WorldWideScience

Sample records for endophytic bacteria exhibiting

  1. Rock-degrading endophytic bacteria in cacti

    Science.gov (United States)

    M. Esther Puente; Ching Y. Li; Yoav Bashan

    2009-01-01

    A plant-bacterium association of the cardon cactus (Pachycereus pringlei) and endophytic bacteria promotes establishment of seedlings and growth on igneous rocks without soil. These bacteria weather several rock types and minerals, unbind significant amounts of useful minerals for plants from the rocks, fix in vitro N2. produce...

  2. Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters.

    Science.gov (United States)

    Martínez-Rodríguez, Julia del C; De la Mora-Amutio, Marcela; Plascencia-Correa, Luis A; Audelo-Regalado, Esmeralda; Guardado, Francisco R; Hernández-Sánchez, Elías; Peña-Ramírez, Yuri J; Escalante, Adelfo; Beltrán-García, Miguel J; Ogura, Tetsuya

    2014-01-01

    Agave tequilana Weber var. 'Azul' is grown for the production of tequila, inulin and syrup. Diverse bacteria inhabit plant tissues and play a crucial role for plant health and growth. In this study culturable endophytic bacteria were extracted from leaf bases of 100 healthy Agave tequilana plants. In plant tissue bacteria occurred at mean population densities of 3 million CFU/g of fresh plant tissue. Three hundred endophytic strains were isolated and 16s rDNA sequences grouped the bacteria into eight different taxa that shared high homology with other known sequences. Bacterial endophytes were identified as Acinectobacter sp., A. baumanii, A. bereziniae, Cronobacter sakazakii, Enterobacter hormaechei, Bacillus sp. Klebsiella oxytoca, Pseudomonas sp., Enterococcus casseliflavus, Leuconostoc mesenteroides subsp. mesenteroides and Gluconobacter oxydans. Isolates were confirmed to be plant growth promoting bacteria (PGPB) by their capacities for nitrogen fixation, auxin production, phosphate solubilization, or antagonism against Fusarium oxysporum AC132. E. casseliflavus JM47 and K. oxytoca JM26 secreted the highest concentrations of IAA. The endophyte Acinectobacter sp. JM58 exhibited the maximum values for nitrogen fixation and phosphate solubilization index (PSI). Inhibition of fungi was found in Pseudomonas sp. JM9p and K. oxytoca JM26. Bacterial endophytes show promise for use as bio-inoculants for agave cultivation. Use of endophytes to enhance cultivation of agave may be particularly important for plants produced by micropropagation techniques, where native endophytes may have been lost.

  3. Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters

    Directory of Open Access Journals (Sweden)

    Julia del C. Martínez-Rodríguez

    2014-12-01

    Full Text Available Agave tequilana Weber var. 'Azul' is grown for the production of tequila, inulin and syrup. Diverse bacteria inhabit plant tissues and play a crucial role for plant health and growth. In this study culturable endophytic bacteria were extracted from leaf bases of 100 healthy Agave tequilana plants. In plant tissue bacteria occurred at mean population densities of 3 million CFU/g of fresh plant tissue. Three hundred endophytic strains were isolated and 16s rDNA sequences grouped the bacteria into eight different taxa that shared high homology with other known sequences. Bacterial endophytes were identified as Acinectobacter sp., A. baumanii, A. bereziniae, Cronobacter sakazakii, Enterobacter hormaechei, Bacillus sp. Klebsiella oxytoca, Pseudomonas sp., Enterococcus casseliflavus, Leuconostoc mesenteroides subsp. mesenteroides and Gluconobacter oxydans. Isolates were confirmed to be plant growth promoting bacteria (PGPB by their capacities for nitrogen fixation, auxin production, phosphate solubilization, or antagonism against Fusarium oxysporum AC132. E. casseliflavus JM47 and K. oxytoca JM26 secreted the highest concentrations of IAA. The endophyte Acinectobacter sp. JM58 exhibited the maximum values for nitrogen fixation and phosphate solubilization index (PSI. Inhibition of fungi was found in Pseudomonas sp. JM9p and K. oxytoca JM26. Bacterial endophytes show promise for use as bio-inoculants for agave cultivation. Use of endophytes to enhance cultivation of agave may be particularly important for plants produced by micropropagation techniques, where native endophytes may have been lost.

  4. Nitrogen acquisition in Agave tequilana from degradation of endophytic bacteria.

    Science.gov (United States)

    Beltran-Garcia, Miguel J; White, James F; Prado, Fernanda M; Prieto, Katia R; Yamaguchi, Lydia F; Torres, Monica S; Kato, Massuo J; Medeiros, Marisa H G; Di Mascio, Paolo

    2014-11-06

    Plants form symbiotic associations with endophytic bacteria within tissues of leaves, stems, and roots. It is unclear whether or how plants obtain nitrogen from these endophytic bacteria. Here we present evidence showing nitrogen flow from endophytic bacteria to plants in a process that appears to involve oxidative degradation of bacteria. In our experiments we employed Agave tequilana and its seed-transmitted endophyte Bacillus tequilensis to elucidate organic nitrogen transfer from (15)N-labeled bacteria to plants. Bacillus tequilensis cells grown in a minimal medium with (15)NH4Cl as the nitrogen source were watered onto plants growing in sand. We traced incorporation of (15)N into tryptophan, deoxynucleosides and pheophytin derived from chlorophyll a. Probes for hydrogen peroxide show its presence during degradation of bacteria in plant tissues, supporting involvement of reactive oxygen in the degradation process. In another experiment to assess nitrogen absorbed as a result of endophytic colonization of plants we demonstrated that endophytic bacteria potentially transfer more nitrogen to plants and stimulate greater biomass in plants than heat-killed bacteria that do not colonize plants but instead degrade in the soil. Findings presented here support the hypothesis that some plants under nutrient limitation may degrade and obtain nitrogen from endophytic microbes.

  5. Endophytic Fungi Isolated from Coleus amboinicus Lour Exhibited Antimicrobial Activity.

    Science.gov (United States)

    Astuti, Puji; Sudarsono, Sudarsono; Nisak, Khoirun; Nugroho, Giri Wisnu

    2014-12-01

    Coleus amboinicus is a medicinal plant traditionally used to treat various diseases such as throat infection, cough and fever, diarrhea, nasal congestion and digestive problems. The plant was explored for endophytic fungi producing antimicrobial agents. Screening for endophytic fungi producing antimicrobial agents was conducted using agar plug method and antimicrobial activity of promising ethyl acetate extracts was determined by disc diffusion assay. Thin layer chromatography (TLC) - bioautography was performed to localize the bioactive components within the extract. TLC visualization detection reagents were used to preliminary analyze phytochemical groups of the bioactive compounds. Three endophytic fungi were obtained, two of them showed promising potential. Agar diffusion method showed that endophytic fungi CAL-2 exhibited antimicrobial activity against P. aeruginosa, B. subtilis, S. aureus and S. thypi, whilst CAS-1 inhibited the growth of B. subtilis. TLC bioautography of ethyl acetate extract of CAL-2 revealed at least three bands exhibited antimicrobial activity and at least two bands showed inhibition of B. subtilis growth. Preliminary analysis of the crude extracts suggests that bioactive compounds within CAL-2 extract are terpenoids, phenolics and phenyl propanoid compounds whilst the antimicrobial agents within CAS-1 extract are terpenoids, propylpropanoids, alkaloids or heterocyclic nitrogen compounds. These data suggest the potential of endophytic fungi of C. amboinicus as source for antimicrobial agents.

  6. Endophytic Fungi Isolated from Coleus amboinicus Lour Exhibited Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Puji Astuti

    2014-12-01

    Full Text Available Purpose: Coleus amboinicus is a medicinal plant traditionally used to treat various diseases such as throat infection, cough and fever, diarrhea, nasal congestion and digestive problems. The plant was explored for endophytic fungi producing antimicrobial agents. Methods: Screening for endophytic fungi producing antimicrobial agents was conducted using agar plug method and antimicrobial activity of promising ethyl acetate extracts was determined by disc diffusion assay. Thin layer chromatography (TLC - bioautography was performed to localize the bioactive components within the extract. TLC visualization detection reagents were used to preliminary analyze phytochemical groups of the bioactive compounds. Results: Three endophytic fungi were obtained, two of them showed promising potential. Agar diffusion method showed that endophytic fungi CAL-2 exhibited antimicrobial activity against P. aeruginosa, B. subtilis, S. aureus and S. thypi, whilst CAS-1 inhibited the growth of B. subtilis. TLC bioautography of ethyl acetate extract of CAL-2 revealed at least three bands exhibited antimicrobial activity and at least two bands showed inhibition of B. subtilis growth. Preliminary analysis of the crude extracts suggests that bioactive compounds within CAL-2 extract are terpenoids, phenolics and phenyl propanoid compounds whilst the antimicrobial agents within CAS-1 extract are terpenoids, propylpropanoids, alkaloids or heterocyclic nitrogen compounds. Conclusion: These data suggest the potential of endophytic fungi of C. amboinicus as source for antimicrobial agents.

  7. Plant growth promoting potential of endophytic bacteria isolated ...

    African Journals Online (AJOL)

    Endophytic microorganisms are able to promote plant growth through various mechanisms, such as production of plant hormones and antimicrobial substances, as well as to provide the soil with nutrients, for instance, inorganic phosphate. This study aimed to evaluate the potential of endophytic bacteria isolated from ...

  8. Endophytic bacteria with potential for bioremediation of petroleum ...

    African Journals Online (AJOL)

    Endophytic microorganisms live inside plants and show no apparent damage for the host. They often assist in plants' survival and facilitate their growth, or they can metabolize organic contaminants. This study aimed to isolate and identify the endophytic bacteria of plants present in impacted areas, as well as to test their ...

  9. Endophytic bacteria with plant growth promoting and biocontrol abilities

    NARCIS (Netherlands)

    Malfanova, Natalia V.

    2013-01-01

    Since global food insecurity is one of the major problems faced by humanity, there is a necessity to increase plant productivity. For this, biofungicides and biofertilizers present an ecologically friendly alternative to their chemical counterparts. Among these bioinoculants, endophytic bacteria

  10. Seed-vectored endophytic bacteria modulate development of rice seedlings.

    Science.gov (United States)

    Verma, S K; Kingsley, K; Irizarry, I; Bergen, M; Kharwar, R N; White, J F

    2017-06-01

    The aim of the present study was to evaluate the effects of the removal of indigenous bacteria from rice seeds on seedling growth and development. Here we report the presence of three indigenous endophytic bacteria in rice seeds that play important roles in modulating seedling development (shoot and root lengths, and formation of root hairs and secondary roots) and defence against pathogens. Seed-associated bacteria were removed using surface sterilization with NaOCl (bleach) followed by antibiotic treatment. When bacteria were absent, growth of seedlings in terms of root hair development and overall seedling size was less than that of seedlings that contained bacteria. Reactive oxygen staining of seedlings showed that endophytic bacteria became intracellular in root parenchyma cells and root hairs. Roots containing endophytic bacteria were seen to stain densely for reactive oxygen, while roots free of bacteria stained lightly for reactive oxygen. Bacteria were isolated and identified as Enterobacter asburiae (VWB1), Pantoea dispersa (VWB2) and Pseudomonas putida (VWB3) by 16S rDNA sequencing. Bacteria were found to produce indole acetic acid (auxins), inhibited the pathogen Fusarium oxysporum and solubilized phosphate. Reinoculation of bacteria onto seedlings derived from surface-disinfected rice and Bermuda grass seeds significantly restored seedling growth and development. Rice seeds harbour indigenous bacterial endophytes that greatly influence seedling growth and development, including root and shoot lengths, root hair formation and disease susceptibility of rice seedlings. This study shows that seeds of rice naturally harbour bacterial endophytes that play key roles in modulation of seedling development. © 2017 The Society for Applied Microbiology.

  11. [Screening endophytic bacteria against plant-parasitic nematodes].

    Science.gov (United States)

    Peng, Shuang; Yan, Shuzhen; Chen, Shuanglin

    2011-03-01

    Plant-parasite nematode is one of the most important pathogens in plant. Our objective is to screen endophytic bacteria against plant-parasitic nematodes from plant. Endophytic bacteria were isolated and screened by testing their metabolite against Bursaphelenchus xylophilus in vitro. Those strains inhibiting B. xylophilus were selected to culture in liquid medium and fermentation conditions were optimized by orthogonal test. The stability of the antinematode substances was evaluated by various. In addition, four strains were identified by 16SrDNA sequence analysis. In total 13 strains of endophytic bacteria secreting antinematode metabolite were isolated from 6 species of plant. The supernatant of the fermentation broth of these endophytic bacteria gave 100% mortality of nematodes after treated as the follows: 1 ml each was mixed with 0.2 ml of the suspension of nematodes (2000 nematodes/ml) then incubated at 250C for 24 h, some of which could led to leakage or dissolution of nematodes. Among them, four strains, BCM2, SZ5, CCM7 and DP1, showed stronger activity than others. The supernatants diluted three times also gave not less than 95% mortality after 24 h treatment, and those from DP1 and SZ5 even gave 100% mortality. The fermentation conditions of the four strains were optimized and the antinematode activity grew up four times after optimization. The antinematode substances of these strains were found stable when treated with protease or heating or stored at 4 degrees C after 100 days, while instable when treated with acid or alkali. DP1 and CCM7 were identified to be Bacillus subtilis, while SZ5 and BCM2 to be Bacillus cereus. Endophytic bacteria secreting antinematode metabolite were found in economic crops. The metabolite of some strains showed strong and stable antinematode activity. Our results indicate the real potential of biocontrol by endophytic bacteria.

  12. Endophytic colonization of plant roots by nitrogen-fixing bacteria

    International Nuclear Information System (INIS)

    Cocking, Edward C.

    2001-01-01

    Nitrogen-fixing bacteria are able to enter into roots from the rhizosphere, particularly at the base of emerging lateral roots, between epidermal cells and through root hairs. In the rhizosphere growing root hairs play an important role in symbiotic recognition in legume crops. Nodulated legumes in endosymbiosis with rhizobia are amongst the most prominent nitrogen-fixing systems in agriculture. The inoculation of non-legumes, especially cereals, with various non-rhizobial diazotrophic bacteria has been undertaken with the expectation that they would establish themselves intercellularly within the root system, fixing nitrogen endophytic ally and providing combined nitrogen for enhanced crop production. However, in most instances bacteria colonize only the surface of the roots and remain vulnerable to competition from other rhizosphere micro-organisms, even when the nitrogen-fixing bacteria are endophytic, benefits to the plant may result from better uptake of soil nutrients rather than from endophytic nitrogen fixation. Azorhizobium caulinodans is known to enter the root system of cereals, other nonlegume crops and Arabidopsis, by intercellular invasion between epidermal cells and to internally colonize the plant intercellularly, including the xylem. This raises the possibility that xylem colonization might provide a nonnodular niche for endosymbiotic nitrogen fixation in rice, wheat, maize, sorghum and other non-legume crops. A particularly interesting, naturally occurring, non-qodular xylem colonising endophytic diazotrophic interaction with evidence for endophytic nitrogen fixation is that of Gluconacetobacter diazotrophicus in sugarcane. Could this beneficial endophytic colonization of sugarcane by G. diazotrophicus be extended to other members of the Gramineae, including the major cereals, and to other major non-legume crops of the World? (author)

  13. Biodegradation of Mixed PAHs by PAH-Degrading Endophytic Bacteria

    Directory of Open Access Journals (Sweden)

    Xuezhu Zhu

    2016-08-01

    Full Text Available Endophytic bacteria can promote plant growth, induce plant defence mechanisms, and increase plant resistance to organic contaminants. The aims of the present study were to isolate highly PAH-degrading endophytic bacteria from plants growing at PAH-contaminated sites and to evaluate the capabilities of these bacteria to degrade polycyclic aromatic hydrocarbons (PAHs in vitro, which will be beneficial for re-colonizing target plants and reducing plant PAH residues through the inoculation of plants with endophytic bacteria. Two endophytic bacterial strains P1 (Stenotrophomonas sp. and P3 (Pseudomonas sp., which degraded more than 90% of phenanthrene (PHE within 7 days, were isolated from Conyza canadensis and Trifolium pretense L., respectively. Both strains could use naphthalene (NAP, PHE, fluorene (FLR, pyrene (PYR, and benzo(apyrene (B(aP as the sole sources of carbon and energy. Moreover, these bacteria reduced the contamination of mixed PAHs at high levels after inoculation for 7 days; strain P1 degraded 98.0% NAP, 83.1% FLR, 87.8% PHE, 14.4% PYR, and 1.6% B(aP, and strain P3 degraded 95.3% NAP, 87.9% FLR, 90.4% PHE, 6.9% PYR, and negligible B(aP. Notably, the biodegradation of PAHs could be promoted through additional carbon and nitrogen nutrients; therein, beef extract was suggested as the optimal co-substrate for the degradation of PAHs by these two strains (99.1% PHE was degraded within 7 days. Compared with strain P1, strain P3 has more potential for the use in the removal of PAHs from plant tissues. These results provide a novel perspective in the reduction of plant PAH residues in PAH-contaminated sites through inoculating plants with highly PAH-degrading endophytic bacteria.

  14. Identification of lead-resistant endophytic bacteria isolated from rice

    International Nuclear Information System (INIS)

    Perez-Cordero, Alexander; Barraza-Roman, Zafiro; Martinez-Pacheco, Dalila

    2015-01-01

    Resistance of endophytic bacteria in vitro was evaluated at different lead concentrations. The tissue samples of commercial rice varieties at tillering stage were collected during the first half of 2013, in Monteria, Cordoba, Colombia. Each tissue was subjected to surface cleaning. Endophytic bacteria were isolated in agar R_2A medium. The population density (CFU/g tissue) was determined from each tissue by direct counting of R_2A medium surface. Morphotypes were classified by shape, color, size and appearance. A total of 168 morphotypes were isolated from root, tillers and leaf of different commercial varieties of rice. The lead resistance test is performed in vitro, The lead resistance test was performed in vitro, by the suspensions of endophytic bacteria in log phase and inoculation in minimal medium with five concentrations of lead as Pb (NO_3)_2. The experiment was incubated at 32 degrees celsius and agitated at 150 rpm for five days. The measure of turbidimetry at 600 nm was conduced every hour afterstarting the test. Endophytic bacteria showed the ability to grow at concentrations of 100% of Pb as Pb (NO_3) _2. The presence of Burkholderia cepacia and Pseudomonas putida, which showed resistance to differents lead concentration was confirmed as result of the identification with kit API20E. (author) [es

  15. Identification of lead- resistant endophytic bacteria isolated from rice.

    Directory of Open Access Journals (Sweden)

    Alexander Pérez-Cordero

    2015-06-01

    Full Text Available   The objective of this study was to evaluate in vitro the endophytic bacteria resistance to different lead concentrations. The sampling was undertaken in the first half of 2013, when tissue samples of commercial varieties of rice at tillering stage were collected in Montería, Cordoba, Colombia. Each tissue was subjected to surface cleaning. Endophytic bacteria in agar R2A medium were isolated. Population density (CFU/g tissue was determined from each tissue, by direct counting of R2A medium surface. morphotypes were classified by shape, color, size, and appearance. A total of 168 morphotypes were isolated from root, tillers, and leaf of different commercial varieties of rice. The lead resistance test was performed in vitro, to do that, suspensions of endophytic bacteria in log phase were prepared and inoculated in minimal medium with five concentrations of lead as Pb(NO32. The experiment was incubated at 32 °C and agitated at 150 rpm, for five days. Every hour afterstarting the test, turbidimetry measuring at 600 nm was conducted. Results showed the ability of endophytic bacteria to grow at concentrations of 100% of Pb as Pb(NO32. The results of the identification with kit API20E confirmed the presence of Burkholderia cepacia and Pseudomonas putida, which showed resistance to different lead concentrations.

  16. Sunflower growth according to seed inoculation with endophytic bacteria

    Directory of Open Access Journals (Sweden)

    Juliana Fernandes dos Santos

    2014-06-01

    Full Text Available The sunflower crop has a great importance worldwide, due to the oil of excellent quality extracted from its seeds and in natura grains that are consumed in various ways. However, drought is one of the main environmental factors that limit its yield. An experiment was carried out under controlled greenhouse conditions, in a completely randomized experimental design, in order to determine the effect of endophytic bacteria inoculation (Bacillus sp. and Enterobacter cloacae on the growth and contents of nutrients and organic solutes, in sunflower leaves and roots under water deficit. Plant height, stem diameter, fresh and dry biomass of shoot and roots, as well as contents of N, P, K, soluble carbohydrates, free proline, free amino acids and soluble proteins, were determined at 35 days after the plant emergence. The water deficit reduced plant growth regardless inoculation. However, under optimum conditions of soil moisture, the combination of both endophytic bacteria increased the sunflower growth. The water deficit also increased the N and K contents in leaves, as well as the organic solutes content in shoots, especially in inoculated plants. These results suggest that the inoculation of endophytic bacteria may increase the capacity of drought stressed plants to perform the osmotic adjustment through a higher accumulation of organic solutes, when compared to plants not inoculated.

  17. Endophytic Fungi Isolated from Coleus amboinicus Lour Exhibited Antimicrobial Activity

    OpenAIRE

    Puji Astuti; Sudarsono Sudarsono; Khoirun Nisak; Giri Wisnu Nugroho

    2014-01-01

    Purpose: Coleus amboinicus is a medicinal plant traditionally used to treat various diseases such as throat infection, cough and fever, diarrhea, nasal congestion and digestive problems. The plant was explored for endophytic fungi producing antimicrobial agents. Methods: Screening for endophytic fungi producing antimicrobial agents was conducted using agar plug method and antimicrobial activity of promising ethyl acetate extracts was determined by disc diffusion assay. Thin layer chromatograp...

  18. Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants.

    Science.gov (United States)

    Afzal, Muhammad; Khan, Qaiser M; Sessitsch, Angela

    2014-12-01

    Recently, there has been an increased effort to enhance the efficacy of phytoremediation of contaminated environments by exploiting plant-microbe interactions. The combined use of plants and endophytic bacteria is an emerging approach for the clean-up of soil and water polluted with organic compounds. In plant-endophyte partnerships, plants provide the habitat as well as nutrients to their associated endophytic bacteria. In response, endophytic bacteria with appropriate degradation pathways and metabolic activities enhance degradation of organic pollutants, and diminish phytotoxicity and evapotranspiration of organic pollutants. Moreover, endophytic bacteria possessing plant growth-promoting activities enhance the plant's adaptation and growth in soil and water contaminated with organic pollutants. Overall, the application of endophytic bacteria gives new insights into novel protocols to improve phytoremediation efficiency. However, successful application of plant-endophyte partnerships for the clean-up of an environment contaminated with organic compounds depends on the abundance and activity of the degrading endophyte in different plant compartments. Although many endophytic bacteria have the potential to degrade organic pollutants and improve plant growth, their contribution to enhance phytoremediation efficiency is still underestimated. A better knowledge of plant-endophyte interactions could be utilized to increase the remediation of polluted soil environments and to protect the foodstuff by decreasing agrochemical residues in food crops. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Symbiotic interaction of endophytic bacteria with arbuscular mycorrhizal fungi and its antagonistic effect on Ganoderma boninense.

    Science.gov (United States)

    Sundram, Shamala; Meon, Sariah; Seman, Idris Abu; Othman, Radziah

    2011-08-01

    Endophytic bacteria (Pseudomonas aeruginosa UPMP3 and Burkholderia cepacia UMPB3), isolated from within roots of oil palm (Elaeis guineensis Jacq.) were tested for their presymbiotic effects on two arbuscular mcorrhizal fungi, Glomus intraradices UT126 and Glomus clarum BR152B). These endophytic bacteria were also tested for antagonistic effects on Ganoderma boninense PER 71, a white wood rot fungal pathogen that causes a serious disease in oil palm. Spore germination and hyphal length of each arbuscular mycorrhizal fungal (AMF) pairing with endophytic bacteria was found to be significantly higher than spores plated in the absence of bacteria. Scanning electron microscopy (SEM) showed that the endophytic bacteria were scattered, resting or embedded on the surface hyaline layer or on the degraded walls of AMF spores, possibly feeding on the outer hyaline spore wall. The antagonistic effect of the endophytic bacteria was expressed as severe morphological abnormalities in the hyphal structures of G. boninense PER 71. The effects of the endophytic bacteria on G. boninense PER 71 hyphal structures were observed clearly under SEM. Severe inter-twisting, distortion, lysis and shriveling of the hyphal structures were observed. This study found that the effect of endophytic bacteria on G. intraradices UT126 and G. clarum BR152B resembled that of a mycorrhiza helper bacteria (MHB) association because the association significantly promoted AMF spore germination and hyphal length. However, the endophytic bacteria were extremely damaging to G. boninense PER 71.

  20. Isolation and Molecular Identification of Endophytic Bacteria From Rambutan Fruits (Nephelium lappaceum L. Cultivar Binjai

    Directory of Open Access Journals (Sweden)

    Sony Suhandono

    2016-01-01

    Full Text Available Interactions between plants and endophytic bacteria are mutualistic. Plant provides nutrient for bacteria, and bacteria will protect the plant from pathogen, help the phytohormone synthesis and nitrogen fixation, and also increase absorption of minerals. These bacteria called plant growth-promoting bacteria. The aim for this study is to identify endophytic bacteria on rambutan (Nephelium lappaceum L. cultivar Binjai with 16S rRNA. Sequencing results showed that the bacteria is derived from genus Corynebacterium, Bacillus, Chryseobacterium, Staphylococcus and Curtobacterium, which suspected play a role as plant growth-promoting bacteria.

  1. Potential Use of Endophytic Bacteria to Control Pratylenchus Brachyurus on Patchouli

    OpenAIRE

    Harni, Rita; Supramana, Supramana; Supriadi, Supriadi

    2012-01-01

    Pratylenchus brachyurus is an important parasitic nematode which significantly decreases quality and quantity of patchouli oil. One potential measure for controlling the nematode is by using endophytic bacteria. These bacteria also induce plant growth. This study aimed to evaluate the potential of endo-phytic bacteria to control P. brachyurus. The experiments were carried out in the Bacteriological Laboratory of the Plant Protection Department, Bogor Agricultural University, and the Laborator...

  2. Endophytic bacteria in cacti seeds can improve the development of cactus seedlings.

    Science.gov (United States)

    M. Esther Puente; Ching Y. Li; Yoav Bashan

    2009-01-01

    A plant-bacterium association between the giant cardon cactus Pachycereus pringlei and endophytic bacteria help seedlings establish and grow on barren rock, This cactus, together with other desert plants, is responsible for weathering ancient lava flows in the Baja California Peninsula of Mexico.When cardon seeds are inoculated with endophytic...

  3. Natural Medium for Growing of Endophytic Bacteria from Solanaceae in Malang-Indonesia

    OpenAIRE

    Purnawati Arika; Harijani Wiwik Sri; Windriyanti Wiwin

    2016-01-01

    Endophytic bacteria are important microorganisms having potential as biocontrol agents for many pathogens. Until now, the growth of it always uses semi-synthetic or synthetic medium so it was difficult to be used by farmers in the field and it was expensive to have its propagation as biocontrol agents. Based on the problem, this research will study the natural medium as propagation medium of Endophytic bacteria. It had natural ingredients such as soybean, chicken broth, egg, worms, snail, sor...

  4. Isolation and identification of local bacteria endophyte and screening of its antimicrobial property against pathogenic bacteria and fungi

    Science.gov (United States)

    Fikri, Ahmad Syairazie Ibrahim; Rahman, Irman Abdul; Nor, Norefrina Shafinaz Md; Hamzah, Ainon

    2018-04-01

    Endophytes are organisms, often fungi and bacteria that live in living plant cells. These organisms reside in the living tissues of the host plant in a variety of relationships, ranging from symbiotic to slightly pathogenic. The endophytes may produce a plethora of substances that have potential to be used in modern medicine, agriculture and industry. The aims of this study are to isolate, identify and screening antimicrobial activity of bacterial endophytes. The endophytes were isolated using nutrient agar, incubated at 37°C for 48 hours. Identification of the isolates were done based on morphological characteristics, biochemical tests and 16S rDNA molecular analysis. Disk diffusion method was used to screen for antimicrobial activity of metabolites from endophytes against pathogenic bacteria. Screening for antifungal activity of selected endophytes was done using dual culture method againts pathogenic fungi followed by Kirby-Bauer method. Results showed endophytes designated as B2c and B7b have positive antimicrobial activity. The metabolites from isolate B2c showed antimicrobial activity against pathogenic bacteria methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus and Staphylococcus epidermis, while isolate B7b have positive activities againts MRSA, S. aureus and Pseudomonas aeruginosa. Isolates B2c displayed antifungal activity against Fusarium oxysporum, Fusarium solani, Phytophthora palmivora and Colletotrichum gloeosporioides. Identification using biochemical tests and 16S rDNA sequences identified isolate B2c as Pseudomonas resinovorans with 97% homology and isolate B7b as Bacillus subtilis with 98% homology.

  5. The diversity of citrus endophytic bacteria and their interactions with Xylella fastidiosa and host plants

    Science.gov (United States)

    Azevedo, João Lúcio; Araújo, Welington Luiz; Lacava, Paulo Teixeira

    2016-01-01

    Abstract The bacterium Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC) and has been associated with important losses in commercial orchards of all sweet orange [Citrus sinensis (L.)] cultivars. The development of this disease depends on the environmental conditions, including the endophytic microbial community associated with the host plant. Previous studies have shown that X. fastidiosa interacts with the endophytic community in xylem vessels as well as in the insect vector, resulting in a lower bacterial population and reduced CVC symptoms. The citrus endophytic bacterium Methylobacterium mesophilicum can trigger X. fastidiosa response in vitro, which results in reduced growth and induction of genes associated with energy production, stress, transport, and motility, indicating that X. fastidiosa has an adaptive response to M. mesophilicum. Although this response may result in reduced CVC symptoms, the colonization rate of the endophytic bacteria should be considered in studies that intend to use this endophyte to suppress CVC disease. Symbiotic control is a new strategy that uses symbiotic endophytes as biological control agents to antagonize or displace pathogens. Candidate endophytes for symbiotic control of CVC must occupy the xylem of host plants and attach to the precibarium of sharpshooter insects to access the pathogen. In the present review, we focus on interactions between endophytic bacteria from sweet orange plants and X. fastidiosa, especially those that may be candidates for control of CVC. PMID:27727362

  6. The diversity of citrus endophytic bacteria and their interactions with Xylella fastidiosa and host plants

    Directory of Open Access Journals (Sweden)

    João Lúcio Azevedo

    Full Text Available Abstract The bacterium Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC and has been associated with important losses in commercial orchards of all sweet orange [Citrus sinensis (L.] cultivars. The development of this disease depends on the environmental conditions, including the endophytic microbial community associated with the host plant. Previous studies have shown that X. fastidiosa interacts with the endophytic community in xylem vessels as well as in the insect vector, resulting in a lower bacterial population and reduced CVC symptoms. The citrus endophytic bacterium Methylobacterium mesophilicum can trigger X. fastidiosa response in vitro, which results in reduced growth and induction of genes associated with energy production, stress, transport, and motility, indicating that X. fastidiosa has an adaptive response to M. mesophilicum. Although this response may result in reduced CVC symptoms, the colonization rate of the endophytic bacteria should be considered in studies that intend to use this endophyte to suppress CVC disease. Symbiotic control is a new strategy that uses symbiotic endophytes as biological control agents to antagonize or displace pathogens. Candidate endophytes for symbiotic control of CVC must occupy the xylem of host plants and attach to the precibarium of sharpshooter insects to access the pathogen. In the present review, we focus on interactions between endophytic bacteria from sweet orange plants and X. fastidiosa, especially those that may be candidates for control of CVC.

  7. A Legume Genetic Framework Controls Infection of Nodules by Symbiotic and Endophytic Bacteria

    Science.gov (United States)

    Zgadzaj, Rafal; James, Euan K.; Kelly, Simon; Kawaharada, Yasuyuki; de Jonge, Nadieh; Jensen, Dorthe B.; Madsen, Lene H.; Radutoiu, Simona

    2015-01-01

    Legumes have an intrinsic capacity to accommodate both symbiotic and endophytic bacteria within root nodules. For the symbionts, a complex genetic mechanism that allows mutual recognition and plant infection has emerged from genetic studies under axenic conditions. In contrast, little is known about the mechanisms controlling the endophytic infection. Here we investigate the contribution of both the host and the symbiotic microbe to endophyte infection and development of mixed colonised nodules in Lotus japonicus. We found that infection threads initiated by Mesorhizobium loti, the natural symbiont of Lotus, can selectively guide endophytic bacteria towards nodule primordia, where competent strains multiply and colonise the nodule together with the nitrogen-fixing symbiotic partner. Further co-inoculation studies with the competent coloniser, Rhizobium mesosinicum strain KAW12, show that endophytic nodule infection depends on functional and efficient M. loti-driven Nod factor signalling. KAW12 exopolysaccharide (EPS) enabled endophyte nodule infection whilst compatible M. loti EPS restricted it. Analysis of plant mutants that control different stages of the symbiotic infection showed that both symbiont and endophyte accommodation within nodules is under host genetic control. This demonstrates that when legume plants are exposed to complex communities they selectively regulate access and accommodation of bacteria occupying this specialized environmental niche, the root nodule. PMID:26042417

  8. Cadmium resistance of endophytic bacteria and rizosféricas bacteria isolated from Oriza sativa in Colombia

    Directory of Open Access Journals (Sweden)

    Nataly Ayubb T

    2017-12-01

    Full Text Available The present study had as objective to evaluate in vitro the resistance of endophytic bacteria and rizospheric bacteria to different concentrations of Cadmium.This bacteria were isolated fron different tissues of commercial rice varieties and from bacteria isolated from the rhizosphere in rice plantations of the Nechí (Antioquía and Achí (Bolivar.  Plant growth promotion was evaluated in vitro by nitrogen fixation, phosphate solubilization and siderophores production of endophytic bacteria. Of each tissue isolated from rice plants was carried out isolation in culture medium for endophytic bacteria, and the soil samples were serially diluted in peptone water. Each sample was determined the population density by counting in CFU / g of tissue and morphotypes were separated by shape, color, size and appearance in culture media. Significant differences were observed for density population of bacteria with respect to tissue, with higher values in root (4x1011 g/root, followed of the stem (3x1010g/etem, leaf (5x109 g/ leaf, flag leaf (3x109 g/ flag leaf and with less density in panicle (4x108 g/panicle. The results of the identification with kit API were confirmed the presence of endophytic bacteria Burkholderia cepaceae and rizospheric bacteria Pseudomona fluorescens With the ability to tolerate different concentrations of Cd, fix nitrogen, solubilize phosphates and produce siderophores.

  9. Interactions among endophytic bacteria and fungi: effects and ...

    Indian Academy of Sciences (India)

    Madhu

    The colonization of plants by putative endophytes has been visualized by using laser scanning confocal microscope (Coombs and Franco 2003). Endophytes promote the growth of plants in various ways, for example through secretion of plant growth regulators;. e.g. indole-acetic acid (Lee et al 2004), via phosphate-.

  10. Antagonistic Activity Of Endophytic Bacteria Isolated From Mentha Rotundifolia L.

    Directory of Open Access Journals (Sweden)

    Elhartiti Abla

    2015-08-01

    Full Text Available Abstract This study is implemented for the isolation purification and identification of endophytic bacteria which produces antifungal substances from the roots of Mentha rotundifolia L. The 59 obtained bacterial isolates were tested for their antagonistic activity by the dual confrontation against the phytopathogenic fungi Fusarium oxysporum Aspergillus Niger and Botrytis cinerea. Eight bacterial strains were selected for their strong antifungal activity. These are strains M21 M23 M3a M4 M14d and M3c which belong to the family Bacillaceae M12 and M3b which belongs to the family of Pseudomonadaceae. Among these three bacterial strains namely M21 M23 and M12 induce 70 of inhibition of mycelial growth of phytopathogenic fungi Fusarium oxysporum and Aspergillus Niger while the five bacterial strains M3a M3c M3b M4 and M14d have proved to be effective in inhibiting more than 60 of mycelial growth of Botrytis cinerea.

  11. Endophytic Fungi Associated With Turmeric (Curcuma longa L. Can Inhibit Histamine-Forming Bacteria in Fish

    Directory of Open Access Journals (Sweden)

    Eris Septiana

    2017-01-01

    Full Text Available Turmeric (Curcuma longa L. is a medicinal plant that is commonly used as spice and preservative. Many types of endophytic fungi have been reported as being associated with medicinal plants and able to synthesize secondary metabolites. In this study, endophytic fungi were isolated from all plant parts of turmeric plants. Identification of the endophytic fungi was done using morphological characteristics and sequencing of the internal transcribed spacer (ITS region of ribosomal DNA. The dual culture method was used for screening antibacterial activity of the endophytic fungi against Morganella morganii, a common histamine-producing bacteria. The disc diffusion method was used to test the ability of water fractions of selected endophytic fungi to inhibit M. morganii growth. Two-dimensional thin layer chromatography was used to determine the fungal extract inhibition activity on histamine formation. In total, 11 endophytic fungi were successfully isolated and identified as Arthrobotrys foliicola, Cochliobolus kusanoi, Daldinia eschscholzii, Fusarium oxysporum, Fusarium proliferatum, Fusarium solani, Fusarium verticillioides, Phanerochaete chrysosporium, and Phaeosphaeria ammophilae. Five isolates showed inhibition activity against M. morganii in the dual culture tests. Based on the disc diffusion assay, A. foliicola and F. verticillioides inhibited the growth of M. morganii as a histamine-producing bacteria, and inhibiting histamine formation in fish. The best effects in inhibiting growth of the histamine-producing bacteria and histamine formation inhibition in fish were produced with F. verticillioides water fraction at 0°C incubation.

  12. Stimulate The Growth of Rice Using Endophytic Bacteria from Lowland Rice Plant Tissue

    Directory of Open Access Journals (Sweden)

    Nuni Gofar

    2015-07-01

    Full Text Available Exploration and selection of endophytic bacteria from healthy food crops grown in lowland ecosystem is important to be conducted in order to get growth-stimulating endophytic bacteria at soil with low fertility level so that capable to optimize initial growth of food crops and subsequently can increase productivity level of lowland soil.The research objective was to isolate and to test the IAA-producing endophytic bacteria isolate in stimulating the rice crop growth at lowland area. Endophytic bacteria are isolated from tissues of rice, corn and peanut crops which grown at shallow swamp land in Ogan Ilir and Ogan Komering Ilir Districts, South Sumatra, Indonesia. There was nine isolates of nitrogen-fixer endophytic bacteria that capable to contribute IAA phytohormone into their growth media. The P31 isolate from rice crop tisssue of 2 months old produce the best rice sprouts than other isolates. This isolate can contribute of about 10 mg kg-1 IAA to its growth medium and increase the crowns dry weight and the roots dry weight respectively with magnitudes of 133% and 225% compared to control treatment. Concentration and absorbtion of N for rice crops innoculated with P31 isolates had increased by 169% and 400%, recpectively. The P31 isolates had been identified as Burkholderia pseudomallei (also known as Pseudomonas pseudomallei.

  13. Natural Medium for Growing of Endophytic Bacteria from Solanaceae in Malang-Indonesia

    Directory of Open Access Journals (Sweden)

    Purnawati Arika

    2016-01-01

    Full Text Available Endophytic bacteria are important microorganisms having potential as biocontrol agents for many pathogens. Until now, the growth of it always uses semi-synthetic or synthetic medium so it was difficult to be used by farmers in the field and it was expensive to have its propagation as biocontrol agents. Based on the problem, this research will study the natural medium as propagation medium of Endophytic bacteria. It had natural ingredients such as soybean, chicken broth, egg, worms, snail, sorghum and they were easy to get by farmers. This study used endophytic bacteria from Solanaceae in Malang- Indonesia. Four isolates of endophytic bacteria were grown in agar and liquid medium with ingredients of corn flour, soybean flour, sorghum flour, snail flour, and worm flour. There is no difference in the incubation period, color, shape, and surface colony. The population in medium with snail flour ingredients at a concentration of 107 cfu/ml is the highest and snail flour is the best medium for growing endophytic bacteria.

  14. Whole-Genome Sequence and Classification of 11 Endophytic Bacteria from Poison Ivy (Toxicodendron radicans).

    Science.gov (United States)

    Tran, Phuong N; Tan, Nicholas E H; Lee, Yin Peng; Gan, Han Ming; Polter, Steven J; Dailey, Lucas K; Hudson, André O; Savka, Michael A

    2015-11-19

    Here, we report the whole-genome sequences and annotation of 11 endophytic bacteria from poison ivy (Toxicodendron radicans) vine tissue. Five bacteria belong to the genus Pseudomonas, and six single members from other genera were found present in interior vine tissue of poison ivy. Copyright © 2015 Tran et al.

  15. Whole-Genome Sequence and Classification of 11 Endophytic Bacteria from Poison Ivy (Toxicodendron radicans)

    OpenAIRE

    Tran, Phuong N.; Tan, Nicholas E. H.; Lee, Yin Peng; Gan, Han Ming; Polter, Steven J.; Dailey, Lucas K.; Hudson, Andr? O.; Savka, Michael A.

    2015-01-01

    Here, we report the whole-genome sequences and annotation of 11 endophytic bacteria from poison ivy (Toxicodendron radicans) vine tissue. Five bacteria belong to the genus Pseudomonas, and six single members from other genera were found present in interior vine tissue of poison ivy.

  16. Antibacterial Activities of Endophytic Bacteria Isolated from Taxus brevifolia Against Foodborne Pathogenic Bacteria.

    Science.gov (United States)

    Islam, Nurul; Choi, Jaehyuk; Baek, Kwang-Hyun

    2018-05-01

    Endophytes are a potential source of novel bioactive compounds with medicinal properties. In this study, 41 endophytic bacteria (EB) were isolated from tissues of a medicinally important plant Taxus brevifolia (Pacific yew). The objective was to screen all the EB isolates for their antibacterial effects against five foodborne pathogenic bacteria: Bacillus cereus ATCC10876, Staphylococcus aureus ATCC12600, Listeria monocytogenes ATCC19115, Escherichia coli ATCC43890, and Salmonella Typhimurium ATCC19585. Among the EB isolates, T. brevifolia seed (TbS)-8, T. brevifolia fleshy part of fruit (TbFl)-10, T. brevifolia leaf (TbL)-22, TbS-29, and TbL-34 exerted significant antibacterial activity against the tested foodborne pathogens. Especially TbFl-10 showed the highest antibacterial activity against all the tested bacteria and was identified as Paenibacillus kribbensis (Pk). Furthermore, an ethyl acetate extract of Pk-TbFl-10 possessed antibacterial activities against the tested five foodborne pathogenic bacteria, with zones of inhibition from 15.71 ± 2.85 to 13.01 ± 2.12 mm. Scanning electron microscopy analysis revealed ruptured, lysed, shrunk, and swollen cells of all the tested foodborne pathogens treated with the ethyl acetate extract of Pk-TbFl-10, suggesting that a metabolite(s) of Pk-TbFl-10 penetrates the cell membrane and causes cell lysis leading to cell death. Our results indicate that Pk-TbFl-10 isolated from T. brevifolia can serve as a novel source of natural antibacterial agents against foodborne pathogenic bacteria, with potential applications in the pharmaceutical industry.

  17. Influence of Chicken Manure Fertilization on Antibiotic-Resistant Bacteria in Soil and the Endophytic Bacteria of Pakchoi

    Directory of Open Access Journals (Sweden)

    Qingxiang Yang

    2016-06-01

    Full Text Available Animal manure is commonly used as fertilizer for agricultural crops worldwide, even though it is believed to contribute to the spread of antibiotic resistance from animal intestines to the soil environment. However, it is unclear whether and how there is any impact of manure fertilization on populations and community structure of antibiotic-resistant endophytic bacteria (AREB in plant tissues. To investigate the effect of manure and organic fertilizer on endophytic bacterial communities, pot experiments were performed with pakchoi grown with the following treatments: (1 non-treated; (2 chicken manure-treated and (3 organic fertilizer-treated. Manure or organic fertilizer significantly increased the abundances of total cultivable endophytic bacteria (TCEB and AREB in pakchoi, and the effect of chicken manure was greater than that of organic fertilizer. Further, 16S rDNA sequencing and the phylogenetic analysis indicated that chicken manure or organic fertilizer application increased the populations of multiple antibiotic-resistant bacteria (MARB in soil and multiple antibiotic-resistant endophytic bacteria (MAREB in pakchoi. The identical multiple antibiotic-resistant bacterial populations detected in chicken manure, manure- or organic fertilizer-amended soil and the vegetable endophytic system were Brevundimonas diminuta, Brachybacterium sp. and Bordetella sp., suggesting that MARB from manure could enter and colonize the vegetable tissues through manure fertilization. The fact that some human pathogens with multiple antibiotic resistance were detected in harvested vegetables after growing in manure-amended soil demonstrated a potential threat to human health.

  18. The Genetic Diversity of Endophytic and Phyllosphere Bacteria from Several Indonesian Herbal Plants

    Directory of Open Access Journals (Sweden)

    Devi Rachelia

    2012-04-01

    Full Text Available Herbal plants have been believed by Indonesians to be an alternative medicine to treat illnesses. The bioactivecompounds in the plant can be derived from secondary metabolites or from endophytic and phyllosphere bacteria whichcoexist within medicinal plants. A total of 18 endophytic bacteria and 32 phyllosphere bacteria were isolated from theherbal plants of Citrus sp., Pluchea indica, Curcuma longa, Nothopanax scuttelarium, Piper crocatum, andAndrographis paniculata. About 72% of endophytic bacteria isolates have proteolytic activity and about 11% havelipolytic activity. On the other hand, about 59% of phyllosphere bacteria isolates have proteolytic activity and about19% have lipolytic activity. Phylogenetic diversity analysis was conducted by using the amplified ribosomal DNArestriction analysis (ARDRA method and the sequence of 16S rDNA was digested with endonuclease restrictionenzymes: MspI, RsaI, and Sau961. The diversity of endophytic and phyllosphere bacterium from the samples of herbalplants was high. Bacteria isolated from the same herbal plant does not always have a close genetic relationship exceptfor the bacteria isolated from the P. indica plant which showed a close genetic relationship with each other.

  19. [Isolation, identification and characterization of ACC deaminase-containing endophytic bacteria from halophyte Suaeda salsa].

    Science.gov (United States)

    Teng, Songshan; Liu, Yanping; Zhao, Lei

    2010-11-01

    We Isolated and characterized 1-aminocyclopropane-1-carboxylate (ACC) deaminase-containing endophytic bacteria from halophyte Suaeda salsa to understand the interactions between endophytes and halophyte. ACC deaminase-containing endophytic bacteria were isolated from root, stalk and leaf of Suaeda salsa and were identified based on morphological, physiological-biochemical properties, API and 16S rRNA sequence analysis. Isolates were evaluated for their ACC deaminase, antifungal, protease activity, siderophores and phytohormones, such as indole-3-acetic acid, gibberellic acid and abscisic acid production, as well as atmospheric nitrogen fixation and phosphate solubilization. Four ACC deaminase-containing endophytic bacteria strains named as LP11, SS12, TW1 and TW2 were isolated and identified as Pseudomonas oryzihabitans, Pseudomonas sp., Pantoea agglomerans and Pseudomonas putida respectively. All the strains possessed the phosphate-solubilizing ability and could produce siderophores and phytohormones more or less. None of them could fix atmospheric nitrogen or produce protease. Only strain SS12 showed antagonism against two phytopathogenic fungi viz Fusarium oxysporum f. sp. conglutinans and F. oxysporum f. sp. cucumerinum. ACC deaminase-containing endophytic bacteria of Pseudomonas sp. and Pantoea sp. isolated from halophyte Suaeda salsa have abundant biological characteristics related to plant growth promotion, stress homeostasis regulation and biocontrol activity.

  20. EFFICACY OF ENDOPHYTIC BACTERIA IN REDUCING PLANT PARASITIC NEMATODE Pratylenchus brachyurus

    Directory of Open Access Journals (Sweden)

    Rita Harni

    2014-04-01

    Full Text Available Pratylenchus brachyurus is a major parasitic nematode on patchouli that reduces plant production up to 85%. The use of endophytic bacteria is promising for controlling nematode and promoting plant growth through production of phytohormones and enhancing the availability of soil nutrients. The objective of the study was to evaluate the efficacy of endophytic bacteria to control P. brachyurus on patchouli plant and its influence on plant productions (plant fresh weight and patchouli oil. The study was conducted at Cimanggu Experimental Garden and Laboratory of the Indonesian Spice and Medicinal Crops Research Institute (ISMECRI, Bogor, West Java. The experi-ment was designed in a randomized block with seven treatments and eight replications; each replication consisted of 10 plants. The treatments evaluated were five isolates of endophytic bacteria (Achromobacter xylosoxidans TT2, Alcaligenes faecalis NJ16, Pseudomonas putida EH11, Bacillus cereus MSK and Bacillus subtilis NJ57, synthetic nematicide as a reference, and non-treated plant as a control.  Four-week old patchouli plants of cv. Sidikalang were treated by soaking the roots in suspension of endophytic bacteria (109 cfu  ml-1 for one hour before trans-planting to the field. At one month after planting, the plants were drenched with the bacterial suspension as much as 100 ml per plant. The results showed that applications of the endophytic bacteria could suppress the nematode populations (52.8-80% and increased plant weight (23.62-57.48% compared to the control. The isolate of endophytic bacterium Achromobacter xylosoxidans TT2 was the best and comparable with carbofuran.

  1. Melatonin-producing endophytic bacteria from grapevine roots promote the abiotic stress-induced production of endogenous melatonin in their hosts

    Directory of Open Access Journals (Sweden)

    Jian Jiao

    2016-09-01

    Full Text Available Endophytes form symbiotic relationships with plants and constitute an important source of phytohormones and bioactive secondary metabolites for their hosts. To date, most studies of endophytes have focused on the influence of these microorganisms on plant growth and physiology and their role in plant defenses against biotic and abiotic stressors; however, to the best of our knowledge, the ability of endophytes to produce melatonin has not been reported. In the present study, we isolated and identified root-dwelling bacteria from three grapevine varieties and found that, when cultured under laboratory conditions, some of the bacteria strains secreted melatonin and tryptophan-ethyl ester. The endophytic bacterium Bacillus amyloliquefaciens SB-9 exhibited the highest level of in vitro melatonin secretion and also produced three intermediates of the melatonin biosynthesis pathway: 5-hydroxytryptophan, serotonin, and N-acetylserotonin. After B. amyloliquefaciens SB-9 colonization, the plantlets exhibited increased plant growth. Additionally, we found that, in grapevine plantlets exposed to salt or drought stress, colonization by B. amyloliquefaciens SB-9 increased the upregulation of melatonin synthesis, as well as that of its intermediates, but reduced the upregulation of grapevine tryptophan decaboxylase genes (VvTDCs and a serotonin N-acetyltransferase gene (VvSNAT transcription, when compared to the un-inoculated control. Colonization by B. amyloliquefaciens SB-9 was also able to counteract the adverse effects of salt- and drought-induced stress by reducing the production of malondialdehyde and reactive oxygen species (H2O2 and O2− in roots. Therefore, our findings demonstrate the occurrence of melatonin biosynthesis in endophytic bacteria and provide evidence for a novel form of communication between beneficial endophytes and host plants via melatonin.

  2. Fluorescence in situ hybridization for phytoplasma and endophytic bacteria localization in plant tissues.

    Science.gov (United States)

    Bulgari, Daniela; Casati, Paola; Faoro, Franco

    2011-11-01

    In the present study, we developed a rapid and efficient fluorescence in situ hybridization assay (FISH) in non-embedded tissues of the model plant Catharanthus roseus for co-localizing phytoplasmas and endophytic bacteria, opening new perspectives for studying the interaction between these microorganisms. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Antibacterial, antifungal and cytotoxic activities exhibited by endophytic fungi from the Brazilian marine red alga Bostrychia tenella (Ceramiales

    Directory of Open Access Journals (Sweden)

    Rafael de Felício

    Full Text Available Abstract Marine environment is one of the most important sources regarding natural products research. Besides, marine microorganisms have been denominated as a talented natural source for discovery of new leads. Although the association of macroalgae and fungi has been described regarding ecological issues, there is a lack of studies about marine seaweed endophytic fungi. In this context, the goal of this study was to evaluate cytotoxic, antifungal and antibacterial activities of endophytic fungi isolated from the Brazilian marine seaweed Bostrychia tenella (J.V. Lamouroux J. Agardh (Ceramiales, Rhodophyta. Forty-five endophytic microorganism strains were isolated from B. tenella. Crude extracts and organic fractions of ten selected strains were obtained after growth in rice medium. Samples were evaluated for cytotoxicity, antifungal and antibacterial assays. Penicillium strains showed positive results in a diversity of assays, and other five strains were active in at least one test. In addition, cytochalasin D was isolated from Xylaria sp. This alga is composed of a microbiological potential, since its endophytic strains exhibited remarkable biological properties. Moreover, cytochalasin D isolation has confirmed chemical potential of marine endophytic strains. This is the first study in which cultured fungi isolates from the Brazilian macroalga B. tenella were evaluated concerning biological properties. Results corroborated that this species could be a pharmaceutical source from marine environment. Furthermore, Acremonium implicatum is being firstly described as marine endophyte and Xylaria sp., Trichoderma atroviride and Nigrospora oryzae as marine seaweed endophytes. Thus, this work reports the first study relating detailed isolation, cultivation and biological evaluation (cytotoxic, antifungal and antibacterial of endophytes Penicillium decaturense and P. waksmanii from the Brazilian marine red alga B. tenella. We are also reporting the

  4. Metabolic response induced by endophytic fungi and bacteria in H. marrubioides Epling in vitro micro plants

    Energy Technology Data Exchange (ETDEWEB)

    Vitorino, Luciana Cristina; Silva, Fabiano Guimaraes, E-mail: fabianocefetrv@yahoo.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia Goiano, Rio Verde, GO (Brazil); Lima, William Cardoso; Soares, Marcos Antonio [Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT (Brazil). Dept. de Botanica e Ecologia; Pedroso, Rita Cassia Nascimento; Silva, Maroli Rodrigues; Dias, Herbert Junior; Crotti, Antonio Eduardo Miller; Silva, Marcio Luis Andrade e; Cunha, Wilson Roberto; Pauletti, Patricia Mendonca; Januario, Ana Helena [Universidade de Franca, SP (Brazil). Nucleo de Pesquisa em Ciencias Exatas e Tecnologicas

    2013-10-01

    Hyptis marrubioides Epling is a native plant from Brazilian Cerrado. In this paper, the response of in vitro micro plants of this species to inoculation with bacterial and fungal endophytic isolates is evaluated. HPLC-DAD analysis showed the presence of 3,4-O-(Z)-dicaffeoylquinic acid and quercetin-7-O-glucoside as the main components. GC/MS analysis demonstrated that the sesquiterpenes Greek-Small-Letter-Tau -cadinol and caryophyllene oxide were only produced in micro plants inoculated with endophytic bacteria, while methyl hexadecanoate, methyl heptadecanoate and methyl (Z,Z,Z) 9,12,15-octadecatrienoate and the triterpene methyl 3{beta}-hydroxy-urs-12-en-28-oate were over expressed only when the micro plant was treated with endophytic fungi. (author)

  5. Metabolic response induced by endophytic fungi and bacteria in H. marrubioides Epling in vitro micro plants

    International Nuclear Information System (INIS)

    Vitorino, Luciana Cristina; Silva, Fabiano Guimaraes; Lima, William Cardoso; Soares, Marcos Antonio; Pedroso, Rita Cassia Nascimento; Silva, Maroli Rodrigues; Dias, Herbert Junior; Crotti, Antonio Eduardo Miller; Silva, Marcio Luis Andrade e; Cunha, Wilson Roberto; Pauletti, Patricia Mendonca; Januario, Ana Helena

    2013-01-01

    Hyptis marrubioides Epling is a native plant from Brazilian Cerrado. In this paper, the response of in vitro micro plants of this species to inoculation with bacterial and fungal endophytic isolates is evaluated. HPLC-DAD analysis showed the presence of 3,4-O-(Z)-dicaffeoylquinic acid and quercetin-7-O-glucoside as the main components. GC/MS analysis demonstrated that the sesquiterpenes τ-cadinol and caryophyllene oxide were only produced in micro plants inoculated with endophytic bacteria, while methyl hexadecanoate, methyl heptadecanoate and methyl (Z,Z,Z) 9,12,15-octadecatrienoate and the triterpene methyl 3β-hydroxy-urs-12-en-28-oate were over expressed only when the micro plant was treated with endophytic fungi. (author)

  6. Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem.

    Science.gov (United States)

    Castro, Renata A; Quecine, Maria Carolina; Lacava, Paulo T; Batista, Bruna D; Luvizotto, Danice M; Marcon, Joelma; Ferreira, Anderson; Melo, Itamar S; Azevedo, João L

    2014-01-01

    The mangrove ecosystem is a coastal tropical biome located in the transition zone between land and sea that is characterized by periodic flooding, which confers unique and specific environmental conditions on this biome. In these ecosystems, the vegetation is dominated by a particular group of plant species that provide a unique environment harboring diverse groups of microorganisms, including the endophytic microorganisms that are the focus of this study. Because of their intimate association with plants, endophytic microorganisms could be explored for biotechnologically significant products, such as enzymes, proteins, antibiotics and others. Here, we isolated endophytic microorganisms from two mangrove species, Rhizophora mangle and Avicennia nitida, that are found in streams in two mangrove systems in Bertioga and Cananéia, Brazil. Bacillus was the most frequently isolated genus, comprising 42% of the species isolated from Cananéia and 28% of the species from Bertioga. However, other common endophytic genera such as Pantoea, Curtobacterium and Enterobacter were also found. After identifying the isolates, the bacterial communities were evaluated for enzyme production. Protease activity was observed in 75% of the isolates, while endoglucanase activity occurred in 62% of the isolates. Bacillus showed the highest activity rates for amylase and esterase and endoglucanase. To our knowledge, this is the first reported diversity analysis performed on endophytic bacteria obtained from the branches of mangrove trees and the first overview of the specific enzymes produced by different bacterial genera. This work contributes to our knowledge of the microorganisms and enzymes present in mangrove ecosystems.

  7. Initial growth of maize in response to application of rock phosphate, vermicompost and endophytic bacteria

    Directory of Open Access Journals (Sweden)

    Lílian Estrela Borges Baldotto

    2012-04-01

    Full Text Available Due to the high energy requirement and demand for non-renewable resources for the production of chemical fertilizers, added also to the environmental impact caused by the use of such products, it is important to intensify research on bio-based agricultural inputs. The use of nitrogen-fixing endophytic and phosphate solubilizing bacteria can provide these nutrients to the plants from the air and poorly soluble phosphorus sources, such as phosphate rock. The objective of this study was to evaluate the nutrition and initial growth of maize (Zea mays L. in response to the inoculation of nitrogen-fixing and rock phosphate solubilizing endophytic bacteria, in single or mixed formulation, applied with vermicompost. The treatments containing bacteria, both diazotrophic and phosphate solubilizing, when compared to controls, showed higher levels of leaf nitrogen and phosphorus in maize, as well as higher growth characteristics. The application of vermicompost showed synergistic effect when combined with endophytic bacteria. Thus, the innovation of the combination of the studied factors may contribute to the early development of maize.

  8. Enhanced degradation activity by endophytic bacteria of plants growing in hydrocarbon contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, L.; Germida, J.J. [Saskatchewan Univ., Saskatoon, SK (Canada); Greer, C.W. [National Research Council of Canada, Montreal, PQ (Canada). Biotechnology Research Inst.

    2006-07-01

    The feasibility of using phytoremediation for cleaning soils contaminated with petroleum hydrocarbons was discussed. Petroleum hydrocarbons are problematic because of their toxicity, mobility and persistence in the environment. Appropriate clean-up methods are needed, given that 60 per cent of Canada's contaminated sites contain these compounds. Phytoremediation is an in situ biotechnology in which plants are used to facilitate contaminant removal. The approach relies on a synergistic relationship between plants and their root-associated microbial communities. Previous studies on phytoremediation have focussed on rhizosphere communities. However, it is believed that endophytic microbes may also play a vital role in organic contaminant degradation. This study investigated the structural and functional dynamics of both rhizosphere and endophytic microbial communities of plants from a phytoremediation field site in south-eastern Saskatchewan. The former flare pit contains up to 10,000 ppm of F3 to F4 hydrocarbon fractions. Root samples were collected from tall wheatgrass, wild rye, saltmeadow grass, perennial ryegrass, and alfalfa. Culture-based and culture-independent methods were used to evaluate the microbial communities associated with these roots. Most probable number assays showed that the rhizosphere communities contained more n-hexadecane, diesel fuel, and PAH degraders. However, mineralization assays with 14C labelled n-hexadecane, naphthalene, and phenanthrene showed that endophytic communities had more degradation activities per standardized initial degrader populations. Total community DNA samples taken from bulk, rhizosphere, and endophytic samples, were analyzed by denaturing gradient gel electrophoresis. It was shown that specific bacteria increased in endophytic communities compared to rhizosphere communities. It was suggested plants may possibly recruit specific bacteria in response to hydrocarbon contamination, thereby increasing degradation

  9. Nitrogen signalling in plant interactions with associative and endophytic diazotrophic bacteria.

    Science.gov (United States)

    Carvalho, T L G; Balsemão-Pires, E; Saraiva, R M; Ferreira, P C G; Hemerly, A S

    2014-10-01

    Some beneficial plant-interacting bacteria can biologically fix N2 to plant-available ammonium. Biological nitrogen fixation (BNF) is an important source of nitrogen (N) input in agriculture and represents a promising substitute for chemical N fertilizers. Diazotrophic bacteria have the ability to develop different types of root associations with different plant species. Among the highest rates of BNF are those measured in legumes nodulated by endosymbionts, an already very well documented model of plant-diazotrophic bacterial association. However, it has also been shown that economically important crops, especially monocots, can obtain a substantial part of their N needs from BNF by interacting with associative and endophytic diazotrophic bacteria, that either live near the root surface or endophytically colonize intercellular spaces and vascular tissues of host plants. One of the best reported outcomes of this association is the promotion of plant growth by direct and indirect mechanisms. Besides fixing N, these bacteria can also produce plant growth hormones, and some species are reported to improve nutrient uptake and increase plant tolerance against biotic and abiotic stresses. Thus, this particular type of plant-bacteria association consists of a natural beneficial system to be explored; however, the regulatory mechanisms involved are still not clear. Plant N status might act as a key signal, regulating and integrating various metabolic processes that occur during association with diazotrophic bacteria. This review will focus on the recent progress in understanding plant association with associative and endophytic diazotrophic bacteria, particularly on the knowledge of the N networks involved in BNF and in the promotion of plant growth. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. The contribution of endophytic bacteria to Albizia lebbeck-mediated phytoremediation of tannery effluent contaminated soil.

    Science.gov (United States)

    Manikandan, Muthu; Kannan, Vijayaraghavan; Mendoza, Ordetta Hannah; Kanimozhi, Mahalingam; Chun, Sechul; Pašić, Lejla

    2016-01-01

    Toxicity of chromium often impairs the remediation capacity of plants used in phytoremediation of polluted soils. In this study, we have identified Albizia lebbeck as a prospective chromium hyperaccumulator and examined cultivable diversity of endophytes present in chromium-treated and control saplings. High numbers (22-100%) of endophytic bacteria, isolated from root, stem, and leaf tissues, could tolerate elevated (1-3 mM) concentrations of K2CrO7. 16S rRNA gene sequence-based phylogenetic analysis showed that the 118 isolates obtained comprised of 17 operational taxonomic units affiliated with the proteobacterial genera Rhizobium (18%), Marinomonas (1%), Pseudomonas (16%), and Xanthomonas (7%) but also with members of Firmicutes genera, such as Bacillus (35%) and Salinococcus (3%). The novel isolates belonging to Salinococcus and Bacillus could tolerate high K2CrO7 concentrations (3 mM) and also showed elevated activity of chromate reductase. In addition, majority (%) of the endophytic isolates also showed production of indole-3-acetic acid. Taken together, our results indicate that the innate endophytic bacterial community assists plants in reducing heavy metal toxicity.

  11. Distribution of endophytic bacteria in Alopecurus aequalis Sobol and Oxalis corniculata L. from soils contaminated by polycyclic aromatic hydrocarbons.

    Directory of Open Access Journals (Sweden)

    Anping Peng

    Full Text Available The distributions of endophytic bacteria in Alopecurus aequalis Sobol and Oxalis corniculata L. grown in soils contaminated with different levels of polycyclic aromatic hydrocarbons (PAHs were investigated with polymerase chain reaction followed by denaturing gradient gel electrophoresis technology (PCR-DGGE and cultivation methods. Twelve types of PAHs, at concentrations varying from 0.16 to 180 mg·kg(-1, were observed in the roots and shoots of the two plants. The total PAH concentrations in Alopecurus aequalis Sobol obtained from three different PAH-contaminated stations were 184, 197, and 304 mg·kg(-1, and the total PAH concentrations in Oxalis corniculata L. were 251, 346, and 600 mg·kg(-1, respectively. The PCR-DGGE results showed that the endophytic bacterial communities in the roots and shoots of the two plants were quite different, although most bacteria belonged to Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes. A total of 68 endophytic bacterial strains were isolated from different tissues of the two plants and classified into three phyla: Firmicutes, Proteobacteria and Bacteroidetes. In both plants, Bacillus spp. and Pseudomonas spp. were the dominant cultivable populations. With an increase in the PAH pollution level, the diversity and distribution of endophytic bacteria in the two plants changed correspondingly, and the number of cultivable endophytic bacterial strains decreased rapidly. Testing of the isolated endophytic bacteria for tolerance to each type of PAH showed that most isolates could grow well on Luria-Bertani media in the presence of different PAHs, and some isolates were able to grow rapidly on a mineral salt medium with a single PAH as the sole carbon and energy source, indicating that these strains may have the potential to degrade PAHs in plants. This research provides the first insight into the characteristics of endophytic bacterial populations under different PAH pollution levels and provides a

  12. Arsenic transformation and plant growth promotion characteristics of As-resistant endophytic bacteria from As-hyperaccumulator Pteris vittata.

    Science.gov (United States)

    Xu, Jia-Yi; Han, Yong-He; Chen, Yanshan; Zhu, Ling-Jia; Ma, Lena Q

    2016-02-01

    The ability of As-resistant endophytic bacteria in As transformation and plant growth promotion was determined. The endophytes were isolated from As-hyperaccumulator Pteris vittata (PV) after growing for 60 d in a soil containing 200 mg kg(-1) arsenate (AsV). They were isolated in presence of 10 mM AsV from PV roots, stems, and leaflets, representing 4 phyla and 17 genera. All endophytes showed at least one plant growth promoting characteristics including IAA synthesis, siderophore production and P solubilization. The root endophytes had higher P solubilization ability than the leaflet (60.0 vs. 18.3 mg L(-1)). In presence of 10 mM AsV, 6 endophytes had greater growth than the control, suggesting As-stimulated growth. Furthermore, root endophytes were more resistant to AsV while the leaflet endophytes were more tolerant to arsenite (AsIII), which corresponded to the dominant As species in PV tissues. Bacterial As resistance was positively correlated to their ability in AsV reduction but not AsIII oxidation. The roles of those endophytes in promoting plant growth and As resistance in P. vittata warrant further investigation. Published by Elsevier Ltd.

  13. Screening of endophytic plant growth-promoting bacteria isolated ...

    African Journals Online (AJOL)

    Probiotic bacteria, inhabiting the endosphere of plants, presents a major opportunity to develop cheap and eco-friendly alternatives to synthetic agrochemicals. Using standard microbiological procedures, culturable bacteria were isolated from the endosphere (root, stem and leaf) of two Nigerian rice varieties (Ofada and ITA ...

  14. Selection and Characterization of Endophytic Bacteria as Biocontrol Agents of Tomato Bacterial Wilt Disease

    Directory of Open Access Journals (Sweden)

    ABDJAD ASIH NAWANGSIH

    2011-06-01

    Full Text Available Biological control of bacterial wilt pathogen (Ralstonia solanacearum of tomato using endophytic bacteria is one of the alternative control methods to support sustainable agriculture. This study was conducted to select and characterize endophytic bacteria isolated from healthy tomato stems and to test their ability to promote plant growth and suppress bacterial wilt disease. Among 49 isolates successfully isolated, 41 were non-plant pathogenic. Green house test on six selected isolates based on antagonistic effect on R. solanacearum or ability to suppress R. solanacearum population in dual culture assays obtained BC4 and BL10 isolates as promising biocontrol agents. At six weeks after transplanting, plants treated with BC4 isolate showed significantly lower disease incidence (33% than that of control (83%. Plants height was not significantly affected by endophytic bacterial treatments. Based on 16S rRNA sequence, BC4 isolate had 97% similarity with Staphylococcus epidermidis (accession number EU834240.1, while isolate BL10 had 98% similarity with Bacillus amyloliquefaciens strain JK-SD002 (accession number AB547229.1.

  15. Endophytic root bacteria associated with the natural vegetation growing at the hydrocarbon-contaminated Bitumount Provincial Historic site.

    Science.gov (United States)

    Blain, Natalie P; Helgason, Bobbi L; Germida, James J

    2017-06-01

    The Bitumount Provincial Historic site is the location of 2 of the world's first oil-extracting and -refining operations. Despite hydrocarbon levels ranging from 330 to 24 700 mg·(kg soil) -1 , plants have been able to recolonize the site through means of natural revegetation. This study was designed to achieve a better understanding of the plant-root-associated bacterial partnerships occurring within naturally revegetated hydrocarbon-contaminated soils. Root endophytic bacterial communities were characterized from representative plant species throughout the site by both high-throughput sequencing and culturing techniques. Population abundance of rhizosphere and root endosphere bacteria was significantly influenced (p hydrocarbon-degrading genes (CYP153 and alkB) were significantly affected (p < 0.05) by the interaction of plant species and sampling location. Our findings suggest that some of the bacterial communities detected are known to exhibit plant growth promotion characteristics.

  16. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars.

    Science.gov (United States)

    Ji, Sang Hye; Gururani, Mayank Anand; Chun, Se-Chul

    2014-01-20

    We have isolated 576 endophytic bacteria from the leaves, stems, and roots of 10 rice cultivars and identified 12 of them as diazotrophic bacteria using a specific primer set of nif gene. Through 16S rDNA sequence analysis, nifH genes were confirmed in the two species of Penibacillus, three species of Microbacterium, three Bacillus species, and four species of Klebsiella. Rice seeds treated with these plant growth-promoting bacteria (PGPB) showed improved plant growth, increased height and dry weight and antagonistic effects against fungal pathogens. In addition, auxin and siderophore producing ability, and phosphate solubilizing activity were studied for the possible mechanisms of plant growth promotion. Among 12 isolates tested, 10 strains have shown higher auxin producing activity, 6 isolates were confirmed as strains with high siderophore producing activity while 4 isolates turned out to have high phosphate-solubilizing activity. These results strongly suggest that the endophytic diazotrophic bacteria characterized in this study could be successfully used to promote plant growth and inducing fungal resistance in plants. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. Indigenous endophytic seed bacteria promote seedling development and defend against fungal disease in browntop millet (Urochloa ramosa L.).

    Science.gov (United States)

    Verma, S K; White, J F

    2018-03-01

    This study was conducted to investigate indigenous seed endophyte effects on browntop millet seedling development. We report that seed-inhabiting bacterial endophytes are responsible for promoting seedling development, including stimulation of root hair formation, increasing root and shoot length growth and increasing photosynthetic pigment content of seedlings. Bacterial endophytes also improved resistance of seedlings to disease. A total of four endophytic bacteria were isolated from surface-sterilized seeds and identified by 16S rDNA sequencing as Curtobacterium sp. (M1), Microbacterium sp. (M2), Methylobacterium sp. (M3) and Bacillus amyloliquefaciens (M4). Removal of bacteria with streptomycin treatment from the seeds compromised seedling growth and development. When endophytes were reinoculated onto seeds, seedlings recovered normal development. Strains M3 and M4 were found to be most potent in promoting growth of seedlings. Bacteria were found to produce auxin, solubilize phosphate and inhibit fungal pathogens. Significant protection of seedlings from Fusarium infection was found using strain M4 in microcosm assays. The antifungal lipopeptide genes for surfactin and iturin were detected in M4; culture extracts of M4 showed a positive drop collapse result for surfactins. This study demonstrates that browntop millet seeds vector indigenous endophytes that are responsible for modulation of seedling development and protection of seedlings from fungal disease. This study is significant and original in that it is the first report of seed-inhabiting endophytes of browntop millet that influence seedling development and function in defence against soilborne pathogens. This study suggests that conservation and management of seed-vectored endophytes may be important in development of more sustainable agricultural practices. © 2017 The Society for Applied Microbiology.

  18. Oasis desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought

    KAUST Repository

    Cherif, Hanene; Marasco, Ramona; Rolli, Eleonora; Ferjani, Raoudha; Fusi, Marco; Soussi, Asma; Mapelli, Francesca; Blilou, Ikram; Borin, Sara; Boudabous, Abdellatif; Cherif, Ameur; Daffonchio, Daniele; Ouzari, Hadda

    2015-01-01

    Oases are desert-farming agro-ecosystems, where date palm (Phoenix dactyliferaL.) plays a keystone role in offsetting the effects of drought and maintaining a suitable microclimate for agriculture. At present, abundance, diversity and plant growth promotion (PGP) of date palm root-associated bacteria remain unknown. Considering the environmental pressure determined by the water scarcity in the desert environments, we hypothesized that bacteria associated with date palm roots improve plant resistance to drought. Here, the ecology of date palm root endophytes from oases in the Tunisian Sahara was studied with emphasis on their capacity to promote growth under drought. Endophytic communities segregated along a north-south gradient in correlation with geo-climatic parameters. Screening of 120 endophytes indicated that date palm roots select for bacteria with multiple PGP traits. Bacteria rapidly cross-colonized the root tissues of different species of plants, including the original Tunisian date palm cultivar, Saudi Arabian cultivars and Arabidopsis. Selected endophytes significantly increased the biomass of date palms exposed to repeated drought stress periods during a 9-month greenhouse experiment. Overall, results indicate that date palm roots shape endophytic communities that are capable to promote plant growth under drought conditions, thereby contributing an essential ecological service to the entire oasis ecosystem. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Oasis desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought

    KAUST Repository

    Cherif, Hanene

    2015-07-21

    Oases are desert-farming agro-ecosystems, where date palm (Phoenix dactyliferaL.) plays a keystone role in offsetting the effects of drought and maintaining a suitable microclimate for agriculture. At present, abundance, diversity and plant growth promotion (PGP) of date palm root-associated bacteria remain unknown. Considering the environmental pressure determined by the water scarcity in the desert environments, we hypothesized that bacteria associated with date palm roots improve plant resistance to drought. Here, the ecology of date palm root endophytes from oases in the Tunisian Sahara was studied with emphasis on their capacity to promote growth under drought. Endophytic communities segregated along a north-south gradient in correlation with geo-climatic parameters. Screening of 120 endophytes indicated that date palm roots select for bacteria with multiple PGP traits. Bacteria rapidly cross-colonized the root tissues of different species of plants, including the original Tunisian date palm cultivar, Saudi Arabian cultivars and Arabidopsis. Selected endophytes significantly increased the biomass of date palms exposed to repeated drought stress periods during a 9-month greenhouse experiment. Overall, results indicate that date palm roots shape endophytic communities that are capable to promote plant growth under drought conditions, thereby contributing an essential ecological service to the entire oasis ecosystem. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. The isolation and identification of endophytic bacteria from mangrove (Sonneratia alba) that produces gelatinase

    Science.gov (United States)

    Nursyam, H.; Prihanto, A. A.; Warasari, N. I.; Saadah, M.; Masrifa, R. E.; Nabila, N. A.; Istiqfarin, N.; Siddiq, I. J.

    2018-04-01

    Gelatinase is an enzyme that hydrolyze gelatin into gelatin hydrolyzate. The purpose of this study was to isolate and to identify endophytic bacteria from Sonneratia alba mangrove which able to produce gelatinase enzyme. Sonneratia alba mangroves was obtained from Bajul Mati Beach, Malang Regency. The samples in this study were, stems, and leaves. Pure cultured bacteria were investigated for its capability for producing gelatinase enzyme by using gelatin media. Best producer would further be analyzed its species using microbact system. Screening process resulted in 3 positive isolates, namely code isolate of R, B, and L. R which was isolate from root of S. alba was the best producer for gelatinase. Identification process with morphology and microbact system revelaed that A. SBM is a Gram-negative bacterium that has a basil cell shape, with a diameter colony of 2.19 mm. Based on the microbact system test carried out, the bacteria is Pseudomonas aeruginosa.

  1. POTENTIAL USE OF ENDOPHYTIC BACTERIA TO CONTROL Pratylenchus brachyurus ON PATCHOULI

    Directory of Open Access Journals (Sweden)

    Rita Harni

    2012-10-01

    Full Text Available Pratylenchus brachyurus is an important parasitic nematode which significantly decreases quality and quantity of patchouli oil. One potential measure for controlling the nematode is by using endophytic bacteria. These bacteria also induce plant growth. This study aimed to evaluate the potential of endo-phytic bacteria to control P. brachyurus. The experiments were carried out in the Bacteriological Laboratory of the Plant Protection Department, Bogor Agricultural University, and the Laboratory and Greenhouse of the Indonesian Spice and Medicinal Crops Research Institute from April to December 2007. Endophytic bacteria were isolated from the roots of patchouli plants sampled from various locations in West Java. Antagonistic activity of the isolates were selected against P. brachyurus and their abilities to induce plant growth of patch-ouli plants. Isolates having ability to control P. brachyurus and promote plant growth were identified by molecular techniques using 16S rRNA universal primers. The results showed that a total of 257 isolates of endophytic bacteria were obtained from patchouli roots and their population density varied from 2.3 x 102 to 6.0 x 105 cfu g-1 fresh root. As many as 60 isolates (23.34% were antagonistic against P. brachyurus causing 70-100% mortality of the namatode, 72 isolates (28.01% stimu-lated plant growth, 32 isolates (12.47% inhibited plant growth, and 93 isolates (36.18% were neutral. Based on their antago-nistic and plant growth enhancer characters, five isolates of the bacteria, namely Achromobacter xylosoxidans TT2, Alcaligenes faecalis NJ16, Pseudomonas putida EH11, Bacillus cereus MSK, and Bacillus subtilis NJ57 suppressed 74.0-81.6% nema-tode population and increased 46.97-86.79% plant growth. The study implies that the endophytic bacteria isolated from patchouly roots are good candidates for controlling P. brachyurus on patchouly plants. Bahasa IndonesiaPratylenchus brachyurus adalah nematoda parasit pada

  2. Investigation of Endophytic Bacterial Community in Supposedly Axenic Cultures of Pineapple and Orchids with Evidence on Abundant Intracellular Bacteria.

    Science.gov (United States)

    Esposito-Polesi, Natalia Pimentel; de Abreu-Tarazi, Monita Fiori; de Almeida, Cristina Vieira; Tsai, Siu Mui; de Almeida, Marcílio

    2017-01-01

    Asepsis, defined as the absence of microbial contamination, is one of the most important requirements of plant micropropagation. In long-term micropropagated cultures, there may occasionally occur scattered microorganism growth in the culture medium. These microorganisms are common plant components and are known as latent endophytes. Thus, the aim of this research was to investigate the presence of endophytic bacteria in asymptomatic pineapple and orchid microplants, which were cultivated in three laboratories for 1 year. Isolation and characterization of bacterial isolates, PCR-DGGE from total genomic DNA of microplants and ultrastructural analysis of leaves were performed. In the culture-dependent technique, it was only possible to obtain bacterial isolates from pineapple microplants. In this case, the bacteria genera identified in the isolation technique were Bacillus, Acinetobacter, and Methylobacterium. The scanning electron microscopy and transmission electron microscopy (SEM and TEM) analyses revealed the presence of endophytic bacteria in intracellular spaces in the leaves of pineapple and orchid microplants, independent of the laboratory or cultivation protocol. Our results strongly indicate that there are endophytic bacterial communities inhabiting the microplants before initiation of the in vitro culture and that some of these endophytes persist in their latent form and can also grow in the culture medium even after long-term micropropagation, thus discarding the concept of "truly axenic plants."

  3. Molecular and phenotypic characterization of endophytic bacteria isolated from sulla nodules.

    Science.gov (United States)

    Beghalem, Hamida; Aliliche, Khadidja; Chriki, Ali; Landoulsi, Ahmed

    2017-10-01

    In the current study, bacterial diversity was investigated in root nodules of Sulla pallida and Sulla capitata. The isolates were analyzed on the basis of their phenotypic and molecular characteristics. The phylogenetic analysis based on 16S rRNA and housekeeping genes (recA and atpD) showed that the isolated bacteria related to Sinorhizobium, Neorhizobium, Phyllobacterium, Arthrobacter, Variovorax and Pseudomonas genera. This is the first report of Neorhizobium genus associated with Hedysarum genus. Phenotypically, all strains tolerate the elevated temperature of 40 °C, and salt stress at a concentration of 2%. In addition, the isolates failed to induce nodulation on their original host; and the symbiotic genes could not be amplified, suggesting that these strains are endophytic bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Chemical composition of lipopolysaccharides isolated from various endophytic nitrogen-fixing bacteria of the genus Herbaspirillum.

    Science.gov (United States)

    Serrato, R V; Sassaki, G L; Cruz, L M; Carlson, R W; Muszyński, A; Monteiro, R A; Pedrosa, F O; Souza, E M; Iacomini, M

    2010-04-01

    Bacteria from the genus Herbaspirillum are endophytes responsible for nitrogen fixation in gramineous plants of economic importance such as maize, sugarcane, sorghum, rice, and wheat. Some species are known to produce plant growth substances. In contrast, Herbaspirillum rubrisubalbicans strains are known to be mild plant pathogens. The molecular communication between the plant and the microbes might involve lipopolysaccharides present in the outer membrane of these gram-negative bacteria. Phenol-water extraction was used to obtain lipopolysaccharides from 7 strains of Herbaspirillum seropedicae (SmR1, Z67, Z78, ZA95, and M2) and H. rubrisubalbicans (M1 and M4). The electrophoretic profiles and chemical composition of the lipopolysaccharides obtained in the phenol and aqueous extracts were shown herein.

  5. Endophytes diversity of bacteria associated with roots of colosuana (bothriochloa pertusa) pasture in three locations of Sucre Department, Colombia

    International Nuclear Information System (INIS)

    Perez C, Alexander; Rojas S, Johanna; Fuentes C, Justo

    2010-01-01

    The objective of this study was to isolate endophytes diversity of culturable bacteria associated with grass roots colosuana Bothriochloa pertusa (L) a. camus in three localities of the department of Sucre, Colombia. endophytes bacterial diversity was performed by isolation of colonies on media culture. The population density was estimated by direct counting of colonies on plate and cultural characteristics of each morphotype were obtained by observation of each colony made. We determined the correlation diversity, population density and locations, using ANOVA and principal component analysis or simple correspondence, using the statistical program R, 2009 (4.5). 20 farms livestock were sampled by locality; it was observed the presence of various bacterial morphotypes endophytes. We found significant differences between diversity (morphotypes), population density (UFC.raiz -1 ) and locations. The diversity of bacterial endophytes represents only a small fraction of the total diversity present in nature; being little information we have of the presence of these microorganisms in specific agro-ecosystems, which is why this work becomes the first evidence of association between bacteria and roots of grass endophytes colosuana in Colombia.

  6. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.

    Science.gov (United States)

    Ma, Ying; Oliveira, Rui S; Nai, Fengjiao; Rajkumar, Mani; Luo, Yongming; Rocha, Inês; Freitas, Helena

    2015-06-01

    Endophyte-assisted phytoremediation has recently been suggested as a successful approach for ecological restoration of metal contaminated soils, however little information is available on the influence of endophytic bacteria on the phytoextraction capacity of metal hyperaccumulating plants in multi-metal polluted soils. The aims of our study were to isolate and characterize metal-resistant and 1-aminocyclopropane-1-carboxylate (ACC) utilizing endophytic bacteria from tissues of the newly discovered Zn/Cd hyperaccumulator Sedum plumbizincicola and to examine if these endophytic bacterial strains could improve the efficiency of phytoextraction of multi-metal contaminated soils. Among a collection of 42 metal resistant bacterial strains isolated from the tissues of S. plumbizincicola grown on Pb/Zn mine tailings, five plant growth promoting endophytic bacterial strains (PGPE) were selected due to their ability to promote plant growth and to utilize ACC as the sole nitrogen source. The five isolates were identified as Bacillus pumilus E2S2, Bacillus sp. E1S2, Bacillus sp. E4S1, Achromobacter sp. E4L5 and Stenotrophomonas sp. E1L and subsequent testing revealed that they all exhibited traits associated with plant growth promotion, such as production of indole-3-acetic acid and siderophores and solubilization of phosphorus. These five strains showed high resistance to heavy metals (Cd, Zn and Pb) and various antibiotics. Further, inoculation of these ACC utilizing strains significantly increased the concentrations of water extractable Cd and Zn in soil. Moreover, a pot experiment was conducted to elucidate the effects of inoculating metal-resistant ACC utilizing strains on the growth of S. plumbizincicola and its uptake of Cd, Zn and Pb in multi-metal contaminated soils. Out of the five strains, B. pumilus E2S2 significantly increased root (146%) and shoot (17%) length, fresh (37%) and dry biomass (32%) of S. plumbizincicola as well as plant Cd uptake (43%), whereas

  7. Identification of arsenic resistant endophytic bacteria from Pteris vittata roots and characterization for arsenic remediation application.

    Science.gov (United States)

    Tiwari, Sarita; Sarangi, Bijaya Ketan; Thul, Sanjog T

    2016-09-15

    Mitigation of arsenic (As) pollution is a topical environmental issue of high R&D priority. The present investigation was carried out to isolate As resistant endophytes from the roots of Indian ecotype Pteris vittata and characterize their As transformation and tolerance ability, plant growth promoting characteristics and their role to facilitate As uptake by the plant. A total of 8 root endophytes were isolated from plants grown in As amended soil (25 mg As kg(-1)). These isolates were studied for minimum inhibitory concentration (MIC), arsenite As(III) - arsenate As(V) transformation ability, plant growth promoting (PGP) characteristics through siderophore, indole acetic acid (IAA) production, phosphatase, ACC deaminase activity, and presence of arsenite oxidase (aox) and arsenite transporter (arsB) genes. On the basis of 16S rDNA sequence analysis, these isolates belong to Proteobacteria, Firmicutes and Bacteroidetes families under the genera Bacillus, Enterobacter, Stenotrophomonas and Rhizobium. All isolates were found As tolerant, of which one isolates showed highest tolerance up to 1000 mg L(-1) concentration in SLP medium. Five isolates were IAA positive with highest IAA production up to 60 mg/L and two isolates exhibited siderophore activity. Phosphatase activity was shown by only one isolate while ACC deaminase activity was absent in all the isolates. The As transformation study by silver nitrate test showed that only two strains had dual characteristics of As(III) oxidation and As (V) reduction, four strains exhibited either of the characteristics while other two didn't confirmed any of the two characteristics. Presence of aox gene was detected in two strains and arsB gene in six isolates. The strain with highest As tolerance also showed highest IAA production and occurrence of arsB gene. Present investigation may open up further scope of utilizing these endophytes for up gradation of phytoextraction process. Copyright © 2016 Elsevier Ltd. All

  8. Management of Meloidogyne incognita on tomato with endophytic bacteria and fresh residue of Wasabia japonica.

    Science.gov (United States)

    Li, G J; Dong, Q E; Ma, L; Huang, Y; Zhu, M L; Ji, Y P; Wang, Q H; Mo, M H; Zhang, K Q

    2014-10-01

    To characterize the nematicidal endophytic bacteria (NEB) of Wasabia japonica (wasabi) and evaluated the control efficacies of promising NEB as well as fresh wasabi residue (FWR) against Meloidogyne incognita on tomato. By in vitro bioassay, 53 NEB strains showing nematicidal efficacies of >50% against J2 of M. incognita were isolated from wasabi. Basing on 16S rRNA gene sequences, these NEB were identified into 18 species of 11 genera. In greenhouse, incorporation of selected NEB culture or FWR into potted soil significantly reduced infection of M. incognita on tomato. Treating tomatoes with either FWR or NEB of Raoultella terrigena RN16 and Pseudomonas reinekei SN21 in the field yielded excellent control efficacies against M. incognita, especially the combinations of FWR with either R. terrigena RN16 or Ps. reinekei SN21 at doses of 50 g plus 100 ml per plant or more. The results established that R. terrigena RN16 and Ps. reinekei SN21 applied separately or combined with FWR have the potential to provide bioprotection agents against M. incognita. This study provides novel way for disease management using combination of endophyte and host residue. © 2014 The Society for Applied Microbiology.

  9. Cultivation Versus Molecular Analysis of Banana (Musa sp.) Shoot-Tip Tissue Reveals Enormous Diversity of Normally Uncultivable Endophytic Bacteria.

    Science.gov (United States)

    Thomas, Pious; Sekhar, Aparna Chandra

    2017-05-01

    The interior of plants constitutes a unique environment for microorganisms with various organisms inhabiting as endophytes. Unlike subterranean plant parts, aboveground parts are relatively less explored for endophytic microbial diversity. We employed a combination of cultivation and molecular approaches to study the endophytic bacterial diversity in banana shoot-tips. Cultivable bacteria from 20 sucker shoot-tips of cv. Grand Naine included 37 strains under 16 genera and three phyla (Proteobacteria, Actinobacteria, Firmicutes). 16S rRNA gene-ribotyping approach on 799f and 1492r PCR-amplicons to avoid plant organelle sequences was ineffective showing limited bacterial diversity. 16S rRNA metagene profiling targeting the V3-V4 hypervariable region after filtering out the chloroplast (74.2 %), mitochondrial (22.9 %), and unknown sequences (1.1 %) revealed enormous bacterial diversity. Proteobacteria formed the predominant phylum (64 %) succeeded by Firmicutes (12.1 %), Actinobacteria (9.5 %), Bacteroidetes (6.4 %), Planctomycetes, Cyanobacteria, and minor shares (banana shoot-tips (20 phyla, 46 classes) with about 2.6 % of the deciphered 269 genera and 1.5 % of the 656 observed species from the same source of shoot-tips attained through cultivation. The predominant genera included several agriculturally important bacteria. The study reveals an immense ecosystem of endophytic bacteria in banana shoot tissues endorsing the earlier documentation of intracellular "Cytobacts" and "Peribacts" with possible roles in plant holobiome and hologenome.

  10. Endophytic Bacteria Associated with Hieracium piloselloides: Their Potential for Hydrocarbon-Utilizing and Plant Growth-Promotion.

    Science.gov (United States)

    Pawlik, Małgorzata; Piotrowska-Seget, Zofia

    2015-01-01

    The aim of this study was to assess the potential of 18 crude-oil-degrading endophytic bacteria for removal of hydrocarbons and promotion of plant growth. Strains were isolated from Hieracium piloselloides (tall hawkweed), which grows in soil heavily polluted with petroleum hydrocarbons. Bacteria from the genus Pseudomonas were abundant among the isolates. The potential for hydrocarbon degradation was evaluated by polymerase chain reaction (PCR) analyses of the genes alkB, alkH, C23O, P450, and pah. It was found that 88.89% of the endophytic bacteria contained gene-encoding polycyclic aromatic hydrocarbon (PAH) initial dioxygenase, 61% possessed the 2,3-catechol dioxygenase gene, and 39% of strains that were tested had the cytochrome P-450 hydroxylase gene. All isolates were capable of producing indole-3-acetic acid (1.8-76.4 μg/ml). Only 17% of them were able to produce siderophores, excrete cellulase, and solubilize phosphate. Hydrogen cyanide synthesis occurred in 33% of endophytic bacteria. The 1-aminocyclopropane-1-carboxylate deaminase activity in isolates that were screened was in the range of 2.6 to 74.1 μmol α-ketobutyrate/mg/h. This feature of the bacteria indicated that isolates may enhance the phytoremediation process. Data suggest that crude-oil-degrading endophytic bacteria possess potential to be promising candidates for enhancement of phytoremediation of hydrocarbon-contaminated soil. Further evaluation of these bacteria is needed in order to assess the role played in the degradation of petroleum hydrocarbons.

  11. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape

    International Nuclear Information System (INIS)

    Sheng Xiafang; Xia Juanjuan; Jiang Chunyu; He Linyan; Qian Meng

    2008-01-01

    Two lead (Pb)-resistant endophytic bacteria were isolated from rape roots grown in heavy metal-contaminated soils and characterized. A pot experiment was conducted for investigating the capability of the two isolates to promote the growth and Pb uptake of rape from Pb-amended soil. The two isolates were identified as Pseudomonas fluorescens G10 and Microbacterium sp. G16 based on the 16S rDNA gene sequence analysis. Strains G10 and G16 exhibited different multiple heavy metal and antibiotic resistance characteristics and increased water-soluble Pb in solution and in Pb-added soil. Root elongation assays demonstrated increases in root elongation of inoculated rape seedlings compared to the control plants. Strain G16 produced indole acetic acid, siderophores and 1-aminocyclopropane-1-carboxylate deaminase. Increases in biomass production and total Pb uptake in the bacteria-inoculated plants were obtained compared to the control. The two strains could colonize the root interior and rhizosphere soil of rape after root inoculation. - Heavy metal-resistant endophytic bacteria from rape have the potential of promoting the growth and lead uptake of rape

  12. Consortium Application of Endophytic Bacteria and Fungi Improves Grain Yield and Physiological Attributes in Advanced Lines of Bread Wheat

    Directory of Open Access Journals (Sweden)

    Ghulam Muhae-Ud-Din

    2018-02-01

    Full Text Available Increasing human population places pressure on agriculture. To feed this population, two time increase in the current wheat production is needed. Today agriculture is becoming input intensive with more reliance on synthetic fertilizers and agrochemicals to fulfil the feed demand of the growing numbers. Use of synthetic fertilizer since last few years is impacting the soil quality. In this scenario, the use of beneficial endophytic microbes is an attractive strategy to overcome the use of synthetic products. To investigate the effect of consortium application of endophytic bacteria and fungus on plant growth, grain yield moisture status, a pot experiment was conducted in different wheat lines. It comprised four treatments like control, application of bacterial strain Bacillus sp. MN54, fungal strain Trichoderma sp. MN6, and their consortium (Bacillus sp. MN54 + Trichoderma sp. MN6. The effect of consortium application was more prominent and significantly different from the sole application of bacteria and fungus. The results showed that with a consortium application of endophytic bacteria and fungus, there was 28.6, 4.3, -6.3 and -3.7% increases in flag leaf area, chlorophyll content, relative membrane permeability and water content respectively. Consortia of endophytic microbes also resulted in the yield enhancement through the betterment of various yield attributes like number of spikelet’s, grains per spike and grain yield per plant (32.2, 25.8 and 30.8%, respectively. So, consortia of endophytic microbes can greatly promote the progress of plants in dry land agriculture and increase the yield in an environmentally sustainable way.

  13. High taxonomic diversity of cultivation-recalcitrant endophytic bacteria in grapevine field shoots, their in vitro introduction, and unsuspected persistence.

    Science.gov (United States)

    Thomas, Pious; Sekhar, Aparna C; Shaik, Sadiq Pasha

    2017-11-01

    Molecular and microscopic analyses reveal enormous non-cultivable endophytic bacteria in grapevine field shoots with functional significance. Diverse bacteria enter tissue cultures through surface-sterilized tissues and survive surreptitiously with varying taxonomic realignments. The study was envisaged to assess the extent of endophytic bacterial association with field shoot tissues of grapevine and the likelihood of introduction of such internally colonizing bacteria in vitro adopting molecular techniques targeting the non-cultivable bacterial community. PowerFood ® -kit derived DNA from surface-sterilized field shoot tips of grapevine Flame Seedless was employed in a preliminary bacterial class-specific PCR screening proving positive for major prokaryotic taxa including Archaea. Taxonomic and functional diversity were analyzed through whole metagenome profiling (WMG) which revealed predominantly phylum Actinobacteria, Proteobacteria, and minor shares of Firmicutes, Bacteroidetes, and Deinococcus-Thermus with varying functional roles ascribable to the whole bacterial community. Field shoot tip tissues and callus derived from stem segments were further employed in 16S rRNA V3-V4 amplicon taxonomic profiling. This revealed elevated taxonomic diversity in field shoots over WMG, predominantly Proteobacteria succeeded by Actinobacteria, Firmicutes, Bacteroidetes, and 15 other phyla including several candidate phyla (135 families, 179 genera). Callus stocks also displayed broad bacterial diversity (16 phyla; 96 families; 141 genera) bearing resemblance to field tissues with Proteobacterial dominance but a reduction in its share, enrichment of Actinobacteria and Firmicutes, disappearance of some field-associated phyla and detection of a few additional taxonomic groups over field community. Similar results were documented during 16S V3-V4 amplicon taxonomic profiling on Thompson Seedless field shoot tip and callus tissues. Video microscopy on tissue homogenates

  14. Uptake of Carbamazepine by rhizomes and endophytic bacteria of Phragmites australis

    Directory of Open Access Journals (Sweden)

    Andres eSauvetre

    2015-02-01

    Full Text Available Carbamazepine is an antiepileptic and mood-stabilizing drug which is used widely in Europe and North America. In the environment, it is found as a persistent and recalcitrant conta¬mi-nant, being one of the most prominent hazardous pharmaceuticals and personal care products (PPCPs in effluents of wastewater treatment plants (WWTPs. Phragmites australis is one of the species with both, the highest potential of detoxification and phytoremediation. It has been used successfully in the treatment of industrial and municipal wastewater. Recently, the identification of endophytic micro¬organisms from different plant species growing in contaminated sites has provided a list of candidates which could be used as bio-inoculants for bioremediation of difficult compounds. In this study, Phragmites australis plants were exposed to 5 mg/L of carbamazepine. After 9 days the plants had removed 90% of the initial concentration. Endophytic bacteria were isolated from these plants and further characterized. Phylogenetic analysis based on 16S rDNA sequencing revealed that the majority of these isolates belong to three groups: Proteobacteria, Actinobacteria and Bacteroidetes. Carbamazepine uptake and plant growth promoting (PGP traits were analyzed among the isolates. Ninety percent of the isolates produce indole acetic acid (IAA and all of them possess at least one of the PGP traits tested. One isolate identified as Chryseobacterium taeanense combines good carbamazepine uptake and all of the PGP traits. Rhizobium daejeonense can remove carbamazepine and produces 23 µg/mL of IAA. Diaphorobacter nitroreducens and Achromobacter mucicolens are suitable for carbamazepine removal while both, Pseudomonas veronii and Pseudomonas lini show high siderophore production and phosphate solubilization. Alone or in combination, these isolates might be applied as inoculates in constructed wetlands in order to enhance the phyto-remediation of carbamazepine during wastewater

  15. Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica

    OpenAIRE

    Mesa, Victoria; Navazas, Alejandro; Gonzalez-Gil, Ricardo; Gonzalez, Aida; Weyens, Nele; Lauga, Beatrice; Gallego, Jose Luis R.; Sanchez, Jesus; Isabel Pelaez, Ana

    2017-01-01

    The aim of this study was to investigate the potential of indigenous arsenic-tolerant bacteria to enhance arsenic phytoremediation by the autochthonous pseudometallophyte Betula celtiberica. The first goal was to perform an initial analysis of the entire rhizosphere and endophytic bacterial communities of the above-named accumulator plant, including the cultivable bacterial species. B. celtiberica's microbiome was dominated by taxa related to Flavobacteriales, Burkholderiales, and Pseudomonad...

  16. Use of endophytic diazotrophic bacteria as a vector to express the cry3A gene from Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Salles Joana Falcão

    2000-01-01

    Full Text Available The goal of this study was to evaluate the potential of endophytic diazotrophic bacteria as a vector to express a cry gene from Bacillus thuringiensis, envisaging the control of pests that attack sugarcane plants. The endophytic nitrogen-fixing bacteria Gluconacetobacter diazotrophicus strain BR11281 and Herbaspirillum seropedicae strain BR11335 were used as models. The cry3A gene was transferred by conjugation using a suicide plasmid and the recombinant strains were selected by their ability to fix nitrogen in semi-solid N-free medium. The presence of the cry gene was detected by Southern-blot using an internal fragment of 1.0 kb as a probe. The production of delta-endotoxin by the recombinant H. seropedicae strain was detected by dot blot while for G. diazotrophicus the Western-blot technique was used. In both cases, a specific antibody raised against the B. thuringiensis toxin was applied. The delta-endotoxin production showed by the G. diazotrophicus recombinant strain was dependent on the nitrogen fixing conditions since the cry3A gene was fused to a nif promoter. In the case of H. seropedicae the delta-endotoxin expression was not affected by the promoter (rhi used. These results suggest that endophytic diazotrophic bacteria can be used as vectors to express entomopathogenic genes envisaging control of sugarcane pests.

  17. Phytoremediation of soils co-contaminated by organic compounds and heavy metals: bioassays with Lupinus luteus L. and associated endophytic bacteria.

    Science.gov (United States)

    Gutiérrez-Ginés, M J; Hernández, A J; Pérez-Leblic, M I; Pastor, J; Vangronsveld, J

    2014-10-01

    In the central part of the Iberian Peninsula there are old sealed landfills containing soils co-contaminated by several heavy metals (Cu, Zn, Pb, Cd, Ni, As, Cr, Fe, Al, Mn) and organic pollutants of different families (hydrocarbons, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, pesticides and other organochlorinated compounds, phenols and volatile compounds), which this work will address. We have focused on phytoremedial plants that are able to deal with this type of complex pollution, not only species that tolerate the joint effect of heavy metals in the soil, but also those that can take advantage of associated bacteria to efficiently break down organic compounds. This study was carried out with Lupinus luteus and its endophytes in two greenhouse experiments: A) growing in a substrate artificially contaminated with benzo(a)pyrene (BaP), and B) using real co-contaminated landfill soils. Endophytes of roots and shoots were isolated in both bioassays. Plant growth-promotion tests and organic pollutant tolerance and degradation tests were conducted on all strains isolated in bioassay A), and on those proving to be pure cultures from bioassay B). The selected landfill is described as are isolation and test procedures. Results indicate that plants did not show toxicity symptoms when exposed to BaP but did when grown in landfill soil. Some endophytes demonstrated plant growth-promotion capacity and tolerance to BaP and other organic compounds (diesel and PCB commercial mixtures). A few strains may even have the capacity to metabolize those organic pollutants. The overall decline in plant growth-promotion capacity in those strains isolated from the landfill soil experiment, compared with those from the bioassay with BaP, may indicate that lupin endophytes are not adapted to metal concentration in roots and shoots and fail to grow. As a result, most isolated root endophytes must have colonized root tissues from the soil. While preliminary degradation tests

  18. Fungi and bacteria boost resistance to pests and diseases : endophytes a useful addition to pest control

    NARCIS (Netherlands)

    Messelink, G.

    2017-01-01

    More and more research is revealing that endophytes – microorganisms that live in the plant without harming it – can significantly boost a plant’s resistance to pests. These findings prompted researchers to investigate the potential of endophytes in pest control in greenhouse horticulture.

  19. Hydrocarbon degradation potential and plant growth-promoting activity of culturable endophytic bacteria of Lotus corniculatus and Oenothera biennis from a long-term polluted site.

    Science.gov (United States)

    Pawlik, Małgorzata; Cania, Barbara; Thijs, Sofie; Vangronsveld, Jaco; Piotrowska-Seget, Zofia

    2017-08-01

    Many endophytic bacteria exert beneficial effects on their host, but still little is known about the bacteria associated with plants growing in areas heavily polluted by hydrocarbons. The aim of the study was characterization of culturable hydrocarbon-degrading endophytic bacteria associated with Lotus corniculatus L. and Oenothera biennis L. collected in long-term petroleum hydrocarbon-polluted site using culture-dependent and molecular approaches. A total of 26 hydrocarbon-degrading endophytes from these plants were isolated. Phylogenetic analyses classified the isolates into the phyla Proteobacteria and Actinobacteria. The majority of strains belonged to the genera Rhizobium, Pseudomonas, Stenotrophomonas, and Rhodococcus. More than 90% of the isolates could grow on medium with diesel oil, approximately 20% could use n-hexadecane as a sole carbon and energy source. PCR analysis revealed that 40% of the isolates possessed the P450 gene encoding for cytochrome P450-type alkane hydroxylase (CYP153). In in vitro tests, all endophytic strains demonstrated a wide range of plant growth-promoting traits such as production of indole-3-acetic acid, hydrogen cyanide, siderophores, and phosphate solubilization. More than 40% of the bacteria carried the gene encoding for the 1-aminocyclopropane-1-carboxylic acid deaminase (acdS). Our study shows that the diversity of endophytic bacterial communities in tested plants was different. The results revealed also that the investigated plants were colonized by endophytic bacteria possessing plant growth-promoting features and a clear potential to degrade hydrocarbons. The properties of isolated endophytes indicate that they have the high potential to improve phytoremediation of petroleum hydrocarbon-polluted soils.

  20. Cr-resistant rhizo- and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils

    Directory of Open Access Journals (Sweden)

    Muhammad Umar Khan

    2015-01-01

    Full Text Available Prosopis juliflora is characterized by distinct and profuse growth even in nutritionally poor soil and environmentally stressed conditions and is believed to harbor some novel heavy metal-resistant bacteria in the rhizosphere and endosphere. This study was performed to isolate and characterize Cr-resistant bacteria from the rhizosphere and endosphere of P. juliflora growing on the tannery effluent contaminated soil. A total of 5 and 21 bacterial strains were isolated from the rhizosphere and endosphere, respectively, could tolerate Cr up to 3000 mg l-1. These isolates also exhibited tolerance to other toxic heavy metals such as, Cd, Cu, Pb and Zn, and high concentration (174 g l-1 of NaCl. Moreover, most of the isolated bacterial strains showed one or more plant growth-promoting activities. The phylogenetic analysis of the 16S rRNA gene indicated a higher and wider range of population of Cr-resistant bacteria in the endosphere than rhizosphere and the predominant species included Bacillus, Staphylococcus and Aerococcus. As far as we know, this is the first report detecting rhizo- and endophytic bacterial population associated with P. juliflora growing on the tannery effluent contaminated soil. The inoculation of three isolates to ryegrass (Lolium multiflorum L. improved plant growth and heavy metal removal from the tannery effluent contaminated soil suggesting that these bacteria could enhance the establishment of the plant in contaminated soil and also improve the efficiency of phytoremediation of heavy metal-degraded soils.

  1. Diversity of endophytic bacteria of Dendrobium officinale based on culture-dependent and culture-independent methods

    Directory of Open Access Journals (Sweden)

    Cong Pei

    2017-01-01

    Full Text Available Culture-dependent and culture-independent methods were compared and evaluated in the study of the endophytic diversity of Dendrobium officinale. Culture-independent methods consisted of polymerase chain reaction–denaturing gradient gel electrophoresis (PCR-DGGE and metagenome methods. According to the results, differences were found between the three methods. Three phyla, namely Firmicutes, Proteobacteria, and Actinobacteria, were detected using the culture-dependent method, and two phyla, Firmicutes and Proteobacteria, were detected by the DGGE method. Using the metagenome method, four major phyla were determined, including Proteobacteria (76.54%, Actinobacteria (18.56%, Firmicutes (2.27%, and Bacteroidetes (1.56%. A distinct trend was obtained at the genus level in terms of the method and the corresponding number of genera determined. There were 449 genera and 16 genera obtained from the metagenome and DGGE methods, respectively, and only 7 genera were obtained through the culture-dependent method. By comparison, all the genera from the culture-dependent and DGGE methods were contained in the members determined using the metagenome method. Overall, culture-dependent methods are limited to ‘finding’ endophytic bacteria in plants. DGGE is an alternative to investigating primary diversity patterns; however, the metagenome method is still the best choice for determining the endophytic profile in plants. It is essential to use multiphasic approaches to study cultured and uncultured microbes.

  2. Epiphytic and endophytic bacteria that promote growth of ethnomedicinal plants in the subtropical forests of Meghalaya, India

    Directory of Open Access Journals (Sweden)

    Fenella Mary War Nongkhlaw

    2014-12-01

    Full Text Available The present study was aimed to investigate the endophytic and epiphytic bacteria associated with selected ethnomedicinal plants from the pristine subtropical forests of Meghalaya and analyse them for plant growth promotion and antagonistic ability. This study is an attempt to explore plant associated bacteria which are beneficial to host plants, and thus aid in the conservation of ethnomedicinal plants of the studied subtropical forests, which are dwindling due to exploitation. The plant growth promotion parameters like indole acetic acid (IAA production, mineral phosphate solubilisation, acid phosphatase activity, presence of 1-aminocyclopropane-1-carboxylic acid deaminase (ACC gene, nitrogen fixation, cellulose digestion, chitin and pectin degradation were screened among the isolates. The study revealed significant differences in bacterial population not only between the epiphytic and endophytic microhabitats, but also amongst the host plants. Out of the 70 isolated plant associated bacteria, Bacillus sp., Serratia sp., Pseudomonas sp., Pantoea sp., and Lysinibacillus sp. showed potent plant growth promotion properties. Bacillus siamensis C53 and B. subtilis cenB showed significant antagonistic activity against the tested pathogens. This study indicated the isolates inhabiting the plants prevalent in the subtropical sacred forests could be explored for use as plant growth promoters while practising the cultivation and conservation of ethnomedicinal plants. Rev. Biol. Trop. 62 (4: 1295-1308. Epub 2014 December 01.

  3. Isolation of endophytic bacteria from arboreal species of the Amazon and identification by sequencing of the 16S rRNA encoding gene

    Directory of Open Access Journals (Sweden)

    Mariza M. Coêlho

    2011-01-01

    Full Text Available Endophytic bacteria from three arboreal species native to the Amazon (Carapa guianenses, Ceiba pentandra, and Swietenia macrophylla, were isolated and identified, through partial sequencing of the 16S rRNA encoding gene. From these, 16 isolates were obtained, although, when compared to sequences deposited in GenBank, only seven had produced identifiable fragments. Bacillus, Pantoea and two non-culturable samples were identified. Results obtained through sequence analysis revealed low genetic diversity across the isolates, even when analyzing different species and plant structures. This is the first report concerning the isolation and identification of endophytic bacteria in these plant species.

  4. Isolation, diversity, and biotechnological potential of rhizo- and endophytic bacteria associated with mangrove plants from Saudi Arabia.

    Science.gov (United States)

    Bibi, F; Ullah, I; Alvi, S A; Bakhsh, S A; Yasir, M; Al-Ghamdi, A A K; Azhar, E I

    2017-06-20

    Marine bacteria have been exceptional sources of halotolerant enzymes since decades. The aim of the present study was to isolate bacteria producing hydrolytic enzymes from seven different mangroves collected from the coastal area of Thuwal, Jeddah, Saudi Arabia, and to further screen them for other enzymatic and antifungal activities. We have isolated 46 different rhizo- and endophytic bacteria from the soil, roots, and leaves of the mangroves using different enzymatic media. These bacterial strains were capable of producing industrially important enzymes (cellulase, protease, lipase, and amylase). The bacteria were screened further for antagonistic activity against fungal pathogens. Finally, these bacterial strains were identified on the basis of the16S rDNA sequence. Taxonomic and phylogenetic analysis revealed 95.9-100% sequence identity to type strains of related species. The dominant phylum was Gammaproteobacteria (γ-Proteobacteria), which comprised 10 different genera - Erwinia, Vibrio, Psychrobacter, Aidingimonas, Marinobacter, Chromohalobacter, Halomonas, Microbulbifer, and Alteromonas. Firmicutes was the second dominant phylum, which contained only the genus Bacillus. Similarly, only Isoptericola belonged to Actinobacteria. Further these enzyme-producing bacteria were tested for the production of other enzymes. Most of the active strains showed cellulytic and lipolytic activities. Several were also active against fungal pathogens. Our results demonstrated that the mangroves represent an important source of potentially active bacteria producing enzymes and antifungal metabolites (bioactive products). These bacteria are a source of novel halophilic enzymes and antibiotics that can find industrial and medicinal use.

  5. Cr-resistant rhizo- and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils.

    Science.gov (United States)

    Khan, Muhammad U; Sessitsch, Angela; Harris, Muhammad; Fatima, Kaneez; Imran, Asma; Arslan, Muhammad; Shabir, Ghulam; Khan, Qaiser M; Afzal, Muhammad

    2014-01-01

    Prosopis juliflora is characterized by distinct and profuse growth even in nutritionally poor soil and environmentally stressed conditions and is believed to harbor some novel heavy metal-resistant bacteria in the rhizosphere and endosphere. This study was performed to isolate and characterize Cr-resistant bacteria from the rhizosphere and endosphere of P. juliflora growing on the tannery effluent contaminated soil. A total of 5 and 21 bacterial strains were isolated from the rhizosphere and endosphere, respectively, and were shown to tolerate Cr up to 3000 mg l(-1). These isolates also exhibited tolerance to other toxic heavy metals such as, Cd, Cu, Pb, and Zn, and high concentration (174 g l(-1)) of NaCl. Moreover, most of the isolated bacterial strains showed one or more plant growth-promoting activities. The phylogenetic analysis of the 16S rRNA gene showed that the predominant species included Bacillus, Staphylococcus and Aerococcus. As far as we know, this is the first report analyzing rhizo- and endophytic bacterial communities associated with P. juliflora growing on the tannery effluent contaminated soil. The inoculation of three isolates to ryegrass (Lolium multiflorum L.) improved plant growth and heavy metal removal from the tannery effluent contaminated soil suggesting that these bacteria could enhance the establishment of the plant in contaminated soil and also improve the efficiency of phytoremediation of heavy metal-degraded soils.

  6. Genome-wide identification of microRNA and siRNA responsive to endophytic beneficial diazotrophic bacteria in maize.

    Science.gov (United States)

    Thiebaut, Flávia; Rojas, Cristian A; Grativol, Clícia; Motta, Mariana Romeiro; Vieira, Tauan; Regulski, Michael; Martienssen, Robert A; Farinelli, Laurent; Hemerly, Adriana S; Ferreira, Paulo C G

    2014-09-06

    Small RNA (sRNA) has been described as a regulator of gene expression. In order to understand the role of maize sRNA (Zea mays-hybrid UENF 506-8) during association with endophytic nitrogen-fixing bacteria, we analyzed the sRNA regulated by its association with two diazotrophic bacteria, Herbaspirillum seropedicae and Azospirillum brasilense. Deep sequencing analysis was done with RNA extracted from plants inoculated with H. seropedicae, allowing the identification of miRNA and siRNA. A total of 25 conserved miRNA families and 15 novel miRNAs were identified. A dynamic regulation in response to inoculation was also observed. A hypothetical model involving copper-miRNA is proposed, emphasizing the fact that the up-regulation of miR397, miR398, miR408 and miR528, which is followed by inhibition of their targets, can facilitate association with diazotrophic bacteria. Similar expression patterns were observed in samples inoculated with A. brasilense. Moreover, novel miRNA and siRNA were classified in the Transposable Elements (TE) database, and an enrichment of siRNA aligned with TE was observed in the inoculated samples. In addition, an increase in 24-nt siRNA mapping to genes was observed, which was correlated with an increase in methylation of the coding regions and a subsequent reduction in transcription. Our results show that maize has RNA-based silencing mechanisms that can trigger specific responses when plants interact with beneficial endophytic diazotrophic bacteria. Our findings suggest important roles for sRNA regulation in maize, and probably in other plants, during association with diazotrophic bacteria, emphasizing the up-regulation of Cu-miRNA.

  7. Isolation and Identification of Endophytic Bacteria with Plant Growth Promoting Activity and Biocontrol Potential from Wild Pistachio Trees.

    Science.gov (United States)

    Etminani, Faegheh; Harighi, Behrouz

    2018-06-01

    In this study, samples were collected from the leaves and stems of healthy wild Pistachio trees ( Pistacia atlantica L.) from various locations of Baneh and Marivan regions, Iran. In total, 61 endophytic bacteria were isolated and grouped according to phenotypic properties. Ten selected isolates from each group were further identified by partial sequencing of the 16S rRNA gene. Based on the results, isolates were identified as bacteria belonging to Pseudomonas , Stenotrophomonas , Bacillus , Pantoea and Serratia genus. The ability of these isolates was evaluated to phytohormone production such as auxin and gibberellin, siderophore production, phosphate solubilization, atmospheric nitrogen fixation, protease and hydrogen cyanide production. All strains were able to produce the plant growth hormone auxin and gibberellin in different amounts. The majority of strains were able to solubilize phosphate. The results of atmospheric nitrogen fixation ability, protease and siderophore production were varied among strains. Only Ba66 could produce a low amount of hydrogen cyanide. The results of biocontrol assay showed that Pb78 and Sp15 strains had the highest and lowest inhibition effects on bacterial plant pathogens, Pseudomonas syringae pv. syringae Pss20 and Pseudomonas tolaasii Pt18 under in vitro condition. Pb3, Pb24 and Pb71 strains significantly promote root formation on carrot slices. To our knowledge this is the first report of the isolation of endophytic bacterial strains belonging to Pantoea , Bacillus , Pseudomonas , Serratia and Stenotrophomonas genus from wild pistachio trees with plant growth promoting potential and biocontrol activity.

  8. Isolation and Identification of Endophytic Bacteria with Plant Growth Promoting Activity and Biocontrol Potential from Wild Pistachio Trees

    Science.gov (United States)

    Etminani, Faegheh; Harighi, Behrouz

    2018-01-01

    In this study, samples were collected from the leaves and stems of healthy wild Pistachio trees (Pistacia atlantica L.) from various locations of Baneh and Marivan regions, Iran. In total, 61 endophytic bacteria were isolated and grouped according to phenotypic properties. Ten selected isolates from each group were further identified by partial sequencing of the 16S rRNA gene. Based on the results, isolates were identified as bacteria belonging to Pseudomonas, Stenotrophomonas, Bacillus, Pantoea and Serratia genus. The ability of these isolates was evaluated to phytohormone production such as auxin and gibberellin, siderophore production, phosphate solubilization, atmospheric nitrogen fixation, protease and hydrogen cyanide production. All strains were able to produce the plant growth hormone auxin and gibberellin in different amounts. The majority of strains were able to solubilize phosphate. The results of atmospheric nitrogen fixation ability, protease and siderophore production were varied among strains. Only Ba66 could produce a low amount of hydrogen cyanide. The results of biocontrol assay showed that Pb78 and Sp15 strains had the highest and lowest inhibition effects on bacterial plant pathogens, Pseudomonas syringae pv. syringae Pss20 and Pseudomonas tolaasii Pt18 under in vitro condition. Pb3, Pb24 and Pb71 strains significantly promote root formation on carrot slices. To our knowledge this is the first report of the isolation of endophytic bacterial strains belonging to Pantoea, Bacillus, Pseudomonas, Serratia and Stenotrophomonas genus from wild pistachio trees with plant growth promoting potential and biocontrol activity. PMID:29887777

  9. Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica.

    Science.gov (United States)

    Mesa, Victoria; Navazas, Alejandro; González-Gil, Ricardo; González, Aida; Weyens, Nele; Lauga, Béatrice; Gallego, Jose Luis R; Sánchez, Jesús; Peláez, Ana Isabel

    2017-04-15

    The aim of this study was to investigate the potential of indigenous arsenic-tolerant bacteria to enhance arsenic phytoremediation by the autochthonous pseudometallophyte Betula celtiberica The first goal was to perform an initial analysis of the entire rhizosphere and endophytic bacterial communities of the above-named accumulator plant, including the cultivable bacterial species. B. celtiberica 's microbiome was dominated by taxa related to Flavobacteriales , Burkholderiales , and Pseudomonadales , especially the Pseudomonas and Flavobacterium genera. A total of 54 cultivable rhizobacteria and 41 root endophytes, mainly affiliated with the phyla Proteobacteria , Bacteroidetes , Firmicutes , and Actinobacteria , were isolated and characterized with respect to several potentially useful features for metal plant accumulation, such as the ability to promote plant growth, metal chelation, and/or mitigation of heavy-metal stress. Seven bacterial isolates were further selected and tested for in vitro accumulation of arsenic in plants; four of them were finally assayed in field-scale bioaugmentation experiments. The exposure to arsenic in vitro caused an increase in the total nonprotein thiol compound content in roots, suggesting a detoxification mechanism through phytochelatin complexation. In the contaminated field, the siderophore and indole-3-acetic acid producers of the endophytic bacterial consortium enhanced arsenic accumulation in the leaves and roots of Betula celtiberica , whereas the rhizosphere isolate Ensifer adhaerens strain 91R mainly promoted plant growth. Field experimentation showed that additional factors, such as soil arsenic content and pH, influenced arsenic uptake in the plant, attesting to the relevance of field conditions in the success of phytoextraction strategies. IMPORTANCE Microorganisms and plants have developed several ways of dealing with arsenic, allowing them to resist and metabolize this metalloid. These properties form the basis of

  10. Increased Tolerance to Heavy Metals Exhibited by Swarming Bacteria

    Science.gov (United States)

    Anyan, M.; Shrout, J. D.

    2014-12-01

    Pseudomonas aeruginosa is a ubiquitous, Gram-negative bacterium that utilizes several different modes of motility to colonize surfaces, including swarming, which is the coordinated movement of cells over surfaces in groups. Swarming facilitates surface colonization and biofilm development for P. aeruginosa, and it is known that swarming behavior is influenced by changes in nutrient composition and surface moisture. To understand the fate and cycling of heavy metals in the environment, it is important to understand the interaction and toxicity of these metals upon bacteria. While previous studies have shown surface-attached bacterial biofilms to be highly resistant to heavy metal toxicity, little is known about the influence of heavy metals upon surface motile bacteria and developing biofilms. Using a combination of laboratory assays we examined differences in bacterial behavior in response to two metals, Cd and Ni. We find that surface swarming bacteria are able to grow on 4x and 2.5x more Cd and Ni, respectively, than planktonic cells (i.e., test tube cultures). P. aeruginosa was able to swarm in the presence ≤0.051mM Ni and ≤0.045mM Cd. To investigate the bioavailability of metals to bacteria growing under our examined conditions, we separated cell and supernatant fractions of P. aeruginosa cultures, and used ICP-MS techniques to measure Cd and Ni sorption. A greater percentage of Cd than Ni was sorbed by both cells and supernatant (which contains rhamnolipid, a surfactant known to sorb some metals and improve swarming). While we show that cell products such as rhamnolipid bind heavy metals (as expected) and should limit metal bioavailability, our results suggest at least one additional mechanism (as yet undetermined) that promotes cell survival during swarming in the presence of these heavy metals.

  11. Bacteria in oral secretions of an endophytic insect inhibit antagonistic fungi

    Science.gov (United States)

    Yasmin J. Cardoza; Kier D. Klepzig; Kenneth F. Raffa

    2006-01-01

    1. Colonisation of host trees by an endophytic herbivore, the spruce beetle, Dendroctonus rufipennis , is accompanied by invasion of its galleries by a number of fungal species. Four of these associated species were identified as Leptographium abietinum , Aspergillus fumigatus , Aspergillus nomius , and ...

  12. Diversity of Endophytic Bacteria in a Fern Species Dryopteris uniformis (Makino) Makino and Evaluation of Their Antibacterial Potential Against Five Foodborne Pathogenic Bacteria.

    Science.gov (United States)

    Das, Gitishree; Park, Seonjoo; Baek, Kwang-Hyun

    2017-05-01

    The fern plant Dryopteris uniformis has traditionally been used in herbal medicine and possesses many biological activities. This study was conducted to explore the endophytic bacterial diversity associated with D. uniformis and evaluate their antibacterial potential against foodborne pathogenic bacteria (FPB). Among 51 isolated endophytic bacteria (EB), 26 EB were selected based on their morphological characteristics and identified by 16S rRNA gene analysis. The distribution of EB was diverse in the leaf and the stem/root tissues. When the EB were screened for antibacterial activity against five FPB, Listeria monocytogenes, Salmonella Typhimurium, Bacillus cereus, Staphylococcus aureus, and Escherichia coli O157:H7, four EB Bacillus sp. cryopeg, Paenibacillus sp. rif200865, Staphylococcus warneri, and Bacillus psychrodurans had a broad spectrum of antibacterial activity (9.58 ± 0.66 to 21.47 ± 0.27 mm inhibition zone). The butanol solvent extract of B. sp. cryopeg and P. sp. rif200865 displayed effective antibacterial activity against the five FPB, which was evident from the scanning electron microscopy with irregular or burst cell morphology in the EB-treated bacteria compared to smooth and regular cells in case of the control bacteria. The minimum inhibitory concentration and minimum bactericidal concentration values ranged between 250-500 μg/mL and 500-100 μg/mL, respectively. The above outcomes signify the huge prospective of the selected EB in the food industry. Overall, the above results suggested that D. uniformis contains several culturable EB that possess effective antibacterial compounds, and that EB can be utilized as a source of natural antibacterial agents for their practical application in food industry to control the spread of FPB as a natural antibacterial agent.

  13. Cultivar and Metal-Specific Effects of Endophytic Bacteria in Helianthus tuberosus Exposed to Cd and Zn

    Directory of Open Access Journals (Sweden)

    Blanca Montalbán

    2017-09-01

    Full Text Available Plant growth promoting endophytic bacteria (PGPB isolated from Brassica napus were inoculated in two cultivars of Helianthus tuberosus (VR and D19 growing on sand supplemented with 0.1 mM Cd or 1 mM Zn. Plant growth, concentrations of metals and thiobarbituric acid (TBA reactive compounds were determined. Colonization of roots of H. tuberosus D19 by Pseudomonas sp. 262 was evaluated using confocal laser scanning microscopy. Pseudomonas sp. 228, Serratia sp. 246 and Pseudomonas sp. 262 significantly enhanced growth of H. tuberosus D19 exposed to Cd or Zn. Pseudomonas sp. 228 significantly increased Cd concentrations in roots. Serratia sp. 246, and Pseudomonas sp. 256 and 228 resulted in significantly decreased contents of TBA reactive compounds in roots of Zn exposed D19 plants. Growth improvement and decrease of metal-induced stress were more pronounced in D19 than in VR. Pseudomonas sp. 262-green fluorescent protein (GFP colonized the root epidermis/exodermis and also inside root hairs, indicating that an endophytic interaction was established. H. tuberosus D19 inoculated with Pseudomonas sp. 228, Serratia sp. 246 and Pseudomonas sp. 262 holds promise for sustainable biomass production in combination with phytoremediation on Cd and Zn contaminated soils.

  14. Nice to meet you: genetic, epigenetic and metabolic controls of plant perception of beneficial associative and endophytic diazotrophic bacteria in non-leguminous plants.

    Science.gov (United States)

    Carvalho, T L G; Ballesteros, H G F; Thiebaut, F; Ferreira, P C G; Hemerly, A S

    2016-04-01

    A wide range of rhizosphere diazotrophic bacteria are able to establish beneficial associations with plants, being able to associate to root surfaces or even endophytically colonize plant tissues. In common, both associative and endophytic types of colonization can result in beneficial outcomes to the plant leading to plant growth promotion, as well as increase in tolerance against biotic and abiotic stresses. An intriguing question in such associations is how plant cell surface perceives signals from other living organisms, thus sorting pathogens from beneficial ones, to transduce this information and activate proper responses that will finally culminate in plant adaptations to optimize their growth rates. This review focuses on the recent advances in the understanding of genetic and epigenetic controls of plant-bacteria signaling and recognition during beneficial associations with associative and endophytic diazotrophic bacteria. Finally, we propose that "soil-rhizosphere-rhizoplane-endophytes-plant" could be considered as a single coordinated unit with dynamic components that integrate the plant with the environment to generate adaptive responses in plants to improve growth. The homeostasis of the whole system should recruit different levels of regulation, and recognition between the parties in a given environment might be one of the crucial factors coordinating these adaptive plant responses.

  15. Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination.

    Science.gov (United States)

    Weyens, Nele; Croes, Sarah; Dupae, Joke; Newman, Lee; van der Lelie, Daniel; Carleer, Robert; Vangronsveld, Jaco

    2010-07-01

    The aim of this work was to investigate if engineered endophytes can improve phytoremediation of co-contaminations by organic pollutants and toxic metals. As a model system, yellow lupine was inoculated with the endophyte Burkholderia cepacia VM1468 possessing (a) the pTOM-Bu61 plasmid, coding for constitutive trichloroethylene (TCE) degradation, and (b) the ncc-nre Ni resistance/sequestration system. Plants were exposed to Ni and TCE and (a) Ni and TCE phytotoxicity, (b) TCE degradation and evapotranspiration, and (c) Ni concentrations in the roots and shoots were determined. Inoculation with B. cepacia VM1468 resulted in decreased Ni and TCE phytotoxicity, as measured by 30% increased root biomass and up to 50% decreased activities of enzymes involved in anti-oxidative defence in the roots. In addition, TCE evapotranspiration showed a decreasing trend and a 5 times higher Ni uptake was observed after inoculation. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  16. Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem

    OpenAIRE

    Castro, Renata A; Quecine, Maria Carolina; Lacava, Paulo T; Batista, Bruna D; Luvizotto, Danice M; Marcon, Joelma; Ferreira, Anderson; Melo, Itamar S; Azevedo, João L

    2014-01-01

    The mangrove ecosystem is a coastal tropical biome located in the transition zone between land and sea that is characterized by periodic flooding, which confers unique and specific environmental conditions on this biome. In these ecosystems, the vegetation is dominated by a particular group of plant species that provide a unique environment harboring diverse groups of microorganisms, including the endophytic microorganisms that are the focus of this study. Because of their intimate associatio...

  17. Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination

    International Nuclear Information System (INIS)

    Weyens, Nele; Croes, Sarah; Dupae, Joke; Newman, Lee; Lelie, Daniel van der; Carleer, Robert; Vangronsveld, Jaco

    2010-01-01

    The aim of this work was to investigate if engineered endophytes can improve phytoremediation of co-contaminations by organic pollutants and toxic metals. As a model system, yellow lupine was inoculated with the endophyte Burkholderia cepacia VM1468 possessing (a) the pTOM-Bu61 plasmid, coding for constitutive trichloroethylene (TCE) degradation, and (b) the ncc-nre Ni resistance/sequestration system. Plants were exposed to Ni and TCE and (a) Ni and TCE phytotoxicity, (b) TCE degradation and evapotranspiration, and (c) Ni concentrations in the roots and shoots were determined. Inoculation with B. cepacia VM1468 resulted in decreased Ni and TCE phytotoxicity, as measured by 30% increased root biomass and up to 50% decreased activities of enzymes involved in anti-oxidative defence in the roots. In addition, TCE evapotranspiration showed a decreasing trend and a 5 times higher Ni uptake was observed after inoculation. - Engineered endophytes can improve phytoremediation of mixed contaminations via enhanced degradation of organic contaminants and improved metal uptake and translocation.

  18. Identification and characterization of endophytic bacteria from corn (Zea mays L.) roots with biotechnological potential in agriculture.

    Science.gov (United States)

    Szilagyi-Zecchin, Vivian Jaskiw; Ikeda, Angela Cristina; Hungria, Mariangela; Adamoski, Douglas; Kava-Cordeiro, Vanessa; Glienke, Chirlei; Galli-Terasawa, Lygia Vitória

    2014-01-01

    Six endophytic bacteria of corn roots were identified as Bacillus sp. and as Enterobacter sp, by sequencing of the 16S rRNA gene. Four of the strains, CNPSo 2476, CNPSo 2477, CNPSo 2478 and CNPSo 2480 were positive for the nitrogen fixation ability evaluated through the acetylene reduction assay and amplification of nifH gene. Two Bacillus strains (CNPSo 2477 and CNPSo 2478) showed outstanding skills for the production of IAA, siderophores and lytic enzymes, but were not good candidates as growth promoters, because they reduced seed germination. However, the same strains were antagonists against the pathogenic fungi Fusarium verticillioides, Colletotrichum graminicola, Bipolaris maydis and Cercospora zea-maydis. As an indication of favorable bacterial action, Enterobacter sp. CNPSo 2480 and Bacillus sp. CNPSo 2481 increased the root volume by 44% and 39%, respectively, and the seed germination by 47% and 56%, respectively. Therefore, these two strains are good candidates for future testing as biological inoculants for corn.

  19. Endophytic Bacteria Suppress Bacterial Wilt of Tomato Caused by Ralstonia solanacearum and Activate Defense-related Metabolites

    Directory of Open Access Journals (Sweden)

    Fahime Safdarpour

    2017-12-01

    Full Text Available Introduction: Phytopathogenic microorganisms affect plant health and burden a major threat to food production and ecosystem stability. Increasing the use of chemical pesticides for plant diseases control causes several negative effects on human and environment health. Furthermore, increasing public awareness about the side effects of them led to a research to find alternatives for these products. One of the alternative methods is bio-control utilizing plant associated antagonistic microorganisms. Materials and methods: In this study, 80 endophytic bacteria were isolated from tomato tissues. Their antagonistic activity screened based on agar diffusion test, against tomato bacterial wilt disease (Ralstonia solanacearum. They were identified based on the morphological, biochemical properties and 16s rRNA sequence analyses. These strains were evaluated in greenhouse and tested for their ability to induce the production of defense-related enzymes in plants e.g. Peroxidase (PO, polyphenoloxidase (PPO and phenolics based on spectrophotometer method. Results: Results showed FS67, FS167 and FS184 strains had maximum inhibition zone forming. They identified as Pseudomonas mossellii, P. fuorescence and P. brassicacearum respectively. FS67 and FS167 strains significantly reduced disease in greenhouse. There was a significant increase in the activity of PO, PPO and phenolics in tomato plants treated with FS67, FS167 and pathogen. Discussion and conclusion: The present study has shown that P. mosselli and P. fuorescence might have the potential to control R. solanacearum. However, the good results obtained in vitro cannot be gained the same as those in greenhouse or field conditions. So, further experiments are needed to determine the effectiveness of these isolates under field conditions.This work support the view that increased defense enzymes activities could be involved, at least in part, in the beneficial effects of endophytic bacteria on plants growth

  20. Characterization of Mn-resistant endophytic bacteria from Mn-hyperaccumulator Phytolacca americana and their impact on Mn accumulation of hybrid penisetum.

    Science.gov (United States)

    Zhang, Wen-Hui; Chen, Wei; He, Lin-Yan; Wang, Qi; Sheng, Xia-Fang

    2015-10-01

    Three hundred Mn-resistant endophytic bacteria were isolated from the Mn-hyperaccumulator, Phytolacca americana, grown at different levels of Mn (0, 1, and 10mM) stress. Under no Mn stress, 90%, 92%, and 11% of the bacteria produced indole acetic acid (IAA), siderophore, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase, respectively. Under Mn stress, 68-94%, 91-92%, and 21-81% of the bacteria produced IAA, siderophore, and ACC deaminase, respectively. Greater percentages of ACC deaminase-producing bacteria were found in the Mn-treated P. americana. Furthermore, the ratios of IAA- and siderophore-producing bacteria were significantly higher in the Mn treated plant leaves, while the ratio of ACC deaminase-producing bacteria was significantly higher in the Mn treated-roots. Based on 16S rRNA gene sequence analysis, Mn-resistant bacteria were affiliated with 10 genera. In experiments involving hybrid penisetum grown in soils treated with 0 and 1000mgkg(-1) of Mn, inoculation with strain 1Y31 was found to increase the root (ranging from 6.4% to 18.3%) and above-ground tissue (ranging from 19.3% to 70.2%) mass and total Mn uptake of above-ground tissues (64%) compared to the control. Furthermore, inoculation with strain 1Y31 was found to increase the ratio of IAA-producing bacteria in the rhizosphere and bulk soils of hybrid penisetum grown in Mn-added soils. The results showed the effect of Mn stress on the ratio of the plant growth-promoting factor-producing endophytic bacteria of P. americana and highlighted the potential of endophytic bacterium as an inoculum for enhanced phytoremediation of Mn-polluted soils by hybrid penisetum plants. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Isolation and characterization of putative endophytic bacteria antagonistic to Phoma tracheiphila and Verticillium albo-atrum.

    Science.gov (United States)

    Kalai-Grami, Leila; Saidi, Sabrine; Bachkouel, Sarra; Ben Slimene, Imen; Mnari-Hattab, Monia; Hajlaoui, Mohamed Rebah; Limam, Ferid

    2014-09-01

    A collection of 200 bacterial isolates recovered from citrus plants (Citrus limon, Citrus sinensis, and Citrus reticulata), Medicago truncatula and Laurus nobilis, was established. In vitro screening indicated that 28 isolates exhibited an inhibitory activity against the vascular pathogens Phoma tracheiphila and Verticillium albo-atrum. Isolates were screened according to their hydrolytic activities, plant growth-promoting bacteria (PGPB) abilities, as well as for the presence of nonribosomal peptide synthetase (NRPS) genes responsible of the lipopeptide biosynthesis. The results were positive for 16 isolates which exhibited at least two PGPB activities and a single NRPS gene. Genetic diversity of the selected isolates was studied using random amplified polymorphic DNA (RAPD) and repetitive element PCR (REP) tools that showed clustering of strains into three major groups (I, II, and III) (i, ii, and iii), respectively. Clustering was further confirmed by the 16S rDNA sequencing that assigned nine isolates to Bacillus velezensis, four isolates to Bacillus methyltrophicus, one isolate to Bacillus amyloliquefaciens, and two isolates to Bacillus mojavensis. Organ-bacterial genotype interaction as well as positive correlation with NRPS genes are discussed.

  2. Endophytic Bacteria Isolated from Panax ginseng Improves Ginsenoside Accumulation in Adventitious Ginseng Root Culture

    Directory of Open Access Journals (Sweden)

    Xiaolin Song

    2017-05-01

    Full Text Available Ginsenoside is the most important secondary metabolite of ginseng. Natural sources of wild ginseng have been overexploited. Although root culture could reduce the length of the growth cycle of ginseng, the number of ginsenosides is fewer and their contents are lower in adventitious roots of ginseng than that in ginseng cultivated in the field. In this study, we investigated the effects of endophytic bacterial elicitors on biomass and ginsenoside production in adventitious roots cultures of Panax ginseng. Endophyte LB 5-3 as an elicitor could increase biomass and ginsenoside accumulation in ginseng adventitious root culture. After 6 days elicitation with a 10.0 mL of strain LB 5-3, the content of total ginsenoside was 2.026 mg g−1 which was four times more than that in unchallenged roots. The combination of methyl jasmonate and strain LB 5-3 had a negative effect on ginseng adventitious root growth and ginsenoside production. The genomic DNA of strain LB 5-3 was sequenced, and was found to be most closely related to Bacillus altitudinis (KX230132.1. The challenged ginseng adventitious root extracts exerted inhibitory effect against the HepG2 cells, which IC50 value was 0.94 mg mL−1.

  3. Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice.

    Science.gov (United States)

    Govindarajan, Munusamy; Balandreau, Jacques; Kwon, Soon-Wo; Weon, Hang-Yeon; Lakshminarasimhan, Cunthipuram

    2008-01-01

    During a survey of endophytic diazotrophic bacteria associated with different rice varieties in Tamilnadu, some "endophytes" were obtained. Thirteen bacterial isolates from surface-sterilized roots and shoots were obtained in pure culture, which produced indole acetic acid (IAA) and reduced acetylene to ethylene. Polymerase chain reaction (PCR) amplification confirmed the presence of nif-H gene in all the isolates. Morphological, biochemical, and molecular characteristics indicated that all of them belonged to the genus Burkholderia One of them, MGK3, was consistently more active in reducing acetylene, and 16S rDNA sequences of isolate MGK3 confirmed its identification as Burkholderia vietnamiensis. Colonization of rice root was confirmed by strain MGK3 marked with gusA gene. The inoculated roots showed a blue color, which was most intense at the points of lateral root emergence and at the root tip. Transverse sections of roots, 15 days after inoculation, revealed beta-glucuronidase (GUS) activity within many of the cortical intercellular spaces next to the stele and within the aerenchyma. Nitrogen fixation was quantified by using (15)N isotope dilution method with two different cultivars grown in pot and field experiments. Higher nitrogen fixation was observed in variety Ponni than in ADT-43, where nearly 42% (field) and 40% (pot) of the nitrogen was derived from the atmosphere (% Ndfa). Isolate MGK3 was used to inoculate rice seedlings in a comparison with four other diazotrophs, viz., Gluconacetobacter diazotrophicus LMG7603, Herbaspirillum seropedicae LMG6513, Azospirillum lipoferum 4B LMG4348, and B. vietnamiensis LMG10929. They were used to conduct two pot and four field inoculation experiments. MGK3 alone, and combined with other diazotrophs, performed best under both pot and field conditions: combined inoculation produced yield increases between 9.5 and 23.6%, while MGK3 alone increased yield by 5.6 to 12.16% over the uninoculated control treatment.

  4. Isolation of vanilla-endophytic bacteria (Vanilla planifolia with in vitro biocontrol activity against Fusarium oxysporum f. sp. Vanillae

    Directory of Open Access Journals (Sweden)

    Karol Jiménez-Quesada

    2015-06-01

    Full Text Available Vanilla sp. genus belongs to Orchidaceae family, and V. planifolia, V. pompona and V. tahitensis. are species of commercial interest. The quality classification of vanilla is made according to the length of the capsule and vanillin content, which is used to make food and beverage, as raw material in the pharmaceutical industry and for the production of cosmetics and perfumes, among others. Currently, root rot caused by the fungus Fusarium oxyporum f. sp. Vanillae is considered to be the biggest problem facing vanilla production, causing 30 to 52% of plant death, attacking adventitious roots and preventing this plant is able to absorb water and nutrients. The fungus cannot be eradicated by the action of chemicals that damage the viability of the plants, and because the cultivation of vanilla in agroforestry systems without the application of agrochemicals is an activity that is gaining interest among small producers country. It is for this reason why was studied the ability of control of vanilla endophytic bacteria isolated from samples from Corcovado, Puriscal, Dota and Guápiles, by testing in vitro antagonism between asylee bacteria and fungus F. oxysporum, giving results about promising candidate B1M11 to respond to pathogen attack, which was corroborated by the appearance of a halo of inhibition of fungal growth on plate.

  5. Molecular dynamics in germinating, endophyte-colonized quinoa seeds

    Science.gov (United States)

    2017-01-01

    Aims The pseudo-cereal quinoa has an outstanding nutritional value. Seed germination is unusually fast, and plant tolerance to salt stress exceptionally high. Seemingly all seeds harbor bacterial endophytes. This work examines mitogen-activated protein kinase (MAPK) activities during early development. It evaluates possible contribution of endophytes to rapid germination and plant robustness. Methods MAPK activities were monitored in water- and NaCl-imbibed seeds over a 4-h-period using an immunoblot-based approach. Cellulolytic and pectinolytic abilities of bacteria were assessed biochemically, and cellular movement, biofilm, elicitor and antimicrobial compound synthesis genes sequenced. GyrA-based, cultivation-independent studies provided first insight into endophyte diversity. Results Quinoa seeds and seedlings exhibit remarkably complex and dynamic MAPK activity profiles. Depending on seed origin, variances exist in MAPK patterns and probably also in endophyte assemblages. Mucilage-degrading activities enable endophytes to colonize seed surfaces of a non-host species, chia, without apparent adverse effects. Conclusions Owing to their motility, cell wall-loosening and elicitor-generating abilities, quinoa endophytes have the potential to drive cell expansion, move across cell walls, generate damage-associated molecular patterns and activate MAPKs in their host. Bacteria may thus facilitate rapid germination and confer a primed state directly upon seed rehydration. Transfer into non-native crops appears both desirable and feasible. PMID:29416180

  6. Diversity and antifungal activity of endophytic diazotrophic bacteria colonizing sugarcane in Egypt

    Science.gov (United States)

    The price of nitrogen continues to increase and is a major input in sugarcane production. Sugarcane grown in Egypt was screened for the presence of nitrogen-fixing bacteria. Nitrogen-free medium LGI-P was used to isolate bacteria from cane stalks. Among the 52 isolates subjected to acetylene redu...

  7. Endophytes as sources of antibiotics.

    Science.gov (United States)

    Martinez-Klimova, Elena; Rodríguez-Peña, Karol; Sánchez, Sergio

    2017-06-15

    Until a viable alternative can be accessible, the emergence of resistance to antimicrobials requires the constant development of new antibiotics. Recent scientific efforts have been aimed at the bioprospecting of microorganisms' secondary metabolites, with special emphasis on the search for antimicrobial natural products derived from endophytes. Endophytes are microorganisms that inhabit the internal tissues of plants without causing apparent harm to the plant. The present review article compiles recent (2006-2016) literature to provide an update on endophyte research aimed at finding metabolites with antibiotic activities. We have included exclusively information on endophytes that produce metabolites capable of inhibiting the growth of bacterial, fungal and protozoan pathogens of humans, animals and plants. Where available, the identified metabolites have been listed. In this review, we have also compiled a list of the bacterial and fungal phyla that have been isolated as endophytes as well as the plant families from which the endophytes were isolated. The majority of endophytes that produce antibiotic metabolites belong to either phylum Ascomycota (kingdom Fungi) or to phylum Actinobacteria (superkingdom Bacteria). Endophytes that produce antibiotic metabolites were predominant, but certainly not exclusively, from the plant families Fabaceae, Lamiaceae, Asteraceae and Araceae, suggesting that endophytes that produce antimicrobial metabolites are not restricted to a reduced number of plant families. The locations where plants (and inhabiting endophytes) were collected from, according to the literature, have been mapped, showing that endophytes that produce bioactive compounds have been collected globally. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Diversity of indigenous endophytic bacteria associated with the roots of Chinese cabbage (Brassica campestris L.) cultivars and their antagonism towards pathogens.

    Science.gov (United States)

    Haque, Md Azizul; Yun, Han Dae; Cho, Kye Man

    2016-05-01

    The study aimed to reveal the diversity of endophytic bacteria in the roots of Chinese cabbage (CC) cultivated in two areas in Korea, namely, Seosang-gun (SS) and Haenam-gun (HN), and also in a transgenic plant (TP) from the laboratory. A total of 653 colonies were isolated from the interior of CC roots, comprising 118, 302, and 233 isolates from SS, HN, and TP samples, respectively. Based on 16S rRNA gene sequence analysis, the isolates belonged to four major phylogenetic groups: high-G+C Gram-positive bacteria (HGC-GPB), low-G+C Gram-positive bacteria (LGC-GPB), Proteobacteria, and Bacteriodetes. The most dominant groups in the roots of the SS, HN, and TP cultivars were LGC-GPB (48.3%), Proteobacteria (50.2%), and HGC-GPB (38.2%), respectively. Importantly, most of the isolates that produced cell-walldegrading enzymes belonged to the genus Bacillus. Bacillus sp. (HNR03, TPR06), Bacillus pumilus (SSR07, HNR11, TPR07), and Bacillus subtilis (TPR03) showed high antagonism against the tested food-borne pathogenic bacteria. In addition, Bacillus sp. (HNR03, TPR06), Bacillus pumilus (SSR07, HNR11, HNR17, TPR11), Microbacterium oxidans (SSR09, TPR04), Bacillus cereus HNR10, Pseudomonas sp. HNR13, and Bacillus subtilis (TPR02, TPR03) showed strong antagonistic activity against the fungi Phythium ultimum, Phytophthora capsici, Fusarium oxysporum, and Rhizoctonia solani. The endophytes isolated from the TP cultivar showed the strongest antagonistic reactions against pathogens. This study is the first report on endophytic bacteria from Chinese cabbage roots.

  9. Isolation and characterization of beneficial indigenous endophytic ...

    African Journals Online (AJOL)

    Plant-associated bacteria that live inside plant tissues without causing any damage to plants are defined as endophytic bacteria. The present study was carried out to analyze the phenotypic and genotypic diversity of endophytic bacteria associated with Amaranthus hybridus, Solanum lycopersicum and Cucurbita maxima.

  10. Pseudomonas tarimensis sp. nov., an endophytic bacteria isolated from Populus euphratica.

    Science.gov (United States)

    Anwar, Nusratgul; Rozahon, Manziram; Zayadan, Bolatkhan; Mamtimin, Hormathan; Abdurahman, Mehfuzem; Kurban, Marygul; Abdurusul, Mihribangul; Mamtimin, Tursunay; Abdukerim, Muhtar; Rahman, Erkin

    2017-11-01

    An endophytic bacterium, MA-69 T , was isolated from the storage liquid in the stems of Populuseuphratica trees at the ancient Ugan River in Xinjiang, PR China. Strain MA-69 T was found to be short rod-shaped, Gram-stain-negative, non-spore-forming, aerobic and motile by means of a monopolar flagellum. According to phylogenetic analysis based on 16S rRNA gene sequences, strain MA-69 T was assigned to the genus Pseudomonas with highest 16S rRNA gene sequence similarity of 97.5 % to Pseudomonas azotifigens JCM 12708 T , followed by Pseudomonas matsuisoli JCM 30078 T (97.5 %), Pseudomonas balearica DSM 6083 T (97.1 %), Azotobacter salinestris ATCC 49674 T (96.1 %) and Pseudomonas indica DSM 14015 T (95.9 %). Analysis of strain MA-69 T based on the three housekeeping genes, rpoB, rpoD and gyrB, further confirmed the isolate to be distinctly delineated from species of the genus Pseudomonas. The DNA G+C content of strain MA-69 T was 64.1 mol%. DNA-DNA hybridization with Pseudomonas azotifigens JCM 12708 T , Pseudomonas matsuisoli JCM 30078 T and Pseudomonas balearica DSM 6083 T revealed 62.9, 60.1 and 49.0 % relatedness, respectively. The major fatty acids in strain MA-69 T were summed feature 3 (25.7 %), summed feature 8 (24.0 %), C19 : 0cyclo ω8c (19.9 %), C16 : 0 (14.6 %) and C12 : 0 (6.3 %). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Q-9 was the major quinone in strain MA-69 T . Based on phenotypic, chemotaxonomic and phylogenetic properties, strain MA-69 T represents a novel species of the genus Pseudomonas, for which the name Pseudomonas tarimensis sp. nov. is proposed. The type strain is MA-69 T (=CCTCC AB 2013065 T =KCTC 42447 T ).

  11. Endophytic and epiphytic hydrocarbon-utilizing bacteria associated with root nodules of legumes

    International Nuclear Information System (INIS)

    Dashti, N.; Khanafer, M.; Radwan, S.S.

    2005-01-01

    During their withdrawal from Kuwait in 1991, the Iraqi forces damaged and set fire to approximately 700 oil wells. Oil gushed from the wells for a period of 7 months, resulting in oil lakes which covered about 50 square km of the Kuwaiti desert and posing an environmental problem. Most of the crude oil has been pumped out, leaving the lake bottoms polluted with oil to depths reaching 20 to 25 cm. The oily areas have been mediated through indigenous hydrocarbon-utilizing microorganisms, but recovery is slow. Rhizospheres of crop plants, including legumes, are rich in oil-utilizing bacteria. Cultivation of broad beans in oily desert samples has enhanced oil biodegradation. This paper discussed the evidence that rhizobium strains inside the nodules on roots of broad beans are active in hydrocarbon utilization, and that the nodules are also colonized on their entire surfaces with oil-utilizing bacteria. Nodule-associated hydrocarbon utilizers appear to contribute together with rhizospheric hydrocarbon utilizers to the phytoremediation of oily soil. Broad beans were removed from soil and their root surfaces were sterilized to eliminate rhizospheric microorganisms. Plants with intact nodules were tested for their potential of attenuating to crude oil in water. Plants were divided into 2 groups: control plants in which all nodules were removed; and experimental plants which were used directly without further treatment. To isolate rhizobium from inside the nodules, fresh nodules were washed, sterilized and homogenized in sterile water. Bacterial strains were tested for their hydrocarbon utilization potential by streaking cell suspensions on the surface of sterile inorganic mediums containing 1 per cent of crude oil or of individual pure aliphatic and aromatic test hydrocarbons. All bacterial isolates were tested for growth on a solid Ashbery's nitrogen free medium. Results indicated that hydrocarbons were more efficiently eliminated from water supporting disinfected

  12. Enhanced degradation of chlorpyrifos in rice (Oryza sativa L.) by five strains of endophytic bacteria and their plant growth promotional ability.

    Science.gov (United States)

    Feng, Fayun; Ge, Jing; Li, Yisong; He, Shuang; Zhong, Jianfeng; Liu, Xianjing; Yu, Xiangyang

    2017-10-01

    Endophytic bacteria reside in plant tissues, such as roots, stems, leaves and seeds. Most of them can stimulate plant growth or alleviate phytotoxicity of pollutants. There are handful species with dual functions stimulating plant growth and degrading pollutants have been reported. Five endophytic bacteria were isolated from chlorpyrifos (CP) treated rice plants and identified as Pseudomonas aeruginosa strain RRA, Bacillus megaterium strain RRB, Sphingobacterium siyangensis strain RSA, Stenotrophomonas pavanii strain RSB and Curtobacterium plantarum strain RSC according to morphological characteristics, physiological and biochemical tests, and 16S rDNA phylogeny. All of them possessed some plant growth promotional traits, including indole acetic acid and siderophore production, secretion of phosphate solubilization and 1-aminocyclopropane-1-carboxylate deaminase. The bacteria were marked with the green fluorescent protein (gfp) gene and successfully colonized into rice plants. All isolates were able to degrade CP in vitro and in vivo. The five isolates degraded more than 90% of CP in 24 h when the initial concentration was lower than 5 mg/L. CP degradation was significantly enhanced in the infested rice plants and rice grains. The final CP residual was reduced up to 80% in the infested rice grains compared to the controls. The results indicate that these isolates are promising bio-inoculants for the removal or detoxification of CP residues in rice plants and grains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Antibacterial Properties of Endophytic Bacteria Isolated from a Fern Species Equisetum arvense L. Against Foodborne Pathogenic Bacteria Staphylococcus aureus and Escherichia coli O157:H7.

    Science.gov (United States)

    Das, Gitishree; Patra, Jayanta Kumar; Baek, Kwang-Hyun

    2017-01-01

    Endophytic bacteria (EB) are a rich source of secondary metabolites with medicinal importance. In this study, EB were isolated from the bottle brush herb Equisetum arvense and identified based on 16S rRNA sequencing. Evaluation of its antibacterial potential was conducted using two common foodborne pathogenic bacteria, Staphylococcus aureus ATCC 12600 and Escherichia coli O157:H7 ATCC 43890. Out of 103 identified EB, three species, Streptomyces albolongus, Dermacoccus sp., and Mycobacterium sp., showed significant antibacterial activity against S. aureus with inhibition zones of 45.34 ± 0.15, 43.28 ± 0.19, and 22.98 ± 0.18 mm, respectively, whereas only two species, Streptomyces griseoaurantiacus (EAL196) and Paenibacillus sp. (EAS116), showed moderate antibacterial activity against E. coli O157:H7 with inhibition zones of 9.41 ± 0.29 and 10.44 ± 0.31 mm, respectively. Furthermore, ethyl acetate extract of S. albolongus, Mycobacterium sp., and Dermacoccus sp. showed antibacterial activity against S. aureus, with inhibition zones of 23.43 ± 0.21, 21.18 ± 0.22, and 19.72 ± 0.10 mm, respectively. The methanol extract of Dermacoccus sp. and Paenibacillus sp. showed antibacterial activity against S. aureus and E. coli O157:H7, with inhibition zones of 11.30 ± 0.17 and 10.01 ± 0.21 mm, respectively. Scanning electron microscopy indicated swollen and lysed cell membranes of pathogens treated with ethyl acetate extract. A possible reason might be, likely due to EB metabolites penetrating the bacterial cell membranes and affecting various metabolic functions resulting in lysis. To the best of our knowledge, this is the first study to report that EB from E. arvense can be used as a source of natural antibacterial compounds against foodborne pathogenic bacteria.

  14. Exhibition

    CERN Document Server

    Staff Association

    2017-01-01

    A Look of Hope Islam Mahmoud Sweity From 19 to 30 June 2017 CERN Meyrin, Main Building Islam Mahmoud Sweity Islam Mahmoud Sweity was born in 1997 at Beit Awwa, Palestine. She is currently following a course to get an Art diploma of Painting at the college of Fine Arts at An-Najah National University under the supervision of Esmat Al As'aad. Her portraits, landscapes and still life paintings are full of life and shining colours. Charged of emotional empathy they catch the attention of the viewer and are reminding us that life is beautiful and worth living in spite of all difficulties we have to go through. She participated in many exhibitions and has exposed her drawings in 2015 at CERN and in France in the framework of the exhibition "The Origin“, and in 2017 in the Former Yugoslav Republic of Macedonia, Palestina and Jordan. In this exhibition the oil paintings made in the past year will be presented. For more information : staff.association@cern.ch | T&eacu...

  15. Endophytic Bacteria Improve Plant Growth, Symbiotic Performance of Chickpea (Cicer arietinum L. and Induce Suppression of Root Rot Caused by Fusarium solani under Salt Stress

    Directory of Open Access Journals (Sweden)

    Dilfuza Egamberdieva

    2017-09-01

    Full Text Available Salinity causes disturbance in symbiotic performance of plants, and increases susceptibility of plants to soil-borne pathogens. Endophytic bacteria are an essential determinant of cross-tolerance to biotic and abiotic stresses in plants. The aim of this study was to isolate non–rhizobial endophytic bacteria from the root nodules of chickpea (Cicer arietinum L., and to assess their ability to improve plant growth and symbiotic performance, and to control root rot in chickpea under saline soil conditions. A total of 40 bacterial isolates from internal root tissues of chickpea grown in salinated soil were isolated. Four bacterial isolates, namely Bacillus cereus NUU1, Achromobacter xylosoxidans NUU2, Bacillus thuringiensis NUU3, and Bacillus subtilis NUU4 colonizing root tissue demonstrated plant beneficial traits and/or antagonistic activity against F. solani and thus were characterized in more detail. The strain B. subtilis NUU4 proved significant plant growth promotion capabilities, improved symbiotic performance of host plant with rhizobia, and promoted yield under saline soil as compared to untreated control plants under field conditions. A combined inoculation of chickpea with M. ciceri IC53 and B. subtilis NUU4 decreased H2O2 concentrations and increased proline contents compared to the un-inoculated plants indicating an alleviation of adverse effects of salt stress. Furthermore, the bacterial isolate was capable to reduce the infection rate of root rot in chickpea caused by F. solani. This is the first report of F. solani causing root rot of chickpea in a salinated soil of Uzbekistan. Our findings demonstrated that the endophytic B. subtilis strain NUU4 provides high potentials as a stimulator for plant growth and as biological control agent of chickpea root rot under saline soil conditions. These multiple relationships could provide promising practical approaches to increase the productivity of legumes under salt stress.

  16. Exhibition

    CERN Multimedia

    Staff Association

    2016-01-01

    Encounters Hanne Blitz From February 1st to 12th 2016 CERN Meyrin, Main Building What is our reaction to a first encounter with a tourist attraction? Contemporary Dutch painter Hanne Blitz captures visitors' responses to art and architecture, sweeping vistas and symbolic memorials. Encounters, a series of oil paintings curated specially for this CERN exhibition, depicts tourists visiting cultural highlights around the world. A thought-provoking journey not to be missed, and a tip of the hat to CERN's large Hadron Collider.

  17. In-vivo electrochemical monitoring of H2O2 production induced by root-inoculated endophytic bacteria in Agave tequilana leaves.

    Science.gov (United States)

    Lima, Alex S; Prieto, Kátia R; Santos, Carla S; Paula Valerio, Hellen; Garcia-Ochoa, Evelyn Y; Huerta-Robles, Aurora; Beltran-Garcia, Miguel J; Di Mascio, Paolo; Bertotti, Mauro

    2018-01-15

    A dual-function platinum disc microelectrode sensor was used for in-situ monitoring of H 2 O 2 produced in A. tequilana leaves after inoculation of their endophytic bacteria (Enterobacter cloacae). Voltammetric experiments were carried out from 0.0 to -1.0V, a potential range where H 2 O 2 is electrochemically reduced. A needle was used to create a small cavity in the upper epidermis of A. tequilana leaves, where the fabricated electrochemical sensor was inserted by using a manual three-dimensional micropositioner. Control experiments were performed with untreated plants and the obtained electrochemical results clearly proved the formation of H 2 O 2 in the leaves of plants 3h after the E. cloacae inoculation, according to a mechanism involving endogenous signaling pathways. In order to compare the sensitivity of the microelectrode sensor, the presence of H 2 O 2 was detected in the root hairs by 3,3-diaminobenzidine (DAB) stain 72h after bacterial inoculation. In-situ pH measurements were also carried out with a gold disc microelectrode modified with a film of iridium oxide and lower pH values were found in A. tequilana leaves treated with bacteria, which may indicate the plant produces acidic substances by biosynthesis of secondary metabolites. This microsensor could be an advantageous tool for further studies on the understanding of the mechanism of H 2 O 2 production during the plant-endophyte interaction. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Contribution of Adsorbed Protein Films to Nanoscopic Vibrations Exhibited by Bacteria Adhering through Ligand-Receptor Bonds

    NARCIS (Netherlands)

    Song, Lei; Sjollema, Jelmer; Norde, Willem; Busscher, Henk J.; van der Mei, Henny C.

    2015-01-01

    Bacteria adhering to surfaces exhibit nanoscopic vibrations that depend on the viscoelasticity of the bond. The quantification of the nanoscopic vibrations of bacteria adhering to surfaces provides new opportunities to better understand the properties of the bond through which bacteria adhere and

  19. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    Sintropie Flavio Pellegrini From 13 to 24 March 2017 CERN Meyrin, Main Building Energia imprigionata - Flavio Pellegrini. The exhibition is composed by eleven wood artworks with the expression of movement as theme. The artworks are the result of harmonics math applied to sculpture. The powerful black colour is dominated by the light source, generating reflexes and modulations. The result is a continuous variation of perspective visions. The works generate, at a first approach, an emotion of mystery and incomprehension, only a deeper contemplation lets one discover entangling and mutative details, evidencing the elegance of the lines and letting the meaning emerge. For more information : staff.association@cern.ch | Tél: 022 766 37 38

  20. SELEKSI DAN IDENTIFIKASI BAKTERI ENDOFIT POTENSIAL PENGHASIL ENZIM PROTEASE DARI TAMAN NASIONAL GUNUNG HALIMUN - (The Selection and Identification of Potential Endophyte Bacteria as Protease Enzyme Producer from Halimun Mount National Park

    Directory of Open Access Journals (Sweden)

    Ruth Melliawati

    2016-12-01

    Full Text Available Endophytic bacteria have an equal chance to bacteria that live outside the plant tissue as potential bacteria. The selection has done towards 326 bacterial endophyte isolates. This research aimed to find and identify proteolytic potential isolates. The proteolytic selection of endophytic bacteria had done using solid skim milk. The capability of endophytic bacteria to agglomerate milk was tested using liquid skim milk which incubated for 7 days at room temperature. Enzyme production of four selected isolates was made through fermentation in GYS medium. The results showed that 86 isolates have proteolytic potential. Isolate HL.29B.63 had highest protease enzymes activity (65.918 U/mL. Medium optimization was able to increase the enzyme activity into 89.94% (125.04 U/mL. The analysis used 16s rDNA showed that isolate HL.29B.63 was Bacillus amyloliquefacient subs. plantarum strain FZB42.Keywords: endophytic bacteria, fermentation, identification, protease, selection ABSTRAKBakteri endofit mempunyai peluang yang sama dengan bakteri yang hidup diluar jaringan tanaman sebagai bakteri potensial. Seleksi dilakukan terhadap 326 isolat bakteri endofit. Tujuan penelitian ini adalah mencari isolat yang berpotensi proteolitik dan mengidentifikasinya. Seleksi proteolitik terhadap bakteri endofitik menggunakan skim milk padat. Uji kemampuan bakteri endofitik dalam menggumpalkan susu menggunakan medium skim milk cair yang diinkubasi selama 7 hari pada suhu ruang. Produksi enzim terhadap empat isolat terseleksi dilakukan melalui fermentasi dalam medium GYS. Hasilnya menunjukkan bahwa 86 isolat mempunyai potensi proteolitik. Isolat HL.29B.63 mempunyai aktif enzim protease tertinggi (65,918 U/mL. Optimasi medium dapat meningkatkan aktivitas enzim sebesar 89,94% (125,04 U/mL. Analisis menggunakan 16s rDNA menunjukkan bahwa isolat HL.29B.63 adalah Bacillus amyloliquefaciens subs. plantarum strain FZB42.Kata kunci: bakteri endofit, fermentasi, identifikasi, protease

  1. Endophytic bacteria from Piper tuberculatum Jacq.: isolation, molecular characterization, and in vitro screening for the control of Fusarium solani f. sp piperis, the causal agent of root rot disease in black pepper (Piper nigrum L.).

    Science.gov (United States)

    Nascimento, S B; Lima, A M; Borges, B N; de Souza, C R B

    2015-07-06

    Endophytic bacteria have been found to colonize internal tissues in many different plants, where they can have several beneficial effects, including defense against pathogens. In this study, we aimed to identify endophytic bacteria associated with roots of the tropical piperaceae Piper tuberculatum, which is known for its resistance to infection by Fusarium solani f. sp piperis, the causal agent of black pepper (Piper nigrum) root rot disease in the Amazon region. Based on 16S rRNA gene sequence analysis, we isolated endophytes belonging to 13 genera: Bacillus, Paenibacillus, Pseudomonas, Enterobacter, Rhizobium, Sinorhizobium, Agrobacterium, Ralstonia, Serratia, Cupriavidus, Mitsuaria, Pantoea, and Staphylococcus. The results showed that 56.52% of isolates were associated with the phylum Proteobacteria, which comprised α, β, and γ classes. Other bacteria were related to the phylum Firmicutes, including Bacillus, which was the most abundant genus among all isolates. Antagonistic assays revealed that Pt12 and Pt13 isolates, identified as Pseudomonas putida and Pseudomonas sp, respectively, were able to inhibit F. solani f. sp piperis growth in vitro. We describe, for the first time, the molecular identification of 23 endophytic bacteria from P. tuberculatum, among which two Pseudomonas species have the potential to control the pathogen responsible for root rot disease in black pepper in the Amazon region.

  2. Fungal disease prevention in seedlings of rice (Oryza sativa) and other grasses by growth-promoting seed-associated endophytic bacteria from invasive Phragmites australis

    Science.gov (United States)

    Verma, Satish K.; Kingsley, Kathryn L.; Bergen, Marshall S.; Kowalski, Kurt P.; White, James F.

    2018-01-01

    Non-cultivated plants carry microbial endophytes that may be used to enhance development and disease resistance of crop species where growth-promoting and protective microbes may have been lost. During seedling establishment, seedlings may be infected by several fungal pathogens that are seed or soil borne. Several species of Fusarium, Pythium and other water moulds cause seed rots during germination. Fusariumblights of seedlings are also very common and significantly affect seedling development. In the present study we screened nine endophytic bacteria isolated from the seeds of invasive Phragmites australis by inoculating onto rice, Bermuda grass (Cynodon dactylon), or annual bluegrass (Poa annua) seeds to evaluate plant growth promotion and protection from disease caused by Fusarium oxysporum. We found that three bacteria belonging to genus Pseudomonas spp. (SLB4-P. fluorescens, SLB6-Pseudomonas sp. and SY1-Pseudomonassp.) promoted seedling development, including enhancement of root and shoot growth, and stimulation of root hair formation. These bacteria were also found to increase phosphate solubilization in in vitro experiments. Pseudomonas sp. (SY1) significantly protected grass seedlings from Fusarium infection. In co-culture experiments, strain SY1 strongly inhibited fungal pathogens with 85.71% growth inhibition of F. oxysporum, 86.33% growth inhibition of Curvularia sp. and 82.14% growth inhibition of Alternaria sp. Seedlings previously treated with bacteria were found much less infected by F. oxysporum in comparison to non-treated controls. On microscopic observation we found that bacteria appeared to degrade fungal mycelia actively. Metabolite products of strain SY1 in agar were also found to inhibit fungal growth on nutrient media. Pseudomonas sp. (SY1) was found to produce antifungal volatiles. Polymerase chain reaction (PCR) amplification using specific primers for pyrrolnitirin synthesis and HCN (hydrogen cyanide) production

  3. Detection of siderophores in endophytic bacteria Methylobacterium spp. associated with Xylella fastidiosa subsp. pauca Detecção de sideróforos nas bactérias endofíticas Methylobacterium spp. associadas com Xylella fastidiosa subsp. pauca

    OpenAIRE

    Paulo Teixeira Lacava; Maria Estela Silva-Stenico; Welington Luiz Araújo; Ana Valéria Colnaghi Simionato; Emanuel Carrilho; Siu Mui Tsai; João Lúcio Azevedo

    2008-01-01

    The objective of this work was to study the production of siderophores by endophytic bacteria Methylobacterium spp., which occupy the same ecological niche as Xylella fastidiosa subsp. pauca (Xfp) in citrus plants. The siderophore production of Methylobacterium strains was tested according to chromeazurol agar assay test (CAS), Csáky test (hydroxamate-type) and Arnow test (catechol-type). In addition, the ability of Xfp to use siderophores, in vitro, produced by endophytic bacteria as source ...

  4. A endophytic fungus, Ramichloridium cerophilum, promotes growth ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-06-22

    Jun 22, 2016 ... A fungal endophyte, Ramichloridium cerophilum, was identified as a Class 2 endophytes species ... The mycorrhizal symbiosis between plants and fungi is common and .... growing fungal colony and placed into a sterile plastic pot and .... bacteria associated with the roots of Chinese cabbage (Brassica.

  5. Culturable endophytic bacterial communities associated with field-grown soybean.

    Science.gov (United States)

    de Almeida Lopes, K B; Carpentieri-Pipolo, V; Oro, T H; Stefani Pagliosa, E; Degrassi, G

    2016-03-01

    Assess the diversity of the culturable endophytic bacterial population associated with transgenic and nontransgenic soybean grown in field trial sites in Brazil and characterize them phenotypically and genotypically focusing on characteristics related to plant growth promotion. Endophytic bacteria were isolated from roots, stems and leaves of soybean cultivars (nontransgenic (C) and glyphosate-resistant (GR) transgenic soybean), including the isogenic BRS133 and BRS245RR. Significant differences were observed in bacterial densities in relation to genotype and tissue from which the isolates were obtained. The highest number of bacteria was observed in roots and in GR soybean. Based on characteristics related to plant growth promotion, 54 strains were identified by partial 16S rRNA sequence analysis, with most of the isolates belonging to the species Enterobacter ludwigii and Variovorax paradoxus. Among the isolates, 44·4% were able to either produce indoleacetic acid (IAA) or solubilize phosphates, and 9·2% (all from GR soybean) presented both plant growth-promoting activities. The results from this study indicate that the abundance of endophytic bacterial communities of soybean differs between cultivars and in general it was higher in the transgenic cultivars than in nontransgenic cultivars. BRS 245 RR exhibited no significant difference in abundance compared to nontransgenic BRS133. This suggests that the impact of the management used in the GR soybean fields was comparable with the impacts of some enviromental factors. However, the bacterial endophytes associated to GR and nontransgenic soybean were different. The soybean-associated bacteria showing characteristics related to plant growth promotion were identified as belonging to the species Pantoea agglomerans and Variovorax paradoxus. Our study demonstrated differences concerning compostion of culturable endophytic bacterial population in nontransgenic and transgenic soybean. © 2016 The Society for Applied

  6. Anticancer and antibacterial secondary metabolites from the endophytic fungus Penicillium sp. CAM64 against multi-drug resistant Gram-negative bacteria.

    Science.gov (United States)

    Jouda, Jean-Bosco; Tamokou, Jean-de-Dieu; Mbazoa, Céline Djama; Sarkar, Prodipta; Bag, Prasanta Kumar; Wandji, Jean

    2016-09-01

    The emergence of multiple-drug resistance bacteria has become a major threat and thus calls for an urgent need to search for new effective and safe anti-bacterial agents. This study aims to evaluate the anticancer and antibacterial activities of secondary metabolites from Penicillium sp., an endophytic fungus associated with leaves of Garcinia nobilis. The culture filtrate from the fermentation of Penicillium sp. was extracted and analyzed by liquid chromatography-mass spectrometry, and the major metabolites were isolated and identified by spectroscopic analyses and by comparison with published data. The antibacterial activity of the compounds was assessed by broth microdilution method while the anticancer activity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The fractionation of the crude extract afforded penialidin A-C (1-3), citromycetin (4), p-hydroxyphenylglyoxalaldoxime (5) and brefelfin A (6). All of the compounds tested here showed antibacterial activity (MIC = 0.50 - 128 µg/mL) against Gramnegative multi-drug resistance bacteria, Vibrio cholerae (causative agent of dreadful disease cholera) and Shigella flexneri (causative agent of shigellosis), as well as the significant anticancer activity (LC 50 = 0.88 - 9.21 µg/mL) against HeLa cells. The results obtained indicate that compounds 1-6 showed good antibacterial and anticancer activities with no toxicity to human red blood cells and normal Vero cells.

  7. Morphological, Physiological, and Taxonomic Characterization of Actinobacterial Isolates Living as Endophytes of Cacao Pods and Cacao Seeds.

    Science.gov (United States)

    Tchinda, Romaric Armel Mouafo; Boudjeko, Thaddée; Simao-Beaunoir, Anne-Marie; Lerat, Sylvain; Tsala, Éric; Monga, Ernest; Beaulieu, Carole

    2016-01-01

    Vascular plants are commonly colonized by endophytic actinobacteria. However, very little is known about the relationship between these microorganisms and cacao fruits. In order to determine the physiological and taxonomic relationships between the members of this community, actinobacteria were isolated from cacao fruits and seeds. Among the 49 isolates recovered, 11 morphologically distinct isolates were selected for further characterization. Sequencing of the 16S rRNA gene allowed the partition of the selected isolates into three phylogenetic clades. Most of the selected endophytic isolates belonged to the Streptomyces violaceusniger clade. Physiological characterization was carried out and a similarity index was used to cluster the isolates. However, clustering based on physiological properties did not match phylogenetic lineages. Isolates were also characterized for traits commonly associated with plant growth-promoting bacteria, including antibiosis and auxin biosynthesis. All isolates exhibited resistance to geldanamycin, whereas only two isolates were shown to produce this antibiotic. Endophytes were inoculated on radish seedlings and most isolates were found to possess plant growth-promoting abilities. These endophytic actinobacteria inhibited the growth of various plant pathogenic fungi and/or bacteria. The present study showed that S. violaceusniger clade members represent a significant part of the actinobacterial community living as endophytes in cacao fruits and seeds. While several members of this clade are known to be geldanamycin producers and efficient biocontrol agents of plant diseases, we herein established the endophytic lifestyle of some of these microorganisms, demonstrating their potential as plant health agents.

  8. Isolation of Endophytic Plant Growth-Promoting Bacteria Associated with the Halophyte Salicornia europaea and Evaluation of their Promoting Activity Under Salt Stress.

    Science.gov (United States)

    Zhao, Shuai; Zhou, Na; Zhao, Zheng-Yong; Zhang, Ke; Wu, Guo-Hua; Tian, Chang-Yan

    2016-10-01

    Several reports have highlighted that many plant growth-promoting endophytic bacteria (PGPE) can assist their host plants in coping with various biotic and abiotic stresses. However, information about the PGPE colonizing in the halophytes is still scarce. This study was designed to isolate and characterize PGPE from salt-accumulating halophyte Salicornia europaea grown under extreme salinity and to evaluate in vitro the bacterial mechanisms related to plant growth promotion. A total of 105 isolates were obtained from the surface-sterilized roots, stems, and assimilation twigs of S. europaea. Thirty-two isolates were initially selected for their ability to produce 1-aminocyclopropane-1-carboxylate deaminase as well as other properties such as production of indole-3-acetic acid and phosphate-solubilizing activities. The 16S rRNA gene-sequencing analysis revealed that these isolates belong to 13 different genera and 19 bacterial species. For these 32 strains, seed germination and seedling growth in axenically grown S. europaea seedlings at different NaCl concentrations (50-500 mM) were quantified. Five isolates possessing significant stimulation of the host plant growth were obtained. The five isolates were identified as Bacillus endophyticus, Bacillus tequilensis, Planococcus rifietoensis, Variovorax paradoxus, and Arthrobacter agilis. All the five strains could colonize and can be reisolated from the host plant interior tissues. These results demonstrate that habitat-adapted PGPE isolated from halophyte could enhance plant growth under saline stress conditions.

  9. Antimicrobial and anti-inflammatory activities of endophytic fungi Talaromyces wortmannii extracts against acne-inducing bacteria.

    Directory of Open Access Journals (Sweden)

    Alexander Pretsch

    Full Text Available Acne vulgaris is the most common skin disease, causing significant psychosocial problems such as anxiety and depression similar to a chronic illness for those afflicted. Currently, obtainable agents for acne treatment have limited use. Thus, development of novel agents to treat this disease is a high medical need. The anaerobic bacterium Propionibacterium acnes has been implicated in the inflammatory phase of acne vulgaris by activating pro-inflammatory mediators such as the interleukin-8 (IL-8 via the NF-κB and MAPK pathways. Talaromyces wortmannii is an endophytic fungus, which is known to produce high bioactive natural compounds. We hypothesize that compound C but also the crude extract from T. wortmannii may possess both antibacterial activity especially against P. acnes and also anti-inflammatory properties by inhibiting TNF-α-induced ICAM-1 expression and P. acnes-induced IL-8 release. Treatment of keratinocytes (HaCaT with P. acnes significantly increased NF-κB and activator protein-1 (AP-1 activation, as well as IL-8 release. Compound C inhibited P. acnes-mediated activation of NF-κB and AP-1 by inhibiting IκB degradation and the phosphorylation of ERK and JNK MAP kinases, and IL-8 release in a dose-dependent manner. Based on these results, compound C has effective antimicrobial activity against P. acnes and anti-inflammatory activity, and we suggest that this substance or the crude extract are alternative treatments for antibiotic/anti-inflammatory therapy for acne vulgaris.

  10. Antimicrobial and Anti-Inflammatory Activities of Endophytic Fungi Talaromyces wortmannii Extracts against Acne-Inducing Bacteria

    Science.gov (United States)

    Schwendinger, Katja; Kreiseder, Birgit; Wiederstein, Martina; Pretsch, Dagmar; Genov, Miroslav; Hollaus, Ralph; Zinssmeister, Daniela; Debbab, Abdesamad; Hundsberger, Harald; Eger, Andreas; Proksch, Peter; Wiesner, Christoph

    2014-01-01

    Acne vulgaris is the most common skin disease, causing significant psychosocial problems such as anxiety and depression similar to a chronic illness for those afflicted. Currently, obtainable agents for acne treatment have limited use. Thus, development of novel agents to treat this disease is a high medical need. The anaerobic bacterium Propionibacterium acnes has been implicated in the inflammatory phase of acne vulgaris by activating pro-inflammatory mediators such as the interleukin-8 (IL-8) via the NF-κB and MAPK pathways. Talaromyces wortmannii is an endophytic fungus, which is known to produce high bioactive natural compounds. We hypothesize that compound C but also the crude extract from T. wortmannii may possess both antibacterial activity especially against P. acnes and also anti-inflammatory properties by inhibiting TNF-α-induced ICAM-1 expression and P. acnes-induced IL-8 release. Treatment of keratinocytes (HaCaT) with P. acnes significantly increased NF-κB and activator protein-1 (AP-1) activation, as well as IL-8 release. Compound C inhibited P. acnes-mediated activation of NF-κB and AP-1 by inhibiting IκB degradation and the phosphorylation of ERK and JNK MAP kinases, and IL-8 release in a dose-dependent manner. Based on these results, compound C has effective antimicrobial activity against P. acnes and anti-inflammatory activity, and we suggest that this substance or the crude extract are alternative treatments for antibiotic/anti-inflammatory therapy for acne vulgaris. PMID:24887557

  11. Antimicrobial activities of endophytic fungi obtained from the arid zone invasive plant Opuntia dillenii and the isolation of equisetin, from endophytic Fusarium sp.

    Science.gov (United States)

    Ratnaweera, Pamoda B; de Silva, E Dilip; Williams, David E; Andersen, Raymond J

    2015-07-10

    Opuntia dillenii is an invasive plant well established in the harsh South-Eastern arid zone of Sri Lanka. Evidence suggests it is likely that the endophytic fungal populations of O. dillenii assist the host in overcoming biotic and abiotic stress by producing biologically active metabolites. With this in mind there is potential to discover novel natural products with useful biological activities from this hitherto poorly investigated source. Consequently, an investigation of the antimicrobial activities of the endophytes of O. dillenii, that occupies a unique ecological niche, may well provide useful leads in the discovery of new pharmaceuticals. Endophytic fungi were isolated from the surface sterilized cladodes and flowers of O. dillenii using several nutrient media and the antimicrobial activities were evaluated against three Gram-positive and two Gram-negative bacteria and Candida albicans. The two most bioactive fungi were identified by colony morphology and DNA sequencing. The secondary metabolite of the endophyte Fusarium sp. exhibiting the best activity was isolated via bioassay guided chromatography. The chemical structure was elucidated from the ESIMS and NMR spectroscopic data obtained for the active metabolite. The minimum inhibitory concentrations (MICs) of the active compound were determined. Eight endophytic fungi were isolated from O. dillenii and all except one showed antibacterial activities against at least one of the test bacteria. All extracts were inactive against C. albicans. The most bioactive fungus was identified as Fusarium sp. and the second most active as Aspergillus niger. The structure of the major antibacterial compound of the Fusarium sp. was shown to be the tetramic acid derivative, equisetin. The MIC's for equisetin were 8 μg mL(-1) against Bacillus subtilis, 16 μg mL(-1) against Staphylococcus aureus and Methicillin Resistant Staphylococcus aureus (MRSA). O. dillenii, harbors several endophytic fungi capable of producing

  12. Antifungal Bacteria on Woodland Salamander Skin Exhibit High Taxonomic Diversity and Geographic Variability.

    Science.gov (United States)

    Muletz-Wolz, Carly R; DiRenzo, Graziella V; Yarwood, Stephanie A; Campbell Grant, Evan H; Fleischer, Robert C; Lips, Karen R

    2017-05-01

    Diverse bacteria inhabit amphibian skin; some of those bacteria inhibit growth of the fungal pathogen Batrachochytrium dendrobatidis Yet there has been no systematic survey of anti- B. dendrobatidis bacteria across localities, species, and elevations. This is important given geographic and taxonomic variations in amphibian susceptibility to B. dendrobatidis Our collection sites were at locations within the Appalachian Mountains where previous sampling had indicated low B. dendrobatidis prevalence. We determined the numbers and identities of anti- B. dendrobatidis bacteria on 61 Plethodon salamanders (37 P. cinereus , 15 P. glutinosus , 9 P. cylindraceus ) via culturing methods and 16S rRNA gene sequencing. We sampled co-occurring species at three localities and sampled P. cinereus along an elevational gradient (700 to 1,000 meters above sea level [masl]) at one locality. We identified 50 anti- B. dendrobatidis bacterial operational taxonomic units (OTUs) and found that the degree of B. dendrobatidis inhibition was not correlated with relatedness. Five anti- B. dendrobatidis bacterial strains occurred on multiple amphibian species at multiple localities, but none were shared among all species and localities. The prevalence of anti- B. dendrobatidis bacteria was higher at Shenandoah National Park (NP), VA, with 96% (25/26) of salamanders hosting at least one anti- B. dendrobatidis bacterial species compared to 50% (7/14) at Catoctin Mountain Park (MP), MD, and 38% (8/21) at Mt. Rogers National Recreation Area (NRA), VA. At the individual level, salamanders at Shenandoah NP had more anti- B. dendrobatidis bacteria per individual (μ = 3.3) than those at Catoctin MP (μ = 0.8) and at Mt. Rogers NRA (μ = 0.4). All salamanders tested negative for B. dendrobatidis Anti- B. dendrobatidis bacterial species are diverse in central Appalachian Plethodon salamanders, and their distribution varied geographically. The antifungal bacterial species that we identified may play a

  13. Bacterial Endophyte Colonization and Distribution within Plants

    Directory of Open Access Journals (Sweden)

    Shyam L. Kandel

    2017-11-01

    Full Text Available The plant endosphere contains a diverse group of microbial communities. There is general consensus that these microbial communities make significant contributions to plant health. Both recently adopted genomic approaches and classical microbiology techniques continue to develop the science of plant-microbe interactions. Endophytes are microbial symbionts residing within the plant for the majority of their life cycle without any detrimental impact to the host plant. The use of these natural symbionts offers an opportunity to maximize crop productivity while reducing the environmental impacts of agriculture. Endophytes promote plant growth through nitrogen fixation, phytohormone production, nutrient acquisition, and by conferring tolerance to abiotic and biotic stresses. Colonization by endophytes is crucial for providing these benefits to the host plant. Endophytic colonization refers to the entry, growth and multiplication of endophyte populations within the host plant. Lately, plant microbiome research has gained considerable attention but the mechanism allowing plants to recruit endophytes is largely unknown. This review summarizes currently available knowledge about endophytic colonization by bacteria in various plant species, and specifically discusses the colonization of maize plants by Populus endophytes.

  14. Comparative study of endophytic and endophytic diazotrophic bacterial communities across rice landraces grown in the highlands of northern Thailand.

    Science.gov (United States)

    Rangjaroen, Chakrapong; Rerkasem, Benjavan; Teaumroong, Neung; Sungthong, Rungroch; Lumyong, Saisamorn

    2014-01-01

    Communities of bacterial endophytes within the rice landraces cultivated in the highlands of northern Thailand were studied using fingerprinting data of 16S rRNA and nifH genes profiling by polymerase chain reaction-denaturing gradient gel electrophoresis. The bacterial communities' richness, diversity index, evenness, and stability were varied depending on the plant tissues, stages of growth, and rice cultivars. These indices for the endophytic diazotrophic bacteria within the landrace rice Bue Wah Bo were significantly the lowest. The endophytic bacteria revealed greater diversity by cluster analysis with seven clusters compared to the endophytic diazotrophic bacteria (three clusters). Principal component analysis suggested that the endophytic bacteria showed that the community structures across the rice landraces had a higher stability than those of the endophytic diazotrophic bacteria. Uncultured bacteria were found dominantly in both bacterial communities, while higher generic varieties were observed in the endophytic diazotrophic bacterial community. These differences in bacterial communities might be influenced either by genetic variation in the rice landraces or the rice cultivation system, where the nitrogen input affects the endophytic diazotrophic bacterial community.

  15. Diversidade de bactérias diazotróficas endofíticas associadas a plantas de milho Diversity of diazotrophic endophytic bacteria associated with maize plants

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Wurdig Roesch

    2007-12-01

    capazes de colonizar o interior de plantas de milho e que as diferentes condições edafoclimáticas estão correlacionadas com a diversidade dos genes nifH.Endophytic diazotrophic bacteria are capable of promoting maize growth through biological nitrogen fixation (BNF or by the production of plant hormones. The aim of this study was to characterize diversity of endophytic bacteria in maize at sites with different climate and soil conditions in Rio Grande do Sul, Brazil. A PCR-RFLP approach and sequence analysis of nifH Cluster I clone libraries were used to assess diversity in maize plants. The Shannon-Weaver and Equitability indices were calculated to estimate the diazotroph diversity as well as the nucleotide diversity and the average sequence divergence to estimate genetic diversity. To evaluate the variability in populations we performed the F ST test. A greater variation in bacterial communities was detected between rather than within regions, particularly among communities of different soil types and varying water regimes and geographical regions. The Shannon-Weaver index indicated a high difference in terms of diversity of taxonomic units among the communities. The diversity of the communities in the northern region, with higher precipitation and clay content, tended to be higher than that in the south. The Equitability index indicated that there was a dominant taxonomic unit within each community. All clones grouped into nifH gene cluster I. The nifH sequence types from Alpha, Beta and Gammaproteobacteria were recovered. These results demonstrate that there is a large diversity of endophytic nitrogen-fixing bacteria able to colonize maize tissue and that nifH diversity is correlated with the different environmental conditions.

  16. Contribution of Adsorbed Protein Films to Nanoscopic Vibrations Exhibited by Bacteria Adhering through Ligand-Receptor Bonds.

    Science.gov (United States)

    Song, Lei; Sjollema, Jelmer; Norde, Willem; Busscher, Henk J; van der Mei, Henny C

    2015-09-29

    Bacteria adhering to surfaces exhibit nanoscopic vibrations that depend on the viscoelasticity of the bond. The quantification of the nanoscopic vibrations of bacteria adhering to surfaces provides new opportunities to better understand the properties of the bond through which bacteria adhere and the mechanisms by which they resist detachment. Often, however, bacteria do not adhere to bare surfaces but to adsorbed protein films, on which adhesion involves highly specific ligand-receptor binding next to nonspecific DLVO interaction forces. Here we determine the contribution of adsorbed salivary protein and fibronectin films to vibrations exhibited by adhering streptococci and staphylococci, respectively. The streptococcal strain used has the ability to adhere to adsorbed salivary proteins films through antigen I/II ligand-receptor binding, while the staphylococcal strain used adheres to adsorbed fibronectin films through a proteinaceous ligand-receptor bond. In the absence of ligand-receptor binding, electrostatic interactions had a large impact on vibration amplitudes of adhering bacteria on glass. On an adsorbed salivary protein film, vibration amplitudes of adhering streptococci depended on the film softness as determined by QCM-D and were reduced after film fixation using glutaraldehyde. On a relatively stiff fibronectin film, cross-linking the film in glutaraldehyde hardly reduced its softness, and accordingly fibronectin film softness did not contribute to vibration amplitudes of adhering staphylococci. However, fixation of the staphylococcus-fibronectin bond further decreased vibration amplitudes, while fixation of the streptococcus bond hardly impacted vibration amplitudes. Summarizing, this study shows that both the softness of adsorbed protein films and the properties of the bond between an adhering bacterium and an adsorbed protein film play an important role in bacterial vibration amplitudes. These nanoscopic vibrations reflect the viscoelasticity of the

  17. Bioprospecting endophytic bacteria for biological control of coffee leaf rust Bioprospecção de bactérias endofíticas como agentes de biocontrole da ferrugem do cafeeiro

    Directory of Open Access Journals (Sweden)

    Humberto Franco Shiomi

    2006-02-01

    Full Text Available Suppression of plant diseases due to the action of endophytic microorganisms has been demonstrated in several pathosystems. Experiments under controlled conditions involving endophytic bacteria isolated from leaves and branches of Coffea arabica L and Coffea robusta L were conducted with the objective of evaluating the inhibition of germination of Hemileia vastatrix Berk. & Br., race II, urediniospores and the control of coffee leaf rust development in tests with leaf discs, detached leaves, and on potted seedling of cv. Mundo Novo. The endophytic bacterial isolates tested proved to be effective in inhibiting urediniospore germination and/or rust development, with values above 50%, although the results obtained in urediniospore germination tests were inferior to the treatment with fungicide propiconazole. Endophytic isolates TG4-Ia, TF2-IIc, TF9-Ia, TG11-IIa, and TF7-IIa, demonstrated better coffee leaf rust control in leaf discs, detached leaves, and coffee plant tests. The endophytic isolates TG4-Ia and TF9-Ia were identified as Bacillus lentimorbus Dutky and Bacillus cereus Frank. & Frank., respectively. Some endophytic bacterial isolates were effective in controlling the coffee leaf rust, although some increased the severity of the disease. Even though a relatively small number of endophytic bacteria were tested, promising results were obtained regarding the efficiency of coffee leaf rust biocontrol. These selected agents appears to be an alternative for future replacement of chemical fungicide.Supressão de doenças de plantas por microrganismos endofíticos tem sido demonstrada em diversos patossistemas. Neste trabalho foram selecionados isolados de bactérias endofíticas de folhas e ramos de cafeeiro com potencial para o controle biológico da ferrugem do cafeeiro, pois é conhecido que esses microrganismos podem possuir essa característica. Bactérias endofíticas isoladas previamente de folhas e ramos de Coffea arabica L e Coffea

  18. Recobrimento de sementes de milho com ácidos húmicos e bactérias diazotróficas endofíticas Corn seed coating with humic acids and endophytic diazotrophic bacteria

    Directory of Open Access Journals (Sweden)

    Patrícia Marluci da Conceição

    2008-04-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito do recobrimento de sementes de milho com ácidos húmicos (AH, bactérias diazotróficas endofíticas e o uso em conjunto de AH e bactérias diazotróficas endofíticas, na estimulação do crescimento vegetal e na população de bactérias estabelecidas na planta hospedeira. A adição de AH, bactérias e o uso em conjunto estimularam o crescimento vegetal. Os AH utilizados no recobrimento de sementes de milho têm menor capacidade de estimular o crescimento radicular, em comparação ao uso em solução. O recobrimento de sementes é uma opção de inoculação de bactérias diazotróficas endofíticas da espécie Herbaspirillum seropedicae (Z67.The objective of this work was to evaluate the effect of seed coating of maize with humic acid (HA, endophytic diazotrophic bacteria, and the combination of both, on plant growth stimulation and bacteria population establishment in roots of inoculated plant host. The addition of HA, bacteria, and the combined use of bacteria and HA stimulated plant growth. Humic acids used in the coated seed formulation show diminished capacity for stimulation of root growth compared with its use in solution. Seed coat is an option for inoculation of endophytic diazotrophic bacteria like Herbaspirillum seropedicae (Z67.

  19. Culturable bacterial endophytes isolated from Mangrove tree (Rhizophora apiculata Blume) enhance seedling growth in Rice

    OpenAIRE

    Deivanai, Subramanian; Bindusara, Amitraghata Santhanam; Prabhakaran, Guruswamy; Bhore, Subhash Janardhan

    2014-01-01

    Background: Endophytic bacteria do have several potential applications in medicine and in other various sectors of biotechnology including agriculture. Bacterial endophytes need to be explored for their potential applications in agricultural biotechnology. One of the potential applications of bacterial endophytes in agricultural is to enhance the growth of the agricultural crops. Hence, this study was undertaken to explore the plant growth promoting potential application of bacterial endophyt...

  20. Antagonistic bioactivity of an endophytic bacterium isolated from ...

    African Journals Online (AJOL)

    Antagonistic bioactivity of an endophytic bacterium isolated from Epimedium brevicornu Maxim. R He, G Wang, X Liu, C Zhang, F Lin. Abstract. Endophytic bacteria are one of the most potential biological control agents in plant disease protection. The aim of this work was to evaluate the antimicrobial activities of a strain of ...

  1. Screening mycotoxins for quorum inhibition in a biocontrol bacterial endophyte

    Science.gov (United States)

    Bacterial endophytes are used as biocontrol organisms for plant pathogens such as the maize endophyte Fusarium verticillioides and its production of fumonisin mycotoxins. However, such applications are not always predictable and efficient. Bacteria communicate via cell-dependent signals, which are r...

  2. Aumento da eficiência nutricional de tomateiros inoculados com bactérias endofíticas promotoras de crescimento Increased nutritional efficiency of tomato plants inoculated with growth-promoting endophytic bacteria

    Directory of Open Access Journals (Sweden)

    Patrícia Baston Barretti

    2008-08-01

    Full Text Available Bactérias endofíticas promotoras de crescimento podem aumentar a eficiência nutricional das plantas, favorecendo sua produção. O objetivo deste trabalho foi avaliar a influência de 10 isolados de bactérias endofíticas, previamente selecionados como agentes promotores do crescimento de plantas, sobre a eficiência de absorção, utilização e translocação de nutrientes em plantas de tomateiros em casa de vegetação. Para a introdução das bactérias endofíticas em plântulas de tomateiro cv. Santa Clara, utilizou-se o corte do hipocótilo. Cinqüenta e cinco dias após o transplantio das seções de parte área, as plantas foram coletadas para a determinação da matéria seca da parte aérea e dos teores de macro e micronutrientes. Os teores de N, P, K, Ca, Mg, Cu e Zn na parte aérea e os de N, P, Mg e Mn nas raízes das plantas inoculadas diferiram da testemunha sem inoculação. As bactérias endofíticas Micrococcus sp. (UFLA 11-LS e Brevundimonas sp. (UFV-E49, identificadas por meio do seqüenciamento do gene 16S do DNA ribossômico, propiciaram a maior eficiência de absorção de P em relação à testemunha. A bactéria endofítica Micrococcus sp. apresentou maior eficiência na utilização de N, P, K, Ca, Mg, S, Cu, Fe e Zn. Os maiores teores de N, P, K, Mg e Zn foram encontrados na parte aérea das plantas inoculadas com Brevundimonas sp. Os resultados deste trabalho indicam que estes isolados de bactérias endof��ticas podem aumentar a eficiência nutricional de plantas de tomate.Plant growth-promoting endophytic bacteria can increase plant nutritional efficiency thus favouring its yield. With the purpose of evaluating the influence of 10 previously selected isolates of growth-promoting endophytic bacteria on the uptake, utilization and transport of nutrients by tomato plants, greenhouse experiments were installed. The hypocotyl was cut in order to apply the endophytic bacteria to tomato seedlings cultivar Santa

  3. Plant growth promotion of Miscanthus × giganteus by endophytic bacteria and fungi on non-polluted and polluted soils

    Czech Academy of Sciences Publication Activity Database

    Schmidt, Christoph Stephan; Mrnka, Libor; Frantík, Tomáš; Lovecká, P.; Vosátka, M.

    2018-01-01

    Roč. 34, č. 3 (2018), s. 1-20, č. článku 48. ISSN 0959-3993 R&D Projects: GA TA ČR TA03011184 Institutional support: RVO:67985939 Keywords : antioxidative activity * heavy metal * endophytes Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 1.658, year: 2016

  4. Reconstructed Ancestral Enzymes Impose a Fitness Cost upon Modern Bacteria Despite Exhibiting Favourable Biochemical Properties.

    Science.gov (United States)

    Hobbs, Joanne K; Prentice, Erica J; Groussin, Mathieu; Arcus, Vickery L

    2015-10-01

    Ancestral sequence reconstruction has been widely used to study historical enzyme evolution, both from biochemical and cellular perspectives. Two properties of reconstructed ancestral proteins/enzymes are commonly reported--high thermostability and high catalytic activity--compared with their contemporaries. Increased protein stability is associated with lower aggregation rates, higher soluble protein abundance and a greater capacity to evolve, and therefore, these proteins could be considered "superior" to their contemporary counterparts. In this study, we investigate the relationship between the favourable in vitro biochemical properties of reconstructed ancestral enzymes and the organismal fitness they confer in vivo. We have previously reconstructed several ancestors of the enzyme LeuB, which is essential for leucine biosynthesis. Our initial fitness experiments revealed that overexpression of ANC4, a reconstructed LeuB that exhibits high stability and activity, was only able to partially rescue the growth of a ΔleuB strain, and that a strain complemented with this enzyme was outcompeted by strains carrying one of its descendants. When we expanded our study to include five reconstructed LeuBs and one contemporary, we found that neither in vitro protein stability nor the catalytic rate was correlated with fitness. Instead, fitness showed a strong, negative correlation with estimated evolutionary age (based on phylogenetic relationships). Our findings suggest that, for reconstructed ancestral enzymes, superior in vitro properties do not translate into organismal fitness in vivo. The molecular basis of the relationship between fitness and the inferred age of ancestral LeuB enzymes is unknown, but may be related to the reconstruction process. We also hypothesise that the ancestral enzymes may be incompatible with the other, contemporary enzymes of the metabolic network.

  5. Consumption of Endophyte Infected Fescue During Gestation in Beef Cows

    OpenAIRE

    Oliver, Katherine Rene

    2016-01-01

    Tall fescue is a widely grown, cool season grass prevalent in the eastern United States that is known for its resistance to abiotic and biotic stresses. A main reason for tall fescue's resistance to these stresses is attributed to the presence of a fungal endophyte. Unfortunately, this endophyte also adversely affects cattle production. Cows consuming the ergot alkaloids produced by these endophytes can exhibit decreased feed intake, growth performance, organ vasoconstriction, and increased...

  6. Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte.

    Directory of Open Access Journals (Sweden)

    Michele T Hoffman

    Full Text Available Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA, often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales, but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales. Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions.

  7. Plant growth-promoting endophytic bacteria versus pathogenic infections: an example of Bacillus amyloliquefaciens RWL-1 and Fusarium oxysporum f. sp. lycopersici in tomato

    Directory of Open Access Journals (Sweden)

    Raheem Shahzad

    2017-03-01

    Full Text Available Fungal pathogenic attacks are one of the major threats to the growth and productivity of crop plants. Currently, instead of synthetic fungicides, the use of plant growth-promoting bacterial endophytes has been considered intriguingly eco-friendly in nature. Here, we aimed to investigate the in vitro and in vivo antagonistic approach by using seed-borne endophytic Bacillus amyloliquefaciens RWL-1 against pathogenic Fusarium oxysporum f. sp. lycopersici. The results revealed significant suppression of pathogenic fungal growth by Bacillus amyloliquefaciens in vitro. Further to this, we inoculated tomato plants with RWL-1 and F. oxysporum f. sp. lycopersici in the root zone. The results showed that the growth attributes and biomass were significantly enhanced by endophytic-inoculation during disease incidence as compared to F. oxysporum f. sp. lycopersici infected plants. Under pathogenic infection, the RWL-1-applied plants showed increased amino acid metabolism of cell wall related (e.g., aspartic acid, glutamic acid, serine (Ser, and proline (Pro as compared to diseased plants. In case of endogenous phytohormones, significantly lower amount of jasmonic acid (JA and higher amount of salicylic acid (SA contents was recorded in RWL-1-treated diseased plants. The phytohormones regulation in disease incidences might be correlated with the ability of RWL-1 to produce organic acids (e.g., succinic acid, acetic acid, propionic acid, and citric acid during the inoculation and infection of tomato plants. The current findings suggest that RWL-1 inoculation promoted and rescued plant growth by modulating defense hormones and regulating amino acids. This suggests that bacterial endophytes could be used for possible control of F. oxysporum f. sp. lycopersici in an eco-friendly way.

  8. Bioactive endophytes warrant intensified exploration and conservation.

    Science.gov (United States)

    Smith, Stephen A; Tank, David C; Boulanger, Lori-Ann; Bascom-Slack, Carol A; Eisenman, Kaury; Kingery, David; Babbs, Beatrice; Fenn, Kathleen; Greene, Joshua S; Hann, Bradley D; Keehner, Jocelyn; Kelley-Swift, Elizabeth G; Kembaiyan, Vivek; Lee, Sun Jin; Li, Puyao; Light, David Y; Lin, Emily H; Ma, Cong; Moore, Emily; Schorn, Michelle A; Vekhter, Daniel; Nunez, Percy V; Strobel, Gary A; Donoghue, Michael J; Strobel, Scott A

    2008-08-25

    A key argument in favor of conserving biodiversity is that as yet undiscovered biodiversity will yield products of great use to humans. However, the link between undiscovered biodiversity and useful products is largely conjectural. Here we provide direct evidence from bioassays of endophytes isolated from tropical plants and bioinformatic analyses that novel biology will indeed yield novel chemistry of potential value. We isolated and cultured 135 endophytic fungi and bacteria from plants collected in Peru. nrDNAs were compared to samples deposited in GenBank to ascertain the genetic novelty of cultured specimens. Ten endophytes were found to be as much as 15-30% different than any sequence in GenBank. Phylogenetic trees, using the most similar sequences in GenBank, were constructed for each endophyte to measure phylogenetic distance. Assays were also conducted on each cultured endophyte to record bioactivity, of which 65 were found to be bioactive. The novelty of our contribution is that we have combined bioinformatic analyses that document the diversity found in environmental samples with culturing and bioassays. These results highlight the hidden hyperdiversity of endophytic fungi and the urgent need to explore and conserve hidden microbial diversity. This study also showcases how undergraduate students can obtain data of great scientific significance.

  9. Bioactive endophytes warrant intensified exploration and conservation.

    Directory of Open Access Journals (Sweden)

    Stephen A Smith

    2008-08-01

    Full Text Available A key argument in favor of conserving biodiversity is that as yet undiscovered biodiversity will yield products of great use to humans. However, the link between undiscovered biodiversity and useful products is largely conjectural. Here we provide direct evidence from bioassays of endophytes isolated from tropical plants and bioinformatic analyses that novel biology will indeed yield novel chemistry of potential value.We isolated and cultured 135 endophytic fungi and bacteria from plants collected in Peru. nrDNAs were compared to samples deposited in GenBank to ascertain the genetic novelty of cultured specimens. Ten endophytes were found to be as much as 15-30% different than any sequence in GenBank. Phylogenetic trees, using the most similar sequences in GenBank, were constructed for each endophyte to measure phylogenetic distance. Assays were also conducted on each cultured endophyte to record bioactivity, of which 65 were found to be bioactive.The novelty of our contribution is that we have combined bioinformatic analyses that document the diversity found in environmental samples with culturing and bioassays. These results highlight the hidden hyperdiversity of endophytic fungi and the urgent need to explore and conserve hidden microbial diversity. This study also showcases how undergraduate students can obtain data of great scientific significance.

  10. Isolation, Purification, and Characterization of Five Active Diketopiperazine Derivatives from Endophytic Streptomyces SUK 25 with Antimicrobial and Cytotoxic Activities.

    Science.gov (United States)

    Alshaibani, Muhanna; Zin, Noraziah; Jalil, Juriyati; Sidik, Nik; Ahmad, Siti Junaidah; Kamal, Nurkhalida; Edrada-Ebel, Ruangelie

    2017-07-28

    In our search for new sources of bioactive secondary metabolites from Streptomyces sp., the ethyl acetate extracts from endophytic Streptomyces SUK 25 afforded five active diketopiperazine (DKP) compounds. The aim of this study was to characterize the bioactive compounds isolated from endophytic Streptomyces SUK 25 and evaluate their bioactivity against multiple drug resistance (MDR) bacteria such as Enterococcus raffinosus, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter spp., and their cytotoxic activities against the human hepatoma (HepaRG) cell line. The production of secondary metabolites by this strain was optimized through Thornton's medium. Isolation, purification, and identification of the bioactive compounds were carried out using high-performance liquid chromatography, high-resolution mass liquid chromatography-mass spectrometry, Fourier transform infrared spectroscopy, and nuclear magnetic resonance, and cryopreserved HepaRG cells were selected to test the cytotoxicity. The results showed that endophytic Streptomyces SUK 25 produces four active DKP compounds and an acetamide derivative, which were elucidated as cyclo -( L -Val- L -Pro), cyclo -( L -Leu- L -Pro), cyclo -( L -Phe- L -Pro), cyclo -( L -Val- L -Phe), and N -(7-hydroxy-6-methyl-octyl)-acetamide. These active compounds exhibited activity against methicillin-resistant S. aureus ATCC 43300 and Enterococcus raffinosus , with low toxicity against human hepatoma HepaRG cells. Endophytic Streptomyces SUK 25 has the ability to produce DKP derivatives biologically active against some MDR bacteria with relatively low toxicity against HepaRG cells line.

  11. The secret world of endophytes in perspective

    Science.gov (United States)

    This work in Fungal Ecology is focused on the group of plant symbionts that have been termed collectively ‘microbial endophytes’. Broadly, microbial endophytes are commonly considered to be any of a diverse group of bacteria, cyanobacteria, or fungi that colonize internal tissues of plants. After ...

  12. Induction of abiotic stress tolerance in plants by endophytic microbes.

    Science.gov (United States)

    Lata, R; Chowdhury, S; Gond, S K; White, J F

    2018-04-01

    Endophytes are micro-organisms including bacteria and fungi that survive within healthy plant tissues and promote plant growth under stress. This review focuses on the potential of endophytic microbes that induce abiotic stress tolerance in plants. How endophytes promote plant growth under stressful conditions, like drought and heat, high salinity and poor nutrient availability will be discussed. The molecular mechanisms for increasing stress tolerance in plants by endophytes include induction of plant stress genes as well as biomolecules like reactive oxygen species scavengers. This review may help in the development of biotechnological applications of endophytic microbes in plant growth promotion and crop improvement under abiotic stress conditions. Increasing human populations demand more crop yield for food security while crop production is adversely affected by abiotic stresses like drought, salinity and high temperature. Development of stress tolerance in plants is a strategy to cope with the negative effects of adverse environmental conditions. Endophytes are well recognized for plant growth promotion and production of natural compounds. The property of endophytes to induce stress tolerance in plants can be applied to increase crop yields. With this review, we intend to promote application of endophytes in biotechnology and genetic engineering for the development of stress-tolerant plants. © 2018 The Society for Applied Microbiology.

  13. Diversidade de bactérias diazotróficas endofíticas dos gêneros Herbaspirillum e Burkholderia na cultura do arroz inundado Diversity of endophytic diazotrophic bacteria of the genus Herbaspirillum and Burkholderia in wetland rice

    Directory of Open Access Journals (Sweden)

    Luciana da Silva Rodrigues

    2006-02-01

    Full Text Available O objetivo deste trabalho foi avaliar a diversidade de bactérias diazotróficas endofíticas, dos gêneros Herbaspirillum e Burkholderia, em duas variedades de arroz, consideradas de alta (IR 42 e baixa (IAC 4440 eficiência de fixação biológica de nitrogênio. Foram realizados dois experimentos em casa de vegetação, em vasos com dois tipos de solos, provenientes dos Estados de Goiás e do Rio de Janeiro. Foi feita a contagem do número de bactérias e o isolamento em diferentes partes e estágios de desenvolvimento das plantas, mediante o uso de meios de cultivo JNFb e JMV. Os isolados bacterianos foram caracterizados a partir de aspectos morfológicos das colônias, com o crescimento em meios de cultivo, e de testes fisiológicos (uso de fontes de carbono e atividade de redução de acetileno. A contagem revelou grande número de bactérias diazotróficas (10(6 células g-1 matéria fresca, presentes em ambas as variedades de arroz, principalmente nas amostras radiculares. Os dados, obtidos na matriz de similaridade, mostram a presença de representantes da espécie Herbaspirillum seropedicae, bem como a diversidade entre isolados pertencentes ao gênero Burkholderia.The objective of this work was to evaluate the diversity of endophytic diazotrophic bacteria of the genera Herbaspirillum and Burkholderia, in two rice varieties, considered of high (IR 42 and low (IAC 4440 contribution on BNF. Two experiments were conducted in greenhouse conditions, in order to study the association of endophytic diazotrophic bacteria with wetland rice varieties, which were planted in two types of soil: one from Rio de Janeiro State and another from Goiás State, Brazil. Bacterial population (in different parts and physiological stages of the plants were evaluated, followed by the both genera strains isolation using culture media. The isolated bacteria were characterized based on morphological and physiological aspects. High bacterial counts were detected

  14. Bioaugmentation with endophytic bacterium E6S homologous to Achromobacter piechaudii enhances metal rhizoaccumulation in host Sedum plumbizincicola

    Directory of Open Access Journals (Sweden)

    Ying eMa

    2016-02-01

    Full Text Available Application of hyperaccumulator–endophyte symbiotic systems is a potential approach to improve phytoremediation efficiency, since some beneficial endophytic bacteria are able to detoxify heavy metals, alter metal solubility in soil and facilitate plant growth. The objective of this study was to isolate multi-metal resistant and plant beneficial endophytic bacteria and to evaluate their role in enhancing plant growth and metal accumulation/translocation. The metal resistant endophytic bacterial strain E6S was isolated from stems of the Zn/Cd hyperaccumulator plant Sedum plumbizincicola growing in metalliferous mine soils using Dworkin and Foster salts minimal agar medium with 1-aminocyclopropane-1-carboxylate (ACC as the sole nitrogen source, and identified as homologous to Achromobacter piechaudii based on morphological and biochemical characteristics, partial 16S rDNA sequence and phylogenetic analysis. Strain E6S showed high level of resistance to various metals (Cd, Zn and Pb. Besides utilizing ACC, strain E6S exhibited plant beneficial traits, such as solubilization of phosphate and production of indole-3-acetic acid. Inoculation with E6S significantly increased the bioavailability of Cd, Zn and Pb in soil. In addition, bacterial cells bound considerable amounts of metal ions in the following order: Zn ˃ Cd ˃ Pb. Inoculation of E6S significantly stimulated plant biomass, uptake and bioaccumulation of Cd, Zn and Pb. However, E6S greatly reduced the root to shoot translocation of Cd and Zn, indicating that bacterial inoculation assisted the host plant to uptake and store heavy metals in its root system. Inoculation with the endophytic bacterium E6S homologous to A. piechaudii can improve phytostabilization of metalliferous soils due to its effective ability to enhance in situ metal rhizoaccumulation in plants.

  15. Isolation of Antagonistic Endophytes from Banana Roots against Meloidogyne javanica and Their Effects on Soil Nematode Community

    Directory of Open Access Journals (Sweden)

    Lanxi Su

    2017-10-01

    Full Text Available Banana production is seriously hindered by Meloidogyne spp. all over the world. Endophytes are ideal candidates compared to pesticides as an environmentally benign agent. In the present study, endophytes isolated from banana roots infected by Meloidogyne spp. with different disease levels were tested in vitro, and in sterile and nature banana monoculture soils against Meloidogyne javanica. The proportion of antagonistic endophytes were higher in the roots of middle and high disease levels. Among those, bacteria were dominant, and Pseudomonas spp., Bacillus spp. and Streptomyces spp. showed more abundant populations. One strain, named as SA, with definite root inner-colonization ability was isolated and identified as Streptomyces sp. This strain showed an inhibiting rate of >50% in vitro and biocontrol efficiency of 70.7% in sterile soil against Meloidogyne javanica, compared to the control. Greenhouse experiment results showed that the strain SA exhibits excellent biological control ability for plant-parasites both in roots and in root-knot nematode infested soil. SA treatment showed a higher number of bacterivores, especially Mesorhabditis and Cephalobus. The maturity index was significantly lower, while enrichment index (EI was significantly higher in the SA treatment. In conclusion, this study presents an important potential application of the endophytic strain Streptomyces sp. for the control of plant-parasitic nematodes, especially Meloidogyne javanica, and presents the effects on the associated variation of the nematode community.

  16. Two new stemphol sulfates from the mangrove endophytic fungus Stemphylium sp. 33231.

    Science.gov (United States)

    Zhou, Xue-Ming; Zheng, Cai-Juan; Chen, Guang-Ying; Song, Xiao-Ping; Han, Chang-Ri; Tang, Xiong-Zhao; Liu, Rui-Jie; Ren, Li-Lian

    2015-08-01

    Two new stemphol sulfates, stemphol A (1) and stemphol B (2), along with known compound stemphol (3) were isolated from the EtOAc extract of the fermentation of an endophytic Stemphylium sp. 33231. The structures of these compounds were elucidated on the basis of spectroscopic analysis. The isolated compounds exhibited potent antibacterial activities against six terrestrial pathogenic bacteria with MIC values of 0.6-10 μg ml(-1). The inhibitory activities of all compounds against five cancer cell lines were evaluated.

  17. Identificação e controle com antibióticos de bactérias endofíticas contaminantes em explantes de batata micropropagados Identification and antibiotic control of endophytic bacteria contaminants in micropropagated potato explants

    Directory of Open Access Journals (Sweden)

    Jonny Everson Scherwinski Pereira

    2003-07-01

    Full Text Available Este trabalho teve por objetivos isolar, caracterizar e identificar bactérias endofíticas contaminantes encontradas em tecidos de batata durante a micropropagação e selecionar antibióticos para o controle in vitro desses microrganismos por meio da determinação da concentração bactericida mínima inibitória. Brotações de batata apresentando contaminação bacteriana durante a etapa de multiplicação in vitro, foram superficialmente esterilizadas e os internódios transferidos para placas de Petri com ágar nutriente, onde permaneceram incubadas a 28°C por até cinco dias. Após purificação, as bactérias foram caracterizadas e identificadas por testes taxonômicos. Um total de oito estirpes bacterianas foram isoladas e identificadas como pertencentes às famílias Acetobacteriaceae (1 e Enterobacteriaceae (2 e aos gêneros Corynebacterium (3, Pseudomonas (1 e Xanthomonas (1. Os melhores resultados para a inibição do crescimento bacteriano foram obtidos com os antibióticos ampicilina, cloranfenicol, estreptomicina e tetraciclina em concentrações que variaram de 32 a 256 mg L-1.This work aimed to isolate, characterize and identify contaminant endophytic bacteria found in potato tissues during the micropropagation and to select antibiotics for in vitro control of these microorganisms by determining the inhibitory minimal bactericidal concentration. Potato shoots presenting bacterial contamination during the in vitro multiplication were superficially sterilized and the internodes transferred to Petri dishes with nutrient agar medium for up to five days at 28°C. After subcultures the grown bacteria were purified and identified through taxonomic tests. A total of eight bacterial endophytic strains were isolated and identified as belonging to Acetobacteriaceae (1 and Enterobacteriaceae (2 families and Corynebacterium (3, Pseudomonas (1 and Xanthomonas (1 genera. The best results for bacterial growth inhibition were obtained with

  18. Comparative study of endophytic and endophytic diazotrophic bacterial communities across rice landraces grown in the highlands of northern Thailand

    OpenAIRE

    Rangjaroen, C.; Rerkasem, B.; Teaumroong, N.; Sungthong, R.; Lumyong, S.

    2014-01-01

    Communities of bacterial endophytes within the rice landraces cultivated in the highlands of northern Thailand were studied using fingerprinting data of 16S rRNA and nifH genes profiling by polymerase chain reaction-denaturing gradient gel electrophoresis. The bacterial communities' richness, diversity index, evenness, and stability were varied depending on the plant tissues, stages of growth, and rice cultivars. These indices for the endophytic diazotrophic bacteria within the landrace rice ...

  19. The endophyte Curtobacterium flaccumfaciens reduces symptoms caused by Xylella fastidiosa in Catharanthus roseus.

    Science.gov (United States)

    Lacava, Paulo Teixeira; Li, Wenbin; Araújo, Welington Luiz; Azevedo, João Lúcio; Hartung, John Stephen

    2007-10-01

    Citrus variegated chlorosis (CVC) is a disease of the sweet orange [Citrus sinensis (L.)], which is caused by Xylella fastidiosa subsp. pauca, a phytopathogenic bacterium that has been shown to infect all sweet orange cultivars. Sweet orange trees have been occasionally observed to be infected by Xylella fastidiosa without evidencing severe disease symptoms, whereas other trees in the same grove may exhibit severe disease symptoms. The principal endophytic bacterial species isolated from such CVC-asymptomatic citrus plants is Curtobacterium flaccumfaciens. The Madagascar periwinkle [Citrus sinensis (L.)] is a model plant which has been used to study X. fastidiosa in greenhouse environments. In order to characterize the interactions of X. fastidiosa and C. flaccumfaciens, periwinkle plants were inoculated separately with C. flaccumfaciens, X. fastidiosa, and both bacteria together. The number of flowers produced by the plants, the heights of the plants, and the exhibited disease symptoms were evaluated. PCR-primers for C. flaccumfaciens were designed in order to verify the presence of this endophytic bacterium in plant tissue, and to complement an existing assay for X. fastidiosa. These primers were capable of detecting C. flaccumfaciens in the periwinkle in the presence of X. fastidiosa. X. fastidiosa induced stunting and reduced the number of flowers produced by the periwinkle. When C. flaccumfaciens was inoculated together with X. fastidiosa, no stunting was observed. The number of flowers produced by our doubly- inoculated plants was an intermediate between the number produced by the plants inoculated with either of the bacteria separately. Our data indicate that C. flaccumfaciens interacted with X. fastidiosa in C. roseus, and reduced the severity of the disease symptoms induced by X. fastidiosa. Periwinkle is considered to be an excellent experimental system by which the interaction of C. flaccumfaciens and other endophytic bacteria with X. fastidiosa can be

  20. Molecular detection of TasA gene in endophytic Bacillus species ...

    African Journals Online (AJOL)

    hope&shola

    2012-03-20

    Mar 20, 2012 ... formation in Bacillus species was detected in the endophytic bacteria by polymerase chain reaction. (PCR) amplification. In ten endophytic ... confer a competitive advantage to the spore from the onset of sporulation and later, ... possessing TasA gene (Chen et al., 2007; Gioia et al.,. 2007; Kunst et al., 1997; ...

  1. Rapid Discovery and Functional Characterization of Terpene Synthases from Four Endophytic Xylariaceae.

    Directory of Open Access Journals (Sweden)

    Weihua Wu

    Full Text Available Endophytic fungi are ubiquitous plant endosymbionts that establish complex and poorly understood relationships with their host organisms. Many endophytic fungi are known to produce a wide spectrum of volatile organic compounds (VOCs with potential energy applications, which have been described as "mycodiesel". Many of these mycodiesel hydrocarbons are terpenes, a chemically diverse class of compounds produced by many plants, fungi, and bacteria. Due to their high energy densities, terpenes, such as pinene and bisabolene, are actively being investigated as potential "drop-in" biofuels for replacing diesel and aviation fuel. In this study, we rapidly discovered and characterized 26 terpene synthases (TPSs derived from four endophytic fungi known to produce mycodiesel hydrocarbons. The TPS genes were expressed in an E. coli strain harboring a heterologous mevalonate pathway designed to enhance terpene production, and their product profiles were determined using Solid Phase Micro-Extraction (SPME and GC-MS. Out of the 26 TPS's profiled, 12 TPS's were functional, with the majority of them exhibiting both monoterpene and sesquiterpene synthase activity.

  2. Characterization of New Bioactive Enzyme Inhibitors from Endophytic Bacillus amyloliquefaciens RWL-1

    Directory of Open Access Journals (Sweden)

    Raheem Shahzad

    2018-01-01

    Full Text Available Endophytic bacteria are known to produce a wide array of bioactive secondary metabolites with beneficial effects on human health. In the current study, a novel endophytic bacterial strain, Bacillus amyloliquefaciens RWL-1, was isolated from the seeds of Oryza sativa. Initially, the crude extract of RWL-1 was assessed for potential biological effects of enzyme inhibition and cytotoxicity and was found to exhibit a broad spectrum inhibition for α-glucosidase (37 ± 0.09% and urease (49.4 ± 0.53%. The screening results were followed by bioassay-guided isolation of secondary metabolite(s from RWL-1. Extensive chromatographic and spectrophotometry analyses revealed the presence of compound 1 (S-2-hydroxy-N-((S-1-((S-8-hydroxy-1-oxoisochroman-3-yl-3-methylbutyl-2-((S-5-oxo-2,5-dihydrofuran-2-ylacetamide. Further bioassays of compound 1 showed significant inhibition of α-glucosidase (52.98 ± 0.8% and urease (51.27 ± 1.0%, compared with positive control values of 79.14 ± 1.9% and 88.24 ± 2.2%, and negative controls (0.08 ± 0.1% and 0.05 ± 0.01%, respectively. The current study suggests that bacterial endophytes are a rich source of novel bioactive compounds with high therapeutic value.

  3. Evidence for an Opportunistic and Endophytic Lifestyle of the Bursaphelenchus xylophilus-Associated Bacteria Serratia marcescens PWN146 Isolated from Wilting Pinus pinaster.

    Science.gov (United States)

    Vicente, Cláudia S L; Nascimento, Francisco X; Barbosa, Pedro; Ke, Huei-Mien; Tsai, Isheng J; Hirao, Tomonori; Cock, Peter J A; Kikuchi, Taisei; Hasegawa, Koichi; Mota, Manuel

    2016-10-01

    Pine wilt disease (PWD) results from the interaction of three elements: the pathogenic nematode, Bursaphelenchus xylophilus; the insect-vector, Monochamus sp.; and the host tree, mostly Pinus species. Bacteria isolated from B. xylophilus may be a fourth element in this complex disease. However, the precise role of bacteria in this interaction is unclear as both plant-beneficial and as plant-pathogenic bacteria may be associated with PWD. Using whole genome sequencing and phenotypic characterization, we were able to investigate in more detail the genetic repertoire of Serratia marcescens PWN146, a bacterium associated with B. xylophilus. We show clear evidence that S. marcescens PWN146 is able to withstand and colonize the plant environment, without having any deleterious effects towards a susceptible host (Pinus thunbergii), B. xylophilus nor to the nematode model C. elegans. This bacterium is able to tolerate growth in presence of xenobiotic/organic compounds, and use phenylacetic acid as carbon source. Furthermore, we present a detailed list of S. marcescens PWN146 potentials to interfere with plant metabolism via hormonal pathways and/or nutritional acquisition, and to be competitive against other bacteria and/or fungi in terms of resource acquisition or production of antimicrobial compounds. Further investigation is required to understand the role of bacteria in PWD. We have now reinforced the theory that B. xylophilus-associated bacteria may have a plant origin.

  4. Seasonal variation of bacterial endophytes in urban trees

    Directory of Open Access Journals (Sweden)

    Shu Yi eShen

    2015-05-01

    Full Text Available Bacterial endophytes, non-pathogenic bacteria residing within plants, contribute to the growth and development of plants and their ability to adapt to adverse conditions. In order to fully exploit the capabilities of these bacteria, it is necessary to understand the extent to which endophytic communities vary between species and over time. The endophytes of Acer negundo, Ulmus pumila and Ulmus parvifolia were sampled over three seasons and analyzed using culture dependent and independent methods (culture on two media, terminal restriction fragment length polymorphism, and tagged pyrosequencing of 16S ribosomal amplicons. The majority of culturable endophytes isolated were Actinobacteria, and all the samples harbored Bacillus, Curtobacterium, Frigoribacterium, Methylobacterium, Paenibacilllus and Sphingomonas species. Regardless of culture medium used, only the culturable communities obtained in the winter for A. negundo could be distinguished from those of Ulmus spp.. In contrast, the nonculturable communities were dominated by Proteobacteria and Actinobacteria, particularly Erwinia, Ralstonia and Sanguibacter spp.. The presence and abundance of various bacterial classes and phyla changed with the changing seasons. Multivariate analysis on the culture independent data revealed significant community differences between the endophytic communities of A. negundo and Ulmus spp., but overall season was the main determinant of endophytic community structure. This study suggests investigations of the studies ofendophytic populations of urban trees should expect to find significant seasonal and species-specific community differences and sampling should proceed accordingly.

  5. Bacterial endophytes enhance competition by invasive plants.

    Science.gov (United States)

    Rout, Marnie E; Chrzanowski, Thomas H; Westlie, Tara K; DeLuca, Thomas H; Callaway, Ragan M; Holben, William E

    2013-09-01

    Invasive plants can alter soil microbial communities and profoundly alter ecosystem processes. In the invasive grass Sorghum halepense, these disruptions are consequences of rhizome-associated bacterial endophytes. We describe the effects of N2-fixing bacterial strains from S. halepense (Rout and Chrzanowski, 2009) on plant growth and show that bacteria interact with the plant to alter soil nutrient cycles, enabling persistence of the invasive. • We assessed fluxes in soil nutrients for ∼4 yr across a site invaded by S. halepense. We assayed the N2-fixing bacteria in vitro for phosphate solubilization, iron chelation, and production of the plant-growth hormone indole-3-acetic acid (IAA). We assessed the plant's ability to recruit bacterial partners from substrates and vertically transmit endophytes to seeds and used an antibiotic approach to inhibit bacterial activity in planta and assess microbial contributions to plant growth. • We found persistent alterations to eight biogeochemical cycles (including nitrogen, phosphorus, and iron) in soils invaded by S. halepense. In this context, three bacterial isolates solubilized phosphate, and all produced iron siderophores and IAA in vitro. In growth chamber experiments, bacteria were transmitted vertically, and molecular analysis of bacterial community fingerprints from rhizomes indicated that endophytes are also horizontally recruited. Inhibiting bacterial activity with antibiotics resulted in significant declines in plant growth rate and biomass, with pronounced rhizome reductions. • This work suggests a major role of endophytes on growth and resource allocation of an invasive plant. Indeed, bacterial isolate physiology is correlated with invader effects on biogeochemical cycles of nitrogen, phosphate, and iron.

  6. Endophytic bacterial effects on seed germination and mobilization of reserves in ammodendron biofolium

    International Nuclear Information System (INIS)

    Zhu, Y.; She, X.P.

    2017-01-01

    The main aim of this study was to analyze the mobilization of storage reserves during seed germination of Ammodendron bifolium by host plant-endophytic bacteria interaction and to determine the contribution of endophytic bacteria in plant establishment. The seeds were inoculated with three different endophytic bacteria from A. bifolium, Staphylococcus sp. AY3, Kocuria sp. AY9 and Bacillus sp. AG18, and they were germinated in the dark. Fresh weight changes and early seedling growth were assessed, and the content of storage compounds was quantified using biochemical assays in all germinated and non-germinated seeds. To understand the mechanism promoting seed germination, the activities of extracellular enzymes of bacterial isolates were also analyzed by the plate assay method. The results showed that treatment with endophytic bacteria accelerated seed germination; promoted further water absorption and radicle growth; and also promoted degradation of sucrose, protein and lipids during the germination process. At the same time, our results also showed that strain AG18 was able to produce protease and amylase, strain AY9 had only amylase activity, and strain AY3 had no extracellular enzyme activity. In summary, our current study showed that (i) endophytic bacteria improved seed germination and post-germination seedling growth of A. bifolium; (ii) inoculation with endophytic bacteria could promote storage reserve mobilization during or following germination; (iii) the degradation of protein, lipids and sucrose could provide essential energy for post-germination growth; and (iv) three bacterial isolates might have different action mechanisms on seed germination. (author)

  7. Untapped Endophytic Colonization and Plant Growth-Promoting Potential of the Genus Novosphingobium to Optimize Rice Cultivation

    OpenAIRE

    Rangjaroen, Chakrapong; Sungthong, Rungroch; Rerkasem, Benjavan; Teaumroong, Neung; Noisangiam, Rujirek; Lumyong, Saisamorn

    2017-01-01

    With the aim of searching for potent diazotrophic bacteria that are free of public health concerns and optimize rice cultivation, the endophytic colonization and plant growth-promoting activities of some endophytic diazotrophic bacteria isolated from rice were evaluated. Among these bacteria, the emerging diazotrophic strains of the genus Novosphingobium effectively associated with rice plant interiors and consequently promoted the growth of rice, even with the lack of a nitrogen source. Thes...

  8. Quorum signaling mycotoxins: A new risk strategy for bacterial biocontrol of Fusarium verticillioides and other endophytic fungal species?

    Science.gov (United States)

    Bacterial endophytes are used as biocontrol organisms for plant pathogens such as the maize endophyte Fusarium verticillioides and its production of fumonisin mycotoxins. However, such applications are not always predictable and efficient. All bacteria communicate via cell-dependent signals, which...

  9. Antagonistic bioactivity of endophytic strains isolated from Salvia ...

    African Journals Online (AJOL)

    The antibiotic-producing potential of endophytic populations from medical plant of Salvia miltiorrhiza was examined. A total of 63 isolates was screened against five fungal and three bacterial species for the production of antimicrobial compounds. It showed that more isolates was antagonistic to fungi than to bacteria.

  10. Detection of siderophores in endophytic bacteria Methylobacterium spp. associated with Xylella fastidiosa subsp. pauca Detecção de sideróforos nas bactérias endofíticas Methylobacterium spp. associadas com Xylella fastidiosa subsp. pauca

    Directory of Open Access Journals (Sweden)

    Paulo Teixeira Lacava

    2008-04-01

    Full Text Available The objective of this work was to study the production of siderophores by endophytic bacteria Methylobacterium spp., which occupy the same ecological niche as Xylella fastidiosa subsp. pauca (Xfp in citrus plants. The siderophore production of Methylobacterium strains was tested according to chromeazurol agar assay test (CAS, Csáky test (hydroxamate-type and Arnow test (catechol-type. In addition, the ability of Xfp to use siderophores, in vitro, produced by endophytic bacteria as source of iron, was evaluated. All 37 strains of Methylobacterium spp. tested were CAS-positive for siderophore production. Methylobacterium spp. produced hydroxamate-type, but not catechol-type siderophores. In vitro growth of Xfp was stimulated by the presence of supernatant siderophores of endophytic Methylobacterium mesophilicum.O objetivo deste trabalho foi estudar a produção de sideróforos pelas bactérias endofíticas Methylobacterium spp., que ocupam o mesmo nicho ecológico que Xylella fastidiosa subsp. pauca (Xfp, em plantas cítricas. A produção de sideróforos, pelas linhagens de Methylobacterium, foi testada por meio do ensaio de cromoazarol-ágar (chromeazurol agar assay-CAS, teste de Csáky (tipo hidroxamato e do teste de Arnow (tipo catecol. Além disso, a habilidade de Xfp em utilizar sideróforos produzidos por bactérias endofíticas, como fonte de ferro, in vitro, foi avaliada. Todas as 37 linhagens de Methylobacterium spp. testadas foram positivas para a produção de sideróforos, pelo teste CAS-ágar. Methylobacterium spp. foram capazes de produzir sideróforos do tipo hidroxamato, mas não do tipo catecol. O crescimento in vitro de Xfp foi estimulado pela presença de sideróforos no sobrenadante de Methylobacterium mesophilicum endofítica.

  11. Isolation of endophyic bacteria from purwoceng (Pimpinella alpina Kds.

    Directory of Open Access Journals (Sweden)

    Tri Widayat

    2012-09-01

    andits derivatives has wide biological activity spectrum as antifungal, anticoagulation, anti infl amation and it can be an additive in certain food or cosmetic additive. This study aimed to isolate endophytic bacteria frompurwoceng, to assess the growth of endophytic bacteria within coumarin containing medium and to reveal the affect of endophytic bacteria to the coumarin content of the medium.Methods: Endophytic bacteria were isolated from purwoceng roots and leaves. Pure culture of endophytic bacteria was selected by growing the bacteria in the ammonium salt sugar medium containing purwoceng herbalinfusion. The effect of the bacteria to coumarin content in the medium was assessed through the cultivation of chosen bacteria in medium that was similar with the medium used in the selection step. Coumarin content inthe medium was detected by using thin layer chromatography (TLC.Results: Nine isolates obtained from purwoceng roots and leaves could be alive in the basic medium containing purwoceng herbal infusion and had generation time (g 2.7-5.7 hours and specifi c growth rate (μ 0,14-0,26/hour. Cultivation of chosen isolate showed that BAP5 could grow in the medium containing 1072 arbitrary unit (AU of coumarin. The TLC exhibited Rf 0.27 of the compound that was assumed as coumarin.Conclusion: Endophytic bacteria were successfully isolated from purwoceng and prevented the coumarin loss from the medium. (Health Science Indones 2012;1:31-6 

  12. What Is There in Seeds? Vertically Transmitted Endophytic Resources for Sustainable Improvement in Plant Growth

    Directory of Open Access Journals (Sweden)

    Raheem Shahzad

    2018-01-01

    Full Text Available Phytobeneficial microbes, particularly endophytes, such as fungi and bacteria, are concomitant partners of plants throughout its developmental stages, including seed germination, root and stem growth, and fruiting. Endophytic microbes have been identified in plants that grow in a wide array of habitats; however, seed-borne endophytic microbes have not been fully explored yet. Seed-borne endophytes are of great interest because of their vertical transmission; their potential to produce various phytohormones, enzymes, antimicrobial compounds, and other secondary metabolites; and improve plant biomass and yield under biotic and abiotic stresses. This review addresses the current knowledge on endophytes, their ability to produce metabolites, and their influence on plant growth and stress mitigation.

  13. Phytoremediation of Polycyclic Aromatic Hydrocarbons in Soils Artificially Polluted Using Plant-Associated-Endophytic Bacteria and Dactylis glomerata as the Bioremediation Plant.

    Science.gov (United States)

    Gałązka, Ann; Gałązka, Rafał

    2015-01-01

    The reaction of soil microorganisms to the contamination of soil artificially polluted with polycyclic aromatic hydrocarbons (PAHs) was evaluated in pot experiments. The plant used in the tests was cock's foot (Dactylis glomerata). Three different soils artificially contaminated with PAHs were applied in the studies. Three selected PAHs (anthracene, phenanthrene, and pyrene) were used at the doses of 100, 500, and 1000 mg/kg d.m. of soil and diesel fuel at the doses of 100, 500, and 1000 mg/kg d.m. of soil. For evaluation of the synergistic effect of nitrogen fixing bacteria, the following strains were selected: associative Azospirillum spp. and Pseudomonas stutzerii. Additionally, in the bioremediation process, the inoculation of plants with a mixture of the bacterial strains in the amount of 1 ml suspension per 500 g of soil was used. Chamber pot-tests were carried out in controlled conditions during four weeks of plant growth period. The basic physical, microbiological and biochemical properties in contaminated soils were determined. The obtained results showed a statistically important increase in the physical properties of soils polluted with PAHs and diesel fuel compared with the control and also an important decrease in the content of PAHs and heavy metals in soils inoculated with Azospirillum spp. and P. stutzeri after cock's foot grass growth. The bioremediation processes were especially intensive in calcareous rendzina soil artificially polluted with PAHs.

  14. CARACTERIZAÇÃO FENOTÍPICA DE BACTÉRIAS DIAZOTRÓFICAS ENDOFÍTICAS ISOLADAS DE CANA DE AÇÚCAR PHENOTYPIC CHARACTERIZATION OF ENDOPHYTIC DIAZOTROPHIC BACTERIAS ISOLATED OF SUGARCANE

    Directory of Open Access Journals (Sweden)

    Robson Cavalcante de Lima

    2011-06-01

    without added nitrogen. Five strains were isolated native diazotrophs which were evaluated microscopically by Gram stain, the intrinsic resistance to antibiotics, fungicide Furadan (i.a. carbofuran and insecticide Regent (i.a. fipronil and ability to fix nitrogen in greenhouse and field conditions. All isolates were characteristic of Gram-negative, and for the intrinsic resistance to antibiotics showed widespread resistance. A native UCCBc5 strain showed resistance to the fungicide Furadan and the insecticide Regente. Bacteria isolated UCCBc1 and UCCBc5 present capacity and efficiency of fixing atmospheric nitrogen under conditions of greenhouse. It was found that the strain UCCBc5 resistant to the fungicide Furadan and the insecticide Regente has capacity of fixing atmospheric nitrogen in field conditions. In the evaluation of doses of inoculation was observed that there is a dose of inoculant / efficiency of nitrogen fixation. These results indicate that endophytic bacteria can be used, in some cases as a substitute for nitrogen in sugarcane.

  15. Endophytes from medicinal plants and their potential for producing indole acetic acid, improving seed germination and mitigating oxidative stress* #

    Science.gov (United States)

    Khan, Abdul Latif; Gilani, Syed Abdullah; Waqas, Muhammad; Al-Hosni, Khadija; Al-Khiziri, Salima; Kim, Yoon-Ha; Ali, Liaqat; Kang, Sang-Mo; Asaf, Sajjad; Shahzad, Raheem; Hussain, Javid; Lee, In-Jung; Al-Harrasi, Ahmed

    2017-01-01

    Medicinal plants have been used by marginal communities to treat various ailments. However, the potential of endophytes within these bio-prospective medicinal plants remains unknown. The present study elucidates the endophytic diversity of medicinal plants (Caralluma acutangula, Rhazya stricta, and Moringa peregrina) and the endophyte role in seed growth and oxidative stress. Various organs of medicinal plants yielded ten endophytes, which were identified as Phoma sp. (6 isolates), Alternaria sp. (2), Bipolaris sp. (1), and Cladosporium sp. (1) based on 18S rDNA sequencing and phylogenetic analysis. The culture filtrates (CFs; 25%, 50%, and 100% concentrations) from these endophytes were tested against the growth of normal and dwarf mutant rice lines. Endophytic CF exhibited dose-dependent growth stimulation and suppression effects. CF (100%) of Phoma sp. significantly increased rice seed germination and growth compared to controls and other endophytes. This growth-promoting effect was due to the presence of indole acetic acid in endophytic CF. The gas chromatography/mass spectrometry (GC/MS) analysis showed the highest indole acetic acid content ((54.31±0.21) µmol/L) in Bipolaris sp. In addition, the isolate of Bipolaris sp. exhibited significantly higher radical scavenging and anti-lipid peroxidation activity than the other isolates. Bipolaris sp. and Phoma sp. also exhibited significantly higher flavonoid and phenolic contents. The medicinal plants exhibited the presence of bio-prospective endophytic strains, which could be used for the improvement of crop growth and the mitigation of oxidative stresses. PMID:28124841

  16. Endophytes from medicinal plants and their potential for producing indole acetic acid, improving seed germination and mitigating oxidative stress.

    Science.gov (United States)

    Khan, Abdul Latif; Gilani, Syed Abdullah; Waqas, Muhammad; Al-Hosni, Khadija; Al-Khiziri, Salima; Kim, Yoon-Ha; Ali, Liaqat; Kang, Sang-Mo; Asaf, Sajjad; Shahzad, Raheem; Hussain, Javid; Lee, In-Jung; Al-Harrasi, Ahmed

    Medicinal plants have been used by marginal communities to treat various ailments. However, the potential of endophytes within these bio-prospective medicinal plants remains unknown. The present study elucidates the endophytic diversity of medicinal plants (Caralluma acutangula, Rhazya stricta, and Moringa peregrina) and the endophyte role in seed growth and oxidative stress. Various organs of medicinal plants yielded ten endophytes, which were identified as Phoma sp. (6 isolates), Alternaria sp. (2), Bipolaris sp. (1), and Cladosporium sp. (1) based on 18S rDNA sequencing and phylogenetic analysis. The culture filtrates (CFs; 25%, 50%, and 100% concentrations) from these endophytes were tested against the growth of normal and dwarf mutant rice lines. Endophytic CF exhibited dose-dependent growth stimulation and suppression effects. CF (100%) of Phoma sp. significantly increased rice seed germination and growth compared to controls and other endophytes. This growth-promoting effect was due to the presence of indole acetic acid in endophytic CF. The gas chromatography/mass spectrometry (GC/MS) analysis showed the highest indole acetic acid content ((54.31±0.21) µmol/L) in Bipolaris sp. In addition, the isolate of Bipolaris sp. exhibited significantly higher radical scavenging and anti-lipid peroxidation activity than the other isolates. Bipolaris sp. and Phoma sp. also exhibited significantly higher flavonoid and phenolic contents. The medicinal plants exhibited the presence of bio-prospective endophytic strains, which could be used for the improvement of crop growth and the mitigation of oxidative stresses.

  17. Cupiennin 1a exhibits a remarkably broad, non-stereospecific cytolytic activity on bacteria, protozoan parasites, insects, and human cancer cells.

    Science.gov (United States)

    Kuhn-Nentwig, Lucia; Willems, Jean; Seebeck, Thomas; Shalaby, Tarek; Kaiser, Marcel; Nentwig, Wolfgang

    2011-01-01

    Cupiennin 1a, a cytolytic peptide isolated from the venom of the spider Cupiennius salei, exhibits broad membranolytic activity towards bacteria, trypanosomes, and plasmodia, as well as human blood and cancer cells. In analysing the cytolytic activity of synthesised all-D: - and all-L: -cupiennin 1a towards pro- and eukaryotic cells, a stereospecific mode of membrane destruction could be excluded. The importance of negatively charged sialic acids on the outer leaflet of erythrocytes for the binding and haemolytic activity of L: -cupiennin 1a was demonstrated. Reducing the overall negative charges of erythrocytes by partially removing their sialic acids or by protecting them with tri- or pentalysine results in reduced haemolytic activity of the peptide.

  18. Linking Bacterial Endophytic Communities to Essential Oils: Clues from Lavandula angustifolia Mill

    Science.gov (United States)

    Emiliani, Giovanni; Maida, Isabel; Perrin, Elena; Chiellini, Carolina; Fondi, Marco; Gallo, Eugenia; Gori, Luigi; Maggini, Valentina; Vannacci, Alfredo; Biffi, Sauro; Firenzuoli, Fabio; Fani, Renato

    2014-01-01

    Endophytic bacteria play a crucial role in plant life and are also drawing much attention for their capacity to produce bioactive compounds of relevant biotechnological interest. Here we present the characterisation of the cultivable endophytic bacteria of Lavandula angustifolia Mill.—a species used since antiquity for its therapeutic properties—since the production of bioactive metabolites from medical plants may reside also in the activity of bacterial endophytes through their direct production, PGPR activity on host, and/or elicitation of plant metabolism. Lavender tissues are inhabited by a tissue specific endophytic community dominated by Proteobacteria, highlighting also their difference from the rhizosphere environment where Actinobacteria and Firmicutes are also found. Leaves' endophytic community resulted as the most diverse from the other ecological niches. Overall, the findings reported here suggest: (i) the existence of different entry points for the endophytic community, (ii) its differentiation on the basis of the ecological niche variability, and (iii) a two-step colonization process for roots endophytes. Lastly, many isolates showed a strong inhibition potential against human pathogens and the molecular characterization demonstrated also the presence of not previously described isolates that may constitute a reservoir of bioactive compounds relevant in the field of pathogen control, phytoremediation, and human health. PMID:24971151

  19. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes

    Science.gov (United States)

    Wemheuer, Franziska; Kaiser, Kristin; Karlovsky, Petr; Daniel, Rolf; Vidal, Stefan; Wemheuer, Bernd

    2017-01-01

    Endophytic bacteria are critical for plant growth and health. However, compositional and functional responses of bacterial endophyte communities towards agricultural practices are still poorly understood. Hence, we analyzed the influence of fertilizer application and mowing frequency on bacterial endophytes in three agriculturally important grass species. For this purpose, we examined bacterial endophytic communities in aerial plant parts of Dactylis glomerata L., Festuca rubra L., and Lolium perenne L. by pyrotag sequencing of bacterial 16S rRNA genes over two consecutive years. Although management regimes influenced endophyte communities, observed responses were grass species-specific. This might be attributed to several bacteria specifically associated with a single grass species. We further predicted functional profiles from obtained 16S rRNA data. These profiles revealed that predicted abundances of genes involved in plant growth promotion or nitrogen metabolism differed between grass species and between management regimes. Moreover, structural and functional community patterns showed no correlation to each other indicating that plant species-specific selection of endophytes is driven by functional rather than phylogenetic traits. The unique combination of 16S rRNA data and functional profiles provided a holistic picture of compositional and functional responses of bacterial endophytes in agricultural relevant grass species towards management practices.

  20. Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties

    Czech Academy of Sciences Publication Activity Database

    Sura-de Jong, M.; Reynolds, R.B.J.; Richterová, K.; Musilová, L.; Staicu, L. C.; Chocholatá, I.; Cappa, J. J.; Taghavi, S.; van der Lelie, D.; Frantík, Tomáš; Dolinová, I.; Strejček, M.; Cochran, A. T.; Lovecká, P.; Pilon-Smits, E. A. H.

    2015-01-01

    Roč. 6, č. 113 (2015), s. 1-17 ISSN 1664-462X Institutional support: RVO:67985939 Keywords : endophyte * bacteria * phytoremediation Subject RIV: EE - Microbiology, Virology Impact factor: 4.495, year: 2015

  1. Bacterial Seed Endophytes of Domesticated Cucurbits Antagonize Fungal and Oomycete Pathogens Including Powdery Mildew

    Science.gov (United States)

    Khalaf, Eman M.; Raizada, Manish N.

    2018-01-01

    The cucurbit vegetables, including cucumbers, melons and pumpkins, have been cultivated for thousands of years without fungicides. However, their seed germination stage is prone to be infected by soil-borne fungal and oomycete pathogens. Endophytes are symbionts that reside inside plant tissues including seeds. Seed endophytes are founders of the juvenile plant microbiome and can promote host defense at seed germination and later stages. We previously isolated 169 bacterial endophytes associated with seeds of diverse cultivated cucurbits. We hypothesized that these endophytes can antagonize major fungal and oomycete pathogens. Here we tested the endophytes for in vitro antagonism (dual culture assays) against important soil-borne pathogens (Rhizoctonia solani, Fusarium graminearum, Phytophthora capsici, Pythium aphanideratum). The endophytes were also assayed in planta (leaf disk and detached leaf bioassays) for antagonism against a foliar pathogen of global importance, Podosphaera fuliginea, the causative agent of cucurbit powdery mildew. The endophytes were further tested in vitro for secretion of volatile organic compounds (VOCs) known to induce plant defense. Extracellular ribonuclease activity was also tested, as a subset of pathogenesis-related (PR) proteins of plant hosts implicated in suppression of fungal pathogens, displays ribonuclease activity. An unexpected majority of the endophytes (70%, 118/169) exhibited antagonism to the five phytopathogens, of which 68% (50/73) of in vitro antagonists belong to the genera Bacillus and Paenibacillus. All Lactococcus and Pantoea endophytes exhibited anti-oomycete activity. However, amongst the most effective inoculants against Podosphaera fuliginea were Pediococcus and Pantoea endophytes. Interestingly, 67% (113/169) of endophytes emitted host defense inducing VOCs (acetoin/diacetyl) and 62% (104/169) secreted extracellular ribonucleases in vitro, respectively. These results show that seeds of cultivated cucurbits

  2. Bacterial Seed Endophytes of Domesticated Cucurbits Antagonize Fungal and Oomycete Pathogens Including Powdery Mildew

    Directory of Open Access Journals (Sweden)

    Eman M. Khalaf

    2018-02-01

    Full Text Available The cucurbit vegetables, including cucumbers, melons and pumpkins, have been cultivated for thousands of years without fungicides. However, their seed germination stage is prone to be infected by soil-borne fungal and oomycete pathogens. Endophytes are symbionts that reside inside plant tissues including seeds. Seed endophytes are founders of the juvenile plant microbiome and can promote host defense at seed germination and later stages. We previously isolated 169 bacterial endophytes associated with seeds of diverse cultivated cucurbits. We hypothesized that these endophytes can antagonize major fungal and oomycete pathogens. Here we tested the endophytes for in vitro antagonism (dual culture assays against important soil-borne pathogens (Rhizoctonia solani, Fusarium graminearum, Phytophthora capsici, Pythium aphanideratum. The endophytes were also assayed in planta (leaf disk and detached leaf bioassays for antagonism against a foliar pathogen of global importance, Podosphaera fuliginea, the causative agent of cucurbit powdery mildew. The endophytes were further tested in vitro for secretion of volatile organic compounds (VOCs known to induce plant defense. Extracellular ribonuclease activity was also tested, as a subset of pathogenesis-related (PR proteins of plant hosts implicated in suppression of fungal pathogens, displays ribonuclease activity. An unexpected majority of the endophytes (70%, 118/169 exhibited antagonism to the five phytopathogens, of which 68% (50/73 of in vitro antagonists belong to the genera Bacillus and Paenibacillus. All Lactococcus and Pantoea endophytes exhibited anti-oomycete activity. However, amongst the most effective inoculants against Podosphaera fuliginea were Pediococcus and Pantoea endophytes. Interestingly, 67% (113/169 of endophytes emitted host defense inducing VOCs (acetoin/diacetyl and 62% (104/169 secreted extracellular ribonucleases in vitro, respectively. These results show that seeds of cultivated

  3. Bacterial Seed Endophytes of Domesticated Cucurbits Antagonize Fungal and Oomycete Pathogens Including Powdery Mildew

    Directory of Open Access Journals (Sweden)

    Eman M. Khalaf

    2018-02-01

    Full Text Available The cucurbit vegetables, including cucumbers, melons and pumpkins, have been cultivated for thousands of years without fungicides. However, their seed germination stage is prone to be infected by soil-borne fungal and oomycete pathogens. Endophytes are symbionts that reside inside plant tissues including seeds. Seed endophytes are founders of the juvenile plant microbiome and can promote host defense at seed germination and later stages. We previously isolated 169 bacterial endophytes associated with seeds of diverse cultivated cucurbits. We hypothesized that these endophytes can antagonize major fungal and oomycete pathogens. Here we tested the endophytes for in vitro antagonism (dual culture assays against important soil-borne pathogens (Rhizoctonia solani, Fusarium graminearum, Phytophthora capsici, Pythium aphanidermatum. The endophytes were also assayed in planta (leaf disk and detached leaf bioassays for antagonism against a foliar pathogen of global importance, Podosphaera fuliginea, the causative agent of cucurbit powdery mildew. The endophytes were further tested in vitro for secretion of volatile organic compounds (VOCs known to induce plant defense. Extracellular ribonuclease activity was also tested, as a subset of pathogenesis-related (PR proteins of plant hosts implicated in suppression of fungal pathogens, displays ribonuclease activity. An unexpected majority of the endophytes (70%, 118/169 exhibited antagonism to the five phytopathogens, of which 68% (50/73 of in vitro antagonists belong to the genera Bacillus and Paenibacillus. All Lactococcus and Pantoea endophytes exhibited anti-oomycete activity. However, amongst the most effective inoculants against Podosphaera fuliginea were Pediococcus and Pantoea endophytes. Interestingly, 67% (113/169 of endophytes emitted host defense inducing VOCs (acetoin/diacetyl and 62% (104/169 secreted extracellular ribonucleases in vitro, respectively. These results show that seeds of cultivated

  4. Antimicrobial activities of endophytic fungi isolated from Ophiopogon japonicus (Liliaceae).

    Science.gov (United States)

    Liang, Hanqiao; Xing, Yongmei; Chen, Juan; Zhang, Dawei; Guo, Shunxing; Wang, Chunlan

    2012-11-28

    Drug resistance in bacteria has become a global concern and the search for new antibacterial agents is urgent and ongoing. Endophytes provide an abundant reservoir of bioactive metabolites for medicinal exploitation, and an increasing number of novel compounds are being isolated from endophytic fungi. Ophiopogon japonicus, containing compounds with antibacterial activity, is a traditional Chinese medicinal plant used for eliminating phlegm, relieving coughs, latent heat in the lungs, and alleviating diabetes mellitus. We investigated the antimicrobial activities of 30 strains of O. japonicus. Fungal endophytes were isolated from roots and stems of O. japonicus collected from Chongqing City, southwestern China. Mycelial extracts (MC) and fermentation broth (FB) were tested for antimicrobial activity using peptide deformylase (PDF) inhibition fluorescence assays and MTT cell proliferation assays. A total of 30 endophytic strains were isolated from O. japonicus; 22 from roots and eight from stems. 53.33% of the mycelial extracts (MC) and 33.33% of the fermentation broths (FB) displayed potent inhibition of PDF. 80% of MC and 33.33% of FB significantly inhibited Staphylococcus aureus. 70% of MC and 36.67% of FB showed strong activities against Cryptococcus neoformans. None showed influence on Escherichia coli. The secondary metabolites of endophytic fungi from O. japonicus are potential antimicrobial agents.

  5. Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans

    OpenAIRE

    Castillo, UF; Strobel, GA; Ford, EJ; Hess, WM; Porter, H; Jensen, JB; Albert, H; Robison, R; Condron, MAM; Teplow, DB; Stevens, D; Yaver, D

    2002-01-01

    Munumbicins A, B, C and D are newly described antibiotics with a wide spectrum of activity against many human as well as plant pathogenic fungi and bacteria, and a Plasmodium sp. These compounds were obtained from Streptomyces NRRL 3052, which is endophytic in the medicinal plant snakevine (Kennedia nigriscans), native to the Northern Territory of Australia. This endophyte was cultured, the broth was extracted with an organic solvent and the contents of the residue were purified by bioassay-g...

  6. Bioprospecting of South African Plants as a Unique Resource for Bioactive Endophytic Microbes

    Directory of Open Access Journals (Sweden)

    Muna Ali Abdalla

    2018-05-01

    products from endophytic fungi and bacteria in southern Africa.

  7. Culturable bacterial endophytes isolated from Mangrove tree (Rhizophora apiculata Blume) enhance seedling growth in Rice.

    Science.gov (United States)

    Deivanai, Subramanian; Bindusara, Amitraghata Santhanam; Prabhakaran, Guruswamy; Bhore, Subhash Janardhan

    2014-07-01

    Endophytic bacteria do have several potential applications in medicine and in other various sectors of biotechnology including agriculture. Bacterial endophytes need to be explored for their potential applications in agricultural biotechnology. One of the potential applications of bacterial endophytes in agricultural is to enhance the growth of the agricultural crops. Hence, this study was undertaken to explore the plant growth promoting potential application of bacterial endophytes. The objective of this study was to examine the effect of endophytic bacteria from mangrove tree (Rhizophora apiculata Blume) for their efficacy in promoting seedling growth in rice. Eight endophytic bacterial isolates (EBIs) isolated from twig and petiole tissues of the mangrove were identified based on their 16S ribosomal ribonucleic acid (rRNA) gene sequence homology. Separately, surface sterilized paddy seeds were treated with cell-free broth and cell suspension of the EBIs. Rice seedlings were analyzed by various bioassays and data was recorded. The gene sequences of the isolates were closely related to two genera namely, Bacillus and Pantoea. Inoculation of EBIs from R. apiculata with rice seeds resulted in accelerated root and shoot growth with significant increase in chlorophyll content. Among the isolates, Pantoea ananatis (1MSE1) and Bacillus amyloliquefaciens (3MPE1) had shown predominance of activity. Endophytic invasion was recognized by the non-host by rapid accumulation of reactive oxygen species (ROS) and was counteracted by the production of hydrogen peroxide (H2O2) and lipid peroxide. The results demonstrated that EBIs from mangrove tree can increase the fitness of the rice seedlings under controlled conditions. These research findings could be useful to enhance the seedling growth and could serve as foundation in further research on enhancing the growth of the rice crop using endophytic bacteria.

  8. Beauveria bassiana as an endophyte

    DEFF Research Database (Denmark)

    McKinnon, Aimee C.; Saari, Susanna Talvikki; Moran-Diez, Maria E.

    2017-01-01

    In the last decade there has been increased focus on the potential of endophytic Beauveria bassiana for the biocontrol of insect herbivores. Generally, detection of endophytes is acknowledged to be problematic and recovery method-dependent. Herein, we critically analyse the methodology reported...... for the detection of B. bassiana as endophytes following experimental inoculation. In light of the methodology, we further review the effects of endophytic B. bassiana on insect herbivores. Our review indicated the need for stringent protocols for surface sterilisation including thorough experimental controls....... For molecular detection protocols by PCR, residual DNA from surface inocula must also be considered. The biocontrol potential of B. bassiana endophytes appears promising although both negative and neutral effects on insect herbivores were reported and there remains ambiguity with respect to the location...

  9. Antagonistic Bioactivity of Endophytic Actinomycetes Isolated from Medicinal Plants

    Directory of Open Access Journals (Sweden)

    M. Gangwar

    2011-10-01

    Full Text Available Endophytic actinomycetes are promising biocontrol agents for use in agriculture and have been isolated from various plant species. In the present study, 40 endophytic actinomycetes were isolated from roots, stems and leaves of three medicinal plants viz. Aloe vera, Mentha arvensis and Ocimum sanctum. The identification revealed that the majority of the isolates were Streptomyces spp. and the rest were identified as Saccharopolyspora spp., Micromonospora spp. and Actinopolyspora spp. The dual tests revealed that nine endophytic actinomycete isolates displayed a wide spectrum activity against nine fungal phytopathogens. Out of 8 isolates, 90% inhibited the growth of at least one or more phytopathogenic fungi and Saccharopolyspora 0-9 (Out of 8 isolates, 90% inhibited the growth of at least one or more phytopathogenic fungi and Saccharopolyspora 0-9 exhibited antagonistic activity against Aspergillus niger, Aspergillus flavus, Alternaria brassicicola, Botrytis cinerea, Penicillium digitatum, Fusarium oxysporum, Penicillium pinophilum, Phytophthora dresclea and Colletotrichum falcatum.

  10. Seleção de bactérias endofíticas de tomateiro como potenciais agentes de biocontrole e de promoção de crescimento Screening of endophytic bacteria isolated from tomato plants as potencial biocontrol agents and growth promotion

    Directory of Open Access Journals (Sweden)

    Patrícia Baston Barretti

    2009-01-01

    Full Text Available Quarenta isolados bacterianos endofíticos de plantas sadias de tomateiro foram avaliados quanto à sua potencialidade como agentes de biocontrole de doenças do tomateiro. Foi realizada, em casa de vegetação, uma seleção massal utilizando-se Pseudomonas syringae pv. tomato e Alternaria solani, como patógenos desafiantes. Com base na média do número de lesões por planta, quatro isolados foram selecionados como potenciais agentes de biocontrole dessas enfermidades fúngica e bacteriana do tomateiro. Esses isolados foram identificados, por meio do sequenciamento do gene 16S do DNA ribossômico, como Acinetobacter johnsonii (UFV-E05, Serratia marcescens (UFV-E13, Sinorhizobium sp. (UFV-E25 e Bacillus megaterium (UFV-E26. Os mesmos isolados selecionados para o biocontrole também foram avaliados quanto à sua capacidade de promover o crescimento em plantas e somente S. marcescens (UFV-E13 proporcionou aumento na altura das plantas.Forty isolates of endophytic bacteria obtained from healthy tomato plants were tested for their potential as biocontrol agents of tomato diseases. A massal screening was performed at greenhouse using Pseudomonas syringae pv. tomato and Alternaria solani as challenging pathogens. Based on the average number of lesions per plant, four isolates were selected as potential agents of biocontrol of these tomato diseases caused by fungi and bacteria. These isolates were identified by 16S ribosomal DNA sequence analysis as Acinetobacter johnsonii (UFV-E05, Serratia marcescens (UFV-E13, Sinorhizobium sp. (UFV-E25 and Bacillus megaterium (UFV-E26. The four endophytes selected for biocontrol were also evaluated for their ability of promoting plant growth and only S. marcescens (UFV-E13 presented increase in the height of the plants.

  11. Isolation and identification of resveratrol-producing endophytes from wine grape Cabernet Sauvignon.

    Science.gov (United States)

    Liu, Ya; Nan, Lijun; Liu, Junchao; Yan, Haiyan; Zhang, Dianpeng; Han, Xinnian

    2016-01-01

    Obtain endophyte strains with effective resveratrol production from superior grapevine variety Cabernet Sauvignon in Xinjiang and determine related taxonomic position of the strain. Seventy-three strains of endophytes, including 23 strains of bacteria, 14 ones of actinomycetes, 24 fungus and 12 yeasts, were isolated, respectively. The distribution law of endophytes was spring (30.14 %) = summer (30.14 %) < autumn (39.73 %) in different seasons, while the fruit (12.33 %) < leaf (20.55 %) < stem (32.88 %) < root (34.25 %) in different tissues and organs. From the 36 strains of endophytic fungi isolated, seven strains producing polyphenols were screened by ferric chloride-potassium ferricyanide color reaction. C2J6, stable genetic properties producing highly 1.48 mg L(-1) of resveratrol, was identified as Aspergillus niger by 26S rDNA-ITS sequence analysis after thin-layer chromatography sieve analysis, ultra violet wavelength scanning and high performance liquid chromatography, respectively. There were the certain number and kinds of endophytes in the various tissues of Cabernet Sauvignon, which, to a certain extent, reflected the biological diversity of plant endophytes. The fact that the fungus C2J6 producing resveratrol in grape was acquired attested the special ability of the endophytes to produce the same or similar bioactive substances as the host plants.

  12. Maize Endophytic Bacterial Diversity as Affected by Soil Cultivation History.

    Science.gov (United States)

    Correa-Galeote, David; Bedmar, Eulogio J; Arone, Gregorio J

    2018-01-01

    The bacterial endophytic communities residing within roots of maize ( Zea mays L.) plants cultivated by a sustainable management in soils from the Quechua maize belt (Peruvian Andes) were examined using tags pyrosequencing spanning the V4 and V5 hypervariable regions of the 16S rRNA. Across four replicate libraries, two corresponding to sequences of endophytic bacteria from long time maize-cultivated soils and the other two obtained from fallow soils, 793 bacterial sequences were found that grouped into 188 bacterial operational taxonomic units (OTUs, 97% genetic similarity). The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from fallow soils. A mean of 30 genera were found in the fallow soil libraries and 47 were in those from the maize-cultivated soils. Both alpha and beta diversity indexes showed clear differences between bacterial endophytic populations from plants with different soil cultivation history and that the soils cultivated for long time requires a higher diversity of endophytes. The number of sequences corresponding to main genera Sphingomonas, Herbaspirillum, Bradyrhizobium and Methylophilus in the maize-cultivated libraries were statistically more abundant than those from the fallow soils. Sequences of genera Dyella and Sreptococcus were significantly more abundant in the libraries from the fallow soils. Relative abundance of genera Burkholderia, candidatus Glomeribacter, Staphylococcus, Variovorax, Bacillus and Chitinophaga were similar among libraries. A canonical correspondence analysis of the relative abundance of the main genera showed that the four libraries distributed in two clearly separated groups. Our results suggest that cultivation history is an important driver of endophytic colonization of maize and that after a long time of cultivation of the soil the maize plants need to increase the richness of the bacterial endophytes communities.

  13. Azoarcus sp. CIB, an anaerobic biodegrader of aromatic compounds shows an endophytic lifestyle.

    Directory of Open Access Journals (Sweden)

    Helga Fernández

    Full Text Available BACKGROUND: Endophytic bacteria that have plant growth promoting traits are of great interest in green biotechnology. The previous thought that the Azoarcus genus comprises bacteria that fit into one of two major eco-physiological groups, either free-living anaerobic biodegraders of aromatic compounds or obligate endophytes unable to degrade aromatics under anaerobic conditions, is revisited here. METHODOLOGY/PRINCIPAL FINDINGS: Light, confocal and electron microscopy reveal that Azoarcus sp. CIB, a facultative anaerobe β-proteobacterium able to degrade aromatic hydrocarbons under anoxic conditions, is also able to colonize the intercellular spaces of the rice roots. In addition, the strain CIB displays plant growth promoting traits such nitrogen fixation, uptake of insoluble phosphorus and production of indoleacetic acid. Therefore, this work demonstrates by the first time that a free-living bacterium able to degrade aromatic compounds under aerobic and anoxic conditions can share also an endophytic lifestyle. The phylogenetic analyses based on the 16S rDNA and nifH genes confirmed that obligate endophytes of the Azoarcus genus and facultative endophytes, such as Azoarcus sp. CIB, locate into different evolutionary branches. CONCLUSIONS/SIGNIFICANCE: This is the first report of a bacterium, Azoarcus sp. CIB, able to degrade anaerobically a significant number of aromatic compounds, some of them of great environmental concern, and to colonize the rice as a facultative endophyte. Thus, Azoarcus sp. CIB becomes a suitable candidate for a more sustainable agricultural practice and phytoremediation technology.

  14. Ecology and Genomic Insights into Plant-Pathogenic and Plant-Nonpathogenic Endophytes.

    Science.gov (United States)

    Brader, Günter; Compant, Stéphane; Vescio, Kathryn; Mitter, Birgit; Trognitz, Friederike; Ma, Li-Jun; Sessitsch, Angela

    2017-08-04

    Plants are colonized on their surfaces and in the rhizosphere and phyllosphere by a multitude of different microorganisms and are inhabited internally by endophytes. Most endophytes act as commensals without any known effect on their plant host, but multiple bacteria and fungi establish a mutualistic relationship with plants, and some act as pathogens. The outcome of these plant-microbe interactions depends on biotic and abiotic environmental factors and on the genotype of the host and the interacting microorganism. In addition, endophytic microbiota and the manifold interactions between members, including pathogens, have a profound influence on the function of the system plant and the development of pathobiomes. In this review, we elaborate on the differences and similarities between nonpathogenic and pathogenic endophytes in terms of host plant response, colonization strategy, and genome content. We furthermore discuss environmental effects and biotic interactions within plant microbiota that influence pathogenesis and the pathobiome.

  15. Mangrove endophyte promotes reforestation tree (Acacia polyphylla) growth

    OpenAIRE

    Castro, Renata Assis; Dourado, Manuella Nóbrega; Almeida, Jaqueline Raquel de; Lacava, Paulo Teixeira; Nave, André; Melo, Itamar Soares de; Azevedo, João Lucio de; Quecine, Maria Carolina

    2018-01-01

    ABSTRACT Mangroves are ecosystems located in the transition zone between land and sea that serve as a potential source of biotechnological resources. Brazil's extensive coast contains one of the largest mangrove forests in the world (encompassing an area of 25,000 km2 along all the coast). Endophytic bacteria were isolated from the following three plant species: Rhizophora mangle, Laguncularia racemosa and Avicennia nitida. A large number of these isolates, 115 in total, were evaluated for th...

  16. Mangrove endophyte promotes reforestation tree (Acacia polyphylla) growth

    OpenAIRE

    Castro, Renata Assis; Dourado, Manuella Nóbrega; Almeida, Jaqueline Raquel de; Lacava, Paulo Teixeira; Nave, André; Melo, Itamar Soares de; Azevedo, João Lucio de; Quecine, Maria Carolina

    2017-01-01

    Mangroves are ecosystems located in the transition zone between land and sea that serve as a potential source of biotechnological resources. Brazil's extensive coast contains one of the largest mangrove forests in the world (encompassing an area of 25,000 km2 along all the coast). Endophytic bacteria were isolated from the following three plant species: Rhizophora mangle, Laguncularia racemosa and Avicennia nitida. A large number of these isolates, 115 in total, were evaluated for their abili...

  17. High-yielding Wheat Varieties Harbour Superior Plant Growth Promoting-Bacterial Endophytes

    Directory of Open Access Journals (Sweden)

    Mehwish Yousaf

    2017-06-01

    Full Text Available Background and Objective: The purpose of this study was to compare the endophytic microbial flora of different wheat varieties to check whether a better yielding variety also harbours superior plant growth promoting bacteria. Such bacteria are helpful in food biotechnology as their application can enhance the yield of the crop.Material and Methods: Three wheat varieties (Seher, Faisalabad and Lasani were selected, Seher being the most superior variety. endophytic bacteria were isolated from the histosphere of the leaves and roots at different growth phases of the plants. The isolates were analyzed for plant growth promoting activities. Isolates giving best results were identified through 16S rRNA gene sequencing. Statistical analysis was done using Microsoft Excel 2013. All the experiments were conducted in triplicates.Results and Conclusion: The endophytes of Seher variety showed maximum plant growth promoting abilities. Among the shoot endophytes, the highest auxin production was shown by Seher isolate SHHP1-3 up to 51.9μg ml-1, whereas in the case of root endophytes, the highest auxin was produced by SHHR1-5 up to 36 μg ml-1. The bacteria showing significant plant growth promoting abilities were identified by 16S rRNA sequencing. Bacillus, Proteobacteria and Actinobacteria species were the dominant bacteria showing all the traits of plant growth promotion. It can be concluded that Seher variety harbours superior plant growth promoting endophytes that must be one of the reasons for its better growth and yield as compared to the other two varieties. The investigated results support possible utilization of the selected isolates in wheat growth promotion with respect to increase in agro-productivity. The application of such bacteria could be useful to enhance wheat yield and can help in food biotechnology.Conflict of interest: The authors declare no conflict of interest.

  18. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Science.gov (United States)

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  19. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Directory of Open Access Journals (Sweden)

    Tao Ding

    Full Text Available Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  20. Plant Growth, Antibiotic Uptake, and Prevalence of Antibiotic Resistance in an Endophytic System of Pakchoi under Antibiotic Exposure

    Directory of Open Access Journals (Sweden)

    Hao Zhang

    2017-11-01

    Full Text Available Antibiotic contamination in agroecosystems may cause serious problems, such as the proliferation of various antibiotic resistant bacteria and the spreading of antibiotic resistance genes (ARGs in the environment or even to human beings. However, it is unclear whether environmental antibiotics, antibiotic resistant bacteria, and ARGs can directly enter into, or occur in, the endophytic systems of plants exposed to pollutants. In this study, a hydroponic experiment exposing pakchoi (Brassica chinensis L. to tetracycline, cephalexin, and sulfamethoxazole at 50% minimum inhibitory concentration (MIC levels and MIC levels, respectively, was conducted to explore plant growth, antibiotic uptake, and the development of antibiotic resistance in endophytic systems. The three antibiotics promoted pakchoi growth at 50% MIC values. Target antibiotics at concentrations ranging from 6.9 to 48.1 µg·kg−1 were detected in the treated vegetables. Additionally, the rates of antibiotic-resistant endophytic bacteria to total cultivable endophytic bacteria significantly increased as the antibiotics accumulated in the plants. The detection and quantification of ARGs indicated that four types, tetX, blaCTX-M, and sul1 and sul2, which correspond to tetracycline, cephalexin, and sulfamethoxazole resistance, respectively, were present in the pakchoi endophytic system and increased with the antibiotic concentrations. The results highlight a potential risk of the development and spread of antibiotic resistance in vegetable endophytic systems.

  1. Plant Growth, Antibiotic Uptake, and Prevalence of Antibiotic Resistance in an Endophytic System of Pakchoi under Antibiotic Exposure.

    Science.gov (United States)

    Zhang, Hao; Li, Xunan; Yang, Qingxiang; Sun, Linlin; Yang, Xinxin; Zhou, Mingming; Deng, Rongzhen; Bi, Linqian

    2017-11-03

    Antibiotic contamination in agroecosystems may cause serious problems, such as the proliferation of various antibiotic resistant bacteria and the spreading of antibiotic resistance genes (ARGs) in the environment or even to human beings. However, it is unclear whether environmental antibiotics, antibiotic resistant bacteria, and ARGs can directly enter into, or occur in, the endophytic systems of plants exposed to pollutants. In this study, a hydroponic experiment exposing pakchoi ( Brassica chinensis L.) to tetracycline, cephalexin, and sulfamethoxazole at 50% minimum inhibitory concentration (MIC) levels and MIC levels, respectively, was conducted to explore plant growth, antibiotic uptake, and the development of antibiotic resistance in endophytic systems. The three antibiotics promoted pakchoi growth at 50% MIC values. Target antibiotics at concentrations ranging from 6.9 to 48.1 µg·kg -1 were detected in the treated vegetables. Additionally, the rates of antibiotic-resistant endophytic bacteria to total cultivable endophytic bacteria significantly increased as the antibiotics accumulated in the plants. The detection and quantification of ARGs indicated that four types, tet X, bla CTX-M , and sul 1 and sul 2, which correspond to tetracycline, cephalexin, and sulfamethoxazole resistance, respectively, were present in the pakchoi endophytic system and increased with the antibiotic concentrations. The results highlight a potential risk of the development and spread of antibiotic resistance in vegetable endophytic systems.

  2. Endophytic microorganisms--promising applications in bioremediation of greenhouse gases.

    Science.gov (United States)

    Stępniewska, Z; Kuźniar, A

    2013-11-01

    Bioremediation is a technique that uses microbial metabolism to remove pollutants. Various techniques and strategies of bioremediation (e.g., phytoremediation enhanced by endophytic microorganisms, rhizoremediation) can mainly be used to remove hazardous waste from the biosphere. During the last decade, this specific technique has emerged as a potential cleanup tool only for metal pollutants. This situation has changed recently as a possibility has appeared for bioremediation of other pollutants, for instance, volatile organic compounds, crude oils, and radionuclides. The mechanisms of bioremediation depend on the mobility, solubility, degradability, and bioavailability of contaminants. Biodegradation of pollutions is associated with microbial growth and metabolism, i.e., factors that have an impact on the process. Moreover, these factors have a great influence on degradation. As a result, recognition of natural microbial processes is indispensable for understanding the mechanisms of effective bioremediation. In this review, we have emphasized the occurrence of endophytic microorganisms and colonization of plants by endophytes. In addition, the role of enhanced bioremediation by endophytic bacteria and especially of phytoremediation is presented.

  3. Endophytes in commercial micropropagation - friend or foe?

    Directory of Open Access Journals (Sweden)

    Rödel, Philipp

    2016-07-01

    Full Text Available Medicinal and aromatic plants are superorganisms like all plant species- naturally colonized by bacteria, fungi and protists. Micropropagated plants are facing different challenges under in vitro and ex vitro conditions: Mixotrophic growth under low light conditions on artificial nutrient media, poor gas exchange in small vessels, abiotic stress, bad rooting, transplanting stress, low survival rate during acclimatization in greenhouse. The use of endophytes in micropropagation can improve plant growth, yield, and health and induce tolerance to abiotic and biotic stress. A tool for the use of competent endophytes in micropropagation under in vitro and ex vitro conditions is “biotization” of plantlets with useful bacterial and fungal inocula. Fungal inocula which are used commercially are e.g. arbuscular mycorrhizal fungi in form of spores and extraradical mycelium on different carrier materials like expanded clay, vermiculite, sand or peat. Furthermore representatives of the root fungal genus Trichoderma are applied as spores formulated in powder. Plantgrowth promoting rhizobacteria of the important genera Bacillus, Pseudomonas, Azospirillum and Azotobacter in form of lyophilised endospores/bacterial cells in powder or liquid formulation are also available on the market.

  4. Novas bactérias diazotróficas endofíticas na cultura do trigo em interação com a adubação nitrogenada, no campo Interaction of new diazotrophic endophytic bacteria and nitrogen fertilization on wheat crop under field conditions

    Directory of Open Access Journals (Sweden)

    Valeria Marino Rodrigues Sala

    2008-06-01

    of new homologous isolates of endophytic diazotrophic bacteria on wheat genotypes, under varying nitrogen doses. Three strains of endophytic diazotrophic bacteria (IAC-AT-8- Azospirillum brasiliense, IAC-HT-11- Achromobacter insolitus, IAC-HT-12- Zoogloea ramigera were tested on two wheat genotypes (ITD- 19-Triticum durum L. and IAC-370-Triticum aestivum hard L. under three doses of nitrogen fertilizer (0, 60 and 120 kg ha-1. Shoot dry matter, shoot N accumulation and N efficiency index were evaluated at tillering and at physiological maturity. Grain yield, yield components and the harvest index for biomass and N were evaluated at harvest. At the tillering stage, only the biomass production of genotype IAC- 370 was increased by Azospirillum brasiliense and Achromobacter insolitus inoculation and N addition. However, the effect of these new diazotrophic endophytic bacteria strains was not genotype-specific for other parameters. Azospirillum brasiliense inoculation increased spike N content. At the highest nitrogen level (120 kg ha-1, Achromobacter insolitus increased the grain yield. Although inoculation did not substitute N fertilizers, it had a positive effect on the farmers' profit.

  5. Mangrove endophyte promotes reforestation tree (Acacia polyphylla growth

    Directory of Open Access Journals (Sweden)

    Renata Assis Castro

    Full Text Available ABSTRACT Mangroves are ecosystems located in the transition zone between land and sea that serve as a potential source of biotechnological resources. Brazil's extensive coast contains one of the largest mangrove forests in the world (encompassing an area of 25,000 km2 along all the coast. Endophytic bacteria were isolated from the following three plant species: Rhizophora mangle, Laguncularia racemosa and Avicennia nitida. A large number of these isolates, 115 in total, were evaluated for their ability to fix nitrogen and solubilize phosphorous. Bacteria that tested positive for both of these tests were examined further to determine their level of indole acetic acid production. Two strains with high indole acetic acid production were selected for use as inoculants for reforestation trees, and then the growth of the plants was evaluated under field conditions. The bacterium Pseudomonas fluorescens (strain MCR1.10 had a low phosphorus solubilization index, while this index was higher in the other strain used, Enterobacter sp. (strain MCR1.48. We used the reforestation tree Acacia polyphylla. The results indicate that inoculation with the MCR1.48 endophyte increases Acacia polyphylla shoot dry mass, demonstrating that this strain effectively promotes the plant's growth and fitness, which can be used in the seedling production of this tree. Therefore, we successfully screened the biotechnological potential of endophyte isolates from mangrove, with a focus on plant growth promotion, and selected a strain able to provide limited nutrients and hormones for in plant growth.

  6. Effects of growth stage and fulvic acid on the diversity and dynamics of endophytic bacterial community in Stevia rebaudiana Bertoni leaves

    Science.gov (United States)

    Yu, Xuejian; Yang, Jinshui; Wang, Entao; Li, Baozhen; Yuan, Hongli

    2015-01-01

    The aim of this study was to learn the interactions among the endophytic bacteria, the plant growth, the foliar spray of fulvic acid, and the accumulation of steviol glycosides in the leaves of Stevia rebaudiana. Metagenomic DNA was extracted from the Stevia leaves at different growth stages with or without the fulvic acid treatment; and the diversity of endophytic bacteria in Stevia leaves was estimated by pyrosequencing of 16S rRNA genes. As results, Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes were found to be the dominant phyla despite the growth stages and fulvic acid application. Stevia growth stages strongly regulated composition of endophytic community. The genera Agrobacterium (12.3%) and Erwinia (7.2%) dominated in seedling stage were apparently declined in the vegetable and initial flowering stages, while Sphingomonas and Methylobacterium increased in mature leaves at harvest time, which showed that the mature leaves of Stevia preferred to accumulate some certain endophytic bacteria. Sphingomonas and Methylobacterium constituted an important part of the core endophytic community and were positively correlated with the stevioside content and UGT74G1 gene expression, respectively; while Erwinia, Agrobacterium, and Bacillus were negatively correlated with the stevioside accumulation. Fulvic acid treatment accelerated the variation of endophytes along the growth stages and increased the steviol glycosides content. This is the first study to reveal the community composition of endophytic bacteria in the Stevia leaves, to evidence the strong effects of growth stage and fulvic acid application on the endophytes of Stevia, and to demonstrate the correlation between the endophytic bacteria and the steviol glycosides accumulation. PMID:26379644

  7. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology.

    Science.gov (United States)

    Johnston-Monje, David; Raizada, Manish N

    2011-01-01

    Endophytes are non-pathogenic microbes living inside plants. We asked whether endophytic species were conserved in the agriculturally important plant genus Zea as it became domesticated from its wild ancestors (teosinte) to modern maize (corn) and moved from Mexico to Canada. Kernels from populations of four different teosintes and 10 different maize varieties were screened for endophytic bacteria by culturing, cloning and DNA fingerprinting using terminal restriction fragment length polymorphism (TRFLP) of 16S rDNA. Principle component analysis of TRFLP data showed that seed endophyte community composition varied in relation to plant host phylogeny. However, there was a core microbiota of endophytes that was conserved in Zea seeds across boundaries of evolution, ethnography and ecology. The majority of seed endophytes in the wild ancestor persist today in domesticated maize, though ancient selection against the hard fruitcase surrounding seeds may have altered the abundance of endophytes. Four TRFLP signals including two predicted to represent Clostridium and Paenibacillus species were conserved across all Zea genotypes, while culturing showed that Enterobacter, Methylobacteria, Pantoea and Pseudomonas species were widespread, with γ-proteobacteria being the prevalent class. Twenty-six different genera were cultured, and these were evaluated for their ability to stimulate plant growth, grow on nitrogen-free media, solubilize phosphate, sequester iron, secrete RNAse, antagonize pathogens, catabolize the precursor of ethylene, produce auxin and acetoin/butanediol. Of these traits, phosphate solubilization and production of acetoin/butanediol were the most commonly observed. An isolate from the giant Mexican landrace Mixteco, with 100% identity to Burkholderia phytofirmans, significantly promoted shoot potato biomass. GFP tagging and maize stem injection confirmed that several seed endophytes could spread systemically through the plant. One seed isolate

  8. Conservation and Diversity of Seed Associated Endophytes in Zea across Boundaries of Evolution, Ethnography and Ecology

    Science.gov (United States)

    Johnston-Monje, David; Raizada, Manish N.

    2011-01-01

    Endophytes are non-pathogenic microbes living inside plants. We asked whether endophytic species were conserved in the agriculturally important plant genus Zea as it became domesticated from its wild ancestors (teosinte) to modern maize (corn) and moved from Mexico to Canada. Kernels from populations of four different teosintes and 10 different maize varieties were screened for endophytic bacteria by culturing, cloning and DNA fingerprinting using terminal restriction fragment length polymorphism (TRFLP) of 16S rDNA. Principle component analysis of TRFLP data showed that seed endophyte community composition varied in relation to plant host phylogeny. However, there was a core microbiota of endophytes that was conserved in Zea seeds across boundaries of evolution, ethnography and ecology. The majority of seed endophytes in the wild ancestor persist today in domesticated maize, though ancient selection against the hard fruitcase surrounding seeds may have altered the abundance of endophytes. Four TRFLP signals including two predicted to represent Clostridium and Paenibacillus species were conserved across all Zea genotypes, while culturing showed that Enterobacter, Methylobacteria, Pantoea and Pseudomonas species were widespread, with γ-proteobacteria being the prevalent class. Twenty-six different genera were cultured, and these were evaluated for their ability to stimulate plant growth, grow on nitrogen-free media, solubilize phosphate, sequester iron, secrete RNAse, antagonize pathogens, catabolize the precursor of ethylene, produce auxin and acetoin/butanediol. Of these traits, phosphate solubilization and production of acetoin/butanediol were the most commonly observed. An isolate from the giant Mexican landrace Mixteco, with 100% identity to Burkholderia phytofirmans, significantly promoted shoot potato biomass. GFP tagging and maize stem injection confirmed that several seed endophytes could spread systemically through the plant. One seed isolate

  9. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology.

    Directory of Open Access Journals (Sweden)

    David Johnston-Monje

    Full Text Available Endophytes are non-pathogenic microbes living inside plants. We asked whether endophytic species were conserved in the agriculturally important plant genus Zea as it became domesticated from its wild ancestors (teosinte to modern maize (corn and moved from Mexico to Canada. Kernels from populations of four different teosintes and 10 different maize varieties were screened for endophytic bacteria by culturing, cloning and DNA fingerprinting using terminal restriction fragment length polymorphism (TRFLP of 16S rDNA. Principle component analysis of TRFLP data showed that seed endophyte community composition varied in relation to plant host phylogeny. However, there was a core microbiota of endophytes that was conserved in Zea seeds across boundaries of evolution, ethnography and ecology. The majority of seed endophytes in the wild ancestor persist today in domesticated maize, though ancient selection against the hard fruitcase surrounding seeds may have altered the abundance of endophytes. Four TRFLP signals including two predicted to represent Clostridium and Paenibacillus species were conserved across all Zea genotypes, while culturing showed that Enterobacter, Methylobacteria, Pantoea and Pseudomonas species were widespread, with γ-proteobacteria being the prevalent class. Twenty-six different genera were cultured, and these were evaluated for their ability to stimulate plant growth, grow on nitrogen-free media, solubilize phosphate, sequester iron, secrete RNAse, antagonize pathogens, catabolize the precursor of ethylene, produce auxin and acetoin/butanediol. Of these traits, phosphate solubilization and production of acetoin/butanediol were the most commonly observed. An isolate from the giant Mexican landrace Mixteco, with 100% identity to Burkholderia phytofirmans, significantly promoted shoot potato biomass. GFP tagging and maize stem injection confirmed that several seed endophytes could spread systemically through the plant. One seed

  10. Endophytic fungal communities associated with field-grown soybean roots and seeds in the Huang-Huai region of China

    Directory of Open Access Journals (Sweden)

    Hongjun Yang

    2018-04-01

    Full Text Available Plants depend on beneficial interactions between roots and fungal endophytes for growth, disease suppression, and stress tolerance. In this study, we characterized the endophytic fungal communities associated with the roots and corresponding seeds of soybeans grown in the Huang-Huai region of China. For the roots, we identified 105 and 50 genera by culture-independent and culture-dependent (CD methods, respectively, and isolated 136 fungal strains (20 genera from the CD samples. Compared with the 52 soybean endophytic fungal genera reported in other countries, 28 of the genera we found were reported, and 90 were newly discovered. Even though Fusarium was the most abundant genus of fungal endophyte in every sample, soybean root samples from three cities exhibited diverse endophytic fungal communities, and the results between samples of roots and seeds were also significantly different. Together, we identified the major endophytic fungal genera in soybean roots and seeds, and revealed that the diversity of soybean endophytic fungal communities was influenced by geographical effects and tissues. The results will facilitate a better understanding of soybean–endophytic fungi interaction systems and will assist in the screening and utilization of beneficial microorganisms to promote healthy of plants such as soybean.

  11. Root bacterial endophytes alter plant phenotype, but not physiology

    DEFF Research Database (Denmark)

    Henning, Jeremiah A.; Weston, David J.; Pelletier, Dale A.

    2016-01-01

    (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, net photosynthesis, net photosynthesis at saturating light-Asat, and saturating CO2-Amax). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf...... growth rate up to 137% relative to non-inoculated control plants, evidence that plants respond to bacteria by modifying morphology. However, endophyte inoculation had no influence on total plant biomass and photosynthetic traits (net photosynthesis, chlorophyll content). In sum, bacterial inoculation did......Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant...

  12. Endophytic bacterial diversity in the phyllosphere of Amazon Paullinia cupana associated with asymptomatic and symptomatic anthracnose.

    Science.gov (United States)

    Bogas, Andréa Cristina; Ferreira, Almir José; Araújo, Welington Luiz; Astolfi-Filho, Spartaco; Kitajima, Elliot Watanabe; Lacava, Paulo Teixeira; Azevedo, João Lúcio

    2015-01-01

    Endophytes colonize an ecological niche similar to that of phytopathogens, which make them candidate for disease suppression. Anthracnose is a disease caused by Colletotrichum spp., a phytopathogen that can infect guarana (Paullinia cupana), an important commercial crop in the Brazilian Amazon. We investigated the diversity of endophytic bacteria inhabiting the phyllosphere of asymptomatic and symptomatic anthracnose guarana plants. The PCR-denaturation gradient gel electrophoresis (PCR-DGGE) fingerprints revealed differences in the structure of the evaluated communities. Detailed analysis of endophytic bacteria composition using culture-dependent and 16S rRNA clone libraries revealed the presence of Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, and Acidobacteria phyla. Firmicutes comprised the majority of isolates in asymptomatic plants (2.40E(-4)). However, cloning and sequencing of 16S rRNA revealed differences at the genus level for Neisseria (1.4E(-4)), Haemophilus (2.1E(-3)) and Arsenophonus (3.6E(-5)) in asymptomatic plants, Aquicella (3.5E(-3)) in symptomatic anthracnose plants, and Pseudomonas (1.1E(-3)), which was mainly identified in asymptomatic plants. In cross-comparisons of the endophytic bacterial communities as a whole, symptomatic anthracnose plants contained higher diversity, as reflected in the Shannon-Weaver and Simpson indices estimation (P anthracnose can restructure endophytic bacterial communities by selecting certain strains in the phyllosphere of P. cupana. The understanding of these interactions is important for the development of strategies of biocontrol for Colletotrichum.

  13. Fungal Endophytes: Beyond Herbivore Management

    Directory of Open Access Journals (Sweden)

    Bamisope S. Bamisile

    2018-03-01

    Full Text Available The incorporation of entomopathogenic fungi as biocontrol agents into Integrated Pest Management (IPM programs without doubt, has been highly effective. The ability of these fungal pathogens such as Beauveria bassiana and Metarhizium anisopliae to exist as endophytes in plants and protect their colonized host plants against the primary herbivore pests has widely been reported. Aside this sole role of pest management that has been traditionally ascribed to fungal endophytes, recent findings provided evidence of other possible functions as plant yield promoter, soil nutrient distributor, abiotic stress and drought tolerance enhancer in plants. However, reports on these additional important effects of fungal endophytes on the colonized plants remain scanty. In this review, we discussed the various beneficial effects of endophytic fungi on the host plants and their primary herbivore pests; as well as some negative effects that are relatively unknown. We also highlighted the prospects of our findings in further increasing the acceptance of fungal endophytes as an integral part of pest management programs for optimized crop production.

  14. Life without a cell membrane: Challenging the specificity of bacterial endophytes within Bryopsis (Bryopsidales, Chlorophyta

    Directory of Open Access Journals (Sweden)

    Hollants Joke

    2011-11-01

    Full Text Available Abstract Background The siphonous green macroalga Bryopsis has some remarkable characteristics. Besides hosting a rich endophytic bacterial flora, Bryopsis also displays extraordinary wound repair and propagation mechanisms. This latter feature includes the formation of protoplasts which can survive in the absence of a cell membrane for several minutes before regenerating into new individuals. This transient 'life without a membrane' state, however, challenges the specificity of the endophytic bacterial communities present and raises the question whether these bacteria are generalists, which are repeatedly acquired from the environment, or if there is some specificity towards the Bryopsis host. Results To answer this question, we examined the temporal stability and the uniqueness of endobiotic bacterial communities within Bryopsis samples from the Mexican west coast after prolonged cultivation. DGGE analysis revealed that Bryopsis endophytic bacterial communities are rather stable and clearly distinct from the epiphytic and surrounding cultivation water bacterial communities. Although these endogenous communities consist of both facultative and obligate bacteria, results suggest that Bryopsis owns some intrinsic mechanisms to selectively maintain and/or attract specific bacteria after repeated wounding events in culture. Conclusions This suggests that Bryopsis algae seem to master transient stages of life without a cell membrane well as they harbor specific - and possibly ecological significant - endophytic bacteria.

  15. Endophytic fungi and soil microbial community characteristics over different years of phytoremediation in a copper tailings dam of Shanxi, China.

    Science.gov (United States)

    Tong, Jia; Miaowen, Cao; Juhui, Jing; Jinxian, Liu; Baofeng, Chai

    2017-01-01

    We conducted a survey of native grass species infected by endophytic fungi in a copper tailings dam over progressive years of phytoremediation. We investigated how endophytic fungi, soil microbial community structure and soil physiochemical properties and enzymatic activity varied in responses to heavy metal pollution over different stages of phytoremediation. endophyte infection frequency increased with years of phytoremediation. Rates of endophyte infection varied among different natural grass species in each sub-dam. Soil carbon content and soil enzymatic activity gradually increased through the years of phytoremediation. endophyte infection rates of Bothriochloa ischaemum and Festuca rubra were positively related to levels of cadmium (Cd) pollution levels, and fungal endophytes associated with Imperata cylindrical and Elymus dahuricus developed tolerance to lead (Pb). The structure and relative abundance of bacterial communities varied little over years of phytoremediation, but there was a pronounced variation in soil fungi types. Leotiomycetes were the dominant class of resident fungi during the initial phytoremediation period, but Pezizomycetes gradually became dominant as the phytoremediation period progressed. Fungal endophytes in native grasses as well as soil fungi and soil bacteria play different ecological roles during phytoremediation processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A new dimeric anthraquinone from endophytic Talaromyces sp. YE3016.

    Science.gov (United States)

    Xie, Xiao-Song; Fang, Xiao-Wei; Huang, Rong; Zhang, Shou-Peng; Wei, Hong-Xia; Wu, Shao-Hua

    2016-08-01

    A new unsymmetrical dimeric anthraquinone, 3-demethyl-3-(2-hydroxypropyl)-skyrin (1) was isolated from the solid-state fermentation extract of an endophytic fungal strain Talaromyces sp. YE 3016, together with five known compounds, skyrin (2), oxyskyrin (3), emodin (4), 1,3,6-trihydroxy-8-methyl-anthraquinone (5) and ergosterol (6). The structure of the new compound was elucidated on the basis of spectroscopic analysis. Compounds 1-3 exhibited moderate cytotoxic activities against MCF-7 cell line.

  17. Inconsistency of the biological control of Meloidogyne incognita race 2 in melon by endophytic bacteria Inconsistência do controle biológico de Meloidogyne incognita raça 2 em meloeiro por bactérias endofíticas

    Directory of Open Access Journals (Sweden)

    Jeane E de Medeiros

    2009-09-01

    Full Text Available We obtained 61 rhizobacterium isolates from rhizosphere soil samples collected in melon commercial fields located in Mossoró, Rio Grande do Norte State, Brazil. These isolates, along with 56 endophytic bacteria from the Collection of Cultures of the Plant Bacteriology Laboratory of the Universidade Federal Rural de Pernambuco, were tested for controlling Meloidogyne incognita race 2 in melon. To infest the soil with nematodes, 1000 eggs of Meloidogyne incognita race 2 per plant were placed in pots where seedlings of the yellow-type melon, cultivar AF 682, were growing for 10 days. Two days before, 20 mL of bacterial suspension (0.7 OD570nm were poured into each pot. After 60 days, fresh root biomass, gall index, egg mass, and the nematode reproduction factor were assessed. Among the 117 isolates screened, the endophytic Bacillus ENM7, ENM10, and ENM51 were selected because they significantly reduced egg mass and/or gall index. However, when tested again, separately and in mixtures, these isolates nor confirmed their efficiency in vivo, neither affected juvenile emergence in vitro. These results give evidence on the inconsistency of using endophytic-bacteria in the control of M. incognita race 2 in melon.A partir de amostras de solo coletadas em plantios comerciais de meloeiro, situados em Mossoró-RN, foram obtidos 61 isolados de rizobactérias que, juntamente com outros 56 isolados endofíticos pertencentes à Coleção de Culturas do Laboratório de Fitobacteriologia da Universidade Federal Rural de Pernambuco, foram avaliados para o controle de Meloidogyne incognita raça 2 em melão. Plantas de meloeiro Amarelo, cultivar AF 682, com dez dias de idade tiveram o solo infestado com 1000 ovos de M. incognita raça 2 por planta. Dois dias antes, foram depositados em cada vaso 20 mL da suspensão bacteriana (DO570nm = 0,7. Decorridos 60 dias, foram determinados a biomassa fresca das raízes, os índices de galhas e de massa de ovos e o fator de

  18. Endophytic bacterial community living in roots of healthy and 'Candidatus Phytoplasma mali'-infected apple (Malus domestica, Borkh.) trees.

    Science.gov (United States)

    Bulgari, Daniela; Bozkurt, Adem I; Casati, Paola; Cağlayan, Kadriye; Quaglino, Fabio; Bianco, Piero A

    2012-11-01

    'Candidatus Phytoplasma mali', the causal agent of apple proliferation (AP) disease, is a quarantine pathogen controlled by chemical treatments against insect vectors and eradication of diseased plants. In accordance with the European Community guidelines, novel strategies should be developed for sustainable management of plant diseases by using resistance inducers (e.g. endophytes). A basic point for the success of this approach is the study of endophytic bacteria associated with plants. In the present work, endophytic bacteria living in healthy and 'Ca. Phytoplasma mali'-infected apple trees were described by cultivation-dependent and independent methods. 16S rDNA sequence analysis showed the presence of the groups Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Chlamydiae, and Firmicutes. In detail, library analyses underscored 24 and 17 operational taxonomic units (OTUs) in healthy and infected roots, respectively, with a dominance of Betaproteobacteria. Moreover, differences in OTUs number and in CFU/g suggested that phytoplasmas could modify the composition of endophytic bacterial communities associated with infected plants. Intriguingly, the combination of culturing methods and cloning analysis allowed the identification of endophytic bacteria (e.g. Bacillus, Pseudomonas, and Burkholderia) that have been reported as biocontrol agents. Future research will investigate the capability of these bacteria to control 'Ca. Phytoplasma mali' in order to develop sustainable approaches for managing AP.

  19. Biotechnological and Agronomic Potential of Endophytic Pink-Pigmented Methylotrophic Methylobacterium spp.

    OpenAIRE

    Dourado, Manuella Nóbrega; Aparecida Camargo Neves, Aline; Santos, Daiene Souza; Araújo, Welington Luiz

    2015-01-01

    The genus Methylobacterium is composed of pink-pigmented facultative methylotrophic (PPFM) bacteria, which are able to synthesize carotenoids and grow on reduced organic compounds containing one carbon (C1), such as methanol and methylamine. Due to their high phenotypic plasticity, these bacteria are able to colonize different habitats, such as soil, water, and sediment, and different host plants as both endophytes and epiphytes. In plant colonization, the frequency and distribution may be in...

  20. Fungal endophytes: modifiers of plant disease.

    Science.gov (United States)

    Busby, Posy E; Ridout, Mary; Newcombe, George

    2016-04-01

    Many recent studies have demonstrated that non-pathogenic fungi within plant microbiomes, i.e., endophytes ("endo" = within, "phyte" = plant), can significantly modify the expression of host plant disease. The rapid pace of advancement in endophyte ecology warrants a pause to synthesize our understanding of endophyte disease modification and to discuss future research directions. We reviewed recent literature on fungal endophyte disease modification, and here report on several emergent themes: (1) Fungal endophyte effects on plant disease span the full spectrum from pathogen antagonism to pathogen facilitation, with pathogen antagonism most commonly reported. (2) Agricultural plant pathosystems are the focus of research on endophyte disease modification. (3) A taxonomically diverse group of fungal endophytes can influence plant disease severity. And (4) Fungal endophyte effects on plant disease severity are context-dependent. Our review highlights the importance of fungal endophytes for plant disease across a broad range of plant pathosystems, yet simultaneously reveals that complexity within plant microbiomes presents a significant challenge to disentangling the biotic environmental factors affecting plant disease severity. Manipulative studies integrating eco-evolutionary approaches with emerging molecular tools will be poised to elucidate the functional importance of endophytes in natural plant pathosystems that are fundamental to biodiversity and conservation.

  1. Diversity of endophytic and rhizoplane bacterial communities associated with exotic Spartina alterniflora and native mangrove using Illumina amplicon sequencing.

    Science.gov (United States)

    Hong, Youwei; Liao, Dan; Hu, Anyi; Wang, Han; Chen, Jinsheng; Khan, Sardar; Su, Jianqiang; Li, Hu

    2015-10-01

    Root-associated microbial communities are very important for biogeochemical cycles in wetland ecosystems and help to elaborate the mechanisms of plant invasions. In the estuary of Jiulong River (China), Spartina alterniflora has widely invaded Kandelia obovata-dominated habitats, offering an opportunity to study the influence of root-associated bacteria. The community structures of endophytic and rhizosphere bacteria associated with selected plant species were investigated using the barcoded Illumina paired-end sequencing technique. The diversity indices of bacteria associated with the roots of S. alterniflora were higher than those of the transition stands and K. obovata monoculture. Using principal coordinate analysis with UniFrac metrics, the comparison of β-diversity showed that all samples could be significantly clustered into 3 major groups, according to the bacteria communities of origin. Four phyla, namely Proteobacteria, Bacteroidetes, Chloroflexi, and Firmicutes, were enriched in the rhizoplane of both salt marsh plants, while they shared higher abundances of Cyanobacteria and Proteobacteria among endophytic bacteria. Members of the phyla Spirochaetes and Chloroflexi were found among the endophytic bacteria of S. alterniflora and K. obovata, respectively. One of the interesting findings was that endophytes were more sensitive in response to plant invasion than were rhizosphere bacteria. With linear discriminate analysis, we found some predominant rhizoplane and endophytic bacteria, including Methylococcales, Pseudoalteromonadacea, Clostridium, Vibrio, and Desulfovibrio, which have the potential to affect the carbon, nitrogen, and sulfur cycles. Thus, the results provide clues to the isolation of functional bacteria and the effects of root-associated microbial groups on S. alterniflora invasions.

  2. Metabolism of carbamazepine in plant roots and endophytic rhizobacteria isolated from Phragmites australis.

    Science.gov (United States)

    Sauvêtre, Andrés; May, Robert; Harpaintner, Rudolf; Poschenrieder, Charlotte; Schröder, Peter

    2018-01-15

    Carbamazepine (CBZ) is a pharmaceutical frequently categorized as a recalcitrant pollutant in the aquatic environment. Endophytic bacteria previously isolated from reed plants have shown the ability to promote growth of their host and to contribute to CBZ metabolism. In this work, a horseradish (Armoracia rusticana) hairy root (HR) culture has been used as a plant model to study the interactions between roots and endophytic bacteria in response to CBZ exposure. HRs could remove up to 5% of the initial CBZ concentration when they were grown in spiked Murashige and Skoog (MS) medium. Higher removal rates were observed when HRs were inoculated with the endophytic bacteria Rhizobium radiobacter (21%) and Diaphorobacter nitroreducens (10%). Transformation products resulting from CBZ degradation were identified using liquid chromatography-ultra high-resolution quadrupole time of flight mass spectrometry (LC-UHR-QTOF-MS). CBZ metabolism could be divided in four pathways. Metabolites involving GSH conjugation and 2,3-dihydroxylation, as well as acridine related compounds are described in plants for the first time. This study presents strong evidence that xenobiotic metabolism and degradation pathways in plants can be modulated by the interaction with their endophytic community. Hence it points to plausible applications for the elimination of recalcitrant compounds such as CBZ from wastewater in CWs. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Promoção de enraizamento de microtoletes de cana-de-açúcar pelo uso conjunto de substâncias húmicas e bactérias diazotróficas endofíticas Rooting of micro seed pieces by combined use of humic substances and endophytic diazotrophic bacteria in sugar cane

    Directory of Open Access Journals (Sweden)

    Roberto Batista Marques Júnior

    2008-06-01

    éficos da inoculação de estirpes selecionadas de H. seropedicae, já para ácidos húmicos, as respostas positivas independem da termoterapia. A promoção do crescimento radicular por AH e a fixação biológica de N2 podem representar uma estratégia inovadora para produção sustentada em sistemas agrícolas.Besides the direct nutritional effect of mineralization of organic matter or by biological nitrogen fixation activity, the humic substances and endophytic diazotrophic bacteria can directly influence plant metabolism, modifying plant growth and development patterns. The purpose of this study was to evaluate the effect of the combined use of humic acid (HA and Herbaspirillum seropedicae, an endophytic nitrogen-fixing bacteria, on the root growth of seed pieces - heat-treated or not - of the sugarcane variety RB 72 454. After hot water treatment, the cane cuttings were immersed for 12 hours as follows: in water (control plant, in HA solution (20 mg L-1 of C from vermicompost, in bacterial inoculant of H. seropedicae, strain HRC54 (10(8 cells mL-1, and in a combination of bacteria and HA. Root growth was improved by 60 to 118 % in length and from 33 % to 233 % in surface area on sugarcane plant treatments compared to control, with more pronounced effect in plants under heat treatment. Likewise, the positive effect of the combinded treatment (bacteria inoculation and humic acid on shoot and root biomass was significant compared to the control with heat-treated cuts. For non-heated seed pieces, bacteria inoculation did not result in a positive plant growth effect, but only in the presence of humic acid. The combined or isolated use of both HA and bacteria did not significantly modify the bacteria population in the root tissue of heat-untreated sugarcane. For heat-treated cuts, bacteria inoculation, combined or not with HA, increased the size of diazotrophic bacteria population on roots. The results highlight the importance of thermotherapy to increase the positive

  4. Technology Exhibition

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1979-09-15

    Linked to the 25th Anniversary celebrations, an exhibition of some of CERN's technological achievements was opened on 22 June. Set up in a new 600 m{sup 2} Exhibition Hall on the CERN site, the exhibition is divided into eight technology areas — magnets, vacuum, computers and data handling, survey and alignment, radiation protection, beam monitoring and handling, detectors, and workshop techniques.

  5. Endophytic nitrogen fixation in sugarcane: Present knowledge and future applications

    International Nuclear Information System (INIS)

    Boddey, Robert M.; Urquiaga, Segundo; Alves, Bruno J.R.; Reis, Veronica

    2001-01-01

    In Brazil the long-term continuous cultivation of sugarcane with low N fertiliser inputs, without apparent depletion of soil-N reserves, led to the suggestion that N 2 -fixing bacteria associated with the plants may be the source of agronomically significant N inputs to this crop. From the 1950s to 1970s, considerable numbers of N 2 -fixing bacteria were found to be associated with the crop, but it was not until the late 1980s that evidence from N balance and 15 N dilution experiments showed that some Brazilian varieties of sugarcane were able to obtain significant contributions from this source. The results of these studies renewed the efforts to search for N 2 -fixing bacteria, but this time the emphasis was on those diazotrophs that infected the interior of the plants. Within a few years several species of such 'endophytic diazotrophs' were discovered including Gluconacetobacter diazotrophicus, Herbaspirillum seropedicae, H. rubrisubalbicans and Burkholderia sp. Work has continued on these endophytes within sugarcane plants, but to date little success has been attained in elucidating which endophyte is responsible for the observed BNF and in what site, or sites, within the cane plants the N 2 fixation mainly occurs. Until such important questions are answered further developments or extension of this novel N 2 -fixing system to other economically important non-legumes (e.g. cereals) will be seriously hindered. As far as application of present knowledge to maximise BNF with sugarcane is concerned, molybdenum is an essential micronutrient. An abundant water supply favours high BNF inputs, and the best medium term strategy to increase BNF would appear to be based on cultivar selection on irrigated N deficient soils fertilised with Mo. (author)

  6. Antibiotic Properties of the endophytic Streptomyces Spp. Isolated from the Leaves of Myanmar Medicinal Plants

    International Nuclear Information System (INIS)

    Aye Pe; Mar Mar Nyein; Win Maung

    2002-02-01

    Three medicinal plants of Myanmar are selected in the study of endophytic microorganisms and are taxonomically classified and identified to be Sa-ba-lin (Cymbopogon citratus Stapf.), Shazaungtinga- neah (Euphorbia splendens Bojer. ex Hooker) and Ma-shaw (Sauropus grandifolius Pax. and Hoffm.). The screening of endophytic microorganisms is performed according to the ISP method (International Streptomyces Projects 1993). The morphological and physicochemical properties of isolated strains are studied and identified to be the Genus Streptomyces. The test of apparent antimicrobial activity of isolated Streptomyces is done on 18 strains of pathogenic bacteria. It is found that the isolated endophytic Sireptomyces showed the significant antibacterial activity on most of the test organisms. (author)

  7. Immersive Exhibitions

    DEFF Research Database (Denmark)

    Achiam, Marianne

    2015-01-01

    The immersive exhibition is a specialized exhibition genre in museums, which creates the illusion of time and place by representing key characteristics of a reference world and by integrating the visitor in this three-dimensionally reconstructed world (Mortensen 2010). A successful representation...... of the reference world depends on three criteria: whether the exhibition is staged as a coherent whole with all the displayed objects supporting the representation, whether the visitor is integrated as a component of the exhibition, and whether the content and message of the exhibition become dramatized...

  8. Endophytic bacterial diversity in grapevine (Vitis vinifera L.) leaves described by 16S rRNA gene sequence analysis and length heterogeneity-PCR.

    Science.gov (United States)

    Bulgari, Daniela; Casati, Paola; Brusetti, Lorenzo; Quaglino, Fabio; Brasca, Milena; Daffonchio, Daniele; Bianco, Piero Attilio

    2009-08-01

    Diversity of bacterial endophytes associated with grapevine leaf tissues was analyzed by cultivation and cultivation-independent methods. In order to identify bacterial endophytes directly from metagenome, a protocol for bacteria enrichment and DNA extraction was optimized. Sequence analysis of 16S rRNA gene libraries underscored five diverse Operational Taxonomic Units (OTUs), showing best sequence matches with gamma-Proteobacteria, family Enterobacteriaceae, with a dominance of the genus Pantoea. Bacteria isolation through cultivation revealed the presence of six OTUs, showing best sequence matches with Actinobacteria, genus Curtobacterium, and with Firmicutes genera Bacillus and Enterococcus. Length Heterogeneity-PCR (LH-PCR) electrophoretic peaks from single bacterial clones were used to setup a database representing the bacterial endophytes identified in association with grapevine tissues. Analysis of healthy and phytoplasma-infected grapevine plants showed that LH-PCR could be a useful complementary tool for examining the diversity of bacterial endophytes especially for diversity survey on a large number of samples.

  9. Endophytic bacterial community of grapevine leaves influenced by sampling date and phytoplasma infection process.

    Science.gov (United States)

    Bulgari, Daniela; Casati, Paola; Quaglino, Fabio; Bianco, Piero A

    2014-07-21

    Endophytic bacteria benefit host plant directly or indirectly, e.g. by biocontrol of the pathogens. Up to now, their interactions with the host and with other microorganisms are poorly understood. Consequently, a crucial step for improving the knowledge of those relationships is to determine if pathogens or plant growing season influence endophytic bacterial diversity and dynamic. Four healthy, four phytoplasma diseased and four recovered (symptomatic plants that spontaneously regain a healthy condition) grapevine plants were sampled monthly from June to October 2010 in a vineyard in north-western Italy. Metagenomic DNA was extracted from sterilized leaves and the endophytic bacterial community dynamic and diversity were analyzed by taxon specific real-time PCR, Length-Heterogeneity PCR and genus-specific PCR. These analyses revealed that both sampling date and phytoplasma infection influenced the endophytic bacterial composition. Interestingly, in June, when the plants are symptomless and the pathogen is undetectable (i) the endophytic bacterial community associated with diseased grapevines was different from those in the other sampling dates, when the phytoplasmas are detectable inside samples; (ii) the microbial community associated with recovered plants differs from that living inside healthy and diseased plants. Interestingly, LH-PCR database identified bacteria previously reported as biocontrol agents in the examined grapevines. Of these, Burkholderia, Methylobacterium and Pantoea dynamic was influenced by the phytoplasma infection process and seasonality. Results indicated that endophytic bacterial community composition in grapevine is correlated to both phytoplasma infection and sampling date. For the first time, data underlined that, in diseased plants, the pathogen infection process can decrease the impact of seasonality on community dynamic. Moreover, based on experimental evidences, it was reasonable to hypothesize that after recovery the restructured

  10. Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa.

    Science.gov (United States)

    Shahzad, Raheem; Waqas, Muhammad; Khan, Abdul Latif; Asaf, Sajjad; Khan, Muhammad Aaqil; Kang, Sang-Mo; Yun, Byung-Wook; Lee, In-Jung

    2016-09-01

    Some microorganisms are adapted to an endophytic mode, living symbiotically with plants through vertical transmission in seeds. The role of plant growth-promoting endophytes has been well studied, but those of seed-associated endophytic bacteria are less understood. The current study aimed to isolate and identify bacterial endophytes associated with rice (Oryza sativa L. 'Jin so mi') seeds, their potential to produce gibberellins (GAs), and role in improving host-plant physiology. The isolated bacterial endophyte RWL-1 was identified as Bacillus amyloliquefaciens by using 16S rRNA sequencing and phylogenetic analysis. The pure culture of B. amyloliquefaciens RWL-1, supplied with deuterated internal standards, was subjected to gas chromatography and mass spectrometric selected ion monitoring (GC-MS/SIM) for quantification of GAs. Results showed the presence of GAs in various quantities (ng/mL) viz., GA20 (17.88 ± 4.04), GA36 (5.75 ± 2.36), GA24 (5.64 ± 2.46), GA4 (1.02 ± 0.16), GA53 (0.772 ± 0.20), GA9 (0.12 ± 0.09), GA19 (0.093 ± 0.13), GA5 (0.08 ± 0.04), GA12 (0.014 ± 0.34), and GA8 (0.013 ± 0.01). Since endogenous seed GAs are essential for prolonged seed growth and subsequent plant development, we used exogenous GA3 as a positive control and water as a negative control for comparative analysis of the application of B. amyloliquefaciens RWL-1 to rice plants. The growth parameters of rice plants treated with endophytic bacterial cell application was significantly increased compared to the plants treated with exogenous GA3 and water. This was also revealed by the significant up-regulation of endogenous GA1 (17.54 ± 2.40 ng), GA4 (310 ± 5.41 ng), GA7 (192.60 ± 3.32 ng), and GA9 (19.04 ± 2.49 ng) as compared to results of the positive and negative control treatments. Rice plants inoculated with B. amyloliquefaciens RWL-1 exhibited significantly higher endogenous salicylic acid (1615.06 ± 10.81 μg), whereas

  11. Exposure of Cucurbita pepo to DDE-contamination alters the endophytic community: A cultivation dependent vs a cultivation independent approach

    International Nuclear Information System (INIS)

    Eevers, N.; Hawthorne, J.R.; White, J.C.; Vangronsveld, J.; Weyens, N.

    2016-01-01

    2,2-bis(p-chlorophenyl)-1,1-dichloro-ethylene (DDE) is the most abundant and persistent degradation product of the pesticide 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane (DDT) and is encountered in contaminated soils worldwide. Both DDE and DDT are classified as Persistent Organic Pollutants (POPs) due to their high hydrophobicity and potential for bioaccumulation and biomagnification in the food chain. Zucchini (Cucurbita pepo ssp. pepo) has been shown to accumulate high concentrations of DDE and other POPs and has been proposed as a phytoremediation tool for contaminated soils. The endophytic bacteria associated with this plant may play an important role in the remedial process. Therefore, this research focuses on changes in endophytic bacterial communities caused by the exposure of C. pepo to DDE. The total bacterial community was investigated using cultivation-independent 454 pyrosequencing, while the cultivable community was identified using cultivation-dependent isolation procedures. For both procedures, increasing numbers of endophytic bacteria, as well as higher diversities of genera were observed when plants were exposed to DDE. Several bacterial genera such as Stenotrophomonas sp. and Sphingomonas sp. showed higher abundance when DDE was present, while, for example Pseudomonas sp. showed a significantly lower abundance in the presence of DDE. These findings suggest tolerance of different bacterial strains to DDE, which might be incorporated in further investigations to optimize phytoremediation with the possible use of DDE-degrading endophytes. - Highlights: • Cucurbita pepo accumulates DDE and can be used for phytoremediation. • Phytoremediation capacity might be enhanced with endophytic bacteria. • The differences in bacterial communities without and with DDE are investigated. • Several DDE-tolerant bacteria are discovered and might be used in phytoremediation. - DDE-exposure and DDE-uptake of Cucurbita pepo lead to increases in both diversity

  12. Efeito dos ácidos húmicos na inoculação de bactérias diazotróficas endofíticas em sementes de milho Effect of the humic acids in endophytic diazotrophic bacteria inoculation in corn seeds

    Directory of Open Access Journals (Sweden)

    Patrícia Marluci da Conceição

    2009-09-01

    Full Text Available Os ácidos húmicos podem atuar no aumento da população de bactérias diazotróficas introduzidas no interior da planta e, consequentemente, no incremento dos efeitos benéficos sobre a planta hospedeira. Com este trabalho, objetivou-se avaliar o efeito dos ácidos húmicos na inoculação de bactérias diazotróficas endofíticas, em sementes de milho. Foi utilizada a estirpe Herbaspirillum seropedicae Z67 BR 11175. A inoculação das sementes com as bactérias e a adição de ácidos húmicos foram realizadas pelo recobrimento das sementes de milho UENF 506-8, com a mistura de calcário, meio de cultura semisólido, água e cimentante. As sementes recobertas foram semeadas em vasos Leonard. Aos 40 dias após a semeadura, as plântulas foram coletadas, e foi realizada a contagem de bactérias nas raízes pela técnica do Número Mais Provável. Os resultados deste trabalho mostram que os ácidos húmicos não interferem negativamente no crescimento das bactérias e estimulam a colonização da microbiota nativa. No entanto, nas condições avaliadas, a aplicação conjunta de bactérias + ácidos húmicos não estimulou o crescimento da população de bactérias inoculadas nas plântulas de milho.The objective of this research was to evaluate the effect of the humic acids in the inoculation of endophytic diazotrophic bacteria in corn seeds. It was used the bacteria Herbaspirillum seropedicae Z67 BR 11175. The inoculation of the seeds with the bacteria and the addition of humic acids were accomplished by the coating of the corn seeds UENF 506-8. The coating was accomplished with a mixture of lime, semi-solid middle culture, water and cement. The seeds covered were sown in Leonard vases. Forty days after sowing the plants were collected and the bacteria couting was accomplished in the roots by the Most probable Number technique. The results showed that the humic acids doesn't interfere negatively in the bacteria growth of and they stimulate the

  13. Fungal endophytes of turmeric (Curcuma longa L.) and their biocontrol potential against pathogens Pythium aphanidermatum and Rhizoctonia solani.

    Science.gov (United States)

    Vinayarani, G; Prakash, H S

    2018-03-14

    Endophytic fungi have been isolated from the healthy turmeric (Curcuma longa L.) rhizomes from South India. Thirty-one endophytes were identified based on morphological and ITS-rDNA sequence analysis. The isolated endophytes were screened for antagonistic activity against Pythium aphanidermatum (Edson) Fitzp., and Rhizoctonia solani Kuhn., causing rhizome rot and leaf blight diseases in turmeric respectively. Results revealed that only six endophytes showed > 70% suppression of test pathogens in antagonistic dual culture assays. The endophyte T. harzianum TharDOB-31 showed significant in vitro mycelial growth inhibition of P. aphanidermatum (76.0%) and R. solani (76.9%) when tested by dual culture method. The SEM studies of interaction zone showed morphological abnormalities like parasitism, shriveling, breakage and lysis of hyphae of the pathogens by endophyte TharDOB-31. Selected endophytic isolates recorded multiple plant growth promoting traits in in vitro studies. The rhizome bacterization followed by soil application of endophyte TharDOB-31 showed lowest Percent Disease Incidence of rhizome rot and leaf blight, 13.8 and 11.6% respectively. The treatment of TharDOB-31 exhibited significant increase in plant height (85 cm) and fresh rhizome yield/plant (425 g) in comparison with untreated control under greenhouse condition. The confocal microscopy validates the colonization of the TharDOB-31 in turmeric rhizomes. The secondary metabolites in ethyl acetate extract of TharDOB-31 were found to contain higher number of antifungal compounds by high resolution liquid chromatograph mass spectrometer analysis. Thereby, endophyte T. harzianum isolate can be exploited as a potential biocontrol agent for suppressing rhizome rot and leaf blight diseases in turmeric.

  14. Effects of growth stage and fulvic acid on the diversity and dynamics of endophytic bacterial community in Stevia rebaudiana Bertoni leaves

    Directory of Open Access Journals (Sweden)

    Xuejian eYu

    2015-08-01

    Full Text Available The aim of this study was to learn the interactions among the endophytic bacteria, the plant growth, the foliar spray of fulvic acid, and the accumulation of steviol glycosides in the leaves of Stevia rebaudiana. Metagenomic DNA was extracted from the Stevia leaves at different growth stages with or without the fulvic acid treatment; and the diversity of endophytic bacteria in Stevia leaves was estimated by pyrosequencing of 16S rRNA genes. As results, Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes were found to be the dominant phyla despite the growth stages and fulvic acid application. Stevia growth stages strongly regulated composition of endophytic community. The genera Agrobacterium (12.3 % and Erwinia (7.2 % dominated in seedling stage were apparently declined in the vegetable and initial flowering stages, while Sphingomonas and Methylobacterium increased in mature leaves at harvest time, which showed that the mature leaves of Stevia preferred to accumulate some certain endophytic bacteria. Sphingomonas and Methylobacterium constituted an important part of the core endophytic community and were positively correlated with the stevioside content and UGT74G1 gene expression, respectively; while Erwinia, Agrobacterium and Bacillus were negatively correlated with the stevioside accumulation. Fulvic acid treatment accelerated the variation of endophytes along the growth stages.

  15. Exhibit Engineering

    DEFF Research Database (Denmark)

    Mortensen, Marianne Foss

    Science museums define the objectives of their exhibitions in terms of visitor learning outcomes. Yet, exhibit designers lack theoretical and empirical research findings on which to base the creation of such educational environments. Here, this shortcoming is addressed through the development...... of tools and processes to guide the design of educational science exhibits. The guiding paradigm for this development is design-based research, which is characterised by an iterative cycle of design, enactment, and analysis. In the design phase, an educational intervention is planned and carried out based...... on the generation of theoretical ideas for exhibit design is offered in a fourth and parallel research undertaking, namely the application of the notion of cultural border-crossing to a hypothetical case of exhibit design....

  16. Identification of a New Uncompetitive Inhibitor of Adenosine Deaminase from Endophyte Aspergillus niger sp.

    Science.gov (United States)

    Zhang, Xin-Guo; Liu, Jin-Wen; Tang, Peng; Liu, Zi-Yu; Guo, Guang-Jun; Sun, Qiao-Yun; Yin, Jian-Jun

    2018-05-01

    Adenosine deaminase (ADA) is an enzyme widely distributed from bacteria to humans. ADA is known as a potential therapeutic target for the treatment of lymphoproliferative disorders and cancer. Endophytes are endosymbionts, often bacteria or fungi, which live within plant tissues and internal organs or intercellular space. Endophytes have a broad variety of bioactive metabolites that are used for the identification of novel natural compounds. Here, 54 morphologically distinct endophyte strains were isolated from six plants such as Peganum harmala Linn., Rheum officinale Baill., Gentiana macrophylla Pall., Radix stephaniae tetrandrae, Myrrha, and Equisetum hyemale Linn. The isolated strains were used for the search of ADA inhibitors that resulted in the identification of the strain with the highest inhibition activity, Aspergillus niger sp. Four compounds were isolated from this strain using three-step chromatography procedure, and compound 2 was determined as the compound with the highest inhibition activity of ADA. Based on the results of 1 H and 13 C NMR spectroscopies, compound 2 was identified as 3-(4-nitrophenyl)-5-phenyl isoxazole. We showed that compound 2 was a new uncompetitive inhibitor of ADA with high cytotoxic effect on HepG2 and SMCC-7721 cells (the IC 50 values were 0.347 and 0.380 mM, respectively). These results suggest that endophyte strains serve as promising sources for the identification of ADA inhibitors, and compound 2 could be an effective drug in the cancer treatment.

  17. [Isolation of endophytic fungi from medicinal plant Brucea javanica and their microbial inhibition activity].

    Science.gov (United States)

    Liang, Zi-Ning; Zhu, Hua; Lai, Kai-Ping; Chen, Long

    2014-04-01

    To isolate and identify endophytic fungi from Brucea javanica, and to detect the antimicrobial activity of these strains. Endophytic fungi were isolated by tissue inoculation culture and identified by conventional morphological characteristic method. Seven kinds of pathogenic fungi and three kinds of bacteria were used as targeting microbes to test microbial inhibition activities by agar plate antagonistic action and modified agar gel diffusion methods, respectively. A total of 83 endophytic fungi strains were isolated from the root, stem, leaf and fruit of Brucea javanica. 34 strains were obtained from the stem, 32 strains were obtained from the leaf, 15 strains were isolated from the root and 2 strains came from the fruit. These 73 strains which had been identified attribute to 5 orders, 6 families and 12 genera. For the isolated strains, 14 strains had antifungal activities against at least one pathogenic fungi, 9 strains showed antibacterial activities against one or more bacteria. Especially, the strain YJ-17 which belonged to Phomopsis genus showed the best inhibitory effect on the targeting microbes. The endophytic fungi from Brucea javanica show diversity and microbial inhibition activity, and are worthy for further study on plant disease controlling.

  18. Mangrove endophyte promotes reforestation tree (Acacia polyphylla) growth.

    Science.gov (United States)

    Castro, Renata Assis; Dourado, Manuella Nóbrega; Almeida, Jaqueline Raquel de; Lacava, Paulo Teixeira; Nave, André; Melo, Itamar Soares de; Azevedo, João Lucio de; Quecine, Maria Carolina

    Mangroves are ecosystems located in the transition zone between land and sea that serve as a potential source of biotechnological resources. Brazil's extensive coast contains one of the largest mangrove forests in the world (encompassing an area of 25,000km 2 along all the coast). Endophytic bacteria were isolated from the following three plant species: Rhizophora mangle, Laguncularia racemosa and Avicennia nitida. A large number of these isolates, 115 in total, were evaluated for their ability to fix nitrogen and solubilize phosphorous. Bacteria that tested positive for both of these tests were examined further to determine their level of indole acetic acid production. Two strains with high indole acetic acid production were selected for use as inoculants for reforestation trees, and then the growth of the plants was evaluated under field conditions. The bacterium Pseudomonas fluorescens (strain MCR1.10) had a low phosphorus solubilization index, while this index was higher in the other strain used, Enterobacter sp. (strain MCR1.48). We used the reforestation tree Acacia polyphylla. The results indicate that inoculation with the MCR1.48 endophyte increases Acacia polyphylla shoot dry mass, demonstrating that this strain effectively promotes the plant's growth and fitness, which can be used in the seedling production of this tree. Therefore, we successfully screened the biotechnological potential of endophyte isolates from mangrove, with a focus on plant growth promotion, and selected a strain able to provide limited nutrients and hormones for in plant growth. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  19. Cytotoxic and antibacterial naphthoquinones from an endophytic fungus, Cladosporium sp.

    Directory of Open Access Journals (Sweden)

    Md. Imdadul Huque Khan

    Full Text Available Objective: Endophytes have the potential to synthesize various bioactive secondary metabolites. The aim of the study was to find new cytotoxic and antibacterial metabolites from endophytic fungus, Cladosporium sp. isolated from the leaves of Rauwolfia serpentina (L. Benth. ex Kurz. (Fam: Apocyanaceae. Materials and methods: The endophytic fungus was grown on potato dextrose agar medium and extracted using ethyl acetate. Secondary metabolites were isolated by chromatographic separation and re-crystallization, and structures were confirmed by 1H NMR, 13C NMR and mass spectroscopic data. The cytotoxicity was determined by WST-1 assay and brine shrimp lethality bioassay, while antibacterial activity was assessed by disc diffusion method. Results: Two naphthoquinones, namely anhydrofusarubin (1 and methyl ether of fusarubin (2, were isolated from Cladosporium sp. The isolated compounds 1 and 2, by WST-1 assay against human leukemia cells (K-562 showed potential cytotoxicity with IC50 values of 3.97 μg/mL and 3.58 μg/mL, respectively. Initial screening of crude ethyl acetate extract and column fractions F-8 and F-10 exhibited noticeable cytotoxicity to brine shimp nauplii with LC50 values of 42.8, 1.2 and 2.1 μg/mL, respectively. Moreover, the isolated compound 2 (40 μg/disc showed prominent activities against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Bacillus megaterium with an average zone of inhibition of 27 mm, 25 mm, 24 mm and 22 mm, respectively and the activities were compared with kanamycin (30 μg/disc. Conclusion: Our findings indicate that anhydrofusarubin (1 and methyl ether of fusarubin (2 might be useful lead compounds to develop potential cytotoxic and antimicrobial drugs. Keywords: Endophytic fungi, Cladosporium species, Fusarubin, Cytoxicity, Antibacterial activity

  20. Increased growth and root Cu accumulation of Sorghum sudanense by endophytic Enterobacter sp. K3-2: Implications for Sorghum sudanense biomass production and phytostabilization.

    Science.gov (United States)

    Li, Ya; Wang, Qi; Wang, Lu; He, Lin-Yan; Sheng, Xia-Fang

    2016-02-01

    Endophytic bacterial strain K3-2 was isolated from the roots of Sorghum sudanense (an bioenergy plant) grown in a Cu mine wasteland soils and characterized. Strain K3-2 was identified as Enterobacter sp. based on 16S rRNA gene sequence analysis. Strain K3-2 exhibited Cu resistance and produced 1-aminocyclopropane-1-carboxylate (ACC) deaminase, indole-3-acetic acid (IAA), siderophores, and arginine decarboxylase. Pot experiments showed that strain K3-2 significantly increased the dry weight and root Cu accumulation of Sorghum sudanense grown in the Cu mine wasteland soils. Furthermore, increase in total Cu uptake (ranging from 49% to 95%) of the bacterial inoculated-Sorghum sudanense was observed compared to the control. Notably, most of Cu (83-86%) was accumulated in the roots of Sorghum sudanense. Furthermore, inoculation with strain K3-2 was found to significantly increase Cu bioconcentration factors and the proportions of IAA- and siderophore-producing bacteria in the root interiors and rhizosphere soils of Sorghum sudanense compared with the control. Significant decrease in the available Cu content was also observed in the rhizosphere soils of the bacterial-inoculated Sorghum sudanense. The results suggest that the endophytic bacterial strain K3-2 may be exploited for promoting Sorghum sudanense biomass production and Cu phytostabilization in the Cu mining wasteland soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Laparoscopic partial nephrectomy for endophytic hilar tumors

    DEFF Research Database (Denmark)

    Di Pierro, G B; Tartaglia, N; Aresu, L

    2014-01-01

    To analyze feasibility and outcomes of laparoscopic partial nephrectomy (LPN) for endophytic hilar tumors in low-intermediate (ASA I-II) risk patients.......To analyze feasibility and outcomes of laparoscopic partial nephrectomy (LPN) for endophytic hilar tumors in low-intermediate (ASA I-II) risk patients....

  2. The isolation and characterization of endophytic microorganisms ...

    African Journals Online (AJOL)

    Fungi were identified by distinguishing between reproductive structures using a microculture technique. While observing diaphanized root fragments, we found arbuscular mycorrhizal fungi (AMF) and dark septate endophytic (DSE) fungi in the fine and coarse roots of H. marrubioides. The endophytic CR was more ...

  3. New Eudesmane-Type Sesquiterpenoids from the Mangrove-Derived Endophytic Fungus Penicillium sp. J-54

    OpenAIRE

    Liuming Qiu; Pei Wang; Ge Liao; Yanbo Zeng; Caihong Cai; Fandong Kong; Zhikai Guo; Peter Proksch; Haofu Dai; Wenli Mei

    2018-01-01

    Four new eudesmane-type sesquiterpenoids, penicieudesmol A–D (1–4), were isolated from the fermentation broth of the mangrove-derived endophytic fungus Penicillium sp. J-54. Their structures were determined by spectroscopic methods, the in situ dimolybdenum CD method, and modified Mosher’s method. The bioassays results showed that 2 exhibited weak cytotoxicity against K-562 cells.

  4. New Eudesmane-Type Sesquiterpenoids from the Mangrove-Derived Endophytic Fungus Penicillium sp. J-54.

    Science.gov (United States)

    Qiu, Liuming; Wang, Pei; Liao, Ge; Zeng, Yanbo; Cai, Caihong; Kong, Fandong; Guo, Zhikai; Proksch, Peter; Dai, Haofu; Mei, Wenli

    2018-03-28

    Four new eudesmane-type sesquiterpenoids, penicieudesmol A-D ( 1 - 4 ), were isolated from the fermentation broth of the mangrove-derived endophytic fungus Penicillium sp. J-54. Their structures were determined by spectroscopic methods, the in situ dimolybdenum CD method, and modified Mosher's method. The bioassays results showed that 2 exhibited weak cytotoxicity against K-562 cells.

  5. Fungal endophytes: diversity and functional roles

    Science.gov (United States)

    Rodriguez, R.J.; White, J.F.; Arnold, A.E.; Redman, R.S.

    2009-01-01

    All plants in natural ecosystems appear to be symbiotic with fungal endophytes. This highly diverse group of fungi can have profound impacts on plant communities through increasing fitness by conferring abiotic and biotic stress tolerance, increasing biomass and decreasing water consumption, or decreasing fitness by altering resource allocation. Despite more than 100 yr of research resulting in thousands of journal articles, the ecological significance of these fungi remains poorly characterized. Historically, two endophytic groups (clavicipitaceous (C) and nonclavicipitaceous (NC)) have been discriminated based on phylogeny and life history traits. Here, we show that NC-endophytes represent three distinct functional groups based on host colonization and transmission, in planta biodiversity and fitness benefits conferred to hosts. Using this framework, we contrast the life histories, interactions with hosts and potential roles in plant ecophysiology of C- and NC-endophytes, and highlight several key questions for future work in endophyte biology.

  6. Selective isolation and characterization of agriculturally beneficial endopytic bacteria from wild hemp using canola

    International Nuclear Information System (INIS)

    Afzal, I.; Iqrar, I.

    2015-01-01

    Endophytic bacteria can provide a useful alternative to synthetic fertilizers to improve plant growth. Wild plants are little investigated as a source of growth promoting endophytic bacteria for commercial application to crops. In present study, endophytic bacteria were isolated from Cannabis sativa L. (hemp) using two different methods to examine their ability to promote canola growth. Besides direct isolation from the roots, endophytic bacteria were also selectively isolated from the rhizosphere of C. sativa using canola. Under gnotobiotic conditions, six bacteria from the selective isolation significantly improved canola root growth, as compared to the two bacteria isolated from direct method. Overall, three isolates performed distinctly well, namely, Pantoea vagans MOSEL-t13, Pseudomonas geniculata MOSEL-tnc1, and Serratia marcescens MOSEL-w2. These bacteria tolerated high salt concentrations and promoted canola growth under salt stress. Further, the isolated bacteria possessed plant growth promoting traits like IAA production, phosphate solubilization, and siderophore production. Most isolates produced plant cell-wall degrading enzymes, cellulase and pectinase. Some isolates were also effective in hindering the growth of two phytopathogenic fungi in dual culture assay, and displayed chitinase and protease activity. Paenibacillus sp. MOSEL-w13 displayed the greatest antifungal activity among all the isolates. Present findings conclude that wild plants can be a good source for isolating beneficial microbes, and validates the employed selective isolation for improved isolation of plant-beneficial endophytic bacteria. (author)

  7. [Diversity of Bacillus species inhabiting on the surface and endophyte of lichens collected from Wuyi Mountain].

    Science.gov (United States)

    Ge, Cibin; Liu, Bo; Che, Jianmei; Chen, Meichun; Liu, Guohong; Wei, Jiangchun

    2015-05-04

    The present work reported the isolation, identification and diversity of Bacillus species colonizing on the surface and endophyte in lichens collected from Wuyi Mountain. Nine lichen samples of Evernia, Stereocaulon, Menegazzia and other 6 genera belonging to 7 families were collected from Wuyi mountain nature reserve. The bacillus-like species colonizing on the surface and endophyte in these lichens were isolated and identified by 16S rRNA gene sequence analysis. There was no bacillus-like species isolated from Evernia, Ramalina and Lecarona. A total of 34 bacillus-like bacteria were isolated from another 6 lichen samples. These bacteria were identified as 24 species and were classified into Bacillus, Paenibacillus, Brevibacillus, Lysinibacillus and Viridiibacillus. Paenibacillus and Bacillus are the dominant genera, and accounting for 41. 2% and 35. 3% of all isolated bacteria respectively. Brevibacillus, Lysinibacillus and Viridiibacillu were first reported being isolated from lichens. There were different species and quantity of bacillus colonizing on the surface and endophyte in different lichens. The quantity of bacillus colonizing on the surface of Physcia was more than 3.85 x 10(6) cfu/g and was the largest in the isolated bacteria, while the species of bacillus colonizing on the surface and endophyte in Stereocaulon was the most abundant. Most of the isolated bacteria were colonizing on (in) one lichen genera, but Paenibacillus taichungensis, Paenibacillus odorifer, Brevibacillus agri, Lysinibacillus xylanilyticus was respectively colonizing on (in) 2-3 lichen genera and Bacillus mycoides was colonizing on (in) Menegazzia, Cladonia Physcia, and Stereocaulon. There are species and quantity diversity of bacillus colonizing on (in) lichens.

  8. Diversity of endophytic fungi of Myricaria laxiflora grown under pre- and post-flooding conditions.

    Science.gov (United States)

    Tian, W; Bi, Y H; Zeng, W; Jiang, W; Xue, Y H; Wang, G X; Liu, S P

    2015-09-09

    Myricaria laxiflora is distributed along the riverbanks of the Yangtze River valley. The Three Gorges Dam has dramatically changed the habitat of M. laxiflora, which has evolved to develop increased resistance to flooding stress. In order to elucidate the relationship between plant endophytic fungi and flooding stress, we isolated and taxonomically characterized the endophytic fungi of M. laxiflora. One hundred and sixty-three fungi were isolated from healthy stems, leaves and roots of M. laxiflora grown under pre- and post-flooding conditions. Culture and isolation were carried out under aerobic and anaerobic conditions. Based on internal transcribed spacer sequence analysis and morphological characteristics, the isolates exhibited abundant biodiversity; they were classified into 5 subphyla, 7 classes, 12 orders, 17 families, and 26 genera. Dominant endophytes varied between pre- and post-flooding plants, among different plant tissues, and between aerobic and anaerobic culture conditions. Aspergillus and Alternaria accounted for more than 55% of all isolates. Although the number of isolates from post-flooding plants was greater, endophytes from pre-flooding plants were more diverse and abundant. Endophytes were distributed preferentially in particular tissues; this affinity was constrained by both the host habitat and the oxygen availability of the host.

  9. The effect of different growth regimes on the endophytic bacterial communities of the fern, Dicksonia sellowiana hook (Dicksoniaceae

    Directory of Open Access Journals (Sweden)

    Irene de Araújo Barros

    2010-12-01

    Full Text Available Endophytic bacteria associated with the fern Dicksonia sellowiana were investigated. The bacterial communities from the surface-sterilized pinnae and rachis segments of the plants from the Brazilian Atlantic Rainforest that grew in native field conditions were compared with the bacterial communities from plants grown in greenhouses and plants that were initially grown in greenhouses and then transferred to the forest. From 540 pinnae and 540 rachis segments, 163 (30.2% and 346 (64.2% were colonized by bacteria, respectively. The main bacterial genera and species that were isolated included Bacillus spp. (B. cereus, B. megaterium, B. pumilus and B. subtilis, Paenibacillus sp., Amphibacillus sp., Gracilibacillus sp., Micrococcus sp. and Stenotrophomonas spp. (S. maltophilia and S. nitroreducens. B. pumilus was the most frequently isolated bacterial species. Amphibacillus and Gracilibacillus were reported as endophytes for the first time. Other commonly found bacterial genera were not observed in D. sellowiana, which may reflect preferences of specific bacterial communities inside this fern or detection limitations due to the isolation procedures. Plants that were grown in greenhouses and plants that were reintroduced into the forest displayed more bacterial genera and species diversity than native field plants, suggesting that reintroduction shifts the bacterial diversity. Endophytic bacteria that displayed antagonistic properties against different microorganisms were detected, but no obvious correlation was found between their frequencies with plant tissues or with plants from different growth regimes. This paper reports the first isolation of endophytic bacteria from a fern.

  10. The effect of different growth regimes on the endophytic bacterial communities of the fern, Dicksonia sellowiana hook (Dicksoniaceae).

    Science.gov (United States)

    de Araújo Barros, Irene; Luiz Araújo, Welington; Lúcio Azevedo, João

    2010-10-01

    Endophytic bacteria associated with the fern Dicksonia sellowiana were investigated. The bacterial communities from the surface-sterilized pinnae and rachis segments of the plants from the Brazilian Atlantic Rainforest that grew in native field conditions were compared with the bacterial communities from plants grown in greenhouses and plants that were initially grown in greenhouses and then transferred to the forest. From 540 pinnae and 540 rachis segments, 163 (30.2%) and 346 (64.2%) were colonized by bacteria, respectively. The main bacterial genera and species that were isolated included Bacillus spp. ( B. cereus, B. megaterium, B. pumilus and B. subtilis ) , Paenibacillus sp. , Amphibacillus sp. , Gracilibacillus sp. , Micrococcus sp. and Stenotrophomonas spp. ( S. maltophilia and S. nitroreducens ). B. pumilus was the most frequently isolated bacterial species . Amphibacillus and Gracilibacillus were reported as endophytes for the first time. Other commonly found bacterial genera were not observed in D. sellowiana , which may reflect preferences of specific bacterial communities inside this fern or detection limitations due to the isolation procedures. Plants that were grown in greenhouses and plants that were reintroduced into the forest displayed more bacterial genera and species diversity than native field plants, suggesting that reintroduction shifts the bacterial diversity. Endophytic bacteria that displayed antagonistic properties against different microorganisms were detected, but no obvious correlation was found between their frequencies with plant tissues or with plants from different growth regimes. This paper reports the first isolation of endophytic bacteria from a fern.

  11. Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin.

    Science.gov (United States)

    Kusari, S; Lamshöft, M; Spiteller, M

    2009-09-01

    Isolation, identification and characterization of an endophytic fungus from Juniperus communis L. Horstmann, as a novel producer of deoxypodophyllotoxin and its in vitro antimicrobial assay. The methodology for the isolation, identification and characterization of a novel endophytic fungus from the twigs of the J. communis L. Horstmann plant, which specifically and consistently produces deoxypodophyllotoxin, was unequivocally established. The fungus was identified as Aspergillus fumigatus Fresenius by molecular, morphological and physiological methods. Deoxypodophyllotoxin was identified and quantified by high-resolution LC-MS, LC-MS(2) and LC-MS(3). The antimicrobial efficacy of the fungal deoxypodophyllotoxin against a panel of pathogenic bacteria was established. The production of deoxypodophyllotoxin (found in the host) by the cultured endophyte is an enigmatic observation. It demonstrates the transfer of gene(s) for such accumulation by horizontal means from the host plant to its endophytic counterpart. It would be interesting to further study the deoxypodophyllotoxin production and regulation by the cultured endophyte in J. communis and in axenic cultures. This endophyte is a potential handle for scientific and commercial exploitation. Although the current accumulation of deoxypodophyllotoxin by the endophyte is not very high, it could be scaled-up to provide adequate production to satisfy new drug development and clinical needs. However, further refined precursor-feeding and mass-balance studies are required to result in the consistent and dependable production.

  12. Densidade e diversidade fenotípica de bactérias diazotróficas endofíticas em solos de mineração de bauxita, em reabilitação Density and phenotypic diversity of endophytic nitrogen fixing bacteria in soils under rehabilitation after bauxite mining

    Directory of Open Access Journals (Sweden)

    R. Melloni

    2004-02-01

    diversidade fenotípica no ambiente estudado.Diazotrophic endophytic bacteria enhance plant growth through biological nitrogen fixation and production and release of plant growth regulating substances, which facilitate the revegetation of areas degraded by human activities. However, little is known about populations of such bacteria in soils or plants of mining areas. Aiming to study the effects of different vegetation types and rehabilitation periods on some endophytic diazotrophic bacteria species, soil samples were collected under two environmental conditions ("Campo" and "Serra" in bauxite mined areas undergoing different rehabilitation processes. Population densities were evaluated by the most probable number method in media (NFb, JNFb, and Fam for Azospirillum brasilense and A. lipoferum, Herbaspirillum spp. and A. amazonense, respectively and ranged from 0 to 2.0 x 10(4 bacteria g-1 soil. The vegetation types affected the diazotrophic populations. Highest densities were found in mined soils revegetated with the grass species brachiaria (Brachiaria decumbens, rye grass (Lolium multiflorum and capim-gordura (Melinis minutiflora. However, these densities are considered low compared to those found in agricultural soils. No relationship was found between the rehabilitation time and population density. Thirty-six cultural phenotypes were found on potato medium among 72 isolates out of all three culture media. At a similarity of at least 63 %, these isolates formed seven great groups, five of which (comprising 62.5 % of the total isolates contained the type strains of Burkholderia brasilensis, Herbaspirillum seropedicae, and Azospirillum spp. (A. brasilense, A. amazonense, A. lipoferum, A. irakense. In spite of its low density, this group of bacteria presented a high phenotypic diversity in the studied environment.

  13. Fungal endophytes for sustainable crop production.

    Science.gov (United States)

    Lugtenberg, Ben J J; Caradus, John R; Johnson, Linda J

    2016-12-01

    This minireview highlights the importance of endophytic fungi for sustainable agriculture and horticulture production. Fungal endophytes play a key role in habitat adaptation of plants resulting in improved plant performance and plant protection against biotic and abiotic stresses. They encode a vast variety of novel secondary metabolites including volatile organic compounds. In addition to protecting plants against pathogens and pests, selected fungal endophytes have been used to remove animal toxicities associated with fungal endophytes in temperate grasses, to create corn and rice plants that are tolerant to a range of biotic and abiotic stresses, and for improved management of post-harvest control. We argue that practices used in plant breeding, seed treatments and agriculture, often caused by poor knowledge of the importance of fungal endophytes, are among the reasons for the loss of fungal endophyte diversity in domesticated plants and also accounts for the reduced effectiveness of some endophyte strains to confer plant benefits. We provide recommendations on how to mitigate against these negative impacts in modern agriculture. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. A new biphenyl derivative from the mangrove endophytic fungus Phomopsis longicolla HL-2232.

    Science.gov (United States)

    Li, Xiao-Bao; Chen, Guang-Ying; Liu, Rui-Jie; Zheng, Cai-Juan; Song, Xin-Ming; Han, Chang-Ri

    2017-10-01

    A new biphenyl derivative 5,5'-dimethoxybiphenyl-2,2'-diol (1), together with five known compounds (2-5), was isolated from the mangrove endophytic fungus Phomopsis longicolla HL-2232. The structures of these compounds were elucidated using comprehensive spectroscopic methods. The absolute configuration of 4 was determined by single-crystal X-ray diffraction for the first time. The inhibitory activities of all compounds against two Vibrio bacteria were evaluated.

  15. Improvement in phytoremediation potential of Solanum nigrum under cadmium contamination through endophytic-assisted Serratia sp. RSC-14 inoculation.

    Science.gov (United States)

    Khan, Abdur Rahim; Ullah, Ihsan; Khan, Abdul Latif; Park, Gun-Seok; Waqas, Muhammad; Hong, Sung-Jun; Jung, Byung Kwon; Kwak, Yunyoung; Lee, In-Jung; Shin, Jae-Ho

    2015-09-01

    The growth of hyperaccumulator plants is often compromised by increased toxicity of metals like cadmium (Cd). However, extraction of such metals from the soil can be enhanced by endophytic microbial association. Present study was aimed to elucidate the potential of microbe-assisted Cd phytoextraction in hyperaccumulator Solanum nigrum plants and their interactions under varied Cd concentrations. An endophytic bacteria Serratia sp. RSC-14 was isolated from the roots of S. nigrum. In addition to Cd tolerance up to 4 mM, the RSC-14 exhibited phosphate solubilization and secreted plant growth-promoting phytohormones such as indole-3-acetic acid (54 μg/mL). S. nigrum plants were inoculated with RSC-14 and were grown in different concentrations of Cd (0, 10, and 30 mg Cd kg(-1) sand). Results revealed that Cd treatment caused significant cessation in plant growth, biomass, and chlorophyll content, whereas significantly higher malondialdehyde (MDA) and electrolyte production in leaves were observed in a dose-dependent manner. Conversely, RSC-14 inoculation relived the toxic effects of Cd-induced stress by significantly increasing root/shoot growth, biomass production, and chlorophyll content and decreasing MDA and electrolytes contents. Ameliorative effects on host growth were also observed by the regulation of metal-induced oxidative stress enzymes such as catalase, peroxidase, and polyphenol peroxidase. Activities of these enzymes were significantly reduced in RSC-14 inoculated plants as compared to control plants under Cd treatments. The lower activities of stress responsive enzymes suggest modulation of Cd stress by RSC-14. The current findings support the beneficial uses of Serratia sp. RSC-14 in improving the phytoextraction abilities of S. nigrum plants in Cd contamination.

  16. Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers.

    Science.gov (United States)

    Kefi, Asma; Ben Slimene, Imen; Karkouch, Ines; Rihouey, Christophe; Azaeiz, Sana; Bejaoui, Marwa; Belaid, Rania; Cosette, Pascal; Jouenne, Thierry; Limam, Ferid

    2015-12-01

    Eighty endophytic bacteria were isolated from healthy tissues of roots, stems, leaves and fruits of tomato plants (Lycopersicon esculentum). Four strains, named BL1, BT5, BR8 and BF11 were selected for their antagonism against Botrytis cinerea, a phytopathogenic fungus responsible of gray mold in several important crops, with growth inhibitory activity ranging from 27 to 53%. Morphological, biochemical, and molecular parameters as 16S rDNA sequencing demonstrated that the selected bacterial strains were related to Bacillus species which are known to produce and secrete a lot of lipopeptides with strong inhibitory effect against pathogen mycelial growth. Electrospray mass spectrometry analysis showed that these strains produced heterogeneous mixture of antibiotics belonging to fengycin and surfactin for BL1 and BT5, to iturin and surfactin for BR8, to bacillomycin D, fengycin and surfactin for BF11. Furthermore, these bacteria exhibited biocontrol potential by reducing the disease severity when tested on detached leaflets. Based on their antifungal activity against Botrytis cinerea, these strains could be used for biological control of plant diseases.

  17. Exploitation of endophytes for sustainable agricultural intensification.

    Science.gov (United States)

    Le Cocq, Kate; Gurr, Sarah J; Hirsch, Penny R; Mauchline, Tim H

    2017-04-01

    Intensive agriculture, which depends on unsustainable levels of agrochemical inputs, is environmentally harmful, and the expansion of these practices to meet future needs is not economically feasible. Other options should be considered to meet the global food security challenge. The plant microbiome has been linked to improved plant productivity and, in this microreview, we consider the endosphere - a subdivision of the plant microbiome. We suggest a new definition of microbial endophyte status, the need for synergy between fungal and bacterial endophyte research efforts, as well as potential strategies for endophyte application to agricultural systems. © 2016 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD.

  18. Human Exhibitions

    DEFF Research Database (Denmark)

    Andreassen, Rikke

    light on the staging of exhibitions, the daily life of the exhibitees, the wider connections between shows across Europe and the thinking of the time on matters of race, science, gender and sexuality. A window onto contemporary racial understandings, the book presents interviews with the descendants...... of displayed people, connecting the attitudes and science of the past with both our (continued) modern fascination with ‘the exotic’, and contemporary language and popular culture. As such, it will be of interest to scholars of sociology, anthropology and history working in the areas of gender and sexuality...

  19. Isolation, taxonomic analysis, and phenotypic characterization of bacterial endophytes present in alfalfa (Medicago sativa) seeds.

    Science.gov (United States)

    López, José Luis; Alvarez, Florencia; Príncipe, Analía; Salas, María Eugenia; Lozano, Mauricio Javier; Draghi, Walter Omar; Jofré, Edgardo; Lagares, Antonio

    2018-02-10

    A growing body of evidence has reinforced the central role of microbiomes in the life of sound multicellular eukaryotes, thus more properly described as true holobionts. Though soil was considered a main source of plant microbiomes, seeds have been shown to be endophytically colonized by microorganisms thus representing natural carriers of a selected microbial inoculum to the young seedlings. In this work we have investigated the type of culturable endophytic bacteria that are carried within surface-sterilized alfalfa seeds. MALDI-TOF analysis revealed the presence of bacteria that belonged to 40 separate genera, distributed within four taxa (Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes). Nonsymbiotic members of the Rhizobiaceae family were also found. The evaluation of nine different in-vitro biochemical activities demonstrated isolates with complex combinations of traits that, upon a Principal-Component-Analysis, could be classified into four phenotypic groups. That isolates from nearly half of the genera identified had been able to colonize alfalfa plants grown under axenic conditions was remarkable. Further analyses should be addressed to investigating the colonization mechanisms of the alfalfa seeds, the evolutionary significance of the alfalfa-seed endophytes, and also how after germination the seed microbiome competes with spermospheric and rhizospheric soil bacteria to colonize newly emerging seedlings. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. The endophytic bacterium Serratia sp. PW7 degrades pyrene in wheat.

    Science.gov (United States)

    Zhu, Xuezhu; Wang, Wanqing; Crowley, David E; Sun, Kai; Hao, Shupeng; Waigi, Michael Gatheru; Gao, Yanzheng

    2017-03-01

    This research was conducted to isolate polycyclic aromatic hydrocarbon-degrading (PAH-degrading) endophytic bacteria and investigate their potential in protecting plants against PAH contamination. Pyrene-degrading endophytic bacteria were isolated from plants grown in PAH-contaminated soil. Among these endophytic bacteria, strain PW7 (Serratia sp.) isolated from Plantago asiatica was selected to investigate the suppression of pyrene accumulation in Triticum aestivum L. In the in vitro tests, strain PW7 degraded 51.2% of the pyrene in the media within 14 days. The optimal biodegradation conditions were pH 7.0, 30 °C, and MS medium supplemented with additional glucose, maltose, sucrose, and peptones. In the in vivo tests, strain PW7 successfully colonized the roots and shoots of inoculated (E + ) wheat plants, and its colonization decreased pyrene accumulation and pyrene transportation from roots to shoots. Remarkably, the concentration of pyrene in shoots decreased much more than that in roots, suggesting that strain PW7 has the potential for protecting wheat against pyrene contamination and mitigating the threat of pyrene to human health via food consumption.

  1. Functional role of an endophytic Bacillus amyloliquefaciens in enhancing growth and disease protection of invasive English ivy (Hedera helix L.)

    Science.gov (United States)

    Soares, Marcos Antonio; Li, Jai-Yan; Bergen, Marshall; da Silva, Joaquim Manoel; Kowalski, Kurt P.; White, James Francis

    2015-01-01

    BackgroundWe hypothesize that invasive English ivy (Hedera helix) harbors endophytic microbes that promote plant growth and survival. To evaluate this hypothesis, we examined endophytic bacteria in English ivy and evaluated effects on the host plant.MethodsEndophytic bacteria were isolated from multiple populations of English ivy in New Brunswick, NJ. Bacteria were identified as a single species Bacillus amyloliquefaciens. One strain of B. amyloliquefaciens, strain C6c, was characterized for indoleacetic acid (IAA) production, secretion of hydrolytic enzymes, phosphate solubilization, and antibiosis against pathogens. PCR was used to amplify lipopeptide genes and their secretion into culture media was detected by MALDI-TOF mass spectrometry. Capability to promote growth of English ivy was evaluated in greenhouse experiments. The capacity of C6c to protect plants from disease was evaluated by exposing B+ (bacterium inoculated) and B− (non-inoculated) plants to the necrotrophic pathogen Alternaria tenuissima.ResultsB. amyloliquefaciens C6c systemically colonized leaves, petioles, and seeds of English ivy. C6c synthesized IAA and inhibited plant pathogens. MALDI-TOF mass spectrometry analysis revealed secretion of antifungal lipopeptides surfactin, iturin, bacillomycin, and fengycin. C6c promoted the growth of English ivy in low and high soil nitrogen conditions. This endophytic bacterium efficiently controlled disease caused by Alternaria tenuissima.ConclusionsThis study suggests that B. amyloliquefaciens plays an important role in enhancing growth and disease protection of English ivy.

  2. Priming effects of the endophytic fungus Phomopsis liquidambari on soil mineral N transformations.

    Science.gov (United States)

    Chen, Yan; Ren, Cheng-Gang; Yang, Bo; Peng, Yao; Dai, Chuan-Chao

    2013-01-01

    Nitrogen (N) is a crucial nutrient for soil biota, and its cycling is determined by the organic carbon decomposing process. Some endophytic fungi are latent saprotrophs that trigger their saprotrophic metabolism to promote litter organic matter cycling as soon as the host tissue senesces or dies. However, the effects of endophytic fungi on litter and soil N dynamics in vitro have rarely been investigated. In this study, we investigated N dynamics (total and mineral N) in both litter and soil in incubations of a pure culture of an endophytic fungus Phomopsis liquidambari with litter and following soil burial of the litter. Soil enzymes and microbial communities participating in the N transformations were also investigated. A pure culture of P. liquidambari released litter NH (4) (+) -N in the initial stages (10 days) of the incubation. However, following soil burial, the presence of both P. liquidambari and soil ammonia-oxidizing bacteria (AOB) resulted in an increase in soil NO (3) (-) -N. These results indicate that the endophytic fungus P. liquidambari in vitro stimulates organic mineralization and promote NH (4) (+) -N release. Such effects triggered soil AOB-driven nitrification process.

  3. Antifungal and antibacterial activity of endophytic penicillium species isolated from salvadora species

    International Nuclear Information System (INIS)

    Korejo, F.; Shafique, H.A.; Haque, S.E.; Ali, S.A.

    2014-01-01

    Salvadora persica and S. S.oleoides are facultative holophytic plants, well known as miswak, are traditionally used to ensure oral hygiene among Muslim people in Asian and African counties. Species of Salvadora have a number of proven pharmacological importance. Besides, terrestrial fungi endophytic fungi are also gaining importance for the isolation of bioactive compounds. In this study 74 samples (root, shoot and leaves) from S. persica and S. oleoides were examined for endophytic fungi, 22 samples showed presence of Penicillium spp., 48 were found positive for aspergilli, whereas 10 samples showed infection of Fusarium solani, 4 were found infected with Macrophomina phaseolina and one with Rhizoctonia solani. Most of the Penicillium isolated were identified as P. restrictum, P. citrinum and P. canescens. In dual culture plate assay out of four Penicillium isolates tested, P. citrinum and one isolate of P. restrictum caused growth inhibition of all four test root rotting fungi, Fusarium solani, F. oxysporum, Macrophomina phaseolina and Rhizoctonia solani. Culture filtrates of Penicillium spp., were also evaluated against four common laboratory bacteria namely Bacillus subtilis, Staphylococcus aureus, Salmonella typhimurium and Escherichia coli and above mentioned root rotting fungi. Culture filtrates of endophytic Penicillium spp., also showed significant antibacterial and antifungal activity. Secondary metabolites of endophytic Penicillium spp., offer an exciting area of research for the discovery of novel antimicrobial compounds. (author)

  4. Biocontrole da mancha-aquosa do melão pelo tratamento de sementes com bactérias epifíticas e endofíticas Biocontrol of bacterial blotch of melon by seed treatment with epiphytic and endophytic bacteria

    Directory of Open Access Journals (Sweden)

    Aldenir de Oliveira

    2006-09-01

    Full Text Available Bactérias epifíticas e endofíticas (96 isolados e fungos endofíticos (69 isolados foram obtidos de plantas de meloeiro sadios e testados no controle da mancha-aquosa, em condições de casa de vegetação, pelo tratamento de sementes pré-inoculadas com Acidovorax avenae subsp. citrulli ou pelo tratamento de sementes sadias visando a proteção da planta a posterior inoculação com o patógeno. As sementes de melão foram microbiolizadas por imersão nas suspensões (A570= 0,7, semeadas e avaliadas quanto ao período de incubação (PI, incidência (INC, severidade da doença (SEV e redução da severidade da doença (RSD. Apenas a microbiolização de sementes artificialmente infectadas, utilizando os endofíticos ENM5 (não identificado, ENM9 (Bacillus cereus, ENM13 (Bacillus sp., ENM16 (Bacillus cereus, ENM32 (Bacillus subtilis e ENM43 (Bacillus sp., revelou potencial para o controle da mancha-aquosa. Esses isolados, após o teste de compatibilidade in vitro, foram reavaliados isoladamente e em misturas dois a dois quanto ao PI, INC, SEV e RSD, além do índice de doença (IDO e área abaixo da curva de progresso da doença (AACPD. Todos os tratamentos diferiram significativamente (P= 0,05 da testemunha, com RSD de até 93,6%, destacando-se os isolados ENM13 e ENM9 com PI de 7,5 e 7,25 dias, SEV de 0,22 e 0,22, IDO de 2,59 e 2,59, e AACPD de 0,22 e 0,39, respectivamente. Ensaios foram realizados in vitro para a determinação dos possíveis mecanismos de ação envolvidos no controle biológico. Os isolados ENM13 e ENM9 solubilizaram fosfato, ENM5 apresentou antibiose contra A. avenae subsp. citrulli, ENM43 produziu HCN enquanto ENM16 e ENM32 não apresentaram nenhum dos mecanismos testados.Epiphytic and endophytic bacteria (96 strains and endophytic fungi (69 strains were isolated from symptomless melon plants and tested for control of fruit blotch under greenhouse conditions, by treating seeds previously inoculated with Acidovorax

  5. Effects of fungicides on endophytic fungi and photosynthesis in seedlings of a tropical tree, guarea guidonia (meliaceae)

    International Nuclear Information System (INIS)

    Gamboa Gaitan, Miguel A; Wen, Shiyun; Fetcher, Ned; Bayman, Paul

    2005-01-01

    Endophytes are microorganisms that live within healthy plant tissues, and include fungi and bacteria. They can be mutualists, comensals or even latent pathogens. Presence of these endosymbionts may affect host physiology, for example by consuming products of photosynthesis (endophytes are heterotrophs) or producing toxic metabolites. In this work two fungicides were used to eliminate fungal endophytes from seedlings of guarea guidonia. light saturated photosynthesis (Amax) was measured in endophytefree plants and compared with control plants. Each fungicide killed different fungal endosymbionts. phomopsis was more susceptible to benomyl while colletotrichum was more susceptible to propiconazole. Although suggestive, values of Amax were not significantly different for each treatment compared with control plants. No prediction can be made at this point about the final outcome of a given plantendophytic fungi interaction

  6. Introduction of Endophytic Pseudomonas rhodesiae and Acinetobacter sp. Effective on Seed Germination and Cucumber Growth Factors Improvement

    Directory of Open Access Journals (Sweden)

    Farkhondeh Amini

    2017-03-01

    Full Text Available Introduction: Some bacteria are capable of entering the plant as endophytes that do not cause harm and could establish a mutualistic association with host plants. Endophytic bacteria are bacteria that live in plant tissues without doing substantive harm. They enter plant tissue primarily through different plant zones. Both Gram-positive and Gram-negative bacteria have been isolated from several tissue types in several plant species. In addition, several different bacterial species have been isolated from a single plant. Variation in endophytic bacteria populations referred to the time of sampling, type of plant tissue, age and environment conditions, as well. In general endophytic bacteria occur at lower population densities than rhizospheric bacteria or bacterial pathogens. Endophytic populations, like rhizospheric populations, are conditioned by biotic and abiotic factors, but endophytic bacteria could be better protected from biotic and abiotic stresses than rhizospheric bacteria. It is clear that the interaction between plants and some endophytic bacteria is associated with beneficial effects such as plant growth promotion and biocontrol potential against plant pathogens. These types of bacteria are often capable of eliciting significant physiological changes that modulate the growth and development of the plant. Most of the time, these beneficial effects of endophytes are greater than those of many rhizosphere-colonizing bacteria. Endophytic bacteria affect bacterial growth by numerous mechanisms directly or indirectly. Some genus of bacteria such as Azosprillium, Enterobacter, Azotobacter and Pseudomonas produces plant growth regulators which lead to plant growth improvement. Microorganism profit from plants due to the enhanced availability of nutrients, whereas plants can receive benefits from bacterial associates by growth enhancement or stress reduction. Therefore, mutualistic interactions between host plants and associated

  7. Bactérias endofíticas como agentes promotores do crescimento de plantas de tomateiro e de inibição in vitro de Ralstonia solanacearum Endophytic bacteria as agents of plant growth promotion in tomato and inhibition in vitro of Ralstonia solanacearum

    Directory of Open Access Journals (Sweden)

    Patrícia Baston Barretti

    2008-06-01

    Full Text Available A partir de 150 isolados de bactérias endofíticas obtidos de folhas, caules e raízes de tomateiros sadios, 53 destacaram-se quanto à habilidade em promover o crescimento de plantas de tomateiro (Solanum lycopersicum L.. Submetidos a uma nova seleção, os isolados UFV-E17, UFV-E22, UFV-E25, UFV-E26, UFV-E27, Bacillus cereus (UFV-E29, UFV-E49, UFLA 06-LS, UFLA 08-LS e UFLA 11-LS apresentaram maior promoção do crescimento. Avaliações semanais de altura e número de folhas e folíolos das plantas aconteceram durante 45 dias. Após a sexta avaliação, mensurou-se a área foliar e o peso da matéria fresca e seca da parte aérea e da raiz das plantas. O isolado UFV-E49 apresentou melhor resultado para altura, área foliar, número de folhas e peso da matéria fresca e seca, tanto da parte aérea quanto da raiz. Dos isolados selecionados, somente dois apresentaram efeito inibitório direto in vitro a Ralstonia solanacearum.Out of one hundred and fifty isolates of endophytic bacteria from leaves, stems and roots of healthy tomatoes (Solanum lycopersicum L., fifty three showed ability to promote tomato plant growth, among these, ten isolates UFV-E17, UFV-E22, UFV-E25, UFV-E26, UFV-E27, Bacillus cereus (UFV-E29, UFV-E49, UFLA 06-LS, UFLA 08-LS and UFLA 11-LS, provided the largest plant growth promotion. Weekly assessment of plant height and number of leaves and leaflets were carried out during 45 days. After the sixth evaluation, the leaf area and the fresh and dry weight of the aerial part of plants and of the roots were measured. Isolate UFV-E49 provided the largest values of height, leaf area, number of leaves and fresh and dry weight of the aerial part of plants as well as the root. From the selected isolates, only two presented antimicrobial activity against Ralstonia solanacearum.

  8. Genetic compatibility determines endophyte-grass combinations.

    Directory of Open Access Journals (Sweden)

    Kari Saikkonen

    Full Text Available Even highly mutually beneficial microbial-plant interactions, such as mycorrhizal- and rhizobial-plant exchanges, involve selfishness, cheating and power-struggles between the partners, which depending on prevailing selective pressures, lead to a continuum of interactions from antagonistic to mutualistic. Using manipulated grass-endophyte combinations in a five year common garden experiment, we show that grass genotypes and genetic mismatches constrain genetic combinations between the vertically (via host seeds transmitted endophytes and the out-crossing host, thereby reducing infections in established grass populations. Infections were lost in both grass tillers and seedlings in F(1 and F(2 generations, respectively. Experimental plants were collected as seeds from two different environments, i.e., meadows and nearby riverbanks. Endophyte-related benefits to the host included an increased number of inflorescences, but only in meadow plants and not until the last growing season of the experiment. Our results illustrate the importance of genetic host specificity and trans-generational maternal effects on the genetic structure of a host population, which act as destabilizing forces in endophyte-grass symbioses. We propose that (1 genetic mismatches may act as a buffering mechanism against highly competitive endophyte-grass genotype combinations threatening the biodiversity of grassland communities and (2 these mismatches should be acknowledged, particularly in breeding programmes aimed at harnessing systemic and heritable endophytes to improve the agriculturally valuable characteristics of cultivars.

  9. Combined genetic and bioactivity-based prioritization leads to the isolation of an endophyte-derived antimycobacterial compound.

    Science.gov (United States)

    Alvin, A; Kalaitzis, J A; Sasia, B; Neilan, B A

    2016-05-01

    To initiate a genetic and bioactivity-based screening programme of culturable endophytes to identify micro-organisms capable of producing bioactive polyketides and peptides. Fungal endophytes were isolated from flowers, leaves and roots of Rhoeo spathacea, revealing a community consisting of Colletotrichum sp., Fusarium sp., Guignardia sp., Phomopsis sp., Phoma sp. and Microdochium sp. Genetic screening showed that all isolates had polyketide synthase (PKS) genes and most had nonribosomal peptide synthetase (NRPS) genes. Ethyl acetate extracts of the fungal isolates exhibited antiproliferative activity against at least one of the seven bacterial and mycobacterial test strains. Nuclear Magnetic Resonance -guided fractionation of the crude extract from a Fusarium sp. strain which exhibited strong antiproliferative activity against Mycobacterium tuberculosis resulted in the isolation of the polyketide javanicin. This compound was active against Myco. tuberculosis (MIC = 25 μg ml(-1)) and Mycobacterium phlei (MIC = 50 μg ml(-1)). The medicinal plant R. spathacea hosts a variety of fungal endophytes capable of producing antibacterial and antimycobacterial compounds. There is a positive correlation between the presence of PKS and/or NRPS encoding genes in endophytes and the bioactivity of their respective organic extracts. This is the first report on the fungal endophytic diversity of R. spathacea, and the isolation of an antimycobacterial compound from the plant which has been traditionally used for the treatment of tuberculosis symptoms. © 2016 The Society for Applied Microbiology.

  10. Naringenin degradation by the endophytic diazotroph Herbaspirillum seropedicae SmR1.

    Science.gov (United States)

    Marin, A M; Souza, E M; Pedrosa, F O; Souza, L M; Sassaki, G L; Baura, V A; Yates, M G; Wassem, R; Monteiro, R A

    2013-01-01

    Several bacteria are able to degrade flavonoids either to use them as carbon sources or as a detoxification mechanism. Degradation pathways have been proposed for several bacteria, but the genes responsible are not known. We identified in the genome of the endophyte Herbaspirillum seropedicae SmR1 an operon potentially associated with the degradation of aromatic compounds. We show that this operon is involved in naringenin degradation and that its expression is induced by naringenin and chrysin, two closely related flavonoids. Mutation of fdeA, the first gene of the operon, and fdeR, its transcriptional activator, abolished the ability of H. seropedicae to degrade naringenin.

  11. Antimicrobial activity of Ulva reticulata and its endophytes

    Science.gov (United States)

    Dhanya, K. I.; Swati, V. I.; Vanka, Kanth Swaroop; Osborne, W. J.

    2016-04-01

    Seaweeds are known to exhibit various antimicrobial properties, since it harbours an enormous range of indigenous bioactive compounds. The emergence of drug resistant strains has directed to the identification of prospective metabolites from seaweed and its endophytes, thereby exploiting the properties in resisting bacterial diseases. The current study was aimed to assess the antimicrobial activity of extracts obtained from Ulva reticulate, for which metabolites of Ulva reticulata and its endophytes were extracted and assessed against human pathogens like Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, and Bacillus subtilis. It was observed that the hexane extract of isolate VITDSJ2 was effective against all the tested pathogens but a significant inhibition was observed for Staphylococcus aureus and Escherichia coli. Further, Gas chromatography coupled with Mass spectroscopy (GC-MS) revealed the existence of phenol, 3, 5-bis (1, 1-dimethylethyl) in the crude hexane extract which is well-known to possess antibacterial activity. The effective isolate VITDSJ2 was identified to be the closest neighbour of Pseudomonas stutzeri by phenotypic and genotypic methods. The crude extracts of the seaweed Ulva reticulata was also screened for antibacterial activity and the hexane extract was effective in showing inhibition against all the tested pathogens. The compound in the crude extract of Ulva reticulata was identified as hentriacontane using GC-MS. The extracts obtained from dichloromethane did not show significant activity in comparison with the hexane extracts. Hence the metabolites of Ulva reticulata and the bacterial secondary metabolites of the endophytes could be used in the treatment of bacterial infections.

  12. Potential of Endophytic Bacterial to Control Lesion Nematode (Pratylenchus brachyurus on Patchouli

    Directory of Open Access Journals (Sweden)

    RITA HARNI

    2007-03-01

    Full Text Available Root lesion nematode (Pratylenchus brachyurus is one of the most important pathogens of patchouli that caused significant losses. Studies on the potential of endophytic bacterial to control P. brachyurus on patchouli had been conducted. To evaluate the effectiveness of endophytic bacterial against to P. brachyurus on patchouli, nine isolates of bacteria ( NJ2, NJ25, NJ41, NJ46, NJ57, NA22, ERB21, ES32, and E26 were applied by deeping root seedling into bacterial suspension. A study of the physiological characteristics of nine isolates was conducted by using specific medium. The results showed that endophytic bacterial was significantly reduced the population of P. brachyurus and all isolates bacterial promoted growth of patchouli (shoot weight, root weight, and root length. Four isolates, i.e. Bacillus NJ46, Bacillus Na22, Bacillus NJ2, and Bacillus NJ57 were among the potential control agents that reduced nematode populations as much as 68.1-73.9%. Almost all of the isolated bacteria from patchouli roots were able to solubilizing phosphate, while some of them had the ability to produce chitinase, cellulase, protease, HCN, and fluorescency.

  13. Evidence for the endophytic colonization of Phaseolus vulgaris (common bean) roots by the diazotroph Herbaspirillum seropedicae.

    Science.gov (United States)

    Schmidt, M A; Souza, E M; Baura, V; Wassem, R; Yates, M G; Pedrosa, F O; Monteiro, R A

    2011-03-01

    Herbaspirillum seropedicae is an endophytic diazotrophic bacterium, which associates with important agricultural plants. In the present study, we have investigated the attachment to and internal colonization of Phaseolus vulgaris roots by the H. seropedicae wild-type strain SMR1 and by a strain of H. seropedicae expressing a red fluorescent protein (DsRed) to track the bacterium in the plant tissues. Two-day-old P. vulgaris roots were incubated at 30°C for 15 min with 6 x 10(8) CFU/mL H. seropedicae SMR1 or RAM4. Three days after inoculation, 4 x 10(4) cells of endophytic H. seropedicae SMR1 were recovered per gram of fresh root, and 9 days after inoculation the number of endophytes increased to 4 x 10(6) CFU/g. The identity of the recovered bacteria was confirmed by amplification and sequencing of the 16SrRNA gene. Furthermore, confocal microscopy of P. vulgaris roots inoculated with H. seropedicae RAM4 showed that the bacterial cells were attached to the root surface 15 min after inoculation; fluorescent bacteria were visible in the internal tissues after 24 h and were found in the central cylinder after 72 h, showing that H. seropedicae RAM4 is capable of colonizing the roots of the dicotyledon P. vulgaris. Determination of dry weight of common bean inoculated with H. seropedicae SMR1 suggested that this bacterium has a negative effect on the growth of P. vulgaris.

  14. Nodulation-dependent communities of culturable bacterial endophytes from stems of field-grown soybeans.

    Science.gov (United States)

    Okubo, Takashi; Ikeda, Seishi; Kaneko, Takakazu; Eda, Shima; Mitsui, Hisayuki; Sato, Shusei; Tabata, Satoshi; Minamisawa, Kiwamu

    2009-01-01

    Endophytic bacteria (247 isolates) were randomly isolated from surface-sterilized stems of non-nodulated (Nod(-)), wild-type nodulated (Nod(+)), and hypernodulated (Nod(++)) soybeans (Glycine max [L.] Merr) on three agar media (R2A, nutrient agar, and potato dextrose agar). Their diversity was compared on the basis of 16S rRNA gene sequences. The phylogenetic composition depended on the soybean nodulation phenotype, although diversity indexes were not correlated with nodulation phenotype. The most abundant phylum throughout soybean lines tested was Proteobacteria (58-79%). Gammaproteobacteria was the dominant class (21-72%) with a group of Pseudomonas sp. significantly abundant in Nod(+) soybeans. A high abundance of Alphaproteobacteria was observed in Nod(-) soybeans, which was explained by the increase in bacterial isolates of the families Rhizobiaceae and Sphingomonadaceae. A far greater abundance of Firmicutes was observed in Nod(-) and Nod(++) mutant soybeans than in Nod(+) soybeans. An impact of culture media on the diversity of isolated endophytic bacteria was also observed: The highest diversity indexes were obtained on the R2A medium, which enabled us to access Alphaproteobacteria and other phyla more frequently. The above results indicated that the extent of nodulation changes the phylogenetic composition of culturable bacterial endophytes in soybean stems.

  15. Exposure of Cucurbita pepo to DDE-contamination alters the endophytic community: A cultivation dependent vs a cultivation independent approach.

    Science.gov (United States)

    Eevers, N; Hawthorne, J R; White, J C; Vangronsveld, J; Weyens, N

    2016-02-01

    2,2-bis(p-chlorophenyl)-1,1-dichloro-ethylene (DDE) is the most abundant and persistent degradation product of the pesticide 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane (DDT) and is encountered in contaminated soils worldwide. Both DDE and DDT are classified as Persistent Organic Pollutants (POPs) due to their high hydrophobicity and potential for bioaccumulation and biomagnification in the food chain. Zucchini (Cucurbita pepo ssp. pepo) has been shown to accumulate high concentrations of DDE and other POPs and has been proposed as a phytoremediation tool for contaminated soils. The endophytic bacteria associated with this plant may play an important role in the remedial process. Therefore, this research focuses on changes in endophytic bacterial communities caused by the exposure of C. pepo to DDE. The total bacterial community was investigated using cultivation-independent 454 pyrosequencing, while the cultivable community was identified using cultivation-dependent isolation procedures. For both procedures, increasing numbers of endophytic bacteria, as well as higher diversities of genera were observed when plants were exposed to DDE. Several bacterial genera such as Stenotrophomonas sp. and Sphingomonas sp. showed higher abundance when DDE was present, while, for example Pseudomonas sp. showed a significantly lower abundance in the presence of DDE. These findings suggest tolerance of different bacterial strains to DDE, which might be incorporated in further investigations to optimize phytoremediation with the possible use of DDE-degrading endophytes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Antimicrobial activity of saponins produced by two novel endophytic fungi from Panax notoginseng.

    Science.gov (United States)

    Jin, Zhaoxia; Gao, Lin; Zhang, Lin; Liu, Tianyi; Yu, Fang; Zhang, Zongshen; Guo, Qiong; Wang, Biying

    2017-11-01

    Endophytes in plants may be co-producer of the bioactive compounds of their hosts. We conducted a study to bioprospect for saponin-producing endophytic fungi from Panax notoginseng and evaluate the antimicrobial activity of saponins. Two novel fungal endophytes, Fusarium sp. PN8 and Aspergillus sp. PN17, were isolated from traditional Chinese medicinal herb P. notoginseng. After eight days of fermentation, the total saponins produced in the culture broth of PN8 and PN17 were 1.061 and 0.583 mg mL -1 , respectively. The saponin extracts exhibited moderate to high (inhibition zone diameter 15.7-28.4 mm, MIC 1.6-12.5 mg mL -1 ) antimicrobial activity against pathogens tested. Further analysis showed that triterpenoid saponins produced by Fusarium PN8 were Rb 1 , Rd and 20(S)-Rg 3 , while Aspergillus PN17 had the ability to synthesise ginsenoside Re, Rd and 20(S)-Rg 3 . The isolated endophytes may be used as potential sources for microbial production of plant secondary metabolites and for antimicrobial agents.

  17. Diversity and taxonomy of endophytic xylariaceous fungi from medicinal plants of Dendrobium (Orchidaceae).

    Science.gov (United States)

    Chen, Juan; Zhang, Li-Chun; Xing, Yong-Mei; Wang, Yun-Qiang; Xing, Xiao-Ke; Zhang, Da-Wei; Liang, Han-Qiao; Guo, Shun-Xing

    2013-01-01

    Dendrobium spp. are traditional Chinese medicinal plants, and the main effective ingredients (polysaccharides and alkaloids) have pharmacologic effects on gastritis infection, cancer, and anti-aging. Previously, we confirmed endophytic xylariaceous fungi as the dominant fungi in several Dendrobium species of tropical regions from China. In the present study, the diversity, taxonomy, and distribution of culturable endophytic xylariaceous fungi associated with seven medicinal species of Dendrobium (Orchidaceae) were investigated. Among the 961 endophytes newly isolated, 217 xylariaceous fungi (morphotaxa) were identified using morphological and molecular methods. The phylogenetic tree constructed using nuclear ribosomal internal transcribed spacer (ITS), large subunit of ribosomal DNA (LSU), and beta-tubulin sequences divided these anamorphic xylariaceous isolates into at least 18 operational taxonomic units (OTUs). The diversity of the endophytic xylariaceous fungi in these seven Dendrobium species was estimated using Shannon and evenness indices, with the results indicating that the dominant Xylariaceae taxa in each Dendrobium species were greatly different, though common xylariaceous fungi were found in several Dendrobium species. These findings implied that different host plants in the same habitats exhibit a preference and selectivity for their fungal partners. Using culture-dependent approaches, these xylariaceous isolates may be important sources for the future screening of new natural products and drug discovery.

  18. Antimicrobial biosynthetic potential and genetic diversity of endophytic actinomycetes associated with medicinal plants.

    Science.gov (United States)

    Gohain, Anwesha; Gogoi, Animesh; Debnath, Rajal; Yadav, Archana; Singh, Bhim P; Gupta, Vijai K; Sharma, Rajeev; Saikia, Ratul

    2015-10-01

    Endophytic actinomycetes are one of the primary groups that share symbiotic relationships with medicinal plants and are key reservoir of biologically active compounds. In this study, six selective medicinal plants were targeted for the first time for endophytic actinomycetes isolation from Gibbon Wild Life Sanctuary, Assam, India, during winter and summer and 76 isolates were obtained. The isolates were found to be prevalent in roots followed by stem and leaves. 16S rRNA gene sequence analysis revealed 16 genera, including rare genera, Verrucosispora, Isoptericola and Kytococcus, which have never been previously reported as endophytic. The genus Streptomyces (66%) was dominant in both seasons. Shannon's diversity index showed that Azadirachta indica (1.49), Rauwolfia serpentina (1.43) and Emblica officinalis (1.24) were relatively good habitat for endophytic actinomycetes. Antimicrobial strains showed prevalence of polyketide synthase (PKS) type-II (85%) followed by PKS type-I (14%) encoded in the genomes. Expression studies showed 12-fold upregulation of PKSII gene in seventh day of incubation for Streptomyces antibioticus (EAAG90). Our results emphasize that the actinomycetes assemblages within plant tissue exhibited biosynthetic systems encoding for important biologically active compounds. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Anti-mycobacterial activity of polyketides from Penicillium sp. endophyte isolated from Garcinia nobilis against Mycobacterium smegmatis

    Directory of Open Access Journals (Sweden)

    Jean Bosco Jouda

    2016-01-01

    Conclusion: Isolated compounds from Penicillium sp. harbored in G. nobilis exhibited promising antimycobacterial activity against M. smegmatis thus supporting the immensity of the potential of antimycobacterial drug discovery from endophytes from medicinal plants. Penialidin C could further be investigated for antimycobacterial drug development.

  20. Diversity of endophytic fungal and bacterial communities in Ilex paraguariensis grown under field conditions.

    Science.gov (United States)

    Pérez, María Laura; Collavino, Mónica Mariana; Sansberro, Pedro Alfonso; Mroginski, Luis Amado; Galdeano, Ernestina

    2016-04-01

    The composition and diversity of the endophytic community associated with yerba mate (Ilex paraguariensis) was investigated using culture-depending methods. Fungi were identified based on their micromorphological characteristics and internal transcribed spacer rDNA sequence analysis; for bacteria 16S rDNA sequence analysis was used. Fungal and bacterial diversity did not show significant differences between organ age. The highest fungal diversity was registered during fall season and the lowest in winter. Bacterial diversity was higher in stems and increased from summer to winter, in contrast with leaves, which decreased. The most frequently isolated fungus was Fusarium, followed by Colletotrichum; they were both present in all the sampling seasons and organ types assayed. Actinobacteria represented 57.5 % of all bacterial isolates. The most dominant bacterial taxa were Curtobacterium and Microbacterium. Other bacteria frequently found were Methylobacterium, Sphingomonas, Herbiconiux and Bacillus. Nitrogen fixation and phosphate solubilization activity, ACC deaminase production and antagonism against plant fungal pathogens were assayed in endophytic bacterial strains. In the case of fungi, strains of Trichoderma, Penicillium and Aspergillus were assayed for antagonism against pathogenic Fusarium sp. All microbial isolates assayed showed at least one growth promoting activity. Strains of Bacillus, Pantoea, Curtobacterium, Methylobacterium, Brevundimonas and Paenibacillus had at least two growth-promoting activities, and Bacillus, Paenibacillus and the three endophytic fungi showed high antagonistic activity against Fusarium sp. In this work we have made a wide study of the culturable endophytic community within yerba mate plants and found that several microbial isolates could be considered as potential inoculants useful for improving yerba mate production.

  1. Structural Interaction Between GFP-Labeled Diazotrophic Endophytic Bacterium Herbaspirillum seropedicae RAM10 and Pineapple Plantlets 'VitóRia'.

    Science.gov (United States)

    Estrela Borges Baldotto, Lílian; Lopes Olivares, Fábio; Bressan-Smith, Ricardo

    2011-01-01

    The events involved in the structural interaction between the diazotrophic endophytic bacterium Herbaspirillum seropedicae, strain RAM10, labeled with green fluorescent protein, and pineapple plantlets 'Vitória' were evaluated by means of bright-field and fluorescence microscopy, combined with scanning electron microscopy for 28 days after inoculation. After 6 hours of inoculation, H. seropedicae was already adhered to the roots, colonizing mainly root hair surface and bases, followed by epidermal cell wall junctions. Bacteria adherence in the initial periods occurred mainly in the form of solitary cells and small aggregates with pleomorphic cells. Bacteria infection of root tissue occurred through the cavities caused by the disruption of epidermal cells during the emergence of lateral roots and the endophytic establishment by the colonization of intercellular spaces of the cortical parenchyma. Moreover, within 1 day after inoculation the bacteria were colonizing the shoots. In this region, the preferred sites of epiphytic colonization were epidermal cell wall junctions, peltate scutiform trichomes and non-glandular trichomes. Subsequently, the bacteria occupied the outer periclinal walls of epidermal cells and stomata. The penetration into the shoot occurred passively through stoma aperture followed by the endophytic establishment on the substomatal chambers and spread to the intercellular spaces of spongy chlorenchyma. After 21 days of inoculation, bacterial biofilm were seen at the root hair base and on epidermal cell wall surface of root and leaf, also confirming the epiphytic nature of H. seropedicae.

  2. Structural interaction between GFP-labeled diazotrophic endophytic bacterium Herbaspirillum seropedicae RAM10 and pineapple plantlets 'Vitória'

    Directory of Open Access Journals (Sweden)

    Lílian Estrela Borges Baldotto

    2011-03-01

    Full Text Available The events involved in the structural interaction between the diazotrophic endophytic bacterium Herbaspirillum seropedicae, strain RAM10, labeled with green fluorescent protein, and pineapple plantlets 'Vitória' were evaluated by means of bright-field and fluorescence microscopy, combined with scanning electron microscopy for 28 days after inoculation. After 6 hours of inoculation, H. seropedicae was already adhered to the roots, colonizing mainly root hair surface and bases, followed by epidermal cell wall junctions. Bacteria adherence in the initial periods occurred mainly in the form of solitary cells and small aggregates with pleomorphic cells. Bacteria infection of root tissue occurred through the cavities caused by the disruption of epidermal cells during the emergence of lateral roots and the endophytic establishment by the colonization of intercellular spaces of the cortical parenchyma. Moreover, within 1 day after inoculation the bacteria were colonizing the shoots. In this region, the preferred sites of epiphytic colonization were epidermal cell wall junctions, peltate scutiform trichomes and non-glandular trichomes. Subsequently, the bacteria occupied the outer periclinal walls of epidermal cells and stomata. The penetration into the shoot occurred passively through stoma aperture followed by the endophytic establishment on the substomatal chambers and spread to the intercellular spaces of spongy chlorenchyma. After 21 days of inoculation, bacterial biofilm were seen at the root hair base and on epidermal cell wall surface of root and leaf, also confirming the epiphytic nature of H. seropedicae.

  3. Richness of endophytic fungi isolated from Opuntia ficus-indica Mill. (Cactaceae) and preliminary screening for enzyme production.

    Science.gov (United States)

    Bezerra, J D P; Santos, M G S; Svedese, V M; Lima, D M M; Fernandes, M J S; Paiva, L M; Souza-Motta, C M

    2012-05-01

    Opuntia ficus-indica Mill. (forage cactus) is farmed with relative success in the semi-arid region of the Brazilian northeast for commercial purposes, particularly as forage and food. Endophytic microorganisms are those that can be isolated inside plant tissues and can be a new source to production of enzymes with different potentialities. The objective of this study was to describe the richness of endophytic fungi from O. ficus-indica and to detect the capacity of these species to produce extracellular hydrolytic enzymes. Forty-four endophytic fungi species were isolated. Among them, the most commonly found were Cladosporium cladosporioides (20.43%) and C. sphaerospermum (15.99%). Acremonium terricola, Monodictys castaneae, Penicillium glandicola, Phoma tropica and Tetraploa aristata are being reported for the first time as endophytic fungi for Brazil. The majority of isolated fungi exhibited enzymatic potential. Aspergillus japonicus and P. glandicola presented pectinolytic activity. Xylaria sp. was the most important among the other 14 species with positive cellulase activity. All 24 isolates analysed were xylanase-positive. Protease was best produced by isolate PF103. The results indicate that there is a significant richness of endophytic fungi in O. ficus-indica, and that these isolates indicate promising potential for deployment in biotechnological processes involving production of pectinases, cellulases, xylanases and proteases.

  4. Inducible secretion of phytate-degrading enzymes from bacteria ...

    African Journals Online (AJOL)

    More than 320 bacteria were isolated from the soil (Rhizosphere, endophyte, flowers and leaves) of Rosa damascena cv. Taifi and screened for phytase activity. Phytase activity was checked for 24 isolates in Bacillus broth media supplemented with and without rice bran. Twelve (12) isolates were found with detectable ...

  5. Effect of bacterial inoculation, plant genotype and developmental stage on root-associated and endophytic bacterial communities in potato (Solanum tuberosum)

    NARCIS (Netherlands)

    Andreote, F.D.; Rocha, da U.N.; Araujo, W.L.; Azevedo, J.L.; Overbeek, van L.S.

    2010-01-01

    Beneficial bacteria interact with plants by colonizing the rhizosphere and roots followed by further spread through the inner tissues, resulting in endophytic colonization. The major factors contributing to these interactions are not always well understood for most bacterial and plant species. It is

  6. In Vitro Resistance Studies with Bacteria That Exhibit Low Mutation Frequencies: Prediction of “Antimutant” Linezolid Concentrations Using a Mixed Inoculum Containing both Susceptible and Resistant Staphylococcus aureus

    Science.gov (United States)

    Golikova, Maria V.; Strukova, Elena N.; Portnoy, Yury A.; Romanov, Andrey V.; Edelstein, Mikhail V.; Zinner, Stephen H.

    2014-01-01

    Bacterial resistance studies using in vitro dynamic models are highly dependent on the starting inoculum that might or might not contain spontaneously resistant mutants (RMs). To delineate concentration-resistance relationships with linezolid-exposed Staphylococcus aureus, a mixed inoculum containing both susceptible cells and RMs was used. An RM selected after the 9th passage of the parent strain (MIC, 2 μg/ml) on antibiotic-containing media (RM9; MIC, 8 μg/ml) was chosen for the pharmacodynamic studies, because the mutant prevention concentration (MPC) of linezolid against the parent strain in the presence of RM9 at 102 (but not at 104) CFU/ml did not differ from the MPC value determined in the absence of the RMs. Five-day treatments with twice-daily linezolid doses were simulated at concentrations either between the MIC and MPC or above the MPC. S. aureus RMs (resistant to 2× and 4× MIC but not 8× and 16× MIC) were enriched at ratios of the 24-h area under the concentration-time curve (AUC24) to the MIC that provide linezolid concentrations between the MIC and MPC for 100% (AUC24/MIC, 60 h) and 86% (AUC24/MIC, 120 h) of the dosing interval. No such enrichment occurred when linezolid concentrations were above the MIC and below the MPC for a shorter time (37% of the dosing interval; AUC24/MIC, 240 h) or when concentrations were consistently above the MPC (AUC24/MIC, 480 h). These findings obtained using linezolid-susceptible staphylococci supplemented with RMs support the mutant selection window hypothesis. This method provides an option to delineate antibiotic concentration-resistance relationships with bacteria that exhibit low mutation frequencies. PMID:25451050

  7. Interactions among endophytic bacteria and fungi: effects and ...

    Indian Academy of Sciences (India)

    Madhu

    co-cultures were then prepared. ... From the prepared solution, 0.25, 0.5, 0.75, 1.0 and 1.25 ml of aliquots were mixed .... pathogens and nematodes affecting strawberries; Soil Biol. Biochem. ... P Johnson-Green (Halifax: Atlantic Canada Society for. Microbial ... 1994 Infection of sugar cane by the nitrogen-fixing bacterium.

  8. Endophytic degrader bacteria for improving phytoremediation of organic xenobiotics

    DEFF Research Database (Denmark)

    Karlson, U.; Trapp, Stefan; Lelie, D, van der

    2003-01-01

    This project represented a completely new approach towards improving the technology of phytoremediation of soil and groundwater contaminated with water soluble and volatile compounds. It endeavoured to tackle the problem of inefficient degradation of these compounds during phytoremediation by imp...

  9. Metabolites of the endophytic fungus Penicillium sp. FJ-1 of Acanthus ilicifolius.

    Science.gov (United States)

    Liu, Jian-Fang; Chen, Wei-Jie; Xin, Ben-Ru; Lu, Jie

    2014-06-01

    Two new compounds, named as (2R,3S)-pinobanksin-3-cinnamate (1), and 15alpha-hydroxy-(22E,24R)-ergosta-3,5,8(14),22-tetraen-7-one (2), were isolated from the endophytic fungus Penicillium sp. FJ-1 of Acanthus ilicifolius Linn. Their structures were elucidated on the basis of spectroscopic analysis. Additionally, compound 1 exhibited potent neuroprotective effects on corticosterone-damaged PC12 cells, and compound 2 showed potent cytotoxicity on glioma cell lines.

  10. New Eudesmane-Type Sesquiterpenoids from the Mangrove-Derived Endophytic Fungus Penicillium sp. J-54

    Directory of Open Access Journals (Sweden)

    Liuming Qiu

    2018-03-01

    Full Text Available Four new eudesmane-type sesquiterpenoids, penicieudesmol A–D (1–4, were isolated from the fermentation broth of the mangrove-derived endophytic fungus Penicillium sp. J-54. Their structures were determined by spectroscopic methods, the in situ dimolybdenum CD method, and modified Mosher’s method. The bioassays results showed that 2 exhibited weak cytotoxicity against K-562 cells.

  11. Methylotrophic bacteria in sustainable agriculture.

    Science.gov (United States)

    Kumar, Manish; Tomar, Rajesh Singh; Lade, Harshad; Paul, Diby

    2016-07-01

    Excessive use of chemical fertilizers to increase production from available land has resulted in deterioration of soil quality. To prevent further soil deterioration, the use of methylotrophic bacteria that have the ability to colonize different habitats, including soil, sediment, water, and both epiphytes and endophytes as host plants, has been suggested for sustainable agriculture. Methylotrophic bacteria are known to play a significant role in the biogeochemical cycle in soil ecosystems, ultimately fortifying plants and sustaining agriculture. Methylotrophs also improve air quality by using volatile organic compounds such as dichloromethane, formaldehyde, methanol, and formic acid. Additionally, methylotrophs are involved in phosphorous, nitrogen, and carbon cycling and can help reduce global warming. In this review, different aspects of the interaction between methylotrophs and host plants are discussed, including the role of methylotrophs in phosphorus acquisition, nitrogen fixation, phytohormone production, iron chelation, and plant growth promotion, and co-inoculation of these bacteria as biofertilizers for viable agriculture practices.

  12. Molecular phylogenetics and anti-Pythium activity of endophytes from rhizomes of wild ginger congener, Zingiber zerumbet Smith.

    Science.gov (United States)

    Keerthi, D; Aswati Nair, R; Prasath, D

    2016-03-01

    Zingiber zerumbet, a perennial rhizomatous herb exhibits remarkable disease resistance as well as a wide range of pharmacological activities. Towards characterizing the endophytic population of Z. zerumbet rhizomes, experiments were carried out during two different growing seasons viz., early-June of 2013 and late-July of 2014. A total of 34 endophytes were isolated and categorized into 11 morphologically distinct groups. Fungi were observed to predominate bacterial species with colonization frequency values ranging from 12.5 to 50%. Among the 11 endophyte groups isolated, molecular analyses based on ITS/16S rRNA gene sequences identified seven isolate groups as Fusarium solani, two as F. oxysporum and one as the bacterium Rhizobium spp. Phylogenetic tree clustered the ITS sequences from Z. zerumbet endophytes into distinct clades consistent with morphological and sequence analysis. Dual culture assays were carried out to determine antagonistic activity of the isolated endophytes against Pythium myriotylum, an economically significant soil-borne phytopathogen of cultivated ginger. Experiments revealed significant P. myriotylum growth inhibition by F. solani and F. oxysporum isolates with percentage of inhibition (PoI) ranging from 45.17 ± 0.29 to 62.2 ± 2.58 with F. oxysporum exhibiting higher PoI values against P. myriotylum. Using ZzEF8 metabolite extract, concentration-dependent P. myriotylum hyphal growth inhibition was observed following radial diffusion assays. These observations were confirmed by scanning electron microscopy analysis wherein exposure to ZzEF8 metabolite extract induced hyphal deformities. Results indicate Z. zerumbet endophytes as promising resources for biologically active compounds and as biocontrol agents for soft rot disease management caused by Pythium spp.

  13. Hypoxylon pulicicidum sp. nov. (Ascomycota, Xylariales, a pantropical insecticide-producing endophyte.

    Directory of Open Access Journals (Sweden)

    Gerald F Bills

    Full Text Available BACKGROUND: Nodulisporic acids (NAs are indole diterpene fungal metabolites exhibiting potent systemic efficacy against blood-feeding arthropods, e.g., bedbugs, fleas and ticks, via binding to arthropod specific glutamate-gated chloride channels. Intensive medicinal chemistry efforts employing a nodulisporic acid A template have led to the development of N-tert-butyl nodulisporamide as a product candidate for a once monthly treatment of fleas and ticks on companion animals. The source of the NAs is a monophyletic lineage of asexual endophytic fungal strains that is widely distributed in the tropics, tentatively identified as a Nodulisporium species and hypothesized to be the asexual state of a Hypoxylon species. METHODS AND RESULTS: Inferences from GenBank sequences indicated that multiple researchers have encountered similar Nodulisporium endophytes in tropical plants and in air samples. Ascomata-derived cultures from a wood-inhabiting fungus, from Martinique and closely resembling Hypoxylon investiens, belonged to the same monophyletic clade as the NAs-producing endophytes. The hypothesis that the Martinique Hypoxylon collections were the sexual state of the NAs-producing endophytes was tested by mass spectrometric analysis of NAs, multi-gene phylogenetic analysis, and phenotypic comparisons of the conidial states. We established that the Martinique Hypoxylon strains produced an ample spectrum of NAs and were conspecific with the pantropical Nodulisporium endophytes, yet were distinct from H. investiens. A new species, H. pulicicidum, is proposed to accommodate this widespread organism. CONCLUSIONS AND SIGNIFICANCE: Knowledge of the life cycle of H. pulicicidum will facilitate an understanding of the role of insecticidal compounds produced by the fungus, the significance of its infections in living plants and how it colonizes dead wood. The case of H. pulicicidum exemplifies how life cycle studies can consolidate disparate observations of a

  14. Endophytic Colonization and In Planta Nitrogen Fixation by a Herbaspirillum sp. Isolated from Wild Rice Species

    Science.gov (United States)

    Elbeltagy, Adel; Nishioka, Kiyo; Sato, Tadashi; Suzuki, Hisa; Ye, Bin; Hamada, Toru; Isawa, Tsuyoshi; Mitsui, Hisayuki; Minamisawa, Kiwamu

    2001-01-01

    Nitrogen-fixing bacteria were isolated from the stems of wild and cultivated rice on a modified Rennie medium. Based on 16S ribosomal DNA (rDNA) sequences, the diazotrophic isolates were phylogenetically close to four genera: Herbaspirillum, Ideonella, Enterobacter, and Azospirillum. Phenotypic properties and signature sequences of 16S rDNA indicated that three isolates (B65, B501, and B512) belong to the Herbaspirillum genus. To examine whether Herbaspirillum sp. strain B501 isolated from wild rice, Oryza officinalis, endophytically colonizes rice plants, the gfp gene encoding green fluorescent protein (GFP) was introduced into the bacteria. Observations by fluorescence stereomicroscopy showed that the GFP-tagged bacteria colonized shoots and seeds of aseptically grown seedlings of the original wild rice after inoculation of the seeds. Conversely, for cultivated rice Oryza sativa, no GFP fluorescence was observed for shoots and only weak signals were observed for seeds. Observations by fluorescence and electron microscopy revealed that Herbaspirillum sp. strain B501 colonized mainly intercellular spaces in the leaves of wild rice. Colony counts of surface-sterilized rice seedlings inoculated with the GFP-tagged bacteria indicated significantly more bacterial populations inside the original wild rice than in cultivated rice varieties. Moreover, after bacterial inoculation, in planta nitrogen fixation in young seedlings of wild rice, O. officinalis, was detected by the acetylene reduction and 15N2 gas incorporation assays. Therefore, we conclude that Herbaspirillum sp. strain B501 is a diazotrophic endophyte compatible with wild rice, particularly O. officinalis. PMID:11679357

  15. Diversity of endophytic fungi in Glycine max.

    Science.gov (United States)

    Fernandes, Elio Gomes; Pereira, Olinto Liparini; da Silva, Cynthia Cânedo; Bento, Claudia Braga Pereira; de Queiroz, Marisa Vieira

    2015-12-01

    Endophytic fungi are microorganisms that live within plant tissues without causing disease during part of their life cycle. With the isolation and identification of these fungi, new species are being discovered, and ecological relationships with their hosts have also been studied. In Glycine max, limited studies have investigated the isolation and distribution of endophytic fungi throughout leaves and roots. The distribution of these fungi in various plant organs differs in diversity and abundance, even when analyzed using molecular techniques that can evaluate fungal communities in different parts of the plants, such as denaturing gradient gel electrophoresis (DGGE). Our results show there is greater species richness of culturable endophytic filamentous fungi in the leaves G. max as compared to roots. Additionally, the leaves had high values for diversity indices, i.e. Simpsons, Shannon and Equitability. Conversely, dominance index was higher in roots as compared to leaves. The fungi Ampelomyces sp., Cladosporium cladosporioides, Colletotrichum gloeosporioides, Diaporthe helianthi, Guignardia mangiferae and Phoma sp. were more frequently isolated from the leaves, whereas the fungi Fusarium oxysporum, Fusarium solani and Fusarium sp. were prevalent in the roots. However, by evaluating the two communities by DGGE, we concluded that the species richness was higher in the roots than in the leaves. UPGMA analysis showed consistent clustering of isolates; however, the fungus Leptospora rubella, which belongs to the order Dothideales, was grouped among species of the order Pleosporales. The presence of endophytic Fusarium species in G. max roots is unsurprising, since Fusarium spp. isolates have been previously described as endophyte in other reports. However, it remains to be determined whether the G. max Fusarium endophytes are latent pathogens or non-pathogenic forms that benefit the plant. This study provides a broader knowledge of the distribution of the fungal

  16. The effect of different growth regimes on the endophytic bacterial communities of the fern, Dicksonia sellowiana hook (Dicksoniaceae)

    OpenAIRE

    Irene de Araújo Barros; Welington Luiz Araújo; João Lúcio Azevedo

    2010-01-01

    Endophytic bacteria associated with the fern Dicksonia sellowiana were investigated. The bacterial communities from the surface-sterilized pinnae and rachis segments of the plants from the Brazilian Atlantic Rainforest that grew in native field conditions were compared with the bacterial communities from plants grown in greenhouses and plants that were initially grown in greenhouses and then transferred to the forest. From 540 pinnae and 540 rachis segments, 163 (30.2%) and 346 (64.2%) were c...

  17. Antibacterial and antibiofilm activities of the metabolites isolated from the culture of the mangrove-derived endophytic fungus Eurotium chevalieri KUFA 0006.

    Science.gov (United States)

    May Zin, War War; Buttachon, Suradet; Dethoup, Tida; Pereira, José A; Gales, Luís; Inácio, Ângela; Costa, Paulo M; Lee, Michael; Sekeroglu, Nazim; Silva, Artur M S; Pinto, Madalena M M; Kijjoa, Anake

    2017-09-01

    Five previously undescribed metabolites, including acetylquestinol, two prenylated indole 3-carbaldehyde derivatives, an anthranilic acid derivative and an isochromone derivative, were isolated, in addition to eleven known compounds: palmitic acid, ergosterol 5,8-endoperoxide, emodin, physcion, questin, questinol, (11S, 14R)-cyclo(tryptophylvalyl), preechinulin, neoechinulin E, echinulin and eurocristatine, from the culture of the endophytic fungus Eurotium chevalieri KUFA 0006. The structures of the previously undescribed compounds were established based on an extensive 1D and 2D NMR spectral analysis as well as HRMS and IR data. In case of 2-(2, 2-dimethylcyclopropyl)-1H-indole-3-carbaldehyde and 6, 8-dihydroxy-3-(2S-hydroxypropyl)-7-methylisochromone, the absolute configurations of their stereogenic carbons were established based on comparison of their experimental and calculated ECD spectra. All the compounds, except for palmitic acid and ergosterol 5, 8-endoperoxide, were evaluated for their antibacterial and antibiofilm activities against two Gram-positive and two Gram-negative bacteria, as well as multidrug-resistant isolates from the environment. Emodin not only exhibited moderate antibacterial activity against the Gram-positive bacteria but also showed strong synergistic association with oxacillin against MRSA Staphylococcus aureus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Combined endophytic inoculants enhance nickel phytoextraction from serpentine soil in the hyperaccumulator Noccaea caerulescens.

    Science.gov (United States)

    Visioli, Giovanna; Vamerali, Teofilo; Mattarozzi, Monica; Dramis, Lucia; Sanangelantoni, Anna M

    2015-01-01

    This study assesses the effects of specific bacterial endophytes on the phytoextraction capacity of the Ni-hyperaccumulator Noccaea caerulescens, spontaneously growing in a serpentine soil environment. Five metal-tolerant endophytes had already been selected for their high Ni tolerance (6 mM) and plant growth promoting ability. Here we demonstrate that individual bacterial inoculation is ineffective in enhancing Ni translocation and growth of N. caerulescens in serpentine soil, except for specific strains Ncr-1 and Ncr-8, belonging to the Arthrobacter and Microbacterium genera, which showed the highest indole acetic acid production and 1-aminocyclopropane-1-carboxylic acid-deaminase activity. Ncr-1 and Ncr-8 co-inoculation was even more efficient in promoting plant growth, soil Ni removal, and translocation of Ni, together with that of Fe, Co, and Cu. Bacteria of both strains densely colonized the root surfaces and intercellular spaces of leaf epidermal tissue. These two bacterial strains also turned out to stimulate root length, shoot biomass, and Ni uptake in Arabidopsis thaliana grown in MS agar medium supplemented with Ni. It is concluded that adaptation of N. caerulescens in highly Ni-contaminated serpentine soil can be enhanced by an integrated community of bacterial endophytes rather than by single strains; of the former, Arthrobacter and Microbacterium may be useful candidates for future phytoremediation trials in multiple metal-contaminated sites, with possible extension to non-hyperaccumulator plants.

  19. Combined endophytic inoculants enhance nickel phytoextraction from serpentine soil in the hyperaccumulator Noccaea caerulescens

    Directory of Open Access Journals (Sweden)

    Giovanna eVisioli

    2015-08-01

    Full Text Available This study assesses the effects of specific bacterial endophytes on the phytoextraction capacity of the Ni-hyperaccumulator Noccaea caerulescens, spontaneously growing in a serpentine soil environment. Five metal-tolerant endophytes had already been selected for their high Ni tolerance (6 mM and plant growth promoting ability. Here we demonstrate that individual bacterial inoculation is ineffective in enhancing Ni translocation and growth of N. caerulescens in serpentine soil, except for specific strains Ncr-1 and Ncr-8, belonging to the Arthrobacter and Microbacterium genera, which showed the highest IAA production and ACC-deaminase activity. Ncr-1 and Ncr-8 co-inoculation was even more efficient in promoting plant growth, soil Ni removal and translocation of Ni, together with that of Fe, Co and Cu. Bacteria of both strains densely colonised the root surfaces and intercellular spaces of leaf epidermal tissue. These two bacterial strains also turned out to stimulate root length, shoot biomass and Ni uptake in Arabidopsis thaliana grown in MS agar medium supplemented with Ni. It is concluded that adaptation of N. caerulescens in highly Ni-contaminated serpentine soil can be enhanced by an integrated community of bacterial endophytes rather than by single strains; of the former, Arthrobacter and Microbacterium may be useful candidates for future phytoremediation trials

  20. Strong shift in the diazotrophic endophytic bacterial community inhabiting rice (Oryza sativa) plants after flooding.

    Science.gov (United States)

    Ferrando, Lucía; Fernández Scavino, Ana

    2015-09-01

    Flooding impacts soil microbial communities, but its effect on endophytic communities has rarely been explored. This work addresses the effect of flooding on the abundance and diversity of endophytic diazotrophic communities on rice plants established in a greenhouse experiment. The nifH gene was significantly more abundant in roots after flooding, whereas the nifH gene copy numbers in leaves were unaffected and remained low. The PCA (principal component analysis) of T-RFLP (terminal restriction fragment length polymorphism) profiles indicated that root communities of replicate plots were more similar and diverse after flooding than before flooding. The nifH libraries obtained by cloning and 454 pyrosequencing consistently showed a remarkable shift in the diazotrophic community composition after flooding. Gammaproteobacteria (66-98%), mainly of the genus Stenotrophomonas, prevailed in roots before flooding, whereas Betaproteobacteria was the dominant class (26-34%) after flooding. A wide variety of aerotolerant and anaerobic diazotrophic bacteria (e.g. Dechloromonas, Rhodopseudomonas, Desulfovibrio, Geobacter, Chlorobium, Spirochaeta, Selenomonas and Dehalobacter) with diverse metabolic traits were retrieved from flooded rice roots. These findings suggest that endophytic communities could be significantly impacted by changes in plant-soil conditions derived from flooding during rice cropping. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Endophytic Actinomycetes: A Novel Source of Potential Acyl Homoserine Lactone Degrading Enzymes

    Directory of Open Access Journals (Sweden)

    Surang Chankhamhaengdecha

    2013-01-01

    Full Text Available Several Gram-negative pathogenic bacteria employ N-acyl-L-homoserine lactone (HSL quorum sensing (QS system to control their virulence traits. Degradation of acyl-HSL signal molecules by quorum quenching enzyme (QQE results in a loss of pathogenicity in QS-dependent organisms. The QQE activity of actinomycetes in rhizospheric soil and inside plant tissue was explored in order to obtain novel strains with high HSL-degrading activity. Among 344 rhizospheric and 132 endophytic isolates, 127 (36.9% and 68 (51.5% of them, respectively, possessed the QQE activity. The highest HSL-degrading activity was at 151.30±3.1 nmole/h/mL from an endophytic actinomycetes isolate, LPC029. The isolate was identified as Streptomyces based on 16S  rRNA gene sequence similarity. The QQE from LPC029 revealed HSL-acylase activity that was able to cleave an amide bond of acyl-side chain in HSL substrate as determined by HPLC. LPC029 HSL-acylase showed broad substrate specificity from C6- to C12-HSL in which C10HSL is the most favorable substrate for this enzyme. In an in vitro pathogenicity assay, the partially purified HSL-acylase efficiently suppressed soft rot of potato caused by Pectobacterium carotovorum ssp. carotovorum as demonstrated. To our knowledge, this is the first report of HSL-acylase activity derived from an endophytic Streptomyces.

  2. Isolation and molecular identification of endophytic diazotrophs from seeds and stems of three cereal crops.

    Directory of Open Access Journals (Sweden)

    Huawei Liu

    Full Text Available Ten strains of endophytic diazotroph were isolated and identified from the plants collected from three different agricultural crop species, wheat, rice and maize, using the nitrogen-free selective isolation conditions. The nitrogen-fixing ability of endophytic diazotroph was verified by the nifH-PCR assay that showed positive nitrogen fixation ability. These identified strains were classified by 879F-RAPD and 16S rRNA sequence analysis. RAPD analyses revealed that the 10 strains were clustered into seven 879F-RAPD groups, suggesting a clonal origin. 16S rRNA sequencing analyses allowed the assignment of the 10 strains to known groups of nitrogen-fixing bacteria, including organisms from the genera Paenibacillus, Enterobacter, Klebsiella and Pantoea. These representative genus are not endophytic diazotrophs in the conventional sense. They may have obtained nitrogen fixation ability through lateral gene transfer, however, the evolutionary forces of lateral gene transfer are not well known. Molecular identification results from 16S rRNA analyses were also confirmed by morphological and biochemical data. The test strains SH6A and MZB showed positive effect on the growth of plants.

  3. Bacterial endophytes enhance phytostabilization in soils contaminated with uranium and lead.

    Science.gov (United States)

    Ahsan, Muhammad Tayyab; Najam-Ul-Haq, Muhammad; Idrees, Muhammad; Ullah, Inayat; Afzal, Muhammad

    2017-10-03

    The combined use of plants and bacteria is a promising approach for the remediation of polluted soil. In the current study, the potential of bacterial endophytes in partnership with Leptochloa fusca (L.) Kunth was evaluated for the remediation of uranium (U)- and lead (Pb)-contaminated soil. L. fusca was vegetated in contaminated soil and inoculated with three different endophytic bacterial strains, Pantoea stewartii ASI11, Enterobacter sp. HU38, and Microbacterium arborescens HU33, individually as well as in combination. The results showed that the L. fusca can grow in the contaminated soil. Bacterial inoculation improved plant growth and phytoremediation capacity: this manifested in the form of a 22-51% increase in root length, 25-62% increase in shoot height, 10-21% increase in chlorophyll content, and 17-59% more plant biomass in U- and Pb-contaminated soils as compared to plants without bacterial inoculation. Although L. fusca plants showed potential to accumulate U and Pb in their root and shoot on their own, bacterial consortia further enhanced metal uptake capacity by 53-88% for U and 58-97% for Pb. Our results indicate that the combination of L. fusca and endophytic bacterial consortia can effectively be used for the phytostabilization of both U- and Pb-contaminated soils.

  4. Colonization on root surface by a phenanthrene-degrading endophytic bacterium and its application for reducing plant phenanthrene contamination.

    Directory of Open Access Journals (Sweden)

    Juan Liu

    Full Text Available A phenanthrene-degrading endophytic bacterium, Pn2, was isolated from Alopecurus aequalis Sobol grown in soils contaminated with polycyclic aromatic hydrocarbons (PAHs. Based on morphology, physiological characteristics and the 16S rRNA gene sequence, it was identified as Massilia sp. Strain Pn2 could degrade more than 95% of the phenanthrene (150 mg · L(-1 in a minimal salts medium (MSM within 48 hours at an initial pH of 7.0 and a temperature of 30 °C. Pn2 could grow well on the MSM plates with a series of other PAHs, including naphthalene, acenaphthene, anthracene and pyrene, and degrade them to different degrees. Pn2 could also colonize the root surface of ryegrass (Lolium multiflorum Lam, invade its internal root tissues and translocate into the plant shoot. When treated with the endophyte Pn2 under hydroponic growth conditions with 2 mg · L(-1 of phenanthrene in the Hoagland solution, the phenanthrene concentrations in ryegrass roots and shoots were reduced by 54% and 57%, respectively, compared with the endophyte-free treatment. Strain Pn2 could be a novel and useful bacterial resource for eliminating plant PAH contamination in polluted environments by degrading the PAHs inside plants. Furthermore, we provide new perspectives on the control of the plant uptake of PAHs via endophytic bacteria.

  5. Phenanthrene and Pyrene Modify the Composition and Structure of the Cultivable Endophytic Bacterial Community in Ryegrass (Lolium multiflorum Lam

    Directory of Open Access Journals (Sweden)

    Xuezhu Zhu

    2016-11-01

    Full Text Available This study provides new insights into the dynamics of bacterial community structure during phytoremediation. The communities of cultivable autochthonous endophytic bacteria in ryegrass exposed to polycyclic aromatic hydrocarbons (PAHs were investigated with regard to their potential to biodegrade PAHs. Bacterial counts and 16S rRNA gene sequence were used in the microbiological evaluation. A total of 33 endophytic bacterial strains were isolated from ryegrass plants, which represented 15 different genera and eight different classes, respectively. Moreover, PAH contamination modified the composition and structure of the endophytic bacterial community in the plants. Bacillus sp., Pantoea sp., Pseudomonas sp., Arthrobacter sp., Pedobacter sp. and Delftia sp. were only isolated from the seedlings exposed to PAHs. Furthermore, the dominant genera in roots shifted from Enterobacter sp. to Serratia sp., Bacillus sp., Pantoea sp., and Stenotrophomonas sp., which could highly biodegrade phenanthrene (PHE. However, the diversity of endophytic bacterial community was decreased by exposure to the mixture of PAHs, and increased by respective exposure to PHE and pyrene (PYR, while the abundance was increased by PAH exposure. The results clearly indicated that the exposure of plants to PAHs would be beneficial for improving the effectiveness of phytoremediation of PAHs.

  6. Potential biosurfactant producing endophytic and epiphytic fungi ...

    African Journals Online (AJOL)

    Potential biosurfactant producing endophytic and epiphytic fungi, isolated from macrophytes in the Negro River in Manaus, Amazonas, Brazil. ... Solms and Cyperus ligularis L., macrophytes collected from oil-contaminated waters, were studied to assess their potential for producing biosurfactants; the most promising ones ...

  7. Sebacinales Everywhere: Previously Overlooked Ubiquitous Fungal Endophytes

    Czech Academy of Sciences Publication Activity Database

    Weiss, M.; Sýkorová, Zuzana; Garnica, S.; Riess, K.; Martos, F.; Krause, C.; Oberwinkler, F.; Bauer, R.; Redecker, D.

    2011-01-01

    Roč. 6, č. 2 (2011), s. 1-7 E-ISSN 1932-6203 Institutional research plan: CEZ:AV0Z60050516 Keywords : Sebacinales * endophytes * mycorrhiza Subject RIV: EF - Botanics Impact factor: 4.092, year: 2011

  8. Phyllosticta capitalensis, a widespread endophyte of plants

    NARCIS (Netherlands)

    Wikee, S.; Lombard, L.; Crous, P.W.; Nakashima, C.; Motohashi, K.; Chukeatirote, E.; Alias, S.A.; McKenzie, E.H.C.; Hyde, K.D.

    2013-01-01

    Phyllosticta capitalensis is an endophyte and weak plant pathogen with a worldwide distribution presently known from 70 plant families. This study isolated P. capitalensis from different host plants in northern Thailand, and determined their different life modes. Thirty strains of P. capitalensis

  9. Botrallin from the endophytic fungus Hyalodendriella sp ...

    African Journals Online (AJOL)

    use

    2011-12-12

    Dec 12, 2011 ... Bioassay-guided fractionation of the crude methanol extract of the mycelia from the endophytic fungus. Hyalodendriella sp. Ponipodef12, associated with the hybrid 'Neva' of Populus deltoides Marsh × P. nigra L., led to the isolation of one compound coded as P12-1 which was identified as botrallin (1,7-.

  10. Endophytic fungi isolated from wheat (Triticum durum Desf.): evaluation of their antimicrobial activity, antioxidant activity and host growth promotion.

    Science.gov (United States)

    Harzallah, Daoud; Sadrati, Nouari; Zerroug, Amina; Dahamna, Saliha; Bouharati, Saddek

    2012-01-01

    The emergence of antibiotic-resistant micro-organisms calls for inventive research and development strategies. The screening for antimicrobial compounds from endophytes is a promising way to meet the increasing threat of drug-resistant strains of human and plant pathogens. Endophytes may be defined as "microbes that colonize living, internal tissues of plants without causing any immediate, overt negative effects". Endophytes are relatively unstudied as potential sources of novel natural products for exploitation in medicine, agriculture, and industry. The purpose of this study was to evaluate several isolated fungi from wheat (Triticum durum Desf.) Mohamed Ben Bachir variety and to select endophytic fungi for further evaluation of its antimicrobial, antioxidant activities and host growth promotion. A total of 20 endophytic fungi have been isolated. Antimicrobial activity was evaluated for crude ethyl acetate extracts using an agar diffusion assay. All extracts showed inhibitory activity on at least one or more pathogenic microorganism, with an average zone of inhibition varied between 7 mm to 25 mm, a large zone of 23 and 25mm against candida albicans and Escherichia coli respectively. The antioxidant capacity of the extracts was evaluated by beta-carotene/linoleic acid assay. Results showed that 70% of these extracts have antioxidant activity, exhibiting 50, 57% to 78, 96% inhibitions. While 30% from them, their inhibitory activity for oxidation of linoleic acid Were less than 50%. Growth promotion ability of these endophytes was tested on seed germination among ten isolates tested, two isolates showed significant growth promotion effects on wheat seeds. From the present work we can conclude that these microorganisms could be promising source of bioactive compounds, growth promotion and warrant further study.

  11. Influence of Culturing Conditions on Bioprospecting and the Antimicrobial Potential of Endophytic Fungi from Schinus terebinthifolius.

    Science.gov (United States)

    Tonial, Fabiana; Maia, Beatriz H L N S; Gomes-Figueiredo, Josiane A; Sobottka, Andrea M; Bertol, Charise D; Nepel, Angelita; Savi, Daiani C; Vicente, Vânia A; Gomes, Renata R; Glienke, Chirlei

    2016-02-01

    In this study, we analyzed the antimicrobial activity of extracts harvested from 17 endophytic fungi isolated from the medicinal plant Schinus terebinthifolius. Morphological and molecular analyses indicated that these fungal species belonged to the genera Alternaria, Bjerkandera, Colletotrichum, Diaporthe, Penicillium, and Xylaria. Of the endophytes analyzed, 64.7 % produced antimicrobial compounds under at least one of the fermentation conditions tested. Nine isolates produced compounds that inhibited growth of Staphylococcus aureus, four produced compounds that inhibited Candida albicans, and two that inhibited Pseudomonas aeruginosa. The fermentation conditions of the following endophytes were optimized: Alternaria sp. Sect. Alternata-LGMF626, Xylaria sp.-LGMF673, and Bjerkandera sp.-LGMF713. Specifically, the carbon and nitrogen sources, initial pH, temperature, and length of incubation were varied. In general, production of antimicrobial compounds was greatest when galactose was used as a carbon source, and acidification of the growth medium enhanced the production of compounds that inhibited C. albicans. Upon large-scale fermentation, Alternaria sp. Sect. Alternata-LGMF626 produced an extract containing two fractions that were active against methicillin-resistant S. aureus. One of the extracts exhibited high activity (minimum inhibitory concentration of 18.52 µg/mL), and the other exhibited moderate activity (minimum inhibitory concentration of 55.55 µg/mL). The compounds E-2-hexyl-cinnamaldehyde and two compounds of the pyrrolopyrazine alkaloids class were identified in the active fractions by gas chromatography-mass spectrometry.

  12. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638

    Science.gov (United States)

    Taghavi, Safiyh; van der Lelie, Daniel; Hoffman, Adam; Zhang, Yian-Biao; Walla, Michael D.; Vangronsveld, Jaco; Newman, Lee; Monchy, Sébastien

    2010-01-01

    improve establishment and sustainable production of poplar as an energy feedstock on marginal, non-agricultural soils using endophytic bacteria as growth promoting agents. PMID:20485560

  13. Identification of Endophytic Fungi of Medicinal Herbs of Lauraceae and Rutaceae with Antimicrobial Property

    Directory of Open Access Journals (Sweden)

    Min-Yuan Ho

    2012-09-01

    Full Text Available This study was conducted to determine taxonomical features and antimicrobial activities of 156 isolates of endophytic fungi collected from twigs of medicinal plants of Lauraceae (67 isolates and Rutaceae (89 isolates in central and northern Taiwan. The 156 isolates of fungi were classified into 35 genera in 19 families based on morphological characteristics of mycelia and asexual/sexual spores, as well as molecular phylogenetic analysis of rDNA LSU D1/D2 and ITS regions. The most common endophytes were in the taxa of Colletotrichum, Guignardia, Hypoxylon, Nigrospora, Phomopsis and Xylaria, and the most common hosts were Citrus and Zanthoxylum of Rutaceae and Cinnamomum of Lauraceae. Molecular phylogenetic analysis showed that xylariaceous isolates could be separated into Xylaria and Hypoxylon groups based on rDNA of LSU D1/D2 and ITS regions. Four isolates of endophytic fungi including Lasmenia sp. isolate CB10, Ophioceras tenuisporum isolate CI02, Xylaria cubensis isolate LA04 and Cyanodermella sp. isolate TR09 were tested for antimicrobial activities using a dual culture method and Lasmenia sp. isolate CB10 and Cyanodermella sp. isolate TR09 showed better antimicrobial activity against 12 plant pathogens including 9 fungi and 3 bacteria. Spraying Chinese cabbage (Brassica rapa plants with culture filtrates of the endophytic fungus Lasmenia sp. isolate CB10 significantly reduced severity of anthracnose of Chinese cabbage caused by Colletotrichum higginsianum under greenhouse conditions. This study suggests that the Lasmenia sp. isolate CB10 may be of potential for management of anthracnose of Chinese cabbage.

  14. Genomic DNA extraction and barcoding of endophytic fungi.

    Science.gov (United States)

    Diaz, Patricia L; Hennell, James R; Sucher, Nikolaus J

    2012-01-01

    Endophytes live inter- and/or intracellularly inside healthy aboveground tissues of plants without causing disease. Endophytic fungi are found in virtually every vascular plant species examined. The origins of this symbiotic relationship between endophytes go back to the emergence of vascular plants. Endophytic fungi receive nutrition and protection from their hosts while the plants benefit from the production of fungal secondary metabolites, which enhance the host plants' resistance to herbivores, pathogens, and various abiotic stresses. Endophytic fungi have attracted increased interest as potential sources of secondary metabolites with agricultural, industrial, and medicinal use. This chapter provides detailed protocols for isolation of genomic DNA from fungal endophytes and its use in polymerase chain reaction-based amplification of the internal transcribed spacer region between the conserved flanking regions of the small and large subunit of ribosomal RNA for barcoding purposes.

  15. Mechanisms Involved in Nematode Control by Endophytic Fungi.

    Science.gov (United States)

    Schouten, Alexander

    2016-08-04

    Colonization of plants by particular endophytic fungi can provide plants with improved defenses toward nematodes. Evidently, such endophytes can be important in developing more sustainable agricultural practices. The mechanisms playing a role in this quantitative antagonism are poorly understood but most likely multifactorial. This knowledge gap obstructs the progress regarding the development of endophytes or endophyte-derived constituents into biocontrol agents. In part, this may be caused by the fact that endophytic fungi form a rather heterogeneous group. By combining the knowledge of the currently characterized antagonistic endophytic fungi and their effects on nematode behavior and biology with the knowledge of microbial competition and induced plant defenses, the various mechanisms by which this nematode antagonism operates or may operate are discussed. Now that new technologies are becoming available and more accessible, the currently unresolved mechanisms can be studied in greater detail than ever before.

  16. Endophytic fungi reduce leaf-cutting ant damage to seedlings

    Science.gov (United States)

    Bittleston, L. S.; Brockmann, F.; Wcislo, W.; Van Bael, S. A.

    2011-01-01

    Our study examines how the mutualism between Atta colombica leaf-cutting ants and their cultivated fungus is influenced by the presence of diverse foliar endophytic fungi (endophytes) at high densities in tropical leaf tissues. We conducted laboratory choice trials in which ant colonies chose between Cordia alliodora seedlings with high (Ehigh) or low (Elow) densities of endophytes. The Ehigh seedlings contained 5.5 times higher endophyte content and a greater diversity of fungal morphospecies than the Elow treatment, and endophyte content was not correlated with leaf toughness or thickness. Leaf-cutting ants cut over 2.5 times the leaf area from Elow relative to Ehigh seedlings and had a tendency to recruit more ants to Elow plants. Our findings suggest that leaf-cutting ants may incur costs from cutting and processing leaves with high endophyte loads, which could impact Neotropical forests by causing variable damage rates within plant communities. PMID:20610420

  17. Antimicrobial potential of endophytic fungi derived from three seagrass species: Cymodocea serrulata, Halophila ovalis and Thalassia hemprichii.

    Directory of Open Access Journals (Sweden)

    Preuttiporn Supaphon

    Full Text Available Endophytic fungi from three commonly found seagrasses in southern Thailand were explored for their ability to produce antimicrobial metabolites. One hundred and sixty endophytic fungi derived from Cymodoceaserrulata (Family Cymodoceaceae, Halophilaovalis and Thalassiahemprichii (Family Hydrocharitaceae were screened for production of antimicrobial compounds by a colorimetric broth microdilution test against ten human pathogenic microorganisms including Staphylococcus aureus ATCC 25923, a clinical isolate of methicillin-resistant S. aureus, Escherichia coli ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Candida albicans ATCC 90028 and NCPF 3153, Cryptococcus neoformans ATCC 90112 and ATCC 90113 and clinical isolates of Microsporumgypseum and Penicilliummarneffei. Sixty-nine percent of the isolates exhibited antimicrobial activity against at least one test strain. Antifungal activity was more pronounced than antibacterial activity. Among the active fungi, seven isolates including Hypocreales sp. PSU-ES26 from C. serrulata, Trichoderma spp. PSU-ES8 and PSU-ES38 from H. ovalis, and Penicillium sp. PSU-ES43, Fusarium sp. PSU-ES73, Stephanonectria sp. PSU-ES172 and an unidentified endophyte PSU-ES190 from T. hemprichii exhibited strong antimicrobial activity against human pathogens with minimum inhibitory concentrations (MIC of less than 10 µg/ml. The inhibitory extracts at concentrations of 4 times their MIC destroyed the targeted cells as observed by scanning electron microscopy. These results showed the antimicrobial potential of extracts from endophytic fungi from seagrasses.

  18. Endophytic bacterial diversity in banana 'Prata Anã' (Musa spp. roots

    Directory of Open Access Journals (Sweden)

    Suzane A. Souza

    2013-01-01

    Full Text Available The genetic diversity of endophytic bacteria in banana 'Prata Anã' roots was characterized. Two hundred and one endophytic bacteria were isolated, 151 of which were classified as Gram-positive and 50 as Gram-negative. No hypersensitivity response was observed in any of the isolates. The rep-PCR technique generated different molecular profiles for each primer set (REP, ERIC and BOX. Fifty readable loci were obtained and all of the fragments were polymorphic. Amplified ribosomal DNA restriction analysis (ARDRA of the isolates based on cleavage with four restriction enzymes yielded 45 polymorphic bands and no monomorphic bands. PCR amplified the nifH gene in 24 isolates. 16S rDNA sequencing of the 201 bacterial isolates yielded 102 high-quality sequences. Sequence analyses revealed that the isolates were distributed among ten bacterial genera (Agrobacterium, Aneurinibacillus, Bacillus, Enterobacter, Klebsiella, Lysinibacillus, Micrococcus, Paenibacillus, Rhizobium and Sporolactobacillus and included 15 species. The greatest number of isolates belonged to the genus Bacillus. The bacteria identified in this study may be involved in promoting growth, phosphate solubilization, biological control and nitrogen fixation in bananas.

  19. Plant Cell Protolytic Enzymes Activity under Exposure to Lectins of Endophytic and Epiphytic Azospirillum Strains

    Directory of Open Access Journals (Sweden)

    S.A. Alen’kina

    2016-05-01

    Full Text Available We studied the ability of lectins isolated from the surface of the two strains of nitrogen-fixing soil bacteria of the genus Azospirillum, A. brasilense Sp7 (epiphytic and A. brasilense Sp245 (endophytic, to show have a regulating effect on the activity of pectinolytic enzymes in the roots of wheat seedlings. Research results showed that the lectins under study can cause the induction of the activity of polygalacturonase, pectinesterase, pectatlyase from the plant cell wall, thereby ensuring the bacteria penetration in the plant tissues, as well as the induction of plants responses which, being combined with growth-stimulating effect of bacteria, contributes to the formation of plants stability and productivity.

  20. Beech cupules share endophytic fungi with leaves and twigs

    OpenAIRE

    Tateno, Osamu; Hirose, Dai; Osono, Takashi; Takeda, Hiroshi

    2015-01-01

    Endophytic mycobiota on leaves, twigs and cupules of Fagus crenata were investigated using a culture-dependent method over a growing season to test the hypothesis that endophytic fungi of cupule (a woody phyllome) share some components of the endophytic fungal assemblages with both leaves and twigs. A total of 14 fungal taxa were isolated, and the most frequent taxon was Phomopsis sp., followed by Xylaria sp., Ascochyta fagi and Geniculosporium sp. The compositions of fungal assemblages of le...

  1. Enrichment culture and identification of endophytic methanotrophs isolated from peatland plants.

    Science.gov (United States)

    Stępniewska, Zofia; Goraj, Weronika; Kuźniar, Agnieszka; Łopacka, Natalia; Małysza, Magdalena

    2017-09-01

    Aerobic methane-oxidizing bacteria (MOB) are an environmentally significant group of microorganisms due to their role in the global carbon cycle. Research conducted over the past few decades has increased the interest in discovering novel genera of methane-degrading bacteria, which efficiently utilize methane and decrease the global warming effect. Moreover, methanotrophs have more promising applications in environmental bioengineering, biotechnology, and pharmacy. The investigations were undertaken to recognize the variety of endophytic methanotrophic bacteria associated with Carex nigra, Vaccinium oxycoccus, and Eriophorum vaginatum originating from Moszne peatland (East Poland). Methanotrophic bacteria were isolated from plants by adding sterile fragments of different parts of plants (roots and stems) to agar mineral medium (nitrate mineral salts (NMS)) and incubated at different methane values (1-20% CH4). Single colonies were streaked on new NMS agar media and, after incubation, transferred to liquid NMS medium. Bacterial growth dynamics in the culture solution was studied by optical density-OD600 and methane consumption. Changes in the methane concentration during incubation were controlled by the gas chromatography technique. Characterization of methanotrophs was made by fluorescence in situ hybridization (FISH) with Mg705 and Mg84 for type I methanotrophs and Ma450 for type II methanotrophs. Identification of endophytes was performed after 16S ribosomal RNA (rRNA) and mmoX gene amplification. Our study confirmed the presence of both types of methanotrophic bacteria (types I and II) with the predominance of type I methanotrophs. Among cultivable methanotrophs, there were different strains of the genus Methylomonas and Methylosinus. Furthermore, we determined the potential of the examined bacteria for methane oxidation, which ranged from 0.463 ± 0.067 to 5.928 ± 0.169 μmol/L CH4/mL/day.

  2. Antifungal activity and molecular identification of endophytic fungi ...

    African Journals Online (AJOL)

    Antifungal activity and molecular identification of endophytic fungi from the angiosperm Rhodomyrtus tomentosa. Juthatip Jeenkeawpieam, Souwalak Phongpaichit, Vatcharin Rukachaisirikul, Jariya Sakayaroj ...

  3. Anaerobic bacteria

    Science.gov (United States)

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these bacteria ... Brook I. Diseases caused by non-spore-forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman-Cecil ...

  4. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid.

    Science.gov (United States)

    Khan, Abdul Latif; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Al-Farsi, Zainab; Al-Mamari, Aza; Waqas, Muhammad; Asaf, Sajjad; Elyassi, Ali; Mabood, Fazal; Shin, Jae-Ho; Lee, In-Jung

    2016-01-01

    Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%), Chaetomiaceae (17.6%), Incertae sadis (29.5%), Aureobasidiaceae (17.6%), Nectriaceae (5.9%) and Sporomiaceae (17.6%) from the phylloplane (leaf) and caulosphere (stem) of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33%) than the stem (0.262%). The Shannon-Weiner diversity index was H' 0.8729, while Simpson index was higher in the leaf (0.583) than in the stem (0.416). Regarding the endophytic fungi's potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL) and cellulases (62.11±1.6 μM-1min-1mL), whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL) and phosphatases (3.46±0.31μM-1min-1mL) compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways). Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin could

  5. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid.

    Directory of Open Access Journals (Sweden)

    Abdul Latif Khan

    Full Text Available Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%, Chaetomiaceae (17.6%, Incertae sadis (29.5%, Aureobasidiaceae (17.6%, Nectriaceae (5.9% and Sporomiaceae (17.6% from the phylloplane (leaf and caulosphere (stem of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33% than the stem (0.262%. The Shannon-Weiner diversity index was H' 0.8729, while Simpson index was higher in the leaf (0.583 than in the stem (0.416. Regarding the endophytic fungi's potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL and cellulases (62.11±1.6 μM-1min-1mL, whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL and phosphatases (3.46±0.31μM-1min-1mL compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways. Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin

  6. Screening and characterization of endophytic Bacillus and Paenibacillus strains from medicinal plant Lonicera japonica for use as potential plant growth promoters

    Directory of Open Access Journals (Sweden)

    Longfei Zhao

    2015-12-01

    Full Text Available Abstract A total of 48 endophytic bacteria were isolated from surface-sterilized tissues of the medicinal plant Lonicera japonica, which is grown in eastern China; six strains were selected for further study based on their potential ability to promote plant growth in vitro (siderophore and indoleacetic acid production. The bacteria were characterized by phylogenetically analyzing their 16S rRNA gene similarity, by examining their effect on the mycelial development of pathogenic fungi, by testing their potential plant growth-promoting characteristics, and by measuring wheat growth parameters after inoculation. Results showed that the number of endophytic bacteria in L. japonica varied among different tissues, but it remained relatively stable in the same tissues from four different plantation locations. Among the three endophytic strains, strains 122 and 124 both had high siderophore production, with the latter showing the highest phosphate solubilization activity (45.6 mg/L and aminocyclopropane-1-carboxylic acid deaminase activity (47.3 nmol/mg/h. Strain 170 had the highest indoleacetic acid (IAA production (49.2 mg/L and cellulase and pectinase activities. After inoculation, most of the six selected isolates showed a strong capacity to promote wheat growth. Compared with the controls, the increase in the shoot length, root length, fresh weight, dry weight, and chlorophyll content was most remarkable in wheat seedlings inoculated with strain 130. The positive correlation between enzyme (cellulose and pectinase activity and inhibition rate on Fusarium oxysporum, the IAA production, and the root length of wheat seedlings inoculated with each tested endophytic strain was significant in regression analysis. Deformity of pathogenic fungal mycelia was observed under a microscope after the interaction with the endophytic isolates. Such deformity may be directly related to the production of hydrolytic bacterial enzymes (cellulose and pectinase. The six

  7. A Comparative biochemical study on two marine endophytes, Bacterium SRCnm and Bacillus sp. JS, Isolated from red sea algae.

    Science.gov (United States)

    Ahmed, Eman Fadl; Hassan, Hossam Mokhtar; Rateb, Mostafa Ezzat; Abdel-Wahab, Noha; Sameer, Somayah; Aly Taie, Hanan Anwar; Abdel-Hameed, Mohammed Sayed; Hammouda, Ola

    2016-01-01

    Two marine endophytic bacteria were isolated from the Red Sea algae; a red alga; Acanthophora dendroides and the brown alga Sargassum sabrepandum. The isolates were identified based on their 16SrRNA sequences as Bacterium SRCnm and Bacillus sp. JS. The objective of this study was to investigate the potential anti-microbial and antioxidant activities of the extracts of the isolated bacteria grown in different nutrient conditions. Compared to amoxicillin (25μg/disk) and erythromycin (15μg/disk), the extracts of Bacterium SRCn min media II, III, IV and V were potent inhibitors of the gram-positive bacterium Sarcina maxima even at low concentrations. Also, the multidrug resistant Staphylococcus aureus(MRSA) was more sensitive to the metabolites produced in medium (II) of the same endophyte than erythromycin (15μg/disk). A moderate activity of the Bacillus sp. JS extracts of media I and II was obtained against the same pathogen. The total compounds (500ug/ml) of both isolated endophytes showed moderate antioxidant activities (48.9% and 46.1%, respectively). LC/MS analysis of the bacterial extracts was carried out to investigate the likely natural products produced. Cyclo(D-cis-Hyp-L-Leu), dihydrosphingosine and 2-Amino-1,3-hexadecanediol were identified in the fermentation medium of Bacterium SRCnm, whereas cyclo (D-Pro-L-Tyr) and cyclo (L-Leu-L-Pro) were the suggested compounds of Bacillus sp. JS.

  8. Root bacterial endophytes confer drought resistance and enhance expression and activity of a vacuolar H+ -pumping pyrophosphatase in pepper plants.

    Science.gov (United States)

    Vigani, Gianpiero; Rolli, Eleonora; Marasco, Ramona; Dell'Orto, Marta; Michoud, Grégoire; Soussi, Asma; Raddadi, Noura; Borin, Sara; Sorlini, Claudia; Zocchi, Graziano; Daffonchio, Daniele

    2018-05-22

    It has been previously shown that the transgenic overexpression of the plant root vacuolar proton pumps H + -ATPase (V-ATPase) and H + -PPase (V-PPase) confer tolerance to drought. Since plant-root endophytic bacteria can also promote drought tolerance, we hypothesize that such promotion can be associated to the enhancement of the host vacuolar proton pumps expression and activity. To test this hypothesis, we selected two endophytic bacteria endowed with an array of in vitro plant growth promoting traits. Their genome sequences confirmed the presence of traits previously shown to confer drought resistance to plants, such as the synthesis of nitric oxide and of organic volatile organic compounds. We used the two strains on pepper (Capsicuum annuum L.) because of its high sensitivity to drought. Under drought conditions, both strains stimulated a larger root system and enhanced the leaves' photosynthetic activity. By testing the expression and activity of the vacuolar proton pumps, H + -ATPase (V-ATPase) and H + -PPase (V-PPase), we found that bacterial colonization enhanced V-PPase only. We conclude that the enhanced expression and activity of V-PPase can be favoured by the colonization of drought-tolerance-inducing bacterial endophytes. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Evidence for the endophytic colonization of Phaseolus vulgaris(common bean roots by the diazotroph Herbaspirillum seropedicae

    Directory of Open Access Journals (Sweden)

    M.A. Schmidt

    2011-03-01

    Full Text Available Herbaspirillum seropedicae is an endophytic diazotrophic bacterium, which associates with important agricultural plants. In the present study, we have investigated the attachment to and internal colonization of Phaseolus vulgaris roots by the H. seropedicae wild-type strain SMR1 and by a strain of H. seropedicae expressing a red fluorescent protein (DsRed to track the bacterium in the plant tissues. Two-day-old P. vulgaris roots were incubated at 30°C for 15 min with 6 x 10(8 CFU/mL H. seropedicae SMR1 or RAM4. Three days after inoculation, 4 x 10(4 cells of endophytic H. seropedicae SMR1 were recovered per gram of fresh root, and 9 days after inoculation the number of endophytes increased to 4 x 10(6 CFU/g. The identity of the recovered bacteria was confirmed by amplification and sequencing of the 16SrRNA gene. Furthermore, confocal microscopy of P. vulgaris roots inoculated with H. seropedicae RAM4 showed that the bacterial cells were attached to the root surface 15 min after inoculation; fluorescent bacteria were visible in the internal tissues after 24 h and were found in the central cylinder after 72 h, showing that H. seropedicae RAM4 is capable of colonizing the roots of the dicotyledon P. vulgaris. Determination of dry weight of common bean inoculated with H. seropedicae SMR1 suggested that this bacterium has a negative effect on the growth of P. vulgaris.

  10. Endophytic bacterial flora in root and stem tissues of black pepper (Piper nigrum L.) genotype: isolation, identification and evaluation against Phytophthora capsici.

    Science.gov (United States)

    Aravind, R; Kumar, A; Eapen, S J; Ramana, K V

    2009-01-01

    To isolate and identify black pepper (Piper nigrum L) associated endophytic bacteria antagonistic to Phytophthora capsici causing foot rot disease. Endophytic bacteria (74) were isolated, characterized and evaluated against P. capsici. Six genera belong to Pseudomonas spp (20 strains), Serratia (1 strain), Bacillus spp. (22 strains), Arthrobacter spp. (15 strains), Micrococcus spp. (7 strains), Curtobacterium sp. (1 strain) and eight unidentified strains were isolated from internal tissues of root and stem. Three isolates, IISRBP 35, IISRBP 25 and IISRBP 17 were found effective for Phytophthora suppression in multilevel screening assays which recorded over 70% disease suppression in greenhouse trials. A species closest match (99% similarity) of IISRBP 35 was established as Pseudomonas aeruginosa (Pseudomonas EF568931), IISRBP 25 as P. putida (Pseudomonas EF568932), and IISRBP 17 as Bacillus megaterium (B. megaterium EU071712) based on 16S rDNA sequencing. Black pepper associated P. aeruginosa, P. putida and B. megaterium were identified as effective antagonistic endophytes for biological control of Phytophthora foot rot in black pepper. This work provides the first evidence for endophytic bacterial diversity in black pepper stem and roots, with biocontrol potential against P. capsici infection.

  11. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions.

    Science.gov (United States)

    Castillo Lopez, Diana; Zhu-Salzman, Keyan; Ek-Ramos, Maria Julissa; Sword, Gregory A

    2014-01-01

    The effects of two entomopathogenic fungal endophytes, Beauveria bassiana and Purpureocillium lilacinum (formerly Paecilomyces lilacinus), were assessed on the reproduction of cotton aphid, Aphis gossypii Glover (Homoptera:Aphididae), through in planta feeding trials. In replicate greenhouse and field trials, cotton plants (Gossypium hirsutum) were inoculated as seed treatments with two concentrations of B. bassiana or P. lilacinum conidia. Positive colonization of cotton by the endophytes was confirmed through potato dextrose agar (PDA) media plating and PCR analysis. Inoculation and colonization of cotton by either B. bassiana or P. lilacinum negatively affected aphid reproduction over periods of seven and 14 days in a series of greenhouse trials. Field trials were conducted in the summers of 2012 and 2013 in which cotton plants inoculated as seed treatments with B. bassiana and P. lilacinum were exposed to cotton aphids for 14 days. There was a significant overall effect of endophyte treatment on the number of cotton aphids per plant. Plants inoculated with B. bassiana had significantly lower numbers of aphids across both years. The number of aphids on plants inoculated with P. lilacinum exhibited a similar, but non-significant, reduction in numbers relative to control plants. We also tested the pathogenicity of both P. lilacinum and B. bassiana strains used in the experiments against cotton aphids in a survival experiment where 60% and 57% of treated aphids, respectively, died from infection over seven days versus 10% mortality among control insects. Our results demonstrate (i) the successful establishment of P. lilacinum and B. bassiana as endophytes in cotton via seed inoculation, (ii) subsequent negative effects of the presence of both target endophytes on cotton aphid reproduction using whole plant assays, and (iii) that the P. lilacinum strain used is both endophytic and pathogenic to cotton aphids. Our results illustrate the potential of using these

  12. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions.

    Directory of Open Access Journals (Sweden)

    Diana Castillo Lopez

    Full Text Available The effects of two entomopathogenic fungal endophytes, Beauveria bassiana and Purpureocillium lilacinum (formerly Paecilomyces lilacinus, were assessed on the reproduction of cotton aphid, Aphis gossypii Glover (Homoptera:Aphididae, through in planta feeding trials. In replicate greenhouse and field trials, cotton plants (Gossypium hirsutum were inoculated as seed treatments with two concentrations of B. bassiana or P. lilacinum conidia. Positive colonization of cotton by the endophytes was confirmed through potato dextrose agar (PDA media plating and PCR analysis. Inoculation and colonization of cotton by either B. bassiana or P. lilacinum negatively affected aphid reproduction over periods of seven and 14 days in a series of greenhouse trials. Field trials were conducted in the summers of 2012 and 2013 in which cotton plants inoculated as seed treatments with B. bassiana and P. lilacinum were exposed to cotton aphids for 14 days. There was a significant overall effect of endophyte treatment on the number of cotton aphids per plant. Plants inoculated with B. bassiana had significantly lower numbers of aphids across both years. The number of aphids on plants inoculated with P. lilacinum exhibited a similar, but non-significant, reduction in numbers relative to control plants. We also tested the pathogenicity of both P. lilacinum and B. bassiana strains used in the experiments against cotton aphids in a survival experiment where 60% and 57% of treated aphids, respectively, died from infection over seven days versus 10% mortality among control insects. Our results demonstrate (i the successful establishment of P. lilacinum and B. bassiana as endophytes in cotton via seed inoculation, (ii subsequent negative effects of the presence of both target endophytes on cotton aphid reproduction using whole plant assays, and (iii that the P. lilacinum strain used is both endophytic and pathogenic to cotton aphids. Our results illustrate the potential of

  13. Fungal endophytes of sorghum in Burkina Faso

    DEFF Research Database (Denmark)

    Zida, E P; Thio, I G; Néya, B J

    2014-01-01

    A survey was conducted to assess the natural occurrence and distribution of fungal endophytes in sorghum in relation to plant performance in two distinct agro-ecological zones in Burkina Faso. Sorghum farm-saved seeds were sown in 48 farmers’ fields in Sahelian and North Sudanian zones to produce...... sorghum plants. In each field, leaf samples were collected from five well-developed (performing) and five less-developed (non-performing) plants at 3-5 leaf stage, while at plant maturity leaf, stem and root samples were collected from the same plants and fungal endophytes were isolated. A total of 39...... fungal species belonging to 25 genera were isolated. The most represented genera included Fusarium, Leptosphaeria, Curvularia, Nigrospora and Penicillium. The genera Fusarium and Penicillium occurred significantly higher in performing plants as compared to non-performing plants while the genera...

  14. Endophytic fungi from Myrcia guianensis at the Brazilian Amazon: distribution and bioactivity.

    Science.gov (United States)

    Dos Banhos, Elissandro Fonseca; de Souza, Antonia Queiroz Lima; de Andrade, Juliano Camurça; de Souza, Afonso Duarte Leão; Koolen, Hector Henrique Ferreira; Albuquerque, Patrícia Melchionna

    2014-01-01

    Beneficial interactions between plants and microorganisms have been investigated under different ecological, physiological, biochemical, and genetic aspects. However, the systematic exploration of biomolecules with potential for biotechnological products from this interaction still is relatively scarce. Therefore, this study aimed the evaluation of the diversity and antimicrobial activity of the endophytic fungi obtained from roots, stems and leafs of Myrcia guianensis (Myrtaceae) from the Brazilian Amazon. 156 endophytic fungi were isolated and above 80% were identified by morphological examination as belonging to the genera Pestalotiopsis, Phomopsis, Aspergillus, Xylaria, Nectria, Penicillium and Fusarium. Fermented broth of those fungi were assayed for antimicrobial activity and four inhibited the growth of Staphylococcus aureus, Enterococcus faecalis, Candida albicans and Penicillium avellaneum. As the strain named MgRe2.2.3B (Nectria haematococca) had shown the most promising results against those pathogenic strains, its fermented broth was fractioned and only its two low polar fractions demonstrated to be active. Both fractions exhibited a minimum bactericidal concentration of 50 μg.mL(-1) against S. aureus and a minimum fungicidal concentration of 100 μg.mL(-1) against P. avellaneum. These results demonstrate the diversity of fungal genera in M. guianensis and the potential of these endophytic fungi for the production of new antibiotics.

  15. Diversity of Endophytic Actinomycetes from Wheat and its Potential as Plant Growth Promoting and Biocontrol Agents

    Directory of Open Access Journals (Sweden)

    M. Gangwar

    2012-01-01

    Full Text Available A total of 35 endophytic actinomycetes strains was isolated from the roots, stems and leaves tissues of healthy wheat plants and identified as Streptomyces sp. (24, Actinopolyspora sp. (3, Nocardia sp. (4, Saccharopolyspora sp. (2 Pseudonocardia (1 and Micromonospora sp. (1. Seventeen endophytic actinomycetes isolate showed abilities to solubilize phosphate and produce IAA in the range of 5 to 42mg/100ml and 18-42µg/ml respectively. Nineteen isolates produced catechol-type of siderophore ranging between 1.3-20.32µg/ml. Also, hydroxamate-type siderophore produced by 9 isolates in the range of 13.33-50.66µg/ml. Maximum catechol-type of siderophore production was observed in Streptomyces roseosporus W9 (20.32µg/ml which was also displaying maximum antagonistic activity against ten different pathogenic fungi. The results indicated that internal tissues of healthy wheat plants exhibited endophytic actinomycetes diversity not only in terms of different types of isolates but also in terms of functional diversity.

  16. Alkaloid (Meleagrine and Chrysogine) from endophytic fungi (Penicillium sp.) of Annona squamosa L.

    Science.gov (United States)

    Yunianto, Prasetyawan; Rusman, Yudi; Saepudin, Endang; Suwarso, Wahyudi Priyono; Sumaryono, Wahono

    2014-05-01

    Several endophytic fungal strains from Srikaya plants (Annona squamosa L.) have been isolated and one of them was identified as Penicillium sp. Penicillium has been proven as an established source for a wide array of unique bioactive secondary metabolites that exhibit a variety of biological activities. The aim of this study is isolation of secondary metabolite from Penicillium, an endophytic of A. squamosa L. Penicillium sp. from endophytic of A. squamosa L. was fermented in Wicherham media. The whole extract from both liquid media and mycelium was partitioned by ethyl acetate and evaporated to obtain crude ethyl acetate extract. The ethyl acetate extract was then brokedown using column chromatography with silica as stationary phase and mixture of ethyl acetate/methanol (98%:2%) as mobile phase and then was separated by sephadex column. Structure elucidation of isolated compounds were mainly done by analysis of one and two dimensional NMR (Nuclear Magnetic Resonance) data and supported by HPLC (High performance Liquid Chromatography) and MS-TOF (Mass Spectrometer-Time of Flight). Isolated secondary metabolites were tested using in vitro assays for anticancer and antimicrobial activity. For anticancer activity, the metabolites were tested against breast cancer cells (MCF-7) using MTT assay, while for antimicrobial activity was performed using disk diffusion assays. From these physical, chemical and spectral evidences that the secondary metabolites were confirmed as Chrysogine and Meleagrine. Chrysogine and Meleagrine have no activity as anticancer and antimicrobial.

  17. Indentification of huperzine A-producing endophytic fungi isolated from Huperzia serrata.

    Science.gov (United States)

    Dong, Li-Hui; Fan, San-Wei; Ling, Qing-Zhi; Huang, Bei-Bei; Wei, Zhao-Jun

    2014-03-01

    This present study was designed to investigate the production of huperzine A (HupA), an acetylcholine inhibitor, which was produced by an endophytic fungi isolated from Huperzia serrata. Screening of 94 endophytic fungal isolates obtained from plant H. serrata was carried out for the production of HupA. Their morphological characteristics were studied and rDNA sequence analysis was carried out. The cultures were grown in liquid culture medium and the extracted metabolites were analyzed by thin layer chromatography and high performance liquid chromatograph for the presence of HupA. The DPPH scavenging ratio and inhibition ratio of acetylcholinesterase (AchE) of the same were determined. 3 out of 94 strains i.e. S29, L44 and S94 showed significant AchE-inhibitory activity and antioxidant activity. Strain L44 which exhibited maximum yield of HupA (37.63 μg/g on dry weight basis) was identified as Trichoderma species by ITS sequence analysis. In conclusion, endophytic fungi from H. serrata can be used as a new resource of HupA.

  18. Endophytic Actinobacteria Associated with Dracaena cochinchinensis Lour.: Isolation, Diversity, and Their Cytotoxic Activities.

    Science.gov (United States)

    Salam, Nimaichand; Khieu, Thi-Nhan; Liu, Min-Jiao; Vu, Thu-Trang; Chu-Ky, Son; Quach, Ngoc-Tung; Phi, Quyet-Tien; Narsing Rao, Manik Prabhu; Fontana, Angélique; Sarter, Samira; Li, Wen-Jun

    2017-01-01

    Dracaena cochinchinensis Lour. is an ethnomedicinally important plant used in traditional Chinese medicine known as dragon's blood. Excessive utilization of the plant for extraction of dragon's blood had resulted in the destruction of the important niche. During a study to provide a sustainable way of utilizing the resources, the endophytic Actinobacteria associated with the plant were explored for potential utilization of their medicinal properties. Three hundred and four endophytic Actinobacteria belonging to the genera Streptomyces , Nocardiopsis , Brevibacterium , Microbacterium , Tsukamurella , Arthrobacter , Brachybacterium , Nocardia , Rhodococcus , Kocuria , Nocardioides , and Pseudonocardia were isolated from different tissues of D. cochinchinensis Lour. Of these, 17 strains having antimicrobial and anthracyclines-producing activities were further selected for screening of antifungal and cytotoxic activities against two human cancer cell lines, MCF-7 and Hep G2. Ten of these selected endophytic Actinobacteria showed antifungal activities against at least one of the fungal pathogens, of which three strains exhibited cytotoxic activities with IC 50 -values ranging between 3 and 33  μ g·mL -1 . Frequencies for the presence of biosynthetic genes, polyketide synthase- (PKS-) I, PKS-II, and nonribosomal peptide synthetase (NRPS) among these 17 selected bioactive Actinobacteria were 29.4%, 70.6%, and 23.5%, respectively. The results indicated that the medicinal plant D. cochinchinensis Lour. is a good niche of biologically important metabolites-producing Actinobacteria.

  19. Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice.

    Directory of Open Access Journals (Sweden)

    Derrick E Fouts

    2008-07-01

    Full Text Available We report here the sequencing and analysis of the genome of the nitrogen-fixing endophyte, Klebsiella pneumoniae 342. Although K. pneumoniae 342 is a member of the enteric bacteria, it serves as a model for studies of endophytic, plant-bacterial associations due to its efficient colonization of plant tissues (including maize and wheat, two of the most important crops in the world, while maintaining a mutualistic relationship that encompasses supplying organic nitrogen to the host plant. Genomic analysis examined K. pneumoniae 342 for the presence of previously identified genes from other bacteria involved in colonization of, or growth in, plants. From this set, approximately one-third were identified in K. pneumoniae 342, suggesting additional factors most likely contribute to its endophytic lifestyle. Comparative genome analyses were used to provide new insights into this question. Results included the identification of metabolic pathways and other features devoted to processing plant-derived cellulosic and aromatic compounds, and a robust complement of transport genes (15.4%, one of the highest percentages in bacterial genomes sequenced. Although virulence and antibiotic resistance genes were predicted, experiments conducted using mouse models showed pathogenicity to be attenuated in this strain. Comparative genomic analyses with the presumed human pathogen K. pneumoniae MGH78578 revealed that MGH78578 apparently cannot fix nitrogen, and the distribution of genes essential to surface attachment, secretion, transport, and regulation and signaling varied between each genome, which may indicate critical divergences between the strains that influence their preferred host ranges and lifestyles (endophytic plant associations for K. pneumoniae 342 and presumably human pathogenesis for MGH78578. Little genome information is available concerning endophytic bacteria. The K. pneumoniae 342 genome will drive new research into this less-understood, but

  20. Impact of Soil Salinity on the Structure of the Bacterial Endophytic Community Identified from the Roots of Caliph Medic (Medicago truncatula).

    Science.gov (United States)

    Yaish, Mahmoud W; Al-Lawati, Abbas; Jana, Gerry Aplang; Vishwas Patankar, Himanshu; Glick, Bernard R

    2016-01-01

    In addition to being a forage crop, Caliph medic (Medicago truncatula) is also a model legume plant and is used for research focusing on the molecular characterization of the interaction between rhizobia and plants. However, the endophytic microbiome in this plant is poorly defined. Endophytic bacteria play a role in supplying plants with the basic requirements necessary for growth and development. Moreover, these bacteria also play a role in the mechanism of salinity stress adaptation in plants. As a prelude to the isolation and utilization of these bacteria in Caliph medic farming, 41 bacterial OTUs were identified in this project from within the interior of the roots of this plant by pyrosequencing of the small ribosomal subunit gene (16S rDNA) using a cultivation-independent approach. In addition, the differential abundance of these bacteria was studied following exposure of the plants to salinity stress. About 29,064 high-quality reads were obtained from the sequencing of six libraries prepared from control and salinity-treated tissues. Statistical analysis revealed that the abundance of ~70% of the OTUs was significantly (p ≤ 0.05) altered in roots that were exposed to salinity stress. Sequence analysis showed a similarity between some of the identified species and other, known, growth-promoting bacteria, marine and salt-stressed soil-borne bacteria, and nitrogen-fixing bacterial isolates. Determination of the amendments to the bacterial community due to salinity stress in Caliph medic provides a crucial step toward developing an understanding of the association of these endophytes, under salt stress conditions, in this model plant. To provide direct evidence regarding their growth promoting activity, a group of endophytic bacteria were isolated from inside of plant roots using a cultivation-dependent approach. Several of these isolates were able to produce ACC-deaminase, ammonia and IAA; and to solubilize Zn+2 and PO4-3. This data is consistent with the

  1. Impact of Soil Salinity on the Structure of the Bacterial Endophytic Community Identified from the Roots of Caliph Medic (Medicago truncatula.

    Directory of Open Access Journals (Sweden)

    Mahmoud W Yaish

    Full Text Available In addition to being a forage crop, Caliph medic (Medicago truncatula is also a model legume plant and is used for research focusing on the molecular characterization of the interaction between rhizobia and plants. However, the endophytic microbiome in this plant is poorly defined. Endophytic bacteria play a role in supplying plants with the basic requirements necessary for growth and development. Moreover, these bacteria also play a role in the mechanism of salinity stress adaptation in plants. As a prelude to the isolation and utilization of these bacteria in Caliph medic farming, 41 bacterial OTUs were identified in this project from within the interior of the roots of this plant by pyrosequencing of the small ribosomal subunit gene (16S rDNA using a cultivation-independent approach. In addition, the differential abundance of these bacteria was studied following exposure of the plants to salinity stress. About 29,064 high-quality reads were obtained from the sequencing of six libraries prepared from control and salinity-treated tissues. Statistical analysis revealed that the abundance of ~70% of the OTUs was significantly (p ≤ 0.05 altered in roots that were exposed to salinity stress. Sequence analysis showed a similarity between some of the identified species and other, known, growth-promoting bacteria, marine and salt-stressed soil-borne bacteria, and nitrogen-fixing bacterial isolates. Determination of the amendments to the bacterial community due to salinity stress in Caliph medic provides a crucial step toward developing an understanding of the association of these endophytes, under salt stress conditions, in this model plant. To provide direct evidence regarding their growth promoting activity, a group of endophytic bacteria were isolated from inside of plant roots using a cultivation-dependent approach. Several of these isolates were able to produce ACC-deaminase, ammonia and IAA; and to solubilize Zn+2 and PO4-3. This data is

  2. Genomic and metabolic characterisation of alkaloid biosynthesis by asexual Epichloë fungal endophytes of tall fescue pasture grasses.

    Science.gov (United States)

    Ekanayake, Piyumi N; Kaur, Jatinder; Tian, Pei; Rochfort, Simone J; Guthridge, Kathryn M; Sawbridge, Timothy I; Spangenberg, German C; Forster, John W

    2017-06-01

    Symbiotic associations between tall fescue grasses and asexual Epichloë fungal endophytes exhibit biosynthesis of alkaloid compounds causing both beneficial and detrimental effects. Candidate novel endophytes with favourable chemotypic profiles have been identified in germplasm collections by screening for genetic diversity, followed by metabolite profile analysis in endogenous genetic backgrounds. A subset of candidates was subjected to genome survey sequencing to detect the presence or absence and structural status of known genes for biosynthesis of the major alkaloid classes. The capacity to produce specific metabolites was directly predictable from metabolic data. In addition, study of duplicated gene structure in heteroploid genomic constitutions provided further evidence for the origin of such endophytes. Selected strains were inoculated into meristem-derived callus cultures from specific tall fescue genotypes to perform isogenic comparisons of alkaloid profile in different host backgrounds, revealing evidence for host-specific quantitative control of metabolite production, consistent with previous studies. Certain strains were capable of both inoculation and formation of longer-term associations with a nonhost species, perennial ryegrass (Lolium perenne L.). Discovery and primary characterisation of novel endophytes by DNA analysis, followed by confirmatory metabolic studies, offers improvements of speed and efficiency and hence accelerated deployment in pasture grass improvement programs.

  3. Search for endophytic diazotrophs in barley seeds

    Directory of Open Access Journals (Sweden)

    Myriam S. Zawoznik

    2014-06-01

    Full Text Available Eight endophytic isolates assigned to Pseudomonas, Azospirillum, and Bacillus genera according to pheno-genotypic features were retrieved from barley seeds under selective pressure for nitrogen-fixers. Genetic relationships among related isolates were investigated through RAPD. Six isolates displayed nitrogen-fixing ability, while all could biosynthesize indolacetic acid in vitro and showed no antibiosis effects against Azospirillum brasilense Az39, a recognized PGPR.

  4. Anti-mycobacterial activity of polyketides from Penicillium sp. endophyte isolated from Garcinia nobilis against Mycobacteriumsmegmatis.

    Science.gov (United States)

    Jouda, Jean Bosco; Mawabo, Isabelle Kamga; Notedji, Augustin; Mbazoa, Céline Djama; Nkenfou, Jean; Wandji, Jean; Nkenfou, Céline Nguefeu

    2016-06-01

    According to estimates by the World Health Organization, there were 9.6 million new tuberculosis (TB) cases in 2014: 5.4 million among men, 3.2 million among women, and 1.0 million among children. There were also 1.5 million TB deaths. Although there are potent anti-TB molecules, the misuse of these drugs in addition to inconsistent or partial treatment have led to the development of multidrug-resistant TB and extensively drug-resistant TB. It is established that plants harbor microorganisms, collectively known as endophytes, which also produce metabolites. Exploring the as-yet untapped natural products from the endophytes increases the chances of finding novel and active compounds. The present study was aimed to investigate the antimycobacterial activity of the crude extract and compounds isolated from Penicillium sp. endophyte associated with Garcinia nobilis against Mycobacterium smegmatis. Liquid culture obtained from the fermentation of Penicillium sp. was extracted using ethylacetate and the liquid chromatography-mass spectrometry monitored fractionation of crude extracts yielded six compounds. Their structures were elucidated with spectroscopic analyses including two-dimensional nuclear magnetic resonance, high resolution mass spectrometry by dereplication using Antibase, and by comparison to literature data. All compounds and the crude extract from the liquid medium were evaluated for their antimycobacterial activity against M. smegmatis. In this study, the activity of penialidins A-C (1-3), citromycetin (4), p-hydroxy phenyl glyoxalaldoxime (5), and Brefeldin A (6) were tested against nonpathogenic M. smegmatis. Penialidin C was the most active compound with a minimum inhibitory concentration of 15.6μg/mL. Isolated compounds from Penicillium sp. harbored in G. nobilis exhibited promising antimycobacterial activity against M. smegmatis thus supporting the immensity of the potential of antimycobacterial drug discovery from endophytes from medicinal plants

  5. The Endophytic Symbiont—Pseudomonas aeruginosa Stimulates the Antioxidant Activity and Growth of Achyranthes aspera L.

    Directory of Open Access Journals (Sweden)

    Khaidem A. Devi

    2017-09-01

    Full Text Available A plant growth promoting bacterial endophyte designated as AL2-14B isolated from the leaves of Achyranthes aspera L. was identified as Pseudomonas aeruginosa based on its phenotypic and physiological features, and 16S rRNA gene sequence analysis. AL2-14B had plant growth stimulating attributes including siderophore and indole acetic acid release, inorganic phosphate solubilization, along with nitrogenase, ammonification, and protease activities. It also exhibited antifungal property against Rhizoctonia solani. The plantlets grown in germ-free condition were inoculated with AL2-14B and studied for the colonization of endophyte. Significant increase in population of AL2-14B between 3rd and 5th days after inoculation was recorded. The treatment of plants with endophytic P. aeruginosa AL2-14B increased nitrogen, phosphorus, potassium (NPK contents in plant by 3.8, 12.59, and 19.15%, respectively. Significant enhancement of shoot and root length, dry leaf, dry shoot and dry root weight, and leaf surface area as compared to control (P < 0.05 was recorded in AL2-14B inoculated plants. The antioxidant activities increased in plants grown in germ-free conditions and inoculated with AL2-14B. The present study emphasizes on the role of diazotrophic endophyte P. aeruginosa AL2-14B in stimulating growth of A. aspera L. and improvement of its medicinal properties. Significant increase in growth and antioxidant content of P. aeruginosa AL2-14B treated plants suggests the possibility of an economical and eco-friendly mean of achieving antioxidants rich, healthier A. aspera plants.

  6. Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize

    DEFF Research Database (Denmark)

    Saleem Akhtar, Saqib; Andersen, Mathias Neumann; Naveed, Muhammad

    2015-01-01

    The objective of this work was to study the interactive effect of biochar and plant growth-promoting endophytic bacteria containing 1-aminocyclopropane-1-carboxylate deaminase and exopolysaccharide activity on mitigating salinity stress in maize (Zea mays L.). The plants were grown in a greenhouse...... under controlled conditions, and were subjected to separate or combined treatments of biochar (0% and 5%, w/w) and two endophytic bacterial strains (Burkholderia phytofirmans (PsJN) and Enterobacter sp. (FD17)) and salinity stress. The results indicated that salinity significantly decreased the growth...... of maize, whereas both biochar and inoculation mitigated the negative effects of salinity on maize performance either by decreasing the xylem Na+ concentration ([Na+]xylem) uptake or by maintaining nutrient balance within the plant, especially when the two treatments were applied in combination. Moreover...

  7. Endophytic Fungi as Novel Resources of natural Therapeutics

    Directory of Open Access Journals (Sweden)

    Maheshwari Rajamanikyam

    2017-08-01

    Full Text Available ABSTRACT Fungal endophytes constitute a major part of the unexplored fungal diversity. Endophytic fungi (EF are an important source for novel, potential and active metabolites. Plant-endophyte interaction and endophyte -endophyte interactions study provide insights into mutualism and metabolite production by fungi. Bioactive compounds produced by endophytes main function are helping the host plants to resist external biotic and abiotic stress, which benefit the host survival in return. These organisms mainly consist of members of the Ascomycota, Basidiomycota, Zygomycota and Oomycota. Recently, the genome sequencing technology has emerged as one of the most efficient tools that can provide whole information of a genome in a small period of time. Endophytes are fertile ground for drug discovery. EFare considered as the hidden members of the microbial world and represent an underutilized resource for new therapeutics and compounds. Endophytes are rich source of natural products displaying broad spectrum of biological activities like anticancer, antibacterial, antiviral, immunomodulatory, antidiabetic, antioxidant, anti-arthritis and anti-inflammatory.

  8. Mechanisms Involved in Nematode Control by Endophytic Fungi

    NARCIS (Netherlands)

    Schouten, Sander

    2016-01-01

    Colonization of plants by particular endophytic fungi can provide plants with improved defenses toward nematodes. Evidently, such endophytes can be important in developing more sustainable agricultural practices. The mechanisms playing a role in this quantitative antagonism are poorly understood

  9. Enhanced resistance to Spodoptera litura in endophyte infected cauliflower plants.

    Science.gov (United States)

    Thakur, Abhinay; Kaur, Sanehdeep; Kaur, Amarjeet; Singh, Varinder

    2013-04-01

    Endophytic fungi, which live within host plant tissues without causing any visible symptom of disease, are important mediators of plant-herbivore interactions. These endophytes enhance resistance of host plant against insect herbivores mainly by productions of various alkaloid based defensive compounds in the plant tissue or through alterations of plant nutritional quality. Two endophytic fungi, i.e., Nigrospora sp. and Cladosporium sp., were isolated from Tinospora cordifolia (Thunb.) Miers, a traditional indian medicinal plant. Cauliflower (Brassica oleracea L.) plants were inoculated with these two endophytic fungi. The effect of endophyte infected and uninfected cauliflower plants were measured on the survival and development of Spodoptera litura (Fab.), a polyphagous pest. Endophyte infected cauliflower plants showed resistance to S. litura in the form of significant increase in larval and pupal mortality in both the fungi. Inhibitory effects of endophytic fungi also were observed on adult emergence, longevity, reproductive potential, as well as hatchability of eggs. Thus, it is concluded that antibiosis to S. litura could be imparted by artificial inoculation of endophytes and this could be used to develop alternative ecologically safe control strategies.

  10. Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricata

    Directory of Open Access Journals (Sweden)

    Vânia Specian

    2012-09-01

    Full Text Available Endophytic microorganisms, defined as fungi or bacteria that colonize the interior of plants without causing any immediate negative effects or damages, have reciprocal relationships with host plants. In some cases their presence is beneficial to the host due to the synthesis of bioactive compounds, among which several alcohols, esters, ketones and others that may react with other compounds and may be lethal to pathogenic microorganisms. Diaporthe helianthi (Phomopsis helianthi in its anamorphic phase is available worldwide, especially in Europe, Asia and America. Isolated in Europe as an agent of the sunflower stem cancer, it has also been endophytically isolated from tropical and temperate plants. A D. helianthi strain isolated from Luehea divaricata has been employed in current research. An investigation of the secondary metabolite from D. helianthi by CC and NMR of ¹H and 13C yielded the separation of 10 fractions and the identification of the phenolic compound 2(-4 hydroxyphenyl-ethanol (Tyrosol. Its antimicrobial reaction was tested and the ensuing antagonistic effects on the human pathogenic bacteria Enterococcus hirae, Escherichia coli, Micrococcus luteus, Salmonella typhi, Staphylococcus aureus, phytopathogenic Xanthomonas asc. phaseoli and phytopathogenic fungi were demonstrated. Results show that bioactive compounds and Tyrosol produced by D. helianthi have a biotechnological potential.

  11. Developmental Peculiarities and Seed-Borne Endophytes in Quinoa: Omnipresent, Robust Bacilli Contribute to Plant Fitness

    Science.gov (United States)

    Pitzschke, Andrea

    2016-01-01

    Among potential climate change-adapted crops for future agriculture, quinoa (Chenopodium quinoa), a facultative halophyte plant with exceptional nutritional properties, stands out as a prime candidate. This work examined how quinoa deals with extreme situations during seed rehydration. Quinoa distinguishes itself from other plants in multiple ways. It germinates within minutes, even under extremely hostile conditions. Broken seeds/split embryos are able to regenerate. Furthermore, quinoa seedlings are resurrection-competent. These peculiarities became in part explainable upon discovery of seed-borne microorganisms. 100% of quinoa seeds, from different sources, are inhabited by diverse members of the genus Bacillus. These endophytes are motile and reside in all seedling organs, indicating vertical transmission. Owing to their high catalase activities and superoxide contents the bacteria potentially manipulate the host’s redox status. Superoxide-driven cell expansion enables quinoa to overcome a critical period in development, seedling establishment. Quinoa’s immediate confrontation with “foreign” reactive oxygen species and bacterial elicitors likely induces a naturally primed state, enabling plants to withstand extreme situations. The endophytic bacteria, which are cultivable and highly robust themselves, have high potential for application in agriculture, food (amylase) and cosmetics (catalase) industry. This work also discusses the potential of transferring quinoa’s microbiome to improve stress resistance in other plant species. PMID:26834724

  12. Endophytes: exploitation as a tool in plant protection

    Directory of Open Access Journals (Sweden)

    Devanushi Dutta

    2014-10-01

    Full Text Available Endophytes are symptomless fungal or bacterial microorganisms found in almost all living plant species reported so far. They are the plant-associated microbes that form symbiotic association with their host plants by colonizing the internal tissues, which has made them valuable for agriculture as a tool in improving crop performance. Many fungal endophytes produce secondary metabolites such as auxin, gibberellin etc that helps in growth and development of the host plant. Some of these compounds are antibiotics having antifungal, antibacterial and insecticidal properties, which strongly inhibit the growth of other microorganisms, including plant pathogens. This article reviews the endophyte isolated from different plants, mode of endophytic infection and benefits derived by the host plant as a result of endophytism.

  13. Rethinking production of Taxol® (paclitaxel) using endophyte biotechnology.

    Science.gov (United States)

    Kusari, Souvik; Singh, Satpal; Jayabaskaran, Chelliah

    2014-06-01

    Taxol® (generic name paclitaxel) represents one of the most clinically valuable natural products known to mankind in the recent past. More than two decades have elapsed since the notable discovery of the first Taxol®-producing endophytic fungus, which was followed by a plethora of reports on other endophytes possessing similar biosynthetic potential. However, industrial-scale Taxol® production using fungal endophytes, although seemingly promising, has not seen the light of the day. In this opinion article, we embark on the current state of knowledge on Taxol® biosynthesis focusing on the chemical ecology of its producers, and ask whether it is actually possible to produce Taxol® using endophyte biotechnology. The key problems that have prevented the exploitation of potent endophytic fungi by industrial bioprocesses for sustained production of Taxol® are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Endophytic actinobacteria of medicinal plants: diversity and bioactivity.

    Science.gov (United States)

    Golinska, Patrycja; Wypij, Magdalena; Agarkar, Gauravi; Rathod, Dnyaneshwar; Dahm, Hanna; Rai, Mahendra

    2015-08-01

    Endophytes are the microorganisms that exist inside the plant tissues without having any negative impact on the host plant. Medicinal plants constitute the huge diversity of endophytic actinobacteria of economical importance. These microbes have huge potential to synthesis of numerous novel compounds that can be exploited in pharmaceutical, agricultural and other industries. It is of prime importance to focus the present research on practical utilization of this microbial group in order to find out the solutions to the problems related to health, environment and agriculture. An extensive characterization of diverse population of endophytic actinobacteria associated with medicinal plants can provide a greater insight into the plant-endophyte interactions and evolution of mutualism. In the present review, we have discussed the diversity of endophytic actinobacteria of from medicinal plants their multiple bioactivities.

  15. Structural Interaction Between GFP-Labeled Diazotrophic Endophytic Bacterium Herbaspirillum seropedicae RAM10 and Pineapple Plantlets ‘VitóRia’

    Science.gov (United States)

    Estrela Borges Baldotto, Lílian; Lopes Olivares, Fábio; Bressan-Smith, Ricardo

    2011-01-01

    The events involved in the structural interaction between the diazotrophic endophytic bacterium Herbaspirillum seropedicae, strain RAM10, labeled with green fluorescent protein, and pineapple plantlets ‘Vitória’ were evaluated by means of bright-field and fluorescence microscopy, combined with scanning electron microscopy for 28 days after inoculation. After 6 hours of inoculation, H. seropedicae was already adhered to the roots, colonizing mainly root hair surface and bases, followed by epidermal cell wall junctions. Bacteria adherence in the initial periods occurred mainly in the form of solitary cells and small aggregates with pleomorphic cells. Bacteria infection of root tissue occurred through the cavities caused by the disruption of epidermal cells during the emergence of lateral roots and the endophytic establishment by the colonization of intercellular spaces of the cortical parenchyma. Moreover, within 1 day after inoculation the bacteria were colonizing the shoots. In this region, the preferred sites of epiphytic colonization were epidermal cell wall junctions, peltate scutiform trichomes and non-glandular trichomes. Subsequently, the bacteria occupied the outer periclinal walls of epidermal cells and stomata. The penetration into the shoot occurred passively through stoma aperture followed by the endophytic establishment on the substomatal chambers and spread to the intercellular spaces of spongy chlorenchyma. After 21 days of inoculation, bacterial biofilm were seen at the root hair base and on epidermal cell wall surface of root and leaf, also confirming the epiphytic nature of H. seropedicae. PMID:24031612

  16. Natural Endophytic Occurrence of Acetobacter diazotrophicus in Pineapple Plants.

    Science.gov (United States)

    Tapia-Hernández; Bustillos-Cristales; Jiménez-Salgado; Caballero-Mellado; Fuentes-Ramírez

    2000-01-01

    The presence of endophytic Acetobacter diazotrophicus was tested for pineapple plants (Ananas comosus [L.] Merr.) grown in the field. Diazotrophic bacteria were isolated from the inner tissues of surface sterilized roots, stems, and leaves of pineapple plants. Phenotypic tests permitted the selection of presumptive nitrogen-fixing A. diazotrophicus isolates. Restriction fragment length polymorphisms (RFLPs) of small subunit (SSU) rDNA using total DNA digested with endonuclease SphI and with endonuclease NcoI, hybridizations of RNA with an A. diazotrophicus large subunit (LSU) rRNA specific probe, as well as patterns in denaturing protein electrophoresis (SDS-PAGE) and multilocus enzyme tests allowed the identification of A. diazotrophicus isolates. High frequencies of isolation were obtained from propagative buds that had not been nitrogen-fertilized, and lower frequencies from 3-month-old plants that had been nitrogen-fertilized. No isolates were recovered from 5- to 7-month-old nitrogen-fertilized plants. All the A. diazotrophicus isolates recovered from pineapple plants belonged to the multilocus genotype which shows the most extensive distribution among all host species previously analyzed.

  17. Identity, diversity, and molecular phylogeny of the endophytic mycobiota in the roots of rare wild rice (Oryza granulate) from a nature reserve in Yunnan, China.

    Science.gov (United States)

    Yuan, Zhi-Lin; Zhang, Chu-Long; Lin, Fu-Cheng; Kubicek, Christian P

    2010-03-01

    Rice (Oryza sativa L.) is, on a global scale, one of the most important food crops. Although endophytic fungi and bacteria associated with rice have been investigated, little is known about the endophytic fungi of wild rice (Oryza granulate) in China. Here we studied the root endophytic mycobiota residing in roots of O. granulate by the use of an integrated approach consisting of microscopy, cultivation, ecological indices, and direct PCR. Microscopy confirmed the ubiquitousness of dark septate endophytes (DSEs) and sclerotium-like structures in root tissues. Isolations from 204 root segments from 15 wild rice plants yielded 58 isolates, for which 31 internal transcribed spacer (ITS)-based genotypes were recorded. The best BLAST match indicated that 34.5% of all taxa encountered may represent hitherto undescribed species. Most of the fungi were isolated with a very low frequency. Calculation of ecological indices and estimation of taxon accumulation curves indicated a high diversity of fungal species. A culture-independent approach was also performed to analyze the endophytic fungal community. Three individual clone libraries were constructed. Using a threshold of 90% similarity, 35 potentially different sequences (phylotypes) were found among 186 positive clones. Phylogenetic analysis showed that frequently detected clones were classified as Basidiomycota, and 60.2% of total analyzed clones were affiliated with unknown taxa. Exophiala, Cladophialophora, Harpophora, Periconia macrospinosa, and the Ceratobasidium/Rhizoctonia complex may act as potential DSE groups. A comparison of the fungal communities characterized by the two approaches demonstrated distinctive fungal groups, and only a few taxa overlapped. Our findings indicate a complex and rich endophytic fungal consortium in wild rice roots, thus offering a potential bioresource for establishing a novel model of plant-fungal mutualistic interactions.

  18. Antioxidative properties of phenolic compounds isolated from the fungal endophytes of Zingiber nimmonii (J.Graham) Dalzell.

    Institute of Scientific and Technical Information of China (English)

    Madhuchhanda Das; Harischandra Sripathy Prakash; Monnanda Somaiah Nalini

    2017-01-01

    BACKGROUND:The microbes living in planta termed ‘endophytes’ is bestowed with the potential to produce bioactive substances.The aim of this investigation was focused on the isolation and molecular identification of the fungal endophytes from Zingiber nimmonii (J.Graham) Dalzell.,an endemic medicinal plant species of the ‘Western ghats’,a hotspot location in southem India and characterization of the secondary metabolites responsible for the antioxidant and DNA protective capacity using chromatography and mass spectrometry techniques.METHODS:Endophytic fungi were isolated and identified by sequencing the Internal Transcribed Spacer (ITS).The secondary metabolites were extracted with ethyl acetate and evaluated for the total phenolic,flavonoid and antioxidant capacities.The isolates with potential antioxidative property were further analyzed for the DNA protection ability and the presence ofbioactive phenolic compounds by High Performance Liquid Chromatography (HPLC) and Electrospray Ionization-Mass Spectroscopy/Mass Spectroscopy (ESI-MS/MS) techniques.RESULTS:Endophytic fungi belonging to 11 different taxa were identified.The total phenolic content of the extracts ranged from 10.8 ± 0.7 to 81.6 ± 6.0 mg gallic acid equivalent/g dry extract.F lavonoid was present in eight extracts in the range of 5.2 ± 0.5 to 24.3 ±0.9 mg catechin equivalents/g dry extract.Bipolaris specifera,Alternaria tenuissima,Aspergillus terreus,Nectria haematococca and Fusarium chlamydosporum extracts exhibited a potentially high antioxidant capacity.Characterization of the extracts revealed an array of phenolic acids and flavonoids.N.haematococca and F.chlamydosporum extracts contained quercetin and showed DNA protection ability.CONCLUSION:This study is the first comprehensive report on the fungal endophytes from Z.nimmonii,as potential sources of antioxidative and DNA protective compounds.The study indicates that Z.nimmonii endophytes are potential sources of antioxidants over the

  19. Burkholderia vietnamiensis isolated from root tissues of Nipa Palm (Nypa fruticans) in Sarawak, Malaysia, proved to be its major endophytic nitrogen-fixing bacterium.

    Science.gov (United States)

    Tang, Sui-Yan; Hara, Shintaro; Melling, Lulie; Goh, Kah-Joo; Hashidoko, Yasuyuki

    2010-01-01

    Root-associating bacteria of the nipa palm (Nypa fruticans), preferring brackish-water affected mud in Sarawak, Malaysia, were investigated. In a comparison of rhizobacterial microbiota between the nipa and the sago (Metroxylon sagu) palm, it was found that the nipa palm possessed a group of Burkholderia vietnamiensis as its main active nitrogen-fixing endophytic bacterium. Acetylene reduction by the various isolates of B. vietnamiensis was constant (44 to 68 nmol h(-1) in ethylene production rate) in soft gel medium containing 0.2% sucrose as sole carbon source, and the bacterium also showed motility and biofilm-forming capacity. This is the first report of endophytic nitrogen-fixing bacteria from nipa palm.

  20. Prevalence of plant beneficial and human pathogenic bacteria isolated from salad vegetables in India.

    Science.gov (United States)

    Nithya, Angamuthu; Babu, Subramanian

    2017-03-14

    The study aimed at enumerating, identifying and categorizing the endophytic cultivable bacterial community in selected salad vegetables (carrot, cucumber, tomato and onion). Vegetable samples were collected from markets of two vegetable hot spot growing areas, during two different crop harvest seasons. Crude and diluted vegetable extracts were plated and the population of endophytic bacteria was assessed based on morphologically distinguishable colonies. The bacterial isolates were identified by growth in selective media, biochemical tests and 16S rRNA gene sequencing. The endophytic population was found to be comparably higher in cucumber and tomato in both of the sampling locations, whereas lower in carrot and onion. Bacterial isolates belonged to 5 classes covering 46 distinct species belonging to 19 genera. Human opportunistic pathogens were predominant in carrot and onion, whereas plant beneficial bacteria dominated in cucumber and tomato. Out of the 104 isolates, 16.25% are human pathogens and 26.5% are human opportunistic pathogens. Existence of a high population of plant beneficial bacteria was found to have suppressed the population of plant and human pathogens. There is a greater potential to study the native endophytic plant beneficial bacteria for developing them as biocontrol agents against human pathogens that are harboured by plants.

  1. Two new meroterpenoids produced by the endophytic fungus Penicillium sp. SXH-65.

    Science.gov (United States)

    Sun, Xinhua; Kong, Xianglan; Gao, Huquan; Zhu, Tianjiao; Wu, Guangwei; Gu, Qianqun; Li, Dehai

    2014-08-01

    Two new meroterpenoids, arisugacins I (1) and J (2), together with five known meroterpenoids including arisugacin B (3), arisugacin F (4), arisugacin G (5), territrem B (6) and territrem C (7) were isolated from an endophytic fungus Penicillium sp. SXH-65. Their structures were determined by extensive spectroscopic experiments and comparison with literature data. Their cytotoxicities were evaluated against Hela, HL-60 and K562 cell lines, and only 3 and 4 exhibited weak cytotoxicities against Hela, HL-60 and K562 cell lines with IC50 values ranging from 24 to 60 μM.

  2. Penifupyrone, a new cytotoxic funicone derivative from the endophytic fungus Penicillium sp. HSZ-43.

    Science.gov (United States)

    Chen, Ming-Jun; Fu, Yang-Wu; Zhou, Qun-Ying

    2014-01-01

    Penifupyrone (1), a new funicone derivative, has been isolated from the endophytic fungus Penicillium sp. HSZ-43, along with three known analogues, funicone (2), deoxyfunicone (3) and 3-O-methylfunicone (4). These structures were identified by using spectroscopic methods, including UV, MS, 1D and 2D NMR experiments. The structure of 1 was confirmed by single-crystal X-ray diffraction analysis. All the isolated compounds were evaluated for cytotoxicity against human oral epidermoid carcinoma KB cells, and compound 1 exhibited moderate cytotoxic activity with IC50 value of 4.7 μM.

  3. Endophytic Fungal Diversity in Medicinal Plants of Western Ghats, India

    Directory of Open Access Journals (Sweden)

    Monnanda Somaiah Nalini

    2014-01-01

    Full Text Available Endophytes constitute an important component of microbial diversity, and in the present investigation, seven plant species with rich ethnobotanical uses representing six families were analyzed for the presence of endophytic fungi from their natural habitats during monsoon (May/June and winter (November/December seasons of 2007. Fungal endophytes were isolated from healthy plant parts such as stem, root, rhizome, and inflorescence employing standard isolation methods. One thousand five hundred and twenty-nine fungal isolates were obtained from 5200 fragments. Stem fragments harbored more endophytes (80.37% than roots (19.22%. 31 fungal taxa comprised of coelomycetes (65%, hyphomycetes (32%, and ascomycetes (3%. Fusarium, Acremonium, Colletotrichum, Chaetomium, Myrothecium, Phomopsis, and Pestalotiopsis spp. were commonly isolated. Diversity indices differed significantly between the seasons (P<0.001. Species richness was greater for monsoon isolations than winter. Host specificity was observed for few fungal endophytes. UPGMA cluster analysis grouped the endophytes into distinct clusters on the basis of genetic distance. This study is the first report on the diversity and host-specificity of endophytic fungal taxa were from the semi evergreen forest type in Talacauvery subcluster of Western Ghats.

  4. Britain exhibition at CERN

    CERN Multimedia

    Bertin; CERN PhotoLab

    1969-01-01

    The United Kingdom inaugurated the Industrial Exhibitions in 1968, and it wasn't till 1971 that other countries staged exhibitions at CERN. This photo was taken in 1969, at the second British exhibition, where 16 companies were present.

  5. Fungal Endophyte Diversity and Bioactivity in the Indian Medicinal Plant Ocimum sanctum Linn.

    Directory of Open Access Journals (Sweden)

    Kanika Chowdhary

    Full Text Available Endophytic mycopopulation isolated from India's Queen of herbs Tulsi (Ocimum sanctum were explored and investigated for their diversity and antiphytopathogenic activity against widespread plant pathogens Botrytis cinerea, Sclerotinia sclerotiorum, Rhizoctonia solani and Fusarium oxysporum. 90 fungal isolates, representing 17 genera were recovered from 313 disease-free and surface sterilised plant segments (leaf and stem tissues from three different geographic locations (Delhi, Hyderabad and Mukteshwar during distinct sampling times in consequent years 2010 and 2011 in India. Fungal endophytes were subjected to molecular identification based on rDNA ITS sequence analysis. Plant pathogens such as F. verticillioides, B. maydis, C. coarctatum, R. bataticola, Hypoxylon sp., Diaporthe phaseolorum, Alternaria tenuissima and A. alternata have occurred as endophyte only during second sampling (second sampling in 2011 in the present study. Bi-plot generated by principal component analysis suggested tissue specificity of certain fungal endophytes. Dendrogram revealed species abundance as a function of mean temperature of the location at the time of sampling. Shannon diversity in the first collection is highest in Hyderabad leaf tissues (H' = 1.907 whereas in second collection it was highest from leaf tissues of Delhi (H' = 1.846. Mukteshwar (altitude: 7500 feet reported least isolation rate in second collection. Nearly 23% of the total fungal isolates were considered as potent biocontrol agent. Hexane extract of M. phaseolina recovered from Hyderabad in first collection demonstrated highest activity against S. sclerotiorum with IC50 value of 0.38 mg/ml. Additionally, its components 2H-pyran-2-one, 5,6-dihydro-6-pentyl and palmitic acid, methyl ester as reported by GC-MS Chromatogram upon evaluation for their antiphytopathogenic activity exhibited IC50 value of 1.002 and 0.662 against respectively S. sclerotiorum indicating their significant role in

  6. [Isolation and physiological characteristics of endophytic actinobacteria from medicinal plants].

    Science.gov (United States)

    Du, Huijing; Su, Jing; Yu, Liyan; Zhang, Yuqin

    2013-01-04

    To isolate, incubate and characterize cultivable endophytic antinobacteria from medicinal plants, and analyze the diversity of the endophytic antinobacteria, then explore the novel microbial resources. Ten media were used to isolate endophytic antinobacteria from 37 fresh medicinal plant tissue samples. The optimal cultivation conditions for endophytic antinobacteria were determined by comparison. Based on the morphology of the colonies and cells of the new isolates, we chose 174 isolates to analyze their 16S rRNA gene sequences and the diversity of the medicinal plant endophytic antinobacteria. The physiological characteristics of 27 representative strains were studied using Biolog GEN III MicroPlates, API 50CH and API ZYM kits. In total 940 endophytics affiliated to 47 genera of 30 families were isolated, among which more than 600 actinobacteria belonged to 34 genera and 7 unknown taxa. Good growth of the endophytic antinobacteria on PYG (peptone-yeast-glycerol) medium with pH 7.2 at 28-32 degrees C was observed. Physiological characteristics differences of these isolates related to their phylogenetic relationships. Greater differences were shown among the strains from the same host plants than those from differ,ent plants grown in the same area. There are great diverse endophytic actinobacteria inside the medicinal plants. No direct relationship of the endophytic actinobacteria from medicinal plants with the host plants in the sole carbon source utilization, fermentation of carbon sources to produce acid and the enzyme activities was found, while it seemed that the physiological characteristics of the isolates related to the geographical distribution of their host.

  7. Sesquiterpenes from the Endophyte Glomerella cingulata.

    Science.gov (United States)

    Liu, Yunbao; Li, Yong; Liu, Zhen; Li, Li; Qu, Jing; Ma, Shuanggang; Chen, Ridao; Dai, Jungui; Yu, Shishan

    2017-10-27

    From the cultured endophytic fungus Glomerella cingulata isolated from a toxic plant, Gelsemium elegans, one new phenanthrene (1), four new sesquiterpenes (2-5), and three known sesquiterpenes (6-8) were isolated. Their structures were elucidated using spectroscopic methods. Based on the ECD calculations, the absolute configurations of the new compounds were determined. Compounds 2, 4, and 5 inhibited lipopolysaccharide (LPS)-induced NO production in BV2 cells by 50.6, 36.1, and 29.4%, respectively, at 1 μM (positive control curcumin, IC 50 = 4.0 μM).

  8. Diversity and antimicrobial activity of culturable endophytic fungi isolated from moso bamboo seeds.

    Directory of Open Access Journals (Sweden)

    Xiao-Ye Shen

    Full Text Available Bamboos, regarded as therapeutic agents in ethnomedicine, have been used to inhibit inflammation and enhance natural immunity for a long time in Asia, and there are many bamboo associated fungi with medical and edible value. In the present study, a total of 350 fungal strains were isolated from the uncommon moso bamboo (Phyllostachys edulis seeds for the first time. The molecular diversity of these endophytic fungi was investigated and bioactive compound producers were screened for the first time. All the fungal endophytes were categorized into 69 morphotypes according to culturable characteristics and their internal transcriber spacer (ITS regions were analyzed by BLAST search with the NCBI database. The fungal isolates showed high diversity and were divided in Ascomycota (98.0% and Basidiomycota (2.0%, including at least 19 genera in nine orders. Four particular genera were considered to be newly recorded bambusicolous fungi, including Leptosphaerulina, Simplicillium, Sebacina and an unknown genus in Basidiomycetes. Furthermore, inhibitory effects against clinical pathogens and phytopathogens were screened preliminarily and strains B09 (Cladosporium sp., B34 (Curvularia sp., B35 (undefined genus 1, B38 (Penicillium sp. and zzz816 (Shiraia sp. displayed broad-spectrum activity against clinical bacteria and yeasts by the agar diffusion method. The crude extracts of isolates B09, B34, B35, B38 and zzz816 under submerged fermentation, also demonstrated various levels of bioactivities against bambusicolous pathogenic fungi. This study is the first report on the antimicrobial activity of endophytic fungi associated with moso bamboo seeds, and the results show that they could be exploited as a potential source of bioactive compounds and plant defense activators. In addition, it is the first time that strains of Shiraia sp. have been isolated and cultured from moso bamboo seeds, and one of them (zzz816 could produce hypocrellin A at high yield, which

  9. Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses.

    Directory of Open Access Journals (Sweden)

    Hoang Hoa Long

    Full Text Available BACKGROUND: All plants in nature harbor a diverse community of endophytic bacteria which can positively affect host plant growth. Changes in plant growth frequently reflect alterations in phytohormone homoeostasis by plant-growth-promoting (PGP rhizobacteria which can decrease ethylene (ET levels enzymatically by 1-aminocyclopropane-1-carboxylate (ACC deaminase or produce indole acetic acid (IAA. Whether these common PGP mechanisms work similarly for different plant species has not been rigorously tested. METHODOLOGY/PRINCIPAL FINDINGS: We isolated bacterial endophytes from field-grown Solanum nigrum; characterized PGP traits (ACC deaminase activity, IAA production, phosphate solubilization and seedling colonization; and determined their effects on their host, S. nigrum, as well as on another Solanaceous native plant, Nicotiana attenuata. In S. nigrum, a majority of isolates that promoted root growth were associated with ACC deaminase activity and IAA production. However, in N. attenuata, IAA but not ACC deaminase activity was associated with root growth. Inoculating N. attenuata and S. nigrum with known PGP bacteria from a culture collection (DSMZ reinforced the conclusion that the PGP effects are not highly conserved. CONCLUSIONS/SIGNIFICANCE: We conclude that natural endophytic bacteria with PGP traits do not have general and predictable effects on the growth and fitness of all host plants, although the underlying mechanisms are conserved.

  10. Evaluation of the endophytic nature of Bacillus amyloliquefaciens strain GYL4 and its efficacy in the control of anthracnose.

    Science.gov (United States)

    Kim, Jeong Do; Jeon, Byeong Jun; Han, Jae Woo; Park, Min Young; Kang, Sin Ae; Kim, Beom Seok

    2016-08-01

    Endophytic bacteria are viewed as a potential new source of biofungicides because they have beneficial characteristics as control agents for plant disease. This study was performed to examine the endophytic feature and disease control efficacy of Bacillus amyloliquefaciens strain GYL4 and to identify the antifungal compounds produced by this strain. B. amyloliquefaciens strain GYL4 was isolated from leaf tissue of pepper plants (Capsicum annuum L.). Anthracnose symptoms were markedly reduced in the leaves of pepper plants colonised by GYL4. An egfp-expressing strain of GYL4 (GYL4-egfp) was constructed and reintroduced into pepper plants, which confirmed its ability to colonise the internal tissues of pepper plants. GYL4-egfp was observed in the root and stem tissues 4 days after treatment and abundantly found in the internal leaf tissue 9 days after treatment. Bacillomycin derivatives purified from the culture extract of GYL4 displayed control efficacy on anthracnose development in cucumber (Cucumis sativus L. cv. Chunsim). The present study is the first report on evaluation of the endophytic and systemic nature of B. amyloliquefaciens strain GYL4 and its potential as a biocontrol agent for anthracnose management. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  11. Inoculating wheat (Triticum aestivum L.) with the endophytic bacterium Serratia sp. PW7 to reduce pyrene contamination.

    Science.gov (United States)

    Zhu, Xuezhu; Wang, Wanqing; Sun, Kai; Lin, Xianghao; Li, Shuang; Waigi, Michael Gatheru; Ling, Wanting

    2017-08-03

    This research was conducted to find an optimal inoculation way for a pyrene-degrading endophytic Serratia sp. PW7 to colonize wheat for reducing pyrene contamination. Three inoculation ways, which are soaking seeds in inocula (TS), dipping roots of seedlings in inocula (TR), and spraying inocula on leaves of seedlings (TL), were used in this study. Inoculated seedlings and noninoculated seedlings (CK) were, respectively, cultivated in Hoagland solutions supplemented with pyrene in a growth chamber. The results showed that strain PW7 successfully colonized the inoculated seedlings in high numbers, and significantly promoted the growth of seedlings (TS and TR). More importantly, strain PW7 reduced pyrene levels in the seedlings and the Hoagland solutions. Compared to the noninoculated seedlings, the pyrene contents of the inoculated seedlings were decreased by 35.7-86.3% in the shoots and by 26.8-60.1% in the roots after 8-day cultivation. By comparing the efficiencies of decreasing pyrene residues, it can be concluded that TR was an optimal inoculation way for endophytic strains to colonize the inoculated plants and to reduce the pyrene contamination. Our findings provide an optimized inoculation way to reduce organic contamination in crops by inoculating plants with functional endophytic bacteria.

  12. Identification and structural characterization of serobactins, a suite of lipopeptide siderophores produced by the grass endophyte Herbaspirillum seropedicae.

    Science.gov (United States)

    Rosconi, Federico; Davyt, Danilo; Martínez, Verónica; Martínez, Marcela; Abin-Carriquiry, Juan Andrés; Zane, Hannah; Butler, Alison; de Souza, Emanuel M; Fabiano, Elena

    2013-03-01

    Herbaspirillum seropedicae Z67 is a diazotrophic endophyte able to colonize the interior of many economically relevant crops such as rice, wheat, corn and sorghum. Structures of siderophores produced by bacterial endophytes have not yet been elucidated. The aim of this work was to identify and characterize the siderophores produced by this bacterium. In a screening for mutants unable to produce siderophores we found a mutant that had a transposon insertion in a non-ribosomal peptide synthase (NRPS) gene coding for a putative siderophore biosynthetic enzyme. The chemical structure of the siderophore was predicted using computational genomic tools. The predicted structure was confirmed by chemical analysis. We found that siderophores produced by H. seropedicae Z67 are a suite of amphiphilic lipopeptides, named serobactin A, B and C, which vary by the length of the fatty acid chain. We also demonstrated the biological activity of serobactins as nutritional iron sources for H. seropedicae. These are the first structurally described siderophores produced by endophytic bacteria. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  13. Anti-MRSA activity of oxysporone and xylitol from the endophytic fungus Pestalotia sp. growing on the Sundarbans mangrove plant Heritiera fomes.

    Science.gov (United States)

    Nurunnabi, Tauhidur Rahman; Nahar, Lutfun; Al-Majmaie, Shaymaa; Rahman, S M Mahbubur; Sohrab, Md Hossain; Billah, Md Morsaline; Ismail, Fyaz M D; Rahman, M Mukhlesur; Sharples, George P; Sarker, Satyajit D

    2018-02-01

    Heritiera fomes Buch.-Ham., a mangrove plant from the Sundarbans, has adapted to a unique habitat, muddy saline water, anaerobic soil, brackish tidal activities, and high microbial competition. Endophytic fungal association protects this plant from adverse environmental conditions. This plant is used in Bangladeshi folk medicine, but it has not been extensively studied phytochemically, and there is hardly any report on investigation on endophytic fungi growing on this plant. In this study, endophytic fungi were isolated from the surface sterilized cladodes and leaves of H. fomes. The antimicrobial activities were evaluated against two Gram-positive and two Gram-negative bacteria and the fungal strain, Candida albicans. Extracts of Pestalotia sp. showed activities against all test bacterial strains, except that the ethyl acetate extract was inactive against Escherichia coli. The structures of the purified compounds, oxysporone and xylitol, were elucidated by spectroscopic means. The anti-MRSA potential of the isolated compounds were determined against various MRSA strains, that is, ATCC 25923, SA-1199B, RN4220, XU212, EMRSA-15, and EMRSA-16, with minimum inhibitory concentration values ranging from 32 to 128 μg/ml. This paper, for the first time, reports on the anti-MRSA property of oxysporone and xylitol, isolation of the endophyte Pestalotia sp. from H. fomes, and isolation of xylitol from a Pestalotia sp. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Molecular profiling and bioactive potential of an endophytic fungus Aspergillus sulphureus isolated from Sida acuta: a medicinal plant.

    Science.gov (United States)

    Murali, M; Mahendra, C; Hema, P; Rajashekar, N; Nataraju, A; Sudarshana, M S; Amruthesh, K N

    2017-12-01

    Sida acuta Burm.f. (Malvaceae) extracts are reported to have applications against malaria, diuretic, antipyretic, nervous and urinary diseases. No fungal endophytes of S. acuta are reported. Isolation, identification and evaluation of antibacterial, antioxidant, anticancer and haemolytic potential of fungal endophytes from the ethnomedcinal plant S. acuta. Sida acuta stem segments were placed on PDA medium to isolate endophytic fungi. The fungus was identified by genomic DNA analysis and phylogenetic tree was constructed using ITS sequences (GenBank) to confirm species. The antibacterial efficacy of Aspergillus sulphureus MME12 ethyl acetate extract was tested against Gram-positive and Gram-negative pathogenic bacteria. DPPH free radical scavenging activity, anticancer and DNA fragmentation against EAC cells, and direct haemolytic activity (100-500 μg/mL) using human erythrocytes were determined. The ethyl acetate extract of A. sulphureus (Fresen.) Wehmer (Trichocomaceae) demonstrated significant antibacterial potential against Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Salmonella typhi compared to streptomycin. MIC against test pathogens was in the range of 15.6-62.5 μg/mL. The antioxidant results revealed significant RSA from 12.43% to 62.02% (IC 50  = 350.4 μg/mL, p ≤ 0.05). MME12 offered considerable inhibition of EAC proliferation (23% to 84%, IC 50  = 216.7 μg/mL, p ≤ 0.05) supported by DNA fragmentation studies. The extract also offered insignificant haemolysis (5.6%) compared to Triton X-100. A single endophytic fungus, A. sulphureus MME12 was isolated and identified using molecular profiling. The above-mentioned findings support the pharmacological application of A. sulphureus MME12 extract and demand for purification of the active principle(s).

  15. Biodegradation of Polyester Polyurethane by Endophytic Fungi▿

    Science.gov (United States)

    Russell, Jonathan R.; Huang, Jeffrey; Anand, Pria; Kucera, Kaury; Sandoval, Amanda G.; Dantzler, Kathleen W.; Hickman, DaShawn; Jee, Justin; Kimovec, Farrah M.; Koppstein, David; Marks, Daniel H.; Mittermiller, Paul A.; Núñez, Salvador Joel; Santiago, Marina; Townes, Maria A.; Vishnevetsky, Michael; Williams, Neely E.; Vargas, Mario Percy Núñez; Boulanger, Lori-Ann; Bascom-Slack, Carol; Strobel, Scott A.

    2011-01-01

    Bioremediation is an important approach to waste reduction that relies on biological processes to break down a variety of pollutants. This is made possible by the vast metabolic diversity of the microbial world. To explore this diversity for the breakdown of plastic, we screened several dozen endophytic fungi for their ability to degrade the synthetic polymer polyester polyurethane (PUR). Several organisms demonstrated the ability to efficiently degrade PUR in both solid and liquid suspensions. Particularly robust activity was observed among several isolates in the genus Pestalotiopsis, although it was not a universal feature of this genus. Two Pestalotiopsis microspora isolates were uniquely able to grow on PUR as the sole carbon source under both aerobic and anaerobic conditions. Molecular characterization of this activity suggests that a serine hydrolase is responsible for degradation of PUR. The broad distribution of activity observed and the unprecedented case of anaerobic growth using PUR as the sole carbon source suggest that endophytes are a promising source of biodiversity from which to screen for metabolic properties useful for bioremediation. PMID:21764951

  16. Antimicrobial chemical constituents from endophytic fungus Phomasp.

    Institute of Scientific and Technical Information of China (English)

    Hidayat Hussain; Siegfried Draeger; Barbara Schulz; Karsten Krohn; Ines Kock; Ahmed Al-Harrasi; Ahmed Al-Rawahi; Ghulam Abbas; Ivan R Green; Afzal Shah; Amin Badshah; Muhammad Saleem

    2014-01-01

    Objective:To evaluate the antimicrobial potential of different extracts of the endophytic fungus Phomasp. and the tentative identification of their active constituents.Methods:The extract and compounds were screened for antimicrobial activity using theAgarWellDiffusionMethod. Four compounds were purified using column chromatography and their structures were assigned using1H and13CNMR spectra,DEPT,2DCOSY,HMQC andHMBC experiments.Results:The ethyl acetate fraction ofPhomasp. showed good antifungal, antibacterial, and algicidal properties.One new dihydrofuran derivative, named phomafuranol(1), together with three known compounds, phomalacton(2),(3R)-5-hydroxymellein(3) and emodin(4) were isolated from the ethyl acetate fraction ofPhomasp.Preliminary studies indicated that phomalacton(2) displayed strong antibacterial, good antifungal and antialgal activities.Similarly(3R)-5-hydroxymellein (3) and emodin(4) showed good antifungal, antibacterial and algicidal properties.Conclusions:Antimicrobial activities of the ethyl acetate fraction of the endophytic fungusPhomasp. and isolated compounds clearly demonstrate thatPhomasp. and its active compounds represent a great potential for the food, cosmetic and pharmaceutical industries.

  17. Antifungal Monoterpene Derivatives from the Plant Endophytic Fungus Pestalotiopsis foedan.

    Science.gov (United States)

    Xu, Dan; Zhang, Bing-Yang; Yang, Xiao-Long

    2016-10-01

    A new monoterpene lactone, (1R,4R,5R,8S)-8-hydroxy-4,8-dimethyl-2-oxabicyclo[3.3.1]nonan-3-one (1), along with one related known compound, (2R)-2-[(1R)-4-methylcyclohex-3-en-1-yl]propanoic acid (2), were isolated from the liquid culture of the plant endophytic fungus Pestalotiopsis foedan obtained from the branch of Bruguiera sexangula. The structure and absolute configuration of 1 were determined on the basis of extensive analysis of NMR spectra combined with computational methods via calculation of the optical rotation (OR) and 13 C-NMR. Both compounds exhibited strong antifungal activities against Botrytis cinerea and Phytophthora nicotianae with MIC values of 3.1 and 6.3 μg/ml, respectively, which are comparable to those of the known antifungal drug ketoconazole. Compound 2 also showed modest antifungal activity against Candida albicans with a MIC value of 50 μg/ml. © 2016 Wiley-VHCA AG, Zürich.

  18. Banana Musa tissue culture plants enhanced by endophytic fungi

    African Journals Online (AJOL)

    Mo

    Merging biotechnology with biological control: Banana Musa tissue culture plants enhanced by endophytic .... While working in the laminar flow cabinet, sterile filter papers were placed in ..... University of Bonn, Bonn, Germany. Niere, B., 2001.

  19. Characterization of indole acetic acid endophyte producers in ...

    African Journals Online (AJOL)

    Valued Acer Customer

    2015-02-18

    Feb 18, 2015 ... the number and identity of the isolated endophyte phytobacteria in L. gibba plants .... mL was taken from each sample and placed on plates containing ... databases using Basic Logical Alignment Search Tool analysis ...

  20. Antioxidants in mangrove plants and endophytic fungal associations

    Digital Repository Service at National Institute of Oceanography (India)

    Ravindran, C.; Naveenan, T.; Varatharajan, G.R.; Rajasabapathy, R.; Meena, R.M.

    different mangrove species and the predominant endophytic fungus Aspergillus flavus were analyzed using various in vitro assay systems (such as iron chelating capacity, reducing power, and hydroxyl radicals/ hydrogen peroxide/l-diphenyl-2-picrylhydrazyl...

  1. 7 CFR 201.58d - Fungal endophyte test.

    Science.gov (United States)

    2010-01-01

    ... staining solution. Slightly crush the seeds. Use caution to prevent carryover hyphae of fungal endophyte... compound microscope at 100-400x magnification, scoring a seed as positive if any identifiable hyphae are...

  2. Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains

    International Nuclear Information System (INIS)

    Yousaf, Sohail; Afzal, Muhammad; Reichenauer, Thomas G.; Brady, Carrie L.; Sessitsch, Angela

    2011-01-01

    The genus Enterobacter comprises a range of beneficial plant-associated bacteria showing plant growth promotion. Enterobacter ludwigii belongs to the Enterobacter cloacae complex and has been reported to include human pathogens but also plant-associated strains with plant beneficial capacities. To assess the role of Enterobacter endophytes in hydrocarbon degradation, plant colonization, abundance and expression of CYP153 genes in different plant compartments, three plant species (Italian ryegrass, birdsfoot trefoil and alfalfa) were grown in sterile soil spiked with 1% diesel and inoculated with three endophytic E. ludwigii strains. Results showed that all strains were capable of hydrocarbon degradation and efficiently colonized the rhizosphere and plant interior. Two strains, ISI10-3 and BRI10-9, showed highest degradation rates of diesel fuel up to 68% and performed best in combination with Italian ryegrass and alfalfa. All strains expressed the CYP153 gene in all plant compartments, indicating an active role in degradation of diesel in association with plants. - Highlights: → E. ludwigii strains efficiently colonized plants in a non-sterile soil environment. → E. ludwigii strains efficiently expressed alkane degradation genes in plants. → E. ludwigii efficiently degraded alkane contaminations and promoted plant growth. → E. ludwigii interacted more effectively with Italian ryegrass than with other plants. → Degradation activity varied with plant and microbial genotype as well as with time. - Enterobacter ludwigii strains belonging to the E. cloacae complex are able to efficiently degrade alkanes when associated with plants and to promote plant growth.

  3. Fungal endophyte Phomopsis liquidambari affects nitrogen transformation processes and related microorganisms in the rice rhizosphere

    Directory of Open Access Journals (Sweden)

    Bo eYang

    2015-09-01

    Full Text Available The endophytic fungus Phomopsis liquidambari performs an important ecosystem service by assisting its host with acquiring soil nitrogen (N, but little is known regarding how this fungus influences soil N nutrient properties and microbial communities. In this study, we investigated the impact of P. liquidambari on N dynamics,the abundance and composition of N cycling genes in rhizosphere soil treated with three levels of N (urea. Ammonia-oxidizing archaea (AOA, ammonia-oxidizing bacteria (AOB and diazotrophs were assayed using quantitative real-time polymerase chain reaction and denaturing gradient gel electrophoresis at four rice growing stages (S0: before planting, S1: tillering stage, S2: grain filling stage, and S3: ripening stage. A significant increase in the available nitrate and ammonium contents was found in the rhizosphere soil of endophyte-infected rice under low N conditions. Moreover, P. liquidambari significantly increased the potential nitrification rates (PNR, affected the abundance and community structure of AOA, AOB and diazotrophs under low N conditions in the S1 and S2 stages. The root exudates were determined due to their important role in rhizosphere interactions. P. liquidambari colonization altered the exudation of organic compounds by rice roots and P. liquidambari increased the concentration of soluble saccharides, total free amino acids and organic acids

  4. Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains

    Energy Technology Data Exchange (ETDEWEB)

    Yousaf, Sohail [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria); Afzal, Muhammad [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria); National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad (Pakistan); Reichenauer, Thomas G. [AIT Austrian Institute of Technology GmbH, Environmental Resources and Technologies Unit, A-2444 Seibersdorf (Austria); Brady, Carrie L. [Forestry and Agricultural Biotechnology Institute, Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria (South Africa); Sessitsch, Angela, E-mail: angela.sessitsch@ait.ac.at [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria)

    2011-10-15

    The genus Enterobacter comprises a range of beneficial plant-associated bacteria showing plant growth promotion. Enterobacter ludwigii belongs to the Enterobacter cloacae complex and has been reported to include human pathogens but also plant-associated strains with plant beneficial capacities. To assess the role of Enterobacter endophytes in hydrocarbon degradation, plant colonization, abundance and expression of CYP153 genes in different plant compartments, three plant species (Italian ryegrass, birdsfoot trefoil and alfalfa) were grown in sterile soil spiked with 1% diesel and inoculated with three endophytic E. ludwigii strains. Results showed that all strains were capable of hydrocarbon degradation and efficiently colonized the rhizosphere and plant interior. Two strains, ISI10-3 and BRI10-9, showed highest degradation rates of diesel fuel up to 68% and performed best in combination with Italian ryegrass and alfalfa. All strains expressed the CYP153 gene in all plant compartments, indicating an active role in degradation of diesel in association with plants. - Highlights: > E. ludwigii strains efficiently colonized plants in a non-sterile soil environment. > E. ludwigii strains efficiently expressed alkane degradation genes in plants. > E. ludwigii efficiently degraded alkane contaminations and promoted plant growth. > E. ludwigii interacted more effectively with Italian ryegrass than with other plants. > Degradation activity varied with plant and microbial genotype as well as with time. - Enterobacter ludwigii strains belonging to the E. cloacae complex are able to efficiently degrade alkanes when associated with plants and to promote plant growth.

  5. Assessment of Plant-Probiotic Performance of Novel Endophytic Bacillus sp. in Talc-Based Formulation.

    Science.gov (United States)

    Basheer, Jasim; Ravi, Aswani; Mathew, Jyothis; Krishnankutty, Radhakrishnan Edayileveettil

    2018-01-25

    Endophytic bacteria are considered to have a plethora of plant growth promoting and anti-phytopathogenic traits to live within the plants. Hence, they have immense promises for plant probiotic development. In the current study, plant probiotic endophytic Bacillus sp. CaB5 which has been previously isolated from Capsicum annuum was investigated for its performance in talc-based formulation. For this, CaB5 was made into formulation with sterile talc, calcium carbonate, and carboxymethyl cellulose. The viability analysis of the formulation by standard plate count and fluorescence methods has confirmed the stable microbial count up to 45 days. Plant probiotic performance of the prepared formulation was analyzed on cowpea (Vigna unguiculata) and lady's finger (Abelmoschus esculentus). The results showed the formulation treatment to have enhancement effect on seed germination as well as plant growth in both selected plants. The results highlight the potential of CaB5-based formulation for field application to enhance growth of economically important plants.

  6. Bacterial endophytes of perennial crops for management of plant disease

    OpenAIRE

    Melnick, Rachel L.; Bailey, B.A.; Backman, Paul A.

    2013-01-01

    Metadata only record Bacterial endophytes, microorganisms which inhabit the internal tissues of plants, can suppress disease and are often used as a biological control in annual crops. Less research, however, has been applied to the use of bacterial endophytes to prevent disease in perennial crops, which presents a more complex challenge. However, exploration of their potential as a biological control in perennial crops has been limited. This chapter assembles current knowledge on the subj...

  7. Isolation and Characterization of “Terrein” an Antimicrobial and Antitumor Compound from Endophytic Fungus Aspergillus terreus (JAS-2) Associated from Achyranthus aspera Varanasi, India

    Science.gov (United States)

    Goutam, Jyoti; Sharma, Gunjan; Tiwari, Vinod K.; Mishra, Amrita; Kharwar, Ravindra N.; Ramaraj, Vijayakumar; Koch, Biplob

    2017-01-01

    The present study aimed at characterizing biological potentials of endophyte Aspergillus terreus JAS-2 isolated from Achyranthus aspera. Crude extracted from endophytic fungus JAS-2 was purified and chemically characterized by chromatographic and spectroscopic studies respectively. Spectral assignment of NMR (nuclear magnetic resonance) data, 1H proton and 13C carbon analysis along with FTIR data elucidated the structure of compound as 4,5-Dihydroxy-3-(1-propenyl)-2-cyclopenten-1-one. After purification and identification a set of experiment was conducted to explore efficacy of compound. Results revealed that on accessing the antifungal activity of compound, growth diameter of tested phytopathogenic fungi was reduced to 50% at higher concentration taken (10 μgμl−1). Compound exhibited in-vitro bacterial cell inhibition at 20 μgml−1 concentration along with moderate antioxidant behavior. Evaluation of anticancer activity against human lung cancer cell line (A-549) exhibited its IC50 value to be 121.9 ± 4.821 μgml−1. Further cell cycle phase distribution were analyzed on the basis of DNA content and evaluated by FACS (Fluorescence Activated Cell Sorting) and it was revealed that at 150 μgml−1 of compound maximum cells were found in sub G1 phase which represents apoptotic dead cells. Terrein (4, 5-Dihydroxy-3-(1-propenyl)-2-cyclopenten-1-one) a multi-potential was isolated from endophytic fungus JAS-2, from well recognized medicinal herb A. aspera. To best of our knowledge, this is the first report of “Terrein” from endophytic derived fungus. This compound had also exhibited anticancer and antifungal activity against human lung cancer cell line A-549 and Bipolaris sorokiniana respectively which is causal organism of many plants disease. Hence endophytes are serving as alternative sources of drug molecules. PMID:28790982

  8. Differential methods of localisation of fungal endophytes in the seagrasses

    Directory of Open Access Journals (Sweden)

    S. Raja

    2016-07-01

    Full Text Available Sections of three seagrass species (Halophila ovalis, Cymodocea serrulata and Halodule pinifolia were assessed for endophytes based on differential staining using light and fluorescence microscopy method. Acridine orange and aniline blue detected endophytic fungi in 20% and 10% of the segments, respectively, whereas lactophenol cotton blue was more sensitive to detect the fungal hyphae in 70% of the segments. Hyphae were the principal fungal structures generally observed under the cuticle, within the epidermal cells, mesophyll (Parenchyma cells and occasionally within the vascular tissue that varied in type, size and location within the leaf tissue. Present study also recorded the sporulation for the first time from the seagrass endophytes. Successfully amplified products of the ITS region of endophytic fungal DNA, directly from seagrass tissue and also from culture-dependent fungal DNA clearly depicted the presence of endophytic fungi in H. ovalis with two banding patterns (903 and 1381 bp confirming the presence of two dominant fungal genera. The fingerprinting of endophytic fungal community within the seagrass tissue was assessed using denaturing gradient gel electrophoresis (DGGE that derived with multiple bands that clarified the presence of more than one taxon within the seagrass tissue.

  9. Antimicrobial fungal endophytes from the botanical medicine goldenseal (Hydrastis canadensis).

    Science.gov (United States)

    Egan, Joseph M; Kaur, Amninder; Raja, Huzefa A; Kellogg, Joshua J; Oberlies, Nicholas H; Cech, Nadja B

    2016-09-01

    The potential of fungal endophytes to alter or contribute to plant chemistry and biology has been the topic of a great deal of recent interest. For plants that are used medicinally, it has been proposed that endophytes might play an important role in biological activity. With this study, we sought to identify antimicrobial fungal endophytes from the medicinal plant goldenseal ( Hydrastis canadensis L., Ranunculaceae), a plant used in traditional medicine to treat infection. A total of 23 fungal cultures were obtained from surface-sterilized samples of H. canadensis roots, leaves and seeds. Eleven secondary metabolites were isolated from these fungal endophytes, five of which had reported antimicrobial activity. Hydrastis canadensis plant material was then analyzed for the presence of fungal metabolites using liquid chromatography coupled to high resolving power mass spectrometry. The antimicrobial compound alternariol monomethyl ether was detected both as a metabolite of the fungal endophyte Alternaria spp. isolated from H. canadensis seeds, and as a component of an extract from the H. canadensis seed material. Notably, fungi of the Alternaria genus were isolated from three separate accessions of H. canadensis plant material collected in a time period spanning 5 years. The concentration of alternariol monomethyl ether (991 mg/kg in dry seed material) was in a similar range to that previously reported for metabolites of ecologically important fungal endophytes. The seed extracts themselves, however, did not possess antimicrobial activity.

  10. Phytohormones in plant-endophyte interactions: investigating the role of these compounds in the recruitment of tomato root fungal endophytes

    DEFF Research Database (Denmark)

    Manzotti, Andrea; Jørgensen, Hans Jørgen Lyngs; Collinge, David B.

    in this interaction, but little is known about the specific way by which they influence the recruitment and the colonization of the host tissues. The aim of the current project is to go deeper into the role of these signalling compounds in plant-endophyte interactions. The isolation of endophytic fungi from tomato......-colonization frequency appears to be influenced by the presence/absence of specific phytohormones. In order to obtain a deeper understanding of the role of these compounds in the plant-endophyte interaction, the selected isolates are currently being screened using confocal microscopy and qPCR in order to find candidates...... whose colonization rate is critically affected by the phytohormones of interest. A transcriptomic analysis of tomato plants inoculated with the isolates selected from the screening will provide further clues as to which physiological mechanisms, associated with endophyte recruitment, are influenced...

  11. Digital collections and exhibits

    CERN Document Server

    Denzer, Juan

    2015-01-01

    Today's libraries are taking advantage of cutting-edge technologies such as flat panel displays using touch, sound, and hands-free motions to design amazing exhibits using everything from simple computer hardware to advanced technologies such as the Microsoft Kinect. Libraries of all types are striving to add new interactive experiences for their patrons through exciting digital exhibits, both online and off. Digital Collections and Exhibits takes away the mystery of designing stunning digital exhibits to spotlight library trea

  12. Exhibiting Epistemic Objects

    DEFF Research Database (Denmark)

    Tybjerg, Karin

    2017-01-01

    of exhibiting epistemic objects that utilize their knowledge-generating potential and allow them to continue to stimulate curiosity and generate knowledge in the exhibition. The epistemic potential of the objects can then be made to work together with the function of the exhibition as a knowledge-generating set...

  13. Discrimination? - Exhibition of posters

    OpenAIRE

    Jakimovska, Jana

    2017-01-01

    Participation in the exhibition with the students form the Art Academy. The exhibition consisted of 15 posters tackling the subjects of hate speech and discrimination. The exhibition happened thanks to the invitation of the Faculty of Law at UGD, and it was a part of a larger event of launching books on the aforementioned subjects.

  14. Biotechnological and agronomic potential of endophytic pink-pigmented methylotrophic Methylobacterium spp.

    Science.gov (United States)

    Dourado, Manuella Nóbrega; Camargo Neves, Aline Aparecida; Santos, Daiene Souza; Araújo, Welington Luiz

    2015-01-01

    The genus Methylobacterium is composed of pink-pigmented facultative methylotrophic (PPFM) bacteria, which are able to synthesize carotenoids and grow on reduced organic compounds containing one carbon (C1), such as methanol and methylamine. Due to their high phenotypic plasticity, these bacteria are able to colonize different habitats, such as soil, water, and sediment, and different host plants as both endophytes and epiphytes. In plant colonization, the frequency and distribution may be influenced by plant genotype or by interactions with other associated microorganisms, which may result in increasing plant fitness. In this review, different aspects of interactions with the host plant are discussed, including their capacity to fix nitrogen, nodule the host plant, produce cytokinins, auxin and enzymes involved in the induction of systemic resistance, such as pectinase and cellulase, and therefore plant growth promotion. In addition, bacteria belonging to this group can be used to reduce environmental contamination because they are able to degrade toxic compounds, tolerate high heavy metal concentrations, and increase plant tolerance to these compounds. Moreover, genome sequencing and omics approaches have revealed genes related to plant-bacteria interactions that may be important for developing strains able to promote plant growth and protection against phytopathogens.

  15. Biotechnological and Agronomic Potential of Endophytic Pink-Pigmented Methylotrophic Methylobacterium spp.

    Directory of Open Access Journals (Sweden)

    Manuella Nóbrega Dourado

    2015-01-01

    Full Text Available The genus Methylobacterium is composed of pink-pigmented facultative methylotrophic (PPFM bacteria, which are able to synthesize carotenoids and grow on reduced organic compounds containing one carbon (C1, such as methanol and methylamine. Due to their high phenotypic plasticity, these bacteria are able to colonize different habitats, such as soil, water, and sediment, and different host plants as both endophytes and epiphytes. In plant colonization, the frequency and distribution may be influenced by plant genotype or by interactions with other associated microorganisms, which may result in increasing plant fitness. In this review, different aspects of interactions with the host plant are discussed, including their capacity to fix nitrogen, nodule the host plant, produce cytokinins, auxin and enzymes involved in the induction of systemic resistance, such as pectinase and cellulase, and therefore plant growth promotion. In addition, bacteria belonging to this group can be used to reduce environmental contamination because they are able to degrade toxic compounds, tolerate high heavy metal concentrations, and increase plant tolerance to these compounds. Moreover, genome sequencing and omics approaches have revealed genes related to plant-bacteria interactions that may be important for developing strains able to promote plant growth and protection against phytopathogens.

  16. Response of micropropagated sugarcane varieties to inoculation with endophytic diazotrophic bacteria Resposta da inoculação com bactérias diazotróficas endofíticas em duas variedades micropropagadas de cana-de-açúcar

    Directory of Open Access Journals (Sweden)

    André Luiz Martinez de Oliveira

    2003-11-01

    Full Text Available Previous studies estimated that sugarcane could obtain up to 60% of total nitrogen accumulated from BNF. Here a mixture of five endophytic diazotrophic strains was tested in a field trial, inoculated in two micropropagated sugarcane varieties and three locals, to determine the effects on commercial crop conditions. The sugarcane plantlets were inoculated in vitro, and after 17 months of growing in the field, the productivity and BNF contribution showed to be influenced by the plant genotype and soil type. The highest BNF contributions was observed in the poorest soil for both varieties. Smaller increases in productivity were observed for SP 701143 variety grown in soil with low or medium fertility. In contrast, a decrease in the stem productivity was observed in the SP 813250 variety grown in the three localities.Experimentos anteriores estimaram que a cana-de-açúcar pode obter até 60% do N acumulado via fixação biológica de nitrogênio (FBN. Neste trabalho, os efeitos da inoculação da mistura de cinco espécies de bactérias diazotróficas endofíticas foram testados em duas variedades de cana-de-açúcar micropropagadas, sob condições de campo. Após 17 meses de crescimento, a produtividade e a FBN apresentaram influência do genótipo vegetal e da localidade de cultivo. As maiores contribuições via FBN foram observadas no solo de menor fertilidade, para ambas variedades de cana-de-açúcar. Pequenos aumentos de produtividade foram observados para a variedade SP 701143 nos solos de baixa e média fertilidade. Por outro lado, a inoculação na variedade SP 813250 apresentou decréscimo de produtividade nos três tipos de solo testados.

  17. Bioactivity of fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants.

    Directory of Open Access Journals (Sweden)

    Sarah J Higginbotham

    Full Text Available Fungal endophytes--fungi that grow within plant tissues without causing immediate signs of disease--are abundant and diverse producers of bioactive secondary metabolites. Endophytes associated with leaves of tropical plants are an especially exciting and relatively untapped source of novel compounds. However, one major challenge in drug discovery lies in developing strategies to efficiently recover highly bioactive strains. As part of a 15-year drug discovery project, foliar endophytes were isolated from 3198 plant samples (51 orders, 105 families and at least 232 genera of angiosperms and ferns collected in nine geographically distinct regions of Panama. Extracts from culture supernatants of >2700 isolates were tested for bioactivity (in vitro percent inhibition of growth, % IG against a human breast cancer cell line (MCF-7 and the causative agents of malaria, leishmaniasis, and Chagas' disease. Overall, 32.7% of endophyte isolates were highly active in at least one bioassay, including representatives of diverse fungal lineages, host lineages, and collection sites. Up to 17% of isolates tested per assay were highly active. Most bioactive strains were active in only one assay. Fungal lineages differed in the incidence and degree of bioactivity, as did fungi from particular plant taxa, and greater bioactivity was observed in endophytes isolated from plants in cloud forests vs. lowland forests. Our results suggest that using host taxonomy and forest type to tailor plant collections, and selecting endophytes from specific orders or families for cultivation, will markedly increase the efficiency and efficacy of discovering bioactive metabolites for particular pharmaceutical targets.

  18. Resources and testing of endophyte-infected germplasm in national grass repository collections

    Science.gov (United States)

    A. D. Wilson

    1996-01-01

    Clavicipitaceous endophytes have been known to exist in grasses since the discovery of an endophyte in seeds of damel (Lolium temulentum L.) by Vogl in 1898 (26). The oldest known specimens of damel with endophytic mycelium were seeds retrieved from a pharoah's tomb in an Egyptian pyramid dating back to 3400 B.C. (16). Subsequent work by...

  19. Diversity and Biological Activities of Endophytic Fungi Associated with Micropropagated Medicinal Plant Echinacea purpurea (L.) Moench

    Science.gov (United States)

    2012-08-01

    1105 Diversity and Biological Activities of Endophytic Fungi Associated with Micropropagated Medicinal Plant Echinacea purpurea (L.) Moench Luiz H...fungal community and micropropagated clones of E. purpurea was re-established after acclimatization to soil and the endophytic fungi produced compounds...Diversity and Biological Activities of Endophytic Fungi Associated with Micropropagated Medicinal Plant Echinacea purpurea (L.) Moench 5a. CONTRACT

  20. Properties of bacterial endophytes and their proposed role in plant growth

    NARCIS (Netherlands)

    Hardoim, P.R.; Overbeek, van L.S.; Elsas, van J.D.

    2008-01-01

    Bacterial endophytes live inside plants for at least part of their life cycle. Studies of the interaction of endophytes with their host plants and their function within their hosts are important to address the ecological relevance of endophytes. The modulation of ethylene levels in plants by

  1. Bioprospecting of antimicrobial activity of extracts of endophytic fungi from Bauhinia guianensis.

    Science.gov (United States)

    Pinheiro, Eduardo A A; Pina, Jeferson R S; Feitosa, André O; Carvalho, Josiwander M; Borges, Fábio C; Marinho, Patrícia S B; Marinho, Andrey M R

    Antibiotic resistance results in higher medical costs, prolonged hospital stays and increased mortality and is rising to dangerously high levels in all parts of the world. Therefore, this study aims to search for new antimicrobial agents through bioprospecting of extracts of endophytic fungi from Bauhinia guianensis, a typical Amazonian plant used in combating infections. Seventeen (17) fungi were isolated and as result the methanolic extract of the fungus Exserohilum rostratum showed good activity against the bacteria tested. The polyketide monocerin was isolated by the chromatographic technique, identified by NMR and MS, showing broad antimicrobial spectrum. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. New phenyl derivatives from endophytic fungus Aspergillus flavipes AIL8 derived of mangrove plant Acanthus ilicifolius.

    Science.gov (United States)

    Bai, Zhi-Qiang; Lin, Xiuping; Wang, Yizhu; Wang, Junfeng; Zhou, Xuefeng; Yang, Bin; Liu, Juan; Yang, Xianwen; Wang, Yi; Liu, Yonghong

    2014-06-01

    Two new aromatic butyrolactones, flavipesins A (1) and B (2), two new natural products (3 and 4), and a known phenyl dioxolanone (5) were isolated from marine-derived endophytic fungus Aspergillus flavipes. The structures of compounds 1-5 were elucidated by 1D- and 2D-NMR and MS analysis, the absolute configurations were assigned by optical rotation and CD data, and the stereochemistry of 1 was determined by X-ray crystallography analysis. 1 demonstrated lower MIC values against Staphylococcus aureus (8.0 μg/mL) and Bacillus subtillis (0.25 μg/mL). 1 also showed the unique antibiofilm activity of penetration through the biofilm matrix and kills live bacteria inside mature S. aureus biofilm. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Biosynthesis, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of Raphanus sativus

    Directory of Open Access Journals (Sweden)

    Tej Singh

    2017-06-01

    Full Text Available In this study, biological synthesis of silver nanoparticles (AgNPs from supernatant of endophytic fungus Alternaria sp. isolated from the healthy leaves of Raphanus sativus is studied. The synthesized AgNPs are characterized using UV-vis spectroscopy and Fourier transform-infrared spectroscopy (FTIR. The structural analysis is done by powder X-ray diffraction (XRD method. The stability of AgNPs is studied by dynamic light scattering (DLS method. The size and shape of AgNPs are observed by transmission electron microscopy (TEM and atomic force microscopy (AFM and found to be spherical with an average particles size of 4–30 nm. Further, these AgNPs have been found to be highly toxic against human pathogenic bacteria, suggesting the possibility of using AgNPs as efficient antibacterial agents.

  4. Are common symbiosis genes required for endophytic rice-rhizobial interactions?

    Science.gov (United States)

    Chen, Caiyan; Zhu, Hongyan

    2013-09-01

    Legume plants are able to establish root nodule symbioses with nitrogen-fixing bacteria, called rhizobia. Recent studies revealed that the root nodule symbiosis has co-opted the signaling pathway that mediates the ancestral mycorrhizal symbiosis that occurs in most land plants. Despite being unable to induce nodulation, rhizobia have been shown to be able to infect and colonize the roots of non-legumes such as rice. One fascinating question is whether establishment of such associations requires the common symbiosis (Sym) genes that are essential for infection of plant cells by mycorrhizal fungi and rhizobia in legumes. Here, we demonstrated that the common Sym genes are not required for endophytic colonization of rice roots by nitrogen-fixing rhizobia.

  5. Absence of genome reduction in diverse, facultative endohyphal bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Baltrus, David A. [Univ. of Arizona, Tucson, AZ (United States); Dougherty, Kevin [Univ. of Arizona, Tucson, AZ (United States); Arendt, Kayla R. [Univ. of Arizona, Tucson, AZ (United States); Huntemann, Marcel [Joint Genome Institute, Walnut Creek, CA (United States); Clum, Alicia [Joint Genome Institute, Walnut Creek, CA (United States); Pillay, Manoj [Joint Genome Institute, Walnut Creek, CA (United States); Palaniappan, Krishnaveni [Joint Genome Institute, Walnut Creek, CA (United States); Varghese, Neha [Joint Genome Institute, Walnut Creek, CA (United States); Mikhailova, Natalia [Joint Genome Institute, Walnut Creek, CA (United States); Stamatis, Dimitrios [Joint Genome Institute, Walnut Creek, CA (United States); Reddy, T. B. K. [Joint Genome Institute, Walnut Creek, CA (United States); Ngan, Chew Yee [Joint Genome Institute, Walnut Creek, CA (United States); Daum, Chris [Joint Genome Institute, Walnut Creek, CA (United States); Shapiro, Nicole [Joint Genome Institute, Walnut Creek, CA (United States); Markowitz, Victor [Joint Genome Institute, Walnut Creek, CA (United States); Ivanova, Natalia [Joint Genome Institute, Walnut Creek, CA (United States); Kyrpides, Nikos [Joint Genome Institute, Walnut Creek, CA (United States); Woyke, Tanja [Joint Genome Institute, Walnut Creek, CA (United States); Arnold, A. Elizabeth [Univ. of Arizona, Tucson, AZ (United States)

    2017-02-28

    Fungi interact closely with bacteria, both on the surfaces of the hyphae and within their living tissues (i.e. endohyphal bacteria, EHB). These EHB can be obligate or facultative symbionts and can mediate diverse phenotypic traits in their hosts. Although EHB have been observed in many lineages of fungi, it remains unclear how widespread and general these associations are, and whether there are unifying ecological and genomic features can be found across EHB strains as a whole. We cultured 11 bacterial strains after they emerged from the hyphae of diverse Ascomycota that were isolated as foliar endophytes of cupressaceous trees, and generated nearly complete genome sequences for all. Unlike the genomes of largely obligate EHB, the genomes of these facultative EHB resembled those of closely related strains isolated from environmental sources. Although all analysed genomes encoded structures that could be used to interact with eukaryotic hosts, pathways previously implicated in maintenance and establishment of EHB symbiosis were not universally present across all strains. Independent isolation of two nearly identical pairs of strains from different classes of fungi, coupled with recent experimental evidence, suggests horizontal transfer of EHB across endophytic hosts. Given the potential for EHB to influence fungal phenotypes, these genomes could shed light on the mechanisms of plant growth promotion or stress mitigation by fungal endophytes during the symbiotic phase, as well as degradation of plant material during the saprotrophic phase. As such, these findings contribute to the illumination of a new dimension of functional biodiversity in fungi.

  6. Developmental peculiarities and seed-borne endophytes in quinoa: Omnipresent, robust bacilli contribute to plant fitness.

    Directory of Open Access Journals (Sweden)

    Andrea ePitzschke

    2016-01-01

    Full Text Available Among potential climate change-adapted crops for future agriculture, quinoa (Chenopodium quinoa, a facultative halophyte plant with exceptional nutritional properties, stands out as a prime candidate. This work examined how quinoa deals with extreme situations during seed rehydration. A seed-borne microbiome was discovered and its potential role in early development and stress resistance investigated.Methods involved germination and drought exposure assays, histochemical detection of reactive oxygen species, and diverse tests with seed(ling material to assess microbial occurrence, release and proliferation. Quinoa´s microbial partners were biochemically, microscopically and taxonomically characterized.Quinoa distinguishes itself from other plants in multiple ways. It germinates within minutes, even under extremely hostile conditions. Broken seeds/split embryos are able to regenerate. Furthermore, quinoa seedlings are resurrection-competent. These peculiarities became in part explainable upon discovery of seed-borne microorganisms. 100% of quinoa seeds, from different sources, are inhabited by bacteria of the genus Bacillus. These endophytes are mobile and reside in all seedling organs, indicating vertical transmission. Owing to their strong catalase activity and high superoxide contents they can modify host redox properties. One outcome is cell expansion, enabling quinoa to overcome a critical period in development, seedling establishment.Quinoa´s immediate confrontation with foreign ROS and bacterial elicitors likely induces a naturally primed state, enabling plants to withstand extreme situations. The endophytic bacteria, which are cultivable and highly robust themselves, have high potential for application in agriculture, food (amylase and cosmetics (catalase industry. An exciting question arising from this work is: Can quinoa´s microbiome be transferred to improve stress resistance in other plant species?

  7. Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans.

    Science.gov (United States)

    Castillo, Uvidelio F; Strobel, Gary A; Ford, Eugene J; Hess, Wilford M; Porter, Heidi; Jensen, James B; Albert, Heather; Robison, Richard; Condron, Margret A M; Teplow, David B; Stevens, Dennis; Yaver, Debbie

    2002-09-01

    Munumbicins A, B, C and D are newly described antibiotics with a wide spectrum of activity against many human as well as plant pathogenic fungi and bacteria, and a Plasmodium sp. These compounds were obtained from Streptomyces NRRL 3052, which is endophytic in the medicinal plant snakevine (Kennedia nigriscans), native to the Northern Territory of Australia. This endophyte was cultured, the broth was extracted with an organic solvent and the contents of the residue were purified by bioassay-guided HPLC. The major components were four functionalized peptides with masses of 1269.6, 1298.5, 1312.5 and 1326.5 Da. Numerous other related compounds possessing bioactivity, with differing masses, were also present in the culture broth extract in lower quantities. With few exceptions, the peptide portion of each component contained only the common amino acids threonine, aspartic acid (or asparagine), glutamic acid (or glutamine), valine and proline, in varying ratios. The munumbicins possessed widely differing biological activities depending upon the target organism. For instance, munumbicin B had an MIC of 2.5 microg x ml(-1) against a methicillin-resistant strain of Staphylococcus aureus, whereas munumbicin A was not active against this organism. In general, the munumbicins demonstrated activity against Gram-positive bacteria such as Bacillus anthracis and multidrug-resistant Mycobacterium tuberculosis. However, the most impressive biological activity of any of the munumbicins was that of munumbicin D against the malarial parasite Plasmodium falciparum, having an IC(50) of 4.5+/-0.07 ng x ml(-1). This report also describes the potential of the munumbicins in medicine and agriculture.

  8. Diversity, Novelty, and Antimicrobial Activity of Endophytic Actinobacteria From Mangrove Plants in Beilun Estuary National Nature Reserve of Guangxi, China

    Directory of Open Access Journals (Sweden)

    Zhong-ke Jiang

    2018-05-01

    Full Text Available Endophytic actinobacteria are one of the important pharmaceutical resources and well known for producing different types of bioactive substances. Nevertheless, detection of the novelty, diversity, and bioactivity on endophytic actinobacteria isolated from mangrove plants are scarce. In this study, five different mangrove plants, Avicennia marina, Aegiceras corniculatum, Kandelia obovota, Bruguiera gymnorrhiza, and Thespesia populnea, were collected from Beilun Estuary National Nature Reserve in Guangxi Zhuang Autonomous Region, China. A total of 101 endophytic actinobacteria strains were recovered by culture-based approaches. They distributed in 7 orders, 15 families, and 28 genera including Streptomyces, Curtobacterium, Mycobacterium, Micrococcus, Brevibacterium, Kocuria, Nocardioides, Kineococcus, Kytococcus, Marmoricola, Microbacterium, Micromonospora, Actinoplanes, Agrococcus, Amnibacterium, Brachybacterium, Citricoccus, Dermacoccus, Glutamicibacter, Gordonia, Isoptericola, Janibacter, Leucobacter, Nocardia, Nocardiopsis, Pseudokineococcus, Sanguibacter, and Verrucosispora. Among them, seven strains were potentially new species of genera Nocardioides, Streptomyces, Amnibacterium, Marmoricola, and Mycobacterium. Above all, strain 8BXZ-J1 has already been characterized as a new species of the genus Marmoricola. A total of 63 out of 101 strains were chosen to screen antibacterial activities by paper-disk diffusion method and inhibitors of ribosome and DNA biosynthesis by means of a double fluorescent protein reporter. A total of 31 strains exhibited positive results in at least one antibacterial assay. Notably, strain 8BXZ-J1 and three other potential novel species, 7BMP-1, 5BQP-J3, and 1BXZ-J1, all showed antibacterial bioactivity. In addition, 21 strains showed inhibitory activities against at least one “ESKAPE” resistant pathogens. We also found that Streptomyces strains 2BBP-J2 and 1BBP-1 produce bioactive compound with inhibitory

  9. Diversity, Novelty, and Antimicrobial Activity of Endophytic Actinobacteria From Mangrove Plants in Beilun Estuary National Nature Reserve of Guangxi, China

    Science.gov (United States)

    Jiang, Zhong-ke; Tuo, Li; Huang, Da-lin; Osterman, Ilya A.; Tyurin, Anton P.; Liu, Shao-wei; Lukyanov, Dmitry A.; Sergiev, Petr V.; Dontsova, Olga A.; Korshun, Vladimir A.; Li, Fei-na; Sun, Cheng-hang

    2018-01-01

    Endophytic actinobacteria are one of the important pharmaceutical resources and well known for producing different types of bioactive substances. Nevertheless, detection of the novelty, diversity, and bioactivity on endophytic actinobacteria isolated from mangrove plants are scarce. In this study, five different mangrove plants, Avicennia marina, Aegiceras corniculatum, Kandelia obovota, Bruguiera gymnorrhiza, and Thespesia populnea, were collected from Beilun Estuary National Nature Reserve in Guangxi Zhuang Autonomous Region, China. A total of 101 endophytic actinobacteria strains were recovered by culture-based approaches. They distributed in 7 orders, 15 families, and 28 genera including Streptomyces, Curtobacterium, Mycobacterium, Micrococcus, Brevibacterium, Kocuria, Nocardioides, Kineococcus, Kytococcus, Marmoricola, Microbacterium, Micromonospora, Actinoplanes, Agrococcus, Amnibacterium, Brachybacterium, Citricoccus, Dermacoccus, Glutamicibacter, Gordonia, Isoptericola, Janibacter, Leucobacter, Nocardia, Nocardiopsis, Pseudokineococcus, Sanguibacter, and Verrucosispora. Among them, seven strains were potentially new species of genera Nocardioides, Streptomyces, Amnibacterium, Marmoricola, and Mycobacterium. Above all, strain 8BXZ-J1 has already been characterized as a new species of the genus Marmoricola. A total of 63 out of 101 strains were chosen to screen antibacterial activities by paper-disk diffusion method and inhibitors of ribosome and DNA biosynthesis by means of a double fluorescent protein reporter. A total of 31 strains exhibited positive results in at least one antibacterial assay. Notably, strain 8BXZ-J1 and three other potential novel species, 7BMP-1, 5BQP-J3, and 1BXZ-J1, all showed antibacterial bioactivity. In addition, 21 strains showed inhibitory activities against at least one “ESKAPE” resistant pathogens. We also found that Streptomyces strains 2BBP-J2 and 1BBP-1 produce bioactive compound with inhibitory activity on protein

  10. Molecular identification of aiiA homologous gene from endophytic Enterobacter species and in silico analysis of putative tertiary structure of AHL-lactonase.

    Science.gov (United States)

    Rajesh, P S; Rai, V Ravishankar

    2014-01-03

    The aiiA homologous gene known to encode AHL- lactonase enzyme which hydrolyze the N-acylhomoserine lactone (AHL) quorum sensing signaling molecules produced by Gram negative bacteria. In this study, the degradation of AHL molecules was determined by cell-free lysate of endophytic Enterobacter species. The percentage of quorum quenching was confirmed and quantified by HPLC method (pEnterobacter asburiae VT65, Enterobacter aerogenes VT66 and Enterobacter ludwigii VT70 strains. Sequence alignment analysis revealed the presence of two zinc binding sites, "HXHXDH" motif as well as tyrosine residue at the position 194. Based on known template available at Swiss-Model, putative tertiary structure of AHL-lactonase was constructed. The result showed that novel endophytic strains of Enterobacter genera encode the novel aiiA homologous gene and its structural importance for future study. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Exhibition; Image display agency

    International Nuclear Information System (INIS)

    Normazlin Ismail

    2008-01-01

    This article touches on the role of Malaysian Nuclear Agency as nuclear research institutions to promote, develop and encourage the peaceful uses of nuclear technology in its agricultural, medical, manufacturing, industrial, health and environment for the development of the country running successfully. Maturity of Malaysian Nuclear Agency in dealing with nuclear technology that are very competitive and globalization cannot be denied. On this basis Malaysian Nuclear Agency was given the responsibility to strengthen the nuclear technology in Malaysia. One way is through an exhibition featuring the research, discoveries and new technology products of the nuclear technology. Through this exhibition is to promote the nuclear technology and introduce the image of the agency in the public eye. This article also states a number of exhibits entered by the Malaysian Nuclear Agency and achievements during the last exhibition. Authors hope that the exhibition can be intensified further in the future.

  12. Communities of endophytic microorganisms in different developmental stages from a local variety as well as transgenic and conventional isogenic hybrids of maize.

    Science.gov (United States)

    da Silva, Kelly Justin; de Armas, Rafael Dutra; Soares, Cláudio Roberto F S; Ogliari, Juliana Bernardi

    2016-11-01

    The diversity of endophytic microorganisms may change due to the genotype of the host plant and its phenological stage. In this study we evaluated the effect of phenological stage, transgenes and genetic composition of maize on endophytic bacterial and fungal communities. The maize populations were composed of a local variety named Rosado (RS) and three isogenic hybrids. One isogenic hybrid was not genetically modified (NGM). Another hybrid (Hx) contained the transgenes cry1F and pat (T1507 event), which provide resistance to insects of the order Lepidoptera and tolerance to the glufosinate-ammonium herbicide, respectively. The third hybrid (Hxrr) contained the transgene cp4 epsps (NK603 event) combined with the transgenes cry1F and pat (T1507 event), which allow tolerance to the Roundup Ready herbicide, besides the characteristics of Hx. Evaluation of the foliar tissue was done through PCR-DGGE analysis, with specific primers for bacteria and fungi within four phenological stages of maize. The endophytic bacteria were only clustered by phenological stages; the structure of the fungal community was clustered by maize genotypes in each phenological stage. The fungal community from the local variety RS was different from the three hybrids (NGM, Hx and Hxrr) within the four evaluated stages. In the reproductive stage, the fungal community from the two transgenic hybrids (Hx and Hxrr) were separated, and the Hxrr was different from NGM, in the two field experiments. This research study showed that the genetic composition of the maize populations, especially the presence of transgenes, is the determining factor for the changes detected in the endophytic fungal community of maize leaves.

  13. Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi.

    Science.gov (United States)

    Barelli, Larissa; Moonjely, Soumya; Behie, Scott W; Bidochka, Michael J

    2016-04-01

    This review examines the symbiotic, evolutionary, proteomic and genetic basis for a group of fungi that occupy a specialized niche as insect pathogens as well as endophytes. We focus primarily on species in the genera Metarhizium and Beauveria, traditionally recognized as insect pathogenic fungi but are also found as plant symbionts. Phylogenetic evidence suggests that these fungi are more closely related to grass endophytes and diverged from that lineage ca. 100 MYA. We explore how the dual life cycles of these fungi as insect pathogens and endophytes are coupled. We discuss the evolution of insect pathogenesis while maintaining an endophytic lifestyle and provide examples of genes that may be involved in the transition toward insect pathogenicity. That is, some genes for insect pathogenesis may have been co-opted from genes involved in endophytic colonization. Other genes may be multifunctional and serve in both lifestyle capacities. We suggest that their evolution as insect pathogens allowed them to effectively barter a specialized nitrogen source (i.e. insects) with host plants for photosynthate. These ubiquitous fungi may play an important role as plant growth promoters and have a potential reservoir of secondary metabolites.

  14. Exploitation of endophytic fungus as a potential source of biofuel

    Directory of Open Access Journals (Sweden)

    Nawed Anjum

    2016-06-01

    Full Text Available Biofuel demand is unquestionable in order to reduce greenhouse gaseous emission which can lead to climatic changes and global warming effect. Finding sufficient supply of clean energy for the upcoming is one of the society’s most daunting challenges and is directly linked with global stability, economic prosperity and quality of life. Endophytic microbes reside in the healthy part of the plant without causing any symptoms of disease. It is well known that the endophytic microbes produces wide variety of bioactive compound having, antibacterial, antifungal, antiviral, antitumor, antioxidant, antiinflammatory, immunosuppressive drugs, and volatile organic compounds having similarity with conventional diesel fuel. Now the endophytic fungi, have also been known to possess a suitable lipid matrix at high concentrations and volatile organic compounds having similarity with conventional diesel fuel that make them promising sources for next generation biofuels. This would be more efficient and having lesser number of biosynthetic steps in production, can be brought to immediate use in the existing internal combustion engines without taking about any major modification in automobile design. The present article therefore aims to review the current status of research in the field of alternative source of energy emphasizing endophytic fungi as a source of biofuel precursor, in order to encourage and generate interest among research groups across India and the world for initiating and undertaking more enthusiastic and intensive research activity on endophytic fungi from the Indian subcontinent having the potential to make fuel-related hydrocarbons.

  15. Arbuscular mycorrhizal fungus inoculation reduces the drought-resistance advantage of endophyte-infected versus endophyte-free Leymus chinensis.

    Science.gov (United States)

    Liu, Hui; Chen, Wei; Wu, Man; Wu, Rihan; Zhou, Yong; Gao, Yubao; Ren, Anzhi

    2017-11-01

    Grasses can be infected simultaneously by endophytic fungi and arbuscular mycorrhizal (AM) fungi. In this study, we tested the hypothesis that endophyte-associated drought resistance of a native grass was affected by an AM fungus. In a greenhouse experiment, we compared the performance of endophyte-infected (EI) and endophyte-free (EF) Leymus chinensis, a dominant species native to the Inner Mongolia steppe, under altered water and AM fungus availability. The results showed that endophyte infection significantly increased drought resistance of the host grass, but the beneficial effects were reduced by AM fungus inoculation. In the mycorrhizal-non-inoculated (MF) treatment, EI plants accumulated significantly more biomass, had greater proline and total phenolic concentration, and lower malondialdehyde concentration than EF plants. In the mycorrhizal-inoculation (MI) treatment, however, no significant difference occurred in either growth or physiological characters measured between EI and EF plants. AM fungus inoculation enhanced drought resistance of EF plants but had no significant effect on drought resistance of EI plants, thus AM fungus inoculation reduced the difference between EI and EF plants. Our findings highlight the importance of interactions among multiple microorganisms for plant performance under drought stress.

  16. Effect of biochar amendment on the control of soil sulfonamides, antibiotic-resistant bacteria, and gene enrichment in lettuce tissues.

    Science.gov (United States)

    Ye, Mao; Sun, Mingming; Feng, Yanfang; Wan, Jinzhong; Xie, Shanni; Tian, Da; Zhao, Yu; Wu, Jun; Hu, Feng; Li, Huixin; Jiang, Xin

    2016-05-15

    Considering the potential threat of vegetables growing in antibiotic-polluted soil with high abundance of antibiotic-resistant genes (ARGs) against human health through the food chain, it is thus urgent to develop novel control technology to ensure vegetable safety. In the present work, pot experiments were conducted in lettuce cultivation to assess the impedance effect of biochar amendment on soil sulfonamides (SAs), antibiotic-resistant bacteria (ARB), and ARG enrichment in lettuce tissues. After 100 days of cultivation, lettuce cultivation with biochar amendment exhibited the greatest soil SA dissipation as well as the significant improvement of lettuce growth indices, with residual soil SAs mainly existing as the tightly bound fraction. Moreover, the SA contents in roots and new/old leaves were reduced by one to two orders of magnitude compared to those without biochar amendment. In addition, isolate counts for SA-resistant bacterial endophytes in old leaves and sul gene abundances in roots and old leaves also decreased significantly after biochar application. However, neither SA resistant bacteria nor sul genes were detected in new leaves. It was the first study to demonstrate that biochar amendment can be a practical strategy to protect lettuce safety growing in SA-polluted soil with rich ARB and ARGs. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Secondary metabolites from the endophytic fungus Talaromyces pinophilus.

    Science.gov (United States)

    Vinale, F; Nicoletti, R; Lacatena, F; Marra, R; Sacco, A; Lombardi, N; d'Errico, G; Digilio, M C; Lorito, M; Woo, S L

    2017-08-01

    Endophytic fungi have a great influence on plant health and growth, and are an important source of bioactive natural compounds. Organic extracts obtained from the culture filtrate of an endophytic strain of Talaromyces pinophilus isolated from strawberry tree (Arbutus unedo) were studied. Metabolomic analysis revealed the presence of three bioactive metabolites, the siderophore ferrirubin, the platelet-aggregation inhibitor herquline B and the antibiotic 3-O-methylfunicone. The latter was the major metabolite produced by this strain and displayed toxic effects against the pea aphid Acyrthosiphon pisum (Homoptera Aphidiidae). This toxicity represents an additional indication that the widespread endophytic occurrence of T. pinophilus may be related to a possible role in defensive mutualism. Moreover, the toxic activity on aphids could promote further study on 3-O-methylfunicone, or its derivatives, as an alternative to synthetic chemicals in agriculture.

  18. Endophytes: a treasure house of bioactive compounds of medicinal importance

    Directory of Open Access Journals (Sweden)

    Sushanto Gouda

    2016-09-01

    Full Text Available Endophytes are an endosymbiotic group of microorganisms that colonize in plants and microbes that can be readily isolated from any microbial or plant growth medium. They act as reservoirs of novel bioactive secondary metabolites, such as alkaloids, phenolic acids, quinones, steroids, saponins, tannins, and terpenoids that serve as a potential candidate for antimicrobial, anti-insect, anticancer and many more properties. While plant sources are being extensively explored for new chemical entities for therapeutic purposes, endophytic microbes also constitute an important source for drug discovery. This review aims to comprehend the contribution and uses of endophytes as an impending source of drugs against various forms of diseases and other possible medicinal use.

  19. Fungal endophytes characterization from four species of Diplazium Swartz

    Science.gov (United States)

    Affina-Eliya, A. A.; Noraini, T.; Nazlina, I.; Ruzi, A. R.

    2014-09-01

    Four species on genus Diplazium namely Diplazium tomentosum, D. sorzogonense, D. asperum and D. accedens of Peninsular Malaysia were studied for presence of fungal endophyte. The objective of this study is to characterize fungal endophytes in the rhizome of four Diplazium species. The rhizome was surface sterilized and incubated to isolate fungal endophytes. Characterization of the colonies was performed by macroscopic morphological, microscopic identification, types of hyphae and mycelium, and spore structure. For isolation that produces spores, the structure of conidiophores and conidia were identified. From this study, four fungal have been isolated and determined as Aspergillus sp. (isolates AE 1), Aspergillus fumigatus (isolates AE 2), Aspergillus versicolor (isolates AE 3) and Verticillium sp. (isolates AE 4). The fungal isolates from this study were classified from the same family Moniliaceae.

  20. Isolation and antifungal screening of endophytic fungi from Erigeron canadensis

    Directory of Open Access Journals (Sweden)

    Xuelian Bai

    2017-07-01

    Full Text Available Sixteen fungal strains isolated from the Erigeron canadensis, one of traditional Chinese medicines used to treat the pathogenic infection and dysentery, were evaluated for their antifungal activities against one human pathogen Candida albicans, and two phytopathogens, Colletotrichum fructicola and Rhizoctonia cerealis. The bioassay results indicated that the ethyl acetate extract of the fermentation broth of these fungal endophytes had stronger antimicrobial activities. Among these endophytic strains, the ethyl acetate extracts of strains NPR003 and NPR005 showed the strongest inhibitory effects and has potential application in the discovery of new antifungal agents. This was the first report on the isolation of endophytic fungi from E. canadensis and evaluation of their antifungal activities.

  1. Identification of genetic components involved in Lotus-endophyte interactions

    DEFF Research Database (Denmark)

    Zgadzaj, Rafal Lukasz

    of growth hormones or nitrogen fixation. However, the genes involved in plant-endophyte interactions and bacterial accomodation within plant tissues are not known. In order to shed some light on such processes, an approach “one host-one endophyte” was chosen. The focus on a single plant species and a single......Endophytes are microorganisms capable of colonising plant tissues without inducing host defense responses. They have a large impact on plants, since they can modulate plant responses to pathogens, herbivores and environmental stress. They can also induce plant growth promotion through synthesis...... bacterial strain aimed at obtaining a reliable and easy to handle system for plant-microsymbiont interaction research. Two different methods were tested for their usefulness in identification of genetic components involved in plant-endophyte interactions. The first method was based on measuring growth...

  2. Bacteria isolated from soils of the western Amazon and from rehabilitated bauxite-mining areas have potential as plant growth promoters.

    Science.gov (United States)

    de Oliveira-Longatti, Silvia Maria; Marra, Leandro Marciano; Lima Soares, Bruno; Bomfeti, Cleide Aparecida; da Silva, Krisle; Avelar Ferreira, Paulo Ademar; de Souza Moreira, Fatima Maria

    2014-04-01

    Several processes that promote plant growth were investigated in endophytic and symbiotic bacteria isolated from cowpea and siratro nodules and also in bacterial strains recommended for the inoculation of cowpea beans. The processes verified in 31 strains were: antagonism against phytopathogenic fungi, free-living biological nitrogen fixation, solubilization of insoluble phosphates and indole acetic acid (IAA) production. The resistance to antibiotics was also assessed. Sequencing of the partial 16S rRNA gene was performed and the strains were identified as belonging to different genera. Eight strains, including some identified as Burkholderia fungorum, fixed nitrogen in the free-living state. Eighteen strains exhibited potential to solubilize calcium phosphate, and 13 strains could solubilize aluminum phosphate. High levels of IAA production were recorded with L-tryptophan addition for the strain UFLA04-321 (42.3 μg mL⁻¹). Strains highly efficient in symbiosis with cowpea bean, including strains already approved as inoculants showed the ability to perform other processes that promote plant growth. Besides, these strains exhibited resistance to several antibiotics. The ability of the nitrogen-fixing bacteria to perform other processes and their adaptation to environmental conditions add value to these strains, which could lead to improved inoculants for plant growth and environmental quality.

  3. Nitrogen-fixing bacteria in Mediterranean seagrass (Posidonia oceanica) roots

    KAUST Repository

    Garcias Bonet, Neus

    2016-03-09

    Biological nitrogen fixation by diazotrophic bacteria in seagrass rhizosphere and leaf epiphytic community is an important source of nitrogen required for plant growth. However, the presence of endophytic diazotrophs remains unclear in seagrass tissues. Here, we assess the presence, diversity and taxonomy of nitrogen-fixing bacteria within surface-sterilized roots of Posidonia oceanica. Moreover, we analyze the nitrogen isotopic signature of seagrass tissues in order to notice atmospheric nitrogen fixation. We detected nitrogen-fixing bacteria by nifH gene amplification in 13 out of the 78 roots sampled, corresponding to 9 locations out of 26 meadows. We detected two different types of bacterial nifH sequences associated with P. oceanica roots, which were closely related to sequences previously isolated from the rhizosphere of a salt marsh cord grass and a putative anaerobe. Nitrogen content of seagrass tissues showed low isotopic signatures in all the sampled meadows, pointing out the atmospheric origin of the assimilated nitrogen by seagrasses. However, this was not related with the presence of endophytic nitrogen fixers, suggesting the nitrogen fixation occurring in rhizosphere and in the epiphytic community could be an important source of nitrogen for P. oceanica. The low diversity of nitrogen-fixing bacteria reported here suggests species-specific relationships between diazotrophs and P. oceanica, revealing possible symbiotic interactions that could play a major role in nitrogen acquisition by seagrasses in oligotrophic environments where they form lush meadows.

  4. Biodegradation of Trichloroethylene by an Endophyte of Hybrid Poplar

    Science.gov (United States)

    Kang, Jun Won; Khan, Zareen

    2012-01-01

    We isolated and characterized a novel endophyte from hybrid poplar. This unique endophyte, identified as Enterobacter sp. strain PDN3, showed high tolerance to trichloroethylene (TCE). Without the addition of inducers, such as toluene or phenol, PDN3 rapidly reduced TCE levels in medium from 72.4 μM to 30.1 μM in 24 h with a concurrent release of 127 μM chloride ion, and nearly 80% of TCE (55.3 μM) was dechlorinated by PDN3 in 5 days with 166 μM chloride ion production, suggesting TCE degradation. PMID:22367087

  5. GENOMIC ANALYSIS OF PLANT-ASSOCIATED BACTERIA AND THEIR POTENTIAL IN ENHANCING PHYTOREMEDIATION EFFICIENCY

    Directory of Open Access Journals (Sweden)

    Artur Piński

    2017-07-01

    Full Text Available Phytoremediation is an emerging technology that uses plants in order to cleanup pollutants including xenobiotics and heavy metals from soil, water and air. Inoculation of plants with plant growth promoting endophytic and rhizospheric bacteria can enhance efficiency of phytoremediation. Genomic analysis of four plant-associated strains belonging to the Stenotrophomonas maltophilia species revealed the presence of genes encoding proteins involved in plant growth promotion, biocontrol of phytopathogens, biodegradation of xenobiotics, heavy metals resistance and plant-bacteria-environment interaction. The results of this analysis suggest great potential of bacteria belonging to Stenotrophomonas maltophilia species in enhancing phytoremediation efficiency.

  6. Council Chamber exhibition

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    To complete the revamp of CERN’s Council Chamber, a new exhibition is being installed just in time for the June Council meetings.   Panels will showcase highlights of CERN’s history, using some of the content prepared for the exhibitions marking 50 years of the PS, which were displayed in the main building last November. The previous photo exhibition in the Council Chamber stopped at the 1970s. To avoid the new panels becoming quickly out of date, photos are grouped together around specific infrastructures, rather than following a classic time-line. “We have put the focus on the accelerators – the world-class facilities that CERN has been offering researchers over the years, from the well-known large colliders to the lesser-known smaller facilities,” says Emma Sanders, who worked on the content. The new exhibition will be featured in a future issue of the Bulletin with photos and an interview with Fabienne Marcastel, designer of the exhibit...

  7. EXHIBITION: Accelerated Particles

    CERN Multimedia

    2004-01-01

    An exhibition of plastic arts and two evenings of performances by sound and visual artists as part of CERN's 50th anniversary celebrations. Fifty candles for CERN, an international laboratory renowned for fundamental research, is a cause for celebration. Since March this year, Geneva and neighbouring parts of France have been the venues for a wealth of small and large-scale events, which will continue until November. Given CERN's location in the commune of Meyrin, the ForuMeyrin is hosting exhibitions of plastic arts and performances entitled: Accelerated Particles. Several works will be exhibited and performed in two 'salons'. Salon des matières: An exhibition of plastic arts From Tues 12 October to Wed 3 November 2004 Tuesdays to Fridays: 16:00 to 19:00 Saturdays: 14:00 to 18:00 Exhibition open late on performance nights, entrance free Salon des particules: Musical and visual performances Tues 12 and Mon 25 October from 20:00 to 23:00 Preview evening for both events: Tues 12 October from 18:...

  8. The role of the Oregon State University Endophyte Service Laboratory in diagnosing clinical cases of endophyte toxicoses.

    Science.gov (United States)

    Craig, A Morrie; Blythe, Linda L; Duringer, Jennifer M

    2014-07-30

    The Oregon State University Colleges of Veterinary Medicine and Agricultural Sciences instituted the Endophyte Service Laboratory to aid in diagnosing toxicity problems associated with cool-season grasses in livestock. The endophyte (Neotyphodium coenophalum) present in tall fescue (Festuca arundinacea) produces ergopeptine alkaloids, of which ergovaline is the molecule used to determine exposure and toxicity thresholds for the vasoconstrictive conditions "fescue foot" and "summer slump". Another vasoconstrictive syndrome, "ergotism," is caused by a parasitic fungus, Claviceps purpurea, and its primary toxin, ergotamine. "Ryegrass staggers" is a neurological condition that affects livestock consuming endophyte (Neotyphodium lolii)-infected perennial ryegrass (Lolium perenne) with high levels of lolitrem B. HPLC-fluorescent analytical methods for these mycotoxins are described and were used to determine threshold levels of toxicity for ergovaline and lolitrem B in cattle, sheep, horses, and camels. In addition, six clinical cases in cattle are presented to illustrate diagnosis of these three diseases.

  9. New and cytotoxic anthraquinones from Pleospora sp. IFB-E006, an endophytic fungus in Imperata cylindrical.

    Science.gov (United States)

    Ge, H M; Song, Y C; Shan, C Y; Ye, Y H; Tan, R X

    2005-11-01

    In addition to 7-methoxy-2-methyl-3,4,5-trihydroxyanthraquinone (1), physcion (2), macrosporin (3), deoxybostrycin (4), altersolanol B (5) and dactylariol (6), a new hexahydroanthraquinone named pleospdione (7) was isolated from the culture of Pleospora sp . IFB-E006, an endophytic fungus residing in the normal stem of Imperata cylindrical (Gramineae). Structure determination of pleospdione was accomplished using IR, HR-ESI-MS, 1D and 2D NMR spectral analysis. Compounds 4 - 6 exhibited significant cytotoxic activity against human colon cancer (SW1116) and leukemia (K562) cell lines while compounds 1, 2 and 7 were only weakly or moderately active.

  10. Pseudomonas moraviensis subsp. stanleyae, a bacterial endophyte of hyperaccumulator Stanleya pinnata, is capable of efficient selenite reduction to elemental selenium under aerobic conditions.

    Science.gov (United States)

    Staicu, L C; Ackerson, C J; Cornelis, P; Ye, L; Berendsen, R L; Hunter, W J; Noblitt, S D; Henry, C S; Cappa, J J; Montenieri, R L; Wong, A O; Musilova, L; Sura-de Jong, M; van Hullebusch, E D; Lens, P N L; Reynolds, R J B; Pilon-Smits, E A H

    2015-08-01

    To identify bacteria with high selenium tolerance and reduction capacity for bioremediation of wastewater and nanoselenium particle production. A bacterial endophyte was isolated from the selenium hyperaccumulator Stanleya pinnata (Brassicaceae) growing on seleniferous soils in Colorado, USA. Based on fatty acid methyl ester analysis and multi-locus sequence analysis (MLSA) using 16S rRNA, gyrB, rpoB and rpoD genes, the isolate was identified as a subspecies of Pseudomonas moraviensis (97.3% nucleotide identity) and named P. moraviensis stanleyae. The isolate exhibited extreme tolerance to SeO3(2-) (up to 120 mmol l(-1)) and SeO4(2-) (>150 mmol l(-1)). Selenium oxyanion removal from growth medium was measured by microchip capillary electrophoresis (detection limit 95 nmol l(-1) for SeO3(2-) and 13 nmol l(-1) for SeO4(2-)). Within 48 h, P. moraviensis stanleyae aerobically reduced SeO3(2-) to red Se(0) from 10 mmol l(-1) to below the detection limit (removal rate 0.27 mmol h(-1) at 30 °C); anaerobic SeO3(2-) removal was slower. No SeO4(2-) removal was observed. Pseudomonas moraviensis stanleyae stimulated the growth of crop species Brassica juncea by 70% with no significant effect on Se accumulation. Pseudomonas moraviensis stanleyae can tolerate extreme levels of selenate and selenite and can deplete high levels of selenite under aerobic and anaerobic conditions. Pseudomonas moraviensis subsp. stanleyae may be useful for stimulating plant growth and for the treatment of Se-laden wastewater. © 2015 The Society for Applied Microbiology.

  11. Unearthing Bacillus endophytes from desert plants that enhance growth of Arabidopsis thaliana under abiotic stress conditions

    KAUST Repository

    Bokhari, Ameerah M

    2018-04-01

    Here, we embarked a bioprospecting project that focuses on the isolation and characterization of plant root endophytes, collected from the Thar Desert. A total of 381 endophytes were isolated and based on their 16S rRNA gene sequences, genus Bacillus (58 strains) was identified as the major taxon and only endophytes from this genus were isolated from all plant types. Of the 58 Bacillus strains, only 16 strains were selected for screening of plant growth promotion traits such as P and Zn solubilization, indole-3-acetic acid and siderophore production, and antimicrobial activity. Based on the presence of specific plant growth promotion traits 10 strains were shortlisted for further in vitro screening with A. thaliana; to confirm that these bacteria can confer resilience to plants under salt stress conditions. B. circulans (PK3-15 and PK3-109), B. cereus (PK6-15) B. subtilis (PK3-9) and B. licheniformis (PK5-26) displayed the ability to increased the fresh weight of A. thaliana under salt stress conditions by more than 50 % compared to the uninoculated control. An interesting observation was that B. circulans (PK3-109) (shown to produce IAA exopolysaccharide) and B. circulans (PK3-138) (shown to produce IAA) in vitro results were substantially different as B. circulans (PK3-138) decreased the total fresh weight of A. thaliana by 47 %, whilst B. circulans (PK3-109) was one of the best performing strains. Thus, the genomes of these two strains were sequences to unravel the molecular versatility of B. circulans strains, specifically with respect to their interaction with plants. Most of the genome of these strains is identical but the most interesting feature was the presence of 1/ the DegS–DegU two-component system that is known to mediate the salt stress response and DegU also represses toxin wapA similar to antitoxin wapI, and 2/ YxiG, a gene in the unique orthogroup of PK3-109 was found to be linked to WapI. Thus, PK3-138 substantially decreasing the total fresh

  12. [Diversity and community structure of endophytic fungi from Taxus chinensis var. mairei].

    Science.gov (United States)

    2014-07-01

    A total of 628 endophytic fungi were isolated from 480 tissue segments of needles and branches of Taxus chinensis var. mairei. According to morphological characteristics and ITS sequences, they represented 43 taxa in 28 genera, of which 10 Hyphomycetes, 20 Coelomycetes, 12 Ascomycetes and 1 unknown fungus. Phomopsis mali was confirmed as the dominant species. In accordance with relative frequency, Alternaria alternata, Aureobasidium pullulans, Colletotrichum boninense, C. gloeosporioides, Epicoccum nigrum , Fungal sp., Fusarium lateritium, Glomerella cingulata, Magnaporthales sp. , Nigrospora oryzae, Pestalotiopsis maculiformans, P. microspora, Peyronellaea glomerata and Xylaria sp. 1 were more common in T. chinensis var. mairei. T. chinensis var. mairei were severely infected by endophytic fungi. Endophytic fungi were found in 81 percent of plant tissues with a high diversity. Distribution ranges of endophytic fungi were influenced by tissue properties. The colonization rate, richness, diversity of endophytic fungi in needles were obviously lower than in branches, and kinds of endophytic fungi between branches were more similar than those in needles, thus endophytic fungi had tissue preference. In addition, tissue age influenced the community structure of endophytic fungi. The elder branch tissues were, the higher colonization rate, richness, diversity of endophytic fungi were. Systematic studying the diversity and community structure of endophytic fungi in T. chinensis var. mairei and clarifying their distribution regularity in plant tissues would offer basic data and scientific basis for their development and utilization. Discussing the presence of fungal pathogens in healthy plant tissues would be of positive significance for source protection of T. chinensis var. mairei.

  13. Geographic Variation in Festuca rubra L. Ploidy Levels and Systemic Fungal Endophyte Frequencies.

    Directory of Open Access Journals (Sweden)

    Serdar Dirihan

    Full Text Available Polyploidy and symbiotic Epichloë fungal endophytes are common and heritable characteristics that can facilitate environmental range expansion in grasses. Here we examined geographic patterns of polyploidy and the frequency of fungal endophyte colonized plants in 29 Festuca rubra L. populations from eight geographic sites across latitudes from Spain to northernmost Finland and Greenland. Ploidy seemed to be positively and negatively correlated with latitude and productivity, respectively. However, the correlations were nonlinear; 84% of the plants were hexaploids (2n = 6x = 42, and the positive correlation between ploidy level and latitude is the result of only four populations skewing the data. In the southernmost end of the gradient 86% of the plants were tetraploids (2n = 4x = 28, whereas in the northernmost end of the gradient one population had only octoploid plants (2n = 8x = 56. Endophytes were detected in 22 out of the 29 populations. Endophyte frequencies varied among geographic sites, and populations and habitats within geographic sites irrespective of ploidy, latitude or productivity. The highest overall endophyte frequencies were found in the southernmost end of the gradient, Spain, where 69% of plants harbored endophytes. In northern Finland, endophytes were detected in 30% of grasses but endophyte frequencies varied among populations from 0% to 75%, being higher in meadows compared to riverbanks. The endophytes were detected in 36%, 30% and 27% of the plants in Faroe Islands, Iceland and Switzerland, respectively. Practically all examined plants collected from southern Finland and Greenland were endophyte-free, whereas in other geographic sites endophyte frequencies were highly variable among populations. Common to all populations with high endophyte frequencies is heavy vertebrate grazing. We propose that the detected endophyte frequencies and ploidy levels mirror past distribution history of F. rubra after the last glaciation

  14. EXHIBITION: Accelerated Particles

    CERN Multimedia

    2004-01-01

    http://www.cern.ch/cern50/ An exhibition of plastic arts and two evenings of performances by sound and visual artists as part of CERN's fiftieth anniversary celebrations. The fiftieth anniversary of a world famous organization like CERN, an international laboratory specializing in fundamental research, is a cause for celebration. Since March this year, Geneva and neighbouring parts of France have been the venues for a wealth of small and large-scale events, which will continue until November. Given CERN's location in the commune of Meyrin, the ForuMeyrin is hosting two "salons" consisting of an exhibition of plastic arts and evenings of music and visual arts performances with the collective title of "Accelerated Particles". Several works will be exhibited and performed. Salon des matières: An exhibition of plastic arts Until Wednesday 3 November 2004. Tuesdays to Fridays: 4.00 p.m. to 7.00 p.m. Saturdays: 2.00 p.m. to 6.00 p.m. Doors open late on the evening of the performances. Salon des ...

  15. Big bacteria

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB

    2001-01-01

    A small number of prokaryotic species have a unique physiology or ecology related to their development of unusually large size. The biomass of bacteria varies over more than 10 orders of magnitude, from the 0.2 mum wide nanobacteria to the largest cells of the colorless sulfur bacteria......, Thiomargarita namibiensis, with a diameter of 750 mum. All bacteria, including those that swim around in the environment, obtain their food molecules by molecular diffusion. Only the fastest and largest swimmers known, Thiovulum majus, are able to significantly increase their food supply by motility...... and by actively creating an advective flow through the entire population. Diffusion limitation generally restricts the maximal size of prokaryotic cells and provides a selective advantage for mum-sized cells at the normally low substrate concentrations in the environment. The largest heterotrophic bacteria...

  16. Big bacteria

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB

    2001-01-01

    A small number of prokaryotic species have a unique physiology or ecology related to their development of unusually large size. The biomass of bacteria varies over more than 10 orders of magnitude, from the 0.2 mum wide nanobacteria to the largest cells of the colorless sulfur bacteria...... and by actively creating an advective flow through the entire population. Diffusion limitation generally restricts the maximal size of prokaryotic cells and provides a selective advantage for mum-sized cells at the normally low substrate concentrations in the environment. The largest heterotrophic bacteria......, the 80 x 600 mum large Epulopiscium sp. from the gut of tropical fish, are presumably living in a very nutrient-rich medium. Many large bacteria contain numerous inclusions in the cells that reduce the volume of active cytoplasm. The most striking examples of competitive advantage from large cell size...

  17. Magnetic Bacteria.

    Science.gov (United States)

    Nelson, Jane Bray; Nelson, Jim

    1992-01-01

    Describes the history of Richard Blakemore's discovery of magnetotaxic organisms. Discusses possible reasons why the magnetic response in bacteria developed. Proposes research experiments integrating biology and physics in which students investigate problems using cultures of magnetotaxic organisms. (MDH)

  18. Dominant Groups of Potentially Active Bacteria Shared by Barley Seeds become Less Abundant in Root Associated Microbiome

    Directory of Open Access Journals (Sweden)

    Luhua Yang

    2017-06-01

    Full Text Available Endophytes are microorganisms colonizing plant internal tissues. They are ubiquitously associated with plants and play an important role in plant growth and health. In this work, we grew five modern cultivars of barley in axenic systems using sterile sand mixture as well as in greenhouse with natural soil. We characterized the potentially active microbial communities associated with seeds and roots using rRNA based amplicon sequencing. The seeds of the different cultivars share a great part of their microbiome, as we observed a predominance of a few bacterial OTUs assigned to Phyllobacterium, Paenibacillus, and Trabusiella. Seed endophytes, particularly members of the Enterobacteriacea and Paenibacillaceae, were important members of root endophytes in axenic systems, where there were no external microbes. However, when plants were grown in soil, seed endophytes became less abundant in root associated microbiome. We observed a clear enrichment of Actinobacteriacea and Rhizobiaceae, indicating a strong influence of the soil bacterial communities on the composition of the root microbiome. Two OTUs assigned to Phyllobacteriaceae were found in all seeds and root samples growing in soil, indicating a relationship between seed-borne and root associated microbiome in barley. Even though the role of endophytic bacteria remains to be clarified, it is known that many members of the genera detected in our study produce phytohormones, shape seedling exudate profile and may play an important role in germination and establishment of the seedlings.

  19. Dominant Groups of Potentially Active Bacteria Shared by Barley Seeds become Less Abundant in Root Associated Microbiome.

    Science.gov (United States)

    Yang, Luhua; Danzberger, Jasmin; Schöler, Anne; Schröder, Peter; Schloter, Michael; Radl, Viviane

    2017-01-01

    Endophytes are microorganisms colonizing plant internal tissues. They are ubiquitously associated with plants and play an important role in plant growth and health. In this work, we grew five modern cultivars of barley in axenic systems using sterile sand mixture as well as in greenhouse with natural soil. We characterized the potentially active microbial communities associated with seeds and roots using rRNA based amplicon sequencing. The seeds of the different cultivars share a great part of their microbiome, as we observed a predominance of a few bacterial OTUs assigned to Phyllobacterium , Paenibacillus , and Trabusiella . Seed endophytes, particularly members of the Enterobacteriacea and Paenibacillaceae, were important members of root endophytes in axenic systems, where there were no external microbes. However, when plants were grown in soil, seed endophytes became less abundant in root associated microbiome. We observed a clear enrichment of Actinobacteriacea and Rhizobiaceae, indicating a strong influence of the soil bacterial communities on the composition of the root microbiome. Two OTUs assigned to Phyllobacteriaceae were found in all seeds and root samples growing in soil, indicating a relationship between seed-borne and root associated microbiome in barley. Even though the role of endophytic bacteria remains to be clarified, it is known that many members of the genera detected in our study produce phytohormones, shape seedling exudate profile and may play an important role in germination and establishment of the seedlings.

  20. Dominant Groups of Potentially Active Bacteria Shared by Barley Seeds become Less Abundant in Root Associated Microbiome

    Science.gov (United States)

    Yang, Luhua; Danzberger, Jasmin; Schöler, Anne; Schröder, Peter; Schloter, Michael; Radl, Viviane

    2017-01-01

    Endophytes are microorganisms colonizing plant internal tissues. They are ubiquitously associated with plants and play an important role in plant growth and health. In this work, we grew five modern cultivars of barley in axenic systems using sterile sand mixture as well as in greenhouse with natural soil. We characterized the potentially active microbial communities associated with seeds and roots using rRNA based amplicon sequencing. The seeds of the different cultivars share a great part of their microbiome, as we observed a predominance of a few bacterial OTUs assigned to Phyllobacterium, Paenibacillus, and Trabusiella. Seed endophytes, particularly members of the Enterobacteriacea and Paenibacillaceae, were important members of root endophytes in axenic systems, where there were no external microbes. However, when plants were grown in soil, seed endophytes became less abundant in root associated microbiome. We observed a clear enrichment of Actinobacteriacea and Rhizobiaceae, indicating a strong influence of the soil bacterial communities on the composition of the root microbiome. Two OTUs assigned to Phyllobacteriaceae were found in all seeds and root samples growing in soil, indicating a relationship between seed-borne and root associated microbiome in barley. Even though the role of endophytic bacteria remains to be clarified, it is known that many members of the genera detected in our study produce phytohormones, shape seedling exudate profile and may play an important role in germination and establishment of the seedlings. PMID:28663753

  1. Bioactive steroids and sorbicillinoids isolated from the endophytic fungus Trichoderma sp. Xy24.

    Science.gov (United States)

    Zhao, Jin-Lian; Zhang, Min; Liu, Ji-Mei; Tan, Zhen; Chen, Ri-Dao; Xie, Ke-Bo; Dai, Jun-Gui

    2017-10-01

    A new steroid glucoside (1), along with nine known steroids (2-10) and four known sorbicillinoids (11-14), were isolated from the endophytic fungus Trichoderma sp. Xy24. Their structures were elucidated on the basis of spectroscopic data analyses and by comparison with reported data. Compounds 3, 5-7, 9, 10, and 13 exhibited significant inhibitory effects on HIV-1 virus with IC 50 values ranging 1.9-9.3 μM; compounds 10, 13, and 14 showed potent inhibitory activity on LPS-induced NO production in BV2 microglia cells with inhibitory rates of 108.2, 100, and 75.1% at 10 μM, respectively. In addition, compound 10 displayed moderate cytotoxicity against BCG823 and HePG2 cell lines with IC 50 values of 11.1 and 17.7 μM, respectively.

  2. Bioactive extracts and chemical constituents of two endophytic strains of Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Andréa M. do Nascimento

    2012-12-01

    Full Text Available Ethyl acetate extracts of cultures grown in liquid Czapek and on solid rice media of the fungal endophyte Fusarium oxysporum SS46 isolated from the medicinal plant Smallanthus sonchifolius (Poepp. H. Rob., Asteraceae, exhibited considerable cytotoxic activity when tested in vitro against human cancer cells. Chromatographic separation yielded anhydrofusarubin (1 and beauvericin (2 that were identified based on their ¹H and 13C NMR data. Compounds 1 and 2 showed the strongest cytotoxic activity against different cancer cell lines. Compound 2 also showed promising activity against Leishmania braziliensis. Hexanic extract of F. oxysporum SS50 grown on solid rice media also afforded a mixture of compounds that displayed cytotoxic activity against different cancer cell lines. Chemical analysis of the mixture of compounds, investigated by gas chromatography-mass spectrometry (GC-MS, showed that there was a predominance of methyl esters of fatty acids and alkanes.

  3. Three New Resveratrol Derivatives from the Mangrove Endophytic Fungus Alternaria sp.

    Directory of Open Access Journals (Sweden)

    Jinhua Wang

    2014-05-01

    Full Text Available Three new resveratrol derivatives, namely, resveratrodehydes A–C (1–3, were isolated from the mangrove endophytic fungus Alternaria sp. R6. The structures of these compounds were elucidated by analysis of their MS, 1D and 2D NMR spectroscopic data. All compounds showed broad-spectrum inhibitory activities against three human cancer cell lines including human breast MDA-MB-435, human liver HepG2, and human colon HCT-116 by MTT assay (IC50 < 50 μM. Among them, compounds 1 and 2 both exhibited marked cytotoxic activities against MDA-MB-435 and HCT-116 cell lines (IC50 < 10 μM. Additionally, compounds 1 and 3 showed moderate antioxidant activity by DPPH radical scavenging assay.

  4. Assessment of endophytic fungi cultural filtrate on soybean seed ...

    African Journals Online (AJOL)

    Soybean seeds have high amount of isoflavones but its germination is often confronted with a variety of environmental problems resulting in low germination rate and growth. To overcome this in eco-friendly manner, we investigated the influence of cultural filtrate (CF) of gibberellins-producing endophytic fungi on soybean ...

  5. Inoculation, colonization and distribution of fungal endophytes in ...

    African Journals Online (AJOL)

    Mo

    and for a part or whole of their life cycle live symptomlessly within the plant. ... inoculated in tissue culture banana plants, must occur at high frequencies in the plant and be able to persist in ... For instance, the influence of fungal endophytes.

  6. Cytosporones O, P and Q from an endophytic Cytospora sp

    DEFF Research Database (Denmark)

    Abreu, L.M.; Phipps, Richard Kerry; Pfenning, L.H.

    2010-01-01

    Cytosporones O, P and Q, together with the known compounds cytosporones B, C, D, E and dothiorelones A, 13, C. and H were isolated from the ascomycete fungus Cytospora sp. during a chemotaxonomic study Of fungal endophytes belonging to the related genera Cytospora and Phomopsis from Brazil. The s...

  7. Volatile metabolites profiling of a Chinese mangrove endophytic ...

    African Journals Online (AJOL)

    Pestalotiopsis JCM2A4, an endophytic fungus originally isolated from leaves of the Chinese mangrove plant Rhizophora mucronata, produces a mixture of volatile metabolites. As determined by gas chromatography and gas chromatography/mass spectrometry (GC/GC-MS), 18 compounds representing all of the hexane ...

  8. Endophytic Phytoaugmentation: Treating Wastewater and Runoff Through Augmented Phytoremediation

    Science.gov (United States)

    Redfern, Lauren K.

    2016-01-01

    Abstract Limited options exist for efficiently and effectively treating water runoff from agricultural fields and landfills. Traditional treatments include excavation, transport to landfills, incineration, stabilization, and vitrification. In general, treatment options relying on biological methods such as bioremediation have the ability to be applied in situ and offer a sustainable remedial option with a lower environmental impact and reduced long-term operating expenses. These methods are generally considered ecologically friendly, particularly when compared to traditional physicochemical cleanup options. Phytoremediation, which relies on plants to take up and/or transform the contaminant of interest, is another alternative treatment method which has been developed. However, phytoremediation is not widely used, largely due to its low treatment efficiency. Endophytic phytoaugmentation is a variation on phytoremediation that relies on augmenting the phytoremediating plants with exogenous strains to stimulate associated plant-microbe interactions to facilitate and improve remediation efficiency. In this review, we offer a summary of the current knowledge as well as developments in endophytic phytoaugmentation and present some potential future applications for this technology. There has been a limited number of published endophytic phytoaugmentation case studies and much remains to be done to transition lab-scale results to field applications. Future research needs include large-scale endophytic phytoaugmentation experiments as well as the development of more exhaustive tools for monitoring plant-microbe-pollutant interactions. PMID:27158249

  9. Identification of a taxol-producing endophytic fungus EFY-36

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... Morphological and molecular methods were used to identify the statues of an isolate, EFY-36, a taxol- ... of the spores. The analysis of endophytic fungus. 18S ribosome RNA sequence used PCR cloning technology. DNA was extracted by the CTAB method. ... of the fungal mycelium (magnification: 400 ×).

  10. Effect of endophytic Fusarium oxysporum on paralysis and mortality ...

    African Journals Online (AJOL)

    Three bioassays were conducted to investigate the antagonistic effect of secondary metabolites produced by 5 endophytic Fusarium oxysporum isolates from banana (Musa spp.) plants in Kenya, against Pratylenchus goodeyi. Percentage paralyses were recorded 3, 6 and 24 h after exposure to culture filtrates. Percentage ...

  11. Differential endophytic colonization of sorghum plant by eight ...

    African Journals Online (AJOL)

    Virulence of the conidia before and after endophytic growth phases were assessed using Galleria mellonella larvae mortality bioassay in-vitro. All the strains of the fungi colonised the sorghum plant. The strains of I. farinosa and B. bassiana were detected in the roots, the stem and the leaves while M. anisopliae was ...

  12. antibacterial activity of endophytic fungi isolated from conifers needles

    African Journals Online (AJOL)

    Ravnikar, Matjaž

    2015-03-11

    Mar 11, 2015 ... taxonomically place fungi producing ones to determined active metabolites. Seventy three strains of endophytic fungi were isolated ... great number of diverse bioactive compounds (Devaraju and Satish, 2010), which have been ... closed with a glass stopper. The extraction solvents utilized were methanol ...

  13. International Space Station exhibit

    Science.gov (United States)

    2000-01-01

    The International Space Station (ISS) exhibit in StenniSphere at John C. Stennis Space Center in Hancock County, Miss., gives visitors an up-close look at the largest international peacetime project in history. Step inside a module of the ISS and glimpse how astronauts will live and work in space. Currently, 16 countries contribute resources and hardware to the ISS. When complete, the orbiting research facility will be larger than a football field.

  14. Upcycling CERN Exhibitions

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    Summer is coming - and with it, a new Microcosm exhibition showcasing CERN (see here). But while the new exhibit is preparing to enchant visitors, many have been asking about the site's former content. Will it simply be out with the old and in with the new? Not as such!   The plasma ball from Microcosm is now on display at the LHCb site. As Microcosm's new content is moving in, its old content is moving up. From LHCb to IdeaSquare, former Microcosm displays and objects are being installed across the CERN site. "Microcosm featured many elements that were well suited to life outside of the exhibition," says Emma Sanders, Microcosm project leader in the EDU group. "We didn't want this popular content to go to waste, and so set out to find them new homes across CERN." The LHCb experiment has received a number of Microcosm favourites, including the Rutherford experiment, the cosmic ray display and the Thomson experiment. "We&...

  15. Online Exhibits & Concept Maps

    Science.gov (United States)

    Douma, M.

    2009-12-01

    Presenting the complexity of geosciences to the public via the Internet poses a number of challenges. For example, utilizing various - and sometimes redundant - Web 2.0 tools can quickly devour limited time. Do you tweet? Do you write press releases? Do you create an exhibit or concept map? The presentation will provide participants with a context for utilizing Web 2.0 tools by briefly highlighting methods of online scientific communication across several dimensions. It will address issues of: * breadth and depth (e.g. from narrow topics to well-rounded views), * presentation methods (e.g. from text to multimedia, from momentary to enduring), * sources and audiences (e.g. for experts or for the public, content developed by producers to that developed by users), * content display (e.g. from linear to non-linear, from instructive to entertaining), * barriers to entry (e.g. from an incumbent advantage to neophyte accessible, from amateur to professional), * cost and reach (e.g. from cheap to expensive), and * impact (e.g. the amount learned, from anonymity to brand awareness). Against this backdrop, the presentation will provide an overview of two methods of online information dissemination, exhibits and concept maps, using the WebExhibits online museum (www.webexhibits.org) and SpicyNodes information visualization tool (www.spicynodes.org) as examples, with tips on how geoscientists can use either to communicate their science. Richly interactive online exhibits can serve to engage a large audience, appeal to visitors with multiple learning styles, prompt exploration and discovery, and present a topic’s breadth and depth. WebExhibits, which was among the first online museums, delivers interactive information, virtual experiments, and hands-on activities to the public. While large, multidisciplinary exhibits on topics like “Color Vision and Art” or “Calendars Through the Ages” require teams of scholars, user interface experts, professional writers and editors

  16. Antimicrobial and Antioxidant Activities and Effect of 1-Hexadecene Addition on Palmarumycin C2 and C3 Yields in Liquid Culture of Endophytic Fungus Berkleasmium sp. Dzf12

    Directory of Open Access Journals (Sweden)

    Yan Mou

    2013-12-01

    Full Text Available Two spirobisnaphthalenes, namely palmarumycins C2 and C3, were isolated from cultures of the endophytic fungus Berkleasmium sp. Dzf12 after treatment with 1-hexadecene. After addition of 1-hexadecene at 10% to the medium on day 6 of culture, the maximal yields of palmarumycins C2 and C3 were obtained as 0.40 g/L and 1.19 g/L, which were 40.00 fold and 59.50 fold higher, respectively, in comparison with those of the control (0.01 g/L and 0.02 g/L. The results indicated that addition of 1-hexadecene can be an effective strategy for enhancing the production of palmarumycins C2 and C3 in liquid culture of endophytic fungus Berkleasmium sp. Dzf12. Palmarumycin C3 exhibited stronger antimicrobial and antioxidant activities than palmarumycin C2.

  17. Does hybridization of endophytic symbionts in a native grass increase fitness in resource-limited environments?

    DEFF Research Database (Denmark)

    Faeth, Stanley H.; Oberhofer, Martina; Saari, Susanna Talvikki

    2017-01-01

    to their grass hosts, especially in stressful environments. We tested the hybrid fitness hypothesis (HFH) that hybrid endophytes enhance fitness in stressful environments relative to non-hybrid endophytes. In a long-term field experiment, we monitored growth and reproduction of hybrid-infected (H+), non......-hybrid infected (NH+), naturally endophyte free (E-) plants and those plants from which the endophyte had been experimentally removed (H- and NH-) in resource-rich and resource-poor environments. Infection by both endophyte species enhanced growth and reproduction. H+ plants outperformed NH+ plants in terms...... of growth by the end of the experiment, supporting HFH. However, H+ plants only outperformed NH+ plants in the resource-rich treatment, contrary to HFH. Plant genotypes associated with each endophyte species had strong effects on growth and reproduction. Our results provide some support the HFH hypothesis...

  18. Genetic responses induced in olive roots upon colonization by the biocontrol endophytic bacterium Pseudomonas fluorescens PICF7.

    Directory of Open Access Journals (Sweden)

    Elisabetta Schilirò

    Full Text Available Knowledge on the genetic basis underlying interactions between beneficial bacteria and woody plants is still very limited, and totally absent in the case of olive. We aimed to elucidate genetic responses taking place during the colonization of olive roots by the native endophyte Pseudomonas fluorescens PICF7, an effective biocontrol agent against Verticillium wilt of olive. Roots of olive plants grown under non-gnotobiotic conditions were collected at different time points after PICF7 inoculation. A Suppression Subtractive Hybridization cDNA library enriched in induced genes was generated. Quantitative real time PCR (qRT-PCR analysis validated the induction of selected olive genes. Computational analysis of 445 olive ESTs showed that plant defence and response to different stresses represented nearly 45% of genes induced in PICF7-colonized olive roots. Moreover, quantitative real-time PCR (qRT-PCR analysis confirmed induction of lipoxygenase, phenylpropanoid, terpenoids and plant hormones biosynthesis transcripts. Different classes of transcription factors (i.e., bHLH, WRKYs, GRAS1 were also induced. This work highlights for the first time the ability of an endophytic Pseudomonas spp. strain to mount a wide array of defence responses in an economically-relevant woody crop such as olive, helping to explain its biocontrol activity.

  19. Biodegradation of phenol and benzene by endophytic bacterial strains isolated from refinery wastewater-fed Cannabis sativa.

    Science.gov (United States)

    Iqbal, Aneela; Arshad, Muhammad; Hashmi, Imran; Karthikeyan, Raghupathy; Gentry, Terry J; Schwab, Arthur Paul

    2017-06-13

    The presence of benzene and phenol in the environment can lead to serious health effects in humans and warrant development of efficient cleanup strategies. The aim of the present work was to assess the potential of indigenous endophytic bacterial strains to degrade benzene and phenol. Seven strains were successfully isolated from Cannabis sativa plants irrigated with oil refinery wastewater. Molecular characterization was performed by 16S rRNA gene sequencing. Phenol was biodegraded almost completely with Achromobacter sp. (AIEB-7), Pseudomonas sp. (AIEB-4), and Alcaligenes sp. (AIEB-6) at 250, 500, and 750 mg L -1 ; however, the degradation was only 81%, 72%, and 69%, respectively, when exposed to 1000 mg L -1 . Bacillus sp. (AIEB-1), Enterobacter sp. (AIEB-3), and Acinetobacter sp. (AIEB-2) degraded benzene significantly at 250, 500, and 750 mg L -1 . However, these strains showed 80%, 72%, and 68% benzene removal at 1000 mg L -1 exposure, respectively. Rates of degradation could be modeled with first-order kinetics with rate constant values of 1.86 × 10 -2 for Pseudomonas sp. (AIEB-4) and 1.80 × 10 -2  h -1 for Bacillus sp. (AIEB-1) and half-lives of 1.5 and 1.6 days, respectively. These results establish a foundation for further testing of the phytoremediation of hydrocarbon-contaminated soils in the presence of these endophytic bacteria.

  20. Plant Growth Enhancement, Disease Resistance, and Elemental Modulatory Effects of Plant Probiotic Endophytic Bacillus sp. Fcl1.

    Science.gov (United States)

    Jayakumar, Aswathy; Krishna, Arathy; Mohan, Mahesh; Nair, Indu C; Radhakrishnan, E K

    2018-04-13

    Endophytic bacteria have already been studied for their beneficial support to plants to manage both biotic and abiotic stress through an array of well-established mechanisms. They have either direct or indirect impact on mobilizing diverse nutrients and elements from soil to plants. However, detailed insight into the fine-tuning of plant elemental composition by associated microorganism is very limited. In this study, endophytic Bacillus Fcl1 characterized from the rhizome of Curcuma longa was found to have broad range of plant growth-promoting and biocontrol mechanisms. The organism was found to have indole acetic acid and 1-aminocyclopropane-1-carboxylate deaminase production properties along with nitrogen fixation. The Bacillus Fcl1 could also inhibit diverse phytopathogens as confirmed by dual culture and well diffusion. By LC-MS/MS analysis, chemical basis of its antifungal activity has been proved to be due to the production of iturin A and a blend of surfactin compounds. Moreover, the organism was found to induce both plant growth and disease resistance in vivo in model plant system. Because of these experimentally demonstrated multiple plant probiotic features, Bacillus Fcl1 was selected as a candidate organism to study its role in modulation of plant elemental composition. ICP-MS analysis of Bacillus Fcl1-treated plants provided insight into relation of bacterial interaction with elemental composition of plants.

  1. Leaf endophyte load influences fungal garden development in leaf-cutting ants

    Directory of Open Access Journals (Sweden)

    Van Bael Sunshine A

    2012-11-01

    Full Text Available Abstract Background Previous work has shown that leaf-cutting ants prefer to cut leaf material with relatively low fungal endophyte content. This preference suggests that fungal endophytes exact a cost on the ants or on the development of their colonies. We hypothesized that endophytes may play a role in their host plants’ defense against leaf-cutting ants. To measure the long-term cost to the ant colony of fungal endophytes in their forage material, we conducted a 20-week laboratory experiment to measure fungal garden development for colonies that foraged on leaves with low or high endophyte content. Results Colony mass and the fungal garden dry mass did not differ significantly between the low and high endophyte feeding treatments. There was, however, a marginally significant trend toward greater mass of fungal garden per ant worker in the low relative to the high endophyte treatment. This trend was driven by differences in the fungal garden mass per worker from the earliest samples, when leaf-cutting ants had been foraging on low or high endophyte leaf material for only 2 weeks. At two weeks of foraging, the mean fungal garden mass per worker was 77% greater for colonies foraging on leaves with low relative to high endophyte loads. Conclusions Our data suggest that the cost of endophyte presence in ant forage material may be greatest to fungal colony development in its earliest stages, when there are few workers available to forage and to clean leaf material. This coincides with a period of high mortality for incipient colonies in the field. We discuss how the endophyte-leaf-cutter ant interaction may parallel constitutive defenses in plants, whereby endophytes reduce the rate of colony development when its risk of mortality is greatest.

  2. Mobile exhibition in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-04-15

    Since January this year, a mobile atomic energy exhibition has been touring the principal cities of Mexico. In organizing this exhibition, the National Nuclear Energy Commission of Mexico was assisted by the International Atomic Energy Agency which has placed its second mobile radioisotope laboratory at the disposal of the Mexican authorities. In many States of the Republic, the visit of the mobile laboratory has given a powerful impetus to atomic training and research. Universities have made use of the laboratory for the training of young scientists in the basic isotope techniques. As a sequel to the work initiated with its aid, some universities are planning to start regular training courses in this field. The laboratory, which is a gift to the Agency from the United States, has been put to its first assignment in Mexico. It will shortly be sent to Argentina for a period of six months for use in training courses. IAEA's first mobile radioisotope unit, also donated by the United States, has been used for training purposes in Austria, the Federal Republic of Germany, Greece and Yugoslavia, and has now been sent to the Far East

  3. Mobile exhibition in Mexico

    International Nuclear Information System (INIS)

    1960-01-01

    Since January this year, a mobile atomic energy exhibition has been touring the principal cities of Mexico. In organizing this exhibition, the National Nuclear Energy Commission of Mexico was assisted by the International Atomic Energy Agency which has placed its second mobile radioisotope laboratory at the disposal of the Mexican authorities. In many States of the Republic, the visit of the mobile laboratory has given a powerful impetus to atomic training and research. Universities have made use of the laboratory for the training of young scientists in the basic isotope techniques. As a sequel to the work initiated with its aid, some universities are planning to start regular training courses in this field. The laboratory, which is a gift to the Agency from the United States, has been put to its first assignment in Mexico. It will shortly be sent to Argentina for a period of six months for use in training courses. IAEA's first mobile radioisotope unit, also donated by the United States, has been used for training purposes in Austria, the Federal Republic of Germany, Greece and Yugoslavia, and has now been sent to the Far East

  4. Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots?

    Science.gov (United States)

    Arnold, A Elizabeth; Lutzoni, F

    2007-03-01

    Fungal endophytes are found in asymptomatic photosynthetic tissues of all major lineages of land plants. The ubiquity of these cryptic symbionts is clear, but the scale of their diversity, host range, and geographic distributions are unknown. To explore the putative hyperdiversity of tropical leaf endophytes, we compared endophyte communities along a broad latitudinal gradient from the Canadian arctic to the lowland tropical forest of central Panama. Here, we use molecular sequence data from 1403 endophyte strains to show that endophytes increase in incidence, diversity, and host breadth from arctic to tropical sites. Endophyte communities from higher latitudes are characterized by relatively few species from many different classes of Ascomycota, whereas tropical endophyte assemblages are dominated by a small number of classes with a very large number of endophytic species. The most easily cultivated endophytes from tropical plants have wide host ranges, but communities are dominated by a large number of rare species whose host range is unclear. Even when only the most easily cultured species are considered, leaves of tropical trees represent hotspots of fungal species diversity, containing numerous species not yet recovered from other biomes. The challenge remains to recover and identify those elusive and rarely cultured taxa with narrower host ranges, and to elucidate the ecological roles of these little-known symbionts in tropical forests.

  5. Host associations and beta diversity of fungal endophyte communities in New Guinea rainforest trees.

    Science.gov (United States)

    Vincent, J B; Weiblen, G D; May, G

    2016-02-01

    Processes shaping the distribution of foliar fungal endophyte species remain poorly understood. Despite increasing evidence that these cryptic fungal symbionts of plants mediate interactions with pathogens and herbivores, there remain basic questions regarding the extent to which dispersal limitation and host specificity might shape fungal endophyte community composition in rainforests. To assess the relative importance of spatial pattern and host specificity, we isolated fungi from a sample of mapped trees in lowland Papua New Guinea. Sequences of the internal transcribed spacer (ITS) region were obtained for 2079 fungal endophytes from three sites and clustered into molecular operational taxonomic units (MOTUs) at 95% similarity. Multivariate analyses suggest that host affinity plays a significant role in structuring endophyte community composition whereas there was no evidence of endophyte spatial pattern at the scale of tens to hundreds of metres. Differences in endophyte communities between sampled trees were weakly correlated with variation in foliar traits but not with tree species relatedness. The dominance of relatively few generalist endophytes and the presence of a large number of rare MOTUs was a consistent observation at three sites separated by hundreds of kilometres and regional turnover was low. Host specificity appears to play a relatively weak but more important role than dispersal limitation in shaping the distribution of fungal endophyte communities in New Guinea forests. Our results suggest that in the absence of strong ecological gradients and host turnover, beta diversity of endophyte communities could be low in large areas of contiguous forest. © 2015 John Wiley & Sons Ltd.

  6. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes

    Science.gov (United States)

    van Overbeek, Leonard S.; Berg, Gabriele; Pirttilä, Anna Maria; Compant, Stéphane; Campisano, Andrea; Döring, Matthias; Sessitsch, Angela

    2015-01-01

    SUMMARY All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions. PMID:26136581

  7. Biodiversity, Phylogeny, and Antifungal Functions of Endophytic Fungi Associated with Zanthoxylum bungeanum

    Directory of Open Access Journals (Sweden)

    Peiqin Li

    2016-09-01

    Full Text Available This study investigated the biodiversity, phylogeny, and antifungal activity of endophytic fungi isolated from Zanthoxylum bungeanum. A total of 940 isolates obtained were grouped into 93 morphotypes, 43 species, and 23 genera, which were authenticated by molecular identification based on rDNA internal transcribed spacer (ITS sequence analysis. A high diversity of endophytic fungi from Z. bungeanum are observed with high species richness S (43, Margalef index D′ (6.1351, Shannon–Wiener index H′ (3.2743, Simpson diversity index Ds (0.9476, PIE index (0.9486, and evenness Pielou index J (0.8705 but a low dominant index λ (0.0524. Significant tissue specificity of the endophytic fungi was observed in Z. bungeanum, and the highest species richness and diversity indexes were obtained in the stem. Phylogenetic analyses of the 93 endophytic isolates were carried out by the neighbor-joining (NJ method to demonstrate their evolutionary processes. Antifungal activities of endophytic fungi were assayed and eight endophytic isolates showed strong and long-lasting inhibition against host pathogenic fungi Fusarium sambucinum and Pseudocercospora zanthoxyli. Here, for the first time, we systematically demonstrate the biodiversity, phylogeny, and antifungal activity of endophytic fungi associated with Z. bungeanum and reveal the value of sampling different tissues of a given plant to obtain the greatest endophyte species diversity, which might offer a framework for further investigation and utilization of endophytic fungi as aunique source of interesting and useful bioactive compounds.

  8. Evaluating Susceptibility to Commercial Fungicide of Endophytic Fungi Isolated from Roses (Rosa hybrida

    Directory of Open Access Journals (Sweden)

    Ingrid Carolina Corredor Perilla

    2007-01-01

    Full Text Available Fungal endophytes have shown their potential as biocontrol agents; however, their application in commercial fields remains limited. Continuously applying fungicides to crops (specifically to roses may have harmful effects on endophyte growth. Endophytic fungi were isolated from R. hybrida and their susceptibility to fungicides regularly used for controlling important pathogens was analysed. This was performed in vitro, mixing several fungicide concentrations with standard medium for fungal endophytes; growth inhibition was then measured. The susceptibility of Botrytis cinerea (3015 strain, one of the most important pathogens affecting roses in Colombia, was also assessed using the same protocols. Active ingredients, such as boscalid, captan, iprodione and pyrimethanyl, showed susceptibility ranging from not sensitive (³73.75% to regularly sensitive (³48.75% - <61.25% for 45.45% of the fungal endophytes assessed. Endophytic fungi were highly susceptible to fungicides such as pyrimethanyl, carboxin plus thiram, fludioxonyl plus ciprodinyl and prochloraz. B. cinerea (3015 strain presented high susceptibility (<23.75% to fungicides such as pyrimethanyl, carboxin and thiram, fludioxonil and ciprodinyl, prochloraz. Although B. cinerea showed the greatest growth in controls, the endophytic fungi being assessed grew better in different media with fungicides. The results revealed some of these fungal endophytes’ potential for integrated pest management (IPM in roses in Colombia (3002, 3003, 3004, 3005 and 3006 strains, taking into account correct application time, application frequency and both fungal endophyte and fungicide dosage which may greatly limit fungal endophyte growth.

  9. Exploring the potential of symbiotic fungal endophytes in cereal disease suppression

    DEFF Research Database (Denmark)

    O'Hanlon, Karen; Knorr, Kamilla; Jørgensen, Lise Nistrup

    2012-01-01

    , and environmental and health concerns surrounding the use of chemical treatments. There is currently a demand for new disease control strategies, and one such strategy involves the use of symbiotic fungal endophytes as biological control agents against fungal pathogens in cereals. Despite the fact that biological...... control by symbiotic fungal endophytes has been documented, particularly with respect to clavicipitaceous endophytes in C3 cool-season grasses, this area remains relatively underexplored in cereals. We highlight for the first time the potential in using symbiotic fungal endophytes to control foliar cereal...

  10. Community structure of endophytic fungi of four mangrove species in Southern China

    Directory of Open Access Journals (Sweden)

    Jia-Long Li

    2016-10-01

    Full Text Available Mangrove forests play an important role in subtropical and tropical coastal ecosystems. Endophytic fungi are widely distributed in various ecosystems and have great contribution to global biodiversity. In order to better understand the effects of mangrove species and tissue types on endophytic fungal community, we investigated cultivable endophytic fungi in leaves and twigs of four mangroves Aegiceras corniculatum, Avicennia marina, Bruguiera gymnorrhiza, and Kandelia candel in Guangxi, China. The four tree species had similar overall colonisation rates of endophytic fungi (24–33%. The colonisation rates of endophytic fungi were higher in twigs (30–58% than in leaves (6–25% in the four plant species. A total of 36 endophytic fungal taxa were identified based on morphological characteristics and molecular data, including 35 Ascomycota and 1 Basidiomycota, dominated by Phomopsis, Phyllosticta, Xylaria, Leptosphaerulina, and Pestalotiopsis. The diversity of endophytic fungi was higher in twigs than in leaves in the four plant species. Some endophytic fungi showed host and tissue preference. The endophytic fungal community composition was different among four mangrove species and between leaf and twig tissues.

  11. Anniversary Exhibition. Nechvolodov.

    Directory of Open Access Journals (Sweden)

    - -

    2006-03-01

    Full Text Available On the 10th of August, 2005 in Tartu (the second biggest educational and cultural city in Estonia Stanislav Nechvolodov's exhibition was opened to show the 5-year cycle of his work, traditional for the author and his admirers. At the opening ceremony Nechvolodov said that the exhibition was the last one and appointed on his 70th anniversary.The architectural and building society in Irkutsk remembers Stanislav Nechvolodov as an architect working on dwelling and civil buildings in 1960-70s. Below are some extracts from the Estonian press.«Postimees» newspaper, December 1993. The interview «Expressionistic naturalist, conservative Nechvolodov» by journalist Eric Linnumyagi. He asks about all the details and describes the troubles experienced by Nechvolodov during the perestroika period in Estonia, for example: the Tartu University refused to install the sculpture of Socrat, the art school refused to engage him as an instructor, the sculpture of Socrat moved to Vrotzlav, Poland, and Nechvolodov moved to Poland to read lectures there.«Tartu» newspaper, November 2000. Mats Oun, artist, says in the article «Nechvolodov: a man of Renaissance»: «Nechvolodov works in Estonia, his works are placed in many local and foreign museums. Regardless some insignificant faults, he deserves a high estimation, and his manysided open exhibition can be an example for other artists. He is a man of Renaissance».

  12. Use of Endophytic and Rhizosphere Actinobacteria from Grapevine Plants To Reduce Nursery Fungal Graft Infections That Lead to Young Grapevine Decline.

    Science.gov (United States)

    Álvarez-Pérez, José Manuel; González-García, Sandra; Cobos, Rebeca; Olego, Miguel Ángel; Ibañez, Ana; Díez-Galán, Alba; Garzón-Jimeno, Enrique; Coque, Juan José R

    2017-12-15

    Endophytic and rhizosphere actinobacteria isolated from the root system of 1-year-old grafted Vitis vinifera plants were evaluated for their activities against fungi that cause grapevine trunk diseases. A total of 58 endophytic and 94 rhizosphere isolates were tested. Based on an in vitro bioassay, 15.5% of the endophytic isolates and 30.8% of the rhizosphere isolates exhibited antifungal activity against the fungal pathogen Diplodia seriata , whereas 13.8% of the endophytic isolates and 16.0% of the rhizosphere isolates showed antifungal activity against Dactylonectria macrodidyma (formerly Ilyonectria macrodidyma ). The strains which showed the greatest in vitro efficacy against both pathogens were further analyzed for their ability to inhibit the growth of Phaeomoniella chlamydospora and Phaeoacremonium minimum (formerly Phaeoacremonium aleophilum ). Based on their antifungal activity, three rhizosphere isolates and three endophytic isolates were applied on grafts in an open-root field nursery in a 3-year trial. The field trial led to the identification of one endophytic strain, Streptomyces sp. VV/E1, and two rhizosphere isolates, Streptomyces sp. VV/R1 and Streptomyces sp. VV/R4, which significantly reduced the infection rates produced by the fungal pathogens Dactylonectria sp., Ilyonectria sp., P. chlamydospora , and P. minimum , all of which cause young grapevine decline. The VV/R1 and VV/R4 isolates also significantly reduced the mortality level of grafted plants in the nursery. This study shows that certain actinobacteria could represent a promising new tool for controlling fungal trunk pathogens that infect grapevine plants through the root system in nurseries. IMPORTANCE Grapevine trunk diseases are a major threat to the wine and grape industry worldwide. They cause a significant reduction in yields as well as in grape quality, and they can even cause plant death. Trunk diseases are caused by fungal pathogens that enter through pruning wounds and/or the

  13. EVALUATION OF THE DEVELOPMENT OF MAIZE PLANTS (Zea mays L.) AFTER COLONIZATION BY ENDOPHYTE FUNGUS Fusarium verticillioides

    OpenAIRE

    Gomes, Ulisses de Deus; Orlandelli, Ravely Casarotti; Santos, Mariana Sanches; Polonio, Julio Cesar; Pamphile, João Alencar; Rubin Filho, Celso João

    2013-01-01

    Endophyte fungi inhabit the inside of plants without causing any damage. Benefits from endophyte-plant interactivities include vegetal growth and the plant´s defense against insects and other pathogens. Some endophytes, however, may act as latent pathogens which cause physiological changes and disease symptoms in the host. Current analysis evaluates the development of maize plants colonizer (treatment) and non-colonized (control) with the frequently found endophyte Fusarium verticillioides an...