WorldWideScience

Sample records for endonuclease-generated dna break

  1. DNA Nucleotide Sequence Restricted by the RI Endonuclease

    Science.gov (United States)

    Hedgpeth, Joe; Goodman, Howard M.; Boyer, Herbert W.

    1972-01-01

    The sequence of DNA base pairs adjacent to the phosphodiester bonds cleaved by the RI restriction endonuclease in unmodified DNA from coliphage λ has been determined. The 5′-terminal nucleotide labeled with 32P and oligonucleotides up to the heptamer were analyzed from a pancreatic DNase digest. The following sequence of nucleotides adjacent to the RI break made in λ DNA was deduced from these data and from the 3′-dinucleotide sequence and nearest-neighbor analysis obtained from repair synthesis with the DNA polymerase of Rous sarcoma virus [Formula: see text] The RI endonuclease cleavage of the phosphodiester bonds (indicated by arrows) generates 5′-phosphoryls and short cohesive termini of four nucleotides, pApApTpT. The most striking feature of the sequence is its symmetry. PMID:4343974

  2. Endonuclease activities in extracts of Micrococcus luteus that act on. gamma. -irradiated DNA

    Energy Technology Data Exchange (ETDEWEB)

    Schoen-Bopp, A; Schaefer, G; Hagen, U [Kernforschungszentrum Karlsruhe (Germany, F.R.). Inst. fuer Strahlenbiologie

    1977-03-01

    Several protein fractions containing endonuclease activity against ..gamma..-irradiated DNA (..gamma..-endonuclease) were isolated from M.luteus. The crude extract was eluted on a phosphocellulose column and chromatographed on TEAE cellulose and subsequently on hydroxypatite. Five peaks of ..gamma..-endonuclease were obtained from each preparation. Repeated experiments showed comparable chromatographic behaviour of the fractions. There was no detectable activity of uv-endonuclease in the fractions with ..gamma..-endonuclease but a small contamination of endonuclease against unirradiated DNA and against DNA with apurinic sites. The ..gamma..-endonuclease was stimulated by, but was not dependent on, magnesium. Several tests for endonuclease activity have been used: the analysis of strand breaks in calf-thymus DNA or in PM2 DNA, and the determination of end-groups formed by endonuclease, either 3'OH end-groups or phosphomonoester end groups. From the results obtained it can be assumed that the strand breaks induced by the ..gamma..-endonuclease carry 3'OH and 5' phosphate end groups.

  3. Engineering a Nickase on the Homing Endonuclease I-DmoI Scaffold

    DEFF Research Database (Denmark)

    Molina, Rafael; Marcaida, María José; Redondo, Pilar

    2015-01-01

    strand break could be an approach to reduce the toxicity associated with non-homologous end joining by promoting the use of homologous recombination to repair the cleavage of a single DNA break. Taking advantage of the sequential DNA cleavage mechanism of I-DmoI LAGLIDADG homing endonuclease, we have......Homing endonucleases are useful tools for genome modification because of their capability to recognize and cleave specifically large DNA targets. These endonucleases generate a DNA double strand break that can be repaired by the DNA damage response machinery. The break can be repaired by homologous...

  4. The mismatch repair and meiotic recombination endonuclease Mlh1-Mlh3 is activated by polymer formation and can cleave DNA substrates in trans.

    Science.gov (United States)

    Manhart, Carol M; Ni, Xiaodan; White, Martin A; Ortega, Joaquin; Surtees, Jennifer A; Alani, Eric

    2017-04-01

    Crossing over between homologs is initiated in meiotic prophase by the formation of DNA double-strand breaks that occur throughout the genome. In the major interference-responsive crossover pathway in baker's yeast, these breaks are resected to form 3' single-strand tails that participate in a homology search, ultimately forming double Holliday junctions (dHJs) that primarily include both homologs. These dHJs are resolved by endonuclease activity to form exclusively crossovers, which are critical for proper homolog segregation in Meiosis I. Recent genetic, biochemical, and molecular studies in yeast are consistent with the hypothesis of Mlh1-Mlh3 DNA mismatch repair complex acting as the major endonuclease activity that resolves dHJs into crossovers. However, the mechanism by which the Mlh1-Mlh3 endonuclease is activated is unknown. Here, we provide evidence that Mlh1-Mlh3 does not behave like a structure-specific endonuclease but forms polymers required to generate nicks in DNA. This conclusion is supported by DNA binding studies performed with different-sized substrates that contain or lack polymerization barriers and endonuclease assays performed with varying ratios of endonuclease-deficient and endonuclease-proficient Mlh1-Mlh3. In addition, Mlh1-Mlh3 can generate religatable double-strand breaks and form an active nucleoprotein complex that can nick DNA substrates in trans. Together these observations argue that Mlh1-Mlh3 may not act like a canonical, RuvC-like Holliday junction resolvase and support a novel model in which Mlh1-Mlh3 is loaded onto DNA to form an activated polymer that cleaves DNA.

  5. Properties of an endonuclease activity in Micrococcus luteus acting on γ-irradiated DNA and on apurinic DNA

    International Nuclear Information System (INIS)

    Schaefer, G.; Haas, P.; Coquerelle, Th.; Hagen, U.

    1980-01-01

    A protein fraction from Micrococcus luteus with endonuclease activity against γ-irradiated DNA was isolated and characterized. An additional activity on apurinic sites could not be separated, either by sucrose gradient sedimentation or by gel filtration through Sephadex G 100. From gel filtration, a molecular weight of about 25 000 was calculated for both endonuclease activities. The endonuclease activity against γ-irradiated DNA was stimulated five-fold with 5 mM Mg ++ , whereas that against apurinic sites was less dependent on the Mg ++ concentration. 100 mM KCl inhibited the γ-ray endonuclease, but not the apurinic endonuclease activity. In γ-irradiated DNA the protein recognized 1.65 endonuclease sensitive sites per radiation-induced single-strand break, among which are 0.45 alkali labile lesions in the nucleotide strand. The was evaluated resulting in a Ksub(m)-value of 73 nM. (author)

  6. Properties of an endonuclease activity in Micrococcus luteus acting on. gamma. -irradiated DNA and on apurinic DNA

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, G; Haas, P; Coquerelle, Th; Hagen, U [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Inst. fuer Genetik und fuer Toxikologie von Spaltstoffen

    1980-01-01

    A protein fraction from Micrococcus luteus with endonuclease activity against ..gamma..-irradiated DNA was isolated and characterized. An additional activity on apurinic sites could not be separated, either by sucrose gradient sedimentation or by gel filtration through Sephadex G 100. From gel filtration, a molecular weight of about 25 000 was calculated for both endonuclease activities. The endonuclease activity against ..gamma..-irradiated DNA was stimulated five-fold with 5 mM Mg/sup + +/, whereas that against apurinic sites was less dependent on the Mg/sup + +/ concentration. 100 mM KCl inhibited the ..gamma..-ray endonuclease, but not the apurinic endonuclease activity. In ..gamma..-irradiated DNA the protein recognized 1.65 endonuclease sensitive sites per radiation-induced single-strand break, among which are 0.45 alkali labile lesions in the nucleotide strand. The was evaluated resulting in a Ksub(m)-value of 73 nM.

  7. Excision repair of gamma-ray-induced alkali-stable DNA lesions with the help of γ-endonuclease from Micrococcus luteus

    International Nuclear Information System (INIS)

    Tomilin, N.V.; Barenfeld, L.S.

    1979-01-01

    γ-endonuclease Y, an enzyme that hydrolyses phosphodiester bonds at alkali-stable lesions in γ-irradiated (N 2 , tris buffer) DNA, has been partially purified from Micrococcus luteus. The enzyme has a molecular weight of about 19 000, induces single-strand breaks with 3'OH-5'PO 4 termini and contains endonuclease activity towards DNA treated with 7-bromomethylbenz(a)anthracene. γ-endonuclease Y induces breaks in OsO 4 -treated poly(dA-dT) and apparently is specific towards γ-ray-induced base lesions of the t' type. The complete excision repair of γ-endonuclease Y substrate sites has been performed in vitro by γ-endonuclease Y, DNA polymerase and ligase. (author)

  8. Excision repair of gamma-ray-induced alkali-stable DNA lesions with the help of. gamma. -endonuclease from Micrococcus luteus

    Energy Technology Data Exchange (ETDEWEB)

    Tomilin, N V; Barenfeld, L S [AN SSSR, Leningrad. Inst. Tsitologii

    1979-03-01

    ..gamma..-endonuclease Y, an enzyme that hydrolyses phosphodiester bonds at alkali-stable lesions in ..gamma..-irradiated (N/sub 2/, tris buffer) DNA, has been partially purified from Micrococcus luteus. The enzyme has a molecular weight of about 19 000, induces single-strand breaks with 3'OH-5'PO/sub 4/ termini and contains endonuclease activity towards DNA treated with 7-bromomethylbenz(a)anthracene. ..gamma..-endonuclease Y induces breaks in OsO/sub 4/-treated poly(dA-dT) and apparently is specific towards ..gamma..-ray-induced base lesions of the t' type. The complete excision repair of ..gamma..-endonuclease Y substrate sites has been performed in vitro by ..gamma..-endonuclease Y, DNA polymerase and ligase.

  9. Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans

    DEFF Research Database (Denmark)

    Møller, P; Loft, S; Lundby, C

    2001-01-01

    ; lymphocytes were isolated for analysis of DNA strand breaks and oxidatively altered nucleotides, detected by endonuclease III and formamidipyridine glycosylase (FPG) enzymes. Urine was collected for 24 h periods for analysis of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a marker of oxidative DNA damage...... oxygen species, generated by leakage of the mitochondrial respiration or during a hypoxia-induced inflammation. Furthermore, the presence of DNA strand breaks may play an important role in maintaining hypoxia-induced inflammation processes. Hypoxia seems to deplete the antioxidant system of its capacity...

  10. Characterization of DNA substrate specificities of apurinic/apyrimidinic endonucleases from Mycobacterium tuberculosis.

    Science.gov (United States)

    Abeldenov, Sailau; Talhaoui, Ibtissam; Zharkov, Dmitry O; Ishchenko, Alexander A; Ramanculov, Erlan; Saparbaev, Murat; Khassenov, Bekbolat

    2015-09-01

    Apurinic/apyrimidinic (AP) endonucleases are key enzymes involved in the repair of abasic sites and DNA strand breaks. Pathogenic bacteria Mycobacterium tuberculosis contains two AP endonucleases: MtbXthA and MtbNfo members of the exonuclease III and endonuclease IV families, which are exemplified by Escherichia coli Xth and Nfo, respectively. It has been shown that both MtbXthA and MtbNfo contain AP endonuclease and 3'→5' exonuclease activities. However, it remains unclear whether these enzymes hold 3'-repair phosphodiesterase and nucleotide incision repair (NIR) activities. Here, we report that both mycobacterial enzymes have 3'-repair phosphodiesterase and 3'-phosphatase, and MtbNfo contains in addition a very weak NIR activity. Interestingly, depending on pH, both enzymes require different concentrations of divalent cations: 0.5mM MnCl2 at pH 7.6 and 10 mM at pH 6.5. MtbXthA requires a low ionic strength and 37 °C, while MtbNfo requires high ionic strength (200 mM KCl) and has a temperature optimum at 60 °C. Point mutation analysis showed that D180 and N182 in MtbXthA and H206 and E129 in MtbNfo are critical for enzymes activities. The steady-state kinetic parameters indicate that MtbXthA removes 3'-blocking sugar-phosphate and 3'-phosphate moieties at DNA strand breaks with an extremely high efficiency (kcat/KM=440 and 1280 μM(-1)∙min(-1), respectively), while MtbNfo exhibits much lower 3'-repair activities (kcat/KM=0.26 and 0.65 μM(-1)∙min(-1), respectively). Surprisingly, both MtbXthA and MtbNfo exhibited very weak AP site cleavage activities, with kinetic parameters 100- and 300-fold lower, respectively, as compared with the results reported previously. Expression of MtbXthA and MtbNfo reduced the sensitivity of AP endonuclease-deficient E. coli xth nfo strain to methylmethanesulfonate and H2O2 to various degrees. Taken together, these data establish the DNA substrate specificity of M. tuberculosis AP endonucleases and suggest their possible role

  11. Damages induced in lambda phage DNA by enzyme-generated triplet acetone

    International Nuclear Information System (INIS)

    Menck, C.F.; Cabral Neto, J.B.; Gomes, R.A.; Faljoni-Alario, A.

    1985-01-01

    Exposure of lambda phage to triplet acetone, generated during the aerobic oxidation of isobutanal by peroxidase, leads to genome lesions. The majority of these lesions are detected as DNA single-strand breaks only in alkaline conditions, so true breaks were not observed. Also, no sites sensitive to UV-endonuclease from Micrococcus luteus were found in DNA from treated phage. The participation of triplet acetone in the generation of such DNA damage is discussed. (Author) [pt

  12. Visualizing phosphodiester-bond hydrolysis by an endonuclease

    DEFF Research Database (Denmark)

    Molina, Rafael; Stella, Stefano; Redondo, Pilar

    2015-01-01

    The enzymatic hydrolysis of DNA phosphodiester bonds has been widely studied, but the chemical reaction has not yet been observed. Here we follow the generation of a DNA double-strand break (DSB) by the Desulfurococcus mobilis homing endonuclease I-DmoI, trapping sequential stages of a two-metal-...

  13. Modulation of the DNA scanning activity of the Micrococcus luteus UV endonuclease

    International Nuclear Information System (INIS)

    Hamilton, R.W.; Lloyd, R.S.

    1989-01-01

    Micrococcus luteus UV endonuclease incises DNA at the sites of ultraviolet (UV) light-induced pyrimidine dimers. The mechanism of incision has been previously shown to be a glycosylic bond cleavage at the 5'-pyrimidine of the dimer followed by an apyrimidine endonuclease activity which cleaves the phosphodiester backbone between the pyrimidines. The process by which M. luteus UV endonuclease locates pyrimidine dimers within a population of UV-irradiated plasmids was shown to occur, in vitro, by a processive or sliding mechanism on non-target DNA as opposed to a distributive or random hit mechanism. Form I plasmid DNA containing 25 dimers per molecule was incubated with M. luteus UV endonuclease in time course reactions. The three topological forms of plasmid DNA generated were analyzed by agarose gel electrophoresis. When the enzyme encounters a pyrimidine dimer, it is significantly more likely to make only the glycosylase cleavage as opposed to making both the glycosylic and phosphodiester bond cleavages. Thus, plasmids are accumulated with many alkaline-labile sites relative to single-stranded breaks. In addition, reactions were performed at both pH 8.0 and pH 6.0, in the absence of NaCl, as well as 25,100, and 250 mM NaCl. The efficiency of the DNA scanning reaction was shown to be dependent on both the ionic strength and pH of the reaction. At low ionic strengths, the reaction was shown to proceed by a processive mechanism and shifted to a distributive mechanism as the ionic strength of the reaction increased. Processivity at pH 8.0 is shown to be more sensitive to increases in ionic strength than reactions performed at pH 6.0

  14. Restriction endonucleases from invasive Neisseria gonorrhoeae cause double-strand breaks and distort mitosis in epithelial cells during infection.

    Directory of Open Access Journals (Sweden)

    Linda Weyler

    Full Text Available The host epithelium is both a barrier against, and the target for microbial infections. Maintaining regulated cell growth ensures an intact protective layer towards microbial-induced cellular damage. Neisseria gonorrhoeae infections disrupt host cell cycle regulation machinery and the infection causes DNA double strand breaks that delay progression through the G2/M phase. We show that intracellular gonococci upregulate and release restriction endonucleases that enter the nucleus and damage human chromosomal DNA. Bacterial lysates containing restriction endonucleases were able to fragment genomic DNA as detected by PFGE. Lysates were also microinjected into the cytoplasm of cells in interphase and after 20 h, DNA double strand breaks were identified by 53BP1 staining. In addition, by using live-cell microscopy and NHS-ester stained live gonococci we visualized the subcellular location of the bacteria upon mitosis. Infected cells show dysregulation of the spindle assembly checkpoint proteins MAD1 and MAD2, impaired and prolonged M-phase, nuclear swelling, micronuclei formation and chromosomal instability. These data highlight basic molecular functions of how gonococcal infections affect host cell cycle regulation, cause DNA double strand breaks and predispose cellular malignancies.

  15. Restriction endonucleases from invasive Neisseria gonorrhoeae cause double-strand breaks and distort mitosis in epithelial cells during infection.

    Science.gov (United States)

    Weyler, Linda; Engelbrecht, Mattias; Mata Forsberg, Manuel; Brehwens, Karl; Vare, Daniel; Vielfort, Katarina; Wojcik, Andrzej; Aro, Helena

    2014-01-01

    The host epithelium is both a barrier against, and the target for microbial infections. Maintaining regulated cell growth ensures an intact protective layer towards microbial-induced cellular damage. Neisseria gonorrhoeae infections disrupt host cell cycle regulation machinery and the infection causes DNA double strand breaks that delay progression through the G2/M phase. We show that intracellular gonococci upregulate and release restriction endonucleases that enter the nucleus and damage human chromosomal DNA. Bacterial lysates containing restriction endonucleases were able to fragment genomic DNA as detected by PFGE. Lysates were also microinjected into the cytoplasm of cells in interphase and after 20 h, DNA double strand breaks were identified by 53BP1 staining. In addition, by using live-cell microscopy and NHS-ester stained live gonococci we visualized the subcellular location of the bacteria upon mitosis. Infected cells show dysregulation of the spindle assembly checkpoint proteins MAD1 and MAD2, impaired and prolonged M-phase, nuclear swelling, micronuclei formation and chromosomal instability. These data highlight basic molecular functions of how gonococcal infections affect host cell cycle regulation, cause DNA double strand breaks and predispose cellular malignancies.

  16. Mlh1-Mlh3, a Meiotic Crossover and DNA Mismatch Repair Factor, Is a Msh2-Msh3-stimulated Endonuclease*

    Science.gov (United States)

    Rogacheva, Maria V.; Manhart, Carol M.; Chen, Cheng; Guarne, Alba; Surtees, Jennifer; Alani, Eric

    2014-01-01

    Crossing over between homologous chromosomes is initiated in meiotic prophase in most sexually reproducing organisms by the appearance of programmed double strand breaks throughout the genome. In Saccharomyces cerevisiae the double-strand breaks are resected to form three prime single-strand tails that primarily invade complementary sequences in unbroken homologs. These invasion intermediates are converted into double Holliday junctions and then resolved into crossovers that facilitate homolog segregation during Meiosis I. Work in yeast suggests that Msh4-Msh5 stabilizes invasion intermediates and double Holliday junctions, which are resolved into crossovers in steps requiring Sgs1 helicase, Exo1, and a putative endonuclease activity encoded by the DNA mismatch repair factor Mlh1-Mlh3. We purified Mlh1-Mlh3 and showed that it is a metal-dependent and Msh2-Msh3-stimulated endonuclease that makes single-strand breaks in supercoiled DNA. These observations support a direct role for an Mlh1-Mlh3 endonuclease activity in resolving recombination intermediates and in DNA mismatch repair. PMID:24403070

  17. Crystal Structure of the Homing Endonuclease I-CvuI Provides a New Template for Genome Modification

    DEFF Research Database (Denmark)

    Molina, Rafael; Redondo, Pilar; López-Méndez, Blanca

    2015-01-01

    Homing endonucleases recognize and generate a DNA double-strand break, which has been used to promote gene targeting. These enzymes recognize long DNA stretches; they are highly sequence-specific enzymes and display a very low frequency of cleavage even in complete genomes. Although a large number...... of homing endonucleases have been identified, the landscape of possible target sequences is still very limited to cover the complexity of the whole eukaryotic genome. Therefore, the finding and molecular analysis of homing endonucleases identified but not yet characterized may widen the landscape...

  18. Alkaline gel electrophoresis assay to detect DNA strand breaks and repair mechanisms in Escherichia coli

    International Nuclear Information System (INIS)

    Mattos, Jose Carlos Pelielo de; Motta, Ellen Serri da; Oliveira, Marcia Betania Nunes de; Dantas, Flavio Jose da Silva; Araujo, Adriano Caldeira de

    2008-01-01

    Reactive oxygen species (ROS) can induce lesions in different cellular targets, including DNA. Stannous chloride (SnCl 2 ) is a ROS generator, leading to lethality in Escherichia coli (E. coli), with the base excision repair (BER) mechanism playing a role in this process. Many techniques have been developed to detect genotoxicity, as comet assay, in eukaryotic cells, and plasmid DNA agarose gel electrophoresis. In this study, an adaptation of the alkaline gel electrophoresis method was carried out to ascertain the induction of strand breaks by SnCl 2 in bacterial DNA, from E. coli BER mutants, and its repair pathway. Results obtained show that SnCl 2 was able to induce DNA strand breaks in all strains tested. Moreover, endonuclease IV and exonuclease III play a role in DNA repair. On the whole, data has shown that the alkaline gel electrophoresis assay could be used both for studying DNA strand breaks induction and for associated repair mechanisms. (author)

  19. Alkaline gel electrophoresis assay to detect DNA strand breaks and repair mechanisms in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Mattos, Jose Carlos Pelielo de; Motta, Ellen Serri da; Oliveira, Marcia Betania Nunes de; Dantas, Flavio Jose da Silva; Araujo, Adriano Caldeira de [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Dept. de Biofisica e Biometria. Lab. de Radio e Fotobiologia]. E-mail: jcmattos@uerj.br

    2008-12-15

    Reactive oxygen species (ROS) can induce lesions in different cellular targets, including DNA. Stannous chloride (SnCl{sub 2}) is a ROS generator, leading to lethality in Escherichia coli (E. coli), with the base excision repair (BER) mechanism playing a role in this process. Many techniques have been developed to detect genotoxicity, as comet assay, in eukaryotic cells, and plasmid DNA agarose gel electrophoresis. In this study, an adaptation of the alkaline gel electrophoresis method was carried out to ascertain the induction of strand breaks by SnCl{sub 2} in bacterial DNA, from E. coli BER mutants, and its repair pathway. Results obtained show that SnCl{sub 2} was able to induce DNA strand breaks in all strains tested. Moreover, endonuclease IV and exonuclease III play a role in DNA repair. On the whole, data has shown that the alkaline gel electrophoresis assay could be used both for studying DNA strand breaks induction and for associated repair mechanisms. (author)

  20. DNA scanning mechanism of T4 endonuclease V. Effect of NaCl concentration on processive nicking activity

    International Nuclear Information System (INIS)

    Gruskin, E.A.; Lloyd, R.S.

    1986-01-01

    T4 endonuclease V is a pyrimidine dimer-specific endonuclease which generates incisions in DNA at the sites of pyrimidine dimers by a processive reaction mechanism. A model is presented in which the degree of processivity is directly related to the efficacy of the one-dimensional diffusion of endonuclease V on DNA by which the enzyme locates pyrimidine dimers. The modulation of the processive nicking activity of T4 endonuclease V on superhelical covalently closed circular DNA (form I) which contains pyrimidine dimers has been investigated as a function of the ionic strength of the reaction. Agarose gel electrophoresis was used to separate the three topological forms of the DNA which were generated in time course reactions of endonuclease V with dimer-containing form I DNA in the absence of NaCl, and in 25, 50, and 100 mM NaCl. The degree of processivity was evaluated in terms of the mass fraction of form III (linear) DNA which was produced as a function of the fraction of form I DNA remaining. Processivity is maximal in the absence of NaCl and decreases as the NaCl concentration is increased. At 100 mM NaCl, processivity is abolished and endonuclease V generates incisions in DNA at the site of dimers by a distributive reaction mechanism. The change from the distributive to a processive reaction mechanism occurs at NaCl concentrations slightly below 50 mM. The high degree of processivity which is observed in the absence of NaCl is reversible to the distributive mechanism, as demonstrated by experiments in which the NaCl concentration was increased during the time course reaction. In addition, unirradiated DNA inhibited the incision of irradiated DNA only at NaCl concentrations at which processivity was observed

  1. Breaks in the 45S rDNA Lead to Recombination-Mediated Loss of Repeats

    OpenAIRE

    Warmerdam, Daniël O.; van den Berg, Jeroen; Medema, René H.

    2016-01-01

    rDNA repeats constitute the most heavily transcribed region in the human genome. Tumors frequently display elevated levels of recombination in rDNA, indicating that the repeats are a liability to the genomic integrity of a cell. However, little is known about how cells deal with DNA double-stranded breaks in rDNA. Using selective endonucleases, we show that human cells are highly sensitive to breaks in 45S but not the 5S rDNA repeats. We find that homologous recombination inhibits repair of b...

  2. Physical association of pyrimidine dimer DNA glycosylase and apurinic/apyrimidinic DNA endonuclease essential for repair of ultraviolet-damaged DNA

    International Nuclear Information System (INIS)

    Nakabeppu, Y.; Sekiguchi, M.

    1981-01-01

    T4 endonuclease, which is involved in repair of uv-damaged DNA, has been purified to apparent physical homogeneity. Incubation of uv-irradiated poly(dA).poly(dT) with the purified enzyme preparations resulted in production of alkali-labile apyrimidinic sites, followed by formation of nicks in the polymer. By performing a limited reaction with T4 endonuclease V at pH 8.5, irradiated polymer was converted to an intermediate form that carried a large number of alkali-labile sites but only a few nicks. The intermediate was used as substrate for the assay of apurinic/apyrimidinic DNA endonuclease activity. The two activities, a pyrimidine dimer DNA glycosylase and an apurinic/apyrimidinic DNA endonuclease, were copurified and found in enzyme preparations that contained only a 16,000-dalton polypeptide. These results strongly suggested that a DNA glycosylase specific for pyrimidine dimers and an apurinic/apyrimidinic DNA endonuclease reside in a single polypeptide chain coded by the denV gene of bacteriophage T4

  3. Breaks in the 45S rDNA Lead to Recombination-Mediated Loss of Repeats

    Directory of Open Access Journals (Sweden)

    Daniël O. Warmerdam

    2016-03-01

    Full Text Available rDNA repeats constitute the most heavily transcribed region in the human genome. Tumors frequently display elevated levels of recombination in rDNA, indicating that the repeats are a liability to the genomic integrity of a cell. However, little is known about how cells deal with DNA double-stranded breaks in rDNA. Using selective endonucleases, we show that human cells are highly sensitive to breaks in 45S but not the 5S rDNA repeats. We find that homologous recombination inhibits repair of breaks in 45S rDNA, and this results in repeat loss. We identify the structural maintenance of chromosomes protein 5 (SMC5 as contributing to recombination-mediated repair of rDNA breaks. Together, our data demonstrate that SMC5-mediated recombination can lead to error-prone repair of 45S rDNA repeats, resulting in their loss and thereby reducing cellular viability.

  4. Breaks in the 45S rDNA Lead to Recombination-Mediated Loss of Repeats.

    Science.gov (United States)

    Warmerdam, Daniël O; van den Berg, Jeroen; Medema, René H

    2016-03-22

    rDNA repeats constitute the most heavily transcribed region in the human genome. Tumors frequently display elevated levels of recombination in rDNA, indicating that the repeats are a liability to the genomic integrity of a cell. However, little is known about how cells deal with DNA double-stranded breaks in rDNA. Using selective endonucleases, we show that human cells are highly sensitive to breaks in 45S but not the 5S rDNA repeats. We find that homologous recombination inhibits repair of breaks in 45S rDNA, and this results in repeat loss. We identify the structural maintenance of chromosomes protein 5 (SMC5) as contributing to recombination-mediated repair of rDNA breaks. Together, our data demonstrate that SMC5-mediated recombination can lead to error-prone repair of 45S rDNA repeats, resulting in their loss and thereby reducing cellular viability. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Crystal structure and DNA-binding property of the ATPase domain of bacterial mismatch repair endonuclease MutL from Aquifex aeolicus.

    Science.gov (United States)

    Fukui, Kenji; Iino, Hitoshi; Baba, Seiki; Kumasaka, Takashi; Kuramitsu, Seiki; Yano, Takato

    2017-09-01

    DNA mismatch repair (MMR) system corrects mismatched bases that are generated mainly by DNA replication errors. The repair system excises the error-containing single-stranded region and enables the re-synthesis of the strand. In the early reactions of MMR, MutL endonuclease incises the newly-synthesized/error-containing strand of the duplex to initiate the downstream excision reaction. MutL endonuclease consists of the N-terminal ATPase and C-terminal endonuclease domains. In this study, we report the crystal structure of the ATPase domain of MutL endonuclease from Aquifex aeolicus. The overall structure of the domain was similar to those of human MutL homologs and Escherichia coli MutL, although E. coli MutL has no endonuclease activity. The ATPase domain was comprised of two subdomains: the N-terminal ATP-binding subdomain and the C-terminal α-β sandwich subdomain. Site-directed mutagenesis experiment identified DNA-interacting eight basic amino acid residues, which were distributed across both the two subdomains and formed a DNA-binding cleft. Docking simulation between the structures of the ATPase and endonuclease domains generated a reliable model structure for the full-length A. aeolicus MutL, which satisfies our previous result of small-angle X-ray scattering analysis. On the basis of the model structure and further experimental results, we concluded that the two separate DNA-binding sites in the full-length A. aeolicus MutL simultaneously bind a dsDNA molecule. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Endonuclease α from Saccharomyces cerevisiae shows increased activity on ultraviolet irradiated native DNA

    International Nuclear Information System (INIS)

    Bryant, D.W.; Haynes, R.H.

    1978-01-01

    Endonuclease α isolated from the nucleus of the yeast Saccharomyces cerevisiae is a DNA endonuclease which has been shown to act preferentially on denatured T7 DNA. The purified enzyme is more active with UV-irradiated native T7 DNA than with unirradiated substrate. The relation between damage, measured by pyrimidine dimer concentration, and excess endonuclease activity is most readily explained by local denaturation caused by the presence of pyrimidine dimers. When three radiation sensitive mutants of yeast were tested for the level of endonuclease α present, none were found lacking the enzyme. However, nuclei of strain rad 1-1, a mutant that may be defective in heteroduplex repair as well as excision repair, were found to contain reduced levels of the endonuclease. (orig./AJ) [de

  7. Sequence specificity of DNA cleavage by Micrococcus luteus γ endonuclease

    International Nuclear Information System (INIS)

    Hentosh, P.; Henner, W.D.; Reynolds, R.J.

    1985-01-01

    DNA fragments of defined sequence have been used to determine the sites of cleavage by γ-endonuclease activity in extracts prepared from Micrococcus luteus. End-labeled DNA restriction fragments of pBR322 DNA that had been irradiated under nitrogen in the presence of potassium iodide or t-butanol were treated with M. luteus γ endonuclease and analyzed on irradiated DNA preferentially at the positions of cytosines and thymines. DNA cleavage occurred immediately to the 3' side of pyrimidines in irradiated DNA and resulted in fragments that terminate in a 5'-phosphoryl group. These studies indicate that both altered cytosines and thymines may be important DNA lesions requiring repair after exposure to γ radiation

  8. Identification of a mismatch-specific endonuclease in hyperthermophilic Archaea.

    Science.gov (United States)

    Ishino, Sonoko; Nishi, Yuki; Oda, Soichiro; Uemori, Takashi; Sagara, Takehiro; Takatsu, Nariaki; Yamagami, Takeshi; Shirai, Tsuyoshi; Ishino, Yoshizumi

    2016-04-20

    The common mismatch repair system processed by MutS and MutL and their homologs was identified in Bacteria and Eukarya. However, no evidence of a functional MutS/L homolog has been reported for archaeal organisms, and it is not known whether the mismatch repair system is conserved in Archaea. Here, we describe an endonuclease that cleaves double-stranded DNA containing a mismatched base pair, from the hyperthermophilic archaeon Pyrococcus furiosus The corresponding gene revealed that the activity originates from PF0012, and we named this enzyme Endonuclease MS (EndoMS) as the mismatch-specific Endonuclease. The sequence similarity suggested that EndoMS is the ortholog of NucS isolated from Pyrococcus abyssi, published previously. Biochemical characterizations of the EndoMS homolog from Thermococcus kodakarensis clearly showed that EndoMS specifically cleaves both strands of double-stranded DNA into 5'-protruding forms, with the mismatched base pair in the central position. EndoMS cleaves G/T, G/G, T/T, T/C and A/G mismatches, with a more preference for G/T, G/G and T/T, but has very little or no effect on C/C, A/C and A/A mismatches. The discovery of this endonuclease suggests the existence of a novel mismatch repair process, initiated by the double-strand break generated by the EndoMS endonuclease, in Archaea and some Bacteria. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Substrate specificity of Micrococcus luteus uv endonuclease and its overlap with DNA photolyase activity

    International Nuclear Information System (INIS)

    Patrick, M.H.

    1975-01-01

    The action of an endonuclease from Micrococcus luteus that operates on uv damage in DNA overlaps with that of DNA photolyase from yeast: homo- and heterocyclobutane dipyrimidines in DNA are substrates for both enzymes, but pyrimidine adducts or the spore photoproduct in DNA are not. As expected from this overlap, the action of the two enzymes is mutually interfering: single-strand nicks introduced by the endonuclease effectively preclude photoreactivation; conversely, formation of a photolyase-cyclobutane dipyrimidine complex can prevent nicking by the endonuclease

  10. How quantum entanglement in DNA synchronizes double-strand breakage by type II restriction endonucleases.

    Science.gov (United States)

    Kurian, P; Dunston, G; Lindesay, J

    2016-02-21

    Macroscopic quantum effects in living systems have been studied widely in pursuit of fundamental explanations for biological energy transport and sensing. While it is known that type II endonucleases, the largest class of restriction enzymes, induce DNA double-strand breaks by attacking phosphodiester bonds, the mechanism by which simultaneous cutting is coordinated between the catalytic centers remains unclear. We propose a quantum mechanical model for collective electronic behavior in the DNA helix, where dipole-dipole oscillations are quantized through boundary conditions imposed by the enzyme. Zero-point modes of coherent oscillations would provide the energy required for double-strand breakage. Such quanta may be preserved in the presence of thermal noise by the enzyme's displacement of water surrounding the DNA recognition sequence. The enzyme thus serves as a decoherence shield. Palindromic mirror symmetry of the enzyme-DNA complex should conserve parity, because symmetric bond-breaking ceases when the symmetry of the complex is violated or when physiological parameters are perturbed from optima. Persistent correlations in DNA across longer spatial separations-a possible signature of quantum entanglement-may be explained by such a mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Divalent metal ion differentially regulates the sequential nicking reactions of the GIY-YIG homing endonuclease I-BmoI.

    Directory of Open Access Journals (Sweden)

    Benjamin P Kleinstiver

    Full Text Available Homing endonucleases are site-specific DNA endonucleases that function as mobile genetic elements by introducing double-strand breaks or nicks at defined locations. Of the major families of homing endonucleases, the modular GIY-YIG endonucleases are least understood in terms of mechanism. The GIY-YIG homing endonuclease I-BmoI generates a double-strand break by sequential nicking reactions during which the single active site of the GIY-YIG nuclease domain must undergo a substantial reorganization. Here, we show that divalent metal ion plays a significant role in regulating the two independent nicking reactions by I-BmoI. Rate constant determination for each nicking reaction revealed that limiting divalent metal ion has a greater impact on the second strand than the first strand nicking reaction. We also show that substrate mutations within the I-BmoI cleavage site can modulate the first strand nicking reaction over a 314-fold range. Additionally, in-gel DNA footprinting with mutant substrates and modeling of an I-BmoI-substrate complex suggest that amino acid contacts to a critical GC-2 base pair are required to induce a bottom-strand distortion that likely directs conformational changes for reaction progress. Collectively, our data implies mechanistic roles for divalent metal ion and substrate bases, suggesting that divalent metal ion facilitates the re-positioning of the GIY-YIG nuclease domain between sequential nicking reactions.

  12. Mycobacterial UvrD1 is a Ku-dependent DNA helicase that plays a role in multiple DNA repair events, including double-strand break repair.

    Science.gov (United States)

    Sinha, Krishna Murari; Stephanou, Nicolas C; Gao, Feng; Glickman, Michael S; Shuman, Stewart

    2007-05-18

    Mycobacterium tuberculosis and other bacterial pathogens have a Ku-dependent nonhomologous end joining pathway of DNA double-strand break repair. Here we identify mycobacterial UvrD1 as a novel interaction partner for Ku in a genome-wide yeast two-hybrid screen. UvrD1 per se is a vigorous DNA-dependent ATPase but a feeble DNA helicase. Ku stimulates UvrD1 to catalyze ATP-dependent unwinding of 3'-tailed DNAs. UvrD1, Ku, and DNA form a stable ternary complex in the absence of ATP. The Ku binding determinants are located in the distinctive C-terminal segment of UvrD1. A second mycobacterial paralog, UvrD2, is a vigorous Ku-independent DNA helicase. Ablation of UvrD1 sensitizes Mycobacterium smegmatis to killing by ultraviolet and ionizing radiation and to a single chromosomal break generated by I-SceI endonuclease. The physical and functional interactions of bacterial Ku and UvrD1 highlight the potential for cross-talk between components of nonhomologous end joining and nucleotide excision repair pathways.

  13. Alkaline gel electrophoresis assay to detect DNA strand breaks and repair mechanisms in Escherichia coli

    Directory of Open Access Journals (Sweden)

    José Carlos Pelielo de Mattos

    2008-12-01

    Full Text Available Reactive oxygen species (ROS can induce lesions in different cellular targets, including DNA. Stannous chloride (SnCl2 is a ROS generator, leading to lethality in Escherichia coli (E. coli, with the base excision repair (BER mechanism playing a role in this process. Many techniques have been developed to detect genotoxicity, as comet assay, in eukaryotic cells, and plasmid DNA agarose gel electrophoresis. In this study, an adaptation of the alkaline gel electrophoresis method was carried out to ascertain the induction of strand breaks by SnCl2 in bacterial DNA, from E. coli BER mutants, and its repair pathway. Results obtained show that SnCl2 was able to induce DNA strand breaks in all strains tested. Moreover, endonuclease IV and exonuclease III play a role in DNA repair. On the whole, data has shown that the alkaline gel electrophoresis assay could be used both for studying DNA strand breaks induction and for associated repair mechanisms.Espécies reativas de oxigênio (ERO podem induzir lesões em diferentes alvos celulares, incluindo o DNA. O cloreto estanoso (SnCl2 é um gerador de ERO que induz letalidade em E. coli, sendo o reparo por excisão de bases (BER um mecanismo importante neste processo. Técnicas como o ensaio cometa (em eucariotos e a eletroforese de DNA plasmidial em gel de agarose têm sido utilizadas para detectar genotoxicidade. No presente estudo, uma adaptação do método de eletroforese em gel alcalino de agarose foi usada para verificar a indução de quebras, pelo SnCl2, no DNA de E. coli, bem como a participação de enzimas do BER na restauração das lesões. Os resultados mostraram que o SnCl2 induziu quebras no DNA de todas as cepas testadas. Além disso, endonuclease IV e exonuclease III estão envolvidas na reparação dos danos. Em resumo, os dados obtidos indicam que a metodologia de eletroforese em gel alcalino de agarose pode ser empregada tanto para o estudo de quebras no DNA, quanto para avaliação dos

  14. DENV gene of bacteriophage T4 codes for both pyrimidine dimer-DNA glycosylase and apyrimidinic endonuclease activities

    International Nuclear Information System (INIS)

    McMillan, S.; Edenberg, H.J.; Radany, E.H.; Friedberg, R.C.; Friedberg, E.C.

    1981-01-01

    Recent studies have shown that purified preparations of phage T4 UV DNA-incising activity (T4 UV endonuclease or endonuclease V of phase T4) contain a pyrimidine dimer-DNA glycosylase activity that catalyzes hydrolysis of the 5' glycosyl bond of dimerized pyrimidines in UV-irradiated DNA. Such enzyme preparations have also been shown to catalyze the hydrolysis of phosphodiester bonds in UV-irradiated DNA at a neutral pH, presumably reflecting the action of an apurinic/apyrimidinic endonuclease at the apyrimidinic sites created by the pyrimidine dimer-DNA glycosylase. In this study we found that preparations of T4 UV DNA-incising activity contained apurinic/apyrimidinic endonuclease activity that nicked depurinated form I simian virus 40 DNA. Apurinic/apyrimidinic endonuclease activity was also found in extracts of Escherichia coli infected with T4 denV + phage. Extracts of cells infected with T4 denV mutants contained significantly lower levels of apurinic/apyrimidinic endonuclease activity; these levels were no greater than the levels present in extracts of uninfected cells. Furthermore, the addition of DNA containing UV-irradiated DNA and T4 enzyme resulted in competition for pyrimidine dimer-DNA glycosylase activity against the UV-irradiated DNA. On the basis of these results, we concluded that apurinic/apyrimidinic endonuclease activity is encoded by the denV gene of phage T4, the same gene that codes for pyrimidine dimer-DNA glycosylase activity

  15. Expression analysis of a ''Cucurbita'' cDNA encoding endonuclease

    International Nuclear Information System (INIS)

    Szopa, J.

    1995-01-01

    The nuclear matrices of plant cell nuclei display intrinsic nuclease activity which consists in nicking supercoiled DNA. A cDNA encoding a 32 kDa endonuclease has been cloned and sequenced. The nucleotide and deduced amino-acid sequences show high homology to known 14-3-3-protein sequences from other sources. The amino-acid sequence shows agreement with consensus sequences for potential phosphorylation by protein kinase A and C and for calcium, lipid and membrane-binding sites. The nucleotide-binding site is also present within the conserved part of the sequence. By Northern blot analysis, the differential expression of the corresponding mRNA was detected; it was the strongest in sink tissues. The endonuclease activity found on DNA-polyacrylamide gel electrophoresis coincided with mRNA content and was the highest in tuber. (author). 22 refs, 6 figs

  16. Biological significance of facilitated diffusion in protein-DNA interactions. Applications to T4 endonuclease V-initiated DNA repair

    International Nuclear Information System (INIS)

    Dowd, D.R.; Lloyd, R.S.

    1990-01-01

    Facilitated diffusion along nontarget DNA is employed by numerous DNA-interactive proteins to locate specific targets. Until now, the biological significance of DNA scanning has remained elusive. T4 endonuclease V is a DNA repair enzyme which scans nontarget DNA and processively incises DNA at the site of pyrimidine dimers which are produced by exposure to ultraviolet (UV) light. In this study we tested the hypothesis that there exists a direct correlation between the degree of processivity of wild type and mutant endonuclease V molecules and the degree of enhanced UV resistance which is conferred to repair-deficient Eshcerichia coli. This was accomplished by first creating a series of endonuclease V mutants whose in vitro catalytic activities were shown to be very similar to that of the wild type enzyme. However, when the mechanisms by which these enzymes search nontarget DNA for its substrate were analyzed in vitro and in vivo, the mutants displayed varying degrees of nontarget DNA scanning ranging from being nearly as processive as wild type to randomly incising dimers within the DNA population. The ability of these altered endonuclease V molecules to enhance UV survival in DNA repair-deficient E. coli then was assessed. The degree of enhanced UV survival was directly correlated with the level of facilitated diffusion. This is the first conclusive evidence directly relating a reduction of in vivo facilitated diffusion with a change in an observed phenotype. These results support the assertion that the mechanisms which DNA-interactive proteins employ in locating their target sites are of biological significance

  17. X-ray induced DNA double strand break production and repair in mammalian cells as measured by neutral filter elution

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, M O; Kohn, K W [National Institutes of Health, Bethesda, MD (USA)

    1979-10-01

    A neutral filter elution method was used for detecting DNA double strand breaks in mouse L1210 cells after X-ray. The assay detected the number of double strand breaks induced by as little as 1000 rad of X-ray. The rate of DNA elution through the filters under neutral conditions increased with X-ray dose. Certain conditions for deproteinization, pH, and filter type were shown to increase the assay's sensitivity. Hydrogen peroxide and Bleomycin also induced apparent DNA double strand breaks, although the ratios of double to single strand breaks varied from those produced by X-ray. The introduction of double strand cuts by HpA I restriction endonuclease in DNA lysed on filters resulted in a rapid rate of elution under neutral conditions, implying that the method can detect double strand breaks if they exist in the DNA. The eluted DNA banded with a double stranded DNA marker in cesium chloride. This evidence suggested that the assay detected DNA double strand breaks. L1210 cells were shown to rejoin most of the DNA double strand breaks induced by 5-10 krad of X-ray with a half-time of about 40 minutes. (author).

  18. DNA single-strand breaks during repair of uv damage in human fibroblasts and abnormalities of repair in xeroderma pigmentosum

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Kohn, K.W.; Kann, H.E. Jr.

    1976-01-01

    The method of DNA alkaline elution was applied to a study of the formation and resealing of DNA single-strand breaks after irradiation of human fibroblasts with ultraviolet light (UV). The general features of the results were consistent with current concepts of DNA excision repair, in that breaks appeared rapidly after uv, and resealed slowly in normal fibroblasts, whereas breaks did not appear in those cells of patients with xeroderma pigmentosum (XP) that are known to have defects in DNA repair synthesis. The appearance of breaks required a short post-uv incubation, consistent with the expected action of an endonuclease. Cells of the variant form of XP characterized by normal DNA repair synthesis exhibited normal production of breaks after uv, but were slower than normal cells in resealing these breaks. This difference was enhanced by caffeine. A model is proposed to relate this finding with a previously described defect in post-replication repair in these XP variant cells. DNA crosslinking appears to cause an underestimate in the measurement of DNA breakage after uv

  19. Selective inhibition by harmane of the apurinic apyrimidinic endonuclease activity of phage T4-induced UV endonuclease.

    Science.gov (United States)

    Warner, H R; Persson, M L; Bensen, R J; Mosbaugh, D W; Linn, S

    1981-11-25

    1-Methyl-9H-pyrido-[3,4-b]indole (harmane) inhibits the apurinic/apyrimidinic (AP) endonuclease activity of the UV endonuclease induced by phage T4, whereas it stimulates the pyrimidine dimer-DNA glycosylase activity of that enzyme. E. coli endonuclease IV, E. coli endonuclease VI (the AP endonuclease activity associated with E. coli exonuclease III), and E. coli uracil-DNA glycosylase were not inhibited by harmane. Human fibroblast AP endonucleases I and II also were only slightly inhibited. Therefore, harmane is neither a general inhibitor of AP endonucleases, nor a general inhibitor of Class I AP endonucleases which incise DNA on the 3'-side of AP sites. However, E. coli endonuclease III and its associated dihydroxythymine-DNA glycosylase activity were both inhibited by harmane. This observation suggests that harmane may inhibit only AP endonucleases which have associated glycosylase activities.

  20. Mycobacterial nonhomologous end joining mediates mutagenic repair of chromosomal double-strand DNA breaks.

    Science.gov (United States)

    Stephanou, Nicolas C; Gao, Feng; Bongiorno, Paola; Ehrt, Sabine; Schnappinger, Dirk; Shuman, Stewart; Glickman, Michael S

    2007-07-01

    Bacterial nonhomologous end joining (NHEJ) is a recently described DNA repair pathway best characterized in mycobacteria. Bacterial NHEJ proteins LigD and Ku have been analyzed biochemically, and their roles in linear plasmid repair in vivo have been verified genetically; yet the contributions of NHEJ to repair of chromosomal DNA damage are unknown. Here we use an extensive set of NHEJ- and homologous recombination (HR)-deficient Mycobacterium smegmatis strains to probe the importance of HR and NHEJ in repairing diverse types of chromosomal DNA damage. An M. smegmatis Delta recA Delta ku double mutant has no apparent growth defect in vitro. Loss of the NHEJ components Ku and LigD had no effect on sensitivity to UV radiation, methyl methanesulfonate, or quinolone antibiotics. NHEJ deficiency had no effect on sensitivity to ionizing radiation in logarithmic- or early-stationary-phase cells but was required for ionizing radiation resistance in late stationary phase in 7H9 but not LB medium. In addition, NHEJ components were required for repair of I-SceI mediated chromosomal double-strand breaks (DSBs), and in the absence of HR, the NHEJ pathway rapidly mutates the chromosomal break site. The molecular outcomes of NHEJ-mediated chromosomal DSB repair involve predominantly single-nucleotide insertions at the break site, similar to previous findings using plasmid substrates. These findings demonstrate that prokaryotic NHEJ is specifically required for DSB repair in late stationary phase and can mediate mutagenic repair of homing endonuclease-generated chromosomal DSBs.

  1. The mechanisms of action of E. coli endonuclease III and T4 UV endonuclease (endonuclease V) at AP sites.

    OpenAIRE

    Kim, J; Linn, S

    1988-01-01

    Treatment of DNA containing AP sites with either T4 UV endonuclease or with E. coli endonuclease III followed by a human class II AP endonuclease releases a putative beta-elimination product. This result suggests that both the T4 endonuclease and E. coli endonuclease III class I AP endonucleases catalyze phosphodiester bond cleavage via a lyase- rather than a hydrolase mechanism. Indeed, we have not detected a class I AP endonuclease which hydrolytically catalyzes phosphodiester bond cleavage...

  2. Presence of UV-endonuclease sensitive sites in daughter DNA of UV-irradiated mammalian cells

    International Nuclear Information System (INIS)

    D'Ambrosio, S.; Setlow, R.B.

    1978-02-01

    Asynchronous Chinese hamster cells were irradiated with 10 Jm -2 uv radiation and 0.25 to 4 hours later pulse-labeled with [ 3 H]thymidine. Cells synchronized by shaking off mitotic and G 1 cells were irradiated in either the G 1 -phase or S-phase of the cell cycle and pulse-labeled with [ 3 H]thymidine in the S-phase. After a 12 to 14 hour chase in unlabeled medium, the DNA was extracted, incubated with Micrococcus luteus uv-endonuclease and sedimented in alkaline sucrose. The number of endonuclease sensitive sites decreased as the time between uv irradiation and pulse-labeling of daughter DNA increased. Further, there were significantly less endonuclease sensitive sites in the daughter DNA from cells irradiated in the G 1 -phase than in the S-phase. These data indicate that very few, if any, dimers are transferred from parental DNA to daughter DNA and that the dimers detected in daughter DNA may be due to the irradiation of replicating daughter DNA before labeling

  3. Molecular Recognition of DNA Damage Sites by Apurinic/Apyrimidinic Endonucleases

    Energy Technology Data Exchange (ETDEWEB)

    Braun, W. A.

    2005-07-28

    The DNA repair/redox factor AP endonuclease 1 (APE1) is a multifunctional protein which is known to to be essential for DNA repair activity in human cells. Structural/functional analyses of the APE activity is thus been an important research field to assess cellular defense mechanisms against ionizing radiation.

  4. Karyopherin-Mediated Nuclear Import of the Homing Endonuclease VMA1-Derived Endonuclease Is Required for Self-Propagation of the Coding Region

    OpenAIRE

    Nagai, Yuri; Nogami, Satoru; Kumagai-Sano, Fumi; Ohya, Yoshikazu

    2003-01-01

    VMA1-derived endonuclease (VDE), a site-specific endonuclease in Saccharomyces cerevisiae, enters the nucleus to generate a double-strand break in the VDE-negative allelic locus, mediating the self-propagating gene conversion called homing. Although VDE is excluded from the nucleus in mitotic cells, it relocalizes at premeiosis, becoming localized in both the nucleus and the cytoplasm in meiosis. The nuclear localization of VDE is induced by inactivation of TOR kinases, which constitute centr...

  5. Detection of endonuclease III- and 8-oxoguanine glycosylase-sensitive base modifications in γ-irradiated DNA and cells by the aldehyde reactive probe (ARP) assay

    International Nuclear Information System (INIS)

    Mohsin Ali, M.; Kurisu, Satofumi; Yoshioka, Yoshihiro; Terato, Hiroaki; Ohyama, Yoshihiko; Ide Hiroshi; Kubo, Kihei

    2004-01-01

    Ionizing radiation generates diverse DNA lesions that differentially induce cell death and mutations. In the present study, calf thymus DNA (400 μg/ml) and HeLa cells were irradiated by 60 Co γ-rays, and abasic (AP) sites and endonuclease (Endo) III- and 8-oxoguanine glycosylase (hOGG1)-sensitive base modifications in DNA were quantitated by the aldehyde reactive probe (ARP) assay. The irradiation of calf thymus DNA in phosphate buffer generated 91 Endo III- and 100 hOGG1-sensitive base modifications and 110 AP sites per 10 6 base pairs (bp) per Gy. The yield of the lesions in Tris buffer was 41- to 91-fold lower than that in phosphate, demonstrating a radioprotective effect of Tris. The HeLa cell chromosomal DNA contained 12 Endo III- and 3.8 hOGG1-sensitive base modifications and less than 1 AP sites per 10 6 bp as endogenous damage, and their level was increased by irradiation. The yields of the damage at 1 Gy (roughly equivalent to the lethal dose of HeLa cells [1.6-1.8 Gy]) were 0.13 Endo III, 0.091 hOGG1, and 0.065 AP sites per 10 6 bp, showing that irradiation with a lethal dose brought about only a marginal increase in base damage relative to an endogenous one. A comparison of the present data with those reported for DNA strand breaks supports the primary importance of double-strand breaks and clustered lesions as lethal damages formed by ionizing radiation. (author)

  6. Coupling of the nucleotide incision and 3' {yields} 5' exonuclease activities in Escherichia coli endonuclease IV: Structural and genetic evidences

    Energy Technology Data Exchange (ETDEWEB)

    Golan, Gali [Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Ishchenko, Alexander A. [Groupe Reparation de l' ADN, CNRS UMR 8126, Univ. Paris-Sud, Institut de Cancerologie Gustave Roussy, 39, rue Camille Desmoulins, F-94805 Villejuif Cedex (France); Khassenov, Bekbolat [National Center for Biotechnology, Astana (Kazakhstan); Shoham, Gil, E-mail: gil2@vms.huji.ac.il [Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Saparbaev, Murat K., E-mail: smurat@igr.fr [Groupe Reparation de l' ADN, CNRS UMR 8126, Univ. Paris-Sud, Institut de Cancerologie Gustave Roussy, 39, rue Camille Desmoulins, F-94805 Villejuif Cedex (France)

    2010-03-01

    Aerobic respiration generates reactive oxygen species (ROS) as a by-product of cellular metabolism which can damage DNA. The complex nature of oxidative DNA damage requires actions of several repair pathways. Oxidized DNA bases are substrates for two overlapping pathways: base excision repair (BER) and nucleotide incision repair (NIR). In the BER pathway a DNA glycosylase cleaves the N-glycosylic bond between the abnormal base and deoxyribose, leaving either an abasic site or single-stranded DNA break. Alternatively, in the NIR pathway, an apurinic/apyrimidinic (AP) endonuclease incises duplex DNA 5' next to oxidatively damaged nucleotide. The multifunctional Escherichia coli endonuclease IV (Nfo) is involved in both BER and NIR pathways. Nfo incises duplex DNA 5' of a damaged residue but also possesses an intrinsic 3' {yields} 5' exonuclease activity. Herein, we demonstrate that Nfo-catalyzed NIR and exonuclease activities can generate a single-strand gap at the 5' side of 5,6-dihydrouracil residue. Furthermore, we show that Nfo mutants carrying amino acid substitutions H69A and G149D are deficient in both NIR and exonuclease activities, suggesting that these two functions are genetically linked and governed by the same amino acid residues. The crystal structure of Nfo-H69A mutant reveals the loss of one of the active site zinc atoms (Zn1) and rearrangements of the catalytic site, but no gross changes in the overall enzyme conformation. We hypothesize that these minor changes strongly affect the DNA binding of Nfo. Decreased affinity may lead to a different kinking angle of the DNA helix and this in turn thwart nucleotide incision and exonuclease activities of Nfo mutants but to lesser extent of their AP endonuclease function. Based on the biochemical and genetic data we propose a model where nucleotide incision coupled to 3' {yields} 5' exonuclease activity prevents formation of lethal double-strand breaks when repairing bi

  7. Yeast redoxyendonuclease, a DNA repair enzyme similar to Escherichia coli endonuclease III

    International Nuclear Information System (INIS)

    Gossett, J.; Lee, K.; Cunningham, R.P.; Doetsch, P.W.

    1988-01-01

    A DNA repair endonuclease (redoxyendonuclease) was isolated from bakers' yeast (Saccharomyces cerevisiae). The enzyme has been purified by a series of column chromatography steps and cleaves OsO 4 -damaged, double-stranded DNA at sites of thymine glycol and heavily UV-irradiated DNA at sites of cytosine, thymine, and guanine photoproducts. The base specificity and mechanism of phosphodiester bond cleavage for the yeast redoxyendonuclease appear to be identical with those of Escherichia coli endonuclease III when thymine glycol containing, end-labeled DNA fragments of defined sequence are employed as substrates. Yeast redoxyendonuclease has an apparent molecular size of 38,000-42,000 daltons and is active in the absence of divalent metal cations. The identification of such an enzyme in yeast may be of value in the elucidation of the biochemical basis for radiation sensitivity in certain yeast mutants

  8. Analysis of Endonuclease R·EcoRI Fragments of DNA from Lambdoid Bacteriophages and Other Viruses by Agarose-Gel Electrophoresis

    Science.gov (United States)

    Helling, Robert B.; Goodman, Howard M.; Boyer, Herbert W.

    1974-01-01

    By means of agarose-gel electrophoresis, endonuclease R·EcoRI-generated fragments of DNA from various viruses were separated, their molecular weights were determined, and complete or partial fragment maps for lambda, φ80, and hybrid phages were constructed. Images PMID:4372397

  9. Evolution of divergent DNA recognition specificities in VDE homing endonucleases from two yeast species.

    Science.gov (United States)

    Posey, Karen L; Koufopanou, Vassiliki; Burt, Austin; Gimble, Frederick S

    2004-01-01

    Homing endonuclease genes (HEGs) are mobile DNA elements that are thought to confer no benefit to their host. They encode site-specific DNA endonucleases that perpetuate the element within a species population by homing and disseminate it between species by horizontal transfer. Several yeast species contain the VMA1 HEG that encodes the intein-associated VMA1-derived endonuclease (VDE). The evolutionary state of VDEs from 12 species was assessed by assaying their endonuclease activities. Only two enzymes are active, PI-ZbaI from Zygosaccharomyces bailii and PI-ScaI from Saccharomyces cariocanus. PI-ZbaI cleaves the Z.bailii recognition sequence significantly faster than the Saccharomyces cerevisiae site, which differs at six nucleotide positions. A mutational analysis indicates that PI-ZbaI cleaves the S.cerevisiae substrate poorly due to the absence of a contact that is analogous to one made in PI-SceI between Gln-55 and nucleotides +9/+10. PI-ZbaI cleaves the Z.bailii substrate primarily due to a single base-pair substitution (A/T+5 --> T/A+5). Structural modeling of the PI-ZbaI/DNA complex suggests that Arg-331, which is absent in PI-SceI, contacts T/A+5, and the reduced activity observed in a PI-ZbaI R331A mutant provides evidence for this interaction. These data illustrate that homing endonucleases evolve altered specificity as they adapt to recognize alternative target sites.

  10. Evolution of divergent DNA recognition specificities in VDE homing endonucleases from two yeast species

    Science.gov (United States)

    Posey, Karen L.; Koufopanou, Vassiliki; Burt, Austin; Gimble, Frederick S.

    2004-01-01

    Homing endonuclease genes (HEGs) are mobile DNA elements that are thought to confer no benefit to their host. They encode site-specific DNA endonucleases that perpetuate the element within a species population by homing and disseminate it between species by horizontal transfer. Several yeast species contain the VMA1 HEG that encodes the intein-associated VMA1-derived endonuclease (VDE). The evolutionary state of VDEs from 12 species was assessed by assaying their endonuclease activities. Only two enzymes are active, PI-ZbaI from Zygosaccharomyces bailii and PI-ScaI from Saccharomyces cariocanus. PI-ZbaI cleaves the Z.bailii recognition sequence significantly faster than the Saccharomyces cerevisiae site, which differs at six nucleotide positions. A mutational analysis indicates that PI-ZbaI cleaves the S.cerevisiae substrate poorly due to the absence of a contact that is analogous to one made in PI-SceI between Gln-55 and nucleotides +9/+10. PI-ZbaI cleaves the Z.bailii substrate primarily due to a single base-pair substitution (A/T+5 → T/A+5). Structural modeling of the PI-ZbaI/DNA complex suggests that Arg-331, which is absent in PI-SceI, contacts T/A+5, and the reduced activity observed in a PI-ZbaI R331A mutant provides evidence for this interaction. These data illustrate that homing endonucleases evolve altered specificity as they adapt to recognize alternative target sites. PMID:15280510

  11. Specific action of T4 endonuclease V on damaged DNA in xeroderma pigmentosum cells in vivo

    International Nuclear Information System (INIS)

    Tanaka, K.; Hayakawa, H.; Sekiguchi, M.; Okada, Y.

    1977-01-01

    The specific action of T4 endonuclease V on damaged DNA in xeroderma pigmentosum cells was examined using an in vivo assay system with hemagglutinating virus of Japan (Sendai virus) inactivated by uv light. A clear dose response was observed between the level of uv-induced unscheduled DNA synthesis of xeroderma pigmentosum cells and the amount of T4 endonuclease V activity added. The T4 enzyme was unstable in human cells, and its half-life was 3 hr. Fractions derived from an extract of Escherichia coli infected with T4v 1 , a mutant defective in the endonuclease V gene, showed no ability to restore the uv-induced unscheduled DNA synthesis of xeroderma pigmentosum cells. However, fractions derived from an extract of T4D-infected E. coli with endonuclease V activity were effective. The T4 enzyme was effective in xeroderma pigmentosum cells on DNA damaged by uv light but not in cells damaged by 4-nitroquinoline 1-oxide. The results of these experiments show that the T4 enzyme has a specific action on human cell DNA in vivo. Treatment with the T4 enzyme increased the survival of group A xeroderma pigmentosum cells after uv irradiation

  12. Cleavage of phosphorothioated DNA and methylated DNA by the type IV restriction endonuclease ScoMcrA.

    Directory of Open Access Journals (Sweden)

    Guang Liu

    2010-12-01

    Full Text Available Many taxonomically diverse prokaryotes enzymatically modify their DNA by replacing a non-bridging oxygen with a sulfur atom at specific sequences. The biological implications of this DNA S-modification (phosphorothioation were unknown. We observed that simultaneous expression of the dndA-E gene cluster from Streptomyces lividans 66, which is responsible for the DNA S-modification, and the putative Streptomyces coelicolor A(32 Type IV methyl-dependent restriction endonuclease ScoA3McrA (Sco4631 leads to cell death in the same host. A His-tagged derivative of ScoA3McrA cleaved S-modified DNA and also Dcm-methylated DNA in vitro near the respective modification sites. Double-strand cleavage occurred 16-28 nucleotides away from the phosphorothioate links. DNase I footprinting demonstrated binding of ScoA3McrA to the Dcm methylation site, but no clear binding could be detected at the S-modified site under cleavage conditions. This is the first report of in vitro endonuclease activity of a McrA homologue and also the first demonstration of an enzyme that specifically cleaves S-modified DNA.

  13. [Endonuclease modified comet assay for oxidative DNA damage induced by detection of genetic toxicants].

    Science.gov (United States)

    Zhao, Jian; Li, Hongli; Zhai, Qingfeng; Qiu, Yugang; Niu, Yong; Dai, Yufei; Zheng, Yuxin; Duan, Huawei

    2014-03-01

    The aim of this study was to investigate the use of the lesion-specific endonucleases-modified comet assay for analysis of DNA oxidation in cell lines. DNA breaks and oxidative damage were evaluated by normal alkaline and formamidopyrimidine-DNA-glycosylase (FPG) modified comet assays. Cytotoxicity were assessed by MTT method. The human bronchial epithelial cell (16HBE) were treated with benzo (a) pyrene (B(a)P), methyl methanesulfonate (MMS), colchicine (COL) and vincristine (VCR) respectively, and the dose is 20 µmol/L, 25 mg/ml, 5 mg/L and 0.5 mg/L for 24 h, respectively. Oxidative damage was also detected by levels of reactive oxygen species in treated cells. Four genotoxicants give higher cytotoxicity and no significant changes on parameters of comet assay treated by enzyme buffer. Cell survival rate were (59.69 ± 2.60) %, (54.33 ± 2.81) %, (53.11 ± 4.00) %, (51.43 ± 3.92) % in four groups, respectively. There was the direct DNA damage induced by test genotoxicants presented by tail length, Olive tail moment (TM) and tail DNA (%) in the comet assay. The presence of FPG in the assays increased DNA migration in treated groups when compared to those without it, and the difference was statistically significant which indicated that the clastogen and aneugen could induce oxidative damage in DNA strand. In the three parameters, the Olive TM was changed most obviously after genotoxicants treatment. In the contrast group, the Olive TM of B(a) P,MMS, COL,VCR in the contrast groups were 22.99 ± 17.33, 31.65 ± 18.86, 19.86 ± 9.56 and 17.02 ± 9.39, respectively, after dealing with the FPG, the Olive TM were 34.50 ± 17.29, 43.80 ± 10.06, 33.10 ± 12.38, 28.60 ± 10.53, increased by 58.94%, 38.48%, 66.86% and 68.21%, respectively (t value was 3.91, 3.89, 6.66 and 3.87, respectively, and all P comet assay appears more specific for detecting oxidative DNA damage induced by genotoxicants exposure, and the application of comet assay will be expanded. The endonuclease

  14. Induction of DNA double-strand breaks by restriction enzymes in X-ray-sensitive mutant Chinese hamster ovary cells measured by pulsed-field gel electrophoresis

    International Nuclear Information System (INIS)

    Kinashi, Yuko; Nagasawa, Hatsumi; Little, J.B.; Okayasu, Ryuichi; Iliakis, G.E.

    1995-01-01

    This investigation was designed to determine whether the cytotoxic effects of different restriction endonucleases are related to the number and type of DNA double-strand breaks (DSBs) they produce. Chinese hamster ovary (CHO) K1 and xrs-5 cells, a radiosensitive mutant of CHO K1, were exposed to restriction endonucleases HaeIII, HinfI, PvuII and BamHI by electroporation. These enzymes represent both blunt and sticky end cutters with differing recognition sequence lengths. The number of DSBs was measured by pulsed-field gel electrophoresis (PFGE). Two forms of PFGE were employed: asymmetric field-inversion gel electrophoresis (AFIGE) for measuring the kinetics of DNA breaks by enzyme digestion and clamped homogeneous gel electrophoresis (CHEF) for examining the size distributions of damaged DNA. The amount of DNA damage induced by exposure to all four restriction enzymes was significantly greater in xrs-5 compared to CHO K1 cells, consistent with the reported DSB repair deficiency in these cells. Since restriction endonucleases produce DSBs alone as opposed to the various types of DNA damage induced by X rays, these results confirm that the repair defect in this mutant involves the rejoining of DSBs. Although the cutting frequency was directly related to the length of the recognition sequence for four restriction enzymes, there was no simple correlation between the cytotoxic effect and the amount of DNA damage produced by each enzyme in either cell line. This finding suggests that the type or nature of the cutting sequence itself may play a role in restriction enzyme-induced cell killing. 32 refs., 6 figs., 3 tabs

  15. The metabolic enhancer piracetam attenuates mitochondrion-specific endonuclease G translocation and oxidative DNA fragmentation.

    Science.gov (United States)

    Gupta, Sonam; Verma, Dinesh Kumar; Biswas, Joyshree; Rama Raju, K Siva; Joshi, Neeraj; Wahajuddin; Singh, Sarika

    2014-08-01

    This study was performed to investigate the involvement of mitochondrion-specific endonuclease G in piracetam (P)-induced protective mechanisms. Studies have shown the antiapoptotic effects of piracetam but the mechanism of action of piracetam is still an enigma. To assess the involvement of endonuclease G in piracetam-induced protective effects, astrocyte glial cells were treated with lipopolysaccharide (LPS) and piracetam. LPS treatment caused significantly decreased viability, mitochondrial activity, oxidative stress, chromatin condensation, and DNA fragmentation, which were attenuated by piracetam cotreatment. Cotreatment of astrocytes with piracetam showed its significantly time-dependent absorption as observed with high-performance liquid chromatography. Astrocytes treated with piracetam alone showed enhanced mitochondrial membrane potential (MMP) in comparison to control astrocytes. However, in LPS-treated cells no significant alteration in MMP was observed in comparison to control cells. Protein and mRNA levels of the terminal executor of the caspase-mediated pathway, caspase-3, were not altered significantly in LPS or LPS + piracetam-treated astrocytes, whereas endonuclease G was significantly translocated to the nucleus in LPS-treated astrocytes. Piracetam cotreatment attenuated the LPS-induced endonuclease G translocation. In conclusion this study indicates that LPS treatment of astrocytes caused decreased viability, oxidative stress, mitochondrial dysfunction, chromatin condensation, DNA damage, and translocation of endonuclease G to the nucleus, which was inhibited by piracetam cotreatment, confirming that the mitochondrion-specific endonuclease G is one of the factors involved in piracetam-induced protective mechanisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Enhancement of ultraviolet-DNA repair in denV gene transfectants and T4 endonuclease V-liposome recipients

    International Nuclear Information System (INIS)

    Kibitel, J.T.; Yee, V.; Yarosh, D.B.

    1991-01-01

    The phage T4 denV gene, coding for the pyrimidine-dimer specific T4 endonuclease V, was transfected into human repair-proficient fibroblasts, repair-deficient xeroderma pigmentosum fibroblasts, and wild type CHO hamster cells. Transfectants maintained denV DNA and expressed denV mRNA. Purified T4 endonuclease V encapsulated in liposomes was also used to treat repair-proficient and -deficient human cells. The denV transfected clones and liposome-treated cells showed increased unscheduled DNA synthesis and enhanced removal of pyrimidine dimers compared to controls. Both denV gene transfection and endonuclease V liposome treatment enhanced post-UV survival in xeroderma pigmentosum cells but had no effect on survival in repair-proficient human or hamster cells. The results demonstrate that an exogenous DNA repair enzyme can correct the DNA repair defect in xeroderma pigmentosum cells and enhance DNA repair in normal cells. (author)

  17. DNA turnover and strand breaks in Escherichia coli

    International Nuclear Information System (INIS)

    Hanawalt, P.; Grivell, A.; Nakayama, H.

    1975-01-01

    The extent of DNA turnover has been measured in a dnaB mutant of Escherichia coli, temperature sensitive for semiconservative DNA replication. At the nonpermissive temperature about 0.02 percent of the deoxynucleotides in DNA are exchanged per generation period. This turnover rate is markedly depressed in the presence of rifampicin. During thymine starvation strand breaks accumulate in the DNA of E. coli strains that are susceptible to thymineless death. Rifampicin suppresses the appearance of these breaks, consistent with our hypothesis that transcription may be accompanied by repairable single-strand breaks in DNA. DNA turnover is enhanced severalfold in strands containing 5-bromodeoxyuridine in place of thymidine, possibly because the analog (or the deoxyuridine, following debromination) is sometimes recognized and excised

  18. PAM-Dependent Target DNA Recognition and Cleavage by C2c1 CRISPR-Cas Endonuclease

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui; Gao, Pu; Rajashankar, Kanagalaghatta R.; Patel, Dinshaw J. (MSKCC); (Cornell); (Chinese Aca. Sci.)

    2016-12-01

    C2c1 is a newly identified guide RNA-mediated type V-B CRISPR-Cas endonuclease that site-specifically targets and cleaves both strands of target DNA. We have determined crystal structures of Alicyclobacillus acidoterrestris C2c1 (AacC2c1) bound to sgRNA as a binary complex and to target DNAs as ternary complexes, thereby capturing catalytically competent conformations of AacC2c1 with both target and non-target DNA strands independently positioned within a single RuvC catalytic pocket. Moreover, C2c1-mediated cleavage results in a staggered seven-nucleotide break of target DNA. crRNA adopts a pre-ordered five-nucleotide A-form seed sequence in the binary complex, with release of an inserted tryptophan, facilitating zippering up of 20-bp guide RNA:target DNA heteroduplex on ternary complex formation. Notably, the PAM-interacting cleft adopts a “locked” conformation on ternary complex formation. Structural comparison of C2c1 ternary complexes with their Cas9 and Cpf1 counterparts highlights the diverse mechanisms adopted by these distinct CRISPR-Cas systems, thereby broadening and enhancing their applicability as genome editing tools.

  19. A novel human AP endonuclease with conserved zinc-finger-like motifs involved in DNA strand break responses

    Science.gov (United States)

    Kanno, Shin-ichiro; Kuzuoka, Hiroyuki; Sasao, Shigeru; Hong, Zehui; Lan, Li; Nakajima, Satoshi; Yasui, Akira

    2007-01-01

    DNA damage causes genome instability and cell death, but many of the cellular responses to DNA damage still remain elusive. We here report a human protein, PALF (PNK and APTX-like FHA protein), with an FHA (forkhead-associated) domain and novel zinc-finger-like CYR (cysteine–tyrosine–arginine) motifs that are involved in responses to DNA damage. We found that the CYR motif is widely distributed among DNA repair proteins of higher eukaryotes, and that PALF, as well as a Drosophila protein with tandem CYR motifs, has endo- and exonuclease activities against abasic site and other types of base damage. PALF accumulates rapidly at single-strand breaks in a poly(ADP-ribose) polymerase 1 (PARP1)-dependent manner in human cells. Indeed, PALF interacts directly with PARP1 and is required for its activation and for cellular resistance to methyl-methane sulfonate. PALF also interacts directly with KU86, LIGASEIV and phosphorylated XRCC4 proteins and possesses endo/exonuclease activity at protruding DNA ends. Various treatments that produce double-strand breaks induce formation of PALF foci, which fully coincide with γH2AX foci. Thus, PALF and the CYR motif may play important roles in DNA repair of higher eukaryotes. PMID:17396150

  20. A detailed experimental study of a DNA computer with two endonucleases.

    Science.gov (United States)

    Sakowski, Sebastian; Krasiński, Tadeusz; Sarnik, Joanna; Blasiak, Janusz; Waldmajer, Jacek; Poplawski, Tomasz

    2017-07-14

    Great advances in biotechnology have allowed the construction of a computer from DNA. One of the proposed solutions is a biomolecular finite automaton, a simple two-state DNA computer without memory, which was presented by Ehud Shapiro's group at the Weizmann Institute of Science. The main problem with this computer, in which biomolecules carry out logical operations, is its complexity - increasing the number of states of biomolecular automata. In this study, we constructed (in laboratory conditions) a six-state DNA computer that uses two endonucleases (e.g. AcuI and BbvI) and a ligase. We have presented a detailed experimental verification of its feasibility. We described the effect of the number of states, the length of input data, and the nondeterminism on the computing process. We also tested different automata (with three, four, and six states) running on various accepted input words of different lengths such as ab, aab, aaab, ababa, and of an unaccepted word ba. Moreover, this article presents the reaction optimization and the methods of eliminating certain biochemical problems occurring in the implementation of a biomolecular DNA automaton based on two endonucleases.

  1. Micrococcus luteus correndonucleases. II. Mechanism of action of two endonucleases specific for DNA containing pyrimidine dimers

    International Nuclear Information System (INIS)

    Riazuddin, S.; Grossman, L.

    1977-01-01

    Py--Py correndonucleases I and II from Micrococcus luteus act exclusively on thymine-thymine, cytosine-cytosine, and thymine-cytosine cyclobutyl dimers in DNA, catalyzing incision 5' to the damage and generating 3'-hydroxyl and 5'-phosphoryl termini. Both enzymes initiate excision of pyrimidine dimers in vitro by correxonucleases and DNA polymerase I. The respective incised DNAs, however, differ in their ability to act as substrate for phage T4 polynucleotide ligase or bacterial alkaline phosphatase, suggesting that each endonuclease is specific for a conformationally unique site. The possibility that their respective action generates termini which represent different degrees of single strandedness is suggested by the unequal protection by Escherichia coli binding protein from the hydrolytic action of exonuclease VII

  2. Functional intersection of ATM and DNA-dependent protein kinase catalytic subunit in coding end joining during V(D)J recombination

    DEFF Research Database (Denmark)

    Lee, Baeck-Seung; Gapud, Eric J; Zhang, Shichuan

    2013-01-01

    V(D)J recombination is initiated by the RAG endonuclease, which introduces DNA double-strand breaks (DSBs) at the border between two recombining gene segments, generating two hairpin-sealed coding ends and two blunt signal ends. ATM and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) ar......V(D)J recombination is initiated by the RAG endonuclease, which introduces DNA double-strand breaks (DSBs) at the border between two recombining gene segments, generating two hairpin-sealed coding ends and two blunt signal ends. ATM and DNA-dependent protein kinase catalytic subunit (DNA......-PKcs) are serine-threonine kinases that orchestrate the cellular responses to DNA DSBs. During V(D)J recombination, ATM and DNA-PKcs have unique functions in the repair of coding DNA ends. ATM deficiency leads to instability of postcleavage complexes and the loss of coding ends from these complexes. DNA...... when ATM is present and its kinase activity is intact. The ability of ATM to compensate for DNA-PKcs kinase activity depends on the integrity of three threonines in DNA-PKcs that are phosphorylation targets of ATM, suggesting that ATM can modulate DNA-PKcs activity through direct phosphorylation of DNA...

  3. Cas9-catalyzed DNA Cleavage Generates Staggered Ends: Evidence from Molecular Dynamics Simulations

    Science.gov (United States)

    Zuo, Zhicheng; Liu, Jin

    2016-11-01

    The CRISPR-associated endonuclease Cas9 from Streptococcus pyogenes (spCas9) along with a single guide RNA (sgRNA) has emerged as a versatile toolbox for genome editing. Despite recent advances in the mechanism studies on spCas9-sgRNA-mediated double-stranded DNA (dsDNA) recognition and cleavage, it is still unclear how the catalytic Mg2+ ions induce the conformation changes toward the catalytic active state. It also remains controversial whether Cas9 generates blunt-ended or staggered-ended breaks with overhangs in the DNA. To investigate these issues, here we performed the first all-atom molecular dynamics simulations of the spCas9-sgRNA-dsDNA system with and without Mg2+ bound. The simulation results showed that binding of two Mg2+ ions at the RuvC domain active site could lead to structurally and energetically favorable coordination ready for the non-target DNA strand cleavage. Importantly, we demonstrated with our simulations that Cas9-catalyzed DNA cleavage produces 1-bp staggered ends rather than generally assumed blunt ends.

  4. Survival of Saccharomyces cerevisiae after treatment with the restriction endonuclease Alu I

    International Nuclear Information System (INIS)

    Winckler, K.; Bach, B.; Obe, G.

    1988-01-01

    Treatment of yeast cells proficient in the repair of radiation damage (Saccharomyces cervisiae) with the restriction endonuclease Alu I leads to a positive dose-effect relationship between inactivation level and enzyme concentration. The data suggest an uptake of the active restriction enzyme into the cells and a relationship between induction of DNA double-strand breaks and cell killing. (author)

  5. Apurinic/apyrimidinic endonucleases of Mycobacterium tuberculosis protect against DNA damage but are dispensable for the growth of the pathogen in guinea pigs.

    Science.gov (United States)

    Puri, Rupangi Verma; Reddy, P Vineel; Tyagi, Anil K

    2014-01-01

    In host cells, Mycobacterium tuberculosis encounters an array of reactive molecules capable of damaging its genome. Non-bulky DNA lesions are the most common damages produced on the exposure of the pathogen to reactive species and base excision repair (BER) pathway is involved in the repair of such damage. During BER, apurinic/apyrimidinic (AP) endonuclease enzymes repair the abasic sites that are generated after spontaneous DNA base loss or by the action of DNA glycosylases, which if left unrepaired lead to inhibition of replication and transcription. However, the role of AP endonucleases in imparting protection against DNA damage and in the growth and pathogenesis of M.tuberculosis has not yet been elucidated. To demonstrate the biological significance of these enzymes in M.tuberculosis, it would be desirable to disrupt the relevant genes and evaluate the resulting mutants for their ability to grow in the host and cause disease. In this study, we have generated M.tuberculosis mutants of the base excision repair (BER) system, disrupted in either one (MtbΔend or MtbΔxthA) or both the AP endonucleases (MtbΔendΔxthA). We demonstrate that these genes are crucial for bacteria to withstand alkylation and oxidative stress in vitro. In addition, the mutant disrupted in both the AP endonucleases (MtbΔendΔxthA) exhibited a significant reduction in its ability to survive inside human macrophages. However, infection of guinea pigs with either MtbΔend or MtbΔxthA or MtbΔendΔxthA resulted in the similar bacillary load and pathological damage in the organs as observed in the case of infection with wild-type M.tuberculosis. The implications of these observations are discussed.

  6. Apurinic/apyrimidinic endonucleases of Mycobacterium tuberculosis protect against DNA damage but are dispensable for the growth of the pathogen in guinea pigs.

    Directory of Open Access Journals (Sweden)

    Rupangi Verma Puri

    Full Text Available In host cells, Mycobacterium tuberculosis encounters an array of reactive molecules capable of damaging its genome. Non-bulky DNA lesions are the most common damages produced on the exposure of the pathogen to reactive species and base excision repair (BER pathway is involved in the repair of such damage. During BER, apurinic/apyrimidinic (AP endonuclease enzymes repair the abasic sites that are generated after spontaneous DNA base loss or by the action of DNA glycosylases, which if left unrepaired lead to inhibition of replication and transcription. However, the role of AP endonucleases in imparting protection against DNA damage and in the growth and pathogenesis of M.tuberculosis has not yet been elucidated. To demonstrate the biological significance of these enzymes in M.tuberculosis, it would be desirable to disrupt the relevant genes and evaluate the resulting mutants for their ability to grow in the host and cause disease. In this study, we have generated M.tuberculosis mutants of the base excision repair (BER system, disrupted in either one (MtbΔend or MtbΔxthA or both the AP endonucleases (MtbΔendΔxthA. We demonstrate that these genes are crucial for bacteria to withstand alkylation and oxidative stress in vitro. In addition, the mutant disrupted in both the AP endonucleases (MtbΔendΔxthA exhibited a significant reduction in its ability to survive inside human macrophages. However, infection of guinea pigs with either MtbΔend or MtbΔxthA or MtbΔendΔxthA resulted in the similar bacillary load and pathological damage in the organs as observed in the case of infection with wild-type M.tuberculosis. The implications of these observations are discussed.

  7. Genome-wide mapping of DNA strand breaks.

    Directory of Open Access Journals (Sweden)

    Frédéric Leduc

    Full Text Available Determination of cellular DNA damage has so far been limited to global assessment of genome integrity whereas nucleotide-level mapping has been restricted to specific loci by the use of specific primers. Therefore, only limited DNA sequences can be studied and novel regions of genomic instability can hardly be discovered. Using a well-characterized yeast model, we describe a straightforward strategy to map genome-wide DNA strand breaks without compromising nucleotide-level resolution. This technique, termed "damaged DNA immunoprecipitation" (dDIP, uses immunoprecipitation and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin end-labeling (TUNEL to capture DNA at break sites. When used in combination with microarray or next-generation sequencing technologies, dDIP will allow researchers to map genome-wide DNA strand breaks as well as other types of DNA damage and to establish a clear profiling of altered genes and/or intergenic sequences in various experimental conditions. This mapping technique could find several applications for instance in the study of aging, genotoxic drug screening, cancer, meiosis, radiation and oxidative DNA damage.

  8. Conserved structural chemistry for incision activity in structurally non-homologous apurinic/apyrimidinic endonuclease APE1 and endonuclease IV DNA repair enzymes.

    Energy Technology Data Exchange (ETDEWEB)

    Tsutakawa, Susan E.; Shin, David S.; Mol, Clifford D.; Izum, Tadahide; Arvai, Andrew S.; Mantha, Anil K.; Szczesny, Bartosz; Ivanov, Ivaylo N.; Hosfield, David J.; Maiti, Buddhadev; Pique, Mike E.; Frankel, Kenneth A.; Hitomi, Kenichi; Cunningham, Richard P.; Mitra, Sankar; Tainer, John A.

    2013-03-22

    Non-coding apurinic/apyrimidinic (AP) sites in DNA form spontaneously and as DNA base excision repair intermediates are the most common toxic and mutagenic in vivo DNA lesion. For repair, AP sites must be processed by 5' AP endonucleases in initial stages of base repair. Human APE1 and bacterial Nfo represent the two conserved 5' AP endonuclease families in the biosphere; they both recognize AP sites and incise the phosphodiester backbone 5' to the lesion, yet they lack similar structures and metal ion requirements. Here, we determined and analyzed crystal structures of a 2.4 ? resolution APE1-DNA product complex with Mg(2+) and a 0.92 Nfo with three metal ions. Structural and biochemical comparisons of these two evolutionarily distinct enzymes characterize key APE1 catalytic residues that are potentially functionally similar to Nfo active site components, as further tested and supported by computational analyses. We observe a magnesium-water cluster in the APE1 active site, with only Glu-96 forming the direct protein coordination to the Mg(2+). Despite differences in structure and metal requirements of APE1 and Nfo, comparison of their active site structures surprisingly reveals strong geometric conservation of the catalytic reaction, with APE1 catalytic side chains positioned analogously to Nfo metal positions, suggesting surprising functional equivalence between Nfo metal ions and APE1 residues. The finding that APE1 residues are positioned to substitute for Nfo metal ions is supported by the impact of mutations on activity. Collectively, the results illuminate the activities of residues, metal ions, and active site features for abasic site endonucleases.

  9. Evolutionary maintenance of selfish homing endonuclease genes in the absence of horizontal transfer.

    Science.gov (United States)

    Yahara, Koji; Fukuyo, Masaki; Sasaki, Akira; Kobayashi, Ichizo

    2009-11-03

    Homing endonuclease genes are "selfish" mobile genetic elements whose endonuclease promotes the spread of its own gene by creating a break at a specific target site and using the host machinery to repair the break by copying and inserting the gene at this site. Horizontal transfer across the boundary of a species or population within which mating takes place has been thought to be necessary for their evolutionary persistence. This is based on the assumption that they will become fixed in a host population, where opportunities of homing will disappear, and become susceptible to degeneration. To test this hypothesis, we modeled behavior of a homing endonuclease gene that moves during meiosis through double-strand break repair. We mathematically explored conditions for persistence of the homing endonuclease gene and elucidated their parameter dependence as phase diagrams. We found that, if the cost of the pseudogene is lower than that of the homing endonuclease gene, the 2 forms can persist in a population through autonomous periodic oscillation. If the cost of the pseudogene is higher, 2 types of dynamics appear that enable evolutionary persistence: bistability dependent on initial frequency or fixation irrespective of initial frequency. The prediction of long persistence in the absence of horizontal transfer was confirmed by stochastic simulations in finite populations. The average time to extinction of the endonuclease gene was found to be thousands of meiotic generations or more based on realistic parameter values. These results provide a solid theoretical basis for an understanding of these and other extremely selfish elements.

  10. Small molecule inhibitors uncover synthetic genetic interactions of human flap endonuclease 1 (FEN1 with DNA damage response genes.

    Directory of Open Access Journals (Sweden)

    Thomas A Ward

    Full Text Available Flap endonuclease 1 (FEN1 is a structure selective endonuclease required for proficient DNA replication and the repair of DNA damage. Cellularly active inhibitors of this enzyme have previously been shown to induce a DNA damage response and, ultimately, cell death. High-throughput screens of human cancer cell-lines identify colorectal and gastric cell-lines with microsatellite instability (MSI as enriched for cellular sensitivity to N-hydroxyurea series inhibitors of FEN1, but not the PARP inhibitor olaparib or other inhibitors of the DNA damage response. This sensitivity is due to a synthetic lethal interaction between FEN1 and MRE11A, which is often mutated in MSI cancers through instabilities at a poly(T microsatellite repeat. Disruption of ATM is similarly synthetic lethal with FEN1 inhibition, suggesting that disruption of FEN1 function leads to the accumulation of DNA double-strand breaks. These are likely a result of the accumulation of aberrant replication forks, that accumulate as a consequence of a failure in Okazaki fragment maturation, as inhibition of FEN1 is toxic in cells disrupted for the Fanconi anemia pathway and post-replication repair. Furthermore, RAD51 foci accumulate as a consequence of FEN1 inhibition and the toxicity of FEN1 inhibitors increases in cells disrupted for the homologous recombination pathway, suggesting a role for homologous recombination in the resolution of damage induced by FEN1 inhibition. Finally, FEN1 appears to be required for the repair of damage induced by olaparib and cisplatin within the Fanconi anemia pathway, and may play a role in the repair of damage associated with its own disruption.

  11. Molecular mechanisms involved in the production of chromosomal aberrations. I. Utilization of Neurospora endonuclease for the study of aberration production in G2 stage of the cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, A T; Obe, G [Rijksuniversiteit Leiden (Netherlands). J.A. Cohen Inst. voor Radiopathologie en Stralingsbescherming

    1978-10-01

    Chinese hamster ovary cells (CHO) were X-irradiated in G2 stage of the cell cycle and immediately treated, in the presence of inactivated Sendai virus, with Neurospora endonuclease (E.C. 3.1.4.), an enzyme which is specific for cleaving single-stranded DNA. With this treatment, the frequencies of all types of chromosome aberrations increased when compared to X-irradiated controls. These results are interpreted as due to the conversion of some of the X-ray induced single-stranded DNA breaks into double-strand breaks by this enzyme. Similar enhancement due to this enzyme was found following treatment with methyl methanesulfonate (MMS) and bleomycin, but not following UV and mitomycin C. Addition of Micrococcus endonuclease and Neurospora endonuclease to the cells did not alter the frequencies of aberrations induced by UV. The introduction of enzymes with specific DNA-repair function offers possibilities to probe into the molecular events involved in the formation of structural chromosome aberrations induced by different classes of physical and chemical mutagens.

  12. Cleavage of DNA containing 5-fluorocytosine or 5-fluorouracil by type II restriction endonucleases

    Czech Academy of Sciences Publication Activity Database

    Olszewska, Agata; Daďová, Jitka; Mačková, Michaela; Hocek, Michal

    2015-01-01

    Roč. 23, č. 21 (2015), s. 6885-6890 ISSN 0968-0896 R&D Projects: GA ČR GA14-04289S Institutional support: RVO:61388963 Keywords : modified nucleotides * DNA * restriction endonucleases * DNA polymerase * pyrimidine nucleosides Subject RIV: CC - Organic Chemistry Impact factor: 2.923, year: 2015

  13. Pre-steady-state fluorescence analysis of damaged DNA transfer from human DNA glycosylases to AP endonuclease APE1.

    Science.gov (United States)

    Kuznetsova, Alexandra A; Kuznetsov, Nikita A; Ishchenko, Alexander A; Saparbaev, Murat K; Fedorova, Olga S

    2014-10-01

    DNA glycosylases remove the modified, damaged or mismatched bases from the DNA by hydrolyzing the N-glycosidic bonds. Some enzymes can further catalyze the incision of a resulting abasic (apurinic/apyrimidinic, AP) site through β- or β,δ-elimination mechanisms. In most cases, the incision reaction of the AP-site is catalyzed by special enzymes called AP-endonucleases. Here, we report the kinetic analysis of the mechanisms of modified DNA transfer from some DNA glycosylases to the AP endonuclease, APE1. The modified DNA contained the tetrahydrofurane residue (F), the analogue of the AP-site. DNA glycosylases AAG, OGG1, NEIL1, MBD4(cat) and UNG from different structural superfamilies were used. We found that all DNA glycosylases may utilise direct protein-protein interactions in the transient ternary complex for the transfer of the AP-containing DNA strand to APE1. We hypothesize a fast "flip-flop" exchange mechanism of damaged and undamaged DNA strands within this complex for monofunctional DNA glycosylases like MBD4(cat), AAG and UNG. Bifunctional DNA glycosylase NEIL1 creates tightly specific complex with DNA containing F-site thereby efficiently competing with APE1. Whereas APE1 fast displaces other bifunctional DNA glycosylase OGG1 on F-site thereby induces its shifts to undamaged DNA regions. Kinetic analysis of the transfer of DNA between human DNA glycosylases and APE1 allows us to elucidate the critical step in the base excision repair pathway. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Endonuclease IV Is the major apurinic/apyrimidinic endonuclease in Mycobacterium tuberculosis and is important for protection against oxidative damage.

    Directory of Open Access Journals (Sweden)

    Rupangi Verma Puri

    Full Text Available During the establishment of an infection, bacterial pathogens encounter oxidative stress resulting in the production of DNA lesions. Majority of these lesions are repaired by base excision repair (BER pathway. Amongst these, abasic sites are the most frequent lesions in DNA. Class II apurinic/apyrimidinic (AP endonucleases play a major role in BER of damaged DNA comprising of abasic sites. Mycobacterium tuberculosis, a deadly pathogen, resides in the human macrophages and is continually subjected to oxidative assaults. We have characterized for the first time two AP endonucleases namely Endonuclease IV (End and Exonuclease III (XthA that perform distinct functions in M.tuberculosis. We demonstrate that M.tuberculosis End is a typical AP endonuclease while XthA is predominantly a 3'→5' exonuclease. The AP endonuclease activity of End and XthA was stimulated by Mg(2+ and Ca(2+ and displayed a preferential recognition for abasic site paired opposite to a cytosine residue in DNA. Moreover, End exhibited metal ion independent 3'→5' exonuclease activity while in the case of XthA this activity was metal ion dependent. We demonstrate that End is not only a more efficient AP endonuclease than XthA but it also represents the major AP endonuclease activity in M.tuberculosis and plays a crucial role in defense against oxidative stress.

  15. Activation of a yeast replication origin near a double-stranded DNA break.

    Science.gov (United States)

    Raghuraman, M K; Brewer, B J; Fangman, W L

    1994-03-01

    Irradiation in the G1 phase of the cell cycle delays the onset of DNA synthesis and transiently inhibits the activation of replication origins in mammalian cells. It has been suggested that this inhibition is the result of the loss of torsional tension in the DNA after it has been damaged. Because irradiation causes DNA damage at an undefined number of nonspecific sites in the genome, it is not known how cells respond to limited DNA damage, and how replication origins in the immediate vicinity of a damage site would behave. Using the sequence-specific HO endonuclease, we have created a defined double-stranded DNA break in a centromeric plasmid in G1-arrested cells of the yeast Saccharomyces cerevisiae. We show that replication does initiate at the origin on the cut plasmid, and that the plasmid replicates early in the S phase after linearization in vivo. These observations suggest that relaxation of a supercoiled DNA domain in yeast need not inactivate replication origins within that domain. Furthermore, these observations rule out the possibility that the late replication context associated with chromosomal termini is a consequence of DNA ends.

  16. Cleavage and protection of locked nucleic acid-modified DNA by restriction endonucleases

    DEFF Research Database (Denmark)

    Crouzier, Lucile; Dubois, Camille; Wengel, Jesper

    2012-01-01

    Locked nucleic acid (LNA) is one of the most prominent nucleic acid analogues reported so far. We herein for the first time report cleavage by restriction endonuclease of LNA-modified DNA oligonucleotides. The experiments revealed that RsaI is an efficient enzyme capable of recognizing and cleaving...

  17. Molecular characterization of a complex site-specific radiation-induced DNA double-strand break

    International Nuclear Information System (INIS)

    Datta, K.; Dizdaroglu, M.; Jaruga, P.; Neumann, R.D.; Winters, T.A.

    2003-01-01

    Radiation lethality is a function of radiation-induced DNA double-strand breaks (DSB). Current models propose the lethality of a DSB to be a function of its structural complexity. We present here for the first time a map of damage associated with a site-specific double-strand break produced by decay of 125 I in a plasmid bound by a 125 I-labeled triplex forming oligonucleotide ( 125 I-TFO). The E. coli DNA repair enzymes, endonuclease IV (endo IV), endonuclease III (endo III), and formamidopyrimidine-DNA glycosylase (Fpg), which recognize AP sites, and pyrimidine and purine base damage respectively, were used as probes in this study. 125 I-TFO bound plasmid was incubated with and without DMSO at -80 deg C for 1 month. No significant difference in DSB yield was observed under these conditions. A 32 base pair fragment from the upstream side of the decay site was isolated by restriction digestion and enzymatically probed to identify damage sites. Endo IV treatment of the 5'-end labeled upper strand indicated clustering of AP sites within 3 bases downstream and 7 bases upstream of the targeted base. Also, repeated experiments consistently detected an AP site 4 bases upstream of the 125 Itarget base. This was further supported by complementary results with the 3'-end labeled upper strand. Endo IV analysis of the lower strand also shows clustering of AP sites near the DSB end. Endo III and Fpg probing demonstrated that base damage is also clustered near the targeted break site. DSBs produced in the absence of DMSO displayed a different pattern of enzyme sensitive damage than those produced in the presence of DMSO. Identification of specific base damage types within the restriction fragment containing the DSB end was achieved with GC/MS. Base damage consisted of 8-hydroguanine, 8-hydroxyadenine, and 5-hydroxycytosine. These lesions were observed at relative yields of 8-hydroguanine and 5-hydroxycytosine to 8-hydroxyadenine of 7.4:1 and 4.7:1, respectively, in the absence

  18. Repair of DNA damage in Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Evans, D.M.

    1984-01-01

    The repair of DNA lesions in Deinococcus radiodurans was examined with particular reference to DNA excision repair of ultraviolet light (UV) induced pyrimidine dimers. The characteristics of excision repair via UV endonucleases α and β in vivo varied with respect to (a) the substrate range of the enzymes, (b) the rate of repair of DNA damage (c) the requirement for a protein synthesised in response to DNA damage to attenuate exonuclease action at repairing regions. UV endonuclease α is postulated to incise DNA in a different manner from UV endonuclease β thus defining the method of subsequent repair. Several DNA damage specific endonuclease activities independent of α and β are described. Mutations of the uvsA, uvsF and uvsG genes resulted in an increase in single-strand breaks in response to DNA damage producing uncontrolled DNA degradation. Evidence is presented that these genes have a role in limiting the access of UV endonuclease β to DNA lesions. uvsF and uvsG are also shown to be linked to the mtoA gene. Mutation of uvsH and reo-1 produces further distinct phenotypes which are discussed. An overall model of excision repair of DNA damage in Deinococcus radiodurans is presented. (author)

  19. Restriction endonuclease analysis of chloroplast DNA in interspecies somatic Hybrids of Petunia.

    Science.gov (United States)

    Kumar, A; Cocking, E C; Bovenberg, W A; Kool, A J

    1982-12-01

    Restriction endonuclease cleavage pattern analysis of chloroplast DNA (cpDNA) of three different interspecific somatic hybrid plants revealed that the cytoplasms of the hybrids contained only cpDNA of P. parodii. The somatic hybrid plants analysed were those between P. parodii (wild type) + P. hybrida (wild type); P. parodii (wild type)+P. inflata (cytoplasmic albino mutant); P. parodii (wild type) + P. parviflora (nuclear albino mutant). The presence of only P. parodii chloroplasts in the somatic hybrid of P. parodii + P. inflata is possibly due to the stringent selection used for somatic hybrid production. However, in the case of the two other somatic hybrids P. parodii + P. hybrida and P. parodii + P. parviflora it was not possible to determine whether the presence of only P. parodii chloroplasts in these somatic hybrid plants was due to the nature of the selection schemes used or simply occurred by chance. The relevance of such somatic hybrid material for the study of genomic-cytoplasmic interaction is discussed, as well as the use of restriction endonuclease fragment patterns for the analysis of taxonomic and evolutionary inter-relationships in the genus Petunia.

  20. Recent Advancements in DNA Damage-Transcription Crosstalk and High-Resolution Mapping of DNA Breaks.

    Science.gov (United States)

    Vitelli, Valerio; Galbiati, Alessandro; Iannelli, Fabio; Pessina, Fabio; Sharma, Sheetal; d'Adda di Fagagna, Fabrizio

    2017-08-31

    Until recently, DNA damage arising from physiological DNA metabolism was considered a detrimental by-product for cells. However, an increasing amount of evidence has shown that DNA damage could have a positive role in transcription activation. In particular, DNA damage has been detected in transcriptional elements following different stimuli. These physiological DNA breaks are thought to be instrumental for the correct expression of genomic loci through different mechanisms. In this regard, although a plethora of methods are available to precisely map transcribed regions and transcription start sites, commonly used techniques for mapping DNA breaks lack sufficient resolution and sensitivity to draw a robust correlation between DNA damage generation and transcription. Recently, however, several methods have been developed to map DNA damage at single-nucleotide resolution, thus providing a new set of tools to correlate DNA damage and transcription. Here, we review how DNA damage can positively regulate transcription initiation, the current techniques for mapping DNA breaks at high resolution, and how these techniques can benefit future studies of DNA damage and transcription.

  1. RPA activates the XPF‐ERCC1 endonuclease to initiate processing of DNA interstrand crosslinks

    KAUST Repository

    Abdullah, Ummi B

    2017-06-13

    During replication‐coupled DNA interstrand crosslink (ICL) repair, the XPF‐ERCC1 endonuclease is required for the incisions that release, or “unhook”, ICLs, but the mechanism of ICL unhooking remains largely unknown. Incisions are triggered when the nascent leading strand of a replication fork strikes the ICL. Here, we report that while purified XPF‐ERCC1 incises simple ICL‐containing model replication fork structures, the presence of a nascent leading strand, modelling the effects of replication arrest, inhibits this activity. Strikingly, the addition of the single‐stranded DNA (ssDNA)‐binding replication protein A (RPA) selectively restores XPF‐ERCC1 endonuclease activity on this structure. The 5′–3′ exonuclease SNM1A can load from the XPF‐ERCC1‐RPA‐induced incisions and digest past the crosslink to quantitatively complete the unhooking reaction. We postulate that these collaborative activities of XPF‐ERCC1, RPA and SNM1A might explain how ICL unhooking is achieved in vivo.

  2. RPA activates the XPF‐ERCC1 endonuclease to initiate processing of DNA interstrand crosslinks

    KAUST Repository

    Abdullah, Ummi B; McGouran, Joanna F; Brolih, Sanja; Ptchelkine, Denis; El‐Sagheer, Afaf H; Brown, Tom; McHugh, Peter J

    2017-01-01

    During replication‐coupled DNA interstrand crosslink (ICL) repair, the XPF‐ERCC1 endonuclease is required for the incisions that release, or “unhook”, ICLs, but the mechanism of ICL unhooking remains largely unknown. Incisions are triggered when the nascent leading strand of a replication fork strikes the ICL. Here, we report that while purified XPF‐ERCC1 incises simple ICL‐containing model replication fork structures, the presence of a nascent leading strand, modelling the effects of replication arrest, inhibits this activity. Strikingly, the addition of the single‐stranded DNA (ssDNA)‐binding replication protein A (RPA) selectively restores XPF‐ERCC1 endonuclease activity on this structure. The 5′–3′ exonuclease SNM1A can load from the XPF‐ERCC1‐RPA‐induced incisions and digest past the crosslink to quantitatively complete the unhooking reaction. We postulate that these collaborative activities of XPF‐ERCC1, RPA and SNM1A might explain how ICL unhooking is achieved in vivo.

  3. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9.

    Science.gov (United States)

    Sternberg, Samuel H; Redding, Sy; Jinek, Martin; Greene, Eric C; Doudna, Jennifer A

    2014-03-06

    The clustered regularly interspaced short palindromic repeats (CRISPR)-associated enzyme Cas9 is an RNA-guided endonuclease that uses RNA-DNA base-pairing to target foreign DNA in bacteria. Cas9-guide RNA complexes are also effective genome engineering agents in animals and plants. Here we use single-molecule and bulk biochemical experiments to determine how Cas9-RNA interrogates DNA to find specific cleavage sites. We show that both binding and cleavage of DNA by Cas9-RNA require recognition of a short trinucleotide protospacer adjacent motif (PAM). Non-target DNA binding affinity scales with PAM density, and sequences fully complementary to the guide RNA but lacking a nearby PAM are ignored by Cas9-RNA. Competition assays provide evidence that DNA strand separation and RNA-DNA heteroduplex formation initiate at the PAM and proceed directionally towards the distal end of the target sequence. Furthermore, PAM interactions trigger Cas9 catalytic activity. These results reveal how Cas9 uses PAM recognition to quickly identify potential target sites while scanning large DNA molecules, and to regulate scission of double-stranded DNA.

  4. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9

    Science.gov (United States)

    Sternberg, Samuel H.; Redding, Sy; Jinek, Martin; Greene, Eric C.; Doudna, Jennifer A.

    2014-03-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-associated enzyme Cas9 is an RNA-guided endonuclease that uses RNA-DNA base-pairing to target foreign DNA in bacteria. Cas9-guide RNA complexes are also effective genome engineering agents in animals and plants. Here we use single-molecule and bulk biochemical experiments to determine how Cas9-RNA interrogates DNA to find specific cleavage sites. We show that both binding and cleavage of DNA by Cas9-RNA require recognition of a short trinucleotide protospacer adjacent motif (PAM). Non-target DNA binding affinity scales with PAM density, and sequences fully complementary to the guide RNA but lacking a nearby PAM are ignored by Cas9-RNA. Competition assays provide evidence that DNA strand separation and RNA-DNA heteroduplex formation initiate at the PAM and proceed directionally towards the distal end of the target sequence. Furthermore, PAM interactions trigger Cas9 catalytic activity. These results reveal how Cas9 uses PAM recognition to quickly identify potential target sites while scanning large DNA molecules, and to regulate scission of double-stranded DNA.

  5. Inroads into base excision repair I. The discovery of apurinic/apyrimidinic (AP) endonuclease. "An endonuclease for depurinated DNA in Escherichia coli B," Canadian Journal of Biochemistry, 1972.

    Science.gov (United States)

    Lindahl, Tomas; Verly, W G; Paquette Y

    2004-11-02

    DNA treated with alkylating agents is incised at sites of damage by cell extracts. A key component of this DNA repair function was shown by Verly and co-workers to be an endonuclease acting at secondary lesions, apurinic sites, rather than directly at alkylated nucleotide residues.

  6. Repair of potentially lethal damage by introduction of T4 DNA ligase in eucaryotic cells

    International Nuclear Information System (INIS)

    Durante, M.; Grossi, G.F.; Napolitano, M.; Gialanella, G.

    1991-01-01

    The bacterial enzyme PvuII, which generates blunt-ended DNA double-strand breaks, and T4 DNA ligase, which seals adjacent DNA fragments in coupling to ATP cleavage, were introduced in mouse C3H10T1/2 fibroblasts using osmolytic shock of pinocytic vesicles. Cells were then assayed for their clonogenic ability. In agreement with previous studies by others, the authors found that PvuII restriction endonuclease simulates ionizing radiation effects by causing a dose-dependent loss of reproductive capacity. They show that concomitant treatment with DNA ligase considerably increases cell survival. Survival curves were shown to be dependent on ligase enzyme dose and on ATP concentration in the hypertonic medium. They conclude that T4 DNA ligase is able to repair some potentially lethal damage produced by restriction endonucleases in eucaryotic cells. (author)

  7. Efficient fdCas9 Synthetic Endonuclease with Improved Specificity for Precise Genome Engineering

    KAUST Repository

    Aouida, Mustapha

    2015-07-30

    The Cas9 endonuclease is used for genome editing applications in diverse eukaryotic species. A high frequency of off-target activity has been reported in many cell types, limiting its applications to genome engineering, especially in genomic medicine. Here, we generated a synthetic chimeric protein between the catalytic domain of the FokI endonuclease and the catalytically inactive Cas9 protein (fdCas9). A pair of guide RNAs (gRNAs) that bind to sense and antisense strands with a defined spacer sequence range can be used to form a catalytically active dimeric fdCas9 protein and generate double-strand breaks (DSBs) within the spacer sequence. Our data demonstrate an improved catalytic activity of the fdCas9 endonuclease, with a spacer range of 15–39 nucleotides, on surrogate reporters and genomic targets. Furthermore, we observed no detectable fdCas9 activity at known Cas9 off-target sites. Taken together, our data suggest that the fdCas9 endonuclease variant is a superior platform for genome editing applications in eukaryotic systems including mammalian cells.

  8. Efficient fdCas9 Synthetic Endonuclease with Improved Specificity for Precise Genome Engineering

    KAUST Repository

    Aouida, Mustapha; Eid, Ayman; Ali, Zahir; Cradick, Thomas; Lee, Ciaran; Deshmukh, Harshavardhan; Atef, Ahmed; Abu Samra, Dina Bashir Kamil; Gadhoum, Samah Zeineb; Merzaban, Jasmeen; Bao, Gang; Mahfouz, Magdy M.

    2015-01-01

    The Cas9 endonuclease is used for genome editing applications in diverse eukaryotic species. A high frequency of off-target activity has been reported in many cell types, limiting its applications to genome engineering, especially in genomic medicine. Here, we generated a synthetic chimeric protein between the catalytic domain of the FokI endonuclease and the catalytically inactive Cas9 protein (fdCas9). A pair of guide RNAs (gRNAs) that bind to sense and antisense strands with a defined spacer sequence range can be used to form a catalytically active dimeric fdCas9 protein and generate double-strand breaks (DSBs) within the spacer sequence. Our data demonstrate an improved catalytic activity of the fdCas9 endonuclease, with a spacer range of 15–39 nucleotides, on surrogate reporters and genomic targets. Furthermore, we observed no detectable fdCas9 activity at known Cas9 off-target sites. Taken together, our data suggest that the fdCas9 endonuclease variant is a superior platform for genome editing applications in eukaryotic systems including mammalian cells.

  9. Transient and Switchable (Triethylsilyl)ethynyl Protection of DNA against Cleavage by Restriction Endonucleases

    Czech Academy of Sciences Publication Activity Database

    Kielkowski, Pavel; Macíčková-Cahová, Hana; Pohl, Radek; Hocek, Michal

    2011-01-01

    Roč. 50, č. 37 (2011), s. 8727-8730 ISSN 1433-7851 R&D Projects: GA ČR GA203/09/0317 Institutional research plan: CEZ:AV0Z40550506 Keywords : alkynes * DNA * protecting groups * nucleotides * restriction endonucleases Subject RIV: CC - Organic Chemistry Impact factor: 13.455, year: 2011

  10. Induction and repair of DNA base damage studied in X-irradiated CHO cells using the M. luteus extract

    International Nuclear Information System (INIS)

    Foehe, C.; Dikomey, E.

    1994-01-01

    DNA base damage was measured in Chinese hamster ovary cells X-irradiated under aerobic conditions using an extract of the bacterium Micrococcus luteus. The glycosylases and endonucleases present in this extract recognize damaged bases and convert them into strand breaks (termed endonuclease-sensitive sites, enss). Strand breaks were detected by the alkaline unwinding technique. The induction of enss was measured for X-ray doses ranging up to 45 Gy. The relative frequency of all enss related to all radiation induced strand breaks was 1.7 ± 0.4. Repair of enss was studied for a radiation dose of 45 Gy. The number of enss was found to decrease exponentially with time after irradiation with a half-time of τ enss = 37 ± 8 min. The repair kinetics that were also measured for all X-ray-induced DNA strand breaks were found to consist of three phases: fast, intermediate and slow. The intermediate phase was fitted under the assumption that this phase results from the information and repair of secondary single-strand breaks generated by enzymatic incision at the sites of base damage repair. (author)

  11. RPA activates the XPF-ERCC1 endonuclease to initiate processing of DNA interstrand crosslinks.

    Science.gov (United States)

    Abdullah, Ummi B; McGouran, Joanna F; Brolih, Sanja; Ptchelkine, Denis; El-Sagheer, Afaf H; Brown, Tom; McHugh, Peter J

    2017-07-14

    During replication-coupled DNA interstrand crosslink (ICL) repair, the XPF-ERCC1 endonuclease is required for the incisions that release, or "unhook", ICLs, but the mechanism of ICL unhooking remains largely unknown. Incisions are triggered when the nascent leading strand of a replication fork strikes the ICL Here, we report that while purified XPF-ERCC1 incises simple ICL-containing model replication fork structures, the presence of a nascent leading strand, modelling the effects of replication arrest, inhibits this activity. Strikingly, the addition of the single-stranded DNA (ssDNA)-binding replication protein A (RPA) selectively restores XPF-ERCC1 endonuclease activity on this structure. The 5'-3' exonuclease SNM1A can load from the XPF-ERCC1-RPA-induced incisions and digest past the crosslink to quantitatively complete the unhooking reaction. We postulate that these collaborative activities of XPF-ERCC1, RPA and SNM1A might explain how ICL unhooking is achieved in vivo . © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  12. DNA replication and the repair of DNA strand breaks in nuclei of Physarum polycephalum. Terminal report, August 1, 1978-March 31, 1980

    International Nuclear Information System (INIS)

    Brewer, E.N.; Evans, T.E.

    1980-01-01

    Nuclei isolated from Physarum are able to replicate approximately 15% of the total genome in a manner which is qualitatively similar to the DNA replication process occurring in the intact organism. Such nuclei, however, are defective in the joining of Okazaki intermediates in vitro. Two DNA polymerase species, isolated from nuclei or intact plasmodia of this organism, can be separated by sucrose density gradient centrifugation. Total DNA polymerase activity is low in nuclei isolated during mitosis. A heat-stable glycoprotein material present in aqueous nuclear extracts stimulates DNA synthesis in well-washed nuclei. A sub-nuclear preparation active in DNA synthesis in vitro has been obtained from isolated nuclei of Physarum. Radiation-induced DNA double-strand breaks are rejoined in intact plasmodia and isolated nuclei of Physarum in a cell cycle-dependent manner. This phenomenon does not appear to be due to an intrinsic difference in nuclear DNA endonuclease activity at different times of the mitotic cycle. DNA strand breaks and repair induced by the carcinogen 4-nitroquinoline-1-oxide is similar in several respects to that resulting from exposure of the organism to ionizing radiation. Temperature sensitive strains of Physarum have been constructed and preliminary genetical and biochemical characterizations have been carried out. Two of the strains appear to be conditionally defective in DNA metabolism. An isogenic ploidal series of amoebae has been prepared and characterized as to uv and ionizing radiation sensitivity (in terms of cell survival). There is a direct relationship between ploidy and resistance to uv whereas ploidal change does not appear to affect the response to ionizing radiation

  13. A critical role for topoisomerase IIb and DNA double strand breaks in transcription.

    Science.gov (United States)

    Calderwood, Stuart K

    2016-05-26

    Recent studies have indicated a novel role for topoisomerase IIb in transcription. Transcription of heat shock genes, serum-induced immediate early genes and nuclear receptor-activated genes, each required DNA double strands generated by topoisomerase IIb. Such strand breaks seemed both necessary and sufficient for transcriptional activation. In addition, such transcription was associated with initiation of the DNA damage response pathways, including the activation of the enzymes: ataxia-telangiectasia mutated (ATM), DNA-dependent protein kinase and poly (ADP ribose) polymerase 1. DNA damage response signaling was involved both in transcription and in repair of DNA breaks generated by topoisomerase IIb.

  14. The cutting edges in DNA repair, licensing, and fidelity: DNA and RNA repair nucleases sculpt DNA to measure twice, cut once.

    Science.gov (United States)

    Tsutakawa, Susan E; Lafrance-Vanasse, Julien; Tainer, John A

    2014-07-01

    To avoid genome instability, DNA repair nucleases must precisely target the correct damaged substrate before they are licensed to incise. Damage identification is a challenge for all DNA damage response proteins, but especially for nucleases that cut the DNA and necessarily create a cleaved DNA repair intermediate, likely more toxic than the initial damage. How do these enzymes achieve exquisite specificity without specific sequence recognition or, in some cases, without a non-canonical DNA nucleotide? Combined structural, biochemical, and biological analyses of repair nucleases are revealing their molecular tools for damage verification and safeguarding against inadvertent incision. Surprisingly, these enzymes also often act on RNA, which deserves more attention. Here, we review protein-DNA structures for nucleases involved in replication, base excision repair, mismatch repair, double strand break repair (DSBR), and telomere maintenance: apurinic/apyrimidinic endonuclease 1 (APE1), Endonuclease IV (Nfo), tyrosyl DNA phosphodiesterase (TDP2), UV Damage endonuclease (UVDE), very short patch repair endonuclease (Vsr), Endonuclease V (Nfi), Flap endonuclease 1 (FEN1), exonuclease 1 (Exo1), RNase T and Meiotic recombination 11 (Mre11). DNA and RNA structure-sensing nucleases are essential to life with roles in DNA replication, repair, and transcription. Increasingly these enzymes are employed as advanced tools for synthetic biology and as targets for cancer prognosis and interventions. Currently their structural biology is most fully illuminated for DNA repair, which is also essential to life. How DNA repair enzymes maintain genome fidelity is one of the DNA double helix secrets missed by James Watson and Francis Crick, that is only now being illuminated though structural biology and mutational analyses. Structures reveal motifs for repair nucleases and mechanisms whereby these enzymes follow the old carpenter adage: measure twice, cut once. Furthermore, to measure

  15. The Ku Heterodimer and the Metabolism of Single-Ended DNA Double-Strand Breaks

    NARCIS (Netherlands)

    A. Balestrini (Alessia); D. Ristic (Dejan); I. Dionne (Isabelle); X.Z. Liu (Xiao); C. Wyman (Claire); R.J. Wellinger (Raymund); J.H.J. Petrini (John)

    2013-01-01

    textabstractSingle-ended double-strand breaks (DSBs) are a common form of spontaneous DNA break, generated when the replisome encounters a discontinuity in the DNA template. Given their prevalence, understanding the mechanisms governing the fate(s) of single-ended DSBs is important. We describe the

  16. Specificity of binding to four-way junctions in DNA by bacteriophage T7 endonuclease I.

    OpenAIRE

    Parsons, C A; West, S C

    1990-01-01

    T7 endonuclease I binds specifically to four-way junctions in duplex DNA and promotes their resolution into linear duplexes. Under conditions in which the nuclease activity is blocked by the absence of divalent cations, the enzyme forms a distinct protein-DNA complex with the junction, as detected by gel retardation and filter binding assays. The formation of this complex is structure-specific and contrasts with the short-lived binding complexes formed on linear duplex DNA. The binding comple...

  17. Phage T4 endonuclease SegD that is similar to group I intron endonucleases does not initiate homing of its own gene.

    Science.gov (United States)

    Sokolov, Andrey S; Latypov, Oleg R; Kolosov, Peter M; Shlyapnikov, Michael G; Bezlepkina, Tamara A; Kholod, Natalia S; Kadyrov, Farid A; Granovsky, Igor E

    2018-02-01

    Homing endonucleases are a group of site-specific endonucleases that initiate homing, a nonreciprocal transfer of its own gene into a new allele lacking this gene. This work describes a novel phage T4 endonuclease, SegD, which is homologous to the GIY-YIG family of homing endonucleases. Like other T4 homing endonucleases SegD recognizes an extended, 16bp long, site, cleaves it asymmetrically to form 3'-protruding ends and digests both unmodified DNA and modified T-even phage DNA with similar efficiencies. Surprisingly, we revealed that SegD cleavage site was identical in the genomes of segD - and segD + phages. We found that segD gene was expressed during the T4 developmental cycle. Nevertheless, endonuclease SegD was not able to initiate homing of its own gene as well as genetic recombination between phages in its site inserted into the rII locus. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Binding of T4 endonuclease V to deoxyribonucleic acid irradiated with ultraviolet light

    International Nuclear Information System (INIS)

    Seawell, P.C.; Simon, T.J.; Ganesan, A.K.

    1980-01-01

    Endonuclease V of bacteriophage T4 binds to uv-irradiated deoxyribonucleic acid (DNA) but not to unirradiated DNA. We have developed an assay to detect this binding, based on the retention of enzyme - DNA complexes on nitrocellulose filters. The amount of complex retained, ascertained by using radioactive DNA, is a measure of T4 endonuclease V activity. From our data we conclude that (1) T4 endonuclease V binds to uv-irradiated DNA but not to DNA that has been previously incised by the endonuclease, (2) equilibrium between the free and complexed form of the enzyme is attained under our reaction conditions, (3) dissociation of enzyme - DNA complexes is retarded by sodium cyanide, and (4) retention of enzyme - DNA complexes on nitrocellulose filters is enhanced by high concentrations of saline-citrate

  19. Genetic recombination induced by DNA double-strand break in bacteriophage T4: nature of the left/right bias.

    Science.gov (United States)

    Shcherbakov, Victor P; Shcherbakova, Tamara; Plugina, Lidiya; Sizova, Svetlana; Kudryashova, Elena; Granovsky, Igor

    2008-06-01

    The experimental system combining double-strand breaks (DSBs), produced site-specifically by SegC endonuclease, with the famous advantages of the bacteriophage T4 rII mutant recombination analysis was used here to elucidate the origin of the recombination bias on two sides of the DSB, especially pronounced in gene 39 (topoisomerase II) and gene 59 (41-helicase loader) mutants. Three sources were found to contribute to the bias: (1) the SegC endonuclease may remain bound to the end of the broken DNA and thus protect it from exonuclease degradation; (2) in heteroduplex heterozygotes (HHs), arising as the recombinant products in the left-hand crosses, the transcribed strands are of rII mutant phenotype, so they, in contrast to the right-hand HHs, do not produce plaques on the lawn of the lambda-lysogenic host; and (3) the intrinsic polarity of T4 chromosome, reflected in transcription, may be a cause for discrimination of promoter-proximal and promoter-distal DNA sequences. It is shown that the apparent recombination bias does not imply one-sidedness of the DSB repair but just reflects a different depth of the end processing. It is inferred that the cause, underlying the "intrinsic" bias, might be interference between strand exchange and transcription. Topoisomerase and helicase functions are necessary to turn the process in favor of strand exchange. The idea is substantiated that the double-stranded to single-stranded DNA transition edge (not ss-DNA tip) serves as an actual recombinogenic element.

  20. DNA double-strand break measurement in mammalian cells by pulsed-field gel electrophoresis: an approach using restriction enzymes and gene probing

    International Nuclear Information System (INIS)

    Loebrich, M.; Ikpeme, S.; Kiefer, J.

    1994-01-01

    DNA samples prepared from human SP 3 cells, which had not been exposed to various doses of X-ray, were treated with NotI restriction endonuclease before being run in a contour-clamped homogeneous electrophoresis system. The restriction enzyme cuts the DNA at defined positions delivering DNA sizes which can be resolved by pulsed-field gel electrophoresis (PFGE). In order to investigate only one of the DNA fragments, a human lactoferrin cDNA, pHL-41, was hybridized to the DNA separated by PFGE. As a result, only the DNA fragment which contains the hybridized gene was detected resulting in a one-band pattern. The decrease of this band was found to be exponential with increasing radiation dose. From the slope, a double-strand break induction rate of (6.3±0.7) x 10 -3 /Mbp/Gy was deduced for 80 kV X-rays. (Author)

  1. Effect of mercaptoethylamine on DNA degradation in thermophilic bacteria Bac. stearothermophilus exposed to. gamma. -, UV-radiation or methylnitrosourea

    Energy Technology Data Exchange (ETDEWEB)

    Fomenko, L A; Kuznetsovea, E A; Gaziev, A I

    1984-07-01

    The effect of mercaptoethylamine (MEA) on degradation of DNA in thermophilic bacteria Bac. stear. exposed to ..gamma..-, UV-rays or methylnitrosourea (MNU) was studied. Using centrifugation on alkaline and neutral sucrose gradients, it was shown that MEA inhibits the accumulation of breaks in the DNA of Bac. stear. It also lowers the level of DNA degradation in toluene-treated cells of Bac. stear. under the action of the intrinsic nuclease, reduces the activity of the endonuclease specific for apurinic DNA, as well as that of S/sub 1/-nuclease and DNase-I in vitro. The inhibition in the accumulation of DNA breaks is assumed to be due to a decrease of the endonuclease activity in the cells of thermophilic bacteria.

  2. Effect of mercaptoethylamine on DNA degradation in thermophilic bacteria Bac. stearothermophilus exposed to γ-, UV-radiation or methylnitrosourea

    International Nuclear Information System (INIS)

    Fomenko, L.A.; Kuznetsovea, E.A.; Gaziev, A.I.

    1984-01-01

    The effect of mercaptoethylamine (MEA) on degradation of DNA in thermophilic bacteria Bac. stear. exposed to γ-, UV-rays or methylnitrosourea (MNU) was studied. Using centrifugation on alkaline and neutral sucrose gradients, it was shown that MEA inhibits the accumulation of breaks in the DNA of Bac. stear. It also lowers the level of DNA degradation in toluene-treated cells of Bac. stear. under the action of the intrinsic nuclease, reduces the activity of the endonuclease specific for apurinic DNA, as well as that of S 1 -nuclease and DNase-I in vitro. The inhibition in the accumulation of DNA breaks is assumed to be due to a decrease of the endonuclease activity in the cells of thermophilic bacteria. (orig.)

  3. Selective inhibition by methoxyamine of the apurinic/apyrimidinic endonuclease activity associated with pyrimidine dimer-DNA glycosylases from Micrococcus luteus and bacteriophage T4

    International Nuclear Information System (INIS)

    Liuzzi, M.; Weinfeld, M.; Paterson, M.C.

    1987-01-01

    The UV endonucleases from Micrococcus luteus and bacteriophage T4 possess two catalytic activities specific for the site of cyclobutane pyrimidine dimers in UV-irradiated DNA: a DNA glycosylase that cleaves the 5'-glycosyl bond of the dimerized pyrimidines and an apurinic/apyrimidinic (AP) endonuclease that thereupon incises the phosphodiester bond 3' to the resulting apyrimidinic site. The authors have explored the potential use of methoxyamine, a chemical that reacts at neutral pH with AP sites in DNA, as a selective inhibitor of the AP endonuclease activities residing in the M. luteus and T4 enzymes. The presence of 50 mM methoxyamine during incubation of UV-treated, [ 3 H]thymine-labeled poly(dA) x poly(dT) with either enzyme preparation was found to protect completely the irradiated copolymer from endonucleolytic attack at dimer sites, as assayed by yield of acid-soluble radioactivity. In contrast, the dimer-DNA glycosylase activity of each enzyme remained fully functional, as monitored retrospectively by release of free thymine after either photochemical-(5 kJ/m 2 , 254 nm) or photoenzymic- (Escherichia coli photolyase plus visible light) induced reversal of pyrimidine dimers in the UV-damaged substrate. The data demonstrate that the inhibition of the strand-incision reaction arises because of chemical modification of the AP sites and is not due to inactivation of the enzyme by methoxyamine. The results, combined with earlier findings for 5'-acting AP endonucleases, strongly suggest that methoxyamine is a highly specific inhibitor of virtually all AP endonucleases, irrespective of their modes of action, and may therefore prove useful in a wide variety of DNA repair studies

  4. Complementary specificity of restriction endonucleases of Diplococcus pneumoniae with respect to DNA methylation. [Haemophilus influenzae, Escherichia coli, Paramecium aurelia

    Energy Technology Data Exchange (ETDEWEB)

    Lacks, S.; Greenberg, B.

    1977-01-01

    Restriction endonucleases Dpn I and Dpn II are produced by two distinct strains of Diplococcus pneumoniae. The two enzymes show complementary specificity with respect to methylation of sites in DNA. From the identity of its cleavage site with that of Mbo I, it appears that Dpn II cleaves at the unmodified sequence 5'-G-A-T-C-3'. Dpn I cleaves at the same sequence when the adenine residue is methylated. Both enzymes produce only double-strand breaks in susceptible DNA. Their susceptibility to Dpn I and not Dpn II shows that essentially all the G-A-T-C sequences are methylated in DNA from the pneumococcal strain that produces Dpn II as well as in DNA from Hemophilus influenzae and Escherichia coli. In the dam-3 mutant of E. coli none of these sequences appear to be methylated. Residual adenine methylation in the dam-3 mutant DNA most likely occurs at different sites. Different but characteristic degrees of methylation at G-A-T-C sites are found in the DNA of bacterial viruses grown in E. coli. DNAs from mammalian cells and viruses are not methylated at this sequence. Mitochondrial DNA from Paramecium aurelia is not methylated, but a small proportion of G-A-T-C sequences in the macronuclear DNA of this eukaryote appear to be methylated. Possible roles of sequence-specific methylation in the accommodation of plasmids, in the replication of DNA, in the regulation of gene function and in the restriction of viral infection are discussed.

  5. Crystal structure of the apurinic/apyrimidinic endonuclease IV from Mycobacterium tuberculosis.

    Science.gov (United States)

    Zhang, Wei; Xu, Yueyang; Yan, Mengrong; Li, Shanshan; Wang, Huiying; Yang, Haitao; Zhou, Weihong; Rao, Zihe

    2018-03-25

    Endonuclease IV is a typical endonuclease of the apurinic-apyrimidinic (AP) or abasic endonuclease superfamily. It repairs damaged DNA through base excision repair by cleaving the DNA backbone immediately 5' of an AP site. In Mycobacterium tuberculosis, endonuclease IV is the major AP endonuclease. This enzyme is absent from mammalian cells, making it an attractive target for anti-tuberculosis drug development. In this study, the structure of the recombinant endonuclease IV from M. tuberculosis (MtbEndo IV) was determined at a high resolution of 1.18 Å. MtbEndo IV was found to have a classical α8β8-fold TIM barrel with loops on its surface connecting the α-helices and β-strands that constitute a groove for DNA binding. Three zinc ions were identified at the active site. A comparison between the structures of MtbEndo IV and Escherichia coli End IV suggested that Gln32 of MtbEndo IV may plays a role in regulating substrate binding. Copyright © 2018. Published by Elsevier Inc.

  6. Selective metal binding to Cys-78 within endonuclease V causes an inhibition of catalytic activities without altering nontarget and target DNA binding

    International Nuclear Information System (INIS)

    Prince, M.A.; Friedman, B.; Gruskin, E.A.; Schrock, R.D. III; Lloyd, R.S.

    1991-01-01

    T4 endonuclease V is a pyrimidine dimer-specific DNA repair enzyme which has been previously shown not to require metal ions for either of its two catalytic activities or its DNA binding function. However, we have investigated whether the single cysteine within the enzyme was able to bind metal salts and influence the various activities of this repair enzyme. A series of metals (Hg2+, Ag+, Cu+) were shown to inactivate both endonuclease Vs pyrimidine dimer-specific DNA glycosylase activity and the subsequent apurinic nicking activity. The binding of metal to endonuclease V did not interfere with nontarget DNA scanning or pyrimidine dimer-specific binding. The Cys-78 codon within the endonuclease V gene was changed by oligonucleotide site-directed mutagenesis to Thr-78 and Ser-78 in order to determine whether the native cysteine was directly involved in the enzyme's DNA catalytic activities and whether the cysteine was primarily responsible for the metal binding. The mutant enzymes were able to confer enhanced ultraviolet light (UV) resistance to DNA repair-deficient Escherichia coli at levels equal to that conferred by the wild type enzyme. The C78T mutant enzyme was purified to homogeneity and shown to be catalytically active on pyrimidine dimer-containing DNA. The catalytic activities of the C78T mutant enzyme were demonstrated to be unaffected by the addition of Hg2+ or Ag+ at concentrations 1000-fold greater than that required to inhibit the wild type enzyme. These data suggest that the cysteine is not required for enzyme activity but that the binding of certain metals to that amino acid block DNA incision by either preventing a conformational change in the enzyme after it has bound to a pyrimidine dimer or sterically interfering with the active site residue's accessibility to the pyrimidine dimer

  7. Endonuclease IV of Escherichia coli is induced by paraquat

    Energy Technology Data Exchange (ETDEWEB)

    Chan, E.; Weiss, B.

    1987-05-01

    The addition of paraquat (methyl viologen) to a growing culture of Escherichia coli K-12 led within 1 hr to a 10- to 20-fold increase in the level of endonuclease IV, a DNase for apurinic/apyrimidinic sites. The induction was blocked by chloramphenicol. Increases of 3-fold or more were also seen with plumbagin, menadione, and phenazine methosulfate. H/sub 2/O/sub 2/ produced no more than a 2-fold increase in endonuclease IV activity. The following agents had no significant effect: streptonigrin, nitrofurantoin, tert-butyl hydroperoxide, ..gamma.. rays, 260-nm UV radiation, methyl methanesulfonate, mitomycin C, and ascorbate. Paraquat, plumbagin, menadione, and phenazine methosulfate are known to generate superoxide radical anions via redox cycling in vivo. A mutant lacking superoxide dismutase was unusually sensitive to induction by paraquat. In addition, endonuclease IV could be induced by merely growing the mutant in pure O/sub 2/. The levels of endonuclease IV in uninduced or paraquat-treated cells were unaffected by mutations of oxyR, a H/sub 2/O/sub 2/-inducible gene that governs an oxidative-stress regulon. The results indicate that endonuclease IV is an inducible DNA-repair enzyme and that its induction can be mediated via the production of superoxide radicals.

  8. Endonuclease IV of Escherichia coli is induced by paraquat

    International Nuclear Information System (INIS)

    Chan, E.; Weiss, B.

    1987-01-01

    The addition of paraquat (methyl viologen) to a growing culture of Escherichia coli K-12 led within 1 hr to a 10- to 20-fold increase in the level of endonuclease IV, a DNase for apurinic/apyrimidinic sites. The induction was blocked by chloramphenicol. Increases of 3-fold or more were also seen with plumbagin, menadione, and phenazine methosulfate. H 2 O 2 produced no more than a 2-fold increase in endonuclease IV activity. The following agents had no significant effect: streptonigrin, nitrofurantoin, tert-butyl hydroperoxide, γ rays, 260-nm UV radiation, methyl methanesulfonate, mitomycin C, and ascorbate. Paraquat, plumbagin, menadione, and phenazine methosulfate are known to generate superoxide radical anions via redox cycling in vivo. A mutant lacking superoxide dismutase was unusually sensitive to induction by paraquat. In addition, endonuclease IV could be induced by merely growing the mutant in pure O 2 . The levels of endonuclease IV in uninduced or paraquat-treated cells were unaffected by mutations of oxyR, a H 2 O 2 -inducible gene that governs an oxidative-stress regulon. The results indicate that endonuclease IV is an inducible DNA-repair enzyme and that its induction can be mediated via the production of superoxide radicals

  9. Generating and repairing genetically programmed DNA breaks during immunoglobulin class switch recombination

    Science.gov (United States)

    Nicolas, Laura; Cols, Montserrat; Choi, Jee Eun; Chaudhuri, Jayanta; Vuong, Bao

    2018-01-01

    Adaptive immune responses require the generation of a diverse repertoire of immunoglobulins (Igs) that can recognize and neutralize a seemingly infinite number of antigens. V(D)J recombination creates the primary Ig repertoire, which subsequently is modified by somatic hypermutation (SHM) and class switch recombination (CSR). SHM promotes Ig affinity maturation whereas CSR alters the effector function of the Ig. Both SHM and CSR require activation-induced cytidine deaminase (AID) to produce dU:dG mismatches in the Ig locus that are transformed into untemplated mutations in variable coding segments during SHM or DNA double-strand breaks (DSBs) in switch regions during CSR. Within the Ig locus, DNA repair pathways are diverted from their canonical role in maintaining genomic integrity to permit AID-directed mutation and deletion of gene coding segments. Recently identified proteins, genes, and regulatory networks have provided new insights into the temporally and spatially coordinated molecular interactions that control the formation and repair of DSBs within the Ig locus. Unravelling the genetic program that allows B cells to selectively alter the Ig coding regions while protecting non-Ig genes from DNA damage advances our understanding of the molecular processes that maintain genomic integrity as well as humoral immunity. PMID:29744038

  10. Next-generation sequencing of multiple individuals per barcoded library by deconvolution of sequenced amplicons using endonuclease fragment analysis

    DEFF Research Database (Denmark)

    Andersen, Jeppe D; Pereira, Vania; Pietroni, Carlotta

    2014-01-01

    The simultaneous sequencing of samples from multiple individuals increases the efficiency of next-generation sequencing (NGS) while also reducing costs. Here we describe a novel and simple approach for sequencing DNA from multiple individuals per barcode. Our strategy relies on the endonuclease...... digestion of PCR amplicons prior to library preparation, creating a specific fragment pattern for each individual that can be resolved after sequencing. By using both barcodes and restriction fragment patterns, we demonstrate the ability to sequence the human melanocortin 1 receptor (MC1R) genes from 72...... individuals using only 24 barcoded libraries....

  11. Comparison of DNA strand-break simulated with different DNA models

    International Nuclear Information System (INIS)

    Xie, Wenzhang; Li, Junli; Qiu, Rui; Yan, Congchong; Zeng, Zhi; Li, Chunyan

    2013-01-01

    Full text of the publication follows. In Monte Carlo simulation of DNA damage, the geometric model of DNA is of great importance. To study the influence of DNA model on the simulation of DNA damage, three DNA models were created in this paper. They were a volume model and two atomic models with different parameters. Direct DNA strand-break induced by low-energy electrons were simulated respectively with the three models. The results show that most of the energy depositions in the DNA segments do not lead to strand-breaks. The simple single strand-break (SSB) tends to be the predominant damage type, and the contribution of complex double strand-break (DSB) to the total DSB cannot be neglected. Among the yields of all the three DNA target models applied here, the yields of the volume model are the highest, the yields of the atomic model with double van der Waals radii (r) take the second place, whereas the yields of the atomic model with single r come last. On average, the ratios of SSB yields are approximately equivalent to the corresponding ratios of the models' volume. However, there seems to be no clear relationship between the DSB yields and the models' volume. (authors)

  12. Defective double-strand DNA break repair and chromosomal translocations by MYC overexpression.

    Science.gov (United States)

    Karlsson, Asa; Deb-Basu, Debabrita; Cherry, Athena; Turner, Stephanie; Ford, James; Felsher, Dean W

    2003-08-19

    DNA repair mechanisms are essential for the maintenance of genomic integrity. Disruption of gene products responsible for DNA repair can result in chromosomal damage. Improperly repaired chromosomal damage can result in the loss of chromosomes or the generation of chromosomal deletions or translocations, which can lead to tumorigenesis. The MYC protooncogene is a transcription factor whose overexpression is frequently associated with human neoplasia. MYC has not been previously implicated in a role in DNA repair. Here we report that the overexpression of MYC disrupts the repair of double-strand DNA breaks, resulting in a several-magnitude increase in chromosomal breaks and translocations. We found that MYC inhibited the repair of gamma irradiation DNA breaks in normal human cells and blocked the repair of a single double-strand break engineered to occur in an immortal cell line. By spectral karyotypic analysis, we found that MYC even within one cell division cycle resulted in a several-magnitude increase in the frequency of chromosomal breaks and translocations in normal human cells. Hence, MYC overexpression may be a previously undescribed example of a dominant mutator that may fuel tumorigenesis by inducing chromosomal damage.

  13. RPA coordinates DNA end resection and prevents formation of DNA hairpins.

    Science.gov (United States)

    Chen, Huan; Lisby, Michael; Symington, Lorraine S

    2013-05-23

    Replication protein A (RPA) is an essential eukaryotic single-stranded DNA binding protein with a central role in DNA metabolism. RPA directly participates in DNA double-strand break repair by stimulating 5'-3' end resection by the Sgs1/BLM helicase and Dna2 endonuclease in vitro. Here we investigated the role of RPA in end resection in vivo, using a heat-inducible degron system that allows rapid conditional depletion of RPA in Saccharomyces cerevisiae. We found that RPA depletion eliminated both the Sgs1-Dna2- and Exo1-dependent extensive resection pathways and synergized with mre11Δ to prevent end resection. The short single-stranded DNA tails formed in the absence of RPA were unstable due to 3' strand loss and the formation of fold-back hairpin structures that required resection initiation and Pol32-dependent DNA synthesis. Thus, RPA is required to generate ssDNA, and also to protect ssDNA from degradation and inappropriate annealing that could lead to genome rearrangements. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Spectrophotometric, colorimetric and visually detection of Pseudomonas aeruginosa ETA gene based gold nanoparticles DNA probe and endonuclease enzyme

    Science.gov (United States)

    Amini, Bahram; Kamali, Mehdi; Salouti, Mojtaba; Yaghmaei, Parichehreh

    2018-06-01

    Colorimetric DNA detection is preferred over other methods for clinical molecular diagnosis because it does not require expensive equipment. In the present study, the colorimetric method based on gold nanoparticles (GNPs) and endonuclease enzyme was used for the detection of P. aeruginosa ETA gene. Firstly, the primers and probe for P. aeruginosa exotoxin A (ETA) gene were designed and checked for specificity by the PCR method. Then, GNPs were synthesized using the citrate reduction method and conjugated with the prepared probe to develop the new nano-biosensor. Next, the extracted target DNA of the bacteria was added to GNP-probe complex to check its efficacy for P. aeruginosa ETA gene diagnosis. A decrease in absorbance was seen when GNP-probe-target DNA cleaved into the small fragments of BamHI endonuclease due to the weakened electrostatic interaction between GNPs and the shortened DNA. The right shift of the absorbance peak from 530 to 562 nm occurred after adding the endonuclease. It was measured using a UV-VIS absorption spectroscopy that indicates the existence of the P. aeruginosa ETA gene. Sensitivity was determined in the presence of different concentrations of target DNA of P. aeruginosa. The results obtained from the optimized conditions showed that the absorbance value has linear correlation with concentration of target DNA (R: 0.9850) in the range of 10-50 ng mL-1 with the limit detection of 9.899 ng mL-1. Thus, the specificity of the new method for detection of P. aeruginosa was established in comparison with other bacteria. Additionally, the designed assay was quantitatively applied to detect the P. aeruginosa ETA gene from 103 to 108 CFU mL-1 in real samples with a detection limit of 320 CFU mL-1.

  15. Processive nicking activity of T4 endonuclease V on UV-irradiated chromatin

    International Nuclear Information System (INIS)

    Gruskin, E.A.; Lloyd, R.S.

    1986-01-01

    T4 endonuclease V initiates the excision repair of pyrimidine dimers in UV-irradiated T4 infected E. coli cells. The pyrimidine dimer specific nicking activity of T4 endonuclease V functions by a processive scanning on UV-irradiated DNA. Previously it has been demonstrated that introduction of endonuclease V into repair-deficient human cells causes a restoration of UV survival in these cells. This demonstrates that endonuclease V is competent to incise mammalian DNA at the site of pyrimidine dimers. In order to assess the ability of endonuclease V to act processively on DNA associated as chromatin, minichromosomes were prepared for use as a substrate. Form I DNA was reconstituted with H3, H4 +/- H1 histones by sequential dialysis steps from 2.0 M NaCl to 50 mM NaCl. Time course reactions were performed with minichromosomes containing 10 and 25 dimers per molecule. In each case the rate of disappearance of form I DNA which was associated as chromatin was decreased relative to that of naked form I DNA. Concurrent with that observation, the rate and extent of appearance of form III DNA was increased with the DNA in minichromosomes relative to naked DNA. This is diagnostic of an enhancement of processivity. The inclusion of H1 in the minichromosomes resulted in a slight additional increase in processivity relative to minichromosomes consisting only of H3 and H4

  16. Role for Artemis nuclease in the repair of radiation-induced DNA double strand breaks by alternative end joining.

    Science.gov (United States)

    Moscariello, Mario; Wieloch, Radi; Kurosawa, Aya; Li, Fanghua; Adachi, Noritaka; Mladenov, Emil; Iliakis, George

    2015-07-01

    Exposure of cells to ionizing radiation or radiomimetic drugs generates DNA double-strand breaks that are processed either by homologous recombination repair (HRR), or by canonical, DNA-PKcs-dependent non-homologous end-joining (C-NHEJ). Chemical or genetic inactivation of factors involved in C-NHEJ or HRR, but also their local failure in repair proficient cells, promotes an alternative, error-prone end-joining pathway that serves as backup (A-EJ). There is evidence for the involvement of Artemis endonuclease, a protein deficient in a human radiosensitivity syndrome associated with severe immunodeficiency (RS-SCID), in the processing of subsets of DSBs by HRR or C-NHEJ. It is thought that within HRR or C-NHEJ Artemis processes DNA termini at complex DSBs. Whether Artemis has a role in A-EJ remains unknown. Here, we analyze using pulsed-field gel electrophoresis (PFGE) and specialized reporter assays, DSB repair in wild-type pre-B NALM-6 lymphocytes, as well as in their Artemis(-/-), DNA ligase 4(-/-) (LIG4(-/-)), and LIG4(-/-)/Artemis(-/-) double mutant counterparts, under conditions allowing evaluation of A-EJ. Our results substantiate the suggested roles of Artemis in C-NHEJ and HRR, but also demonstrate a role for the protein in A-EJ that is confirmed in Artemis deficient normal human fibroblasts. We conclude that Artemis is a nuclease participating in DSB repair by all major repair pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. DNA double-strand breaks & poptosis in the testis

    NARCIS (Netherlands)

    Hamer, Geert

    2003-01-01

    During spermatogenesis, DNA damage is a naturally occurring event. At a certain stage, during the first meiotic prophase, DNA breaks are endogenously induced and even required for meiotic recombination. We studied these DNA breaks but also used ionizing radiation (IR) to induce DNA double-strand

  18. PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance.

    Science.gov (United States)

    van Oers, Johanna M M; Roa, Sergio; Werling, Uwe; Liu, Yiyong; Genschel, Jochen; Hou, Harry; Sellers, Rani S; Modrich, Paul; Scharff, Matthew D; Edelmann, Winfried

    2010-07-27

    The DNA mismatch repair protein PMS2 was recently found to encode a novel endonuclease activity. To determine the biological functions of this activity in mammals, we generated endonuclease-deficient Pms2E702K knock-in mice. Pms2EK/EK mice displayed increased genomic mutation rates and a strong cancer predisposition. In addition, class switch recombination, but not somatic hypermutation, was impaired in Pms2EK/EK B cells, indicating a specific role in Ig diversity. In contrast to Pms2-/- mice, Pms2EK/EK male mice were fertile, indicating that this activity is dispensable in spermatogenesis. Therefore, the PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance and tumor suppression.

  19. Assessment of evidence for nanosized titanium dioxide-generated DNA strand breaks and oxidatively damaged DNA in cells and animal models

    DEFF Research Database (Denmark)

    Møller, Peter; Jensen, Ditte Marie; Wils, Regitze Sølling

    2017-01-01

    Nanosized titanium dioxide (TiO2) has been investigated in numerous studies on genotoxicity, including comet assay endpoints and oxidatively damaged DNA in cell cultures and animal models. The results have been surprisingly mixed, which might be attributed to physico-chemical differences...... culture studies also demonstrate increased levels of oxidatively damaged DNA after exposure to TiO2. There are relatively few studies on animal models where DNA strand breaks and oxidatively damaged DNA have been tested with reliable methods. Collectively, this review shows that exposure to nanosized TiO2...... of the tested TiO2. In the present review, we assess the role of certain methodological issues and publication bias. The analysis shows that studies on DNA strand breaks without proper assay controls or very low intra-group variation tend to show statistically significant effects. Levels of oxidatively damaged...

  20. Formation of double-strand breaks in DNA of γ-irradiated bacteria depending on the function of fast repair processes of DNA single-strand breaks

    International Nuclear Information System (INIS)

    Petrov, S.I.; Gaziev, A.I.

    1980-01-01

    The formation of double-strand breaks in DNA of γ-irradiated ( 60 Co)Ex coli bacteria depending on the function of fast repair processes of DNA single-strand breaks, is investigated. The profiles of sedimentation of DNA Ex coli cells, irradiated at 0-2 deg C in the salt medium and in EDTA-borate buffer, are presented. It is shown that when irradiating cells in EDTA-borate buffer, the output of single- and double strand breaks in DNA is much higher than in the case of their irradiation in the minimum salt medium. The dependence of output of single-strand and double-strand breaks depending on the radiatier doze of E coli cells in the salt medium and EDTA-borate buffer, is studied. The supposition is made on the presence of a regulative interaction between the accumulation of DNA single-breaks and their repair with the formation of double-strand breaks. The functionating of fast and superfast repair processes considerably affects the formation of double-strand breaks in DNA of a bacterium cell. A considerable amount of double-breaks registered immediately after irradiation forms due to a close position of single-strand breaks on the opposite DNA strands

  1. Increased sister chromatid cohesion and DNA damage response factor localization at an enzyme-induced DNA double-strand break in vertebrate cells.

    LENUS (Irish Health Repository)

    Dodson, Helen

    2009-10-01

    The response to DNA damage in vertebrate cells involves successive recruitment of DNA signalling and repair factors. We used light microscopy to monitor the genetic dependencies of such localization to a single, induced DNA double strand break (DSB) in vertebrate cells. We used an inducible version of the rare-cutting I-SceI endonuclease to cut a chromosomally integrated I-SceI site beside a Tet operator array that was visualized by binding a Tet repressor-GFP fusion. Formation of gamma-H2AX foci at a single DSB was independent of ATM or Ku70. ATM-deficient cells showed normal kinetics of 53Bp1 recruitment to DSBs, but Rad51 localization was retarded. 53Bp1 and Rad51 foci formation at a single DSB was greatly reduced in H2AX-null DT40 cells. We also observed decreased inter-sister chromatid distances after DSB induction, suggesting that cohesin loading at DSBs causes elevated sister chromatid cohesion. Loss of ATM reduced DSB-induced cohesion, consistent with cohesin being an ATM target in the DSB response. These data show that the same genetic pathways control how cells respond to single DSBs and to multiple lesions induced by whole-cell DNA damage.

  2. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease.

    Science.gov (United States)

    Anders, Carolin; Niewoehner, Ole; Duerst, Alessia; Jinek, Martin

    2014-09-25

    The CRISPR-associated protein Cas9 is an RNA-guided endonuclease that cleaves double-stranded DNA bearing sequences complementary to a 20-nucleotide segment in the guide RNA. Cas9 has emerged as a versatile molecular tool for genome editing and gene expression control. RNA-guided DNA recognition and cleavage strictly require the presence of a protospacer adjacent motif (PAM) in the target DNA. Here we report a crystal structure of Streptococcus pyogenes Cas9 in complex with a single-molecule guide RNA and a target DNA containing a canonical 5'-NGG-3' PAM. The structure reveals that the PAM motif resides in a base-paired DNA duplex. The non-complementary strand GG dinucleotide is read out via major-groove interactions with conserved arginine residues from the carboxy-terminal domain of Cas9. Interactions with the minor groove of the PAM duplex and the phosphodiester group at the +1 position in the target DNA strand contribute to local strand separation immediately upstream of the PAM. These observations suggest a mechanism for PAM-dependent target DNA melting and RNA-DNA hybrid formation. Furthermore, this study establishes a framework for the rational engineering of Cas9 enzymes with novel PAM specificities.

  3. Site- and strand-specific nicking of DNA by fusion proteins derived from MutH and I-SceI or TALE repeats.

    Science.gov (United States)

    Gabsalilow, Lilia; Schierling, Benno; Friedhoff, Peter; Pingoud, Alfred; Wende, Wolfgang

    2013-04-01

    Targeted genome engineering requires nucleases that introduce a highly specific double-strand break in the genome that is either processed by homology-directed repair in the presence of a homologous repair template or by non-homologous end-joining (NHEJ) that usually results in insertions or deletions. The error-prone NHEJ can be efficiently suppressed by 'nickases' that produce a single-strand break rather than a double-strand break. Highly specific nickases have been produced by engineering of homing endonucleases and more recently by modifying zinc finger nucleases (ZFNs) composed of a zinc finger array and the catalytic domain of the restriction endonuclease FokI. These ZF-nickases work as heterodimers in which one subunit has a catalytically inactive FokI domain. We present two different approaches to engineer highly specific nickases; both rely on the sequence-specific nicking activity of the DNA mismatch repair endonuclease MutH which we fused to a DNA-binding module, either a catalytically inactive variant of the homing endonuclease I-SceI or the DNA-binding domain of the TALE protein AvrBs4. The fusion proteins nick strand specifically a bipartite recognition sequence consisting of the MutH and the I-SceI or TALE recognition sequences, respectively, with a more than 1000-fold preference over a stand-alone MutH site. TALE-MutH is a programmable nickase.

  4. Fragmentation in DNA double-strand breaks

    International Nuclear Information System (INIS)

    Wei Zhiyong; Suzhou Univ., Suzhou; Zhang Lihui; Li Ming; Fan Wo; Xu Yujie

    2005-01-01

    DNA double strand breaks are important lesions induced by irradiations. Random breakage model or quantification supported by this concept is suitable to analyze DNA double strand break data induced by low LET radiation, but deviation from random breakage model is more evident in high LET radiation data analysis. In this work we develop a new method, statistical fragmentation model, to analyze the fragmentation process of DNA double strand breaks. After charged particles enter the biological cell, they produce ionizations along their tracks, and transfer their energies to the cells and break the cellular DNA strands into fragments. The probable distribution of the fragments is obtained under the condition in which the entropy is maximum. Under the approximation E≅E 0 + E 1 l + E 2 l 2 , the distribution functions are obtained as exp(αl + βl 2 ). There are two components, the one proportional to exp(βl 2 ), mainly contributes to the low mass fragment yields, the other component, proportional to exp(αl), decreases slowly as the mass of the fragments increases. Numerical solution of the constraint equations provides parameters α and β. Experimental data, especially when the energy deposition is higher, support the statistical fragmentation model. (authors)

  5. Multiple pathways of DNA double-strand break processing in a mutant Indian muntjac cell line

    International Nuclear Information System (INIS)

    Bouffler, S.D.; Jha, B.; Johnson, R.T.

    1990-01-01

    DNA break processing is compared in the Indian muntjac cell lines, SVM and DM. The initial frequencies and resealing of X-ray generated single- and double-strand breaks are similar in the two cell lines. Inhibiting the repair of UV damage leads to greater double-strand breakage in SVM than in DM, and some of these breaks are not repaired; however, repair-associated single-strand breakage and resealing are normal. Dimethylsulfate also induces excess double-strand breakage in SVM, and these breaks are irreparable. Restricted plasmids are reconstituted correctly in SVM at approximately 30% of the frequency observed in DM. Thus SVM has a reduced capacity to repair certain types of double-strand break. This defect is not due to a DNA ligase deficiency. We conclude that DNA double-strand breaks are repaired by a variety of pathways within mammalian cells and that the structure of the break or its mode of formation determines its subsequent fate

  6. Interstrand cross-links arising from strand breaks at true abasic sites in duplex DNA

    Science.gov (United States)

    Yang, Zhiyu; Price, Nathan E.; Johnson, Kevin M.

    2017-01-01

    Abstract Interstrand cross-links are exceptionally bioactive DNA lesions. Endogenous generation of interstrand cross-links in genomic DNA may contribute to aging, neurodegeneration, and cancer. Abasic (Ap) sites are common lesions in genomic DNA that readily undergo spontaneous and amine-catalyzed strand cleavage reactions that generate a 2,3-didehydro-2,3-dideoxyribose sugar remnant (3’ddR5p) at the 3’-terminus of the strand break. Interestingly, this strand scission process leaves an electrophilic α,β-unsaturated aldehyde residue embedded within the resulting nicked duplex. Here we present evidence that 3’ddR5p derivatives generated by spermine-catalyzed strand cleavage at Ap sites in duplex DNA can react with adenine residues on the opposing strand to generate a complex lesion consisting of an interstrand cross-link adjacent to a strand break. The cross-link blocks DNA replication by ϕ29 DNA polymerase, a highly processive polymerase enzyme that couples synthesis with strand displacement. This suggests that 3’ddR5p-derived cross-links have the potential to block critical cellular DNA transactions that require strand separation. LC-MS/MS methods developed herein provide powerful tools for studying the occurrence and properties of these cross-links in biochemical and biological systems. PMID:28531327

  7. Recruitment of the cohesin loading factor NIPBL to DNA double-strand breaks depends on MDC1, RNF168 and HP1γ in human cells

    International Nuclear Information System (INIS)

    Oka, Yasuyoshi; Suzuki, Keiji; Yamauchi, Motohiro; Mitsutake, Norisato; Yamashita, Shunichi

    2011-01-01

    Highlights: → NIPBL is recruited to DSBs. → Localization of NIPBL to DSBs is regulated by MDC1 and RNF168. → HP1γ is required for NIPBL accumulation at DSBs. -- Abstract: The cohesin loading factor NIPBL is required for cohesin to associate with chromosomes and plays a role in DNA double-strand break (DSB) repair. Although the NIPBL homolog Scc2 is recruited to an enzymatically generated DSB and promotes cohesin-dependent DSB repair in yeast, the mechanism of the recruitment remains poorly understood. Here we show that the human NIPBL is recruited to the sites of DNA damage generated by micro-irradiation as well as to the sites of DSBs induced by homing endonuclease, I-PpoI. The recruitment of NIPBL was impaired by RNAi-mediated knockdown of MDC1 or RNF168, both of which also accumulate at DSBs. We also show that the recruitment of NIPBL to the sites of DNA damage is mediated by its C-terminal region containing HEAT repeats and Heterochromatin protein 1 (HP1) interacting motif. Furthermore, NIPBL accumulation at damaged sites was also compromised by HP1γ depletion. Taken together, our study reveals that human NIPBL is a novel protein recruited to DSB sites, and the recruitment is controlled by MDC1, RNF168 and HP1γ.

  8. Structural insights of the ssDNA binding site in the multifunctional endonuclease AtBFN2 from Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Tsung-Fu Yu

    Full Text Available The multi S1/P1 nuclease AtBFN2 (EC 3.1.30.1 encoded by the Arabidopsis thaliana At1g68290 gene is a glycoprotein that digests RNA, ssDNA, and dsDNA. AtBFN2 depends on three zinc ions for cleaving DNA and RNA at 3'-OH to yield 5'-nucleotides. In addition, AtBFN2's enzymatic activity is strongly glycan dependent. Plant Zn(2+-dependent endonucleases present a unique fold, and belong to the Phospholipase C (PLC/P1 nuclease superfamily. In this work, we present the first complete, ligand-free, AtBFN2 crystal structure, along with sulfate, phosphate and ssDNA co-crystal structures. With these, we were able to provide better insight into the glycan structure and possible enzymatic mechanism. In comparison with other nucleases, the AtBFN2/ligand-free and AtBFN2/PO4 models suggest a similar, previously proposed, catalytic mechanism. Our data also confirm that the phosphate and vanadate can inhibit the enzyme activity by occupying the active site. More importantly, the AtBFN2/A5T structure reveals a novel and conserved secondary binding site, which seems to be important for plant Zn(2+-dependent endonucleases. Based on these findings, we propose a rational ssDNA binding model, in which the ssDNA wraps itself around the protein and the attached surface glycan, in turn, reinforces the binding complex.

  9. The Helicobacter pylori HpyAXII restriction–modification system limits exogenous DNA uptake by targeting GTAC sites but shows asymmetric conservation of the DNA methyltransferase and restriction endonuclease components

    Science.gov (United States)

    Humbert, Olivier; Salama, Nina R.

    2008-01-01

    The naturally competent organism Helicobacter pylori encodes a large number of restriction–modification (R–M) systems that consist of a restriction endonuclease and a DNA methyltransferase. R–M systems are not only believed to limit DNA exchange among bacteria but may also have other cellular functions. We report a previously uncharacterized H. pylori type II R–M system, M.HpyAXII/R.HpyAXII. We show that this system targets GTAC sites, which are rare in the H. pylori chromosome but numerous in ribosomal RNA genes. As predicted, this type II R–M system showed attributes of a selfish element. Deletion of the methyltransferase M.HpyAXII is lethal when associated with an active endonuclease R.HpyAXII unless compensated by adaptive mutation or gene amplification. R.HpyAXII effectively restricted both unmethylated plasmid and chromosomal DNA during natural transformation and was predicted to belong to the novel ‘half pipe’ structural family of endonucleases. Analysis of a panel of clinical isolates revealed that R.HpyAXII was functional in a small number of H. pylori strains (18.9%, n = 37), whereas the activity of M.HpyAXII was highly conserved (92%, n = 50), suggesting that GTAC methylation confers a selective advantage to H. pylori. However, M.HpyAXII activity did not enhance H. pylori fitness during stomach colonization of a mouse infection model. PMID:18978016

  10. Excess single-stranded DNA inhibits meiotic double-strand break repair.

    Directory of Open Access Journals (Sweden)

    Rebecca Johnson

    2007-11-01

    Full Text Available During meiosis, self-inflicted DNA double-strand breaks (DSBs are created by the protein Spo11 and repaired by homologous recombination leading to gene conversions and crossovers. Crossover formation is vital for the segregation of homologous chromosomes during the first meiotic division and requires the RecA orthologue, Dmc1. We analyzed repair during meiosis of site-specific DSBs created by another nuclease, VMA1-derived endonuclease (VDE, in cells lacking Dmc1 strand-exchange protein. Turnover and resection of the VDE-DSBs was assessed in two different reporter cassettes that can repair using flanking direct repeat sequences, thereby obviating the need for a Dmc1-dependent DNA strand invasion step. Access of the single-strand binding complex replication protein A, which is normally used in all modes of DSB repair, was checked in chromatin immunoprecipitation experiments, using antibody against Rfa1. Repair of the VDE-DSBs was severely inhibited in dmc1Delta cells, a defect that was associated with a reduction in the long tract resection required to initiate single-strand annealing between the flanking repeat sequences. Mutants that either reduce Spo11-DSB formation or abolish resection at Spo11-DSBs rescued the repair block. We also found that a replication protein A component, Rfa1, does not accumulate to expected levels at unrepaired single-stranded DNA (ssDNA in dmc1Delta cells. The requirement of Dmc1 for VDE-DSB repair using flanking repeats appears to be caused by the accumulation of large quantities of ssDNA that accumulate at Spo11-DSBs when Dmc1 is absent. We propose that these resected DSBs sequester both resection machinery and ssDNA binding proteins, which in wild-type cells would normally be recycled as Spo11-DSBs repair. The implication is that repair proteins are in limited supply, and this could reflect an underlying mechanism for regulating DSB repair in wild-type cells, providing protection from potentially harmful effects

  11. Interstrand cross-links arising from strand breaks at true abasic sites in duplex DNA.

    Science.gov (United States)

    Yang, Zhiyu; Price, Nathan E; Johnson, Kevin M; Wang, Yinsheng; Gates, Kent S

    2017-06-20

    Interstrand cross-links are exceptionally bioactive DNA lesions. Endogenous generation of interstrand cross-links in genomic DNA may contribute to aging, neurodegeneration, and cancer. Abasic (Ap) sites are common lesions in genomic DNA that readily undergo spontaneous and amine-catalyzed strand cleavage reactions that generate a 2,3-didehydro-2,3-dideoxyribose sugar remnant (3'ddR5p) at the 3'-terminus of the strand break. Interestingly, this strand scission process leaves an electrophilic α,β-unsaturated aldehyde residue embedded within the resulting nicked duplex. Here we present evidence that 3'ddR5p derivatives generated by spermine-catalyzed strand cleavage at Ap sites in duplex DNA can react with adenine residues on the opposing strand to generate a complex lesion consisting of an interstrand cross-link adjacent to a strand break. The cross-link blocks DNA replication by ϕ29 DNA polymerase, a highly processive polymerase enzyme that couples synthesis with strand displacement. This suggests that 3'ddR5p-derived cross-links have the potential to block critical cellular DNA transactions that require strand separation. LC-MS/MS methods developed herein provide powerful tools for studying the occurrence and properties of these cross-links in biochemical and biological systems. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Molecular mechanism of short-patch repair of radiation-damaged DNA by in vitro reconstituted systems

    International Nuclear Information System (INIS)

    Matsumoto, Y.; Kim, K.; Biade, S.

    1995-01-01

    Objective: Short-patch excision repair is the major pathway to correct DNA damage such as modified bases, apurinic/apyrimidinic (AP) sites and single-strand breaks. Recently this repair reaction was demonstrated to proceed by two alternative pathways: DNA polymerase β (pol β)-dependent pathway and proliferating cell nuclear antigen (PCNA)-dependent pathway. In this work, we focused to compare substrate specificity of these two repair pathways and elucidate their roles in cellular responses to radiation damage. Materials and Methods: Three protein fractions, AP endonuclease, pol β, and BE-1B, which are required for the pol β-dependent pathway, and five protein fractions, AP endonuclease, BE-1B (these two are common to the pol β-dependent pathway), PCNA, pol δ, and BE-2, which are essential for the PCNA-dependent pathway were obtained from Xenopus laevis ovaries through column chromatography. The circular DNA containing either one of the following three lesions: a natural AP site, its synthetic analog, 3-hydroxy-2-hydroxymethyltetrahydrofuran (tetrahydrofuran), and 5-iododeoxyuridine (IdU), was prepared by in vitro ligation of oligonucleotides to a gapped circular DNA. The IdU-containing DNA was irradiated with 312 nm UV light prior to repair reaction. In addition, DNA carrying a single-strand break was obtained by Cs-137 irradiation. Repair reactions of these substrate DNAs were conducted with either the reconstituted system for the pol β-dependent pathway or the one for the PCNA-dependent pathway. After the reaction, repaired and unrepaired DNAs were separated by gel electrophoresis and quantitated. Results: The pol β-dependent reconstituted system was able to repair natural AP sites but not tetrahydrofuran sites or UV-irradiated IdU. The single-strand breaks generated by γ-irradiation were partially repaired by thepol β-dependent pathway. The PCNA-dependent system was able to repair natural AP sites, tetrahydrofuran sites, and most of the single

  13. Induction of DNA strand breaks in 14C-labelled cells

    International Nuclear Information System (INIS)

    Sundell-Bergman, S.; Johanson, K.J.

    1979-01-01

    Chinese hamster cells grown in vitro were labelled with 14 C-thymidine for 18 hours and after 3 hours in non-radioactive medium they were stored at 0 0 C for various periods ( 1 to 12 hours). During this treatment a number of DNA strand breaks were induced by 14 C decay which were not repaired at 0 0 C. The number of DNA strand breaks was determined using the DNA unwinding technique. At 0.5-1 dpm per cell a detectable number of DNA strand breaks were found. Treatment for six hours (1 dpm per cell) reduced the percentage of double-stranded DNA from 80 to 70%, corresponding to about 750 DNA strand breaks per cell. The rejoining of DNA strand breaks was studied after treatment for 12 hours at 0 0 C followed by incubation of the cells for various periods at 37 0 C. Most of the DNA strand breaks induced by 14 C decay at 0 0 C were repaired after incubation at 37 0 C for 15 minutes. Assuming an absorbed dose of 1.8 mGy per 14 C decay to the cell nucleus an RBE value close to 1 was found for internal irradiation from 14 C decay as compared with 60 Co-gamma irradiation. (author)

  14. DNA damage, homology-directed repair, and DNA methylation.

    Directory of Open Access Journals (Sweden)

    Concetta Cuozzo

    2007-07-01

    Full Text Available To explore the link between DNA damage and gene silencing, we induced a DNA double-strand break in the genome of Hela or mouse embryonic stem (ES cells using I-SceI restriction endonuclease. The I-SceI site lies within one copy of two inactivated tandem repeated green fluorescent protein (GFP genes (DR-GFP. A total of 2%-4% of the cells generated a functional GFP by homology-directed repair (HR and gene conversion. However, approximately 50% of these recombinants expressed GFP poorly. Silencing was rapid and associated with HR and DNA methylation of the recombinant gene, since it was prevented in Hela cells by 5-aza-2'-deoxycytidine. ES cells deficient in DNA methyl transferase 1 yielded as many recombinants as wild-type cells, but most of these recombinants expressed GFP robustly. Half of the HR DNA molecules were de novo methylated, principally downstream to the double-strand break, and half were undermethylated relative to the uncut DNA. Methylation of the repaired gene was independent of the methylation status of the converting template. The methylation pattern of recombinant molecules derived from pools of cells carrying DR-GFP at different loci, or from an individual clone carrying DR-GFP at a single locus, was comparable. ClustalW analysis of the sequenced GFP molecules in Hela and ES cells distinguished recombinant and nonrecombinant DNA solely on the basis of their methylation profile and indicated that HR superimposed novel methylation profiles on top of the old patterns. Chromatin immunoprecipitation and RNA analysis revealed that DNA methyl transferase 1 was bound specifically to HR GFP DNA and that methylation of the repaired segment contributed to the silencing of GFP expression. Taken together, our data support a mechanistic link between HR and DNA methylation and suggest that DNA methylation in eukaryotes marks homologous recombined segments.

  15. Interstrand cross-links arising from strand breaks at true abasic sites in duplex DNA

    OpenAIRE

    Yang, Zhiyu; Price, Nathan E.; Johnson, Kevin M.; Wang, Yinsheng; Gates, Kent S.

    2017-01-01

    Abstract Interstrand cross-links are exceptionally bioactive DNA lesions. Endogenous generation of interstrand cross-links in genomic DNA may contribute to aging, neurodegeneration, and cancer. Abasic (Ap) sites are common lesions in genomic DNA that readily undergo spontaneous and amine-catalyzed strand cleavage reactions that generate a 2,3-didehydro-2,3-dideoxyribose sugar remnant (3?ddR5p) at the 3?-terminus of the strand break. Interestingly, this strand scission process leaves an electr...

  16. Computational study of hydration at the TD damaged site of DNA in complex with repair enzyme T4 endonuclease V

    International Nuclear Information System (INIS)

    Pinak, Miroslav

    2000-02-01

    An analysis of the distribution of water around DNA surface focusing on the role of the distribution of water molecules in the proper recognition of damaged site by repair enzyme T4 Endonuclease V was performed. The native DNA dodecamer, dodecamer with the thymine dimer (TD) and complex of DNA and part of repair enzyme T4 Endonuclease V were examined throughout the 500 ps of molecular dynamics simulation. During simulation the number of water molecules close to the DNA atoms and the residence time were calculated. There is an increase in number of water molecules lying in the close vicinity to TD if compared with those lying close to two native thymines (TT). Densely populated area with water molecules around TD is one of the factors detected by enzyme during scanning process. The residence time was found higher for molecule of the complex and the six water molecules were found occupying the stabile positions between the TD and catalytic center close to atoms P, C3' and N3. These molecules originate water mediated hydrogen bond network that contribute to the stability of complex required for the onset of repair process. (author)

  17. Computational study of hydration at the TD damaged site of DNA in complex with repair enzyme T4 endonuclease V

    Energy Technology Data Exchange (ETDEWEB)

    Pinak, Miroslav [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-02-01

    An analysis of the distribution of water around DNA surface focusing on the role of the distribution of water molecules in the proper recognition of damaged site by repair enzyme T4 Endonuclease V was performed. The native DNA dodecamer, dodecamer with the thymine dimer (TD) and complex of DNA and part of repair enzyme T4 Endonuclease V were examined throughout the 500 ps of molecular dynamics simulation. During simulation the number of water molecules close to the DNA atoms and the residence time were calculated. There is an increase in number of water molecules lying in the close vicinity to TD if compared with those lying close to two native thymines (TT). Densely populated area with water molecules around TD is one of the factors detected by enzyme during scanning process. The residence time was found higher for molecule of the complex and the six water molecules were found occupying the stabile positions between the TD and catalytic center close to atoms P, C3' and N3. These molecules originate water mediated hydrogen bond network that contribute to the stability of complex required for the onset of repair process. (author)

  18. Biochemical properties and base excision repair complex formation of apurinic/apyrimidinic endonuclease from Pyrococcus furiosus

    OpenAIRE

    Kiyonari, Shinichi; Tahara, Saki; Shirai, Tsuyoshi; Iwai, Shigenori; Ishino, Sonoko; Ishino, Yoshizumi

    2009-01-01

    Apurinic/apyrimidinic (AP) sites are the most frequently found mutagenic lesions in DNA, and they arise mainly from spontaneous base loss or modified base removal by damage-specific DNA glycosylases. AP sites are cleaved by AP endonucleases, and the resultant gaps in the DNA are repaired by DNA polymerase/DNA ligase reactions. We identified the gene product that is responsible for the AP endonuclease activity in the hyperthermophilic euryarchaeon, Pyrococcus furiosus. Furthermore, we detected...

  19. Microinjection of Micrococcus luteus UV-endonuclease restores UV-induced unscheduled DNA synthesis in cells of 9 xeroderma pigmentosum complementation groups.

    NARCIS (Netherlands)

    A.J.R. de Jonge; W. Vermeulen (Wim); W. Keijzer; J.H.J. Hoeijmakers (Jan); D. Bootsma (Dirk)

    1985-01-01

    textabstractThe UV-induced unscheduled DNA synthesis (UDS) in cultured cells of excision-deficient xeroderma pigmentosum (XP) complementation groups A through I was assayed after injection of Micrococcus luteus UV-endonuclease using glass microneedles. In all complementation groups a restoration of

  20. Repair of abasic sites in DNA

    Energy Technology Data Exchange (ETDEWEB)

    Dianov, Grigory L.; Sleeth, Kate M.; Dianova, Irina I.; Allinson, Sarah L

    2003-10-29

    Repair of both normal and reduced AP sites is activated by AP endonuclease, which recognizes and cleaves a phosphodiester bond 5' to the AP site. For a short period of time an incised AP site is occupied by poly(ADP-ribose) polymerase and then DNA polymerase {beta} adds one nucleotide into the repair gap and simultaneously removes the 5'-sugar phosphate. Finally, the DNA ligase III/XRCC1 complex accomplishes repair by sealing disrupted DNA ends. However, long-patch BER pathway, which is involved in the removal of reduced abasic sites, requires further DNA synthesis resulting in strand displacement and the generation of a damage-containing flap that is later removed by the flap endonuclease. Strand-displacement DNA synthesis is accomplished by DNA polymerase {delta}/{epsilon} and DNA ligase I restores DNA integrity. DNA synthesis by DNA polymerase {delta}/{epsilon} is dependent on proliferating cell nuclear antigen, which also stimulates the DNA ligase I and flap endonuclease. These repair events are supported by multiple protein-protein interactions.

  1. Removal of pyrimidine dimers from Saccharomyces cerevisiae nuclear DNA under nongrowth conditions as detected by a sensitive, enzymatic assay

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, R J [Tennessee Univ., Oak Ridge (USA). Graduate School of Biomedical Sciences

    1978-04-01

    A sensitive and quantitative procedure for the detection of pyrimidine dimers in yeast nuclear DNA is described. The assay employs dimer-specific, endonuclease activities from Micrococcus luteus together with DNA sedimentation through calibrated, alkaline sucrose gradients to detect endonuclease-induced, single-strand breaks. Breaks were induced in a dose-dependent manner from 0 to 80 J m/sup -2/ at 254 nm and in numbers equivalent to the numbers of dimers induced by similar doses. Endonuclease-sensitive sites in the wild-type, haploid strain S288C, after irradiation with 5 J m/sup -2/ (254 nm), were removed in less than 5 min when cells were incuba ted in buffer (pH 7.0) at 28/sup 0/C. After irra diation with dos es from 30 to 100 J m/sup -2/ site removal in S288C required longer postirradiation incubations and was about 90% complete. In a radiation-sensitive strain carrying the mutant allele rad 4-3 the number of endonuclease-sensitive sites remained constant for 6 h after irradiation with 5 J m/sup -2/. The retention of sites in this strain indicates that it is defective in the excision of pyrimidine dimers. (Auth.

  2. Karyopherin-mediated nuclear import of the homing endonuclease VMA1-derived endonuclease is required for self-propagation of the coding region.

    Science.gov (United States)

    Nagai, Yuri; Nogami, Satoru; Kumagai-Sano, Fumi; Ohya, Yoshikazu

    2003-03-01

    VMA1-derived endonuclease (VDE), a site-specific endonuclease in Saccharomyces cerevisiae, enters the nucleus to generate a double-strand break in the VDE-negative allelic locus, mediating the self-propagating gene conversion called homing. Although VDE is excluded from the nucleus in mitotic cells, it relocalizes at premeiosis, becoming localized in both the nucleus and the cytoplasm in meiosis. The nuclear localization of VDE is induced by inactivation of TOR kinases, which constitute central regulators of cell differentiation in S. cerevisiae, and by nutrient depletion. A functional genomic approach revealed that at least two karyopherins, Srp1p and Kap142p, are required for the nuclear localization pattern. Genetic and physical interactions between Srp1p and VDE imply direct involvement of karyopherin-mediated nuclear transport in this process. Inactivation of TOR signaling or acquisition of an extra nuclear localization signal in the VDE coding region leads to artificial nuclear localization of VDE and thereby induces homing even during mitosis. These results serve as evidence that VDE utilizes the host systems of nutrient signal transduction and nucleocytoplasmic transport to ensure the propagation of its coding region.

  3. Comparison of genomes of malignant catarrhal fever-associated herpesviruses by restriction endonuclease analysis.

    Science.gov (United States)

    Shih, L M; Zee, Y C; Castro, A E

    1989-01-01

    The restriction endonuclease DNA cleavage patterns of eight isolates of malignant catarrhal fever-associated herpesviruses were examined using the restriction endonucleases HindIII and EcoRI. The eight viruses could be assigned to two distinct groups. Virus isolates from a blue wildebeest, a sika deer and an ibex had restriction endonuclease DNA cleavage patterns that were in general similar to each other. The restriction pattern of these three viruses was distinct from the other five. Of these five, four were isolated from a greater kudu, a white tailed wildebeest, a white bearded wildebeest, and a cape hartebeest. The fifth isolate C500, was isolated from a domestic cow with malignant catarrhal fever. These five viruses had similar DNA cleavage patterns.

  4. Apoptotic DNA Degradation into Oligonucleosomal Fragments, but Not Apoptotic Nuclear Morphology, Relies on a Cytosolic Pool of DFF40/CAD Endonuclease*

    Science.gov (United States)

    Iglesias-Guimarais, Victoria; Gil-Guiñon, Estel; Gabernet, Gisela; García-Belinchón, Mercè; Sánchez-Osuna, María; Casanelles, Elisenda; Comella, Joan X.; Yuste, Victor J.

    2012-01-01

    Apoptotic cell death is characterized by nuclear fragmentation and oligonucleosomal DNA degradation, mediated by the caspase-dependent specific activation of DFF40/CAD endonuclease. Here, we describe how, upon apoptotic stimuli, SK-N-AS human neuroblastoma-derived cells show apoptotic nuclear morphology without displaying concomitant internucleosomal DNA fragmentation. Cytotoxicity afforded after staurosporine treatment is comparable with that obtained in SH-SY5Y cells, which exhibit a complete apoptotic phenotype. SK-N-AS cell death is a caspase-dependent process that can be impaired by the pan-caspase inhibitor q-VD-OPh. The endogenous inhibitor of DFF40/CAD, ICAD, is correctly processed, and dff40/cad cDNA sequence does not reveal mutations altering its amino acid composition. Biochemical approaches show that both SH-SY5Y and SK-N-AS resting cells express comparable levels of DFF40/CAD. However, the endonuclease is poorly expressed in the cytosolic fraction of healthy SK-N-AS cells. Despite this differential subcellular distribution of DFF40/CAD, we find no differences in the subcellular localization of both pro-caspase-3 and ICAD between the analyzed cell lines. After staurosporine treatment, the preferential processing of ICAD in the cytosolic fraction allows the translocation of DFF40/CAD from this fraction to a chromatin-enriched one. Therefore, the low levels of cytosolic DFF40/CAD detected in SK-N-AS cells determine the absence of DNA laddering after staurosporine treatment. In these cells DFF40/CAD cytosolic levels can be restored by the overexpression of their own endonuclease, which is sufficient to make them proficient at degrading their chromatin into oligonucleosome-size fragments after staurosporine treatment. Altogether, the cytosolic levels of DFF40/CAD are determinants in achieving a complete apoptotic phenotype, including oligonucleosomal DNA degradation. PMID:22253444

  5. DNA damage induced by the direct effect of He ion particles

    International Nuclear Information System (INIS)

    Urushibara, A.; Shikazono, N.; Watanabe, R.; Fujii, K.; O'Neill, P.; Yokoya, A.

    2006-01-01

    We present here evidence showing that the yields of DNA lesions induced by He 2+ ions strongly depend on Linear energy transfer (LET). In this study, hydrated plasmid DNA was irradiated with He 2+ ions with LET values of 19, 63 and 95 keVμm -1 . The yields of prompt single-strand breaks (SSBs) are very similar at the varying LET values, whereas the yields of prompt double-strand breaks (DSBs) increase with increasing LET. Further, base lesions were revealed as additional strand breaks by post-irradiation treatment of the DNA with endonuclease III (Nth) and formamido-pyrimidine-DNA glycosylase (Fpg). The reduction in the yield of these enzymatically induced SSBs and DSBs becomes significant as the LET increases. These results suggest that the clustering of DNA lesions becomes more probable in regions of high LET. (authors)

  6. A switch from high-fidelity to error-prone DNA double-strand break repair underlies stress-induced mutation.

    Science.gov (United States)

    Ponder, Rebecca G; Fonville, Natalie C; Rosenberg, Susan M

    2005-09-16

    Special mechanisms of mutation are induced in microbes under growth-limiting stress causing genetic instability, including occasional adaptive mutations that may speed evolution. Both the mutation mechanisms and their control by stress have remained elusive. We provide evidence that the molecular basis for stress-induced mutagenesis in an E. coli model is error-prone DNA double-strand break repair (DSBR). I-SceI-endonuclease-induced DSBs strongly activate stress-induced mutations near the DSB, but not globally. The same proteins are required as for cells without induced DSBs: DSBR proteins, DinB-error-prone polymerase, and the RpoS starvation-stress-response regulator. Mutation is promoted by homology between cut and uncut DNA molecules, supporting a homology-mediated DSBR mechanism. DSBs also promote gene amplification. Finally, DSBs activate mutation only during stationary phase/starvation but will during exponential growth if RpoS is expressed. Our findings reveal an RpoS-controlled switch from high-fidelity to mutagenic DSBR under stress. This limits genetic instability both in time and to localized genome regions, potentially important evolutionary strategies.

  7. Exonuclease 1 and its versatile roles in DNA repair

    DEFF Research Database (Denmark)

    Keijzers, Guido; Liu, Dekang; Rasmussen, Lene Juel

    2016-01-01

    Exonuclease 1 (EXO1) is a multifunctional 5' → 3' exonuclease and a DNA structure-specific DNA endonuclease. EXO1 plays roles in DNA replication, DNA mismatch repair (MMR) and DNA double-stranded break repair (DSBR) in lower and higher eukaryotes and contributes to meiosis, immunoglobulin...... maturation, and micro-mediated end-joining in higher eukaryotes. In human cells, EXO1 is also thought to play a role in telomere maintenance. Mutations in the human EXO1 gene correlate with increased susceptibility to some cancers. This review summarizes recent studies on the enzymatic functions...

  8. The transcription fidelity factor GreA impedes DNA break repair.

    Science.gov (United States)

    Sivaramakrishnan, Priya; Sepúlveda, Leonardo A; Halliday, Jennifer A; Liu, Jingjing; Núñez, María Angélica Bravo; Golding, Ido; Rosenberg, Susan M; Herman, Christophe

    2017-10-12

    Homologous recombination repairs DNA double-strand breaks and must function even on actively transcribed DNA. Because break repair prevents chromosome loss, the completion of repair is expected to outweigh the transcription of broken templates. However, the interplay between DNA break repair and transcription processivity is unclear. Here we show that the transcription factor GreA inhibits break repair in Escherichia coli. GreA restarts backtracked RNA polymerase and hence promotes transcription fidelity. We report that removal of GreA results in markedly enhanced break repair via the classic RecBCD-RecA pathway. Using a deep-sequencing method to measure chromosomal exonucleolytic degradation, we demonstrate that the absence of GreA limits RecBCD-mediated resection. Our findings suggest that increased RNA polymerase backtracking promotes break repair by instigating RecA loading by RecBCD, without the influence of canonical Chi signals. The idea that backtracked RNA polymerase can stimulate recombination presents a DNA transaction conundrum: a transcription fidelity factor that compromises genomic integrity.

  9. Murine leukemia virus pol gene products: analysis with antisera generated against reverse transcriptase and endonuclease fusion proteins expressed in Escherichia coli

    International Nuclear Information System (INIS)

    Hu, S.C.; Court, D.L.; Zweig, M.; Levin, J.G.

    1986-01-01

    The organization of the murine leukemia virus (MuLV) pol gene was investigated by expressing molecular clones containing AKR MuLV reverse transcriptase or endonuclease or both gene segments in Escherichia coli and generating specific antisera against the expressed bacterial proteins. Reaction of these antisera with detergent-disrupted virus precipitated and 80-kilodalton (kDa) protein, the MuLV reverse transcriptase, and a 46-kDa protein which we believe is the viral endonuclease. A third (50-kDa) protein, related to reverse transcriptase, was also precipitated. Bacterial extracts of clones expressing reverse transcriptase and endonuclease sequences competed with the viral 80- and 46-kDa proteins, respectively. These results demonstrate that the antisera are specific for viral reverse transcriptase and endonuclease. Immunoprecipitation of AKR MuLV with antisera prepared against a bacterial protein containing only endonuclease sequences led to the observation that reverse transcriptase and endonuclease can be associated as a complex involving a disulfide bond(s)

  10. Restoration of ultraviolet-induced unscheduled DNA synthesis of xeroderma pigmentosum cells by the concomitant treatment with bacteriophage T4 endonuclease V and HVJ (Sendai virus)

    International Nuclear Information System (INIS)

    Tanaka, K.; Sekiguchi, M.; Okada, Y.

    1975-01-01

    Ultraviolet (uv)-induced unscheduled DNA synthesis of xeroderma pigmentosum cells, belonging to complementation groups, A, B, C, D, and E, was restored to the normal level by concomitant treatment of the cells with T4 endonuclease V and uv-inactivated HVJ (Sendai virus). The present results suggest that T4 endonuclease molecules were inserted effectively into the cells by the interaction of HVJ with the cell membranes, the enzyme was functional on human chromosomal DNA which had been damaged by uv irradiation in the viable cells, all the studied groups of xeroderma pigmentosum (variant was not tested) were defective in the first step (incision) of excision repair

  11. QUANTITATION OF INTRACELLULAR NAD(P)H IN LIVING CELLS CAN MONITOR AN IMBALANCE OF DNA SINGLE STRAND BREAK REPAIR IN REAL TIME

    Science.gov (United States)

    Quantitation of intracellular NAD(P)H in living cells can monitor an imbalance of DNA single strand break repair in real time.ABSTRACTDNA single strand breaks (SSBs) are one of the most frequent DNA lesions in genomic DNA generated either by oxidative stress or du...

  12. JS-K, a GST-activated nitric oxide generator, induces DNA double-strand breaks, activates DNA damage response pathways, and induces apoptosis in vitro and in vivo in human multiple myeloma cells.

    Science.gov (United States)

    Kiziltepe, Tanyel; Hideshima, Teru; Ishitsuka, Kenji; Ocio, Enrique M; Raje, Noopur; Catley, Laurence; Li, Chun-Qi; Trudel, Laura J; Yasui, Hiroshi; Vallet, Sonia; Kutok, Jeffery L; Chauhan, Dharminder; Mitsiades, Constantine S; Saavedra, Joseph E; Wogan, Gerald N; Keefer, Larry K; Shami, Paul J; Anderson, Kenneth C

    2007-07-15

    Here we investigated the cytotoxicity of JS-K, a prodrug designed to release nitric oxide (NO(*)) following reaction with glutathione S-transferases, in multiple myeloma (MM). JS-K showed significant cytotoxicity in both conventional therapy-sensitive and -resistant MM cell lines, as well as patient-derived MM cells. JS-K induced apoptosis in MM cells, which was associated with PARP, caspase-8, and caspase-9 cleavage; increased Fas/CD95 expression; Mcl-1 cleavage; and Bcl-2 phosphorylation, as well as cytochrome c, apoptosis-inducing factor (AIF), and endonuclease G (EndoG) release. Moreover, JS-K overcame the survival advantages conferred by interleukin-6 (IL-6) and insulin-like growth factor 1 (IGF-1), or by adherence of MM cells to bone marrow stromal cells. Mechanistic studies revealed that JS-K-induced cytotoxicity was mediated via NO(*) in MM cells. Furthermore, JS-K induced DNA double-strand breaks (DSBs) and activated DNA damage responses, as evidenced by neutral comet assay, as well as H2AX, Chk2 and p53 phosphorylation. JS-K also activated c-Jun NH(2)-terminal kinase (JNK) in MM cells; conversely, inhibition of JNK markedly decreased JS-K-induced cytotoxicity. Importantly, bortezomib significantly enhanced JS-K-induced cytotoxicity. Finally, JS-K is well tolerated, inhibits tumor growth, and prolongs survival in a human MM xenograft mouse model. Taken together, these data provide the preclinical rationale for the clinical evaluation of JS-K to improve patient outcome in MM.

  13. Caffeine inhibits homology-directed repair of I-SceI-induced DNA double-strand breaks.

    Science.gov (United States)

    Wang, Huichen; Boecker, Wilfried; Wang, Hongyan; Wang, Xiang; Guan, Jun; Thompson, Larry H; Nickoloff, Jac A; Iliakis, George

    2004-01-22

    We recently reported that two Chinese hamster mutants deficient in the RAD51 paralogs XRCC2 and XRCC3 show reduced radiosensitization after treatment with caffeine, thus implicating homology-directed repair (HDR) of DNA double-strand breaks (DSBs) in the mechanism of caffeine radiosensitization. Here, we investigate directly the effect of caffeine on HDR initiated by DSBs induced by a rare cutting endonuclease (I-SceI) into one of two direct DNA repeats. The results demonstrate a strong inhibition by caffeine of HDR in wild-type cells, and a substantial reduction of this effect in HDR-deficient XRCC3 mutant cells. Inhibition of HDR and cell radiosensitization to killing shows similar dependence on caffeine concentration suggesting a cause-effect relationship between these effects. UCN-01, a kinase inhibitor that effectively abrogates checkpoint activation in irradiated cells, has only a small effect on HDR, indicating that similar to radiosensitization, inhibition of checkpoint signaling is not sufficient for HDR inhibition. Recombination events occurring during treatment with caffeine are characterized by rearrangements reminiscent to those previously reported for the XRCC3 mutant, and immunofluorescence microscopy demonstrates significantly reduced formation of IR-specific RAD51 foci after caffeine treatment. In summary, our results identify inhibition of HDR as a significant contributor to caffeine radiosensitization.

  14. Activation of apurinic/apyrimidinic endonuclease in human cells by reactive oxygen species and its correlation with their adaptive response to genotoxicity of free radicals

    Science.gov (United States)

    Ramana, Chilakamarti V.; Boldogh, Istvan; Izumi, Tadahide; Mitra, Sankar

    1998-01-01

    Apurinic/apyrimidinic (AP) endonuclease (APE; EC 4.2.99.18) plays a central role in repair of DNA damage due to reactive oxygen species (ROS) because its DNA 3′-phosphoesterase activity removes 3′ blocking groups in DNA that are generated by DNA glycosylase/AP-lyases during removal of oxidized bases and by direct ROS reaction with DNA. The major human APE (APE-1) gene is activated selectively by sublethal levels of a variety of ROS and ROS generators, including ionizing radiation, but not by other genotoxicants—e.g., UV light and alkylating agents. Increased expression of APE mRNA and protein was observed both in the HeLa S3 tumor line and in WI 38 primary fibroblasts, and it was accompanied by translocation of the endonuclease to the nucleus. ROS-treated cells showed a significant increase in resistance to the cytotoxicity of such ROS generators as H2O2 and bleomycin, but not to UV light. This “adaptive response” appears to result from enhanced repair of cytotoxic DNA lesions due to an increased activity of APE-1, which may be limiting in the base excision repair process for ROS-induced toxic lesions. PMID:9560228

  15. [Effect of endonuclease G depletion on plasmid DNA uptake and levels of homologous recombination in hela cells].

    Science.gov (United States)

    Misic, V; El-Mogy, M; Geng, S; Haj-Ahmad, Y

    2016-01-01

    Endonuclease G (EndoG) is a mitochondrial apoptosis regulator that also has roles outside of programmed cell death. It has been implicated as a defence DNase involved in the degradation of exogenous DNA after transfection of mammalian cells and in homologous recombination of viral and endogenous DNA. In this study, we looked at the effect of EndoG depletion on plasmid DNA uptake and the levels of homologous recombination in HeLa cells. We show that the proposed defence role of EndoG against uptake of non-viral DNA vectors does not extend to the cervical carcinoma HeLa cells, as targeting of EndoG expression by RNA interference failed to increase intracellular plasmid DNA levels. However, reducing EndoG levels in HeLa cells resulted in a statistically significant reduction of homologous recombination between two plasmid DNA substrates. These findings suggest that non-viral DNA vectors are also substrates for EndoG in its role in homologous recombination.

  16. Identification of a residue critical for the excision of 3′-blocking ends in apurinic/apyrimidinic endonucleases of the Xth family

    Science.gov (United States)

    Castillo-Acosta, Víctor M.; Ruiz-Pérez, Luis M.; Yang, Wei; González-Pacanowska, Dolores; Vidal, Antonio E.

    2009-01-01

    DNA single-strand breaks containing 3′-blocking groups are generated from attack of the sugar backbone by reactive oxygen species or after base excision by DNA glycosylase/apurinic/apyrimidinic (AP) lyases. In human cells, APE1 excises sugar fragments that block the 3′-ends thus facilitating DNA repair synthesis. In Leishmania major, the causal agent of leishmaniasis, the APE1 homolog is the class II AP endonuclease LMAP. Expression of LMAP but not of APE1 reverts the hypersensitivity of a xth nfo repair-deficient Escherichia coli strain to the oxidative compound hydrogen peroxide (H2O2). To identify the residues specifically involved in the repair of oxidative DNA damage, we generated random mutations in the ape1 gene and selected those variants that conferred protection against H2O2. Among the resistant clones, we isolated a mutant in the nuclease domain of APE1 (D70A) with an increased capacity to remove 3′-blocking ends in vitro. D70 of APE1 aligns with A138 of LMAP and mutation of the latter to aspartate significantly reduces its 3′-phosphodiesterase activity. Kinetic analysis shows a novel role of residue D70 in the excision rate of 3′-blocking ends. The functional and structural differences between the parasite and human enzymes probably reflect a divergent molecular evolution of their DNA repair responses to oxidative damage. PMID:19181704

  17. Positioning the 5'-flap junction in the active site controls the rate of flap endonuclease-1-catalyzed DNA cleavage

    KAUST Repository

    Song, Bo

    2018-02-09

    Flap endonucleases catalyze cleavage of single-stranded DNA flaps formed during replication, repair and recombination, and are therefore essential for genome processing and stability. Recent crystal structures of DNA-bound human flap endonuclease (hFEN1) offer new insights into how conformational changes in the DNA and hFEN1 may facilitate the reaction mechanism. For example, previous biochemical studies of DNA conformation performed under non-catalytic conditions with Ca2+ have suggested that base unpairing at the 5\\'-flap:template junction is an important step in the reaction, but the new structural data suggest otherwise. To clarify the role of DNA changes in the kinetic mechanism, we measured a series of transient steps - from substrate binding to product release - during the hFEN1-catalyzed reaction in the presence of Mg2+. We found that while hFEN1 binds and bends DNA at a fast, diffusion-limited rate, much slower Mg2+-dependent conformational changes in DNA around the active site are subsequently necessary and rate-limiting for 5\\'-flap cleavage. These changes are reported overall by fluorescence of 2-aminopurine at the 5\\'-flap:template junction, indicating that local DNA distortion (e.g., disruption of base stacking observed in structures), associated with positioning the 5\\'-flap scissile phosphodiester bond in the hFEN1 active site, controls catalysis. hFEN1 residues with distinct roles in the catalytic mechanism, including those binding metal ions (Asp-34, Asp-181), steering the 5\\'-flap through the active site and binding the scissile phosphate (Lys-93, Arg-100), and stacking against the base 5\\' to the scissile phosphate (Tyr-40), all contribute to these rate-limiting conformational changes, ensuring efficient and specific cleavage of 5\\'-flaps.

  18. Positioning the 5'-flap junction in the active site controls the rate of flap endonuclease-1-catalyzed DNA cleavage

    KAUST Repository

    Song, Bo; Hamdan, Samir; Hingorani, Manju M

    2018-01-01

    Flap endonucleases catalyze cleavage of single-stranded DNA flaps formed during replication, repair and recombination, and are therefore essential for genome processing and stability. Recent crystal structures of DNA-bound human flap endonuclease (hFEN1) offer new insights into how conformational changes in the DNA and hFEN1 may facilitate the reaction mechanism. For example, previous biochemical studies of DNA conformation performed under non-catalytic conditions with Ca2+ have suggested that base unpairing at the 5'-flap:template junction is an important step in the reaction, but the new structural data suggest otherwise. To clarify the role of DNA changes in the kinetic mechanism, we measured a series of transient steps - from substrate binding to product release - during the hFEN1-catalyzed reaction in the presence of Mg2+. We found that while hFEN1 binds and bends DNA at a fast, diffusion-limited rate, much slower Mg2+-dependent conformational changes in DNA around the active site are subsequently necessary and rate-limiting for 5'-flap cleavage. These changes are reported overall by fluorescence of 2-aminopurine at the 5'-flap:template junction, indicating that local DNA distortion (e.g., disruption of base stacking observed in structures), associated with positioning the 5'-flap scissile phosphodiester bond in the hFEN1 active site, controls catalysis. hFEN1 residues with distinct roles in the catalytic mechanism, including those binding metal ions (Asp-34, Asp-181), steering the 5'-flap through the active site and binding the scissile phosphate (Lys-93, Arg-100), and stacking against the base 5' to the scissile phosphate (Tyr-40), all contribute to these rate-limiting conformational changes, ensuring efficient and specific cleavage of 5'-flaps.

  19. Activation of apurinic/apyrimidinic endonuclease in human cells by reactive oxygen species and its correlation with their adaptive response to genotoxicity of free radicals

    OpenAIRE

    Ramana, Chilakamarti V.; Boldogh, Istvan; Izumi, Tadahide; Mitra, Sankar

    1998-01-01

    Apurinic/apyrimidinic (AP) endonuclease (APE; EC 4.2.99.18) plays a central role in repair of DNA damage due to reactive oxygen species (ROS) because its DNA 3′-phosphoesterase activity removes 3′ blocking groups in DNA that are generated by DNA glycosylase/AP-lyases during removal of oxidized bases and by direct ROS reaction with DNA. The major human APE (APE-1) gene is activated selectively by sublethal levels of a variety of ROS and ROS generators, including ionizing radiation, but not by ...

  20. Double-Strand DNA Break Repair in Mycobacteria.

    Science.gov (United States)

    Glickman, Michael S

    2014-10-01

    Discontinuity of both strands of the chromosome is a lethal event in all living organisms because it compromises chromosome replication. As such, a diversity of DNA repair systems has evolved to repair double-strand DNA breaks (DSBs). In part, this diversity of DSB repair systems has evolved to repair breaks that arise in diverse physiologic circumstances or sequence contexts, including cellular states of nonreplication or breaks that arise between repeats. Mycobacteria elaborate a set of three genetically distinct DNA repair pathways: homologous recombination, nonhomologous end joining, and single-strand annealing. As such, mycobacterial DSB repair diverges substantially from the standard model of prokaryotic DSB repair and represents an attractive new model system. In addition, the presence in mycobacteria of a DSB repair system that can repair DSBs in nonreplicating cells (nonhomologous end joining) or when DSBs arise between repeats (single-strand annealing) has clear potential relevance to Mycobacterium tuberculosis pathogenesis, although the exact role of these systems in M. tuberculosis pathogenesis is still being elucidated. In this article we will review the genetics of mycobacterial DSB repair systems, focusing on recent insights.

  1. Three methods to determine the yields of DNA double-strand breaks

    International Nuclear Information System (INIS)

    Erzgraeber, G.; Lapidus, I.L.

    1985-01-01

    A possibility of determining the yield of DNA double-strand breaks in cells of the Chinese hamster (V79-4) by finding the amount of DNA released as a result of breaks and by determining the relative sedimentation velocity of DNA-membrane complexes affected by ionizing radiations with different physical characteristics is discussed. Results of the analysis are compared with the data obtained by a traditional method of sedimentation in the neutral sucrose density gradient. Comparative characterization of the methods is discussed. The yields of DNA double-strand breaks determined by the suggested independent methods are in good agreement, which opens possibilities of studying induction and repair of double-strand breaks by means of simpler and more reliable methods

  2. The Ku Heterodimer and the Metabolism of Single-Ended DNA Double-Strand Breaks

    Directory of Open Access Journals (Sweden)

    Alessia Balestrini

    2013-06-01

    Full Text Available Single-ended double-strand breaks (DSBs are a common form of spontaneous DNA break, generated when the replisome encounters a discontinuity in the DNA template. Given their prevalence, understanding the mechanisms governing the fate(s of single-ended DSBs is important. We describe the influence of the Ku heterodimer and Mre11 nuclease activity on processing of single-ended DSBs. Separation-of-function alleles of yku70 were derived that phenocopy Ku deficiency with respect to single-ended DSBs but remain proficient for NHEJ. The Ku mutants fail to regulate Exo1 activity, and bypass the requirement for Mre11 nuclease activity in the repair of camptothecin-induced single-ended DSBs. Ku mutants exhibited reduced affinity for DNA ends, manifest as both reduced end engagement and enhanced probability of diffusing inward on linear DNA. This study reveals an interplay between Ku and Mre11 in the metabolism of single-ended DSBs that is distinct from repair pathway choice at double-ended DSBs.

  3. Strand breaks in plasmid DNA following positional changes of Auger-electron-emitting radionuclides

    International Nuclear Information System (INIS)

    Adelstein, S.J.; Kassis, A.I.

    1996-01-01

    The purpose of our studies is to elucidate the kinetics of DNA strand breaks caused by low-energy Auger electron emitters in close proximity to DNA. Previously we have studied the DNA break yields in plasmids after the decay of indium-111 bound to DNA or free in solution. In this work, we compare the DNA break yields in supercoiled DNA of iodine-125 decaying close to DNA following DNA intercalation, minor-groove binding, or surface binding, and at a distance form DNA. Supercoiled DNA, stored at 4 C to accumulate radiation dose from the decay of 125 I, was then resolved by gel electrophoresis into supercoiled, nicked circular, and linear forms, representing undamaged DNA, single-strand breaks, and double-strand breaks respectively. DNA-intercalated or groove-bound 125 I is more effective than surface-bound radionuclide or 125 I free in solution. The hydroxyl radical scavenger DMSO protects against damage by 125 I free in solution but has minimal effect on damage by groove-bound 125 I. (orig.)

  4. A functional endonuclease Q exists in the bacterial domain: identification and characterization of endonuclease Q from Bacillus pumilus.

    Science.gov (United States)

    Shiraishi, Miyako; Ishino, Sonoko; Cann, Isaac; Ishino, Yoshizumi

    2017-05-01

    DNA base deamination occurs spontaneously under physiological conditions and is promoted by high temperature. Therefore, hyperthermophiles are expected to have efficient repair systems of the deaminated bases in their genomes. Endonuclease Q (EndoQ) was originally identified from the hyperthermophlic archaeon, Pyrococcus furiosus, as a hypoxanthine-specific endonuclease recently. Further biochemical analyses revealed that EndoQ also recognizes uracil, xanthine, and the AP site in DNA, and is probably involved in a specific repair process for damaged bases. Initial phylogenetic analysis showed that an EndoQ homolog is found only in the Thermococcales and some of the methanogens in Archaea, and is not present in most members of the domains Bacteria and Eukarya. A better understanding of the distribution of the EndoQ-mediated repair system is, therefore, of evolutionary interest. We showed here that an EndoQ-like polypeptide from Bacillus pumilus, belonging to the bacterial domain, is functional and has similar properties with the archaeal EndoQs.

  5. Endonucleases induced TRAIL-insensitive apoptosis in ovarian carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Geel, Tessa M. [Department of Pathology and Medical Biology, Groningen University Institute for Drug Exploration (GUIDE), University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ, Groningen (Netherlands); Meiss, Gregor [Institute of Biochemistry, Justus-Liebig-University Giessen, D-35392 Giessen (Germany); Gun, Bernardina T. van der; Kroesen, Bart Jan; Leij, Lou F. de [Department of Pathology and Medical Biology, Groningen University Institute for Drug Exploration (GUIDE), University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ, Groningen (Netherlands); Zaremba, Mindaugas; Silanskas, Arunas [Institute of Biotechnology, Vilnius LT-02241 (Lithuania); Kokkinidis, Michael [IMBB/FORTH and University of Crete/Department of Biology, GR-71409 Heraklion/Crete (Greece); Pingoud, Alfred [Institute of Biochemistry, Justus-Liebig-University Giessen, D-35392 Giessen (Germany); Ruiters, Marcel H. [Department of Pathology and Medical Biology, Groningen University Institute for Drug Exploration (GUIDE), University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ, Groningen (Netherlands); Synvolux therapeutics, Groningen (Netherlands); McLaughlin, Pamela M. [Department of Pathology and Medical Biology, Groningen University Institute for Drug Exploration (GUIDE), University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ, Groningen (Netherlands); Rots, Marianne G., E-mail: m.g.rots@med.umcg.nl [Department of Pathology and Medical Biology, Groningen University Institute for Drug Exploration (GUIDE), University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ, Groningen (Netherlands)

    2009-09-10

    TRAIL induced apoptosis of tumor cells is currently entering phase II clinical settings, despite the fact that not all tumor types are sensitive to TRAIL. TRAIL resistance in ovarian carcinomas can be caused by a blockade upstream of the caspase 3 signaling cascade. We explored the ability of restriction endonucleases to directly digest DNA in vivo, thereby circumventing the caspase cascade. For this purpose, we delivered enzymatically active endonucleases via the cationic amphiphilic lipid SAINT-18{sup Registered-Sign }:DOPE to both TRAIL-sensitive and insensitive ovarian carcinoma cells (OVCAR and SKOV-3, respectively). Functional nuclear localization after delivery of various endonucleases (BfiI, PvuII and NucA) was indicated by confocal microscopy and genomic cleavage analysis. For PvuII, analysis of mitochondrial damage demonstrated extensive apoptosis both in SKOV-3 and OVCAR. This study clearly demonstrates that cellular delivery of restriction endonucleases holds promise to serve as a novel therapeutic tool for the treatment of resistant ovarian carcinomas.

  6. DNA Strand Breaks in Mitotic Germ Cells of Caenorhabditis elegans Evaluated by Comet Assay

    Science.gov (United States)

    Park, Sojin; Choi, Seoyun; Ahn, Byungchan

    2016-01-01

    DNA damage responses are important for the maintenance of genome stability and the survival of organisms. Such responses are activated in the presence of DNA damage and lead to cell cycle arrest, apoptosis, and DNA repair. In Caenorhabditis elegans, double-strand breaks induced by DNA damaging agents have been detected indirectly by antibodies against DSB recognizing proteins. In this study we used a comet assay to detect DNA strand breaks and to measure the elimination of DNA strand breaks in mitotic germline nuclei of C. elegans. We found that C. elegans brc-1 mutants were more sensitive to ionizing radiation and camptothecin than the N2 wild-type strain and repaired DNA strand breaks less efficiently than N2. This study is the first demonstration of direct measurement of DNA strand breaks in mitotic germline nuclei of C. elegans. This newly developed assay can be applied to detect DNA strand breaks in different C. elegans mutants that are sensitive to DNA damaging agents. PMID:26903030

  7. Role of DNA-PK in cellular responses to DNA double-strand breaks

    International Nuclear Information System (INIS)

    Chen, D.J.

    2003-01-01

    DNA double-strand breaks (DSBs) are probably the most dangerous of the many different types of DNA damage that occur within the cell. DSBs are generated by exogenous agents such as ionizing radiation (IR) or by endogenously generated reactive oxygen species and occur as intermediates during meiotic and V(D)J recombination. The repair of DSBs is of paramount importance to the cell as misrepair of DSBs can lead to cell death or promote tumorigenesis. In eukaryotes there exists two distinct mechanisms for DNA DSB repair: homologous recombination (HR) and non-homologous end joining (NHEJ). In mammalian cells, however, it is clear that nonhomologous repair of DSBs is highly active and plays a major role in conferring radiation resistance to the cell. The NHEJ machinery minimally consists of the DNA-dependent Protein Kinase (DNA-PK) and a complex of XRCC4 and DNA Ligase IV. The DNA-PK complex is composed of a 470 kDa catalytic subunit (DNA-PKcs), and the heterodimeric Ku70 and Ku80 DNA end-binding complex. DNA-PKcs is a PI-3 kinase with homology to ATM and ATR in its C-terminal kinase domain. The DNA-PK complex protects and tethers the ends, and directs assembly and, perhaps, the activation of other NHEJ proteins. We have previously demonstrated that the kinase activity of DNA-PK is essential for DNA DSB repair and V(D)J recombination. It is, therefore, of immense interest to determine the in vivo targets of DNA-PKcs and the mechanisms by which phosphorylation of these targets modulates NHEJ. Recent studies have resulted in the identification of a number of protein targets that are phosphorylated by and/or interact with DNA-PKcs. Our laboratory has recently identified autophosphorylation site(s) on DNA-PKcs. We find that phosphorylation at these sites in vivo is an early and essential response to DSBs and demonstrate, for the first time, the localization of DNA-PKcs to the sites of DNA damage in vivo. Furthermore, mutation of these phosphorylation sites in mammalian

  8. FBH1 co-operates with MUS81 in inducing DNA double-strand breaks and cell death following replication stress

    DEFF Research Database (Denmark)

    Fugger, Kasper; Chu, Wai Kit; Haahr, Peter

    2013-01-01

    The molecular events occurring following the disruption of DNA replication forks are poorly characterized, despite extensive use of replication inhibitors such as hydroxyurea in the treatment of malignancies. Here, we identify a key role for the FBH1 helicase in mediating DNA double-strand break...... formation following replication inhibition. We show that FBH1-deficient cells are resistant to killing by hydroxyurea, and exhibit impaired activation of the pro-apoptotic factor p53, consistent with decreased DNA double-strand break formation. Similar findings were obtained in murine ES cells carrying...... of replication stress. Our data suggest that FBH1 helicase activity is required to eliminate cells with excessive replication stress through the generation of MUS81-induced DNA double-strand breaks....

  9. A new restriction endonuclease from Citrobacter freundii

    OpenAIRE

    Janulaitis, A.A.; Stakenas, P.S.; Lebedenko, E.N.; Berlin, Yu.A.

    1982-01-01

    CfrI, a new restriction endonuclease of unique substrate specificity, has been isolated from a Citrobacter freundii strain. The enzyme recognizes a degenerated sequence PyGGCCPu in double-strand DNA and cleaves it between Py and G residues to yield 5′ -protruding tetranucleotide ends GGCC.

  10. Comparison of the cleavage of pyrimidine dimers by the bacteriophage T4 and Micrococcus luteus uv-specific endonucleases

    International Nuclear Information System (INIS)

    Gordon, L.K.; Haseltine, W.A.

    1980-01-01

    A comparison was made of the activity of the uv-specific endonucleases of bacteriophage T4 (T4 endonuclease V) and of Micrococcus luteus on ultraviolet light-irradiated DNA substrates of defined sequence. The two enzyms cleave DNA at the site of pyrimidine dimers with the same frequency. The products of the cleavage reaction are the same. The pyrimidine dimer DNA-glycosylase activity of both enzymes is more active on double-stranded DNA than it is on single-stranded DNA

  11. Molecular Basis for DNA Double-Strand Break Annealing and Primer Extension by an NHEJ DNA Polymerase

    Directory of Open Access Journals (Sweden)

    Nigel C. Brissett

    2013-11-01

    Full Text Available Nonhomologous end-joining (NHEJ is one of the major DNA double-strand break (DSB repair pathways. The mechanisms by which breaks are competently brought together and extended during NHEJ is poorly understood. As polymerases extend DNA in a 5′-3′ direction by nucleotide addition to a primer, it is unclear how NHEJ polymerases fill in break termini containing 3′ overhangs that lack a primer strand. Here, we describe, at the molecular level, how prokaryotic NHEJ polymerases configure a primer-template substrate by annealing the 3′ overhanging strands from opposing breaks, forming a gapped intermediate that can be extended in trans. We identify structural elements that facilitate docking of the 3′ ends in the active sites of adjacent polymerases and reveal how the termini act as primers for extension of the annealed break, thus explaining how such DSBs are extended in trans. This study clarifies how polymerases couple break-synapsis to catalysis, providing a molecular mechanism to explain how primer extension is achieved on DNA breaks.

  12. A new restriction endonuclease from Citrobacter freundii

    Science.gov (United States)

    Janulaitis, A.A.; Stakenas, P.S.; Lebedenko, E.N.; Berlin, Yu.A.

    1982-01-01

    CfrI, a new restriction endonuclease of unique substrate specificity, has been isolated from a Citrobacter freundii strain. The enzyme recognizes a degenerated sequence PyGGCCPu in double-strand DNA and cleaves it between Py and G residues to yield 5′ -protruding tetranucleotide ends GGCC. Images PMID:6294607

  13. Mitochondrial Targeted Endonuclease III DNA Repair Enzyme Protects against Ventilator Induced Lung Injury in Mice

    Directory of Open Access Journals (Sweden)

    Masahiro Hashizume

    2014-08-01

    Full Text Available The mitochondrial targeted DNA repair enzyme, 8-oxoguanine DNA glycosylase 1, was previously reported to protect against mitochondrial DNA (mtDNA damage and ventilator induced lung injury (VILI. In the present study we determined whether mitochondrial targeted endonuclease III (EndoIII which cleaves oxidized pyrimidines rather than purines from damaged DNA would also protect the lung. Minimal injury from 1 h ventilation at 40 cmH2O peak inflation pressure (PIP was reversed by EndoIII pretreatment. Moderate lung injury due to ventilation for 2 h at 40 cmH2O PIP produced a 25-fold increase in total extravascular albumin space, a 60% increase in W/D weight ratio, and marked increases in MIP-2 and IL-6. Oxidative mtDNA damage and decreases in the total tissue glutathione (GSH and the GSH/GSSH ratio also occurred. All of these indices of injury were attenuated by mitochondrial targeted EndoIII. Massive lung injury caused by 2 h ventilation at 50 cmH2O PIP was not attenuated by EndoIII pretreatment, but all untreated mice died prior to completing the two hour ventilation protocol, whereas all EndoIII-treated mice lived for the duration of ventilation. Thus, mitochondrial targeted DNA repair enzymes were protective against mild and moderate lung damage and they enhanced survival in the most severely injured group.

  14. Computational Characterization of Small Molecules Binding to the Human XPF Active Site and Virtual Screening to Identify Potential New DNA Repair Inhibitors Targeting the ERCC1-XPF Endonuclease

    Directory of Open Access Journals (Sweden)

    Francesco Gentile

    2018-04-01

    Full Text Available The DNA excision repair protein ERCC-1-DNA repair endonuclease XPF (ERCC1-XPF is a heterodimeric endonuclease essential for the nucleotide excision repair (NER DNA repair pathway. Although its activity is required to maintain genome integrity in healthy cells, ERCC1-XPF can counteract the effect of DNA-damaging therapies such as platinum-based chemotherapy in cancer cells. Therefore, a promising approach to enhance the effect of these therapies is to combine their use with small molecules, which can inhibit the repair mechanisms in cancer cells. Currently, there are no structures available for the catalytic site of the human ERCC1-XPF, which performs the metal-mediated cleavage of a DNA damaged strand at 5′. We adopted a homology modeling strategy to build a structural model of the human XPF nuclease domain which contained the active site and to extract dominant conformations of the domain using molecular dynamics simulations followed by clustering of the trajectory. We investigated the binding modes of known small molecule inhibitors targeting the active site to build a pharmacophore model. We then performed a virtual screening of the ZINC Is Not Commercial 15 (ZINC15 database to identify new ERCC1-XPF endonuclease inhibitors. Our work provides structural insights regarding the binding mode of small molecules targeting the ERCC1-XPF active site that can be used to rationally optimize such compounds. We also propose a set of new potential DNA repair inhibitors to be considered for combination cancer therapy strategies.

  15. The Ku heterodimer and the metabolism of single-ended DNA double-strand breaks.

    Science.gov (United States)

    Balestrini, Alessia; Ristic, Dejan; Dionne, Isabelle; Liu, Xiao Z; Wyman, Claire; Wellinger, Raymund J; Petrini, John H J

    2013-06-27

    Single-ended double-strand breaks (DSBs) are a common form of spontaneous DNA break, generated when the replisome encounters a discontinuity in the DNA template. Given their prevalence, understanding the mechanisms governing the fate(s) of single-ended DSBs is important. We describe the influence of the Ku heterodimer and Mre11 nuclease activity on processing of single-ended DSBs. Separation-of-function alleles of yku70 were derived that phenocopy Ku deficiency with respect to single-ended DSBs but remain proficient for NHEJ. The Ku mutants fail to regulate Exo1 activity, and bypass the requirement for Mre11 nuclease activity in the repair of camptothecin-induced single-ended DSBs. Ku mutants exhibited reduced affinity for DNA ends, manifest as both reduced end engagement and enhanced probability of diffusing inward on linear DNA. This study reveals an interplay between Ku and Mre11 in the metabolism of single-ended DSBs that is distinct from repair pathway choice at double-ended DSBs. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Single substitution in bacteriophage T4 RNase H alters the ratio between its exo- and endonuclease activities.

    Science.gov (United States)

    Kholod, Natalia; Sivogrivov, Dmitry; Latypov, Oleg; Mayorov, Sergey; Kuznitsyn, Rafail; Kajava, Andrey V; Shlyapnikov, Mikhail; Granovsky, Igor

    2015-11-01

    The article describes substitutions in bacteriophage T4 RNase H which provide so called das-effect. Phage T4 DNA arrest suppression (das) mutations have been described to be capable of partially suppressing the phage DNA arrest phenotype caused by a dysfunction in genes 46 and/or 47 (also known as Mre11/Rad50 complex). Genetic mapping of das13 (one of the das mutations) has shown it to be in the region of the rnh gene encoding RNase H. Here we report that Das13 mutant of RNase H has substitutions of valine 43 and leucine 242 with isoleucines. To investigate the influence of these mutations on RNase H nuclease properties we have designed a novel in vitro assay that allows us to separate and quantify exo- or endonuclease activities of flap endonuclease. The nuclease assay in vitro showed that V43I substitution increased the ratio between exonuclease/endonuclease activities of RNase H whereas L242I substitution did not affect the nuclease activity of RNase H in vitro. However, both mutations were necessary for the full das effect in vivo. Molecular modelling of the nuclease structure suggests that V43I substitution may lead to disposition of H4 helix, responsible for the interaction with the first base pairs of 5'end of branched DNA. These structural changes may affect unwinding of the first base pairs of gapped or nicked DNA generating a short flap and therefore may stabilize the DNA-enzyme complex. L242I substitution did not affect the structure of RNase H and its role in providing das-effect remains unclear. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Phleomycin-induced lethality and DNA degradation in Escherichia coli K12

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, H

    1975-01-01

    The cell lethality and DNA fragmentation caused by phleomycin (PM) were studied in E. coli K12 strains with special reference to the effects of repair or recombination deficiencies and metabolic inhibitors. Unlike excision-defective derivatives of E. coli B, uvrA, uvrB, and uvrC mutants of strain K12 showed no peculiarities compared with wild type in regard to cell survival. Likewise, mutant alleles at uvrD and polA loci had no effect. In contrast, rec mutants were more sensitive to PM-killing than were rec/sup +/ strains. PM-induced strand breakage in DNA was observed in all strains tested including the above-mentioned mutants. There was no significant distinction between the uvr mutants and the wild type strain, indicating that the uvr-endonuclease was not responsible for the strand breaks. Involvement of endonuclease I was also ruled out. At least some of the PM-induced strand breaks were repairable. PM-induced lethality and strand breakage were totally dependent on energy supply. Inhibition of protein synthesis resulted in a partial and parallel suppression of the two effects. Our results suggest that the lethality is due to DNA strand breakage and the repair of such damage is postulated to be controlled by rec genes.

  18. DNA lability induced by nimustine and ramustine in rat glioma cells.

    Science.gov (United States)

    Mineura, K; Fushimi, S; Itoh, Y; Kowada, M

    1988-01-01

    The DNA labile sites induced by two nitrosoureas, nimustine (ACNU) and ramustine (MCNU) synthesised in Japan, have been examined in highly reiterated DNA sequences of rat glioma cells. Reiterated fragments of 167 and 203 base pairs (bp), obtained after Hind III and Hae III restriction endonuclease digestion of rat glioma cells DNA, were used as target DNA sequences to determine the labile sites. In vitro reaction with ACNU and MCNU resulted in scission products corresponding to the locations of guanine. Subsequent piperidine hydrolysis produced more frequent breaks of the phosphodiester bonds at guanine positions, thus forming alkali-labile sites. Images PMID:3236017

  19. Effects of hyperthermia on repair of radiation-induced DNA strand breaks

    International Nuclear Information System (INIS)

    Mills, M.D.; Meyn, R.E.

    1981-01-01

    Previous reports have suggested a relationship between the heat-induced changes in nucleoprotein and the hyperthermic enhancement of radiation sensitivity. In an effort to further understand these relationships, we measured the level of initial DNA strand break damage and the DNA strand break rejoining kinetics in Chinese hamster ovary cells following combined hyperthermia and ionizing radiation treatments. The amount of protein associated with DNA measured as the ratio of [ 3 H)leucine to [ 14 C]thymidine was also compared in chromatin isolated from both heated and unheated cells. The results of these experiments show that the initial level of radiation-induced DNA strand breaks is significantly enhanced by a prior hyperthermia treatment of 43 0 C for 30 min. Treatments at higher temperatures and longer treatments at the same temperature magnified this effect. Hyperthermia was also shown to cause a substantial inhibition of the DNA strand break rejoining after irradiation. Both the initial level of DNA damage and the rejoining kinetics recovered to normal levels with incubation at 37 0 C between the hyperthermia and radiation treatments. Recovery of these parameters coincided with the return of the amount of protein associated with DNA to normal values, further suggesting a relationship between the changes in nucleoprotein and the hyperthermic enhancement of radiation sensivivity

  20. Rad10 exhibits lesion-dependent genetic requirements for recruitment to DNA double-strand breaks in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Moore, Destaye M; Karlin, Justin; González-Barrera, Sergio

    2009-01-01

    In the yeast Saccharomyces cerevisiae, the Rad1-Rad10 protein complex participates in nucleotide excision repair (NER) and homologous recombination (HR). During HR, the Rad1-Rad10 endonuclease cleaves 3' branches of DNA and aberrant 3' DNA ends that are refractory to other 3' processing enzymes. ...

  1. Sedimentation properties of DNA-membrane complexes and yield of DNA breaks at irradiation of mammalian cells

    International Nuclear Information System (INIS)

    Erzgraber, G.; Kozubek, S.; Lapidus, I.L.

    1985-01-01

    The dependence of the relative sedimentation velocity of DNA-membrane complexes on the dose of irradiation and time of incubation of Chinese Hamster cells is analysed. It is concluded that the initial part of the curve provides the information on the occurrence of single strand breaks in DNA; the position of the local maximum allows us to calculate the yield of DNA double strand breaks. The reparation decay constant can be estimated as well

  2. Repair and gamma radiation-induced single- and double-strand breaks in DNA of Escherichia coli

    International Nuclear Information System (INIS)

    Petrov, S.I.

    1981-01-01

    Studies in the kinetics of repair of γ-radiation-induced single- and double-strand breaks in DNA of E. coli cells showed that double-strand DNA breaks are rejoined by the following two ways. The first way is conditioned by repair of single-strand breaks and represents the repair of ''oblique'' double-strand breaks in DNA, whereas the second way is conditioned by functioning of the recombination mechanisms and, to all appearance, represents the repair of ''direct'' double-strand breaks in DNA

  3. Study on detection of mutation DNA fragment in gastric cancer by restriction endonuclease fingerprinting with capillary electrophoresis.

    Science.gov (United States)

    Wang, Rong; Xie, Hua; Xu, Yue-Bing; Jia, Zheng-Ping; Meng, Xian-Dong; Zhang, Juan-Hong; Ma, Jun; Wang, Juan; Wang, Xian-Hua

    2012-03-01

    The DNA fragment detection focusing technique has further enhanced the sensitivity and information of DNA targets. The DNA fragment detection method was established by capillary electrophoresis with laser-induced fluorescence detection and restriction endonuclease chromatographic fingerprinting (CE-LIF-REF) in our experiment. The silica capillary column was coated with short linear polyarclarylamide (SLPA) using nongel sieving technology. The excision product of various restricted enzymes of DNA fragments was obtained by REF with the molecular biology software Primer Premier 5. The PBR322/BsuRI DNA marker was used to establish the optimization method. The markers were focused electrophoretically and detected by CE-LIF. The results demonstrate that the CE-LIF-REF with SLPA can improve separation, sensitivity and speed of analysis. This technique may be applied to analysis of the excision product of various restricted enzymes of prokaryotic plasmid (pIRES2), eukaryote plasmid (pcDNA3.1) and the PCR product of codon 248 region of gastric cancer tissue. The results suggest that this method could very sensitively separate the excision products of various restricted enzymes at a much better resolution than the traditional agarose electrophoresis. Copyright © 2011 John Wiley & Sons, Ltd.

  4. Geographically diverse Australian isolates of Melissococcus pluton exhibit minimal genotypic diversity by restriction endonuclease analysis.

    Science.gov (United States)

    Djordjevic, S P; Smith, L A; Forbes, W A; Hornitzky, M A

    1999-04-15

    Melissococcus pluton, the causative agent of European foulbrood is an economically significant disease of honey bees (Apis mellifera) across most regions of the world and is prevalent throughout most states of Australia. 49 Isolates of M. pluton recovered from diseased colonies or honey samples in New South Wales, Queensland, South Australia, Tasmania and Victoria were compared using SDS-PAGE, Western immunoblotting and restriction endonuclease analyses. DNA profiles of all 49 geographically diverse isolates showed remarkably similar AluI profiles although four isolates (one each from Queensland, South Australia, New South Wales and Victoria) displayed minor profile variations compared to AluI patterns of all other isolates. DNA from a subset of the 49 Australian and three isolates from the United Kingdom were digested separately with the restriction endonucleases CfoI, RsaI and DraI. Restriction endonuclease fragment patterns generated using these enzymes were also similar although minor variations were noted. SDS-PAGE of whole cell proteins from 13 of the 49 isolates from different states of Australia, including the four isolates which displayed minor profile variations (AluI) produced indistinguishable patterns. Major immunoreactive proteins of approximate molecular masses of 21, 24, 28, 30, 36, 40, 44, 56, 60, 71, 79 and 95 kDa were observed in immunoblots of whole cell lysates of 22 of the 49 isolates and reacted with rabbit hyperimmune antibodies raised against M. pluton whole cells. Neither SDS-PAGE or immunoblotting was capable of distinguishing differences between geographically diverse isolates of M. pluton. Collectively these data confirm that Australian isolates of M. pluton are genetically homogeneous and that this species may be clonal. Plasmid DNA was not detected in whole cell DNA profiles of any isolate resolved using agarose gel electrophoresis.

  5. Influence of DNA conformation on radiation-induced single-strand breaks

    International Nuclear Information System (INIS)

    Barone, F.; Belli, M.; Mazzei, F.

    1994-01-01

    We performed experiments on two DNA fragments of about 300 bp having different conformation to test whether radiation-induced single-strand breakage is dependent on DNA conformation. Breakage analysis was carried out by denaturing polyacrylamide gel electrophoresis, which allows determination of the broken site at single nucleotide resolution. We found uniform cutting patterns in B-form regions. On the contrary, X- or γ-irradiation of curved fragments of kinetoplast DNA showed that the distribution of single-strand breaks was not uniform along the fragment, as the cleavage pattern was modulated in phase with the runs of A-T pairs. This modulation likely reflected the reduced accessibility of the sites which on hydroxyl-radical attack give rise to strand breaks. The cleavage pattern was phased with the runs of A-T pairs. Moreover, the overall yield of strand breaks was considerably lower in curved DNA fragments than in those with extended straight regions. The conformation effect found here indicates that the cleavage pattern reflects the fine structural features of DNA. (orig./MG)

  6. DNA strand breaks detected in embryos of the adult snails, Potamopyrgus antipodarum, and in neonates exposed to genotoxic chemicals

    International Nuclear Information System (INIS)

    Vincent-Hubert, Françoise; Revel, Messika; Garric, Jeanne

    2012-01-01

    We tested the freshwater mudsnail Potamopyrgus antipodarum, which is a species that has already been used for endocrine-disrupting compounds (EDCs) to determine whether early life stages of aquatic organisms are sensitive to genotoxic chemicals. For this purpose, we first developed the alkaline comet assay on adults, embryos, and neonates. The comet assay protocol was validated on both embryonic cells exposed in vitro to hydrogen peroxide and adult snails in the reproducing stage exposed to methyl methane sulfonate. During the latter experiment, DNA strand breaks were investigated on both embryonic cells and on adult gill cells. The second part of this study investigated the stability of DNA strand breaks in adult reproducing snails and neonates exposed to cadmium (Cd) and bisphenol A for 8 days. Hydrogen peroxide-induced DNA strand breaks in vitro in isolated embryonic cells. Exposure of adult reproducing snails to methyl methane sulfonate for 24 h induced DNA strand breaks in embryos. Bisphenol A induced a significant increase in the DNA strand-break level in whole embryonic cells and whole neonate cells. Cd was genotoxic for both embryos and neonates during the exposure time and also after 7 days of depuration, suggesting that Cd could inhibit DNA repair enzymes. These preliminary results on this original model have encouraged us to consider the impact of genotoxic environmental contaminants on the F1 generation.

  7. DNA strand breaks detected in embryos of the adult snails, Potamopyrgus antipodarum, and in neonates exposed to genotoxic chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Vincent-Hubert, Francoise, E-mail: francoise.vincent-hubert@irstea.fr [Unite de Recherche Hydrosystemes et Bioprocedes, equipe BELCA, IRSTEA/CEMAGREF, 1 rue Pierre-Gilles de Gennes, CS10030, 92761 Antony cedex, 92163 Antony (France); Revel, Messika [Unite de Recherche Hydrosystemes et Bioprocedes, equipe BELCA, IRSTEA/CEMAGREF, 1 rue Pierre-Gilles de Gennes, CS10030, 92761 Antony cedex, 92163 Antony (France); Garric, Jeanne [MALY Laboratoire d' ecotoxicologie, IRSTEA/CEMAGREF, 23 bis Quai Chauveau, 69006 Lyon (France)

    2012-10-15

    We tested the freshwater mudsnail Potamopyrgus antipodarum, which is a species that has already been used for endocrine-disrupting compounds (EDCs) to determine whether early life stages of aquatic organisms are sensitive to genotoxic chemicals. For this purpose, we first developed the alkaline comet assay on adults, embryos, and neonates. The comet assay protocol was validated on both embryonic cells exposed in vitro to hydrogen peroxide and adult snails in the reproducing stage exposed to methyl methane sulfonate. During the latter experiment, DNA strand breaks were investigated on both embryonic cells and on adult gill cells. The second part of this study investigated the stability of DNA strand breaks in adult reproducing snails and neonates exposed to cadmium (Cd) and bisphenol A for 8 days. Hydrogen peroxide-induced DNA strand breaks in vitro in isolated embryonic cells. Exposure of adult reproducing snails to methyl methane sulfonate for 24 h induced DNA strand breaks in embryos. Bisphenol A induced a significant increase in the DNA strand-break level in whole embryonic cells and whole neonate cells. Cd was genotoxic for both embryos and neonates during the exposure time and also after 7 days of depuration, suggesting that Cd could inhibit DNA repair enzymes. These preliminary results on this original model have encouraged us to consider the impact of genotoxic environmental contaminants on the F1 generation.

  8. Detection of UVR-induced DNA damage in mouse epidermis in vivo using alkaline elution

    International Nuclear Information System (INIS)

    Kinley, J.S.; Moan, J.; Brunborg, G.

    1995-01-01

    Alkaline elution has been used to detect ultraviolet radiation (UVR)-induced DNA damage in the epidermis of C3H/Tif hr/hr mice. This technique detects DNA damage in the form of single-strand breaks and alkali-labile sites (SSB) formed directly by UVA (320-400 nm) or indirectly by UVB (280-320 nm). The latter induces DNA damage such as cyclobutane pyrimidine dimers and pyrimidine-pyrimidone (6-4)-photoproducts, which are then converted into transient SSB by cellular endonucleases, during nucleotide excision repair (NER). (Author)

  9. UVA-induced DNA double-strand breaks result from the repair of clustered oxidative DNA damages

    Science.gov (United States)

    Greinert, R.; Volkmer, B.; Henning, S.; Breitbart, E. W.; Greulich, K. O.; Cardoso, M. C.; Rapp, Alexander

    2012-01-01

    UVA (320–400 nm) represents the main spectral component of solar UV radiation, induces pre-mutagenic DNA lesions and is classified as Class I carcinogen. Recently, discussion arose whether UVA induces DNA double-strand breaks (dsbs). Only few reports link the induction of dsbs to UVA exposure and the underlying mechanisms are poorly understood. Using the Comet-assay and γH2AX as markers for dsb formation, we demonstrate the dose-dependent dsb induction by UVA in G1-synchronized human keratinocytes (HaCaT) and primary human skin fibroblasts. The number of γH2AX foci increases when a UVA dose is applied in fractions (split dose), with a 2-h recovery period between fractions. The presence of the anti-oxidant Naringin reduces dsb formation significantly. Using an FPG-modified Comet-assay as well as warm and cold repair incubation, we show that dsbs arise partially during repair of bi-stranded, oxidative, clustered DNA lesions. We also demonstrate that on stretched chromatin fibres, 8-oxo-G and abasic sites occur in clusters. This suggests a replication-independent formation of UVA-induced dsbs through clustered single-strand breaks via locally generated reactive oxygen species. Since UVA is the main component of solar UV exposure and is used for artificial UV exposure, our results shine new light on the aetiology of skin cancer. PMID:22941639

  10. Inhibition of radiation-induced DNA strand breaks by hoechst 33258: OH-radical scavenging and DNA radical quenching

    International Nuclear Information System (INIS)

    Adhikary, A.; Bothe, E.; Von Sonntag, C.; Adhikary, A.

    1997-01-01

    The minor-groove-binding dye Hoechst 33258 has been found to protect pBR322 DNA in aqueous solution against radiation-induced single-strand breaks (ssb). This protective effect has been assumed to be largely due to the scavenging of the strand-break-generating OH radicals by Hoechst. From D 37 values for ssb at different Hoechst concentrations the value of the OH radical scavenging constant of DNA-bound Hoechst has been estimated at k Ho/DNA = 2.7 * 10 11 dm 3 mol -1 . This unexpectedly high value has led us to study the reactions of OH radicals with Hoechst in the absence and in the presence of double-stranded calf thymus DNA (ds DNA) by pulse radiolysis, and the formation of radiation-induced ssb by low angle laser light scattering. The D 37 /D 37 0 values at different Hoechst concentrations agree with the values obtained by Martin and al. and demonstrate the protection. However, this protection cannot be explained on the basis of OH radical scavenging alone using the above rate constants. There must, in addition, be some quenching of DNA radicals. Hoechst radicals are formed in the later ms time range, i.e a long time after the disappearance of the OH radicals. This delayed Hoechst radical formation has been assigned to a a reaction of DNA radicals with Hoechst, thereby inhibiting strand breakage. In confirmation, pulse radiolysis of aqueous solution of nucleotides in the presence of Hoechst yields a similar delayed Hoechst radical formation. The data indicate that in DNA the cross-section of this quenching has a diameter of 3 to 4 base pairs per Hoechst molecule. (N.C.)

  11. Study of DNA reconstruction enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Sekiguchi, M [Kyushu Univ., Fukuoka (Japan). Faculty of Science

    1976-12-01

    Description was made of the characteristics and mechanism of 3 reconstructive enzymes which received from M. luteus or E. coli or T4, and of which natures were clarified as reconstructive enzymes of DNA irradiated with ultraviolet rays. As characteristics, the site of breaking, reaction, molecular weight, electric charge in the neutrality and a specific adhesion to DNA irradiated with ultraviolet rays were mentioned. As to mutant of ultraviolet ray sensitivity, hereditary control mechanism of removal and reconstruction by endo-nuclease activation was described, and suggestion was referred to removal and reconstruction of cells of xedoderma pigmentosum which is a hereditary disease of human. Description was also made as to the mechanism of exonuclease activation which separates dimer selectively from irradiated DNA.

  12. Nick translation detection in situ of cellular DNA strand break induced by radiation

    International Nuclear Information System (INIS)

    Maehara, Y.; Anai, H.; Kusumoto, T.; Sakaguchi, Y.; Sugimachi, K.

    1989-01-01

    DNA strand break in HeLa cells induced by radiation was detected using the in situ nick translation method. The cells were exposed to radiation of 3, 6, 12, 18, and 24 Gy in Lab-Tek tissue culture chamber/slides and were fixed with ethanol/acetic acid on the slide glass. The break sites in DNA were translated artificially in the presence of Escherichia coli DNA polymerase I and [ 3 H]-labeled dTTP. Autoradiographic observation was made of the level of break sites in the DNA. The DNA strand break appeared even with a 3 Gy exposure, increased 8.6 times at 24 Gy compared with the control cells, and this level correlated reciprocally to change in cell viability. This nick translation method provides a rapid in situ assay for determining radiation-induced DNA damage of cultured cells, in a semi-quantitative manner

  13. Evaluation of oxidative DNA damage promoted by storage in sperm from sex-reversed rainbow trout.

    Science.gov (United States)

    Pérez-Cerezales, S; Martínez-Páramo, S; Cabrita, E; Martínez-Pastor, F; de Paz, P; Herráez, M P

    2009-03-01

    Short-term storage and cryopreservation of sperm are two common procedures in aquaculture, used for routine practices in artificial insemination reproduction and gene banking, respectively. Nevertheless, both procedures cause injuries affecting sperm motility, viability, cell structure and DNA stability, which diminish reproductive success. DNA modification is considered extremely important, especially when sperm storage is carried out with gene banking purposes. DNA damage caused by sperm storage is not well characterized and previous studies have reported simple and double strand breaks that have been attributed to oxidative events promoted by the generation of free radicals during storage. The objective of this study was to reveal DNA fragmentation and to explore the presence of oxidized bases that could be produced by oxidative events during short-term storage and cryopreservation in sex-reversed rainbow trout (Oncorhynchus mykiss) spermatozoa. Sperm from six males was analyzed separately. Different aliquots of the samples were stored 2h (fresh) or 5 days at 4 degrees C or were cryopreserved. Then spermatozoa were analyzed using the Comet assay, as well as combining this method with digestion with two endonucleases from Escherichia coli (Endonuclease III, that cut in oxidized cytosines, and FPG, cutting in oxidized guanosines). Both storage procedures yielded DNA fragmentation, but only short-term storage oxidative events were clearly detected, showing that oxidative processes affect guanosines rather than cytosines. Cryopreservation increases DNA fragmentation but the presence of oxidized bases was not noticed, suggesting that mechanisms other than oxidative stress could be involved in DNA fragmentation promoted by freezing.

  14. DNA breaks early in replication in B cell cancers

    Science.gov (United States)

    Research by scientists at the NCI has identified a new class of DNA sites in cells that break early in the replication process. They found that these break sites correlate with damage often seen in B cell cancers, such as diffuse large B cell lymphoma.

  15. Simple and sensitive fluorescence assay of restriction endonuclease on graphene oxide

    International Nuclear Information System (INIS)

    Gang, Jong Back

    2015-01-01

    Restriction endonucleases hydrolyze internal phosphodiester bonds at specific sites in a DNA sequence. These enzymes are essential in a variety of fields, such as biotechnology and clinical diagnostics. It is of great importance and necessity for the scientific and biomedical use of enzymes to measure endonuclease activity. In this study, graphene oxide (GO) has been used as a platform to measure enzyme activity with high sensitivity. To increase the detection sensitivity of Hinf I, the endonuclease-digested reaction was treated with exonuclease III (Exo III) and a fluorescence assay was conducted to measure the emission. Results showed that Exo III treatment enhanced 2.7-fold signal-to-background ratio for the detection of Hinf I compared with that done without Exo III in the presence of GO

  16. Molecular dynamics simulations of deoxyribonucleic acids and repair enzyme T4 endonuclease V

    International Nuclear Information System (INIS)

    Pinak, Miroslav

    1999-01-01

    This report describes the results of molecular dynamics (MD) simulation of deoxyribonucleic acids (DNA) and specific repair enzyme T4 endonuclease V. Namely research described here is focused on the examination of specific recognition process, in which this repair enzyme recognizes the damaged site on the DNA molecule-thymine dimer (TD). TD is frequent DNA damage induced by UV radiation in sun light and unless properly repaired it may be mutagenic or lethal for cell, and is also considered among the major causes of skin cancer. T4 endonuclease V is a DNA specific repair enzyme from bacteriophage T4 that catalyzes the first reaction step of TD repair pathway. MD simulations of three molecules - native DNA dodecamer (12 base pairs), DNA of the same sequence of nucleotides as native one but with TD, and repair enzyme T4 endonuclease V - were performed for 1 ns individually for each molecule. Simulations were analyzed to determine the role of electrostatic interaction in the recognition process. It is found that electrostatic energies calculated for amino acids of the enzyme have positive values of around +15 kcal/mol. The electrostatic energy of TD site has negative value of approximately -9 kcal/mol, different from the nearly neutral value of the respective thymines site of the native DNA. The electrostatic interaction of TD site with surrounding water environment differs from the electrostatic interaction of other nucleotides. Differences found between TD site and respective thymines site of native DNA indicate that the electrostatic energy is an important factor contributing to proper recognition of TD site during scanning process in which enzyme scans the DNA. In addition to the electrostatic energy, the important factor in recognition process might be structural complementarity of enzyme and bent DNA with TD. There is significant kink formed around TD site, that is not observed in native DNA. (author)

  17. Identification and characterization of inhibitors of human apurinic/apyrimidinic endonuclease APE1.

    Directory of Open Access Journals (Sweden)

    Anton Simeonov

    2009-06-01

    Full Text Available APE1 is the major nuclease for excising abasic (AP sites and particular 3'-obstructive termini from DNA, and is an integral participant in the base excision repair (BER pathway. BER capacity plays a prominent role in dictating responsiveness to agents that generate oxidative or alkylation DNA damage, as well as certain chain-terminating nucleoside analogs and 5-fluorouracil. We describe within the development of a robust, 1536-well automated screening assay that employs a deoxyoligonucleotide substrate operating in the red-shifted fluorescence spectral region to identify APE1 endonuclease inhibitors. This AP site incision assay was used in a titration-based high-throughput screen of the Library of Pharmacologically Active Compounds (LOPAC(1280, a collection of well-characterized, drug-like molecules representing all major target classes. Prioritized hits were authenticated and characterized via two high-throughput screening assays -- a Thiazole Orange fluorophore-DNA displacement test and an E. coli endonuclease IV counterscreen -- and a conventional, gel-based radiotracer incision assay. The top, validated compounds, i.e. 6-hydroxy-DL-DOPA, Reactive Blue 2 and myricetin, were shown to inhibit AP site cleavage activity of whole cell protein extracts from HEK 293T and HeLa cell lines, and to enhance the cytotoxic and genotoxic potency of the alkylating agent methylmethane sulfonate. The studies herein report on the identification of novel, small molecule APE1-targeted bioactive inhibitor probes, which represent initial chemotypes towards the development of potential pharmaceuticals.

  18. Effects of DNA double-strand and single-strand breaks on intrachromosomal recombination events in cell-cycle-arrested yeast cells

    International Nuclear Information System (INIS)

    Galli, A.; Schiestl, R.H.

    1998-01-01

    Intrachromosomal recombination between repeated elements can result in deletion (DEL recombination) events. We investigated the inducibility of such intrachromosomal recombination events at different stages of the cell cycle and the nature of the primary DNA lesions capable of initiating these events. Two genetic systems were constructed in Saccharomyces cerevisiae that select for DEL recombination events between duplicated alleles of CDC28 and TUB2. We determined effects of double-strand breaks (DSBs) and single-strand breaks (SSBs) between the duplicated alleles on DEL recombination when induced in dividing cells or cells arrested in G1 or G2. Site-specific DSBs and SSBs were produced by overexpression of the I-Sce I endonuclease and the gene II protein (gIIp), respectively. I-Sce I-induced DSBs caused an increase in DEL recombination frequencies in both dividing and cell-cycle-arrested cells, indicating that G1- and G2-arrested cells are capable of completing DSB repair. In contrast, gIIp-induced SSBs caused an increase in DEL recombination frequency only in dividing cells. To further examine these phenomena we used both γ-irradiation, inducing DSBs as its most relevant lesion, and UV, inducing other forms of DNA damage. UV irradiation did not increase DEL recombination frequencies in G1 or G2, whereas γ-rays increased DEL recombination frequencies in both phases. Both forms of radiation, however, induced DEL recombination in dividing cells. The results suggest that DSBsbut not SSBs induce DEL recombination, probably via the single-strand annealing pathway. Further, DSBs in dividing cells may result from the replication of a UV or SSB-damaged template. Alternatively, UV induced events may occur by replication slippage after DNA polymerase pausing in front of the damage. (author)

  19. An analysis of the repair processes in ultraviolet-irradiated Micrococcus luteus using purified ultraviolet-endonuclease

    International Nuclear Information System (INIS)

    Tomilin, N.V.; Zherebtsov, S.V.

    1982-01-01

    The measurement of the frequency of endonucleolytic incisions in ultraviolet-irradiated DNA serves as the test for the presence of pyrimidine dimers. In accordance with this approach, the lysates of three Micrococcus luteus strains containing radioactively labeled chromosomes were treated with purified M. luteus ultraviolet-endonuclease to trace segregation of dimers amongst parental and newly synthesized DNA and their removal during postreplication and excision DNA repair. A considerable proportion of the dimers in all strains tested proved to be insensitive to the action of exogenous incising enzyme. The use of chloramphenicol as an inhibitor of postirradiation protein synthesis in combination with ultraviolet-endonuclease treatment of DNA allowed to reveal at least two alternative pathways of postreplication repair: constitutively active recombinational pathway and inducible nonrecombinational one. (Auth.)

  20. JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks

    Directory of Open Access Journals (Sweden)

    Michael Van Meter

    2016-09-01

    Full Text Available The accumulation of damage caused by oxidative stress has been linked to aging and to the etiology of numerous age-related diseases. The longevity gene, sirtuin 6 (SIRT6, promotes genome stability by facilitating DNA repair, especially under oxidative stress conditions. Here we uncover the mechanism by which SIRT6 is activated by oxidative stress to promote DNA double-strand break (DSB repair. We show that the stress-activated protein kinase, c-Jun N-terminal kinase (JNK, phosphorylates SIRT6 on serine 10 in response to oxidative stress. This post-translational modification facilitates the mobilization of SIRT6 to DNA damage sites and is required for efficient recruitment of poly (ADP-ribose polymerase 1 (PARP1 to DNA break sites and for efficient repair of DSBs. Our results demonstrate a post-translational mechanism regulating SIRT6, and they provide the link between oxidative stress signaling and DNA repair pathways that may be critical for hormetic response and longevity assurance.

  1. Nature of the end groups of breaks induced by ionizing radiation in dna in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Gaziev, A I [AN SSSR, Pushchino-na-Oke. Inst. Biologicheskoj Fiziki

    1975-01-01

    DNA of gamma-irradiated E.coli cells contains singlestranded breaks with 5'Oh, 5'PO/sub 4/ and 3'OH ends assayed by phosphatase, polynucleotide kinase and DNA-ligase reactions. The number of breaks with 5'OH ends corresponds to the breaks detected by DNA sedimentation in alkaline sucrose gradient. The relative amount of breaks with different ends varies with the dose of irradiation. The majority of single-stranded breaks with 5'PO/sub 4/ and 3'OH ends in sealed by ligase.

  2. Heavy ion-induced lesions in DNA: A theoretical model for the initial induction of DNA strand breaks and chromatin breaks

    International Nuclear Information System (INIS)

    Schmidt, J.B.

    1993-01-01

    A theoretical model has been developed and used to calculate yields and spatial distributions of DNA strand breaks resulting from the interactions of heavy ions with chromatin in aqueous systems. The three dimensional spatial distribution of ionizing events has been modeled for charged particles as a function of charge and velocity. Chromatin has been modeled as a 30 nm diameter solenoid of nucleosomal DNA. The Monte Carlo methods used by Chatterjee et al. have been applied to DNA in a chromatin conformation. Refinements to their methods include: a combined treatment of primary and low energy (<2 keV) secondary electron interactions, an improved low energy delta ray model, and the combined simulation of direct energy deposition on the DNA and attack by diffusing hydroxyl radicals. Individual particle tracks are treated independently, which is assumed to be applicable to low fluence irradiations in which multiple particle effects are negligible. Single strand break cross section open-quotes hooksclose quotes seen in experiments at very high LET appear to be due to the collapsing radial extent of the track, as predicted in the open-quotes deep sieveclose quotes hypothesis proposed by Tobias et al. Spatial distributions of lesions produced by particles have been found to depend on chromatin structure. In the future, heavy ions may be used as a tool to probe the organization of DNA in chromatin. A Neyman A-binomial variation of the open-quotes cluster modelclose quotes for the distribution of chromatin breaks per irradiated cell has been theoretically tested. The model includes a treatment of the chromatin fragment detection technique's resolution, which places a limitation on the minimum size of fragments which can be detected. The model appears to fit some of the experimental data reasonably well. However, further experimental and theoretical refinements are desirable

  3. Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation

    Science.gov (United States)

    Sutherland, B. M.; Bennett, P. V.; Sidorkina, O.; Laval, J.; Lowenstein, D. I. (Principal Investigator)

    2000-01-01

    Clustered DNA damages-two or more closely spaced damages (strand breaks, abasic sites, or oxidized bases) on opposing strands-are suspects as critical lesions producing lethal and mutagenic effects of ionizing radiation. However, as a result of the lack of methods for measuring damage clusters induced by ionizing radiation in genomic DNA, neither the frequencies of their production by physiological doses of radiation, nor their repairability, nor their biological effects are known. On the basis of methods that we developed for quantitating damages in large DNAs, we have devised and validated a way of measuring ionizing radiation-induced clustered lesions in genomic DNA, including DNA from human cells. DNA is treated with an endonuclease that induces a single-strand cleavage at an oxidized base or abasic site. If there are two closely spaced damages on opposing strands, such cleavage will reduce the size of the DNA on a nondenaturing gel. We show that ionizing radiation does induce clustered DNA damages containing abasic sites, oxidized purines, or oxidized pyrimidines. Further, the frequency of each of these cluster classes is comparable to that of frank double-strand breaks; among all complex damages induced by ionizing radiation, double-strand breaks are only about 20%, with other clustered damage constituting some 80%. We also show that even low doses (0.1-1 Gy) of high linear energy transfer ionizing radiation induce clustered damages in human cells.

  4. Low-Energy Electron-Induced Strand Breaks in Telomere-Derived DNA Sequences-Influence of DNA Sequence and Topology.

    Science.gov (United States)

    Rackwitz, Jenny; Bald, Ilko

    2018-03-26

    During cancer radiation therapy high-energy radiation is used to reduce tumour tissue. The irradiation produces a shower of secondary low-energy (DNA very efficiently by dissociative electron attachment. Recently, it was suggested that low-energy electron-induced DNA strand breaks strongly depend on the specific DNA sequence with a high sensitivity of G-rich sequences. Here, we use DNA origami platforms to expose G-rich telomere sequences to low-energy (8.8 eV) electrons to determine absolute cross sections for strand breakage and to study the influence of sequence modifications and topology of telomeric DNA on the strand breakage. We find that the telomeric DNA 5'-(TTA GGG) 2 is more sensitive to low-energy electrons than an intermixed sequence 5'-(TGT GTG A) 2 confirming the unique electronic properties resulting from G-stacking. With increasing length of the oligonucleotide (i.e., going from 5'-(GGG ATT) 2 to 5'-(GGG ATT) 4 ), both the variety of topology and the electron-induced strand break cross sections increase. Addition of K + ions decreases the strand break cross section for all sequences that are able to fold G-quadruplexes or G-intermediates, whereas the strand break cross section for the intermixed sequence remains unchanged. These results indicate that telomeric DNA is rather sensitive towards low-energy electron-induced strand breakage suggesting significant telomere shortening that can also occur during cancer radiation therapy. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Mammalian DNA single-strand break repair: an X-ra(y)ted affair.

    Science.gov (United States)

    Caldecott, K W

    2001-05-01

    The genetic stability of living cells is continuously threatened by the presence of endogenous reactive oxygen species and other genotoxic molecules. Of particular threat are the thousands of DNA single-strand breaks that arise in each cell, each day, both directly from disintegration of damaged sugars and indirectly from the excision repair of damaged bases. If un-repaired, single-strand breaks can be converted into double-strand breaks during DNA replication, potentially resulting in chromosomal rearrangement and genetic deletion. Consequently, cells have adopted multiple pathways to ensure the rapid and efficient removal of single-strand breaks. A general feature of these pathways appears to be the extensive employment of protein-protein interactions to stimulate both the individual component steps and the overall repair reaction. Our current understanding of DNA single-strand break repair is discussed, and testable models for the architectural coordination of this important process are presented. Copyright 2001 John Wiley & Sons, Inc.

  6. Postreplicational formation and repair of DNA double-strand breaks in UV-irradiated Escherichia coli uvrB cells

    International Nuclear Information System (INIS)

    Wang, Tzuchien V.; Smith, K.C.

    1986-01-01

    The number of DNA double-strand breaks formed in UV-irradiated uvrB recF recB cells correlates with the number of unrepaired DNA daughter-strand gaps, and is dependent on DNA synthesis after UV-irradiation. These results are consistent with the model that the DNA double-strand breaks that are produced in UV-irradiated excision-deficient cells occur as the result of breaks in the parental DNA opposite unrepaired DNA daughter-strand gaps. By employing a temperature-sensitive recA200 mutation, we have devised an improved assay for studying the formation and repair of these DNA double-strand breaks. Possible mechanisms for the postreplication repair of DNA double-strand breaks are discussed. (Auth.)

  7. Detection of DNA strand breaks in mammalian cells using the radioresistant bacterium PprA protein

    International Nuclear Information System (INIS)

    Satoh, Katsuya; Wada, Seiichi; Narumi, Issay; Kikuchi, Masahiro; Funayama, Tomoo; Kobayashi, Yasuhiko

    2003-01-01

    We have previously found that the PprA protein from Deinococcus radiodurans possesses ability to recognize DNA carrying strand breaks. In the present study, we attempted to visualize radiation-induced DNA strand breaks with PprA protein using immunofluorescence technique to elucidate the DNA damage response mechanism in mammalian cultured cells. As a result, colocalization of Cy2 and DAPI fluorescent signals was observed. This observation suggests that DNA strand breaks in the nucleus of CHO-K1 cells were effectively detected using the PprA protein. The amount of DNA strand breaks (integrated density of Cy2 fluorescent signals) was increased with the increase in the radiation dose. (author)

  8. On the linearity of the dose-effect relationship of DNA double strand breaks

    International Nuclear Information System (INIS)

    Chadwick, K.H.; Leenhouts, H.P.

    1994-01-01

    Most radiation biologists believe that DNA double-strand breaks are induced linearly with radiation dose for all types of radiation. Since 1985, with the advent of elution and gel electrophoresis techniques which permit the measurement of DNA double-strand breaks induced in mammalian cells at doses having radiobiological relevance, the true nature of the dose-effect relationship has been brought into some doubt. Many investigators measured curvilinear dose-effect relationships and a few found good correlations between the induction of the DNA double-strand breaks and cell survival. We approach the problem pragmatically by assuming that the induction of DNA double-strand breaks by 125 I Auger electron emitters incorporated into the DNA of the cells is a linear function of the number of 125 I decays, and by comparing the dose-effect relationship for sparsely ionizing radiation against this standard. The conclusion drawn that the curvilinear dose-effect relationships and the correlations with survival are real. (Author)

  9. Enzymatic quantification of strand breaks of DNA induced by vacuum-UV radiation

    International Nuclear Information System (INIS)

    Ito, Takashi

    1986-01-01

    Hind3 digested plasmid DNA dried on an aluminum plate was irradiated by vacuum-UV at 160 and 195 nm using a synchrotron irradiation system. A change induced in the DNA, presumably a single strand break, was quantified by the aid of the strand break-derived stimulation of poly(ADP-ribose) synthetase activity. The end group of strand breaks so induced was recognized by the enzyme as effectively as that by DNase 1 treatment, suggesting a nicking as the major lesion inflicted on the DNA. The fluence (UV) dependent stimulation of poly(ADP-ribose) synthetase activity was much higher upon 160 nm irradiation than upon 195 nm irradiation. (Auth.)

  10. SU-E-T-05: Comparing DNA Strand Break Yields for Photons under Different Irradiation Conditions with Geant4-DNA.

    Science.gov (United States)

    Pater, P; Bernal, M; Naqa, I El; Seuntjens, J

    2012-06-01

    To validate and scrutinize published DNA strand break data with Geant4-DNA and a probabilistic model. To study the impact of source size, electronic equilibrium and secondary electron tracking cutoff on direct relative biological effectiveness (DRBE). Geant4 (v4.9.5) was used to simulate a cylindrical region of interest (ROI) with r = 15 nm and length = 1.05 mm, in a slab of liquid water of 1.06 g/cm 3 density. The ROI was irradiated with mono-energetic photons, with a uniformly distributed volumetric isotropic source (0.28, 1.5 keV) or a plane beam (0.662, 1.25 MeV), of variable size. Electrons were tracked down to 50 or 10 eV, with G4-DNA processes and energy transfer greater than 10.79 eV was scored. Based on volume ratios, each scored event had a 0.0388 probability of happening on either DNA helix (break). Clusters of at least one break on each DNA helix within 3.4 nm were found using a DBSCAN algorithm and categorized as double strand breaks (DSB). All other events were categorized as single strand breaks (SSB). Geant4-DNA is able to reproduce strand break yields previously published. Homogeneous irradiation conditions should be present throughout the ROI for DRBE comparisons. SSB yields seem slightly dependent on the primary photon energy. DRBEs show a significant increasing trend for lower energy incident photons. A lower electron cutoff produces higher SSB yields, but decreases the SSB/DSB yields ratio. The probabilistic and geometrical DNA models can predict equivalent results. Using Geant4, we were able to reproduce previously published results on the direct strand break yields of photon and study the importance of irradiation conditions. We also show an ascending trend for DRBE with lower incident photon energies. A probabilistic model coupled with track structure analysis can be used to simulate strand break yields. NSERC, CIHR. © 2012 American Association of Physicists in Medicine.

  11. Cell-Autonomous Progeroid Changes in Conditional Mouse Models for Repair Endonuclease XPG Deficiency

    NARCIS (Netherlands)

    S. Barnhoorn (Sander); L.M. Uittenboogaard (Lieneke); D. Jaarsma (Dick); W.P. Vermeij (Wilbert); M. Tresini (Maria); M. Weymaere (Michael); H. Menoni (Hervé); R.M.C. Brandt (Renata); M.C. de Waard (Monique); S.M. Botter (Sander); A.H. Sarker (Altraf); N.G.J. Jaspers (Nicolaas); G.T.J. van der Horst (Gijsbertus); P.K. Cooper (Priscilla K.); J.H.J. Hoeijmakers (Jan); I. van der Pluijm (Ingrid)

    2014-01-01

    textabstractAs part of the Nucleotide Excision Repair (NER) process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG

  12. Measurement of M. luteus endonuclease-sensitive lesions by alkaline elution

    Energy Technology Data Exchange (ETDEWEB)

    Fornace, Jr, A J [National Cancer Inst., Bethesda, MD (USA). Lab. for Experimental Pathology

    1982-01-01

    The UV-endonuclease approach to detect DNA damage has been combined with the alkaline elution technique with a resultant marked increase in sensitivity compared to the conventional method using alkaline sedimentation. DNA from UV-irradiated cells was digested on an inert filter with an extract from Micrococcus luteus and then analyzed by alkaline elution. Endonuclease-sensitive sites (endo-sites) were measured after doses of 0.08-0.7 Jm/sup -2/ of UV-radiation. An estimate of endo-site production with UV radiation, 0.27 endo-sites/10/sup 8/ daltons of DNA/0.1 Jm/sup -2/, was similar to that usually seen at higher doses by others. With repair incubation, approx. 50% of the endo-sites were removed in 4 h by normal human fibroblasts after 0.2 or 0.4 Jm/sup -2/, no appreciable repair was seen in xeroderma pigmentosum fibroblasts from complementation group A after 24 h of repair incubation. No photoreaction of UV damage due to 0.4 Jm/sup -2/ was detected in normal human fibroblasts.

  13. Measurement of M. luteus endonuclease-sensitive lesions by alkaline elution

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.

    1982-01-01

    The UV-endonuclease approach to detect DNA damage has been combined with the alkaline elution technique with a resultant marked increase in sensitivity compared to the conventional method using alkaline sedimentation. DNA from UV-irradiated cells was digested on an inert filter with an extract from Micrococcus luteus and then analyzed by alkaline elution. Endonuclease-sensitive sites (endo-sites) were measured after doses of 0.08-0.7 Jm -2 of UV-radiation. An estimate of endo-site production with UV radiation, 0.27 endo-sites/10 8 daltons of DNA/0.1 Jm -2 , was similar to that usually seen at higher doses by others. With repair incubation, approx. 50% of the endo-sites were removed in 4 h by normal human fibroblasts after 0.2 or 0.4 Jm -2 , no appreciable repair was seen in xeroderma pigmentosum fibroblasts from complementation group A after 24 h of repair incubation. No photoreaction of UV damage due to 0.4 Jm -2 was detected in normal human fibroblasts. (orig./AJ)

  14. The Human L1 Element Causes DNA Double-Strand Breaks in Breast Cancer

    Science.gov (United States)

    2006-08-01

    cancer is complex. However, defects in DNA repair genes in the double-strand break repair pathway are cancer predisposing. My lab has characterized...a new potentially important source of double-strand breaks (DSBs) in human cells and are interested in characterizing which DNA repair genes act on...this particular source of DNA damage. Selfish DNA accounts for 45% of the human genome. We have recently demonstrated that one particular selfish

  15. Enzymatic induction of DNA double-strand breaks in γ-irradiated Escherichia coli K-12

    International Nuclear Information System (INIS)

    Bonura, T.; Smith, K.C.; Kaplan, H.S.

    1975-01-01

    The polA1 mutation increases the sensitivity of E. coli K-12 to killing by γ-irradiation in air by a factor of 2.9 and increases the yield of DNA double-strand breaks by a factor of 2.5. These additional DNA double-strand breaks appear to be due to the action of nucleases in the polA1 strain rather than to the rejoining of radiation-induced double-strand breaks in the pol + strain. This conclusion is based upon the observation that γ-irradiation at 3 0 did not affect the yield of DNA double-strand breaks in the pol + strain, but decreased the yield in the polA1 strain by a factor of 2.2. Irradiation of the polA1 strain at 3 0 followed by incubation at 3 0 for 20 min before plating resulted in approximately a 1.5-fold increase in the D 0 . The yield of DNA double-strand breaks was reduced by a factor of 1.5. The pol + strain, however, did not show the protective effect of the low temperature incubation upon either survival or DNA double-strand breakage. We suggest that the increased yield of DNA double-strand breaks in the polA 1 strain may be the result of the unsuccessful excision repair of ionizing radiation-induced dna base damage

  16. Measuring oxidative damage to DNA and its repair with the comet assay.

    Science.gov (United States)

    Collins, Andrew R

    2014-02-01

    Single cell gel electrophoresis, or the comet assay, was devised as a sensitive method for detecting DNA strand breaks, at the level of individual cells. A simple modification, incorporating a digestion of DNA with a lesion-specific endonuclease, makes it possible to measure oxidised bases. With the inclusion of formamidopyrimidine DNA glycosylase to recognise oxidised purines, or Nth (endonuclease III) to detect oxidised pyrimidines, the comet assay has been used extensively in human biomonitoring to monitor oxidative stress, usually in peripheral blood mononuclear cells. There is evidence to suggest that the enzymic approach is more accurate than chromatographic methods, when applied to low background levels of base oxidation. However, there are potential problems of over-estimation (because the enzymes are not completely specific) or under-estimation (failure to detect lesions that are close together). Attempts have been made to improve the inter-laboratory reproducibility of the comet assay. In addition to measuring DNA damage, the assay can be used to monitor the cellular or in vitro repair of strand breaks or oxidised bases. It also has applications in assessing the antioxidant status of cells. In its various forms, the comet assay is now an invaluable tool in human biomonitoring and genotoxicity testing. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Ultrasensitive electrochemical biosensor for detection of DNA from Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification.

    Science.gov (United States)

    Hu, Yuhua; Xu, Xueqin; Liu, Qionghua; Wang, Ling; Lin, Zhenyu; Chen, Guonan

    2014-09-02

    A simple, ultrasensitive, and specific electrochemical biosensor was designed to determine the given DNA sequence of Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification. The target DNA (TD, the DNA sequence from the hypervarient region of 16S rDNA of Bacillus subtilis) could be detected by the differential pulse voltammetry (DPV) in a range from 0.1 fM to 20 fM with the detection limit down to 0.08 fM at the 3s(blank) level. This electrochemical biosensor exhibits high distinction ability to single-base mismatch, double-bases mismatch, and noncomplementary DNA sequence, which may be expected to detect single-base mismatch and single nucleotide polymorphisms (SNPs). Moreover, the applicability of the designed biosensor for detecting the given DNA sequence from Bacillus subtilis was investigated. The result obtained by electrochemical method is approximately consistent with that by a real-time quantitative polymerase chain reaction detecting system (QPCR) with SYBR Green.

  18. The DNA-dependent protein kinase: a multifunctional protein kinase with roles in DNA double strand break repair and mitosis

    Science.gov (United States)

    Jette, Nicholas; Lees-Miller, Susan P.

    2015-01-01

    The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and the Ku70/80 heterodimer. Over the past two decades, significant progress has been made in elucidating the role of DNA-PK in non-homologous end joining (NHEJ), the major pathway for repair of ionizing radiation-induced DNA double strand breaks in human cells and recently, additional roles for DNA-PK have been reported. In this review, we will describe the biochemistry, structure and function of DNA-PK, its roles in DNA double strand break repair and its newly described roles in mitosis and other cellular processes. PMID:25550082

  19. Microfluidic droplet generator with controlled break-up mechanism

    KAUST Repository

    Gonzalez, David Conchouso

    2017-04-13

    Droplet generation devices and systems that parallelize droplet generation devices are provided. The droplet generation devices can include a symmetric block-and-break system and a tapered droplet generation zone. The symmetric block-and-break system can include a pair of break channels and a pair of bypass channels symmetrically arranged with respect to the dispersed-phase input channel and the output channel. The droplet generation devices can generate monodisperse droplets with a predefined volume over a range of flow rates, pressures, and fluid properties. The droplet generation devices are therefore capable of parallelization to achieve large-capacity droplet generation, e.g. greater than 1 L/hr, with small overall coefficients of variation.

  20. Single-strand breaks induced in Bacillus subtilis DNA by ultraviolet light: action spectrum and properties

    International Nuclear Information System (INIS)

    Peak, M.J.; Peak, J.G.

    1982-01-01

    The induction of single-strand breaks (alkali-labile bonds plus frank breaks) in the DNA of Bacillus subtilis irradiated in vivo by monochromatic UV light at wavelengths from 254 to 434nm was measured. The spectrum consists of a major far-UV (below 320nm) component and a minor near-UV shoulder. A mutant deficient in DNA polymerase I accumulates breaks caused by near-UV (above 320nm) wavelengths faster than the wild-type strain proficient in polymerase I. Measurable breaks in extracted DNA are induced at a higher frequency than those induced in vivo. Anoxia, glycerol, and diazobicyclo (2.2.2.) octane inhibit break formation in extracted DNA. Alkali-labile bonds induced by 365-nm UV radiation are largely (78%) covalent bond chain breaks, the remainder consists of true alkali-labile bonds, probably apurinic and apyrimidinic sites. (author)

  1. Breaks in plasmid DNA strand induced by laser radiation at a wavelength of 193 nm

    International Nuclear Information System (INIS)

    Gurzadyan, G.G.; Shul'te Frolinde, D.

    1996-01-01

    DNA of plasmid pB322 irradiated with laser at a wavelength of 193 nm was treated with an extract containing proteins from E.coli K12 AB1157 (wild-type). The enzymes were found to produce single- and double-strand DNA breaks, which was interpreted as a transformation of a portion of cyclobutane pyrimidine dimers and (6-4) photoproducts into nonrepairable single-strand DNA breaks. The products resulted from ionization of DNA, in particular, single-strand breaks, transform to double-strand breaks. A comparison of these data with the data on survival of plasmid upon transformation of E.coli K12 AB1157 enables one to assess the biological significance of single- and double-strand breaks. The inactivation of the plasmid is mainly determined by the number of directly formed laser-induced single-strand breaks. 26 refs.; 2 figs

  2. Simulation of 125I-induced DNA strand breaks in a CAP-DNA complex

    International Nuclear Information System (INIS)

    Li, W.; Friedland, W.; Jacob, P.

    2000-01-01

    DNA strand breakage induced by decay of 125 I incorporated into the pyrimidine of a small piece of DNA with a specific base pair sequence has been investigated theoretically and experimentally (Lobachevsky and Martin 2000a, 2000b; Nikjoo et al., 1996; Pomplun and Terrissol, 1994; Charlton and Humm, 1988). Recently an attempt was made to analyse the DNA kinks in a CAP-DNA complex with 125 I induced DNA strand breakage (Karamychev et al., 1999). This method could be used as a so called radioprobing for such DNa distortions like other chemical and biological assays, provided that it has been tested and confirmed in a corresponding theoretical simulation. In the measurement, the distribution of the first breaks on the DNA strands starting from their labeled end can be determined. Based on such first breakage distributions, the simulation calculation could then be used to derive information on the structure of a given DNA-protein complex. The biophysical model PARTRAC has been applied successfully in simulating DNA damage induced by irradiation (Friedland et al., 1998; 1999). In the present study PARTRAC is adapted to a DNA-protein complex in which a specific sequence of 30 base pairs of DNA is connected with the catabolite gene activator protein (CAP). This report presents the first step of the analysis in which the CAP-DNA model used in NIH is overlaid with electron track structures in liquid water and the strand breaks due to direct ionization and due to radical attack are simulated. The second step will be to take into account the neutralization of the heavily charged tellurium and the protective effect of the CAP protein against radical attack. (orig.)

  3. Germline excision of transgenes in Aedes aegypti by homing endonucleases.

    Science.gov (United States)

    Aryan, Azadeh; Anderson, Michelle A E; Myles, Kevin M; Adelman, Zach N

    2013-01-01

    Aedes (Ae.) aegypti is the primary vector for dengue viruses (serotypes1-4) and chikungunya virus. Homing endonucleases (HEs) are ancient selfish elements that catalyze double-stranded DNA breaks (DSB) in a highly specific manner. In this report, we show that the HEs Y2-I-AniI, I-CreI and I-SceI are all capable of catalyzing the excision of genomic segments from the Ae. aegypti genome in a heritable manner. Y2-I-AniI demonstrated the highest efficiency at two independent genomic targets, with 20-40% of Y2-I-AniI-treated individuals producing offspring that had lost the target transgene. HE-induced DSBs were found to be repaired via the single-strand annealing (SSA) and non-homologous end-joining (NHEJ) pathways in a manner dependent on the availability of direct repeat sequences in the transgene. These results support the development of HE-based gene editing and gene drive strategies in Ae. aegypti, and confirm the utility of HEs in the manipulation and modification of transgenes in this important vector.

  4. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks

    KAUST Repository

    Mahfouz, Magdy M.; Li, Lixin; Shamimuzzaman, Md.; Wibowo, Anjar Tri; Fang, Xiaoyun; Zhu, Jian-Kang

    2011-01-01

    Site-specific and rare cutting nucleases are valuable tools for genome engineering. The generation of double-strand DNA breaks (DSBs) promotes homologous recombination in eukaryotes and can facilitate gene targeting, additions, deletions

  5. Spectroelectrochemical insights into structural and redox properties of immobilized endonuclease III and its catalytically inactive mutant

    Science.gov (United States)

    Moe, Elin; Rollo, Filipe; Silveira, Célia M.; Sezer, Murat; Hildebrandt, Peter; Todorovic, Smilja

    2018-01-01

    Endonuclease III is a Fe-S containing bifunctional DNA glycosylase which is involved in the repair of oxidation damaged DNA. Here we employ surface enhanced IR spectroelectrochemistry and electrochemistry to study the enzyme from the highly radiation- and desiccation-resistant bacterium Deinococcus radiodurans (DrEndoIII2). The experiments are designed to shed more light onto specific parameters that are currently proposed to govern damage search and recognition by endonucleases III. We demonstrate that electrostatic interactions required for the redox activation of DrEndoIII2 may result in high electric fields that alter its structural and thermodynamic properties. Analysis of inactive DrEndoIII2 (K132A/D150A double mutant) interacting with undamaged DNA, and the active enzyme interacting with damaged DNA also indicate that the electron transfer is modulated by subtle differences in the protein-DNA complex.

  6. Human RECQL5beta stimulates flap endonuclease 1

    DEFF Research Database (Denmark)

    Speina, Elzbieta; Dawut, Lale; Hedayati, Mohammad

    2010-01-01

    devoid of RECQL1 and RECQL5 display increased chromosomal instability. Here, we report the physical and functional interaction of the large isomer of RECQL5, RECQL5beta, with the human flap endonuclease 1, FEN1, which plays a critical role in DNA replication, recombination and repair. RECQL5beta...... dramatically stimulates the rate of FEN1 cleavage of flap DNA substrates. Moreover, we show that RECQL5beta and FEN1 interact physically and co-localize in the nucleus in response to DNA damage. Our findings, together with the previous literature on WRN, BLM and RECQL4's stimulation of FEN1, suggests...

  7. 125I-induced DNA double strand breaks: use in calibration of the neutral filter elution technique and comparison with X-ray induced breaks

    International Nuclear Information System (INIS)

    Radford, I.R.; Hodgson, G.S.

    1985-01-01

    The neutral filter elution assay, for measurement of DNA double strand breakage, has been calibrated using mouse L cells and Chinese hamster V79 cells labelled with [ 125 I]dUrd and then held at liquid nitrogen temperature to accumulate decays. The basis of the calibration is the observation that each 125 I decay, occurring in DNA, produces a DNA double strand break. Linear relationships between 125 I decays per cell and lethal lesions per cell (minus natural logarithm survival) and the level of elution, were found. Using the calibration data, it was calculated that the yield of DNA double strand breaks after X-irradiation of both cell types was from 6 to 9 x 10 -12 DNA double strand breaks per Gy per dalton of DNA, for doses greater than 6 Gy. Neutral filter elution and survival data for X-irradiated and 125 I-labelled cells suggested that the relationships between lethal lesions and DNA double strand breakage were significantly different for both cell types. An attempt was made to study the repair kinetics for 125 I-induced DNA double strand breaks, but was frustrated by the rapid DNA degradation which occurs in cells that have been killed by the freezing-thawing process. (author)

  8. Induction and repair of double- and single-strand DNA breaks in bacteriophage lambda superinfecting Escherichia coli

    International Nuclear Information System (INIS)

    Boye, E.; Krisch, R.E.

    1980-01-01

    Induction and repair of double-and single-strand DNA breaks have been measured after decays of 125 I and 3 H incorporated into the DNA and after external irradiation with 4 MeV electrons. For the decay experiments, cells of wild type Escherichia coli K-12 were superinfected with bacteriophage lambda DNA labelled with 5'-( 125 I)iodo-2'-deoxyuridine or with (methyl- 3 H)thymidine and frozen in liquid nitrogen. Aliquots were thawed at intervals and lysed at neutral pH, and the phage DNA was assayed for double- and single-strand breakage by neutral sucrose gradient centrifugation. The gradients used allowed measurements of both kinds of breaks in the same gradient. Decays of 125 I induced 0.39 single-strand breaks per double-strand break. No repair of either break type could be detected. Each 3 H disintegration caused 0.20 single-strand breaks and very few double-strand breaks. The single-strand breaks were rapidly rejoined after the cells were thawed. For irradiation with 4 MeV electrons, cells of wild type E. coli K-12 were superinfected with phage lambda and suspended in growth medium. Irradiation induced 42 single-strand breaks per double-strand break. The rates of break induction were 6.75 x 10 -14 (double-strand breaks) and 2.82 x 10 -12 (single-strand breaks) per rad and per dalton. The single-strand breaks were rapidly repaired upon incubation whereas the double-strand breaks seemed to remain unrepaired. It is concluded that double-strand breaks in superinfecting bacteriophage lambda DNA are repaired to a very small extent, if at all. (Author)

  9. Type II restriction endonucleases : a historical perspective and more

    OpenAIRE

    Pingoud, Alfred; Wilson, Geoffrey G.; Wende, Wolfgang

    2014-01-01

    This article continues the series of Surveys and Summaries on restriction endonucleases (REases) begun this year in Nucleic Acids Research. Here we discuss ‘Type II’ REases, the kind used for DNA analysis and cloning. We focus on their biochemistry: what they are, what they do, and how they do it. Type II REases are produced by prokaryotes to combat bacteriophages. With extreme accuracy, each recognizes a particular sequence in double-stranded DNA and cleaves at a fixed position within or nea...

  10. Protection of free-radical induced DNA strand breaks in vitro by flavonoids

    International Nuclear Information System (INIS)

    Fisher, L.; Anderson, R.F.

    1998-01-01

    Full text: We have used both plasmid and cosmid test systems to assay the effect of antioxidant flavonoids (AO) on DNA strand breakage in supercoiled closed circular DNA (DNA SC ) following the formation oxidative radical damage on DNA (DNA OXID + . ) in aqueous solution. Single strand breaks in DNA SC result in the formation of the relaxed circular form (DNA RC ) and double strand breaks give linear DNA (DNA L ). Dose response curves were constructed for the log of the loss of [DNA S C] against dose (0-600 Gy). The D 37 (dose for 37% unchanged DNA SC ) values determined in the presence of increasing amounts of flavonoids were compared as ratios to the D 37 control value to give dose modification factor (DMF). Irradiations were carried out under 'constant scavenging' conditions to separate out the effect of direct radical scavenging from the possible electron transfer reaction. Control irradiation experiments, were performed in aerated TRIS buffer, concentration 10 mM, which has a scavenging capacity, k s (defined as the summation of the rate constants for the reaction of OH radicals with all species in solution, multiplied by their concentrations) of 1.5 x 10 7 s -1 . The concentration of TRIS was reduced upon addition of AO to maintain k s at this level. Data will be presented for examples from all four major types of flavonoids (flavonols, isoflavones, flavones and flavon-3-ols) showing DMF values plateau at near 2.0 even at low concentrations (ca. 20 μM) of the flavonoids. Increased DNA strand breaks following post irradiation incubation with endo III protein was unaffected by having the flavonoids present at the time of irradiation. This result suggests that the protection afforded by the flavonoids is unlikely to be in repairing radical damage on pyrimidine bases that are precursors of DNA strand breaks. Overall these studies provide evidence for an additional mechanism of antioxidant activity

  11. Study in regularities in the formation of double stranded DNA breaks in irradiated rat thymocytes

    International Nuclear Information System (INIS)

    Ivannik, B.P.; ProskuryakoV, S.Ya.; Ryabchenko, N.I.

    1979-01-01

    Using low-gradient viscosimetry of neutral detergent nuclear lysates a study was made of postradiation changes in the molecular weight of double-stranded DNA of thymocytes. It was established that 375 eV are needed for one double-stranded break to appear, and a dose of 1 rad is required for 0.275 double-stranded break to occur at the site of DNA with m.w. 10 12 dalton. The repair of double-stranded breaks is only observed when rats are exposed to a dose of 500 R. It is assumed that the absence of repair of double-stranded DNA breaks and the presence of secondary postradiation degradation of DNA are responsible for thymocyte death

  12. DN2 Thymocytes Activate a Specific Robust DNA Damage Response to Ionizing Radiation-Induced DNA Double-Strand Breaks

    Directory of Open Access Journals (Sweden)

    Irene Calvo-Asensio

    2018-06-01

    Full Text Available For successful bone marrow transplantation (BMT, a preconditioning regime involving chemo and radiotherapy is used that results in DNA damage to both hematopoietic and stromal elements. Following radiation exposure, it is well recognized that a single wave of host-derived thymocytes reconstitutes the irradiated thymus, with donor-derived thymocytes appearing about 7 days post BMT. Our previous studies have demonstrated that, in the presence of donor hematopoietic cells lacking T lineage potential, these host-derived thymocytes are able to generate a polyclonal cohort of functionally mature peripheral T cells numerically comprising ~25% of the peripheral T cell pool of euthymic mice. Importantly, we demonstrated that radioresistant CD44+ CD25+ CD117+ DN2 progenitors were responsible for this thymic auto-reconstitution. Until recently, the mechanisms underlying the radioresistance of DN2 progenitors were unknown. Herein, we have used the in vitro “Plastic Thymus” culture system to perform a detailed investigation of the mechanisms responsible for the high radioresistance of DN2 cells compared with radiosensitive hematopoietic stem cells. Our results indicate that several aspects of DN2 biology, such as (i rapid DNA damage response (DDR activation in response to ionizing radiation-induced DNA damage, (ii efficient repair of DNA double-strand breaks, and (iii induction of a protective G1/S checkpoint contribute to promoting DN2 cell survival post-irradiation. We have previously shown that hypoxia increases the radioresistance of bone marrow stromal cells in vitro, at least in part by enhancing their DNA double-strand break (DNA DSB repair capacity. Since the thymus is also a hypoxic environment, we investigated the potential effects of hypoxia on the DDR of DN2 thymocytes. Finally, we demonstrate for the first time that de novo DN2 thymocytes are able to rapidly repair DNA DSBs following thymic irradiation in vivo.

  13. Autophosphorylation of DNA-PKCS regulates its dynamics at DNA double-strand breaks.

    Science.gov (United States)

    Uematsu, Naoya; Weterings, Eric; Yano, Ken-ichi; Morotomi-Yano, Keiko; Jakob, Burkhard; Taucher-Scholz, Gisela; Mari, Pierre-Olivier; van Gent, Dik C; Chen, Benjamin P C; Chen, David J

    2007-04-23

    The DNA-dependent protein kinase catalytic subunit (DNA-PK(CS)) plays an important role during the repair of DNA double-strand breaks (DSBs). It is recruited to DNA ends in the early stages of the nonhomologous end-joining (NHEJ) process, which mediates DSB repair. To study DNA-PK(CS) recruitment in vivo, we used a laser system to introduce DSBs in a specified region of the cell nucleus. We show that DNA-PK(CS) accumulates at DSB sites in a Ku80-dependent manner, and that neither the kinase activity nor the phosphorylation status of DNA-PK(CS) influences its initial accumulation. However, impairment of both of these functions results in deficient DSB repair and the maintained presence of DNA-PK(CS) at unrepaired DSBs. The use of photobleaching techniques allowed us to determine that the kinase activity and phosphorylation status of DNA-PK(CS) influence the stability of its binding to DNA ends. We suggest a model in which DNA-PK(CS) phosphorylation/autophosphorylation facilitates NHEJ by destabilizing the interaction of DNA-PK(CS) with the DNA ends.

  14. Mycobacterium tuberculosis class II apurinic/apyrimidinic-endonuclease/3'-5' exonuclease III exhibits DNA regulated modes of interaction with the sliding DNA β-clamp.

    Science.gov (United States)

    Khanam, Taran; Rai, Niyati; Ramachandran, Ravishankar

    2015-10-01

    The class-II AP-endonuclease (XthA) acts on abasic sites of damaged DNA in bacterial base excision repair. We identified that the sliding DNA β-clamp forms in vivo and in vitro complexes with XthA in Mycobacterium tuberculosis. A novel 239 QLRFPKK245 motif in the DNA-binding domain of XthA was found to be important for the interactions. Likewise, the peptide binding-groove (PBG) and the C-terminal of β-clamp located on different domains interact with XthA. The β-clamp-XthA complex can be disrupted by clamp binding peptides and also by a specific bacterial clamp inhibitor that binds at the PBG. We also identified that β-clamp stimulates the activities of XthA primarily by increasing its affinity for the substrate and its processivity. Additionally, loading of the β-clamp onto DNA is required for activity stimulation. A reduction in XthA activity stimulation was observed in the presence of β-clamp binding peptides supporting that direct interactions between the proteins are necessary to cause stimulation. Finally, we found that in the absence of DNA, the PBG located on the second domain of the β-clamp is important for interactions with XthA, while the C-terminal domain predominantly mediates functional interactions in the substrate's presence. © 2015 John Wiley & Sons Ltd.

  15. The use of recombinant DNA techniques to study radiation-induced damage, repair and genetic change in mammalian cells

    International Nuclear Information System (INIS)

    Thacker, J.

    1986-01-01

    A brief introduction is given to appropriate elements of recombinant DNA techniques and applications to problems in radiobiology are reviewed with illustrative detail. Examples are included of studies with both 254 nm ultraviolet light and ionizing radiation and the review progresses from the molecular analysis of DNA damage in vitro through to the nature of consequent cellular responses. The review is dealt with under the following headings: Molecular distribution of DNA damage, The use of DNA-mediated gene transfer to assess damage and repair, The DNA double strand break: use of restriction endonucleases to model radiation damage, Identification and cloning of DNA repair genes, Analysis of radiation-induced genetic change. (UK)

  16. Beyond repair foci: DNA double-strand break repair in euchromatic and heterochromatic compartments analyzed by transmission electron microscopy.

    Directory of Open Access Journals (Sweden)

    Yvonne Lorat

    Full Text Available DNA double-strand breaks (DSBs generated by ionizing radiation pose a serious threat to the preservation of genetic and epigenetic information. The known importance of local chromatin configuration in DSB repair raises the question of whether breaks in different chromatin environments are recognized and repaired by the same repair machinery and with similar efficiency. An essential step in DSB processing by non-homologous end joining is the high-affinity binding of Ku70-Ku80 and DNA-PKcs to double-stranded DNA ends that holds the ends in physical proximity for subsequent repair.Using transmission electron microscopy to localize gold-labeled pKu70 and pDNA-PKcs within nuclear ultrastructure, we monitored the formation and repair of actual DSBs within euchromatin (electron-lucent and heterochromatin (electron-dense in cortical neurons of irradiated mouse brain.While DNA lesions in euchromatin (characterized by two pKu70-gold beads, reflecting the Ku70-Ku80 heterodimer are promptly sensed and rejoined, DNA packaging in heterochromatin appears to retard DSB processing, due to the time needed to unravel higher-order chromatin structures. Complex pKu70-clusters formed in heterochromatin (consisting of 4 or ≥ 6 gold beads may represent multiple breaks in close proximity caused by ionizing radiation of highly-compacted DNA. All pKu70-clusters disappeared within 72 hours post-irradiation, indicating efficient DSB rejoining. However, persistent 53BP1 clusters in heterochromatin (comprising ≥ 10 gold beads, occasionally co-localizing with γH2AX, but not pKu70 or pDNA-PKcs, may reflect incomplete or incorrect restoration of chromatin structure rather than persistently unrepaired DNA damage.Higher-order organization of chromatin determines the accessibility of DNA lesions to repair complexes, defining how readily DSBs are detected and processed. DNA lesions in heterochromatin appear to be more complex, with multiple breaks in spatial vicinity inducing

  17. Carcinogen-induced damage to DNA

    International Nuclear Information System (INIS)

    Strauss, B.; Altamirano, M.; Bose, K.; Sklar, R.; Tatsumi, K.

    1979-01-01

    Human cells respond to carcinogen-induced damage in their DNA in at least two ways. The first response, excision repair, proceeds by at least three variations, depending on the nature of the damage. Nucleotide excision results in relatively large repair patches but few free DNA breaks, since the endonuclease step is limiting. Apurinic repair is characterized by the appearance of numerous breaks in the DNA and by short repair patches. The pathways behave as though they function independently. Lymphoic cells derived from a xeroderma pigmentosum complementation group C patient are deficient in their ability to perform nucleotide excision and also to excise 6 methoxyguanine adducts, but they are apurinic repair competent. Organisms may bypass damage in their DNA. Lymphoblastoid cells, including those derived from xeroderma pigmentosum treated with 3 H-anti-BPDE, can replicate their DNA at low doses of carcinogen. Unexcised 3 H is found in the light or parental strand of the resulting hybrid DNA when replication occurs in medium with BrdUrd. This observation indicates a bypass reaction occurring by a mechanism involving branch migration at DNA growing points. Branch migration in DNA preparations have been observed, but the evidence is that most occurs in BrdUrd-containing DNA during cell lysis. The measurement of the bifilarly substituted DNA resulting from branch migration is a convenient method of estimating the proportion of new synthesis remaining in the vicinity of the DNA growing point. Treatment with carcinogens or caffeine results in accumulation of DNA growing points accompanied by the synthesis of shortened pieces of daughter DNA

  18. Biochemical studies of DNA strand break repair and molecular characterization of mei-41, a gene involved in DNA break repair

    International Nuclear Information System (INIS)

    Oliveri, D.R.

    1989-01-01

    The ability to repair X-irradiation induced single-strand DNA breaks was examined in mutagen-sensitive mutants of Drosophila melanogaster. This analysis demonstrated that examined stocks possess a normal capacity to repair X-ray induced single-strand breaks. One of the mutants in this study, mei-41, has been shown to be involved in a number of DNA metabolizing functions. A molecular characterization of this mutant is presented. A cDNA hybridizing to genomic DNA both proximal and distal to a P element inducing a mei-41 mutation was isolated from both embryonic and adult female recombinant lambda phage libraries. A 2.2 kilobase embryonic cDNA clone was sequenced; the sequence of an open reading frame was identified which would predict a protein of 384 amino acids with a molecular weight of 43,132 daltons. An examination of homologies to sequences in protein and nucleic acid data bases revealed no sequences with significant homology to mei-41, however, two potential Zinc-finger domains were identified. Analysis of RNA hybridizing to the embryonic cDNA demonstrated the existence of a major 2.2 kilobase transcript expressed primarily in embryos and adult flies. An examination of the transcription of this gene in mei-41 mutants revealed significant variation from wild-type, an indication that the embryonic cDNA does represent a mei-41 transcript. Expression in tissues from adult animals demonstrated that the 2.2 kilobase RNA is expressed primarily in reproductive tissues. A 3.8kb transcript is the major species of RNA in the adult head and thorax. Evidence is presented which implies that expression of the mei-41 gene is strongly induced by exposure of certain cells to mutagens

  19. Damage induced by hydroxyl radicals generated in the hydration layer of γ-irradiated frozen aqueous solution of DNA

    International Nuclear Information System (INIS)

    Ohshima, Hideki; Matsuda, Akira; Kuwabara, Mikinori; Iida, Yoshiharu.

    1996-01-01

    Aqueous DNA solutions with or without the spin trap α-phenyl-N-tert-butylnitrone (PBN) were exposed to γ-rays at 77 K. After thawing the solutions, three experiments were carried out to confirm the generation of OH radicals in the hydration layer of DNA and to examine whether they act as an inducer of DNA strand breaks and base alterations. Observation with the EZR-spin tapping method showed ESR signals from PBN-OH adducts in the solution containing PBN and DNA, but there were few signals in the solution containing PBN alone, suggesting that reactive OH radicals were produced in the hydration layer of γ-irradiated DNA and were effectively scavenged by PBN, and that unreactive OH radicals were produced in the free water layer of γ-irradiated DNA. Agarose gel electrophoresis of DNA proved that PBN had no effect on the formation of strand breaks, whereas examination with the high-performance liquid chromatography-eloctrochemical detection (HPLC-ECD) method showed that PBN suppressed the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG). From these results it was concluded that OH radicals generated in the hydration layer of γ-irradiated DNA did not induce DNA strand breaks but induced base alterations. (author)

  20. Protein kinase CK2 localizes to sites of DNA double-strand break regulating the cellular response to DNA damage

    Directory of Open Access Journals (Sweden)

    Olsen Birgitte B

    2012-03-01

    Full Text Available Abstract Background The DNA-dependent protein kinase (DNA-PK is a nuclear complex composed of a large catalytic subunit (DNA-PKcs and a heterodimeric DNA-targeting subunit Ku. DNA-PK is a major component of the non-homologous end-joining (NHEJ repair mechanism, which is activated in the presence of DNA double-strand breaks induced by ionizing radiation, reactive oxygen species and radiomimetic drugs. We have recently reported that down-regulation of protein kinase CK2 by siRNA interference results in enhanced cell death specifically in DNA-PKcs-proficient human glioblastoma cells, and this event is accompanied by decreased autophosphorylation of DNA-PKcs at S2056 and delayed repair of DNA double-strand breaks. Results In the present study, we show that CK2 co-localizes with phosphorylated histone H2AX to sites of DNA damage and while CK2 gene knockdown is associated with delayed DNA damage repair, its overexpression accelerates this process. We report for the first time evidence that lack of CK2 destabilizes the interaction of DNA-PKcs with DNA and with Ku80 at sites of genetic lesions. Furthermore, we show that CK2 regulates the phosphorylation levels of DNA-PKcs only in response to direct induction of DNA double-strand breaks. Conclusions Taken together, these results strongly indicate that CK2 plays a prominent role in NHEJ by facilitating and/or stabilizing the binding of DNA-PKcs and, possibly other repair proteins, to the DNA ends contributing to efficient DNA damage repair in mammalian cells.

  1. Mechanisms of DNA Packaging by Large Double-Stranded DNA Viruses

    Science.gov (United States)

    Rao, Venigalla B.; Feiss, Michael

    2016-01-01

    Translocation of viral double-stranded DNA (dsDNA) into the icosahedral prohead shell is catalyzed by TerL, a motor protein that has ATPase, endonuclease, and translocase activities. TerL, following endonucleolytic cleavage of immature viral DNA concatemer recognized by TerS, assembles into a pentameric ring motor on the prohead’s portal vertex and uses ATP hydrolysis energy for DNA translocation. TerL’s N-terminal ATPase is connected by a hinge to the C-terminal endonuclease. Inchworm models propose that modest domain motions accompanying ATP hydrolysis are amplified, through changes in electrostatic interactions, into larger movements of the C-terminal domain bound to DNA. In phage φ29, four of the five TerL subunits sequentially hydrolyze ATP, each powering translocation of 2.5 bp. After one viral genome is encapsidated, the internal pressure signals termination of packaging and ejection of the motor. Current focus is on the structures of packaging complexes and the dynamics of TerL during DNA packaging, endonuclease regulation, and motor mechanics. PMID:26958920

  2. A non extensive approach for DNA breaking by ionizing radiation

    OpenAIRE

    Sotolongo-Costa, O; Guzman, F; Antoranz, JC; Rodgers, GJ; Rodriguez, O; Arruda Neto, JDT; Deepman, A

    2002-01-01

    Tsallis entropy and a maximum entropy principle allows to reproduce experimental data of DNA double strand breaking by electron and neutron radiation. Analytic results for the probability of finding a DNA segment of length l are obtained reproducing quite well the fragment distribution function experimentally obtained.

  3. Comparison of the electrophoretic method with the sedimentation method for the analysis of DNA strand breaks

    International Nuclear Information System (INIS)

    Yamamoto, Osamu; Ogawa, Masaaki; Hoshi, Masaharu

    1982-01-01

    Application of electrophoresis to the analysis of DNA strand breaks was studied comparing with the sedimentation analysis. A BRL gel electrophoresis system (Type V16) was used for this study. Calf thymus DNA (1 mg/ml) irradiated with 60 Co gamma-rays in SSC solution was applied to both the electrophoretic analysis and the sedimentation analysis. Lamda phage DNA and its fragments were employed as the standard size molecules. In a range from 1 k base pairs to 6 k base pairs in length for double stranded DNA or from 2 k bases to 12 k bases for single stranded DNA, the calculated average molecular weight from the electrophoresis coincided with that from the sedimentation. Number of single strand breaks and double strand breaks were 1.34 x 10 11 breaks/mg/rad (G = 0.215) and 0.48 x 10 5 breaks/mg/rad 2 , respectively. (author)

  4. Interaction of the E. coli DNA G:T-mismatch endonuclease (vsr protein) with oligonucleotides containing its target sequence.

    Science.gov (United States)

    Turner, D P; Connolly, B A

    2000-12-15

    The Escherichia coli vsr endonuclease recognises G:T base-pair mismatches in double-stranded DNA and initiates a repair pathway by hydrolysing the phosphate group 5' to the incorrectly paired T. The enzyme shows a preference for G:T mismatches within a particular sequence context, derived from the recognition site of the E. coli dcm DNA-methyltransferase (CC[A/T]GG). Thus, the preferred substrate for the vsr protein is (CT[A/T]GG), where the underlined T is opposed by a dG base. This paper provides quantitative data for the interaction of the vsr protein with a number of oligonucleotides containing G:T mismatches. Evaluation of specificity constant (k(st)/K(D); k(st)=rate constant for single turnover, K(D)=equilibrium dissociation constant) confirms vsr's preference for a G:T mismatch within a hemi-methylated dcm sequence, i.e. the best substrate is a duplex (both strands written in the 5'-3' orientation) composed of CT[A/T]GG and C(5Me)C[T/A]GG. Conversion of the mispaired T (underlined) to dU or the d(5Me)C to dC gave poorer substrates. No interaction was observed with oligonucleotides that lacked a G:T mismatch or did not possess a dcm sequence. An analysis of the fraction of active protein, by "reverse-titration" (i.e. adding increasing amounts of DNA to a fixed amount of protein followed by gel-mobility shift analysis) showed that less than 1% of the vsr endonuclease was able to bind to the substrate. This was confirmed using "competitive titrations" (where competitor oligonucleotides are used to displace a (32)P-labelled nucleic acid from the vsr protein) and burst kinetic analysis. This result is discussed in the light of previous in vitro and in vivo data which indicate that the MutL protein may be needed for full vsr activity. Copyright 2000 Academic Press.

  5. Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre

    DEFF Research Database (Denmark)

    Lisby, M.; Mortensen, Uffe Hasbro; Rothstein, R.

    2003-01-01

    DNA double-strand break repair (DSBR) is an essential process for preserving genomic integrity in all organisms. To investigate this process at the cellular level, we engineered a system of fluorescently marked DNA double-strand breaks (DSBs) in the yeast Saccharomyces cerevisiae to visualize in ...

  6. Increased rate of repair of ultraviolet-induced DNA strand breaks in mitogen stimulated lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, S.M.; Lavin, M.F.; Jennings, P.A. (Queensland Univ., St. Lucia (Australia). Dept. of Biochemistry; Queensland Univ., St. Lucia (Australia). Dept. of Veterinary Pathology; Queensland Univ. St. Lucia (Australia). Dept. of Public Health)

    1982-05-01

    Previous results have shown that phytohaemagglutinin-stimulated bovine lymphocytes exhibit a peak of ultraviolet-induced DNA repair synthesis 3 to 4 days after addition of mitogen. The level of repair synthesis was approximately tenfold higher than that in unstimulated lymphocytes. These studies have been extended to examine the rate of repair of strand breaks in U.V.-irradiated bovine lymphocytes. The extent of breakage of DNA was shown to be the same in mitogen-stimulated and unstimulated lymphocytes from two breeds of cattle, when determined by sedimentation of nucleoids on sucrose gradients. However, in mitogen-stimulated cells the time taken to repair DNA strand breaks was 6 hours compared with 12 hours in stationary phase lymphocytes after a U.V. dose of 5 J/m/sup 2/. These results suggest that the increased rate of repair of strand breaks is due to the induction of enzymes involved at the post-incision stage of DNA repair. Thus the increased level of repair synthesis observed in earlier work correlates with an increased rate of repair of DNA strand breaks in phytohaemagglutinin-stimulated bovine lymphocytes.

  7. Increased rate of repair of ultraviolet-induced DNA strand breaks in mitogen stimulated lymphocytes

    International Nuclear Information System (INIS)

    Hamlet, S.M.; Lavin, M.F.; Jennings, P.A.; Queensland Univ., St. Lucia; Queensland Univ. St. Lucia

    1982-01-01

    Previous results have shown that phytohaemagglutinin-stimulated bovine lymphocytes exhibit a peak of ultraviolet-induced DNA repair synthesis 3 to 4 days after addition of mitogen. The level of repair synthesis was approximately tenfold higher than that in unstimulated lymphocytes. These studies have been extended to examine the rate of repair of strand breaks in U.V.-irradiated bovine lymphocytes. The extent of breakage of DNA was shown to be the same in mitogen-stimulated and unstimulated lymphocytes from two breeds of cattle, when determined by sedimentation of nucleoids on sucrose gradients. However, in mitogen-stimulated cells the time taken to repair DNA strand breaks was 6 hours compared with 12 hours in stationary phase lymphocytes after a U.V. dose of 5 J/m 2 . These results suggest that the increased rate of repair of strand breaks is due to the induction of enzymes involved at the post-incision stage of DNA repair. Thus the increased level of repair synthesis observed in earlier work correlates with an increased rate of repair of DNA strand breaks in phytohaemagglutinin-stimulated bovine lymphocytes. (author)

  8. Calibration of pulsed field gel electrophoresis for measurement of DNA double-strand breaks

    International Nuclear Information System (INIS)

    Ager, D.D.; Dewey, W.C.

    1990-01-01

    Pulsed field gel electrophoresis (PFGE) assay was calibrated for the measurement of X-ray induced DNA double-strand breaks in Chinese hamster ovary (CHO) cells. Calibration was conducted by incorporating [ 125 I] deoxyuridine into DNA, which induces one double-strand break for every disintegration that occurs in frozen cells. Based on the percentage of DNA migrating into the gel, the number of breaks/dalton/Gy was estimated to be (9.3±1.0) x 10 -12 . This value is close to (10 to 12) x 10 -12 determined by neutral filter elution using similar cell lysis procedures at 24 o C and at pH8.0. The estimate is in good agreement with the value of (11.7±2) x 10 -12 breaks/dalton/Gy as measured in Ehrlich ascites tumour cells using the neutral sucrose gradient method (Bloecher 1988), and (6 to 9) x 10 -12 breaks/dalton/Gy as measured in mouse L and Chinese hamster V79 cells using neutral filter elution (Radford and Hodgson 1985). (author)

  9. DNA N-glycosylases and uv repair

    Energy Technology Data Exchange (ETDEWEB)

    Demple, B; Linn, S

    1980-09-18

    Repair of some DNA photoproducts can be mediated by glycosylic bond hydrolysis. Thus, Escherichia coli endonuclease III releases 5,6-hydrated thymines as free bases, while T4 uv endonuclease releases one of two glycosylic bonds holding pyrimidine dimers in DNA. In contrast, uninfected E. coli apparently does not excise pyrimidine dimers via a DNA glycosylase.

  10. Differences in heavy-ion-induced DNA double-strand breaks in a mouse DNA repair-deficient mutant cell line (SL3-147) before and after chromatin proteolysis

    International Nuclear Information System (INIS)

    Murakami, Masahiro; Eguchi-Kasai, Kiyomi; Sato, Koki; Minohara, Shinichi; Kanai, Tatsuaki; Yatagai, Fumio.

    1995-01-01

    DNA double-strand breaks induced by X- or neon beam-irradiation in a DNA double-strand break-repair-deficient mutant cell line (SL3-147) were examined. The increase in the number of DNA double-strand breaks was dose-depend after irradiation with X-rays and neon beams and was enhanced by chromatin-proteolysis treatment before irradiation. These results suggest that the induction of DNA double-strand breaks by ionizing radiation, including heavy-ions, is influenced by the chromatin structure. (author)

  11. Breaking DNA strands by extreme-ultraviolet laser pulses in vacuum

    Czech Academy of Sciences Publication Activity Database

    Nováková, Eva; Vyšín, Luděk; Burian, Tomáš; Juha, Libor; Davídková, Marie; Múčka, V.; Čuba, V.; Grisham, M. E.; Heinbuch, S.; Rocca, J.J.

    2015-01-01

    Roč. 91, č. 4 (2015), "042718-1"-"042718-8" ISSN 1539-3755 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GA13-28721S Institutional support: RVO:68378271 ; RVO:61389005 Keywords : XUV * DNA damages * single- strand breaks (SSBs) * double- strand breaks (DSBs) Subject RIV: BO - Biophysics Impact factor: 2.288, year: 2014

  12. Detection of parvovirus B19 DNA in blood: Viruses or DNA remnants?

    Science.gov (United States)

    Molenaar-de Backer, M W A; Russcher, A; Kroes, A C M; Koppelman, M H G M; Lanfermeijer, M; Zaaijer, H L

    2016-11-01

    Parvovirus B19 (B19V) DNA can be detected in blood over a long period after acute infection. Several reports associate the presence of B19V DNA with disease, irrespective of timing of the initial B19V infection. This study aims to analyze the properties of B19V DNA in blood, differentiating between bare, non-infectious strands of DNA and B19V DNA in viable virions. Ten blood donors with asymptomatic acute B19V infection were followed and sampled up to 22 months after infection. The samples were treated with and without an endonuclease and tested for B19V DNA, to distinguish between DNA in virions and naked DNA. In the acute phase of infection, high levels of B19V DNA were detected, concurrent with B19V IgM antibodies. B19V DNA apparently was encapsidated, as indicated by resistance to endonuclease degradation. Subsequently, B19V DNA remained detectable for more than one year in all donors at low levels (<10 5 IU/mL). Approximately 150days after infection B19V DNA became degradable by an endonuclease, indicating that this concerned naked DNA. In some donors a second endonuclease-resistant peak occurred. Detection of B19V DNA in blood by PCR does not necessarily imply that B19V replication takes place and that infectious B19V virions are present. We propose that remnant B19V DNA strands can be released from tissues without active replication. This finding urges to reconsider an assumed role of B19V infection mainly based on B19V DNA detection in blood, a much debated subject in clinical syndromes such as myocarditis and arthritis. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Mass generation and chiral symmetry breaking by pseudoparticles

    International Nuclear Information System (INIS)

    Hietarinta, J.; Palmer, W.F.; Pinsky, S.S.

    1978-01-01

    Massless QCD is studied with regard to mass generation and chiral SU(N/sub f/) symmetry breaking from pseudoparticle effects. While mass is generated when there is only one massless quark, and chiral U(1) is always broken, no rigorous indication of the breaking of chiral SU(N/sub f/) and mass generation is seen when there are more than one massless quarks in the original theory

  14. Visualization of DNA double-strand break repair: From molecules to cells

    NARCIS (Netherlands)

    Krawczyk, Przemek M.; Stap, Jan; Aten, Jacob A.

    2008-01-01

    DNA double-strand break (DSB) signaling and repair processes are positioned at the crossroad of nuclear pathways that regulate DNA replication, cell division, senescence and apoptosis. Importantly, errors in DSB repair may lead to lethal or potentially tumorigenic chromosome rearrangements.

  15. Quantitation of the repair of gamma-radiation-induced double-strand DNA breaks in human fibroblasts

    International Nuclear Information System (INIS)

    Woods, W.G.

    1981-01-01

    The quantitation and repair of double-strand DNA breaks in human fibroblasts has been determined using a method involving the nondenaturing elution of DNA from a filter. DNA from cells from two human fibroblast lines exposed to γ-radiation from 0 to 10000 rad showed increasing retention on a filter with decreasing radiation dose, and the data suggest a linear relationship between double-strand breaks induced and radiation dose. The ability of normal human fibroblasts to repair double-strand breaks with various doses of radiation was demonstrated, with a tsub(1/2) of 10 min for repair of 5000 rad exposure and 39 min for repair of 10000 rad damage. The kinetics of the DNA rejoining were not linear and suggest that, as in the repair of single-strand breaks, both an initial fast and a later slow mechanism may be involved. (Auth.)

  16. Induction and repair of strand breaks and 3'-hydroxy terminals in the DNA of mouse brain following gamma irradiation

    International Nuclear Information System (INIS)

    Yoshizawa, K.; Furuno, I.; Yada, T.; Matsudaira, H.

    1978-01-01

    DNA was isolated from mouse brain after in vivo γ-ray irradiation, treated with endonuclease S 1 from Aspergillus oryzae if necessary, and analysed further by alkaline and neutral sucrose gradient centrifugation. In parallel, its template activity was determined by DNA polymerase (EC 2.7.7.7, enzyme A of Klenow from Escherichia coli) assay as described previously. Similar experiments were performed with cultured mouse leukaemia cells (L5178Y) irradiated in vitro at 0 0 C. (Auth.)

  17. A neutral glyoxal gel electrophoresis method for the detection and semi-quantitation of DNA single-strand breaks.

    Science.gov (United States)

    Pachkowski, Brian; Nakamura, Jun

    2013-01-01

    Single-strand breaks are among the most prevalent lesions found in DNA. Traditional electrophoretic methods (e.g., the Comet assay) used for investigating these lesions rely on alkaline conditions to denature DNA prior to electrophoresis. However, the presence of alkali-labile sites in DNA can result in the introduction of additional single-strand breaks upon alkali treatment during DNA sample processing. Herein, we describe a neutral glyoxal gel electrophoresis assay which is based on alkali-free DNA denaturation and is suitable for qualitative and semi-quantitative analyses of single-strand breaks in DNA isolated from different organisms.

  18. A novel human AP endonuclease with conserved zinc-finger-like motifs involved in DNA strand break responses

    OpenAIRE

    Kanno, Shin-ichiro; Kuzuoka, Hiroyuki; Sasao, Shigeru; Hong, Zehui; Lan, Li; Nakajima, Satoshi; Yasui, Akira

    2007-01-01

    DNA damage causes genome instability and cell death, but many of the cellular responses to DNA damage still remain elusive. We here report a human protein, PALF (PNK and APTX-like FHA protein), with an FHA (forkhead-associated) domain and novel zinc-finger-like CYR (cysteine–tyrosine–arginine) motifs that are involved in responses to DNA damage. We found that the CYR motif is widely distributed among DNA repair proteins of higher eukaryotes, and that PALF, as well as a Drosophila protein with...

  19. Chromatin mobility is increased at sites of DNA double-strand breaks

    NARCIS (Netherlands)

    Krawczyk, P. M.; Borovski, T.; Stap, J.; Cijsouw, T.; ten Cate, R.; Medema, J. P.; Kanaar, R.; Franken, N. A. P.; Aten, J. A.

    2012-01-01

    DNA double-strand breaks (DSBs) can efficiently kill cancer cells, but they can also produce unwanted chromosome rearrangements when DNA ends from different DSBs are erroneously joined. Movement of DSB-containing chromatin domains might facilitate these DSB interactions and promote the formation of

  20. Impact of charged particle exposure on homologous DNA double-strand break repair in human blood-derived cells

    Directory of Open Access Journals (Sweden)

    Melanie eRall

    2015-11-01

    Full Text Available Ionizing radiation generates DNA double-strand breaks (DSB which, unless faithfully repaired, can generate chromosomal rearrangements in hematopoietic stem and/or progenitor cells (HSPC, potentially priming the cells towards a leukemic phenotype. Using an enhanced green fluorescent protein (EGFP-based reporter system, we recently identified differences in the removal of enzyme-mediated DSB in human HSPC versus mature peripheral blood lymphocytes (PBL, particularly regarding homologous DSB repair (HR. Assessment of chromosomal breaks via premature chromosome condensation or γH2AX foci indicated similar efficiency and kinetics of radiation-induced DSB formation and rejoining in PBL and HSPC. Prolonged persistence of chromosomal breaks was observed for higher LET charged particles which are known to induce more complex DNA damage compared to X rays. Consistent with HR deficiency in HSPC observed in our previous study, we noticed here pronounced focal accumulation of 53BP1 after X-ray and carbon ion exposure (intermediate LET in HSPC versus PBL. For higher LET, 53BP1 foci kinetics were similarly delayed in PBL and HSPC suggesting similar failure to repair complex DNA damage. Data obtained with plasmid reporter systems revealed a dose- and LET-dependent HR increase after X-ray, carbon ion and higher LET exposure, particularly in HR-proficient immortalized and primary lymphocytes, confirming preferential use of conservative HR in PBL for intermediate LET damage repair. HR measured adjacent to the leukemia-associated MLL breakpoint cluster sequence in reporter lines revealed dose-dependency of potentially leukemogenic rearrangements underscoring the risk of leukemia-induction by radiation treatment.

  1. Creating a monomeric endonuclease TALE-I-SceI with high specificity and low genotoxicity in human cells.

    Science.gov (United States)

    Lin, Jianfei; Chen, He; Luo, Ling; Lai, Yongrong; Xie, Wei; Kee, Kehkooi

    2015-01-01

    To correct a DNA mutation in the human genome for gene therapy, homology-directed repair (HDR) needs to be specific and have the lowest off-target effects to protect the human genome from deleterious mutations. Zinc finger nucleases, transcription activator-like effector nuclease (TALEN) and CRISPR-CAS9 systems have been engineered and used extensively to recognize and modify specific DNA sequences. Although TALEN and CRISPR/CAS9 could induce high levels of HDR in human cells, their genotoxicity was significantly higher. Here, we report the creation of a monomeric endonuclease that can recognize at least 33 bp by fusing the DNA-recognizing domain of TALEN (TALE) to a re-engineered homing endonuclease I-SceI. After sequentially re-engineering I-SceI to recognize 18 bp of the human β-globin sequence, the re-engineered I-SceI induced HDR in human cells. When the re-engineered I-SceI was fused to TALE (TALE-ISVB2), the chimeric endonuclease induced the same HDR rate at the human β-globin gene locus as that induced by TALEN, but significantly reduced genotoxicity. We further demonstrated that TALE-ISVB2 specifically targeted at the β-globin sequence in human hematopoietic stem cells. Therefore, this monomeric endonuclease has the potential to be used in therapeutic gene targeting in human cells. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. DNA single strand break in fibroblast from Down syndrome patients

    International Nuclear Information System (INIS)

    Rozga, B.

    1992-01-01

    The radiosensitivity of tree trisomic (trisomia +21) strains of human fibroblasts to gamma radiation has been investigated in vitro and the causes of induction and repair of single strand DNA breaks in these cells have been estimated. The single strand breaks in DNA of normal and trisomic cells have been found to be ameliorated with an approximately equal efficiency. Repair has been found to be three times slower in trisomic cells compared to their normal relevant, most likely due to their elevated sensitivity to ionizing radiation and the following mortality of trisomic cells, and/or the potential occurrence of a great number of chromosome aberrations in cells irradiated in vitro. (author). 28 refs, 4 figs, 1 tab

  3. Zinc Finger Nuclease induced DNA double stranded breaks and rearrangements in MLL

    International Nuclear Information System (INIS)

    Do, To Uyen; Ho, Bay; Shih, Shyh-Jen; Vaughan, Andrew

    2012-01-01

    Highlights: ► A Zinc Finger Nuclease (ZFN) targeting a leukemogenic hot spot for rearrangement in MLL is created. ► The novel ZFN efficiently cleaves MLL exon 13. ► Despite MLL cleavage and evidence of mis-repair, no leukemogenic translocations were produced. ► MLL cleavage alone is insufficient to generate leukemogenic translocations. - Abstract: Radiation treatment or chemotherapy has been linked with a higher risk of secondary cancers such as therapy related Acute Myeloid Leukemia (tAML). Several of these cancers have been shown to be correlated to the introduction of double stranded breaks (DSB) and rearrangements within the Mixed Lineage Leukemia (MLL) gene. We used Zinc Finger Nucleases (ZFNs) to introduce precise cuts within MLL to examine how a single DNA DSB might lead to chromosomal rearrangements. A ZFN targeting exon 13 within the Breakpoint Cluster Region of MLL was transiently expressed in a human lymphoblast cell line originating from a CML patient. Although FISH analysis showed ZFN DSB at this region increased the rate of MLL fragmentation, we were unable to detect leukemogenic rearrangements or translocations via inverse PCR. Interestingly, gene fragmentation as well as small interstitial deletions, insertions and base substitutions increased with the inhibition of DNA-PK, suggesting repair of this particular DSB is linked to non-homologous end joining (NHEJ). Although mis-repair of DSBs may be necessary for the initiation of leukemogenic translocations, a MLL targeted DNA break alone is insufficient

  4. Zinc Finger Nuclease induced DNA double stranded breaks and rearrangements in MLL

    Energy Technology Data Exchange (ETDEWEB)

    Do, To Uyen [Graduate Group in Immunology, University of California Davis, Davis, CA 95616 (United States); Department of Radiation Oncology, University of California Davis, Sacramento CA 95817 (United States); Ho, Bay; Shih, Shyh-Jen [Department of Radiation Oncology, University of California Davis, Sacramento CA 95817 (United States); Vaughan, Andrew, E-mail: Andrew.vaughan@ucdmc.ucdavis.edu [Graduate Group in Immunology, University of California Davis, Davis, CA 95616 (United States); Department of Radiation Oncology, University of California Davis, Sacramento CA 95817 (United States)

    2012-12-15

    Highlights: ► A Zinc Finger Nuclease (ZFN) targeting a leukemogenic hot spot for rearrangement in MLL is created. ► The novel ZFN efficiently cleaves MLL exon 13. ► Despite MLL cleavage and evidence of mis-repair, no leukemogenic translocations were produced. ► MLL cleavage alone is insufficient to generate leukemogenic translocations. - Abstract: Radiation treatment or chemotherapy has been linked with a higher risk of secondary cancers such as therapy related Acute Myeloid Leukemia (tAML). Several of these cancers have been shown to be correlated to the introduction of double stranded breaks (DSB) and rearrangements within the Mixed Lineage Leukemia (MLL) gene. We used Zinc Finger Nucleases (ZFNs) to introduce precise cuts within MLL to examine how a single DNA DSB might lead to chromosomal rearrangements. A ZFN targeting exon 13 within the Breakpoint Cluster Region of MLL was transiently expressed in a human lymphoblast cell line originating from a CML patient. Although FISH analysis showed ZFN DSB at this region increased the rate of MLL fragmentation, we were unable to detect leukemogenic rearrangements or translocations via inverse PCR. Interestingly, gene fragmentation as well as small interstitial deletions, insertions and base substitutions increased with the inhibition of DNA-PK, suggesting repair of this particular DSB is linked to non-homologous end joining (NHEJ). Although mis-repair of DSBs may be necessary for the initiation of leukemogenic translocations, a MLL targeted DNA break alone is insufficient.

  5. RPA Stabilization of Single-Stranded DNA Is Critical for Break-Induced Replication.

    Science.gov (United States)

    Ruff, Patrick; Donnianni, Roberto A; Glancy, Eleanor; Oh, Julyun; Symington, Lorraine S

    2016-12-20

    DNA double-strand breaks (DSBs) are cytotoxic lesions that must be accurately repaired to maintain genome stability. Replication protein A (RPA) plays an important role in homology-dependent repair of DSBs by protecting the single-stranded DNA (ssDNA) intermediates formed by end resection and by facilitating Rad51 loading. We found that hypomorphic mutants of RFA1 that support intra-chromosomal homologous recombination are profoundly defective for repair processes involving long tracts of DNA synthesis, in particular break-induced replication (BIR). The BIR defects of the rfa1 mutants could be partially suppressed by eliminating the Sgs1-Dna2 resection pathway, suggesting that Dna2 nuclease attacks the ssDNA formed during end resection when not fully protected by RPA. Overexpression of Rad51 was also found to suppress the rfa1 BIR defects. We suggest that Rad51 binding to the ssDNA formed by excessive end resection and during D-loop migration can partially compensate for dysfunctional RPA. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Human circulating ribosomal DNA content significantly increases while circulating satellite III (1q12) content decreases under chronic occupational exposure to low-dose gamma- neutron and tritium beta-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Korzeneva, Inna B., E-mail: inna.korzeneva@molgen.vniief.ru [Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) 607190 Sarov, 37 Mira ave., Nizhniy Novgorod Region (Russian Federation); Kostuyk, Svetlana V. [Research Centre for Medical Genetics, 115478 Moscow, 1 Moskvorechye str. (Russian Federation); Ershova, Elizaveta S. [Research Centre for Medical Genetics, 115478 Moscow, 1 Moskvorechye str. (Russian Federation); V. A. Negovsky Research Institute of General Reanimatology, Moscow, 107031 (Russian Federation); Skorodumova, Elena N.; Zhuravleva, Veronika F.; Pankratova, Galina V.; Volkova, Irina V.; Stepanova, Elena V. [Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) 607190 Sarov, 37 Mira ave., Nizhniy Novgorod Region (Russian Federation); Porokhovnik, Lev N. [Research Centre for Medical Genetics, 115478 Moscow, 1 Moskvorechye str. (Russian Federation); Veiko, Natalia N. [Research Centre for Medical Genetics, 115478 Moscow, 1 Moskvorechye str. (Russian Federation); V. A. Negovsky Research Institute of General Reanimatology, Moscow, 107031 (Russian Federation)

    2016-09-15

    Highlights: • A transcribed region of human ribosomal repeat is resistant to double-strand breaks in the environment of a raised endonuclease activity. • Hybridization-based techniques are preferable for the analysis of damaged and/or oxidized genomic fragments, rather than the qRT-PCR method. • A chronic exposure to the low-dose IR induces an elevation of the rDNA content in the human circulating cfDNA as compared to cellular DNA. • An exposure to IR entails a decrease of the level of the human circulating satellite III (1q12) as compared to cellular DNA (RsatIII index). • The RrDNA/RsatIII ratio is a potential marker of a chronic IR individual exposure. - Abstract: A single exposure to ionizing radiation (IR) results in an elevated cell-free DNA (cfDNA) content in the blood plasma. In this case, the cfDNA concentration can be a marker of the cell death in the organism. However, a chronic exposure to a low-dose IR enhances both the endonuclease activity and titer of antibodies to DNA in blood plasma, resulting in a decrease of the total concentration of circulating cfDNA in exposed people. In this case, the total cfDNA concentration should not be considered as a marker of the cell death in an exposed body. We assumed that a pool of the cfDNA circulating in the exposed people contains DNA fragments, which are resistant to a double-strand break formation in the environment of the elevated plasma endonuclease activity, and can be accumulated in the blood plasma. In order to test this hypothesis, we studied the content of GC-rich sequences (69%GC) of the transcribed region of human ribosomal repeat (rDNA), as well as the content of AT-rich repeat (63%AT) of satellite III (1q12) in the cfDNA samples obtained from 285 individuals. We have found that a chronic exposure to gamma-neutron radiation (N = 88) and tritium β-radiation (N = 88) evokes an increase of the rDNA content (RrDNA index) and a decrease of the satellite III content (RsatIII index) in the

  7. Human circulating ribosomal DNA content significantly increases while circulating satellite III (1q12) content decreases under chronic occupational exposure to low-dose gamma- neutron and tritium beta-radiation

    International Nuclear Information System (INIS)

    Korzeneva, Inna B.; Kostuyk, Svetlana V.; Ershova, Elizaveta S.; Skorodumova, Elena N.; Zhuravleva, Veronika F.; Pankratova, Galina V.; Volkova, Irina V.; Stepanova, Elena V.; Porokhovnik, Lev N.; Veiko, Natalia N.

    2016-01-01

    Highlights: • A transcribed region of human ribosomal repeat is resistant to double-strand breaks in the environment of a raised endonuclease activity. • Hybridization-based techniques are preferable for the analysis of damaged and/or oxidized genomic fragments, rather than the qRT-PCR method. • A chronic exposure to the low-dose IR induces an elevation of the rDNA content in the human circulating cfDNA as compared to cellular DNA. • An exposure to IR entails a decrease of the level of the human circulating satellite III (1q12) as compared to cellular DNA (RsatIII index). • The RrDNA/RsatIII ratio is a potential marker of a chronic IR individual exposure. - Abstract: A single exposure to ionizing radiation (IR) results in an elevated cell-free DNA (cfDNA) content in the blood plasma. In this case, the cfDNA concentration can be a marker of the cell death in the organism. However, a chronic exposure to a low-dose IR enhances both the endonuclease activity and titer of antibodies to DNA in blood plasma, resulting in a decrease of the total concentration of circulating cfDNA in exposed people. In this case, the total cfDNA concentration should not be considered as a marker of the cell death in an exposed body. We assumed that a pool of the cfDNA circulating in the exposed people contains DNA fragments, which are resistant to a double-strand break formation in the environment of the elevated plasma endonuclease activity, and can be accumulated in the blood plasma. In order to test this hypothesis, we studied the content of GC-rich sequences (69%GC) of the transcribed region of human ribosomal repeat (rDNA), as well as the content of AT-rich repeat (63%AT) of satellite III (1q12) in the cfDNA samples obtained from 285 individuals. We have found that a chronic exposure to gamma-neutron radiation (N = 88) and tritium β-radiation (N = 88) evokes an increase of the rDNA content (RrDNA index) and a decrease of the satellite III content (RsatIII index) in the

  8. A model treating the DNA double-strand break repair inhibition by damage clustering

    International Nuclear Information System (INIS)

    Rosemann, M.; Abel, H.; Regel, K.

    1992-01-01

    A microdosimetric model for the interpretation of radiation induced irreparable DNA double-strand breaks was applied to the biological endpoint of chromosomal aberrations. The model explains irreparable DNA double-strand breaks in terms of break clustering in DNA subunits. The model predicts quite good chromosomal aberrations in gamma- and X-ray irradiated V79 cells and human lymphocytes. In the case of α-particle irradiation the presumption had to be made, that only the cells with indirect events in the nucleus (due to delta-electrons) reach the metaphase and are analysed. With the help of this model we are able to explain the peculiar effectiveness of ultrasoft C-X-rays in human lymphocytes. In addition, an interpretation of experiments with accelerated and spatially correlated particles is given. (author)

  9. Double strand breaks in DNA in vivo and in vitro after 60Co-γ-irradiation

    International Nuclear Information System (INIS)

    Huelsewede, J.W.

    1985-01-01

    The questions of what the correlation is between double strand breaks in DNA in the cell and lethal radiation damage and by means of which possible mechanisms DNA double strand breaks could occur were studied. E. coli served as test system. In addition to this the molecular weight of the DNA from irradiated E. coli as a function of the radiation dose under various conditions was measured. This data was compared on the one hand to the survival of the cell and on the other hand to the formation of DNA double strand breaks in an aqueous buffer system, which in its ionic characteristics was similar to cell fluids. (orig./MG) [de

  10. DNA polymerase I-mediated repair of 365 nm-induced single-strand breaks in the DNA of Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Ley, R D; Sedita, B A; Boye, E [Argonne National Lab., Ill. (USA)

    1978-03-01

    Irradiation of closed circular phage lambda DNA in vivo at 365 nm results in the induction of single-strand breaks and alkali-labile lesions at rates of 1.1 x 10/sup -14/ and 0.2 x 10/sup -14//dalton/J/m/sup 2/, respectively. The sum of the induction rates is similar to the rate of induction of single-strand breaks plus alkali-labile lesions (1 x 10/sup -14//dalton/J/m/sup 2/) observed in the E. coli genome. Postirradiation incubation of wild-type cells in buffer results in rapid repair of the breaks (up to 80% repaired in 10 min). No repair was observed in a DNA polymerase I-deficient mutant of E.coli.

  11. Radiobiological study on DNA strand breaks and repair using single cell gel electrophoresis

    International Nuclear Information System (INIS)

    Ikushima, Takaji

    1994-01-01

    Single cell gel electrophoresis (SCGE) provides a novel method to measure DNA damage in individual cells and more importantly, to assess heterogeneity in response within a mixed population of cells. Cells embedded in agarose are lysed, subjected to electrophoresis, stained with a fluorescent DNA-specific dye, and viewed under a fluorescence microscope. Damaged cells display 'comets', broken DNA migrating farther to the anode in the electric field. We have previously used this technique to quantify DNA damage induced by moderate doses of low and high LET radiations in cultured Chinese hamster cells. The assay has been optimized in terms of lysing and electrophoresis conditions, and applied to analyse the DNA strand breaks, their repair kinetics and heterogeneity in response in individual Chinese hamster cells exposed to gamma-rays, and to KUR thermal neutrons with and without 10 B or to KEK PF monochromatic soft X-rays as well as to a radio-mimetic agent, neocarzinostatin. The DNA double-strand breaks induced by boron-neutron captured reactions were repaired at a slower rate, but a heterogeneity in response might not contribute to the difference. The neocarzinostatin-induced DNA damage were efficiently repaired in a dose-dependent fashion. The initial amount of gamma-ray induced DNA double-strand breaks was not significantly altered in cells pre-exposed to very low adapting dose. (author)

  12. Protection against {sup 131}I-induced Double Strand DNA Breaks in Thyroid Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hershman, J.M.; Okunyan, A.; Cannon, S.; Hogen, V. [Endocrinology, UCLA-VA, Los Angeles (United States); Rivina, Y. [Radiation Biology, UCLA, Los Angeles (United States)

    2012-07-01

    Radioiodine-131 (I{sup 131}) released from nuclear reactor accidents has dramatically increased the incidence of papillary thyroid cancer in exposed individuals, especially young children. The accepted measure for prevention of radiation-induced thyroid cancer is potassium iodide tablets that contain 100 mg iodide taken daily to block thyroid uptake of I{sup 131}. The deposition of ionizing radiation in cells results in double-strand DNA breaks (DSB) at fragile sites, and this early event can generate oncogenic rearrangements that eventually cause the cancer. We have developed a thyroid cell model to quantify the mitogenic effect of I{sup 131}. I{sup 131} causes double strand DNA breaks in FRTL-5 cells detected by 53BP1 or gamma H2AX and had no effect on cells that do not transport iodide. Perchlorate, iodide, and thiocyanate protect against DSB induced by I{sup 131}. Preincubation with the anion or radioprotective compounds prevents DSB; delayed addition of the anion is much less effective. These data provide a basis for studies of radioprotection against DSB induced by I{sup 131} in animals in order to refine the prevention of thyroid cancer resulting from nuclear fallout

  13. DNA repair in mutagen-injured higher plants

    International Nuclear Information System (INIS)

    Veleminsky, J.; Gichner, T.

    1978-01-01

    Data are summarized proving the occurrence of photoreactivation of UV-induced pyrimidine dimers in cells of Nicotiana tabucum, Gingko and carrot, the excision of dimers in cells of Nicotiana tabacum, Gingko and carrot, the excision of dimers in protoplasts of carrot and in embryos of Lathyrus sativus, and the repair of DNA single-strand breaks induced in carrot protoplasts and barley embryonic cells by ionizing radiation. In irradiated barley embryos the unscheduled DNA synthesis and higher accessibility of induced primers to DNA polymerase I of E. coli were observed preferentially in G 1 cells with diffused chromatin. These reactions were inhibited by caffeine and EDTA. Unscheduled DNA synthesis was also observed in synchronized irradiated root cuttings of Vicia faba and in barley embryos treated with 4-nitroquinoline oxide, the latter being inhibited by caffeine and hydroxyurea. Repair synthesis was also established in barley embryos treated with mutagenic N-methyl-N-nitrosourea under conditions that postponed the onset of germination after the treatment. The same conditions enhanced the repair of DNA single-strand breaks induced by this mutagen and several other monofunctional alkylating compounds. From tissues of barley and of Phaseolus multiflorus, endonucleases for apurinic sites were isolated and characterized. Some of them are located in chromatin, others in chloroplasts. The relation between DNA repair and genetic effects of mutagens in higher plants is also discussed. (Auth.)

  14. Variation in normal and tumor tissue sensitivity of mice to ionizing radiation-induced DNA strand breaks in vivo

    International Nuclear Information System (INIS)

    Meyn, R.E.; Jenkins, W.T.

    1983-01-01

    The efficiency of DNA strand break formation in normal and tumor tissues of mice was measured using the technique of alkaline elution coupled with a microfluorometric determination of DNA. This methodology allowed measurement of the DNA strand breaks produced in tissues irradiated in vivo with doses of radiation comparable to those used in radiotherapy (i.e., 1.0 gray) without the necessity for the cells to be dividing and incorporating radioactive precursors to label the DNA. The results showed that substantial differences existed among various tissues in terms of the amount of DNA strand break damage produced for a given dose of radiation. Of the normal tissues, the most breaks were produced in bone marrow and the least were produced in gut. Furthermore, strand break production was relatively inefficient in the tumor compared to the normal tissues. The efficiency of DNA strand break formation measured in the cells from the tissues irradiated in vitro was much more uniform and considerably greater than that measured in vivo, suggesting that the normal tissues in the animal may be radiobiologically hypoxic

  15. p53 regulates the repair of DNA double-strand breaks by both homologous and non-homologous recombination

    International Nuclear Information System (INIS)

    Willers, H.; Powell, S.N.; Dahm-Daphi, J.

    2003-01-01

    Full text: p53 is known to suppress spontaneous homologous recombination (HR), while its role in non-homologous recombination (NHR) remains to be clarified. Here, we sought to determine the influence of p53 on the repair of chromosomal double-strand breaks (DSBs) by HR or NHR using specially designed recombination substrates that integrate into the genome. Isogenic mouse fibroblast pairs with or without expression of exogenous p53 protein were utilized. A reporter plasmid carrying a mutated XGPRT gene was chromosomally integrated and DSBs were generated within the plasmid by the I-SceI endonuclease. Subsequent homology-mediated repair from an episomal donor resulted in XGPRT reconstitution and cellular resistance to a selection antibiotic. Analogously, the repair of chromosomal I-SceI breaks by NHR using another novel reporter plasmid restored XGPRT translation. For p53-null cells, the mean frequency of I-SceI break repair via HR was 5.5 x 10 -4 . The p53-Val135 mutant, which previously has been shown to suppress spontaneous HR by 14-fold employing the same cell system and reporter gene, only caused a 2- to 3-fold suppression of break-induced HR. In contrast, a dramatic effect of p53 on repair via NHR was found. Preliminary sequence analysis indicated that there was at least a 1000-fold reduction of illegitimate repair events resulting in loss of sequence at the break sites. The observed effects were mediated by p53 mutants defective in regulation of the cell-cycle and apoptosis. The main findings were: (1) p53 virtually blocked illegitimate rejoining of chromosomal ends. (2) The suppression of homologous DSB repair was less pronounced than the inhibition of spontaneous HR. We hypothesize that p53 allows to a certain extent error-free homology-dependent repair to proceed, while blocking error-prone NHR. The data support and extent a previous model, in which p53 maintains genomic stability by regulating recombination independently of its transactivation function

  16. Polymerase-endonuclease amplification reaction (PEAR for large-scale enzymatic production of antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Xiaolong Wang

    Full Text Available Antisense oligonucleotides targeting microRNAs or their mRNA targets prove to be powerful tools for molecular biology research and may eventually emerge as new therapeutic agents. Synthetic oligonucleotides are often contaminated with highly homologous failure sequences. Synthesis of a certain oligonucleotide is difficult to scale up because it requires expensive equipment, hazardous chemicals and a tedious purification process. Here we report a novel thermocyclic reaction, polymerase-endonuclease amplification reaction (PEAR, for the amplification of oligonucleotides. A target oligonucleotide and a tandem repeated antisense probe are subjected to repeated cycles of denaturing, annealing, elongation and cleaving, in which thermostable DNA polymerase elongation and strand slipping generate duplex tandem repeats, and thermostable endonuclease (PspGI cleavage releases monomeric duplex oligonucleotides. Each round of PEAR achieves over 100-fold amplification. The product can be used in one more round of PEAR directly, and the process can be further repeated. In addition to avoiding dangerous materials and improved product purity, this reaction is easy to scale up and amenable to full automation. PEAR has the potential to be a useful tool for large-scale production of antisense oligonucleotide drugs.

  17. DNA strand breaks, repair, and survival in x-irradiated mammalian cells

    International Nuclear Information System (INIS)

    Dugle, D.L.; Gillespie, C.J.; Chapman, J.D.

    1976-01-01

    The yields of unrepairable single- and double-strand breaks in the DNA of x-irradiated Chinese hamster cells were measured by low-speed neutral and alkaline sucrose density gradient sedimentation in order to investigate the relation between these lesions and reproductive death. After maximal single-strand rejoining, at all doses, the number of residual single-strand breaks was twice the number of residual double-strand breaks. Both double-strand and unrepairable single-strand breaks were proportional to the square of absorbed dose, in the range 10-50 krad. No rejoining of double-strand breaks was observed. These observations suggest that, in mammalian cells, most double-strand breaks are not repairable, while all single-strand breaks are repaired except those that are sufficiently close on complementary strands to constitute double-strand breaks. Comparison with cell survival measurements at much lower doses suggests that loss of reproductive capacity corresponds to induction of approximately one double-strand break

  18. Suberoylanilide Hydroxyamic Acid Modification of Chromatin Architecture Affects DNA Break Formation and Repair

    International Nuclear Information System (INIS)

    Singh, Sheetal; Le Hongan; Shih, S.-J.; Ho, Bay; Vaughan, Andrew T.

    2010-01-01

    Purpose: Chromatin-modifying compounds that inhibit the activity of histone deacetylases have shown potency as radiosensitizers, but the action of these drugs at a molecular level is not clear. Here we investigated the effect of suberoylanilide hydroxyamic acid (SAHA) on DNA breaks and their repair and induction of rearrangements. Methods and Materials: The effect of SAHA on both clonogenic survival and repair was assessed using cell lines SCC-25, MCF7, and TK6. In order to study unique DNA double-strand breaks, anti-CD95 antibody was employed to introduce a DNA double-strand break at a known location within the 11q23 region. The effects of SAHA on DNA cleavage and rearrangements were analyzed by ligation-mediated PCR and inverse PCR, respectively. Results: SAHA acts as radiosensitizer at 1 μM, with dose enhancement factors (DEFs) at 10% survival of: SCC-25 - 1.24 ± 0.05; MCF7 - 1.16 ± 0.09 and TK6 - 1.17 ± 0.05, and it reduced the capacity of SCC-25 cells to repair radiation induced lesions. Additionally, SAHA treatment diffused site-specific fragmentation over at least 1 kbp in TK6 cells. Chromosomal rearrangements produced in TK6 cells exposed to SAHA showed a reduction in microhomology at the breakpoint between 11q23 and partner chromosomes. Conclusions: SAHA shows efficacy as a radiosensitizer at clinically obtainable levels. In its presence, targeted DNA strand breaks occur over an expanded region, indicating increased chromatin access. The rejoining of such breaks is degraded by SAHA when measured as rearrangements at the molecular level and rejoining that contributes to cell survival.

  19. Compound Poisson Processes and Clustered Damage of Radiation Induced DNA Double Strand Breaks

    International Nuclear Information System (INIS)

    Gudowska-Nowak, E.; Ritter, S.; Taucher-Scholz, G.; Kraft, G.

    2000-01-01

    Recent experimental data have demonstrated that DNA damage induced by densely ionizing radiation in mammalian cells is distributed along the DNA molecule in the form of clusters. The principal constituent of DNA damage are double-strand breaks (DSB) which are formed when the breaks occur in both DNA strands and are directly opposite or separated by only a few base pairs. DSBs are believed to be most important lesions produced in chromosomes by radiation; interaction between DSBs can lead to cell killing, mutation or carcinogenesis. The paper discusses a model of clustered DSB formation viewed in terms of compound Poisson process along with the predictive essay of the formalism in application to experimental data. (author)

  20. Molecular mechanism for generation of antibody memory.

    Science.gov (United States)

    Shivarov, Velizar; Shinkura, Reiko; Doi, Tomomitsu; Begum, Nasim A; Nagaoka, Hitoshi; Okazaki, Il-Mi; Ito, Satomi; Nonaka, Taichiro; Kinoshita, Kazuo; Honjo, Tasuku

    2009-03-12

    Activation-induced cytidine deaminase (AID) is the essential enzyme inducing the DNA cleavage required for both somatic hypermutation and class switch recombination (CSR) of the immunoglobulin gene. We originally proposed the RNA-editing model for the mechanism of DNA cleavage by AID. We obtained evidence that fulfils three requirements for CSR by this model, namely (i) AID shuttling between nucleus and cytoplasm, (ii) de novo protein synthesis for CSR, and (iii) AID-RNA complex formation. The alternative hypothesis, designated as the DNA-deamination model, assumes that the in vitro DNA deamination activity of AID is representative of its physiological function in vivo. Furthermore, the resulting dU was removed by uracil DNA glycosylase (UNG) to generate a basic site, followed by phosphodiester bond cleavage by AP endonuclease. We critically examined each of these provisional steps. We identified a cluster of mutants (H48A, L49A, R50A and N51A) that had particularly higher CSR activities than expected from their DNA deamination activities. The most striking was the N51A mutant that had no ability to deaminate DNA in vitro but retained approximately 50 per cent of the wild-type level of CSR activity. We also provide further evidence that UNG plays a non-canonical role in CSR, namely in the repair step of the DNA breaks. Taking these results together, we favour the RNA-editing model for the function of AID in CSR.

  1. An AP endonuclease 1-DNA polymerase beta complex: theoretical prediction of interacting surfaces.

    Directory of Open Access Journals (Sweden)

    Alexej Abyzov

    2008-04-01

    Full Text Available Abasic (AP sites in DNA arise through both endogenous and exogenous mechanisms. Since AP sites can prevent replication and transcription, the cell contains systems for their identification and repair. AP endonuclease (APEX1 cleaves the phosphodiester backbone 5' to the AP site. The cleavage, a key step in the base excision repair pathway, is followed by nucleotide insertion and removal of the downstream deoxyribose moiety, performed most often by DNA polymerase beta (pol-beta. While yeast two-hybrid studies and electrophoretic mobility shift assays provide evidence for interaction of APEX1 and pol-beta, the specifics remain obscure. We describe a theoretical study designed to predict detailed interacting surfaces between APEX1 and pol-beta based on published co-crystal structures of each enzyme bound to DNA. Several potentially interacting complexes were identified by sliding the protein molecules along DNA: two with pol-beta located downstream of APEX1 (3' to the damaged site and three with pol-beta located upstream of APEX1 (5' to the damaged site. Molecular dynamics (MD simulations, ensuring geometrical complementarity of interfaces, enabled us to predict interacting residues and calculate binding energies, which in two cases were sufficient (approximately -10.0 kcal/mol to form a stable complex and in one case a weakly interacting complex. Analysis of interface behavior during MD simulation and visual inspection of interfaces allowed us to conclude that complexes with pol-beta at the 3'-side of APEX1 are those most likely to occur in vivo. Additional multiple sequence analyses of APEX1 and pol-beta in related organisms identified a set of correlated mutations of specific residues at the predicted interfaces. Based on these results, we propose that pol-beta in the open or closed conformation interacts and makes a stable interface with APEX1 bound to a cleaved abasic site on the 3' side. The method described here can be used for analysis in

  2. Strand breaks and alkali-labile bonds induced by ultraviolet light in DNA with 5-bromouracil in vivo.

    Science.gov (United States)

    Krasin, F; Hutchinson, F

    1978-01-01

    Supercircular gamma phage DNA with 10 bromouracils/100 thymine bases, irradiated with 313 nm light in Tris buffer and sedimented on alkaline and neutral gradients, showed 4.6 alkali-labile bonds per true single-strand break, in agreement with Hewitt and Marburger (1975 Photochem. Photobiol. 21:413). The same DNA irradiated in Escherichia coli host cells showed about the same number of breaks in alkaline gradients for equal fluence, but only 0.5 alkali-labile bond per true break. Similarly, E. coli DNA with bromouracil irradiated in the cells showed only 10--20% more breaks when denatured with 0.1 M NaOH than under neutral conditions with 9 M sodium perchlorate at 50 degrees C. These results show that true single-strand breaks occur more frequently than alkali-labile bonds after ultraviolet irradiation of DNA containing bromouracil in cells. PMID:367462

  3. Method for detecting DNA strand breaks in mammalian cells using the Deinococcus radiodurans PprA protein

    International Nuclear Information System (INIS)

    Satoh, Katsuya; Wada, Seiichi; Kikuchi, Masahiro; Funayama, Tomoo; Narumi, Issay; Kobayashi, Yasuhiko

    2006-01-01

    In a previous study, we identified the novel protein PprA that plays a critical role in the radiation resistance of Deinococcus radiodurans. In this study, we focussed on the ability of PprA protein to recognize and bind to double-stranded DNA carrying strand breaks, and attempted to visualize radiation-induced DNA strand breaks in mammalian cultured cells by employing PprA protein using an immunofluorescence technique. Increased PprA protein binding to CHO-K1 nuclei immediately following irradiation suggests the protein is binding to DNA strand breaks. By altering the cell permeabilization conditions, PprA protein binding to CHO-K1 mitochondria, which is probably resulted from DNA strand break immediately following irradiation, was also detected. The method developed and detailed in this study will be useful in evaluating DNA damage responses in cultured cells, and could also be applicable to genotoxic tests in the environmental and pharmaceutical fields

  4. Type III restriction endonucleases are heterotrimeric: comprising one helicase–nuclease subunit and a dimeric methyltransferase that binds only one specific DNA

    Science.gov (United States)

    Butterer, Annika; Pernstich, Christian; Smith, Rachel M.; Sobott, Frank; Szczelkun, Mark D.; Tóth, Júlia

    2014-01-01

    Fundamental aspects of the biochemistry of Type III restriction endonucleases remain unresolved despite being characterized by numerous research groups in the past decades. One such feature is the subunit stoichiometry of these hetero-oligomeric enzyme complexes, which has important implications for the reaction mechanism. In this study, we present a series of results obtained by native mass spectrometry and size exclusion chromatography with multi-angle light scattering consistent with a 1:2 ratio of Res to Mod subunits in the EcoP15I, EcoPI and PstII complexes as the main holoenzyme species and a 1:1 stoichiometry of specific DNA (sDNA) binding by EcoP15I and EcoPI. Our data are also consistent with a model where ATP hydrolysis activated by recognition site binding leads to release of the enzyme from the site, dissociation from the substrate via a free DNA end and cleavage of the DNA. These results are discussed critically in the light of the published literature, aiming to resolve controversies and discuss consequences in terms of the reaction mechanism. PMID:24510100

  5. DNA and Protein Requirements for Substrate Conformational Changes Necessary for Human Flap Endonuclease-1-catalyzed Reaction*

    Science.gov (United States)

    Algasaier, Sana I.; Exell, Jack C.; Bennet, Ian A.; Thompson, Mark J.; Gotham, Victoria J. B.; Shaw, Steven J.; Craggs, Timothy D.; Finger, L. David; Grasby, Jane A.

    2016-01-01

    Human flap endonuclease-1 (hFEN1) catalyzes the essential removal of single-stranded flaps arising at DNA junctions during replication and repair processes. hFEN1 biological function must be precisely controlled, and consequently, the protein relies on a combination of protein and substrate conformational changes as a prerequisite for reaction. These include substrate bending at the duplex-duplex junction and transfer of unpaired reacting duplex end into the active site. When present, 5′-flaps are thought to thread under the helical cap, limiting reaction to flaps with free 5′-termini in vivo. Here we monitored DNA bending by FRET and DNA unpairing using 2-aminopurine exciton pair CD to determine the DNA and protein requirements for these substrate conformational changes. Binding of DNA to hFEN1 in a bent conformation occurred independently of 5′-flap accommodation and did not require active site metal ions or the presence of conserved active site residues. More stringent requirements exist for transfer of the substrate to the active site. Placement of the scissile phosphate diester in the active site required the presence of divalent metal ions, a free 5′-flap (if present), a Watson-Crick base pair at the terminus of the reacting duplex, and the intact secondary structure of the enzyme helical cap. Optimal positioning of the scissile phosphate additionally required active site conserved residues Tyr40, Asp181, and Arg100 and a reacting duplex 5′-phosphate. These studies suggest a FEN1 reaction mechanism where junctions are bound and 5′-flaps are threaded (when present), and finally the substrate is transferred onto active site metals initiating cleavage. PMID:26884332

  6. Normal formation and repair of γ-radiation-induced single and double strand DNA breaks in Down syndrome fibroblasts

    International Nuclear Information System (INIS)

    Steiner, M.E.; Woods, W.G.

    1982-01-01

    Fibroblasts from patients with Down syndrome (Trisomy 21) were examined for repair capability of γ-radiation-induced single strand and double strand DNA breaks. Formation and repair of DNA breaks were determined by DNA alkaline and non-denaturing elution techniques. Down syndrome fibroblasts were found to repair single strand and double strand breaks as well as fibroblasts from normal controls. (orig.)

  7. Yield of radiation-induced DNA single-strand breaks in Escherichia coli and superinfecting phage lambda at different dose rates. Repair of strand breaks in different buffers

    International Nuclear Information System (INIS)

    Boye, E.; Johansen, I.; Brustad, T.

    1976-01-01

    Cells of E. coli K-12 strain AB 1886 were irradiated in oxygenated phosphate buffered saline at 2 0 C with electrons from a 4-MeV linear accelerator. The yield of DNA single-strand breaks was determined as a function of the dose rate between 2.5 and 21,000 krad/min. For dose rates over 100 krad/min the yield was found to be constant. Below 10 krad/min the yield of breaks decreases drastically. This is explained by rejoining of breaks during irradiation. Twenty percent of the breaks induced by acute exposure are repaired within 3 min at 2 0 C. Superinfecting phage lambda DNA is repaired at the same rate as chromosomal DNA. In contrast to the results obtained with phosphate-buffered saline, an increase in the number of breaks after irradiation is observed when the bacteria are suspended in tris buffer. It is suggested that buffers of low ionic strength facilitate the leakage through the membrane of a small-molecular-weight component(s) necessary for DNA strand rejoining

  8. Delayed repair of DNA single-strand breaks does not increase cytogenetic damage

    International Nuclear Information System (INIS)

    Morgan, W.F.; Djordjevic, M.C.; Jostes, R.F.; Pantelias, G.E.

    1985-01-01

    DNA damage and cytogenetic effects of ionizing radiation were investigated in Chinese hamster ovary (CHO) cells and unstimulated human peripheral blood lymphocytes. DNA damage and repair were analysed by alkaline elution under conditions that predominantly measured DNA single-strand breaks (ssb). X-radiation (2.5 Gy) induced ssb in both CHO cells and unstimulated lymphocytes, and the breaks were repaired within 30 and 90 min, respectively. This rapid repair was delayed by the poly(ADP-ribose) polymerase inhibitor, 3-aminobenzamide (3AB). The cytogenetic effects of the 3AB-induced delay in DNA repair were examined by analysing sister chromatid exchange (SCE) frequency in CHO cells and fragmentation of prematurely condensed chromosomes (PCC) in unstimulated human lymphocytes after 2.5 Gy of X-rays. Although 3AB delayed the rejoining of DNA ssb, this delay did not result in increased cytogenetic damage manifested as either SCE or fragmentation of PCC. These results indicate that the rapidly rejoining DNA ssb are not important in the production of chromosome damage. (author)

  9. Meta-analysis of DNA double-strand break response kinetics

    NARCIS (Netherlands)

    Kochan, Jakub A.; Desclos, Emilie C. B.; Bosch, Ruben; Meister, Luna; Vriend, Lianne E. M.; Attikum, Haico V.; Krawczyk, Przemek M.

    2017-01-01

    Most proteins involved in the DNA double-strand break response (DSBR) accumulate at the damage sites, where they perform functions related to damage signaling, chromatin remodeling and repair. Over the last two decades, studying the accumulation of many DSBR proteins provided information about their

  10. Double strand DNA breaks response in Huntington´s disease

    Czech Academy of Sciences Publication Activity Database

    Šolc, Petr; Valášek, Jan; Rausová, Petra; Juhásová, Jana; Juhás, Štefan; Motlík, Jan

    2015-01-01

    Roč. 78, Suppl 2 (2015), s. 15-15 ISSN 1210-7859. [Conference on Animal Models for neurodegenerative Diseases /3./. 08.11.2015-10.11.2015, Liblice] R&D Projects: GA MŠk ED2.1.00/03.0124; GA MŠk(CZ) 7F14308 Institutional support: RVO:67985904 Keywords : Huntington ´s disease * DNA damage * double strand DNA breaks Subject RIV: FH - Neurology

  11. Formation of plasmid DNA strand breaks induced by low-energy ion beam: indication of nuclear stopping effects

    International Nuclear Information System (INIS)

    Chen Yu; Jiang Bingyao; Chen Youshan; Ding Xingzhao; Liu Xianghuai; Chen Ceshi; Guo Xinyou; Yin Guanglin

    1998-01-01

    Plasmid pGEM 3zf(+) was irradiated by nitrogen ion beam with energies between 20 and 100 keV and the fluence kept as 1 x 10 12 ions/cm 2 . The irradiated plasmid was assayed by neutral electrophoresis and quantified by densitometry. The yields of DNA with single-strand and double-strand breaks first increased then decreased with increasing ion energy. There was a maximal yield value in the range of 20-100 keV. The relationship between DNA double-strand breaks (DSB) cross-section and linear energy transfer (LET) also showed a peak-shaped distribution. To understand the physical process during DNA strand breaks, a Monte Carlo calculation code known as TRIM (Transport of Ions in Matter) was used to simulate energy losses due to nuclear stopping and to electronic stopping. It can be assumed that nuclear stopping plays a more important role in DNA strand breaks than electronic stopping in this energy range. The physical mechanisms of DNA strand breaks induced by a low-energy ion beam are also discussed. (orig.)

  12. SAMHD1 Sheds Moonlight on DNA Double-Strand Break Repair.

    Science.gov (United States)

    Cabello-Lobato, Maria Jose; Wang, Siyue; Schmidt, Christine Katrin

    2017-12-01

    SAMHD1 (sterile α motif and histidine (H) aspartate (D) domain-containing protein 1) is known for its antiviral activity of hydrolysing deoxynucleotides required for virus replication. Daddacha et al. identify a hydrolase-independent, moonlighting function of SAMHD1 that facilitates homologous recombination of DNA double-strand breaks (DSBs) by promoting recruitment of C-terminal binding protein interacting protein (CTIP), a DNA-end resection factor, to damaged DNA. These findings could benefit anticancer treatment. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Repair of single-strand breaks induced in the DNA of Proteus mirabilis by excision repair after UV-irradiation

    International Nuclear Information System (INIS)

    Stoerl, K.; Mund, C.

    1977-01-01

    Single-strand breaks have been produced in the DNA of P. mirabilis after UV-irradiation in dependence on the incident UV-doses. It has been found that there exists a discrepancy between the single-strand breaks estimated from sedimentation in alkaline sucrose gradients and the expected single-strand breaks approximated from measurements of dimer excision. The low number in incision breaks observed by sedimentation experiments is an indication that the cells are able to repair the excision-induced breaks as fast as they are formed. Toluenized cells have been used for investigation of the incision step independently of subsequent repair processes. In presence of NMN the appearance of more single-strand breaks in the DNA has been observed. Furthermore, the number of incision breaks in toluenized cells increased in presence of exogenous ATP. The completion of the excision repair process has been investigated by observing the rejoining of incision breaks. After irradiation with UV-doses higher than approximately 240 erg/mm 2 the number of single-strand breaks remaining unrepaired in the DNA increased. Studies of the influence of nutrition conditions on the repair process have shown approximately the same capacity for repair of single-strand breaks in growth medium as well as in buffer. Progress in the excision repair was also followed by investigation of the DNA synthesized at the template-DNA containing the pyrimidine dimers. In comparison with E. coli, P. mirabilis showed a somewhat lower efficiency for the repair of single-strand breaks during the excision repair. (author)

  14. Poly(ADP-ribose polymerase (PARP-1 is not involved in DNA double-strand break recovery

    Directory of Open Access Journals (Sweden)

    Fernet Marie

    2003-07-01

    Full Text Available Abstract Background The cytotoxicity and the rejoining of DNA double-strand breaks induced by γ-rays, H2O2 and neocarzinostatin, were investigated in normal and PARP-1 knockout mouse 3T3 fibroblasts to determine the role of poly(ADP-ribose polymerase (PARP-1 in DNA double-strand break repair. Results PARP-1-/- were considerably more sensitive than PARP-1+/+ 3T3s to induced cell kill by γ-rays and H2O2. However, the two cell lines did not show any significant difference in the susceptibility to neocarzinostatin below 1.5 nM drug. Restoration of PARP-1 expression in PARP-1-/- 3T3s by retroviral transfection of the full PARP-1 cDNA did not induce any change in neocarzinostatin response. Moreover the incidence and the rejoining kinetics of neocarzinostatin-induced DNA double-strand breaks were identical in PARP-1+/+ and PARP-1-/- 3T3s. Poly(ADP-ribose synthesis following γ-rays and H2O2 was observed in PARP-1-proficient cells only. In contrast neocarzinostatin, even at supra-lethal concentration, was unable to initiate PARP-1 activation yet it induced H2AX histone phosphorylation in both PARP1+/+ and PARP-1-/- 3T3s as efficiently as γ-rays and H2O2. Conclusions The results show that PARP-1 is not a major determinant of DNA double-strand break recovery with either strand break rejoining or cell survival as an endpoint. Even though both PARP-1 and ATM activation are major determinants of the cell response to γ-rays and H2O2, data suggest that PARP-1-dependent poly(ADP-ribose synthesis and ATM-dependent H2AX phosphorylation, are not inter-related in the repair pathway of neocarzinostatin-induced DNA double-strand breaks.

  15. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair

    DEFF Research Database (Denmark)

    McCord, Ronald A; Michishita, Eriko; Hong, Tao

    2009-01-01

    -PKcs) to chromatin in response to DNA damage and stabilizes DNA-PKcs at chromatin adjacent to an induced site-specific DSB. Abrogation of these SIRT6 activities leads to impaired resolution of DSBs. Together, these findings elucidate a mechanism whereby regulation of dynamic interaction of a DNA repair factor......-dependent protein kinase) and promotes DNA DSB repair. In response to DSBs, SIRT6 associates dynamically with chromatin and is necessary for an acute decrease in global cellular acetylation levels on histone H3 Lysine 9. Moreover, SIRT6 is required for mobilization of the DNA-PK catalytic subunit (DNA......, and SIRT6 knockout cells exhibit genomic instability and DNA damage hypersensitivity. However, the molecular mechanisms underlying these defects are not fully understood. Here, we show that SIRT6 forms a macromolecular complex with the DNA double-strand break (DSB) repair factor DNA-PK (DNA...

  16. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks

    KAUST Repository

    Mahfouz, Magdy M.

    2011-01-24

    Site-specific and rare cutting nucleases are valuable tools for genome engineering. The generation of double-strand DNA breaks (DSBs) promotes homologous recombination in eukaryotes and can facilitate gene targeting, additions, deletions, and inactivation. Zinc finger nucleases have been used to generate DSBs and subsequently, for genome editing but with low efficiency and reproducibility. The transcription activator-like family of type III effectors (TALEs) contains a central domain of tandem repeats that could be engineered to bind specific DNA targets. Here, we report the generation of a Hax3-based hybrid TALE nuclease with a user-selected DNA binding specificity. We show that the engineered TALE nuclease can bind to its target sequence in vitro and that the homodimeric TALE nuclease can cleave double-stranded DNA in vitro if the DNA binding sites have the proper spacing and orientation. Transient expression assays in tobacco leaves suggest that the hybrid nuclease creates DSB in its target sequence, which is subsequently repaired by nonhomologous end-joining repair. Taken together, our data show the feasibility of engineering TALE-based hybrid nucleases capable of generating site-specific DSBs and the great potential for site-specific genome modification in plants and eukaryotes in general.

  17. The Roles of Family B and D DNA Polymerases in Thermococcus Species 9°N Okazaki Fragment Maturation*

    Science.gov (United States)

    Greenough, Lucia; Kelman, Zvi; Gardner, Andrew F.

    2015-01-01

    During replication, Okazaki fragment maturation is a fundamental process that joins discontinuously synthesized DNA fragments into a contiguous lagging strand. Efficient maturation prevents repeat sequence expansions, small duplications, and generation of double-stranded DNA breaks. To address the components required for the process in Thermococcus, Okazaki fragment maturation was reconstituted in vitro using purified proteins from Thermococcus species 9°N or cell extracts. A dual color fluorescence assay was developed to monitor reaction substrates, intermediates, and products. DNA polymerase D (polD) was proposed to function as the replicative polymerase in Thermococcus replicating both the leading and the lagging strands. It is shown here, however, that it stops before the previous Okazaki fragments, failing to rapidly process them. Instead, Family B DNA polymerase (polB) was observed to rapidly fill the gaps left by polD and displaces the downstream Okazaki fragment to create a flap structure. This flap structure was cleaved by flap endonuclease 1 (Fen1) and the resultant nick was ligated by DNA ligase to form a mature lagging strand. The similarities to both bacterial and eukaryotic systems and evolutionary implications of archaeal Okazaki fragment maturation are discussed. PMID:25814667

  18. Cisplatin enhances the formation of DNA single- and double-strand breaks by hydrated electrons and hydroxyl radicals.

    Science.gov (United States)

    Rezaee, Mohammad; Sanche, Léon; Hunting, Darel J

    2013-03-01

    The synergistic interaction of cisplatin with ionizing radiation is the clinical rationale for the treatment of several cancers including head and neck, cervical and lung cancer. The underlying molecular mechanism of the synergy has not yet been identified, although both DNA damage and repair processes are likely involved. Here, we investigate the indirect effect of γ rays on strand break formation in a supercoiled plasmid DNA (pGEM-3Zf-) covalently modified by cisplatin. The yields of single- and double-strand breaks were determined by irradiation of DNA and cisplatin/DNA samples with (60)Co γ rays under four different scavenging conditions to examine the involvement of hydrated electrons and hydroxyl radicals in inducing the DNA damage. At 5 mM tris in an N2 atmosphere, the presence of an average of two cisplatins per plasmid increased the yields of single- and double-strand breaks by factors of 1.9 and 2.2, respectively, relative to the irradiated unmodified DNA samples. Given that each plasmid of 3,200 base pairs contained an average of two cisplatins, this represents an increase in radiosensitivity of 3,200-fold on a per base pair basis. When hydrated electrons were scavenged by saturating the samples with N2O, these enhancement factors decreased to 1.5 and 1.2, respectively, for single- and double-strand breaks. When hydroxyl radicals were scavenged using 200 mM tris, the respective enhancement factors were 1.2 and 1.6 for single- and double-strand breaks, respectively. Furthermore, no enhancement in DNA damage by cisplatin was observed after scavenging both hydroxyl radicals and hydrated electrons. These findings show that hydrated electrons can induce both single- and double-strand breaks in the platinated DNA, but not in unmodified DNA. In addition, cisplatin modification is clearly an extremely efficient means of increasing the formation of both single- and double-strand breaks by the hydrated electrons and hydroxyl radicals created by ionizing

  19. The DNA repair endonuclease XPG interacts directly and functionally with the WRN helicase defective in Werner syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Trego, Kelly S.; Chernikova, Sophia B.; Davalos, Albert R.; Perry, J. Jefferson P.; Finger, L. David; Ng, Cliff; Tsai, Miaw-Sheue; Yannone, Steven M.; Tainer, John A.; Campisi, Judith; Cooper, Priscilla K.

    2011-04-20

    XPG is a structure-specific endonuclease required for nucleotide excision repair (NER). XPG incision defects result in the cancer-prone syndrome xeroderma pigmentosum, whereas truncating mutations of XPG cause the severe postnatal progeroid developmental disorder Cockayne syndrome. We show that XPG interacts directly with WRN protein, which is defective in the premature aging disorder Werner syndrome, and that the two proteins undergo similar sub-nuclear redistribution in S-phase and co-localize in nuclear foci. The co-localization was observed in mid- to late-S-phase, when WRN moves from nucleoli to nuclear foci that have been shown to contain protein markers of both stalled replication forks and telomeric proteins. We mapped the interaction between XPG and WRN to the C-terminal domains of each and show that interaction with the C-terminal domain of XPG strongly stimulates WRN helicase activity. WRN also possesses a competing DNA single-strand annealing activity that, combined with unwinding, has been shown to coordinate regression of model replication forks to form Holliday junction/chicken foot intermediate structures. We tested whether XPG stimulated WRN annealing activity and found that XPG itself has intrinsic strand annealing activity that requires the unstructured R- and C-terminal domains, but not the conserved catalytic core or endonuclease activity. Annealing by XPG is cooperative, rather than additive, with WRN annealing. Taken together, our results suggest a novel function for XPG in S-phase that is at least in part carried out coordinately with WRN, and which may contribute to the severity of the phenotypes that occur upon loss of XPG.

  20. Physico-chemical and biological study of excision-repair of UV-irradiated PHIX 174 RF DNA in vitro

    International Nuclear Information System (INIS)

    Heijneker, H.L.

    1975-01-01

    A study is presented on the excision repair of ultraviolet-irradiated PHIX 174 RFI DNA in vitro with UV-specific endonuclease from micrococcus luteus, DNA polymerase I from E. coli and DNA ligase from phage T 4 infected E. coli. Excision repair was measured by physico-chemical and by biological methods. It is shown that more than 90% of the pyrimidine dimers can be repaired in vitro and that the repaired molecules have regained full biological activity. Endonuclease III was not essential for excision repair in vitro and did not stimulate repair; from this it was concluded that UV-endo generates 3' OH endgroups. The usefulness of the methods with regard to the study of excision repair is discussed

  1. Replication and Transcription of Eukaryotic DNA in Esherichia coli

    Science.gov (United States)

    Morrow, John F.; Cohen, Stanley N.; Chang, Annie C. Y.; Boyer, Herbert W.; Goodman, Howard M.; Helling, Robert B.

    1974-01-01

    Fragments of amplified Xenopus laevis DNA, coding for 18S and 28S ribosomal RNA and generated by EcoRI restriction endonuclease, have been linked in vitro to the bacterial plasmid pSC101; and the recombinant molecular species have been introduced into E. coli by transformation. These recombinant plasmids, containing both eukaryotic and prokaryotic DNA, replicate stably in E. coli. RNA isolated from E. coli minicells harboring the plasmids hybridizes to amplified X. laevis rDNA. Images PMID:4600264

  2. Modulation of X ray DNA damage by SR-2508 +/- buthionine sulfoximine

    International Nuclear Information System (INIS)

    Kinsella, T.J.; Dobson, P.P.; Russo, A.; Mitchell, J.B.; Fornace, A.J. Jr.

    1986-01-01

    It has been demonstrated that glutathione (GSH) depletion with buthionine sulfoximine (BSO) potentiates SR-2508 radiosensitization in hypoxic cells. We have measured the effect of SR-2508 alone, BSO alone, and combined treatment on radiation-induced DNA strand breaks in hypoxic V79 cells using alkaline and neutral elution. DNA base damage recognized by a damage specific endonuclease from M. luteus was also studied. Hypoxic irradiation markedly reduces the efficiency of single-strand (SSB) and double-strand breaks (DSB) to 10-20% compared to oxic irradiation. Hypoxia had less effect on the efficiency of base damage (ESS). BSO treatment alone, resulting in GSH depletion to less than 5% of controls, had little effect of hypoxic-SSB, DSB, and ESS. SR-2508 (5 mM) treatment alone in hypoxic cells increased the number of SSB, DSB and ESS to approximately half of that resulting from oxic irradiation. However, the combination of BSO and SR-2508 in hypoxic cells resulted in SSB and DSB comparable to oxic irradiation. This combined treatment resulted in less effect on ESS. We conclude that the observed hypoxic radiosensitization, using clonogenic survival assays with combined BSO-SR-2508, correlates with our results assessing DNA strand breaks and base damage

  3. Purification, crystallization and preliminary crystallographic analysis of a thermostable endonuclease IV from Thermotoga maritima

    International Nuclear Information System (INIS)

    Hughes, Ronny C.; Tomanicek, Stephen J.; Ng, Joseph D.; Coates, Leighton

    2009-01-01

    The overexpression, purification and crystallization of endonuclease IV from T. maritima are reported. The crystals belonged to the hexagonal space group P6 1 and diffracted to 2.36 Å resolution. The DNA-repair enzyme endonuclease IV from the thermophilic bacterium Thermotoga maritima MSB8 (reference sequence NC-000853) has been expressed in Escherichia coli and crystallized for X-ray analysis. T. maritima endonuclease IV is a 287-amino-acid protein with 32% sequence identity to E. coli endonuclease IV. The protein was purified to homogeneity and was crystallized using the sitting-drop vapor-diffusion method. The protein crystallized in space group P6 1 , with one biological molecule in the asymmetric unit, corresponding to a Matthews coefficient of 2.39 Å 3 Da −1 and 47% solvent content. The unit-cell parameters of the crystals were a = b = 123.2, c = 35.6 Å. Microseeding and further optimization yielded crystals with an X-ray diffraction limit of 2.36 Å. A single 70° data set was collected and processed, resulting in an overall R merge and a completeness of 9.5% and 99.3%, respectively

  4. Single-strand breaks in supercoiled DNA induced by vacuum-UV radiation in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Takakura, Kaoru; Ishikawa, Mitsuo; Hieda, Kotaro; Kobayashi, Katsumi; Ito, Atsushi; Ito, Takashi

    1986-09-01

    The induction of single-strand breaks in the DNA of plasmid pBR 322 by vacuum-UV radiation above 145 nm in aqueous solutions was studied in relation to the production of OH-radicals in water. The similarity and dissimilarity were examined on the wavelength dependence between the two effects. The maximum of single strand breaks at 150 nm could be explained by the action of OH-radicals derived from direct water photolysis: the maximum at 180 nm remains unexplained. There was no indication that the direct absorption of photon by the DNA molecule plays an important role in the production of single-strand breaks.

  5. Single-strand breaks in supercoiled DNA induced by vacuum-UV radiation in aqueous solution

    International Nuclear Information System (INIS)

    Takakura, Kaoru; Ishikawa, Mitsuo; Hieda, Kotaro; Kobayashi, Katsumi; Ito, Atsushi; Ito, Takashi

    1986-01-01

    The induction of single-strand breaks in the DNA of plasmid pBR 322 by vacuum-UV radiation above 145 nm in aqueous solutions was studied in relation to the production of OH-radicals in water. The similarity and dissimilarity were examined on the wavelength dependence between the two effects. The maximum of single strand breaks at 150 nm could be explained by the action of OH-radicals derived from direct water photolysis: the maximum at 180 nm remains unexplained. There was no indication that the direct absorption of photon by the DNA molecule plays an important role in the production of single-strand breaks. (author)

  6. Assessment of DNA damage induced by terrestrial UV irradiation of dried bloodstains: forensic implications.

    Science.gov (United States)

    Hall, Ashley; Sims, Lynn M; Ballantyne, Jack

    2014-01-01

    Few publications have detailed the nature of DNA damage in contemporary (i.e. non-ancient) dried biological stains. The chief concern, from a forensic standpoint, is that the damage can inhibit polymerase-mediated primer extension, ultimately resulting in DNA typing failure. In the work described here, we analyzed the effects of UVA and UVB irradiation on cell-free solubilized DNA, cell-free dehydrated DNA and dehydrated cellular DNA (from bloodstains). After UV exposure ranging from 25 J cm(-2) to 1236 J cm(-2), we assayed for the presence of bipyrimidine photoproducts (BPPPs), oxidative lesions and strand breaks, correlating the damage with the inhibition of STR profiling. Subsequent to irradiation with either UVA and UVB, the incidence of BPPPs, oxidative products and strand breaks were observed in decreasing quantities as follows: cell-free solubilized DNA>cell-free dehydrated DNA>bloodstain DNA. UVA irradiation did not result in even the partial loss of a STR profile in any sample tested. Somewhat different results were observed after genetic analysis of UVB exposed samples, in that the ability to produce a complete STR profile was affected earliest in bloodstain DNA, next in cell-free solubilized DNA and not at all in cell-free dehydrated DNA. Therefore, it is likely that other types of damage contributed to allele-drop-out in these samples but remained undetected by our assays, whereby the endonucleases did not react with the lesions or the presence of the lesions was masked by strand breaks. Under the conditions of the study, strand breaks appeared to be the predominant types of damage that ultimately resulted in DNA typing failure from physiological stains, although some evidence suggested oxidative damage may have played a role as well. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Biological defense mechanisms against DNA double-strand break and their possible medical applications

    International Nuclear Information System (INIS)

    Matsumoto, Yoshihisa

    2011-01-01

    Radiation is now widely used for clinical diagnosis and therapeutics. On the other hand, radiation influences various tissues represented by immunological and reproductive systems, and is also recognized as one of the cause of carcinogenesis. Such pleiotropic effects of radiation are mediated through generation of damages on DNA molecule, vitally important genetic macromolecule. Among various types of DNA damages, double-strand break (DSB) is considered most critical and, therefore, responsible for biological effects. DSB is repaired mainly through two pathways: non-homologous end joining (NHEJ) and homologous recombination (HR). Understanding of these mechanisms has been greatly deepened in past 20 years and is now providing a promising approach toward cancer therapy. We have studied the mechanisms of NHEJ, focusing especially on the role of phosphorylation and the assembly of machinery therein, which will be introduced below. (author)

  8. Cascade of chromosomal rearrangements caused by a heterogeneous T-DNA integration supports the double-stranded break repair model for T-DNA integration.

    Science.gov (United States)

    Hu, Yufei; Chen, Zhiyu; Zhuang, Chuxiong; Huang, Jilei

    2017-06-01

    Transferred DNA (T-DNA) from Agrobacterium tumefaciens can be integrated into the plant genome. The double-stranded break repair (DSBR) pathway is a major model for T-DNA integration. From this model, we expect that two ends of a T-DNA molecule would invade into a single DNA double-stranded break (DSB) or independent DSBs in the plant genome. We call the later phenomenon a heterogeneous T-DNA integration, which has never been observed. In this work, we demonstrated it in an Arabidopsis T-DNA insertion mutant seb19. To resolve the chromosomal structural changes caused by T-DNA integration at both the nucleotide and chromosome levels, we performed inverse PCR, genome resequencing, fluorescence in situ hybridization and linkage analysis. We found, in seb19, a single T-DNA connected two different chromosomal loci and caused complex chromosomal rearrangements. The specific break-junction pattern in seb19 is consistent with the result of heterogeneous T-DNA integration but not of recombination between two T-DNA insertions. We demonstrated that, in seb19, heterogeneous T-DNA integration evoked a cascade of incorrect repair of seven DSBs on chromosomes 4 and 5, and then produced translocation, inversion, duplication and deletion. Heterogeneous T-DNA integration supports the DSBR model and suggests that two ends of a T-DNA molecule could be integrated into the plant genome independently. Our results also show a new origin of chromosomal abnormalities. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  9. Oxidative DNA damage and repair in skeletal muscle of humans exposed to high-altitude hypoxia

    International Nuclear Information System (INIS)

    Lundby, Carsten; Pilegaard, Henriette; Hall, Gerrit van; Sander, Mikael; Calbet, Jose; Loft, Steffen; Moeller, Peter

    2003-01-01

    Recent research suggests that high-altitude hypoxia may serve as a model for prolonged oxidative stress in healthy humans. In this study, we investigated the consequences of prolonged high-altitude hypoxia on the basal level of oxidative damage to nuclear DNA in muscle cells, a major oxygen-consuming tissue. Muscle biopsies from seven healthy humans were obtained at sea level and after 2 and 8 weeks of hypoxia at 4100 m.a.s.l. We found increased levels of strand breaks and endonuclease III-sensitive sites after 2 weeks of hypoxia, whereas oxidative DNA damage detected by formamidopyrimidine DNA glycosylase (FPG) protein was unaltered. The expression of 8-oxoguanine DNA glycosylase 1 (OGG1), determined by quantitative RT-PCR of mRNA levels did not significantly change during high-altitude hypoxia, although the data could not exclude a minor upregulation. The expression of heme oxygenase-1 (HO-1) was unaltered by prolonged hypoxia, in accordance with the notion that HO-1 is an acute stress response protein. In conclusion, our data indicate high-altitude hypoxia may serve as a good model for oxidative stress and that antioxidant genes are not upregulated in muscle tissue by prolonged hypoxia despite increased generation of oxidative DNA damage

  10. Identification of a mismatch-specific endonuclease in hyperthermophilic Archaea

    OpenAIRE

    Ishino, Sonoko; Nishi, Yuki; Oda, Soichiro; Uemori, Takashi; Sagara, Takehiro; Takatsu, Nariaki; Yamagami, Takeshi; Shirai, Tsuyoshi; Ishino, Yoshizumi

    2016-01-01

    The common mismatch repair system processed by MutS and MutL and their homologs was identified in Bacteria and Eukarya. However, no evidence of a functional MutS/L homolog has been reported for archaeal organisms, and it is not known whether the mismatch repair system is conserved in Archaea. Here, we describe an endonuclease that cleaves double-stranded DNA containing a mismatched base pair, from the hyperthermophilic archaeon Pyrococcus furiosus. The corresponding gene revealed that the act...

  11. Evaluation of the neutral comet assay for detection of alpha-particle induced DNA-double-strand-breaks

    International Nuclear Information System (INIS)

    Hofbauer, Daniela

    2010-01-01

    Aim of this study was to differentiate DNA-double-strand-breaks from DNA-single-strand-breaks on a single cell level, using the comet assay after α- and γ-irradiation. Americium-241 was used as a alpha-irradiation-source, Caesium-137 was used for γ-irradiation. Because of technical problems with both the neutral and alkaline comet assay after irradiation of gastric cancer cells and human lymphocytes, no definite differentiation of DNA-damage was possible.

  12. Analysis of native cellular DNA after heavy ion irradiation: DNA double-strand breaks in CHO-K1 cells

    International Nuclear Information System (INIS)

    Heilmann, J.; Taucher-Scholz, G.; Kraft, G.

    1994-11-01

    A fast assay for the detection of DNA double-strand breaks was developed involving constant field gel electrophoresis (Taucher-Scholz et al., 1994) and densitometric scanning of agarose gels stained with ethidium bromide. With this technique, DSB induction was investigated after irradiation of CHO cells with carbon ions with LET values between 14 keV/μm and 400 keV/μm. In parallel, a computer code was developed to simulate both the principle of the electrophoretic detection of DNA double-strand breaks and the action of radiations of different ionization density. The results of the experiments and the calculations are presented here and compared with each other. (orig./HSI)

  13. Electrophoresis examination of strand breaks in plasmid DNA induced by low-energy nitrogen ion irradiation

    International Nuclear Information System (INIS)

    Zhao Yong; Tan Zheng; Du Yanhua; Qiu Guanying

    2003-01-01

    To study the effect on plasmid DNA of heavy ion in the energy range of keV where nuclear stopping interaction becomes more important or even predominant, thin film of plasmid pGEM-3Zf(-) DNA was prepared on aluminum surface and irradiated in vacuum ( -3 Pa) by low-energy nitrogen ions with energy of 30 keV (LET=285 keV/μm) at various fluence ranging from 2 x 10 10 to 8.2 x 10 13 ions/cm 2 . DNA strand breaks were analyzed by neutral electrophoresis followed by quantification with image analysis software. Low-energy nitrogen ion irradiation induced single-, double- and multiple double-strand breaks (DSB) and multiple DSB as the dominating form of DNA damages. Moreover, the linear fluence-response relationship at a low fluence range suggests that DSBs are induced predominantly by single ion track. However, strand break production is limited to a short range in the irradiated samples

  14. Micronuclei, DNA single-strand breaks and DNA-repair activity in mice exposed to 1,3-butadiene by inhalation

    Czech Academy of Sciences Publication Activity Database

    Vodička, Pavel; Štětina, R.; Šmerák, P.; Vodičková, Ludmila; Naccarati, Alessio; Bárta, I.; Hemminki, K.

    2006-01-01

    Roč. 608, - (2006), s. 49-57 ISSN 1383-5718 R&D Projects: GA ČR(CZ) GA310/01/0802 Institutional research plan: CEZ:AV0Z50390512 Keywords : Single-strand DNA breaks * Micronucleus formation * DNA-repair activity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.122, year: 2006

  15. The DNA-dependent protein kinase: a multifunctional protein kinase with roles in DNA double strand break repair and mitosis

    OpenAIRE

    Jette, Nicholas; Lees-Miller, Susan P.

    2014-01-01

    The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and the Ku70/80 heterodimer. Over the past two decades, significant progress has been made in elucidating the role of DNA-PK in non-homologous end joining (NHEJ), the major pathway for repair of ionizing radiation-induced DNA double strand breaks in human cells and recently, additional roles for DNA-PK have been reported. In this review, we will describe the biochemi...

  16. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment

    International Nuclear Information System (INIS)

    Kennedy, Edward M.; Cullen, Bryan R.

    2015-01-01

    CRISPR/Cas systems mediate bacterial adaptive immune responses that evolved to protect bacteria from bacteriophage and other horizontally transmitted genetic elements. Several CRISPR/Cas systems exist but the simplest variant, referred to as Type II, has a single effector DNA endonuclease, called Cas9, which is guided to its viral DNA target by two small RNAs, the crRNA and the tracrRNA. Initial efforts to adapt the CRISPR/Cas system for DNA editing in mammalian cells, which focused on the Cas9 protein from Streptococcus pyogenes (Spy), demonstrated that Spy Cas9 can be directed to DNA targets in mammalian cells by tracrRNA:crRNA fusion transcripts called single guide RNAs (sgRNA). Upon binding, Cas9 induces DNA cleavage leading to mutagenesis as a result of error prone non-homologous end joining (NHEJ). Recently, the Spy Cas9 system has been adapted for high throughput screening of genes in human cells for their relevance to a particular phenotype and, more generally, for the targeted inactivation of specific genes, in cell lines and in vivo in a number of model organisms. The latter aim seems likely to be greatly enhanced by the recent development of Cas9 proteins from bacterial species such as Neisseria meningitidis and Staphyloccus aureus that are small enough to be expressed using adeno-associated (AAV)-based vectors that can be readily prepared at very high titers. The evolving Cas9-based DNA editing systems therefore appear likely to not only impact virology by allowing researchers to screen for human genes that affect the replication of pathogenic human viruses of all types but also to derive clonal human cell lines that lack individual gene products that either facilitate or restrict viral replication. Moreover, high titer AAV-based vectors offer the possibility of directly targeting DNA viruses that infect discrete sites in the human body, such as herpes simplex virus and hepatitis B virus, with the hope that the entire population of viral DNA genomes

  17. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Edward M.; Cullen, Bryan R., E-mail: bryan.cullen@duke.edu

    2015-05-15

    CRISPR/Cas systems mediate bacterial adaptive immune responses that evolved to protect bacteria from bacteriophage and other horizontally transmitted genetic elements. Several CRISPR/Cas systems exist but the simplest variant, referred to as Type II, has a single effector DNA endonuclease, called Cas9, which is guided to its viral DNA target by two small RNAs, the crRNA and the tracrRNA. Initial efforts to adapt the CRISPR/Cas system for DNA editing in mammalian cells, which focused on the Cas9 protein from Streptococcus pyogenes (Spy), demonstrated that Spy Cas9 can be directed to DNA targets in mammalian cells by tracrRNA:crRNA fusion transcripts called single guide RNAs (sgRNA). Upon binding, Cas9 induces DNA cleavage leading to mutagenesis as a result of error prone non-homologous end joining (NHEJ). Recently, the Spy Cas9 system has been adapted for high throughput screening of genes in human cells for their relevance to a particular phenotype and, more generally, for the targeted inactivation of specific genes, in cell lines and in vivo in a number of model organisms. The latter aim seems likely to be greatly enhanced by the recent development of Cas9 proteins from bacterial species such as Neisseria meningitidis and Staphyloccus aureus that are small enough to be expressed using adeno-associated (AAV)-based vectors that can be readily prepared at very high titers. The evolving Cas9-based DNA editing systems therefore appear likely to not only impact virology by allowing researchers to screen for human genes that affect the replication of pathogenic human viruses of all types but also to derive clonal human cell lines that lack individual gene products that either facilitate or restrict viral replication. Moreover, high titer AAV-based vectors offer the possibility of directly targeting DNA viruses that infect discrete sites in the human body, such as herpes simplex virus and hepatitis B virus, with the hope that the entire population of viral DNA genomes

  18. PI-PfuI and PI-PfuII, intein-coded homing endonucleases from Pyrococcus furiosus. II. Characterization Of the binding and cleavage abilities by site-directed mutagenesis.

    OpenAIRE

    Komori, K; Ichiyanagi, K; Morikawa, K; Ishino, Y

    1999-01-01

    PI- Pfu I and PI- Pfu II from Pyrococcus furiosus are homing endonucleases, as shown in the accompanying paper. These two endonucleases are produced by protein splicing from the precursor protein including ribonucleotide reductase (RNR). We show here that both enzymes specifically interact with their substrate DNA and distort the DNA strands by 73 degrees and 67 degrees, respectively. They have two copies of the amino acid sequence motif LAGLIDADG, which is present in the majority of homing e...

  19. Assembly and function of DNA double-strand break repair foci in mammalian cells

    DEFF Research Database (Denmark)

    Bekker-Jensen, Simon; Mailand, Niels

    2010-01-01

    DNA double-strand breaks (DSBs) are among the most cytotoxic types of DNA damage, which if left unrepaired can lead to mutations or gross chromosomal aberrations, and promote the onset of diseases associated with genomic instability such as cancer. One of the most discernible hallmarks...

  20. Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers

    DEFF Research Database (Denmark)

    Schwertman, Petra; Bekker-Jensen, Simon; Mailand, Niels

    2016-01-01

    DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions. The swift recognition and faithful repair of such damage is crucial for the maintenance of genomic stability, as well as for cell and organismal fitness. Signalling by ubiquitin, SUMO and other ubiquitin-like modifiers (UBLs...

  1. Induction of single-strand DNA breaks in human cells by H2O2 formed in near-uv (black light)-irradiated medium

    International Nuclear Information System (INIS)

    Wang, R.J.; Ananthaswamy, H.N.; Nixon, B.T.; Hartman, P.S.; Eisenstark, A.

    1980-01-01

    When Dulbecco's modified Eagle's medium (depleted of phenol red) was irradiated for up to 3 h by 4 to 5 W/m 2 black light, hydrogen peroxide (H 2 O 2 ) was produced. Generation of H 2 O 2 resulted from riboflavin-sensitized photooxidation of tryptophan and tyrosine. Reagent H 2 O 2 , or hydrogen peroxide generated in black light-exposed aqueous solutions containing riboflavin and tryptophan, induced 2 x 10 4 single-strand breaks per 10 16 daltons of DNA in intact, physiologically viable human D98/AH 2 cells. Concomitant with the single-strand breaks in the cells was loss of cellular reproductive viability. Two classes of photoproducts were identified: H 2 O 2 and non-H 2 O 2 . The H 2 O 2 component of the photoproducts was responsible for all the single-strand break induction but for only partial loss of reproductive viability. The non-H 2 O 2 photoproducts, accountable for the remainder of cell lethality, caused no single-strand breaks

  2. A unique dual recognition hairpin probe mediated fluorescence amplification method for sensitive detection of uracil-DNA glycosylase and endonuclease IV activities.

    Science.gov (United States)

    Wu, Yushu; Yan, Ping; Xu, Xiaowen; Jiang, Wei

    2016-03-07

    Uracil-DNA glycosylase (UDG) and endonuclease IV (Endo IV) play cooperative roles in uracil base-excision repair (UBER) and inactivity of either will interrupt the UBER to cause disease. Detection of UDG and Endo IV activities is crucial to evaluate the UBER process in fundamental research and diagnostic application. Here, a unique dual recognition hairpin probe mediated fluorescence amplification method was developed for sensitively and selectively detecting UDG and Endo IV activities. For detecting UDG activity, the uracil base in the probe was excised by the target enzyme to generate an apurinic/apyrimidinic (AP) site, achieving the UDG recognition. Then, the AP site was cleaved by a tool enzyme Endo IV, releasing a primer to trigger rolling circle amplification (RCA) reaction. Finally, the RCA reaction produced numerous repeated G-quadruplex sequences, which interacted with N-methyl-mesoporphyrin IX to generate an enhanced fluorescence signal. Alternatively, for detecting Endo IV activity, the uracil base in the probe was first converted into an AP site by a tool enzyme UDG. Next, the AP site was cleaved by the target enzyme, achieving the Endo IV recognition. The signal was then generated and amplified in the same way as those in the UDG activity assay. The detection limits were as low as 0.00017 U mL(-1) for UDG and 0.11 U mL(-1) for Endo IV, respectively. Moreover, UDG and Endo IV can be well distinguished from their analogs. This method is beneficial for properly evaluating the UBER process in function studies and disease prognoses.

  3. Repair pathways for heavy ion-induced complex DNA double strand breaks

    International Nuclear Information System (INIS)

    Yajima, Hirohiko; Nakajima, Nakako; Hirakawa, Hirokazu; Murakami, Takeshi; Okayasu, Ryuichi; Fujimori, Akira

    2012-01-01

    DNA double strand break (DSB) induced by ionizing radiation (IR) is a deleterious damage leading to cell death and genome instability if not properly repaired. It is well known that DSB is repaired by two major pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR). It is also known that NHEJ is dominant throughout the cell cycle after X- or gamma-ray irradiation in mammalian cells, Meanwhile, it is thought that heavy-ion radiation (e.g., carbon-ions, iron-ions) gives rise to clustered DNA damages consisting of not only strand breaks but also aberrant bases in the vicinity of DSBs (complex DSBs). Our previous work suggested that the efficiency of NHEJ is diminished for repair of complex DSBs induced by heavy-ion radiation. We thought that this difficulty in NHEJ process associated with heavy ion induced complex DNA damage might be extended to HR process in cells exposed to heavy ions. In order to find out if this notion is true or not, exposed human cells to X-rays and heavy-ions, and studied HR associated processes at the molecular level. Our result indicates that complex DSBs induced by heavy ions effectively evoke DNA end resection activity during the HR process. Together with our results, a relevant recent progress in the field of DNA DSB repair will be discussed. (author)

  4. Radiation-induced DNA breaks detected by immuno labelling of poly(ADP-ribose) in CHO cells. Standardization by pulsed-field gel electrophoresis

    International Nuclear Information System (INIS)

    Varlet, P.; Bidon, N.; Noel, G.; Averbeck, D.; Salamero, J.; DeMurcia, G.

    1998-01-01

    The poly (ADP-ribose) polymerase is an ubiquitous nuclear protein capable of binding specifically to DNA strand breaks. It synthesizes ADP-ribose polymers proportionally to DNA breaks. The actual method of reference to determine DNA double strand breaks is pulsed-field gel electrophoresis, but this requires many cells. It thus appeared of interest to use poly (ADP-ribos)ylation to follow and estimate γ-ray-induced DNA fragmentation at the level of isolated cells after γ-irradiation in chinese hamster ovary cells (CHO-K1). The results obtained by the immuno-labelling technique of ADP-ribose polymers were compared to those obtained by pulsed-field gel electrophoresis. They show that poly (ADP-ribos)ylation reflects the occurrence of radiation-induced DNA strand breaks. A clear relationship exists between the amount of ADP-ribose polymers detected and DNA double strand breaks after γ-irradiation. (authors)

  5. Creation of targeted inversion mutations in plants using an RNA-guided endonuclease

    Institute of Scientific and Technical Information of China (English)

    Congsheng Zhang; Changlin Liu; Jianfeng Weng; Beijiu Cheng; Fang Liu; Xinhai Li; Chuanxiao Xie

    2017-01-01

    Inversions are DNA rearrangements that are essential for plant gene evolution and adaptation to environmental changes. We demonstrate the creation of targeted inversions and previously reported targeted deletion mutations via delivery of a pair of RNA-guided endonucleases (RGENs) of CRISPR/Cas9. The efficiencies of the targeted inversions were 2.6%and 2.2%in the Arabidopsis FLOWERING TIME (AtFT) and TERMINAL FLOWER 1 (AtTFL1) loci, respectively. Thus, we successfully established an approach that can potentially be used to introduce targeted DNA inversions of interest for functional studies and crop improvement.

  6. DNA and chromosome breaks induced by 123I-estrogen in CHO cells

    International Nuclear Information System (INIS)

    Schwartz, J.L.

    1997-01-01

    The effects of the Auger electron-emitting isotope I-123, covalently bound to estrogen, on DNA single- and double-strand breakage and on chromosome breakage was determined in estrogen positive Chinese hamster ovary (CHO-ER) cells. Exposure to the 123 I-estrogen induced both single- and double-strand breaks with a ratio of single- to double-strand breaks of 2.2. The corresponding ratio with 60 Co gamma rays was 15.6. The dose-response was biphasic suggesting that either receptor sites are saturated at high does, or that there is a nonrandom distribution of breaks induced by the 123 I-estrogen. The 123 I-estrogen treatment induced chromosome aberrations with an efficiency of about 1 aberration for each 1,000 disintegrations per cell. This corresponds to the mean lethal dose of 123 I-estrogen for these cells suggesting that the lethal event induced by the Auger electron emitter bound to estrogen is a chromosome aberration. Most of the chromosome-type aberrations were dicentrics and rings, suggesting that 123 I-estrogen-induced chromosome breaks are rejoined. The F-ratio, the ratio of dicentrics to centric rings, was 5.8 ± 1.7, which is similar to that seen with high LET radiations. Their results suggest that I-123 bound to estrogen is an efficient clastogenic agent, that the cytotoxic damage produced by I-123 bound to estrogen is very like high LET-induced damage, and the I-123 in the estrogen-receptor-DNA complex is probably in close proximity to the sugar-phosphate backbone of the DNA

  7. Photosensitization by iodinated DNA minor groove binding ligands: Evaluation of DNA double-strand break induction and repair.

    Science.gov (United States)

    Briggs, Benjamin; Ververis, Katherine; Rodd, Annabelle L; Foong, Laura J L; Silva, Fernando M Da; Karagiannis, Tom C

    2011-05-03

    Iodinated DNA minor groove binding bibenzimidazoles represent a unique class of UVA photosensitizer and their extreme photopotency has been previously characterized. Earlier studies have included a comparison of three isomers, referred to as ortho-, meta- and para-iodoHoechst, which differ only in the location of the iodine substituent in the phenyl ring of the bibenzimidazole. DNA breakage and clonogenic survival studies in human erythroleukemic K562 cells have highlighted the higher photo-efficiency of the ortho-isomer (subsequently designated UV(A)Sens) compared to the meta- and para-isomers. In this study, the aim was to compare the induction and repair of DNA double-strand breaks induced by the three isomers in K562 cells. Further, we examined the effects of the prototypical broad-spectrum histone deacetylase inhibitor, Trichostatin A, on ortho-iodoHoechst/UVA-induced double-strand breaks in K562 cells. Using γH2AX as a molecular marker of the DNA lesions, our findings indicate a disparity in the induction and particularly, in the repair kinetics of double-strand breaks for the three isomers. The accumulation of γH2AX foci induced by the meta- and para-isomers returned to background levels within 24 and 48 h, respectively; the number of γH2AX foci induced by ortho-iodoHoechst remained elevated even after incubation for 96 h post-irradiation. These findings provide further evidence that the extreme photopotency of ortho-iodoHoechst is due to not only to the high quantum yield of dehalogenation, but also to the severity of the DNA lesions which are not readily repaired. Finally, our findings which indicate that Trichostatin A has a remarkable potentiating effect on ortho-iodoHoechst/UVA-induced DNA lesions are encouraging, particularly in the context of cutaneous T-cell lymphoma, for which a histone deacetylase inhibitor is already approved for therapy. This finding prompts further evaluation of the potential of combination therapies. Copyright © 2011

  8. Elevated Levels of DNA Strand Breaks Induced by a Base Analog in the Human Cell Line with the P32T ITPA Variant

    Science.gov (United States)

    Waisertreiger, Irina S.-R.; Menezes, Miriam R.; Randazzo, James; Pavlov, Youri I.

    2010-01-01

    Base analogs are powerful antimetabolites and dangerous mutagens generated endogenously by oxidative stress, inflammation, and aberrant nucleotide biosynthesis. Human inosine triphosphate pyrophosphatase (ITPA) hydrolyzes triphosphates of noncanonical purine bases (i.e., ITP, dITP, XTP, dXTP, or their mimic: 6-hydroxyaminopurine (HAP) deoxynucleoside triphosphate) and thus regulates nucleotide pools and protects cells from DNA damage. We demonstrate that the model purine base analog HAP induces DNA breaks in human cells and leads to elevation of levels of ITPA. A human polymorphic allele of the ITPA, 94C->A encodes for the enzyme with a P32T amino-acid change and leads to accumulation of nonhydrolyzed ITP. The polymorphism has been associated with adverse reaction to purine base-analog drugs. The level of both spontaneous and HAP-induced DNA breaks is elevated in the cell line with the ITPA P32T variant. The results suggested that human ITPA plays a pivotal role in the protection of DNA from noncanonical purine base analogs. PMID:20936128

  9. Elevated Levels of DNA Strand Breaks Induced by a Base Analog in the Human Cell Line with the P32T ITPA Variant

    Directory of Open Access Journals (Sweden)

    Irina S.-R. Waisertreiger

    2010-01-01

    Full Text Available Base analogs are powerful antimetabolites and dangerous mutagens generated endogenously by oxidative stress, inflammation, and aberrant nucleotide biosynthesis. Human inosine triphosphate pyrophosphatase (ITPA hydrolyzes triphosphates of noncanonical purine bases (i.e., ITP, dITP, XTP, dXTP, or their mimic: 6-hydroxyaminopurine (HAP deoxynucleoside triphosphate and thus regulates nucleotide pools and protects cells from DNA damage. We demonstrate that the model purine base analog HAP induces DNA breaks in human cells and leads to elevation of levels of ITPA. A human polymorphic allele of the ITPA, 94C->A encodes for the enzyme with a P32T amino-acid change and leads to accumulation of nonhydrolyzed ITP. The polymorphism has been associated with adverse reaction to purine base-analog drugs. The level of both spontaneous and HAP-induced DNA breaks is elevated in the cell line with the ITPA P32T variant. The results suggested that human ITPA plays a pivotal role in the protection of DNA from noncanonical purine base analogs.

  10. Explanation for excessive DNA single-strand breaks and endogenous repair foci in pluripotent mouse embryonic stem cells.

    Science.gov (United States)

    Banáth, J P; Bañuelos, C A; Klokov, D; MacPhail, S M; Lansdorp, P M; Olive, P L

    2009-05-01

    Pluripotent mouse embryonic stem cells (mES cells) exhibit approximately 100 large gammaH2AX repair foci in the absence of measurable numbers of DNA double-strand breaks. Many of these cells also show excessive numbers of DNA single-strand breaks (>10,000 per cell) when analyzed using the alkaline comet assay. To understand the reasons for these unexpected observations, various methods for detecting DNA strand breaks were applied to wild-type mES cells and to mES cells lacking H2AX, ATM, or DNA-PKcs. H2AX phosphorylation and expression of other repair complexes were measured using flow and image analysis of antibody-stained cells. Results indicate that high numbers of endogenous gammaH2AX foci and single-strand breaks in pluripotent mES cells do not require ATM or DNA-PK kinase activity and appear to be associated with global chromatin decondensation rather than pre-existing DNA damage. This will limit applications of gammaH2AX foci analysis in mES cells to relatively high levels of initial or residual DNA damage. Excessive numbers of single-strand breaks in the alkaline comet assay can be explained by the vulnerability of replicating chromatin in mES cells to osmotic shock. This suggests that caution is needed in interpreting results with the alkaline comet assay when applied to certain cell types or after treatment with agents that make chromatin vulnerable to osmotic changes. Differentiation of mES cells caused a reduction in histone acetylation, gammaH2AX foci intensity, and DNA single-strand breakage, providing a link between chromatin structural organization, excessive gammaH2AX foci, and sensitivity of replicating mES cell chromatin to osmotic shock.

  11. Yield of DNA strand breaks and their relationship to DNA polymerase I-dependent repair synthesis and ligation following x-ray exposure of toluene-treated Escherichia coli

    International Nuclear Information System (INIS)

    Billen, D.

    1981-01-01

    In Escherichia coli made permeable to nucleotides by toluene treatment, a DNA polymerase I-directed repair synthesis is observed. This is an exaggerated repair synthesis which can be abruptly terminated by the addition of the DNA ligase cofactor, nicotinamide adenine dinucleotide. This communication describes experiments which bear on the relationship between measurable strand breaks, DNA polymerase I-directed, exaggerated repair synthesis, and strand-break repair

  12. Nuclease-mediated double-strand break (DSB) enhancement of small fragment homologous recombination (SFHR) gene modification in human-induced pluripotent stem cells (hiPSCs).

    Science.gov (United States)

    Sargent, R Geoffrey; Suzuki, Shingo; Gruenert, Dieter C

    2014-01-01

    Recent developments in methods to specifically modify genomic DNA using sequence-specific endonucleases and donor DNA have opened the door to a new therapeutic paradigm for cell and gene therapy of inherited diseases. Sequence-specific endonucleases, in particular transcription activator-like (TAL) effector nucleases (TALENs), have been coupled with polynucleotide small/short DNA fragments (SDFs) to correct the most common mutation in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene, a 3-base-pair deletion at codon 508 (delF508), in induced pluripotent stem (iPS) cells. The studies presented here describe the generation of candidate TALENs and their co-transfection with wild-type (wt) CFTR-SDFs into CF-iPS cells homozygous for the delF508 mutation. Using an allele-specific PCR (AS-PCR)-based cyclic enrichment protocol, clonal populations of corrected CF-iPS cells were isolated and expanded.

  13. Ku recruits XLF to DNA double-strand breaks.

    Science.gov (United States)

    Yano, Ken-ichi; Morotomi-Yano, Keiko; Wang, Shih-Ya; Uematsu, Naoya; Lee, Kyung-Jong; Asaithamby, Aroumougame; Weterings, Eric; Chen, David J

    2008-01-01

    XRCC4-like factor (XLF)--also known as Cernunnos--has recently been shown to be involved in non-homologous end-joining (NHEJ), which is the main pathway for the repair of DNA double-strand breaks (DSBs) in mammalian cells. XLF is likely to enhance NHEJ by stimulating XRCC4-ligase IV-mediated joining of DSBs. Here, we report mechanistic details of XLF recruitment to DSBs. Live cell imaging combined with laser micro-irradiation showed that XLF is an early responder to DSBs and that Ku is essential for XLF recruitment to DSBs. Biochemical analysis showed that Ku-XLF interaction occurs on DNA and that Ku stimulates XLF binding to DNA. Unexpectedly, XRCC4 is dispensable for XLF recruitment to DSBs, although photobleaching analysis showed that XRCC4 stabilizes the binding of XLF to DSBs. Our observations showed the direct involvement of XLF in the dynamic assembly of the NHEJ machinery and provide mechanistic insights into DSB recognition.

  14. Alterations in the nuclear matrix protein mass correlate with heat-induced inhibition of DNA single-strand-break repair

    International Nuclear Information System (INIS)

    Warters, R.L.; Brizgys, L.M.; Lyons, B.W.

    1987-01-01

    The total protein mass co-isolating with the nuclear matrix or nucleoid from Chinese hamster ovary (CHO) cells was observed to increase in heated cells as a function of increasing exposure temperature between 43 0 C and 45 0 C or of exposure time at any temperature. The sedimentation distance of the CHO cell nucleoid in sucrose gradients increased with increasing exposure time at 45 0 C. Both these nuclear alterations correlated in a log-linear manner with heat-induced inhibition of DNA strand break repair. A two-fold threshold increase in nuclear matrix protein mass preceded any substantial inhibition of repair of DNA single-strand breaks. When preheated cells were incubated at 37 0 C the nuclear matrix protein mass and nucleoid sedimentation recovered with a half-time of about 5 h, while DNA single-strand-break repair recovered with a half-time of about 2 h. When preheated cells were placed at 41 0 C a further increase was observed in the nuclear matrix protein mass and the half-time of DNA strand break repair, while nucleoid sedimentation recovered toward control values. These results implicate alterations in the protein mass of the nuclear matrix in heat-induced inhibition of repair of DNA single-strand breaks. (author)

  15. Next-generation mammalian genetics toward organism-level systems biology.

    Science.gov (United States)

    Susaki, Etsuo A; Ukai, Hideki; Ueda, Hiroki R

    2017-01-01

    Organism-level systems biology in mammals aims to identify, analyze, control, and design molecular and cellular networks executing various biological functions in mammals. In particular, system-level identification and analysis of molecular and cellular networks can be accelerated by next-generation mammalian genetics. Mammalian genetics without crossing, where all production and phenotyping studies of genome-edited animals are completed within a single generation drastically reduce the time, space, and effort of conducting the systems research. Next-generation mammalian genetics is based on recent technological advancements in genome editing and developmental engineering. The process begins with introduction of double-strand breaks into genomic DNA by using site-specific endonucleases, which results in highly efficient genome editing in mammalian zygotes or embryonic stem cells. By using nuclease-mediated genome editing in zygotes, or ~100% embryonic stem cell-derived mouse technology, whole-body knock-out and knock-in mice can be produced within a single generation. These emerging technologies allow us to produce multiple knock-out or knock-in strains in high-throughput manner. In this review, we discuss the basic concepts and related technologies as well as current challenges and future opportunities for next-generation mammalian genetics in organism-level systems biology.

  16. Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a).

    Science.gov (United States)

    Singh, Digvijay; Mallon, John; Poddar, Anustup; Wang, Yanbo; Tippana, Ramreddy; Yang, Olivia; Bailey, Scott; Ha, Taekjip

    2018-05-22

    CRISPR-Cas9, which imparts adaptive immunity against foreign genomic invaders in certain prokaryotes, has been repurposed for genome-engineering applications. More recently, another RNA-guided CRISPR endonuclease called Cpf1 (also known as Cas12a) was identified and is also being repurposed. Little is known about the kinetics and mechanism of Cpf1 DNA interaction and how sequence mismatches between the DNA target and guide-RNA influence this interaction. We used single-molecule fluorescence analysis and biochemical assays to characterize DNA interrogation, cleavage, and product release by three Cpf1 orthologs. Our Cpf1 data are consistent with the DNA interrogation mechanism proposed for Cas9. They both bind any DNA in search of protospacer-adjacent motif (PAM) sequences, verify the target sequence directionally from the PAM-proximal end, and rapidly reject any targets that lack a PAM or that are poorly matched with the guide-RNA. Unlike Cas9, which requires 9 bp for stable binding and ∼16 bp for cleavage, Cpf1 requires an ∼17-bp sequence match for both stable binding and cleavage. Unlike Cas9, which does not release the DNA cleavage products, Cpf1 rapidly releases the PAM-distal cleavage product, but not the PAM-proximal product. Solution pH, reducing conditions, and 5' guanine in guide-RNA differentially affected different Cpf1 orthologs. Our findings have important implications on Cpf1-based genome engineering and manipulation applications.

  17. Repair of the double-strand breaks produced by /sup 125/I disintegrations in the DNA of micrococcus radiodurans

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D K [Atomic Energy of Canada Ltd., Chalk River, Ontario. Chalk River Nuclear Labs.

    1978-01-01

    Wild-type M. radiodurans and two radiosensitive mutants were used to study the lethal effects of /sup 125/I disintegrations in their DNA. The relative sensitivities of these three strains to inactivation by ..gamma..-radiation were reflected in their relative sensitivities to inactivation by /sup 125/I decay. The number of double-strand (ds) breaks in the DNA appeared to be similar at levels of ..gamma..-radiation and of /sup 125/I decay that reduced survival to 10%. All three strains of M. radiodurans rapidly repaired ds breaks produced in their DNA by either ..gamma..-radiation or /sup 125/I disintegrations. If one ds break per cell is a lethal event (Krisch. et al., 1975), cells of the three strains tested would die when they had left unrepaired one ds break out of an initial 45, 600 or 1800 ds breaks per single cell.

  18. Pathways for double-strand break repair in genetically unstable Z-DNA-forming sequences.

    Science.gov (United States)

    Kha, Diem T; Wang, Guliang; Natrajan, Nithya; Harrison, Lynn; Vasquez, Karen M

    2010-05-14

    DNA can adopt many structures that differ from the canonical B-form, and several of these non-canonical DNA structures have been implicated in genetic instability associated with human disease. Earlier, we found that Z-DNA causes DNA double-strand breaks (DSBs) in mammalian cells that can result in large-scale deletions and rearrangements. In contrast, the same Z-DNA-forming CG repeat in Escherichia coli resulted in only small contractions or expansions within the repeat. This difference in the Z-DNA-induced mutation spectrum between mammals and bacteria might be due to different mechanisms for DSB repair; in mammalian cells, non-homologous end-joining (NHEJ) is a major DSB repair pathway, while E. coli do not contain this system and typically use homologous recombination (HR) to process DSBs. To test the extent to which the different DSB repair pathways influenced the Z-DNA-induced mutagenesis, we engineered bacterial E.coli strains to express an inducible NHEJ system, to mimic the situation in mammalian cells. Mycobacterium tuberculosis NHEJ proteins Ku and ligase D (LigD) were expressed in E.coli cells in the presence or absence of HR, and the Z-DNA-induced mutations were characterized. We found that the presence of the NHEJ mechanism markedly shifted the mutation spectrum from small deletions/insertions to large-scale deletions (from 2% to 24%). Our results demonstrate that NHEJ plays a role in the generation of Z-DNA-induced large-scale deletions, suggesting that this pathway is associated with DNA structure-induced destabilization of genomes from prokaryotes to eukaryotes. (c) 2010 Elsevier Ltd. All rights reserved.

  19. The roles of family B and D DNA polymerases in Thermococcus species 9°N Okazaki fragment maturation.

    Science.gov (United States)

    Greenough, Lucia; Kelman, Zvi; Gardner, Andrew F

    2015-05-15

    During replication, Okazaki fragment maturation is a fundamental process that joins discontinuously synthesized DNA fragments into a contiguous lagging strand. Efficient maturation prevents repeat sequence expansions, small duplications, and generation of double-stranded DNA breaks. To address the components required for the process in Thermococcus, Okazaki fragment maturation was reconstituted in vitro using purified proteins from Thermococcus species 9°N or cell extracts. A dual color fluorescence assay was developed to monitor reaction substrates, intermediates, and products. DNA polymerase D (polD) was proposed to function as the replicative polymerase in Thermococcus replicating both the leading and the lagging strands. It is shown here, however, that it stops before the previous Okazaki fragments, failing to rapidly process them. Instead, Family B DNA polymerase (polB) was observed to rapidly fill the gaps left by polD and displaces the downstream Okazaki fragment to create a flap structure. This flap structure was cleaved by flap endonuclease 1 (Fen1) and the resultant nick was ligated by DNA ligase to form a mature lagging strand. The similarities to both bacterial and eukaryotic systems and evolutionary implications of archaeal Okazaki fragment maturation are discussed. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Two models of distribution of sites sensitive to the endonuclease from Micrococcus luteus in the DNA of UV irradiated Escherichia coli B/r Hcr-

    International Nuclear Information System (INIS)

    Kleibl, K.; Sedliakova, M.

    1984-01-01

    Cells prelabelled with 14 C-thymine and irradiated with 5 J/m 2 were at various intervals after UV labelled with 3 H-thymidine then treated with the extract from M. luteus and DNA was analyzed in alkaline sucrose gradients. Loss of endonuclease sensitive sites (Es sites) from the parental DNA and their occurrence in the daughter DNA were followed for at least three replication cycles. Data obtained indicate that about 50% of Es sites were lost during the first replication cycle but no additional loss was observed during subsequent cycles. Thus our data do not support a hypothesis that a half of the dimers are transferred from the parental into the daughter strands at each replication cycle. They rather indicate that dimers remain in situ and distortions accompanying dimers are distinguished either on the side of the parental or on the side of the daughter strands with an equal probability. (author)

  1. The structure-specific endonuclease Ercc1-Xpf is required for targeted gene replacement in embryonic stem cells

    NARCIS (Netherlands)

    L.J. Niedernhofer (Laura); J. Essers (Jeroen); G. Weeda (Geert); H.B. Beverloo (Berna); J. de Wit (Jan); M. Muijtjens (Manja); H. Odijk (Hanny); J.H.J. Hoeijmakers (Jan); R. Kanaar (Roland)

    2001-01-01

    textabstractThe Ercc1-Xpf heterodimer, a highly conserved structure-specific endonuclease, functions in multiple DNA repair pathways that are pivotal for maintaining genome stability, including nucleotide excision repair, interstrand crosslink repair and homologous recombination. Erccl-Xpf incises

  2. Repair of DNA treated with γ-irradiation and chemical carcinogens. Progress report, June 1, 1975--January 31, 1976

    International Nuclear Information System (INIS)

    Goldthwait, D.A.

    1976-02-01

    Enzymatic mechanisms of DNA repair are under investigation. From E. coli an endonuclease active on apurinic acid has been separated from endonuclease II active on DNA treated with methylmethane sulfonate, methylnitrosourea, 7-bromomethyl-12-methylbenz[a]anthracene and γ-irradiation. Mutants have been identified for each enzyme. The purification of both enzymes is proceeding and the mechanism of action of endonuclease II which has both an N-glycosidase and a phosphodiester hydrolase activity is under investigation. Evidence demonstrating exonuclease III is an enzyme separate from the apurinic acid endonuclease and endonuclease II has been accumulated but this is still under investigation. Work has been completed on 7-bromomethyl-12-methylbenz[a]anthracene treated DNA as a substrate and is being continued on the inhibitory effects of phorbol ester on endonuclease II. Finally, the properties of an enzyme from calf liver active on depurinated DNA have been compared with those of a comparable enzyme from calf thymus. Evidence that they are isozymes has been found

  3. Purification, crystallization, X-ray diffraction analysis and phasing of an engineered single-chain PvuII restriction endonuclease

    International Nuclear Information System (INIS)

    Meramveliotaki, Chrysi; Kotsifaki, Dina; Androulaki, Maria; Hountas, Athanasios; Eliopoulos, Elias; Kokkinidis, Michael

    2007-01-01

    PvuII is the first type II restriction endonuclease to be converted from its wild-type homodimeric form into an enzymatically active single-chain variant. The enzyme was crystallized and phasing was successfully performed by molecular replacement. The restriction endonuclease PvuII from Proteus vulgaris has been converted from its wild-type homodimeric form into the enzymatically active single-chain variant scPvuII by tandemly joining the two subunits through the peptide linker Gly-Ser-Gly-Gly. scPvuII, which is suitable for the development of programmed restriction endonucleases for highly specific DNA cleavage, was purified and crystallized. The crystals diffract to a resolution of 2.35 Å and belong to space group P4 2 , with unit-cell parameters a = b = 101.92, c = 100.28 Å and two molecules per asymmetric unit. Phasing was successfully performed by molecular replacement

  4. Contribution of sleep to the repair of neuronal DNA double-strand breaks: evidence from flies and mice

    OpenAIRE

    Bellesi, Michele; Bushey, Daniel; Chini, Mattia; Tononi, Giulio; Cirelli, Chiara

    2016-01-01

    Exploration of a novel environment leads to neuronal DNA double-strand breaks (DSBs). These DSBs are generated by type 2 topoisomerase to relieve topological constrains that limit transcription of plasticity-related immediate early genes. If not promptly repaired, however, DSBs may lead to cell death. Since the induction of plasticity-related genes is higher in wake than in sleep, we asked whether it is specifically wake associated with synaptic plasticity that leads to DSBs, and whether slee...

  5. Inhibition of DNA repair in ultraviolet-irradiated human cells by hydroxyurea

    International Nuclear Information System (INIS)

    Francis, A.A.; Carrier, W.L.; Smith, D.P.; Regan, J.D.; Blevins, R.D.

    1979-01-01

    The effect on DNA repair in ultraviolet-irradiated human skin fibroblasts by hydroxyurea has been examined in this study using three independent methods for measuring DNA repair: the 5-bromodeoxyuridine photolysis assay which measures DNA repair replication, chromatographic measurement of thymine-containing dimers, and measurement of specific ultraviolet-endonuclease-sensitive sites in irradiated DNA. Little effect on hydroxyurea was observed at the concentration of 2mM, which is often used to inhibit semiconservative DNA synthesis; however, 10 mM hydroxyurea resulted in marked inhibition (65-70%) of excision repair. This inhibition was accompanied by a possible doubling in the size of the repaired region. The accumulation of large numbers of single-strand breaks following ultraviolet irradiation and hydroxyurea incubation seen by other investigators was not observed with the normal skin fibroblasts used in this study. A comparison of hydroxyurea effects on the different DNA repair assays indicates inhibition of one step in DNA repair also results in varying degrees of inhibition of other steps as well. (Auth.)

  6. Inhibition of DNA repair in ultraviolet-irradiated human cells by hydroxyurea

    Energy Technology Data Exchange (ETDEWEB)

    Francis, A.A. (Oak Ridge National Lab., TN); Blevins, R.D.; Carrier, W.L.; Smith, D.P.; Regan, J.D.

    1979-01-01

    The effect on DNA repair in ultraviolet-irradiated human skin fibroblasts by hydroxyurea has been examined in this study using three independent methods for measuring DNA repair: the 5-bromodeoxyuridine photolysis assay which measures DNA repair replication, chromatographic measurement of thymine-containing dimers, and measurement of specific ultraviolet-endonuclease-sensitive sites in irradiated DNA. Little effect of hydroxyurea was observed at the concentration of 2 mM, which is often used to inhibit semiconservative DNA synthesis; however, 10 mM hydroxyurea resulted in marked inhibition (65 to 70%) of excision repair. This inhibition was accompanied by a possible doubling in the size of the repaired region. The accumulation of large numbers of single-strand breaks following ultraviolet irradiation and hydroxyurea incubation seen by other investigators was not observed with the normal skin fibroblasts used in this study. A comparison of hydroxyurea effects on the different DNA repair assays indicates inhibition of one step in DNA repair also results in varying degrees of inhibition of other steps as well.

  7. hnRNP-U is a specific DNA-dependent protein kinase substrate phosphorylated in response to DNA double-strand breaks

    International Nuclear Information System (INIS)

    Berglund, Fredrik M.; Clarke, Paul R.

    2009-01-01

    Cellular responses to DNA damage are orchestrated by the large phosphoinositol-3-kinase related kinases ATM, ATR and DNA-PK. We have developed a cell-free system to dissect the biochemical mechanisms of these kinases. Using this system, we identify heterogeneous nuclear ribonucleoprotein U (hnRNP-U), also termed scaffold attachment factor A (SAF-A), as a specific substrate for DNA-PK. We show that hnRNP-U is phosphorylated at Ser59 by DNA-PK in vitro and in cells in response to DNA double-strand breaks. Phosphorylation of hnRNP-U suggests novel functions for DNA-PK in the response to DNA damage.

  8. Evidence for multiple repair pathways of double-strand DNA breaks in Chinese hamster cells

    International Nuclear Information System (INIS)

    Giaccia, A.J.; Weistein, R.; Stamato, T.D.; Roosa, R.

    1984-01-01

    XR-1 is a mutant of the Chinese hamster cell (CHO-K1) which is abnormally sensitive to killing by gamma rays in G/sub 1/ (D37 = 27 rads vs. 318 for parent) and early S phases of the cell cycle but has near normal resistance in late S and early G/sub 2/ (Somatic Cell Genetics, 9:165-173, 1983). Complementation studies between XR-1 and its parent indicate that this sensitivity to gamma rays is a recessive phenotype. Both the XR-1 and its parent cell are able to repair single strand DNA breaks. However, in comparison to its parental cell, the XR-1 cell is markedly deficient in the repair of double strand DNA breaks introduced by gamma irradiation during the sensitive G/sub 1/-early S period, while in the late S-G/sub 2/ resistant period the repair is similar in both cells. This correlation suggests that an unrepaired double strand DNA break is the lethal lesion and that at least two pathways for the repair of these lesions exist in mammalian cells

  9. Molecular mechanisms involved in the production of chromosomal aberrations. I

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Obe, G.

    1978-01-01

    Chinese hamster ovary cells (CHO) were X-irradiated in G2 stage of the cell cycle and immediately treated, in the presence of inactivated Sendai virus, with Neurospora endonuclease (E.C. 3.1.4.), an enzyme which is specific for cleaving single-stranded DNA. With this treatment, the frequencies of all types of chromosome aberrations increased when compared to X-irradiated controls. These results are interpreted as due to the conversion of some of the X-ray induced single-stranded DNA breaks into double-strand breaks by this enzyme. Similar enhancement due to this enzyme was found following treatment with methyl methanesulfonate (MMS) and bleomycin, but not following UV and mitomycin C. Addition of Micrococcus endonuclease and Neurospora endonuclease to the cells did not alter the frequencies of aberrations induced by UV. The introduction of enzymes with specific DNA-repair function offers possibilities to probe into the molecular events involved in the formation of structural chromosome aberrations induced by different classes of physical and chemical mutagens. (Auth.)

  10. Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks

    DEFF Research Database (Denmark)

    Sotiriou, Sotirios K; Kamileri, Irene; Lugli, Natalia

    2016-01-01

    Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose...... RAD52 facilitates repair of collapsed DNA replication forks in cancer cells....

  11. Induction of double-strand breaks in DNA of prokaryotes and eukaryotes and their repair. 1. Application of elastoviscosimetry for studying double-strand breaks in DNA of Escherichia coli induced by. gamma. -irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bresler, S E; Noskin, L A; Suslov, A V [AN SSSR, Leningrad. Inst. Yadernoj Fiziki

    1980-11-01

    It is shown that the method of elastoviscosimetry gives a possibility to record the formation of DNA double-strand breaks in Escherichia coli cells induced by ..gamma.. irradiation at doses close to D/sub 37/. The dependence of changes of elastoviscosity parameter on the dose (tau/sub 0/) passes through the maximum. It is shown that the ascending section of this curve (at minimum ..gamma.. irradiation doses) characterizes the relaxation process of the superspiralised chromosome in nucleotide of the E. coli. This relaxation is observed due to ..gamma.. induced damages which are not double-strand breaks. By the maximum position one can judge on a dose yield of the first DNA double-strand break, the descending part of the dose curve describes the kinetics of accumulation of breaks with the dose increase. The analysis of the data obtained gives the possibility to come to the conclusion that when applying a usual technique of irradiation and lysis of cells not providing for special measures on inhibition of endo-and exonuclease activity in ..gamma.. irradiated cells, the dose yield of double-strand breaks noticeably increases (by 4.2 times). In the case of an essential, though incomplete, inhibition of nuclease activities in ..gamma.. irradiated cells the dose yield of breaks approximately corresponds to the dose curve of inactivation of these cells (D/sub 37/12.5+-3.0 krad, the first double-strand break -at 14.5+-2.4 krad).

  12. Induction of double-strand breaks in DNA of prokaryotes and eukaryotes and their repair. 1. Application of elastoviscosimetry for studying double-strand breaks in DNA of Escherichia coli induced by γ-irradiation

    International Nuclear Information System (INIS)

    Bresler, S.E.; Noskin, L.A.; Suslov, A.V.

    1980-01-01

    It is shown that the method of elastoviscosimetry gives a possibility to record the formation of DNA double-strand breaks in Escherichia coli cells induced by γ irradiation at doses close to D 37 . The dependence of changes of elastoviscosity parameter on the dose (tau 0 ) passes through the maximum. It is shown that the ascending section of this curve (at minimum γ irradiation doses) characterizes the relaxation process of the superspiralised chromosome in nucleotide of the E. coli. This relaxation is observed due to γ induced damages which are not double-strand breaks. By the maximum position one can judge on a dose yield of the first DNA double-strand break, the descending part of the dose curve describes the kinetics of accumulation of breaks with the dose increase. The analysis of the data obtained gives the possibility to come to the conclusion that when applying a usual technique of irradiation and lysis of cells not providing for special measures on inhibition of endo-and exonuclease activity in γ irradiated cells, the dose yield of double-strand breaks noticeably increases (by 4.2 times). In the case of an essential, though incomplete, inhibition of nuclease activities in γ irradiated cells the dose yield of breaks approximately corresponds to the dose curve of inactivation of these cells (D 37 12.5+-3.0 krad, the first double-strand break -at 14.5+-2.4 krad)

  13. Epidermal growth factor stimulating reparation of γ-ray-induced single-strand breaks predominantly in untranscribed DNA of HeLa cells

    International Nuclear Information System (INIS)

    Igusheva, O.A.; Bil'din, V.N.; Zhestyanikov, V.D.

    1994-01-01

    Considerable evidence suggest that genomic DNA undergoes reparation unevenly because of different transcription activities of its particular sequence. It is highly probably that transcriptional factors are necessary for postion stages of excision reparation and for reparation of single-strand DNA breaks caused by ionizing radiation. There is evidence suggesting that DNA lesions inflicted by γ-radiation is preferentially initiated in transcribed rather than in untranscribed DNA species. This paper looks at the relationship between stimulatory effect of epidermal growth factor (EGF) on reparation of single-strand DNA breaks and reparation of the damage done to active and inert fragments of chromatin. The results show that EGF stimulates reparation of single-strand DNA breaks induced by γ-radiation more effectively in untranscribed than in transcribed DNA. 13 refs., 1 fig., 1 tab

  14. Radiation-chemical discussion on inverse dose-rate effect observed in radiation-induced strand breaks of plasmid DNA

    International Nuclear Information System (INIS)

    Masuda, Takahiro

    1994-01-01

    Experimental results of inverse dose-rate effect, so-called Kada Effects, which was published by Takakura and her coworkers on radiation-induced strand breaks of plasmid DNA in aerated aqueous solution, have been kinetically analyzed and discussed on the basis of radiation chemistry. the kinetic analysis indicates that there are two possible mechanisms; 1) equilibrium mixture of O 2 - and HO 2 is responsible for strand breaks of DNA, and 2) peroxyl radical produced from citrate is effective for the strand breaks. However, the detailed kinetic analysis revealed that the latter is improbable because unimolecular decay of the peroxyl radical must be assumed to be negligible for its participation despite fast decay of analogous organic peroxyl radicals. The analysis has also given 9.93±0.10 dm 3 mol -1 s -1 per nucleotide unit, which corresponds to 7.62 x 10 4 dm 3 mol -1 s -1 per DNA molecule, as the rate constant for the reaction of the equilibrium mixture with plasmid pBR 322 DNA. Furthermore the probability that the reaction of the mixture with a nucleotide unit of DNA leads to strand breaks was obtained to be 3.36 x 10 -3 for gamma-irradiated system and 1.98 x 10 -3 for beta-irradiated system, respectively. (author)

  15. Radiation damage of DNA. Model for direct ionization of DNA

    International Nuclear Information System (INIS)

    Kobayashi, Kazuo; Tagawa, Seiichi

    2004-01-01

    Current aspects of radiation damage of DNA, particularly induced by the direct effect of radiation, and author's method of pulse radiolysis are described in relation to behavior of ions formed by radiation and active principles to induce the strand break. In irradiation of DNA solution in water, the direct effect of radiation is derived from ionization of DNA itself and indirect one, from the reaction between DNA and radicals generated from water molecules and the former direct one has been scarcely investigated due to difficulty of experimental approach. Radicals generated in sugar moiety of DNA are shown important in the strand break by recent studies on crystalline DNA irradiated by X-ray, DNA solution by electron and photon beams, hydrated DNA by γ-ray and by high linear energy transfer (LET) ion. Author's pulse radiolysis studies have revealed behaviors of guanine and adenine radical cations in dynamics of DNA oxidation. Since reactions described are the model, the experimental approach is thought necessary for elucidation of the actually occurring DNA damage in living cells. (N.I.)

  16. Radiation induced DNA double-strand breaks in radiology; Strahleninduzierte DNA-Doppelstrangbrueche in der Radiologie

    Energy Technology Data Exchange (ETDEWEB)

    Kuefner, M.A. [Dornbirn Hospital (Austria). Dept. of Radiology; Brand, M.; Engert, C.; Uder, M. [Erlangen University Hospital (Germany). Dept. of Radiology; Schwab, S.A. [Radiologis, Oberasbach (Germany)

    2015-10-15

    Shortly after the discovery of X-rays, their damaging effect on biological tissues was observed. The determination of radiation exposure in diagnostic and interventional radiology is usually based on physical measurements or mathematical algorithms with standardized dose simulations. γ-H2AX immunofluorescence microscopy is a reliable and sensitive method for the quantification of radiation induced DNA double-strand breaks (DSB) in blood lymphocytes. The detectable amount of these DNA damages correlates well with the dose received. However, the biological radiation damage depends not only on dose but also on other individual factors like radiation sensitivity and DNA repair capacity. Iodinated contrast agents can enhance the x-ray induced DNA damage level. After their induction DSB are quickly repaired. A protective effect of antioxidants has been postulated in experimental studies. This review explains the principle of the γ-H2AX technique and provides an overview on studies evaluating DSB in radiologic examinations.

  17. Key Players in I-DmoI Endonuclease Catalysis Revealed from Structure and Dynamics

    DEFF Research Database (Denmark)

    Molina, Rafael; Besker, Neva; Marcaida, Maria Jose

    2016-01-01

    . The cleavage mechanism was related both to key structural effects, such as the position of water molecules and ions participating in the cleavage reaction, and to dynamical effects related to protein behavior. In particular, we found that the protein perturbation pattern significantly changes between cleaved......Homing endonucleases, such as I-DmoI, specifically recognize and cleave long DNA target sequences (∼20 bp) and are potentially powerful tools for genome manipulation. However, inefficient and off-target DNA cleavage seriously limits specific editing in complex genomes. One approach to overcome...

  18. What is DNA damage? Risk of double-strand break and its individual variation

    International Nuclear Information System (INIS)

    Hanaoka, Fumio

    2011-01-01

    The author discusses about the title subject in an aspect of possible spreading of Fukushima radioactive substances mainly in eastern north area of Japan where carcinogenic incidence may be increased as the ionizing radiation injures the gene (DNA). At first, explained is that cancer is a disease of genes with infinitive proliferation of cells, there are systems to prevent it by repairing the damaged DNA and by other mechanisms like exclusion of cells damaged too much or killing cancer cells with immunity, and individual difference of the repairing capability exists. DNA is always damaged even under ordinary living conditions by sunlight UV ray, cosmic radiation and chemicals externally and by active oxygen species and thermal water movement internally. Concomitantly, DNA damaged by many mechanisms like deletion, dimmer formation, chemical modification of bases, single and double strand breaks is always repaired by concerned enzymes. Double-strand damage by high-energy radiation like gamma ray is quite risky because its repair sometimes accompanies error as concerned enzymes are from more multiple genes. There are many syndromes derived from gene deficit of those repairing enzymes. The diseases concerned with repair of the double-strand damage teach that fetus and infant are more sensitive to radiation than adult as their young body cells are more actively synthesizing DNA, during which, if DNA is injured by radiation, risk of repairing error is higher as the double strand break more frequently occurs. It cannot be simply said that a certain radiation dose limit is generally permissible. There is an individual difference of radiation sensitivity and a possible method to find out an individual weak to radiation is the lymphocyte screening in vitro using anticancer bleomycin which breaks the double strand. (T.T.)

  19. The effect of mitotic inhibitors on DNA strand size and radiation-associated break repair in Down syndrome fibroblasts

    International Nuclear Information System (INIS)

    Woods, W.G.; Steiner, M.E.; Kalvonjian, S.L.

    1985-01-01

    The effect of mitotic inhibitors on formation and repair of DNA breaks was studied in cultured fibroblasts from patients with Down syndrome in order to investigate the hypothesis that the karyotyping procedure itself may play a role in the increased chromosome breakage seen in these cells after gamma radiation exposure. Using the nondenaturing elution and alkaline elution techniques to examine fibroblasts from Down syndrome patients and from controls, no specific abnormalities in Down syndrome cells could be detected after exposure to mitotic inhibitors, including rate and extent of elution of DNA from filters as well as repair of radiation-induced DNA breaks. In both normal and Down syndrome cell strains, however, exposure to mitotic inhibitors was associated with a decrease in cellular DNA strand size, suggesting the presence of drug-induced DNA strand breaks. The mechanism of increased chromosome sensitivity of Down syndrome cells to gamma radiation remains unknown. (orig.)

  20. Coexposure to benzo[a]pyrene plus UVA induced DNA double strand breaks: visualization of Ku assembly in the nucleus having DNA lesions

    International Nuclear Information System (INIS)

    Toyooka, Tatsushi; Ibuki, Yuko; Koike, Manabu; Ohashi, Norio; Takahashi, Sentaro; Goto, Rensuke

    2004-01-01

    Benzo[a]pyrene (BaP) is a ubiquitous environmental pollutant with potential carcinogenicity. It has been shown that BaP, upon UVA irradiation, synergistically induced oxidative DNA damage, but other DNA damage was not confirmed. In this study, we examined whether coexposure to BaP plus UVA induces double strand breaks (DSBs) using xrs-5 cells, deficient in the repair of DSBs (Ku80 mutant), and whether Ku translocates involving the formation of DSBs. BaP plus UVA had a significant cytotoxic effect on CHO-K1 cells and an even more drastic effect on Ku80-deficient, xrs-5 cells, suggesting that the DSBs were generated by coexposure to BaP plus UVA. The DSBs were repaired in CHO-K1 cells within 30 min, but not in xrs-5 cells, indicating the involvement of a non-homologous end joining, which needs Ku proteins. Furthermore, we succeeded in visualizing that Ku80 rapidly assembled to the exposed region, in which DSBs might be generated, and clarified that the presence of both Ku70 and Ku80 was important for their accumulation

  1. DNA double-strand breaks induced by cavitational mechanical effects of ultrasound in cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Yukihiro Furusawa

    Full Text Available Ultrasonic technologies pervade the medical field: as a long established imaging modality in clinical diagnostics; and, with the emergence of targeted high intensity focused ultrasound, as a means of thermally ablating tumours. In parallel, the potential of [non-thermal] intermediate intensity ultrasound as a minimally invasive therapy is also being rigorously assessed. Here, induction of apoptosis in cancer cells has been observed, although definitive identification of the underlying mechanism has thus far remained elusive. A likely candidate process has been suggested to involve sonochemical activity, where reactive oxygen species (ROS mediate the generation of DNA single-strand breaks. Here however, we provide compelling new evidence that strongly supports a purely mechanical mechanism. Moreover, by a combination of specific assays (neutral comet tail and staining for γH2AX foci formation we demonstrate for the first time that US exposure at even moderate intensities exhibits genotoxic potential, through its facility to generate DNA damage across multiple cancer lines. Notably, colocalization assays highlight that ionizing radiation and ultrasound have distinctly different signatures to their respective γH2AX foci formation patterns, likely reflecting the different stress distributions that initiated damage formation. Furthermore, parallel immuno-blotting suggests that DNA-PKcs have a preferential role in the repair of ultrasound-induced damage.

  2. Adenosine triphosphate stimulates Aquifex aeolicus MutL endonuclease activity.

    Directory of Open Access Journals (Sweden)

    Jerome Mauris

    2009-09-01

    Full Text Available Human PMS2 (hPMS2 homologues act to nick 5' and 3' to misincorporated nucleotides during mismatch repair in organisms that lack MutH. Mn(++ was previously found to stimulate the endonuclease activity of these homologues. ATP was required for the nicking activity of hPMS2 and yPMS1, but was reported to inhibit bacterial MutL proteins from Thermus thermophilus and Aquifex aeolicus that displayed homology to hPMS2. Mutational analysis has identified the DQHA(X(2E(X(4E motif present in the C-terminus of PMS2 homologues as important for endonuclease activity.We examined the effect ATP had on the Mn(++ induced nicking of supercoiled pBR322 by full-length and mutant A. aeolicus MutL (Aae MutL proteins. Assays were single time point, enzyme titration experiments or reaction time courses. The maximum velocity for MutL nicking was determined to be 1.6+/-0.08x10(-5 s(-1 and 4.2+/-0.3x10(-5 s(-1 in the absence and presence of ATP, respectively. AMPPNP stimulated the nicking activity to a similar extent as ATP. A truncated Aae MutL protein composed of only the C-terminal 123 amino acid residues was found to nick supercoiled DNA. Furthermore, mutations in the conserved C-terminal DQHA(X(2E(X(4E and CPHGRP motifs were shown to abolish Aae MutL endonuclease activity.ATP stimulated the Mn(++ induced endonuclease activity of Aae MutL. Experiments utilizing AMPPNP implied that the stimulation did not require ATP hydrolysis. A mutation in the DQHA(X(2E(X(4E motif of Aae MutL further supported the role of this region in endonclease activity. For the first time, to our knowledge, we demonstrate that changing the histidine residue in the conserved CPHGRP motif abolishes endonucleolytic activity of a hPMS2 homologue. Finally, the C-terminal 123 amino acid residues of Aae MutL were sufficient to display Mn(++ induced nicking activity.

  3. Adaptive response of DNA strand breaks in lymphocytes to low dose and γ-rays

    International Nuclear Information System (INIS)

    Du Zeji; Su Liaoyuan; Kong Xiangrong; Tian Hailin

    1996-01-01

    Fluorometric analysis of DNA unwinding was used to study the adaptive response of DNA strand breaks induced by low dose γ-rays and the effect of pADPRT inhibitor-3-AB on the adaptive response. The results indicated that 0.5-4 cGy γ-rays could induce adaptive response of DNA strand breaks in lymphocytes, especially at the doses of 2.0 and 4.0 cGy. This response was not obvious after 8.0 cGy γ-rays irradiation. A challenge dose of 5-20 Gy could make the response expressed, 15 Gy was the best one and 30 Gy was too high to give an adaptive response . 0.5 mM 3-AB could inhibit the response vigorously. As the concentration increased, the adaptive response could be inhibited completely

  4. The contribution of thermally labile sugar lesions to DNA double-strand break formation in cells grown in the presence of BrdU.

    Science.gov (United States)

    Li, Fanghua; Cheng, Yanlei; Iliakis, George

    2015-04-01

    Radiosensitization by bromodeoxyuridine (BrdU) is commonly attributed to an increase in the yield of double-strand breaks (DSB) in the DNA and an associated decrease in the reparability of these lesions. Radiation chemistry provides a mechanism for the increased yield of DSB through the generation, after bromine loss, of a highly reactive uracilyl radical that attacks the sugar moiety of the nucleotide to produce a single-strand break (SSB). The effects underpinning DSB repair inhibition remain, in contrast, incompletely characterized. A possible source of reduced reparability is a change in the nature or complexity of the DSB in BrdU-substituted DNA. Recent studies show that DSB-complexity or DSB-nature may also be affected by the presence within the cluster of thermally labile sugar lesions (TLSL) that break the DNA backbone only if they chemically evolve to SSB, a process thought to occur within the first hour post-irradiation. Since BrdU radiosensitization might be associated with increased yields and reduced reparability of DSB, we investigated whether BrdU underpins these effects by shifting the balance in the generation of TLSL. We employed asymmetric-field-inversion gel electrophoresis (AFIGE), a pulsed-field gel electrophoresis (PFGE) method to quantitate DSB in a battery of five cells lines grown in the presence of different concentrations of BrdU. We measured specifically the yields of promptly forming DSB (prDSB) using low temperature lysis protocols, and the yields of total DSB (tDSB = prDSB + tlDSB; tlDSB form after evolution to SSB of TLSL) using high temperature lysis protocols. We report that incorporation of BrdU generates similar increases in the formation of tlDSB and prDSB, but variations are noted among the different cell lines tested. The similar increase in the yields of tlDSB and prDSB in BrdU substituted DNA showed that shifts in the yields of these forms of lesions could not be invoked to explain BrdU radiosensitization.

  5. On the identification techniques for ionizing radiation structure breaks in the DNA molecule

    International Nuclear Information System (INIS)

    Kamluk, A.N.; Shirko, A.V.; Zhavarankau, I.S.

    2012-01-01

    In this paper, we propose a theoretical method for evaluation of the number and locations of single-strand breaks in DNA using a change in the passage of a longitudinal wave along the double helix. A linear chain of n interacting particles connected by a pair of springs is taken as a model of the DNA molecule. (authors)

  6. Phage T4 endonuclease V stimulates DNA repair replication in isolated nuclei from ultraviolet-irradiated human cells, including xeroderma pigmentosum fibroblasts

    International Nuclear Information System (INIS)

    Smith, C.A.; Hanawalt, P.C.

    1978-01-01

    The repair mode of DNA replication has been demonstrated in isolated nuclei from uv-irradiated human cells. Nuclei are incubated in a mixture containing [ 3 H]thymidine triphosphate and bromodeoxyuridine triphosphate in a 1:5 ratio. The 3 H at the density of parental DNA in alkaline CsCl density gradients is then a measure of repair. In nuclei prepared from WI38 cells 30 min after irradiation, repair replication is uv-dependent and proceeds at approximately the in vivo rate for 5 min. Repair replication is reduced in irradiated nuclei or in nuclei prepared immediately after irradiation. It is Mg 2+ -dependent and stimulated by added ATP and deoxyribonucleoside triphosphates. No repair replication is observed in nuclei from xeroderma pigmentosum (complementation group A) cells. However, upon addition of coliphage T4 endonuclease V, which specifically nicks DNA containing pyrimidine dimers, repair replication is observed in nuclei from irradiated xeroderma pigmentosum cells and is stimulated in WI38 nuclei. The reaction then persists for an hour and is dependent upon added ATP and deoxyribonucleoside triphosphates. The repair label is in stretches of roughly 35 nucleotides, as it is in intact cells. Added pancreatic DNase does not promote uv-dependent repair synthesis. Our results support the view that xeroderma pigmentosum (group A) cells are defective in the incision step of the DNA excision repair pathway, and demonstrate the utility of this system for probing DNA repair mechanisms

  7. Role of XRCC4 phosphorylation by DNA-PK in the regulation of NHEJ repair pathway of DNA double strand break

    International Nuclear Information System (INIS)

    Sharma, Mukesh Kumar; Imamichi, Shoji; Fukuchi, Mikoto; Kamdar, Radhika P.; Sicheng, Liu; Wanotayan, Rujira; Matsumoto, Yoshihisa

    2014-01-01

    Non-homologous end-joining (NHEJ) is the predominant pathway of DNA double strand breaks in higher eukaryotes and is active throughout the cell cycle. NHEJ repair includes many factors as Ku70/86, DNA-PKcs, XRCC4-Ligase IV complex and XLF (also known as Cernunnos). In these factors, DNA-PKcs acts as central regulator in NHEJ repair. It recruited at the DNA damages site after DNA damage and after association with Ku its kinase activity is activated. It phosphorylates many of important NHEJ proteins in vitro including XRCC4, Ku 70/86, Artemis, and even DNA-PKcs but till now, very less studies have been done to know the role and significance of phosphorylation in the NHEJ repair. Studies by other researchers identified various phosphorylation sites in XRCC4 by DNA-PK using mass spectrometry but these phosphorylation sites were shown to be dispensable for DSB repair. In the present investigation, we identified 3 serine and one new threonine phosphorylation sites in XRCC4 protein by DNA-PK. In vivo phosphorylation at these sites was verified by generating phosphorylation specific antibodies and the requirement for DNA-PK therein was verified by using DNA-PK inhibitor and DNA-PK proficient and deficient cell lines in response to radiation and zeocin treatment. We have also found that phosphorylation at these sites showed dose dependency in response to radiation treatment. The two serine and one threonine phosphorylation site is also biological important as their mutation into alanine significantly elevated radiosensitivity as measured by colony formation assay. Neutral comet assay showed delayed kinetics in DSB repair of these mutants. Furthermore, we have found a protein, with putative DSB repair function, which interacts with domain including the phosphorylation sites.These results indicate that these phosphorylation sites would mediate functional link between XRCC4 and DNA-PK. (author)

  8. Flap Endonuclease 1 Limits Telomere Fragility on the Leading Strand*

    Science.gov (United States)

    Teasley, Daniel C.; Parajuli, Shankar; Nguyen, Mai; Moore, Hayley R.; Alspach, Elise; Lock, Ying Jie; Honaker, Yuchi; Saharia, Abhishek; Piwnica-Worms, Helen; Stewart, Sheila A.

    2015-01-01

    The existence of redundant replication and repair systems that ensure genome stability underscores the importance of faithful DNA replication. Nowhere is this complexity more evident than in challenging DNA templates, including highly repetitive or transcribed sequences. Here, we demonstrate that flap endonuclease 1 (FEN1), a canonical lagging strand DNA replication protein, is required for normal, complete leading strand replication at telomeres. We find that the loss of FEN1 nuclease activity, but not DNA repair activities, results in leading strand-specific telomere fragility. Furthermore, we show that FEN1 depletion-induced telomere fragility is increased by RNA polymerase II inhibition and is rescued by ectopic RNase H1 expression. These data suggest that FEN1 limits leading strand-specific telomere fragility by processing RNA:DNA hybrid/flap intermediates that arise from co-directional collisions occurring between the replisome and RNA polymerase. Our data reveal the first molecular mechanism for leading strand-specific telomere fragility and the first known role for FEN1 in leading strand DNA replication. Because FEN1 mutations have been identified in human cancers, our findings raise the possibility that unresolved RNA:DNA hybrid structures contribute to the genomic instability associated with cancer. PMID:25922071

  9. Fine resolution mapping of double-strand break sites for human ribosomal DNA units

    Directory of Open Access Journals (Sweden)

    Bernard J. Pope

    2016-12-01

    Full Text Available DNA breakage arises during a variety of biological processes, including transcription, replication and genome rearrangements. In the context of disease, extensive fragmentation of DNA has been described in cancer cells and during early stages of neurodegeneration (Stephens et al., 2011 Stephens et al. (2011 [5]; Blondet et al., 2001 Blondet et al. (2001 [1]. Stults et al. (2009 Stults et al. (2009 [6] reported that human rDNA gene clusters are hotspots for recombination and that rDNA restructuring is among the most common chromosomal alterations in adult solid tumours. As such, analysis of rDNA regions is likely to have significant prognostic and predictive value, clinically. Tchurikov et al. (2015a, 2016 Tchurikov et al. (2015a, 2016 [7,9] have made major advances in this direction, reporting that sites of human genome double-strand breaks (DSBs occur frequently at sites in rDNA that are tightly linked with active transcription - the authors used a RAFT (rapid amplification of forum termini protocol that selects for blunt-ended sites. They reported the relative frequency of these rDNA DSBs within defined co-ordinate ‘windows’ of varying size and made these data (as well as the relevant ‘raw’ sequencing information available to the public (Tchurikov et al., 2015b. Assay designs targeting rDNA DSB hotspots will benefit greatly from the publication of break sites at greater resolution. Here, we re-analyse public RAFT data and make available rDNA DSB co-ordinates to the single-nucleotide level.

  10. Carbon ion induced DNA double-strand breaks in melanophore B16

    International Nuclear Information System (INIS)

    Wei Zengquan; Zhou Guangming; Wang Jufang; He Jing; Li Qiang; Li Wenjian; Xie Hongmei; Cai Xichen; Tao Huang; Dang Bingrong; Han Guangwu

    1997-01-01

    DNA double-strand breaks (DSBs) in melanophore B 16 induced by plateau and extended Bragg peak of 75 MeV/u 12 C 6+ ions were studied by using a technique of inverse pulsed-field gel electrophoresis (PIGE). DNA fragment lengths were distributed in two ranges: the larger in 1.4 Mbp-3.2 Mbp and the smaller in less than 1.2 Mbp. It indicates that distribution of DNA fragments induced by heavy ion irradiation is not stochastic and there probably are sensitive sites to heavy ions in DNA molecules of B 16 . Percentage of DNA released from plug (PR) increased and trended towards a quasi-plateau ∝85% as dose increased. Content of the larger fragments decreased and flattened with increasing dose while content of the smaller ones increased and trended towards saturation. (orig.)

  11. Strand breaks and lethal damage in plasmid DNA subjected to 60CO-γirradiation

    International Nuclear Information System (INIS)

    Klimczak, U.

    1992-01-01

    Experiments with calf thymus DNA subjected to extracellular irradiation yield information on the role of direct and indirect effects in single-strand breakage, if this is evaluated with reference to the scavenger activity in respect of OH radicals. The role of the two processes in the occurrence of double-stand breaks and further damage leading to cell decay has so far remained largely obscure. It was the aim of the study described here to contribute to research in this field by performing in vitro experiments on biologically active DNA. For this purpose, DNA from pBR322 plasmids was irradiated in the presence of OH-radical scavengers. The number of single-strand and double-strand breaks was determined on the basis of the system's ability to eliminate OH radicals. In order to asses the influence of irradiation processes on the biological activity of DNA, investigations were carried out in E. coli for transformations caused by irradiated plasmid DNA. The results were interpreted in the light of theories about inhomogenous reaction kinetics put forward by Mark et al. (1989). It was finally discussed, which of the gamma-irradiation injuries occurring in DNA was to be held responsible for the inactivation of plasmid DNA and which enzymatic processes were additionally at work here. (orig./MG) [de

  12. Theoretical investigation of the production of strand breaks in DNA by water radicals

    International Nuclear Information System (INIS)

    Chatterjee, A.; Magee, J.L.

    1985-01-01

    A calculation has been made of the indirect action of radiation on SV40 DNA in dilute aqueous solution, including the extent of OH reaction with both the sugar moiety and the bases. A realistic DNA model is used along with a track model that gives the correct decay rates of hydrated electrons and OH radicals in pure water with the same calculational techniques. It was found, in agreement with experiment, that 80% of the OH attack on DNA is on the bases and 20% is on the sugar. It is estimated that the probability is almost non-existent ( -6 ) for two OH radicals from the same track or from two tracks to reach sugars on opposite strands within 12 base pairs from each other. Thus double strand breaks that depend linearly on the dose (as we find in a companion experimental programme) must arise from some other mechanism. The calculated single strand break probabilities are in good agreement with experiment. (author)

  13. Energy dissipation through wind-generated breaking waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shuwen; CAO Ruixue; XIE Lingling

    2012-01-01

    Wave breaking is an important process that controls turbulence properties and fluxes of heat and mass in the upper oceanic layer.A model is described for energy dissipation per unit area at the ocean surface attributed to wind-generated breaking waves,in terms of ratio of energy dissipation to energy input,windgenerated wave spectrum,and wave growth rate.Also advanced is a vertical distribution model of turbulent kinetic energy,based on an exponential distribution method.The result shows that energy dissipation rate depends heavily on wind speed and sea state.Our results agree well with predictions of previous works.

  14. Measurement of intracellular DNA double-strand break induction and rejoining along the track of carbon and neon particle beams in water

    International Nuclear Information System (INIS)

    Heilmann, Johannes; Taucher-Scholz, Gisela; Haberer, Thomas; Scholz, Michael; Kraft, Gerhard

    1996-01-01

    Purpose: The study was aimed at the measurement of effect-depth distributions of intracellularly induced DNA damage in water as tissue equivalent after heavy ion irradiation with therapy particle beams. Methods and Materials: An assay involving embedding of Chinese hamster ovary (CHO-K1) cells in large agarose plugs and electrophoretic elution of radiation induced DNA fragments by constant field gel electrophoresis was developed. Double-strand break production was quantified by densitometric analysis of DNA-fluorescence after staining with ethidium-bromide and determination of the fraction of DNA eluted out of the agarose plugs. Intracellular double-strand break induction and the effect of a 3 h rejoining incubation were investigated following irradiation with 250 kV x-rays and 190 MeV/u carbon- and 295 MeV/u neon-ions. Results and Conclusion: While the DNA damage induced by x-irradiation decreased continuously with penetration depth, a steady increase in the yield of double-strand breaks was observed for particle radiation, reaching distinct maxima at the position of the physical Bragg peaks. Beyond this, the extent of radiation damage dropped drastically. From comparison of DNA damage and calculated dose profiles, relative biological efficiencies (RBEs) for both double-strand break induction and unrejoined strand breaks after 3 h were determined. While RBE for the induction of DNA double-strand breaks decreased continuously with penetration depth, RBE maxima greater than unity were found with carbon- and neon-ions for double-strand break rejoining near the maximum range of the particles. The method presented here allows for a fast and accurate determination of depth profiles of relevant radiobiological effects for mixed particle fields in tissue equivalent

  15. DNA-to-protein crosslinks and backbone breaks caused by far- and near-ultraviolet, and visible light radiations in mammalian cells

    International Nuclear Information System (INIS)

    Peak, M.J.; Peak, J.G.

    1986-01-01

    Spectral responses for DNA damages caused by far-uv, near-uv, and visible light radiations have been studied. The near congruence of the spectra for far-uv damages and the spectrum of DNA is good evidence that the mechanism is the same for the induction of breaks, crosslinks, and pyrimidine dimers. For near-uv, the different spectra imply that at least several nonDNA sensitizer molecules act as primary chromophores, but that DNA damage eventually results. With the understanding that near-uv and visible radiations produce a variety of chemically potent reactive oxygen species within the cell, we recognize the possibility for many types of DNA damage. If we assume that SSBs and DNA-to-protein crosslinks are random single events along the genome, it is possible to compute the number of events per cell genome per lethal event caused by the different energies used. In the near-uv and visible region, many more breaks and crosslinks are formed per lethal event than by far-uv. About 20 times more SSBs per lethal event are caused by 365-nm radiation than by x-rays, strong evidence that these breaks are effectively repaired. It is therefore likely that SSBs are not a serious event with regard to cellular lethality. The role of crosslinks and their repair in lethal events is less clear. The lack of any correlation at all between the action spectra for SSBs, or crosslinks, and lethality and mutagenesis in the same cells is evidence that another lesion or lesions are involved in these events. The multitude of chemical events that can be caused in cellular metabolites by the reactive species generated by these long wavelengths of radiation means that death is attributable to the total spectrum of changed chemicals delivered by a lethal dose, only some of which are DNA changes leading to SSBs and crosslinks. 43 refs., 3 figs., 2 tabs

  16. Human circulating ribosomal DNA content significantly increases while circulating satellite III (1q12) content decreases under chronic occupational exposure to low-dose gamma- neutron and tritium beta-radiation.

    Science.gov (United States)

    Korzeneva, Inna B; Kostuyk, Svetlana V; Ershova, Elizaveta S; Skorodumova, Elena N; Zhuravleva, Veronika F; Pankratova, Galina V; Volkova, Irina V; Stepanova, Elena V; Porokhovnik, Lev N; Veiko, Natalia N

    A single exposure to ionizing radiation (IR) results in an elevated cell-free DNA (cfDNA) content in the blood plasma. In this case, the cfDNA concentration can be a marker of the cell death in the organism. However, a chronic exposure to a low-dose IR enhances both the endonuclease activity and titer of antibodies to DNA in blood plasma, resulting in a decrease of the total concentration of circulating cfDNA in exposed people. In this case, the total cfDNA concentration should not be considered as a marker of the cell death in an exposed body. We assumed that a pool of the cfDNA circulating in the exposed people contains DNA fragments, which are resistant to a double-strand break formation in the environment of the elevated plasma endonuclease activity, and can be accumulated in the blood plasma. In order to test this hypothesis, we studied the content of GC-rich sequences (69%GC) of the transcribed region of human ribosomal repeat (rDNA), as well as the content of AT-rich repeat (63%AT) of satellite III (1q12) in the cfDNA samples obtained from 285 individuals. We have found that a chronic exposure to gamma-neutron radiation (N=88) and tritium β-radiation (N=88) evokes an increase of the rDNA content (RrDNA index) and a decrease of the satellite III content (RsatIII index) in the circulating cfDNA as compared with the cfDNA of non-exposed people (N=109). Such index that simultaneously displays both the increase of rDNA content and decrease of satellite III content in the cfDNA (RrDNA/RsatIII) can be recommended as a marker of chronic processes in the body that involve the elevated cell death rate and/or increased blood plasma endonuclease activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Restriction endonuclease analysis of Pasteurella multocida isolates from three California turkey premises.

    Science.gov (United States)

    Christiansen, K H; Carpenter, T E; Snipes, K P; Hird, D W; Ghazikhanian, G Y

    1992-01-01

    Three California turkey premises that had repeated outbreaks of fowl cholera were studied for periods of 2 to 4 years. Using biochemical, serologic, plasmid DNA, and restriction endonuclease analyses of isolates of Pasteurella multocida from turkeys and wildlife on the premises, strains of the organism were found to be enzootic on two of the premises. On the third, a variety of strains of P. multocida were isolated from fowl cholera outbreak flocks.

  18. The opportunistic pathogen Pseudomonas aeruginosa activates the DNA double-strand break signaling and repair pathway in infected cells

    International Nuclear Information System (INIS)

    Elsen, S.; Collin-Faure, V.; Gidrol, X.; Lemercier, C.

    2013-01-01

    Highly hazardous DNA double-strand breaks can be induced in eukaryotic cells by a number of agents including pathogenic bacterial strains. We have investigated the genotoxic potential of Pseudomonas aeruginosa, an opportunistic pathogen causing devastating nosocomial infections in cystic fibrosis or immunocompromised patients. Our data revealed that infection of immune or epithelial cells by P. aeruginosa triggered DNA strand breaks and phosphorylation of histone H2AX (γH2AX), a marker of DNA double-strand breaks. Moreover, it induced formation of discrete nuclear repair foci similar to gamma-irradiation-induced foci, and containing γH2AX and 53BP1, an adaptor protein mediating the DNA-damage response pathway. Gene deletion, mutagenesis, and complementation in P. aeruginosa identified ExoS bacterial toxin as the major factor involved in γH2AX induction. Chemical inhibition of several kinases known to phosphorylate H2AX demonstrated that Ataxia Telangiectasia Mutated (ATM) was the principal kinase in P. aeruginosa-induced H2AX phosphorylation. Finally, infection led to ATM kinase activation by an auto-phosphorylation mechanism. Together, these data show for the first time that infection by P. aeruginosa activates the DNA double-strand break repair machinery of the host cells. This novel information sheds new light on the consequences of P. aeruginosa infection in mammalian cells. As pathogenic Escherichia coli or carcinogenic Helicobacter pylori can alter genome integrity through DNA double-strand breaks, leading to chromosomal instability and eventually cancer, our findings highlight possible new routes for further investigations of P. aeruginosa in cancer biology and they identify ATM as a potential target molecule for drug design. (authors)

  19. Radiation dose response of strand breaks in SINPV-DNA

    International Nuclear Information System (INIS)

    Zhang Chunxiang; Luo Daling; Li Mianfeng; Liu Xiaowei; Zeng Rong; Wang Xunzhang

    1995-01-01

    The Spodoplera litura Nuclear Polyhedrosis Viruses (SINPV) is a kind of insectile virus with a simple structure, in which a double helix DNA is encapsulated in a protein coat and there is no function of enzymatic repair. The SINPV samples in dry powdered form held in sealed plastic tube were irradiated by 1-100 kGy gamma rays. The single strand breaks (SSB) and double strand breaks (DSB) induced in SINPV after irradiation were measured by neutral and alkaline agarose gel electrophoresis. A dose-response function combining the responses of one-hit and two-hit events was used to describe the SSB and DSB dose-response curves. It is shown that the SSB are one-hit events and the DSB are the combination of both one-hit, and two-hit events, and two-hit events are predominant in the DSB process

  20. APE2 Zf-GRF facilitates 3'-5' resection of DNA damage following oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Bret D.; Berman, Zachary; Mueller, Geoffrey A.; Lin, Yunfeng; Chang, Timothy; Andres, Sara N.; Wojtaszek, Jessica L.; DeRose, Eugene F.; Appel, C. Denise; London, Robert E.; Yan, Shan; Williams, R. Scott

    2016-12-27

    The Xenopus laevis APE2 (apurinic/apyrimidinic endonuclease 2) nuclease participates in 3'-5' nucleolytic resection of oxidative DNA damage and activation of the ATR-Chk1 DNA damage response (DDR) pathway via ill-defined mechanisms. Here we report that APE2 resection activity is regulated by DNA interactions in its Zf-GRF domain, a region sharing high homology with DDR proteins Topoisomerase 3α (TOP3α) and NEIL3 (Nei-like DNA glycosylase 3), as well as transcription and RNA regulatory proteins, such as TTF2 (transcription termination factor 2), TFIIS, and RPB9. Biochemical and NMR results establish the nucleic acid-binding activity of the Zf-GRF domain. Moreover, an APE2 Zf-GRF X-ray structure and small-angle X-ray scattering analyses show that the Zf-GRF fold is typified by a crescent-shaped ssDNA binding claw that is flexibly appended to an APE2 endonuclease/exonuclease/phosphatase (EEP) catalytic core. Structure-guided Zf-GRF mutations impact APE2 DNA binding and 3'-5' exonuclease processing, and also prevent efficient APE2-dependent RPA recruitment to damaged chromatin and activation of the ATR-Chk1 DDR pathway in response to oxidative stress in Xenopus egg extracts. Collectively, our data unveil the APE2 Zf-GRF domain as a nucleic acid interaction module in the regulation of a key single-strand break resection function of APE2, and also reveal topologic similarity of the Zf-GRF to the zinc ribbon domains of TFIIS and RPB9.

  1. The role of DNA double-strand breaks in spontaneous homologous recombination in S. cerevisiae

    DEFF Research Database (Denmark)

    Lettier, Gaëlle; Feng, Q.; Mayolo, A.A. de

    2006-01-01

    of meiosis and result from the induction of a large number of DNA double-strand breaks (DSBs). By analogy, it is generally believed that the rare spontaneous mitotic HR events are due to repair of DNA DSBs that accidentally occur during mitotic growth. Here we provide the first direct evidence that most...

  2. Mitochondrial base excision repair assays

    DEFF Research Database (Denmark)

    Maynard, Scott; de Souza-Pinto, Nadja C; Scheibye-Knudsen, Morten

    2010-01-01

    The main source of mitochondrial DNA (mtDNA) damage is reactive oxygen species (ROS) generated during normal cellular metabolism. The main mtDNA lesions generated by ROS are base modifications, such as the ubiquitous 8-oxoguanine (8-oxoG) lesion; however, base loss and strand breaks may also occur....... Many human diseases are associated with mtDNA mutations and thus maintaining mtDNA integrity is critical. All of these lesions are repaired primarily by the base excision repair (BER) pathway. It is now known that mammalian mitochondria have BER, which, similarly to nuclear BER, is catalyzed by DNA...... glycosylases, AP endonuclease, DNA polymerase (POLgamma in mitochondria) and DNA ligase. This article outlines procedures for measuring oxidative damage formation and BER in mitochondria, including isolation of mitochondria from tissues and cells, protocols for measuring BER enzyme activities, gene...

  3. Plasmid ColE1 as a Molecular Vehicle for Cloning and Amplification of DNA

    Science.gov (United States)

    Hershfield, Vickers; Boyer, Herbert W.; Yanofsky, Charles; Lovett, Michael A.; Helinski, Donald R.

    1974-01-01

    DNA fragments obtained from EcoRI endonuclease digestion of bacteriophage ϕ80pt190 (trp+) and the plasmid ColE1 were covalently joined with polynucleotide ligase. Transformation of Escherichia coli trp- strains to tryptophan independence with the recombined DNA selected for reconstituted ColE1 plasmids containing the tryptophan operon and the ϕ80 immunity region. Similarly, an EcoRI endonuclease generated fragment of plasmid pSC105 DNA containing the genetic determinant of kanamycin resistance was inserted into the ColE1 plasmid and recovered in E. coli. The plasmids containing the trp operon (ColE1-trp) and the kanamycin resistance gene were maintained under logarithmic growth conditions at a level of 25-30 copies per cell and accumulate to the extent of several hundred copies per cell in the presence of chloramphenicol. Cells carrying the ColE1-trp plasmid determined the production of highly elevated levels of trp operon-specific mRNA and tryptophan biosynthetic enzymes. Images PMID:4610576

  4. Induction of DNA strand breaks by RSU-1069, a nitroimidazole-aziridine radiosensitizer

    International Nuclear Information System (INIS)

    Silver, A.R.J.; O'Neill, P.; Jenkins, T.C.

    1985-01-01

    [2- 14 C]-RSU-1069 [1-(2-nitro-1-imidazolyl)-3-(1-aziridino)-2-propanol], either as a parent or following radiation reduction, binds to calf thymus DNA in vitro. Radiation-reduced RSU-1069 binds to a greater extent and more rapidly than the parent compound. RSU-1137, a non-aziridino analogue of RSU-1069, binds following radiation reduction. Radiation-reduced misonidazole exhibits binding ratios a thousand-fold less than those of reduced RSU-1069. Both parent and reduced RSU-1069 cause single strand breaks (ssbs) in pSV2 gpt plasmid DNA with the reduced compound causing a greater number of breaks. Parent and reduced RSU-1137 and misonidazole do not cause ssbs. It is inferred that the aziridine moiety present in both parent and reduced RSU-1069 is required for ssb production. RSU-1069 reacts with inorganic phosphate probably via nucleophilic ring-opening of the aziridine fragment. Incubation of plasmid DNA with reduced RSU-1069 in the presence of either phosphate or deoxyribose-5-phosphate at concentrations greater than 0.35 mol dm -3 prevents strand breakage, whereas 1.2 mol dm -3 deoxyribose does not protect against strand breakage formation. It is proposed that the observed binding to DNA occurs via the aziridine and the reduced nitro group of RSU-1069 and that these two have different target sites. Binding to DNA via the reduced nitro group may serve to increase aziridine attack due to localization at or near its target. (author)

  5. The DNA translocase RAD5A acts independently of the other main DNA repair pathways, and requires both its ATPase and RING domain for activity in Arabidopsis thaliana.

    Science.gov (United States)

    Klemm, Tobias; Mannuß, Anja; Kobbe, Daniela; Knoll, Alexander; Trapp, Oliver; Dorn, Annika; Puchta, Holger

    2017-08-01

    Multiple pathways exist to repair DNA damage induced by methylating and crosslinking agents in Arabidopsis thaliana. The SWI2/SNF2 translocase RAD5A, the functional homolog of budding yeast Rad5 that is required for the error-free branch of post-replicative repair, plays a surprisingly prominent role in the repair of both kinds of lesions in Arabidopsis. Here we show that both the ATPase domain and the ubiquitination function of the RING domain of the Arabidopsis protein are essential for the cellular response to different forms of DNA damage. To define the exact role of RAD5A within the complex network of DNA repair pathways, we crossed the rad5a mutant line with mutants of different known repair factors of Arabidopsis. We had previously shown that RAD5A acts independently of two main pathways of replication-associated DNA repair defined by the helicase RECQ4A and the endonuclease MUS81. The enhanced sensitivity of all double mutants tested in this study indicates that the repair of damaged DNA by RAD5A also occurs independently of nucleotide excision repair (AtRAD1), single-strand break repair (AtPARP1), as well as microhomology-mediated double-strand break repair (AtTEB). Moreover, RAD5A can partially complement for a deficient AtATM-mediated DNA damage response in plants, as the double mutant shows phenotypic growth defects. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  6. Targeting abnormal DNA double strand break repair in cancer

    OpenAIRE

    Rassool, Feyruz V.; Tomkinson, Alan E.

    2010-01-01

    A major challenge in cancer treatment is the development of therapies that target cancer cells with little or no toxicity to normal tissues and cells. Alterations in DNA double strand break (DSB) repair in cancer cells include both elevated and reduced levels of key repair proteins and changes in the relative contributions of the various DSB repair pathways. These differences can result in increased sensitivity to DSB-inducing agents and increased genomic instability. The development of agent...

  7. The influence of chromatin structure on the frequency of radiation-induced DNA strand breaks: a study using nuclear and nucleoid monolayers

    International Nuclear Information System (INIS)

    Ljungman, M.

    1991-01-01

    To assess the influence of chromatin structure on the frequency of radiation-induced DNA strand breaks, the alkaline unwinding technique was applied to nuclear and nucleoid monolayers. These chromatin substrates were prepared by treating human fibroblasts grown as monolayers with the nonionic detergent Triton X-100 and varying concentrations of cations. The chromatin structure was modified either by a stepwise removal of DNA-bound proteins by extraction in increasing concentrations of monovalent salt, or by the addition or deletion of mono- and divalent cations to condense or decondense the chromatin, respectively. It was found that the stepwise removal of DNA-bound proteins from the chromatin dramatically increased the frequency of radiation-induced DNA strand breaks. The DNA-bound proteins showed a qualitative difference in their ability to protect the DNA where proteins removed by salt concentrations above 1.0 M exerted the greatest protection. Furthermore, the frequency of radiation-induced DNA strand breaks was found to be 6 times lower in condensed chromatin than in decondensed chromatin and about 80 times lower than in protein-depleted chromatin. It is concluded that the presence of DNA-bound proteins and the folding of the chromatin into higher-order structures protect the DNA against radiation-induced strand breaks

  8. An ultrasensitive colorimeter assay strategy for p53 mutation assisted by nicking endonuclease signal amplification.

    Science.gov (United States)

    Lin, Zhenyu; Yang, Weiqiang; Zhang, Guiyun; Liu, Qida; Qiu, Bin; Cai, Zongwei; Chen, Guonan

    2011-08-28

    A novel catalytic colorimetric assay assisted by nicking endonuclease signal amplification (NESA) was developed. With the signal amplification, the detection limit of the p53 target gene can be as low as 1 pM, which is nearly 5 orders of magnitude lower than that of other previously reported colorimetric DNA detection strategies based on catalytic DNAzyme.

  9. Template-directed addition of nucleosides to DNA by the BfiI restriction enzyme

    OpenAIRE

    Sasnauskas, Giedrius; Connolly, Bernard A.; Halford, Stephen E.; Siksnys, Virginijus

    2008-01-01

    Restriction endonucleases catalyse DNA cleavage at specific sites. The BfiI endonuclease cuts DNA to give staggered ends with 1-nt 3′-extensions. We show here that BfiI can also fill in the staggered ends: while cleaving DNA, it can add a 2′-deoxynucleoside to the reaction product to yield directly a blunt-ended DNA. We propose that nucleoside incorporation proceeds through a two-step reaction, in which BfiI first cleaves the DNA to make a covalent enzyme–DNA intermediate and then resolves it...

  10. Crosslinks rather than strand breaks determine access to ancient DNA sequences from frozen sediments

    DEFF Research Database (Denmark)

    Hansen, Anders Johannes; Mitchell, D.L.; Wiuf, C.

    2006-01-01

    , and freely exposed sugar, phosphate, and hydroxyl groups. Intriguingly, interstrand crosslinks were found to accumulate about hundred times faster than single stranded breaks, suggesting that crosslinking rather than depurination is the primary limiting factor for ancient DNA amplification under frozen...... conditions. The results question the reliability of the commonly used models relying on depurination kinetics for predicting the long-term survival of DNA under permafrost conditions and suggest that new strategies for repair of ancient DNA must be considered if the yield of amplifiable DNA from permafrost...

  11. Generation of Knock-in Mouse by Genome Editing.

    Science.gov (United States)

    Fujii, Wataru

    2017-01-01

    Knock-in mice are useful for evaluating endogenous gene expressions and functions in vivo. Instead of the conventional gene-targeting method using embryonic stem cells, an exogenous DNA sequence can be inserted into the target locus in the zygote using genome editing technology. In this chapter, I describe the generation of epitope-tagged mice using engineered endonuclease and single-stranded oligodeoxynucleotide through the mouse zygote as an example of how to generate a knock-in mouse by genome editing.

  12. scid mutation in mice confers hypersensitivity to ionizing radiation and a deficiency in DNA double-strand break repair

    International Nuclear Information System (INIS)

    Biedermann, K.A.; Sun, J.R.; Giaccia, A.J.; Tosto, L.M.; Brown, J.M.

    1991-01-01

    C.B-17 severe combined immunodeficient (scid) mice carry the scid mutation and are severely deficient in both T cell- and B cell-mediated immunity, apparently as a result of defective V(D)J joining of the immunoglobulin and T-cell receptor gene elements. In the present studies, we have defined the tissue, cellular, and molecular basis of another characteristic of these mice: their hypersensitivity to ionizing radiation. Bone marrow stem cells, intestinal crypt cells, and epithelial skin cells from scid mice are 2- to 3-fold more sensitive when irradiated in situ than are congenic BALB/c or C.B-17 controls. Two independently isolated embryo fibroblastic scid mouse cell lines display similar hypersensitivities to gamma-rays. In addition, these cell lines are sensitive to cell killing by bleomycin, which also produces DNA strand breaks, but not by the DNA crosslinking agent mitomycin C or UV irradiation. Measurement of the rejoining of gamma-ray-induced DNA double-strand breaks by pulsed-field gel electrophoresis indicates that these animals are defective in this repair system. This suggests that the gamma-ray sensitivity of the scid mouse fibroblasts could be the result of reduced repair of DNA double-strand breaks. Therefore, a common factor may participate in both the repair of DNA double-strand breaks as well as V(D)J rejoining during lymphocyte development. This murine autosomal recessive mutation should prove extremely useful in fundamental studies of radiation-induced DNA damage and repair

  13. The yeast Saccharomyces cerevisiae DNA polymerase IV: possible involvement in double strand break DNA repair.

    Science.gov (United States)

    Leem, S H; Ropp, P A; Sugino, A

    1994-08-11

    We identified and purified a new DNA polymerase (DNA polymerase IV), which is similar to mammalian DNA polymerase beta, from Saccharomyces cerevisiae and suggested that it is encoded by YCR14C (POLX) on chromosome III. Here, we provided a direct evidence that the purified DNA polymerase IV is indeed encoded by POLX. Strains harboring a pol4 deletion mutation exhibit neither mitotic growth defect nor a meiosis defect, suggesting that DNA polymerase IV participates in nonessential functions in DNA metabolism. The deletion strains did not exhibit UV-sensitivity. However, they did show weak sensitivity to MMS-treatment and exhibited a hyper-recombination phenotype when intragenic recombination was measured during meiosis. Furthermore, MAT alpha pol4 delta segregants had a higher frequency of illegitimate mating with a MAT alpha tester strain than that of wild-type cells. These results suggest that DNA polymerase IV participates in a double-strand break repair pathway. A 3.2kb of the POL4 transcript was weakly expressed in mitotically growing cells. During meiosis, a 2.2 kb POL4 transcript was greatly induced, while the 3.2 kb transcript stayed at constant levels. This induction was delayed in a swi4 delta strain during meiosis, while no effect was observed in a swi6 delta strain.

  14. Excision of thymine dimers from specifically incised DNA by extracts of xeroderma pigmentosum cells

    Energy Technology Data Exchange (ETDEWEB)

    Cook, K; Friedberg, E C; Slor, H; Cleaver, J E

    1975-07-17

    DNA repair defects as exhibited in fibroblasts from patients with xeroderma pigmentosa were studied. Five complementation groups for excision-repair defects were examined to test the hypothesis that a defective endonuclease or exonuclease may be the cause. No evidence was found to indicate that the enzyme activity functions in dimer excision. Since ultraviolet irradiated E. coli DNA incised with an endonuclease purified from phage-infected cells were used, it is possible that other factors may be involved in human UV endonuclease action. (JWP)

  15. An alternative mechanism for radioprotection by dimethyl sulfoxide. Possible facilitation of DNA double-strand break repair

    International Nuclear Information System (INIS)

    Kashino, Genro; Liu, Yong; Suzuki, Minoru; Masunaga, Shin-ichiro; Kinashi, Yuko; Ono, Koji; Tano, Keizo; Watanabe, Masami

    2010-01-01

    The radioprotective effects of dimethyl sulfoxide (DMSO) have been known for many years, and the suppression of hydroxyl (OH) radicals induced by ionizing radiation has been thought to be the main cause of this effect. However, the DMSO concentration used was very high, and might be toxic, in earlier studies. In the present study, we administered a lower, non-toxic concentration (0.5%, id est (i.e.), 64 mM) of DMSO before irradiation and examined its radioprotective effects. Colony formation assay and micronucleus assay showed significant radioprotective effects in Chinese hamster ovary (CHO), but not in xrs5, which is defective in the repair function of DNA double-strand breaks. The levels of phosphorylated H2AX and the formation of 53BP1 foci 15 minutes after irradiation, which might reflect initial DNA double-strand breaks, in DMSO-treated CHO cells were similar to those in non-treated cells, suggesting that the radioprotective effects were not attributable to the suppression of general indirect action in the lower concentration of DMSO. On the other hand, 2 hours after irradiation, the average number of 53BP1 foci, which might reflect residual DNA double-strand breaks, was significantly decreased in DMSO-treated CHO cells compared to non-treated cells. The results indicated that low concentration of DMSO exerts radioprotective effects through the facilitation of DNA double-strand break repair rather than through the suppression of indirect action. (author)

  16. An alternative mechanism for radioprotection by dimethyl sulfoxide; possible facilitation of DNA double-strand break repair.

    Science.gov (United States)

    Kashino, Genro; Liu, Yong; Suzuki, Minoru; Masunaga, Shin-ichiro; Kinashi, Yuko; Ono, Koji; Tano, Keizo; Watanabe, Masami

    2010-01-01

    The radioprotective effects of dimethyl sulfoxide (DMSO) have been known for many years, and the suppression of hydroxyl (OH) radicals induced by ionizing radiation has been thought to be the main cause of this effect. However, the DMSO concentration used was very high, and might be toxic, in earlier studies. In the present study, we administered a lower, non-toxic concentration (0.5%, i.e., 64 mM) of DMSO before irradiation and examined its radioprotective effects. Colony formation assay and micronucleus assay showed significant radioprotective effects in CHO, but not in xrs5, which is defective in the repair function of DNA double-strand breaks. The levels of phosphorylated H2AX and the formation of 53BP1 foci 15 minutes after irradiation, which might reflect initial DNA double-strand breaks, in DMSO-treated CHO cells were similar to those in non-treated cells, suggesting that the radioprotective effects were not attributable to the suppression of general indirect action in the lower concentration of DMSO. On the other hand, 2 hours after irradiation, the average number of 53BP1 foci, which might reflect residual DNA double-strand breaks, was significantly decreased in DMSO-treated CHO cells compared to non-treated cells. The results indicated that low concentration of DMSO exerts radioprotective effects through the facilitation of DNA double-strand break repair rather than through the suppression of indirect action.

  17. Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing.

    Science.gov (United States)

    Hu, Jiazhi; Meyers, Robin M; Dong, Junchao; Panchakshari, Rohit A; Alt, Frederick W; Frock, Richard L

    2016-05-01

    Unbiased, high-throughput assays for detecting and quantifying DNA double-stranded breaks (DSBs) across the genome in mammalian cells will facilitate basic studies of the mechanisms that generate and repair endogenous DSBs. They will also enable more applied studies, such as those to evaluate the on- and off-target activities of engineered nucleases. Here we describe a linear amplification-mediated high-throughput genome-wide sequencing (LAM-HTGTS) method for the detection of genome-wide 'prey' DSBs via their translocation in cultured mammalian cells to a fixed 'bait' DSB. Bait-prey junctions are cloned directly from isolated genomic DNA using LAM-PCR and unidirectionally ligated to bridge adapters; subsequent PCR steps amplify the single-stranded DNA junction library in preparation for Illumina Miseq paired-end sequencing. A custom bioinformatics pipeline identifies prey sequences that contribute to junctions and maps them across the genome. LAM-HTGTS differs from related approaches because it detects a wide range of broken end structures with nucleotide-level resolution. Familiarity with nucleic acid methods and next-generation sequencing analysis is necessary for library generation and data interpretation. LAM-HTGTS assays are sensitive, reproducible, relatively inexpensive, scalable and straightforward to implement with a turnaround time of <1 week.

  18. Radiation induced strand breaks and time scale for repair of broken strands in superinfecting phage lambda DNA in Escherichia coli lysogenic for lambda

    International Nuclear Information System (INIS)

    Johansen, I.; Boye, E.; Brustad, T.

    1975-01-01

    The production of the first radiation induced break in covalent lambda DNA molecules in pol + and pol A 1 lysogenic host cells was measured after exposure to electrons from a linear accelerator and transfer to alkaline detergent within 100 ms from the onset of irradiation. The results revealed the presence of an oxygen effect in DNA strand breakage. In both pol + and pol A 1 host cells the rate of production in nitrogen was 1.2x10 -12 DNA single strand breaks per rad per dalton as compared to 5x10 -12 in oxygen. The yields of strand breaks in lambda DNA in pol + host cells under oxygenated or anoxic conditions are independent of whether the cells are irradiated in buffer at room temperature, in buffer at ice temperature, or in growth medium at 37 0 C. These results indicate that enzymic repair of DNA strand breaks before analysis is insignificant in these experiments. The presence of an oxygen effect in DNA strand breakage under these conditions suggest that an actual difference exists between initial number of breaks produced in nitrogen and in oxygen. The kinetics of rejoining of broken molecules under optimal growth conditions was measured by incubating the irradiated host cells prior to lysis. In pol + host cells 50% of the lambda DNA molecules broken in presence of oxygen are rejoined within 10 to 20 seconds of incubation. A significantly lower recovery is seen in pol + host cells after irradiation in nitrogen. The rejoining of broken lambda DNA strands in pol A 1 host cells is impaired after irradiation in presence of oxygen as well as under anoxia. These results show that DNA polymerase I is needed for the rapid rejoining of radiation induced strand breaks in the DNA, and that oxygen promoted strand breaks are more easily rejoined than are those produced in nitrogen. (author)

  19. Mathematical modelling of the automated FADU assay for the quantification of DNA strand breaks and their repair in human peripheral mononuclear blood cells

    International Nuclear Information System (INIS)

    Junk, Michael; Salzwedel, Judy; Sindlinger, Thilo; Bürkle, Alexander; Moreno-Villanueva, Maria

    2014-01-01

    Cells continuously undergo DNA damage from exogenous agents like irradiation or genotoxic chemicals or from endogenous radicals produced by normal cellular metabolic activities. DNA strand breaks are one of the most common genotoxic lesions and they can also arise as intermediates of DNA repair activity. Unrepaired DNA damage can lead to genomic instability, which can massively compromise the health status of organisms. Therefore it is important to measure and quantify DNA damage and its repair. We have previously published an automated method for measuring DNA strand breaks based on fluorimetric detection of alkaline DNA unwinding [1], and here we present a mathematical model of the FADU assay, which enables to an analytic expression for the relation between measured fluorescence and the number of strand breaks. Assessment of the formation and also the repair of DNA strand breaks is a crucial functional parameter to investigate genotoxicity in living cells. A reliable and convenient method to quantify DNA strand breakage is therefore of significant importance for a wide variety of scientific fields, e.g. toxicology, pharmacology, epidemiology and medical sciences

  20. Physical and biological parameters affecting DNA double strand break misrejoining in mammalian cells

    International Nuclear Information System (INIS)

    Kuehne, M.; Rothkamm, K.; Loebrich, M.

    2002-01-01

    In an attempt to investigate the effect of radiation quality, dose and specific repair pathways on correct and erroneous rejoining of DNA double strand breaks (DSBs), an assay was applied that allows the identification and quantification of incorrectly rejoined DSB ends produced by ionising radiation. While substantial misrejoining occurs in mammalian cells after high acute irradiation doses, decreasing misrejoining frequencies were observed in dose fractionation experiments with X rays. In line with this finding, continuous irradiation with gamma rays at low dose rate leads to non detectable misrejoining. This indicates that the probability for a DSB to be misrejoined decreases drastically when DSBs are separated in time and space. The same dose fractionation approach was applied to determine DSB misrejoining after a particle exposure. In contrast to the results with X rays, there was no significant decrease in DSB misrejoining with increasing fractionation. This suggests that DSB misrejoining after a irradiation is not significantly affected by a separation of particle tracks. To identify the enzymatic pathways that are involved in DSB misrejoining, cell lines deficient in non-homologous end-joining (NHEJ) were examined. After high X ray doses, DSB misrejoining is considerable reduced in NHEJ mutants. Low dose rate experiments show elevated DSB misrejoining in NHEJ mutants compared with wild-type cells. The authors propose that NHEJ serves as an efficient pathway for rejoining correct break ends in situations of separated breaks but generates genomic rearrangements if DSBs are close in time and space. (author)

  1. Push back to respond better: regulatory inhibition of the DNA double-strand break response.

    Science.gov (United States)

    Panier, Stephanie; Durocher, Daniel

    2013-10-01

    Single DNA lesions such as DNA double-strand breaks (DSBs) can cause cell death or trigger genome rearrangements that have oncogenic potential, and so the pathways that mend and signal DNA damage must be highly sensitive but, at the same time, selective and reversible. When initiated, boundaries must be set to restrict the DSB response to the site of the lesion. The integration of positive and, crucially, negative control points involving post-translational modifications such as phosphorylation, ubiquitylation and acetylation is key for building fast, effective responses to DNA damage and for mitigating the impact of DNA lesions on genome integrity.

  2. INDUCTION OF DNA STRAND BREAKS BY TRIHALOMETHANES IN PRIMARY HUMAN LUNG EPITHELIAL CELLS

    Science.gov (United States)

    Abstract Trihalomethanes (TEMs) are disinfection by-products and suspected human carcinogens present in chlorinated drinking water. Previous studies have shown that many THMs induce sister chromatid exchanges and DNA strand breaks in human peripheral blood lymphocyte...

  3. Genetic polymorphisms of DNA double-strand break repair pathway genes and glioma susceptibility

    International Nuclear Information System (INIS)

    Zhao, Peng; Zou, Peng; Zhao, Lin; Yan, Wei; Kang, Chunsheng; Jiang, Tao; You, Yongping

    2013-01-01

    Genetic variations in DNA double-strand break repair genes can influence the ability of a cell to repair damaged DNA and alter an individual’s susceptibility to cancer. We studied whether polymorphisms in DNA double-strand break repair genes are associated with an increased risk of glioma development. We genotyped 10 potentially functional single nucleotide polymorphisms (SNPs) in 7 DNA double-strand break repair pathway genes (XRCC3, BRCA2, RAG1, XRCC5, LIG4, XRCC4 and ATM) in a case–control study including 384 glioma patients and 384 cancer-free controls in a Chinese Han population. Genotypes were determined using the OpenArray platform. In the single-locus analysis there was a significant association between gliomas and the LIG4 rs1805388 (Ex2 +54C>T, Thr9Ile) TT genotype (adjusted OR, 3.27; 95% CI, 1.87-5.71), as well as the TC genotype (adjusted OR, 1.62; 95% CI, 1.20-2.18). We also found that the homozygous variant genotype (GG) of XRCC4 rs1805377 (IVS7-1A>G, splice-site) was associated with a significantly increased risk of gliomas (OR, 1.77; 95% CI, 1.12-2.80). Interestingly, we detected a significant additive and multiplicative interaction effect between the LIG4 rs1805388 and XRCC4 rs1805377 polymorphisms with an increasing risk of gliomas. When we stratified our analysis by smoking status, LIG4 rs1805388 was associated with an increased glioma risk among smokers. These results indicate for the first time that LIG4 rs1805388 and XRCC4 rs1805377, alone or in combination, are associated with a risk of gliomas

  4. Flap Endonuclease 1 Limits Telomere Fragility on the Leading Strand.

    Science.gov (United States)

    Teasley, Daniel C; Parajuli, Shankar; Nguyen, Mai; Moore, Hayley R; Alspach, Elise; Lock, Ying Jie; Honaker, Yuchi; Saharia, Abhishek; Piwnica-Worms, Helen; Stewart, Sheila A

    2015-06-12

    The existence of redundant replication and repair systems that ensure genome stability underscores the importance of faithful DNA replication. Nowhere is this complexity more evident than in challenging DNA templates, including highly repetitive or transcribed sequences. Here, we demonstrate that flap endonuclease 1 (FEN1), a canonical lagging strand DNA replication protein, is required for normal, complete leading strand replication at telomeres. We find that the loss of FEN1 nuclease activity, but not DNA repair activities, results in leading strand-specific telomere fragility. Furthermore, we show that FEN1 depletion-induced telomere fragility is increased by RNA polymerase II inhibition and is rescued by ectopic RNase H1 expression. These data suggest that FEN1 limits leading strand-specific telomere fragility by processing RNA:DNA hybrid/flap intermediates that arise from co-directional collisions occurring between the replisome and RNA polymerase. Our data reveal the first molecular mechanism for leading strand-specific telomere fragility and the first known role for FEN1 in leading strand DNA replication. Because FEN1 mutations have been identified in human cancers, our findings raise the possibility that unresolved RNA:DNA hybrid structures contribute to the genomic instability associated with cancer. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. 3D-structured illumination microscopy reveals clustered DNA double-strand break formation in widespread γH2AX foci after high LET heavy-ion particle radiation.

    Science.gov (United States)

    Hagiwara, Yoshihiko; Niimi, Atsuko; Isono, Mayu; Yamauchi, Motohiro; Yasuhara, Takaaki; Limsirichaikul, Siripan; Oike, Takahiro; Sato, Hiro; Held, Kathryn D; Nakano, Takashi; Shibata, Atsushi

    2017-12-12

    DNA double-strand breaks (DSBs) induced by ionising radiation are considered the major cause of genotoxic mutations and cell death. While DSBs are dispersed throughout chromatin after X-rays or γ-irradiation, multiple types of DNA damage including DSBs, single-strand breaks and base damage can be generated within 1-2 helical DNA turns, defined as a complex DNA lesion, after high Linear Energy Transfer (LET) particle irradiation. In addition to the formation of complex DNA lesions, recent evidence suggests that multiple DSBs can be closely generated along the tracks of high LET particle irradiation. Herein, by using three dimensional (3D)-structured illumination microscopy, we identified the formation of 3D widespread γH2AX foci after high LET carbon-ion irradiation. The large γH2AX foci in G 2 -phase cells encompassed multiple foci of replication protein A (RPA), a marker of DSBs undergoing resection during homologous recombination. Furthermore, we demonstrated by 3D analysis that the distance between two individual RPA foci within γH2AX foci was approximately 700 nm. Together, our findings suggest that high LET heavy-ion particles induce clustered DSB formation on a scale of approximately 1 μm 3 . These closely localised DSBs are considered to be a risk for the formation of chromosomal rearrangement after heavy-ion irradiation.

  6. RECQ5 Helicase Cooperates with MUS81 Endonuclease in Processing Stalled Replication Forks at Common Fragile Sites during Mitosis

    DEFF Research Database (Denmark)

    Di Marco, Stefano; Hasanova, Zdenka; Kanagaraj, Radhakrishnan

    2017-01-01

    The MUS81-EME1 endonuclease cleaves late replication intermediates at common fragile sites (CFSs) during early mitosis to trigger DNA-repair synthesis that ensures faithful chromosome segregation. Here, we show that these DNA transactions are promoted by RECQ5 DNA helicase in a manner dependent...... on its Ser727 phosphorylation by CDK1. Upon replication stress, RECQ5 associates with CFSs in early mitosis through its physical interaction with MUS81 and promotes MUS81-dependent mitotic DNA synthesis. RECQ5 depletion or mutational inactivation of its ATP-binding site, RAD51-interacting domain...

  7. Electronic cigarettes induce DNA strand breaks and cell death independently of nicotine in cell lines.

    Science.gov (United States)

    Yu, Vicky; Rahimy, Mehran; Korrapati, Avinaash; Xuan, Yinan; Zou, Angela E; Krishnan, Aswini R; Tsui, Tzuhan; Aguilera, Joseph A; Advani, Sunil; Crotty Alexander, Laura E; Brumund, Kevin T; Wang-Rodriguez, Jessica; Ongkeko, Weg M

    2016-01-01

    Evaluate the cytotoxicity and genotoxicity of short- and long-term e-cigarette vapor exposure on a panel of normal epithelial and head and neck squamous cell carcinoma (HNSCC) cell lines. HaCaT, UMSCC10B, and HN30 were treated with nicotine-containing and nicotine-free vapor extract from two popular e-cigarette brands for periods ranging from 48 h to 8 weeks. Cytotoxicity was assessed using Annexin V flow cytometric analysis, trypan blue exclusion, and clonogenic assays. Genotoxicity in the form of DNA strand breaks was quantified using the neutral comet assay and γ-H2AX immunostaining. E-cigarette-exposed cells showed significantly reduced cell viability and clonogenic survival, along with increased rates of apoptosis and necrosis, regardless of e-cigarette vapor nicotine content. They also exhibited significantly increased comet tail length and accumulation of γ-H2AX foci, demonstrating increased DNA strand breaks. E-cigarette vapor, both with and without nicotine, is cytotoxic to epithelial cell lines and is a DNA strand break-inducing agent. Further assessment of the potential carcinogenic effects of e-cigarette vapor is urgently needed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Seasonal and PAH impact on DNA strand-break levels in gills of transplanted zebra mussels.

    Science.gov (United States)

    Michel, Cécile; Bourgeault, Adeline; Gourlay-Francé, Catherine; Palais, Frédéric; Geffard, Alain; Vincent-Hubert, Françoise

    2013-06-01

    Genotoxicity endpoints are useful tools to biomonitor the physicochemical and biological quality of aquatic ecosystems. A caging study on the freshwater bivalve Dreissena polymorpha was planned to run over four seasons in the Seine River basin in order to assess whether DNA damage measured in transplanted mussels to polluted area vary according to seasonal changes. Three sites were chosen along the Seine River, one upstream from Paris and two downstream, corresponding to a chemical gradient of water contamination. The DNA strand break (comet assay) and chromosomal damage (micronucleus test) were measured in caged mussels at each site and in winter, spring and summer, along with PAH water contamination, PAH bioaccumulation, the mussel condition index (CI), the gonado-somatic index (GSI) and the filtration rate (FR). The level of DNA strand break measured in winter was low and increased in spring, concomitantly with FR and GSI. Over the same period, micronucleus (MN) frequency and PAH bioaccumulation decreased significantly in caged mussels, with both parameters positively correlated to each other. DNA strand-break levels and MN frequencies showed inter-site variations corresponding to the chemical contamination gradient. These two genotoxicity endpoints usefully complement each other in field studies. These results show that the MN test and comet assay, when applied to gill cells of caged zebra mussels, are sensitive tools for freshwater genotoxicity monitoring. Copyright © 2013. Published by Elsevier Inc.

  9. DNA fragments assembly based on nicking enzyme system.

    Directory of Open Access Journals (Sweden)

    Rui-Yan Wang

    Full Text Available A couple of DNA ligation-independent cloning (LIC methods have been reported to meet various requirements in metabolic engineering and synthetic biology. The principle of LIC is the assembly of multiple overlapping DNA fragments by single-stranded (ss DNA overlaps annealing. Here we present a method to generate single-stranded DNA overlaps based on Nicking Endonucleases (NEases for LIC, the method was termed NE-LIC. Factors related to cloning efficiency were optimized in this study. This NE-LIC allows generating 3'-end or 5'-end ss DNA overlaps of various lengths for fragments assembly. We demonstrated that the 10 bp/15 bp overlaps had the highest DNA fragments assembling efficiency, while 5 bp/10 bp overlaps showed the highest efficiency when T4 DNA ligase was added. Its advantage over Sequence and Ligation Independent Cloning (SLIC and Uracil-Specific Excision Reagent (USER was obvious. The mechanism can be applied to many other LIC strategies. Finally, the NEases based LIC (NE-LIC was successfully applied to assemble a pathway of six gene fragments responsible for synthesizing microbial poly-3-hydroxybutyrate (PHB.

  10. Relation between sedimentation behaviour of DNA-membrane complexes and DNA single- and double-strand breaks after irradiation with gamma-rays, pulse neutrons and 12C ions

    International Nuclear Information System (INIS)

    Erzgraber, G.; Lapidus, I.L.

    1985-01-01

    The experimental data on sedimentation behaviour of DNA-membrane complexes at radiation of the Chinese hamster cells (V79-4) in a wide dose range of 127 Cs γ-rays, pulse neutrons (reactor IBR-2, Laboratory of Neutron Physics, JINR, Dubna) are accelerated 12 C ions (cyclotron U-200, Laboratory of Nuclear Reactions, JINR, Dubna) are presented An assumption on the role of DNA single- and double-strend breaks in changing the sedimentation properties of DNA-membrane complexes has been confirmed by the experiments with radiation of different quality. The possibility of estimating induction and repair of DNA breaks on the basis of dependence of the relative sedimentation velocity of complexes on the irradiation does is discussed

  11. Carbon ion induced DNA double-strand breaks in melanophore B{sub 16}

    Energy Technology Data Exchange (ETDEWEB)

    Zengquan, Wei; Guangming, Zhou; Jufang, Wang; Jing, He; Qiang, Li; Wenjian, Li; Hongmei, Xie; Xichen, Cai; Huang, Tao; Bingrong, Dang; Guangwu, Han [Chinese Academy of Sciences, Lanzhou (China). Inst. of Modern Physics; Qingxiang, Gao [Lanzhou Univ. (China)

    1997-09-01

    DNA double-strand breaks (DSBs) in melanophore B{sub 16} induced by plateau and extended Bragg peak of 75 MeV/u {sup 12}C{sup 6+} ions were studied by using a technique of inverse pulsed-field gel electrophoresis (PIGE). DNA fragment lengths were distributed in two ranges: the larger in 1.4 Mbp-3.2 Mbp and the smaller in less than 1.2 Mbp. It indicates that distribution of DNA fragments induced by heavy ion irradiation is not stochastic and there probably are sensitive sites to heavy ions in DNA molecules of B{sub 16}. Percentage of DNA released from plug (PR) increased and trended towards a quasi-plateau {proportional_to}85% as dose increased. Content of the larger fragments decreased and flattened with increasing dose while content of the smaller ones increased and trended towards saturation. (orig.)

  12. In Vivo Alkaline Comet Assay and Enzyme-modified Alkaline Comet Assay for Measuring DNA Strand Breaks and Oxidative DNA Damage in Rat Liver.

    Science.gov (United States)

    Ding, Wei; Bishop, Michelle E; Lyn-Cook, Lascelles E; Davis, Kelly J; Manjanatha, Mugimane G

    2016-05-04

    Unrepaired DNA damage can lead to genetic instability, which in turn may enhance cancer development. Therefore, identifying potential DNA damaging agents is important for protecting public health. The in vivo alkaline comet assay, which detects DNA damage as strand breaks, is especially relevant for assessing the genotoxic hazards of xenobiotics, as its responses reflect the in vivo absorption, tissue distribution, metabolism and excretion (ADME) of chemicals, as well as DNA repair process. Compared to other in vivo DNA damage assays, the assay is rapid, sensitive, visual and inexpensive, and, by converting oxidative DNA damage into strand breaks using specific repair enzymes, the assay can measure oxidative DNA damage in an efficient and relatively artifact-free manner. Measurement of DNA damage with the comet assay can be performed using both acute and subchronic toxicology study designs, and by integrating the comet assay with other toxicological assessments, the assay addresses animal welfare requirements by making maximum use of animal resources. Another major advantage of the assays is that they only require a small amount of cells, and the cells do not have to be derived from proliferating cell populations. The assays also can be performed with a variety of human samples obtained from clinically or occupationally exposed individuals.

  13. Transcription blockage by homopurine DNA sequences: role of sequence composition and single-strand breaks

    Science.gov (United States)

    Belotserkovskii, Boris P.; Neil, Alexander J.; Saleh, Syed Shayon; Shin, Jane Hae Soo; Mirkin, Sergei M.; Hanawalt, Philip C.

    2013-01-01

    The ability of DNA to adopt non-canonical structures can affect transcription and has broad implications for genome functioning. We have recently reported that guanine-rich (G-rich) homopurine-homopyrimidine sequences cause significant blockage of transcription in vitro in a strictly orientation-dependent manner: when the G-rich strand serves as the non-template strand [Belotserkovskii et al. (2010) Mechanisms and implications of transcription blockage by guanine-rich DNA sequences., Proc. Natl Acad. Sci. USA, 107, 12816–12821]. We have now systematically studied the effect of the sequence composition and single-stranded breaks on this blockage. Although substitution of guanine by any other base reduced the blockage, cytosine and thymine reduced the blockage more significantly than adenine substitutions, affirming the importance of both G-richness and the homopurine-homopyrimidine character of the sequence for this effect. A single-strand break in the non-template strand adjacent to the G-rich stretch dramatically increased the blockage. Breaks in the non-template strand result in much weaker blockage signals extending downstream from the break even in the absence of the G-rich stretch. Our combined data support the notion that transcription blockage at homopurine-homopyrimidine sequences is caused by R-loop formation. PMID:23275544

  14. REV7 counteracts DNA double-strand break resection and affects PARP inhibition

    NARCIS (Netherlands)

    Xu, Guotai; Chapman, J. Ross; Brandsma, Inger; Yuan, Jingsong; Mistrik, Martin; Bouwman, Peter; Bartkova, Jirina; Gogola, Ewa; Warmerdam, Daniël; Barazas, Marco; Jaspers, Janneke E.; Watanabe, Kenji; Pieterse, Mark; Kersbergen, Ariena; Sol, Wendy; Celie, Patrick H. N.; Schouten, Philip C.; van den Broek, Bram; Salman, Ahmed; Nieuwland, Marja; de Rink, Iris; de Ronde, Jorma; Jalink, Kees; Boulton, Simon J.; Chen, Junjie; van Gent, Dik C.; Bartek, Jiri; Jonkers, Jos; Borst, Piet; Rottenberg, Sven

    2015-01-01

    Error-free repair of DNA double-strand breaks (DSBs) is achieved by homologous recombination (HR), and BRCA1 is an important factor for this repair pathway(1). In the absence of BRCA1-mediated HR, the administration of PARP inhibitors induces synthetic lethality of tumour cells of patients with

  15. Pulsed-field gel electrophoresis of bacterial chromosomes.

    Science.gov (United States)

    Mawer, Julia S P; Leach, David R F

    2013-01-01

    The separation of fragments of DNA by agarose gel electrophoresis is integral to laboratory life. Nevertheless, standard agarose gel electrophoresis cannot resolve fragments bigger than 50 kb. Pulsed-field gel electrophoresis is a technique that has been developed to overcome the limitations of standard agarose gel electrophoresis. Entire linear eukaryotic chromosomes, or large fragments of a chromosome that have been generated by the action of rare-cutting restriction endonucleases, can be separated using this technique. As a result, pulsed-field gel electrophoresis has many applications, from karyotype analysis of microbial genomes, to the analysis of chromosomal strand breaks and their repair intermediates, to the study of DNA replication and the identification of origins of replication. This chapter presents a detailed protocol for the preparation of Escherichia coli chromosomal DNA that has been embedded in agarose plugs, digested with the rare-cutting endonuclease NotI, and separated by contour-clamped homogeneous field electrophoresis. The principles in this protocol can be applied to the separation of all fragments of DNA whose size range is between 40 kb and 1 Mb.

  16. Alternative end-joining pathway(s): bricolage at DNA breaks.

    Science.gov (United States)

    Frit, Philippe; Barboule, Nadia; Yuan, Ying; Gomez, Dennis; Calsou, Patrick

    2014-05-01

    To cope with DNA double strand break (DSB) genotoxicity, cells have evolved two main repair pathways: homologous recombination which uses homologous DNA sequences as repair templates, and non-homologous Ku-dependent end-joining involving direct sealing of DSB ends by DNA ligase IV (Lig4). During the last two decades a third player most commonly named alternative end-joining (A-EJ) has emerged, which is defined as any Ku- or Lig4-independent end-joining process. A-EJ increasingly appears as a highly error-prone bricolage on DSBs and despite expanding exploration, it still escapes full characterization. In the present review, we discuss the mechanism and regulation of A-EJ as well as its biological relevance under physiological and pathological situations, with a particular emphasis on chromosomal instability and cancer. Whether or not it is a genuine DSB repair pathway, A-EJ is emerging as an important cellular process and understanding A-EJ will certainly be a major challenge for the coming years. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Quantification and genome-wide mapping of DNA double-strand breaks.

    Science.gov (United States)

    Grégoire, Marie-Chantal; Massonneau, Julien; Leduc, Frédéric; Arguin, Mélina; Brazeau, Marc-André; Boissonneault, Guylain

    2016-12-01

    DNA double-strand breaks (DSBs) represent a major threat to the genetic integrity of the cell. Knowing both their genome-wide distribution and number is important for a better assessment of genotoxicity at a molecular level. Available methods may have underestimated the extent of DSBs as they are based on markers specific to those undergoing active repair or may not be adapted for the large diversity of naturally occurring DNA ends. We have established conditions for an efficient first step of DNA nick and gap repair (NGR) allowing specific determination of DSBs by end labeling with terminal transferase. We used DNA extracted from HeLa cells harboring an I-SceI cassette to induce a targeted nick or DSB and demonstrated by immunocapture of 3'-OH that a prior step of NGR allows specific determination of loci-specific or genome wide DSBs. This method can be applied to the global determination of DSBs using radioactive end labeling and can find several applications aimed at understanding the distribution and kinetics of DSBs formation and repair. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Chromatin condensation and differential sensitivity of mammalian and insect cells to DNA strand breaks induced by bleomycin

    International Nuclear Information System (INIS)

    Lopez-Larraza, Daniel M.; Padron, Juan; Ronci, Natalia E.; Vidal Rioja, Lidia A.

    2006-01-01

    Bleomycin (BLM) induces DNA damage in living cells. In this report we analyzed the role of chromatin compactness in the differential response of mosquito (ATC-15) and mammalian (CHO) cells to DNA strand breaks induced by BLM. We used cells unexposed and exposed to sodium butyrate (NaB), which induces chromatin decondensation. By nucleoid sedimentation assay and digestions of nuclei with DNAse I, untreated mosquito cells (no BLM; no NaB) were shown to have more chromatin condensation than untreated CHO cells. By alkaline unwinding ATC-15 cells treated with NaB showed more BLM-induced DNA strand breaks than NaB-untreated CHO cells. The time-course of BLM-induced DNA damage to nuclear DNA was similar for NaB-untreated mammalian and insect cells, but with mosquito cells showing less DNA strand breaks, both at physiological temperatures and at 4 o C. However, when DNA repair was inhibited by low temperatures and chromatin was decondensed by NaB treatments, differences in BLM-induced DNA damage between these cells lines were no longer observed. In both cell lines, NaB did not affect BLM action on cell growth and viability. On the other hand, the low sensitivity of ATC-15 cells to BLM was reflected in their better growth efficiency. These cells exhibited a satisfactory growth at BLM doses that produced a permanent arrest of growth in CHO cells. The data suggest that mosquito cells might have linker DNAs shorter than those of mammalian cells, which would result in the observed both greater chromatin condensation and greater resistance to DNA damage induced by BLM as compared to CHO cells

  19. Chromatin condensation and differential sensitivity of mammalian and insect cells to DNA strand breaks induced by bleomycin

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Larraza, Daniel M. [IMBICE, C.C. 403, 1900 La Plata (Argentina)]. E-mail: danielop@imbice.org.ar; Padron, Juan [IMBICE, C.C. 403, 1900 La Plata (Argentina); Ronci, Natalia E. [IMBICE, C.C. 403, 1900 La Plata (Argentina); Vidal Rioja, Lidia A. [IMBICE, C.C. 403, 1900 La Plata (Argentina)

    2006-08-30

    Bleomycin (BLM) induces DNA damage in living cells. In this report we analyzed the role of chromatin compactness in the differential response of mosquito (ATC-15) and mammalian (CHO) cells to DNA strand breaks induced by BLM. We used cells unexposed and exposed to sodium butyrate (NaB), which induces chromatin decondensation. By nucleoid sedimentation assay and digestions of nuclei with DNAse I, untreated mosquito cells (no BLM; no NaB) were shown to have more chromatin condensation than untreated CHO cells. By alkaline unwinding ATC-15 cells treated with NaB showed more BLM-induced DNA strand breaks than NaB-untreated CHO cells. The time-course of BLM-induced DNA damage to nuclear DNA was similar for NaB-untreated mammalian and insect cells, but with mosquito cells showing less DNA strand breaks, both at physiological temperatures and at 4 {sup o}C. However, when DNA repair was inhibited by low temperatures and chromatin was decondensed by NaB treatments, differences in BLM-induced DNA damage between these cells lines were no longer observed. In both cell lines, NaB did not affect BLM action on cell growth and viability. On the other hand, the low sensitivity of ATC-15 cells to BLM was reflected in their better growth efficiency. These cells exhibited a satisfactory growth at BLM doses that produced a permanent arrest of growth in CHO cells. The data suggest that mosquito cells might have linker DNAs shorter than those of mammalian cells, which would result in the observed both greater chromatin condensation and greater resistance to DNA damage induced by BLM as compared to CHO cells.

  20. Single-molecule FRET unveils induced-fit mechanism for substrate selectivity in flap endonuclease 1

    KAUST Repository

    Rashid, Fahad

    2017-02-23

    Human flap endonuclease 1 (FEN1) and related structure-specific 5\\'nucleases precisely identify and incise aberrant DNA structures during replication, repair and recombination to avoid genomic instability. Yet, it is unclear how the 5\\'nuclease mechanisms of DNA distortion and protein ordering robustly mediate efficient and accurate substrate recognition and catalytic selectivity. Here, single-molecule sub-millisecond and millisecond analyses of FEN1 reveal a protein-DNA induced-fit mechanism that efficiently verifies substrate and suppresses off-target cleavage. FEN1 sculpts DNA with diffusion-limited kinetics to test DNA substrate. This DNA distortion mutually \\'locks\\' protein and DNA conformation and enables substrate verification with extreme precision. Strikingly, FEN1 never misses cleavage of its cognate substrate while blocking probable formation of catalytically competent interactions with noncognate substrates and fostering their pre-incision dissociation. These findings establish FEN1 has practically perfect precision and that separate control of induced-fit substrate recognition sets up the catalytic selectivity of the nuclease active site for genome stability.

  1. Correlations of DNA strand breaks and their repair with cell survival following acute exposure to mercury(II) and X-rays

    International Nuclear Information System (INIS)

    Cantoni, O.; Costa, M.

    1983-01-01

    Alkaline elution analysis demonstrates that both HgCl 2 and X-rays result in a rapid induction of DNA single-strand breaks at acutely cytotoxic doses (HgCl 2 , 25-100 microM for 60 min; X-rays, 150-600 rads) in cultured Chinese hamster ovary cells. Cytotoxicity, as measured by cell-plating efficiency, correlates linearly with the level of DNA breakage induced by both agents (HgCl 2 , r . 0.97; X-rays, r . 0.99), although a substantial difference in axis intercepts of the two linear regression lines indicates that a higher level of DNA damage was required by X-rays as compared with HgCl 2 to produce an equivalent level of cell killing. DNA damage induced by X-rays was rapidly repaired such that within 1 hr following treatment the elution rate of DNA from treated cells resembled that obtained in untreated cultures. In contrast, DNA damage after Hg 2+ insult was not repaired, and further damage was evident following a similar 1-hr recovery period. Addition of noncytotoxic, non-DNA-damaging concentrations of HgCl 2 (10 microM) to cells 15-45 min following treatment with X-rays greatly inhibited the repair of the DNA strand breaks. Thus, although both HgCl 2 and X-rays induce rapid and striking single-strand breaks in the DNA, persistence of Hg 2+ in the cell can inhibit the repair of these breaks. The inhibition of DNA repair by HgCl 2 may explain why this agent is not severely mutagenic or carcinogenic despite its ability to induce an X-ray-like DNA damage and why a lower level of mercury-induced DNA damage, compared with that induced by X-rays, was required to produce an equivalent level of cell death

  2. Relative frequency of formation of base radioproduct, single and double strand breaks on irradiation of diluted aqueous solution of DNA

    International Nuclear Information System (INIS)

    Ryznar, L.; Drasil, V.

    1975-01-01

    Diluted aqueous solution of DNA labelled with 6- 3 H-TdR was irradiated in the absence of oxygen and numbers of formed single and double strand breaks and the 5,6-dihydrothymine (DHT) yield were determined. The results indicate that, under given conditions, a molecule of a base radioproduct is formed approximately 10 times more frequently than one single strand break. The occurence of a single strand break is 20 times higher than that of a double strand break. The DNA labelled with 6- 3 H-TdR was isolated from mice fibroblasts of L-strain according to Marmur (specific activity 3.0 MBq/82 μCi/mg DNA, molecular weight M/sub n/=9.32x10 6 dalton). Solution of DNA was irradiated in the absence of oxygen (180 Gy /1.8x10 4 rads/, absorbed dose rate 0.3 Gy/s). It was lyophilized with an addition of non-labelled thymine, thymidine and DHT and then hydrolysed with 90% formic acid. The dried hydrolysate was chromatographed with irradiated non-labelled thymine added as a carrier. (F.G.)

  3. Symmetry breaking and generational mixing in top-color-assisted technicolor

    International Nuclear Information System (INIS)

    Lane, K.

    1996-01-01

    Top-color-assisted technicolor provides a dynanamical explanation for electroweak and flavor symmetry breaking and for the large mass of the top quark without unnatural fine-tuning. A major challenge is to generate the observed mixing between heavy and light generations while breaking the strong top-color interactions near 1 TeV. I argue that these phenomena, as well as electroweak symmetry breaking, are intimately connected and I present a scenario for them based on nontrivial patterns of technifermion condensation. I also exhibit a class of models realizing this scenario. This picture leads to a rich phenomenology, especially in hadron and lepton collider experiments in the few hundred GeV to few TeV region and in precision electroweak tests at the Z 0 , atomic parity violation, and polarized Mo/ller scattering. copyright 1996 The American Physical Society

  4. Rapid method for detecting base damage in DNA of mammalian cells: assay of U. V. -induced pyrimidine dimers in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, P E [Hammersmith Hospital, London (UK). M.R.C. Cyclotron Unit; Jansson, G; Ahnstroem, G

    1978-11-01

    Simple and rapid techniques are described for the detection of pyrimidine dimers in DNA. Human cells derived from embryonic lung tissue were UV-irradiated and subjected to either an osmotic shock procedure or detergent lysis, then treated with UV-endonuclease from Micrococcus luteus and the DNA partially denatured by treatment with weak alkali. Brief sonication reduced the molecular weight of the DNA, and the single- and double-stranded DNA could then be separated by hydroxylapatite chromatography. Approximately 40% of the expected number of pyrimidine dimers were detected by the enzyme treatment technique. The mean value of numbers of strand breaks per 10/sup 9/ dalton per J/m/sup 2/ was approximately 50% of the expected value. The method has advantages of speed and reproducibility and a large reduction in the quantities of materials used, particularly at the scintillation-counting stage.

  5. Mouse but not human embryonic stem cells are deficient in rejoining of ionizing radiation-induced DNA double-strand breaks.

    Science.gov (United States)

    Bañuelos, C A; Banáth, J P; MacPhail, S H; Zhao, J; Eaves, C A; O'Connor, M D; Lansdorp, P M; Olive, P L

    2008-09-01

    Mouse embryonic stem (mES) cells will give rise to all of the cells of the adult mouse, but they failed to rejoin half of the DNA double-strand breaks (dsb) produced by high doses of ionizing radiation. A deficiency in DNA-PK(cs) appears to be responsible since mES cells expressed strand breaks more rapidly. Consistent with more rapid dsb rejoining, H2AX(-/-) mES cells also expressed 6 times more DNA-PK(cs) than wild-type mES cells. Similar results were obtained for ATM(-/-) mES cells. Differentiation of mES cells led to an increase in DNA-PK(cs), an increase in dsb rejoining rate, and a decrease in Ku70/80. Unlike mouse ES, human ES cells were proficient in rejoining of dsb and expressed high levels of DNA-PK(cs). These results confirm the importance of homologous recombination in the accurate repair of double-strand breaks in mES cells, they help explain the chromosome abnormalities associated with deficiencies in H2AX and ATM, and they add to the growing list of differences in the way rodent and human cells deal with DNA damage.

  6. Atypical myxomatosis--virus isolation, experimental infection of rabbits and restriction endonuclease analysis of the isolate.

    Science.gov (United States)

    Psikal, I; Smíd, B; Rodák, L; Valícek, L; Bendová, J

    2003-08-01

    Atypical form of myxomatosis, which caused non-lethal and clinically mild disease in domestic rabbits 1 month after immunization with a commercially available vaccine MXT, is described. The isolated myxoma virus designated as Litovel 2 (Li-2) did not induce systemic disease following subcutaneous and intradermal applications in susceptible experimental rabbits but led to the immune response demonstrated by ELISA. No severe disease was induced in those Li-2 inoculated rabbits by challenge with the virulent strains Lausanne (Lu) or Sanar (SA), while the control animals showed nodular form of myxomatosis with lethal course of the illness. Restriction fragment length polymorphism (RFLP) of genomic DNA with KpnI and BamHI endonucleases was used for genetic characterization of the Li-2 isolate, the vaccine strain MXT and both virulent strains Lu and SA, respectively. In general, RFLP analysis has shown to be informative for inferring genetic relatedness between myxoma viruses. Based on restriction endonuclease DNA fragment size distribution, it was evident that the pathogenic strain SA is genetically related to the reference strain Lu and the isolate Li-2 is more related, but not identical, to the vaccination strain MXT.

  7. Alterations of ultraviolet irradiated DNA

    International Nuclear Information System (INIS)

    Davila, C.; Garces, F.

    1980-01-01

    Thymine dimers production has been studied in several DNA- 3 H irradiated at various wave lenght of U.V. Light. The influence of dimers on the hydrodynamic and optic properties, thermal structural stability and transformant capacity of DNA have been studied too. At last the recognition and excision of dimers by the DNA-UV-Endonuclease and DNA-Polimerase-I was also studied. (author)

  8. Protective role of 3-nitrotyrosine against gamma radiation-induced DNA strand breaks: A comparison study with tyrosine

    International Nuclear Information System (INIS)

    Shi Weiqun; Ni Meinan; Kong Fuquan; Sui Li; Hu Jia; Xu Diandou; Li Yanmei

    2008-01-01

    3-Nitrotyrosine(3-NY) has been reported as a potential source of reactive oxygen species (ROSs). In this work, plasmid pBR322 DNA was irradiated by gamma rays in aqueous solution in presence and absence of 3-NY, DNA strand breaks were analyzed by neutral electrophoresis followed by quantification with image analysis software. It was found that the presence of 3-NY could effectively reduce radiation-induced DNA strand breaks. A side-by-side comparison was performed between 3-NY and tyrosine, the results showed that the protective role 3-NY was comparable with tyrosine, which might imply that protein tyrosine nitration might not significantly decrease its ability as a free radical scavenger

  9. Single-strand breaks in the DNA of the uvrA and uvrB strains of Escherichia coli K-12 after ultraviolet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Youngs, D A; Smith, K C [Stanford Univ., Calif. (USA). Dept. of Radiology

    1976-12-01

    DNA single-strand breaks were produced in uvrA and uvrB strains of E.coli K-12 after UV (254 nm) irradiation. These breaks appeared to be produced both directly by photochemical events, and by a temperature-dependent process. Cyclobutane-type pyrimidine dimers are probably not the photoproducts that lead to the temperature-dependent breaks, since photoreactivation had no detectable effect on the final yield of breaks. The DNA strand breaks appeared to be repairable by a process that requires DNA polymerase I and polynucleotide ligase, but not the recA, recB, recF, lexA101 or uvrD gene products. It is hypothesized that these temperature-dependent breaks occur either as a result of breakdown of a thermolabile photoproduct, or as the initial endonucleolytic event of a uvrA, uvrB-independent excision repair process that acts on a UV photoproduct other than the cyclobutane-type pyrimidine dimer.

  10. Structure of the I-SceI nuclease complexed with its dsDNA target and three catalytic metal ions

    DEFF Research Database (Denmark)

    Prieto, Jesús; Redondo, Pilar; Merino, Nekane

    2016-01-01

    Homing endonucleases are highly specific DNA-cleaving enzymes that recognize and cleave long stretches of DNA. The engineering of these enzymes provides instruments for genome modification in a wide range of fields, including gene targeting. The homing endonuclease I-SceI from the yeast Saccharom......Homing endonucleases are highly specific DNA-cleaving enzymes that recognize and cleave long stretches of DNA. The engineering of these enzymes provides instruments for genome modification in a wide range of fields, including gene targeting. The homing endonuclease I-SceI from the yeast...... experiments were performed in the presence of Mn(2+), yielding crystals that were suitable for X-ray diffraction analysis. The crystals belonged to the orthorhombic space group P212121, with unit-cell parameters a = 80.11, b = 80.57, c = 130.87 Å, α = β = γ = 90°. The self-rotation function and the Matthews...

  11. Mouse RAD54 affects DNA double-strand break repair and sister chromatid exchange

    NARCIS (Netherlands)

    H.B. Beverloo (Berna); R.D. Johnson (Roger); M. Jasin (Maria); R. Kanaar (Roland); J.H.J. Hoeijmakers (Jan); M.L.G. Dronkert (Mies)

    2000-01-01

    textabstractCells can achieve error-free repair of DNA double-strand breaks (DSBs) by homologous recombination through gene conversion with or without crossover. In contrast, an alternative homology-dependent DSB repair pathway, single-strand annealing (SSA), results in deletions. In this study, we

  12. Current topics in DNA double-strand break repair

    International Nuclear Information System (INIS)

    Kobayashi, Junya; Takata, Minoru; Iwabuchi, Kuniyoshi; Miyagawa, Kiyoshi; Sonoda, Eiichiro; Suzuki, Keiji; Tauchi, Hiroshi

    2008-01-01

    DNA double strand break (DSB) is one of the most critical types of damage which is induced by ionizing radiation. In this review, we summarize current progress in investigations on the function of DSB repair-related proteins. We focused on recent findings in the analysis of the function of proteins such as 53BP1, histone H2AX, Mus81-Eme1, Fanc complex, and UBC13, which are found to be related to homologous recombination repair or to non-homologous end joining. In addition to the function of these proteins in DSB repair, the biological function of nuclear foci formation following DSB induction is discussed. (author)

  13. Molecular dynamics simulation of a DNA containing a single strand break

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, H.; Siebers, G.; Furukawa, A.; Otagiri, N.; Osman, R

    2002-07-01

    Molecular dynamics simulations were performed for a dodecamer DNA containing a single strand break (SSB), which has been represented by a 3'-OH deoxyribose and 5'-OH phosphate in the middle of the strand. Molecular force field parameters of the 5'-OH phosphate region were determined from an ab initio calculation at the HF/6-31G level using the program package GAMESS. The DNA was placed in a periodic boundary box with water molecules and Na+ counter-ions to produce a neutralised system. After minimisation, the system was heated to 300 K, equilibrated and a production run at constant NTP was executed for 1 ns using AMBER 4.1. Snapshots of the SSB-containing DNA and a detailed analysis of the equilibriated average structure revealed surprisingly small conformational changes compared to normal DNA. However, dynamic properties calculated using the essential dynamics method showed some features that may be important for the recognition of this damage by repair enzymes. (author)

  14. Stop Stalling: Mus81 Required for Efficient Replication | Center for Cancer Research

    Science.gov (United States)

    DNA replication is precisely controlled to ensure that daughter cells receive intact, accurate genetic information. Each segment of DNA must be copied only once, and the rate of replication coordinated genome-wide. Mild replication stress slows DNA synthesis and activates a pathway involving the Mus81 endonuclease, which generates a series of DNA breaks that are rapidly repaired, allowing the cell to avoid activating the S-phase checkpoint and its potentially damaging outcomes of apoptosis or error-prone repair. Mirit Aladjem, Ph.D., of CCR’s Developmental Therapeutics Branch, and her colleagues wondered whether Mus81 also plays a role in regulating the replication rate during growth in the absence of stress.

  15. Biallelic targeting of expressed genes in mouse embryonic stem cells using the Cas9 system

    NARCIS (Netherlands)

    Zhang, Yu; Vanoli, Fabio; LaRocque, Jeannine R.; Krawczyk, Przemek M.; Jasin, Maria

    2014-01-01

    Gene targeting - homologous recombination between transfected DNA and a chromosomal locus - is greatly stimulated by a DNA break in the target locus. Recently, the RNA-guided Cas9 endonuclease, involved in bacterial adaptive immunity, has been modified to function in mammalian cells. Unlike other

  16. Identification of flap structure-specific endonuclease 1 as a factor involved in long-term memory formation of aversive learning.

    Science.gov (United States)

    Saavedra-Rodríguez, Lorena; Vázquez, Adrinel; Ortiz-Zuazaga, Humberto G; Chorna, Nataliya E; González, Fernando A; Andrés, Lissette; Rodríguez, Karen; Ramírez, Fernando; Rodríguez, Alan; Peña de Ortiz, Sandra

    2009-05-06

    We previously proposed that DNA recombination/repair processes play a role in memory formation. Here, we examined the possible role of the fen-1 gene, encoding a flap structure-specific endonuclease, in memory consolidation of conditioned taste aversion (CTA). Quantitative real-time PCR showed that amygdalar fen-1 mRNA induction was associated to the central processing of the illness experience related to CTA and to CTA itself, but not to the central processing resulting from the presentation of a novel flavor. CTA also increased expression of the Fen-1 protein in the amygdala, but not the insular cortex. In addition, double immunofluorescence analyses showed that amygdalar Fen-1 expression is mostly localized within neurons. Importantly, functional studies demonstrated that amygdalar antisense knockdown of fen-1 expression impaired consolidation, but not short-term memory, of CTA. Overall, these studies define the fen-1 endonuclease as a new DNA recombination/repair factor involved in the formation of long-term memories.

  17. Production of DNA strand breaks by ionizing radiation of different quality and their consequences for cell inactivation

    International Nuclear Information System (INIS)

    Kampf, G.

    1983-07-01

    The production of single- and double-strand breaks (DSB) in the DNA of Chinese hamster cells (V 79) was studied by use of 11 radiation qualities, with some also under hypoxic conditions. The aim was to find relations between the induction of lesions on the molecular level and the expression of this damage on the cellular level. The results suggest that release of DNA from the nuclear-membrane complex, induction of chromosome breaks, and cell inactivation are triggered by DSB. However, not simply a certain number of DSB in the DNA of the nucleus, but their cooperation within a small structural section of DNA is required for cell inactivation. Such sections may be the membrane-associated superstructure units. DSB produced under hypoxic conditions show a greater effectiveness than those produced under oxic conditions. The investigations with eukaryotic cells and bacteria suggest that not the entire DNA of all organisms but a structural unit common to them represents the critical target for radiation action. (author)

  18. In Vitro Expansion of Bone Marrow Derived Mesenchymal Stem Cells Alters DNA Double Strand Break Repair of Etoposide Induced DNA Damage

    Directory of Open Access Journals (Sweden)

    Ian Hare

    2016-01-01

    Full Text Available Mesenchymal stem cells (MSCs are of interest for use in diverse cellular therapies. Ex vivo expansion of MSCs intended for transplantation must result in generation of cells that maintain fidelity of critical functions. Previous investigations have identified genetic and phenotypic alterations of MSCs with in vitro passage, but little is known regarding how culturing influences the ability of MSCs to repair double strand DNA breaks (DSBs, the most severe of DNA lesions. To investigate the response to DSB stress with passage in vitro, primary human MSCs were exposed to etoposide (VP16 at various passages with subsequent evaluation of cellular damage responses and DNA repair. Passage number did not affect susceptibility to VP16 or the incidence and repair kinetics of DSBs. Nonhomologous end joining (NHEJ transcripts showed little alteration with VP16 exposure or passage; however, homologous recombination (HR transcripts were reduced following VP16 exposure with this decrease amplified as MSCs were passaged in vitro. Functional evaluations of NHEJ and HR showed that MSCs were unable to activate NHEJ repair following VP16 stress in cells after successive passage. These results indicate that ex vivo expansion of MSCs alters their ability to perform DSB repair, a necessary function for cells intended for transplantation.

  19. In Vitro Expansion of Bone Marrow Derived Mesenchymal Stem Cells Alters DNA Double Strand Break Repair of Etoposide Induced DNA Damage.

    Science.gov (United States)

    Hare, Ian; Gencheva, Marieta; Evans, Rebecca; Fortney, James; Piktel, Debbie; Vos, Jeffrey A; Howell, David; Gibson, Laura F

    2016-01-01

    Mesenchymal stem cells (MSCs) are of interest for use in diverse cellular therapies. Ex vivo expansion of MSCs intended for transplantation must result in generation of cells that maintain fidelity of critical functions. Previous investigations have identified genetic and phenotypic alterations of MSCs with in vitro passage, but little is known regarding how culturing influences the ability of MSCs to repair double strand DNA breaks (DSBs), the most severe of DNA lesions. To investigate the response to DSB stress with passage in vitro, primary human MSCs were exposed to etoposide (VP16) at various passages with subsequent evaluation of cellular damage responses and DNA repair. Passage number did not affect susceptibility to VP16 or the incidence and repair kinetics of DSBs. Nonhomologous end joining (NHEJ) transcripts showed little alteration with VP16 exposure or passage; however, homologous recombination (HR) transcripts were reduced following VP16 exposure with this decrease amplified as MSCs were passaged in vitro. Functional evaluations of NHEJ and HR showed that MSCs were unable to activate NHEJ repair following VP16 stress in cells after successive passage. These results indicate that ex vivo expansion of MSCs alters their ability to perform DSB repair, a necessary function for cells intended for transplantation.

  20. Interactions and Localization of Escherichia coli Error-Prone DNA Polymerase IV after DNA Damage.

    Science.gov (United States)

    Mallik, Sarita; Popodi, Ellen M; Hanson, Andrew J; Foster, Patricia L

    2015-09-01

    Escherichia coli's DNA polymerase IV (Pol IV/DinB), a member of the Y family of error-prone polymerases, is induced during the SOS response to DNA damage and is responsible for translesion bypass and adaptive (stress-induced) mutation. In this study, the localization of Pol IV after DNA damage was followed using fluorescent fusions. After exposure of E. coli to DNA-damaging agents, fluorescently tagged Pol IV localized to the nucleoid as foci. Stepwise photobleaching indicated ∼60% of the foci consisted of three Pol IV molecules, while ∼40% consisted of six Pol IV molecules. Fluorescently tagged Rep, a replication accessory DNA helicase, was recruited to the Pol IV foci after DNA damage, suggesting that the in vitro interaction between Rep and Pol IV reported previously also occurs in vivo. Fluorescently tagged RecA also formed foci after DNA damage, and Pol IV localized to them. To investigate if Pol IV localizes to double-strand breaks (DSBs), an I-SceI endonuclease-mediated DSB was introduced close to a fluorescently labeled LacO array on the chromosome. After DSB induction, Pol IV localized to the DSB site in ∼70% of SOS-induced cells. RecA also formed foci at the DSB sites, and Pol IV localized to the RecA foci. These results suggest that Pol IV interacts with RecA in vivo and is recruited to sites of DSBs to aid in the restoration of DNA replication. DNA polymerase IV (Pol IV/DinB) is an error-prone DNA polymerase capable of bypassing DNA lesions and aiding in the restart of stalled replication forks. In this work, we demonstrate in vivo localization of fluorescently tagged Pol IV to the nucleoid after DNA damage and to DNA double-strand breaks. We show colocalization of Pol IV with two proteins: Rep DNA helicase, which participates in replication, and RecA, which catalyzes recombinational repair of stalled replication forks. Time course experiments suggest that Pol IV recruits Rep and that RecA recruits Pol IV. These findings provide in vivo evidence

  1. Inhibition of DNA-double strand break repair by antimony compounds

    International Nuclear Information System (INIS)

    Takahashi, Sentaro; Sato, Hiroshi; Kubota, Yoshihisa; Utsumi, Hiroshi; Bedford, Joel S.; Okayasu, Ryuichi

    2002-01-01

    DNA double strand breaks (DSBs), induced by γ-irradiation in Chinese hamster ovary cells, were used to examine whether antimony compounds affect the repair of DNA damage. The cells were first incubated with antimony trichloride or antimony potassium tartrate (both Sb(III)) for 2 h, and then irradiated with γ-rays at a dose of 40 Gy. The DNA DSB was quantified with pulsed field gel electrophoresis immediately after irradiation (non-repair group) as well as at 30 min post-irradiation (repair group). The degree of repair inhibition was determined by the differences in the amount of DNA DSB between non-repair and repair groups. Both antimony compounds inhibited repair of DNA DSB in a dose dependent manner. In trichloride, 0.2 mM antimony significantly inhibited the rejoining of DSB, while 0.4 mM was necessary in potassium antimony tartrate. The mean lethal doses, D 0 , for the treatment with antimony trichloride and antimony potassium tartrate, were approximately 0.21 and 0.12 mM, respectively. This indicates that the repair inhibition by antimony trichloride occurred in the dose range near D 0 , but the antimony potassium tartrate inhibited the repair at doses where most cells lost their proliferating ability. This is the first report to indicate that antimony compounds may inhibit the repair of radiation-induced DNA DSB

  2. Methylproamine protects against ionizing radiation by preventing DNA double-strand breaks

    International Nuclear Information System (INIS)

    Sprung, Carl N.; Vasireddy, Raja S.; Karagiannis, Tom C.; Loveridge, Shanon J.; Martin, Roger F.; McKay, Michael J.

    2010-01-01

    Purpose: The majority of cancer patients will receive radiotherapy (RT), therefore, investigations into advances of this modality are important. Conventional RT dose intensities are limited by adverse responses in normal tissues and a primary goal is to ameliorate adverse normal tissue effects. The aim of these experiments is to further our understanding regarding the mechanism of radioprotection by the DNA minor groove binder, methylproamine, in a cellular context at the DNA level. Materials and methods: We used immunocytochemical methods to measure the accumulation of phosphorylated H2AX (γH2AX) foci following ionizing radiation (IR) in patient-derived lymphoblastoid cells exposed to methylproamine. Furthermore, we performed pulsed field gel electrophoresis DNA damage and repair assays to directly interrogate the action of methylproamine on DNA in irradiated cells. Results: We found that methylproamine-treated cells had fewer γH2AX foci after IR compared to untreated cells. Also, the presence of methylproamine decreased the amount of lower molecular weight DNA entering the gel as shown by the pulsed field gel electrophoresis assay. Conclusions: These results suggest that methylproamine acts by preventing the formation of DNA double-strand breaks (dsbs) and support the hypothesis that radioprotection by methylproamine is mediated, at least in part, by decreasing initial DNA damage.

  3. Repair of ultraviolet radiation damage in xeroderma pigmentosum cells belonging to complementation group F

    International Nuclear Information System (INIS)

    Hayakawa, H.; Ishizaki, K.; Yagi, T.; Takebe, H.; Inoue, M.; Sekiguchi, M.; Kyoto Univ.

    1981-01-01

    DNA-repair characteristics of xeroderma pigmentosum belonging to complementation group F were investigated. The cells exhibited an intermediate level of repair as measured in terms of (1) disappearance of T4 endonuclease-V-susceptible sites from DNA, (2) formation of ultraviolet-induced strand breaks in DNA, and (3) ultraviolet-induced unscheduled DNA synthesis during post-irradiation incubation. The impaired ability of XP3YO to perform unscheduled DNA synthesis was restored, to half the normal level, by the concomitant treatment with T4 endonuclease V and ultraviolet-inactivated Sendai virus. It is suggested that xeroderma pigmentosum cells of group F may be defective, at least in part, in the incision step of excision repair. (orig.)

  4. Differential regulation of the cellular response to DNA double-strand breaks in G1

    DEFF Research Database (Denmark)

    Barlow, Jacqueline H; Lisby, Michael; Rothstein, Rodney

    2008-01-01

    -induced breaks are recognized by Rfa1 only after the cell enters S phase. This difference is dependent on the DNA end-binding Yku70/Yku80 complex. Cell-cycle regulation is also observed in the DNA damage checkpoint response. Specifically, the 9-1-1 complex is required in G1 cells to recruit the Ddc2 checkpoint...... protein to damaged DNA, while, upon entry into S phase, the cyclin-dependent kinase Cdc28 and the 9-1-1 complex both serve to recruit Ddc2 to foci. Together, these results demonstrate that the DNA repair machinery distinguishes between different types of damage in G1, which translates into different modes...

  5. Fumarase is involved in DNA double-strand break resection through a functional interaction with Sae2

    DEFF Research Database (Denmark)

    Leshets, Michael; Ramamurthy, Dharanidharan; Lisby, Michael

    2018-01-01

    One of the most severe forms of DNA damage is the double-strand break (DSB). Failure to properly repair the damage can cause mutation, gross chromosomal rearrangements and lead to the development of cancer. In eukaryotes, homologous recombination (HR) and non-homologous end joining (NHEJ) are the......One of the most severe forms of DNA damage is the double-strand break (DSB). Failure to properly repair the damage can cause mutation, gross chromosomal rearrangements and lead to the development of cancer. In eukaryotes, homologous recombination (HR) and non-homologous end joining (NHEJ......) are the main DSB repair pathways. Fumarase is a mitochondrial enzyme which functions in the tricarboxylic acid cycle. Intriguingly, the enzyme can be readily detected in the cytosolic compartment of all organisms examined, and we have shown that cytosolic fumarase participates in the DNA damage response...

  6. DNA double-strand break rejoining in human follicular lymphoma and glioblastoma tumor cells

    NARCIS (Netherlands)

    Macann, AMJ; Britten, RA; Poppema, S; Pearcey, R; Rosenberg, E; Allalunis-Turner, MJ; Murray, D

    2000-01-01

    Follicle center cell lymphoma is among the most radioresponsive of human cancers. To assess whether this radioresponsiveness might be a result of a compromised ability of the tumor cells to accomplish the biologically-effective repair of DNA double-strand breaks (DSBs), we have measured i) the

  7. Repair of DNA double-strand breaks and cell killing by charged particles

    Science.gov (United States)

    Eguchi-Kasai, K.; Murakami, M.; Itsukaichi, H.; Fukutsu, K.; Yatagai, F.; Kanai, T.; Ohara, H.; Sato, K.

    It has been suggested that it is not simple double-strand breaks (dsb) but the non-reparable breaks which correlate well with the high biological effectiveness of high LET radiations for cell killing. We have compared the effects of charged particles on cell death in 3 pairs of cell lines which are normal or defective in the repair of DNA dsbs. For the cell lines SL3-147, M10, and SX10 which are deficient in DNA dsb repair, RBE values were close to unity for cell killing induced by charged particles with linear energy transfer (LET) up to 200 keV/mum and were even smaller than unity for the LET region greater than 300 keV/mum. The inactivation cross section (ICS) increased with LET for all 3 pairs. The ICS of dsb repair deficient mutants was always larger than that of their parents for all the LET ranges, but with increasing LET the difference in ICS between the mutant and its parent became smaller. Since a small difference in ICS remained at LET of about 300 keV/mum, dsb repair may still take place at this high LET, even if its role is apparently small. These results suggest that the DNA repair system does not play a major role in protection against the attack of high LET radiations and that a main cause of cell death is non-reparable dsb which are produced at a higher yield compared with low LET radiations. No correlation was observed between DNA content or nuclear area and ICS.

  8. A novel technique using DNA denaturation to detect multiply induced single-strand breaks in a hydrated plasmid DNA molecule by X-ray and 4He2+ ion irradiation

    International Nuclear Information System (INIS)

    Yokoya, A.; Shikazono, N.; Fujii, K.; Noguchi, M.; Urushibara, A.

    2011-01-01

    To detect multiple single-strand breaks (SSBs) produced in plasmid DNA molecules by direct energy deposition from radiation tracks, we have developed a novel technique using DNA denaturation by which irradiated DNA is analysed as single-strand DNA (SS-DNA). The multiple SSBs that arise in both strands of DNA, but do not induce a double-strand break, are quantified as loss of SS-DNA using agarose gel electrophoresis. We have applied this method to X-ray and 4 He 2+ ion-irradiated samples of fully hydrated pUC18 plasmid DNA. The fractions of both SS-DNA and closed circular DNA (CC-DNA) exponentially decrease with the increasing dose of X rays and 4 He 2+ ions. The efficiency of the loss of SS-DNA was half that of CC-DNA for both types of irradiation, indicating that one of two strands in DNA is not broken when one SSB is produced in CC-DNA by irradiation. Contrary to our initial expectation, these results indicate that SSBs are not multiply induced even by high linear energy transfer radiation distributed in both strands. (authors)

  9. Rad52 forms DMA repair and recombination centers during S phase

    DEFF Research Database (Denmark)

    Lisby, M.; Rothstein, R.; Mortensen, Uffe Hasbro

    2001-01-01

    fluorescent protein (GFP) is fully functional in DNA repair and recombination. After induction of DNA double-strand breaks by gamma -irradiation, meiosis, or the HO endonuclease, Rad52-GFP relocalizes from a diffuse nuclear distribution to distinct foci. Interestingly, Rad52 foci are formed almost exclusively...

  10. Investigation of DNA strand breaks induced by 7Li and 12C ions

    International Nuclear Information System (INIS)

    Sui Li; Zhao Kui; Ni Meinan; Guo Jiyu; Luo Hongbing; Mei Junping; Lu Xiuqin; Zhou Ping

    2004-01-01

    Deoxyribonucleic acid (DNA) is an important biomacromolecule. It is a carrier of genetic information and a critical target for radiobiological effects. Numerous lesions have been identified in irradiated DNA. DNA double strand breaks (DSBs) are considered as the most important initial damage of all biological effects induced by ionizing radiation. In this experiment, DNA DSBs induced by heavy ions in the early period were investigated with atomic force microscopy (AFM). Choosing 7 Li and 12 C heavy ions with different LET values delivered by HI-13 tandem accelerator respectively, purified plasmid DNA samples in aqueous solution were irradiated at different doses. AFM was used for nanometer-level-structure analysis of DNA damage induced by these two kinds of heavy ions. Measurement of the DNA fragment lengths was accomplished with the Scion Image analyzed soft-ware. Change laws of three forms of DNA, supercoils, open circular and linear form as dose increased were obtained. Distributed function of DNA fragment length was also obtained, and fitted with Tsallis entropy statistical theory. (author)

  11. DNA double strand breaks in the acute phase after synchrotron pencilbeam irradiation

    International Nuclear Information System (INIS)

    Fernandez-Palomo, C; Trippel, M; Schroll, C; Nikkhah, G; Schültke, E; Bräuer-Krisch, E; Requardt, H; Bartzsch, S

    2013-01-01

    Introduction. At the biomedical beamline of the European Synchrotron Radiation Facility (ESRF), we have established a method to study pencilbeam irradiation in-vivoin small animal models. The pencilbeam irradiation technique is based on the principle of microbeam irradiation, a concept of spatially fractionated high-dose irradiation. Using γH2AX as marker, we followed the development of DNA double strand breaks over 48 hrs after whole brain irradiation with the pencilbeam technique. Method. Almost square pencilbeams with an individual size of 51 × 50 μm were produced with an MSC collimator using a step and shoot approach, while the animals were moved vertically through the beam. The center-to-center distance (ctc) was 400 μm, with a peak-to-valley dose ratio (PVDR) of about 400. Five groups of healthy adult mice received peak irradiation doses of either 330 Gy or 2,460 Gy and valley doses of 0.82 Gy and 6.15 Gy, respectively. Animals were sacrificed at 2, 12 and 48 hrs after irradiation. Results. DNA double strand breaks are observed in the path of the pencilbeam. The size of the damaged volume undergoes changes within the first 48 hours after irradiation. Conclusions. The extent of DNA damage caused by pencilbeam irradiation, as assessed by H2AX antibody staining, is dose- dependent

  12. Increased sensitivity of UV-repair-deficient human cells to DNA bound platinum products which unlike thymine dimers are not recognised by an endonuclease extracted from Micrococcus luteus

    Energy Technology Data Exchange (ETDEWEB)

    Fraval, H N.A.; Rawlings, C J; Roberts, J J [Institute of Cancer Research, Royal Cancer Hospital, Pollards Wood Research Station, Chalfont St. Giles, Bucks, UK

    1978-07-01

    The response of human cells in culture to cis platinum (II) diammine dichloride (cis Pt(II)) induced DNA damage has been studied. The survival data, measured as a function of cis Pt(II) dose were similar in a normal cell line (Human foetal lung) compared to a UV-sensitive, thymine dimer excision repair-deficient cell line (Xeroderma pigmentatosum). However, there was a marked difference between the two cell lines when binding to DNA was plotted against dose of cis Pt(II) given for 1 h. When these findings were expressed as cell survival versus binding to DNA, a 4.1-fold difference between the slopes of the survival curves for the two cell lines was obtained. These findings are consistent with the notion that normal cells are able to excise cis Pt(II) induced damage from their genome and thus increase their ability to survive as compared to excision deficient cells. An endonuclease preparation from Micrococcus luteus is able to recognise UV damage in DNA, but did not recognise cis Pt(II) induced damage. These results possibly indicate differences in the pathways of repair of damage caused by the two agents.

  13. Enhanced targeted integration mediated by translocated I-SceI during the Agrobacterium mediated transformation of yeast.

    Science.gov (United States)

    Rolloos, Martijn; Hooykaas, Paul J J; van der Zaal, Bert J

    2015-02-09

    Agrobacterium mediated transformation (AMT) has been embraced by biotechnologists as the technology of choice to introduce or alter genetic traits of plants. However, in plants it is virtually impossible to predetermine the integration site of the transferred T-strand unless one is able to generate a double stranded break (DSB) in the DNA at the site of interest. In this study, we used the model organism Saccharomyces cerevisiae to investigate whether the Agrobacterium mediated translocation of site-specific endonucleases via the type IV secretion system (T4SS), concomitantly with T-DNA transfer is possible and whether this can improve the gene targeting efficiency. In addition to that, the effect of different chromatin states on targeted integration, was investigated. It was found that Agrobacterium mediated translocation of the homing endonuclease I-SceI has a positive effect on the integration of T-DNA via the homologous repair (HR) pathway. Furthermore, we obtained evidence that nucleosome removal has a positive effect on I-SceI facilitated T-DNA integration by HR. Reversely; inducing nucleosome formation at the site of integration removes the positive effect of translocated I-SceI on T-DNA integration.

  14. DNA hybrids suggesting a recombination process repairing radiation-induced DNA double-strand breaks in Ehrlich Ascites tumor cells

    International Nuclear Information System (INIS)

    Barthel, H.R.

    1984-01-01

    The results presented suggest the possibility of repair of DNA double-strand breaks by recombination, at least in the S and G 2 -phases of the cell cycle, in mammalian cells. Further experiments with synchronized cell cultures will have to show whether this process may also occur in the G 1 -phase of the cell cycle. (orig./AJ) [de

  15. Possible role(s) of nuclear matrix and DNA loop organization in fixation or repair of DNA double-strand breaks

    International Nuclear Information System (INIS)

    Malyapa, R.S.; Wright, W.D.; Roti Roti, J.L.

    1995-01-01

    DNA double-strand breaks produced by ionizing radiation are considered to be a critical radiation-induced lesion responsible, in part, for cell killing. However, the manner in which structures within the nucleus involving DNA organization contribute to the balance between fixation or repair of these critical lesions remains largely obscure. The repair process requires both functional enzymes and substrate availability, i.e., access to and orientation of damage sites. Therefore, the ability to repair damaged DNA could be influenced not only by DNA integrity but also by the spatial organization of DNA. Therefore, the authors investigated the possibility that radiation-induced DNA damage differentially affects DNA supercoiling ability in cells of differing radiosensitivities using radioresistant and radiosensitive mutants of different origins. This study was also designed to determine if differences in the composition of the nuclear matrix exist between cell lines of each origin. Results from these studies indicate that differences in the composition of the nuclear matrix proteins and DNA stability might be related to intrinsic radiation resistance

  16. Detection of base damage in DNA in human blood exposed to ionizing radiation at biologically relevant doses

    International Nuclear Information System (INIS)

    Loon, A.A.W.M. van; Lohman, P.H.M.; Groenendijk, R.H.; Schans, G.P. van der; Baan, R.A.

    1991-01-01

    The alkaline elution technique for the detection of DNA damage has been adapted to allow application on unlabelled blood cells. Both the induction and subsequent repair have been studied of two classes of DNA damage, viz. single-strand breaks and base damage recognized by the γ-endonuclease activity in a cell-free extract of Micrococcus luteus bacteria. The high sensitivity of the assay permitted the measurement of induction and repair of base damage after in vitro exposure of full blood under aerobic conditions to biologically relevant doses of γ-rays (1.5-4.5 Gy). After a radiation dose of 3 Gy about 50% of the base damage was removed within 1.5 h of repair. Base damage could still be detected at 24h after exposure to 15 Gy. (author)

  17. Using Group II Introns for Attenuating the In Vitro and In Vivo Expression of a Homing Endonuclease.

    Directory of Open Access Journals (Sweden)

    Tuhin Kumar Guha

    Full Text Available In Chaetomium thermophilum (DSM 1495 within the mitochondrial DNA (mtDNA small ribosomal subunit (rns gene a group IIA1 intron interrupts an open reading frame (ORF encoded within a group I intron (mS1247. This arrangement offers the opportunity to examine if the nested group II intron could be utilized as a regulatory element for the expression of the homing endonuclease (HEase. Constructs were generated where the codon-optimized ORF was interrupted with either the native group IIA1 intron or a group IIB type intron. This study showed that the expression of the HEase (in vivo in Escherichia coli can be regulated by manipulating the splicing efficiency of the HEase ORF-embedded group II introns. Exogenous magnesium chloride (MgCl2 stimulated the expression of a functional HEase but the addition of cobalt chloride (CoCl2 to growth media antagonized the expression of HEase activity. Ultimately the ability to attenuate HEase activity might be useful in precision genome engineering, minimizing off target activities, or where pathways have to be altered during a specific growth phase.

  18. Contribution of sleep to the repair of neuronal DNA double-strand breaks: evidence from flies and mice.

    Science.gov (United States)

    Bellesi, Michele; Bushey, Daniel; Chini, Mattia; Tononi, Giulio; Cirelli, Chiara

    2016-11-10

    Exploration of a novel environment leads to neuronal DNA double-strand breaks (DSBs). These DSBs are generated by type 2 topoisomerase to relieve topological constrains that limit transcription of plasticity-related immediate early genes. If not promptly repaired, however, DSBs may lead to cell death. Since the induction of plasticity-related genes is higher in wake than in sleep, we asked whether it is specifically wake associated with synaptic plasticity that leads to DSBs, and whether sleep provides any selective advantage over wake in their repair. In flies and mice, we find that enriched wake, more than simply time spent awake, induces DSBs, and their repair in mice is delayed or prevented by subsequent wake. In both species the repair of irradiation-induced neuronal DSBs is also quicker during sleep, and mouse genes mediating the response to DNA damage are upregulated in sleep. Thus, sleep facilitates the repair of neuronal DSBs.

  19. DNA Knots: Theory and Experiments

    Science.gov (United States)

    Sumners, D. W.

    Cellular DNA is a long, thread-like molecule with remarkably complex topology. Enzymes that manipulate the geometry and topology of cellular DNA perform many vital cellular processes (including segregation of daughter chromosomes, gene regulation, DNA repair, and generation of antibody diversity). Some enzymes pass DNA through itself via enzyme-bridged transient breaks in the DNA; other enzymes break the DNA apart and reconnect it to different ends. In the topological approach to enzymology, circular DNA is incubated with an enzyme, producing an enzyme signature in the form of DNA knots and links. By observing the changes in DNA geometry (supercoiling) and topology (knotting and linking) due to enzyme action, the enzyme binding and mechanism can often be characterized. This paper will discuss some personal research history, and the tangle model for the analysis of site-specific recombination experiments on circular DNA.

  20. Role of DNA repair in repair of cytogenetic damages. Contribution of repair of single-strand DNA breaks to cytogenetic damages repair

    International Nuclear Information System (INIS)

    Rozanova, O.M.; Zaichkina, S.I.; Aptikaev, G.F.; Ganassi, E.Eh.

    1989-01-01

    The comparison was made between the results of the effect of poly(ADP-ribosylation) ingibitors (e.g. nicotinamide and 3-aminobenzamide) and a chromatin proteinase ingibitor, phenylmethylsulfonylfluoride, on the cytogenetic damages repair, by a micronuclear test, and DNA repair in Chinese hamster fibroblasts. The values of the repair half-periods (5-7 min for the cytogenetic damages and 5 min for the rapidly repaired DNA damages) and a similar modyfying effect with regard to radiation cytogenetic damages and kynetics of DNA damages repair were found to be close. This confirms the contribution of repair of DNA single-strand breaks in the initiation of structural damages to chromosomes

  1. Glycosylase-mediated repair of radiation-induced DNA bases: substrate specificities and mechanisms

    International Nuclear Information System (INIS)

    D'ham, Cedric

    1998-01-01

    Cellular DNA is subject to permanent damage and repair processes. One way to restore the integrity of DNA involves the base excision repair pathway. Glycosylases are the key-enzymes of this process. The present work deals with the determination of the substrate specificity and the mechanism of action of three glycosylases: endonuclease III and Fpg of Escherichia coli and Ogg1 of Saccharomyces cerevisiae. The present manuscript is divided into four parts: Endonuclease III-mediated excision of 5,6-dihydro-thymine and 5-hydroxy-5,6-dihydro-thymine from γ-irradiated DNA was analyzed by a gas chromatography-mass spectrometry assay, including a liquid chromatography pre-purification step. This was found to be necessary in order to separate the cis and trans isomers of 6-hydroxy-5,6-dihydro-thymine from the 5-hydroxy-5,6-dihydro-thymine. Modified oligonucleotides that contained a unique lesion, including thymine glycol, 5,6-dihydro-thymine and 5-hydroxy-cytosine were synthesized to assess the substrate specificity of endonuclease III and Fpg. The order of preference of the enzymes for the substrates was determined by the measurement of the Michaelis constants of the kinetics. Furthermore, the mechanism of action of endonuclease III has been reconsidered, after analysis using the MALDI mass spectrometry technique. These studies reveal that hydrolysis is the main pathway by which endonuclease III cleaves the DNA backbone. Using a modified oligonucleotide, 8-oxo-7,8-dihydro-adenine was shown to be a product of excision of the Ogg1 enzyme. The role of the complementary base towards the lesion was found to be preponderant in the damage excision. A last chapter concerns the synthesis and the characterization of the four isomers of 5(6)-hydroxy-6(5)-hydroperoxides of thymine. These products may be substrates for endonuclease III or Fpg. (author) [fr

  2. GC-Rich Extracellular DNA Induces Oxidative Stress, Double-Strand DNA Breaks, and DNA Damage Response in Human Adipose-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Kostyuk, Svetlana; Smirnova, Tatiana; Kameneva, Larisa; Porokhovnik, Lev; Speranskij, Anatolij; Ershova, Elizaveta; Stukalov, Sergey; Izevskaya, Vera; Veiko, Natalia

    2015-01-01

    Cell free DNA (cfDNA) circulates throughout the bloodstream of both healthy people and patients with various diseases. CfDNA is substantially enriched in its GC-content as compared with human genomic DNA. Exposure of haMSCs to GC-DNA induces short-term oxidative stress (determined with H2DCFH-DA) and results in both single- and double-strand DNA breaks (comet assay and γH2AX, foci). As a result in the cells significantly increases the expression of repair genes (BRCA1 (RT-PCR), PCNA (FACS)) and antiapoptotic genes (BCL2 (RT-PCR and FACS), BCL2A1, BCL2L1, BIRC3, and BIRC2 (RT-PCR)). Under the action of GC-DNA the potential of mitochondria was increased. Here we show that GC-rich extracellular DNA stimulates adipocyte differentiation of human adipose-derived mesenchymal stem cells (haMSCs). Exposure to GC-DNA leads to an increase in the level of RNAPPARG2 and LPL (RT-PCR), in the level of fatty acid binding protein FABP4 (FACS analysis) and in the level of fat (Oil Red O). GC-rich fragments in the pool of cfDNA can potentially induce oxidative stress and DNA damage response and affect the direction of mesenchymal stem cells differentiation in human adipose-derived mesenchymal stem cells. Such a response may be one of the causes of obesity or osteoporosis.

  3. DNA-dependent protein kinase (DAN-PK), a key enzyme in the re-ligation of DNA double-strand breaks

    International Nuclear Information System (INIS)

    Hennequin, C.; Averbeck, D.

    1999-01-01

    Repair pathways of DNA are now defined and some important findings have been discovered in the last few years. DNA non-homologous end-joining (NEH) is a crucial process in the repair of radiation-induced double-strand breaks (DSBs). NHEj implies at least three steps: the DNA free-ends must get closer, preparation of the free-ends by exonucleases and then a transient hybridization in a region of DNA with weak homology. DNA-dependent protein kinase (DNA-PK) is the key enzyme in this process. DNA-PK is a nuclear serine/threonine kinase that comprises three components: a catalytic subunit (DNA-PK cs ) and two regulatory subunits, DNA-binding proteins, Ku80 and Ku70. The severe combined immuno-deficient (scid) mice are deficient in DNA-PK cs : this protein is involved both in DNA repair and in the V(D)J recombination of immunoglobulin and T-cell receptor genes. It is a protein-kinase of the P13-kinase family and which can phosphorylate Ku proteins, p53 and probably some other proteins still unknown. DNA-PK is an important actor of DSBs repair (induced by ionising radiations or by drugs like etoposide), but obviously it is not the only mechanism existing in the cell for this function. Some others, like homologous recombination, seem also to have a great importance for cell survival. (authors)

  4. Phenotypic Analysis of ATM Protein Kinase in DNA Double-Strand Break Formation and Repair.

    Science.gov (United States)

    Mian, Elisabeth; Wiesmüller, Lisa

    2017-01-01

    Ataxia telangiectasia mutated (ATM) encodes a serine/threonine protein kinase, which is involved in various regulatory processes in mammalian cells. Its best-known role is apical activation of the DNA damage response following generation of DNA double-strand breaks (DSBs). When DSBs appear, sensor and mediator proteins are recruited, activating transducers such as ATM, which in turn relay a widespread signal to a multitude of downstream effectors. ATM mutation causes Ataxia telangiectasia (AT), whereby the disease phenotype shows differing characteristics depending on the underlying ATM mutation. However, all phenotypes share progressive neurodegeneration and marked predisposition to malignancies at the organismal level and sensitivity to ionizing radiation and chromosome aberrations at the cellular level. Expression and localization of the ATM protein can be determined via western blotting and immunofluorescence microscopy; however, detection of subtle alterations such as resulting from amino acid exchanges rather than truncating mutations requires functional testing. Previous studies on the role of ATM in DSB repair, which connects with radiosensitivity and chromosomal stability, gave at first sight contradictory results. To systematically explore the effects of clinically relevant ATM mutations on DSB repair, we engaged a series of lymphoblastoid cell lines (LCLs) derived from AT patients and controls. To examine DSB repair both in a quantitative and qualitative manners, we used an EGFP-based assay comprising different substrates for distinct DSB repair mechanisms. In this way, we demonstrated that particular signaling defects caused by individual ATM mutations led to specific DSB repair phenotypes. To explore the impact of ATM on carcinogenic chromosomal aberrations, we monitored chromosomal breakage at a breakpoint cluster region hotspot within the MLL gene that has been associated with therapy-related leukemia. PCR-based MLL-breakage analysis of HeLa cells

  5. DNA double-strand breaks induced by high-energy neon and iron ions in human fibroblasts. I. Pulsed-field gel electrophoresis method

    International Nuclear Information System (INIS)

    Rydberg, B.; Loebrich, M.; Cooper, P.K.

    1994-01-01

    The relative effectiveness of high-energy neon and iron ions for the production of DNA double-strand breaks was measured in one transformed and one nontransformed human fibroblast cell line using pulsed-field gel electrophoresis. The DNA released from the gel plug (fraction of activity released: FAR) as well as the size distribution of the DNA entering the gel were used to compare the effects of the heavy-ion exposure with X-ray exposure. Both methods gave similar results, indicating similar distributions of breaks over megabase-pair distances for the heavy ions and the X rays. The relative biological effectiveness (RBE) compared to 225 kVp X rays of initially induced DNA double-strand breaks was found to be 0.85 for 425 MeV/u neon ions (LET 32 keV/μm) and 0.42-0.55 for 250-600 MeV/u iron ions (LET 190-350 keV/μm). Postirradiation incubation showed less efficient repair of breaks induced by the neon ions and the 600 MeV/u iron ions compared to X rays. Survival experiments demonstrated RBE values larger than one for cell killing by the heavy ions in parallel experiments (neon: RBE = 1.2, iron: RBE = 2.3-3.0, based on D 10 values). It is concluded that either the initial yield of DNA double-strand breaks induced by the high-energy particles is lower than the yield for X rays, or the breaks induced by heavy ions are present in clusters that cannot be resolved with the technique used. These results are confirmed in the accompanying paper. 48 refs., 5 figs., 2 tabs

  6. Determination and analysis of site-specific 125I decay-induced DNA double-strand break end-group structures.

    Science.gov (United States)

    Datta, Kamal; Weinfeld, Michael; Neumann, Ronald D; Winters, Thomas A

    2007-02-01

    End groups contribute to the structural complexity of radiation-induced DNA double-strand breaks (DSBs). As such, end-group structures may affect a cell's ability to repair DSBs. The 3'-end groups of strand breaks caused by gamma radiation, or oxidative processes, under oxygenated aqueous conditions have been shown to be distributed primarily between 3'-phosphoglycolate and 3'-phosphate, with 5'-phosphate ends in both cases. In this study, end groups of the high-LET-like DSBs caused by 125I decay were investigated. Site-specific DNA double-strand breaks were produced in plasmid pTC27 in the presence or absence of 2 M DMSO by 125I-labeled triplex-forming oligonucleotide targeting. End-group structure was assessed enzymatically as a function of the DSB end to serve as a substrate for ligation and various forms of end labeling. Using this approach, we have demonstrated 3'-hydroxyl (3'-OH) and 3'-phosphate (3'-P) end groups and 5'-ends (> or = 42%) terminated by phosphate. A 32P postlabeling assay failed to detect 3'-phosphoglycolate in a restriction fragment terminated by the 125I-induced DNA double-strand break, and this is likely due to restricted oxygen diffusion during irradiation as a frozen aqueous solution. Even so, end-group structure and relative distribution varied as a function of the free radical scavenging capacity of the irradiation buffer.

  7. In vivo quantification of DNA double strand breaks

    International Nuclear Information System (INIS)

    Simonsson, M.; Qvarnstroem, F.; Turesson, I.; Johansson, K.-A.; Nyman, J.; Hermansson, I.; Oden, A.; Book, M.

    2003-01-01

    DNA double strand breaks (DSBs) can be introduced in the genome by exposure to exogenous agents such as ionising radiation and radio-mimetic chemicals. The biological importance of these breaks is significant even at low numbers. Inaccurate repair or lack of repair of a single DSB has the potential to kill a cell or lead to tumourigenesis. Thus the induction and repair of DSBs are crucial events in the onset of malignancies. Following the induction of DSBs, the core histone H2AX is rapidly phosphorylated at residue serine 139. This phosphorylated form of H2AX is referred to as gH2AX. Histones wrapped in megabase regions flanking these breaks are involved in this process, which results in the formation of discrete nuclear foci. It has previously been shown that a single DSB is sufficient to produce a detectable focus. So far there has been a lack of methods capable of measuring the amount of DSBs at clinically relevant quantities. Such a method would embrace a wide field of applications. It could be applied as a biological dosimeter when studying carcinogenic effects and provide the basis for an assay predicting individual radiosensitivity. We describe a measurement procedure that detects and quantifies small amounts of DSBs in vivo. This is accomplished using immunofluorescence detection of the molecular marker gH2AX. The gH2AX foci are quantified in histological sections using basic digital image analysis methods as the main component. In a primary assessment of the procedure we analysed the in vivo dose response of prostate cancer patients in clinical practice undergoing radiotherapy. Epidermal nucleated cells in skin biopsies taken 30 minutes following the first single dose delivered show linear dose response for low doses ranging from 0 - 1.2 Gy. The described procedure for double strand break quantification can detect dose changes as low as 0.18 Gy

  8. Alteration of Sequence Specificity of the Type IIS Restriction Endonuclease BtsI

    OpenAIRE

    Guan, Shengxi; Blanchard, Aine; Zhang, Penghua; Zhu, Zhenyu

    2010-01-01

    The Type IIS restriction endonuclease BtsI recognizes and digests at GCAGTG(2/0). It comprises two subunits: BtsIA and BtsIB. The BtsIB subunit contains the recognition domain, one catalytic domain for bottom strand nicking and part of the catalytic domain for the top strand nicking. BtsIA has the rest of the catalytic domain that is responsible for the DNA top strand nicking. BtsIA alone has no activity unless it mixes with BtsIB to reconstitute the BtsI activity. During characterization of ...

  9. DNA breaks and repair in interstitial telomere sequences: Influence of chromatin structure

    International Nuclear Information System (INIS)

    Revaud, D.

    2009-06-01

    Interstitial Telomeric Sequences (ITS) are over-involved in spontaneous and radiationinduced chromosome aberrations in chinese hamster cells. We have performed a study to investigate the origin of their instability, spontaneously or after low doses irradiation. Our results demonstrate that ITS have a particular chromatin structure: short nucleotide repeat length, less compaction of the 30 nm chromatin fiber, presence of G-quadruplex structures. These features would modulate breaks production and would favour the recruitment of alternative DNA repair mechanisms, which are prone to produce chromosome aberrations. These pathways could be at the origin of chromosome aberrations in ITS whereas NHEJ and HR Double Strand Break repair pathways are rather required for a correct repair in these regions. (author)

  10. Asymmetric PCR for good quality ssDNA generation towards DNA aptamer production

    Directory of Open Access Journals (Sweden)

    Junji Tominaga4

    2012-04-01

    Full Text Available Aptamers are ssDNA or RNA that binds to wide variety of target molecules with high affinity and specificity producedby systematic evolution of ligands by exponential enrichment (SELEX. Compared to RNA aptamer, DNA aptamer is muchmore stable, favourable to be used in many applications. The most critical step in DNA SELEX experiment is the conversion ofdsDNA to ssDNA. The purpose of this study was to develop an economic and efficient approach of generating ssDNA byusing asymmetric PCR. Our results showed that primer ratio (sense primer:antisense primer of 20:1 and sense primer amountof 10 to 100 pmol, up to 20 PCR cycles using 20 ng of initial template, in combination with polyacrylamide gel electrophoresis,were the optimal conditions for generating good quality and quantity of ssDNA. The generation of ssDNA via this approachcan greatly enhance the success rate of DNA aptamer generation.

  11. R-loops: targets for nuclease cleavage and repeat instability.

    Science.gov (United States)

    Freudenreich, Catherine H

    2018-01-11

    R-loops form when transcribed RNA remains bound to its DNA template to form a stable RNA:DNA hybrid. Stable R-loops form when the RNA is purine-rich, and are further stabilized by DNA secondary structures on the non-template strand. Interestingly, many expandable and disease-causing repeat sequences form stable R-loops, and R-loops can contribute to repeat instability. Repeat expansions are responsible for multiple neurodegenerative diseases, including Huntington's disease, myotonic dystrophy, and several types of ataxias. Recently, it was found that R-loops at an expanded CAG/CTG repeat tract cause DNA breaks as well as repeat instability (Su and Freudenreich, Proc Natl Acad Sci USA 114, E8392-E8401, 2017). Two factors were identified as causing R-loop-dependent breaks at CAG/CTG tracts: deamination of cytosines and the MutLγ (Mlh1-Mlh3) endonuclease, defining two new mechanisms for how R-loops can generate DNA breaks (Su and Freudenreich, Proc Natl Acad Sci USA 114, E8392-E8401, 2017). Following R-loop-dependent nicking, base excision repair resulted in repeat instability. These results have implications for human repeat expansion diseases and provide a paradigm for how RNA:DNA hybrids can cause genome instability at structure-forming DNA sequences. This perspective summarizes mechanisms of R-loop-induced fragility at G-rich repeats and new links between DNA breaks and repeat instability.

  12. Chlamydomonas chloroplasts can use short dispersed repeats and multiple pathways to repair a double-strand break in the genome.

    Science.gov (United States)

    Odom, Obed W; Baek, Kwang-Hyun; Dani, Radhika N; Herrin, David L

    2008-03-01

    Certain group I introns insert into intronless DNA via an endonuclease that creates a double-strand break (DSB). There are two models for intron homing in phage: synthesis-dependent strand annealing (SDSA) and double-strand break repair (DSBR). The Cr.psbA4 intron homes efficiently from a plasmid into the chloroplast psbA gene in Chlamydomonas, but little is known about the mechanism. Analysis of co-transformants selected using a spectinomycin-resistant 16S gene (16S(spec)) provided evidence for both pathways. We also examined the consequences of the donor DNA having only one-sided or no homology with the psbA gene. When there was no homology with the donor DNA, deletions of up to 5 kb involving direct repeats that flank the psbA gene were obtained. Remarkably, repeats as short as 15 bp were used for this repair, which is consistent with the single-strand annealing (SSA) pathway. When the donor had one-sided homology, the DSB in most co-transformants was repaired using two DNAs, the donor and the 16S(spec) plasmid, which, coincidentally, contained a region that is repeated upstream of psbA. DSB repair using two separate DNAs provides further evidence for the SDSA pathway. These data show that the chloroplast can repair a DSB using short dispersed repeats located proximally, distally, or even on separate molecules relative to the DSB. They also provide a rationale for the extensive repertoire of repeated sequences in this genome.

  13. Creating Directed Double-strand Breaks with the Ref Protein: A Novel Rec A-Dependent Nuclease from Bacteriophage P1

    Energy Technology Data Exchange (ETDEWEB)

    Gruenig, Marielle C.; Lu, Duo; Won, Sang Joon; Dulberger, Charles L.; Manlick, Angela J.; Keck, James L.; Cox, Michael M. (UW)

    2012-03-16

    The bacteriophage P1-encoded Ref protein enhances RecA-dependent recombination in vivo by an unknown mechanism. We demonstrate that Ref is a new type of enzyme; that is, a RecA-dependent nuclease. Ref binds to ss- and dsDNA but does not cleave any DNA substrate until RecA protein and ATP are added to form RecA nucleoprotein filaments. Ref cleaves only where RecA protein is bound. RecA functions as a co-nuclease in the Ref/RecA system. Ref nuclease activity can be limited to the targeted strands of short RecA-containing D-loops. The result is a uniquely programmable endonuclease activity, producing targeted double-strand breaks at any chosen DNA sequence in an oligonucleotide-directed fashion. We present evidence indicating that cleavage occurs in the RecA filament groove. The structure of the Ref protein has been determined to 1.4 {angstrom} resolution. The core structure, consisting of residues 77-186, consists of a central 2-stranded {beta}-hairpin that is sandwiched between several {alpha}-helical and extended loop elements. The N-terminal 76 amino acid residues are disordered; this flexible region is required for optimal activity. The overall structure of Ref, including several putative active site histidine residues, defines a new subclass of HNH-family nucleases. We propose that enhancement of recombination by Ref reflects the introduction of directed, recombinogenic double-strand breaks.

  14. Scarless Cas9 Assisted Recombineering (no‐SCAR) in Escherichia coli, an Easy‐to‐Use System for Genome Editing

    OpenAIRE

    Reisch, Christopher R; Jones, Kristala L.

    2018-01-01

    The discovery and development of genome editing systems that leverage the site‐specific DNA endonuclease system CRISPR/Cas9 has fundamentally changed the ease and speed of genome editing in many organisms. In eukaryotes, the CRISPR/Cas9 system utilizes a “guide” RNA to enable the Cas9 nuclease to make a double‐strand break at a particular genome locus, which is repaired by non‐homologous end joining (NHEJ) repair enzymes, often generating random mutations in the process. A specific alteration...

  15. Phage T4 SegB protein is a homing endonuclease required for the preferred inheritance of T4 tRNA gene region occurring in co-infection with a related phage.

    Science.gov (United States)

    Brok-Volchanskaya, Vera S; Kadyrov, Farid A; Sivogrivov, Dmitry E; Kolosov, Peter M; Sokolov, Andrey S; Shlyapnikov, Michael G; Kryukov, Valentine M; Granovsky, Igor E

    2008-04-01

    Homing endonucleases initiate nonreciprocal transfer of DNA segments containing their own genes and the flanking sequences by cleaving the recipient DNA. Bacteriophage T4 segB gene, which is located in a cluster of tRNA genes, encodes a protein of unknown function, homologous to homing endonucleases of the GIY-YIG family. We demonstrate that SegB protein is a site-specific endonuclease, which produces mostly 3' 2-nt protruding ends at its DNA cleavage site. Analysis of SegB cleavage sites suggests that SegB recognizes a 27-bp sequence. It contains 11-bp conserved sequence, which corresponds to a conserved motif of tRNA TpsiC stem-loop, whereas the remainder of the recognition site is rather degenerate. T4-related phages T2L, RB1 and RB3 contain tRNA gene regions that are homologous to that of phage T4 but lack segB gene and several tRNA genes. In co-infections of phages T4 and T2L, segB gene is inherited with nearly 100% of efficiency. The preferred inheritance depends absolutely on the segB gene integrity and is accompanied by the loss of the T2L tRNA gene region markers. We suggest that SegB is a homing endonuclease that functions to ensure spreading of its own gene and the surrounding tRNA genes among T4-related phages.

  16. DNA Breaks and End Resection Measured Genome-wide by End Sequencing.

    Science.gov (United States)

    Canela, Andres; Sridharan, Sriram; Sciascia, Nicholas; Tubbs, Anthony; Meltzer, Paul; Sleckman, Barry P; Nussenzweig, André

    2016-09-01

    DNA double-strand breaks (DSBs) arise during physiological transcription, DNA replication, and antigen receptor diversification. Mistargeting or misprocessing of DSBs can result in pathological structural variation and mutation. Here we describe a sensitive method (END-seq) to monitor DNA end resection and DSBs genome-wide at base-pair resolution in vivo. We utilized END-seq to determine the frequency and spectrum of restriction-enzyme-, zinc-finger-nuclease-, and RAG-induced DSBs. Beyond sequence preference, chromatin features dictate the repertoire of these genome-modifying enzymes. END-seq can detect at least one DSB per cell among 10,000 cells not harboring DSBs, and we estimate that up to one out of 60 cells contains off-target RAG cleavage. In addition to site-specific cleavage, we detect DSBs distributed over extended regions during immunoglobulin class-switch recombination. Thus, END-seq provides a snapshot of DNA ends genome-wide, which can be utilized for understanding genome-editing specificities and the influence of chromatin on DSB pathway choice. Published by Elsevier Inc.

  17. On-bead fluorescent DNA nanoprobes to analyze base excision repair activities

    International Nuclear Information System (INIS)

    Gines, Guillaume; Saint-Pierre, Christine; Gasparutto, Didier

    2014-01-01

    Graphical abstract: -- Highlights: •On magnetic beads fluorescent enzymatic assays. •Simple, easy, non-radioactive and electrophoresis-free functional assay. •Lesion-containing hairpin DNA probes are selective for repair enzymes. •The biosensing platform allows the measurement of DNA repair activities from purified enzymes or within cell free extracts. -- Abstract: DNA integrity is constantly threatened by endogenous and exogenous agents that can modify its physical and chemical structure. Changes in DNA sequence can cause mutations sparked by some genetic diseases or cancers. Organisms have developed efficient defense mechanisms able to specifically repair each kind of lesion (alkylation, oxidation, single or double strand break, mismatch, etc). Here we report the adjustment of an original assay to detect enzymes’ activity of base excision repair (BER), that supports a set of lesions including abasic sites, alkylation, oxidation or deamination products of bases. The biosensor is characterized by a set of fluorescent hairpin-shaped nucleic acid probes supported on magnetic beads, each containing a selective lesion targeting a specific BER enzyme. We have studied the DNA glycosylase alkyl-adenine glycosylase (AAG) and the human AP-endonuclease (APE1) by incorporating within the DNA probe a hypoxanthine lesion or an abasic site analog (tetrahydrofuran), respectively. Enzymatic repair activity induces the formation of a nick in the damaged strand, leading to probe's break, that is detected in the supernatant by fluorescence. The functional assay allows the measurement of DNA repair activities from purified enzymes or in cell-free extracts in a fast, specific, quantitative and sensitive way, using only 1 pmol of probe for a test. We recorded a detection limit of 1 μg mL −1 and 50 μg mL −1 of HeLa nuclear extracts for APE1 and AAG enzymes, respectively. Finally, the on-bead assay should be useful to screen inhibitors of DNA repair activities

  18. Activation of Saccharomyces cerevisiae Mlh1-Pms1 Endonuclease in a Reconstituted Mismatch Repair System*

    Science.gov (United States)

    Smith, Catherine E.; Bowen, Nikki; Graham, William J.; Goellner, Eva M.; Srivatsan, Anjana; Kolodner, Richard D.

    2015-01-01

    Previous studies reported the reconstitution of an Mlh1-Pms1-independent 5′ nick-directed mismatch repair (MMR) reaction using Saccharomyces cerevisiae proteins. Here we describe the reconstitution of a mispair-dependent Mlh1-Pms1 endonuclease activation reaction requiring Msh2-Msh6 (or Msh2-Msh3), proliferating cell nuclear antigen (PCNA), and replication factor C (RFC) and a reconstituted Mlh1-Pms1-dependent 3′ nick-directed MMR reaction requiring Msh2-Msh6 (or Msh2-Msh3), exonuclease 1 (Exo1), replication protein A (RPA), RFC, PCNA, and DNA polymerase δ. Both reactions required Mg2+ and Mn2+ for optimal activity. The MMR reaction also required two reaction stages in which the first stage required incubation of Mlh1-Pms1 with substrate DNA, with or without Msh2-Msh6 (or Msh2-Msh3), PCNA, and RFC but did not require nicking of the substrate, followed by a second stage in which other proteins were added. Analysis of different mutant proteins demonstrated that both reactions required a functional Mlh1-Pms1 endonuclease active site, as well as mispair recognition and Mlh1-Pms1 recruitment by Msh2-Msh6 but not sliding clamp formation. Mutant Mlh1-Pms1 and PCNA proteins that were defective for Exo1-independent but not Exo1-dependent MMR in vivo were partially defective in the Mlh1-Pms1 endonuclease and MMR reactions, suggesting that both reactions reflect the activation of Mlh1-Pms1 seen in Exo1-independent MMR in vivo. The availability of this reconstituted MMR reaction should now make it possible to better study both Exo1-independent and Exo1-dependent MMR. PMID:26170454

  19. Activation of Saccharomyces cerevisiae Mlh1-Pms1 Endonuclease in a Reconstituted Mismatch Repair System.

    Science.gov (United States)

    Smith, Catherine E; Bowen, Nikki; Graham, William J; Goellner, Eva M; Srivatsan, Anjana; Kolodner, Richard D

    2015-08-28

    Previous studies reported the reconstitution of an Mlh1-Pms1-independent 5' nick-directed mismatch repair (MMR) reaction using Saccharomyces cerevisiae proteins. Here we describe the reconstitution of a mispair-dependent Mlh1-Pms1 endonuclease activation reaction requiring Msh2-Msh6 (or Msh2-Msh3), proliferating cell nuclear antigen (PCNA), and replication factor C (RFC) and a reconstituted Mlh1-Pms1-dependent 3' nick-directed MMR reaction requiring Msh2-Msh6 (or Msh2-Msh3), exonuclease 1 (Exo1), replication protein A (RPA), RFC, PCNA, and DNA polymerase δ. Both reactions required Mg(2+) and Mn(2+) for optimal activity. The MMR reaction also required two reaction stages in which the first stage required incubation of Mlh1-Pms1 with substrate DNA, with or without Msh2-Msh6 (or Msh2-Msh3), PCNA, and RFC but did not require nicking of the substrate, followed by a second stage in which other proteins were added. Analysis of different mutant proteins demonstrated that both reactions required a functional Mlh1-Pms1 endonuclease active site, as well as mispair recognition and Mlh1-Pms1 recruitment by Msh2-Msh6 but not sliding clamp formation. Mutant Mlh1-Pms1 and PCNA proteins that were defective for Exo1-independent but not Exo1-dependent MMR in vivo were partially defective in the Mlh1-Pms1 endonuclease and MMR reactions, suggesting that both reactions reflect the activation of Mlh1-Pms1 seen in Exo1-independent MMR in vivo. The availability of this reconstituted MMR reaction should now make it possible to better study both Exo1-independent and Exo1-dependent MMR. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Double-strand breaks in genome-sized DNA caused by mechanical stress under mixing: Quantitative evaluation through single-molecule observation

    Science.gov (United States)

    Kikuchi, Hayato; Nose, Keiji; Yoshikawa, Yuko; Yoshikawa, Kenichi

    2018-06-01

    It is becoming increasingly apparent that changes in the higher-order structure of genome-sized DNA molecules of more than several tens kbp play important roles in the self-control of genome activity in living cells. Unfortunately, it has been rather difficult to prepare genome-sized DNA molecules without damage or fragmentation. Here, we evaluated the degree of double-strand breaks (DSBs) caused by mechanical mixing by single-molecule observation with fluorescence microscopy. The results show that DNA breaks are most significant for the first second after the initiation of mechanical agitation. Based on such observation, we propose a novel mixing procedure to significantly decrease DSBs.

  1. The mitochondrial LSU rRNA group II intron of Ustilago maydis encodes an active homing endonuclease likely involved in intron mobility.

    Directory of Open Access Journals (Sweden)

    Anja Pfeifer

    Full Text Available BACKGROUND: The a2 mating type locus gene lga2 is critical for uniparental mitochondrial DNA inheritance during sexual development of Ustilago maydis. Specifically, the absence of lga2 results in biparental inheritance, along with efficient transfer of intronic regions in the large subunit rRNA gene between parental molecules. However, the underlying role of the predicted LAGLIDADG homing endonuclease gene I-UmaI located within the group II intron LRII1 has remained unresolved. METHODOLOGY/PRINCIPAL FINDINGS: We have investigated the enzymatic activity of I-UmaI in vitro based on expression of a tagged full-length and a naturally occurring mutant derivative, which harbors only the N-terminal LAGLIDADG domain. This confirmed Mg²⁺-dependent endonuclease activity and cleavage at the LRII1 insertion site to generate four base pair extensions with 3' overhangs. Specifically, I-UmaI recognizes an asymmetric DNA sequence with a minimum length of 14 base pairs (5'-GACGGGAAGACCCT-3' and tolerates subtle base pair substitutions within the homing site. Enzymatic analysis of the mutant variant indicated a correlation between the activity in vitro and intron homing. Bioinformatic analyses revealed that putatively functional or former functional I-UmaI homologs are confined to a few members within the Ustilaginales and Agaricales, including the phylogenetically distant species Lentinula edodes, and are linked to group II introns inserted into homologous positions in the LSU rDNA. CONCLUSIONS/SIGNIFICANCE: The present data provide strong evidence that intron homing efficiently operates under conditions of biparental inheritance in U. maydis. Conversely, uniparental inheritance may be critical to restrict the transmission of mobile introns. Bioinformatic analyses suggest that I-UmaI-associated introns have been acquired independently in distant taxa and are more widespread than anticipated from available genomic data.

  2. Effects of 3-Deoxyadenosine (Cordycepin) on the repair of X-ray-induced DNA single- and double-strand breaks in chinese hamster V79 cells

    International Nuclear Information System (INIS)

    Hiraoka, Wakako; Kuwabara, Mikinori; Sato, Fumiaki

    1990-01-01

    The ability of cordycepin to inhibit the repair of DNA strand breaks was examined with X-irradiated Chinese hamster V79 cells in log-phase culture. A filter elution technique revealed that 70 μM cordycepin did not inhibit the repair of single-strand breaks but inhibited the repair of double-strand breaks. These findings confirmed the fact that the increase in the lethality of cordycepin in X-irradiated cultured mammalian cells was attributable to unrepaired DNA double-strand breaks. (author)

  3. Atomic Structure and Biochemical Characterization of an RNA Endonuclease in the N Terminus of Andes Virus L Protein.

    Directory of Open Access Journals (Sweden)

    Yaiza Fernández-García

    2016-06-01

    Full Text Available Andes virus (ANDV is a human-pathogenic hantavirus. Hantaviruses presumably initiate their mRNA synthesis by using cap structures derived from host cell mRNAs, a mechanism called cap-snatching. A signature for a cap-snatching endonuclease is present in the N terminus of hantavirus L proteins. In this study, we aimed to solve the atomic structure of the ANDV endonuclease and characterize its biochemical features. However, the wild-type protein was refractory to expression in Escherichia coli, presumably due to toxic enzyme activity. To circumvent this problem, we introduced attenuating mutations in the domain that were previously shown to enhance L protein expression in mammalian cells. Using this approach, 13 mutant proteins encompassing ANDV L protein residues 1-200 were successfully expressed and purified. Protein stability and nuclease activity of the mutants was analyzed and the crystal structure of one mutant was solved to a resolution of 2.4 Å. Shape in solution was determined by small angle X-ray scattering. The ANDV endonuclease showed structural similarities to related enzymes of orthobunya-, arena-, and orthomyxoviruses, but also differences such as elongated shape and positively charged patches surrounding the active site. The enzyme was dependent on manganese, which is bound to the active site, most efficiently cleaved single-stranded RNA substrates, did not cleave DNA, and could be inhibited by known endonuclease inhibitors. The atomic structure in conjunction with stability and activity data for the 13 mutant enzymes facilitated inference of structure-function relationships in the protein. In conclusion, we solved the structure of a hantavirus cap-snatching endonuclease, elucidated its catalytic properties, and present a highly active mutant form, which allows for inhibitor screening.

  4. Fe65 is required for Tip60-directed histone H4 acetylation at DNA strand breaks

    Science.gov (United States)

    Stante, Maria; Minopoli, Giuseppina; Passaro, Fabiana; Raia, Maddalena; Vecchio, Luigi Del; Russo, Tommaso

    2009-01-01

    Fe65 is a binding partner of the Alzheimer's β-amyloid precursor protein APP. The possible involvement of this protein in the cellular response to DNA damage was suggested by the observation that Fe65 null mice are more sensitive to genotoxic stress than WT counterpart. Fe65 associated with chromatin under basal conditions and its involvement in DNA damage repair requires this association. A known partner of Fe65 is the histone acetyltransferase Tip60. Considering the crucial role of Tip60 in DNA repair, we explored the hypothesis that the phenotype of Fe65 null cells depended on its interaction with Tip60. We demonstrated that Fe65 knockdown impaired recruitment of Tip60-TRRAP complex to DNA double strand breaks and decreased histone H4 acetylation. Accordingly, the efficiency of DNA repair was decreased upon Fe65 suppression. To explore whether APP has a role in this mechanism, we analyzed a Fe65 mutant unable to bind to APP. This mutant failed to rescue the phenotypes of Fe65 null cells; furthermore, APP/APLP2 suppression results in the impairment of recruitment of Tip60-TRRAP complex to DNA double strand breaks, decreased histone H4 acetylation and repair efficiency. On these bases, we propose that Fe65 and its interaction with APP play an important role in the response to DNA damage by assisting the recruitment of Tip60-TRRAP to DNA damage sites. PMID:19282473

  5. Correlation between residual level of DNA double-strand breaks and the radiosensitivity of cancer cells

    International Nuclear Information System (INIS)

    Sun Jianxiang; Sun Weijian; Sui Jianli; Zhou Pingkun

    2008-01-01

    Objective: To understand the variation of the DNA double-strand break rejoining capacity among different cultured cancer cell lines and the primary cancer cells from brain cancer patients, and to explore the predictor of radiotherapy responses of cancers. Methods: DNA double-strand breaks (DSBs) were induced by 60 Co γ-irradiation. Pulsed-field gel electrophoresis was used to analyze the initial production and rejoining of DNA DSBs. Radiosensitivity was determined by in vitro assay of clonogenic-forming capacity. Results: A wide variation of radiosensitivity, e.g. the survival parameter of Do varied from 0.65 to 2.15 Gy, was displayed among the eight cell lines derived from different type of cancers. Although differential level of initial DNA DSBs induced by 20 Gy γ-rays was observed among various cell lines, it was not correlated with the radiosensitivity. The deficiency of DNA DSB rejoining in radiosensitive cell lines was shown either in the early rapid-rejoining phase (SX-10 cells) or in the late slow-rejoining phase (A2780 cells). A significant relationship was observed between the residual level of DNA DSBs measured at 2 h post-20 Gy irradiation and the cellular radiosensitivity (D 0 or SF 2 ). The kinetic curves of rejoining DNA DSBs in the primary human brain tumor cells indicated a variation on DSB rejoining capacity among different individual tumor. The residual level of DNA DSBs after 2 h of rejoining post 20 Gy irradiation in primary human brain tumor cells is compatible to the results obtained in vitro culture cancer cell lines. Conclusions: The residual level of DNA DSBs is correlated with radioresistance of cancer cells, and the residual DNA damage is a useful parameter in predicting the response of tumor tissue to radiotherapy. (authors)

  6. The Molecular Basis of Double-Strand DNA Break Repair: The Critical Structure of the RAD52/RPA Complex

    National Research Council Canada - National Science Library

    Jackson, Dobra

    2001-01-01

    .... RAD52 has specific interactions with RAD51, RPA and DNA (1,2,3). The binding of RAD52 to ends of double-strand breaks has been found to be a key initiation step to DNA repair by homologous recombination...

  7. Radioprotective action of WR-1065 on radiation-induced DNA strand breaks in cultured Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Murray, D.; VanAnkeren, S.C.; Milas, L.; Meyn, R.E.

    1988-01-01

    We have examined the radioprotective effect of WR-1065 on cultured Chinese hamster ovary cells. The effects of the drug on the induction and rejoining of gamma-ray-induced DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) were measured using alkaline (pH 12.1) and neutral (pH 7.0) elution, respectively. Molecular protection factors (PFs) calculated from these data allowed us to determine whether the degree of modification of strand breakage accurately predicted the PFs measured using the biological end point of cell survival. The drug did protect against the induction of both SSBs and DSBs, although to an extent that did not appear to fully account for the degree of radioprotection in terms of cell killing measured under identical conditions. It is therefore unlikely that radioprotection by WR-1065 occurs simply as a consequence of a general lowering of all types of gamma-ray-induced DNA lesions, and it is possible that the drug could differentially protect against the induction of subsets of these DNA lesions. The rate of SSB rejoining was retarded following preirradiation treatment of cells with WR-1065, but there was no effect on DSB rejoining. Postirradiation treatment with WR-1065 also appeared to retard SSB rejoining but without an accompanying effect on either DSB rejoining or cell survival; however, this effect was largely reversed by the addition of catalase and was, therefore, probably a result of H 2 O 2 generated by autoxidation of the drug. Based on these observations, it would appear that the molecular actions of aminothiol radioprotective compounds that lead to reduced cell killing are much more complex than previously thought

  8. The Ku80 carboxy terminus stimulates joining and artemis-mediated processing of DNA ends.

    Science.gov (United States)

    Weterings, Eric; Verkaik, Nicole S; Keijzers, Guido; Florea, Bogdan I; Wang, Shih-Ya; Ortega, Laura G; Uematsu, Naoya; Chen, David J; van Gent, Dik C

    2009-03-01

    Repair of DNA double-strand breaks (DSBs) is predominantly mediated by nonhomologous end joining (NHEJ) in mammalian cells. NHEJ requires binding of the Ku70-Ku80 heterodimer (Ku70/80) to the DNA ends and subsequent recruitment of the DNA-dependent protein kinase catalytic subunit (DNA-PK(CS)) and the XRCC4/ligase IV complex. Activation of the DNA-PK(CS) serine/threonine kinase requires an interaction with Ku70/80 and is essential for NHEJ-mediated DSB repair. In contrast to previous models, we found that the carboxy terminus of Ku80 is not absolutely required for the recruitment and activation of DNA-PK(CS) at DSBs, although cells that harbored a carboxy-terminal deletion in the Ku80 gene were sensitive to ionizing radiation and showed reduced end-joining capacity. More detailed analysis of this repair defect showed that DNA-PK(CS) autophosphorylation at Thr2647 was diminished, while Ser2056 was phosphorylated to normal levels. This resulted in severely reduced levels of Artemis nuclease activity in vivo and in vitro. We therefore conclude that the Ku80 carboxy terminus is important to support DNA-PK(CS) autophosphorylation at specific sites, which facilitates DNA end processing by the Artemis endonuclease and the subsequent joining reaction.

  9. The Ku80 Carboxy Terminus Stimulates Joining and Artemis-Mediated Processing of DNA Ends▿

    Science.gov (United States)

    Weterings, Eric; Verkaik, Nicole S.; Keijzers, Guido; Florea, Bogdan I.; Wang, Shih-Ya; Ortega, Laura G.; Uematsu, Naoya; Chen, David J.; van Gent, Dik C.

    2009-01-01

    Repair of DNA double-strand breaks (DSBs) is predominantly mediated by nonhomologous end joining (NHEJ) in mammalian cells. NHEJ requires binding of the Ku70-Ku80 heterodimer (Ku70/80) to the DNA ends and subsequent recruitment of the DNA-dependent protein kinase catalytic subunit (DNA-PKCS) and the XRCC4/ligase IV complex. Activation of the DNA-PKCS serine/threonine kinase requires an interaction with Ku70/80 and is essential for NHEJ-mediated DSB repair. In contrast to previous models, we found that the carboxy terminus of Ku80 is not absolutely required for the recruitment and activation of DNA-PKCS at DSBs, although cells that harbored a carboxy-terminal deletion in the Ku80 gene were sensitive to ionizing radiation and showed reduced end-joining capacity. More detailed analysis of this repair defect showed that DNA-PKCS autophosphorylation at Thr2647 was diminished, while Ser2056 was phosphorylated to normal levels. This resulted in severely reduced levels of Artemis nuclease activity in vivo and in vitro. We therefore conclude that the Ku80 carboxy terminus is important to support DNA-PKCS autophosphorylation at specific sites, which facilitates DNA end processing by the Artemis endonuclease and the subsequent joining reaction. PMID:19103741

  10. Small-angle X-ray scattering analysis reveals the ATP-bound monomeric state of the ATPase domain from the homodimeric MutL endonuclease, a GHKL phosphotransferase superfamily protein.

    Science.gov (United States)

    Iino, Hitoshi; Hikima, Takaaki; Nishida, Yuya; Yamamoto, Masaki; Kuramitsu, Seiki; Fukui, Kenji

    2015-05-01

    DNA mismatch repair is an excision system that removes mismatched bases chiefly generated by replication errors. In this system, MutL endonucleases direct the excision reaction to the error-containing strand of the duplex by specifically incising the newly synthesized strand. Both bacterial homodimeric and eukaryotic heterodimeric MutL proteins belong to the GHKL ATPase/kinase superfamily that comprises the N-terminal ATPase and C-terminal dimerization regions. Generally, the GHKL proteins show large ATPase cycle-dependent conformational changes, including dimerization-coupled ATP binding of the N-terminal domain. Interestingly, the ATPase domain of human PMS2, a subunit of the MutL heterodimer, binds ATP without dimerization. The monomeric ATP-bound state of the domain has been thought to be characteristic of heterodimeric GHKL proteins. In this study, we characterized the ATP-bound state of the ATPase domain from the Aquifex aeolicus MutL endonuclease, which is a homodimeric GHKL protein unlike the eukaryotic MutL. Gel filtration, dynamic light scattering, and small-angle X-ray scattering analyses clearly showed that the domain binds ATP in a monomeric form despite its homodimeric nature. This indicates that the uncoupling of dimerization and ATP binding is a common feature among bacterial and eukaryotic MutL endonucleases, which we suggest is closely related to the molecular mechanisms underlying mismatch repair.

  11. Single and double strand breaks induced by 3H incorporated in DNA of cultured human kidney cells

    International Nuclear Information System (INIS)

    Tisljar-Lentulis, G.; Henneberg, P.; Mielke, T.; Feinendegen, L.E.

    1978-01-01

    In the course of the investigations of the biological effects of radionuclides incorporated in DNA single (SSB) and double strand breaks (DSB) caused tritium-decay were measured and compared with respective data resulting from 125 I. Tritium bound to thymidine and iododeoxyuridine seems to be more effective than tritium bound to other DNA-precursors. On the basis of decay, methyl- 3 H thymidine appears to be more effective with regard to the production of strand breaks than 3 H in position 6 of the pyrimidine ring. Based on the numbers of strand-breaks per rad, position 6 is more effective in accordance with data obtained by F. Krasin et al. The ratio of SSBs to DSBs per tritium decay appears to be approximately 8 in mammlian cells. Not only SSBs but also DSBs induced by 3 H in mammalian cells are reapairable. (orig./AJ) [de

  12. Do chromatin changes around a nascent double strand DNA break spread spherically into linearly non-adjacent chromatin?

    Science.gov (United States)

    Savic, Velibor

    2013-01-01

    In the last decade, a lot has been done in elucidating the sequence of events that occur at the nascent double strand DNA break. Nevertheless, the overall structure formed by the DNA damage response (DDR) factors around the break site, the repair focus, remains poorly understood. Although most of the data presented so far only address events that occur in chromatin in cis around the break, there are strong indications that in mammalian systems it may also occur in trans, analogous to the recent findings showing this if budding yeast. There have been attempts to address the issue but the final proof is still missing due to lack of a proper experimental system. If found to be true, the spatial distribution of DDR factors would have a major impact on the neighboring chromatin both in cis and in trans, significantly affecting local chromatin function; gene transcription and potentially other functions.

  13. Analysis of DNA double-strand break repair pathways in mice

    International Nuclear Information System (INIS)

    Brugmans, Linda; Kanaar, Roland; Essers, Jeroen

    2007-01-01

    During the last years significant new insights have been gained into the mechanism and biological relevance of DNA double-strand break (DSB) repair in relation to genome stability. DSBs are a highly toxic DNA lesion, because they can lead to chromosome fragmentation, loss and translocations, eventually resulting in cancer. DSBs can be induced by cellular processes such as V(D)J recombination or DNA replication. They can also be introduced by exogenous agents DNA damaging agents such as ionizing radiation or mitomycin C. During evolution several pathways have evolved for the repair of these DSBs. The most important DSB repair mechanisms in mammalian cells are nonhomologous end-joining and homologous recombination. By using an undamaged repair template, homologous recombination ensures accurate DSB repair, whereas the untemplated nonhomologous end-joining pathway does not. Although both pathways are active in mammals, the relative contribution of the two repair pathways to genome stability differs in the different cell types. Given the potential differences in repair fidelity, it is of interest to determine the relative contribution of homologous recombination and nonhomologous end-joining to DSB repair. In this review, we focus on the biological relevance of DSB repair in mammalian cells and the potential overlap between nonhomologous end-joining and homologous recombination in different tissues

  14. The contribution of DNA apurinic/apyrimidinic endonuclease genotype and smoking habit to Taiwan lung cancer risk.

    Science.gov (United States)

    Chen, Wei-Chun; Tsai, Chia-Wen; Hsia, Te-Chun; Chang, Wen-Shin; Lin, Liang-Yi; Liang, Shinn-Jye; Tu, Chih-Yen; Cheng, Wei-Erh; Chen, Hung-Jen; Wang, Shu-Ming; Bau, da-Tian

    2013-06-01

    To evaluate the association and interaction of genotypic polymorphism the gene for DNA-apurinic/apyrimidinic endonuclease (APEX1) with personal smoking habit and lung cancer risk in Taiwan, the polymorphic variants of APEX1, Asp(148)Glu (rs1130409), were analyzed in association with lung cancer risk, and their joint effect with personal smoking habits on lung cancer susceptibility was discussed. In this hospital-based case-control study, 358 patients with lung cancer and 716 cancer-free controls, frequency-matched by age and sex, were recruited and genotyped by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). The results showed that the percentages of TT, TG and GG APEX1 Asp(148)Glu genotypes were not significantly different at 43.0%, 41.1% and 15.9% in the lung cancer patient group and 39.9%, 46.1% and 14.0% in non-cancer control group, respectively. We further analyzed the genetic-lifestyle effects on lung cancer risk and found the contribution of APEX1 Asp(148)Glu genotypes to lung cancer susceptibility was neither enhanced in the cigarette smokers nor in the non-smokers (p=0.3550 and 0.8019, respectively). Our results provide evidence that the non-synonymous polymorphism of APEX1 Asp(148)Glu may not be directly associated with lung cancer risk, nor enhance the effects of smoking habit on lung cancer development.

  15. Analysis of DNA strand break induction and repair in plants from the vicinity of Chernobyl

    International Nuclear Information System (INIS)

    Syomov, A.B.; Ptitsyna, S.N.; Sergeeva, S.A.

    1992-01-01

    For 3 years following the Chernobyl accident DNA repair efficiency was studied in irradiated and control populations of various plan species. Compared with the control populations, some irradiated populations exhibited increases in the yield of DNA single-strand breaks per unit dose of challenge radiation. The effect was registered in low-dose-rate alpha-irradiated populations, but was absent in plant populations growing in conditions of low-dose-rate beta-irradiation. The efficiency of single-strand DNA repair was identical in control and irradiated populations and approximated 100%. (author). 12 refs.; 1 fig.; 2 tabs

  16. GC-Rich Extracellular DNA Induces Oxidative Stress, Double-Strand DNA Breaks, and DNA Damage Response in Human Adipose-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Svetlana Kostyuk

    2015-01-01

    Full Text Available Background. Cell free DNA (cfDNA circulates throughout the bloodstream of both healthy people and patients with various diseases. CfDNA is substantially enriched in its GC-content as compared with human genomic DNA. Principal Findings. Exposure of haMSCs to GC-DNA induces short-term oxidative stress (determined with H2DCFH-DA and results in both single- and double-strand DNA breaks (comet assay and γH2AX, foci. As a result in the cells significantly increases the expression of repair genes (BRCA1 (RT-PCR, PCNA (FACS and antiapoptotic genes (BCL2 (RT-PCR and FACS, BCL2A1, BCL2L1, BIRC3, and BIRC2 (RT-PCR. Under the action of GC-DNA the potential of mitochondria was increased. Here we show that GC-rich extracellular DNA stimulates adipocyte differentiation of human adipose-derived mesenchymal stem cells (haMSCs. Exposure to GC-DNA leads to an increase in the level of RNAPPARG2 and LPL (RT-PCR, in the level of fatty acid binding protein FABP4 (FACS analysis and in the level of fat (Oil Red O. Conclusions. GC-rich fragments in the pool of cfDNA can potentially induce oxidative stress and DNA damage response and affect the direction of mesenchymal stem cells differentiation in human adipose—derived mesenchymal stem cells. Such a response may be one of the causes of obesity or osteoporosis.

  17. Nbs1 ChIP-Seq Identifies Off-Target DNA Double-Strand Breaks Induced by AID in Activated Splenic B Cells.

    Directory of Open Access Journals (Sweden)

    Lyne Khair

    2015-08-01

    Full Text Available Activation-induced cytidine deaminase (AID is required for initiation of Ig class switch recombination (CSR and somatic hypermutation (SHM of antibody genes during immune responses. AID has also been shown to induce chromosomal translocations, mutations, and DNA double-strand breaks (DSBs involving non-Ig genes in activated B cells. To determine what makes a DNA site a target for AID-induced DSBs, we identify off-target DSBs induced by AID by performing chromatin immunoprecipitation (ChIP for Nbs1, a protein that binds DSBs, followed by deep sequencing (ChIP-Seq. We detect and characterize hundreds of off-target AID-dependent DSBs. Two types of tandem repeats are highly enriched within the Nbs1-binding sites: long CA repeats, which can form Z-DNA, and tandem pentamers containing the AID target hotspot WGCW. These tandem repeats are not nearly as enriched at AID-independent DSBs, which we also identified. Msh2, a component of the mismatch repair pathway and important for genome stability, increases off-target DSBs, similar to its effect on Ig switch region DSBs, which are required intermediates during CSR. Most of the off-target DSBs are two-ended, consistent with generation during G1 phase, similar to DSBs in Ig switch regions. However, a minority are one-ended, presumably due to conversion of single-strand breaks to DSBs during replication. One-ended DSBs are repaired by processes involving homologous recombination, including break-induced replication repair, which can lead to genome instability. Off-target DSBs, especially those present during S phase, can lead to chromosomal translocations, deletions and gene amplifications, resulting in the high frequency of B cell lymphomas derived from cells that express or have expressed AID.

  18. Cofactor requirement of HpyAV restriction endonuclease.

    Directory of Open Access Journals (Sweden)

    Siu-Hong Chan

    Full Text Available BACKGROUND: Helicobacter pylori is the etiologic agent of common gastritis and a risk factor for gastric cancer. It is also one of the richest sources of Type II restriction-modification (R-M systems in microorganisms. PRINCIPAL FINDINGS: We have cloned, expressed and purified a new restriction endonuclease HpyAV from H. pylori strain 26695. We determined the HpyAV DNA recognition sequence and cleavage site as CCTTC 6/5. In addition, we found that HpyAV has a unique metal ion requirement: its cleavage activity is higher with transition metal ions than in Mg(++. The special metal ion requirement of HpyAV can be attributed to the presence of a HNH catalytic site similar to ColE9 nuclease instead of the canonical PD-X-D/EXK catalytic site found in many other REases. Site-directed mutagenesis was carried out to verify the catalytic residues of HpyAV. Mutation of the conserved metal-binding Asn311 and His320 to alanine eliminated cleavage activity. HpyAV variant H295A displayed approximately 1% of wt activity. CONCLUSIONS/SIGNIFICANCE: Some HNH-type endonucleases have unique metal ion cofactor requirement for optimal activities. Homology modeling and site-directed mutagenesis confirmed that HpyAV is a member of the HNH nuclease family. The identification of catalytic residues in HpyAV paved the way for further engineering of the metal binding site. A survey of sequenced microbial genomes uncovered 10 putative R-M systems that show high sequence similarity to the HpyAV system, suggesting lateral transfer of a prototypic HpyAV-like R-M system among these microorganisms.

  19. PFGE analysis of DNA double-strand breaks and DNA repair process in human osteosarcoma cells irradiated by X-ray

    International Nuclear Information System (INIS)

    Cao Jianping; Majima, H.; Yamaguchi, C.

    2000-01-01

    Objective: To study the induction of DNA double-strand breaks (DSBs) in human osteosarcoma cells irradiated by X-ray, the DNA DSBs repair process and the tumour cell radiosensitivity. Methods: Two cell lines of human osteosarcoma, Rho0 and 143. B were used. Initial DNA damage of DSBs by X-ray irradiation was measured using clamped homogeneous electrical field (CHEF) electrophoresis. Results: X-ray-induced DNA DSBs of human osteosarcoma cells after CHEF-electrophoresis increased linearly with the irradiation dose between 0 and 50 Gy. The repair of DNA DSBs in human osteosarcoma cells increased with the post-irradiation incubation time. In contrast to 14.3B cell line at the same dose point, much more DNA DSBs were induced in Rho0 cell line after X-ray irradiation. Conclusion: CHEF pulsed-field gel electrophoresis (PEGE) is a sensitive method for the determination of radiation-induced DNA DSBs in high molecular weight DNA of human osteosarcoma cells. Radiation-induced DNA DSBs of osteosarcoma increase with the dose in a linear manner. After incubation, both Rho0 cell line and 143. B cell line can repair the DNA DSBs. Between two cell lines of human osteosarcoma, Rho0 and 143.B, Rho0 cell line is more sensitive to ionizing radiation than 143.B line

  20. An Approach to Detect and Study DNA Double-Strand Break Repair by Transcript RNA Using a Spliced-Antisense RNA Template.

    Science.gov (United States)

    Keskin, Havva; Storici, Francesca

    2018-01-01

    A double-strand break (DSB) is one of the most dangerous DNA lesion, and its repair is crucial for genome stability. Homologous recombination is considered the safest way to repair a DNA DSB and requires an identical or nearly identical DNA template, such as a sister chromatid or a homologous chromosome for accurate repair. Can transcript RNA serve as donor template for DSB repair? Here, we describe an approach that we developed to detect and study DNA repair by transcript RNA. Key features of the method are: (i) use of antisense (noncoding) RNA as template for DSB repair by RNA, (ii) use of intron splicing to distinguish the sequence of the RNA template from that of the DNA that generates the RNA template, and (iii) use of a trans and cis system to study how RNA repairs a DSB in homologous but distant DNA or in its own DNA, respectively. This chapter provides details on how to use a spliced-antisense RNA template to detect and study DSB repair by RNA in trans or cis in yeast cells. Our approach for detection of DSB repair by RNA in cells can be applied to cell types other than yeast, such as bacteria, mammalian cells, or other eukaryotic cells. © 2018 Elsevier Inc. All rights reserved.