 % improvement in the tensile strength as compared to the pristine TPS polymer film; whereas, WVP and OP decreased by 90 and 92 %, respectively, which is highly appreciable compared to the quantity of CLNW added. DSC thermograms of nanocomposite films did not show any significant effect on melting temperature as compared to the pristine TPS. Light transmittance ( T r) value of TPS decreased with increased content of CLNW. Better interaction between CLNW and TPS, caused due to the hydrophilic nature of both the materials, and uniform distribution of CLNW in TPS were the prime reason for the improvement in properties observed at 3 wt% loading of CLNW in TPS. However, CLNW was seen to have formed agglomerates at higher concentration as determined from SEM analysis. These nanocomposite films can have potential use in food and pharmaceutical packaging applications.

  10. Chromic phosphate 32P. Preparation and applications

    International Nuclear Information System (INIS)

    Taylor Delgado, Tamara; Cruz Morales, Ahmed; Morin Zorrilla, Jose

    2003-01-01

    In the present work different potentially useful colloidal preparations, in accordance with the physiochemical studies and tests carried out on animals (still ongoing), are obtained. The method involves the reaction of chromium oxide with phosphoric acid P-32, in a slight excess, in order to obtain the specific activity in presence of the sodium sulfite as reducing agent. Two purification by ionic exchange, obtained the best results in the second method. For the determination of the particle size the membrane filtration method was used

  11. Radiomodifying effect on the herbal preparation 'Elixir-3'

    International Nuclear Information System (INIS)

    Techova, V.; Krasteva, K.

    2005-01-01

    The study of preparations, obtained from natural products, free of any toxic effects on the organism, have important practical implications on the prophylactic against and correction of eventual sequels of ionizing radiation. The purpose of study is the radiomodifying action of the herbal preparation 'Elixir-3'(E-3) on mice exposed to fractionated gamma irradiation, using a prophylactic - therapeutic scheme of application over 15 days, with daily dose 0,2 Gy and cumulative dose 3 Gy. E-3 contains alcohol-water extract of basil, hops, briar, nettle, walnut and peppermint. To assess the radiomodifying effect of the preparation we investigated the intensification of the lipid peroxidation under review of malondialdehyde (MDA) concentration and total antioxidant activity of blood plasma. The application of E-3 normalizes the observed variations in MDA concentration and AOA in result of fractionated gamma irradiation. The preparation modifies the processes of lipid peroxidation and total antioxidant activity and exerts a favourable effect on the anti oxidative processes in the studied animal organism

  12. Cathode material for lithium ion accumulators prepared by screen printing for Smart Textile applications

    Science.gov (United States)

    Syrový, T.; Kazda, T.; Syrová, L.; Vondrák, J.; Kubáč, L.; Sedlaříková, M.

    2016-03-01

    The presented study is focused on the development of LiFePO4 based cathode for thin and flexible screen printed secondary lithium based accumulators. An ink formulation was developed for the screen printing technique, which enabled mass production of accumulator's cathode for Smart Label and Smart Textile applications. The screen printed cathode was compared with an electrode prepared by the bar coating technique using an ink formulation based on the standard approach of ink composition. Obtained LiFePO4 cathode layers were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and galvanostatic charge/discharge measurements at different loads. The discharge capacity, capacity retention and stability at a high C rate of the LiFePO4 cathode were improved when Super P and PVDF were replaced by conductive polymers PEDOT:PSS. The achieved capacity during cycling at various C rates was approximately the same at the beginning and at the end, and it was about 151 mAh/g for cycling under 1C. The obtained results of this novelty electrode layer exceed the parameters of several electrode layers based on LiFePO4 published in literature in terms of capacity, cycling stability and overcomes them in terms of simplicity/industrial process ability of cathode layer fabrication and electrode material preparation.

  13. Preparation of Chitosan-based Injectable Hydrogels and Its Application in 3D Cell Culture.

    Science.gov (United States)

    Li, Yongsan; Zhang, Yaling; Wei, Yen; Tao, Lei

    2017-09-29

    The protocol presents a facile, efficient, and versatile method to prepare chitosan-based hydrogels using dynamic imine chemistry. The hydrogel is prepared by mixing solutions of glycol chitosan with a synthesized benzaldehyde terminated polymer gelator, and hydrogels are efficiently obtained in several minutes at room temperature. By varying ratios between glycol chitosan, polymer gelator, and water contents, versatile hydrogels with different gelation times and stiffness are obtained. When damaged, the hydrogel can recover its appearances and modulus, due to the reversibility of the dynamic imine bonds as crosslinkages. This self-healable property enables the hydrogel to be injectable since it can be self-healed from squeezed pieces to an integral bulk hydrogel after the injection process. The hydrogel is also multi-responsive to many bio-active stimuli due to different equilibration statuses of the dynamic imine bonds. This hydrogel was confirmed as bio-compatible, and L929 mouse fibroblast cells were embedded following standard procedures and the cell proliferation was easily assessed by a 3D cell cultivation process. The hydrogel can offer an adjustable platform for different research where a physiological mimic of a 3D environment for cells is profited. Along with its multi-responsive, self-healable, and injectable properties, the hydrogels can potentially be applied as multiple carriers for drugs and cells in future bio-medical applications.

  14. Facile and Scalable Preparation of Fluorescent Carbon Dots for Multifunctional Applications

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2017-06-01

    Full Text Available The synthesis of fluorescent nanomaterials has received considerable attention due to the great potential of these materials for a wide range of applications, from chemical sensing through bioimaging to optoelectronics. Herein, we report a facile and scalable approach to prepare fluorescent carbon dots (FCDs via a one-pot reaction of citric acid with ethylenediamine at 150 °C under ambient air pressure. The resultant FCDs possess an optical bandgap of 3.4 eV and exhibit strong excitation-wavelength-independent blue emission (λEm = 450 nm under either one- or two-photon excitation. Owing to their low cytotoxicity and long fluorescence lifetime, these FCDs were successfully used as internalized fluorescent probes in human cancer cell lines (HeLa cells for two-photon excited imaging of cells by fluorescence lifetime imaging microscopy with a high-contrast resolution. They were also homogenously mixed with commercial inks and used to draw fluorescent patterns on normal papers and on many other substrates (e.g., certain flexible plastic films, textiles, and clothes. Thus, these nanomaterials are promising for use in solid-state fluorescent sensing, security labeling, and wearable optoelectronics.

  15. Guide for the preparation of applications for licenses for the use of self-contained dry source-storage irradiators. Second proposed Revision 1

    International Nuclear Information System (INIS)

    Bassin, N.

    1984-10-01

    The purpose of this regulatory guide is to provide assistance to applicants and licensees in preparing applications for new licenses, license amendments, and license renewals for the use of self-contained dry source-storage irradiators. These irradiators are constructed so that the sealed sources and the material being irradiated are contained in a shielded volume and there is no external radiation beam during the use of the irradiator. The radioisotopes most commonly used for these irradiators are cobalt-60 and cesium-137

  16. Studies on the preparation of 103Pd inner core of seed sources for brachytherapy applications

    International Nuclear Information System (INIS)

    Saha, Sujata; Manolkar, R.B.; Vimalnath, K.V.; Dash, A.; Venkatesh, Meera

    2007-01-01

    103 Pd seed sources are used widely world over for brachytherapy applications. 103 Pd available in-house was used to study its deposition on silver wire using electro-deposition and electroless deposition techniques with an aim to developing the inner core preparation of sealed radiation sources for treatment of prostate and ocular melanoma. Various parameters such as radioactive concentration of the feed solution, current density, time, temperature and pH of the solution were optimized to achieve maximum 103 Pd deposition on Ag wire. In electroless technique, the deposited amount of Pd was found to be nearly triple compared to electro-deposition in two hours time period. Both the methods gave nonleachable and well adherent sources. (author)

  17. Preparation of Graphene Sheets by Electrochemical Exfoliation of Graphite in Confined Space and Their Application in Transparent Conductive Films.

    Science.gov (United States)

    Wang, Hui; Wei, Can; Zhu, Kaiyi; Zhang, Yu; Gong, Chunhong; Guo, Jianhui; Zhang, Jiwei; Yu, Laigui; Zhang, Jingwei

    2017-10-04

    A novel electrochemical exfoliation mode was established to prepare graphene sheets efficiently with potential applications in transparent conductive films. The graphite electrode was coated with paraffin to keep the electrochemical exfoliation in confined space in the presence of concentrated sodium hydroxide as the electrolyte, yielding ∼100% low-defect (the D band to G band intensity ratio, I D /I G = 0.26) graphene sheets. Furthermore, ozone was first detected with ozone test strips, and the effect of ozone on the exfoliation of graphite foil and the microstructure of the as-prepared graphene sheets was investigated. Findings indicate that upon applying a low voltage (3 V) on the graphite foil partially coated with paraffin wax that the coating can prevent the insufficiently intercalated graphite sheets from prematurely peeling off from the graphite electrode thereby affording few-layer (graphene sheets in a yield of as much as 60%. Besides, the ozone generated during the electrochemical exfoliation process plays a crucial role in the exfoliation of graphite, and the amount of defect in the as-prepared graphene sheets is dependent on electrolytic potential and electrode distance. Moreover, the graphene-based transparent conductive films prepared by simple modified vacuum filtration exhibit an excellent transparency and a low sheet resistance after being treated with NH 4 NO 3 and annealing (∼1.21 kΩ/□ at ∼72.4% transmittance).

  18. The promising application of graphene oxide as coating materials in orthopedic implants: preparation, characterization and cell behavior

    International Nuclear Information System (INIS)

    Zhao, Changhong; Lu, Xiuzhen; Liu, Johan; Zanden, Carl

    2015-01-01

    To investigate the potential application of graphene oxide (GO) in bone repair, this study is focused on the preparation, characterization and cell behavior of graphene oxide coatings on quartz substrata. GO coatings were prepared on the substrata using a modified dip-coating procedure. Atomic force microscopy (AFM), scanning electron microscopy (SEM) and Raman spectroscopy results demonstrated that the as-prepared coatings in this study were homogeneous and had an average thickness of ∼67 nm. The rapid formation of a hydroxyapatite (HA) layer in the simulated body fluid (SBF) on GO coated substrata at day 14, as proved by SEM and x-ray diffraction (XRD), strongly indicated the bioactivity of coated substrata. In addition, MC3T3-E1 cells were cultured on the coated substrata to evaluate cellular activities. Compared with the non-coated substrata and tissue culture plates, no significant difference was observed on the coated substrata in terms of cytotoxicity, viability, proliferation and apoptosis. However, interestingly, higher levels of alkaline phosphatase (ALP) activity and osteocalcin (OC) secretion were observed on the coated substrata, indicating that GO coatings enhanced cell differentiation compared with non-coated substrata and tissue culture plates. This study suggests that GO coatings had excellent biocompatibility and more importantly promoted MC3T3-E1 cell differentiation and might be a good candidate as a coating material for orthopedic implants. (paper)

  19. Preparation, characterization and application of nanosized copper ferrite photocatalysts for dye degradation under UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zaharieva, Katerina, E-mail: zaharieva@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia (Bulgaria); Rives, Vicente, E-mail: vrives@usal.es [GIR-QUESCAT, Dpto. Química Inorgánica, Universidad de Salamanca, 37008 Salamanca (Spain); Tsvetkov, Martin, E-mail: mptsvetkov@gmail.com [Faculty of Chemistry and Pharmacy, St. Kliment Ohridski University of Sofia, 1 J. Bourchier Blvd., 1164 Sofia (Bulgaria); Cherkezova-Zheleva, Zara, E-mail: zzhel@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia (Bulgaria); Kunev, Boris, E-mail: bkunev@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia (Bulgaria); Trujillano, Raquel, E-mail: rakel@usal.es [GIR-QUESCAT, Dpto. Química Inorgánica, Universidad de Salamanca, 37008 Salamanca (Spain); Mitov, Ivan, E-mail: mitov@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia (Bulgaria); Milanova, Maria, E-mail: nhmm@wmail.chem.uni-sofia.bg [Faculty of Chemistry and Pharmacy, St. Kliment Ohridski University of Sofia, 1 J. Bourchier Blvd., 1164 Sofia (Bulgaria)

    2015-06-15

    {sup −3} min{sup −1}) for degradation of organic dye Malachite green under UV irradiation. - Highlights: • Copper ferrites via co-precipitation, mechanochemical and/or thermal treatment. • Nano ferrites show a superparamagnetic and collective magnetic excitations nature. • The co-precipitated Cu{sub 0.25}Fe{sub 2.75}O{sub 4} posses the highest photocatalytic activity. • The amount adsorbed Malachite Green by catalyst depends on the preparation method. • The prepared copper ferrites can be applicable as cheap adsorbents and catalysts.

  20. Preparation, characterization and application of nanosized copper ferrite photocatalysts for dye degradation under UV irradiation

    International Nuclear Information System (INIS)

    Zaharieva, Katerina; Rives, Vicente; Tsvetkov, Martin; Cherkezova-Zheleva, Zara; Kunev, Boris; Trujillano, Raquel; Mitov, Ivan; Milanova, Maria

    2015-01-01

    Malachite green under UV irradiation. - Highlights: • Copper ferrites via co-precipitation, mechanochemical and/or thermal treatment. • Nano ferrites show a superparamagnetic and collective magnetic excitations nature. • The co-precipitated Cu 0.25 Fe 2.75 O 4 posses the highest photocatalytic activity. • The amount adsorbed Malachite Green by catalyst depends on the preparation method. • The prepared copper ferrites can be applicable as cheap adsorbents and catalysts

  1. [INDENA SPA company's patent portfolio of Ginkgo biloba preparation].

    Science.gov (United States)

    Wang, Nan; Guo, Kai; Cheng, Xin-min; Liu, Wei

    2015-10-01

    INDENA SPA Company in Italy is a multi-national company that produces and sells plant extracts. Based on its own re- search advantages in the field of Ginkgo biloba preparation, the company protects its own products market effectively through building patent portfolio around the patents of its opponent. Based on the multi-angle analysis for patent portfolio of G. biloba preparation from the aspects of application time, legal status, technical development route, and patent portfolio layout, this article provides technical reference on research and development of G. biloba preparation, and the author suggest that Chinese applicants learn techniques and layout experiences of other patents fully to enhance the level of research and patent protection level.

  2. DOPO-Modified Two-Dimensional Co-Based Metal-Organic Framework: Preparation and Application for Enhancing Fire Safety of Poly(lactic acid).

    Science.gov (United States)

    Hou, Yanbei; Liu, Longxiang; Qiu, Shuilai; Zhou, Xia; Gui, Zhou; Hu, Yuan

    2018-03-07

    Co-based metal-organic framework (Co-MOF) nanosheets were successfully synthesized by the organic ligands with Schiff base structure. The laminated structure gives Co-MOF nanosheets a great advantage in the application in the flame retardant field. Meanwhile, -C═N- from Schiff base potentially provides active sites for further modification. In this work, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) was used to modify Co-MOF (DOPO@Co-MOF) to further enhance its flame retardant efficiency. It is attractive that DOPO has a synergistic effect with Co-MOF on improving fire safety of poly(lactic acid) (PLA). The obvious decrease in the values of peak heat release (27%), peak smoke production (56%), and total CO yield (20%) confirmed the enhanced fire safety of PLA composites. The possible flame retardant mechanism was proposed based on characterization results. Moreover, the addition of DOPO@Co-MOF had a positive influence on the mechanical performance, including tensile properties and impact resistance. This work designed and synthesized two-dimensional MOFs with active groups. As-prepared Co-MOF with expected structure shows a novel direction of preparing MOFs for flame retardant application.

  3. Current trends in sample preparation for cosmetic analysis.

    Science.gov (United States)

    Zhong, Zhixiong; Li, Gongke

    2017-01-01

    The widespread applications of cosmetics in modern life make their analysis particularly important from a safety point of view. There is a wide variety of restricted ingredients and prohibited substances that primarily influence the safety of cosmetics. Sample preparation for cosmetic analysis is a crucial step as the complex matrices may seriously interfere with the determination of target analytes. In this review, some new developments (2010-2016) in sample preparation techniques for cosmetic analysis, including liquid-phase microextraction, solid-phase microextraction, matrix solid-phase dispersion, pressurized liquid extraction, cloud point extraction, ultrasound-assisted extraction, and microwave digestion, are presented. Furthermore, the research and progress in sample preparation techniques and their applications in the separation and purification of allowed ingredients and prohibited substances are reviewed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Preparation and supercapacitor application of the single crystal nickel hydroxide and oxide nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qing [Department of Materials Science and Engineering, Yunnan University, 650091 Kunming (China); Ni, Haifang [Institute of Materials Science and Engineering, University of Science and Technology Beijing, 100083 Beijing (China); Cai, Yun; Cai, Xiaoyan [Department of Materials Science and Engineering, Yunnan University, 650091 Kunming (China); Liu, Yongjun [Advanced Analysis and Measurement Center, Yunnan University, 650091 Kunming (China); Chen, Gang [Department of Materials Science and Engineering, Yunnan University, 650091 Kunming (China); Fan, Li-Zhen, E-mail: fanlizhen@ustb.edu.cn [Institute of Materials Science and Engineering, University of Science and Technology Beijing, 100083 Beijing (China); Wang, Yude, E-mail: ydwang@ynu.edu.cn [Department of Materials Science and Engineering, Yunnan University, 650091 Kunming (China)

    2013-09-01

    Graphical abstract: The nickel hydroxide and nickel oxide nanosheets prepared using CTAB at room temperature exhibit a high specific capacitance, prompt charge/discharge rate. - Highlights: • The nickel hydroxide nanosheets were prepared using CTAB at room temperature. • Ni(OH){sub 2} nanosheet can be successfully converted to NiO nanosheet via calcination. • The NiO nanosheet has a specific capacitance of 388 F g{sup −1} at 5 A g{sup −1} in KOH solution. • Anneal temperature impacts capacitive properties as electrode. - Abstract: The single crystalline Ni(OH){sub 2} nanosheets were synthesized by a simple chemical precipitation method using nickel chloride as precursors and ammonia as precipitating agent. The Ni(OH){sub 2} nanosheets were successfully converted to NiO nanosheets via calcination under appropriate conditions. Analytical methods such as X-ray diffraction (XRD) spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and Fourier transformed infrared (FTIR) spectra were employed to characterize the morphology and microstructure of the final products. The experimental results revealed that Ni(OH){sub 2} nanosheets were shape-preserved transformed to NiO nanosheets at 250 °C for 24 h. Ni(OH){sub 2} and NiO nanosheets were directly functionalized as supercapacitor electrodes for potential energy storage applications, whose charge–discharge properties, electrochemical impedance spectra, cyclic voltammetry, and cycle performance were examined. The experimental results show that the single-crystalline NiO nanosheets are a promising candidate for the supercapacitor electrode. They exhibit a high specific capacitance, prompt charge/discharge rate.

  5. Urine sample preparation for proteomic analysis.

    Science.gov (United States)

    Olszowy, Pawel; Buszewski, Boguslaw

    2014-10-01

    Sample preparation for both environmental and more importantly biological matrices is a bottleneck of all kinds of analytical processes. In the case of proteomic analysis this element is even more important due to the amount of cross-reactions that should be taken into consideration. The incorporation of new post-translational modifications, protein hydrolysis, or even its degradation is possible as side effects of proteins sample processing. If protocols are evaluated appropriately, then identification of such proteins does not bring difficulties. However, if structural changes are provided without sufficient attention then protein sequence coverage will be reduced or even identification of such proteins could be impossible. This review summarizes obstacles and achievements in protein sample preparation of urine for proteome analysis using different tools for mass spectrometry analysis. The main aim is to present comprehensively the idea of urine application as a valuable matrix. This article is dedicated to sample preparation and application of urine mainly in novel cancer biomarkers discovery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Preparation of carbon quantum dots with a high quantum yield and the application in labeling bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pengpeng; Zhang, Changchang; Liu, Xiang, E-mail: liuxiang@ahut.edu.cn; Cui, Ping, E-mail: cokecp@sohu.com

    2016-04-15

    Graphical abstract: - Highlights: • Cheap carbon quantum dots (CQDs) with a high quantum yield were prepared. • The preparation process and surface functionalization on CQDs are rather facile. • Such functionalized CQDs can be attached to BSA covalently. • This predicts that some biomolecules can be labeled by the fluorescent CQDs. - Abstract: An economic and green approach of manufacturing carbon quantum dots (CQDs) with a high quantum yield (denoted with HQY-CQDs) and the application in labeling bovine serum albumin (BSA) were described in detail in this work. Firstly, the cheap resources of citric acid and glycine were pyrolysed in drying oven for preparing the CQDs. Then the product was immersed in tetrahydrofuran for 8 h. HQY-CQDs were obtained by removing tetrahydrofuran from the supernate and were evaluated that they possessed a much higher quantum yield compared with that without dealing with tetrahydrofuran and a wonderful photo-bleaching resistance. Such HQY-CQDs could be functionalized by N-hydroxysuccinimide and successively combined with BSA covalently. Thus fluorescent labeling on BSA was realized. The HQY-CQDs were demonstrated with transmission electron microscopy and the chemical modification with N-hydroxysuccinimide was proved by infrared and X-ray photoelectron spectra. Labeling BSA with the HQY-CQDs was confirmed by gel electrophoresis and fluorescence imaging.

  7. The investigation of copper-based impregnated activated carbons prepared from water-soluble materials for broad spectrum respirator applications

    International Nuclear Information System (INIS)

    Smith, J.W.H.; Westreich, P.; Abdellatif, H.; Filbee-Dexter, P.; Smith, A.J.; Wood, T.E.; Croll, L.M.; Reynolds, J.H.; Dahn, J.R.

    2010-01-01

    The preparation of impregnated activated carbons (IACs) from aqueous, copper-containing solutions for broad spectrum gas filtration applications is studied here. Several samples were studied to determine the effect that impregnant loading, impregnant distribution and impregnant recipe had on the overall performance. Dynamic flow testing was used to determine the gas filtration capacity of the IAC samples versus a variety of challenge gases. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) were used to characterize the impregnant distribution on the carbon as a function of impregnant loading. Oven tests were performed to determine the thermal stability of the IAC samples exposed to elevated temperatures. The role impregnant distribution plays in gas filtration capacity and the overall performance of the IAC samples is discussed. The IAC samples prepared in this work were found to have gas filtration capacities as good as or better than broad spectrum respirator carbon samples prepared from the patent literature. IACs impregnated with an aqueous 2.4 M Cu(NO 3 ) 2 /0.04 M H 3 PO 4 .12MoO 3 /4 M HNO 3 solution that were heated to 200 deg. C under argon were found to have the best overall performance of the samples studied in this work.

  8. The limits of application of variable-energy slow positron beams for investigating TiN hard coatings prepared by PVD

    International Nuclear Information System (INIS)

    Marek, T.; Suevegh, K.; Vertes, A.; Szeles, Cs.; Lynn, K.G.

    2000-01-01

    Samples of TiN hard coatings prepared by physical vapour deposition (PVD) were investigated by means of depth-sensitive positron annihilation spectroscopy. The results indicate that the samples are at the limits of the applicability of this method presumably due to the high defect concentration. Though the samples are thoroughly characterized by other independent methods, they might not be sufficient to explain all aspects of positron-solid interactions in these cases. (author)

  9. Advances in preparation and characterization of chitosan nanoparticles for therapeutics.

    Science.gov (United States)

    Chandra Hembram, Krushna; Prabha, Shashi; Chandra, Ramesh; Ahmed, Bahar; Nimesh, Surendra

    2016-01-01

    Polymers have been largely explored for the preparation of nanoparticles due to ease of preparation and modification, large gene/drug loading capacity, and biocompatibility. Various methods have been adapted for the preparation and characterization of chitosan nanoparticles. Focus on the different methods of preparation and characterization of chitosan nanoparticles. Detailed literature survey has been done for the studies reporting various methods of preparation and characterization of chitosan nanoparticles. Published database suggests of several methods which have been developed for the preparation and characterization of chitosan nanoparticles as per the application.

  10. Bioinspired methodology for preparing magnetic responsive chitosan beads to be integrated in a tubular bioreactor for biomedical applications.

    Science.gov (United States)

    Song, Wenlong; Oliveira, Mariana B; Sher, Praveen; Gil, Sara; Nóbrega, J Miguel; Mano, João F

    2013-08-01

    Magnetic responsive chitosan beads were prepared using a methodology inspired by the rolling of water droplets over lotus leaves. Liquid precursors containing chitosan and magnetic microparticles were dispensed in the form of spherical droplets and crosslinked with genipin over synthetic superhydrophobic surfaces. Scanning electronic microscopy, histology and micro-computed tomography were employed to characterize the structure of the prepared composite beads and the inner distribution of the magnetic particles. Cellular metabolic activity tests showed that fibroblasts-like (L929 cell line) can adhere and proliferate on the prepared chitosan beads. We hypothesize that such spherical biomaterials could be integrated in a new concept of tubular bioreactor. The magnetic beads can be immobilized by an external magnetic field at specific positions and may be transported along the bioreactor by the drag of the culture medium flow. The system behavior was also studied through numerical modeling, which allowed to identify the relative importance of the main parameters, and to conclude that the distance between carrier beads plays a major role on their interaction with the culture medium and, consequently, on the overall system performance. In an up-scaled version of this bioreactor, the herein presented system may comprise different chambers in serial or parallel configurations. This constitutes a simple way of preparing magnetic responsive beads combined with a new design of bioreactor, which may find application in biomedicine and biotechnology, including in cell expansion for tissue engineering or for the production of therapeutic proteins to be used in cell therapies.

  11. Bioinspired methodology for preparing magnetic responsive chitosan beads to be integrated in a tubular bioreactor for biomedical applications

    International Nuclear Information System (INIS)

    Song, Wenlong; Oliveira, Mariana B; Sher, Praveen; Gil, Sara; Mano, João F; Nóbrega, J Miguel

    2013-01-01

    Magnetic responsive chitosan beads were prepared using a methodology inspired by the rolling of water droplets over lotus leaves. Liquid precursors containing chitosan and magnetic microparticles were dispensed in the form of spherical droplets and crosslinked with genipin over synthetic superhydrophobic surfaces. Scanning electronic microscopy, histology and micro-computed tomography were employed to characterize the structure of the prepared composite beads and the inner distribution of the magnetic particles. Cellular metabolic activity tests showed that fibroblasts-like (L929 cell line) can adhere and proliferate on the prepared chitosan beads. We hypothesize that such spherical biomaterials could be integrated in a new concept of tubular bioreactor. The magnetic beads can be immobilized by an external magnetic field at specific positions and may be transported along the bioreactor by the drag of the culture medium flow. The system behavior was also studied through numerical modeling, which allowed to identify the relative importance of the main parameters, and to conclude that the distance between carrier beads plays a major role on their interaction with the culture medium and, consequently, on the overall system performance. In an up-scaled version of this bioreactor, the herein presented system may comprise different chambers in serial or parallel configurations. This constitutes a simple way of preparing magnetic responsive beads combined with a new design of bioreactor, which may find application in biomedicine and biotechnology, including in cell expansion for tissue engineering or for the production of therapeutic proteins to be used in cell therapies. (paper)

  12. Preparation of thin nuclear targets

    International Nuclear Information System (INIS)

    Muggleton, A.H.F.

    1979-03-01

    Thin film backings, sources and targets are needed for many applications in low energy nuclear physics and nuclear chemistry experiments. A survey of techniques used in the preparation of nuclear targets is first briefly discussed. These are classified as chemical, mechanical and physical preparations. Vacuum evaporation, being the most generally used technique, is discussed in detail. It is highly desirable to monitor the film thickness and control the deposition rate during evaporation and to measure the final target thickness after deposition has concluded. The relative merits of various thickness measuring techniques are described. Stages in the fabrication and mounting of self-supporting foils are described in detail, with emphasis given to the preparation of thin self-supporting carbon foils used as target backings and stripper foils. Various target backings, and the merits of the more generally used release agents are described in detail. The preparations of more difficult elemental targets are discussed, and a comprehensive list of the common targets is presented

  13. A Review of the Structure, Preparation, and Application of NLCs, PNPs, and PLNs.

    Science.gov (United States)

    Li, Qianwen; Cai, Tiange; Huang, Yinghong; Xia, Xi; Cole, Susan P C; Cai, Yu

    2017-05-27

    Nanostructured lipid carriers (NLCs) are modified solid lipid nanoparticles (SLNs) that retain the characteristics of the SLN, improve drug stability and loading capacity, and prevent drug leakage. Polymer nanoparticles (PNPs) are an important component of drug delivery. These nanoparticles can effectively direct drug delivery to specific targets and improve drug stability and controlled drug release. Lipid-polymer nanoparticles (PLNs), a new type of carrier that combines liposomes and polymers, have been employed in recent years. These nanoparticles possess the complementary advantages of PNPs and liposomes. A PLN is composed of a core-shell structure; the polymer core provides a stable structure, and the phospholipid shell offers good biocompatibility. As such, the two components increase the drug encapsulation efficiency rate, facilitate surface modification, and prevent leakage of water-soluble drugs. Hence, we have reviewed the current state of development for the NLCs', PNPs', and PLNs' structures, preparation, and applications over the past five years, to provide the basis for further study on a controlled release drug delivery system.

  14. Highly porous CeO2 nanostructures prepared via combustion synthesis for supercapacitor applications

    DEFF Research Database (Denmark)

    Kadirvelayutham, Prasanna; Santhoshkumar, P.; Jo, Yong Nam

    2017-01-01

    We report highly porous CeO2 nanostructures (CeO2 NSs) suitable for supercapacitor applications, synthesized using a fast and cost effective combustion approach. Due to its prominent valence states of Ce3+/Ce4+, CeO2 has emerged as a promising pseudocapacitive material. The drawback of using CeO2...... as a supercapacitor electrode is its poor electrical conductivity. We overcame this drawback of CeO2 by creating oxygen vacancies on its surface, which act to enhance its electrical conductivity. The physical interpretation of the as-synthesized CeO2 NSs shows that they have dense active sites and diffusion pathways...... that enhance the performance of the electrode in a supercapacitor. Electrodes prepared using the synthesized CeO2 NSs exhibited the initial specific capacitance of 134.6 F g-1 and superior cycling stability of 92.5% after 1000 cycles at a constant current density of 1 A g-1, indicating their potential...

  15. The Use of Ionizing Radiation to Prepare Polymeric Agro-waste Composite for Sandy Soil Application

    International Nuclear Information System (INIS)

    Elhady, M.A.; Elnahas, H.H.; Meligi, G.A.; Ammar, A.H.

    2015-01-01

    Super absorbent hydrogel composite (SHC) by radiation induced crosslinking of polyacrylamide (PAAM)/ rice straw (RS) composite and hydrophilic membrane system based on polyvinyl alcohol (PVA) for possible applications in agricultural field of sandy soil was studied. The factors affecting the quick and capacity for retaining irrigated water of swelling behaviour of prepared hydrogel composite through hydrophilic membrane system and increasing foaming/ porosity of the SHC were studied. The mechanism for this is most likely a prevention of irrigated water to pass through sandy particles for a time ranged from 20 to 40 min for the fluid uptake capacity and swelling of the SHC to take and swelling place without almost any loss of irrigated water. Effect of acid/ alkalinity (PH) and salt concentration were investigation.

  16. Preparation, characterization and application of some anti- corrosive molybdate pigments

    International Nuclear Information System (INIS)

    Abd El-Ghaffar, M.A.; El-Sawy, S.M.; Ahmed, N.M.

    2005-01-01

    Some molybdate pigments of single and mixed metal ions, namely, zinc, calcium and zinc-calcium molybdates were prepared, characterized and evaluated according to international standard methods. The evaluated pigments were incorporated in some paint formulations. The physicomechanical, chemical and corrosion protective properties of the paint films were measured; this was done in comparison with a commercial imported molybdate pigment. It was found that, the prepared pigments under investigation are fine white crystalline powders of suitable pigment properties. They can be successfully used as environmentally acceptable anti corrosive pigments. They can replace satisfactorily the similar commercial imported pigment and possess adequate or superior properties against corrosion

  17. An evaluation of the applicability of gamma radiation for preparing typhoid fever vaccine

    International Nuclear Information System (INIS)

    Malafiej, E.; Lachmanowa, S.; Horoszewicz-Malafiej, A.; Politechnika Lodzka

    1974-01-01

    Using mouse protection test, two typhoid fever vaccines were comparatively tested for efficacy: that prepared by thermal inactivation and that treated with ionizing radiation. The experiments were performed with white mice BALB/c. Co 60 was used as the radiation source. Vaccine prepared by the thermal inactivation showed higher protective activity than the vaccine prepared by treatment with ionizing radiation. (author)

  18. Carbon nanotube/platinum nanoparticle nanocomposites: preparation, characterization and application in electro oxidation of alcohols

    International Nuclear Information System (INIS)

    Kalinke, Adir H.; Zarbin, Aldo J. G.

    2014-01-01

    The synthesis and characterization of different platinum nanoparticle/ carbon nanotube nanocomposite samples are described along with the application of these nanocomposites as electrocatalysts for alcohol oxidation. Samples were prepared by a biphasic system in which platinum nanoparticles (Pt-NPs) are synthesized in situ in contact with a carbon nanotube (CNT) dispersion. Variables including platinum precursor/CNT ratio, previous chemical treatment of carbon nanotubes, and presence or absence of a capping agent were evaluated and correlated with the characteristic of the synthesized materials. Samples were characterized by Raman spectroscopy, X-ray diffraction, thermogravimetric analysis and transmission electron microscopy. Glassy carbon electrodes were modified by the nanocomposite samples and evaluated as electrocatalysts for alcohol oxidation. Current densities of 56.1 and 79.8/104.7 mA cm -2 were determined for the oxidation of methanol and ethanol, respectively. (author)

  19. Preparation and characterization of Sr-Ti-hardystonite (Sr-Ti-HT nanocomposite for bone repair application

    Directory of Open Access Journals (Sweden)

    Hossein Mohammadi

    2015-07-01

    Full Text Available Objective(s: Hardystonite (HT is Zn-modified silicate bioceramics with promising results for bone tissue regeneration. However, HT possesses no obvious apatite formation. Thus, in this study we incorporated Sr and Ti into HT to prepare Sr-Ti-hardystonite (Sr-Ti-HT nanocomposite and evaluated its in vitro bioactivity with the purpose of developing a more bioactive bone substitute material. Materials and methods:The HT and Sr-Ti-HT were prepared by mechanical milling and subsequent heat treatment. Calcium oxide (CaO, zinc oxide (ZnO and silicon dioxide (SiO2 (all from Merck were mixed with molar ratio of 2:1:2. The mixture of powders mixture was then milled in a planetary ball mill for 20 h. In the milling run, the ball-to-powder weight ratio was 10:1 and the rotational speed was 200 rpm. After synthesis of HT, 3% nanotitanium dioxide (TiO2, Degussa and 3% strontium carbonate (SrCO3, Merck were added to HT and then the mixture was ball milled and calcined at 1150°C for 6 h. Simultaneous thermal analysis (STA, X-ray diffraction (XRD, Transmission electron microscopy (TEM and Fourier transform infra-red spectroscopy (FT-IR performed to characterize the powders. Results:XRD and FT-IR confirmed the crystal phase and silicate structure of HT and TEM images demonstrated the nanostructure of powders. Further, Sr-Ti-HT induced apatite formation and showed a higher human mesenchymal stem cell (hMSCs adhesion and proliferation compared to HT. Conclusion:Our study revealed that Sr-Ti-HT with a nanostructured crystal structure of 50 nm, can be prepared by mechanical activation to use as biomaterials for orthopedic applications.

  20. Application of residual polysaccharide-degrading enzymes in dried shiitake mushrooms as an enzyme preparation in food processing.

    Science.gov (United States)

    Tatsumi, E; Konishi, Y; Tsujiyama, S

    2016-11-01

    To examine the activities of residual enzymes in dried shiitake mushrooms, which are a traditional foodstuff in Japanese cuisine, for possible applications in food processing. Polysaccharide-degrading enzymes remained intact in dried shiitake mushrooms and the activities of amylase, β-glucosidase and pectinase were high. A potato digestion was tested using dried shiitake powder. The enzymes reacted with potato tuber specimens to solubilize sugars even under a heterogeneous solid-state condition and that their reaction modes were different at 38 and 50 °C. Dried shiitake mushrooms have a potential use in food processing as an enzyme preparation.

  1. Azo biphenyl polyurethane: Preparation, characterization and application for optical waveguide switch

    Science.gov (United States)

    Jiang, Yan; Da, Zulin; Qiu, Fengxian; Yang, Dongya; Guan, Yijun; Cao, Guorong

    2018-01-01

    Azo waveguide polymers are of particular interest in the design of materials for applications in optical switch. The aim of this contribution was the synthesis and thermo-optic waveguide switch properties of azo biphenyl polyurethanes. A series of monomers and azo biphenyl polyurethanes (Azo BPU1 and Azo BPU2) were synthesized and characterized by FT-IR, UV-Vis spectroscopy and 1H NMR. The physical and mechanical properties of thin polymer films were measured. The refractive index and thermo-optic coefficient (dn/dT) of polymer films were investigated for TE (transversal electric) polarizations by ATR technique. The transmission loss of film was measured using the Charge Coupled Device digital imaging devices. The results showed the Azo BPU2 containing chiral azobenzene chromophore had higher dn/dT and lower transmission loss. Subsequently, a 1 × 2 Y-branch and 2 × 2 Mach-Zehnder optical switches based on the prepared polymers were designed and simulated. The results showed that the power consumption of all switches was less than 1.0 mW. Compared with 1 × 2 Y-branch optical switch, the 2 × 2 Mach-Zehnder optical switches based on the same polymer have the faster response time, which were about only 1.2 and 2.0 ms, respectively.

  2. Properties of Formula 127 glass prepared with radioactive zirconia calcine

    International Nuclear Information System (INIS)

    Staples, B.A.; Pavlica, D.A.; Cole, H.S.

    1982-09-01

    Formula 127 glass has been developed to immobilize ICPP zirconia calcine. This glass has been prepared remotely on a laboratory scale basis with actual radioactive zirconia calcine retrieved after ten years of storage from Bin Set 2. The aqueous leachability of the glass produced was investigated and compared through application of the MCC-1, MCC-2 and Soxhlet leach tests with that of Formula 127 glass prepared with simulated calcine. The solid state properties of the glasses prepared with actual and simulated calcines were also measured by electron spectroscopy for chemical analysis (ESCA) and scanning electron microscopy energy dispersive x-ray (SEM-EDX). Based on the application of these leaching tests and analysis techniques the properties measured in this study are similar for 127 glass prepared with either simulated or radioactive calcine. 13 figures, 16 tables

  3. IMPACT OF LIME, BIOMASS ASH AND COMPOST AS WELL AS PREPARATION OF EM APPLICATIONS ON GRAIN YIELD AND YIELD COMPONENTS OF WHEAT

    Directory of Open Access Journals (Sweden)

    Sławomir Stankowski

    2014-10-01

    Full Text Available Field experiment was conducted in 2013 in Duninowo (54o539’ N, 16o830’ E. The experimental factors were: I. factor - 6 variants of fertilization, and II. - two level of EM preparations. The aim of this study was to evaluate the impact of ash from biomass by comparing its effect with the calcium fertilizer and compost BIOTOPE in conjunction with the preparation of microbiological Effective Microorganisms (EM. The impact of ash from biomass introduced into the soil on yield and yield structure and physiological parameters of spring wheat was analyzed No significant impact of the various variants of fertilizer application on the yielding of spring wheat cv.Bombona was confirmed. As a result of the form of compost fertilizer BIOTOPE, an increase in the content of chlorophyll in leaves of wheat cv Bombona (SPAD and the size of canopy assimilation area per unit area of the field (LAI. The application of EM did not affect the physiological parameters (yield, the number of ears per area unit, SPAD, LAI characterizing the spring wheat cv. Bombona.

  4. Preparation for Instruction. A Module of Instruction in Teacher Education. Prepared for Project RAFT.

    Science.gov (United States)

    Handley, Herbert M., Ed.

    This module, developed by the Research Applications for Teaching (RAFT) project, was written to assist students to write lesson plans that are effective and interactive. Students are given directions for the preparation of behavioral objectives and for the selection of appropriate instructional methodologies to meet the widely varying needs of…

  5. Preparation of anodic aluminum oxide (AAO) nano-template on silicon and its application to one-dimensional copper nano-pillar array formation

    International Nuclear Information System (INIS)

    Shen, Lan; Ali, Mubarak; Gu, Zhengbin; Min, Bonggi; Kim, Dongwook; Park, Chinho

    2013-01-01

    Anodized aluminum oxide (AAO) nanotemplates were prepared using the Al/Si substrates with an aluminum layer thickness of about 300 nm. A two-step anodization process was used to prepare an ordered porous alumina nanotemplate, and the pores of various sizes and depths were constructed electrochemically through anodic oxidation. The optimum morphological structure for large area application was constructed by adjusting the applied potential, temperature, time, and electrolyte concentration. SEM investigations showed that hexagonal-close-packed alumina nano-pore arrays were nicely constructed on Si substrate, having smooth wall morphologies and well-defined diameters. It is also reported that one dimensional copper nanopillars can be fabricated using the tunable nanopore sized AAO/Si template, by controlling the copper deposition process

  6. Preparation of Graphene Quantum Dots and Their Application in Cell Imaging

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2016-01-01

    Full Text Available Objective. This study aims to increase the fluorescence quantum yield by improving the conditions of preparing graphene quantum dots (GQDs through the solvothermal route and observe the GQDs performance in imaging oral squamous cells. Methodology. The following experimental conditions of GQDs preparation through the solvothermal route were improved: graphene oxide (GO/N-N dimethyl formamide (DMF ratio, filling percentage, and reaction time. A fluorescence spectrophotometer was used to measure photoluminescence, and the peak values were compared. Methylthiazolyldiphenyl-tetrazolium (MTT bromide was used to detect the cytotoxicity of GQDs, which was compared with that of cadmium telluride quantum dots (CdTe QDs. GQDs were cultured with tongue cancer cells. After the coculture, a laser scanning confocal microscope (LSCM was used to observe cell imaging. Results. The optimal conditions of GQD preparation through the solvothermal route included the following: 10 mg/mL GO/DMF ratio, 80% filling percentage, 12 h reaction time, and 17.4% fluorescence quantum yield. As the cell concentration increased, the GQD and CdTe QD groups exhibited a decreasing cell survival rate, with the decrease in the CdTe QD group being more significant. The LSCM observations showed bright green fluorescence images. Conclusion. The improved experimental conditions increased the fluorescence quantum yield of GQDs. In this study, the prepared GQDs exhibited low cytotoxicity level and satisfactory cell imaging performance.

  7. Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets: Preparation and Application in Highly Sensitive and Selective DNA Detection

    KAUST Repository

    Peng, Yongwu

    2017-06-03

    The ability to prepare ultrathin two-dimensional (2D) covalent organic framework (COF) nanosheets (NSs) in high yield is of great importance for the further exploration of their unique properties and potential applications. Herein, by elaborately designing and choosing two flexible molecules with C3v molecular symmetry as building units, a novel imine-linked COF, namely TPA-COF, with hexagonal layered structure and sheet-like morphology, is synthesized. Since the flexible building units are integrated into the COF skeletons, the interlayer stacking becomes weak, resulting in the easy exfoliation of TPA-COF into ultrathin 2D NSs. Impressively, for the first time, the detailed structural information, i.e. the pore channels and individual building units in the NSs, is clearly visualized by using the recently developed low-dose imaging technique of transmission electron microscopy (TEM). As a proof-of-concept application, the obtained ultrathin COF NSs are used as a novel fluorescence sensing platform for the highly sensitive and selective detection of DNA.

  8. Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets: Preparation and Application in Highly Sensitive and Selective DNA Detection

    KAUST Repository

    Peng, Yongwu; Huang, Ying; Zhu, Yihan; Chen, Bo; Wang, Liying; Lai, Zhuangchai; Zhang, Zhicheng; Zhao, Meiting; Tan, Chaoliang; Yang, Nailiang; Shao, Fangwei; Han, Yu; Zhang, Hua

    2017-01-01

    The ability to prepare ultrathin two-dimensional (2D) covalent organic framework (COF) nanosheets (NSs) in high yield is of great importance for the further exploration of their unique properties and potential applications. Herein, by elaborately designing and choosing two flexible molecules with C3v molecular symmetry as building units, a novel imine-linked COF, namely TPA-COF, with hexagonal layered structure and sheet-like morphology, is synthesized. Since the flexible building units are integrated into the COF skeletons, the interlayer stacking becomes weak, resulting in the easy exfoliation of TPA-COF into ultrathin 2D NSs. Impressively, for the first time, the detailed structural information, i.e. the pore channels and individual building units in the NSs, is clearly visualized by using the recently developed low-dose imaging technique of transmission electron microscopy (TEM). As a proof-of-concept application, the obtained ultrathin COF NSs are used as a novel fluorescence sensing platform for the highly sensitive and selective detection of DNA.

  9. Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets: Preparation and Application in Highly Sensitive and Selective DNA Detection.

    Science.gov (United States)

    Peng, Yongwu; Huang, Ying; Zhu, Yihan; Chen, Bo; Wang, Liying; Lai, Zhuangchai; Zhang, Zhicheng; Zhao, Meiting; Tan, Chaoliang; Yang, Nailiang; Shao, Fangwei; Han, Yu; Zhang, Hua

    2017-06-28

    The ability to prepare ultrathin two-dimensional (2D) covalent organic framework (COF) nanosheets (NSs) in high yield is of great importance for the further exploration of their unique properties and potential applications. Herein, by elaborately designing and choosing two flexible molecules with C 3v molecular symmetry as building units, a novel imine-linked COF, namely, TPA-COF, with a hexagonal layered structure and sheet-like morphology, is synthesized. Since the flexible building units are integrated into the COF skeletons, the interlayer stacking becomes weak, resulting in the easy exfoliation of TPA-COF into ultrathin 2D NSs. Impressively, for the first time, the detailed structural information, i.e., the pore channels and individual building units in the NSs, is clearly visualized by using the recently developed low-dose imaging technique of transmission electron microscopy (TEM). As a proof-of-concept application, the obtained ultrathin COF NSs are used as a novel fluorescence sensing platform for the highly sensitive and selective detection of DNA.

  10. The investigation of copper-based impregnated activated carbons prepared from water-soluble materials for broad spectrum respirator applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.W.H.; Westreich, P.; Abdellatif, H.; Filbee-Dexter, P.; Smith, A.J. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 3J5 (Canada); Wood, T.E. [3M Company, St. Paul, MN, 55144 (United States); Croll, L.M.; Reynolds, J.H. [3M Canada Company, Brockville, Ontario, K6V 5V8 (Canada); Dahn, J.R., E-mail: jeff.dahn@dal.ca [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 3J5 (Canada); Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3 (Canada)

    2010-08-15

    The preparation of impregnated activated carbons (IACs) from aqueous, copper-containing solutions for broad spectrum gas filtration applications is studied here. Several samples were studied to determine the effect that impregnant loading, impregnant distribution and impregnant recipe had on the overall performance. Dynamic flow testing was used to determine the gas filtration capacity of the IAC samples versus a variety of challenge gases. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) were used to characterize the impregnant distribution on the carbon as a function of impregnant loading. Oven tests were performed to determine the thermal stability of the IAC samples exposed to elevated temperatures. The role impregnant distribution plays in gas filtration capacity and the overall performance of the IAC samples is discussed. The IAC samples prepared in this work were found to have gas filtration capacities as good as or better than broad spectrum respirator carbon samples prepared from the patent literature. IACs impregnated with an aqueous 2.4 M Cu(NO{sub 3}){sub 2}/0.04 M H{sub 3}PO{sub 4}.12MoO{sub 3}/4 M HNO{sub 3} solution that were heated to 200 deg. C under argon were found to have the best overall performance of the samples studied in this work.

  11. Preparation and Characterization of Some Nanometal Oxides Using Microwave Technique and Their Application to Cotton Fabrics

    Directory of Open Access Journals (Sweden)

    M. Gouda

    2015-01-01

    Full Text Available The objective of this paper is the synthesis of some nanometal oxides via microwave irradiation technique and their application to augment multifunctional properties of cotton fabric. Cotton fabrics containing nanometal oxides were prepared via a thiol-modification of cotton fabric samples and then dipped into the metal salt solutions precursors and transferred to the microwave oven. The surface morphology and quantitative analysis of the obtained modified cotton fabrics containing nanometal oxides were studied by scanning electron microscopy coupled with high energy dispersive X-ray (SEM-EDX. The shape and distribution of nanometal oxide inside the fabric samples were analyzed by transmission electron microscopy of cross-section fabric samples. The iron oxide nanoparticles had a nanosphere with particle size diameter 15–20 nm, copper oxide nanoparticles had a nanosphere with particle size diameter 25–30 nm, and cobalt oxide nanoparticles had a nanotube-like shape with a length of 100–150 nanometer and a diameter of ~58 nanometer, whereas the manganese oxide nanoparticles had a linear structure forming nanorods with a diameter of 50–55 nanometer and a length of 70–80 nanometers. Antibacterial activity was evaluated quantitatively against gram-positive bacteria such as Staphylococcus aureus and gram-negative bacteria such as Escherichia coli, UV-protection activity was analyzed using UV-DRS spectroscopy, and flame retardation of prepared fabric samples was evaluated according to the limiting oxygen index (LOI. Results revealed that the prepared fabric sample containing nanometal oxide possesses improved antibacterial, LOI, and UV-absorbing efficiency. Moreover, the metal oxide nanoparticles did not leach out the fabrics by washing even after 30 laundering washing cycles.

  12. The definition of basic parameters of the set of small-sized equipment for preparation of dry mortar for various applications

    OpenAIRE

    Emelyanova Inga; Blazhko Vladimir; Dansheva Svetlana; Shyshko Natalia

    2017-01-01

    Based on the conducted information retrieval and review of the scientific literature, unsolved issues have been identified in the process of preparation of dry construction mixtures in the conditions of a construction site. The constructions of existing technological complexes for the production of dry construction mixtures are considered and their main drawbacks are identified in terms of application in the conditions of the construction site. On the basis of the conducted research, the desi...

  13. The preparation and characteristic of poly (3,4-ethylenedioxythiophene)/reduced graphene oxide nanocomposite and its application for supercapacitor electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Xiling [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Yang, Wenyao [School of Electrical and Electronic Engineering, Engineering Research Center of Electronic Information Technology and Application, Chongqing University of Arts and Sciences, Chongqing 402160 (China); He, Xin; Chen, Yan; Zhao, Yuetao; Zhou, Yujiu; Yang, Yajie [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Xu, Jianhua, E-mail: jianhuaxu8023@126.com [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2017-02-15

    Highlights: • A facile method to prepare PEDOT/rGO nanocomposite. • Taking full advantages of electrochemical polymerization and laser-writing methods. • The PEDOT/rGO nanocomposite possesses excellent electrochemical properties. - Abstract: Here we demonstrate a facile electrochemical polymerization and laser induction process to fabricate poly (3,4-ethylenedioxythiophene)/reduced graphene oxide (PEDOT/rGO) nanocomposite, which can be used as supercapacitor electrode material. Firstly, a PEDOT film is deposited on ITO substrate using an electrochemical polymerization method and a graphene oxide (GO) film is successively deposited on as-prepared PEDOT film through a spin-coating method. Then, by using a laser-writing method, the GO film is transformed into the rGO and a PEDOT/rGO nanocomposite is obtained. The resulting nanocomposite shows high areal capacitance about 43.75 mF/cm{sup 2}, which is nearly 3 times higher than that of the PEDOT film at a current density of 0.2 mA/cm{sup 2}. The PEDOT/rGO nanocomposite exhibits excellent cyclic stability, which can retain 83.6% of its initial capacitance after 1000 charge-discharge cycles. Furthermore, this nanocomposite can be deposited on varied substrates as electrode materials, which shows promising application to prepare high performance energy storage materials.

  14. Novel approach to the preparation of organic energetic film for microelectromechanical systems and microactuator applications.

    Science.gov (United States)

    Wang, Jun; Zhang, Wenchao; Wang, Lianwei; Shen, Ruiqi; Xu, Xing; Ye, Jiahai; Chao, Yimin

    2014-07-23

    An activated RDX-Fe2O3 xerogel in a Si-microchannel plate (MCP) has been successfully prepared by a novel propylene epoxide-mediated sol-gel method. A decrease of nearly 40 °C in decomposition temperature has been observed compared with the original cyclotrimethylene trinitramine (RDX). The RDX-Fe2O3 xerogel can release gas and solid matter simultaneously, and the ratio of gas to solid can be tailored easily by changing the initial proportions of RDX and FeCl3·6H2O, which significantly enhances the explosive and propulsion effects and is of great benefit to the applications. The approach, which is simple, safe, and fully compatible with MEMS technology, opens a new route to the introduction of organic energetic materials to a silicon substrate.

  15. Method of preparing highly active and thermostable preparations of liver uridin-kinase usable for enzymic synthesis of radioactive nucleoside-5'-phosphates

    International Nuclear Information System (INIS)

    Cihak, A.; Vesely, J.

    1975-01-01

    A method is described of preparing a high-activity uridine kinase for the enzymic synthesis of radioactive nucleoside-5m-phosphates of the pyrimidine series. The preparation is separated from male rat liver after intraperitoneal application of 5'-azacytidine. Examples are given showing detailed procedures for the conversion of uridine and 6-azauridine to the corresponding 5'-phosphates. (L.K.)

  16. Preparation and characterization of a radioiodinated bacterial lipopolysaccharide

    Energy Technology Data Exchange (ETDEWEB)

    Ulevitch, R J [Scripps Clinic and Research Foundation, La Jolla, Calif. (USA)

    1978-03-01

    Radioiodinated lipopolysaccharide (LPS) from E.coli 0111:B4 has been prepared by reacting p-OH methylbenzimidate with 0111:B4 LPS at alkaline pH. The resulting LPS derivative has been radiolabeled with Na/sup 125/I. Specific activities of up to 5..mu..Ci/..mu..g LPS may be obtained by this technique and significantly the preparation of the radioiodinated LPS does not alter the biophysical, immunologic or biologic properties of 0111:B4 LPS. The methods described here are applicable to any 'protein free' LPS preparation containing primary amino groups.

  17. 42 CFR 7.1 - Applicability.

    Science.gov (United States)

    2010-10-01

    ... BIOLOGICAL STANDARDS AND BIOLOGICAL PREPARATIONS § 7.1 Applicability. The provisions of this part are applicable to private entities requesting from the Centers for Disease Control (CDC) reference biological standards and biological preparations for use in their laboratories. ...

  18. Source preparation in alpha spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lally, A E [UKAEA Atomic Energy Research Establishment, Harwell. Environmental and Medical Sciences Div.; Glover, K M [UKAEA Atomic Energy Research Establishment, Harwell. Chemistry Div.

    1984-06-15

    Techniques, for the preparation of sources suitable for alpha spectrometric measurements are presented. These include vacuum sublimation, electrodeposition, self-deposition, direct evaporation, direct precipitation and the use of solvents and spreading agents. The relative merits of each technique and the applicability to both high and low levels of activity are considered.

  19. PREPARATION AND CHARACTERIZATION OF SOLID ELECTROLYTES: FUEL CELL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rambabu Bobba; Josef Hormes; T. Wang; Jaymes A. Baker; Donald G. Prier; Tommy Rockwood; Dinesha Hawkins; Saleem Hasan; V. Rayanki

    1997-12-31

    The intent of this project with Federal Energy Technology Center (FETC)/Morgantown Energy Technology Center (METC) is to develop research infrastructure conductive to Fuel Cell research at Southern University and A and M College, Baton Route. A state of the art research laboratory (James Hall No.123 and No.114) for energy conversion and storage devices was developed during this project duration. The Solid State Ionics laboratory is now fully equipped with materials research instruments: Arbin Battery Cycling and testing (8 channel) unit, Electrochemical Analyzer (EG and G PAR Model 273 and Solartron AC impedance analyzer), Fuel Cell test station (Globe Tech), Differential Scanning Calorimeter (DSC-10), Thermogravimetric Analyzer (TGA), Scanning Tunneling Microscope (STM), UV-VIS-NIR Absorption Spectrometer, Fluorescence Spectrometer, FT-IR Spectrometer, Extended X-ray Absorption Fine Structure (EXAFS) measurement capability at Center for Advanced Microstructure and Devices (CAMD- a multimillion dollar DOE facility), Glove Box, gas hood chamber, high temperature furnaces, hydraulic press and several high performance computers. IN particular, a high temperature furnace (Thermodyne 6000 furnace) and a high temperature oven were acquired through this project funds. The PI Dr. R Bobba has acquired additional funds from federal agencies include NSF-Academic Research Infrastructure program and other DOE sites. They have extensively used the multimillion dollar DOE facility ''Center'' for Advanced Microstructures and Devices (CAMD) for electrochemical research. The students were heavily involved in the experimental EXAFS measurements and made use of their DCM beamline for EXAFS research. The primary objective was to provide hands on experience to the selected African American undergraduate and graduate students in experimental energy research.The goal was to develop research skills and involve them in the Preparation and Characterization of Solid

  20. Newly introduced sample preparation techniques: towards miniaturization.

    Science.gov (United States)

    Costa, Rosaria

    2014-01-01

    Sampling and sample preparation are of crucial importance in an analytical procedure, representing quite often a source of errors. The technique chosen for the isolation of analytes greatly affects the success of a chemical determination. On the other hand, growing concerns about environmental and human safety, along with the introduction of international regulations for quality control, have moved the interest of scientists towards specific needs. Newly introduced sample preparation techniques are challenged to meet new criteria: (i) miniaturization, (ii) higher sensitivity and selectivity, and (iii) automation. In this survey, the most recent techniques introduced in the field of sample preparation will be described and discussed, along with many examples of applications.

  1. Preparation and characterization of molten salt based nanothermic fluids with enhanced thermal properties for solar thermal applications

    International Nuclear Information System (INIS)

    Madathil, Pramod Kandoth; Balagi, Nagaraj; Saha, Priyanka; Bharali, Jitalaxmi; Rao, Peddy V.C.; Choudary, Nettem V.; Ramesh, Kanaparthi

    2016-01-01

    Highlights: • Prepared and characterized inorganic ternary molten salt based nanothermic fluids. • MoS_2 and CuO nanoparticles incorporated ternary molten salts have been prepared. • Thermal properties enhanced by the addition of MoS_2 and CuO nanoparticles. • The amount of nanoparticles has been optimized. - Abstract: In the current energy scenario, solar energy is attracting considerable attention as a renewable energy source with ample research and commercial opportunities. The novel and efficient technologies in the solar energy are directed to develop methods for solar energy capture, storage and utilization. High temperature thermal energy storage systems can deal with a wide range of temperatures and therefore they are highly recommended for concentrated solar power (CSP) applications. In the present study, a systematic investigation has been carried out to identify the suitable inorganic nanoparticles and their addition in the molten salt has been optimized. In order to enhance the thermo-physical properties such as thermal conductivity and specific heat capacity of molten salt based HTFs, we report the utilization of MoS_2 and CuO nanoparticles. The enhancement in the above mentioned thermo-physical properties has been demonstrated for optimized compositions and the morphologies of nanoparticle-incorporated molten salts have been studied by scanning electron microscopy (SEM). Nanoparticle addition to molten salts is an efficient method to prepare thermally stable molten salt based heat transfer fluids which can be used in CSP plants. It is also observed that the sedimentation of nanoparticles in molten salt is negligible compared to that in organic heat transfer fluids.

  2. Development, preparation and characterization of uranium molybdenum alloys for dispersion fuel application

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, V.P. [Metallic Fuels Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)], E-mail: vedsinha@barc.gov.in; Prasad, G.J.; Hegde, P.V.; Keswani, R.; Basak, C.B.; Pal, S.; Mishra, G.P. [Metallic Fuels Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2009-04-03

    Most of the research and test reactors worldwide have undergone core conversion from high enriched uranium base fuel to low enriched uranium base fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) program, which was launched in the late 1970s to reduce the risk of nuclear proliferation. To realize this goal, high density uranium compounds and {gamma}-stabilized uranium alloy powder were identified. In Metallic Fuels Division of BARC, R and D efforts are on to develop these high density uranium base alloys. This paper describes the preparation flow sheet for different compositions of Uranium and molybdenum alloys by an innovative powder processing route with uranium and molybdenum metal powders as starting materials. The same composition of U-Mo alloys were also fabricated by conventional method i.e. ingot metallurgy route. The U-Mo alloys prepared by both the methods were then characterized by XRD for phase analysis. The photomicrographs of alloys with different compositions prepared by powder metallurgy and ingot metallurgy routes are also included in the paper. The paper also covers the comparison of properties of the alloys prepared by powder metallurgy and ingot metallurgy routes.

  3. Development, preparation and characterization of uranium molybdenum alloys for dispersion fuel application

    International Nuclear Information System (INIS)

    Sinha, V.P.; Prasad, G.J.; Hegde, P.V.; Keswani, R.; Basak, C.B.; Pal, S.; Mishra, G.P.

    2009-01-01

    Most of the research and test reactors worldwide have undergone core conversion from high enriched uranium base fuel to low enriched uranium base fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) program, which was launched in the late 1970s to reduce the risk of nuclear proliferation. To realize this goal, high density uranium compounds and γ-stabilized uranium alloy powder were identified. In Metallic Fuels Division of BARC, R and D efforts are on to develop these high density uranium base alloys. This paper describes the preparation flow sheet for different compositions of Uranium and molybdenum alloys by an innovative powder processing route with uranium and molybdenum metal powders as starting materials. The same composition of U-Mo alloys were also fabricated by conventional method i.e. ingot metallurgy route. The U-Mo alloys prepared by both the methods were then characterized by XRD for phase analysis. The photomicrographs of alloys with different compositions prepared by powder metallurgy and ingot metallurgy routes are also included in the paper. The paper also covers the comparison of properties of the alloys prepared by powder metallurgy and ingot metallurgy routes

  4. Adsorption characteristics, recognition properties, and preliminary application of nordihydroguaiaretic acid molecularly imprinted polymers prepared by sol-gel surface imprinting technology

    Science.gov (United States)

    Liao, Sen; Zhang, Wen; Long, Wei; Hou, Dan; Yang, Xuechun; Tan, Ni

    2016-02-01

    In this paper, a new core-shell composite of nordihydroguaiaretic acid (NDGA) molecularly imprinted polymers layer-coated silica gel (MIP@SiO2) was prepared through sol-gel technique and applied as a material for extraction of NDGA from Ephedra. It was synthesized using NDGA as the template molecule, γ-aminopropyltriethoxysilane (APTS) and methyltriethoxysilane (MTEOS) as the functional monomers, tetraethyl orthosilicate (TEOS) as the cross-linker and ethanol as the porogenic solvent in the surface of silica. The non-imprinted polymers layer-coated silica gel (NIP@SiO2) were prepared with the same procedure, but with the absence of template molecule. In addition, the optimum adsorption affinity occurred when the molar ratio of NDGA:APTS:MTEOS:TEOS was 1:6:2:80. The prepared MIP@SiO2 and NIP@SiO2 were analyzed by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier transform-infrared spectroscopy (FT-IR). Their affinity properties to NDGA were evaluated through dynamic adsorption, static adsorption, and selective recognition experiments, and the results showed the saturated adsorption capacity of MIP@SiO2 could reach to 5.90 mg g-1, which was two times more than that of NIP@SiO2. High performance liquid chromatography (HPLC) was used to evaluate the extraction of NDGA from the medicinal plant ephedra by the above prepared materials, and the results indicated that the MIP@SiO2 had potential application in separation of the natural active component NDGA from medicinal plants.

  5. A Review of the Structure, Preparation, and Application of NLCs, PNPs, and PLNs

    Directory of Open Access Journals (Sweden)

    Qianwen Li

    2017-05-01

    Full Text Available Nanostructured lipid carriers (NLCs are modified solid lipid nanoparticles (SLNs that retain the characteristics of the SLN, improve drug stability and loading capacity, and prevent drug leakage. Polymer nanoparticles (PNPs are an important component of drug delivery. These nanoparticles can effectively direct drug delivery to specific targets and improve drug stability and controlled drug release. Lipid–polymer nanoparticles (PLNs, a new type of carrier that combines liposomes and polymers, have been employed in recent years. These nanoparticles possess the complementary advantages of PNPs and liposomes. A PLN is composed of a core–shell structure; the polymer core provides a stable structure, and the phospholipid shell offers good biocompatibility. As such, the two components increase the drug encapsulation efficiency rate, facilitate surface modification, and prevent leakage of water-soluble drugs. Hence, we have reviewed the current state of development for the NLCs’, PNPs’, and PLNs’ structures, preparation, and applications over the past five years, to provide the basis for further study on a controlled release drug delivery system.

  6. Polyelectrolyte Complex Nanoparticles of Poly(ethyleneimine and Poly(acrylic acid: Preparation and Applications

    Directory of Open Access Journals (Sweden)

    Martin Müller

    2011-04-01

    Full Text Available In this contribution we outline polyelectrolyte (PEL complex (PEC nanoparticles, prepared by mixing solutions of the low cost PEL components poly(ethyleneimine (PEI and poly(acrylic acid (PAC. It was found, that the size and internal structure of PEI/PAC particles can be regulated by process, media and structural parameters. Especially, mixing order, mixing ratio, PEL concentration, pH and molecular weight, were found to be sensible parameters to regulate the size (diameter of spherical PEI/PAC nanoparticles, in the range between 80–1,000 nm, in a defined way. Finally, applications of dispersed PEI/PAC particles as additives for the paper making process, as well as for drug delivery, are outlined. PEI/PAC nanoparticles mixed directly on model cellulose film showed a higher adsorption level applying the mixing order 1. PAC 2. PEI compared to 1. PEI 2. PAC. Surface bound PEI/PAC nanoparticles were found to release a model drug compound and to stay immobilized due to the contact with the aqueous release medium.

  7. Preparation and characterization of chondroitin-sulfate-A-coated magnetite nanoparticles for biomedical applications

    Science.gov (United States)

    Tóth, Ildikó Y.; Illés, Erzsébet; Szekeres, Márta; Tombácz, Etelka

    2015-04-01

    Polysaccharides are promising candidates for manufacturing biocompatible core-shell nanoparticles with potential in vivo use. Superparamagnetic magnetite nanoparticles (MNPs) have prospective application in both diagnosis and therapy, and so developing a novel polysaccharide shell on MNP core is of great challenge. MNPs were prepared by co-precipitation, then the surface of purified MNPs was coated with chondroitin-sulfate-A (CSA) to obtain core-shell structured magnetite nanoparticles (CSA@MNP). The effect of the added amount of CSA on the surface charging and the aggregation state of MNPs at various pHs and 10 mM NaCl was measured by electrophoresis and dynamic light scattering. The amphoteric behavior of MNPs was fundamentally modified by adsorption of CSA polyanions. A very low CSA-loading induces the aggregation of MNPs, while four times more stabilizes the dispersions over the whole pH-range studied. The coagulation kinetics experiments measured at pH=6.3±0.3 showed that salt tolerance of CSA@MNPs rises up to ~150 mM NaCl.

  8. Review on preparation techniques of particle reinforced metal matrix composites

    Directory of Open Access Journals (Sweden)

    HAO Bin

    2006-02-01

    Full Text Available This paper reviews the investigation status of the techniques for preparation of metal matrix composites and the research outcomes achieved recently. The mechanisms, characteristics, application ranges and levels of development of these preparation techniques are analyzed. The advantages and the disadvantages of each technique are synthetically evaluated. Lastly, the future directions of research and the prospects for the preparation techniques of metal matrix composites are forecasted.

  9. Engineering-derived approaches for iPSC preparation, expansion, differentiation and applications.

    Science.gov (United States)

    Li, Yang; Li, Ling; Chen, Zhi-Nan; Gao, Ge; Yao, Rui; Sun, Wei

    2017-07-31

    Remarkable achievements have been made since induced pluripotent stem cells (iPSCs) were first introduced in 2006. Compared with non-pluripotent stem cells, iPSC research faces several additional complexities, such as the choice of extracellular matrix proteins, growth and differentiation factors, as well as technical challenges related to self-renewal and directed differentiation. Overcoming these challenges requires the integration of knowledge and technologies from multiple fields including cell biology, biomaterial science, engineering, physics and medicine. Here, engineering-derived iPSC approaches are reviewed according to three aspects of iPSC studies: preparation, expansion, differentiation and applications. Engineering strategies, such as 3D systems establishment, cell-matrix mechanics and the regulation of biophysical and biochemical cues, together with engineering techniques, such as 3D scaffolds, cell microspheres and bioreactors, have been applied to iPSC studies and have generated insightful results and even mini-organs such as retinas, livers and intestines. Specific results are given to demonstrate how these approaches impact iPSC behavior, and related mechanisms are discussed. In addition, cell printing technologies are presented as an advanced engineering-derived approach since they have been applied in both iPSC studies and the construction of diverse tissues and organs. Further development and possible innovations of cell printing technologies are presented in terms of creating complex and functional iPSC-derived living tissues and organs.

  10. Recent progress in preparation and application of microfluidic chip electrophoresis

    International Nuclear Information System (INIS)

    Cong, Hailin; Xu, Xiaodan; Yu, Bing; Yuan, Hua; Peng, Qiaohong; Tian, Chao

    2015-01-01

    Since its discovery in 1990, microfluidic chip electrophoresis (MCE) has allowed the development of applications with small size, fast analysis, low cost, high integration density and automatic level, which are easy to carry and have made commercialization efficient. MCE has been widely used in the areas of environmental protection, biochemistry, medicine and health, clinical testing, judicial expertise, food sanitation, pharmaceutical checking, drug testing, agrochemistry, biomedical engineering and life science. As one of the foremost fields in the research of capillary electrophoresis, MCE is the ultimate frontier to develop the miniaturized, integrated, automated all-in-one instruments needed in modern analytical chemistry. By adopting the advanced technologies of micro-machining, lasers and microelectronics, and the latest research achievements in analytical chemistry and biochemistry, the sampling, separation and detection systems of commonly used capillary electrophoresis are integrated with high densities onto glass, quartz, silicon or polymer wafers to form the MCE, which can finish the analysis of multi-step operations such as injection, enrichment, reaction, derivatization, separation, and collection of samples in a portable, efficient and super high speed manner. With reference to the different technological achievements in this area, the latest developments in MCE are reviewed in this article. The preparation mechanisms, surface modifications, and properties of different materials in MCE are compared, and the different sampling, separation and detection systems in MCE are summarized. The performance of MCE in analysis of fluorescent substance, metallic ion, sugar, medicine, nucleic acid, DNA, amino acid, polypeptide and protein is discussed, and the future direction of development is forecast. (topical review)

  11. Recent progress in preparation and application of microfluidic chip electrophoresis

    Science.gov (United States)

    Cong, Hailin; Xu, Xiaodan; Yu, Bing; Yuan, Hua; Peng, Qiaohong; Tian, Chao

    2015-05-01

    Since its discovery in 1990, microfluidic chip electrophoresis (MCE) has allowed the development of applications with small size, fast analysis, low cost, high integration density and automatic level, which are easy to carry and have made commercialization efficient. MCE has been widely used in the areas of environmental protection, biochemistry, medicine and health, clinical testing, judicial expertise, food sanitation, pharmaceutical checking, drug testing, agrochemistry, biomedical engineering and life science. As one of the foremost fields in the research of capillary electrophoresis, MCE is the ultimate frontier to develop the miniaturized, integrated, automated all-in-one instruments needed in modern analytical chemistry. By adopting the advanced technologies of micro-machining, lasers and microelectronics, and the latest research achievements in analytical chemistry and biochemistry, the sampling, separation and detection systems of commonly used capillary electrophoresis are integrated with high densities onto glass, quartz, silicon or polymer wafers to form the MCE, which can finish the analysis of multi-step operations such as injection, enrichment, reaction, derivatization, separation, and collection of samples in a portable, efficient and super high speed manner. With reference to the different technological achievements in this area, the latest developments in MCE are reviewed in this article. The preparation mechanisms, surface modifications, and properties of different materials in MCE are compared, and the different sampling, separation and detection systems in MCE are summarized. The performance of MCE in analysis of fluorescent substance, metallic ion, sugar, medicine, nucleic acid, DNA, amino acid, polypeptide and protein is discussed, and the future direction of development is forecast.

  12. Preparation and controlled drug delivery applications of mesoporous silica polymer nanocomposites through the visible light induced surface-initiated ATRP

    Science.gov (United States)

    Huang, Long; Liu, Meiying; Mao, Liucheng; Xu, Dazhuang; Wan, Qing; Zeng, Guangjian; Shi, Yingge; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-08-01

    The mesoporous materials with large pore size, high specific surface area and high thermal stability have been widely utilized in a variety of fields ranging from environmental remediation to separation and biomedicine. However, surface modification of these silica nanomaterials is required to endow novel properties and achieve better performance for most of these applications. In this work, a new method has been established for surface modification of mesoporous silica nanoparticles (MSNs) that relied on the visible light induced atom transfer radical polymerization (ATRP). In the procedure, the copolymers composited with itaconic acid (IA) and poly(ethylene glycol)methyl acrylate (PEGMA) were grafted from MSNs using IA and PEGMA as the monomers and 10-Phenylphenothiazine(PTH) as the organic catalyst. The successful preparation of final polymer nanocomposites (named as MSNs-NH2-poly(IA-co-PEGMA)) were evidenced by a series of characterization techniques. More importantly, the anticancer agent cisplatin can be effectively loaded on MSNs-NH2-poly(IA-co-PEGMA) and controlled release it from the drug-loading composites with pH responsive behavior. As compared with conventional ATRP, the light induced surface-initiated ATRP could also be utilized for preparation of various silica polymer nanocomposites under rather benign conditions (e.g. absent of transition metal ions, low polymerization temperature and short polymerization time). Taken together, we have developed a rather promising strategy method for fabrication of multifunctional MSNs-NH2-poly(IA-co-PEGMA) with great potential for biomedical applications.

  13. Preparation of Ga-doped ZnO films by pulsed dc magnetron sputtering with cylindrical rotating target for thin film solar cell applications

    International Nuclear Information System (INIS)

    Shin, Beom-Ki; Lee, Tae-Il; Park, Ji-Hyeon; Park, Kang-Il; Ahn, Kyung-Jun; Park, Sung-Kee; Lee, Woong; Myoung, Jae-Min

    2011-01-01

    Applicability of Ga-doped ZnO (GZO) films for thin film solar cells (TFSCs) was investigated by preparing GZO films via pulsed dc magnetron sputtering (PDMS) with rotating target. The GZO films showed improved crystallinity and increasing degree of Ga doping with increasing thickness to a limit of 1000 nm. The films also fulfilled requirements for the transparent electrodes of TFSCs in terms of electrical and optical properties. Moreover, the films exhibited good texturing potential based on etching studies with diluted HCl, which yielded an improved light trapping capability without significant degradation in electrical propreties. It is therefore suggested that the surface-textured GZO films prepared via PDMS and etching are promising candidates for indium-free transparent electrodes for TFSCs.

  14. Preparation of Ga-doped ZnO films by pulsed dc magnetron sputtering with cylindrical rotating target for thin film solar cell applications

    Science.gov (United States)

    Shin, Beom-Ki; Lee, Tae-Il; Park, Ji-Hyeon; Park, Kang-Il; Ahn, Kyung-Jun; Park, Sung-Kee; Lee, Woong; Myoung, Jae-Min

    2011-11-01

    Applicability of Ga-doped ZnO (GZO) films for thin film solar cells (TFSCs) was investigated by preparing GZO films via pulsed dc magnetron sputtering (PDMS) with rotating target. The GZO films showed improved crystallinity and increasing degree of Ga doping with increasing thickness to a limit of 1000 nm. The films also fulfilled requirements for the transparent electrodes of TFSCs in terms of electrical and optical properties. Moreover, the films exhibited good texturing potential based on etching studies with diluted HCl, which yielded an improved light trapping capability without significant degradation in electrical propreties. It is therefore suggested that the surface-textured GZO films prepared via PDMS and etching are promising candidates for indium-free transparent electrodes for TFSCs.

  15. Development of Nano-Particles Within Polymeric Materials Prepared by Gamma Radiation and their Possible Practical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hegazy, E. S.A.; Ali, A. E.; AbdEl-Rehim, H.; Mohammady, M.; Abdel Aal, A. S. [National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt)

    2009-07-01

    Nanoparticles can be used in biomedical applications, where they facilitate laboratory diagnostics, or in medical drug targeting nanoparticles based on a core consisting of iron oxides that can be targeted through external magnets. Polyvinyl alcohol/Polyacrylic acid nanoparticles were prepared using gamma rays. The prepared PVA/AAc nano copolymers were treated with Fe{sup 2+}/ Fe{sup 3+} solution followed by ammonia solution to obtain PVA/AAc-Fe{sub 3}O{sub 4} nanoparticle ferrogel. Characterization of the PVA/AAc-Fe{sub 3}O{sub 4} nanoparticle ferrogel was carried out using XRD, TGA, DSc , TEM and AFM. The use of magnetic field sensitive nano-ferrogels as a drug carrier was investigated. It was found that the release of drug in absence of the effect of magnetic field is mostly slow than that under the influence of magnetic field. On the other hand, development of nanoparticles within radiation grafted polymeric surfaces using electroless plating technique was investigated. Surface modification of polypropylene films (PP) was carried out via radiation induced graft copolymerization of 4-vinyl pyridine (4VP) and acrylamide (AAm) to enhance the adhesion ability of the PP surface for electroless deposition of copper. The produced grafted films were characterized by studying their FTIR and thermal stability. The prepared grafted films were copper-plated by electroless deposition using the Pd as a catalyst to initiate the redox reaction. The influences of catalytic activation method parameters on the plating rate have been studied. The electrical characteristics of the copper plated films in comparison with grafted films were studied. The results showed the high adhesion of the deposited copper film to the grafted PP film as well as high electrical conductivity. (author)

  16. The definition of basic parameters of the set of small-sized equipment for preparation of dry mortar for various applications

    Directory of Open Access Journals (Sweden)

    Emelyanova Inga

    2017-01-01

    Full Text Available Based on the conducted information retrieval and review of the scientific literature, unsolved issues have been identified in the process of preparation of dry construction mixtures in the conditions of a construction site. The constructions of existing technological complexes for the production of dry construction mixtures are considered and their main drawbacks are identified in terms of application in the conditions of the construction site. On the basis of the conducted research, the designs of technological sets of small-sized equipment for the preparation of dry construction mixtures in the construction site are proposed. It is found out that the basis for creating the proposed technological kits are new designs of concrete mixers operating in cascade mode. A technique for calculating the main parameters of technological sets of equipment is proposed, depending on the use of the base machine of the kit.

  17. Ionic liquids: solvents and sorbents in sample preparation.

    Science.gov (United States)

    Clark, Kevin D; Emaus, Miranda N; Varona, Marcelino; Bowers, Ashley N; Anderson, Jared L

    2018-01-01

    The applications of ionic liquids (ILs) and IL-derived sorbents are rapidly expanding. By careful selection of the cation and anion components, the physicochemical properties of ILs can be altered to meet the requirements of specific applications. Reports of IL solvents possessing high selectivity for specific analytes are numerous and continue to motivate the development of new IL-based sample preparation methods that are faster, more selective, and environmentally benign compared to conventional organic solvents. The advantages of ILs have also been exploited in solid/polymer formats in which ordinarily nonspecific sorbents are functionalized with IL moieties in order to impart selectivity for an analyte or analyte class. Furthermore, new ILs that incorporate a paramagnetic component into the IL structure, known as magnetic ionic liquids (MILs), have emerged as useful solvents for bioanalytical applications. In this rapidly changing field, this Review focuses on the applications of ILs and IL-based sorbents in sample preparation with a special emphasis on liquid phase extraction techniques using ILs and MILs, IL-based solid-phase extraction, ILs in mass spectrometry, and biological applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. PREPARATIONS AND APPLICATION OF METAL NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    Adlim Adlim

    2010-06-01

    Full Text Available Terminology of metal nanoparticles, the uniqueness properties in terms of the surface atom, the quantum dot, and the magnetism are described. The further elaboration was on the synthesis of nanoparticles. Applications of metal nanoparticles in electronic, ceramic medical and catalysis were overviewed. The bibliography includes 81 references with 99% are journal articles.   Keywords: metal nanoparticles

  19. PREPARATIONS AND APPLICATION OF METAL NANOPARTICLES

    OpenAIRE

    Adlim, Adlim

    2010-01-01

    Terminology of metal nanoparticles, the uniqueness properties in terms of the surface atom, the quantum dot, and the magnetism are described. The further elaboration was on the synthesis of nanoparticles. Applications of metal nanoparticles in electronic, ceramic medical and catalysis were overviewed. The bibliography includes 81 references with 99% are journal articles.   Keywords: metal nanoparticles

  20. ViDiT-CACTUS: an inexpensive and versatile library preparation and sequence analysis method for virus discovery and other microbiology applications.

    Science.gov (United States)

    Verhoeven, Joost Theo Petra; Canuti, Marta; Munro, Hannah J; Dufour, Suzanne C; Lang, Andrew S

    2018-04-19

    High-throughput sequencing (HTS) technologies are becoming increasingly important within microbiology research, but aspects of library preparation, such as high cost per sample or strict input requirements, make HTS difficult to implement in some niche applications and for research groups on a budget. To answer these necessities, we developed ViDiT, a customizable, PCR-based, extremely low-cost (90% coverage), and the characterization and functional profiling of the complete microbial diversity (bacteria, archaea, viruses) within a deep-sea carnivorous sponge. ViDiT-CACTUS demonstrated its validity in a wide range of microbiology applications and its simplicity and modularity make it easily implementable in any molecular biology laboratory, towards various research goals.

  1. Operating Room Fires and Surgical Skin Preparation.

    Science.gov (United States)

    Jones, Edward L; Overbey, Douglas M; Chapman, Brandon C; Jones, Teresa S; Hilton, Sarah A; Moore, John T; Robinson, Thomas N

    2017-07-01

    Operating room fires are "never events" that remain an under-reported source of devastating complications. One common set-up that promotes fires is the use of surgical skin preparations combined with electrosurgery and oxygen. Limited data exist examining the incidence of fires and surgical skin preparations. A standardized, ex vivo model was created with a 15 × 15 cm section of clipped porcine skin. An electrosurgical "Bovie" pencil was activated for 2 seconds on 30 Watts coagulation mode in 21% oxygen (room air), both immediately and 3 minutes after skin preparation application. Skin preparations with and without alcohol were tested, and were applied with and without pooling. Alcohol-based skin preparations included 70% isopropyl alcohol (IPA) with 2% chlorhexidine gluconate, 74% IPA with 0.7% iodine povacrylex, and plain 70% IPA. No fires occurred with nonalcohol-based preparations (p fires occurred in 38% (23 of 60) at 0 minutes and 27% (16 of 60) at 3 minutes. Alcohol-based skin preparations fuel operating room fires in common clinical scenarios. Following manufacturer guidelines and allowing 3 minutes for drying, surgical fires were still created in 1 in 10 cases without pooling and more than one-quarter of cases with pooling. Surgeons can decrease the risk of an operating room fire by using nonalcohol-based skin preparations or avoiding pooling of the preparation solution. Published by Elsevier Inc.

  2. The appliction of project management in operations preparation of nuclear power station

    International Nuclear Information System (INIS)

    Tang Zhengrong; Zhang Zhixiong

    2001-01-01

    Concept, history, characteristics of the project management is introduced. Analysis is performed on the suitability of application of project management approach in nuclear power station operations preparation. Then the application of project management is detailed in order to present the readers our study and practice. Theory and practice indicate that the project management is a useful management tool for operations preparation of nuclear power station to achieve a good performance

  3. Development of a microrectification apparatus for analytical and preparative applications

    NARCIS (Netherlands)

    Ziogas, A.; Cominos, V.; Kolb, G.A.; Kost, H.J.; Werner, B.; Hessel, V.

    2012-01-01

    The realization of efficient microrectification equipment that can be operated intermittently or continuously is reported. The equipment can be used for both analytical and preparative separations of mixtures of liquid substances. Different binary systems were separated. A theoretical separation

  4. Adsorption characteristics, recognition properties, and preliminary application of nordihydroguaiaretic acid molecularly imprinted polymers prepared by sol–gel surface imprinting technology

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Sen; Zhang, Wen; Long, Wei; Hou, Dan; Yang, Xuechun; Tan, Ni, E-mail: tannii@21cn.com

    2016-02-28

    Graphical abstract: - Highlights: • Nordihydroguaiaretic acid imprinted polymer with imprinting factor 2.12 was prepared for the first time through hydrogen bonding and hydrophobic interaction between the template molecules and the bifunctional monomers. • The obtained surface molecularly imprinting polymers exhibited high affinity and selectivity to the template molecules. • The prepared surface molecularly imprinted polymers were used in separation the natural active component nordihydroguaiaretic acid from medicinal plants. - Abstract: In this paper, a new core-shell composite of nordihydroguaiaretic acid (NDGA) molecularly imprinted polymers layer-coated silica gel (MIP@SiO{sub 2}) was prepared through sol–gel technique and applied as a material for extraction of NDGA from Ephedra. It was synthesized using NDGA as the template molecule, γ-aminopropyltriethoxysilane (APTS) and methyltriethoxysilane (MTEOS) as the functional monomers, tetraethyl orthosilicate (TEOS) as the cross-linker and ethanol as the porogenic solvent in the surface of silica. The non-imprinted polymers layer-coated silica gel (NIP@SiO{sub 2}) were prepared with the same procedure, but with the absence of template molecule. In addition, the optimum adsorption affinity occurred when the molar ratio of NDGA:APTS:MTEOS:TEOS was 1:6:2:80. The prepared MIP@SiO{sub 2} and NIP@SiO{sub 2} were analyzed by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier transform-infrared spectroscopy (FT-IR). Their affinity properties to NDGA were evaluated through dynamic adsorption, static adsorption, and selective recognition experiments, and the results showed the saturated adsorption capacity of MIP@SiO{sub 2} could reach to 5.90 mg g{sup −1}, which was two times more than that of NIP@SiO{sub 2}. High performance liquid chromatography (HPLC) was used to evaluate the extraction of NDGA from the medicinal plant ephedra by the above prepared materials, and the results

  5. Adsorption characteristics, recognition properties, and preliminary application of nordihydroguaiaretic acid molecularly imprinted polymers prepared by sol–gel surface imprinting technology

    International Nuclear Information System (INIS)

    Liao, Sen; Zhang, Wen; Long, Wei; Hou, Dan; Yang, Xuechun; Tan, Ni

    2016-01-01

    Graphical abstract: - Highlights: • Nordihydroguaiaretic acid imprinted polymer with imprinting factor 2.12 was prepared for the first time through hydrogen bonding and hydrophobic interaction between the template molecules and the bifunctional monomers. • The obtained surface molecularly imprinting polymers exhibited high affinity and selectivity to the template molecules. • The prepared surface molecularly imprinted polymers were used in separation the natural active component nordihydroguaiaretic acid from medicinal plants. - Abstract: In this paper, a new core-shell composite of nordihydroguaiaretic acid (NDGA) molecularly imprinted polymers layer-coated silica gel (MIP@SiO_2) was prepared through sol–gel technique and applied as a material for extraction of NDGA from Ephedra. It was synthesized using NDGA as the template molecule, γ-aminopropyltriethoxysilane (APTS) and methyltriethoxysilane (MTEOS) as the functional monomers, tetraethyl orthosilicate (TEOS) as the cross-linker and ethanol as the porogenic solvent in the surface of silica. The non-imprinted polymers layer-coated silica gel (NIP@SiO_2) were prepared with the same procedure, but with the absence of template molecule. In addition, the optimum adsorption affinity occurred when the molar ratio of NDGA:APTS:MTEOS:TEOS was 1:6:2:80. The prepared MIP@SiO_2 and NIP@SiO_2 were analyzed by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier transform-infrared spectroscopy (FT-IR). Their affinity properties to NDGA were evaluated through dynamic adsorption, static adsorption, and selective recognition experiments, and the results showed the saturated adsorption capacity of MIP@SiO_2 could reach to 5.90 mg g"−"1, which was two times more than that of NIP@SiO_2. High performance liquid chromatography (HPLC) was used to evaluate the extraction of NDGA from the medicinal plant ephedra by the above prepared materials, and the results indicated that the MIP@SiO_2 had

  6. PREPARATIVE SKIN PREPARATION AND SURGICAL WOUND INFECTION

    Directory of Open Access Journals (Sweden)

    Anjanappa

    2015-01-01

    Full Text Available BACKGROUND AND OBJECTIVE: It is an established fact now that the normal skin of healthy human beings harbours a rich bacterial fl ora. Normally considered non - pathogenic , these organisms way be a potential source of infection of the surgical wound. Approximately 20% of the resident flora is beyond the reach of surgical scrubs and antiseptics. The goal of surgical preparation of the skin with antiseptics is to remove transient and pathogenic microorganisms on the skin surface and to reduce the resident flora to a low level. Povidone iodine (I odophors and chlorhexidine are most often used antiseptics for pre - operative skin preparation. OBJECTIVES : To evaluate the efficacy of povidone iodine alone and in combination with antiseptic agent containing alcoholic chlorhexidine in preoperative skin p reparation by taking swab culture. (2 To compare the rate of postoperative wound infection in both the groups. METHODS: One hundred patients (fifty in each group undergoing clean elective surgery with no focus of infection on the body were included in th e study. The pre - operative skin preparation in each group is done with the respective antiseptic regimen. In both the groups after application of antiseptics , sterile saline swab culture was taken immediately from site of incision. In cases which showed gr owth of organisms , the bacteria isolated were identified by their morphological and cultural characteristics. Grams staining , coagulase test and antibiotic sensitivity test were done wherever necessary and difference in colonization rates was determined as a measure of efficacy of antiseptic regimen. RESULTS: The results of the study showed that when compared to povidone iodine alone , using a combination of povidone iodine and alcoholic solution of chlorhexidine , the colonization rates of the site of incisi on were reduced significantly. As for the rate of post - operative wound infection , it is also proven that wound infections are also

  7. Preparation and characterisation of activated carbon

    International Nuclear Information System (INIS)

    Badri bin Muhammad; Karen binti Badri; Mohd Zobir bin Hussein; Zulkarnain bin Zainal; W.M. Daud bin W Yunus; Ramli bin Ibrahim

    1994-01-01

    Activated carbon was prepared from Agricultural wastes, such as coconut shell, Palm oil Shell and mangrove trunk by destructive distillation under vakuum. Chemical and Physical properties of the activated carbon were studied and some potentially useful application in the fields of chemistry was also carried out

  8. Sample preparation with solid phase microextraction and exhaustive extraction approaches: Comparison for challenging cases.

    Science.gov (United States)

    Boyacı, Ezel; Rodríguez-Lafuente, Ángel; Gorynski, Krzysztof; Mirnaghi, Fatemeh; Souza-Silva, Érica A; Hein, Dietmar; Pawliszyn, Janusz

    2015-05-11

    In chemical analysis, sample preparation is frequently considered the bottleneck of the entire analytical method. The success of the final method strongly depends on understanding the entire process of analysis of a particular type of analyte in a sample, namely: the physicochemical properties of the analytes (solubility, volatility, polarity etc.), the environmental conditions, and the matrix components of the sample. Various sample preparation strategies have been developed based on exhaustive or non-exhaustive extraction of analytes from matrices. Undoubtedly, amongst all sample preparation approaches, liquid extraction, including liquid-liquid (LLE) and solid phase extraction (SPE), are the most well-known, widely used, and commonly accepted methods by many international organizations and accredited laboratories. Both methods are well documented and there are many well defined procedures, which make them, at first sight, the methods of choice. However, many challenging tasks, such as complex matrix applications, on-site and in vivo applications, and determination of matrix-bound and free concentrations of analytes, are not easily attainable with these classical approaches for sample preparation. In the last two decades, the introduction of solid phase microextraction (SPME) has brought significant progress in the sample preparation area by facilitating on-site and in vivo applications, time weighted average (TWA) and instantaneous concentration determinations. Recently introduced matrix compatible coatings for SPME facilitate direct extraction from complex matrices and fill the gap in direct sampling from challenging matrices. Following introduction of SPME, numerous other microextraction approaches evolved to address limitations of the above mentioned techniques. There is not a single method that can be considered as a universal solution for sample preparation. This review aims to show the main advantages and limitations of the above mentioned sample

  9. Preparation and characterization of the nanoparticle and nanocomposite by gamma irradiation

    International Nuclear Information System (INIS)

    Lee, K.P.; Choi, S.H.

    2002-01-01

    Complete text of publication follows. Nanometer metal particle-organic polymer composites have attracted considerable interests in recent years. These composites not only combine the advantageous properties of metals and polymers but also exhibit many new characters that single-phase materials do not have. They have a wide range of applications including electromagnetic inferences shielding, heat conduction, discharge static electricity, conversion of mechanical to electrical signals, and like. In order to obtain nanocomposite, silver nanoparticle was prepared by γ-irradiation. The obtained Ag nanoparticle was characterized by UV, FT-IR, XRD, SEM, TEM, and etc. The ethylacetate-Ag nanocomposite was prepared by emulsion polymerization. The obtained nanocomposites were characterized by SEM, XRD, and thermal (TGA/DSC) analysis. Furthermore, the CdS nanocomposite was prepared using CdSO 4 and Na 2 SO 4 by γ-irradiation method. The ethylacetate-CdS nanocomposite was also prepared by emulsion polymerization, and characterized by SEM, XRD, and thermal (TGA/DSC) analysis. The application of such prepared metal particle-organic polymer composites in the field of anti-bacterial film, semiconductor film, and fluorescence film may be of interest

  10. Preparation and application of an innovative thrombocyte/leukocyte-enriched plasma to promote tissue repair in chelonians.

    Directory of Open Access Journals (Sweden)

    Francesco Di Ianni

    Full Text Available Platelet concentrates are widely used in mammalian regenerative medicine to improve tissue healing. Chelonians (Testudines would benefit from the application of thrombocyte preparations to regenerate damaged tissues, since traumatic injuries are leading causes of morbidity and mortality for both wild-living and domesticated animals. The aim of this study was to establish a protocol that optimized the recovery of the thrombocytes from blood samples and to show the efficacy of thrombocyte-enriched plasma in chelonians. Peripheral blood samples were obtained from Testudo spp. (n = 12 and Trachemys scripta elegans (n = 10. Blood cells were fractionated by sodium diatrizoate-sodium polysucrose density gradient using a two-step centrifugation protocol. Thrombocytes and leukocytes were isolated and resuspended to obtain thrombocyte-leucocyte rich plasma (TLRP. The mean recovery of leukocytes and thrombocytes was 48.9% (±4.0 SEM, n = 22 of the whole blood cell content. No statistically significant difference was observed between blood samples collected from different turtle species. The ability of TLRP to form a gel was evaluated by adding variable concentrations of calcium gluconate at room temperature and at 37°C. A reliable and consistent clotting of the TLRP was obtained in glass tubes and dishes by adding 5-20% v/v of a 100 mg/ml solution of calcium gluconate. Furthermore, in order to test the clinical efficacy of TLRP, a preliminary evaluation was performed on four turtles (Testudo spp. with traumatic injuries. In all the four animals, a successful clinical outcome was observed. The results demonstrated that a thrombocyte-enriched plasma, comparable to mammalian platelet rich plasma, can be prepared from chelonian blood samples. Furthermore, although the low number of cases presented does not allow definitive conclusions from a clinical point of view, their outcome suggests that TLRP application could be further investigated to improve the

  11. Preparation and Application of an Innovative Thrombocyte/Leukocyte-Enriched Plasma to Promote Tissue Repair in Chelonians

    Science.gov (United States)

    Di Ianni, Francesco; Merli, Elisa; Burtini, Francesca; Conti, Virna; Pelizzone, Igor; Di Lecce, Rosanna; Parmigiani, Enrico; Squassino, Gian Paolo; Del Bue, Maurizio; Lucarelli, Enrico; Ramoni, Roberto; Grolli, Stefano

    2015-01-01

    Platelet concentrates are widely used in mammalian regenerative medicine to improve tissue healing. Chelonians (Testudines) would benefit from the application of thrombocyte preparations to regenerate damaged tissues, since traumatic injuries are leading causes of morbidity and mortality for both wild-living and domesticated animals. The aim of this study was to establish a protocol that optimized the recovery of the thrombocytes from blood samples and to show the efficacy of thrombocyte-enriched plasma in chelonians. Peripheral blood samples were obtained from Testudo spp. (n = 12) and Trachemys scripta elegans (n = 10). Blood cells were fractionated by sodium diatrizoate-sodium polysucrose density gradient using a two-step centrifugation protocol. Thrombocytes and leukocytes were isolated and resuspended to obtain thrombocyte-leucocyte rich plasma (TLRP). The mean recovery of leukocytes and thrombocytes was 48.9% (±4.0 SEM, n = 22) of the whole blood cell content. No statistically significant difference was observed between blood samples collected from different turtle species. The ability of TLRP to form a gel was evaluated by adding variable concentrations of calcium gluconate at room temperature and at 37°C. A reliable and consistent clotting of the TLRP was obtained in glass tubes and dishes by adding 5-20% v/v of a 100 mg/ml solution of calcium gluconate. Furthermore, in order to test the clinical efficacy of TLRP, a preliminary evaluation was performed on four turtles (Testudo spp.) with traumatic injuries. In all the four animals, a successful clinical outcome was observed. The results demonstrated that a thrombocyte-enriched plasma, comparable to mammalian platelet rich plasma, can be prepared from chelonian blood samples. Furthermore, although the low number of cases presented does not allow definitive conclusions from a clinical point of view, their outcome suggests that TLRP application could be further investigated to improve the healing process of

  12. Preparation and mechanical properties of edible rapeseed protein films.

    Science.gov (United States)

    Jang, Sung-Ae; Lim, Geum-Ok; Song, Kyung Bin

    2011-03-01

    Edible films were manufactured from rapeseed oil extraction residues. To prepare rapeseed protein (RP) films, various concentrations of plasticizers and emulsifiers were incorporated into the preparation of a film-forming solution. The optimal conditions for the preparation of the RP film were 2% sorbitol/0.5% sucrose as plasticizer and 1.5% polysorbate 20 as an emulsifier. In addition, RP blend films were prepared. Gelidium corneum or gelatin was added to improve the physical properties of the RP film, and the highest tensile strength value of the films was 53.45 MPa for the 3% RP/4% gelatin film. Our results suggest that the RP-gelatin blend film is suitable for applications in food packaging. Edible RP films prepared in the present investigation can be applied in food packaging.

  13. THE USE OF A NOVEL ALDEHYDE-FUNCTIONALIZED CHITOSAN HYDROGEL TO PREPARE POROUS TUBULAR SCAFFOLDS FOR VASCULAR TISSUE ENGINEERING APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Eduardo P. Azevedo

    Full Text Available In this work, porous tubular scaffolds were prepared from a novel water soluble aldehyde-functionalized chitosan (ALDCHIT hydrogel, which was obtained by dissolving this chitosan derivative in water and using oxidized dextrose (OXDEXT as the crosslinking agent at different ALDCHIT:OXDEXT mole ratios (10:1, 10:2 and 10:4. By increasing the amount of OXDEXT in respect to ALDCHIT the hydrogels became more rigid and could absorb more than 200% of its weight in water. Since the ALDCHIT:OXDEXT 10:4 was the most stable hydrogel, its ability to form porous tubular scaffolds was investigated. The tubular scaffolds were prepared by the lyophilization method, where the orientation of the pores was controlled by exposing either the internal or the external surface of the frozen hydrogel during the sublimation step. When only the inner surface of the frozen hydrogel was exposed, tubular scaffolds with a highly porous lumen and a sealed outer surface were obtained, where the orientation of the pores, their sizes and interconnectivity seem to be optimum for vascular tissue engineering application.

  14. Metal oxide nanostructures: preparation, characterization and functional applications as chemical sensors.

    Science.gov (United States)

    Zappa, Dario; Bertuna, Angela; Comini, Elisabetta; Kaur, Navpreet; Poli, Nicola; Sberveglieri, Veronica; Sberveglieri, Giorgio

    2017-01-01

    Preparation and characterization of different metal oxide (NiO, WO 3 , ZnO, SnO 2 and Nb 2 O 5 ) nanostructures for chemical sensing are presented. p-Type (NiO) and n-type (WO 3 , SnO 2 , ZnO and Nb 2 O 5 ) metal oxide nanostructures were grown on alumina substrates using evaporation-condensation, thermal oxidation and hydrothermal techniques. Surface morphologies and crystal structures were investigated through scanning electron microscopy and Raman spectroscopy. Furthermore, different batches of sensors have been prepared, and their sensing performances towards carbon monoxide and nitrogen dioxide have been explored. Moreover, metal oxide nanowires have been integrated into an electronic nose and successfully applied to discriminate between drinking and contaminated water.

  15. Preparation and characterization of PEGylated chitosan nanocapsules as a carrier for pharmaceutical application

    Science.gov (United States)

    Najafabadi, Alireza Hassani; Abdouss, Majid; Faghihi, Shahab

    2014-03-01

    A new method to conjugate methoxy polyethylene glycol (mPEG) to C6 position of chitosan under the mild condition is introduced that improves the biocompatibility and water solubility of chitosan. Harsh deprotecting step and several purification cycles are two major disadvantages of the current methods for preparing PEGylated chitosan. In this study, the amine groups at C2 position of chitosan are protected using SDS followed by grafting the PEG. The protecting group of chitosan is simply removed by dialyzing against Tris solution. The chemical structure of the prepared polymer is characterized by FTIR and 1H NMR spectroscopy. Fourier transformed-infrared (FT-IR) and 1H NMR spectra confirmed that the mPEG is successfully grafted to C6 position of chitosan. Prepared methoxy polyethylene glycol (mPEG) is then employed to prepare the nanocapsules for the encapsulation of poor water-soluble drug, propofol. The TEM, AFM, and DLS techniques are used to characterize the prepared nanocapsules size and morphology. The results show a size of about 80 nm with spherical shape for nanocapsules. In vitro drug release is carried out to evaluate the potential of nanocarriers for the intravenous delivery of drugs. The profile of release from formulated nanocapsules is similar to those of commercial lipid emulsion (CLE). In vivo animal sleep-recovery test on rats shows a close similarity between the time of unconsciousness and recovery of righting reflex between nanoparticles and CLE. This study provides an efficient, novel, and easy method for preparing a carrier system that requires less intensive reaction conditions, fewer reaction steps, and less purification steps. In addition, the nanocapsules introduced here could be a promising nano carrier for the delivery of poor water-soluble drugs.

  16. Microfluidic Sample Preparation for Diagnostic Cytopathology

    Science.gov (United States)

    Mach, Albert J.; Adeyiga, Oladunni B.; Di Carlo, Dino

    2014-01-01

    The cellular components of body fluids are routinely analyzed to identify disease and treatment approaches. While significant focus has been placed on developing cell analysis technologies, tools to automate the preparation of cellular specimens have been more limited, especially for body fluids beyond blood. Preparation steps include separating, concentrating, and exposing cells to reagents. Sample preparation continues to be routinely performed off-chip by technicians, preventing cell-based point-of-care diagnostics, increasing the cost of tests, and reducing the consistency of the final analysis following multiple manually-performed steps. Here, we review the assortment of biofluids for which suspended cells are analyzed, along with their characteristics and diagnostic value. We present an overview of the conventional sample preparation processes for cytological diagnosis. We finally discuss the challenges and opportunities in developing microfluidic devices for the purpose of automating or miniaturizing these processes, with particular emphases on preparing large or small volume samples, working with samples of high cellularity, automating multi-step processes, and obtaining high purity subpopulations of cells. We hope to convey the importance of and help identify new research directions addressing the vast biological and clinical applications in preparing and analyzing the array of available biological fluids. Successfully addressing the challenges described in this review can lead to inexpensive systems to improve diagnostic accuracy while simultaneously reducing overall systemic healthcare costs. PMID:23380972

  17. The Preparation of Graphene

    Institute of Scientific and Technical Information of China (English)

    Chen Yanyan

    2015-01-01

    Graphene has unique structure and possesses excellent physical and chemical properties, and it has received a great deal of attention in related research fields. The quality, quantity and application of graphene are related to its preparation methods. At present the bottleneck of graphene research is that both high-quality and large quantity of graphene could not be obtained simultaneously and the reason is that the basic mechanism of graphene formation has mot been wel understood.

  18. Biosurfactants for Microbubble Preparation and Application

    OpenAIRE

    Takeo Shiina; Zengshe Liu; Mitsutoshi Nakajima; Qingyi Xu

    2011-01-01

    Biosurfactants can be classified by their chemical composition and their origin. This review briefly describes various classes of biosurfactants based on their origin and introduces a few of the most widely used biosurfactants. The current status and future trends in biosurfactant production are discussed, with an emphasis on those derived from plants. Following a brief introduction of the properties of microbubbles, recent progress in the application of microbubble technology to molecular im...

  19. Preparation of ZnO/Ag nanocomposite and coating on polymers for anti-infection biomaterial application.

    Science.gov (United States)

    Sadeghi, Babak

    2014-01-24

    ZnO/Ag nanocomposites coated with polyvinyl chloride (PVC) were prepared by chemical reduction method, for anti-infection biomaterial application. There is a growing interest in attempts in using biomolecular as the templates to grow inorganic nanocomposites in controlled morphology and structure. By optimizing the experiment conditions, we successfully fabricated high yield of ZnO/Ag nanocomposite with full coverage of high-density polyvinyl chloride (PVC) coating. More importantly, ZnO/Ag nanocomposites were shown to significantly inhibit the growth of Staphylococcus aureus in solution. It was further shown that ZnO/Ag nanocomposites induced thiol depletion that caused death of S. aureus. The coatings were fully characterized using techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Most importantly, compared to uncoated metals, the coatings on PVC promoted healthy antibacterial activity. Importantly, compared to ZnO-Ag -uncoated PVC, the ZnO/Ag nanocomposites coated was approximately triplet more effective in preventing bacteria attachment. The result of Thermal Gravimetric Analysis (TGA) indicates that, the ZnO/Ag nanocomposites are chemically stable in the temperature range from 50 to 900°C. This result, for the first time, demonstrates the potential of using ZnO/Ag nanocomposites as a coating material for numerous anti-bacterial applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Preparation of thermo-responsive graft copolymer by using a novel macro-RAFT agent and its application for drug delivery

    International Nuclear Information System (INIS)

    Song, Cunfeng; Yu, Shirong; Liu, Cheng; Deng, Yuanming; Xu, Yiting; Chen, Xiaoling; Dai, Lizong

    2016-01-01

    A methodology to prepare thermo-responsive graft copolymer by using a novel macro-RAFT agent was proposed. The macro-RAFT agent with pendant dithioester (ZC(S)SR) was facilely prepared via the combination of RAFT polymerization and esterification reaction. By means of ZC(S)SR-initiated RAFT polymerization, the thermo-responsive graft copolymer consisting of poly(methyl methacrylate-co-hydroxylethyl methacrylate) (P(MMA-co-HEMA)) backbone and hydrophilic poly(N-isopropylacrylamide) (PNIPAAm) side chains was constructed through the “grafting from” approach. The chemical compositions and molecular weight distributions of the synthesized polymers were respectively characterized by "1H nuclear magnetic resonance ("1H NMR) and gel permeation chromatography (GPC). Self-assembly behavior of the amphiphilic graft copolymers (P(MMA-co-HEMA)-g-PNIPAAm) was studied by transmission electron microscopy (TEM), dynamic light scattering (DLS) and spectrofluorimeter. The critical micelle concentration (CMC) value was 0.052 mg mL"−"1. These micelles have thermo-responsibility and a low critical solution temperature (LCST) of 33.5 °C. Further investigation indicated that the guest molecule release property of these micelles, which can be well described by a first-order kinetic model, was significantly affected by temperature. Besides, the micelles exhibited excellent biocompatibility and cellular uptake property. Hence, these micelles are considered to have potential application in controlled drug delivery. - Highlights: • A novel macro-RAFT agent with ZC(S)SR was used for preparing graft copolymer. • P(MMA-co-HEMA)-g-PNIPAAm was successful prepared via the “grafting from” approach. • Thermo-responsibility of the P(MMA-co-HEMA)-g-PNIPAAm micelles was investigated. • The drug release behavior of the P(MMA-co-HEMA)-g-PNIPAAm micelles was studied. • These micelles exhibited excellent biocompatibility and cellular uptake property.

  1. Preparation of thermo-responsive graft copolymer by using a novel macro-RAFT agent and its application for drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Song, Cunfeng; Yu, Shirong [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Liu, Cheng; Deng, Yuanming; Xu, Yiting [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005 (China); Chen, Xiaoling, E-mail: tinachen0628@163.com [Department of Endodontics, Xiamen Stomatology Hospital, Teaching Hospital of Fujian Medical University, Xiamen 361003 (China); Dai, Lizong, E-mail: lzdai@xmu.edu.cn [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005 (China)

    2016-05-01

    A methodology to prepare thermo-responsive graft copolymer by using a novel macro-RAFT agent was proposed. The macro-RAFT agent with pendant dithioester (ZC(S)SR) was facilely prepared via the combination of RAFT polymerization and esterification reaction. By means of ZC(S)SR-initiated RAFT polymerization, the thermo-responsive graft copolymer consisting of poly(methyl methacrylate-co-hydroxylethyl methacrylate) (P(MMA-co-HEMA)) backbone and hydrophilic poly(N-isopropylacrylamide) (PNIPAAm) side chains was constructed through the “grafting from” approach. The chemical compositions and molecular weight distributions of the synthesized polymers were respectively characterized by {sup 1}H nuclear magnetic resonance ({sup 1}H NMR) and gel permeation chromatography (GPC). Self-assembly behavior of the amphiphilic graft copolymers (P(MMA-co-HEMA)-g-PNIPAAm) was studied by transmission electron microscopy (TEM), dynamic light scattering (DLS) and spectrofluorimeter. The critical micelle concentration (CMC) value was 0.052 mg mL{sup −1}. These micelles have thermo-responsibility and a low critical solution temperature (LCST) of 33.5 °C. Further investigation indicated that the guest molecule release property of these micelles, which can be well described by a first-order kinetic model, was significantly affected by temperature. Besides, the micelles exhibited excellent biocompatibility and cellular uptake property. Hence, these micelles are considered to have potential application in controlled drug delivery. - Highlights: • A novel macro-RAFT agent with ZC(S)SR was used for preparing graft copolymer. • P(MMA-co-HEMA)-g-PNIPAAm was successful prepared via the “grafting from” approach. • Thermo-responsibility of the P(MMA-co-HEMA)-g-PNIPAAm micelles was investigated. • The drug release behavior of the P(MMA-co-HEMA)-g-PNIPAAm micelles was studied. • These micelles exhibited excellent biocompatibility and cellular uptake property.

  2. Application of Micro-coprecipitation Method to Alpha Source Preparation for Measuring Alpha Nuclides

    International Nuclear Information System (INIS)

    Lee, Myung Ho; Park, Jong Ho; Oh, Se Jin; Song, Byung Chul; Song, Kyuseok

    2011-01-01

    Among the source preparations, an electrodeposition is a commonly used method for the preparation of sources for an alpha spectrometry, because this technique is simple and produces a very thin deposit, which is essential for a high resolution of the alpha peak. Recently, micro-coprecipitation with rare earths have been used to yield sources for -spectrometry. In this work, the Pu, Am and Cm isotopes were purified from hindrance nuclides and elements with an a TRU resin in radioactive waste samples, and the activity concentrations of the Pu, Am and Cm isotopes were determined by radiation counting methods after alpha source preparation like micro coprecipitation. After the Pu isotopes in the radioactive waste samples were separated from the other nuclides with an anion exchange resin, the Am isotopes were purified with a TRU resin and an anion exchange resin or a TRU resin. Activity concentrations and chemical recoveries of 241 Am purified with the TRU resin were similar to those with the TRU resin and anion exchange resin. In this study, to save on the analytical time and cost, the Am isotopes were purified with the TRU resin without using an additional anion exchange resin. After comparing the electrodeposition method with the micro-coprecipitation method, the micro-coprecipitation method was used for the alpha source preparation, because the micro-coprecipitation method is simple and more reliable for source preparation of the Pu, Am and Cm isotopes

  3. Single Atoms Preparation Using Light-Assisted Collisions

    Directory of Open Access Journals (Sweden)

    Yin Hsien Fung

    2016-01-01

    Full Text Available The detailed control achieved over single optically trapped neutral atoms makes them candidates for applications in quantum metrology and quantum information processing. The last few decades have seen different methods developed to optimize the preparation efficiency of single atoms in optical traps. Here we review the near-deterministic preparation of single atoms based on light-assisted collisions and describe how this method can be implemented in different trap regimes. The simplicity and versatility of the method makes it feasible to be employed in future quantum technologies such as a quantum logic device.

  4. QUALITY IMPROVEMENT MODEL AT THE MANUFACTURING PROCESS PREPARATION LEVEL

    Directory of Open Access Journals (Sweden)

    Dusko Pavletic

    2009-12-01

    Full Text Available The paper expresses base for an operational quality improvement model at the manufacturing process preparation level. A numerous appropriate related quality assurance and improvement methods and tools are identified. Main manufacturing process principles are investigated in order to scrutinize one general model of manufacturing process and to define a manufacturing process preparation level. Development and introduction of the operational quality improvement model is based on a research conducted and results of methods and tools application possibilities in real manufacturing processes shipbuilding and automotive industry. Basic model structure is described and presented by appropriate general algorithm. Operational quality improvement model developed lays down main guidelines for practical and systematic application of quality improvements methods and tools.

  5. 21 CFR 1308.23 - Exemption of certain chemical preparations; application.

    Science.gov (United States)

    2010-04-01

    ... special research purposes and not for general administration to a human being or other animal, if the... concentration that the packaged quantity does not present any significant potential for abuse (the type of packaging and the history of abuse of the same or similar preparations may be considered in determining the...

  6. Preparation of bovine serum albumin hollow microparticles by the water-in-oil emulsion solvent diffusion technique for drug delivery applications

    International Nuclear Information System (INIS)

    Baimark, Y.; Srisa-Ard, M.; Srihaman, P.

    2012-01-01

    Biodegradable bovine serum albumin (BSA) hollow microparticles have been prepared by a single step and rapid water-in-oil emulsion solvent diffusion method without any emulsifiers and templates. Aqueous BSA solution and ethyl acetate were used as water and oil phases, respectively. BSA solution was cross-linked with polyethylene glycol diglycidyl ether (PEGDE) before microparticle formation. Methylene blue (MB) was used as a water-soluble model drug to entrap in the microparticle matrix. The non-cross-linked and cross-linked BSA microparticles contained empty core structure with outer smooth surface. Inner surface and matrix of hollow microparticles consisted void structure. Drug loading did not affect the microparticle morphology. Cumulative drug released from microparticles was decreased steadily as decreasing of MB ratio and increasing of PEGDE ratio. The BSA hollow microparticles may have potential application in controlled release drug delivery application. (author)

  7. Preparation and controlled drug delivery applications of mesoporous silica polymer nanocomposites through the visible light induced surface-initiated ATRP

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Long; Liu, Meiying; Mao, Liucheng; Xu, Dazhuang; Wan, Qing; Zeng, Guangjian; Shi, Yingge [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wen, Yuanqing, E-mail: m18600788382@163.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and The Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2017-08-01

    Graphical abstract: A novel strategy for surface PEGylation of mesoporous silica nanoparticles was developed based on the light induced surface-initiated atom transfer radical polymerization. - Highlights: • Surface modification of silica nanoparticles through light induced surface-initiated ATRP. • MSNs-NH{sub 2}-poly(IA-co-PEGMA) nanocomposites show high water dispersity. • MSNs-NH{sub 2}-poly(IA-co-PEGMA) nanocomposites are promising for biomedical applications. • The light induced ATRP possesses many advantages as compared with traditional ATRP. - Abstract: The mesoporous materials with large pore size, high specific surface area and high thermal stability have been widely utilized in a variety of fields ranging from environmental remediation to separation and biomedicine. However, surface modification of these silica nanomaterials is required to endow novel properties and achieve better performance for most of these applications. In this work, a new method has been established for surface modification of mesoporous silica nanoparticles (MSNs) that relied on the visible light induced atom transfer radical polymerization (ATRP). In the procedure, the copolymers composited with itaconic acid (IA) and poly(ethylene glycol)methyl acrylate (PEGMA) were grafted from MSNs using IA and PEGMA as the monomers and 10-Phenylphenothiazine(PTH) as the organic catalyst. The successful preparation of final polymer nanocomposites (named as MSNs-NH{sub 2}-poly(IA-co-PEGMA)) were evidenced by a series of characterization techniques. More importantly, the anticancer agent cisplatin can be effectively loaded on MSNs-NH{sub 2}-poly(IA-co-PEGMA) and controlled release it from the drug-loading composites with pH responsive behavior. As compared with conventional ATRP, the light induced surface-initiated ATRP could also be utilized for preparation of various silica polymer nanocomposites under rather benign conditions (e.g. absent of transition metal ions, low polymerization

  8. Tensile-Creep Test Specimen Preparation Practices of Surface Support Liners

    Science.gov (United States)

    Guner, Dogukan; Ozturk, Hasan

    2017-12-01

    Ground support has always been considered as a challenging issue in all underground operations. Many forms of support systems and supporting techniques are available in the mining/tunnelling industry. In the last two decades, a new polymer based material, Thin Spray-on Liner (TSL), has attained a place in the market as an alternative to the current areal ground support systems. Although TSL provides numerous merits and has different application purposes, the knowledge on mechanical properties and performance of this material is still limited. In laboratory studies, since tensile rupture is the most commonly observed failure mechanism in field applications, researchers have generally studied the tensile testing of TSLs with modification of American Society for Testing and Materials (ASTM) D-638 standards. For tensile creep testing, specimen preparation process also follows the ASTM standards. Two different specimen dimension types (Type I, Type IV) are widely preferred in TSL tensile testing that conform to the related standards. Moreover, molding and die cutting are commonly used specimen preparation techniques. In literature, there is a great variability of test results due to the difference in specimen preparation techniques and practices. In this study, a ductile TSL product was tested in order to investigate the effect of both specimen preparation techniques and specimen dimensions under 7-day curing time. As a result, ultimate tensile strength, tensile yield strength, tensile modulus, and elongation at break values were obtained for 4 different test series. It is concluded that Type IV specimens have higher strength values compared to Type I specimens and moulded specimens have lower results than that of prepared by using die cutter. Moreover, specimens prepared by molding techniques have scattered test results. Type IV specimens prepared by die cutter technique are suggested for preparation of tensile test and Type I specimens prepared by die cutter technique

  9. Preparation and characterization of silk sericin/PVA blend film with silver nanoparticles for potential antimicrobial application.

    Science.gov (United States)

    He, Huawei; Cai, Rui; Wang, Yejing; Tao, Gang; Guo, Pengchao; Zuo, Hua; Chen, Liqun; Liu, Xinyu; Zhao, Ping; Xia, Qingyou

    2017-11-01

    Sericin has great potentials in biomedical applications for its good reactive activity, biocompatibility and biodegradability. However, the undesirable mechanical performance limits its application. Here, we developed a green, facile and economic approach to prepare sericin/polyvinyl alcohol (PVA) blend film. Further, silver nanoparticles (AgNPs) were synthesized in situ on the surface of sericin/PVA film via UV-assisted green synthesis method. Mechanical performance, swelling, mass losing and water retention tests showed the blend film had good mechanical performance, hygroscopicity, water retention capacity and low mass losing ratio. Scanning electron microscopy, fourier transfer infrared spectroscopy, X-ray diffractometry diffraction and X-ray photoelectron spectroscopy indicated the blending of PVA and sericin promoted the formation of hydrogen bond network between sericin and PVA, thus enhanced the mechanical performance and the stability of sericin, as well as the hygroscopicity and water retention capacity. UV irradiation and AgNPs modification did not affect the inner crystalline structure of sericin/PVA blend film. The inhibition zone and bacteria growth curve assay suggested AgNPs-sericin/PVA film had good antibacterial activities against E. coli and S. aureus. This novel AgNPs-sericin/PVA film shows great potentials in biomedical materials such as wound dressing and skin tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A novel application of the CuI thin film for preparing thin copper nanowires

    International Nuclear Information System (INIS)

    Shi Shuo; Sun Jialin; Zhang Jianhong; Cao Yang

    2005-01-01

    We present a novel application of the CuI thin film for preparing thin copper nanowires under a direct current electric field (DCEF). The CuI thin film was used as a medium for transmitting cuprous ions during the growing process of copper nanowires. As electrodes are the source of cuprous ions, high-purity copper films were deposited on both ends of the CuI thin film. At 353 K, under whole solid condition, without any templates, and having applied a DCEF of 1.5x10 4 V/m, cuprous ions were generated at the anode and migrated towards the cathode through the CuI film. At the edge of the cathode, cuprous ions obtained electrons and congregated to form a disordered thin copper nanowires bundle. The SEM images showed that these copper nanowires were from 10 to 20 nm in diameter and several hundred nanometers in length. The effect of the electric field intensity and the growth temperature on the diameter of the nanowires was also studied

  11. Preparation and Application of Immobilized Surfactant-Modified PANi-CNT/TiO2 under Visible-Light Irradiation

    Directory of Open Access Journals (Sweden)

    Ching Yuan

    2017-07-01

    Full Text Available Hydrothermally and sol-gel-synthesized immobilized surfactant-modified polyaniline-carbon nanotubes/TiO2 (PANi-CNT/TiO2 photocatalysts were prepared and their application in the degradation of diethyl phthalate (DEP under visible light at 410 nm was investigated in this sturdy. To improve the dispersion of nanoparticles and the transfer of electrons, the TiO2 surface was modified with both sodium dodecyl sulfate (SDS and functionalized carbon nanotubes (CNT-COOH and CNT-COCl. With the addition of PANi, which was increased from 1%–5%, the adsorption edge of the prepared photocatalysts shifted to 442 nm. The SDS linked the PANi polymers to achieve a thickness of coating of the film of up to 314–400 nm and 1301–1600 nm for sol-gel hydrolysis and hydrothermally-synthesized photocatalysts, respectively. An appropriate film thickness would extend the transfer path of the electrons and inhibit the recombination of the electrons and the electron-holes. The photo-degradation performance of DEP by the hydrothermally-synthesized photocatalysts was better than those by sol-gel hydrolysis. The results revealed that the hydroxyl radicals were the key oxidant in the degradation of DEP using hydrothermally-synthesized PANi-CNT/TiO2 photocatalysts. The morphology and functional groups of the raw materials of photocatalysts were characterized and a comparison of photocatalytic activity with other TiO2-based photocatalysts was also provided.

  12. Preparation of three-dimensionally ordered macroporous polycysteine film and application in sensitive detection of 4-chlorophenol

    International Nuclear Information System (INIS)

    Zhang, Shenghui; Shi, Zhen; Wang, Jinshou; Cheng, Qin; Wu, Kangbing

    2014-01-01

    Highlights: • Polycysteine film with three-dimensionally ordered porous structures was prepared. • 3-DOM polycysteine film exhibited large active area and signal enhancement effects. • 3-DOM polycysteine film increased oxidation signal of 4-chlorophenol by 5-fold. - Abstract: Polystyrene microspheres with diameter of 350 nm were prepared, and then used to arrange on the surface of glassy carbon electrode (GCE) as structure-directing template. By successive cyclic sweeps between −1.0 V and 2.0 V in pH 7 phosphate buffer containing 10 mM cysteine, polycysteine film was electrodeposited on polystyrene microspheres-arranged GCE. After removing polystyrene template, a three-dimensionally ordered macroporous (3-DOM) polycysteine film was achieved, as confirmed by scanning electron microscopy measurements. Electrochemical responses of K 3 [Fe(CN) 6 ] probe indicated that 3-DOM polycysteine film-modified GCE exhibited larger active area, compared with GCE, polycysteine film-modified GCE and electrochemically oxidized GCE. The application of 3-DOM polycysteine film in electrochemical detection of 4-chlorophenol was studied. Due to ordered porous structures, the 3-DOM polycysteine film-modified GCE displayed signal enhancement effects, and enhanced the oxidation peak currents of 4-chlorophenol. As a result, a sensitive electrochemical method was developed for the detection of 4-chlorophenol, and the detection limit was 1.67 × 10 −8 M. This new method was used to detect 4-chlorophenol in water samples, and the value of recovery was over the range from 99.6% to 107%

  13. The application of prepared porous carbon materials: Effect of different components on the heavy metal adsorption.

    Science.gov (United States)

    Song, Min; Wei, Yuexing; Yu, Lei; Tang, Xinhong

    2016-06-01

    In this study, five typical municipal solid waste (MSW) components (tyres, cardboard, polyvinyl chloride (PVC), acrylic textile, toilet paper) were used as raw materials to prepare four kinds of MSW-based carbon materials (paperboard-based carbon materials (AC1); the tyres and paperboard-based carbon materials (AC2); the tyres, paperboard and PVC-based carbon materials (AC3); the tyres, paperboard, toilet paper, PVC and acrylic textile-based carbon materials (AC4)) by the KOH activation method. The characteristic results illustrate that the prepared carbon adsorbents exhibited a large pore volume, high surface area and sufficient oxygen functional groups. Furthermore, the application of AC1, AC2, AC3, AC4 on different heavy metal (Cu(2+), Zn(2+), Pb(2+), Cr(3+)) removals was explored to investigate their adsorption properties. The effects of reaction time, pH, temperature and adsorbent dosage on the adsorption capability of heavy metals were investigated. Comparisons of heavy metal adsorption on carbon of different components were carried out. Among the four samples, AC1 exhibits the highest adsorption capacity for Cu(2+); the highest adsorption capacities of Pb(2+) and Zn(2+) are obtained for AC2; that of Cr(3+) are obtained for AC4. In addition, the carbon materials exhibit better adsorption capability of Cu(2+) and Pb(2+) than the other two kind of metal ions (Zn(2+) and Cr(3+)). © The Author(s) 2016.

  14. Anisotropic nanomaterials preparation, properties, and applications

    CERN Document Server

    Li, Quan

    2015-01-01

    In this book anisotropic one-dimensional and two-dimensional nanoscale building blocks and their assembly into fascinating and qualitatively new functional structures embracing both hard and soft components are explained. Contributions from leading experts regarding important aspects like synthesis, assembly, properties and applications of the above materials are compiled into a reference book. The anisotropy, i.e. the direction-dependent physical properties, of materials is fascinating and elegant and has sparked the quest for anisotropic materials with useful properties. With such a curiosi

  15. Promise Zones for Applicants

    Data.gov (United States)

    Department of Housing and Urban Development — This tool assists applicants to HUD's Promise Zone initiative prepare data to submit with their application by allowing applicants to draw the exact location of the...

  16. Preparation of porous carboxymethyl chitosan grafted poly (acrylic acid) superabsorbent by solvent precipitation and its application as a hemostatic wound dressing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu, E-mail: cylsy@163.com [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Zhang, Yong [School of Life Science, Beijing Institute of Technology, Beijing 100081 (China); Wang, Fengju [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Meng, Weiwei; Yang, Xinlin [School of Life Science, Beijing Institute of Technology, Beijing 100081 (China); Li, Peng [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Jiang, Jianxin [State Key Laboratory of Trauma Burns and Combined Injury, The Third Military Medical University, Chongqing 400042 (China); Tan, Huimin [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Zheng, Yongfa [Guangdong Fuyang Biotechnology Co., Ltd., Heyuan, Guangdong 517000 (China)

    2016-06-01

    The volume phase transition of a hydrogel initiated by shrinking may result in complex patterns on its surface. Based on this unique property of hydrogel, we have developed a novel solvent precipitation method to prepare a kind of novel superabsorbent polymers with excellent hemostatic properties. A porous carboxymethyl chitosan grafted poly (acrylic acid) (CMCTS-g-PAA) superabsorbent polymer was prepared by precipitating CMCTS-g-PAA hydrogel with ethanol. Its potential application in hemostatic wound dressing was investigated. The results indicate that the modified superabsorbent polymer is non-cytotoxic. It showed a high swelling capacity and better hemostatic performance in the treatments of hemorrhage model of ear artery, arteria cruralis and spleen of the New Zealand white rabbit than the unmodified polymer and other commonly used clinic wound dressings. The hemostatic mechanism of the porous CMCTS-g-PAA polymer was also discussed. - Highlights: • The novel solvent precipitation method was developed to prepare the porous superabsorbent polymer. • The swelling rate was promoted and the harmful residual monomer was leached after modification. • The modified polymer showed good biological safety. • It showed good hemostasis to arterial hemorrhage model of the animal. • The hemostatic mechanism of the modified superabsorbent polymer was discussed.

  17. ACTIVITY OF LEAF-CUTTING ANT Atta sexdens piriventris SUBMITED TO HIGH DILUTION HOMEOPATHIC PREPARATIONS

    Directory of Open Access Journals (Sweden)

    Alexandre Giesel

    2013-02-01

    Full Text Available The effect of high dilution preparations on the movement and foraging activities of Atta sexdens piriventris was evaluated. Five colonies of ants were located on each of the five experimental areas using a randomized complete block design. Three main forage trails from each colony were selected from where evaluations were made. Ten mL of high dilution preparation of Atta sexdens piriventris nosodes and Belladonna homeopathy solution were sprayed over 0.5 m of each selected trail, 1.0 m far from the nest. The controls were pure water and non treated trails. Applications were made daily during 10 days. The total number of ants moving on each trail one meter away from the nest, carrying or not plant fragments, were assessed before the daily application. Dilution preparations at 30CH (thirtieth centesimal Hahnemannian dilution of A. sexdens piriventris nosodes and Belladonna reduced the activities of ants from the fifth day after the first application. The treatment effect lasted more than 20 days after the last application. The use of preparation at 30CH dilution order to reduce the foraging activity of leaf-cutting ants is a potential non residual method to manage leaf-cutting ants.

  18. 7 CFR 3406.12 - Program application materials-teaching.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Program application materials-teaching. 3406.12... GRANTS PROGRAM Preparation of a Teaching Proposal § 3406.12 Program application materials—teaching... program, and the forms needed to prepare and submit teaching grant applications under the program. ...

  19. Preparation to exceptional operations

    International Nuclear Information System (INIS)

    Sort, M.

    1984-01-01

    Preparation to special maintenance operations requires a specific approach according to the considered intervention type. Replacement of vapor generators is representative of a kind of intervention where technics is generally only an adaptation to the power plant context of processes already in application in construction, and where methodology, planning and organization have an important role because of the variety and the quantity of taskworks to be done, the involved manpower, the dosimetry and time lag requirements [fr

  20. New pathway to prepare gold nanoparticles and their applications in catalysis and surface-enhanced Raman scattering.

    Science.gov (United States)

    Chang, Chun-Chao; Yang, Kuang-Hsuan; Liu, Yu-Chuan; Hsu, Ting-Chu

    2012-05-01

    As shown in the literature, additional energies are necessary for the reduction of positively charged noble metal ions to prepare metal nanoparticles (NPs). In this work, we report a new green pathway to prepare Au NPs in neutral 0.1M NaCl aqueous solutions from bulk Au substrates without addition of any stabilizer and reductant just via aid of natural chitosan (Ch) at room temperature. Au- and Ch-containing complexes in aqueous solution were electrochemically prepared. The role of Ch is just an intermediate to perform electron transfer with Au NPs. The stability of these prepared Au NPs is well maintained by Au NPs themselves with slightly positively charged Au remained on the surface of Au NPs. The particle size of prepared spherical Au (111) NPs is ca. 15 nm in diameter. Moreover, increasing the pH of preparation solutions can be contributive to preparing concentrated Au NPs in solutions. The prepared Au NPs are surface-enhanced Raman scattering (SERS)-active for probe molecules of Rhodamine 6G. They also demonstrate significantly catalytic activity for decomposition of acetaldehyde in rice wine. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Chitosan-Based Matrices Prepared by Gamma Irradiation for Tissue Regeneration: Structural Properties vs. Preparation Method.

    Science.gov (United States)

    Casimiro, Maria Helena; Lancastre, Joana J H; Rodrigues, Alexandra P; Gomes, Susana R; Rodrigues, Gabriela; Ferreira, Luís M

    2017-02-01

    In the last decade, new generations of biopolymer-based materials have attracted attention, aiming its application as scaffolds for tissue engineering. These engineered three-dimensional scaffolds are designed to improve or replace damaged, missing, or otherwise compromised tissues or organs. Despite the number of promising methods that can be used to generate 3D cell-instructive matrices, the innovative nature of the present work relies on the application of ionizing radiation technology to form and modify surfaces and matrices with advantage over more conventional technologies (room temperature reaction, absence of harmful initiators or solvents, high penetration through the bulk materials, etc.), and the possibility of preparation and sterilization in one single step. The current chapter summarizes the work done by the authors in the gamma radiation processing of biocompatible and biodegradable chitosan-based matrices for skin regeneration. Particular attention is given to the correlation between the different preparation conditions and the final polymeric matrices' properties. We therefore expect to demonstrate that instructive matrices produced and improved by radiation technology bring to the field of skin regenerative medicine a supplemental advantage over more conservative techniques.

  2. Tetraphenylpyrimidine-Based AIEgens: Facile Preparation, Theoretical Investigation and Practical Application

    Directory of Open Access Journals (Sweden)

    Junkai Liu

    2017-10-01

    Full Text Available Aggregation-induced emission (AIE has become a hot research area and tremendous amounts of AIE-active luminogens (AIEgens have been generated. To further promote the development of AIE, new AIEgens are highly desirable. Herein, new AIEgens based on tetraphenylpyrimidine (TPPM are rationally designed according to the AIE mechanism of restriction of intramolecular motion, and facilely prepared under mild reaction conditions. The photophysical property of the generated TPPM, TPPM-4M and TPPM-4P are systematically investigated and the results show that they feature the aggregation-enhanced emission (AEE characteristics. Theoretical study shows the high-frequency bending vibrations in the central pyrimidine ring of TPPM derivatives dominate the nonradiative decay channels. Thanks to the AEE feature, their aggregates can be used to detect explosives with super-amplification quenching effects, and the sensing ability is higher than typical AIE-active tetraphenylethene. It is anticipated that TPPM derivatives could serve as a new type of widely used AIEgen based on their facile preparation and good thermo-, photo- and chemostabilities.

  3. Preparation of a generator of technetium-99m

    International Nuclear Information System (INIS)

    Jimeno de Osso, F.

    1981-01-01

    Practical description is given of equipment and operations necessary in the preparation of an isotopic generator of technetium-99m. The preparation and application of the active solution and throughly washed of the chromatographic column have been studied in order to allow molibdenum-99 to be adsorbed on a small band, and the solution of tectium-99m to be eluted with high efficiency and purity. The equipment and accesories used are easy and safety to manage, simplifying operations to be carried out with the active product, eliminating the sterile environment in the shielded cell, and facilitating the preparation of the solution of technetium-99m in sterile and pyrogen-free conditions.(author) [es

  4. Preparative electrophoresis of industrial fission product solutions

    International Nuclear Information System (INIS)

    Tret, Joel

    1971-07-01

    The aim of this work is to contribute to the development of the continuous electrophoresis technique while studying its application in the preparative electrophoresis of industrial fission product solutions. The apparatus described is original. It was built for the purposes of the investigation and proved very reliable in operation. The experimental conditions necessary to maintain and supervise the apparatus in a state of equilibrium are examined in detail; their stability is an important factor, indispensable to the correct performance of an experiment. By subjecting an industrial solution of fission products to preparative electrophoresis it is possible, according to the experimental conditions, to prepare carrier-free radioelements of radiochemical purity (from 5 to 7 radioelements): 137 Cs, 90 Sr, 141+144 Ce, 91 Y, 95 Nb, 95 Zr, 103+106 Ru. (author) [fr

  5. Preparation of graphene/nile blue nanocomposite: Application for oxygen reduction reaction and biosensing

    International Nuclear Information System (INIS)

    Shervedani, Reza Karimi; Amini, Akbar

    2015-01-01

    Highlights: •New nanocomposite is synthesized by electrochemical polymerization of Nile blue and reduction of GO on GCE. •The nanocomposite is characterized by SEM, UV–vis and electrochemical methods. •High electrocatalytic activity was observed for O 2 reduction on GNs-NB nanocomposite. •GCE-GNs-NB poly was tested successfully for immobilization of GOx and detection of glucose. -- Abstract: Nile blue/graphene (NB-GNs) nanocomposite was synthesized for the first time via a green and effective one-step electrochemical method, allowing to reduce graphene oxide (GO) and NB on the glassy carbon electrode (GCE) simultaneously and construct GCE-GNs-NB poly composite. The composite was characterized by scanning electron microscopy (SEM), UV–Vis spectroscopy, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The electrochemical results obtained in the absence of any redox probe, where NB was active, allowed to trace step-by-step addition of the NB-GNs nanocomposite onto the GCE electrode surface, supporting formation of the GCE-GNs-NB poly composite. The electrocatalytic activity of the as-prepared GCE-GNs-NB poly towards O 2 reduction was studied in neutral medium. The results revealed excellent electrocatalytic performance for two-electron reduction of oxygen, suggesting its potential application as metal-free electrocatalysts for O 2 reduction reaction. Application of the GCE-GNs-NB poly in electrochemical biosensing was demonstrated by immobilization of glucose oxidase (GOx) on the surface of GCE-GNs-NB poly , and then, using it for sensing of glucose. The biosensor exhibited a linear response, from 0.2 to 2.0 mM glucose, with a low detection limit, 2.1 μM, and high sensitivity, 67.0 μA mM −1 cm −2 , obtained by cyclic voltammetry method. The proposed biosensor was successfully tested for determination of glucose in blood serum samples

  6. Preparation of catechol-linked chitosan/carbon nanocomposite-modified electrode and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Jirimali, Harishchandra Digambar; Saravanakumar, Duraisamy; Shin, Woon Sup [Dept. of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul (Korea, Republic of)

    2015-04-15

    In this study, we report the synthesis of 2,3-dihydroxybenzaldehyde (catechol)-linked chitosan (cat-chitosan) and the preparation of its composite with carbon (cat-chitosan/carbon) to construct a catechol-modified electrode. The synthesis is similar to our previous work on hydroquinone–chitosan/carbon composite electrode. We synthesized catechol-linked chitosan polymer and prepared the its composite electrode with carbon. The catchitosan/carbon composite electrode shows a reversible confined redox behavior by the catechol functional group. The electrode catalyzes the oxidation of NADH. It has Cu{sup 2+} ion-binding capability and its binding constant 8.7 μM.

  7. Preparation of catechol-linked chitosan/carbon nanocomposite-modified electrode and its applications

    International Nuclear Information System (INIS)

    Jirimali, Harishchandra Digambar; Saravanakumar, Duraisamy; Shin, Woon Sup

    2015-01-01

    In this study, we report the synthesis of 2,3-dihydroxybenzaldehyde (catechol)-linked chitosan (cat-chitosan) and the preparation of its composite with carbon (cat-chitosan/carbon) to construct a catechol-modified electrode. The synthesis is similar to our previous work on hydroquinone–chitosan/carbon composite electrode. We synthesized catechol-linked chitosan polymer and prepared the its composite electrode with carbon. The catchitosan/carbon composite electrode shows a reversible confined redox behavior by the catechol functional group. The electrode catalyzes the oxidation of NADH. It has Cu"2"+ ion-binding capability and its binding constant 8.7 μM.

  8. New tendencies in the application of altitude training in sport preparation

    Directory of Open Access Journals (Sweden)

    RANISAVLJEV IGOR

    2011-06-01

    Full Text Available Competitive athletes frequently use altitude training (AT to improve sea-level performance. ATbecame interesting for sport scientists and athletes since Olympic Games in Mexico City in 1968. Exercise ataltitude may increase the training stimulus and enlarge the effects of endurance training. The first notedadaptation induced by staying at altitude is an increase in red blood cell mass that improves aerobic power andsea-level performance. Currently, there are several types of AT modalities: traditional ‘live high-train high’,contemporary ‘live high-train low’, intermittent hypoxic exposure during rest, live low-train high andintermittent hypoxic exposure during continuous session. Despite several substantial differences between thesemethods of hypoxic all of them have the same goal: to stimulate an improvement in athletic performance at sealevel. A proper distinction must be made between altitude acclimatization during preparation for competitions ataltitude and AT and acclimatization for improvement of the sea-level performances. Former scientific researchesidentified two longer phases of enhanced work capacity after AT. First phase of enhanced work capacityoccurring between days 3-7 and 12-13, while the best results are achieved during 18 and 20 days after AT.Second phase of enhanced work capacity is reported between days 36 and 48 after AT. The further developmentof practical knowledge in area of AT should predominantly include recommendations about application ofdifferent AT methods in training periodization in different sports. Improvement of the work capacity andduration of enhanced work capacity at the sea level after AT stimuli are the main questions opened for futurescientific researches.

  9. Preparation of crystalline sodium norcarnitine: an easily handled precursor for the preparation of carnitine analogs and radiolabeled carnitine.

    Science.gov (United States)

    Colucci, W J; Turnbull, S P; Gandour, R D

    1987-05-01

    A procedure by which crystalline sodium norcarnitine can be prepared in large quantities and high yields has been developed. Carnitine is selectively demethylated by thiophenoxide ion in N,N-dimethylethanolamine. The reactive thiophenoxide ion is generated in situ by addition of thiophenol to this basic reaction solvent. Hence, sodium thiophenoxide, which has been used in similar applications, but is difficult to prepare, can be avoided. Accordingly, reaction of (R,S)-carnitine followed by aqueous azeotropic distillation of byproducts as well as excess starting materials and then by neutralization with sodium hydroxide gave sodium norcarnitine in 89% yield. (R)-Carnitine gave 91% yield of (R)-norcarnitine zwitterion before neutralization. A method for the facile preparation of radiolabeled (R)-carnitine is also described. Thus, methylation of sodium norcarnitine with methyl iodide in methanolic acetone produced carnitine, which precipitated, and sodium iodide, which was soluble.

  10. Preparation and control of ) 7sup(99m)Tc-Sn{tetracycline antibiotics. )

    International Nuclear Information System (INIS)

    Machan, V.; Kalincak, M.; Barna, K.

    1976-01-01

    A simple method for the preparation of ) 7sup(99m)Tc-Sn{-tetracycline, 7sup(99m)Tc-Sn{-oxytetracycline and 7sup(99m)Tc-Sn{-rolitetracycline for routine applications in nuclear medicine is described. Attention is paid to the quality control of these preparations. Paper chromatography in absolute acetone and 85% methanol is compared with gel chromatography on Sephadex G-10. The radiochemical stability of the preparations was observed for a period of up to 24 hours after preparation under various storage conditions. (author). )

  11. Development of a versatile sample preparation method and its application for rare-earth pattern and Nd isotope ratio analysis in nuclear forensics

    International Nuclear Information System (INIS)

    Krajko, J.

    2015-01-01

    An improved sample preparation procedure for trace-levels of lanthanides in uranium-bearing samples was developed. The method involves a simple co-precipitation using Fe(III) carrier in ammonium carbonate medium to remove the uranium matrix. The procedure is an effective initial pre-concentration step for the subsequent extraction chromatographic separations. The applicability of the method was demonstrated by the measurement of REE pattern and 143 Nd/ 144 Nd isotope ratio in uranium ore concentrate samples. (author)

  12. Multitracer - preparation, feature and bio-application

    International Nuclear Information System (INIS)

    Amano, Ryohei

    2003-01-01

    Multitracer (MT) is a solution containing many radionuclides together for tracing simultaneously the behavior of these elements in various systems. Basic principles, wide applications and new progresses of MT are presented. We suppose that MT is a versatile and powerful tool for movement- and fate-screening among related plural elements, and MT sometimes gives us the breakthrough in studying some confronted themes. Our recent progresses on the bio-behavior of trace elements in brain are described as typical examples. The future perspectives of the MT will also be outlined. (author)

  13. Stimuli responsive ion gels based on polysaccharides and other polymers prepared using ionic liquids and deep eutectic solvents.

    Science.gov (United States)

    Prasad, Kamalesh; Mondal, Dibyendu; Sharma, Mukesh; Freire, Mara G; Mukesh, Chandrakant; Bhatt, Jitkumar

    2018-01-15

    Ion gels and self-healing gels prepared using ionic liquids (ILs) and deep eutectic solvents (DESs) have been largely investigated in the past years due to their remarkable applications in different research areas. Herewith we provide an overview on the ILs and DESs used for the preparation of ion gels, highlight the preparation and physicochemical characteristics of stimuli responsive gel materials based on co-polymers and biopolymers, with special emphasis on polysaccharides and discuss their applications. Overall, this review summarizes the fundamentals and advances in ion gels with switchable properties prepared using ILs or DESs, as well as their potential applications in electrochemistry, in sensing devices and as drug delivery vehicles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Preparation, characterization and application of N-methylene phosphonic acid chitosan grafted magnesia–zirconia stationary phase

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qing; Chen, Jie; Huang, Kun; Zhang, Xin; Xu, Li [Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030 (China); Shi, Zhi-guo, E-mail: shizg@whu.edu.cn [Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2015-01-07

    Highlights: • N-methylene phosphonic acid chitosan grafted MgO–ZrO{sub 2} was prepared. • It exhibited superior HILIC chromatographic performance to the bare MgO–ZrO{sub 2}. • Monosaccharides, phospholipids and peptides were successfully separated. • It was a promising HILIC stationary phase. - Abstract: A hydrophilic stationary phase (SP) was prepared through grafting N-methylene phosphonic acid chitosan on magnesia–zirconia particles (P-CTS-MgO–ZrO{sub 2}) via Lewis acid–base interaction. The resulting material was characterized by thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscope and nitrogen adsorption analysis. The chromatographic performance of P-CTS-MgO–ZrO{sub 2} was systemically evaluated by studying effect of acetonitrile content, pH and buffer concentration in the mobile phase. The results demonstrated that the novel SP provided hydrophilic, electrostatic-repulsion and ion-exchange interactions. Compared to the bare MgO–ZrO{sub 2}, P-CTS-MgO–ZrO{sub 2} exhibited superior peak shape, reasonable resolution and reduced analysis time in separation of basic analytes. Besides, remarkable resolving power of acids, i.e. six non-steroidal anti-inflammatory drugs which failed to be eluted from the bare MgO–ZrO{sub 2}, was obtained with the theoretical plate number (N/m) of 4653–31313, asymmetry factor <1.21 and the resolution of 1.6–3.4. Finally, P-CTS-MgO–ZrO{sub 2} SP was applied to separate monosaccharides, phospholipids and peptides. P-CTS-MgO–ZrO{sub 2} was a promising hydrophilic SP for wide applications.

  15. Yolk-Shell Porous Microspheres of Calcium Phosphate Prepared by Using Calcium L-Lactate and Adenosine 5'-Triphosphate Disodium Salt: Application in Protein/Drug Delivery.

    Science.gov (United States)

    Ding, Guan-Jun; Zhu, Ying-Jie; Qi, Chao; Sun, Tuan-Wei; Wu, Jin; Chen, Feng

    2015-06-26

    A facile and environmentally friendly approach has been developed to prepare yolk-shell porous microspheres of calcium phosphate by using calcium L-lactate pentahydrate (CL) as the calcium source and adenosine 5'-triphosphate disodium salt (ATP) as the phosphate source through the microwave-assisted hydrothermal method. The effects of the concentration of CL, the microwave hydrothermal temperature, and the time on the morphology and crystal phase of the product are investigated. The possible formation mechanism of yolk-shell porous microspheres of calcium phosphate is proposed. Hemoglobin from bovine red cells (Hb) and ibuprofen (IBU) are used to explore the application potential of yolk-shell porous microspheres of calcium phosphate in protein/drug loading and delivery. The experimental results indicate that the as-prepared yolk-shell porous microspheres of calcium phosphate have relatively high protein/drug loading capacity, sustained protein/drug release, favorable pH-responsive release behavior, and a high biocompatibility in the cytotoxicity test. Therefore, the yolk-shell porous microspheres of calcium phosphate have promising applications in various biomedical fields such as protein/drug delivery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Application of Super Absorbent Polymers (SAP) in Concrete Construction State-of-the-Art Report Prepared by Technical Committee 225-SAP

    CERN Document Server

    Reinhardt, Hans-Wolf

    2012-01-01

    This is the state-of-the-art report prepared by the RILEM TC “Application of Super Absorbent Polymers (SAP) in concrete construction”. It gives a comprehensive overview of the properties of SAP, specific water absorption and desorption behaviour of SAP in fresh and hardening concrete, effects of the SAP addition on rheological properties of fresh concrete, changes of cement paste microstructure and mechanical properties of concrete. Furthermore, the key advantages of using SAP are described in detail: the ability of this material to act as an internal curing agent to mitigate autogenous shrinkage of high-performance concrete, the possibility to use SAP as an alternative to air-entrainment agents in order to increase the frost resistance of concrete, and finally, the benefit of steering the rheology of fresh cement-based materials. The final chapter describes the first existing and numerous prospective applications for this new concrete additive.

  17. Highly reproducible surface-enhanced Raman scattering-active Au nanostructures prepared by simple electrodeposition: origin of surface-enhanced Raman scattering activity and applications as electrochemical substrates.

    Science.gov (United States)

    Choi, Suhee; Ahn, Miri; Kim, Jongwon

    2013-05-24

    The fabrication of effective surface-enhanced Raman scattering (SERS) substrates has been the subject of intensive research because of their useful applications. In this paper, dendritic gold (Au) rod (DAR) structures prepared by simple one-step electrodeposition in a short time were examined as an effective SERS-active substrate. The SERS activity of the DAR surfaces was compared to that of other nanostructured Au surfaces with different morphologies, and its dependence on the structural variation of DAR structures was examined. These comparisonal investigations revealed that highly faceted sharp edge sites present on the DAR surfaces play a critical role in inducing a high SERS activity. The SERS enhancement factor was estimated to be greater than 10(5), and the detection limit of rhodamine 6G at DAR surfaces was 10(-8)M. The DAR surfaces exhibit excellent spot-to-spot and substrate-to-substrate SERS enhancement reproducibility, and their long-term stability is very good. It was also demonstrated that the DAR surfaces can be effectively utilized in electrochemical SERS systems, wherein a reversible SERS behavior was obtained during the cycling to cathodic potential regions. Considering the straightforward preparation of DAR substrates and the clean nature of SERS-active Au surfaces prepared in the absence of additives, we expect that DAR surfaces can be used as cost-effective SERS substrates in analytical and electrochemical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Preparation of silicon carbide-supported vanadium oxide and its application of removing NO by ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zi-Bo; Xu, Xu [Yangzhou University, College of Environmental Science and Engineering, Yangzhou, Jiangsu (China); Bai, Shu-Li [Wuyi University, College of Chemical and Environmental Engineering, Jiangmen, Guangdong (China); Guan, Yu-Jiang; Jiang, Sheng-Tao [Taizhou University, Environmental Engineering, Taizhou, Zhejiang (China)

    2017-03-15

    The aim of this work was to study the preparation of SiC-supported V{sub 2}O{sub 5} catalysts and the kinetics on selective catalytic reduction for NO with NH{sub 3} on the catalysts. Using incipient wetness impregnation methods, vanadium oxide was applied to silicon carbide to prepare a SiC-supported vanadium oxide. X-ray photoelectron spectroscopy analysis confirmed that V{sub 2}O{sub 5} existed in the prepared materials. Using the prepared materials as catalysts, selective catalytic reduction for NO by NH{sub 3} has been analyzed, and reaction kinetics on the catalysts was studied at 150-300 C. The obtained results showed that the reduction reaction on the catalysts is close to zero-order kinetics with respect to NH{sub 3}, first-order with respect to NO, and half-order to O{sub 2}. Apparent activation energy for the reduction reaction was found to be 38 kJ mol{sup -1}. The prepared materials are stable and reusable. (orig.)

  19. Preparing Schrodinger cat states by parametric pumping

    Science.gov (United States)

    Leghtas, Zaki; Touzard, Steven; Pop, Ioan; Vlastakis, Brian; Zalys-Geller, Evan; Albert, Victor V.; Jiang, Liang; Frunzio, Luigi; Schoelkopf, Robert J.; Mirrahimi, Mazyar; Devoret, Michel H.

    2014-03-01

    Maintaining a quantum superposition state of light in a cavity has important applications for quantum error correction. We present an experimental protocol based on parametric pumping and Josephson circuits, which could prepare a Schrodinger cat state in a cavity. This is achieved by engineering a dissipative environment, which exchanges only pairs or quadruples of photons with our cavity mode. The dissipative nature of this preparation would lead to the observation of a dynamical Zeno effect, where the competition between a coherent drive and the dissipation reveals non trivial dynamics. Work supported by: IARPA, ARO, and NSF.

  20. Inorganic-organic hybrid polyoxometalate containing supramolecular helical chains: Preparation, characterization and application in chemically bulk-modified electrode

    International Nuclear Information System (INIS)

    Han Zhangang; Zhao Yulong; Peng Jun; Liu Qun; Wang Enbo

    2005-01-01

    An inorganic-organic hybrid polyoxometalate (POM) (Hbpy) 4 [SiMo 12 O 40 ] (1) (bpy = 2,4-bipyridine), has been prepared and characterized. X-ray diffraction study reveals that compound 1 contains interesting organic double helical chains. The hybrid nanoparticles was used as a solid bulkmodifier to fabricate a three-dimensional chemically modified carbon paste electrode (1-CPE) by direct mixing. The electrochemical behavior and electrocatalysis of 1-CPE has been studied in detail. The results indicate that 1-CPE has a good electrocatalytic activity toward the reduction of nitrite in 1 M H 2 SO 4 aqueous solution. 1-CPE shows remarkable stability that can be ascribed to the interactions existed between POM anions and organic double helical bpy chains, which are very important for practical applications in electrode modification

  1. Microstructural and mechanical characteristics of porous iron prepared by powder metallurgy.

    Science.gov (United States)

    Capek, Jaroslav; Vojtěch, Dalibor

    2014-10-01

    The demand for porous biodegradable load-bearing implants has been increasing recently. Based on investigations of biodegradable stents, porous iron may be a suitable material for such applications. In this study, we prepared porous iron samples with porosities of 34-51 vol.% by powder metallurgy using ammonium bicarbonate as a space-holder material. We studied sample microstructure (SEM-EDX and XRD), flexural and compressive behaviors (universal loading machine) and hardness HV5 (hardness tester) of the prepared samples. Sample porosity increased with the amount of spacer in the initial mixtures. Only the pore surfaces had insignificant oxidation and no other contamination was observed. Increasing porosity decreased the mechanical properties of the samples; although, the properties were still comparable with human bone and higher than those of porous non-metallic biomaterials and porous magnesium prepared in a similar way. Based on these results, powder metallurgy appears to be a suitable method for the preparation of porous iron for orthopedic applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The role of herbometallic preparations in traditional medicine--a review on mica drug processing and pharmaceutical applications.

    Science.gov (United States)

    Wijenayake, Apsara; Pitawala, Amarasooriya; Bandara, Ratnayake; Abayasekara, Charmalie

    2014-09-11

    Biotite mica enriched with Fe(2+) ions are widely used as a major mineral ingredient in traditional pharmaceutical science of alchemy (Rasashastra). Abhrak bhasma (mica ash), a pharmaceutical product containing treated mica, is utilized, for example, in Ayurvedic treatments for ailments such as gastritis, renal disease, skin disease and mainly in rejuvenation formulations. However, the untreated mica minerals may be harmful when used directly, as they carry considerably high amounts of trace-elements that can cause undesirable effects in the human body. In order to remove toxic factors and produce readily absorbable materials having high nutrient capacity, specific thermal and chemical treatments (purification, detoxification, particle size reduction and incineration) are performed during the preparation of Rasashastra. This review evaluates the chemical and pharmacological aspects of mica ash as well as the technological aspects of mica ash production. The detailed literature review on the chemistry and scientific basis of mica ash, its preparation techniques, mica alterations and pharmaceutical applications was carried out by using published Ayurvedic text books and research articles, available from Science Direct, on mica minerals, mica ash and their physico-chemical alteration processes and pharmacological applications. During the purification and detoxification procedures, heating followed by quenching (in ionic medium) influences the structural distortion and the development of stress-induced cracks and spallations of the micaceous plates. Thus, the efficient diffusion of the external medium takes place at successive heating and quenching steps. Acidic organic liquids and animal byproducts can enhance the cation exchange capacity and solubility of mica. Further, these natural compounds facilitate the removal of toxic-elements in the structure. When treated-mica and paddy husks are tied up in a cloth and squeezed, particle size reduction and further

  3. The application of hazard analysis and critical control points and risk management in the preparation of anti-cancer drugs.

    Science.gov (United States)

    Bonan, Brigitte; Martelli, Nicolas; Berhoune, Malik; Maestroni, Marie-Laure; Havard, Laurent; Prognon, Patrice

    2009-02-01

    To apply the Hazard analysis and Critical Control Points method to the preparation of anti-cancer drugs. To identify critical control points in our cancer chemotherapy process and to propose control measures and corrective actions to manage these processes. The Hazard Analysis and Critical Control Points application began in January 2004 in our centralized chemotherapy compounding unit. From October 2004 to August 2005, monitoring of the process nonconformities was performed to assess the method. According to the Hazard Analysis and Critical Control Points method, a multidisciplinary team was formed to describe and assess the cancer chemotherapy process. This team listed all of the critical points and calculated their risk indexes according to their frequency of occurrence, their severity and their detectability. The team defined monitoring, control measures and corrective actions for each identified risk. Finally, over a 10-month period, pharmacists reported each non-conformity of the process in a follow-up document. Our team described 11 steps in the cancer chemotherapy process. The team identified 39 critical control points, including 11 of higher importance with a high-risk index. Over 10 months, 16,647 preparations were performed; 1225 nonconformities were reported during this same period. The Hazard Analysis and Critical Control Points method is relevant when it is used to target a specific process such as the preparation of anti-cancer drugs. This method helped us to focus on the production steps, which can have a critical influence on product quality, and led us to improve our process.

  4. Preparation and Application of Hollow Silica/magnetic Nanocomposite Particle

    Science.gov (United States)

    Wang, Cheng-Chien; Lin, Jing-Mo; Lin, Chun-Rong; Wang, Sheng-Chang

    The hollow silica/cobalt ferrite (CoFe2O4) magnetic microsphere with amino-groups were successfully prepared via several steps, including preparing the chelating copolymer microparticles as template by soap-free emulsion polymerization, manufacturing the hollow cobalt ferrite magnetic microsphere by in-situ chemical co-precipitation following calcinations, and surface modifying of the hollow magnetic microsphere by 3-aminopropyltrime- thoxysilane via the sol-gel method. The average diameter of polymer microspheres was ca. 200 nm from transmission electron microscope (TEM) measurement. The structure of the hollow magnetic microsphere was characterized by using TEM and scanning electron microscope (SEM). The spinel-type lattice of CoFe2O4 shell layer was identified by using XRD measurement. The diameter of CoFe2O4 crystalline grains ranged from 54.1 nm to 8.5 nm which was estimated by Scherrer's equation. Additionally, the hollow silica/cobalt ferrite microsphere possesses superparamagnetic property after VSM measurement. The result of BET measurement reveals the hollow magnetic microsphere which has large surface areas (123.4m2/g). After glutaraldehyde modified, the maximum value of BSA immobilization capacity of the hollow magnetic microsphere was 33.8 mg/g at pH 5.0 buffer solution. For microwave absorption, when the hollow magnetic microsphere was compounded within epoxy resin, the maximum reflection loss of epoxy resins could reach -35dB at 5.4 GHz with 1.9 mm thickness.

  5. Preparation of BiOBr thin films with micro-nano-structure and their photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Rui [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Fan, Caimei, E-mail: fancm@163.com [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, Xiaochao, E-mail: zhang13598124761@163.com [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Yawen; Wang, Yunfang [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, Hui [Particle Technology Research Centre, Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada)

    2014-07-01

    A series of micro-nano-structure BiOBr thin films were prepared at a low temperature by the alcoholysis-coating method using BiBr{sub 3} as precursor. The as-prepared films were characterized by X-ray powder diffraction, scanning electron microscopy, and Brunauer–Emmett–Teller surface area. The obtained results indicated that micro-nano-structure tetragonal BiOBr films with different intensity ratios of (110) to (102) characteristic peaks could be synthesized through controlling the reaction temperature and the calcination temperatures. Furthermore, the photocatalytic activities of BiOBr thin films with different preparation conditions have been evaluated by the degradation of methyl orange (MO) under UV light irradiation, suggesting that the photocatalytic activity should be closely related to the solvent, the alcoholysis reaction temperature, and the calcining temperature. The best photocatalytic degradation efficiency of MO for BiOBr thin films reaches 98.5% under 2.5 h UV irradiation. The BiOBr thin films display excellent stability and their photocatalytic activity still remains above 90% after being used five times. The main reasons for the higher photocatalytic activity of micro-nano-structure BiOBr microspheres have been investigated. In addition, the possible formation mechanism of BiOBr thin films with micro-nano-structure and excellent photocatalytic activity was proposed and discussed. - Highlights: • The BiOBr film was prepared at low temperature via alcoholysis-coating method. • The optimum process conditions of preparing BiOBr film were discussed. • As-prepared BiOBr films were composed of micro-nano flake structures. • The BiOBr films demonstrated excellent photocatalytic activity. • The formation mechanism of BiOBr films with high activity was proposed.

  6. Application of tumbling melt granulation (TMG) method to prepare controlled-release fine granules.

    Science.gov (United States)

    Maejima, T; Kubo, M; Osawa, T; Nakajima, K; Kobayashi, M

    1998-03-01

    The tumbling melt granulation (TMG) method was applied to prepare controlled-release fine granules of diltiazem hydrochloride (DH). The entire process, from the preparation of the cores by the adherence of DH to the sucrose crystal to the subsequent coating of the controlled-release layer, was performed without using any solvent. A mixture of meltable material, talc, and ethylcellulose was used for the controlled-release layer and controlled-release fine granules approximately 400 microns in diameter were obtained with excellent producibility. The dissolution rate of DH from these fine granules was similar to that of a once-a-day dosage form obtained in the market; further, the dependency of the dissolution profile on pH of the media was less. Thus, it was concluded that this TMG method was very useful for preparing not only controlled-release beads of granule size (usually 500 to 1400 microns) but also fine granules.

  7. Iodine-125 Chitosan-Vitamin C complex. Preparation, characterization and application

    Energy Technology Data Exchange (ETDEWEB)

    Elbarbary, Ahmed M. [National Center for Radiation Research and Technology, Cairo (Egypt). Polymer Chemistry Dept.; Shafik, H.M.; Ebeid, N.H.; Ayoub, S.M. [Atomic Energy Authority, Cairo (Egypt). Hot Lab. Center; Othman, Sameh H. [Atomic Energy Authority, Cairo (Egypt). Nuclear Research Center

    2015-07-01

    In heterogeneous conditions, water soluble Chitosan-Vitamin C Complex (CSVC) is successfully synthesized via the ionic interaction between γ-degraded CS and VC. Chitosan (CS) of low molecular weight (MW) is prepared using γ-irradiation method. The coupling of CS and vitamin C (VC) is carried out by the chemical treatment of VC with the γ-degraded CS. The formation of CSVC complex instead of physical mixture is confirmed by FT-IR and UV spectrometry. Characterization by transmission electron microscope (TEM) and dynamic light scattering (DLS) shows the formation of a nanostructure in 40 nm range. The preparation of labeled CSVC was performed using chloramines-T oxidation method. The labeling feasibility of CSVC nanostructure by Iodine-125 ({sup 125}I) is investigated. The optimized conditions of labeling are thought to be 50 μg of oxidizing agent, pH 3, and one minute reaction time. The Biodistribution activity of {sup 125}I radiolabeled CSVC nanostructure ({sup 125}I-CSVC) is examined on a group of different ascites tumor bearing mice. Calculation of the biodistribution percentages shows that the tumor, liver, and kidney are the targeting organs of {sup 125}I-CSVC nanostructure.

  8. Iodine-125 Chitosan-Vitamin C complex. Preparation, characterization and application

    International Nuclear Information System (INIS)

    Elbarbary, Ahmed M.; Shafik, H.M.; Ebeid, N.H.; Ayoub, S.M.; Othman, Sameh H.

    2015-01-01

    In heterogeneous conditions, water soluble Chitosan-Vitamin C Complex (CSVC) is successfully synthesized via the ionic interaction between γ-degraded CS and VC. Chitosan (CS) of low molecular weight (MW) is prepared using γ-irradiation method. The coupling of CS and vitamin C (VC) is carried out by the chemical treatment of VC with the γ-degraded CS. The formation of CSVC complex instead of physical mixture is confirmed by FT-IR and UV spectrometry. Characterization by transmission electron microscope (TEM) and dynamic light scattering (DLS) shows the formation of a nanostructure in 40 nm range. The preparation of labeled CSVC was performed using chloramines-T oxidation method. The labeling feasibility of CSVC nanostructure by Iodine-125 ( 125 I) is investigated. The optimized conditions of labeling are thought to be 50 μg of oxidizing agent, pH 3, and one minute reaction time. The Biodistribution activity of 125 I radiolabeled CSVC nanostructure ( 125 I-CSVC) is examined on a group of different ascites tumor bearing mice. Calculation of the biodistribution percentages shows that the tumor, liver, and kidney are the targeting organs of 125 I-CSVC nanostructure.

  9. Application of ultrasonic extraction method in the preparation of the directive action beverage from black currant

    Directory of Open Access Journals (Sweden)

    N. S. Rodionova

    2016-01-01

    Full Text Available The article presents the results of experimental determination of physical-and chemical parameters, the amount of anthocyanins, the definition of color and organoleptic characteristics of the beverage prepared with ultrasonic extraction method in comparison with the fruit-drink, obtained according to traditional recipe. Black currant was chosen the main raw material for the development of the beverage production technology. It is characterized by a high content of bioactive components that increase the adaptive abilities of human body. The purpose is to use ultrasonic extraction method in the preparation of functionally directed actions beverages. Extractor with submerged ultrasonic emitter was used as an experimental device. The essence of its operation is as follows: a mixture of the extractant and the plant substrate in different ratios was loaded into a container with the emitter, then the ultrasonic generator was turned on. The vibrations of ultrasonic frequency (22 kHz made high-frequency mechanical vibrations that caused the formation of intense cavitation areas and diffuse dissolution of cell substrates in the extractant in the treated mixture. The ultrasonic extraction technique involves brief contact of berries and extractant (up to 15 minutes upon application of ultrasonic vibrations. With an increase in exposure time, the yield of biologically active substances increases to reach an equilibrium state corresponding to the most complete exhaustion of raw materials. All this leads to a significant acceleration of the transition from the active ingredients from the raw materials into the extractant to obtain a product with improved physical - and chemical, organoleptic characteristics, as well as a higher antioxidant activity.

  10. 76 FR 78628 - Copper Valley Electric Association, Inc.; Notice of Application and Applicant-Prepared EA...

    Science.gov (United States)

    2011-12-19

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-003] Copper Valley... Application: Major License. b. Project No.: P-13124-003. c. Date filed: August 30, 2011. d. Applicant: Copper.... 791 (a)-825(r). h. Applicant Contact: Robert A. Wilkinson, CEO, Copper Valley Electric Association...

  11. Preparation for Retirement Seminar

    CERN Multimedia

    HR Department

    2007-01-01

    The Department of Human Resources is organising a preparation for retirement seminar which will take place on the four successive afternoons of 2 to 5 October 2007. Similar seminars in the past have always proved highly successful. Retirement marks the end of one’s working life and the start of a new period of life. This period of transition and change is experienced differently from one individual to another. In any case, being well-informed and prepared greatly facilitates the change in lifestyle. We would like to draw your attention to the following information: Staff concerned: All staff members aged 58 and above as well as those who have retired during the year have been sent a personal invitation to attend. Spouses are welcome. Staff members below 58 who are interested in attending the seminar may also apply. Their applications will be accepted subject to availability of places. Registration: In view of the number of people concerned and the limited capacity of th...

  12. Preparation for Retirement Seminar

    CERN Multimedia

    HR Department

    2011-01-01

    The Human Resources Department is organizing a Preparation for Retirement Seminar, which will take place on 18 and 21 October 2011 in the afternoon in the Main Auditorium and on 19 October and 15 and 16 November 2011 in the afternoon in the Council Chamber. Similar seminars in the past have always proved highly successful. Retirement marks the end of a person’s working life and the start of a new chapter. This period of transition is experienced differently from one individual to another. In all cases, being well-informed and prepared greatly facilitates the change in lifestyle. We would like to draw your attention to the following information: Staff concerned: All staff members aged 58 and above have been sent a personal invitation to attend. Spouses are welcome. Staff members under the age of 58 who are interested in attending the seminar may also apply. Their applications will be accepted subject to availability of places. Registration: In view of the number of people concerned, you are ...

  13. Preparation for Retirement Seminar

    CERN Multimedia

    HR Department

    2009-01-01

    The Human Resources Department is organizing a preparation for retirement seminar, which will take place on the afternoons of the 11, 13, 25 and 27 November 2009. Similar seminars in the past have always proved highly successful. Retirement marks the end of a person’s working life and the start of a new chapter. This period of transition is experienced differently from one individual to another. In all cases, being well-informed and prepared greatly facilitates the change in lifestyle. We would like to draw your attention to the following information: Staff concerned: All staff members aged 58 and above have been sent a personal invitation to attend. Spouses are welcome. Staff members below 58 who are interested in attending the seminar may also apply. Their applications will be accepted subject to availability of places. Registration: In view of the number of people concerned and the limited capacity of the main auditorium, you are requested to register in advance via ...

  14. Preparation for Retirement Seminar

    CERN Multimedia

    HR Department

    2009-01-01

    The Human Resources Department is organizing a preparation for retirement seminar, which will take place in the afternoons of 11, 13, 25 and 27 November 2009. Similar seminars in the past have always proved highly successful. Retirement marks the end of a person’s working life and the start of a new chapter. This period of transition is experienced differently from one individual to another. In all cases, being well-informed and prepared greatly facilitates the change in lifestyle. We would like to draw your attention to the following information: Staff concerned: All staff members aged 58 and above have been sent a personal invitation to attend. Spouses are welcome. Staff members below 58 who are interested in attending the seminar may also apply. Their applications will be accepted subject to the availability of places. Registration: In view of the number of people concerned and the limited capacity of the Main Auditorium, you are requested to register in advance via Ind...

  15. Preparation for Retirement Seminar

    CERN Multimedia

    HR Department

    2009-01-01

    The Human Resources Department is organizing a preparation for retirement seminar, which will take place on the afternoons of the 11, 13, 25 and 27 November 2009. Similar seminars in the past have always proved highly successful. Retirement marks the end of a person’s working life and the start of a new chapter. This period of transition is experienced differently from one individual to another. In all cases, being well-informed and prepared greatly facilitates the change in lifestyle. We would like to draw your attention to the following information: Staff concerned: All staff members aged 58 and above have been sent a personal invitation to attend. Spouses are welcome. Staff members below 58 who are interested in attending the seminar may also apply. Their applications will be accepted subject to the availability of places. Registration: In view of the number of people concerned and the limited capacity of the Main Auditorium, you are requested to register in advance ...

  16. Preparation for Retirement Seminar

    CERN Multimedia

    HR Department

    2009-01-01

    The Human Resources Department is organizing a preparation for retirement seminar, which will take place on the afternoons of the 11, 13, 25 and 27 November 2009. Similar seminars in the past have always proved highly successful. Retirement marks the end of a person’s working life and the start of a new chapter. This period of transition is experienced differently from one individual to another. In all cases, being well-informed and prepared greatly facilitates the change in lifestyle. We would like to draw your attention to the following information: Staff concerned: All staff members aged 58 and above have been sent a personal invitation to attend. Spouses are welcome. Staff members under the age of 58 who are interested in attending the seminar may also apply. Their applications will be accepted subject to the availability of places. Registration: In view of the number of people concerned and the limited capacity of the Main Auditorium, you are requested to register ...

  17. Preparation for retirement seminar

    CERN Multimedia

    HR Department

      The Human Resources Department is organizing a preparation for retirement seminar, which will take place on the afternoons of the 25 and 27 November 2009. Similar seminars in the past have always proved highly successful. Retirement marks the end of a person’s working life and the start of a new chapter. This period of transition is experienced differently from one individual to another. In all cases, being well-informed and prepared greatly facilitates the change in lifestyle. We would like to draw your attention to the following information: Staff concerned: All staff members aged 58 and above have been sent a personal invitation to attend. Spouses are welcome. Staff members under the age of 58 who are interested in attending the seminar may also apply. Their applications will be accepted subject to the availability of places. Registration: In view of the number of people concerned and the limited capacity of the Main Auditorium, you are requested to register in advance via Indico. &a...

  18. Preparations, Properties, and Applications of Periodic Nano Arrays using Anodized Aluminum Oxide and Di-block Copolymer

    Science.gov (United States)

    Noh, Kunbae

    2011-12-01

    Self-ordered arrangements observed in various materials systems such as anodic aluminum oxide, polystyrene nanoparticles, and block copolymer are of great interest in terms of providing new opportunities in nanofabrication field where lithographic techniques are broadly used in general. Investigations on self-assembled nano arrays to understand how to obtain periodic nano arrays in an efficient yet inexpensive way, and how to realize advanced material and device systems thereof, can lead to significant impacts on science and technology for many forefront device applications. In this thesis, various aspects of periodic nano-arrays have been discussed including novel preparations, properties and applications of anodized aluminum oxide (AAO) and PS-b-P4VP (S4VP) di-block copolymer self-assembly. First, long-range ordered AAO arrays have been demonstrated. Nanoimprint lithography (NIL) process allowed a faithful pattern transfer of the imprint mold pattern onto Al thin film, and interesting self-healing and pattern tripling phenomena were observed, which could be applicable towards fabrication of the NIL master mold having highly dense pattern over large area, useful for fabrication of a large-area substrate for predictable positioning of arrayed devices. Second, S4VP diblock copolymer self-assembly and S4VP directed AAO self-assembly have been demonstrated in the Al thin film on Si substrate. Such a novel combination of two dissimilar self-assembly techniques demonstrated a potential as a versatile tool for nanopatterning formation on a Si substrate, capable of being integrated into Si process technology. As exemplary applications, vertically aligned Ni nanowires have been synthesized into an S4VP-guided AAO membrane on a Si substrate in addition to anti-dot structured [Co/Pd]n magnetic multilayer using S4VP self assembly. Third, a highly hexagonally ordered, vertically parallel aluminum oxide nanotube array was successfully fabricated via hard anodization technique

  19. Electrochemical preparation and characterization of CuInSe2 thin films for photovoltaic applications

    International Nuclear Information System (INIS)

    Guillen Arqueros, C.

    1992-01-01

    The objective of this work has been to investigate the electrodeposition as a low-cost, large-area fabrication process to obtain CuInSe 2 this films for efficient photovoltaic devices. this objective entails the elucidation of thin film deposition mechanism, the study of the fundamental properties of electrodeposited material, and also the modification of their physical and chemical parameters for photovoltaic applications. CuInSe 2 thin films have been successfully electrodeposited from a citric was characterized by compositional, structural, electrical, optical and electrochemical measurements, relating their properties with the preparation parameters and also studying the effect of various thermal and chemical treatments. The results showed post-deposition treatment are needed for optimizing these films for solar cells fabrication: first, an annealing in inert atmosphere at temperatures above 400 degrees celsius to obtain a high recrystallization in the chalcopyrite structure, and after a chemical etching in KCN solution to remove secondary phases of Cu x Se and Se which are frequently electrodeposited with the CuInSe 2 . The treated samples showed appropriate photovoltaic activity in a semiconductor-electrolite liquid junction. (author) 193 ref

  20. Forensic Applications of Light-Element Stable Isotope Ratios of Ricinus communis Seeds and Ricin Preparations

    Energy Technology Data Exchange (ETDEWEB)

    Kreuzer, Helen W.; West, Jason B.; Ehleringer, James

    2013-01-01

    Seeds of the castor plant Ricinus communis, also known as castor beans, are of forensic interest because they are the source of the poison ricin. We have tested whether stable isotope ratios of castor seeds and ricin prepared by various methods can be used as a forensic signature. We collected over 300 castor seed samples from locations around the world and measured the C, N, O, and H stable isotope ratios of the whole seeds, oil, and three types of ricin preparations. Our results demonstrate that N isotope ratios can be used to correlate ricin prepared by any of these methods to source seeds. Further, stable isotope ratios distinguished >99% of crude and purified ricin protein samples in pair-wise comparison tests. Stable isotope ratios therefore constitute a valuable forensic signature for ricin preparations.

  1. Platinum clusters with precise numbers of atoms for preparative-scale catalysis.

    Science.gov (United States)

    Imaoka, Takane; Akanuma, Yuki; Haruta, Naoki; Tsuchiya, Shogo; Ishihara, Kentaro; Okayasu, Takeshi; Chun, Wang-Jae; Takahashi, Masaki; Yamamoto, Kimihisa

    2017-09-25

    Subnanometer noble metal clusters have enormous potential, mainly for catalytic applications. Because a difference of only one atom may cause significant changes in their reactivity, a preparation method with atomic-level precision is essential. Although such a precision with enough scalability has been achieved by gas-phase synthesis, large-scale preparation is still at the frontier, hampering practical applications. We now show the atom-precise and fully scalable synthesis of platinum clusters on a milligram scale from tiara-like platinum complexes with various ring numbers (n = 5-13). Low-temperature calcination of the complexes on a carbon support under hydrogen stream affords monodispersed platinum clusters, whose atomicity is equivalent to that of the precursor complex. One of the clusters (Pt 10 ) exhibits high catalytic activity in the hydrogenation of styrene compared to that of the other clusters. This method opens an avenue for the application of these clusters to preparative-scale catalysis.The catalytic activity of a noble metal nanocluster is tied to its atomicity. Here, the authors report an atom-precise, fully scalable synthesis of platinum clusters from molecular ring precursors, and show that a variation of only one atom can dramatically change a cluster's reactivity.

  2. Preparation and mechanical properties of photo-crosslinked poly(trimethylene carbonate) and nano-hydroxyapatite composites

    NARCIS (Netherlands)

    Geven, Mike Alexander; Barbieri, D.; Yuan, Huipin; de Bruijn, Joost Dick; Grijpma, Dirk W.

    2015-01-01

    Composite materials of photo-crosslinked poly(trimethylene carbonate) and nanoscale hydroxyapatite were prepared and their mechanical characteristics for application as orbital floor implants were assessed. The composites were prepared by solvent casting poly(trimethylene carbonate) macromers with

  3. Preparation and Application of Sustained-Release Potassium Ferrate(VI

    Directory of Open Access Journals (Sweden)

    Xuan Xu

    2014-01-01

    Full Text Available In this study, a composite system for the sustained release of potassium ferrate(VI (sustained-release K2FeO4 was prepared and applied for water treatment. The objective of this research was to maximize the effectiveness of K2FeO4 for water treatment by enhancing its stability using diatomite. The sustained-release K2FeO4 was characterized using X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. The results indicated that no new crystal phase was formed during the preparation and some K2FeO4 crystals entered the pores of the diatomite. From K2FeO4 release experiments, we found that the decomposition rate of K2FeO4 was obviously decreased, which greatly improved the contact rate between released K2FeO4 and pollutants. Via degradation of methyl orange, which was used as a model pollutant, the influential factor of K2FeO4 content within the complete sustained-release K2FeO4 system was studied. The optimal K2FeO4 content within the sustained-release K2FeO4 system was approximately 70%. In natural water samples, sustained-release K2FeO4 at a dosage of 0.06 g/L and with a reaction time of 20 minutes removed 36.84% of soluble microbial products and 17.03% of simple aromatic proteins, and these removal rates were better than those observed after traditional chlorine disinfection.

  4. Application of preparative disk gel electrophoresis for antigen purification from inclusion bodies.

    Science.gov (United States)

    Okegawa, Yuki; Koshino, Masanori; Okushima, Teruya; Motohashi, Ken

    2016-02-01

    Specific antibodies are a reliable tool to examine protein expression patterns and to determine the protein localizations within cells. Generally, recombinant proteins are used as antigens for specific antibody production. However, recombinant proteins from mammals and plants are often overexpressed as insoluble inclusion bodies in Escherichia coli. Solubilization of these inclusion bodies is desirable because soluble antigens are more suitable for injection into animals to be immunized. Furthermore, highly purified proteins are also required for specific antibody production. Plastidic acetyl-CoA carboxylase (ACCase: EC 6.4.1.2) from Arabidopsis thaliana, which catalyzes the formation of malonyl-CoA from acetyl-CoA in chloroplasts, formed inclusion bodies when the recombinant protein was overexpressed in E. coli. To obtain the purified protein to use as an antigen, we applied preparative disk gel electrophoresis for protein purification from inclusion bodies. This method is suitable for antigen preparation from inclusion bodies because the purified protein is recovered as a soluble fraction in electrode running buffer containing 0.1% sodium dodecyl sulfate that can be directly injected into immune animals, and it can be used for large-scale antigen preparation (several tens of milligrams). Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Application of Box-Behnken design to prepare gentamicin-loaded calcium carbonate nanoparticles.

    Science.gov (United States)

    Maleki Dizaj, Solmaz; Lotfipour, Farzaneh; Barzegar-Jalali, Mohammad; Zarrintan, Mohammad-Hossein; Adibkia, Khosro

    2016-09-01

    The aim of this research was to prepare and optimize calcium carbonate (CaCO3) nanoparticles as carriers for gentamicin sulfate. A chemical precipitation method was used to prepare the gentamicin sulfate-loaded CaCO3 nanoparticles. A 3-factor, 3-level Box-Behnken design was used for the optimization procedure, with the molar ratio of CaCl2: Na2CO3 (X1), the concentration of drug (X2), and the speed of homogenization (X3) as the independent variables. The particle size and entrapment efficiency were considered as response variables. Mathematical equations and response surface plots were used, along with the counter plots, to relate the dependent and independent variables. The results indicated that the speed of homogenization was the main variable contributing to particle size and entrapment efficiency. The combined effect of all three independent variables was also evaluated. Using the response optimization design, the optimized Xl-X3 levels were predicted. An optimized formulation was then prepared according to these levels, resulting in a particle size of 80.23 nm and an entrapment efficiency of 30.80%. It was concluded that the chemical precipitation technique, together with the Box-Behnken experimental design methodology, could be successfully used to optimize the formulation of drug-incorporated calcium carbonate nanoparticles.

  6. Poly arginine-graphene quantum dots as a biocompatible and non-toxic nanocomposite: Layer-by-layer electrochemical preparation, characterization and non-invasive malondialdehyde sensory application in exhaled breath condensate

    Energy Technology Data Exchange (ETDEWEB)

    Hasanzadeh, Mohammad, E-mail: hasanzadehm@tbzmed.ac.ir [Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51664 (Iran, Islamic Republic of); Mokhtari, Fozieh [Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz (Iran, Islamic Republic of); Shadjou, Nasrin [Department of Nanochemistry, Nano Technology Research Center, Urmia University, Urmia 57154 (Iran, Islamic Republic of); Department of Nano Technology, Faculty of Science, Urmia University, Urmia 57154 (Iran, Islamic Republic of); Eftekhari, Aziz [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, 51664-14766 Tabriz (Iran, Islamic Republic of); Mokhtarzadeh, Ahad [Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz (Iran, Islamic Republic of); School of Medicine, Gonabad University of Medical Sciences, Gonabad (Iran, Islamic Republic of); Jouyban-Gharamaleki, Vahid [Department of Mechatronic Engineering, International Campus, University of Tabriz, Tabriz (Iran, Islamic Republic of); Mahboob, Soltanali [Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz (Iran, Islamic Republic of)

    2017-06-01

    This study reports on the electropolymerization of a low toxic and biocompatible polymer with entitle poly arginine-graphene quantum dots (PARG-GQDs) as a novel strategy for surface modification of glassy carbon (GC) surface and preparation a new interface for biomedical application. The fabrication of PARG-GQDs on GCE was performed using Layer-by-layer regime. Scanning electron microscopy (SEM) was confirmed dispersion of GQDs on the surface of PARG which lead to increase of surface coverage of PARG. The redox behavior of prepared sensor was then characterized by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry (CHA), square wave voltammetry (SWV), linear sweep voltammetry (LSV). The electroactivity of PARG-GQDs coating towards detection and determination of malondialdehyde (MDA) as one of the most common biomarkers of oxidative stress, was then studied. Then, application of prepared sensor for the detection of MDA in exhaled breath condensate (EBC) is described. Electrochemical based sensor shows the lower limit of quantification (LLOQ) were 0.329 nanomolar. This work is the first report on the integration of GQDs to poly amino acids. Further development can lead to monitoring of MDA or other exhaled breath biomarkers by GQDs functionalized poly amino acids in EBC using electrochemical methods. - Highlights: • Simple and one pot electropolymerization was used to preparation of Poly arginine-graphene quantum dots. • PARG-GQDs-GCE shows an excellent electroactivity towards malondialdehyde. • High sensitivity and efficiency is achieved through a simple method of modification. • MDA electrochemical sensor for a direct evaluation of oxidative stress in EBC media is possible.

  7. Poly arginine-graphene quantum dots as a biocompatible and non-toxic nanocomposite: Layer-by-layer electrochemical preparation, characterization and non-invasive malondialdehyde sensory application in exhaled breath condensate

    International Nuclear Information System (INIS)

    Hasanzadeh, Mohammad; Mokhtari, Fozieh; Shadjou, Nasrin; Eftekhari, Aziz; Mokhtarzadeh, Ahad; Jouyban-Gharamaleki, Vahid; Mahboob, Soltanali

    2017-01-01

    This study reports on the electropolymerization of a low toxic and biocompatible polymer with entitle poly arginine-graphene quantum dots (PARG-GQDs) as a novel strategy for surface modification of glassy carbon (GC) surface and preparation a new interface for biomedical application. The fabrication of PARG-GQDs on GCE was performed using Layer-by-layer regime. Scanning electron microscopy (SEM) was confirmed dispersion of GQDs on the surface of PARG which lead to increase of surface coverage of PARG. The redox behavior of prepared sensor was then characterized by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry (CHA), square wave voltammetry (SWV), linear sweep voltammetry (LSV). The electroactivity of PARG-GQDs coating towards detection and determination of malondialdehyde (MDA) as one of the most common biomarkers of oxidative stress, was then studied. Then, application of prepared sensor for the detection of MDA in exhaled breath condensate (EBC) is described. Electrochemical based sensor shows the lower limit of quantification (LLOQ) were 0.329 nanomolar. This work is the first report on the integration of GQDs to poly amino acids. Further development can lead to monitoring of MDA or other exhaled breath biomarkers by GQDs functionalized poly amino acids in EBC using electrochemical methods. - Highlights: • Simple and one pot electropolymerization was used to preparation of Poly arginine-graphene quantum dots. • PARG-GQDs-GCE shows an excellent electroactivity towards malondialdehyde. • High sensitivity and efficiency is achieved through a simple method of modification. • MDA electrochemical sensor for a direct evaluation of oxidative stress in EBC media is possible.

  8. Asymmetric polivinylidenfluoride (PVDF) radiation grafted membranes: Preparation and performance in reverse osmosis application

    International Nuclear Information System (INIS)

    Vigo, F.; Capannelli, G.; Uliana, C.; Munari, S.

    1981-01-01

    A new type of reverse osmosis membrane has been synthesized. Membranes were prepared starting from asymmetric PVDF films, obtained by the casting and gelation technique and modified by radiochemical grafting and sulphonation. These membranes were tested in an RO laboratory plant and their performances were determined as a function of preparative parameters. The influences of evaporation time and temperature grafting and solvents were investigated. These membranes exhibit permeabilities as high as 2000 1/m 2 d and sodium chloride rejections up to 70%. (orig.)

  9. Preparation of polymeric biomaterials with the aid of radiation-chemical methods

    International Nuclear Information System (INIS)

    Kabanov, Vitalii Ya

    1998-01-01

    The results of the application of radiation-chemical methods for the preparation of polymeric biomaterials are surveyed and treated systematically. The characteristic features of these methods and their advantages and disadvantages are indicated. The properties of polymeric biomaterials prepared using ionising radiation are examined. Particular attention is devoted to studies carried out during the last 10-15 years. The bibliography includes 492 references.

  10. NASA technology applications team: Applications of aerospace technology

    Science.gov (United States)

    1993-01-01

    This report covers the activities of the Research Triangle Institute (RTI) Technology Applications Team for the period 1 October 1992 through 30 September 1993. The work reported herein was supported by the National Aeronautics and Space Administration (NASA), Contract No. NASW-4367. Highlights of the RTI Applications Team activities over the past year are presented in Section 1.0. The Team's progress in fulfilling the requirements of the contract is summarized in Section 2.0. In addition to our market-driven approach to applications project development, RTI has placed increased effort on activities to commercialize technologies developed at NASA Centers. These Technology Commercialization efforts are summarized in Section 3.0. New problem statements prepared by the Team in the reporting period are presented in Section 4.0. The Team's transfer activities for ongoing projects with the NASA Centers are presented in Section 5.0. Section 6.0 summarizes the status of four add-on tasks. Travel for the reporting period is described in Section 7.0. The RTI Team staff and consultants and their project responsibilities are listed in Appendix A. Appendix B includes Technology Opportunity Announcements and Spinoff! Sheets prepared by the Team while Appendix C contains a series of technology transfer articles prepared by the Team.

  11. Characterization of the calcium-fluoroaluminosilicate glass prepared by a non-hydrolytic sol-gel route for future dental application as glass ionomer cement

    Directory of Open Access Journals (Sweden)

    Alexandre Cestari

    2009-06-01

    Full Text Available Glass ionomer cements are widely employed in dentistry due to their physical, biological and mainly anti-caries properties. Glass ionomers consist of an aluminosilicate glass matrix modified with other elements, and they contain large quantities of fluorine. In this study, we report on the preparation of calcium-fluoroaluminosilicate glasses by a nonhydrolytic sol-gel route as an alternative approach to obtaining alumina-silica matrices. The glass powders were prepared via the non-hydrolytic sol-gel method, by mixing AlCl3, SiCl4, CaF2, AlF3, NaF, and AlPO4. The powders were studied by thermal analysis (TG/DTA/DSC, photoluminescence (PL, nuclear magnetic resonance (NMR27Al-29Si, and X ray diffraction (XRD. TG/DTA/DSC analyses revealed a constant mass loss due to structural changes during the heating process, which was confirmed by NMR and PL. A stable aluminosilicate matrix with potential future application as a glass ionomer base was obtained.

  12. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2013. Scientific and technical guidance for the preparation and presentation of applications pursuant to Article 6 Paragraph 11 of Directive 2000/13/EC, as amended

    DEFF Research Database (Denmark)

    Tetens, Inge

    Following a request from the European Commission, the Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver a scientific opinion on Scientific and technical guidance for the preparation and presentation of applications pursuant to Article 6 Paragraph 11 of Directive 2000....../13/EC, as amended. This guidance applies to food ingredients or substances with known allergenic potential listed in Annex IIIa of 2003/89/EC (as amended) or products thereof, and aims to assist applicants in the preparation and presentation of well-structured applications for exemption from labelling....... It presents a common format for the organisation of the information to be provided and outlines the information and scientific data which must be included in the application, the hierarchy of different types of data and study designs, reflecting the relative strength of evidence which may be obtained from...

  13. Progress in Preparation of Monodisperse Polymer Microspheres

    Science.gov (United States)

    Zhang, Hongyan

    2017-12-01

    The monodisperse crosslinked polymer microspheres have attracted much attention because of their superior thermal and solvent resistance, mechanical strength, surface activity and adsorption properties. They are of wide prospects for using in many fields such as biomedicine, electronic science, information technology, analytical chemistry, standard measurement and environment protection etc. Functional polymer microspheres prepared by different methods have the outstanding surface property, quantum size effect and good potential future in applications with its designable structure, controlled size and large ratio of surface to volume. Scholars of all over the world have focused on this hot topic. The preparation method and research progress in functional polymer microspheres are addressed in the paper.

  14. Eco-friendly and simple radiation-based preparation of graphene and its application to organic solar cells

    International Nuclear Information System (INIS)

    Jung, Chan-Hee; Park, Yong-Woon; Hwang, In-Tae; Choi, Jae-Hak; Go, Yeong-Jin; Na, Seok-In; Shin, Kwanwoo; Lee, Jae-Suk

    2014-01-01

    We report the reduction of graphene oxide (GO) through an eco-friendly and simple radiation-based method and the practical application of the resulting radiation-reduced GO (RRGO) as a solution-processable hole-transporting layer (HTL) for organic solar cells. GO dispersed in N, N′-dimethylformamide (DMF) was irradiated by γ-rays at various absorbed doses. The analytical results revealed that GO in DMF was effectively reduced to RRGO by γ-ray irradiation-induced deoxygenation, and that the reduction degree was dependent on the absorbed dose. The electrical conductivity of RRGO increased up to 12.7 S cm −1 with an increase in the absorbed dose, whereas the work function decreased to 4.34 eV. An organic solar cell device with RRGO prepared at 50 kGy as an HTL exhibited the best performance, with a power conversion efficiency of 2.72%, which is a better cell efficiency than is possible in devices with conventional GO and solvothermally-reduced GO. (paper)

  15. Preparation of iron-deposited graphite surface for application as cathode material during electrochemical vat-dyeing process

    International Nuclear Information System (INIS)

    Anbu Kulandainathan, M.; Kiruthika, K.; Christopher, G.; Babu, K. Firoz; Muthukumaran, A.; Noel, M.

    2008-01-01

    Iron-deposited graphite surfaces were prepared, characterized and employed as cathode materials for electrochemical vat-dyeing process containing very low concentration of sodium dithionite. The electrodeposition, in presence of ammonium thiocyanate and gelatin or animal glue as binding additives, were found to give finer iron deposits for improved electrochemical dyeing application. The electrodeposits were characterized using scanning electron microscopy, electron-dispersive X-ray spectroscopy and X-ray diffraction methods, before and after electrochemical dyeing process. The electrochemical activity of the iron-deposited graphite electrodes always stored in water seems to depend on the surface-bound Fe 3+ /Fe 2+ redox species. Vat dyes like C.I. Vat Violet 1, C.I. Vat Green 1 and C.I. Vat Blue 4 could be efficiently dyed employing these above electrode materials. The colour intensity and washing fastness of the dyed fabrics were found to be equal with conventionally dyed fabrics. The electrodes could also be reused for the dyeing process

  16. Preparation of mesoporous NiO with a bimodal pore size distribution and application in electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wang Dengchao; Ni Wenbin; Pang Huan; Lu Qingyi; Huang Zhongjie [Key Laboratory of Analytical Chemistry for Life Science (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210008 (China); Zhao Jianwei, E-mail: zhaojw@nju.edu.c [Key Laboratory of Analytical Chemistry for Life Science (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210008 (China)

    2010-09-01

    Mesoporous nickel oxide with a porous structure exhibiting a bimodal pore size distribution (2.6 and 30.3 nm diameter pores) has been synthesized in this paper. Firstly, a mesoporous precursor of coordination complex Ni{sub 3}(btc){sub 2}.12H{sub 2}O (btc = 1,3,5-benzenrtricarboxylic acid) is synthesized based on the metal-organic coordination mechanism by a hydrothermal method. Then mesoporous NiO with a bimodal size distribution is obtained by calcining the precursor in the air, and characterized by transmission electron microscopy and N{sub 2} adsorption measurements. Such unique multiple porous structure indicates a promising application of the obtained NiO as electrode materials for supercapacitors. The electrochemical behavior has been investigated by cyclic voltammogram, electrochemical impedance spectra and chronopotentiometry in 3 wt.% KOH aqueous electrolyte. The results reveal that the prepared NiO has high-capacitance retention at high scan rate and exhibits excellent cycle-life stability due to its special mesoporous character with bimodal size distribution.

  17. Recent progress in the applications of layer-by-layer assembly to the preparation of nanostructured ion-rejecting water purification membranes.

    Science.gov (United States)

    Sanyal, Oishi; Lee, Ilsoon

    2014-03-01

    Reverse osmosis (RO) and nanofiltration (NF) are the two dominant membrane separation processes responsible for ion rejection. While RO is highly efficient in removal of ions it needs a high operating pressure and offers very low selectivity between ions. Nanofiltration on the other hand has a comparatively low operating pressure and most commercial membranes offer selectivity in terms of ion rejection. However in many nanofiltration operations rejection of monovalent ions is not appreciable. Therefore a high flux high rejection membrane is needed that can be applied to water purification systems. One such alternative is the usage of polyelectrolyte multilayer membranes that are prepared by the deposition of alternately charged polyelectrolytes via layer-by-layer (LbL) assembly method. LbL is one of the most common self-assembly techniques and finds application in various areas. It has a number of tunable parameters like deposition conditions, number of bilayers deposited etc. which can be manipulated as per the type of application. This technique can be applied to make a nanothin membrane skin which gives high rejection and at the same time allow a high water flux across it. Several research groups have applied this highly versatile technique to prepare membranes that can be employed for water purification. Some of these membranes have shown better performance than the commercial nanofiltration and reverse osmosis membranes. These membranes have the potential to be applied to various different aspects of water treatment like water softening, desalination and recovery of certain ions. Besides the conventional method of LbL technique other alternative methods have also been suggested that can make the technique fast, more efficient and thereby make it more commercially acceptable.

  18. Preparation of Indium Pentetate Complex (111 In-DTPA)

    International Nuclear Information System (INIS)

    Shahhosseini, S.; Farshidfar, G.R.; Najafi, R.

    2000-01-01

    There is no organometallic compound of Indium know to exist naturally in the human body. However, a number of compounds prepared with 111 In have been evaluated for localization studies. The useful radioactive decay characteristics and the suitable chemical properties of the metal ion have drawn attention of many investigators resulting in the preparation of numerous 111 In labeled compounds for potential medical applications. One of them is 111 In-DTPA complex that is used for cerebral spinal fluid studies. In the present study, DTPA has been chelated with 111 In by employing various methods and then tested for its stability in vitro during storage and in human plasma. Three methods for the preparation of 11 1In-DTPA were used. In every method, labeling efficiency and radiochemical purity were determined by chromatography systems

  19. Research Progress of Microfluidic Chips Preparation and its Optical Element

    Directory of Open Access Journals (Sweden)

    Feng WANG

    2014-03-01

    Full Text Available Microfluidic technology is the emerging technologies in researching fluid channel and related applications in the micro and nano-scale space. Microfluidic chip is a new miniaturized rapid analysis platform by microfluidic technology, it has many characteristics such as liquid flow control, minimal reagent consumption, rapid analysis, which is widely used in physics, chemistry, biology, and engineering science and other fields, it has strong interdisciplinary. This paper mainly discusses research progress of materials used for microfluidic chips and the devices based on microfluidic technology, including microfluidic chip, microfluidic optical devices, microfluidic laser preparation, microfluidic chip applications, focusing on the quasi-molecular laser processing technology and femtosecond laser processing technology in the microfluidic devices preparation, and make development prospects for it.

  20. Preparation Of Porous And Dense Bodies From Hydroxyapatite Powders Prepared Via Sol-Gel Technique

    International Nuclear Information System (INIS)

    Sopyan, Lis

    2001-01-01

    Hydroxyapatite (HA) ceramics is clinically proven and, thus, a reliable material for medical applications, that is, for use in dental and orthopedical surgery to fill cavities in bones. In this paper, we report a preliminary study on development of HA porous and dense materials manufactured using fine HA powders prepared via a sol-gel technique. In the preparation of HA porous bodies, slurries of the as-prepared powder were prepared with an adjusted loading ofHA, using Duramax of 0-3021 type as dispersant. After soaking cellulosic sponges into the slurry, the sponges were dried and then subjected to heat-treatment at 600 o C, followed by sintering at 1250 o C for I h. The apparent density of the porous bodies is 1.290 g/cm 3 , with a porosity of 59%. The sintering shrinkage is about 20% (in respect of dimension) and 44 % (in respect of volume). Morphological evaluation of the porous bodies showed that the samples contained macropores of 1-2 mm diameter and micropores of 1-2 μm diameter. The measurement of mechanical strength provided 1.31 ± 0.30 MPa. Subsequently, dense samples were prepared from the as-prepared powder. In this case, the powder was mixed with poly(vinyl alcohol) and distilled water to make a slurry. The mixture was mixed using Zirconia balls as the crusher for 2h. The suspension was then spray-dried, and well-dispersed powder was obtained. The powder was compressed uniaxially using cold pressing technique at 800 kglcm2 and the pellets obtained were sintered in air at : 250 o C for I h. The sintered dense bodies have apparent density of 2.855 g/cm 3 , with a 10% porosity. The flexural strength of the dense bodies measured on the specimens of riimension 2 mm x 2.5 mm gave rise to the considerable value of 57.7 MPa

  1. Plasmonic Nanostructures Prepared by Soft UV Nanoimprint Lithography and Their Application in Biological Sensing

    Directory of Open Access Journals (Sweden)

    Grégory Barbillon

    2012-01-01

    Full Text Available We prepared high-density plasmonic nanostructures on a glass substrate. By using soft UV nanoimprint lithography, gold nanodisks with a diameter of 65 nm were obtained on an area of 1 mm2. We tested these gold nanosensors in the biotin/streptavidin system to study their selectivity and sensitivity of detection. The prepared gold nanodisks could detect streptavidin at 10 pM.

  2. Preparation and characterization of polyindole - iron oxide nanocomposite electrolyte

    International Nuclear Information System (INIS)

    Rajasudha, G.; Stephen, A.; Narayanan, V.

    2009-01-01

    Full text: A novel polyindole-iron oxide containing LiClO 4 solid polymer electrolyte has been prepared. The diverse property of magnetic nanoparticle has elicited wide interest from the point of view of technological applications. Their properties are known to be strongly dependent on size, anisotropy and inter particle interactions. The proton conducting materials has received considerable attention as electrolyte materials in technological applications such as fuel cells, sensors and electrochromic display. In this work, polyindole-iron oxide nanocomposite containing LiClO 4 was prepared by in situ polymerization. The indole was polymerized in the presence of iron oxide, using ammonium peroxy disulphate as an oxidizing agent. The polyindole-iron oxide nanocomposite was characterized by XRD, IR, SEM, TGA and TEM. The iron oxide nano particles was incorporated into polyindole and was confirmed by XRD and Fourier transform infrared (FTIR) spectroscopy. The surface Morphology and thermal stability were studied by thermogravimetric analysis (TGA) and SEM respectively. The ionic conductivity of polyindole electrolyte was analyzed from impedance spectrum. The prepared polyindole-iron oxide nanocomposite could be used as solid electrolyte in lithium ion batteries

  3. Preparation of fine powdered composite for latent heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Fořt, Jan, E-mail: jan.fort.1@fsv.cvut.cz; Trník, Anton, E-mail: anton.trnik@fsv.cvut.cz; Pavlíková, Milena, E-mail: milena.pavlikova@fsv.cvut.cz; Pavlík, Zbyšek, E-mail: pavlikz@fsv.cvut.cz [Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague (Czech Republic); Pomaleski, Marina, E-mail: marina-pomaleski@fsv.cvut.cz [Faculty of Civil Engineering, Architecture and Urbanism, University of Campinas, R. Saturnino de Brito 224, 13083-889 Campinas – SP (Brazil)

    2016-07-07

    Application of latent heat storage building envelope systems using phase-change materials represents an attractive method of storing thermal energy and has the advantages of high-energy storage density and the isothermal nature of the storage process. This study deals with a preparation of a new type of powdered phase change composite material for thermal energy storage. The idea of a composite is based upon the impregnation of a natural silicate material by a reasonably priced commercially produced pure phase change material and forming the homogenous composite powdered structure. For the preparation of the composite, vacuum impregnation method is used. The particle size distribution accessed by the laser diffraction apparatus proves that incorporation of the organic phase change material into the structure of inorganic siliceous pozzolana does not lead to the clustering of the particles. The compatibility of the prepared composite is characterized by the Fourier transformation infrared analysis (FTIR). Performed DSC analysis shows potential of the developed composite for thermal energy storage that can be easily incorporated into the cement-based matrix of building materials. Based on the obtained results, application of the developed phase change composite can be considered with a great promise.

  4. Preparation and characterization of electronically conducting polypyrrole-montmorillonite nanocomposite and its potential application as a cathode material for oxygen reduction

    International Nuclear Information System (INIS)

    Rajapakse, R.M.G.; Murakami, Kenji; Bandara, H.M.N.; Rajapakse, R.M.M.Y.; Velauthamurti, K.; Wijeratne, S.

    2010-01-01

    Simple wet chemical processes were deployed to prepare low-cost conducting nanocomposites based on natural clays with 2:1 layered structures such as sodium montmorillonite (MMT). Ce(IV) modified MMT was used for the spontaneous polymerization of pyrrole within clay interlayers. The resulted clay-conducting polypyrrole nanocomposites containing the reduced form of the oxidising agent, have been extensively characterized by X-ray diffraction (XRD) technique for interlayer spacing variations and by Fourier transform infra red (FT-IR) spectroscopy to study the interactions between the clay and polymer functional groups. DC polarization technique with both blocking and non-blocking electrodes was used to distinguish between the ionic and electronic transport numbers and to recognize the type of mobile ionic species. AC impedance analysis further resolved the electrical conduction of these materials. Bulk conductivity analysis implied that the polypyrrole (PPY) formed within Ce(IV) modified MMT posses dominant electronic conductivity. The low-cost, light-weight and stable polymer-clay nanocomposite prepared by Ce(IV) intercalated MMT, [Ce(III)-PPY-MMT], seems to be a promising cathode material for oxygen reduction and hence may find applications in fuel cell industries.

  5. Preparation and characterization of TiO[sub 2]/Sb thin films for solar energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Badawy, W.A. (Dept. of Chemistry, Cairo Univ., Giza (Egypt))

    1993-01-01

    Pure and antimony-incorporated TiO[sub 2] thin films were prepared using a spray-CVD method. The method allows for convenient incorporation of foreign atoms into the oxide matrix during film growth. The foreign atoms in the oxide film affects both the photovoltaic and photoelectrochemical properties of the n-Si/oxide heterojunction. The characteristics of the prepared oxide films were affected significantly by the presence of antimony on the oxide matrix. The increased conductivity of the Sb-containing oxide layers is reflected in the improved photovoltaic properties of the prepared n-Si/TiO[sub 2]-Sb heterojunctions, e.g. fill factor and solar conversion efficiency. The photoelectrochemical properties of the prepared devices revealed that the charge transfer step at the oxide/electrolyte interface leads to a deterioration of the cell quality. However, this drawback has been offset by the improved properties of the heterojunction. (orig.)

  6. Preparation of novel flame-retardant organoclay and its application to natural rubber composites

    Science.gov (United States)

    Zhang, Guangjian; Wang, Jincheng

    2018-04-01

    In this study, a novel type of flame-retardant montmorillonite (MMT) was prepared using a new approach to obtain highly branched polymer chains. First, MMT was modified using a small liquid crystal molecule comprising N,N,N tris(2-hydroxyethyl)sbnd N-dodecylammonium bromide and organic MMT (OMMT) was obtained. Next, three generations of dendrimer-modified organoclay comprising DOMMT-1, DOMMT-2, and DOMMT-3 were successfully prepared using OMMT and branching units of ethylenediamine and methyl acrylate. Their chemical structures were characterized and confirmed by different methods. The DOMMT organoclay was used in the preparation of natural rubber (NR) composites. The tensile strength and elongation at breakage for NR/DOMMT-10 were 17.3 MPa and 697%, respectively, which were about 13.8% and 10.8% higher, respectively, compared with that for the pure NR. After the addition of DOMMT, the horizontal burning time increased by about 69% and the thermal stability was also improved. We also propose a possible flame-retardant and reinforcing mechanism for this novel organoclay in an NR matrix.

  7. Efficient schemes for deterministic joint remote preparation of an ...

    Indian Academy of Sciences (India)

    Hao Fu

    2017-06-02

    Jun 2, 2017 ... Keywords. Joint remote state preparation; arbitrary four-qubit W-type entangled state; four- and two-qubit ... nificant application of quantum entanglement, namely ..... Alice's first results are the other 15 cases in the basis. {|λ. (i).

  8. An installation for the preparation of radioelements using the Szilard-Chalmers effect (1961); Une installation de preparation de radioelements par effet Szilard-Chalmers (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Douis, M; Valade, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    The obtention of high specific activities is sometimes necessary for certain applications of radioelements which cannot otherwise be used readily. This is the case for example, in medical applications where a radioisotope like As{sup 76} must not poison a patient before curing him. Similarly Cr{sup 51} should have a high specific activity for marking red blood corpuscles, since only a limited amount of chromium can be introduced into the blood stream. It seemed to be of interest to build, in the high activity laboratories at Saclay, a single block grouping all the 'Szilard' preparations and to add to it annexe departments for storage, de-canning of the irradiated products, and distribution of the final solutions. The radioelements prepared in this installation are Cr{sup 51}, As{sup 76}, Zn{sup 65}, Cu{sup 64} and Fe{sup 55} + Fe{sup 59}. In the first part we describe the installation and we then give the chemical methods used. (authors) [French] L'obtention de hautes activites specifiques est parfois necessaire pour certaines applications de radioelements qui ne peuvent, sans cela, etre couramment utilises. C'est le cas pour les applications medicales par exemple ou un radioisotope comme le {sup 76}As ne devra pas empoisonner le malade avant de le soigner. De meme, le {sup 51}Cr devra avoir une haute activite specifique pour le marquage des hematies, l'introduction de chrome dans la circulation sanguine etant limitee. Il a paru interessant de construire au laboratoire de haute activite a Saclay, un ensemble regroupant toutes les preparations 'Szilard' et d'y ajouter des zones de services generaux tels que: stockage, dessertissage de produits irradies, puis distribution de solutions finies. Les radioelements prepares dans cette installation sont le Cr{sup 51}, As{sup 76}, Zn{sup 65}, Cu{sup 64} et le Fe{sup 55} + Fe{sup 59}. Dans une premiere partie, nous decrivons l'installation et ensuite indiquons les methodes chimiques utilisees. (auteurs)

  9. Preparation and Characterization of Microencapsulated Phase Change Materials for Use in Building Applications

    Directory of Open Access Journals (Sweden)

    Jessica Giro-Paloma

    2015-12-01

    Full Text Available A method for preparing and characterizing microencapsulated phase change materials (MPCM was developed. A comparison with a commercial MPCM is also presented. Both MPCM contained paraffin wax as PCM with acrylic shell. The melting temperature of the PCM was around 21 °C, suitable for building applications. The M-2 (our laboratory made sample and Micronal® DS 5008 X (BASF samples were characterized using SEM, DSC, nano-indentation technique, and Gas Chromatography/Mass spectrometry (GC-MS. Both samples presented a 6 μm average size and a spherical shape. Thermal energy storage (TES capacities were 111.73 J·g−1 and 99.3 J·g−1 for M-2 and Micronal® DS 5008 X, respectively. Mechanical characterization of the samples was performed by nano-indentation technique in order to determine the elastic modulus (E, load at maximum displacement (Pm, and displacement at maximum load (hm, concluding that M-2 presented slightly better mechanical properties. Finally, an important parameter for considering use in buildings is the release of volatile organic compounds (VOC’s. This characteristic was studied at 65 °C by CG-MS. Both samples showed VOC’s emission after 10 min of heating, however peaks intensity of VOC’s generated from M-2 microcapsules showed a lower concentration than Micronal® DS 5008 X.

  10. Preparation and Characterization of Microencapsulated Phase Change Materials for Use in Building Applications.

    Science.gov (United States)

    Giro-Paloma, Jessica; Al-Shannaq, Refat; Fernández, Ana Inés; Farid, Mohammed M

    2015-12-26

    A method for preparing and characterizing microencapsulated phase change materials (MPCM) was developed. A comparison with a commercial MPCM is also presented. Both MPCM contained paraffin wax as PCM with acrylic shell. The melting temperature of the PCM was around 21 °C, suitable for building applications. The M-2 (our laboratory made sample) and Micronal ® DS 5008 X (BASF) samples were characterized using SEM, DSC, nano-indentation technique, and Gas Chromatography/Mass spectrometry (GC-MS). Both samples presented a 6 μm average size and a spherical shape. Thermal energy storage (TES) capacities were 111.73 J·g -1 and 99.3 J·g -1 for M-2 and Micronal ® DS 5008 X, respectively. Mechanical characterization of the samples was performed by nano-indentation technique in order to determine the elastic modulus ( E ), load at maximum displacement ( P m ), and displacement at maximum load ( h m ), concluding that M-2 presented slightly better mechanical properties. Finally, an important parameter for considering use in buildings is the release of volatile organic compounds (VOC's). This characteristic was studied at 65 °C by CG-MS. Both samples showed VOC's emission after 10 min of heating, however peaks intensity of VOC's generated from M-2 microcapsules showed a lower concentration than Micronal ® DS 5008 X.

  11. Preparation and Characterization of Water Based UV Curable ...

    African Journals Online (AJOL)

    The formulations prepared were characterized for viscosity and FT-IR before being printed on different substrates. The ink films formed were assessed by optical microscopy, the print quality was found to meet most requirements in colour printing chemistry and technology applications. Keywords: Flexographic printing inks, ...

  12. Preparation and spectral properties of europium hydrogen squarate microcrystals

    Science.gov (United States)

    Kolev, T.; Danchova, N.; Shandurkov, D.; Gutzov, S.

    2018-04-01

    A simple scheme for preparation of europium hydrogen squarate octahydrate microcrystals, Eu(HSq)3·8H2O is demonstrated. The microcrystalline powders obtained have a potential application as non-centrosymmetric and UV radiation - protective hybrid optical material. The site-symmetry of the Eu - ion is C2V or lower, obtained from diffuse reflectance spectra. The formation of europium hydrogen squarate is supported by IR - spectroscopy, UV-vis spectroscopy, chemical analysis and X-ray diffraction. A detailed analysis of the UV-vis and IR spectra of the micropowders prepared is presented. The reaction between europium oxide and squaric acid leads to formation of microcrystalline plate-like crystals of europium hydrogen squarate Eu(HSq)3·8H2O, a non-centrosymmetric hybrid optical material with a potential application as UV radiation - protective coatings.

  13. A simple method to prepare magnetic modified beer yeast and its application for cationic dye adsorption.

    Science.gov (United States)

    Yu, Jun-Xia; Wang, Li-Yan; Chi, Ru-An; Zhang, Yue-Fei; Xu, Zhi-Gao; Guo, Jia

    2013-01-01

    The purpose of this research is to use a simple method to prepare magnetic modified biomass with good adsorption performances for cationic ions. The magnetic modified biomass was prepared by two steps: (1) preparation of pyromellitic dianhydride (PMDA) modified biomass in N, N-dimethylacetamide solution and (2) preparation of magnetic PMDA modified biomass by a situ co-precipitation method under the assistance of ultrasound irradiation in ammonia water. The adsorption potential of the as-prepared magnetic modified biomass was analyzed by using cationic dyes: methylene blue and basic magenta as model dyes. Optical micrograph and x-ray diffraction analyses showed that Fe(3)O(4) particles were precipitated on the modified biomass surface. The as-prepared biosorbent could be recycled easily by using an applied magnetic field. Titration analysis showed that the total concentration of the functional groups on the magnetic PMDA modified biomass was calculated to be 0.75 mmol g(-1) by using the first derivative method. The adsorption capacities (q(m)) of the magnetic PMDA modified biomass for methylene blue and basic magenta were 609.0 and 520.9 mg g(-1), respectively, according to the Langmuir equation. Kinetics experiment showed that adsorption could be completed within 150 min for both dyes. The desorption experiment showed that the magnetic sorbent could be used repeatedly after regeneration. The as-prepared magnetic modified sorbent had a potential in the dyeing industry wastewater treatment.

  14. Study on preparation of montmorillonite-based composite phase change materials and their applications in thermal storage building materials

    International Nuclear Information System (INIS)

    Fang Xiaoming; Zhang Zhengguo; Chen Zhonghua

    2008-01-01

    Three composite phase change materials (PCMs) were prepared by blending butyl stearate, dodecanol and RT20 with an organically modified montmorillonite (MMT), respectively. After the three composite PCMs were characterized by DSC, it was indicated that the RT20/MMT composite PCM was a good candidate for building applications due to its large latent heat, suitable phase change temperature and good performance stability. Compared with RT20, the RT20/MMT composite PCM exhibited higher heat transfer efficiency and had good compatibility with gypsum due to the combination with MMT. The composite gypsum boards containing RT20/MMT composite PCM had the function of reducing building energy consumption by reducing the indoor temperature variation, and the function was enhanced with the increase in the mass ratio of the RT20/MMT composite PCM

  15. Simultaneous spectrophotometric determination of overlapping spectra of paracetamol and caffeine in laboratory prepared mixtures and pharmaceutical preparations using continuous wavelet and derivative transform

    Directory of Open Access Journals (Sweden)

    Ahmed Ashour

    2015-03-01

    Full Text Available In the present paper, two spectrophotometric methods were used for the simultaneous analysis of paracetamol (PCT and caffeine (CAF in their laboratory prepared mixtures and pharmaceutical preparations. Simple spectrophotometric analysis of PCT and CAF is not possible due to their complete spectral overlap. The proposed methods are based on the application of continuous wavelet transform (CWT and derivative transform (using Savitsky–Golay filters on the ratio spectra to predict each of CAF and PCT. Several wavelet families were tested. Coif1 and Sym2 were found to give best results under optimum conditions. The transformed signals of ratio spectra were used to plot the calibration curves for both components. The predictability of the built calibrations was validated through their application on several synthetic mixtures of both drugs. The proposed methods were used for the prediction of CAF and PCT in pharmaceutical preparation. The obtained results were statistically compared to a reference HPLC method. No significant differences were found between the obtained results and those from the reference method. Being simple, rapid, cheap and sensitive, the proposed methods are recommended for the routine daily analysis of these two drugs in their mixtures in quality control laboratories.

  16. Nanobiomaterials development and applications

    CERN Document Server

    Papaefthymiou-Davis, Georgia C

    2013-01-01

    Nanomaterials in Nanobiotechnologies: Preparation, Characterization, and ApplicationsBio-Inspired Magnetic NanoparticlesGeorgia C. Papaefthymiou and Eamonn DevlinNanoparticles for BioimagingHye Sun Park and Yong Taik LimBiomedical Applications of Dendrimer Porphyrin or PhthalocyanineWoo-Dong Jang and Won-Gun KohPolymeric Nanoparticles in Cancer TherapyHeebeom Koo, Ji Young Yhee, Ick Chan Kwon, Kwangmeyung Kim, and Ramesh SubbiahCarbon Nanotube BioconjugatesMonica Samal, Dong Kee Yi, and Shashadhar SamalBiocatalytic NanosystemsJaehong Lim and Su Seong LeeMagnetically Induced Hyperthermia for Biomedical ApplicationsMichael Fardis, Ioannis Rabias, Georgios Diamantopoulos, Eleni Karakosta, Danai Tsitrouli, Vassilios Tzitzios, and Georgios PapavassiliouSoft Block Nanobuilding: New Preparation Routes of Soft Nanomaterials Using BiomoleculesEngineered Biomolecules as NanomaterialsYun Jung Lee and Ki Tae NamNanomaterials and Bio-MEMS: Nano- and Microscale Hybridization of Materials and ApplicationsMicrofluidic-Based ...

  17. Non-traditional Oxidants in Preparative Coordination Chemistry

    Science.gov (United States)

    Kukushkin, Vadim Yu; Kukushkin, Yurii N.

    1986-10-01

    The application of nitrosonium and arenediazonium salts, carbenium, silver(I), and mercury(II) ions, protic acids, and amine oxides as oxidants in preparative coordination chemistry is examined. Specific examples illustrate which problems in the field of the synthesis and reactions of coordination compounds can be solved with the aid of these oxidants. The bibliography includes 158 references.

  18. Preparation of Metallic and Polymer Nanoparticles, Responsive Nanogels and Nanofibers by Radiation Initiated Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. -Pill; Gopalan, A. I. [Department of Chemistry Education, Kyungpook National University (Korea, Republic of)

    2009-07-01

    Synthesis of nanomaterials have become the focus of intensive research due to their numerous applications in diverse fields such as electronics, optics, ceramics, metallurgy, pulp and paper, environmental, pharmaceutics, biotechnology and biomedical fields. Due to expanding demand for the nanomaterials with defined properties, extensive research activities have been focused on the synthesis and characterization of “functional nanomaterials”. Our research group launched into research activities on the preparation of varieties of functional materials using radiation as the source for inducing functionalities ino these new nanomaterials. Importantly, we kept final goals for specific applications. Thus, we have prepared few interesting functional nanomaterials such as metal nanoparticles decorated multi wall carbon nanotubes, pore filled functional electrospun nanofibers and nanocables based on conducting polymer and carbon nanotubes and demonstrated their applications toward electrocatalysts, polymer electrolyte in energy devices and biosensors. In the forthcoming sections, a brief outline on the use of radiation for the preparation of those functional nanomaterials are presented. (author)

  19. Preparation of Inconel 740 superalloy by electron beam smelting

    Energy Technology Data Exchange (ETDEWEB)

    You, Xiaogang [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); Tan, Yi, E-mail: tanyi@dlut.edu.cn [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); You, Qifan; Shi, Shuang; Li, Jiayan [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); Ye, Fei [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Wei, Xin [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China)

    2016-08-15

    A novel method, namely electron beam smelting (EBS) technology was used to prepare the Inconel 740 superalloy. The microstructures, hardness and oxidation behavior were characterized and compared with the traditionally prepared Inconel 740 superalloy. The results imply that the solution treatment gives rise to the coarsening of γ′ precipitates, with further aging treatment, the γ′ precipitates with size of less than 30 nm are distributed dispersively in the matrix, leading to a decreasing of the lattice parameters and an increasing of the misfit. The γ′ precipitates result in shearing mechanism of weakly pair coupling. The EBS 740 superalloy produces better properties than that prepared in the traditional method in both precipitation strengthening effect and oxidation resistance. - Highlights: • Electron beam smelting, a new method, was used to prepare the Inconel 740 superalloy. • The EBS 740 shows higher strengthening effect than 740 made in traditional method. • The EBS 740 shows better oxidation resistance than traditional 740. • It shows application prospect of EBS technology in preparing Ni-base superalloys.

  20. Study On The Application Of Hydrogel Prepared By Radiation Technique For Fermentation Of Sawdust

    International Nuclear Information System (INIS)

    Le Thuy Trang; Nguyen Huynh Phuong Uyen; Vo Thu Ha; Le Quang Luan

    2011-01-01

    The super water-adsorption hydrogels was successfully preparation by radiation crosslinking CMC in paste condition and radiation grafting acrylic acid into starch. The hydrogel with 76.36% gel fraction and 91.13% swelling degree were obtained by irradiation of CMC 20% at 20 kGy, while the hydrogel with 65.3% gel fraction and 234 swelling degree was acrylic acid and starch at 4 kGy. The supplementation of hydrogels prepared by radiation technique showed a higher cellulose degradation effect of waste of cattle after fermenting 30 and 45 days. The optimum condition was determined by mixing 1% (w/w) dried hydrogel in 99% (w/w) waste of cattle. The fermented sawdust using hydrogel prepared by radiation technique showed a better effect on the growth of F1 Chinese cabbage (Brassica Pe-tsai Bailey L.). (author)

  1. Porous Materials from Thermally Activated Kaolinite: Preparation, Characterization and Application

    Directory of Open Access Journals (Sweden)

    Jun Luo

    2017-06-01

    Full Text Available In the present study, porous alumina/silica materials were prepared by selective leaching of silicon/aluminum constituents from thermal-activated kaolinite in inorganic acid or alkali liquor. The correlations between the characteristics of the prepared porous materials and the dissolution properties of activated kaolinite were also investigated. The results show that the specific surface area (SSA of porous alumina/silica increases with silica/alumina dissolution, but without marked change of the BJH pore size. Furthermore, change in pore volume is more dependent on activation temperature. The porous alumina and silica obtained from alkali leaching of kaolinite activated at 1150 °C for 15 min and acid leaching of kaolinite activated at 850 °C for 15 min are mesoporous, with SSAs, BJH pore sizes and pore volumes of 55.8 m2/g and 280.3 m2/g, 6.06 nm and 3.06 nm, 0.1455 mL/g and 0.1945 mL/g, respectively. According to the adsorption tests, porous alumina has superior adsorption capacities for Cu2+, Pb2+ and Cd2+ compared with porous silica and activated carbon. The maximum capacities of porous alumina for Cu2+, Pb2+ and Cd2+ are 134 mg/g, 183 mg/g and 195 mg/g, respectively, at 30 °C.

  2. Preparing to perform an awake fiberoptic intubation.

    LENUS (Irish Health Repository)

    Walsh, M E

    2012-02-03

    Fiberoptically guided tracheal intubation represents one of the most important advances in airway management to occur in the past thirty years. Perhaps its most important role is in management of the anticipated difficult airway. This is a situation in which the dangers of encountering the life-threatening "can\\'t intubate, can\\'t ventilate" situation can be avoided by placement of an endotracheal tube while the patient is awake. Although skill at the procedure of endoscopy is obviously necessary in this setting, these authors hold that success or failure of the technique frequently depends on the adequacy of preparation. These measures include 1) pre-operative assessment of the patient; 2) careful explanation of what lies in store; 3) "setting the stage"; 4) preparing the equipment to be used; and 5) preparing the patient (antisialogue, sedation, application of topical anesthesia to the upper airway). If these preparatory measures are carried out meticulously, the likelihood of performing a successful and comfortable awake fiberoptic tracheal intubation is greatly increased.

  3. The role of graphene-based sorbents in modern sample preparation techniques.

    Science.gov (United States)

    de Toffoli, Ana Lúcia; Maciel, Edvaldo Vasconcelos Soares; Fumes, Bruno Henrique; Lanças, Fernando Mauro

    2018-01-01

    The application of graphene-based sorbents in sample preparation techniques has increased significantly since 2011. These materials have good physicochemical properties to be used as sorbent and have shown excellent results in different sample preparation techniques. Graphene and its precursor graphene oxide have been considered to be good candidates to improve the extraction and concentration of different classes of target compounds (e.g., parabens, polycyclic aromatic hydrocarbon, pyrethroids, triazines, and so on) present in complex matrices. Its applications have been employed during the analysis of different matrices (e.g., environmental, biological and food). In this review, we highlight the most important characteristics of graphene-based material, their properties, synthesis routes, and the most important applications in both off-line and on-line sample preparation techniques. The discussion of the off-line approaches includes methods derived from conventional solid-phase extraction focusing on the miniaturized magnetic and dispersive modes. The modes of microextraction techniques called stir bar sorptive extraction, solid phase microextraction, and microextraction by packed sorbent are discussed. The on-line approaches focus on the use of graphene-based material mainly in on-line solid phase extraction, its variation called in-tube solid-phase microextraction, and on-line microdialysis systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ion exchange fiber prepared by radiation grafting, (2)

    International Nuclear Information System (INIS)

    Sekiguchi, Hideaki; Fujiwara, Kunio; Fujii, Toshiaki; Takai, Takeshi; Kobayashi, Atsushi

    1991-01-01

    Ion exchange fiber prepared by radiation grafting has the capabilities for wide application as high performance materials. Extensive studies were made to evaluate the ion exchange fiber prepared by radiation grafting for removing some toxic or malodorous gases, continuing from the previous work (presented in Ebara Engng. Review, No. 146), in which the ability of removing ammonia with cation exchange fiber was investigated. The results of this study can be summarized by the following conclusions: (1) Methods of evaluating the ability of removing ammonia, acetaldehyde, and some lower fatty acids in low concentration were established, (2) Besides being effective for the removal of acidic or basic gases, neutral gas such as acetaldehyde can also be removed by adding some functional compounds to the ion exchange fiber, and (3) Ion exchange fiber prepared by radiation grafting is effective as a deodorizing filter. (author)

  5. Monolitni katalizatori i reaktori: osnovne značajke, priprava i primjena (Monolith catalysts and reactors: preparation and applications

    Directory of Open Access Journals (Sweden)

    Tomašić, V.

    2004-12-01

    used in the preparation of monolithic catalysts are described. Several commercial applications of monolithic catalysts are presented. New applications and the associated technical challenges for the monolithic catalyst and reactors are discussed as well.

  6. Low temperature preparation of Ag-doped ZnO nanowire arrays for sensor and light-emitting diode applications

    Science.gov (United States)

    Lupan, O.; Viana, B.; Cretu, V.; Postica, V.; Adelung, R.; Pauporté, T.

    2016-02-01

    Transition metal doped-oxide semiconductor nanostructures are important to achieve enhanced and new properties for advanced applications. We describe the low temperature preparation of ZnO:Ag nanowire/nanorod (NW/NR) arrays by electrodeposition at 90 °C. The NWs have been characterized by SEM, EDX, transmittance and photoluminescence (PL) measurements. The integration of Ag in the crystal is shown. Single nanowire/nanorod of ZnO:Ag was integrated in a nanosensor structure leading to new and enhanced properties. The ultraviolet (UV) response of the nanosensor was investigated at room temperature. Experimental results indicate that ZnO:Ag (0.75 μM) nanosensor possesses faster response/recovery time and better response to UV light than those reported in literature. The sensor structure has been also shown to give a fast response for the hydrogen detection with improved performances compared to pristine ZnO NWs. ZnO:Ag nanowire/nanorod arrays electrochemically grown on p-type GaN single crystal layer is also shown to act as light emitter in LED structures. The emission wavelength is red-shifted compared to pristine ZnO NW array. At low Ag concentration a single UV-blue emission is found whereas at higher concentration of dopant the emission is broadened and extends up to the red wavelength range. Our study indicates that high quality ZnO:Ag NW/NR prepared at low temperature by electrodeposition can serve as building nanomaterials for new sensors and light emitting diodes (LEDs) structures with low-power consumption.

  7. Waste management analysis for the nuclear fuel cycle. II. Recycle preparation for wastewater streams

    International Nuclear Information System (INIS)

    Smith, C.M.; Navratil, J.D.; Plock, C.E.

    1979-01-01

    Recycle preparation methods were evaluated for secondary aqueous waste streams likely to be produced during reactor fuel fabrication and reprocessing. Adsorption, reverse osmosis, and ozonization methods were evaluated on a laboratory scale for their application to the treatment of wastewater. Activated carbon, macroreticular resins, and polyurethanes were tested to determine their relative capabilities for removing detergents and corrosive anions from wastewater. Conceptual flow sheets were constructed for purifying wastewater by reverse osmosis. In addition, the application of ozonization techniques for water recycle preparation was examined briefly

  8. Amorphous and nanocrystalline materials preparation, properties, and applications

    CERN Document Server

    Inoue, A

    2001-01-01

    Amorphous and nanocrystalline materials are a class of their own. Their properties are quite different to those of the corresponding crystalline materials. This book gives systematic insight into their physical properties, structure, behaviour, and design for special advanced applications.

  9. Effect of perioperative application of L-asrginine combined with intacted protein compound preparations on postoperative antitumor immunity and tumor load in patients with gastric cancer

    Directory of Open Access Journals (Sweden)

    Xiu-Lan Jiang

    2016-10-01

    Full Text Available Objective: To analyze the effect of perioperative application of L-arginine combined with intacted protein compound preparations on postoperative antitumor immunity and tumor load in patients with gastric cancer. Methods: A total of 68 patients with gastric cancer received radical operation, and according to different perioperative nutrition intervention, they were divided into control group (normal glucose saline enteral nutrition and observation group (L-arginine combined with intacted protein compound preparations enteral nutrition by half. Postoperative short-term antitumor immune cell levels and serum levels of illness-related indexes, nutrition and inflammation indexes of two groups were detected, patients were followed up for 3 years and the gastric stump MRI changes were observed. Results: Venous blood CD4+ T lymphocyte level and CD4+ /CD8+ ratio of observation group 3 months after treatment were higher than those of control group while CD8+ T lymphocyte and Treg cell levels were lower than those of control group; serum Pentraxin-3, CYFRA21-1, TTF-1 and HE4 levels were lower than those of control group; ALB, PA and IL-2 levels were higher than those of control group while IL-6 and IL-10 levels were lower than those of control group (P<0.05. Gastric stump MRI images 3 years after operation were significantly different between two groups. Conclusions: Perioperative application of L-arginine combined with intacted protein compound preparations can optimize postoperative immune and nutritional state in patients with gastric cancer, and it also has positive effect on reducing the incidence of long-term gastric stump carcinoma and other aspects.

  10. Preparation for Retirement Seminar

    CERN Multimedia

    HR Department

    2011-01-01

    The Human Resources Department is organizing a Preparation for Retirement Seminar, which will take place on 18 and 21 October 2011 in the afternoon in the Main Auditorium and on 19 October and 15 and 16 November 2011 in the afternoon in the Council Chamber. Similar seminars in the past have always proved highly successful. Retirement marks the end of a person’s working life and the start of a new chapter. This period of transition is experienced differently from one individual to another. In all cases, being well-informed and prepared greatly facilitates the change in lifestyle. We would like to draw your attention to the following information: Staff concerned: All staff members aged 58 and above have been sent a personal invitation to attend. Spouses are welcome. Staff members under the age of 58 who are interested in attending the seminar may also apply. Their applications will be accepted subject to availability of places. Registration: In view of the number of people concerned, you are r...

  11. Electro catalyst of platinum prepared by CVD for the oxygen reduction reaction

    International Nuclear Information System (INIS)

    Garcia C, M.A.; Fernandez V, S.M.; Vargas G, J.R.

    2004-01-01

    In this work it is reported the preparation and characterization of platinum films obtained by the technique of chemical vapor deposition at low pressure, better well-known as LPCVD for their initials in English (Low Pressure Chemical Vapor Deposition). The technique has several industrial applications and in this work it is explored their possible use to prepare applicable electrocatalysts in fuel cells. The films were characterized by XRD, SEM, EDS and they were proven for to determine their acting in the Oxygen reduction reaction (Orr) in sulfuric acid 0.5 M, the results show that the material presents good activity for the reaction in study. (Author)

  12. Endoradiotherapy in cancer treatment--basic concepts and future trends.

    Science.gov (United States)

    Zoller, Frederic; Eisenhut, Michael; Haberkorn, Uwe; Mier, Walter

    2009-12-25

    Endoradiotherapy represents an alternative therapeutic method in cancer treatment with advantageous features compared to chemotherapy and radiation therapy. Intelligent dose delivery concepts using small drugs, peptides or antibodies as radionuclide carriers enable the verification of a selective accumulation in the tumour lesion and to reduce radiation toxicity for the peripheral organs. The development of endoradiotherapeutic agents, especially chelator-conjugated biomolecules, for example ibritumomab tiuxetan or DOTATOC, gains importance due to the stable complexation of versatile radiometals, such as (90)Y or (177)Lu. The rational design of novel target binding sides and their grafting into a drug scaffold is a highly promising strategy, which may promote further implication in endoradiotherapy. This review highlights the basic concepts of endoradiotherapy and discusses the potential of targeted therapy and the properties of energy-rich particles emitted by radionuclides for tumour therapy.

  13. 7 CFR 1781.17 - Docket preparation and processing.

    Science.gov (United States)

    2010-01-01

    ... preparation, with a list of documents to be included in the docket. (3) Objectives of the docket. The docket.... (b) Loan processing by State Office—(1) Review of the docket. The processing office will check the... for authorized purposes. (v) Actions are in compliance with requirements of applicable Federal and...

  14. Magnetic hyaluronate hydrogels: preparation and characterization

    International Nuclear Information System (INIS)

    Tóth, Ildikó Y.; Veress, Gábor; Szekeres, Márta; Illés, Erzsébet; Tombácz, Etelka

    2015-01-01

    A novel soft way of hyaluronate (HyA) based magnetic hydrogel preparation was revealed. Magnetite nanoparticles (MNPs) were prepared by co-precipitation. Since the naked MNPs cannot be dispersed homogenously in HyA-gel, their surface was modified with natural and biocompatible chondroitin-sulfate-A (CSA) to obtain CSA-coated MNPs (CSA@MNPs). The aggregation state of MNPs and that loaded with increasing amount of CSA up to 1 mmol/g was measured by dynamic light scattering at pH~6. Only CSA@MNP with ≥0.2 mmol/g CSA content was suitable for magnetic HyA-gel preparation. Rheological studies showed that the presence of CSA@MNP with up to 2 g/L did not affect the hydrogel's rheological behavior significantly. The results suggest that the HyA-based magnetic hydrogels may be promising formulations for future biomedical applications, e.g. as intra-articular injections in the treatment of osteoarthritis. - Highlights: • Novel hyaluronate(HyA)-based biocompatible magnetic hydrogels were prepared. • Chondroitin-sulfate-A coating is needed to disperse magnetite particles in HyA-gel. • Rheological behavior of hydrogels was independent of the magnetite content (<2 g/L). • Gels remained in stable and homogeneously dispersed state even after 90 days storage. • Magnetic HyA-gels are promising candidates for use as intra-articular injection

  15. Magnetic hyaluronate hydrogels: preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tóth, Ildikó Y., E-mail: Ildiko.Toth@chem.u-szeged.hu; Veress, Gábor; Szekeres, Márta; Illés, Erzsébet; Tombácz, Etelka, E-mail: tombacz@chem.u-szeged.hu

    2015-04-15

    A novel soft way of hyaluronate (HyA) based magnetic hydrogel preparation was revealed. Magnetite nanoparticles (MNPs) were prepared by co-precipitation. Since the naked MNPs cannot be dispersed homogenously in HyA-gel, their surface was modified with natural and biocompatible chondroitin-sulfate-A (CSA) to obtain CSA-coated MNPs (CSA@MNPs). The aggregation state of MNPs and that loaded with increasing amount of CSA up to 1 mmol/g was measured by dynamic light scattering at pH~6. Only CSA@MNP with ≥0.2 mmol/g CSA content was suitable for magnetic HyA-gel preparation. Rheological studies showed that the presence of CSA@MNP with up to 2 g/L did not affect the hydrogel's rheological behavior significantly. The results suggest that the HyA-based magnetic hydrogels may be promising formulations for future biomedical applications, e.g. as intra-articular injections in the treatment of osteoarthritis. - Highlights: • Novel hyaluronate(HyA)-based biocompatible magnetic hydrogels were prepared. • Chondroitin-sulfate-A coating is needed to disperse magnetite particles in HyA-gel. • Rheological behavior of hydrogels was independent of the magnetite content (<2 g/L). • Gels remained in stable and homogeneously dispersed state even after 90 days storage. • Magnetic HyA-gels are promising candidates for use as intra-articular injection.

  16. PREPARATION AND PROPERTIES OF COMPOUND ARNEBIAE RADIX MICROEMULSION GEL.

    Science.gov (United States)

    Chen, Jing; He, Yanping; Gao, Ting; Zhang, Licheng; Zhao, Yuna

    2017-01-01

    Compound Arnebiae radix oil has been clinically applied to treat burns and scalds for a long time. However, it is unstable and inconvenient to use. The aim of this study was to prepare a compound Arnebiae radix microemulsion gel for transdermal delivery system and evaluate its characteristics. Based on the solubility of Shikonin, the active component of Arnebiae radix and the results of phase studies, adequate ratio of each component in microemulsion was determined. The optimized microemulsion gel was prepared using Carbomer 940. The gels were characterized in terms of appearance, preliminary stability test and the content of Shikonin in the compound Arnebiae radix microemulsion gel with HPLC analysis. The optimized conditions for preparing microemulsion were Tween-80, glycerin, isopropyl myristate (IPM) with the ratio of 6:3:2. The optimal microemulsion gel was obtained with Carbomer 940 (1.0%). The prepared compound Arnebiae radix microemulsion gel showed good stability over time. It is more convenience in application than the previous used formulations.

  17. Guidance for preparation of safety analysis reports for nonreactor facilities and operations

    International Nuclear Information System (INIS)

    1992-01-01

    Department of Energy (DOE) Orders 5480.23, ''Nuclear Safety Analysis Reports,'' and 5481.1B, ''Safety Analysis and Review System'' require the preparation of appropriate safety analyses for each DOE operation and subsequent significant modifications including decommissioning, and independent review of each safety analysis. The purpose of this guide is to assist in the preparation and review of safety documentation for Oak Ridge Field Office (OR) nonreactor facilities and operation. Appendix A lists DOE Orders, NRC Regulatory Guides and other documents applicable to the preparation of safety analysis reports

  18. The studies on the preparation of hapten conjugates for extension of the applicability of radioligandassay

    International Nuclear Information System (INIS)

    Kim, J.

    1979-01-01

    The stability of T 4 - 125 I has been secured by addition of a small amount of cysteine in the T 4 - 125 I solution. Various methods for the preparation of thyroid hormone-BSA conjugates were reviewed and an efficient preparation method as well as a qualitative and quantitative analysis procedures for the conjugates has been established. The results of analysis of the prepared hapten conjugates indicated that the mole ratios of BSA: T 3 (acid form) and BSA: T 4 (ethyl ester form) are 1:12 and 1:10, respectively, and the binding % of T 3 (acid form) and T 4 (ethyl ester form) to BSA molecule are 25% and 20%, respectively. (author)

  19. Explosive double salts and preparation

    Science.gov (United States)

    Cady, Howard H.; Lee, Kien-yin

    1984-01-01

    Applicants have discovered a new composition of matter which is an explosive addition compound of ammonium nitrate (AN) and diethylenetriamine trinitrate (DETN) in a 50:50 molar ratio. The compound is stable over extended periods of time only at temperatures higher than 46.degree. C., decomposing to a fine-grained eutectic mixture (which is also believed to be new) of AN and DETN at temperatures lower than 46.degree. C. The compound of the invention has an x-ray density of 1.61 g/cm.sup.3, explodes to form essentially only gaseous products, has higher detonation properties (i.e., detonation velocity and pressure) than those of any mechanical mixture having the same density and composition as the compound of the invention, is a quite insensitive explosive material, can be cast at temperatures attainable by high pressure steam, and is prepared from inexpensive ingredients. Methods of preparing the compound of the invention and the fine-grained eutectic composition of the invention are given.

  20. Preparation and characterization of polymeric and lipid nanoparticles of pilocarpine HCl for ocular application.

    Science.gov (United States)

    Lütfi, Genç; Müzeyyen, Demirel

    2013-01-01

    Pilocarpine is used topically in the treatment of glaucoma. Various studies were performed to improve the bioavailability and prolong the residence time of drugs in ocular drug delivery. Drug loaded polymeric and lipid nanoparticles offer several favourable biological properties, such as biodegradability, nontoxicity, biocompatibility and mucoadhesiveness. Therefore, preparing positively-charged pilocarpine HCl-loaded polymeric and lipid nanoparticles was the purpose of this study. Nanoparticles were prepared by quasi-emulsion solvent evaporation technique. The non-biodegradable positively-charged polymer Eudragit(®) RS 100 and semi-solid lipid excipient Gelucire(®) 44/14 were used as a vehicle, the cationic lipid octadecylamine was used as a cationic agent. The formulations were evaluated in terms of particle size, size distribution, zeta potential measurement, thermal behavior (Differential Scanning Calorimetry DSC), entrapment efficacy and pH. Characterizations of nanoparticles were analyzed during the storage period of 6 months for stability tests. Polymeric and lipid nanoparticles could be prepared successfully promising their use for ophthalmic delivery.

  1. Preparation of radiohalogenated biomolecules via organotin intermediates. Ch. 8

    International Nuclear Information System (INIS)

    Hanson, R.N.

    1991-01-01

    The purpose of this review is to describe the specific application of organotin chemistry to the preparation of radiohalogenated bio-organic compounds as radiotracers. Although the research group was the first to apply the radiohalodestannylation methodology to the synthesis of a labeled compound of biological interest, iodotamoxifen, and subsequently extended its use to the labeled hormones, dopamine receptor antagonists and perfusion agents, the versatility of the method has subsequently found broad acceptance. For many situations in which high specific activity, rapidity of incorporation and labeling site specificity are required, electrophilic destannylation is the method of choice. The sections that follow provide a description of the development of radiohalodestannylation and its application in radiopharmaceutical chemistry. The first section will briefly review the criteria that define the radionuclidic, biochemical and chemical limits associated with radiopharmaceuticals. The next section describes the rationale for the choice of organotin intermediates and highlights the methods available for their synthesis. Following that section are several areas of biomedical research interest that illustrate how organotin chemistry has been applied in the preparation of specific radiohalogenated compounds. Although the examples will focus primarily on situations that require high affinity and specific activity, labeled derivatives which were prepared to evaluate more general physiological properties will also be reviewed. (author). 171 refs

  2. 21 CFR 172.785 - Listeria-specific bacteriophage preparation.

    Science.gov (United States)

    2010-04-01

    ... application to meat and poultry products that comply with the ready-to-eat definition in 9 CFR 430.1. Current... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Listeria-specific bacteriophage preparation. 172.785 Section 172.785 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  3. Preparation and temperature dependence of electrostriction properties for PMN-based composite ceramics

    International Nuclear Information System (INIS)

    Zhao Jingbo; Qu Shaobo; Du Hongliang; Zheng Yanju; Xu Zhuo

    2009-01-01

    Both low- and high-temperature units were prepared by columbite precursor method, and Pb(Mg 1/3 Nb 2/3 )O 3 (PMN)-based ferroelectric composite ceramics were prepared by conventional method, baking-block method and coating method, respectively. The effects of preparation methods on dielectric and electrostriction properties as well as the temperature-dependence property of the obtained composite ceramics were studied. The results show that compared with the samples prepared by traditional blend sintering method, of the samples prepared by baking-block and coating methods have much better dielectric and electrostriction properties. For those prepared by baking-block method, the electrostriction temperature-dependence properties are good in the range of 20-60 deg. C. For those prepared by coating method, the dielectric temperature-dependence properties are also good in the broad range of -30 to 70 deg. C, and the electrostriction temperature properties are better than those prepared by blending-block. Compared with the traditional blending sintering method, the dielectric and electrostriction temperature-dependence properties are much better, which effectively solves the problem of temperature properties existing in present engineering applications.

  4. Evaluating a simple blending approach to prepare magnetic and stimuli-responsive composite hydrogel particles for application in biomedical field

    Directory of Open Access Journals (Sweden)

    H. Ahmad

    2016-08-01

    Full Text Available The inclusion of super paramagnetic iron oxide (Fe3O4 nanoparticles in stimuli-responsive hydrogel is expected to enhance the application potential for cellular therapy in cell labeling, separation and purification, protein immobilization, contrasting enhancement in magnetic resonance imaging (MRI, localized therapeutic hyperthermia, biosensors etc. in biomedical field. In this investigation two different magnetic and stimuli-responsive composite hydrogel particles with variable surface property were prepared by simply blending Fe3O4/SiO2 nanocomposite particles with stimuli-responsive hydrogel particles. Of the hydrogel particles prepared by free-radical precipitation polymerization poly(styrene-N-isopropylacrylamide-methyl methacrylate-polyethylene glycol methacrylate or P(S-NIPAM-MMA-PEGMA was temperature-sensitive and poly(S-NIPAM-methacrylic acid-PEGMA or P(S-NIPAM-MAA-PEGMA was both temperature- and pH-responsive. The morphological structure, size distributions and volume phase transitions of magnetic and stimuli-responsive composite hydrogel particles were analyzed. Temperature-responsive absorptions of biomolecules were observed on both magnetic and stimuli-responsive Fe3O4/SiO2/P(S-NIPAM-MMA-PEGMA and Fe3O4/SiO2/P(S-NIPAM-MAA-PEGMA composite hydrogel particles and separation of particles from the dispersion media could be achieved by applying magnetic field without time consuming centrifugation or decantation method.

  5. Preparation of thermo-responsive graft copolymer by using a novel macro-RAFT agent and its application for drug delivery.

    Science.gov (United States)

    Song, Cunfeng; Yu, Shirong; Liu, Cheng; Deng, Yuanming; Xu, Yiting; Chen, Xiaoling; Dai, Lizong

    2016-05-01

    A methodology to prepare thermo-responsive graft copolymer by using a novel macro-RAFT agent was proposed. The macro-RAFT agent with pendant dithioester (ZC(S)SR) was facilely prepared via the combination of RAFT polymerization and esterification reaction. By means of ZC(S)SR-initiated RAFT polymerization, the thermo-responsive graft copolymer consisting of poly(methyl methacrylate-co-hydroxylethyl methacrylate) (P(MMA-co-HEMA)) backbone and hydrophilic poly(N-isopropylacrylamide) (PNIPAAm) side chains was constructed through the "grafting from" approach. The chemical compositions and molecular weight distributions of the synthesized polymers were respectively characterized by (1)H nuclear magnetic resonance ((1)H NMR) and gel permeation chromatography (GPC). Self-assembly behavior of the amphiphilic graft copolymers (P(MMA-co-HEMA)-g-PNIPAAm) was studied by transmission electron microscopy (TEM), dynamic light scattering (DLS) and spectrofluorimeter. The critical micelle concentration (CMC) value was 0.052 mg mL(-1). These micelles have thermo-responsibility and a low critical solution temperature (LCST) of 33.5°C. Further investigation indicated that the guest molecule release property of these micelles, which can be well described by a first-order kinetic model, was significantly affected by temperature. Besides, the micelles exhibited excellent biocompatibility and cellular uptake property. Hence, these micelles are considered to have potential application in controlled drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Comparative tumour localization properties of radiolabelled monoclonal antibody preparations of defined immunoreactivities

    International Nuclear Information System (INIS)

    Pimm, M.V.; Baldwin, R.W.

    1987-01-01

    The immunoreactive fraction of an anti-CEA monoclonal antibody preparation has been progressively decreased by the addition of increasing proportions of impurity in the form of immunologically inert mouse immunoglobulin. Following radioiodination, the immunoreactive fractions of the preparations were determined and their localization in a human tumour xenograft in nude mice was assessed. There was a progressive decline in tumour localization, from tumour to blood ratios of 2:1 with unadulterated antibody to 0.6:1 with preparations only 15% with respect to the initial antibody. These findings demonstrate that the immunoreactive fraction of monoclonal antibody preparations is a major limiting factor in tumour localization and this has implications for experimental and clinical applications of monoclonal antibodies. (orig.)

  7. The optical properties and applications of AlN thin films prepared by a helicon sputtering system

    CERN Document Server

    Chiu, W Y; Kao, H L; Jeng, E S; Chen, J S; Jaing, C C

    2002-01-01

    AlN thin films were grown on SiO sub 2 /Si and quartz substrates using a helicon sputtering system. The dependence of film quality on growth parameters, such as total sputtering pressure, substrate temperature, and nitrogen concentration has been studied. There is a good correlation of thin film crystallinity addressed by x-ray diffraction (XRD) and spectroscopic ellipsometer. The optimized films exhibit highly oriented, with only (002) peak shown in a theta-2 theta scan XRD pattern, and extremely smooth surface with rms roughness of 2 Aa. The extinction coefficient of the film was 4x10 sup - sup 4 , which is lower than that of AlN films grown by conventional sputtering. Double-layer antireflection (DLAR) coating using AlN and Al sub 3 O sub 3 grown on quartz has been demonstrated. The transmittance of DLAR was high as 96% compared to 93% of bare substrates with the measurement error less than 0.2%. AlN films prepared by Helicon sputtering thus are potential for optical application.

  8. Iron oxide shell coating on nano silicon prepared from the sand for lithium-ion battery application

    Science.gov (United States)

    Furquan, Mohammad; Vijayalakshmi, S.; Mitra, Sagar

    2018-05-01

    Elemental silicon, due to its high specific capacity (4200 mAh g-1) and non-toxicity is expected to be an attractive anode material for Li-ion battery. But its huge expansion volume (> 300 %) during charging of battery, leads to pulverization and cracking in the silicon particles and causes sudden failure of the Li-ion battery. In this work, we have designed yolk-shell type morphology of silicon, prepared from carbon coated silicon nanoparticles soaked in aqueous solution of ferric nitrate and potassium hydroxide. The soaked silicon particles were dried and finally calcined at 800 °C for 30 minutes. The product obtained is deprived of carbon and has a kind of yolk-shell morphology of nano silicon with iron oxide coating (Si@Iron oxide). This material has been tested for half-cell lithium-ion battery configuration. The discharge capacity is found to be ≈ 600 mAh g-1 at a current rate of 1.0 A g-1 for 200 cycles. It has shown a stable performance as anode for Li-ion battery application.

  9. Sonochemical Synthesis of Ca(OH2 Nanoparticles and Its Application in Preparation of MWCNT-Paraloid Nanocomposite

    Directory of Open Access Journals (Sweden)

    H. Kazemi

    2015-01-01

    Full Text Available In this work at the first step calcium hydroxide nano-particles were synthesized via sono-chemical method at room temperature. At the second step aminated multi-walled carbon nano-tubes was prepared via chemical modification of surfaces of CNT. Finally modified-MWCNT and Ca(OH2 were added to paraloid matrix by aid of ultrasonic irradiation. Paraloid-modified-MWCNT-Ca(OH2 nanocomposite was used as a protection agent applicable in cultural heritage preservation. This nanocomposite can be used against acid rain that is destructive agent in historic monuments. One of the main advantages of paraloid as a consolidant is that it is stronger and harder than polyvinyl acetate without being extremely brittle. Nanostructures were characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM. Thermal stability behavior of paraloid filled with calcium hydroxide was investigated by thermogravimetric analysis (TGA. Our results show that the MWCNT-Ca(OH2 nanostructure can enhance thermal stability property of the paraloid matrix. Nano-additives like a barrier slow down volatilization of paraloid chains against heat.

  10. Simple and rapid preparation of [11C]DASB with high quality and reliability for routine applications

    International Nuclear Information System (INIS)

    Haeusler, D.; Mien, L.-K.; Nics, L.; Ungersboeck, J.; Philippe, C.; Lanzenberger, R.R.; Kletter, K.; Dudczak, R.; Mitterhauser, M.; Wadsak, W.

    2009-01-01

    [ 11 C]DASB combines all major prerequisites for a successful SERT-ligand, providing excellent biological properties and in-vivo behaviour. Thus, we aimed to establish a fully automated procedure for the synthesis and purification of [ 11 C]DASB with a high degree of reliability reducing the overall synthesis time while conserving high yields and purity. The optimized [ 11 C]DASB synthesis was applied in more than 60 applications with a very low failure rate (3.2%). We obtained yields up to 8.9 GBq (average 5.3±1.6 GBq). Radiochemical yields based on [ 11 C]CH 3 I, (corrected for decay) were 66.3±6.9% with a specific radioactivity (A s ) of 86.8±24.3 GBq/μmol (both at the end of synthesis, EOS). Time consumption was kept to a minimum, resulting in 43 min from end of bombardment to release of the product after quality control. Form our data, it is evident that the presented method can be implemented for routine preparations of [ 11 C]DASB with high reliability.

  11. [Quality process control system of Chinese medicine preparation based on "holistic view"].

    Science.gov (United States)

    Wang, Ya-Qi; Jiao, Jiao-Jiao; Wu, Zhen-Feng; Zheng, Qin; Yang, Ming

    2018-01-01

    "High quality, safety and effectiveness" are the primary principles for the pharmaceutical research and development process in China. The quality of products relies not only on the inspection method, but also on the design and development, process control and standardized management. The quality depends on the process control level. In this paper, the history and current development of quality control of traditional Chinese medicine (TCM) preparations are reviewed systematically. Based on the development model of international drug quality control and the misunderstanding of quality control of TCM preparations, the reasons for impacting the homogeneity of TCM preparations are analyzed and summarized. According to TCM characteristics, efforts were made to control the diversity of TCM, make "unstable" TCM into "stable" Chinese patent medicines, put forward the concepts of "holistic view" and "QbD (quality by design)", so as to create the "holistic, modular, data, standardized" model as the core of TCM preparation quality process control model. Scientific studies shall conform to the actual production of TCM preparations, and be conducive to supporting advanced equipment and technology upgrade, thoroughly applying the scientific research achievements in Chinese patent medicines, and promoting the cluster application and transformation application of TCM pharmaceutical technology, so as to improve the quality and effectiveness of the TCM industry and realize the green development. Copyright© by the Chinese Pharmaceutical Association.

  12. Application of immunoaffinity columns for different food item samples preparation in micotoxins determination

    Directory of Open Access Journals (Sweden)

    Ćurčić Marijana

    2016-01-01

    Full Text Available In analytical methods used for monitoring of what special attention is paid to sample preparation. Therefore, the objective of this study was testing the efficiency of immunoaffinity columns (IAC that are based on solid phase extraction principles used for samples preparation in determining aflatoxins and ochratoxins. Aflatoxins and ochratoxins concentrations were determined in totally 56 samples of food items: wheat, corn, rice, barley and other grains (19 samples, flour and flour products from grain and additives for the bakery industry (7 samples, fruits and vegetables (3 samples, hazelnut, walnut, almond, coconut flour (4 samples, roasted cocoa beans, peanuts, tea, coffee (16 samples, spices (4 samples and meat and meat products (4 samples. Obtained results indicate advantage of IAC use for sample preparation based on enhanced specificity due to binding of extracted molecules to incorporated specific antibodies and rinsing the rest molecules from sample which could interfere with further analysis. Additional advantage is the usage of small amount of organic solvents and consequently decreased exposure of staff who conduct micotoxins determination. Of special interest is increase in method sensitivity since limit of quantification for aflatoxins and ochratoxins determination method is lower than maximal allowed concentration of these toxines prescribed by national rule book.

  13. Preparation and characterization of Bi-2223 tapes

    International Nuclear Information System (INIS)

    Hense, K.; Kirchmayr, H.; Kovac, P.; Lackner, R.; Mueller, M.; Pachla, W.; Pitel, J.; Polak, M.; Usak, P.

    2003-01-01

    In a concerted action between Austrian, Slovakian and Polish research institutes Bi-2223 tapes have been prepared and characterized by different physical methods. Metallographic studies by optical as well as electron microscopy, measurements of critical current (angle dependent) and losses have been performed. Properties of individual filaments extracted from multifilamentary tapes were also studied. Uniformity of local I C of these filaments were considerably lower than that of the whole tape. This indicates that improvement of filament homogeneity could improve the over all J C in tapes. The application of these tapes for optimized magnet coils will also be discussed. From these investigations a better understanding of the mechanisms, limiting the critical current could be achieved and more optimized preparation methods can be envisioned

  14. Techniques for CAD reconstruction of 'as-built' environments and application to preparing for dismantling of plants

    International Nuclear Information System (INIS)

    Pot, J.; Levesque, P.

    1997-01-01

    Electricite de France is using CAD-generated numeric geometrical models to simulate maintenance operations and enable optimizing maintenance procedures. These models are also used to program the machines or robots for certain servicing procedures. They are used in the operator interfaces for robot control, and provide the operator with virtual cameras or enable generating specific information (such as virtual force feedback). Even more recently, CAD models have been integrated in what is known as 'virtual reality' software, giving the operators a sensation of 'immersion' in a virtual universe. Depending on the need and on the type of results expected from the simulations, one needs more or less precise models of the environment in which work will be performed. EDF is using several techniques to get 'as-built' models of the environments. This article describes the SOISIC system, which is a 3D laser sensor widely used for environment data acquisition, associated with 3Dipsos software, for CAD model reconstruction. These techniques, and the applications subsequently developed formaintenance applications, can be used in preparing and carrying out dismantling operations: 'as-built' CAD modeling of the installation can be used in the preparatory phase, providing plans, simulating the varioussteps, calculating waste volumes, helping in optimization of waste management, etc. These models can also be used during the actual dismantling process, to program the machines or robots used, or in the robot or machinesupervisory system. Some of the presented techniques have been used in a room in the Brennilis plant, which is currently being dismantled. (orig.)

  15. Patient preparation for nuclear medicine studies

    International Nuclear Information System (INIS)

    Stathis, V.J.; Cantrell, D.W.; Cantrell, T.J.

    1987-01-01

    In this chapter are described methods of patient preparation that can favorably affect the outcome of nuclear medicine studies in specific situations. Some of these practices may be considered essential to the success of the nuclear medicine procedure, whereas others may be thought of simply as a means of obtaining more valid or reliable information. Regardless of relative importance, each of the preparatory methods discussed can contribute to the quality of the respective study and can serve as a means of maximizing the value of nuclear medicine procedures. The specific patient preparation techniques discussed in this chapter may not be readily applicable to every practice setting or situation. These or similar procedures can be used or modified as necessary. It is important, however, that when new protocols are developed, the rationale and theoretical basis of each technique be considered

  16. Thermoresponsive Hydrogels and Their Biomedical Applications: Special Insight into Their Applications in Textile Based Transdermal Therapy

    Directory of Open Access Journals (Sweden)

    Sudipta Chatterjee

    2018-04-01

    Full Text Available Various natural and synthetic polymers are capable of showing thermoresponsive properties and their hydrogels are finding a wide range of biomedical applications including drug delivery, tissue engineering and wound healing. Thermoresponsive hydrogels use temperature as external stimulus to show sol-gel transition and most of the thermoresponsive polymers can form hydrogels around body temperature. The availability of natural thermoresponsive polymers and multiple preparation methods of synthetic polymers, simple preparation method and high functionality of thermoresponsive hydrogels offer many advantages for developing drug delivery systems based on thermoresponsive hydrogels. In textile field applications of thermoresponsive hydrogels, textile based transdermal therapy is currently being applied using drug loaded thermoresponsive hydrogels. The current review focuses on the preparation, physico-chemical properties and various biomedical applications of thermoresponsive hydrogels based on natural and synthetic polymers and especially, their applications in developing functionalized textiles for transdermal therapies. Finally, future prospects of dual responsive (pH/temperature hydrogels made by these polymers for textile based transdermal treatments are mentioned in this review.

  17. Green preparation of a novel red mud@carbon composite and its application for adsorption of 2,4-dichlorophenoxyacetic acid from aqueous solution.

    Science.gov (United States)

    Kazak, Omer; Eker, Yasin Ramazan; Akin, Ilker; Bingol, Haluk; Tor, Ali

    2017-10-01

    This study reports the eco-friendly preparation of a novel composite material consisting of red mud and carbon spheres, denoted as red mud@C composite, and its application for the removal of 2,4-dichlorophenoxyacetic acid herbicide (2,4-D) from aqueous solution. The preparation route has a green approach because it follows the low-energy consuming one-step hydrothermal process by using starch as a renewable carbon precursor and red mud as a waste from aluminum production industry. Characterization of the red mud@C composite was performed by FT-IR, TGA, SEM, TEM, BET, XRD, and Raman microscopy analyses. The batch adsorption studies revealed that the red mud@C composite has higher 2,4-D adsorption efficiency than those of the red mud and the naked carbon spheres. The maximum removal at initial pH of 3.0 is explained by considering the pKa of 2,4-D and pH of point of zero charge (pH pzc ) of the composite material. The adsorption equilibrium time was 60 min, which followed the pseudo-second-order kinetic model together with intra-particle diffusion model. The isotherm analysis indicated that Freundlich isotherm model better represented the adsorption data, with isotherm parameters of k [15.849 (mg/g) (mg/L) -1/n ] and n (2.985). The prepared composite is reusable at least 5 cycles of adsorption-desorption with no significant decrease in the adsorption capacity.

  18. Preparation of mesoporous silica films SBA-15 over different substrates

    International Nuclear Information System (INIS)

    Campos, V.O.; Sousa, E.M.B. de; Macedo, W.A.A.

    2010-01-01

    Mesoporous materials have been target of frequent interest due to its wide application possibilities, for example development of gas sensors, catalysis, molecules transportation, pharmaceuticals release, synthesis of auto-organized nanostructures, among others. The possibilities of application are enhanced when such materials are disposed in the form of thin and ultrathin films. In this work the preparation of mesoporous SBA-15 silica films is explored by means of the dipcoating technique of a sol-gel on different substrates (glass slides, stainless steel, copper), using the surfactant poly(ethylene glycol)-block-poly(propylene glycol)- block-poly(ethylene glycol), known as P123, a block copolymer. Synthesis parameters surfactant concentration, aging time and temperature were investigated. In this work we present the morphological and structural characterization of the prepared films, which were obtained using atomic force microscopy and x-ray fluorescence and diffraction. (author)

  19. A novel method for the preparation of electrophoretic display microcapsules

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiao-Meng; He, Jing; Liu, Sheng-Yun [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Chen, Jian-Feng [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Le, Yuan, E-mail: leyuan@mail.buct.edu.cn [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China)

    2014-07-01

    Highlights: • The electrophoretic display microcapsules were prepared by coaxial jet method aided by gas spray. • The positions of inner tube, liquid and gas flow rate of the process were investigated. • The size and shell thickness of the prepared microcapsules were controllable. • The prepared microcapsules had high coating ratio and exhibit reversible response to DC field. - Abstract: The narrow distributed electrophoretic display microcapsules containing electrophoretic ink were prepared using coaxial jet method aided by gas spray. Experimental results showed the size and shell thickness of the microcapsules could be controlled by adjusting flow rates of core and shell fluids as well as gas. The as-prepared white and red microcapsules, with average size of 100 and 200 μm respectively, had high coating ratio (above 90%) and exhibited reversible response to DC electric field. Compared with the approach of other microencapsulation methods, the new technique not only has a simple procedure but also provides a more effective way of size control. This novel method is expected to prepare microcapsules with potential application in the fields of electronic paper and other material science.

  20. Preparation, characterization and antimicrobial efficiency of Ag/PDDA-diatomite nanocomposite.

    Science.gov (United States)

    Panáček, Aleš; Balzerová, Anna; Prucek, Robert; Ranc, Václav; Večeřová, Renata; Husičková, Vendula; Pechoušek, Jiří; Filip, Jan; Zbořil, Radek; Kvítek, Libor

    2013-10-01

    Nanocomposites consisting of diatomaceous earth particles and silver nanoparticles (silver NPs) with high antimicrobial activity were prepared and characterized. For the purpose of nanocomposite preparation, silver NPs with an average size of 28nm prepared by modified Tollens process were used. Nanocomposites were prepared using poly(diallyldimethylammonium) chloride (PDDA) as an interlayer substance between diatomite and silver NPs which enables to change diatomite original negative surface charge to positive one. Due to strong electrostatic interactions between negatively charged silver NPs and positively charged PDDA-modified diatomite, Ag/PDDA-diatomite nanocomposites with a high content of silver (as high as 46.6mgAg/1g of diatomite) were prepared. Because of minimal release of silver NPs from prepared nanocomposites to aqueous media (<0.3mg Ag/1g of nanocomposite), the developed nanocomposites are regarded as a potential useful antimicrobial material with a long-term efficiency showing no risk to human health or environment. All the prepared nanocomposites exhibit a high bactericidal activity against Gram-negative and Gram-positive bacteria and fungicidal activity against yeasts at very low concentrations as low as 0.11g/L, corresponding to silver concentration of 5mg/L. Hence, the prepared nanocomposites constitute a promising candidate suitable for the microbial water treatment in environmental applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Preparation of CNC-dispersed Fe3O4 nanoparticles and their application in conductive paper.

    Science.gov (United States)

    Liu, Kai; Nasrallah, Joseph; Chen, Lihui; Huang, Liulian; Ni, Yonghao

    2015-08-01

    Well-dispersed Fe3O4 nanoparticles (NPs) were synthesized by a co-precipitation method in the presence of cellulose nano-crystals (CNC) as the template. The thus prepared Fe3O4 NPs were then used as a coating agent for the preparation of conductive paper. Fourier transform infrared spectroscopy (FTIR) results revealed that the Fe3O4 NPs were immobilized on the CNC through interactions between the hydroxyl groups of CNC and Fe3O4. Scanning transmission electron microscopy (STEM) images showed that the Fe3O4 NPs prepared in the presence of CNC can be dispersed in the CNC network, while the Fe3O4 NPs prepared in the absence of CNC tended to aggregate in aqueous solutions. The conductivity of the Fe3O4 NPs coated paper can reach to 0.0269 S/m at the coating amount of 14.75 g/m(2) Fe3O4/CNC nanocomposites. Therefore, the thus obtained coated paper can be potentially used as anti-static packaging material in the packaging field. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Preparation of thermo-sensitive slow releasing material and its application in low tar tobacco

    Directory of Open Access Journals (Sweden)

    Tian Zhong

    2017-04-01

    Full Text Available To solve some sensory defects such as fragrance deficiency,strong dry sense,poor satisfaction in the development of ultra-low tar tobacco products,we prepared a new thermo sensitive slow releasing composite material with tobacco aroma.The characterization results showed that the as-prepared thermosensitive particles have better aroma enhancing and slow releasing effects.Also,the aroma components of the tip stick containing thermosensitive particles were detected and its sensory quality was evaluated.The results showed that composite tip stick could enhance the aroma and improve the sensory quality of the cigarettes.

  3. Aspects of 6-[18F]fluoro-L-DOPA preparation: precursor synthesis, preparative HPLC purification and determination of radiochemical purity

    International Nuclear Information System (INIS)

    Fuechtner, F.; Angelberger, P.; Kvaternik, H.; Hammerschmidt, F.; Simovc, B. Peric; Steinbach, J.

    2002-01-01

    A modified method for the synthesis of the intermediate product N-Boc-3,4-di(Boc-O)-6-iodo-L-phenylalanine ethyl ester of the [ 18 F]FDOPA precursor preparation was developed. With the application of bis-(trifluoroacetoxy)-iodobenzene for the iodination step with elemental iodine the yield of the intermediate can be increased from 12% to 50-60%. By replacing silica-gel-based RP HPLC column by a polymer-based column for semi-preparative purification of [ 18 F]FDOPA from the reaction mixture the radiochemical purity of the final product can be increased up to >99%. For the determination of the radiochemical impurity [ 18 F]fluoride a HPLC method using a column with polymer-based RP material was introduced

  4. Preparation and characterization of a novel UV-curable plastic scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jun [Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042 (China); Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621010 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Ding, Yunyu [Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042 (China); Zhu, Jiayi [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Qi, Di [Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042 (China); Su, Ming [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Xu, Yewei; Bi, Yutie [Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621010 (China); Lin, Runxiong, E-mail: qdlrx@qust.edu.cn [Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042 (China); Zhang, Lin, E-mail: zhlmy@sina.com [Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621010 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China)

    2016-05-01

    A novel UV-curable plastic scintillator was first prepared by using the technology of photosensitivity rapid prototyping. It used the copolymer of 621A-80, TPGDA and styrene as the matrix doped with PPO and POPOP. Its fluorescence spectra displayed a maximum emission wavelength at 428 nm. The light yield of the plastic scintillator was approximately 7.1% of anthracene on the basis of a comparison with the commercially available scintillator (ST-401). The as-prepared plastic scintillator also displayed a fast scintillation decay. Its decay time is 2.6 ns approximately. Importantly, through the technology of photosensitivity rapid prototyping, the plastic scintillator could be prepared in a short period of time at low temperature. What's more, this preparation method provides the possibility of combining the plastic scintillator with 3D printing technology, and then the applications of the plastic scintillator may be expanded greatly.

  5. Preparation and characterization of poly (urea-formaldehyde) walled dicyclopentadiene microcapsules

    NARCIS (Netherlands)

    Xiong, W.; Zhu, G.; Tang, J.; Dong, B.; Han, N.; Xing, F.; Schlangen, H.E.J.G.

    2013-01-01

    Poly (urea-formaldehyde) (PUF) shelled dicyclopentadiene (DCPD) microcapsules were prepared by in-situ polymerization technology for self-healing concrete applications. It’s found, during the process, sodium dodecyl benzene sulfonate (SDBS) behaves better in emulsification of DCPD than other

  6. End-preparation assessments and tests for compounded sterile preparations.

    Science.gov (United States)

    McElhiney, Linda F

    2013-01-01

    Outsourcing has become a necessity to obtain sterile products that are currently on backorder. Because of the expense of outsourcing sterile compounding, pharmacy leadership in health systems are now considering the option of insourcing and batch preparing compounded sterile preparations, which can be a viable option for a health system. It can significantly decrease drug-spending costs, and the pharmacy has a complete record of the compounding process. The key to preparing high-quality, safe, sterile preparations and meeting United States Pharmacopeia standards is end-preparation assessments and tests.

  7. Athletic altitude training protocols and their application in preparation for mountainous operations.

    Science.gov (United States)

    Heil, K M; Keenan, A C M

    2014-01-01

    In recent years, small scale counter-insurgency and expeditionary operations have frequently taken place in mountainous, high-altitude areas. Preparation of soldiers for these environments has typically focussed on extended stays at altitude to ensure physiological acclimatisation. However, with the likelihood that future UK deployments may be unpredictable and thus with little time for preparation, is there a means by which the same acclimatisation may be achieved? The field of athletics has been researching such adaptations since the rise of the elite North African long-distance runners in the 1960s. These athletes all lived high above sea level and had become accustomed to performing in the relatively hypoxic environment found at high altitudes. The research has focussed on eliciting physiological acclimatisation in as short a time as possible, while maintaining the ability to train at the correct intensity. In the following review of altitude training we highlight areas for future investigation and assess whether protocols developed for athletes can be applied to military personnel.

  8. Preparation of Eleutherine americana-Alginate Complex Microcapsules and Application in Bifidobacterium longum

    Science.gov (United States)

    Phoem, Atchara N; Chanthachum, Suphitchaya; Voravuthikunchai, Supayang P

    2015-01-01

    Microencapsulation using extrusion and emulsion techniques was prepared for Bifidobacterium longum protection against sequential exposure to simulated gastric and intestinal juices, refrigeration storage and heat treatment. Eleutherine americana was used as the co-encapsulating agent. Hydrolysis of E. americana by gastric and intestinal juices was also determined. E. americana and its oligosaccharide extract demonstrated their resistance to low pH and partial tolerance to human α-amylase. Microencapsulated B. longum with E. americana and oligosaccharide extract prepared by the extrusion technique survived better than that by the emulsion technique under adverse conditions. Survival of microencapsulated cells after exposure to the juices and refrigeration storage was higher than free cells at Weeks 2 and 4. In addition, the viability of microencapsulated cells was better than free cells at 65 °C for 15 min. This work suggested that microencapsulated B. longum with E. americana offers the effective delivery of probiotics to colon and maintains their survival in food products. PMID:25629556

  9. Progress in Preparation and Research of High Entropy Alloys

    Directory of Open Access Journals (Sweden)

    CHEN Yong-xing

    2017-11-01

    Full Text Available The current high entropy alloys' studies are most in block, powder, coating, film and other areas. There are few studies of high entropy alloys in other areas and they are lack of unified classification. According to the current high entropy alloys' research situation, The paper has focused on the classification on all kinds of high entropy alloys having been researched, introduced the selecting principle of elements, summarized the preparation methods, reviewed the research institutions, research methods and research contents of high entropy alloys, prospected the application prospect of high entropy alloys, put forward a series of scientific problems of high entropy alloys, including less research on mechanism, incomplete performance research, unsystematic thermal stability study, preparation process parameters to be optimized, lightweight high entropy alloys' design, the expansion on the research field, etc, and the solutions have been given. Those have certain guiding significance for the expansion of the application of high entropy alloys subjects in the future research direction.

  10. Present state in coal preparation. Stanje u pripremi uglja

    Energy Technology Data Exchange (ETDEWEB)

    Jevremovic, C. (Rudarsko-Geoloski Fakultet, Tuzla (Yugoslavia))

    1990-01-01

    Describes the low technological state of Yugoslav coal enterprises,in particular of those that exploit low grade lignite and brown coal with high ash and sulfur content. Unadjusted coal prices (almost the same price level for low and high energy coal) and absence of stringent laws on environmental pollution are regarded as main reasons for the low technological level of coal preparation and beneficiation plants. Modern preparation equipment for coal classification, coal washing, coal drying and briquetting is pointed out. Advanced coal carbonization and gasification should have a wider application in Yugoslavia for reducing environmental pollution and producing clean fuel.

  11. Solid dispersion application in pharmaceutical technology: Methods of preparation and characterization

    OpenAIRE

    Medarević, Đorđe; Ibrić, Svetlana; Đuriš, Jelena; Đurić, Zorica

    2013-01-01

    A growing number of newly synthesized drugs exhibit low aqueous solubility, leading to poor bioavailability. Therefore, improving drug solubility and dissolution rate became one of the greatest challenges during formulation development. Solid dispersions formulation is one of the commonly investigated techniques for improving solubility of poorly soluble drugs. Solid dispersions are dispersions of one or more drugs in an inert carrier (matrix) in the solid state prepared by melting, solvent, ...

  12. Gold nanoparticles: preparation, functionalisation and applications in biochemistry and immunochemistry

    International Nuclear Information System (INIS)

    Dykman, Lev A; Bogatyrev, Vladimir A

    2007-01-01

    The review summarises data on the synthesis and functionalisation of gold nanoparticles and their applications in biological investigations. Particular attention is given to applications of colloidal gold in solid-phase assays, immunoassay and studies of biologically active compounds by vibrational spectroscopy. A special section deals with the use of gold nanoparticles as antigen carriers in immunisation.

  13. Homeopathic Preparations to Control the Rosy Apple Aphid (Dysaphis plantaginea Pass.

    Directory of Open Access Journals (Sweden)

    Eric Wyss

    2010-01-01

    Full Text Available A laboratory model system with the rosy apple aphid (Dysaphis plantaginea Pass. on apple seedlings was developed to study the effects of homeopathic preparations on this apple pest. The assessment included the substance Lycopodium clavatum and a nosode of the rosy apple aphid. Each preparation was applied on the substrate surface as aqueous solution of granules (6c, 15c, or 30c. Controls were aqueous solutions of placebo granules or pure water. In eight independent, randomized, and blinded experiments under standardized conditions in growth chambers, the development of aphids on treated and untreated apple seedlings was observed over 17 days, each. Six experiments were determined to assess the effects of a strict therapeutic treatment; two experiments were designed to determine the effects of a combined preventative and therapeutic treatment. After application of the preparations, the number of juvenile offspring and the damage on apple seedlings were assessed after 7 and 17 days, respectively. In addition, after 17 days, the seedling weight was measured. In the final evaluation of the six strictly therapeutic trials after 17 days, the number of juvenile offspring was reduced after application of L. clavatum 15c (-17%, p = 0.002 and nosode 6c (-14%, p = 0.02 compared to the pure water control. No significant effects were observed for leaf damage or fresh weight for any application. In the two experiments with combined preventative and therapeutic treatment, no significant effects were observed in any measured parameter. Homeopathic remedies may be effective in plant-pest systems. The magnitude of observed effects seems to be larger than in models with healthy plants, which renders plant-pest systems promising candidates for homeopathic basic research. For successful application in agriculture, however, the effect is not yet sufficient. This calls for further optimization concerning homeopathic remedy selection, potency level, dosage, and

  14. Usage of mobile devices as collaborative tools for education and preparation of official exams

    OpenAIRE

    López Velasco, Juan Pedro; Cerezo Beltrán, Ana; Menendez Garcia, Jose Manuel; Ballesteros Fernández, J. P.

    2015-01-01

    Preparation of official examinations and oppositions is a difficult task in which new technologies related to mobile Web 2.0 play an important role, because they can improve the learning methodology. A collaborative platform based on a smartphone application was developed for helping students to prepare an official examination which, in this concrete case, is the preparation of the exam for obtaining the accreditation for touristic guides of the Agència Valenciana del Turisme. The app enable...

  15. Preparation of polymeric materials by radiation for different industrial waste treatment

    International Nuclear Information System (INIS)

    Maziad, N.A.M.

    1997-01-01

    Preparation of synthetic membranes using radiation induced graft copolymerization of styrene ( Sty ), acrylic acid ( A Ac ) and styrene/acrylic acid (Sty/A Ac) onto low density polyethylene ( LDPE ), polypropylene ( PP ) and polyvinyl chloride ( PVC ) films are carried out . The effect of preparation conditions on the grafting yield and on the homogeneity of grafting is thoroughly investigated. Characterization and some physical properties such as mechanical, electrical conductivity and thermal behaviour of the prepared grafted membranes are studied. Thus, the possibility of their practicable use are determined. In addition, possible applications of such prepared membranes in the separation of heavy metals such as Fe 3+, Cd 2+ and Pb 2+ from waste water are investigated. It is found that, the prepared grafted membranes have a good affinity towards the adsorption or chelation with F 3+ and Pb 2+ either in a mixture containing other metals or if they exist alone in the feed solution . It is recommended that such prepared grafted membranes could be useful in separation of Pb 2+ ions from a mixture of other metal ions

  16. High index of refraction films for dielectric mirrors prepared by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Brusasco, R.M.

    1989-01-01

    A wide variety of metal oxides with high index of refraction can be prepared by Metal-Organic Chemical Vapor Deposition. We present some recent optical and laser damage results on oxide films prepared by MOCVD which could be used in a multilayer structure for highly reflecting (HR) dielectric mirror applications. The method of preparation affects both optical properties and laser damage threshold. 10 refs., 8 figs., 4 tabs

  17. Method of preparing porous, rigid ceramic separators for an electrochemical cell. [Patent application

    Science.gov (United States)

    Bandyopadhyay, G.; Dusek, J.T.

    Porous, rigid separators for electrochemical cells are prepared by first calcining particles of ceramic material at temperatures above about 1200/sup 0/C for a sufficient period of time to reduce the sinterability of the particles. A ceramic powder that has not been calcined is blended with the original powder to control the porosity of the completed separator. The ceramic blend is then pressed into a sheet of the desired shape and sintered at a temperature somewhat lower than the calcination temperature. Separator sheets of about 1 to 2.5 mm thickness and 30 to 70% porosity can be prepared by this technique. Ceramics such as yttria, magnesium oxide, and magnesium-aluminium oxide have advantageously been used to form separators by this method.

  18. Application of carbon nanotubes flexible strain sensor in smart textiles

    Directory of Open Access Journals (Sweden)

    Qiong CHENG

    2017-10-01

    Full Text Available Smart textiles have not only the necessary functions of daily wear, but also the intelligence. The focus of the current textile materials research is the selection of flexible material. For flexible materials, carbon material is one of the ideal materials for preparing flexible strain gauges. The application of flexible strain sensor prepared by carbon nanotubes as a flexible material in smart textiles is the research content. The research status of carbon nanotubes flexible strain sensor is introduced from the aspects of the structure, properties and application. The characteristics and functions of flexible strain gages prepared with carbon nanotube fibers and carbon nanotube films as flexible materials are discussed in terms of selection, preparation method, performance test and application. At the same time, the advantages and disadvantages of the flexible strain sensor of carbon nanotubes are reviewed from the aspects of preparation difficulty, production cost and practical application effect. High sensitivity with high strain will be a key research direction for carbon nanotube flexible strain sensors.

  19. New materials for sample preparation techniques in bioanalysis.

    Science.gov (United States)

    Nazario, Carlos Eduardo Domingues; Fumes, Bruno Henrique; da Silva, Meire Ribeiro; Lanças, Fernando Mauro

    2017-02-01

    The analysis of biological samples is a complex and difficult task owing to two basic and complementary issues: the high complexity of most biological matrices and the need to determine minute quantities of active substances and contaminants in such complex sample. To succeed in this endeavor samples are usually subject to three steps of a comprehensive analytical methodological approach: sample preparation, analytes isolation (usually utilizing a chromatographic technique) and qualitative/quantitative analysis (usually with the aid of mass spectrometric tools). Owing to the complex nature of bio-samples, and the very low concentration of the target analytes to be determined, selective sample preparation techniques is mandatory in order to overcome the difficulties imposed by these two constraints. During the last decade new chemical synthesis approaches has been developed and optimized, such as sol-gel and molecularly imprinting technologies, allowing the preparation of novel materials for sample preparation including graphene and derivatives, magnetic materials, ionic liquids, molecularly imprinted polymers, and much more. In this contribution we will review these novel techniques and materials, as well as their application to the bioanalysis niche. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Preparation of novel silver nanoplates/graphene composite and their application in vanillin electrochemical detection.

    Science.gov (United States)

    Huang, Linhong; Hou, Keyu; Jia, Xiao; Pan, Haibo; Du, Min

    2014-05-01

    Hexagonal Ag nanoplates (NPs) were synthesized by polyvinylpyrrolidone (PVP) and trisodium citrate (TSC) which selectively absorbed to Ag (100) and Ag (111) surfaces, then were anchored to graphene (GN) to form novel Ag NPs/GN composite. The thickness of Ag NPs is ~4 nm and the length is 18-66 nm. Transmission electron microscopy (TEM) image shows that the plates are f-c-c crystals containing {111} facets on their two planar surfaces. Zeta potential indicated that the surface of Ag NPs/GN is negatively charged while vanillin is positively charged. Thus Ag NPs/GN modified on glass carbon electrodes (GCE) allowed abundant adsorption for vanillin and electron transfer between vanillin and Ag NPs/GN/GCE. Square wave voltammetry (SWV) results indicated that the over potential on Ag NPs/GN/GCE negatively shifts 52 mV than that on Ag NPs/GCE. Ag NPs/GN with enhanced surface area and good conductivity exhibited an excellent electrocatalytic activity toward the oxidation of vanillin. The corresponding linear range was estimated to be from 2 to 100 μM (R(2)=0.998), and the detection limit is 3.32×10(-7) M (S/N=3). The as-prepared vanillin sensor exhibits good selectivity and potential application in practical vanillin determination. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Preparing a Safety Analysis Report using the building block approach

    International Nuclear Information System (INIS)

    Herrington, C.C.

    1990-01-01

    The credibility of the applicant in a licensing proceeding is severely impacted by the quality of the license application, particularly the Safety Analysis Report. To ensure the highest possible credibility, the building block approach was devised to support the development of a quality Safety Analysis Report. The approach incorporates a comprehensive planning scheme that logically ties together all levels of the investigation and provides the direction necessary to prepare a superior Safety Analysis Report

  2. Reproducible insulin secretion from isolated rat pancreas preparations using an organ bath.

    Science.gov (United States)

    Morita, Asuka; Ouchi, Motoshi; Terada, Misao; Kon, Hiroe; Kishimoto, Satoko; Satoh, Keitaro; Otani, Naoyuki; Hayashi, Keitaro; Fujita, Tomoe; Inoue, Ken-Ichi; Anzai, Naohiko

    2018-02-09

    Diabetes mellitus is a lifestyle-related disease that is characterized by inappropriate or diminished insulin secretion. Ex vivo pharmacological studies of hypoglycemic agents are often conducted using perfused pancreatic preparations. Pancreas preparations for organ bath experiments do not require cannulation and are therefore less complex than isolated perfused pancreas preparations. However, previous research has generated almost no data on insulin secretion from pancreas preparations using organ bath preparations. The purpose of this study was to investigate the applicability of isolated rat pancreas preparations using the organ bath technique in the quantitative analysis of insulin secretion from β-cells. We found that insulin secretion significantly declined during incubation in the organ bath, whereas it was maintained in the presence of 1 µM GLP-1. Conversely, amylase secretion exhibited a modest increase during incubation and was not altered in the presence of GLP-1. These results demonstrate that the pancreatic organ bath preparation is a sensitive and reproducible method for the ex vivo assessment of the pharmacological properties of hypoglycemic agents.

  3. Inexpensive multiplexed library preparation for megabase-sized genomes.

    Directory of Open Access Journals (Sweden)

    Michael Baym

    Full Text Available Whole-genome sequencing has become an indispensible tool of modern biology. However, the cost of sample preparation relative to the cost of sequencing remains high, especially for small genomes where the former is dominant. Here we present a protocol for rapid and inexpensive preparation of hundreds of multiplexed genomic libraries for Illumina sequencing. By carrying out the Nextera tagmentation reaction in small volumes, replacing costly reagents with cheaper equivalents, and omitting unnecessary steps, we achieve a cost of library preparation of $8 per sample, approximately 6 times cheaper than the standard Nextera XT protocol. Furthermore, our procedure takes less than 5 hours for 96 samples. Several hundred samples can then be pooled on the same HiSeq lane via custom barcodes. Our method will be useful for re-sequencing of microbial or viral genomes, including those from evolution experiments, genetic screens, and environmental samples, as well as for other sequencing applications including large amplicon, open chromosome, artificial chromosomes, and RNA sequencing.

  4. Preparation and characterization of thick metastable sputter deposits

    International Nuclear Information System (INIS)

    Allen, R.P.; Dahlgren, S.D.; Merz, M.D.

    1975-01-01

    High-rate dc supported-discharge sputtering techniques were developed and used to prepare 0.1 mm to 5.0 mm-thick deposits of a variety of metastable materials including amorphous alloys representing more than 15 different rare-earth-transition metal systems and a wide range of compositions and deposition conditions. The ability to prepare thick, homogeneous deposits has made it possible for the first time to investigate the structure, properties, and annealing behavior of these unique sputtered alloys using neutron diffraction, ultrasonic, and other experimental techniques that are difficult or impractical for thin films. More importantly, these characterization studies show that the structure and properties of the massive sputter deposits are independent of thickness and can be reproduced from deposit to deposit. Other advantages and applications of this metastable materials preparation technique include the possibility of varying structure and properties by control of the deposition parameters and the ability to deposit even reactive alloys with a very low impurity content

  5. Preparation of reminiscent aroma mixture of Japanese soy sauce.

    Science.gov (United States)

    Bonkohara, Kaori; Fuji, Maiko; Nakao, Akito; Igura, Noriyuki; Shimoda, Mitsuya

    2016-01-01

    To prepare an aroma mixture of Japanese soy sauce by fewest components, the aroma concentrate of good sensory attributes was prepared by polyethylene membrane extraction, which could extract only the volatiles with diethyl ether. GC-MS-Olfactometry was done with the aroma concentrate, and 28 odor-active compounds were detected. Application of aroma extract dilution analysis to the separated fraction revealed high flavor dilution factors with respect to acetic acid, 4-hydroxy-2(or5)-ethyl-5(or2)-methyl-3(2H)-furanone (HEMF), 3-methyl-1-butanol (isoamyl alcohol), and 3-(methylsulfanyl)propanal (methional). A model aroma mixture containing above four odorants showed a good similarity with the aroma of the soy sauce itself. Consequently, the reminiscent aroma mixture of soy sauce was prepared in water. The ratio of acetic acid, HEMF, isoamyl alcohol, and methional was 2500:300:100:1.

  6. Powder preparation technics for SnO2 with submycrometrics particles

    International Nuclear Information System (INIS)

    Hiratsuka, R.S.; Pulcinelli, S.H.; Santilli, C.V.; Masetto, S.R.

    1989-01-01

    Preparation of SnO 2 fine powders is a pointer research because of this application as gas detecting sensors. This work shows basicaly two powder preparation methods: i) from metalic tin oxidation with nitric acid, ii) from SnCl 4 hydrolysis in aquous solution of amonia hydroxides. It was analysed the concentration of nitric acid and the pH of precipitation influency of the structural and morphologic characteristics of the obtained powders. The materials were characterized by X-ray diffraction, infra-red spectroscopy and specific surface area [pt

  7. Preparation of Ultracold Atom Clouds at the Shot Noise Level

    DEFF Research Database (Denmark)

    Gajdacz, M.; Hilliard, A. J.; Kristensen, Mick

    2016-01-01

    We prepare number stabilized ultracold atom clouds through the real-time analysis of nondestructive images and the application of feedback. In our experiments, the atom number N∼10^6 is determined by high precision Faraday imaging with uncertainty ΔN below the shot noise level, i.e., ΔN... on this measurement, feedback is applied to reduce the atom number to a user-defined target, whereupon a second imaging series probes the number stabilized cloud. By this method, we show that the atom number in ultracold clouds can be prepared below the shot noise level....

  8. Novel strategies for sample preparation in forensic toxicology.

    Science.gov (United States)

    Samanidou, Victoria; Kovatsi, Leda; Fragou, Domniki; Rentifis, Konstantinos

    2011-09-01

    This paper provides a review of novel strategies for sample preparation in forensic toxicology. The review initially outlines the principle of each technique, followed by sections addressing each class of abused drugs separately. The novel strategies currently reviewed focus on the preparation of various biological samples for the subsequent determination of opiates, benzodiazepines, amphetamines, cocaine, hallucinogens, tricyclic antidepressants, antipsychotics and cannabinoids. According to our experience, these analytes are the most frequently responsible for intoxications in Greece. The applications of techniques such as disposable pipette extraction, microextraction by packed sorbent, matrix solid-phase dispersion, solid-phase microextraction, polymer monolith microextraction, stir bar sorptive extraction and others, which are rapidly gaining acceptance in the field of toxicology, are currently reviewed.

  9. Preparation of aluminum doped zinc oxide films with low resistivity and outstanding transparency by a sol–gel method for potential applications in perovskite solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xingyue; Shen, Heping; Zhou, Chen [State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 10084 (China); Lin, Shiwei [Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou 570228 (China); Li, Xin [State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 10084 (China); Zhao, Xiaochong [State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 10084 (China); Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621907 (China); Deng, Xiangyun [Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou 570228 (China); College of Physics and Electronic Information, Tianjin, Normal University, Tianjin 300387 (China); Li, Jianbao [State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 10084 (China); Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou 570228 (China); Lin, Hong [State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 10084 (China)

    2016-04-30

    Highly transparent and conductive aluminum doped zinc oxide (AZO) films were prepared by sol–gel method on the glass substrates. The effects of doping concentration, annealing temperature and facing direction during annealing on the structural, electrical and optical properties of AZO films were studied by performing a series of characterizations including X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, UV–vis spectrophotometry, four-point probe method and Hall effect measurement system. The results showed that the AZO films were wurtzite crystallized with c-axis preferred orientation. A minimum resistivity of 1.8 × 10{sup −3} Ω cm and a transmittance above 90% were obtained for the film doped with 1.5 at.% aluminum, annealed at 510 °C and faced-down in the oven, which was among the best performance of the currently reported works based on sol–gel process. Moreover, energy level analysis revealed that the AZO film has a work function of 4.3 eV, exhibiting great potential in perovskite solar cell applications. - Highlights: • Highly transparent and conductive AZO films were prepared by sol–gel based process. • Different facing directions during annealing had effects on the carrier mobility. • Less aluminum ions at the grain boundary would favor the carrier transport. • The potential of AZO film in the perovskite solar cell application was discussed.

  10. Application of thermal analysis methods in the study of sintered uranium dioxide preparation. I

    International Nuclear Information System (INIS)

    Landspersky, H.; Urbanek, V.

    1978-01-01

    Thermal analysis was used in the study of drying ammonium polyuranate gel prepared by internal gelation of uranyl nitrate solutions with urea and urotropine. The analysis of the differential curves of weight changes with linear temperature increase showed that temperatures above 180 degC should be used for drying to prepare a high-quality product which can easily be further heat treated. For the first water fractions released at temperatures up to 140 degC an activation energy of 49.6 kJ/mol was found which only slightly exceeds the evaporation heat of water. (Ha)

  11. Preparation of TiO2 Nanocrystallite Powders Coated with 9 mol% ZnO for Cosmetic Applications in Sunscreens

    Directory of Open Access Journals (Sweden)

    Moo-Chin Wang

    2012-02-01

    Full Text Available The preparation of TiO2 nanocrystallite powders coated with and without 9 mol% ZnO has been studied for cosmetic applications in sunscreens by a co-precipitation process using TiCl4 and Zn(NO32·6H2O as starting materials. XRD results show that the phases of anatase TiO2 and rutile TiO2 coexist for precursor powders without added ZnO (T-0Z and calcined at 523 to 973 K for 2 h. When the T-0Z precursor powders are calcined at 1273 K for 2 h, only the rutile TiO2 appears. In addition, when the TiO2 precursor powders contain 9 mol% ZnO (T-9Z are calcined at 873 to 973 K for 2 h, the crystallized samples are composed of the major phase of rutile TiO2 and the minor phases of anatase TiO2 and Zn2Ti3O8. The analyses of UV/VIS/NIR spectra reveal that the absorption of the T-9Z precursor powders after being calcined has a red-shift effect in the UV range with increasing calcination temperature. Therefore, the TiO2 nanocrystallite powders coated with 9 mol% ZnO can be used as the attenuate agent in the UV-A region for cosmetic applications in sunscreens.

  12. Use of irradiation to improve the safety and quality of Thai prepared meal

    Energy Technology Data Exchange (ETDEWEB)

    Noomhorm, A [Food Engineering and Bioprocess Technology, Asian Institute of Technology (Thailand)

    2002-07-01

    There is a dynamic growth of market for chilled prepared meals in Thailand because of the growth of food services in supermarkets and convenient stores. However, the shelf life of this food is short furthermore it is implicated in a number of serious foodborne disease outbreaks. Irradiation could provide a potential to improve the microbiological safety and extend the shelf life of chilled prepared meals. It is possibly used alone or together with chilling. With the combination of irradiation and chilling, frozen condition could be replaced resulting to saving in energy and cost. However, there is a limitation of information about the application of irradiation on chilled prepared meals. Also, information relevant to the application of food safety control system like Hazard Analysis and Critical Control Point (HACCP) should be gathered to ensure more safety of the irradiated prepared meals. For Thai dishes, they are normally composed of herb and spicy with different types of meat. All dishes are eaten along with rice. Both Thai aromatic rice and herb are susceptible to deterioration in quality by processing factors. Therefore, the study of the effect of irradiation on Thai dishes, which compose of these two components, is necessary.

  13. Preparation and In Vitro/Ex Vivo Evaluation of Moxifloxacin-Loaded PLGA Nanosuspensions for Ophthalmic Application

    OpenAIRE

    MUDGIL, Meetali; PAWAR, Pravin

    2013-01-01

    The aim of the present investigation was to prepare a colloidal ophthalmic formulation to improve the residence time of moxifloxacin. Moxifloxacin-loaded poly(dl-lactide-co-glycolide) (PLGA) nanosuspensions were prepared by using the solvent evaporation technique. The nanosuspensions were characterised physically by using different techniques like particle size, zeta potential, FTIR, DSC, and XRD analysis. In vitro and ex vivo studies of nanosuspensions were carried out using a modified USP d...

  14. High-throughput automated microfluidic sample preparation for accurate microbial genomics.

    Science.gov (United States)

    Kim, Soohong; De Jonghe, Joachim; Kulesa, Anthony B; Feldman, David; Vatanen, Tommi; Bhattacharyya, Roby P; Berdy, Brittany; Gomez, James; Nolan, Jill; Epstein, Slava; Blainey, Paul C

    2017-01-27

    Low-cost shotgun DNA sequencing is transforming the microbial sciences. Sequencing instruments are so effective that sample preparation is now the key limiting factor. Here, we introduce a microfluidic sample preparation platform that integrates the key steps in cells to sequence library sample preparation for up to 96 samples and reduces DNA input requirements 100-fold while maintaining or improving data quality. The general-purpose microarchitecture we demonstrate supports workflows with arbitrary numbers of reaction and clean-up or capture steps. By reducing the sample quantity requirements, we enabled low-input (∼10,000 cells) whole-genome shotgun (WGS) sequencing of Mycobacterium tuberculosis and soil micro-colonies with superior results. We also leveraged the enhanced throughput to sequence ∼400 clinical Pseudomonas aeruginosa libraries and demonstrate excellent single-nucleotide polymorphism detection performance that explained phenotypically observed antibiotic resistance. Fully-integrated lab-on-chip sample preparation overcomes technical barriers to enable broader deployment of genomics across many basic research and translational applications.

  15. Integrating Tax Preparation with FAFSA Completion: Three Case Models

    Science.gov (United States)

    Daun-Barnett, Nathan; Mabry, Beth

    2012-01-01

    This research compares three different models implemented in four cities. The models integrated free tax-preparation services to assist low-income families with their completion of the Free Application for Federal Student Aid (FAFSA). There has been an increased focus on simplifying the FAFSA process. However, simplification is not the only…

  16. Radiation sterilization of some pharmaceutical preparations and medical products

    International Nuclear Information System (INIS)

    Tashmetov, M.Yu.; Makhkamov, Sh.M.; Urinov, Sh.S.; Turaev, A.S.; Sultanov, M.S.; Inagomov, Kh.S.

    2006-01-01

    Full text: In connection with intensive development of pharmacology and medical techniques, use of the products contacting to blood, with the internal environment of an organism, with wound surface, with mucous membranes and skin there were high requirements to sterility of pharmaceutical preparations and medical products. Traditional methods of sterilization (heat treatment, gas processing and processing the ferry) have some restrictions in application, and not insufficient degree of sterilization required for pharmaceutical preparations and medical products. Thermal processing can lead to degradation of structure (medicine), mechanical changes and loss of medical properties. Besides, it is impossible to carry out sterilization of many pharmaceutical preparations by a method of heat treatment. Sterilization of products in packing is very complicated, because sterilization temperature of packing and a product is different. Gas processing is basically applied to sterilization of medical products (syringes, bandage, cotton wools, etc.). However, the degree of sterility is low, because of rather low ability and heterogeneity of sterilizing substance. Sterilization in packing represents special difficulty and demands additional charges related with delivery of the purified gas from abroad. Last years alongside with known technological methods of sterilization of medical products and pharmaceutical preparations radiating methods of processing have found wide application. Use of electronic bunches with the moderate energy and various isotopes became a basis for formation and development of a new direction in the medicine, called by 'radiation sterilization'. The radiation technology is highly harmless and economic, not polluting substance and surrounding space. Unlike the specified traditional methods, radiating processing of products by the isotope 60 Co, radiating the gamma quantum, has unique opportunities - high penetrability in substance, providing uniformity of

  17. Preparation and performance of ZnO/Polyaniline nano-composite for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.P.; Chang, X.C.; Wang, Z.M.; Han, K.F.; Zhu, H. [Beijing Univ. of Chemical Technology, Beijing (China). School of Science

    2010-07-01

    Supercapacitors combine the advantages of traditional capacitors and batteries. In this study, a zinc oxide (ZnO-PANI) nano-composite material was fabricated in order to investigate its behaviour in a supercapacitor application. The ZnO nano-powder was synthesized using the sol-gel method. An inverted emulsion polymerization method was then used to prepare the ZnO/PANI nanocomposite. X-ray diffraction (XRD) analyses demonstrated that the prepared ZnO had a hexagonal structure. The ZnO/PANI composite electrode was prepared. Electrochemical impedance spectroscopy (EIS) analyses indicated that the nano-composite material functioned well as an electrode. The highest capacitance rating achieved by the electrode was 31.82 F per g. 6 refs., 4 figs.

  18. Preparation of strongly fluorescent silica nanoparticles of polyelectrolyte-protected cadmium telluride quantum dots and their application to cell toxicity and imaging

    International Nuclear Information System (INIS)

    Tang Jianhua; Xie Lian; Zhang Bin; Qiu Ting; Qi Bin; Xie Hongping

    2012-01-01

    Graphical abstract: The staining effect of the control group (a), QDs-SiO 2 (b) and QDs-PDADMAC-SiO 2 (c). Highlights: ► The fluorescence intensity of QDs-PDADMAC-SiO 2 is stronger than that of QDs-SiO 2 . ► The fluorescence stability of QDs-PDADMAC-SiO 2 is better than that of QDs-SiO 2 . ► The cytotoxicity of QDs-PDADMAC-SiO 2 was lower than that of QDs-SiO 2 ► The staining effect of QDs-PDADMAC-SiO 2 was much better than that of QDs-SiO 2 . - Abstract: Based on the polyelectrolyte-protected CdTe quantum dots (QDs), which were prepared by self-assembling of QDs and poly-diallyldimethylammonium chloride (PDADMAC) in the help of electrostatic attraction, the strong fluorescence silica nanoparticles (QDs-PDADMAC-SiO 2 ) have been prepared via a water-in-oil reverse microemulsion method. Transmission electron microscopy and Zeta potential analysis were used to characterize the as-prepared nanoparticles. All of the particles were almost spherical and there is a uniform distribution of the particle size with the average diameter about 25 nm. There is a large Zeta potential of −35.07 mV which is necessary for good monodispersity of nanoparticles solution. As compared with the QDs coated by SiO 2 (QDs-SiO 2 ), the QDs-PDADMAC-SiO 2 nanoparticles have much stronger fluorescence, and their fluorescence stability could be obviously improved. Moreover, QDs-PDADMAC-SiO 2 exhibits good biological compatibility which promotes their application in cellular imaging.

  19. Solution preparation

    International Nuclear Information System (INIS)

    Seitz, M.G.

    1982-01-01

    Reviewed in this statement are methods of preparing solutions to be used in laboratory experiments to examine technical issues related to the safe disposal of nuclear waste from power generation. Each approach currently used to prepare solutions has advantages and any one approach may be preferred over the others in particular situations, depending upon the goals of the experimental program. These advantages are highlighted herein for three approaches to solution preparation that are currently used most in studies of nuclear waste disposal. Discussion of the disadvantages of each approach is presented to help a user select a preparation method for his particular studies. Also presented in this statement are general observations regarding solution preparation. These observations are used as examples of the types of concerns that need to be addressed regarding solution preparation. As shown by these examples, prior to experimentation or chemical analyses, laboratory techniques based on scientific knowledge of solutions can be applied to solutions, often resulting in great improvement in the usefulness of results

  20. Sample preparation of environmental samples using benzene synthesis followed by high-performance LSC

    International Nuclear Information System (INIS)

    Filippis, S. De; Noakes, J.E.

    1991-01-01

    Liquid scintillation counting (LSC) techniques have been widely employed as the detection method for determining environmental levels of tritium and 14 C. Since anthropogenic and nonanthropogenic inputs to the environment are a concern, sampling the environment surrounding a nuclear power facility or fuel reprocessing operation requires the collection of many different sample types, including agriculture products, water, biota, aquatic life, soil, and vegetation. These sample types are not suitable for the direct detection of tritium of 14 C for liquid scintillation techniques. Each sample type must be initially prepared in order to obtain the carbon or hydrogen component of interest and present this in a chemical form that is compatible with common chemicals used in scintillation counting applications. Converting the sample of interest to chemically pure benzene as a sample preparation technique has been widely accepted for processing samples for radiocarbon age-dating applications. The synthesized benzene is composed of the carbon or hydrogen atoms from the original sample and is ideal as a solvent for LSC with excellent photo-optical properties. Benzene synthesis followed by low-background scintillation counting can be applied to the preparation and measurement of environmental samples yielding good detection sensitivities, high radionuclide counting efficiency, and shorter preparation time. The method of benzene synthesis provides a unique approach to the preparation of a wide variety of environmental sample types using similar chemistry for all samples

  1. Status report of AMS sample preparation laboratory at GADAM Centre, Gliwice, Poland

    Energy Technology Data Exchange (ETDEWEB)

    Piotrowska, N., E-mail: natalia.piotrowska@polsl.pl [GADAM Centre of Excellence, Department of Radioisotopes, Institute of Physics, Silesian University of Technology, Gliwice (Poland)

    2013-01-15

    The laboratory for {sup 14}C AMS sample preparation in the Gliwice Radiocarbon Laboratory has gradually evolved since its start in 1999 to cater for an increase in volume and variety of radiocarbon dating samples. To date, nearly 2000 graphite targets have been produced from materials such as plant macrofossils, charcoal, peat, bones, shells and wood. The equipment comprises a station for chemical preparation and high vacuum lines for production, purification and graphitization of sample carbon dioxide. The present capacity allows preparation of up to 400 targets annually for the needs of scientific projects and external orders for radiocarbon dating continuously received by the GADAM Centre of Excellence. The laboratory's sample preparation protocols and recent improvements are described and its performance during the 10 years of activity is discussed in terms of parameters obtained from reference materials prepared in this laboratory and demonstrated with a few science applications.

  2. Preparations and applications in UV curing coatings of epoxy acrylates containing carboxyl

    International Nuclear Information System (INIS)

    Wu Yu Min

    1999-01-01

    This paper introduces preparations of epoxy acrylates containing carboxyl through the reactions of epoxy acrylates with butanedioic anhydride, pentanedioic anhydride, cis-butenedioic anhydride, phthalic anhydride, tetrabromophthalic anhydride and -tetrahydrophthalic anhydride. These epoxy acrylates containing carboxyl have been applied to UV-curing coatings and their effects on properties of UV-curing coatings have been studied

  3. Preparation and characterization of chrome doped sphene pigments prepared via precursor mechanochemical activation

    Energy Technology Data Exchange (ETDEWEB)

    Pantić, Jelena, E-mail: jelena.pantic@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade (Serbia); Prekajski, Marija; Dramićanin, Miroslav; Abazović, Nadica [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade (Serbia); Vuković, Nikola [Faculty of Chemistry, University of Belgrade, 12-16 Studentski Trg, 11000 Belgrade (Serbia); Kremenović, Aleksandar [Faculty of Mining and Geology, University of Belgrade, Djušina 7, Belgrade (Serbia); Matović, Branko [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade (Serbia)

    2013-12-05

    Highlights: •Mechanical activation of precursors has been used for the preparation of Cr-doped sphene ceramic pigments (CaTi{sub 1−y}Cr{sub y}SiO{sub 5}). •The average particle size is around 1 μm, which is desirable for application. •The optimum pigment (best hue with lowest Cr content) is obtained with 0.1% Cr. •Both chromium ions (Cr{sup 4+} and Cr{sup 3+}), find itself within distorted octahedral coordination. -- Abstract: Mechanical activation of precursors has been used for the preparation of Cr-doped sphene ceramic pigments (CaTi{sub 1−y}Cr{sub y}SiO{sub 5}). Ceramic material has been prepared from a powder mixture of CaCO{sub 3}, TiO{sub 2}, SiO{sub 2} and Cr(NO{sub 3})⋅9H{sub 2}O using vibro-milling for homogenization and activation of precursors. The mechanochemical process initially yielded amorphous powders, which on further calcination, crystallized to yield Cr-doped sphene ceramic pigment. Phase evolution in CaTi{sub 1−y}Cr{sub y}SiO{sub 5} composition with thermal treatment was investigated by X-ray powder diffraction (XRPD). Texture properties and particle size distribution were analyzed by scanning electron microscopy (SEM) and laser diffraction, respectively. UV/Vis reflectance spectra are used to determinate the behavior of the chromium ion. The color efficiency of pigments was evaluated by colorimetric analysis (CIE L {sup *} a {sup *} b system). Photoluminescence measurements were also performed.

  4. Preparation and characterization of polyaniline-cadmium sulfide nanocomposite for gas sensor application

    Science.gov (United States)

    Al-Jawad, Selma M. H.; Rafic, Sewench N.; Muhsen, Mustafa M.

    2017-09-01

    Polyaniline (PANI) was prepared by chemical oxidative polymerization of aniline monomers as emeraldine salt form. By the same method, polyaniline-cadmium sulfide nanocomposites were synthesized in the presence of different percentages (10-50 wt.%) of cadmium sulfide (CdS) which was prepared by using sol-gel method. The optical band gap was decrease with increasing of CdS concentration, that is obtained from UV-VIS measurements. From SEM and AFM, there is uniform distribution for cadmium sulfide nanoparticles in the PANI matrix. The electrical measurements of nanocomposites exhibit the effect of crystallite size and the high resistivity of CdS on the resistivity of nanocomposites. Emeraldine salt PANI, CdS and PANI-CdS nanocomposites were investigated as gas sensors. From this investigation, the sensitivity of PANI-CdS for NO2 gas increase with the increasing of operation temperature and the optimum sensitivity was obtained at 200∘C. The sensitivity of nanocomposites at best temperature (200∘C) was increased and faster response time with the increasing of CdS contents.

  5. MAPLE prepared heterostructures with oligoazomethine: Fullerene derivative mixed layer for photovoltaic applications

    Science.gov (United States)

    Stanculescu, A.; Rasoga, O.; Socol, M.; Vacareanu, L.; Grigoras, M.; Socol, G.; Stanculescu, F.; Breazu, C.; Matei, E.; Preda, N.; Girtan, M.

    2017-09-01

    Mixed layers of azomethine oligomers containing 2,5-diamino-3,4-dicyanothiophene as central unit and triphenylamine (LV5) or carbazol (LV4) at both ends as donor and fullerene derivative, [6,6]-phenyl-C61 butyric acid butyl ester ([C60]PCB-C4) as acceptor, have been prepared by Matrix Assisted Pulsed Laser Evaporation (MAPLE) on glass/ITO and Si substrates. The effect of weight ratio between donor and acceptor (1:1; 1:2) and solvent type (chloroform, dimethylsulphoxide) on the optical (UV-vis transmission/absorption, photoluminescence) and morphological properties of LV4 (LV5): [C60]PCB-C4 mixed layers has been evidenced. Dark and under illumination I-V characteristics of the heterostructures realized with these mixed layers sandwiched between ITO and Al electrodes have revealed a solar cell behavior for the heterostructures prepared with both LV4 and LV5 using chloroform as matrix solvent. The solar cell structure realized with oligomer LV5, glass/ITO/LV5: [C60]PCB-C4 (1:1) has shown the best parameters.

  6. Carbon Nanofibrous Materials from Electrospinning: Preparation and Energy Applications

    Science.gov (United States)

    Aboagye, Alex

    Carbon nanofibers with diameters that fall into submicron and nanometer range have attracted growing attention in recent years due to their superior chemical, electrical, and mechanical properties in combination with their unique one-dimensional nanostructures. Unlike catalytic synthesis, electrospinning polyacrylonitrile (PAN) followed by stabilization and carbonization has become a straightforward and convenient route to make continuous carbon nanofibers. The overall objective of this research was the design and production fiber based carbon nanomaterials, investigation of their structures and use in functional applications. Specifically, these carbon nanofibrous materials were employed as electrode material for energy storage and conversion devices such as dye sensitized solar cells and supercapacitors Morphology and structure of the carbon nanofibrous materials were investigated and their performance in corresponding applications were evaluated.

  7. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination

    Directory of Open Access Journals (Sweden)

    Ahmad Kayvani Fard

    2018-01-01

    Full Text Available Inorganic membrane science and technology is an attractive field of membrane separation technology, which has been dominated by polymer membranes. Recently, the inorganic membrane has been undergoing rapid development and innovation. Inorganic membranes have the advantage of resisting harsh chemical cleaning, high temperature and wear resistance, high chemical stability, long lifetime, and autoclavable. All of these outstanding properties made inorganic membranes good candidates to be used for water treatment and desalination applications. This paper is a state of the art review on the synthesis, development, and application of different inorganic membranes for water and wastewater treatment. The inorganic membranes reviewed in this paper include liquid membranes, dynamic membranes, various ceramic membranes, carbon based membranes, silica membranes, and zeolite membranes. A brief description of the different synthesis routes for the development of inorganic membranes for application in water industry is given and each synthesis rout is critically reviewed and compared. Thereafter, the recent studies on different application of inorganic membrane and their properties for water treatment and desalination in literature are critically summarized. It was reported that inorganic membranes despite their high synthesis cost, showed very promising results with high flux, full salt rejection, and very low or no fouling.

  8. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination

    Science.gov (United States)

    McKay, Gordon; Buekenhoudt, Anita; Motmans, Filip; Khraisheh, Marwan; Atieh, Muataz

    2018-01-01

    Inorganic membrane science and technology is an attractive field of membrane separation technology, which has been dominated by polymer membranes. Recently, the inorganic membrane has been undergoing rapid development and innovation. Inorganic membranes have the advantage of resisting harsh chemical cleaning, high temperature and wear resistance, high chemical stability, long lifetime, and autoclavable. All of these outstanding properties made inorganic membranes good candidates to be used for water treatment and desalination applications. This paper is a state of the art review on the synthesis, development, and application of different inorganic membranes for water and wastewater treatment. The inorganic membranes reviewed in this paper include liquid membranes, dynamic membranes, various ceramic membranes, carbon based membranes, silica membranes, and zeolite membranes. A brief description of the different synthesis routes for the development of inorganic membranes for application in water industry is given and each synthesis rout is critically reviewed and compared. Thereafter, the recent studies on different application of inorganic membrane and their properties for water treatment and desalination in literature are critically summarized. It was reported that inorganic membranes despite their high synthesis cost, showed very promising results with high flux, full salt rejection, and very low or no fouling. PMID:29304024

  9. Preparation of porous 2,3-dialdehyde cellulose beads crosslinked with chitosan and their application in adsorption of Congo red dye.

    Science.gov (United States)

    Ruan, Chang-Qing; Strømme, Maria; Lindh, Jonas

    2018-02-01

    Micrometer sized 2,3-dialdehyde cellulose (DAC) beads were produced via a recently developed method relying on periodate oxidation of Cladophora nanocellulose. The produced dialdehyde groups and pristine hydroxyl groups provided the DAC beads with a vast potential for further functionalization. The sensitivity of the DAC beads to alkaline conditions, however, limits their possible functionalization and applications. Hence, alkaline-stable and porous cellulose beads were prepared via a reductive amination crosslinking reaction between 2,3-dialdehyde cellulose beads and chitosan. The produced materials were thoroughly characterized with different methods. The reaction conditions, including the amount of chitosan used, conditions for reductive amination, reaction temperature and time, were investigated and the maintained morphology of the beads after exposure to 1M NaOH (aq.) was verified with SEM. Different washing and drying procedures were used and the results were studied by SEM and BET analysis. Furthermore, FTIR, TGA, EDX, XPS, DLS and elemental analysis were performed to characterize the properties of the prepared beads. Finally, the alkaline-stable porous chitosan cross-linked 2,3-dialdehyde cellulose beads were applied as adsorbent for the dye Congo red. The crosslinked beads displayed fast and high adsorption capacity at pH 2 and good desorption properties at pH 12, providing a promising sorption material. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Preparation of hydrophobic Pt-catalysts for decontamination of nuclear effluents

    International Nuclear Information System (INIS)

    Ionita, Gh.; Popescu, I.; Retegan, T.; Stefanescu, I.

    2005-01-01

    Based on the long experience of the authors, in the preparation, testing and evaluation of the performances of hydrophobic catalysts, and based on the reviewed references, this paper presents up-to-date R and D activities on the preparation methods and applications of the hydrophobic catalysts, in deuterium and tritium separation. The objectives of the paper are: (1) to provide a database for selection of the most appropriate catalyst and catalytic packing for above mentioned processes, (2) to evaluate the potentiality of hydrophobic Pt-catalysts in the deuterium and tritium separation (3) to asses and to find a new procedure for preparation a new improved hydrophobic catalyst. The merits of the hydrophobic catalysts are shown in comparison to hydrophilic catalysts. As results of the review some general conclusions about the applications of hydrophobic catalysts in environmental field are as follow: (1) the hydrophobic Pt-catalysts packed in the trickle bed reactors showed a high catalytic activity and long stability; (2) the utilization of the hydrophobic Pt-catalysts for tritium removal from liquid and gaseous effluent in nuclear field was entirely confirmed on industrial scale; (3) the extension of the utilization of the hydrophobic Pt-catalysts in other new processes, which take place in presence of liquid water or high humidity are subjected to testing. (author)

  11. Preparation of hydrophobic Pt-catalysts for decontamination of nuclear effluents

    International Nuclear Information System (INIS)

    Ionita, Gh.; Popescu, I.; Retegan, T.; Stefanescu, I.

    2004-01-01

    Based on the long experience of the authors, in the preparation, testing and evaluation of the performances of hydrophobic catalysts, and based on the reviewed references, this paper presents up-to-date R and D activities on the preparation methods and applications of the hydrophobic catalysts, in deuterium and tritium separation. The objectives of the paper are: - to provide a database for selection of the most appropriate catalyst and catalytic packing for above mentioned processes; - to evaluate the potentiality of hydrophobic Pt-catalysts in the deuterium and tritium separation; - to assess and to find a new procedure for preparation a new improved hydrophobic catalyst. The merits of the hydrophobic catalysts are shown in comparison to hydrophilic catalysts. As results of the review some general conclusions about the applications of hydrophobic catalysts in environmental field are as follows: - the hydrophobic Pt-catalysts packed in the trickle bed reactors showed a high catalytic activity and long stability; - the utilization of the hydrophobic Pt-catalysts for tritium removal from liquid and gaseous effluent in nuclear field was entirely confirmed on industrial scale; - the extension of the utilization of the hydrophobic Pt-catalysts in other new processes, which take place in presence of liquid water or high humidity are subject to testing. (authors)

  12. Preparation of reactive and refractory metal powders (Paper No. 25)

    International Nuclear Information System (INIS)

    Sundaram, C.V.; Sharma, B.P.; Krishnan, T.S.

    1979-01-01

    In devising processes for the preparation of refractory and reactive metal powders, one has to reckon with many relevant factors. The choice of specific flowsheets is governed by the characteristics of the metal compounds and the reducing agents, the purity required and achievable in the as-reduced powder, the need for further refining of the metal, the possibilities of chemical/physical/mechanical comminution of the purified metal without contamination, and the end application of the powder metal. Micron size zirconium powder used as trigger material in photo-flash bulbs and detonator compositions, tantalum powder of controlled particle size and high purity for the production of electrolytic capacitors, and beryllium metal powder for the preparation of hot pressed powder metallurgy components are illustrative of the variety of reactive metal powders for industrial applications. The work carried out at the Bhabha Atomic Research Centre, Bombay, on the preparation of special metal powders, with particular emphasis on Group IV and V metals and also beryllium is presented. Reduction of metal oxides with alkaline earth metals/hydrides, reduction of metal halides with sodium/magnesium, vacuum arc and electron beam melt purification followed by comminution by hydrogen embrittlement/mechanical comminution are among the processes discussed. (auth.)

  13. The Synthesis of Anatase Nanoparticles and the Preparation of Photocatalytically Active Coatings Based on Wet Chemical Methods for Self-Cleaning Applications

    Directory of Open Access Journals (Sweden)

    Dejan Verhovšek

    2012-01-01

    Full Text Available We report on an improved sol-gel method for the production of highly photocatalytic titanium dioxide (TiO2 anatase nanoparticles which can provide appropriate control over the final characteristics of the nanoparticles, such as particle size, crystallinity, crystal structure, morphology, and also the degree of agglomeration. The synthesized anatase nanoparticles were characterized using various techniques, such as X-ray powder diffraction (XRD, scanning electron microscopy (SEM, and transmission electron microscopy (TEM, and were tested in coatings for self-cleaning glass and ceramic surfaces. The coatings were prepared using a soft chemistry route and are completely transparent to visible light and exhibit a high photocatalytic effect, which was determined by contact-angle measurements. Finally, it is worth mentioning that both the sol-gel synthesis method and the coating-preparation method are based on a wet chemical process, thus presenting no risk of handling the TiO2 anatase nanoparticles in their potentially hazardous powder form at any stage of our development. Low-price, easy-to-handle, and nontoxic materials were used. Therefore, our work represents an important contribution to the development of TiO2 anatase nanoparticle coatings that provide a high photocatalytic effect and can thus be used for numerous applications.

  14. Preparation of a novel fluorescence probe of terbium-europium co-luminescence composite nanoparticles and its application in the determination of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Gao Feng [College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo/Biosensing, Anhui Normal University, Wuhu 241000 (China)], E-mail: summit8848cn@hotmail.com; Luo Fabao; Tang Lijuan; Dai Lu [College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo/Biosensing, Anhui Normal University, Wuhu 241000 (China); Wang Lun [College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo/Biosensing, Anhui Normal University, Wuhu 241000 (China)], E-mail: wanglun@mail.ahnu.edu.cn

    2008-03-15

    Terbium-europium Tb-Eu/acetylacetone(acac)/poly(acrylamide) (PAM) co-luminescence composite nanoparticles were successfully prepared using the ultrasonic approach. The as-prepared composite nanoparticles show the characteristic emission spectra of Tb{sup 3+}, located at 496 and 549 nm. Furthermore, the nanoparticles are water soluble, stable and have extremely narrow emission bands and high internal fluorescence quantum yield due to the co-luminescence effect. Further studies indicate that proteins can interact with the nanoparticles and induce the fluorescence quenching of the nanoparticles. Based on the fluorescence quenching of nanopaticles in the presence of proteins, a novel method for the sensitive determination of trace amounts of proteins was proposed. Under the optimal experimental conditions, the linear ranges of calibration curves are 0-3.5 {mu}g mL{sup -1} for human serum albumin (HSA) and 0-4.0 {mu}g mL{sup -1} for {gamma}-globulin ({gamma}-IgG), respectively. The limits of detection are 7.1 for HSA and 6.7ng mL{sup -1} for {gamma}-IgG, respectively. The method was applied to the quantification of proteins in synthetic samples and actual human serum samples with satisfactory results. This proposed method is sensitive, simple and has potential application in the clinical assay of proteins.

  15. Utilization of citrus crops processing by-products in the preparation of tarhana

    Directory of Open Access Journals (Sweden)

    Michal Magala

    2015-05-01

    Full Text Available After processing of citrus fruits (e.g. lemon, orange, grapefruit, mandarin for juice and essential oils production, approximately 50% of the original fruit mass is left as waste material. Citrus crops processing by-products are valuable components as they contain nutrients such as pectins, saccharides, carotenoids, some vitamins, minerals, polyphenols and substances with antioxidant activity. Utilisation of these kind of side products in the recipe of various cereal product led to enhancement of final product nutritional value and better sensory attributes as well as improvement of product functional properties. In this work was studied the effect of orange and mandarin dietary fibre application at level 5 and 10% (w/w in tarhana preparation and the influence on tarhana fermentation process. Chemical analysis showed, that dietary fibre preparations reached higher concentration of ash, fat and total dietary fibre compared to wheat flour. Wheat flour exhibited higher moisture content and protein concentration than citrus dietary fibre preparations. Orange and mandarin dietary fibre preparations showed higher values of water and oil absorption capacity, swelling capacity and least gellation concentration compared to wheat flour. Application of fruit dietary fibre preparations to tarhana recipe caused a rapid decrease in pH from 4.70 - 5.02 to values 4.31 - 4.51 during fermentation process. Reducing saccharides served as an available source of energy for fermenting microbiota and their concentration decreased from 24.5 - 32.8 to 2.2 - 0.2 g/kg after 144 h incubation. Fermentation also led to lactic acid (1.67 - 2.09 g/kg and acetic acid (1.91 - 2.53 g/kg production as a consequence of present microorganisms metabolic activity. Sensory evaluation of samples showed, that higher proportion of citrus dietary fibre preparations (10% negatively affected taste, odour, consistency and sourness. Among all prepared tarhana samples with proportion of citrus

  16. Radiation induced graft copolymerization for preparation of cation exchange membranes: a review

    International Nuclear Information System (INIS)

    Mohamed Mahmoud Nasef; Hamdani Saidi; Hussin Mohd Nor

    1999-01-01

    Cation exchange membranes are regarded as the ideal solid polymer electrolyte materials for the development of various electrochemical energy conversion applications where significant improvements in the current density are required. Such membranes require special polymers and preparation techniques to maintain high chemical , mechanical and thermal stability in addition to high ionic conductivity and low resistance. A lot of different techniques have been proposed in the past to prepare such membranes. Radiation-induced graft copolymerization provides an attractive ft method for modification of chemical and physical properties of polymeric materials and is of particular interest in achieving specially desired cation exchange membranes as well as excellent membrane properties. This is due to the ability to control the membrane compositions as well as properties by proper selection of grafting conditions. Therefore numerous parameters have to be investigated to properly select the right polymeric materials, radiation grafting technique and the grafting conditions to be employed. In this paper a state-of-the-art of radiation-induced graft copolymerization for preparation of cation exchange membranes and their applications are briefly reviewed. (Author)

  17. Application of gel microsphere processes to preparation of Sphere-Pac nuclear fuel

    International Nuclear Information System (INIS)

    Haas, P.A.; Notz, K.J.; Spence, R.D.

    1978-01-01

    Sphere-Pac fabrication of nuclear fuels using two or more sizes of oxide or carbide spheres is ideally suited to nonproliferation-fuel cycles and remote refabrication. The sizes and compositions of spheres necessary for such fuel cycles have not been commonly prepared; therefore, modifications of sol-gel processes to meet these requirements are being developed and demonstrated

  18. The application of povidone in the preparation of modified release tablets

    Directory of Open Access Journals (Sweden)

    Kasperek Regina

    2016-06-01

    Full Text Available The aim of the study was to investigate the modified release of a model substance, of tablets containing different types of Kollidon and particular additives. Additionally, the release kinetics and mechanism of prolonged release of certain tablet preparations were investigated. In this work, tablets containing different types of povidone (Kollidon CL, Kollidon 30, Kollidon SR and other excipients were prepared by the direct compression technique. The results showed that tablets with fast disintegration and release should contain in their composition, Kollidon CL, lactose and Avicel, however, the use of β-CD instead of lactose or Avicel brings about a slight prolongation in the disintegration time of tablets and the release of an active substance. Furthermore, while other tablet compositions generated within this study must be considered as being prolonged release types, only two of these showed the best fitted mathematical models. The in vitro dissolution data reveal that the dissolution profiles of the two formulations, one containing Kollidon SR with the addition of Kollidon 30, and the second with HPMC K15M, Kollidon 30, Kollidon CL and lactose, best fitted the Higuchi model. Moreover, the release mechanism of these two formulations plotted well into Korsmeyer-Peppas, indicating a coupling of drug diffusion in the hydrated matrix, as well as polymer relaxation – the so-called anomalous transport (non-Fickian.

  19. Application of extrusion technology to prepare bread crumb, a comparison with oven method

    International Nuclear Information System (INIS)

    Pasha, I.; Asim, M.

    2015-01-01

    The current research project was designed to conclude the upshot of extrusion cooking temperature on the properties and acceptability of bread crumb. Bread crumbs were obtained by drying the bread, maintaining moisture up to 3-8% and then broken down using hammer mill or crusher which breaks the bread into bread crumbs. Significantly highest moisture contents 7.26% was observed in oven baked bread crumb as compared to 6.25% in bread crumb prepared by extrusion cooking method. The highest bulk density (28.13 g/100 L) was observed in extruded bread crumb whereas, the oven baked bread crumbs showed lower bulk density (7.03 g/100 L). The fat uptake of extruded and oven baked bread crumbs were found 0.516 mg/g and 0.493 mg/g, respectively. The extruded bread crumb showed higher water binding capacity as 34.76 g H/sub 2/O/kg as compared to oven baked bread crumb which showed 27.92 g H/sub 2/O/kg. Sensory evaluation of extruded and oven baked bread crumbs depicted that bread crumbs prepared from extrusion cooking methods got significantly higher scores for taste, flavour and over all acceptability as compared to those prepared by oven baked method. As far as crispiness is concerned oven baked bread crumbs got comparatively higher scores. Moreover, it was concluded that the treatment T2 of extruded bread crumbs got more sensory scores than oven baked bread crumbs. (author)

  20. Invert emulsion: Method of preparation and application as proper formulation of entomopathogenic fungi.

    Science.gov (United States)

    Batta, Yacoub A

    2016-01-01

    The present article describes the technique used for preparing the invert emulsion (water-in-oil type) then, selecting the most proper formulation of invert emulsion for being used as a carrier formulation of entomopathogenic fungi. It also describes the method used for testing the efficacy of the formulated fungi as biocontrol agents of targeted insects. Detailed examples demonstrating the efficacy of formulated strains of entomopathogenic fungi against certain species of insect pests were included in the present article. The techniques and methods described in this article are reproducible and helpful in enhancing the effectiveness of formulated fungi against wide range of targeted insects in comparison with the unformulated form of these fungi. Also, these techniques and methods can be used effectively in crop protection and in the integrated pest management programs. Finally, it is important to indicate that the ingredients used for preparation of the invert emulsion have no environmental side-effects or health risks since these ingredients are safe to use and can be used in manufacturing of cosmetics or as food additives.•Description of method used for preparation of invert emulsion (water-in-oil type) and selecting the most stable and non-viscous emulsion.•Description of technique used for introducing the entomopathogenic fungi into the selected stable and non-viscous invert emulsion.•Description of method for testing the efficacy of introduced entomopathogenic fungus into the selected invert emulsion against targeted insects with detailed examples on the efficacy testing.

  1. Preparation of Hierarchical BiOBr Microspheres for Visible Light-Induced Photocatalytic Detoxification and Disinfection

    Directory of Open Access Journals (Sweden)

    Ayla Ahmad

    2016-01-01

    Full Text Available Photocatalytic degradation is a promising alternative to traditional wastewater treatment methods. Recently developed visible light-responsive photocatalyst, BiOBr, has attracted extensive attentions. Hereby, a detailed investigation of application of BiOBr to bacterial inactivation and organic pollutants degradation is reported. Hydrothermal catalyst was prepared using template-free method. While, for solvothermal synthesis, CTAB was used as a template. Results indicate a higher photocatalytic activity by the solvothermally prepared catalyst. Solvothermally prepared BiOBr exhibited high photocatalytic activities in both water detoxification and disinfection.

  2. Radiolytic preparation of PFA-g-PVBSA membranes as a polymer electrolyte membrane

    Energy Technology Data Exchange (ETDEWEB)

    Fei Geng [Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Nansanhuan Road 99, Changshu, Jiangsu 215-500 (China); Hwang, Mi-Lim; Sohn, Joon-Yong; Nho, Young Chang [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Shin, Junhwa, E-mail: shinj@kaeri.re.kr [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)

    2012-03-01

    In this study, a polymer electrolyte membrane, PFA-g-PVBSA was prepared through the radiation-induced graft copolymerization of vinylbenzyl chloride (VBC) monomer onto a poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) (PFA) film and subsequent sulfonation processes. The IEC values and water uptakes of the prepared membranes increased when increasing the contents of the poly(vinylbenzyl sulfonic acid) (PVBSA) graft polymers in the membranes. Compared with Nafion 212, the degree of grafting (DOG) of membranes of 50% and 70% showed higher proton conductivity with significantly lower methanol permeability. The combination of these properties suggests that the prepared membranes are promising for future application in direct methanol fuel cells.

  3. Preparation and integration of nanostructured titanium dioxide

    KAUST Repository

    Zeng, Hua Chun

    2011-10-01

    Titanium dioxide (TiO2) is a chemically stable nontoxic transition-metal oxide associated with a wide range of existing chemical engineering processes. In this short review, recent research endeavors in preparation and integration of nanostructured TiO2 materials system will be featured and discussed for their potential new applications. Because material development always plays pivotal roles in the progress of a particular engineering discipline, the reviewed subjects will provide useful information to stimulate nanoscale research of chemical engineering, linking established fundamentals with practical applications. Some critical issues and challenges regarding further development of this important functional material for nanotechnology will also be addressed. © 2011 Elsevier Ltd. All rights reserved.

  4. III Advanced Ceramics and Applications Conference

    CERN Document Server

    Gadow, Rainer; Mitic, Vojislav; Obradovic, Nina

    2016-01-01

    This is the Proceedings of III Advanced Ceramics and Applications conference, held in Belgrade, Serbia in 2014. It contains 25 papers on various subjects regarding preparation, characterization and application of advanced ceramic materials.

  5. Preparation and Characterization of Enzyme Compartments in UV-Cured Polyurethane-Based Materials and Their Application in Enzymatic Reactions

    Directory of Open Access Journals (Sweden)

    Diana Uhrich

    2017-11-01

    Full Text Available The preparation and characterization of UV-cured polyurethane-based materials for the mild inclusion immobilization of enzymes was investigated. Full curing of the polymer precursor/enzyme solution mixture was realized by a short irradiation with UV-light at ambient temperatures. The included aqueous enzyme solution remains highly dispersed in the polymer material with an even size distribution throughout the polymer material. The presented concept provides stable enzyme compartments which were applied for an alcohol dehydrogenase-catalyzed reduction reaction in organic solvents. Cofactor regeneration was achieved by a substrate-coupled approach via 2-propanol or an enzyme-coupled approach by a glucose dehydrogenase. This reaction concept can also be used for a simultaneous application of contrary biocatalytic reaction conditions within an enzymatic cascade reaction. Independent polymer-based reaction compartments were provided for two incompatible enzymatic reaction systems (alcohol dehydrogenase and hydroxynitrile lyase, while the relevant reactants diffuse between the applied compartments.

  6. Standard guide for metallographic preparation of thermal sprayed coatings

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This guide covers recommendations for sectioning, cleaning, mounting, grinding, and polishing to reveal the microstructural features of thermal sprayed coatings (TSCs) and the substrates to which they are applied when examined microscopically. Because of the diversity of available equipment, the wide variety of coating and substrate combinations, and the sensitivity of these specimens to preparation technique, the existence of a series of recommended methods for metallographic preparation of thermal sprayed coating specimens is helpful. Adherence to this guide will provide practitioners with consistent and reproducible results. Additional information concerning standard practices for metallographic preparation can be found in Practice E 3. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitatio...

  7. Platelet-rich fibrin prepared from stored whole-blood samples.

    Science.gov (United States)

    Isobe, Kazushige; Suzuki, Masashi; Watanabe, Taisuke; Kitamura, Yutaka; Suzuki, Taiji; Kawabata, Hideo; Nakamura, Masayuki; Okudera, Toshimitsu; Okudera, Hajime; Uematsu, Kohya; Nakata, Koh; Tanaka, Takaaki; Kawase, Tomoyuki

    2017-12-01

    In regenerative therapy, self-clotted platelet concentrates, such as platelet-rich fibrin (PRF), are generally prepared on-site and are immediately used for treatment. If blood samples or prepared clots can be preserved for several days, their clinical applicability will expand. Here, we prepared PRF from stored whole-blood samples and examined their characteristics. Blood samples were collected from non-smoking, healthy male donors (aged 27-67 years, N = 6), and PRF clots were prepared immediately or after storage for 1-2 days. Fibrin fiber was examined by scanning electron microscopy. Bioactivity was evaluated by means of a bioassay system involving human periosteal cells, whereas PDGF-BB concentrations were determined by an enzyme-linked immunosorbent assay. Addition of optimal amounts of a 10% CaCl 2 solution restored the coagulative ability of whole-blood samples that contained an anticoagulant (acid citrate dextrose) and were stored for up to 2 days at ambient temperature. In PRF clots prepared from the stored whole-blood samples, the thickness and cross-links of fibrin fibers were almost identical to those of freshly prepared PRF clots. PDGF-BB concentrations in the PRF extract were significantly lower in stored whole-blood samples than in fresh samples; however, both extracts had similar stimulatory effects on periosteal-cell proliferation. Quality of PRF clots prepared from stored whole-blood samples is not reduced significantly and can be ensured for use in regenerative therapy. Therefore, the proposed method enables a more flexible treatment schedule and choice of a more suitable platelet concentrate immediately before treatment, not after blood collection.

  8. Facile preparation of nitrogen-doped porous carbon from waste tobacco by a simple pre-treatment process and their application in electrochemical capacitor and CO2 capture

    International Nuclear Information System (INIS)

    Sha, Yunfei; Lou, Jiaying; Bai, Shizhe; Wu, Da; Liu, Baizhan; Ling, Yun

    2015-01-01

    Highlights: • A pre-treatment process is used to prepared N-doped carbon from waste biomass. • Waste tobaccos, which are limited for the disposal, are used as the raw materials. • The product shows a specific surface area and nitrogen content. • Its electrochemical performance is better than commercial activated carbon. • Its CO 2 sorption performance is also better than commercial activated carbon. - Abstract: Preparing nitrogen-doped porous carbons directly from waste biomass has received considerable interest for the purpose of realizing the atomic economy. In this study, N-doped porous carbons have been successfully prepared from waste tobaccos (WT) by a simple pre-treatment process. The sample calcinated at 700 °C (WT-700) shows a micro/meso-porous structures with a BET surface area of 1104 m 2 g −1 and a nitrogen content of ca. 19.08 wt.% (EDS). Performance studies demonstrate that WT-700 displays 170 F g −1 electrocapacitivity at a current density of 0.5 A g −1 (in 6 M KOH), and a CO 2 capacity of 3.6 mmol g −1 at 0 °C and 1 bar, and a selectivity of ca. 32 for CO 2 over N 2 at 25 °C. Our studies indicate that it is feasible to prepare N-enriched porous carbons from waste natural crops by a pre-treatment process for potential industrial application

  9. Colloid stable sorbents for cesium removal: Preparation and application of latex particles functionalized with transition metals ferrocyanides

    Energy Technology Data Exchange (ETDEWEB)

    Avramenko, Valentin [Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 ave 100-letiya Vladivostoka, Vladivostok 690022 (Russian Federation); Bratskaya, Svetlana, E-mail: sbratska@ich.dvo.ru [Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 ave 100-letiya Vladivostoka, Vladivostok 690022 (Russian Federation); Zheleznov, Veniamin; Sheveleva, Irina [Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 ave 100-letiya Vladivostoka, Vladivostok 690022 (Russian Federation); Voitenko, Oleg [Far Eastern Federal University, Laboratory of Electron Microscopy and Image Processing, 27, Oktyabr' skaya Street, Vladivostok 690950 (Russian Federation); Sergienko, Valentin [Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 ave 100-letiya Vladivostoka, Vladivostok 690022 (Russian Federation)

    2011-02-28

    In this paper we suggest a principally new approach to preparation of colloid stable selective sorbents for cesium uptake using immobilization of transition metals (cobalt, nickel, and copper) ferrocyanides in nanosized carboxylic latex emulsions. The effects of ferrocyanide composition, pH, and media salinity on the sorption properties of the colloid stable sorbents toward cesium ions were studied in solutions containing up to 200 g/L of sodium nitrate or potassium chloride. The sorption capacities of the colloid sorbents based on mixed potassium/transition metals ferrocyanides were in the range 1.3-1.5 mol Cs/mol ferrocyanide with the highest value found for the copper ferrocyanide. It was shown that the obtained colloid-stable sorbents were capable to penetrate through bulk materials without filtration that made them applicable for decontamination of solids, e.g. soils, zeolites, spent ion-exchange resins contaminated with cesium radionuclides. After decontamination of liquid or solid radioactive wastes the colloid-stable sorbents can be easily separated from solutions by precipitation with cationic flocculants providing localization of radionuclides in a small volume of the precipitates formed.

  10. Simple and rapid preparation of [{sup 11}C]DASB with high quality and reliability for routine applications

    Energy Technology Data Exchange (ETDEWEB)

    Haeusler, D.; Mien, L.-K. [Department of Nuclear Medicine, PET, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, A-1090 Vienna (Austria); Nics, L. [Department of Nuclear Medicine, PET, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Department of Nutritional Sciences, University of Vienna, A-1090 Vienna (Austria); Ungersboeck, J. [Department of Nuclear Medicine, PET, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Department of Inorganic Chemistry, University of Vienna, A-1090 Vienna (Austria); Philippe, C. [Department of Nuclear Medicine, PET, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, A-1090 Vienna (Austria); Lanzenberger, R.R. [Department of Psychiatry and Psychotherapy, Medical University of Vienna, A-1090 Vienna (Austria); Kletter, K.; Dudczak, R. [Department of Nuclear Medicine, PET, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Mitterhauser, M. [Department of Nuclear Medicine, PET, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, A-1090 Vienna (Austria); Hospital Pharmacy of the General Hospital of Vienna, A-1090 Vienna (Austria); Wadsak, W. [Department of Nuclear Medicine, PET, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Department of Inorganic Chemistry, University of Vienna, A-1090 Vienna (Austria)], E-mail: wolfgang.wadsak@meduniwien.ac.at

    2009-09-15

    [{sup 11}C]DASB combines all major prerequisites for a successful SERT-ligand, providing excellent biological properties and in-vivo behaviour. Thus, we aimed to establish a fully automated procedure for the synthesis and purification of [{sup 11}C]DASB with a high degree of reliability reducing the overall synthesis time while conserving high yields and purity. The optimized [{sup 11}C]DASB synthesis was applied in more than 60 applications with a very low failure rate (3.2%). We obtained yields up to 8.9 GBq (average 5.3{+-}1.6 GBq). Radiochemical yields based on [{sup 11}C]CH{sub 3}I, (corrected for decay) were 66.3{+-}6.9% with a specific radioactivity (A{sub s}) of 86.8{+-}24.3 GBq/{mu}mol (both at the end of synthesis, EOS). Time consumption was kept to a minimum, resulting in 43 min from end of bombardment to release of the product after quality control. Form our data, it is evident that the presented method can be implemented for routine preparations of [{sup 11}C]DASB with high reliability.

  11. Preparation of Plasmonic Platforms of Silver Wires on Gold Mirrors and Their Application to Surface Enhanced Fluorescence

    Science.gov (United States)

    2015-01-01

    In this report we describe a preparation of silver wires (SWs) on gold mirrors and its application to surface enhanced fluorescence (SEF) using a new methodology. Silica protected gold mirrors were drop-coated with a solution of silver triangular nanoprisms. The triangular nanoprisms were slowly air-dried to get silver wires that self-assembled on the gold mirrors. Fluorescence enhancement was studied using methyl azadioxatriangulenium chloride (Me-ADOTA·Cl) dye in PVA spin-coated on a clean glass coverslip. New Plasmonic Platforms (PPs) were assembled by placing a mirror with SWs in contact with a glass coverslip spin-coated with a uniform Me-ADOTA·Cl film. It was shown that surface enhanced fluorescence is a real phenomenon, not just an enhancement of the fluorescence signal due to an accumulation of the fluorophore on rough nanostructure surfaces. The average fluorescence enhancement was found to be about 15-fold. The lifetime of Me-ADOTA·Cl dye was significantly reduced (∼4 times) in the presence of SWs. Moreover, fluorescence enhancement and lifetime did not show any dependence on the excitation light polarization. PMID:25296293

  12. Preoperative skin antiseptic preparations for preventing surgical site infections: a systematic review.

    Science.gov (United States)

    Kamel, Chris; McGahan, Lynda; Polisena, Julie; Mierzwinski-Urban, Monika; Embil, John M

    2012-06-01

    To evaluate the clinical effectiveness of preoperative skin antiseptic preparations and application techniques for the prevention of surgical site infections (SSIs). Systematic review of the literature using Medline, EMBASE, and other databases, for the period January 2001 to June 2011. Comparative studies (including randomized and nonrandomized trials) of preoperative skin antisepsis preparations and application techniques were included. Two researchers reviewed each study and extracted data using standardized tables developed before the study. Studies were reviewed for their methodological quality and clinical findings. Twenty studies (n = 9,520 patients) were included in the review. The results indicated that presurgical antiseptic showering is effective for reducing skin flora and may reduce SSI rates. Given the heterogeneity of the studies and the results, conclusions about which antiseptic is more effective at reducing SSIs cannot be drawn. The evidence suggests that preoperative antiseptic showers reduce bacterial colonization and may be effective at preventing SSIs. The antiseptic application method is inconsequential, and data are lacking to suggest which antiseptic solution is the most effective. Disinfectant products are often mixed with alcohol or water, which makes it difficult to form overall conclusions regarding an active ingredient. Large, well-conducted randomized controlled trials with consistent protocols comparing agents in the same bases are needed to provide unequivocal evidence on the effectiveness of one antiseptic preparation over another for the prevention of SSIs.

  13. Azobenzene mesogens mediated preparation of SnS nanocrystals encapsulated with in-situ N-doped carbon and their enhanced electrochemical performance for lithium ion batteries application

    International Nuclear Information System (INIS)

    Wang Meng; Zhou Yang; Chen Dongzhong; Duan Junfei

    2016-01-01

    In this work, azobenzene mesogen-containing tin thiolates have been synthesized, which possess ordered lamellar structures persistent to higher temperature and serve as liquid crystalline precursors. Based on the preorganized tin thiolate precursors, SnS nanocrystals encapsulated with in-situ N-doped carbon layer have been achieved through a simple solventless pyrolysis process with the azobenzene mesogenic thiolate precursor served as Sn, S, N, and C sources simultaneously. Thus prepared nanocomposite materials as anode of lithium ion batteries present a large specific capacity of 604.6 mAh·g −1 at a current density of 100 mA·g −1 , keeping a high capacity retention up to 96% after 80 cycles, and display high rate capability due to the synergistic effect of well-dispersed SnS nanocrystals and N-doped carbon layer. Such encouraging results shed a light on the controlled preparation of advanced nanocomposites based on liquid crystalline metallomesogen precursors and may boost their novel intriguing applications. (special topic)

  14. Lights Will Guide You : Sample Preparation and Applications for Integrated Laser and Electron Microscopy

    Science.gov (United States)

    Karreman, M. A.

    2013-03-01

    Correlative microscopy is the combined use of two different forms of microscopy in the study of a specimen, allowing for the exploitation of the advantages of both imaging tools. The integrated Laser and Electron Microscope (iLEM), developed at Utrecht University, combines a fluorescence microscope (FM) and a transmission electron microscope (TEM) in a single set-up. The region of interest in the specimen is labeled or tagged with a fluorescent probe and can easily be identified within a large field of view with the FM. Next, this same area is retraced in the TEM and can be studied at high resolution. The iLEM demands samples that can be imaged with both FM and TEM. Biological specimen, typically composed of light elements, generate low image contrast in the TEM. Therefore, these samples are often ‘contrasted’ with heavy metal stains. FM, on the other hand, images fluorescent samples. Sample preparation for correlative microscopy, and iLEM in particular, is complicated by the fact that the heavy metals stains employed for TEM quench the fluorescent signal of the probe that is imaged with FM. The first part of this thesis outlines preparation procedures for biological material yielding specimen that can be imaged with the iLEM. Here, approaches for the contrasting of thin sections of cells and tissue are introduced that do not affect the fluorescence signal of the probe that marks the region of interest. Furthermore, two novel procedures, VIS2FIXH and VIS2FIX­FS are described that allow for the chemical fixation of thin sections of cryo-immobilized material. These procedures greatly expedite the sample preparation process, and open up novel possibilities for the immuno-labeling of difficult antigens, eg. proteins and lipids that are challenging to preserve. The second part of this thesis describes applications of iLEM in research in the field of life and material science. The iLEM was employed in the study of UVC induced apoptosis (programmed cell death) of

  15. Preparation, Surface Properties, and Therapeutic Applications of Gold Nanoparticles in Biomedicine.

    Science.gov (United States)

    Panahi, Yunes; Mohammadhosseini, Majid; Nejati-Koshki, Kazem; Abadi, Azam Jafari Najaf; Moafi, Hadi Fallah; Akbarzadeh, Abolfazl; Farshbaf, Masoud

    2017-02-01

    Gold nanoparticles (AuNPs) due to their unique properties and manifold surface functionalities have been applied in bio-nanotechnology. The application of GNPs in recent medical and biological research is very extensive. Especially it involves applications such as detection and photothermalysis of microorganisms and cancer stem cells, biosensors; optical bio-imaging and observing of cells and these nanostructures also serve as practical platforms for therapeutic agents. In this review we studied all therapeutic applications of gold nanoparticles in biomedicine, synthesis methods, and surface properties. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Advanced Problems in Mathematics : Preparing for University

    OpenAIRE

    Siklos, Stephen

    2016-01-01

    " This book is intended to help candidates prepare for entrance examinations in mathematics and scientific subjects, including STEP (Sixth Term Examination Paper). STEP is an examination used by Cambridge colleges as the basis for conditional offers. They are also used by Warwick University, and many other mathematics departments recommend that their applicants practice on the past papers even if they do not take the examination. Advanced Problems in Mathematics is recommended as preparati...

  17. Organic astatine compounds, their preparation and properties

    Energy Technology Data Exchange (ETDEWEB)

    Vasaros, L; Berei, K

    1985-01-01

    Aromatic astatine compounds of possible medical application were prepared by high energy substitutions, by astatine-halogen, and by electrophil astatine-hydrogen substitutions at the Joint Institute of Nuclear Researches, Dubna. Physico-chemical properties of organic astatine compounds such as boiling point and evaporation heat, and the refraction and dissociation energy of carbon-astatine bonds were determined experimentally by gas chromatography. The results are compared with extrapolated data. (V.N.). 41 refs.; 7 figs.; 5 tables.

  18. T–CELL VACCINE PREPARATION FOR MULTIPLE SCLEROSIS TREATMENT

    Directory of Open Access Journals (Sweden)

    I. P. Ivanova

    2005-01-01

    Full Text Available Abstract. A two–stage technology of preparation of T–cell vaccine designated for multiple sclerosis treatment is described. At the first stage myelin–specific lymphocytes undergoe antigen–dependent cultural selection, whereas at the second stage they are grown by means of non–specific stimulation. The vaccine prepared in this way was found to induce specific anti–idiotypic immune response, directed against myelin–reactive T–lymphocytes. The results of 1–year follow–up of 18 vaccinated patients with a cerebral–spinal type of multiple sclerosis indicated the absence of side effects of T–cell vaccination, and suggest the possibility of effective application of this treatment within early stages of disease. (Med. Immunol., 2005, vol.7, № 1, pp 27532

  19. Bulk-scaffolded hydrogen storage and releasing materials and methods for preparing and using same

    Science.gov (United States)

    Autrey, S Thomas [West Richland, WA; Karkamkar, Abhijeet J [Richland, WA; Gutowska, Anna [Richland, WA; Li, Liyu [Richland, WA; Li, Xiaohong S [Richland, WA; Shin, Yongsoon [Richland, WA

    2011-06-21

    Compositions are disclosed for storing and releasing hydrogen and methods for preparing and using same. These hydrogen storage and releasing materials exhibit fast release rates at low release temperatures without unwanted side reactions, thus preserving desired levels of purity and enabling applications in combustion and fuel cell applications.

  20. Collection and preparation of wet and dry stream-sediment samples

    International Nuclear Information System (INIS)

    Puchlik, K.

    1977-03-01

    Lawrence Livermore Laboratory is responsible for the Hydrogeochemistry and Stream Sediment Reconnaissance (HSSR) program for uranium in the seven far western states. The work thus far has concentrated on the arid to semi-arid regions of the West and this paper discusses the collection and preparation of sediment samples in the Basin and Range province. The sample collection and preparation procedures described here may not be applicable to other parts of the far western states or other areas. These procedures also differ somewhat from those used by the other three laboratories involved in the HSSR program