WorldWideScience

Sample records for endogenous pain modulation

  1. Mindfulness Meditation Modulates Pain Through Endogenous Opioids.

    Science.gov (United States)

    Sharon, Haggai; Maron-Katz, Adi; Ben Simon, Eti; Flusser, Yuval; Hendler, Talma; Tarrasch, Ricardo; Brill, Silviu

    2016-07-01

    Recent evidence supports the beneficial effects of mindfulness meditation on pain. However, the neural mechanisms underlying this effect remain poorly understood. We used an opioid blocker to examine whether mindfulness meditation-induced analgesia involves endogenous opioids. Fifteen healthy experienced mindfulness meditation practitioners participated in a double-blind, randomized, placebo-controlled, crossover study. Participants rated the pain and unpleasantness of a cold stimulus prior to and after a mindfulness meditation session. Participants were then randomized to receive either intravenous naloxone or saline, after which they meditated again, and rated the same stimulus. A (3) × (2) repeated-measurements analysis of variance revealed a significant time effect for pain and unpleasantness scores (both P mindfulness meditation and after placebo, but not after naloxone. Furthermore, there was a positive correlation between the pain scores following naloxone vs placebo and participants' mindfulness meditation experience. These findings show, for the first time, that meditation involves endogenous opioid pathways, mediating its analgesic effect and growing resilient with increasing practice to external suggestion. This finding could hold promising therapeutic implications and further elucidate the fine mechanisms involved in human pain modulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The Perception and Endogenous Modulation of Pain

    Directory of Open Access Journals (Sweden)

    Michael H. Ossipov

    2012-01-01

    Full Text Available Pain is often perceived an unpleasant experience that includes sensory and emotional/motivational responses. Accordingly, pain serves as a powerful teaching signal enabling an organism to avoid injury, and is critical to survival. However, maladaptive pain, such as neuropathic or idiopathic pain, serves no survival function. Genomic studies of individuals with congenital insensitivity to pain or paroxysmal pain syndromes considerable increased our understanding of the function of peripheral nociceptors, and especially of the roles of voltage-gated sodium channels and of nerve growth factor (NGF/TrkA receptors in nociceptive transduction and transmission. Brain imaging studies revealed a “pain matrix,” consisting of cortical and subcortical regions that respond to noxious inputs and can positively or negatively modulate pain through activation of descending pain modulatory systems. Projections from the periaqueductal grey (PAG and the rostroventromedial medulla (RVM to the trigeminal and spinal dorsal horns can inhibit or promote further nociceptive inputs. The “pain matrix” can explain such varied phenomena as stress-induced analgesia, placebo effect and the role of expectation on pain perception. Disruptions in these systems may account for the existence idiopathic pan states such as fibromyalgia. Increased understanding of pain modulatory systems will lead to development of more effective therapeutics for chronic pain.

  3. Effect of pain chronification and chronic pain on an endogenous pain modulation circuit in rats.

    Science.gov (United States)

    Miranda, J; Lamana, S M S; Dias, E V; Athie, M; Parada, C A; Tambeli, C H

    2015-02-12

    We tested the hypothesis that chronic pain development (pain chronification) and ongoing chronic pain (chronic pain) reduce the activity and induce plastic changes in an endogenous analgesia circuit, the ascending nociceptive control. An important mechanism mediating this form of endogenous analgesia, referred to as capsaicin-induced analgesia, is its dependence on nucleus accumbens μ-opioid receptor mechanisms. Therefore, we also investigated whether pain chronification and chronic pain alter the requirement for nucleus accumbens μ-opioid receptor mechanisms in capsaicin-induced analgesia. We used an animal model of pain chronification in which daily subcutaneous prostaglandin E2 (PGE2) injections into the rat's hind paw for 14 days, referred to as the induction period of persistent hyperalgesia, induce a long-lasting state of nociceptor sensitization referred to as the maintenance period of persistent hyperalgesia, that lasts for at least 30 days following the cessation of the PGE2 treatment. The nociceptor hypersensitivity was measured by the shortening of the time interval for the animal to respond to a mechanical stimulation of the hind paw. We found a significant reduction in the duration of capsaicin-induced analgesia during the induction and maintenance period of persistent mechanical hyperalgesia. Intra-accumbens injection of the μ-opioid receptor selective antagonist Cys(2),Tyr(3),Orn(5),Pen(7)amide (CTOP) 10 min before the subcutaneous injection of capsaicin into the rat's fore paw blocked capsaicin-induced analgesia. Taken together, these findings indicate that pain chronification and chronic pain reduce the duration of capsaicin-induced analgesia, without affecting its dependence on nucleus accumbens μ-opioid receptor mechanisms. The attenuation of endogenous analgesia during pain chronification and chronic pain suggests that endogenous pain circuits play an important role in the development and maintenance of chronic pain. Copyright © 2014 IBRO

  4. Endogenous Pain Modulation: Association with Resting Heart Rate Variability and Negative Affectivity.

    Science.gov (United States)

    Van Den Houte, Maaike; Van Oudenhove, Lukas; Bogaerts, Katleen; Van Diest, Ilse; Van den Bergh, Omer

    2017-07-21

    Several chronic pain syndromes are characterized by deficient endogenous pain modulation as well as elevated negative affectivity and reduced resting heart rate variability. In order to elucidate the relationships between these characteristics, we investigated whether negative affectivity and heart rate variability are associated with endogenous pain modulation in a healthy population. An offset analgesia paradigm with noxious thermal stimulation calibrated to the individual's pain threshold was used to measure endogenous pain modulation magnitude in 63 healthy individuals. Pain ratings during constant noxious heat stimulation to the arm (15 seconds) were compared with ratings during noxious stimulation comprising a 1 °C rise and return of temperature to the initial level (offset trials, 15 seconds). Offset analgesia was defined as the reduction in pain following the 1 °C decrease relative to pain at the same time point during continuous heat stimulation. Evidence for an offset analgesia effect could only be found when noxious stimulation intensity (and, hence, the individual's pain threshold) was intermediate (46 °C or 47 °C). Offset analgesia magnitude was also moderated by resting heart rate variability: a small but significant offset effect was found in participants with high but not low heart rate variability. Negative affectivity was not related to offset analgesia magnitude. These results indicate that resting heart rate variability (HRV) is related to endogenous pain modulation (EPM) in a healthy population. Future research should focus on clarifying the causal relationship between HRV and EPM and chronic pain by using longitudinal study designs. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  5. The role of endogenous molecules in modulating pain through transient receptor potential vanilloid 1 (TRPV1).

    Science.gov (United States)

    Morales-Lázaro, Sara L; Simon, Sidney A; Rosenbaum, Tamara

    2013-07-01

    Pain is a physiological response to a noxious stimulus that decreases the quality of life of those sufferring from it. Research aimed at finding new therapeutic targets for the treatment of several maladies, including pain, has led to the discovery of numerous molecular regulators of ion channels in primary afferent nociceptive neurons. Among these receptors is TRPV1 (transient receptor potential vanilloid 1), a member of the TRP family of ion channels. TRPV1 is a calcium-permeable channel, which is activated or modulated by diverse exogenous noxious stimuli such as high temperatures, changes in pH, and irritant and pungent compounds, and by selected molecules released during tissue damage and inflammatory processes. During the last decade the number of endogenous regulators of TRPV1's activity has increased to include lipids that can negatively regulate TRPV1, as is the case for cholesterol and PIP2 (phosphatidylinositol 4,5-biphosphate) while, in contrast, other lipids produced in response to tissue injury and ischaemic processes are known to positively regulate TRPV1. Among the latter, lysophosphatidic acid activates TRPV1 while amines such as N-acyl-ethanolamines and N-acyl-dopamines can sensitize or directly activate TRPV1. It has also been found that nucleotides such as ATP act as mediators of chemically induced nociception and pain and gases, such as hydrogen sulphide and nitric oxide, lead to TRPV1 activation. Finally, the products of lipoxygenases and omega-3 fatty acids among other molecules, such as divalent cations, have also been shown to endogenously regulate TRPV1 activity. Here we provide a comprehensive review of endogenous small molecules that regulate the function of TRPV1. Acting through mechanisms that lead to sensitization and desensitization of TRPV1, these molecules regulate pathways involved in pain and nociception. Understanding how these compounds modify TRPV1 activity will allow us to comprehend how some pathologies are associated with

  6. Oxytocin in the periaqueductal gray participates in pain modulation in the rat by influencing endogenous opiate peptides.

    Science.gov (United States)

    Yang, Jun; Liang, Jin-Ying; Li, Peng; Pan, Yan-Juan; Qiu, Pei-Yong; Zhang, Jing; Hao, Fang; Wang, Da-Xin

    2011-06-01

    Periaqueductal gray (PAG) plays a very important role in pain modulation through endogenous opiate peptides including leucine-enkephalin (L-Ek), methionine-enkephalin (M-Ek), β-endorphin (β-Ep) and dynorphin A(1-13) (DynA(1-13)). Our pervious study has demonstrated that intra-PAG injection of oxytocin (OXT) increases the pain threshold, and local administration of OXT receptor antagonist decreases the pain threshold, in which the antinociceptive role of OXT can be reversed by pre-PAG administration of OXT receptor antagonist. The experiment was designed to investigate the effect of OXT on endogenous opiate peptides in the rat PAG during the pain process. The results showed that (1) the concentrations of OXT, L-Ek, M-Ek and β-Ep, not DynA(1-13) in the PAG perfusion liquid were increased after the pain stimulation; (2) the concentrations of L-Ek, M-Ek and β-Ep, not DynA(1-13) in the PAG perfusion liquid were decreased by the OXT receptor antagonist; (3) the increased pain threshold induced by the OXT was attenuated by naloxone, an opiate receptor antagonist; and (4) the concentrations of L-Ek, M-Ek and β-Ep, not DynA(1-13) in the PAG perfusion liquid were increased by exogenous OXT administration. The data suggested that OXT in the PAG could influence the L-Ek, M-Ek and β-Ep rather than DynA(1-13) to participate in pain modulation, i.e. OXT in the PAG participate in pain modulation by influencing the L-Ek, M-Ek and β-Ep rather than DynA(1-13). Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Negative Affectivity, Depression, and Resting Heart Rate Variability (HRV as Possible Moderators of Endogenous Pain Modulation in Functional Somatic Syndromes

    Directory of Open Access Journals (Sweden)

    Maaike Van Den Houte

    2018-03-01

    Full Text Available Background: Several studies have shown that patients with functional somatic syndromes (FSS have, on average, deficient endogenous pain modulation (EPM, as well as elevated levels of negative affectivity (NA and high comorbidity with depression and reduced resting heart rate variability (HRV compared to healthy controls (HC. The goals of this study were (1 to replicate these findings and (2 to investigate the moderating role of NA, depression, and resting HRV in EPM efficiency within a patient group with fibromyalgia and/or chronic fatigue syndrome (CFS. Resting HRV was quantified as the root mean square of successive differences between inter-beat intervals (RMSSD in rest, a vagally mediated time domain measure of HRV.Methods: Seventy-eight patients with fibromyalgia and/or CFS and 33 HC completed a counter-irritation paradigm as a measure of EPM efficiency. Participants rated the painfulness of electrocutaneous stimuli (of individually calibrated intensity on the ankle before (baseline phase, during (counter-irritation phase and after (recovery phase the application of a cold pain stimulus on the forearm. A larger reduction in pain in the counter-irritation phase compared to the baseline phase reflects a more efficient EPM.Results: In contrast to our expectations, there was no difference between pain ratings in the baseline compared to counter-irritation phase for both patients and HC. Therefore, reliable conclusions on the moderating effect of NA, depression, and RMSSD could not be made. Surprisingly, patients reported more pain in the recovery compared to the counter-irritation and baseline phase, while HC did not. This latter effect was more pronounced in patients with comorbid depression, patients who rated the painfulness of the counter-irritation stimulus as high and patients who rated the painfulness of the electrocutaneous stimuli as low. We did not manage to successfully replicate the counter-irritation effect in HC or FSS patients

  8. Local and Generalized Endogenous Pain Modulation in Healthy Men: Effects of Exercise and Exercise-Induced Muscle Damage.

    Science.gov (United States)

    Black, Christopher D; Tynes, Brandon K; Gonglach, Alexander R; Waddell, Dwight E

    2016-12-01

    Isometric exercise has been shown to activate endogenous pain inhibitory pathways in healthy adults, but not in some clinical pain populations.  Exercise-induced muscle damage (EIMD) and the associated delayed-onset muscle soreness (DOMS) are a model for studying clinical pain; thus, our purpose was to examine the effects of isometric exercise on pressure pain threshold (PPT) in the presence and absence of DOMS.  Data were collected on 23 males (22.8 ± 2.5 yrs). PPT was assessed in the right (exercising) and left (resting) quadriceps prior to, every 30 seconds during, and 2 and 15 minutes following an isometric contraction of the right quadriceps at 25% of maximal voluntary contraction (MVC) held until fatigue. Unilateral eccentric exercise was performed to induce DOMS in the exercising leg and testing was repeated 48 hours later.  DOMS increased (P exercise in the exercising (P ≤ 0.002) and resting (P ≤ 0.002) quadriceps but did not differ between the control and EIMD conditions in either leg (P ≤ 0.61). PPT remained elevated 2 and 15 minutes postexercise (P exercised quadriceps in both conditions, but values returned to baseline at 2 (P = 0.91) and 15 minutes (P = 0.28) postisometric exercise in the resting quadriceps.  Unlike clinical pain, DOMS had no effect on the PPT response during exercise in either the exercising or resting quadriceps. The fact that exercise altered PPT in both quadriceps during exercise suggests a generalized pain inhibitory mechanism was activated. However, the restriction of postexercise effects to the exercised limb suggests localized inhibitory mechanism(s) were activated after exercise. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Gene-to-gene interactions regulate endogenous pain modulation in fibromyalgia patients and healthy controls—antagonistic effects between opioid and serotonin-related genes

    Science.gov (United States)

    Tour, Jeanette; Löfgren, Monika; Mannerkorpi, Kaisa; Gerdle, Björn; Larsson, Anette; Palstam, Annie; Bileviciute-Ljungar, Indre; Bjersing, Jan; Martin, Ingvar; Ernberg, Malin; Schalling, Martin; Kosek, Eva

    2017-01-01

    Abstract Chronic pain is associated with dysfunctional endogenous pain modulation, involving both central opioid and serotonergic (5-HT) signaling. Fibromyalgia (FM) is a chronic pain syndrome, characterized by widespread musculoskeletal pain and reduced exercise-induced hypoalgesia (EIH). In this study, we assessed the effects of 3 functional genetic polymorphisms on EIH in 130 patients with FM and 132 healthy controls. Subjects were genotyped regarding the mu-opioid receptor (OPRM1) gene (rs1799971), the serotonin transporter (5-HTT) gene (5-HTTLPR/rs25531), and the serotonin-1a receptor (5-HT1a) gene (rs6296). The patients with FM had increased pain sensitivity and reduced EIH compared with healthy controls. None of the polymorphisms had an effect on EIH on their own. We found significant gene-to-gene interactions between OPRM1 x 5-HTT and OPRM1 x 5-HT1a regarding activation of EIH, with no statistically significant difference between groups. Better EIH was found in individuals with genetically inferred strong endogenous opioid signaling (OPRM1 G) in combination with weak 5-HT tone (5-HTT low/5-HT1a G), compared with strong 5-HT tone (5-HTT high/5-HT1a CC). Based on the proposed mechanisms of these genetic variants, the findings indicate antagonistic interactions between opioid and serotonergic mechanisms during EIH. Moreover, despite different baseline pain level, similar results were detected in FM and controls, not supporting an altered interaction between opioid and 5-HT mechanisms as the basis for dysfunction of EIH in patients with FM. In summary, our results suggest that, by genetic association, the mu-opioid receptor interacts with 2 major serotonergic structures involved in 5-HT reuptake and release, to modulate EIH. PMID:28282362

  10. Gene-to-gene interactions regulate endogenous pain modulation in fibromyalgia patients and healthy controls-antagonistic effects between opioid and serotonin-related genes.

    Science.gov (United States)

    Tour, Jeanette; Löfgren, Monika; Mannerkorpi, Kaisa; Gerdle, Björn; Larsson, Anette; Palstam, Annie; Bileviciute-Ljungar, Indre; Bjersing, Jan; Martin, Ingvar; Ernberg, Malin; Schalling, Martin; Kosek, Eva

    2017-07-01

    Chronic pain is associated with dysfunctional endogenous pain modulation, involving both central opioid and serotonergic (5-HT) signaling. Fibromyalgia (FM) is a chronic pain syndrome, characterized by widespread musculoskeletal pain and reduced exercise-induced hypoalgesia (EIH). In this study, we assessed the effects of 3 functional genetic polymorphisms on EIH in 130 patients with FM and 132 healthy controls. Subjects were genotyped regarding the mu-opioid receptor (OPRM1) gene (rs1799971), the serotonin transporter (5-HTT) gene (5-HTTLPR/rs25531), and the serotonin-1a receptor (5-HT1a) gene (rs6296). The patients with FM had increased pain sensitivity and reduced EIH compared with healthy controls. None of the polymorphisms had an effect on EIH on their own. We found significant gene-to-gene interactions between OPRM1 x 5-HTT and OPRM1 x 5-HT1a regarding activation of EIH, with no statistically significant difference between groups. Better EIH was found in individuals with genetically inferred strong endogenous opioid signaling (OPRM1 G) in combination with weak 5-HT tone (5-HTT low/5-HT1a G), compared with strong 5-HT tone (5-HTT high/5-HT1a CC). Based on the proposed mechanisms of these genetic variants, the findings indicate antagonistic interactions between opioid and serotonergic mechanisms during EIH. Moreover, despite different baseline pain level, similar results were detected in FM and controls, not supporting an altered interaction between opioid and 5-HT mechanisms as the basis for dysfunction of EIH in patients with FM. In summary, our results suggest that, by genetic association, the mu-opioid receptor interacts with 2 major serotonergic structures involved in 5-HT reuptake and release, to modulate EIH.

  11. ENDOGENOUS ANALGESIA, DEPENDENCE, AND LATENT PAIN SENSITIZATION

    Science.gov (United States)

    Taylor, Bradley K; Corder, Gregory

    2015-01-01

    Endogenous activation of μ-opioid receptors (MORs) provides relief from acute pain. Recent studies have established that tissue inflammation produces latent pain sensitization (LS) that is masked by spinal MOR signaling for months, even after complete recovery from injury and re-establishment of normal pain thresholds. Disruption with MOR inverse agonists reinstates pain and precipitates cellular, somatic and aversive signs of physical withdrawal; this phenomenon requires N-methyl-D-aspartate receptor-mediated activation of calcium-sensitive adenylyl cyclase type 1 (AC1). In this review, we present a new conceptual model of the transition from acute to chronic pain, based on the delicate balance between LS and endogenous analgesia that develops after painful tissue injury. First, injury activates pain pathways. Second, the spinal cord establishes MOR constitutive activity (MORCA) as it attempts to control pain. Third, over time, the body becomes dependent on MORCA, which paradoxically sensitizes pain pathways. Stress or injury escalates opposing inhibitory and excitatory influences on nociceptive processing as a pathological consequence of increased endogenous opioid tone. Pain begets MORCA begets pain vulnerability in a vicious cycle. The final result is a silent insidious state characterized by the escalation of two opposing excitatory and inhibitory influences on pain transmission: LS mediated by AC1 (which maintains accelerator), and pain inhibition mediated by MORCA (which maintains the brake). This raises the prospect that opposing homeostatic interactions between MORCA analgesia and latent NMDAR–AC1-mediated pain sensitization create a lasting vulnerability to develop chronic pain. Thus, chronic pain syndromes may result from a failure in constitutive signaling of spinal MORs and a loss of endogenous analgesic control. An overarching long-term therapeutic goal of future research is to alleviate chronic pain by either: a) facilitating endogenous opioid

  12. Doubling Your Payoff: Winning Pain Relief Engages Endogenous Pain Inhibition

    Science.gov (United States)

    Becker, Susanne; Gandhi, Wiebke; Kwan, Saskia; Ahmed, Alysha-Karima; Schweinhardt, Petra

    2015-01-01

    When in pain, pain relief is much sought after, particularly for individuals with chronic pain. In analogy to augmentation of the hedonic experience ("liking") of a reward by the motivation to obtain a reward ("wanting"), the seeking of pain relief in a motivated state might increase the experience of pain relief when obtained. We tested this hypothesis in a psychophysical experiment in healthy human subjects, by assessing potential pain-inhibitory effects of pain relief "won" in a wheel of fortune game compared with pain relief without winning, exploiting the fact that the mere chance of winning induces a motivated state. The results show pain-inhibitory effects of pain relief obtained by winning in behaviorally assessed pain perception and ratings of pain intensity. Further, the higher participants scored on the personality trait novelty seeking, the more pain inhibition was induced. These results provide evidence that pain relief, when obtained in a motivated state, engages endogenous pain-inhibitory systems beyond the pain reduction that underlies the relief in the first place. Consequently, such pain relief might be used to improve behavioral pain therapy, inducing a positive, perhaps self-amplifying feedback loop of reduced pain and improved functionality.

  13. An endogenous pain control system is altered in subjects with interstitial cystitis.

    Science.gov (United States)

    Ness, Timothy J; Lloyd, L Keith; Fillingim, Roger B

    2014-02-01

    Multiple studies have demonstrated that in healthy subjects, painful stimuli applied to one part of the body inhibit pain sensation in other parts of the body, a phenomenon referred to as conditioned pain modulation. Conditioned pain modulation is related to the presence of endogenous pain control systems. Studies have demonstrated deficits in conditioned pain modulation associated inhibition in many but not all chronic pain disorders. In this study we determine whether conditioned pain modulation is altered in subjects with interstitial cystitis/bladder pain syndrome. Female subjects with and without the diagnosis of interstitial cystitis/bladder pain syndrome were studied psychophysically using quantitative cutaneous thermal, forearm ischemia and ice water immersion tests. Conditioned pain modulation was assessed by quantifying the effects of immersion of the hand in ice water (conditioning stimulus) on threshold and tolerance of cutaneous heat pain (test stimulus) applied to the contralateral lower extremity. The conditioned pain modulation responses of the subjects with interstitial cystitis/bladder pain syndrome were statistically different from those of healthy control subjects for cutaneous thermal threshold and tolerance measures. Healthy control subjects demonstrated statistically significant increases in thermal pain tolerance whereas subjects with the diagnosis of interstitial cystitis/bladder pain syndrome demonstrated statistically significant reductions in thermal pain tolerance. An endogenous pain inhibitory system normally observed with conditioned pain modulation was altered in subjects with interstitial cystitis/bladder pain syndrome. This finding identifies interstitial cystitis/bladder pain syndrome as similar to several other chronic pain disorders such as fibromyalgia and irritable bowel syndrome, and suggests that a deficit in endogenous pain inhibitory systems may contribute to such chronic pain disorders. Copyright © 2014 American

  14. Therapeutic Basis of Clinical Pain Modulation

    Science.gov (United States)

    Kirkpatrick, Daniel R.; McEntire, Dan M.; Hambsch, Zakary J.; Kerfeld, Mitchell J.; Smith, Tyler A.; Reisbig, Mark D.; Youngblood, Charles F.

    2015-01-01

    Abstract Pain is a hallmark of almost all bodily ailments and can be modulated by agents, including analgesics and anesthetics that suppress pain signals in the central nervous system. Defects in the modulatory systems, including the endogenous pain‐inhibitory pathways, are a major factor in the initiation and chronicity of pain. Thus, pain modulation is particularly applicable to the practice of medicine. This review summarizes the existing literature on pain modulation. Here, we critically reviewed the literature from PubMed on pain modulation published primarily within the past 5 years in high impact journals. Specifically, we have discussed important anatomical landmarks of pain modulation and outlined the endogenous networks and underlying mechanisms of clinically relevant pain modulatory methods. The Gate Control Theory is briefly presented with discussion on the capacity of pain modulation to cause both hyper‐ and hypoalgesia. An emphasis has been given to highlight key areas in pain research that, because of unanswered questions or therapeutic potential, merit additional scientific scrutiny. The information presented in this paper would be helpful in developing novel therapies, metrics, and interventions for improved patient management. PMID:25962969

  15. Endogenous pain modulation in response to exercise in patients with rheumatoid arthritis, patients with chronic fatigue syndrome and comorbid fibromyalgia, and healthy controls: a double-blind randomized controlled trial.

    Science.gov (United States)

    Meeus, Mira; Hermans, Linda; Ickmans, Kelly; Struyf, Filip; Van Cauwenbergh, Deborah; Bronckaerts, Laura; De Clerck, Luc S; Moorken, Greta; Hans, Guy; Grosemans, Sofie; Nijs, Jo

    2015-02-01

    Temporal summation (TS) of pain, conditioned pain modulation (CPM), and exercise-induced analgesia (EIA) are often investigated in chronic pain populations as an indicator for enhanced pain facilitation and impaired endogenous pain inhibition, respectively, but interactions are not yet clear both in healthy controls and in chronic pain patients. Therefore, the present double-blind randomized placebo-controlled study evaluates pains cores, TS, and CPM in response to exercise in healthy controls, patients with chronic fatigue syndrome and comorbid fibromyalgia (CFS/FM), and patients with rheumatoid arthritis (RA), both under placebo and paracetamol condition. Fifty-three female volunteers - of which 19 patients with CFS/FM, 16 patients with RA, and 18 healthy controls - underwent a submaximal exercise test on a bicycle ergometer on 2 different occasions (paracetamol vs. placebo), with an interval of 7 days. Before and after exercise, participants rated pain intensity during TS and CPM. Patients with rheumatoid arthritis showed decreased TS after exercise, both after paracetamol and placebo (P < 0.05). In patients with CFS/FM, results were less univocal. A nonsignificant decrease in TS was only observed after taking paracetamol. CPM responses to exercise are inconclusive, but seem to worsen after exercise. No adverse effects were seen. This study evaluates pain scores, TS, and CPM in response to submaximal exercise in 2 different chronic pain populations and healthy controls. In patients with RA, exercise had positive effects on TS, suggesting normal EIA. In patients with CFS/FM, these positive effects were only observed after paracetamol and results were inconsistent. © 2014 World Institute of Pain.

  16. Dysfunctional endogenous analgesia during exercise in patients with chronic pain: to exercise or not to exercise?

    Science.gov (United States)

    Nijs, Jo; Kosek, Eva; Van Oosterwijck, Jessica; Meeus, Mira

    2012-07-01

    Exercise is an effective treatment for various chronic pain disorders, including fibromyalgia, chronic neck pain, osteoarthritis, rheumatoid arthritis, and chronic low back pain. Although the clinical benefits of exercise therapy in these populations are well established (i.e. evidence based), it is currently unclear whether exercise has positive effects on the processes involved in chronic pain (e.g. central pain modulation). Reviewing the available evidence addressing the effects of exercise on central pain modulation in patients with chronic pain. Narrative review. Exercise activates endogenous analgesia in healthy individuals. The increased pain threshold following exercise is due to the release of endogenous opioids and activation of (supra)spinal nociceptive inhibitory mechanisms orchestrated by the brain. Exercise triggers the release of beta-endorphins from the pituitary (peripherally) and the hypothalamus (centrally), which in turn enables analgesic effects by activating μ-opioid receptors peripherally and centrally, respectively. The hypothalamus, through its projections on the periaqueductal grey, has the capacity to activate descending nociceptive inhibitory mechanisms. However, several groups have shown dysfunctioning of endogenous analgesia in response to exercise in patients with chronic pain. Muscle contractions activate generalized endogenous analgesia in healthy, pain-free humans and patients with either osteoarthritis or rheumatoid arthritis, but result in increased generalised pain sensitivity in fibromyalgia patients. In patients having local muscular pain (e.g. shoulder myalgia), exercising non-painful muscles activates generalized endogenous analgesia. However, exercising painful muscles does not change pain sensitivity either in the exercising muscle or at distant locations. The reviewed studies examined acute effects of exercise rather than long-term effects of exercise therapy. A dysfunctional response of patients with chronic pain and

  17. Modulation of Itch by Conditioning Itch and Pain Stimulation in Healthy Humans.

    Science.gov (United States)

    Andersen, Hjalte H; van Laarhoven, Antoinette I M; Elberling, Jesper; Arendt-Nielsen, Lars

    2017-12-01

    Little is known about endogenous descending control of itch. In chronic pain, descending pain inhibition is reduced as signified by lowered conditioned pain modulation. There are indications that patients with chronic itch may also exhibit reduced endogenous descending inhibition of itch and pain. This study aimed to investigate whether and the extent to which itch can be modulated by conditioning itch and pain stimuli. Twenty-six healthy volunteers participated. The study consisted of 5 conditions designed to systematically assess endogenous modulation of itch or pain: 1) itch-induced modulation of contralateral itch, 2) pain-induced modulation of contralateral itch, 3) pain-induced modulation of ipsilateral itch, 4) pain-induced modulation of contralateral pain, and 5) itch-induced modulation of contralateral pain. Conditioning stimuli were cold pressor-induced pain and histamine-evoked itch, whereas the test stimuli were electrical stimulation paradigms designed to evoke itch or pain. Pain was significantly reduced (conditioned pain modulation-effect) by the conditioning pain stimulus (P modulation-effect) by contra- as well as ipsilateral applied conditioning pain (both P modulation of itch as well as pain in humans. Future studies addressing potential aberrations in pain-evoked descending modulation of itch in chronic itch patients are warranted. Copyright © 2017 American Pain Society. Published by Elsevier Inc. All rights reserved.

  18. Pain adaptability in individuals with chronic musculoskeletal pain is not associated with conditioned pain modulation

    DEFF Research Database (Denmark)

    Wan, Dawn Wong Lit; Arendt-Nielsen, Lars; Wang, Kelun

    2018-01-01

    (MSK). CPTs at 2°C and 7°C were used to assess the status of pain adaptability in participants with either chronic non-specific low back pain or knee osteoarthritis. The participants' potency of conditioned pain modulation (CPM) and local inhibition were measured. The strengths of pain adaptability...... at both CPTs were highly correlated. PA and PNA did not differ in their demographics, pain thresholds from thermal and pressure stimuli, or potency of local inhibition or CPM. PA reached their maximum pain faster than PNA (t41=-2.76, p... days whereas PNA did not (F (6,246) = 3.01, p = 0.01). The dichotomy of pain adaptability exists in MSK patients. Consistent with the healthy human study, the strength of pain adaptability and potency of CPM are not related. Pain adaptability could be another form of endogenous pain inhibition which...

  19. Endogenous Opioid-Masked Latent Pain Sensitization

    DEFF Research Database (Denmark)

    Pereira, Manuel P; Donahue, Renee R; Dahl, Jørgen B

    2015-01-01

    UNLABELLED: Following the resolution of a severe inflammatory injury in rodents, administration of mu-opioid receptor inverse agonists leads to reinstatement of pain hypersensitivity. The mechanisms underlying this form of latent pain sensitization (LS) likely contribute to the development of chr...

  20. The role of endocannabinoids in pain modulation.

    Science.gov (United States)

    Zogopoulos, Panagiotis; Vasileiou, Ioanna; Patsouris, Efstratios; Theocharis, Stamatios E

    2013-02-01

    The endocannabinoid system (ES) is comprised of cannabinoid (CB) receptors, their endogenous ligands (endocannabinoids), and proteins responsible for their metabolism. Endocannabinoids serve as retrograde signaling messengers in GABAergic and glutamatergic synapses, as well as modulators of postsynaptic transmission, that interact with other neurotransmitters. Physiological stimuli and pathological conditions lead to differential increases in brain endocannabinoids that regulate distinct biological functions. Furthermore, endocannabinoids modulate neuronal, glial, and endothelial cell function and exert neuromodulatory, anti-excitotoxic, anti-inflammatory, and vasodilatory effects. Analgesia is one of the principal therapeutic targets of cannabinoids. Cannabinoid analgesia is based on the suppression of spinal and thalamic nociceptive neurons, but peripheral sites of action have also been identified. The chronic pain that occasionally follows peripheral nerve injury differs fundamentally from inflammatory pain and is an area of considerable unmet therapeutic need. Over the last years, considerable progress has been made in understanding the role of the ES in the modulation of pain. Endocannabinoids have been shown to behave as analgesics in models of both acute nociception and clinical pain such as inflammation and painful neuropathy. The framework for such analgesic effects exists in the CB receptors, which are found in areas of the nervous system important for pain processing and in immune cells that regulate the neuro-immune interactions that mediate the inflammatory hyperalgesia. The purpose of this review is to present the available research and clinical data, up to date, regarding the ES and its role in pain modulation, as well as its possible therapeutic perspectives. © 2012 The Authors Fundamental and Clinical Pharmacology © 2012 Société Française de Pharmacologie et de Thérapeutique.

  1. Endogenous opioid antagonism in physiological experimental pain models

    DEFF Research Database (Denmark)

    Werner, Mads U; Pereira, Manuel P; Andersen, Lars Peter H

    2015-01-01

    Opioid antagonists are pharmacological tools applied as an indirect measure to detect activation of the endogenous opioid system (EOS) in experimental pain models. The objective of this systematic review was to examine the effect of mu-opioid-receptor (MOR) antagonists in placebo-controlled, double...

  2. Endogenous opioid activity in the anterior cingulate cortex is required for relief of pain.

    Science.gov (United States)

    Navratilova, Edita; Xie, Jennifer Yanhua; Meske, Diana; Qu, Chaoling; Morimura, Kozo; Okun, Alec; Arakawa, Naohisa; Ossipov, Michael; Fields, Howard L; Porreca, Frank

    2015-05-06

    Pain is aversive, and its relief elicits reward mediated by dopaminergic signaling in the nucleus accumbens (NAc), a part of the mesolimbic reward motivation pathway. How the reward pathway is engaged by pain-relieving treatments is not known. Endogenous opioid signaling in the anterior cingulate cortex (ACC), an area encoding pain aversiveness, contributes to pain modulation. We examined whether endogenous ACC opioid neurotransmission is required for relief of pain and subsequent downstream activation of NAc dopamine signaling. Conditioned place preference (CPP) and in vivo microdialysis were used to assess negative reinforcement and NAc dopaminergic transmission. In rats with postsurgical or neuropathic pain, blockade of opioid signaling in the rostral ACC (rACC) inhibited CPP and NAc dopamine release resulting from non-opioid pain-relieving treatments, including peripheral nerve block or spinal clonidine, an α2-adrenergic agonist. Conversely, pharmacological activation of rACC opioid receptors of injured, but not pain-free, animals was sufficient to stimulate dopamine release in the NAc and produce CPP. In neuropathic, but not sham-operated, rats, systemic doses of morphine that did not affect withdrawal thresholds elicited CPP and NAc dopamine release, effects that were prevented by blockade of ACC opioid receptors. The data provide a neural explanation for the preferential effects of opioids on pain affect and demonstrate that engagement of NAc dopaminergic transmission by non-opioid pain-relieving treatments depends on upstream ACC opioid circuits. Endogenous opioid signaling in the ACC appears to be both necessary and sufficient for relief of pain aversiveness. Copyright © 2015 the authors 0270-6474/15/357264-08$15.00/0.

  3. Doubling Your Payoff: Winning Pain Relief Engages Endogenous Pain Inhibition1,2,3

    Science.gov (United States)

    Kwan, Saskia; Schweinhardt, Petra

    2015-01-01

    Abstract When in pain, pain relief is much sought after, particularly for individuals with chronic pain. In analogy to augmentation of the hedonic experience (“liking”) of a reward by the motivation to obtain a reward (“wanting”), the seeking of pain relief in a motivated state might increase the experience of pain relief when obtained. We tested this hypothesis in a psychophysical experiment in healthy human subjects, by assessing potential pain-inhibitory effects of pain relief “won” in a wheel of fortune game compared with pain relief without winning, exploiting the fact that the mere chance of winning induces a motivated state. The results show pain-inhibitory effects of pain relief obtained by winning in behaviorally assessed pain perception and ratings of pain intensity. Further, the higher participants scored on the personality trait novelty seeking, the more pain inhibition was induced. These results provide evidence that pain relief, when obtained in a motivated state, engages endogenous pain-inhibitory systems beyond the pain reduction that underlies the relief in the first place. Consequently, such pain relief might be used to improve behavioral pain therapy, inducing a positive, perhaps self-amplifying feedback loop of reduced pain and improved functionality. PMID:26464995

  4. Deficient conditioned pain modulation after spinal cord injury correlates with clinical spontaneous pain measures.

    Science.gov (United States)

    Albu, Sergiu; Gómez-Soriano, Julio; Avila-Martin, Gerardo; Taylor, Julian

    2015-02-01

    The contribution of endogenous pain modulation dysfunction to clinical and sensory measures of neuropathic pain (NP) has not been fully explored. Habituation, temporal summation, and heterotopic noxious conditioning stimulus-induced modulation of tonic heat pain intensity were examined in healthy noninjured subjects (n = 10), and above the level of spinal cord injury (SCI) in individuals without (SCI-noNP, n = 10) and with NP (SCI-NP, n = 10). Thermoalgesic thresholds, Cz/AFz contact heat evoked potentials (CHEPs), and phasic or tonic (30 seconds) heat pain intensity were assessed within the C6 dermatome. Although habituation to tonic heat pain intensity (0-10) was reported by the noninjured (10 s: 3.5 ± 0.3 vs 30 s: 2.2 ± 0.5 numerical rating scale; P = 0.003), loss of habituation was identified in both the SCI-noNP (3.8 ± 0.3 vs 3.6 ± 0.5) and SCI-NP group (4.2 ± 0.4 vs 4.9 ± 0.8). Significant temporal summation of tonic heat pain intensity was not observed in the 3 groups. Inhibition of tonic heat pain intensity induced by heterotopic noxious conditioning stimulus was identified in the noninjured (-29.7% ± 9.7%) and SCI-noNP groups (-19.6% ± 7.0%), but not in subjects with SCI-NP (+1.1% ± 8.0%; P P = 0.015) and evoked heat pain intensity (ρ = 0.8; P = 0.007) in the SCI-NP group. Stepwise regression analysis revealed that the mean conditioned pain modulation (R = 0.72) correlated with pain severity and pressing spontaneous pain in the SCI-NP group. Comprehensive assessment of sensory dysfunction above the level of injury with tonic thermal test and conditioning stimuli revealed less-efficient endogenous pain modulation in subjects with SCI-NP.

  5. Pain facilitation and pain inhibition during conditioned pain modulation in fibromyalgia and in healthy controls.

    Science.gov (United States)

    Potvin, Stéphane; Marchand, Serge

    2016-08-01

    Although fibromyalgia (FM) is associated with a deficit in inhibitory conditioned pain modulation (CPM), the discriminative power of CPM procedures is unknown. Moreover, the high intersubject heterogeneity in CPM responses in FM raises the possibility that a sizeable subgroup of these patients may experience pain facilitation during CPM, but the phenomenon has not been explicitly studied. To address these issues, 96 patients with FM and 71 healthy controls were recruited. Thermal stimuli were used to measure pain thresholds. Pain inhibition was elicited using a tonic thermal test (Peltier thermode) administered before and after activation of CPM mechanisms using a cold pressor test. Thermal pain thresholds were lower in patients with FM than in healthy controls. Pain ratings during the cold pressor test were higher in patients with FM, relative to controls. The CPM inhibitory efficacy was lower in patients with FM than in controls. The CPM procedure had good specificity (78.9%) but low sensitivity (45.7%), whereas a composite pain index had good sensitivity (75.0%) and specificity (78.9%). Finally, the rate of patients with FM who reported pain facilitation during the CPM procedure was found to be significantly increased compared with that of controls (41.7% vs 21.2%). The good discriminative power of the composite pain index highlights the need for further validation studies using mechanistically relevant psychophysical procedures in FM. The low sensitivity of the CPM procedure, combined with the large proportion of patients with FM experiencing pain facilitation during CPM, strongly suggests that endogenous pain inhibition mechanisms are deeply impaired in patients with FM, but only in a subgroup of them.

  6. Dysfunction of endogenous pain inhibition during exercise with painful muscles in patients with shoulder myalgia and fibromyalgia.

    Science.gov (United States)

    Lannersten, Lisa; Kosek, Eva

    2010-10-01

    The aim of this study was to investigate how exercise influenced endogenous pain modulation in healthy controls, shoulder myalgia patients and fibromyalgia (FM) patients. Twenty-one healthy subjects, 20 shoulder myalgia patients and 20 FM patients, all females, participated. They performed standardized static contractions, that is, outward shoulder rotation (m. infraspinatus) and knee extension (m. quadriceps). Pressure pain thresholds (PPTs) were determined bilaterally at m. infraspinatus and m. quadriceps. During contractions PPTs were assessed at the contracting muscle, the resting homologous contralateral muscle and contralaterally at a distant site (m. infraspinatus during contraction of m. quadriceps and vice versa). Myalgia patients had lower PPTs compared to healthy controls at m. infraspinatus bilaterally (ppain regulatory mechanisms in myalgia patients during contraction of the non-afflicted m. quadriceps, but a lack of pain inhibition during contraction of the painful m. infraspinatus. FM patients failed to activate their pain inhibitory mechanisms during all contractions. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  7. Evoked potentials after painful cutaneous electrical stimulation depict pain relief during a conditioned pain modulation.

    Science.gov (United States)

    Höffken, Oliver; Özgül, Özüm S; Enax-Krumova, Elena K; Tegenthoff, Martin; Maier, Christoph

    2017-08-29

    Conditioned pain modulation (CPM) evaluates the pain modulating effect of a noxious conditioning stimulus (CS) on another noxious test stimulus (TS), mostly based solely on subjective pain ratings. We used painful cutaneous electrical stimulation (PCES) to induce TS in a novel CPM-model. Additionally, to evaluate a more objective parameter, we recorded the corresponding changes of cortical evoked potentials (PCES-EP). We examined the CPM-effect in 17 healthy subjects in a randomized controlled cross-over design during immersion of the non-dominant hand into 10 °C or 24 °C cold water (CS). Using three custom-built concentric surface electrodes, electrical stimuli were applied on the dominant hand, inducing pain of 40-60 on NRS 0-100 (TS). At baseline, during and after CS we assessed the electrically induced pain intensity and electrically evoked potentials recorded over the central electrode (Cz). Only in the 10 °C-condition, both pain (52.6 ± 4.4 (baseline) vs. 30.3 ± 12.5 (during CS)) and amplitudes of PCES-EP (42.1 ± 13.4 μV (baseline) vs. 28.7 ± 10.5 μV (during CS)) attenuated during CS and recovered there after (all p pain ratings during electrical stimulation and amplitudes of PCES-EP correlated significantly with each other (r = 0.5) and with CS pain intensity (r = 0.5). PCES-EPs are a quantitative measure of pain relief, as changes in the electrophysiological response are paralleled by a consistent decrease in subjective pain ratings. This novel CPM paradigm is a feasible method, which could help to evaluate the function of the endogenous pain modulation processes. German Clinical Trials Register DRKS-ID: DRKS00012779 , retrospectively registered on 24 July 2017.

  8. Deficient Pain Modulation in Patients with Chronic Hemiplegic Shoulder Pain.

    Science.gov (United States)

    Kashi, Yafit; Ratmansky, Motti; Defrin, Ruth

    2017-11-14

    Hemiplegic shoulder pain (HSP) following stroke significantly affects the individual's function and quality of life. The mechanism of HSP is not clearly understood; hence, it is unclear why HSP resolves spontaneously or following routine care in some patients, while in others it becomes persistent. The aim was therefore to study whether HSP is associated with deficient pain modulation. Thirty post-stroke patients-16 with HSP and 14 without HSP-and 20 matched controls participated. Pain adaptation and conditioned pain modulation (CPM) were measured as indicators of pain modulation, in the affected (hemiplegic) and contralateral shoulder as well as in the affected shin among post-stroke patients, and in comparable body regions among controls. Post-stroke patients also underwent functional and physical evaluation of the shoulder. Pain adaptation was absent among HSP patients, in both the painful shoulder and the affected shin, but existed in the 2 control groups. In addition, the affected shoulder and shin among the HSP group had reduced thermal sensibility compared to the contralateral regions. CPM was similar across groups. Shoulder functional status and physical status were similar for the 2 post-stroke groups. The results suggest that HSP is associated with a lack of pain adaptation, characteristic not only of the painful shoulder but also of the affected side. Although we cannot determine whether lack of pain adaptation precedes the HSP or results from it, interventions that enhance descending pain inhibition may improve management and prevent HSP chronification. © 2017 World Institute of Pain.

  9. Dysfunctional Pain Modulation in Torture Survivors

    DEFF Research Database (Denmark)

    Defrin, Ruth; Lahav, Yael; Solomon, Zahava

    2017-01-01

    to torture, PTSD or PTSD trajectories accounted for chronic pain and altered pain perception. Participants were 59 torture survivors and 44 age-matched healthy control subjects. Chronic pain was characterized. Pain threshold, pain tolerance, conditioned pain modulation (CPM), and temporal summation of pain...... were measured. Three PTSD trajectories were identified among torture survivors; chronic, delayed, and resilient. Lack of CPM and more intense chronic pain was found among the chronic and delayed groups compared with the resilient and healthy control groups. Temporal summation of pain was strongest...... among the chronic group. PTSD trajectories mediated the relationship between torture and CPM. It appears that the duration and severity of posttraumatic distress, rather than the exposure to trauma, are crucial factors that mediate the association between trauma and chronic pain. Because PTSD and its...

  10. R-flurbiprofen reduces neuropathic pain in rodents by restoring endogenous cannabinoids.

    Directory of Open Access Journals (Sweden)

    Philipp Bishay

    Full Text Available BACKGROUND: R-flurbiprofen, one of the enantiomers of flurbiprofen racemate, is inactive with respect to cyclooxygenase inhibition, but shows analgesic properties without relevant toxicity. Its mode of action is still unclear. METHODOLOGY/PRINCIPAL FINDINGS: We show that R-flurbiprofen reduces glutamate release in the dorsal horn of the spinal cord evoked by sciatic nerve injury and thereby alleviates pain in sciatic nerve injury models of neuropathic pain in rats and mice. This is mediated by restoring the balance of endocannabinoids (eCB, which is disturbed following peripheral nerve injury in the DRGs, spinal cord and forebrain. The imbalance results from transcriptional adaptations of fatty acid amide hydrolase (FAAH and NAPE-phospholipase D, i.e. the major enzymes involved in anandamide metabolism and synthesis, respectively. R-flurbiprofen inhibits FAAH activity and normalizes NAPE-PLD expression. As a consequence, R-Flurbiprofen improves endogenous cannabinoid mediated effects, indicated by the reduction of glutamate release, increased activity of the anti-inflammatory transcription factor PPARgamma and attenuation of microglia activation. Antinociceptive effects are lost by combined inhibition of CB1 and CB2 receptors and partially abolished in CB1 receptor deficient mice. R-flurbiprofen does however not cause changes of core body temperature which is a typical indicator of central effects of cannabinoid-1 receptor agonists. CONCLUSION: Our results suggest that R-flurbiprofen improves the endogenous mechanisms to regain stability after axonal injury and to fend off chronic neuropathic pain by modulating the endocannabinoid system and thus constitutes an attractive, novel therapeutic agent in the treatment of chronic, intractable pain.

  11. Endogenous opioid antagonism in physiological experimental pain models: a systematic review.

    Directory of Open Access Journals (Sweden)

    Mads U Werner

    Full Text Available Opioid antagonists are pharmacological tools applied as an indirect measure to detect activation of the endogenous opioid system (EOS in experimental pain models. The objective of this systematic review was to examine the effect of mu-opioid-receptor (MOR antagonists in placebo-controlled, double-blind studies using 'inhibitory' or 'sensitizing', physiological test paradigms in healthy human subjects. The databases PubMed and Embase were searched according to predefined criteria. Out of a total of 2,142 records, 63 studies (1,477 subjects [male/female ratio = 1.5] were considered relevant. Twenty-five studies utilized 'inhibitory' test paradigms (ITP and 38 studies utilized 'sensitizing' test paradigms (STP. The ITP-studies were characterized as conditioning modulation models (22 studies and repetitive transcranial magnetic stimulation models (rTMS; 3 studies, and, the STP-studies as secondary hyperalgesia models (6 studies, 'pain' models (25 studies, summation models (2 studies, nociceptive reflex models (3 studies and miscellaneous models (2 studies. A consistent reversal of analgesia by a MOR-antagonist was demonstrated in 10 of the 25 ITP-studies, including stress-induced analgesia and rTMS. In the remaining 14 conditioning modulation studies either absence of effects or ambiguous effects by MOR-antagonists, were observed. In the STP-studies, no effect of the opioid-blockade could be demonstrated in 5 out of 6 secondary hyperalgesia studies. The direction of MOR-antagonist dependent effects upon pain ratings, threshold assessments and somatosensory evoked potentials (SSEP, did not appear consistent in 28 out of 32 'pain' model studies. In conclusion, only in 2 experimental human pain models, i.e., stress-induced analgesia and rTMS, administration of MOR-antagonist demonstrated a consistent effect, presumably mediated by an EOS-dependent mechanisms of analgesia and hyperalgesia.

  12. Evidence for a key role of steroids in the modulation of pain.

    Science.gov (United States)

    Mensah-Nyagan, Ayikoe G; Meyer, Laurence; Schaeffer, Véronique; Kibaly, Cherkaouia; Patte-Mensah, Christine

    2009-12-01

    Neurotransmitters such as glutamate, substance P, serotonin and gamma-aminobutyric acid pivotally control pain mechanisms. It is also well known that inflammatory and/or neuropathic pain may depend on the action of diverse cytokines and other molecules including eicosanoids, endorphins, calcitonin-gene related peptide, free radicals and transcription factors. Because steroids control the development, activities and plasticity of the nervous system, these compounds are of particular interest in the modulation of pain. The paper discusses various data supporting the existence of key regulatory effects of steroids in the control of pain. In particular, we analyzed three categories of observations which historically contributed to demonstrate that endogenous and synthetic steroids play a crucial role in the regulation of neurobiological processes involved in pain sensation. The first series of data, which present the chemical characteristics enabling steroids to act on several tissues, also summarize pertinent results supporting the modulation of pain sensation by steroidal compounds. The second category of data evokes psychosocial, fundamental and clinical results suggesting the existence of sex steroid-based differences in pain perception. Finally, we discuss recent evidence showing the endogenous production of neurosteroids and their effects in the spinal cord which crucially controls pain transmission. Taken together, the data reviewed herein suggest that future investigations aiming to develop effective steroid-based strategies against chronic pain must integrate in a complementary manner anti-inflammatory properties of steroids, sex steroid-induced dimorphism in pain perception and regulatory effects exerted by endogenous neurosteroids in pain neural circuits.

  13. Endogenous opioidergic dysregulation of pain in fibromyalgia: a PET and fMRI study.

    Science.gov (United States)

    Schrepf, Andrew; Harper, Daniel E; Harte, Steven E; Wang, Heng; Ichesco, Eric; Hampson, Johnson P; Zubieta, Jon-Kar; Clauw, Daniel J; Harris, Richard E

    2016-10-01

    Endogenous opioid system dysfunction potentially contributes to chronic pain in fibromyalgia (FM), but it is unknown if this dysfunction is related to established neurobiological markers of hyperalgesia. We previously reported that µ-opioid receptor (MOR) availability was reduced in patients with FM as compared with healthy controls in several pain-processing brain regions. In the present study, we compared pain-evoked functional magnetic resonance imaging with endogenous MOR binding and clinical pain ratings in female opioid-naive patients with FM (n = 18) using whole-brain analyses and regions of interest from our previous research. Within antinociceptive brain regions, including the dorsolateral prefrontal cortex (r = 0.81, P 0.67; all P pain-evoked neural activity. Additionally, reduced MOR availability was associated with lower brain activation in the nucleus accumbens (r = 0.47, P = 0.050). In many of these regions, pain-evoked activity and MOR binding potential were also associated with lower clinical affective pain ratings. These findings are the first to link endogenous opioid system tone to regional pain-evoked brain activity in a clinical pain population. Our data suggest that dysregulation of the endogenous opioid system in FM could lead to less excitation in antinociceptive brain regions by incoming noxious stimulation, resulting in the hyperalgesia and allodynia commonly observed in this population. We propose a conceptual model of affective pain dysregulation in FM.

  14. Mindfulness-Meditation-Based Pain Relief Is Not Mediated by Endogenous Opioids.

    Science.gov (United States)

    Zeidan, Fadel; Adler-Neal, Adrienne L; Wells, Rebecca E; Stagnaro, Emily; May, Lisa M; Eisenach, James C; McHaffie, John G; Coghill, Robert C

    2016-03-16

    Mindfulness meditation, a cognitive practice premised on sustaining nonjudgmental awareness of arising sensory events, reliably attenuates pain. Mindfulness meditation activates multiple brain regions that contain a high expression of opioid receptors. However, it is unknown whether mindfulness-meditation-based analgesia is mediated by endogenous opioids. The present double-blind, randomized study examined behavioral pain responses in healthy human volunteers during mindfulness meditation and a nonmanipulation control condition in response to noxious heat and intravenous administration of the opioid antagonist naloxone (0.15 mg/kg bolus + 0.1 mg/kg/h infusion) or saline placebo. Meditation during saline infusion significantly reduced pain intensity and unpleasantness ratings when compared to the control + saline group. However, naloxone infusion failed to reverse meditation-induced analgesia. There were no significant differences in pain intensity or pain unpleasantness reductions between the meditation + naloxone and the meditation + saline groups. Furthermore, mindfulness meditation during naloxone produced significantly greater reductions in pain intensity and unpleasantness than the control groups. These findings demonstrate that mindfulness meditation does not rely on endogenous opioidergic mechanisms to reduce pain. Endogenous opioids have been repeatedly shown to be involved in the cognitive inhibition of pain. Mindfulness meditation, a practice premised on directing nonjudgmental attention to arising sensory events, reduces pain by engaging mechanisms supporting the cognitive control of pain. However, it remains unknown if mindfulness-meditation-based analgesia is mediated by opioids, an important consideration for using meditation to treat chronic pain. To address this question, the present study examined pain reports during meditation in response to noxious heat and administration of the opioid antagonist naloxone and placebo saline. The results

  15. Pain physiology education improves health status and endogenous pain inhibition in fibromyalgia: a double-blind randomized controlled trial.

    Science.gov (United States)

    Van Oosterwijck, Jessica; Meeus, Mira; Paul, Lorna; De Schryver, Mieke; Pascal, Aurelie; Lambrecht, Luc; Nijs, Jo

    2013-10-01

    There is evidence that education on pain physiology can have positive effects on pain, disability, and catastrophization in patients with chronic musculoskeletal pain disorders. A double-blind randomized controlled trial (RCT) was performed to examine whether intensive pain physiology education is also effective in fibromyalgia (FM) patients, and whether it is able to influence the impaired endogenous pain inhibition of these patients. Thirty FM patients were randomly allocated to either the experimental (receiving pain physiology education) or the control group (receiving pacing self-management education). The primary outcome was the efficacy of the pain inhibitory mechanisms, which was evaluated by spatially accumulating thermal nociceptive stimuli. Secondary outcome measures included pressure pain threshold measurements and questionnaires assessing pain cognitions, behavior, and health status. Assessments were performed at baseline, 2 weeks, and 3 months follow-up. Repeated measures ANOVAS were used to reveal possible therapy effects and effect sizes were calculated. After the intervention the experimental group had improved knowledge of pain neurophysiology (Pphysiology. Pain physiology education seems to be a useful component in the treatment of FM patients as it improves health status and endogenous pain inhibition in the long term.

  16. Copper is an endogenous modulator of neural circuit spontaneous activity.

    Science.gov (United States)

    Dodani, Sheel C; Firl, Alana; Chan, Jefferson; Nam, Christine I; Aron, Allegra T; Onak, Carl S; Ramos-Torres, Karla M; Paek, Jaeho; Webster, Corey M; Feller, Marla B; Chang, Christopher J

    2014-11-18

    For reasons that remain insufficiently understood, the brain requires among the highest levels of metals in the body for normal function. The traditional paradigm for this organ and others is that fluxes of alkali and alkaline earth metals are required for signaling, but transition metals are maintained in static, tightly bound reservoirs for metabolism and protection against oxidative stress. Here we show that copper is an endogenous modulator of spontaneous activity, a property of functional neural circuitry. Using Copper Fluor-3 (CF3), a new fluorescent Cu(+) sensor for one- and two-photon imaging, we show that neurons and neural tissue maintain basal stores of loosely bound copper that can be attenuated by chelation, which define a labile copper pool. Targeted disruption of these labile copper stores by acute chelation or genetic knockdown of the CTR1 (copper transporter 1) copper channel alters the spatiotemporal properties of spontaneous activity in developing hippocampal and retinal circuits. The data identify an essential role for copper neuronal function and suggest broader contributions of this transition metal to cell signaling.

  17. Love as a Modulator of Pain.

    Science.gov (United States)

    Tamam, Sofina; Ahmad, Asma Hayati

    2017-05-01

    Pain is modulated by various factors, the most notable of which is emotions. Since love is an emotion, it can also modulate pain. The answer to the question of whether it enhances or reduces pain needs to be determined. A review was conducted of animal and human studies in which this enigmatic emotion and its interaction with pain was explored. Recent advances in neuroimaging have revealed similarities in brain activation relating to love and pain. At the simplest level, this interaction can be explained by the overlapping network structure in brain functional connectivity, although the explanation is considerably more complex. The effect of love can either result in increased or decreased pain perception. An explanation of the interaction between pain and love relates to the functional connectivity of the brain and to the psychological construct of the individual, as well as to his or her ability to engage resources relating to emotion regulation. In turn, this determines how a person relates to love and reacts to pain.

  18. Conditioned pain modulation in patients with nonspecific chronic back pain with chronic local pain, chronic widespread pain, and fibromyalgia.

    Science.gov (United States)

    Gerhardt, Andreas; Eich, Wolfgang; Treede, Rolf-Detlef; Tesarz, Jonas

    2017-03-01

    Findings considering conditioned pain modulation (CPM) in chronic back pain (CBP) are contradictory. This might be because many patients with CBP report pain in further areas of the body, and altered CPM might influence spatial extent of pain rather than CBP per se. Therefore, we compared CPM in patients with CBP with different pain extent. Patients with fibromyalgia syndrome (FMS), for whom CPM impairment is reported most consistently, were measured for comparison. Based on clinical evaluation and pain drawings, patients were categorized into chronic local back pain (CLP; n = 53), chronic widespread back pain (CWP; n = 32), and FMS (n = 92). Conditioned pain modulation was measured by the difference in pressure pain threshold (test stimuli) at the lower back before and after tonic heat pain (conditioning stimulus). We also measured psychosocial variables. Pressure pain threshold was significantly increased in CLP patients after tonic heat pain (P pain modulation in CLP was significantly higher than that in CWP and FMS (P painful areas (0-10) were associated with lower CPM (r = 0.346, P = 0.001) in CBP but not in FMS (r = -0.013, P = 0.903). Anxiety and depression were more pronounced in FMS than in CLP or CWP (P values pain inhibition seem to be more indicated the higher the pain extent.

  19. Conditioned pain modulation is minimally influenced by cognitive evaluation or imagery of the conditioning stimulus

    Directory of Open Access Journals (Sweden)

    Bernaba M

    2014-11-01

    Full Text Available Mario Bernaba, Kevin A Johnson, Jiang-Ti Kong, Sean MackeyStanford Systems Neuroscience and Pain Laboratory, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USAPurpose: Conditioned pain modulation (CPM is an experimental approach for probing endogenous analgesia by which one painful stimulus (the conditioning stimulus may inhibit the perceived pain of a subsequent stimulus (the test stimulus. Animal studies suggest that CPM is mediated by a spino–bulbo–spinal loop using objective measures such as neuronal firing. In humans, pain ratings are often used as the end point. Because pain self-reports are subject to cognitive influences, we tested whether cognitive factors would impact on CPM results in healthy humans.Methods: We conducted a within-subject, crossover study of healthy adults to determine the extent to which CPM is affected by 1 threatening and reassuring evaluation and 2 imagery alone of a cold conditioning stimulus. We used a heat stimulus individualized to 5/10 on a visual analog scale as the testing stimulus and computed the magnitude of CPM by subtracting the postconditioning rating from the baseline pain rating of the heat stimulus.Results: We found that although evaluation can increase the pain rating of the conditioning stimulus, it did not significantly alter the magnitude of CPM. We also found that imagery of cold pain alone did not result in statistically significant CPM effect.Conclusion: Our results suggest that CPM is primarily dependent on sensory input, and that the cortical processes of evaluation and imagery have little impact on CPM. These findings lend support for CPM as a useful tool for probing endogenous analgesia through subcortical mechanisms.Keywords: conditioned pain modulation, endogenous analgesia, evaluation, imagery, cold presser test, CHEPS, contact heat-evoked potential stimulator

  20. The Role of the Brain's Endocannabinoid System in Pain and Its Modulation by Stress.

    Science.gov (United States)

    Corcoran, Louise; Roche, Michelle; Finn, David P

    2015-01-01

    Stress has a complex, bidirectional modulatory influence on pain. Stress may either reduce (stress-induced analgesia) or exacerbate (stress-induced hyperalgesia) pain depending on the nature, duration, and intensity of the stressor. The endogenous cannabinoid (endocannabinoid) system is present throughout the neuroanatomical pathways that mediate and modulate responses to painful stimuli. The specific role of the endocannabinoid system in the brain in pain and the modulation of pain by stress is reviewed herein. We first provide a brief overview of the endocannabinoid system, followed by a review of the evidence that the brain's endocannabinoid system modulates pain. We provide a comprehensive evaluation of the role of the endocannabinoid system supraspinally, and particularly in the rostral ventromedial medulla, periaqueductal gray, amygdala, and prefrontal cortex, in pain, stress-induced analgesia, and stress-induced hyperalgesia. Increased understanding of endocannabinoid-mediated regulation of pain and its modulation by stress will inform the development of novel therapeutic approaches for pain and its comorbidity with stress-related disorders. © 2015 Elsevier Inc. All rights reserved.

  1. Medication overuse reinstates conditioned pain modulation in women with migraine.

    Science.gov (United States)

    Guy, Nathalie; Voisin, Daniel; Mulliez, Aurélien; Clavelou, Pierre; Dallel, Radhouane

    2018-05-01

    Background This study investigated the effects of medication overuse and withdrawal on modulation of pain processing in women with migraine. Temporal summation of laser-evoked thermal pain was used to measure the effects of conditioned pain modulation. Methods 36 female participants (12 healthy volunteers, 12 with episodic migraine and 12 with medication overuse headache) were included in a two session protocol. Medication overuse headache subjects were also tested three weeks after medication overuse headache withdrawal. Mechanical and laser-evoked thermal pain thresholds were measured on the back of the non-dominant hand where, later, temporal summation of laser-evoked thermal pain to repetitive thermal stimuli was elicited for 30 min, at an intensity producing moderate pain. Between the 10 th and 20 th minutes, the contralateral foot was immersed into a water bath at a not painful (30℃) or painfully cold (8℃; conditioned pain modulation) temperature. Results Episodic migraine, medication overuse headache and medication overuse headache withdrawal were associated with an increase in extracephalic temporal summation of laser-evoked thermal pain as compared to healthy volunteer subjects, while there was no alteration of laser-evoked thermal and mechanical extracephalic pain thresholds in these subjects. Conditioned pain modulation was highly efficient in temporal summation of laser-evoked thermal pain in healthy volunteer subjects, with a solid post-effect (reduction of pain). Conditioned pain modulation was still present, but reduced, in episodic migraine. By contrast, conditioned pain modulation was normal in medication overuse headache and strongly reduced in medication overuse headache withdrawal. Furthermore, in medication overuse headache withdrawal, the post-effect was no longer a decrease, but a facilitation of pain. Conclusions These data show that a decrease in conditioned pain modulation does not underlie medication overuse headache in women. On

  2. Self-reported pain and disability outcomes from an endogenous model of muscular back pain

    Directory of Open Access Journals (Sweden)

    George Steven Z

    2011-02-01

    Full Text Available Abstract Background Our purpose was to develop an induced musculoskeletal pain model of acute low back pain and examine the relationship among pain, disability and fear in this model. Methods Delayed onset muscle soreness was induced in 52 healthy volunteers (23 women, 17 men; average age 22.4 years; average BMI 24.3 using fatiguing trunk extension exercise. Measures of pain intensity, unpleasantness, and location, and disability, were tracked for one week after exercise. Results Pain intensity ranged from 0 to 68 with 57.5% of participants reporting peak pain at 24 hours and 32.5% reporting this at 48 hours. The majority of participants reported pain in the low back with 33% also reporting pain in the legs. The ratio of unpleasantness to intensity indicated that the sensation was considered more unpleasant than intense. Statistical differences were noted in levels of reported disability between participants with and without leg pain. Pain intensity at 24 hours was correlated with pain unpleasantness, pain area and disability. Also, fear of pain was associated with pain intensity and unpleasantness. Disability was predicted by sex, presence of leg pain, and pain intensity; however, the largest amount of variance was explained by pain intensity (27% of a total 40%. The second model, predicting pain intensity only included fear of pain and explained less than 10% of the variance in pain intensity. Conclusions Our results demonstrate a significant association between pain and disability in this model in young adults. However, the model is most applicable to patients with lower levels of pain and disability. Future work should include older adults to improve the external validity of this model.

  3. Carbon monoxide: from toxin to endogenous modulator of cardiovascular functions

    Directory of Open Access Journals (Sweden)

    R.A. Johnson

    1999-01-01

    Full Text Available Carbon monoxide (CO is a pollutant commonly recognized for its toxicological attributes, including CNS and cardiovascular effects. But CO is also formed endogenously in mammalian tissues. Endogenously formed CO normally arises from heme degradation in a reaction catalyzed by heme oxygenase. While inhibitors of endogenous CO production can raise arterial pressure, heme loading can enhance CO production and lead to vasodepression. Both central and peripheral tissues possess heme oxygenases and generate CO from heme, but the inability of heme substrate to cross the blood brain barrier suggests the CNS heme-heme oxygenase-CO system may be independent of the periphery. In the CNS, CO apparently acts in the nucleus tractus solitarii (NTS promoting changes in glutamatergic neurotransmission and lowering blood pressure. At the periphery, the heme-heme oxygenase-CO system can affect cardiovascular functions in a two-fold manner; specifically: 1 heme-derived CO generated within vascular smooth muscle (VSM can promote vasodilation, but 2 its actions on the endothelium apparently can promote vasoconstriction. Thus, it seems reasonable that the CNS-, VSM- and endothelial-dependent actions of the heme-heme oxygenase-CO system may all affect cardiac output and vascular resistance, and subsequently blood pressure.

  4. Effects of naltrexone on pain sensitivity and mood in fibromyalgia: no evidence for endogenous opioid pathophysiology.

    Directory of Open Access Journals (Sweden)

    Jarred W Younger

    Full Text Available The pathophysiological mechanisms underlying fibromyalgia are still unknown, although some evidence points to endogenous opioid dysfunction. We examined how endogenous opioid antagonism affects pain and mood for women with and without fibromyalgia. Ten women with fibromyalgia and ten age- and gender-matched, healthy controls each attended two laboratory sessions. Each participant received naltrexone (50mg at one session, and placebo at the other session, in a randomized and double-blind fashion. Participants were tested for changes in sensitivity to heat, cold, and mechanical pain. Additionally, we collected measures of mood and opioid withdrawal symptoms during the laboratory sessions and at home the night following each session. At baseline, the fibromyalgia group exhibited more somatic complaints, greater sensory sensitivity, more opioid withdrawal somatic symptoms, and lower mechanical and cold pain-tolerance than did the healthy control group. Neither group experienced changes in pain sensitivity due to naltrexone administration. Naltrexone did not differentially affect self-reported withdrawal symptoms, or mood, in the fibromyalgia and control groups. Consistent with prior research, there was no evidence found for abnormal endogenous opioid activity in women with fibromyalgia.

  5. Essential role of endogenous calcitonin gene-related peptide in pain-associated plasticity in the central amygdala.

    Science.gov (United States)

    Shinohara, Kei; Watabe, Ayako M; Nagase, Masashi; Okutsu, Yuya; Takahashi, Yukari; Kurihara, Hiroki; Kato, Fusao

    2017-09-01

    The role of the neuropeptide calcitonin gene-related peptide (CGRP) is well established in nociceptive behaviors. CGRP is highly expressed in the projection pathway from the parabrachial nucleus to the laterocapsular region of the central amygdala (CeC), which plays a critical role in relaying nociceptive information. The CeC is a key structure in pain behavior because it integrates and modulates nociceptive information along with other sensory signals. Previous studies have demonstrated that blockade of the amygdalar CGRP-signaling cascade attenuates nociceptive behaviors in pain models, while CGRP application facilitates amygdalar synaptic transmission and induces pain behaviors. Despite these lines of evidence, it remains unclear whether endogenous CGRP is involved in the development of nociceptive behaviors accompanied with amygdalar plasticity in a peripheral inflammation model in vivo. To directly address this, we utilized a previously generated CGRP knockout (KO) mouse to longitudinally study formalin-induced plasticity and nociceptive behavior. We found that synaptic potentiation in the right PB-CeC pathway that was observed in wild-type mice was drastically attenuated in the CGRP KO mice 6 h post-inflammation, when acute nociceptive behavior was no longer observed. Furthermore, the bilateral tactile allodynia 6 h post-inflammation was significantly decreased in the CGRP KO mice. In contrast, the acute nociceptive behavior immediately after the formalin injection was reduced only at 20-25 min post-injection in the CGRP KO mice. These results suggest that endogenous CGRP contributes to peripheral inflammation-induced synaptic plasticity in the amygdala, and this plasticity may underlie the exaggerated nociception-emotion linkage in pain chronification. © 2017 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. A novel paradigm to evaluate conditioned pain modulation in fibromyalgia

    Directory of Open Access Journals (Sweden)

    Schoen CJ

    2016-09-01

    Full Text Available Cynthia J Schoen,1,* Jacob N Ablin,2,* Eric Ichesco,1 Rupal J Bhavsar,3 Laura Kochlefl,1 Richard E Harris,1 Daniel J Clauw,1 Richard H Gracely,4 Steven E Harte1 1Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan, Ann Arbor, MI, USA; 2Institute of Rheumatology, Tel Aviv Suorasky Medical Center, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; 3Department of Neurology, University of Pennsylvania, Philadelphia, PA, 4Department of Endodontics, University of North Carolina – Chapel Hill, Chapel Hill, NC, USA *These authors contributed equally to this work Introduction: Application of noxious stimulation to one body area reduces pain sensitivity in a remote body area through activation of an endogenous pain-inhibitory network, a behavioral phenomenon referred to as conditioned pain modulation (CPM. The efficiency of CPM is predictive of a variety of health outcomes, while impaired CPM has been associated with various chronic pain conditions. Current methods used to assess CPM vary widely, and interest in CPM method development remains strong. Here, we evaluated a novel method for assessing CPM in healthy controls and fibromyalgia (FM patients using thumb pressure as both a test and conditioning stimulus.Methods: Sixteen female FM patients and 14 matched healthy controls underwent CPM testing with thumbnail pressure as the test stimulus, and either cold water or noxious pressure as the conditioning stimulus. CPM magnitude was evaluated as the difference in pain rating of the test stimulus applied before and during the conditioning stimulus.Results: In healthy controls, application of either pressure or cold water conditioning stimulation induced CPM as evidenced by a significant reduction in test stimulus pain rating during conditioning (P=0.007 and P=0.021, respectively. In contrast, in FM patients, neither conditioning stimulus induced a significant CPM effect P-values >0

  7. Sex differences and hormonal modulation of deep tissue pain

    Science.gov (United States)

    Traub, Richard J.; Ji, Yaping

    2013-01-01

    Women disproportionately suffer from many deep tissue pain conditions. Experimental studies show that women have lower pain thresholds, higher pain ratings and less tolerance to a range of painful stimuli. Most clinical and epidemiological reports suggest female gonadal hormones modulate pain for some, but not all, conditions. Similarly, animal studies support greater nociceptive sensitivity in females in many deep tissue pain models. Gonadal hormones modulate responses in primary afferents, dorsal horn neurons and supraspinal sites, but the direction of modulation is variable. This review will examine sex differences in deep tissue pain in humans and animals focusing on the role of gonadal hormones (mainly estradiol) as an underlying component of the modulation of pain sensitivity. PMID:23872333

  8. The role of cardiovascular activity in fibromyalgia and conditioned pain modulation.

    Science.gov (United States)

    Chalaye, Philippe; Lafrenaye, Sylvie; Goffaux, Philippe; Marchand, Serge

    2014-06-01

    Fibromyalgia (FM) is a chronic widespread pain condition of unknown origin. Reduced endogenous pain inhibition could be related to high pain sensitivity in FM. Associations between conditioned pain modulation (CPM) and cardiovascular responses to pain have been observed in healthy subjects (HS). Because reduced cardiovascular reactivity to various stressors has been reported in FM patients, we investigated relationships between CPM and cardiovascular response to the cold pressor test (CPT) in 22 FM patients and 25 HS. CPM was evaluated by comparing pain intensity produced by a 120-second heat test stimulus (HTS) before and after a CPT (2minutes, 12°C). The CPT, used to activate CPM, produced greater pain intensity in FM patients. Patients with FM had higher heart rates than HS at baseline and during CPT. Higher heart rate was related with higher pain intensity during the CPT. Blood pressure increments during CPT were weaker in the FM group. CPM was less effective in FM patients than in HS. Importantly, systolic blood pressure responses during CPT were positively related to CPM effectiveness, suggesting that reduced blood pressure response during the conditioning stimulus could be involved in CPM dysfunction in the FM group. Higher heart rate could be implicated in the greater sensitivity to cold pain in FM. Patients with FM have reduced blood pressure response to a painful CPT. Reduced cardiovascular reactivity to pain could have important involvement in diminished endogenous pain inhibition efficacy and FM pathophysiology. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  9. Hyperspectral imaging of endogenous fluorescent metabolic molecules to identify pain states in central nervous system tissue

    Science.gov (United States)

    Staikopoulos, Vasiliki; Gosnell, Martin E.; Anwer, Ayad G.; Mustafa, Sanam; Hutchinson, Mark R.; Goldys, Ewa M.

    2016-12-01

    Fluorescence-based bio-imaging methods have been extensively used to identify molecular changes occurring in biological samples in various pathological adaptations. Auto-fluorescence generated by endogenous fluorescent molecules within these samples can interfere with signal to background noise making positive antibody based fluorescent staining difficult to resolve. Hyperspectral imaging uses spectral and spatial imaging information for target detection and classification, and can be used to resolve changes in endogenous fluorescent molecules such as flavins, bound and free NADH and retinoids that are involved in cell metabolism. Hyperspectral auto-fluorescence imaging of spinal cord slices was used in this study to detect metabolic differences within pain processing regions of non-pain versus sciatic chronic constriction injury (CCI) animals, an established animal model of peripheral neuropathy. By using an endogenous source of contrast, subtle metabolic variations were detected between tissue samples, making it possible to distinguish between animals from non-injured and injured groups. Tissue maps of native fluorophores, flavins, bound and free NADH and retinoids unveiled subtle metabolic signatures and helped uncover significant tissue regions with compromised mitochondrial function. Taken together, our results demonstrate that hyperspectral imaging provides a new non-invasive method to investigate central changes of peripheral neuropathic injury and other neurodegenerative disease models, and paves the way for novel cellular characterisation in health, disease and during treatment, with proper account of intrinsic cellular heterogeneity.

  10. Age-dependent decline of endogenous pain control: exploring the effect of expectation and depression.

    Directory of Open Access Journals (Sweden)

    Wiebke Grashorn

    Full Text Available Although chronic pain affects all age ranges, it is particularly common in the elderly. One potential explanation for the high prevalence of chronic pain in the older population is impaired functioning of the descending pain inhibitory system which can be studied in humans using conditioned pain modulation (CPM paradigms. In this study we investigated (i the influence of age on CPM and (ii the role of expectations, depression and gender as potential modulating variables of an age-related change in CPM. 64 healthy volunteers of three different age groups (young = 20-40 years, middle-aged = 41-60 years, old = 61-80 years were studied using a classical CPM paradigm that combined moderate heat pain stimuli to the right forearm as test stimuli (TS and immersion of the contralateral foot into ice water as the conditioning stimulus (CS. The CPM response showed an age-dependent decline with strong CPM responses in young adults but no significant CPM responses in middle-aged and older adults. These age-related changes in CPM responses could not be explained by expectations of pain relief or depression. Furthermore, changes in CPM responses did not differ between men and women. Our results strongly support the notion of a genuine deterioration of descending pain inhibitory mechanisms with age.

  11. Effect of hypnotic pain modulation on brain activity in patients with temporomandibular disorder pain

    DEFF Research Database (Denmark)

    Abrahamsen, Randi; Dietz, Martin; Lodahl, Sanne

    2010-01-01

    Hypnosis modulates pain perception but the associated brain mechanisms in chronic pain conditions are poorly understood. Brain activity evoked by painful repetitive pin-prick stimulation of the left mental nerve region was investigated with use of fMRI in 19 patients with painful temporomandibular...

  12. Observing back pain provoking lifting actions modulates corticomotor excitability of the observer's primary motor cortex.

    Science.gov (United States)

    Lehner, Rea; Meesen, Raf; Wenderoth, Nicole

    2017-07-01

    Observing another person experiencing exogenously inflicted pain (e.g. by a sharp object penetrating a finger) modulates the excitability of the observer' primary motor cortex (M1). By contrast, far less is known about the response to endogenously evoked pain such as sudden back pain provoked by lifting a heavy object. Here, participants (n=26) observed the lifting of a heavy object. During this action the actor (1) flexed and extended the legs (LEG), (2) flexed and extended the back (BACK) or (3) flexed and extended the back which caused visible pain (BACKPAIN). Corticomotor excitability was measured by applying a single transcranial magnetic stimulation pulse to the M1 representation of the muscle erector spinae and participants scored their perception of the actor's pain on the numeric pain rating scale (NPRS). The participants scored vicarious pain as highest during the BACKPAIN condition and lowest during the LEG condition. MEP size was significantly lower for the LEG than the BACK and BACKPAIN condition. Although we found no statistical difference in the motor-evoked potential (MEP) size between the conditions BACK and BACKPAIN, there was a significant correlation between the difference in NPRS scores between the conditions BACKPAIN and BACK and the difference in MEP size between these conditions. Participants who believed the vicarious pain to be much stronger in the BACKPAIN than in the BACK condition also exhibited higher MEPs for the BACKPAIN than the BACK condition. Our results indicate that observing how others lift heavy objects facilitates motor representations of back muscles in the observer. Modulation occurs in a movement-specific manner and is additionally modulated by the extent to which the participants perceived the actor's pain. Our findings suggest that movement observation might be a promising paradigm to study the brain's response to back pain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Emotional modulation of pain and spinal nociception in fibromyalgia

    Science.gov (United States)

    Rhudy, Jamie L.; DelVentura, Jennifer L.; Terry, Ellen L.; Bartley, Emily J.; Olech, Ewa; Palit, Shreela; Kerr, Kara L.

    2013-01-01

    Fibromyalgia (FM) is characterized by widespread pain, as well as affective disturbance (e.g., depression). Given that emotional processes are known to modulate pain, a disruption of emotion and emotional modulation of pain and nociception may contribute to FM. The present study used a well-validated affective picture-viewing paradigm to study emotional processing and emotional modulation of pain and spinal nociception. Participants were 18 individuals with FM, 18 individuals with rheumatoid arthritis (RA), and 19 healthy pain-free controls (HC). Mutilation, neutral, and erotic pictures were presented in four blocks; two blocks assessed only physiological-emotional reactions (i.e., pleasure/arousal ratings, corrugator EMG, startle modulation, skin conductance) in the absence of pain and two blocks assessed emotional reactivity and emotional modulation of pain and the nociceptive flexion reflex (NFR, a physiological measure of spinal nociception) evoked by suprathreshold electric stimulations over the sural nerve. In general, mutilation pictures elicited displeasure, corrugator activity, subjective arousal, and sympathetic activation, whereas erotic pictures elicited pleasure, subjective arousal, and sympathetic activation. However, FM was associated with deficits in appetitive activation (e.g., reduced pleasure/arousal to erotica). Moreover, emotional modulation of pain was observed in HC and RA, but not FM, even though all three groups evidenced modulation of NFR. Additionally, NFR thresholds were not lower in the FM group, indicating a lack of spinal sensitization. Together, these results suggest that FM is associated with a disruption of supraspinal processes associated with positive affect and emotional modulation of pain, but not brain-to-spinal cord circuitry that modulates spinal nociceptive processes. PMID:23622762

  14. Discovery of endogenous opioid systems: what it has meant for the clinician's understanding of pain and its treatment.

    Science.gov (United States)

    Ballantyne, Jane C; Sullivan, Mark D

    2017-12-01

    Before the discovery of the endogenous opioid system in the 1970s, opioids were understood only through the lens of opioid drug effects. Opium produced sleep, pain relief, and addiction. Once a variety of opioids had been extracted from opium, and still others synthesized chemically, it became clear that there must be endogenous receptors to explain differential drug effects. So, the search was on to identify the receptors, and subsequently their endogenous ligands. Even then, the consequential ways in which the endogenous opioid system influences the way we respond to the environment and survive took time to unravel. Today's understanding extends far beyond simply accepting pain relief and addiction as separate processes, to the realization that the endogenous opioid system achieves constant adjustments between punishment (pain) and reward in communicating areas of the brain previously thought to subserve separate functions. The system also plays a crucial role in socialization. Taken together, these 2 lines of research have led to new insights into why the endogenous opioid system is so important in terms of evolution, individual survival and day-to-day function, and how important it is to consider opioid medications within the context of these critical natural functions.

  15. Endogenous 24S-hydroxycholesterol modulates NMDAR-mediated function in hippocampal slices.

    Science.gov (United States)

    Sun, Min-Yu; Izumi, Yukitoshi; Benz, Ann; Zorumski, Charles F; Mennerick, Steven

    2016-03-01

    N-methyl-D-aspartate receptors (NMDARs), a major subtype of glutamate receptors mediating excitatory transmission throughout the central nervous system (CNS), play critical roles in governing brain function and cognition. Because NMDAR dysfunction contributes to the etiology of neurological and psychiatric disorders including stroke and schizophrenia, NMDAR modulators are potential drug candidates. Our group recently demonstrated that the major brain cholesterol metabolite, 24S-hydroxycholesterol (24S-HC), positively modulates NMDARs when exogenously administered. Here, we studied whether endogenous 24S-HC regulates NMDAR activity in hippocampal slices. In CYP46A1(-/-) (knockout; KO) slices where endogenous 24S-HC is greatly reduced, NMDAR tone, measured as NMDAR-to-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) excitatory postsynaptic current (EPSC) ratio, was reduced. This difference translated into more NMDAR-driven spiking in wild-type (WT) slices compared with KO slices. Application of SGE-301, a 24S-HC analog, had comparable potentiating effects on NMDAR EPSCs in both WT and KO slices, suggesting that endogenous 24S-HC does not saturate its NMDAR modulatory site in ex vivo slices. KO slices did not differ from WT slices in either spontaneous neurotransmission or in neuronal intrinsic excitability, and exhibited LTP indistinguishable from WT slices. However, KO slices exhibited higher resistance to persistent NMDAR-dependent depression of synaptic transmission induced by oxygen-glucose deprivation (OGD), an effect restored by SGE-301. Together, our results suggest that loss of positive NMDAR tone does not elicit compensatory changes in excitability or transmission, but it protects transmission against NMDAR-mediated dysfunction. We expect that manipulating this endogenous NMDAR modulator may offer new treatment strategies for neuropsychiatric dysfunction. Copyright © 2016 the American Physiological Society.

  16. Short-term cortical plasticity induced by conditioning pain modulation

    DEFF Research Database (Denmark)

    Egsgaard, Line Lindhardt; Buchgreitz, Line; Wang, Li

    2012-01-01

    To investigate the effects of homotopic and heterotopic conditioning pain modulation (CPM) on short-term cortical plasticity. Glutamate (tonic pain) or isotonic saline (sham) was injected in the upper trapezius (homotopic) and in the thenar (heterotopic) muscles. Intramuscular electrical...... stimulation was applied to the trapezius at pain threshold intensities, and somatosensory evoked potentials were recorded with 128 channel EEG. Pain ratings were obtained during glutamate and sham pain injection. Short-term cortical plasticity to electrical stimulation was investigated before, during......300 z coordinate (P = 0.001) was found between glutamate versus sham pain (P = 0.009). This generator was located in the cingulate. A positive correlation at P300 between pain ratings to glutamate injection and the x coordinate during tonic pain (P = 0.016) was found for heterotopic CPM. Heterotopic...

  17. Hormones in pain modulation and their clinical implications for pain control: a critical review.

    Science.gov (United States)

    Chen, Xueyin; Zhang, Jinyuan; Wang, Xiangrui

    2016-07-01

    Recently, more and more studies have found that pain generation, transmission and modulation are under hormonal regulation. Indeed, hormonal dysregulation is a common component of chronic pain syndromes. Studies have attempted to determine whether the relationship between the pain and its perception and hormones is a causative relationship and how these processes interrelate. This review summarizes and analyzes the current experimental data and provides an overview of the studies addressing these questions. The relationship between pain perception and endocrine effects suggests that hormones can be used as important biomarkers of chronic pain syndromes and/or be developed into therapeutic agents in the fight against pain.

  18. Contextual modulation of pain sensitivity utilising virtual environments.

    Science.gov (United States)

    Smith, Ashley; Carlow, Klancy; Biddulph, Tara; Murray, Brooke; Paton, Melissa; Harvie, Daniel S

    2017-05-01

    Investigating psychological mechanisms that modulate pain, such as those that might be accessed by manipulation of context, is of great interest to researchers seeking to better understand and treat pain. The aim of this study was to better understand the interaction between pain sensitivity, and contexts with inherent emotional and social salience - by exploiting modern immersive virtual reality (VR) technology. A within-subjects, randomised, double-blinded, repeated measures (RM) design was used. In total, 25 healthy participants were exposed to neutral, pleasant, threatening, socially positive and socially negative contexts, using an Oculus Rift DK2. Pressure pain thresholds (PPTs) were recorded in each context, as well as prior to and following the procedure. We also investigated whether trait anxiety and pain catastrophisation interacted with the relationship between the different contexts and pain. Pressure pain sensitivity was not modulated by context ( p  = 0.48). Anxiety and pain catastrophisation were not significantly associated with PPTs, nor did they interact with the relationship between context and PPTs. Contrary to our hypothesis, socially and emotionally salient contexts did not influence pain thresholds. In light of other research, we suggest that pain outcomes might only be tenable to manipulation by contextual cues if they specifically manipulate the meaning of the pain-eliciting stimulus, rather than manipulate psychological state generally - as per the current study. Future research might exploit immersive VR technology to better explore the link between noxious stimuli and contexts that directly alter its threat value.

  19. Endogenous Testosterone and Exogenous Oxytocin Modulate Attentional Processing of Infant Faces.

    Science.gov (United States)

    Holtfrerich, Sarah K C; Schwarz, Katharina A; Sprenger, Christian; Reimers, Luise; Diekhof, Esther K

    2016-01-01

    Evidence indicates that hormones modulate the intensity of maternal care. Oxytocin is known for its positive influence on maternal behavior and its important role for childbirth. In contrast, testosterone promotes egocentric choices and reduces empathy. Further, testosterone decreases during parenthood which could be an adaptation to increased parental investment. The present study investigated the interaction between testosterone and oxytocin in attentional control and their influence on attention to baby schema in women. Higher endogenous testosterone was expected to decrease selective attention to child portraits in a face-in-the-crowd-paradigm, while oxytocin was expected to counteract this effect. As predicted, women with higher salivary testosterone were slower in orienting attention to infant targets in the context of adult distractors. Interestingly, reaction times to infant and adult stimuli decreased after oxytocin administration, but only in women with high endogenous testosterone. These results suggest that oxytocin may counteract the adverse effects of testosterone on a central aspect of social behavior and maternal caretaking.

  20. Influence of Dopaminergic Medication on Conditioned Pain Modulation in Parkinson's Disease Patients.

    Directory of Open Access Journals (Sweden)

    Wiebke Grashorn

    Full Text Available Pain is highly prevalent in patients with Parkinson's disease (PD, but little is known about the underlying pathophysiological mechanisms. The susceptibility to pain is known to depend on ascending and descending pathways. Because parts of the descending pain inhibitory system involve dopaminergic pathways, dysregulations in dopaminergic transmission might contribute to altered pain processing in PD. Deficits in endogenous pain inhibition can be assessed using conditioned pain modulation (CPM paradigms.Applying such a paradigm, we investigated i whether CPM responses differ between PD patients and healthy controls, ii whether they are influenced by dopaminergic medication and iii whether there are effects of disease-specific factors. 25 patients with idiopathic PD and 30 healthy age- and gender-matched controls underwent an established CPM paradigm combining heat pain test stimuli at the forearm and the cold pressor task on the contralateral foot as the conditioning stimulus. PD patients were tested under dopaminergic medication and after at least 12 hours of medication withdrawal.No significant differences between CPM responses of PD patients and healthy controls or between PD patients "on" and "off" medication were found. These findings suggest (i that CPM is insensitive to dopaminergic modulations and (ii that PD is not related to general deficits in descending pain inhibition beyond the known age-related decline. However, at a trend level, we found differences between PD subtypes (akinetic-rigid, tremor-dominant, mixed with the strongest impairment of pain inhibition in the akinetic-rigid subtype.There were no significant differences between CPM responses of patients compared to healthy controls or between patients "on" and "off" medication. Differences between PD subtypes at a trend level point towards different pathophysiological mechanisms underlying the three PD subtypes which warrant further investigation and potentially differential

  1. Turning down the thermostat: Modulating the endocannabinoid system in ocular inflammation and pain

    Directory of Open Access Journals (Sweden)

    J. Thomas Toguri

    2016-09-01

    Full Text Available The endocannabinoid system (ECS has emerged as an important regulator of both physiological and pathological processes. Notably, this endogenous system plays a key role in the modulation of pain and inflammation in a number of tissues. The components of the ECS, including endocannabinoids, their cognate enzymes and cannabinoid receptors, are localized in the eye, and evidence indicates that ECS modulation plays a role in ocular disease states. Of these diseases, ocular inflammation presents a significant medical problem, given that current clinical treatments can be ineffective or are associated with intolerable side-effects. Furthermore, a prominent comorbidity of ocular inflammation is pain, including neuropathic pain, for which therapeutic options remain limited. Recent evidence supports the use of drugs targeting the ECS for the treatment of ocular inflammation and pain in animal models; however, the potential for therapeutic use of cannabinoid drugs in the eye has not been thoroughly investigated at this time. This review will highlight evidence from experimental studies identifying components of the ocular ECS and discuss the functional role of the ECS during different ocular inflammatory disease states, including uveitis and corneal keratitis. Candidate ECS targeted therapies will be discussed, drawing on experimental results obtained from both ocular and non-ocular tissue(s, together with their potential application for the treatment of ocular inflammation and pain.

  2. Attention to pain! A neurocognitive perspective on attentional modulation of pain in neuroimaging studies.

    Science.gov (United States)

    Torta, D M; Legrain, V; Mouraux, A; Valentini, E

    2017-04-01

    Several studies have used neuroimaging techniques to investigate brain correlates of the attentional modulation of pain. Although these studies have advanced the knowledge in the field, important confounding factors such as imprecise theoretical definitions of attention, incomplete operationalization of the construct under exam, and limitations of techniques relying on measuring regional changes in cerebral blood flow have hampered the potential relevance of the conclusions. Here, we first provide an overview of the major theories of attention and of attention in the study of pain to bridge theory and experimental results. We conclude that load and motivational/affective theories are particularly relevant to study the attentional modulation of pain and should be carefully integrated in functional neuroimaging studies. Then, we summarize previous findings and discuss the possible neural correlates of the attentional modulation of pain. We discuss whether classical functional neuroimaging techniques are suitable to measure the effect of a fluctuating process like attention, and in which circumstances functional neuroimaging can be reliably used to measure the attentional modulation of pain. Finally, we argue that the analysis of brain networks and spontaneous oscillations may be a crucial future development in the study of attentional modulation of pain, and why the interplay between attention and pain, as examined so far, may rely on neural mechanisms shared with other sensory modalities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Ecological aspects of pain in sensory modulation disorder.

    Science.gov (United States)

    Bar-Shalita, T; Deutsch, L; Honigman, L; Weissman-Fogel, I

    2015-01-01

    Sensory Modulation Disorder (SMD) interferes with the daily life participation of otherwise healthy individuals and is characterized by over-, under- or seeking responsiveness to naturally occurring sensory stimuli. Previous laboratory findings indicate pain hyper-sensitivity in SMD individuals suggesting CNS alteration in pain processing and modulation. However, laboratory studies lack ecological validity, and warrant clinical completion in order to elicit a sound understanding of the phenomenon studied. Thus, this study explored the association between sensory modulation and pain in a daily life context in a general population sample. Daily life context of pain and sensations were measured in 250 adults (aged 23-40 years; 49.6% males) using 4 self-report questionnaires: Pain Sensitivity Questionnaire (PSQ) and Pain Catastrophizing Scale (PCS) to evaluate the sensory and cognitive aspects of pain; the Sensory Responsiveness Questionnaire (SRQ) to appraise SMD; and the Short Form - 36 Health Survey, version 2 (SF36) to assess health related Quality of Life (QoL). Thirty two individuals (12.8%) were found with over-responsiveness type of SMD, forming the SOR-SMD group. While no group differences (SOR-SMD vs. Non-SMD) were found, low-to-moderate total sample correlations were demonstrated between the SRQ-Aversive sub-scale and i) PSQ total (r=0.31, psensory aspect of pain but weakly associated with the cognitive aspect. This indicates that SMD co-occurs with daily pain sensitivity, thus reducing QoL, but less with the cognitive-catastrophizing manifestation of pain perception. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Reward Circuitry Plasticity in Pain Perception and Modulation

    Directory of Open Access Journals (Sweden)

    Marcos F. DosSantos

    2017-11-01

    Full Text Available Although pain is a widely known phenomenon and an important clinical symptom that occurs in numerous diseases, its mechanisms are still barely understood. Owing to the scarce information concerning its pathophysiology, particularly what is involved in the transition from an acute state to a chronic condition, pain treatment is frequently unsatisfactory, therefore contributing to the amplification of the chronic pain burden. In fact, pain is an extremely complex experience that demands the recruitment of an intricate set of central nervous system components. This includes cortical and subcortical areas involved in interpretation of the general characteristics of noxious stimuli. It also comprises neural circuits that process the motivational-affective dimension of pain. Hence, the reward circuitry represents a vital element for pain experience and modulation. This review article focuses on the interpretation of the extensive data available connecting the major components of the reward circuitry to pain suffering, including the nucleus accumbens, ventral tegmental area, and the medial prefrontal cortex; with especial attention dedicated to the evaluation of neuroplastic changes affecting these structures found in chronic pain syndromes, such as migraine, trigeminal neuropathic pain, chronic back pain, and fibromyalgia.

  5. Modulation of sweet taste sensitivities by endogenous leptin and endocannabinoids in mice.

    Science.gov (United States)

    Niki, Mayu; Jyotaki, Masafumi; Yoshida, Ryusuke; Yasumatsu, Keiko; Shigemura, Noriatsu; DiPatrizio, Nicholas V; Piomelli, Daniele; Ninomiya, Yuzo

    2015-06-01

    Potential roles of endogenous leptin and endocannabinoids in sweet taste were examined by using pharmacological antagonists and mouse models including leptin receptor deficient (db/db) and diet-induced obese (DIO) mice. Chorda tympani (CT) nerve responses of lean mice to sweet compounds were increased after administration of leptin antagonist (LA) but not affected by administration of cannabinoid receptor antagonist (AM251). db/db mice showed clear suppression of CT responses to sweet compounds after AM251, increased endocannabinoid levels in the taste organ, and enhanced expression of a biosynthesizing enzyme of endocannabinoids in taste cells. The effect of LA was gradually decreased and that of AM251 was increased during the course of obesity in DIO mice. These findings suggest that circulating leptin, but not local endocannabinoids, is a dominant modulator for sweet taste in lean mice and endocannabinoids become more effective modulators of sweet taste under conditions of deficient leptin signalling. Leptin is an anorexigenic mediator that reduces food intake by acting on hypothalamic receptor Ob-Rb. In contrast, endocannabinoids are orexigenic mediators that act via cannabinoid CB1 receptors in hypothalamus, limbic forebrain, and brainstem. In the peripheral taste system, leptin administration selectively inhibits behavioural, taste nerve and taste cell responses to sweet compounds. Opposing the action of leptin, endocannabinoids enhance sweet taste responses. However, potential roles of endogenous leptin and endocannabinoids in sweet taste remain unclear. Here, we used pharmacological antagonists (Ob-Rb: L39A/D40A/F41A (LA), CB1 : AM251) and examined the effects of their blocking activation of endogenous leptin and endocannabinoid signalling on taste responses in lean control, leptin receptor deficient db/db, and diet-induced obese (DIO) mice. Lean mice exhibited significant increases in chorda tympani (CT) nerve responses to sweet compounds after LA

  6. Orienting Attention Modulates Pain Perception: An ERP Study

    Science.gov (United States)

    Chan, Sam C. C.; Chan, Chetwyn C. H.; Kwan, Anne S. K.; Ting, Kin-hung; Chui, Tak-yi

    2012-01-01

    Introduction Research has shown that people with chronic pain have difficulty directing their attention away from pain. A mental strategy that incorporates focused attention and distraction has been found to modulate the perception of pain intensity. That strategy involves placing attention on the nociceptive stimulus felt and shifting attention to a self-generated sub-nociceptive image and rehearsing it. Event-related potential was used to study the possible processes associated with the focus-then-orient strategy. Methods Eighteen pain-free participants received different levels of 50-ms nociceptive stimulations elicited by electric shocks at the right lateral malleolus (ankle). In perception trials, participants maintained the perceived nociceptive stimulus in working memory for 3,000 ms. In imagery trials, participants mentally generated and maintained the corresponding sub-nociceptive image they had learned previously. After both types of trials, participants evaluated the pain intensity of the incoming stimulus by recalling the feeling of the nociceptive stimulation at the beginning of the trial. Results Shifting attention from the incoming nociceptive to a self-generated sub-nociceptive image elicited central P2 and centro-parietal P3 waves, which were found to correlate with proportional scores on the Stroop Test. They were followed by a frontal N400 and a parietal P600, denoting generation of sub-nociceptive images in working memory. The voltages elicited in these potentials correlated moderately with attenuation of the pain ratings of the recalled nociceptive stimulations. Conclusions Focus-and-orient attention across nociceptive and sub-nociceptive images appears to be related to response inhibition. Mental rehearsal of the sub-nociceptive images was found to modulate the perception of the nociceptive sensation felt prior to the imagery. Such modulation seems to be mediated by generating and maintaining sub-nociceptive images in working memory. Future

  7. Orienting attention modulates pain perception: an ERP study.

    Directory of Open Access Journals (Sweden)

    Sam C C Chan

    Full Text Available INTRODUCTION: Research has shown that people with chronic pain have difficulty directing their attention away from pain. A mental strategy that incorporates focused attention and distraction has been found to modulate the perception of pain intensity. That strategy involves placing attention on the nociceptive stimulus felt and shifting attention to a self-generated sub-nociceptive image and rehearsing it. Event-related potential was used to study the possible processes associated with the focus-then-orient strategy. METHODS: Eighteen pain-free participants received different levels of 50-ms nociceptive stimulations elicited by electric shocks at the right lateral malleolus (ankle. In perception trials, participants maintained the perceived nociceptive stimulus in working memory for 3,000 ms. In imagery trials, participants mentally generated and maintained the corresponding sub-nociceptive image they had learned previously. After both types of trials, participants evaluated the pain intensity of the incoming stimulus by recalling the feeling of the nociceptive stimulation at the beginning of the trial. RESULTS: Shifting attention from the incoming nociceptive to a self-generated sub-nociceptive image elicited central P2 and centro-parietal P3 waves, which were found to correlate with proportional scores on the Stroop Test. They were followed by a frontal N400 and a parietal P600, denoting generation of sub-nociceptive images in working memory. The voltages elicited in these potentials correlated moderately with attenuation of the pain ratings of the recalled nociceptive stimulations. CONCLUSIONS: Focus-and-orient attention across nociceptive and sub-nociceptive images appears to be related to response inhibition. Mental rehearsal of the sub-nociceptive images was found to modulate the perception of the nociceptive sensation felt prior to the imagery. Such modulation seems to be mediated by generating and maintaining sub-nociceptive images in

  8. Higher cortical modulation of pain perception in the human brain: Psychological determinant

    OpenAIRE

    Chen, Andrew Cn

    2009-01-01

    Pain perception and its genesis in the human brain have been reviewed recently. In the current article, the reports on pain modulation in the human brain were reviewed from higher cortical regulation, i.e. top-down effect, particularly studied in psychological determinants. Pain modulation can be examined by gene therapy, physical modulation, pharmacological modulation, psychological modulation, and pathophysiological modulation. In psychological modulation, this article examined (a) willed d...

  9. Pain by Association? Experimental Modulation of Human Pain Thresholds Using Classical Conditioning.

    Science.gov (United States)

    Madden, Victoria J; Bellan, Valeria; Russek, Leslie N; Camfferman, Danny; Vlaeyen, Johan W S; Moseley, G Lorimer

    2016-10-01

    A classical conditioning framework is often used for clinical reasoning about pain that persists after tissue healing. However, experimental studies demonstrating classically conditioned pain in humans are lacking. The current study tested whether non-nociceptive somatosensory stimuli can come to modulate pain thresholds after being paired with painful nociceptive stimuli in healthy humans. We used a differential simultaneous conditioning paradigm in which one nonpainful vibrotactile conditioned stimulus (CS(+)) was simultaneously paired with an unconditioned painful laser stimulus, and another vibrotactile stimulus (CS(-)) was paired with a nonpainful laser stimulus. After acquisition, at-pain-threshold laser stimuli were delivered simultaneously with a CS(+) or CS(-) vibrotactile stimulus. The primary outcome was the percentage of at-threshold laser stimuli that were reported as painful. The results were as expected: after conditioning, at-threshold laser trials paired with the CS(+) were reported as painful more often, as more intense, and as more unpleasant than those paired with the CS(-). This study provides new evidence that pain thresholds can be modulated via classical conditioning, even when the stimulus used to test the threshold cannot be anticipated. As such, it lays a critical foundation for further investigations of classical conditioning as a possible driver of persistent pain. This study provides new evidence that human pain thresholds can be influenced by non-nociceptive somatosensory stimuli, via a classical conditioning effect. As such, it lays a critical foundation for further investigations of classical conditioning as a possible driver of persistent pain. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  10. Endogenous salicylic acid is required for promoting cadmium tolerance of Arabidopsis by modulating glutathione metabolisms

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Bin, E-mail: ndgb@163.com [Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Geological Research Center For Agricultural Applications, China Geological Survey, Hangzhou (China); Liu, Chen; Li, Hua [Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Geological Research Center For Agricultural Applications, China Geological Survey, Hangzhou (China); Yi, Keke [Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou (China); Ding, Nengfei; Li, Ningyu; Lin, Yicheng [Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Geological Research Center For Agricultural Applications, China Geological Survey, Hangzhou (China); Fu, Qinglin, E-mail: fuql161@yahoo.com.cn [Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Geological Research Center For Agricultural Applications, China Geological Survey, Hangzhou (China)

    2016-10-05

    Highlights: • The role of endogenous SA in mediating Cd tolerance was explored using sid2 mutants. • Cd stress induces SA accumulation in a SID2 dependent way. • Depletion of SA causes negative effects on Cd tolerance. • Endogenous SA is required for promoting Cd tolerance by modulating GSH metabolism. • Possible mode of SA signaling through GR/GSH pathway under Cd toxicity was discussed. - Abstract: A few studies with NahG transgenic lines of Arabidopsis show that depletion of SA enhances cadmium (Cd) tolerance. However, it remains some uncertainties that the defence signaling may be a result of catechol accumulation in NahG transgenic lines but not SA deficiency. Here, we conducted a set of hydroponic assays with another SA-deficient mutant sid2 to examine the endogenous roles of SA in Cd tolerance, especially focusing on the glutathione (GSH) cycling. Our results showed that reduced SA resulted in negative effects on Cd tolerance, including decreased Fe uptake and chlorophyll concentration, aggravation of oxidative damage and growth inhibition. Cd exposure significantly increased SA concentration in wild-type leaves, but did not affect it in sid2 mutants. Depletion of SA did not disturb the Cd uptake in either roots or shoots. The reduced Cd tolerance in sid2 mutants is due to the lowered GSH status, which is associated with the decreased expression of serine acetyltransferase along with a decline in contents of non-protein thiols, phytochelatins, and the lowered transcription and activities of glutathione reductase1 (GR1) which reduced GSH regeneration. Finally, the possible mode of SA signaling through the GR/GSH pathway during Cd exposure is discussed.

  11. Endogenous ciliary neurotrophic factor modulates anxiety and depressive-like behavior.

    Science.gov (United States)

    Peruga, Isabella; Hartwig, Silvia; Merkler, Doron; Thöne, Jan; Hovemann, Bernhard; Juckel, Georg; Gold, Ralf; Linker, Ralf A

    2012-04-15

    On a molecular level, depression is characterized by an altered monoaminergic neurotransmission as well as a modulation of cytokines and other mediators in the central nervous system. In particular, neurotrophic factors may influence affective behavior including depression and anxiety. Ciliary neurotrophic factor (CNTF) plays an important role in the regulation of neuronal development, neuroprotection and may also influence cognitive processes. Here we investigate the affective behavior in mice deficient for CNTF (CNTF -/- mice) at young age of 10-20 weeks. CNTF -/- mice displayed an increased anxiety-like behavior with a 30% reduction of the time spent in the bright compartment of the light/dark box as well as a significantly increased startle response. In the learned helplessness paradigm, CNTF -/- mice are more prone to depressive-like behavior. In the hippocampus of 20 weeks old, but not 10 weeks old, CNTF -/- mice, these changes correlated with a loss of parvalbumin immunoreactive GABAergic interneurons and a reduction of serotonin levels as well as 5-HT receptor 1A expression. Modulation of monoaminergic neurotransmitter levels via chronic application of the antidepressants amitriptyline and citalopram did not exert beneficial effects. These data imply that endogenous CNTF plays a pivotal role for the structural maintenance of hippocampal functions and thus has an important impact on the modulation of affective behavior in rodent models of anxiety and depression. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Endogenous cytokinin overproduction modulates ROS homeostasis and decreases salt stress resistance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yanping eWang

    2015-11-01

    Full Text Available Cytokinins in plants are crucial for numerous biological processes, including seed germination, cell division and differentiation, floral initiation and adaptation to abiotic stresses. The salt stress can promote reactive oxygen species (ROS production in plants which are highly toxic and ultimately results in oxidative stress. However, the correlation between endogenous cytokinin production and ROS homeostasis in responding to salt stress is poorly understood. In this study, we analyzed the correlation of overexpressing the cytokinin biosynthetic gene AtIPT8 (adenosine phosphate-isopentenyl transferase 8 and the response of salt stress in Arabidopsis. Overproduction of cytokinins, which was resulted by the inducible overexpression of AtIPT8, significantly inhibited the primary root growth and true leaf emergence, especially under the conditions of exogenous salt, glucose and mannitol treatments. Upon cytokinin overproduction, the salt stress resistance was declined, and resulted in less survival rates and chlorophyll content. Interestingly, ROS production was obviously increased with the salt treatment, accompanied by endogenously overproduced cytokinins. The activities of CAT and SOD, which are responsible for scavenging ROS, were also affected. Transcription profiling revealed that the differential expressions of ROS-producing and scavenging related genes, the photosynthesis-related genes and stress responsive genes were existed in transgenic plants of overproducing cytokinins. Our results suggested that broken in the homeostasis of cytokinins in plant cells could modulate the salt stress responses through a ROS-mediated regulation in Arabidopsis.

  13. Endogenous acetylcholine modulates impulsive action via alpha4beta2 nicotinic acetylcholine receptors in rats.

    Science.gov (United States)

    Tsutsui-Kimura, Iku; Ohmura, Yu; Izumi, Takeshi; Yamaguchi, Taku; Yoshida, Takayuki; Yoshioka, Mitsuhiro

    2010-09-01

    Nicotine has been well established as an impulsive action-inducing agent, but it remains unknown whether endogenous acetylcholine affects impulsive action via nicotinic acetylcholine receptors. In the present study, the 3-choice serial reaction time task (3-CSRTT), a simple and valid assessment of impulsive action, was employed. Male Wistar/ST rats were trained to detect and respond to 1-s flashes of light presented in one of three holes until stable performance was achieved. Following training on the 3-CSRTT, rats received intracerebroventricular injections of the preferential alpha4beta2 nicotinic acetylcholine receptor antagonist dihydro-beta-erythroidine (DHbetaE; 0, 3, 10, and 30 microg) or the selective alpha7 nicotinic acetylcholine receptor antagonist methyllycaconitine (MLA; 0, 3, 10, and 30 microg) 5 min before test sessions. Injection of 10 microg of DHbetaE significantly suppressed premature responses, an index of impulsive-like action, without changing other behavioral parameters. On the other hand, MLA infusions failed to affect impulsive-like action at any dose. These results suggest that the central alpha4beta2 nicotinic acetylcholine receptors that enable a provoking effect of endogenous acetylcholine play a critical role in impulsive action. Substances that modulate nicotinic acetylcholine receptors, especially the alpha4beta2 subtype, may be beneficial for the treatment of psychiatric disorders characterized by lack of inhibitory control. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  14. Endogenous Testosterone and Exogenous Oxytocin Modulate Attentional Processing of Infant Faces.

    Directory of Open Access Journals (Sweden)

    Sarah K C Holtfrerich

    Full Text Available Evidence indicates that hormones modulate the intensity of maternal care. Oxytocin is known for its positive influence on maternal behavior and its important role for childbirth. In contrast, testosterone promotes egocentric choices and reduces empathy. Further, testosterone decreases during parenthood which could be an adaptation to increased parental investment. The present study investigated the interaction between testosterone and oxytocin in attentional control and their influence on attention to baby schema in women. Higher endogenous testosterone was expected to decrease selective attention to child portraits in a face-in-the-crowd-paradigm, while oxytocin was expected to counteract this effect. As predicted, women with higher salivary testosterone were slower in orienting attention to infant targets in the context of adult distractors. Interestingly, reaction times to infant and adult stimuli decreased after oxytocin administration, but only in women with high endogenous testosterone. These results suggest that oxytocin may counteract the adverse effects of testosterone on a central aspect of social behavior and maternal caretaking.

  15. Sex differences in the relationship between maternal fear of pain and children's conditioned pain modulation

    Directory of Open Access Journals (Sweden)

    Evans S

    2013-03-01

    Full Text Available Subhadra Evans, Laura C Seidman, Kirsten C Lung, Lonnie K Zeltzer, Jennie C TsaoPediatric Pain Program, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USABackground: Parental behaviors, emotions, and cognitions are known to influence children's response to pain. However, prior work has not tested the association between maternal psychological factors and children's responses to a conditioned pain modulation (CPM task. CPM refers to the reduction in perceived pain intensity for a test stimulus following application of a conditioning stimulus to a remote area of the body, and is thought to reflect the descending inhibition of nociceptive signals.Methods: The present study examined sex differences in the association between maternal anxiety about pain and children's CPM responses in 133 healthy children aged 8–17 years. Maternal pain anxiety was assessed using the Pain Anxiety Symptoms Scale-20. In addition to the magnitude of CPM, children's anticipatory anxiety and pain-related fear of the CPM task were measured.Results: Sequential multiple linear regression revealed that even after controlling for child age and general maternal psychological distress, greater maternal pain anxiety was significantly related to greater CPM anticipatory anxiety and pain-related fear in girls, and to less CPM (ie, less pain inhibition in boys.Conclusion: The findings indicate sex-specific relationships between maternal pain anxiety and children's responses to a CPM task over and above that accounted for by the age of the child and the mother's general psychological distress.Keywords: diffuse noxious inhibitory controls, pediatric pain, mother-child relationship, cold pressor, pressure pain, laboratory pain

  16. Conditioned Pain Modulation and Pressure Pain Sensitivity in the Adult Danish General Population

    DEFF Research Database (Denmark)

    Skovbjerg, Sine; Jørgensen, Torben; Arendt-Nielsen, Lars

    2017-01-01

    Increased pressure pain sensitivity and impaired descending pain control have been associated with chronic pain, but knowledge on the variability in the adult general population is lacking. Pressure pain thresholds (PPTs) and descending pain control assessed using conditioned pain modulation (CPM......) were recorded in a randomly selected sample (n = 2,199, 53% female) of the Danish adult general population aged 18 to 70 years. PPTs were recorded over the tibialis anterior muscle and the upper trapezius muscle. CPM was defined as the difference between PPT assessments before and during conditioning...... was associated with lower PPTs (P CPM potency was lower in female compared with male participants (P ≤ .003), whereas no association with age was found. Higher level of education (P ≤ .05), premature withdrawal from the cold pressor test...

  17. Endogenous purines modulate K+ -evoked ACh secretion at the mouse neuromuscular junction.

    Science.gov (United States)

    Guarracino, Juan F; Cinalli, Alejandro R; Veggetti, Mariela I; Losavio, Adriana S

    2018-06-01

    At the mouse neuromuscular junction, adenosine triphosphate (ATP) is co-released with the neurotransmitter acetylcholine (ACh), and once in the synaptic cleft, it is hydrolyzed to adenosine. Both ATP/adenosine diphosphate (ADP) and adenosine modulate ACh secretion by activating presynaptic P2Y 13 and A 1 , A 2A , and A 3 receptors, respectively. To elucidate the action of endogenous purines on K + -dependent ACh release, we studied the effect of purinergic receptor antagonists on miniature end-plate potential (MEPP) frequency in phrenic diaphragm preparations. At 10 mM K + , the P2Y 13 antagonist N-[2-(methylthio)ethyl]-2-[3,3,3-trifluoropropyl]thio-5'-adenylic acid, monoanhydride with (dichloromethylene)bis[phosphonic acid], tetrasodium salt (AR-C69931MX) increased asynchronous ACh secretion while the A 1 , A 3 , and A 2A antagonists 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), (3-Ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1, 4-(±)-dihydropyridine-3,5-, dicarboxylate (MRS-1191), and 2-(2-Furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine (SCH-58261) did not modify neurosecretion. The inhibition of equilibrative adenosine transporters by S-(p-nitrobenzyl)-6-thioinosine provoked a reduction of 10 mM K + -evoked ACh release, suggesting that the adenosine generated from ATP is being removed from the synaptic space by the transporters. At 15 and 20 mM K + , endogenous ATP/ADP and adenosine bind to inhibitory P2Y 13 and A 1 and A 3 receptors since AR-C69931MX, DPCPX, and MRS-1191 increased MEPP frequency. Similar results were obtained when the generation of adenosine was prevented by using the ecto-5'-nucleotidase inhibitor α,β-methyleneadenosine 5'-diphosphate sodium salt. SCH-58261 only reduced neurosecretion at 20 mM K + , suggesting that more adenosine is needed to activate excitatory A 2A receptors. At high K + concentration, the equilibrative transporters appear to be saturated allowing the accumulation of

  18. Dissociating nociceptive modulation by the duration of pain anticipation from unpredictability in the timing of pain.

    Science.gov (United States)

    Clark, Jennifer A; Brown, Christopher A; Jones, Anthony K P; El-Deredy, Wael

    2008-12-01

    Waiting longer to receive pain increases its perceived unpleasantness by inducing 'dread'. However, it is not clear how unpredictability in the timing of the impending pain stimulus interacts with dread and whether the two factors show differential effects on the neural generators of the pain-evoked response. We manipulated the duration of anticipation of laser-induced pain independently of unpredictability of stimulus delivery timing, to observe the relative effect on P2 amplitudes of the laser-evoked potential (LEP) response and its estimated sources. Subjects (n=12) reported increased pain ratings after longer pain anticipation, irrespective of unpredictability in the timing of stimulus delivery. By contrast, unpredictability in stimulus timing increased the amplitude of the P2 irrespective of anticipation duration. The modulation of P2 amplitude by unpredictability was localized to midcingulate cortex (MCC) and ipsilateral secondary somatosensory (S2) areas. Greater anticipation duration increased activity in a hippocampal-insula-prefrontal network but not in MCC areas. Distinct neural networks contribute to the P2 and are differentially affected by pain anticipation duration and unpredictability in stimulus timing. ERP research into dread should be careful to appreciate the neural generators of pain-evoked responses and their potential modulation by unpredictability.

  19. The Role of Parabrachial GABAA Receptors in Pain Modulation in Rats

    Directory of Open Access Journals (Sweden)

    kazem javanmardi

    2013-09-01

    Full Text Available Background & Objective: The parabrachial nucleus is a critical link in the transmission of short latency nociceptive information to midbrain neurons. GABA(A receptors have bidirectional roles in controlling nociception and are abundant in the parabrachial region . We examined the effects of bilateral intra parabrachial microinjection of different doses of the GABA(A receptor agonist, muscimol, and the GABA(A receptor antagonist, bicuculline, on pain modulation using a tail-flick test . Materials & Methods: Rats were anaesthetized with sodium pentobarbital (55 mg/kg and then special cannulas were inserted stereotaxically into the parabrachial nucleus. After 1 week of recovery, the effects of microinjection of muscimol, (62.5, 125,250 ng/side or bicuculline, (50,100,200 ng/side into the parabrachial on tail flick latencies were assessed. Tail-flick latencies were measured for 60 minutes every 5 min after drug microinjection. Results: Microinjection of muscimol (62.5, 125 ng/side and bicuculline (50,100,200 ng/side into the parabrachial did not have any statistically significant effect on tail-flick latency. Administration of, muscimol, (250 ng/side produced thermal hyperalgesia (P<0.05. Conclusion: The results of the present study showed that in this model of pain gaba a receptors in the paracrachial region are not Endogenously activated but these receptors in this region have a potential to affect pain modulation.

  20. Social modulation of and by pain in humans and rodents.

    Science.gov (United States)

    Mogil, Jeffrey S

    2015-04-01

    The social domain of the biopsychosocial model of pain has been greatly understudied compared with the biological and psychological domains but holds great promise for furthering our understanding, and better treatment, of pain. Recent years have seen an explosion of interest in social neuroscience and have revealed the ability of pain stimuli to alter social interactions. These experiments suggest that rodents are capable of producing simplified versions of any number of social phenomena involving empathy, previously thought to be the sole province of human beings. This review describes the state of science in both humans and nonhuman animals, and notes intriguing parallels in observations from both species. Indeed, my laboratory is starting to demonstrate perfectly translatable findings regarding social modulation of pain in rodents and humans.

  1. 5-HT modulation of pain perception in humans.

    Science.gov (United States)

    Martin, Sarah L; Power, Andrea; Boyle, Yvonne; Anderson, Ian M; Silverdale, Monty A; Jones, Anthony K P

    2017-10-01

    Although there is clear evidence for the serotonergic regulation of descending control of pain in animals, little direct evidence exists in humans. The majority of our knowledge comes from the use of serotonin (5-HT)-modulating antidepressants as analgesics in the clinical management of chronic pain. Here, we have used an acute tryptophan depletion (ATD) to manipulate 5-HT function and examine its effects of ATD on heat pain threshold and tolerance, attentional manipulation of nociceptive processing and mood in human volunteers. Fifteen healthy participants received both ATD and balanced amino acid (BAL) drinks on two separate sessions in a double-blind cross-over design. Pain threshold and tolerance were determined 4 h post-drink via a heat thermode. Additional attention, distraction and temperature discrimination paradigms were completed using a laser-induced heat pain stimulus. Mood was assessed prior and throughout each session. Our investigation reported that the ATD lowered plasma TRP levels by 65.05 ± 7.29% and significantly reduced pain threshold and tolerance in response to the heat thermode. There was a direct correlation between the reduction in total plasma TRP levels and reduction in thermode temperature. In contrast, ATD showed no effect on laser-induced pain nor significant impact of the distraction-induced analgesia on pain perception but did reduce performance of the painful temperature discrimination task. Importantly, all findings were independent of any effects of ATD on mood. As far as we are aware, it is the first demonstration of 5-HT effects on pain perception which are not confounded by mood changes.

  2. Adenylic dinucleotides produced by CD38 are negative endogenous modulators of platelet aggregation.

    Science.gov (United States)

    Magnone, Mirko; Basile, Giovanna; Bruzzese, Debora; Guida, Lucrezia; Signorello, Maria Grazia; Chothi, Madhu Parakkottil; Bruzzone, Santina; Millo, Enrico; Qi, Ai-Dong; Nicholas, Robert A; Kassack, Matthias U; Leoncini, Giuliana; Zocchi, Elena

    2008-09-05

    Diadenosine 5',5'''-P1,P2-diphosphate (Ap2A) is one of the adenylic dinucleotides stored in platelet granules. Along with proaggregant ADP, it is released upon platelet activation and is known to stimulate myocyte proliferation. We have previously demonstrated synthesis of Ap2A and of two isomers thereof, called P18 and P24, from their high pressure liquid chromatography retention time, by the ADP-ribosyl cyclase CD38 in mammalian cells. Here we show that Ap2A and its isomers are present in resting human platelets and are released during thrombin-induced platelet activation. The three adenylic dinucleotides were identified by high pressure liquid chromatography through a comparison with the retention times and the absorption spectra of purified standards. Ap2A, P18, and P24 had no direct effect on platelet aggregation, but they inhibited platelet aggregation induced by physiological agonists (thrombin, ADP, and collagen), with mean IC50 values ranging between 5 and 15 microm. Moreover, the three dinucleotides did not modify the intracellular calcium concentration in resting platelets, whereas they significantly reduced the thrombin-induced intracellular calcium increase. Through binding to the purinergic receptor P2Y11, exogenously applied Ap2A, P18, and P24 increased the intracellular cAMP concentration and stimulated platelet production of nitric oxide, the most important endogenous antiaggregant. The presence of Ap2A, P18, and P24 in resting platelets and their release during thrombin-induced platelet activation at concentrations equal to or higher than the respective IC50 value on platelet aggregation suggest a role of these dinucleotides as endogenous negative modulators of aggregation.

  3. Endogenous adaptation to low oxygen modulates T-cell regulatory pathways in EAE.

    Science.gov (United States)

    Esen, Nilufer; Katyshev, Vladimir; Serkin, Zakhar; Katysheva, Svetlana; Dore-Duffy, Paula

    2016-01-19

    In the brain, chronic inflammatory activity may lead to compromised delivery of oxygen and glucose suggesting that therapeutic approaches aimed at restoring metabolic balance may be useful. In vivo exposure to chronic mild normobaric hypoxia (10 % oxygen) leads to a number of endogenous adaptations that includes vascular remodeling (angioplasticity). Angioplasticity promotes tissue survival. We have previously shown that induction of adaptive angioplasticity modulates the disease pattern in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE). In the present study, we define mechanisms by which adaptation to low oxygen functionally ameliorates the signs and symptoms of EAE and for the first time show that tissue hypoxia may fundamentally alter neurodegenerative disease. C57BL/6 mice were immunized with MOG, and some of them were kept in the hypoxia chambers (day 0) and exposed to 10 % oxygen for 3 weeks, while the others were kept at normoxic environment. Sham-immunized controls were included in both hypoxic and normoxic groups. Animals were sacrificed at pre-clinical and peak disease periods for tissue collection and analysis. Exposure to mild hypoxia decreased histological evidence of inflammation. Decreased numbers of cluster of differentiation (CD)4+ T cells were found in the hypoxic spinal cords associated with a delayed Th17-specific cytokine response. Hypoxia-induced changes did not alter the sensitization of peripheral T cells to the MOG peptide. Exposure to mild hypoxia induced significant increases in anti-inflammatory IL-10 levels and an increase in the number of spinal cord CD25+FoxP3+ T-regulatory cells. Acclimatization to mild hypoxia incites a number of endogenous adaptations that induces an anti-inflammatory milieu. Further understanding of these mechanisms system may pinpoint possible new therapeutic targets to treat neurodegenerative disease.

  4. Neurotransmitters behind pain relief with transcranial magnetic stimulation - positron emission tomography evidence for release of endogenous opioids.

    Science.gov (United States)

    Lamusuo, S; Hirvonen, J; Lindholm, P; Martikainen, I K; Hagelberg, N; Parkkola, R; Taiminen, T; Hietala, J; Helin, S; Virtanen, A; Pertovaara, A; Jääskeläinen, S K

    2017-10-01

    Repetitive transcranial magnetic stimulation (rTMS) at M1/S1 cortex has been shown to alleviate neuropathic pain. To investigate the possible neurobiological correlates of cortical neurostimulation for the pain relief. We studied the effects of M1/S1 rTMS on nociception, brain dopamine D2 and μ-opioid receptors using a randomized, sham-controlled, double-blinded crossover study design and 3D-positron emission tomography (PET). Ten healthy subjects underwent active and sham rTMS treatments to the right M1/S1 cortex with E-field navigated device. Dopamine D2 and μ-receptor availabilities were assessed with PET radiotracers [ 11 C]raclopride and [ 11 C]carfentanil after each rTMS treatment. Thermal quantitative sensory testing (QST), contact heat evoked potential (CHEP) and blink reflex (BR) recordings were performed between the PET scans. μ-Opioid receptor availability was lower after active than sham rTMS (P ≤ 0.0001) suggested release of endogenous opioids in the right ventral striatum, medial orbitofrontal, prefrontal and anterior cingulate cortices, and left insula, superior temporal gyrus, dorsolateral prefrontal cortex and precentral gyrus. There were no differences in striatal dopamine D2 receptor availability between active and sham rTMS, consistent with lack of long-lasting measurable dopamine release. Active rTMS potentiated the dopamine-regulated habituation of the BR compared to sham (P = 0.02). Thermal QST and CHEP remained unchanged after active rTMS. rTMS given to M1/S1 activates the endogenous opioid system in a wide brain network associated with processing of pain and other salient stimuli. Direct enhancement of top-down opioid-mediated inhibition may partly explain the clinical analgesic effects of rTMS. Neurobiological correlates of rTMS for the pain relief are unclear. rTMS on M1/S1 with 11 C-carfentanyl-PET activates endogenous opioids. Thermal and heat pain thresholds remain unchanged. rTMS induces top-down opioid-mediated inhibition

  5. Catastrophizing Interferes with Cognitive Modulation of Pain in Women with Fibromyalgia.

    Science.gov (United States)

    Ellingson, Laura D; Stegner, Aaron J; Schwabacher, Isaac J; Lindheimer, Jacob B; Cook, Dane B

    2018-02-21

    Pain modulation is a critical function of the nociceptive system that includes the ability to engage descending pain control systems to maintain a functional balance between facilitation and inhibition of incoming sensory stimuli. Dysfunctional pain modulation is associated with increased risk for chronic pain and is characteristic of fibromyalgia (FM). Catastrophizing is also common in FM. However, its influence on pain modulation is poorly understood. To determine the role of catastrophizing on central nervous system processing during pain modulation in FM via examining brain responses and pain sensitivity during an attention-distraction paradigm. Twenty FM patients and 18 healthy controls (CO) underwent functional magnetic resonance imaging while receiving pain stimuli, administered alone and during distracting cognitive tasks. Pain ratings were assessed after each stimulus. Catastrophizing was assessed with the Pain Catastrophizing Scale (PCS). The ability to modulate pain during distraction varied among FM patients and was associated with catastrophizing. This was demonstrated by significant positive relationships between PCS scores and pain ratings (P modulation did not differ between FM and CO (P > 0.05). FM patients with higher levels of catastrophizing were less able to distract themselves from pain, indicative of catastrophizing-related impairments in pain modulation. These results suggest that the tendency to catastrophize interacts with attention-resource allocation and may represent a mechanism of chronic pain exacerbation and/or maintenance. Reducing catastrophizing may improve FM symptoms via improving central nervous system regulation of pain.

  6. The role of the pituitary region in the endogenous pain control mechanism

    NARCIS (Netherlands)

    A. Trouwborst (Adrianus)

    1982-01-01

    textabstractIt is often difficult to come to grips with the phenomenon of pain . It is still impossible with any degree of elegance, to combine together under one single theory all our knowledge of pain prevention , and all the factors that play a role in pain perception. Indeed , the very

  7. Excitatory Modulation of the preBötzinger Complex Inspiratory Rhythm Generating Network by Endogenous Hydrogen Sulfide

    Directory of Open Access Journals (Sweden)

    Glauber S. F. da Silva

    2017-06-01

    Full Text Available Hydrogen Sulfide (H2S is one of three gasotransmitters that modulate excitability in the CNS. Global application of H2S donors or inhibitors of H2S synthesis to the respiratory network has suggested that inspiratory rhythm is modulated by exogenous and endogenous H2S. However, effects have been variable, which may reflect that the RTN/pFRG (retrotrapezoid nucleus, parafacial respiratory group and the preBötzinger Complex (preBötC, critical for inspiratory rhythm generation are differentially modulated by exogenous H2S. Importantly, site-specific modulation of respiratory nuclei by H2S means that targeted, rather than global, manipulation of respiratory nuclei is required to understand the role of H2S signaling in respiratory control. Thus, our aim was to test whether endogenous H2S, which is produced by cystathionine-β-synthase (CBS in the CNS, acts specifically within the preBötC to modulate inspiratory activity under basal (in vitro/in vivo and hypoxic conditions (in vivo. Inhibition of endogenous H2S production by bath application of the CBS inhibitor, aminooxyacetic acid (AOAA, 0.1–1.0 mM to rhythmic brainstem spinal cord (BSSC and medullary slice preparations from newborn rats, or local application of AOAA into the preBötC (slices only caused a dose-dependent decrease in burst frequency. Unilateral injection of AOAA into the preBötC of anesthetized, paralyzed adult rats decreased basal inspiratory burst frequency, amplitude and ventilatory output. AOAA in vivo did not affect the initial hypoxia-induced (10% O2, 5 min increase in ventilatory output, but enhanced the secondary hypoxic respiratory depression. These data suggest that the preBötC inspiratory network receives tonic excitatory modulation from the CBS-H2S system, and that endogenous H2S attenuates the secondary hypoxic respiratory depression.

  8. Conditioned pain modulation and situational pain catastrophizing as preoperative predictors of pain following chest wall surgery: a prospective observational cohort study.

    Directory of Open Access Journals (Sweden)

    Kasper Grosen

    Full Text Available Variability in patients' postoperative pain experience and response to treatment challenges effective pain management. Variability in pain reflects individual differences in inhibitory pain modulation and psychological sensitivity, which in turn may be clinically relevant for the disposition to acquire pain. The aim of this study was to investigate the effects of conditioned pain modulation and situational pain catastrophizing on postoperative pain and pain persistency.Preoperatively, 42 healthy males undergoing funnel chest surgery completed the Spielberger's State-Trait Anxiety Inventory and Beck's Depression Inventory before undergoing a sequential conditioned pain modulation paradigm. Subsequently, the Pain Catastrophizing Scale was introduced and patients were instructed to reference the conditioning pain while answering. Ratings of movement-evoked pain and consumption of morphine equivalents were obtained during postoperative days 2-5. Pain was reevaluated at six months postoperatively.Patients reporting persistent pain at six months follow-up (n = 15 were not significantly different from pain-free patients (n = 16 concerning preoperative conditioned pain modulation response (Z = 1.0, P = 0.3 or level of catastrophizing (Z = 0.4, P = 1.0. In the acute postoperative phase, situational pain catastrophizing predicted movement-evoked pain, independently of anxiety and depression (β = 1.0, P = 0.007 whereas conditioned pain modulation predicted morphine consumption (β = -0.005, P = 0.001.Preoperative conditioned pain modulation and situational pain catastrophizing were not associated with the development of persistent postoperative pain following funnel chest repair. Secondary outcome analyses indicated that conditioned pain modulation predicted morphine consumption and situational pain catastrophizing predicted movement-evoked pain intensity in the acute postoperative phase. These findings may have

  9. The impact of pain-related fear on neural pathways of pain modulation in chronic low back pain

    Directory of Open Access Journals (Sweden)

    Michael Lukas Meier

    2017-06-01

    Discussion:. Our findings might indicate a maladaptive psychobiological interaction in chronic LBP patients characterized by a disrupted amygdala-PAG-FC that is modulated by the degree of pain-related fear. These results shed new light on brain mechanisms underlying psychological factors that may have pronociceptive effects in chronic LBP.

  10. Endogenous angiotensin II modulates nNOS expression in renovascular hypertension

    Directory of Open Access Journals (Sweden)

    T.M.C. Pereira

    2009-07-01

    Full Text Available Nitric oxide (NO influences renal blood flow mainly as a result of neuronal nitric oxide synthase (nNOS. Nevertheless, it is unclear how nNOS expression is modulated by endogenous angiotensin II, an inhibitor of NO function. We tested the hypothesis that the angiotensin II AT1 receptor and oxidative stress mediated by NADPH oxidase contribute to the modulation of renal nNOS expression in two-kidney, one-clip (2K1C hypertensive rats. Experiments were performed on male Wistar rats (150 to 170 g body weight divided into 2K1C (N = 19 and sham-operated (N = 19 groups. nNOS expression in kidneys of 2K1C hypertensive rats (N = 9 was compared by Western blotting to that of 2K1C rats treated with low doses of the AT1 antagonist losartan (10 mg·kg-1·day-1; N = 5 or the superoxide scavenger tempol (0.2 mmol·kg-1·day-1; N = 5, which still remain hypertensive. After 28 days, nNOS expression was significantly increased by 1.7-fold in the clipped kidneys of 2K1C rats and by 3-fold in the non-clipped kidneys of 2K1C rats compared with sham rats, but was normalized by losartan. With tempol treatment, nNOS expression increased 2-fold in the clipped kidneys and 1.4-fold in the non-clipped kidneys compared with sham rats. The changes in nNOS expression were not followed by changes in the enzyme activity, as measured indirectly by the cGMP method. In conclusion, AT1 receptors and oxidative stress seem to be primary stimuli for increased nNOS expression, but this up-regulation does not result in higher enzyme activity.

  11. Transcriptional Modulation of Human Endogenous Retroviruses in Primary CD4+ T Cells Following Vorinostat Treatment

    Directory of Open Access Journals (Sweden)

    Cory H. White

    2018-04-01

    Full Text Available The greatest obstacle to a cure for HIV is the provirus that integrates into the genome of the infected cell and persists despite antiretroviral therapy. A “shock and kill” approach has been proposed as a strategy for an HIV cure whereby drugs and compounds referred to as latency-reversing agents (LRAs are used to “shock” the silent provirus into active replication to permit “killing” by virus-induced pathology or immune recognition. The LRA most utilized to date in clinical trials has been the histone deacetylase (HDAC inhibitor—vorinostat. Potentially, pathological off-target effects of vorinostat may result from the activation of human endogenous retroviruses (HERVs, which share common ancestry with exogenous retroviruses including HIV. To explore the effects of HDAC inhibition on HERV transcription, an unbiased pharmacogenomics approach (total RNA-Seq was used to evaluate HERV expression following the exposure of primary CD4+ T cells to a high dose of vorinostat. Over 2,000 individual HERV elements were found to be significantly modulated by vorinostat, whereby elements belonging to the ERVL family (e.g., LTR16C and LTR33 were predominantly downregulated, in contrast to LTR12 elements of the HERV-9 family, which exhibited the greatest signal, with the upregulation of 140 distinct elements. The modulation of three different LTR12 elements by vorinostat was confirmed by droplet digital PCR along a dose–response curve. The monitoring of LTR12 expression during clinical trials with vorinostat may be indicated to assess the impact of this HERV on the human genome and host immunity.

  12. Oxytocin Modulates Nociception as an Agonist of Pain-Sensing TRPV1

    Directory of Open Access Journals (Sweden)

    Yelena Nersesyan

    2017-11-01

    Full Text Available Oxytocin is a hormone with various actions. Oxytocin-containing parvocellular neurons project to the brainstem and spinal cord. Oxytocin release from these neurons suppresses nociception of inflammatory pain, the molecular mechanism of which remains unclear. Here, we report that the noxious stimulus receptor TRPV1 is an ionotropic oxytocin receptor. Oxytocin elicits TRPV1 activity in native and heterologous expression systems, regardless of the presence of the classical oxytocin receptor. In TRPV1 knockout mice, DRG neurons exhibit reduced oxytocin sensitivity relative to controls, and oxytocin injections significantly attenuate capsaicin-induced nociception in in vivo experiments. Furthermore, oxytocin potentiates TRPV1 in planar lipid bilayers, supporting a direct agonistic action. Molecular modeling and simulation experiments provide insight into oxytocin-TRPV1 interactions, which resemble DkTx. Together, our findings suggest the existence of endogenous regulatory pathways that modulate nociception via direct action of oxytocin on TRPV1, implying its analgesic effect via channel desensitization.

  13. Higher cortical modulation of pain perception in the human brain: Psychological determinant.

    Science.gov (United States)

    Chen, Andrew Cn

    2009-10-01

    Pain perception and its genesis in the human brain have been reviewed recently. In the current article, the reports on pain modulation in the human brain were reviewed from higher cortical regulation, i.e. top-down effect, particularly studied in psychological determinants. Pain modulation can be examined by gene therapy, physical modulation, pharmacological modulation, psychological modulation, and pathophysiological modulation. In psychological modulation, this article examined (a) willed determination, (b) distraction, (c) placebo, (d) hypnosis, (e) meditation, (f) qi-gong, (g) belief, and (h) emotions, respectively, in the brain function for pain modulation. In each, the operational definition, cortical processing, neuroimaging, and pain modulation were systematically deliberated. However, not all studies had featured the brain modulation processing but rather demonstrated potential effects on human pain. In our own studies on the emotional modulation on human pain, we observed that emotions could be induced from music melodies or pictures perception for reduction of tonic human pain, mainly in potentiation of the posterior alpha EEG fields, likely resulted from underneath activities of precuneous in regulation of consciousness, including pain perception. To sum, higher brain functions become the leading edge research in all sciences. How to solve the information bit of thinking and feeling in the brain can be the greatest challenge of human intelligence. Application of higher cortical modulation of human pain and suffering can lead to the progress of social humanity and civilization.

  14. Bacteria activate sensory neurons that modulate pain and inflammation.

    Science.gov (United States)

    Chiu, Isaac M; Heesters, Balthasar A; Ghasemlou, Nader; Von Hehn, Christian A; Zhao, Fan; Tran, Johnathan; Wainger, Brian; Strominger, Amanda; Muralidharan, Sriya; Horswill, Alexander R; Bubeck Wardenburg, Juliane; Hwang, Sun Wook; Carroll, Michael C; Woolf, Clifford J

    2013-09-05

    Nociceptor sensory neurons are specialized to detect potentially damaging stimuli, protecting the organism by initiating the sensation of pain and eliciting defensive behaviours. Bacterial infections produce pain by unknown molecular mechanisms, although they are presumed to be secondary to immune activation. Here we demonstrate that bacteria directly activate nociceptors, and that the immune response mediated through TLR2, MyD88, T cells, B cells, and neutrophils and monocytes is not necessary for Staphylococcus aureus-induced pain in mice. Mechanical and thermal hyperalgesia in mice is correlated with live bacterial load rather than tissue swelling or immune activation. Bacteria induce calcium flux and action potentials in nociceptor neurons, in part via bacterial N-formylated peptides and the pore-forming toxin α-haemolysin, through distinct mechanisms. Specific ablation of Nav1.8-lineage neurons, which include nociceptors, abrogated pain during bacterial infection, but concurrently increased local immune infiltration and lymphadenopathy of the draining lymph node. Thus, bacterial pathogens produce pain by directly activating sensory neurons that modulate inflammation, an unsuspected role for the nervous system in host-pathogen interactions.

  15. The impact of baroreflex function on endogenous pain control: a microneurography study.

    Science.gov (United States)

    Lautenschläger, Gothje; Habig, Kathrin; Best, Christoph; Kaps, Manfred; Elam, Mikael; Birklein, Frank; Krämer, Heidrun H

    2015-12-01

    The interaction between sympathetic vasoconstrictor activity to muscles [muscle sympathetic nerve activity (MSNA), burst frequency (BF) and burst incidence (BI)] and different stress and somatosensory stimuli is still unclear. Eighteen healthy men (median age 28 years) underwent microneurography recordings from the peroneal nerve. MSNA was recorded during heat pain (HP) and cold pain (CP) alone as well as combined with different stress tasks (mental arithmetic, singing, giving a speech). An additional nine healthy men (median age 26 years) underwent the stimulation protocol with an additional control task (thermal pain combined with listening to music) to evaluate possible attentional confounders. MSNA was significantly increased by CP and HP. CP-evoked responses were smaller. The diastolic blood pressure followed the time course of MSNA while heart rate remained unchanged. The mental stress tasks further increased MSNA and were sufficient to reduce pain while the control task had no effect. MSNA activity correlated negatively with pain intensity and positively with analgesia. High blood pressure values were associated with lower pain intensity. Our study indicates an impact of central sympathetic drive on pain and pain control. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. The role of an endogenous amnesic mechanism mediated by brain beta-endorphin in memory modulation.

    Science.gov (United States)

    Izquierdo, I

    1982-07-01

    1. Post-training administration of the opiate receptor antagonist naloxone facilitates the memory consolidation of a wide variety of tasks by rats. 2. Post-training administration of subanalgesic doses of beta-endorphin causes retrograde amnesia. This effect is shared by other opiates and opioids and is competitively antagonized by naloxone. These other opiates and opioids probably act by the release of endogenous beta-endorphin. 3. During various forms of aversive and non-aversive training beta-endorphin (but not Met-enkephalin) is released in the rat brain in amounts compatible with amnestic doses of this substance. 4. A number of treatments that cause naloxone-reversible retrograde amnesia, i.e. high doses of ACTH or adrenaline, low doses of morphine or of opioids, electroconvulsive shock, release massive amounts of beta-endorphin and Met-enkephalin in the rat brain. 5. These findings point to the existence of a physiological amnesic mechanism mediated by beta-endorphin, and perhaps other opioids as well, that normally prevents memory from being as good as it could be, and when operating at an exaggerated level may cause complete amnesia. 6. This mechanism interacts with other systems that influence memory consolidation (central dopaminergic and noradrenergic pathways, ACTH, peripheral adrenaline) and is a powerful modulator of their activity. 7. One possible role of the amnesic mechanism during training is to cause the rapid forgetting of adventitious learning that may interfere with acquisition of the main tasks for which animals are being trained. 8. Either through this action, or by some direct effect, beta-endorphin facilitates retrieval of a variety of behaviors in the rat when given before a test session.

  17. Endogenous opioids released during non-nociceptive environmental stress induce latent pain sensitization Via a NMDA-dependent process.

    Science.gov (United States)

    Le Roy, Chloé; Laboureyras, Emilie; Gavello-Baudy, Stéphanie; Chateauraynaud, Jérémy; Laulin, Jean-Paul; Simonnet, Guy

    2011-10-01

    Although stress induces analgesia, there is evidence that stressful events may exacerbate pain syndromes. Here, we studied the effects of 1 to 3 prestressful events (days 0, 2, and 7), such as non-nociceptive environmental stress, on inflammatory hyperalgesia induced by a carrageenan injection (day 14) in 1 rat hind paw. Changes in nociceptive threshold were evaluated by the paw pressure vocalization test. The higher the number of stress sessions presented to the rats, the greater was the inflammatory hyperalgesia. Blockade of opioid receptors by naltrexone before each stress inhibited stress-induced analgesia and suppressed the exaggerated inflammatory hyperalgesia. Stressed versus nonstressed animals could be discriminated by their response to a fentanyl ultra-low dose (fULD), that produced hyperalgesia or analgesia, respectively. This pharmacological test permitted the prediction of the pain vulnerability level of prestressed rats because fULD analgesic or hyperalgesic indices were positively correlated with inflammatory hyperalgesic indices (r(2) = .84). In prestressed rats, fULD-induced hyperalgesia and the exaggerated inflammatory hyperalgesia were prevented NMDA receptor antagonists. This study provides some preclinical evidence that pain intensity is not only the result of nociceptive input level but is also dependent on the individual history, especially prior life stress events associated with endogenous opioid release. Based on these preclinical data, it would be of clinical interest to evaluate whether prior stressful events may also affect further pain sensation in humans. Moreover, this preclinical model could be a good tool for evaluating new therapeutic strategies for relieving pain hypersensitivity. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.

  18. Endogenous Opioid-Masked Latent Pain Sensitization: Studies from Mouse to Human.

    Directory of Open Access Journals (Sweden)

    Manuel P Pereira

    Full Text Available Following the resolution of a severe inflammatory injury in rodents, administration of mu-opioid receptor inverse agonists leads to reinstatement of pain hypersensitivity. The mechanisms underlying this form of latent pain sensitization (LS likely contribute to the development of chronic pain, but LS has not yet been demonstrated in humans. Using a C57BL/6 mouse model of cutaneous mild heat injury (MHI we demonstrated a dose-dependent reinstatement of pain sensitization, assessed as primary (P < 0.001 and secondary hyperalgesia (P < 0.001 by naloxone (0.3–10 mg/kg, 168 hrs after the induction of MHI. Forward-translating the dose data to a human MHI model (n = 12 we could show that LS does indeed occur after naloxone 2 mg/kg, 168 hrs after a MHI. Our previous unsuccessful efforts to demonstrate unmasking of LS in humans are thus likely explained by an insufficient naloxone dose (0.021 mg/kg. However, while LS was consistently demonstrated in 21/24 mice, LS was only seen in 4/12 subjects. This difference is likely due to selection bias since the C57BL/6 mouse strain exhibits markedly enhanced pain sensitivity in assays of acute thermal nociception. Future exploratory studies in humans should prioritize inclusion of “high-sensitizers” prone to develop LS and use post-surgical models to elucidate markers of vulnerability to chronic postsurgical pain.EudraCT 2012-005663-27.

  19. Endogenous testosterone and cortisol modulate neural responses during induced anger control.

    NARCIS (Netherlands)

    Denson, T.F.; Ronay, R.D.; von Hippel, W.; Schira, M.M.

    2013-01-01

    Research with violent offenders and delinquent adolescents suggests that endogenous testosterone concentrations have the strongest positive correlations with violence among men who have low concentrations of cortisol. The present study tested the hypothesis that testosterone and cortisol would

  20. Ethanol extract of Portulaca oleracea L. protects against hypoxia-induced neuro damage through modulating endogenous erythropoietin expression.

    Science.gov (United States)

    Wanyin, Wang; Liwei, Dong; Lin, Jia; Hailiang, Xin; Changquan, Ling; Min, Li

    2012-04-01

    In addition to its role in erythropoiesis, erythropoietin is also appreciated for its neuroprotective effects, and it has been suggested for treatment of some ischemic-hypoxic neurovascular diseases. The protective effects of endogenous erythropoietin in the brain give rise to the hypothesis that modulating erythropoietin expression might be a better way for treatment of ischemia-hypoxia neurovascular diseases. We have found that ethanol extract of Portulaca oleracea L. (EEPO) could increase erythropoietin expression in hypoxic mouse brain in our previous study. The present study is to investigate whether EEPO exerts its neuroprotective effects against hypoxia injury through regulating endogenous erythropoietin expression. The results demonstrated that EEPO decreased the serum neuron specific enolase level in hypoxia mice and the activity of caspase-3 in neuron, increased the neuron viability and attenuated the pathological damages caused by the hypoxia condition. Importantly, we also found that EEPO stimulated the endogenous erythropoietin expression at both mRNA and protein levels. Using the conditioned medium containing soluble erythropoietin receptor, we found that the neuroprotective effects of EEPO were dependent, at least partly, on erythropoietin expression. Although EEPO did not affect transcription of hypoxia inducible factor-1α (HIF-1α), it did stabilize expression of HIF-1α. It is concluded that EEPO has neuroprotective effects against hypoxia injury, which is at least partly through stimulating endogenous erythropoietin expression by stabilizing HIF-1α. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Reliability of conditioned pain modulation: a systematic review

    Science.gov (United States)

    Kennedy, Donna L.; Kemp, Harriet I.; Ridout, Deborah; Yarnitsky, David; Rice, Andrew S.C.

    2016-01-01

    Abstract A systematic literature review was undertaken to determine if conditioned pain modulation (CPM) is reliable. Longitudinal, English language observational studies of the repeatability of a CPM test paradigm in adult humans were included. Two independent reviewers assessed the risk of bias in 6 domains; study participation; study attrition; prognostic factor measurement; outcome measurement; confounding and analysis using the Quality in Prognosis Studies (QUIPS) critical assessment tool. Intraclass correlation coefficients (ICCs) less than 0.4 were considered to be poor; 0.4 and 0.59 to be fair; 0.6 and 0.75 good and greater than 0.75 excellent. Ten studies were included in the final review. Meta-analysis was not appropriate because of differences between studies. The intersession reliability of the CPM effect was investigated in 8 studies and reported as good (ICC = 0.6-0.75) in 3 studies and excellent (ICC > 0.75) in subgroups in 2 of those 3. The assessment of risk of bias demonstrated that reporting is not comprehensive for the description of sample demographics, recruitment strategy, and study attrition. The absence of blinding, a lack of control for confounding factors, and lack of standardisation in statistical analysis are common. Conditioned pain modulation is a reliable measure; however, the degree of reliability is heavily dependent on stimulation parameters and study methodology and this warrants consideration for investigators. The validation of CPM as a robust prognostic factor in experimental and clinical pain studies may be facilitated by improvements in the reporting of CPM reliability studies. PMID:27559835

  2. What Are the Predictors of Altered Central Pain Modulation in Chronic Musculoskeletal Pain Populations? A Systematic Review.

    Science.gov (United States)

    Clark, Jacqui; Nijs, Jo; Yeowell, Gillian; Goodwin, Peter Charles

    2017-09-01

    Altered central pain modulation is the predominant pain mechanism in a proportion of chronic musculoskeletal pain disorders and is associated with poor outcomes. Although existing studies predict poor outcomes such as persistent pain and disability, to date there is little consensus on what factors specifically predict altered central pain modulation. To review the existing literature on the predictive factors specifically for altered central pain modulation in musculoskeletal pain populations. This is a systematic review in accordance with supplemented PRISMA guidelines. A systematic search was performed by 2 mutually blinded reviewers. Relevant articles were screened by title and abstract from Medline, Embase, PubMed, CINAHL, and Web of Science electronic databases. Alternative sources were also sought to locate missed potential articles. Eligibility included studies published in English, adults aged 18 to 65, musculoskeletal pain, baseline measurements taken at the pre-morbid or acute stage, > 3-month follow-up time after pain onset, and primary outcome measures specific to altered central pain modulation. Studies were excluded where there were concurrent diseases or they were non-predictive studies. Risk of bias was assessed using the quality in prognostic studies (QUIPS) tool. Study design, demographics, musculoskeletal region, inclusion/exclusion criteria, measurement timelines, predictor and primary outcome measures, and results were extracted. Data were synthesized qualitatively and strength of evidence was scored using the grading of recommendations, assessment, development, and evaluations (GRADE) scoring system. Nine eligible articles were located, in various musculoskeletal populations (whiplash, n = 2; widespread pain, n = 5; temporomandibular disorder, n = 2). Moderate evidence was found for 2 predictive factors of altered central pain modulation: 1) high sensory sensitivity (using genetic testing or quantitative sensory tests), and 2) psychological

  3. Serine protease inhibitors suppress pancreatic endogenous proteases and modulate bacterial neutral proteases.

    Science.gov (United States)

    Nduaguibe, Chikodili C; Bentsi-Barnes, Kwamina; Mullen, Yoko; Kandeel, Fouad; Al-Abdullah, Ismail

    2010-01-01

    Pefabloc, Trasylol and Urinary Trypsin Inhibitor (UTI) have been reported to be effective serine protease inhibitors that impair pancreatic endogenous proteases resulting in improved islet yield. Here we evaluated the effect of these inhibitors on endogenous proteases (trypsin, chymotrypsin and elastase), bacterial neutral proteases (thermolysin and neutral protease) and islet isolation digestion samples. Protease activity was measured using a fluorimetric assay and islet function was assessed by dynamic perifusion. Trypsin, chymotrypsin and elastase were significantly inhibited by Pefabloc and UTI. Trasylol showed strong inhibitory effects on trypsin and chymotrypsin but also decreased thermolysin activity. UTI was found to inhibit the activity of endogenous proteases and increase the activity of bacterial neutral proteases. Human islets exposed to Pefabloc had reduced insulin response, unlike Trasylol or UTI, which had no detrimental effect on insulin secretion. Although Trasylol was an effective inhibitor of endogenous proteases, FDA regulatory issues preclude its use in clinical application and thus in the isolation process. UTI has the greatest potential because it impairs endogenous pancreatic proteases and enhances digestion enzymes.

  4. Acupuncture at distant myofascial trigger spots enhances endogenous opioids in rabbits: a possible mechanism for managing myofascial pain.

    Science.gov (United States)

    Hsieh, Yueh-Ling; Hong, Chang-Zern; Liu, Szu-Yu; Chou, Li-Wei; Yang, Chen-Chia

    2016-08-01

    Acupuncture applied at myofascial trigger points (MTrPs) of distant anatomical regions, to reduce pain in a patient's area of primary complaint, is one strategy that is available to manage myofascial pain. However, the endogenous opioid-mediated analgesic mechanism of distant acupuncture associated with pain control is still unclear. This aims of this study were to evaluate the changes in enkephalin and β-endorphin in serum, spinal cord, dorsal root ganglion (DRG) and muscle induced by acupuncture at distant myofascial trigger spots (MTrSs, similar to human MTrPs) in rabbits, to explore its underlying remote analgesic mechanism. Acupuncture at MTrSs of a distant muscle (gastrocnemius) was performed either for one session or five daily sessions in rabbits. The levels of enkephalin and β-endorphin in proximal muscle (biceps femoris), serum, DRGs and spinal cords (L5-S2) were then determined by immunoassay immediately and 5 days after treatment. Immediately after treatment, acupuncture comprising both one dose and five doses significantly enhanced spinal enkephalin expression and serum β-endorphin levels (pacupuncture significantly enhanced the β-endorphin levels in the biceps femoris and DRGs (pacupuncture did not (p>0.05). Furthermore, 5 days after treatment, significantly increased levels of spinal enkephalin and serum β-endorphin persisted in animals that received 5-dose acupuncture (pacupuncture treatment and could be a potential analgesic mechanism underlying MTrP pain management. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  5. Modulation of pain-induced neuromuscular trunk responses by pain expectations: a single group study.

    Science.gov (United States)

    Tétreau, Charles; Dubois, Jean-Daniel; Piché, Mathieu; Descarreaux, Martin

    2012-10-01

    The purpose of this study was to investigate the alteration of pain-induced neuromuscular trunk responses by expectations in healthy volunteers. Twenty-three asymptomatic participants performed series of flexion-extension movements in 3 different experimental conditions: innocuous heat stimulation (control) and noxious heat stimulation associated with expectations of low or high pain intensity. These stimuli were administered by a contact thermode placed over the lumbar region (L4 and L5) to assess the modulation of neuromuscular responses and kinematics during the flexion-extension task. Surface electromyography (EMG) of lumbar erector spinae at L2 and L3 and L4 and L5 as well as lumbopelvic kinematic variables were compared across conditions. Noxious stimulation significantly altered EMG responses but only in full trunk flexion. Interestingly, this alteration was significant only for muscles where noxious stimulation was applied (L4 and L5) and not for the other segment (L2 and L3). Conversely, expectations significantly altered EMG activity at L2 and L3 but not at the segment where noxious stimulation was applied. These results confirm previous findings and indicate that experimental pain can alter neuromuscular responses during a trunk flexion-extension task. Furthermore, this study suggests that expectations can alter some of these alterations. Future studies should determine whether neuromuscular changes induced by expectations may contribute to the transition from acute to chronic low-back pain. Copyright © 2012 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  6. Pain modulation by nitric oxide in the spinal cord.

    Directory of Open Access Journals (Sweden)

    Marco Aurelio M Freire

    2009-09-01

    Full Text Available Nitric oxide (NO is a versatile messenger molecule first associated with endothelial relaxing effects. In the central nervous system (CNS, NO synthesis is primarily triggered by activation of N-methyl-D-aspartate (NMDA receptors and has a Janus face, with both beneficial and harmful properties, depending on concentration and the identity of its synthetic enzyme isoform. There are three isoforms of the NO synthesizing enzyme nitric oxide synthase (NOS: neuronal (nNOS, endothelial (eNOS, and inducible nitric oxide synthase (iNOS, each one involved with specific events in the brain. In CNS, nNOS is involved with modulation of synaptic transmission through long-term potentiation in several regions, including nociceptive circuits in the spinal cord. Here, we review the role played by NO on central pain sensitization.

  7. The green tea modulates large intestinal microbiome and exo/endogenous metabolome altered through chronic UVB-exposure.

    Directory of Open Access Journals (Sweden)

    Eun Sung Jung

    Full Text Available The attenuating effects of green tea supplements (GTS against the ultraviolet (UV radiation induced skin damages are distinguished. However, the concomitant effects of GTS on the large intestinal microbiomes and associated metabolomes are largely unclear. Herein, we performed an integrated microbiome-metabolome analysis to uncover the esoteric links between gut microbiome and exo/endogenous metabolome maneuvered in the large intestine of UVB-exposed mice subjected to dietary GTS. In UVB-exposed mice groups (UVB, class Bacilli and order Bifidobacteriales were observed as discriminant taxa with decreased lysophospholipid levels compared to the unexposed mice groups subjected to normal diet (NOR. Conversely, in GTS fed UVB-exposed mice (U+GTS, the gut-microbiome diversity was greatly enhanced with enrichment in the classes, Clostridia and Erysipelotrichia, as well as genera, Allobaculum and Lachnoclostridium. Additionally, the gut endogenous metabolomes changed with an increase in amino acids, fatty acids, lipids, and bile acids contents coupled with a decrease in nucleobases and carbohydrate levels. The altered metabolomes exhibited high correlations with GTS enriched intestinal microflora. Intriguingly, the various conjugates of green tea catechins viz., sulfated, glucuronided, and methylated ones including their exogenous derivatives were detected from large intestinal contents and liver samples. Hence, we conjecture that the metabolic conversions for the molecular components in GTS strongly influenced the gut micro-environment in UVB-exposed mice groups, ergo modulate their gut-microbiome as well as exo/endogenous metabolomes.

  8. Descending inhibitory pain modulation is impaired in patients with chronic pancreatitis.

    NARCIS (Netherlands)

    Olesen, S.S.; Brock, C.; Krarup, A.L.; Funch-Jensen, P.; Arendt-Nielsen, L.; Wilder-Smith, O.H.G.; Drewes, A.M.

    2010-01-01

    BACKGROUND & AIMS: Pain is a prominent symptom in chronic pancreatitis (CP), but the underlying mechanisms are incompletely understood. We investigated the role of descending pain modulation from supraspinal structures as well as central nervous system sensitization in patients with pain from CP.

  9. Endogenous attention modulates early selective attention in psychopathy: An ERP investigation.

    Science.gov (United States)

    Krusemark, Elizabeth A; Kiehl, Kent A; Newman, Joseph P

    2016-10-01

    Psychopathic individuals are prone to act on urges without adequate consideration of future consequences or the rights of other individuals. One interpretation of this behavior is that it reflects abnormal selective attention (i.e., a failure to process information that is incongruent with their primary focus of attention; Hiatt, Schmitt, & Newman, Neuropsychology, 18, 50-59, 2004). Unfortunately, it is unclear whether this selective attention abnormality reflects top-down endogenous influences, such as the strength or specificity of attention focus (i.e., top-down set) apart from other, more exogenous (bottom-up), effects on attention. To explore this question, we used an early visual event-related potential (N2pc) in combination with a modified visual search task designed to assess the effect of early endogenous (i.e., top-down) attention on the processing of set-congruent information. The task was administered to a sample of 70 incarcerated adult males, who were assigned to high, intermediate, and low psychopathy groups using Hare's Psychopathy Checklist-Revised (Hare, 2003). Based on the assumption that their failure to process set-incongruent information reflects the exaggerated effects of endogenous attention, we predicted that participants with high psychopathy scores would show an exaggerated N2pc response to set-congruent information. The results supported the hypothesis and provide novel electrophysiological evidence that psychopathy is associated with exaggerated endogenous attention effects during early stages of processing. Further research is needed to examine the implications of this finding for the well-established failure of psychopathic individuals to process set-incongruent information and inhibit inappropriate responses.

  10. MicroRNA modulation in complex regional pain syndrome

    Directory of Open Access Journals (Sweden)

    Orlova Irina A

    2011-11-01

    Full Text Available Abstract Background Aberrant expression of small noncoding RNAs called microRNAs (miRNAs is a common feature of several human diseases. The objective of the study was to identify miRNA modulation in patients with complex regional pain syndrome (CRPS a chronic pain condition resulting from dysfunction in the central and/or peripheral nervous systems. Due to a multitude of inciting pathologies, symptoms and treatment conditions, the CRPS patient population is very heterogeneous. Our goal was to identify differentially expressed miRNAs in blood and explore their utility in patient stratification. Methods We profiled miRNAs in whole blood from 41 patients with CRPS and 20 controls using TaqMan low density array cards. Since neurogenic inflammation is known to play a significant role in CRPS we measured inflammatory markers including chemokines, cytokines, and their soluble receptors in blood from the same individuals. Correlation analyses were performed for miRNAs, inflammatory markers and other parameters including disease symptoms, medication, and comorbid conditions. Results Three different groups emerged from miRNA profiling. One group was comprised of 60% of CRPS patients and contained no control subjects. miRNA profiles from the remaining patients were interspersed among control samples in the other two groups. We identified differential expression of 18 miRNAs in CRPS patients. Analysis of inflammatory markers showed that vascular endothelial growth factor (VEGF, interleukin1 receptor antagonist (IL1Ra and monocyte chemotactic protein-1 (MCP1 were significantly elevated in CRPS patients. VEGF and IL1Ra showed significant correlation with the patients reported pain levels. Analysis of the patients who were clustered according to their miRNA profile revealed correlations that were not significant in the total patient population. Correlation analysis of miRNAs detected in blood with additional parameters identified miRNAs associated with

  11. A Brief Mindfulness Meditation Training Increases Pain Threshold and Accelerates Modulation of Response to Tonic Pain in an Experimental Study.

    Science.gov (United States)

    Reiner, Keren; Granot, Michal; Soffer, Eliran; Lipsitz, Joshua Dan

    2016-04-01

    Research shows that mindfulness meditation (MM) affects pain perception; however, studies have yet to measure patterns of change over time. We examined effects of MM on perception of experimental heat pain using multiple psychophysical indices, including pattern of change in response to tonic painful stimuli. We also tested the potential moderating role of baseline mindfulness. Forty participants were randomly assigned to a brief MM training or control group. We assessed: a) heat pain threshold (HPT), b) temperature which induces pain at a fixed, target intensity level, and c) response pattern over time to tonic heat pain. Compared to control group, the MM group showed increased HPT and more rapid attenuation of pain intensity for tonic pain stimuli. Moderation analyses indicated that baseline mindfulness moderated effects of MM on HPT. A brief MM intervention appears to affect perception of experimental pain both by increasing pain threshold and accelerating modulation of response. Findings may help elucidate mechanisms of MM for chronic pain. © 2015 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Deficient modulation of pain by a positive emotional context in fibromyalgia patients.

    Science.gov (United States)

    Kamping, Sandra; Bomba, Isabelle C; Kanske, Philipp; Diesch, Eugen; Flor, Herta

    2013-09-01

    This study aimed to investigate the modulating effects of emotional context on pain perception in 16 patients with fibromyalgia syndrome (FMS) and 16 healthy control (HC) subjects. An infrared laser was used to apply individually adapted painful stimuli to the dorsum of the left hand. The emotional background of the painful stimuli was modulated by concurrent presentations of negative, neutral, and positive picture stimuli selected from the International Affective Picture System. As control conditions, painful stimuli and the pictures were also presented by themselves. During each of the 5 laser-picture trials, subjects received 10 painful stimuli and were asked to rate the average intensity and unpleasantness of the experienced pain. Functional magnetic resonance images were obtained, using a T2(∗) sensitive echo planar sequence. HC subjects showed a linear increase in pain intensity and unpleasantness ratings when painful stimuli were presented during positive, neutral, and negative pictures. In contrast, FMS patients showed a quadratic trend for pain intensity ratings indicating a lack of pain reduction by the positive pictures. In addition, the FMS patients showed less activation in secondary somatosensory cortex, insula, orbitofrontal cortex, and anterior cingulate cortex during the positive picture pain trials. Our results suggest that fibromyalgia patients are less efficient in modulating pain by positive affect and may benefit less from appetitive events than healthy control subjects. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  13. Expectation violation and attention to pain jointly modulate neural gain in somatosensory cortex

    DEFF Research Database (Denmark)

    Fardo, Francesca; Auksztulewicz, Ryszard; Allen, Micah

    2017-01-01

    The neural processing and experience of pain are influenced by both expectations and attention. For example, the amplitude of event-related pain responses is enhanced by both novel and unexpected pain, and by moving the focus of attention towards a painful stimulus. Under predictive coding, this ...... the influence of both expectation violation and attention on cortical processing and pain perception.......The neural processing and experience of pain are influenced by both expectations and attention. For example, the amplitude of event-related pain responses is enhanced by both novel and unexpected pain, and by moving the focus of attention towards a painful stimulus. Under predictive coding......, this congruence can be explained by appeal to a precision-weighting mechanism, which mediates bottom-up and top-down attentional processes by modulating the influence of feedforward and feedback signals throughout the cortical hierarchy. The influence of expectation and attention on pain processing can thus...

  14. Induction and modulation of referred muscle pain in humans

    DEFF Research Database (Denmark)

    Laursen, René Johannes

    are needed. Spinal cord and higher centers are likely structures to study. The data presented in this thesis have made further contributions to understanding the mechanisms of muscle pain and RP that can be helpful in diagnosis, control, and treatment of muscle pain. Moreover, the intramuscular, electrical......Muscle pain is a major factor in many disorders such as injuries, degenerative diseases, and cancer. The mechanisms underlying muscle pain are not fully understood. A particular problem in muscle pain is the relationship between local and referred muscle pain. Experimental pain models are useful...... in basic pain research, because they allow a standardized activation of the nociceptive system and measurements of evoked responses. An electrical muscle pain model was constructed and applied on healthy subjects. The model was found suitable for inducing local (LP) and referred muscle pain (RF...

  15. Opposite Effects of Stress on Pain Modulation Depend on the Magnitude of Individual Stress Response.

    Science.gov (United States)

    Geva, Nirit; Defrin, Ruth

    2018-04-01

    The effect of acute stress on pain threshold and intolerance threshold are reported as producing either hypoalgesia or hyperalgesia. Yet, the contribution of individual stress reactivity in this respect has not been established. The aim was to test 2 pain modulation paradigms under acute stress manipulation, to our knowledge, for the first time, to study whether stress differentially affects pain modulation, and whether the effect is related to individual stress response. Participants were 31 healthy subjects. Conditioned pain modulation (CPM) and pain adaptation were measured before and after inducing an acute stress response using the Montreal Imaging Stress Task. Subjects' stress response was evaluated according to salivary cortisol, autonomic function, and perceived stress and anxiety. The Montreal Imaging Stress Task induced a validated stress response. On a group level, stress induced reduction in CPM magnitude and increase in pain adaptation compared with baseline. These responses correlated with stress reactivity. When the group was subdivided according to stress reactivity, only high stress responders exhibited reduced CPM whereas only low stress responders exhibited increased pain adaptation. The results suggest that acute stress may induce opposite effects on pain modulation, depending on individual stress reactivity magnitude, with an advantage to low stress responders. This study evaluated the effect of acute stress on pain modulation. Pain modulation under stress is affected by individual stress responsiveness; decreased CPM occurs in high stress responders whereas increased pain adaptation occurs in low stress responders. Identification of high stress responders may promote better pain management. Copyright © 2017 The American Pain Society. Published by Elsevier Inc. All rights reserved.

  16. Dysfunctional Pain Modulation in Torture Survivors: The Mediating Effect of PTSD.

    Science.gov (United States)

    Defrin, Ruth; Lahav, Yael; Solomon, Zahava

    2017-01-01

    Trauma survivors, and particularly torture survivors, suffer from high rates of chronic pain and posttraumatic stress disorder (PTSD) for years afterward, along with alterations in the function of the pain system. On the basis of longitudinal data on PTSD symptomatology, we tested whether exposure to torture, PTSD or PTSD trajectories accounted for chronic pain and altered pain perception. Participants were 59 torture survivors and 44 age-matched healthy control subjects. Chronic pain was characterized. Pain threshold, pain tolerance, conditioned pain modulation (CPM), and temporal summation of pain were measured. Three PTSD trajectories were identified among torture survivors; chronic, delayed, and resilient. Lack of CPM and more intense chronic pain was found among the chronic and delayed groups compared with the resilient and healthy control groups. Temporal summation of pain was strongest among the chronic group. PTSD trajectories mediated the relationship between torture and CPM. It appears that the duration and severity of posttraumatic distress, rather than the exposure to trauma, are crucial factors that mediate the association between trauma and chronic pain. Because PTSD and its resultant distress are measurable, their evaluation seems particularly important in the management of pain among trauma survivors. The results may be generalized to other instances in which chronic pain persists after traumatic events. This article presents the mediation effect of PTSD trajectory on pain modulation among trauma survivors suggesting that it is the duration and severity of PTSD/distress, rather than the exposure to trauma per se, that influence the perception and modulation of pain. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  17. Rostral Agranular Insular Cortex Lesion with Motor Cortex Stimulation Enhances Pain Modulation Effect on Neuropathic Pain Model

    Directory of Open Access Journals (Sweden)

    Hyun Ho Jung

    2016-01-01

    Full Text Available It is well known that the insular cortex is involved in the processing of painful input. The aim of this study was to evaluate the pain modulation role of the insular cortex during motor cortex stimulation (MCS. After inducing neuropathic pain (NP rat models by the spared nerve injury method, we made a lesion on the rostral agranular insular cortex (RAIC unilaterally and compared behaviorally determined pain threshold and latency in 2 groups: Group A (NP + MCS; n=7 and Group B (NP + RAIC lesion + MCS; n=7. Also, we simultaneously recorded neuronal activity (NP; n=9 in the thalamus of the ventral posterolateral nucleus and RAIC to evaluate electrophysiological changes from MCS. The pain threshold and tolerance latency increased in Group A with “MCS on” and in Group B with or without “MCS on.” Moreover, its increase in Group B with “MCS on” was more than that of Group B without MCS or of Group A, suggesting that MCS and RAIC lesioning are involved in pain modulation. Compared with the “MCS off” condition, the “MCS on” induced significant threshold changes in an electrophysiological study. Our data suggest that the RAIC has its own pain modulation effect, which is influenced by MCS.

  18. Modulation of vagal tone enhances gastroduodenal motility and reduces somatic pain sensitivity

    DEFF Research Database (Denmark)

    Frøkjaer, J B; Bergmann, S; Brock, C

    2016-01-01

    algometry, conditioned pain modulation using a cold pressor test and a liquid meal ultrasonographic gastroduodenal motility test were performed. KEY RESULTS: Cardiac vagal tone increased during active treatment with t-VNS and DSB compared to sham (p = 0.009). In comparison to sham, thresholds to bone pain...... increased (p = 0.001), frequency of antral contractions increased (p = 0.004) and gastroduodenal motility index increased (p = 0.016) with active treatment. However, no effect on muscle pain thresholds and conditioned pain modulation was seen. CONCLUSIONS & INFERENCES: This experimental study suggests...

  19. Modulation of estrogen receptor α levels by endogenous and exogenous ligands

    Directory of Open Access Journals (Sweden)

    P. La Rosa

    2011-01-01

    Full Text Available ERα is a ligand-activated transcription factor, member of the nuclear receptor superfamily. Regulation of ERα levels is intrinsically required for its transcriptional activity and thus for the modulation of the physiological actions of the cognate hormone 17β-estradiol (E2. Indeed, ERα exogenous ligands that target this molecular circuitry are used as drugs in clinical practice. Interestingly, some natural and synthetic molecules, which human beings are commonly exposed to, interfere with the endocrine system and operate through ERα by selectively modifying its signalling. In addition, these molecules may also modulate ERα cellular content. Here, we report the recent advances in our understanding of how exogenous ERα ligands impact on receptor levels and change the physiological E2-dipendent modulation of specific cellular function.

  20. Beyond weakness: Characterization of pain, sensory profile and conditioned pain modulation in patients with motor neuron disease: A controlled study.

    Science.gov (United States)

    Lopes, L C G; Galhardoni, R; Silva, V; Jorge, F M H; Yeng, L T; Callegaro, D; Chadi, G; Teixeira, M J; Ciampi de Andrade, D

    2018-01-01

    Motor neuron diseases (MND) represent a group of disorders that evolve with inexorable muscle weakness and medical management is based on symptom control. However, deeper characterization of non-motor symptoms in these patients have been rarely reported. This cross-sectional study aimed to describe non-motor symptoms in MND and their impact on quality of life and functional status, with a focus on pain and sensory changes. Eighty patients (31 females, 55.7 ± 12.9 years old) with MND underwent a neurological examination, pain, mood, catastrophizing and psychophysics assessments [quantitative sensory testing (QST) and conditioned pain modulation (CPM)], and were compared to sex- and age-matched healthy controls (HC). Chronic pain was present in 46% of patients (VAS =5.18 ± 2.0). Pain of musculoskeletal origin occurred in 40.5% and was mainly located in the head/neck (51%) and lower back (35%). Neuropathic pain was not present in this sample. Compared to HC, MND patients had a lower cold detection threshold (p catastrophism, and spasticity scores were inversely correlated with CPM (ρ = -0.30, p = 0.026). Pain is frequently reported by patients with MNDs. Somatosensory and CPM changes exist in MNDs and may be related to the neurodegenerative nature of the disease. Further studies should investigate the most appropriate treatment strategies for these patients. We report a comprehensive evaluation of pain and sensory abnormalities in motor neuron disease (MND) patients. We assessed the different pain syndromes present in MND with validated tools, and described the QST and conditioned pain modulation profiles in a controlled design. © 2017 European Pain Federation - EFIC®.

  1. Pain-related emotions modulate experimental pain perception and autonomic responses.

    Science.gov (United States)

    Rainville, Pierre; Bao, Quoc Viet Huynh; Chrétien, Pablo

    2005-12-05

    The effect of emotions on pain perception is generally recognized but the underlying mechanisms remain unclear. Here, emotions related to pain were induced in healthy volunteers using hypnosis, during 1-min immersions of the hand in painfully hot water. In Experiment 1, hypnotic suggestions were designed to induce various positive or negative emotions. Compared to a control condition with hypnotic-relaxation, negative emotions produced robust increases in pain. In Experiment 2, induction of pain-related anger and sadness were found to increase pain. Pain increases were associated with increases in self-rated desire for relief and decreases in expectation of relief, and with increases in arousal, negative affective valence and decreases in perceived control. In Experiment 3, hypnotic suggestions specifically designed to increase and decrease the desire for relief produced increases and decreases in pain, respectively. In all three experiments, emotion-induced changes in pain were most consistently found on ratings of pain unpleasantness compared to pain intensity. Changes in pain-evoked cardiac responses (R-R interval decrease), measured in experiments 2 and 3, were consistent with changes in pain unpleasantness. Correlation and multiple regression analyses suggest that negative emotions and desire for relief influence primarily pain affect and that pain-evoked autonomic responses are strongly associated with pain affect. These results confirm the hypothesized influence of the desire for relief on pain perception, and particularly on pain affect, and support the functional relation between pain affect and autonomic nociceptive responses. This study provides further experimental confirmation that pain-related emotions influence pain perception and pain-related physiological responses.

  2. Physical activity, sustained sedentary behavior, and pain modulation in women with fibromyalgia.

    Science.gov (United States)

    Ellingson, Laura D; Shields, Morgan R; Stegner, Aaron J; Cook, Dane B

    2012-02-01

    Fibromyalgia (FM) has been conceptualized as a disorder of the central nervous system, characterized by augmented sensory processing and an inability to effectively modulate pain. We previously reported that physical activity is related to brain processing of pain, providing evidence for a potential mechanism of pain management. The purpose of this study was to extend our work by manipulating pain modulation and determining relationships to both physical activity and sustained sedentary behavior. Eleven women with FM completed accelerometer measures of physical activity and underwent functional magnetic resonance imaging of painful heat, administered alone and during distracting cognitive tasks. Results showed that physical activity was significantly (P sedentary time, significant negative relationships were observed in areas involved in both pain modulation and the sensory-discriminative aspects of pain including the DLPFC, thalamus, and superior frontal and pre- and post-central gyri. These results suggest that physical activity and sedentary behaviors are related to central nervous system regulation of pain in FM. Our results support a promising benefit of physical activity and highlight the potentially deleterious effects of sustained sedentary behavior for pain regulation in FM. Studies aimed at increasing physical activity or reducing sedentary behavior and determining the impact of these on pain regulation are warranted. Published by Elsevier Inc.

  3. Altered central sensitization and pain modulation in the CNS in chronic joint pain

    DEFF Research Database (Denmark)

    Arendt-Nielsen, Lars; Skou, Søren Thorgaard; Nielsen, Thomas Arendt

    2015-01-01

    and central pain mechanisms are not fully understood, and safe and efficient analgesic drugs are not available. The pain associated with joint pain is highly individual, and features from radiological imaging have not demonstrated robust associations with the pain manifestations. In recent years, a variety...

  4. Stella modulates transcriptional and endogenous retrovirus programs during maternal-to-zygotic transition.

    Science.gov (United States)

    Huang, Yun; Kim, Jong Kyoung; Do, Dang Vinh; Lee, Caroline; Penfold, Christopher A; Zylicz, Jan J; Marioni, John C; Hackett, Jamie A; Surani, M Azim

    2017-03-21

    The maternal-to-zygotic transition (MZT) marks the period when the embryonic genome is activated and acquires control of development. Maternally inherited factors play a key role in this critical developmental process, which occurs at the 2-cell stage in mice. We investigated the function of the maternally inherited factor Stella (encoded by Dppa3 ) using single-cell/embryo approaches. We show that loss of maternal Stella results in widespread transcriptional mis-regulation and a partial failure of MZT. Strikingly, activation of endogenous retroviruses (ERVs) is significantly impaired in Stella maternal/zygotic knockout embryos, which in turn leads to a failure to upregulate chimeric transcripts. Amongst ERVs, MuERV-L activation is particularly affected by the absence of Stella, and direct in vivo knockdown of MuERV-L impacts the developmental potential of the embryo. We propose that Stella is involved in ensuring activation of ERVs, which themselves play a potentially key role during early development, either directly or through influencing embryonic gene expression.

  5. Endogenous Testosterone and Exogenous Oxytocin Modulate Attentional Processing of Infant Faces

    OpenAIRE

    Holtfrerich, Sarah K. C.; Schwarz, Katharina A.; Sprenger, Christian; Reimers, Luise; Diekhof, Esther K.

    2016-01-01

    Evidence indicates that hormones modulate the intensity of maternal care. Oxytocin is known for its positive influence on maternal behavior and its important role for childbirth. In contrast, testosterone promotes egocentric choices and reduces empathy. Further, testosterone decreases during parenthood which could be an adaptation to increased parental investment. The present study investigated the interaction between testosterone and oxytocin in attentional control and their influence on att...

  6. Rab7-a novel redox target that modulates inflammatory pain processing.

    Science.gov (United States)

    Kallenborn-Gerhardt, Wiebke; Möser, Christine V; Lorenz, Jana E; Steger, Mirco; Heidler, Juliana; Scheving, Reynir; Petersen, Jonas; Kennel, Lea; Flauaus, Cathrin; Lu, Ruirui; Edinger, Aimee L; Tegeder, Irmgard; Geisslinger, Gerd; Heide, Heinrich; Wittig, Ilka; Schmidtko, Achim

    2017-07-01

    Chronic pain is accompanied by production of reactive oxygen species (ROS) in various cells that are important for nociceptive processing. Recent data indicate that ROS can trigger specific redox-dependent signaling processes, but the molecular targets of ROS signaling in the nociceptive system remain largely elusive. Here, we performed a proteome screen for pain-dependent redox regulation using an OxICAT approach, thereby identifying the small GTPase Rab7 as a redox-modified target during inflammatory pain in mice. Prevention of Rab7 oxidation by replacement of the redox-sensing thiols modulates its GTPase activity. Immunofluorescence studies revealed Rab7 expression to be enriched in central terminals of sensory neurons. Knockout mice lacking Rab7 in sensory neurons showed normal responses to noxious thermal and mechanical stimuli; however, their pain behavior during inflammatory pain and in response to ROS donors was reduced. The data suggest that redox-dependent changes in Rab7 activity modulate inflammatory pain sensitivity.

  7. Enhanced Brain Responses to Pain-Related Words in Chronic Back Pain Patients and Their Modulation by Current Pain

    Directory of Open Access Journals (Sweden)

    Alexander Ritter

    2016-08-01

    Full Text Available Previous functional magnetic resonance imaging (fMRI studies in healthy controls (HC and pain-free migraine patients found activations to pain-related words in brain regions known to be activated while subjects experience pain. The aim of the present study was to identify neural activations induced by pain-related words in a sample of chronic back pain (CBP patients experiencing current chronic pain compared to HC. In particular, we were interested in how current pain influences brain activations induced by pain-related adjectives. Subjects viewed pain-related, negative, positive, and neutral words; subjects were asked to generate mental images related to these words during fMRI scanning. Brain activation was compared between CBP patients and HC in response to the different word categories and examined in relation to current pain in CBP patients. Pain-related words vs. neutral words activated a network of brain regions including cingulate cortex and insula in subjects and patients. There was stronger activation in medial and dorsolateral prefrontal cortex (DLPFC and anterior midcingulate cortex in CPB patients than in HC. The magnitude of activation for pain-related vs. negative words showed a negative linear relationship to CBP patients’ current pain. Our findings confirm earlier observations showing that pain-related words activate brain networks similar to noxious stimulation. Importantly, CBP patients show even stronger activation of these structures while merely processing pain-related words. Current pain directly influences on this activation.

  8. Enhanced Brain Responses to Pain-Related Words in Chronic Back Pain Patients and Their Modulation by Current Pain.

    Science.gov (United States)

    Ritter, Alexander; Franz, Marcel; Puta, Christian; Dietrich, Caroline; Miltner, Wolfgang H R; Weiss, Thomas

    2016-08-10

    Previous functional magnetic resonance imaging (fMRI) studies in healthy controls (HC) and pain-free migraine patients found activations to pain-related words in brain regions known to be activated while subjects experience pain. The aim of the present study was to identify neural activations induced by pain-related words in a sample of chronic back pain (CBP) patients experiencing current chronic pain compared to HC. In particular, we were interested in how current pain influences brain activations induced by pain-related adjectives. Subjects viewed pain-related, negative, positive, and neutral words; subjects were asked to generate mental images related to these words during fMRI scanning. Brain activation was compared between CBP patients and HC in response to the different word categories and examined in relation to current pain in CBP patients. Pain-related words vs. neutral words activated a network of brain regions including cingulate cortex and insula in subjects and patients. There was stronger activation in medial and dorsolateral prefrontal cortex (DLPFC) and anterior midcingulate cortex in CPB patients than in HC. The magnitude of activation for pain-related vs. negative words showed a negative linear relationship to CBP patients' current pain. Our findings confirm earlier observations showing that pain-related words activate brain networks similar to noxious stimulation. Importantly, CBP patients show even stronger activation of these structures while merely processing pain-related words. Current pain directly influences on this activation.

  9. A review of the role of orexin system in pain modulation.

    Science.gov (United States)

    Razavi, Bibi Marjan; Hosseinzadeh, Hossein

    2017-06-01

    The roles of orexinergic system (orexin-A, orexin-B) and their receptors (orexin receptor type-1, orexin receptor type-2) in various physiological processes such as arousal, reward seeking behavior, energy homeostasis, sensory modulation, stress processing, cognition, endocrine functions, visceral functions and pain modulation have been established. This review summarizes the studies investigating orexin antinociceptive effects and their cellular mechanisms in various types of pain including neuropathic pain, migraine and cluster headache, visceral and orofacial pains. Moreover, the role of orexins in stress induced analgesia and on the development of morphine analgesic tolerance has been discussed. The antinociceptive effects of orexins have been shown in several pain models including thermal, mechanical and chemical induced nociception. Orexins modulate pain perception at both spinal and supraspinal levels. The periaqueductal gray (PAG) is one important supraspinal sites of orexin pain modulation. A possible involvement of endocannabinoids in supraspinal orexin-induced analgesia has been proposed. This review suggests a potential role of orexins in the management of pain. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Modulation of the endogenous production of protoporphyrin IX in a yeast-based model organism

    Science.gov (United States)

    Joniová, Jaroslava; Gerelli, Emmanuel; Wagnières, Georges

    2017-02-01

    The main aim of this study was to assess conditions at which simple yeast-based model organism produces maximal levels of protoporphyrin IX (PpIX) after an exogenous administration of its precursor, 5-aminolevulinic acid (ALA), and the ferrous-ion chelator 2,2'-bipyridyl. We observed that the fluorescing porphyrin, produced after these administrations, was likely to be PpIX since fluorescence spectroscopy of the porphyrins produced endogenously in yeast cells resembles that of PpIX in DMSO and in vivo in the chick's chorioallantoic membrane model. Also, fluorescence lifetimes of these porphyrins are very similar to that of PpIX in vitro and in vivo. This suggests that PpIX is the main fluorescent compound produced by yeast in our conditions. We found that the conditions at which yeast produces the maximal PpIX were a synchronous administration of 5 μM ALA and 1 mM 2,2'-bipyridyl for yeast incubated in aqueous glucose and 1 mM 2,2'-bipyridyl in the presence of YPD medium. Such a simple model is of high interest to study basic mechanisms involved in the mitochondrial respiration since PpIX, which is produced in this organelle, can be used as an oxygen sensor, or to perform photodynamic therapy and photodiagnosis. Since the absorption and scattering coefficients of this model are much smaller than those of soft tissues over the visible part of the spectrum, a version of this model loaded with appropriated amounts of light absorbing and scattering particles could be designed as a phantom to mimic tumors containing PpIX, a useful tool to optimize certain cancer photodetection set-ups.

  11. Arginine vasopressin induces periaqueductal gray release of enkephalin and endorphin relating to pain modulation in the rat.

    Science.gov (United States)

    Yang, Jun; Yang, Yu; Xu, Hong-Tao; Chen, Jian-Min; Liu, Wen-Yan; Lin, Bao-Cheng

    2007-07-05

    Previous study has proven that microinjection of arginine vasopressin (AVP) into periaqueductal gray (PAG) raises the pain threshold, in which the antinociceptive effect of AVP can be reversed by PAG pretreatment with V2 rather than V1 or opiate receptor antagonist. The present work investigated the AVP effect on endogenous opiate peptides, oxytocin (OXT) and classical neurotransmitters in the rat PAG. The results showed that AVP elevated the concentrations of leucine-enkephalin (L-Ek), methionine-enkephalin (M-Ek) and beta-endorphin (beta-Ep), but did not change the concentrations of dynorphinA(1-13) (DynA(1-13)), OXT, classical neurotransmitters including achetylcholine (Ach), choline (Ch), serotonin (5-HT), gamma-aminobutyric acid (GABA), glutamate (Glu), dopamine (DA), norepinephrine (NE) and epinephrine (E), and their metabolic products in PAG perfusion liquid. Pain stimulation increased the concentrations of AVP, L-EK, M-Ek, beta-Ep, 5-HT and 5-HIAA (5-HT metabolic product), but did not influence the concentrations of DynA(1-13), OXT, the other classical neurotransmitters and their metabolic products. PAG pretreatment with naloxone - an opiate receptor antagonist completely attenuated the pain threshold increase induced by PAG administration of AVP, but local pretreatment of OXT or classical neurotransmitter receptor antagonist did not influence the pain threshold increase induced by PAG administration of AVP. The data suggested that AVP in PAG could induce the local release of enkephalin and endorphin rather than dynophin, OXT and classical neurotransmitters to participate in pain modulation.

  12. Endogenous analgesic effect of pregabalin: A double-blind and randomized controlled trial.

    Science.gov (United States)

    Sugimine, S; Saito, S; Araki, T; Yamamoto, K; Obata, H

    2017-07-01

    Conditioned pain modulation (CPM) is widely used to measure endogenous analgesia, and a recent study indicated that drugs that act on endogenous analgesia are more effective in individuals with lower CPM. Recent animal studies have indicated that pregabalin activates endogenous analgesia by stimulating the descending pain inhibitory system. The present study examined whether the analgesic effect of pregabalin is greater in individuals with lower original endogenous analgesia using CPM. Fifty-nine healthy subjects were randomly assigned to either a pregabalin group or a placebo group, and 50 of them completed the study. CPM was measured before and after pregabalin or placebo administration. The correlation of initial CPM to change in CPM was compared between the pregabalin and placebo groups. Initial CPM was significantly correlated with the change in CPM in the pregabalin group (r = -0.73, p endogenous analgesic effect in individuals with lower original endogenous analgesia. The analgesic effect of pregabalin depends on the original endogenous analgesia status. Its effect on conditioned pain modulation (CPM) was stronger for subjects with lower original endogenous analgesia, suggesting that the mechanism of pregabalin involves the improvement of endogenous analgesia. © 2017 European Pain Federation - EFIC®.

  13. High-intensity extended swimming exercise reduces pain-related behavior in mice: involvement of endogenous opioids and the serotonergic system.

    Science.gov (United States)

    Mazzardo-Martins, Leidiane; Martins, Daniel F; Marcon, Rodrigo; Dos Santos, Ubirajara D; Speckhann, Breno; Gadotti, Vinícius M; Sigwalt, André Roberto; Guglielmo, Luiz Guilherme A; Santos, Adair Roberto Soares

    2010-12-01

    The present study examined the hyponociceptive effect of swimming exercise in a chemical behavioral model of nociception and the mechanisms involved in this effect. Male mice were submitted to swimming sessions (30 min/d for 5 days). Twenty-four hours after the last session, we noticed that swimming exercise decreased the number of abdominal constriction responses caused by acetic acid compared with the nonexercised group. The hyponociception caused by exercise in the acetic acid test was significantly attenuated by intraperitoneal (i.p.) pretreatment of mice with naloxone (a nonselective opioid receptor antagonist, 1 mg/kg), ρ-chlorophenylalanine methyl ester (PCPA, an inhibitor of serotonin synthesis, 100 mg/kg once a day for 4 consecutive days), and by bilateral adrenalectomy. Collectively, the present results provide experimental evidences indicating for the first time that high-intensity extended swimming exercise reduces pain-related behavior in mice. The mechanisms involve an interaction with opioid and serotonin systems. Furthermore, endogenous opioids released by adrenal glands probably are involved in this effect. Our results indicate that high-intensity extended exercise endogenously controls acute pain by activation of opioidergic and serotonergic pathways. Furthermore, these results support the use of exercise as a nonpharmacological approach for the management of acute pain. Copyright © 2010 American Pain Society. Published by Elsevier Inc. All rights reserved.

  14. Expectation violation and attention to pain jointly modulate neural gain in somatosensory cortex.

    Science.gov (United States)

    Fardo, Francesca; Auksztulewicz, Ryszard; Allen, Micah; Dietz, Martin J; Roepstorff, Andreas; Friston, Karl J

    2017-06-01

    The neural processing and experience of pain are influenced by both expectations and attention. For example, the amplitude of event-related pain responses is enhanced by both novel and unexpected pain, and by moving the focus of attention towards a painful stimulus. Under predictive coding, this congruence can be explained by appeal to a precision-weighting mechanism, which mediates bottom-up and top-down attentional processes by modulating the influence of feedforward and feedback signals throughout the cortical hierarchy. The influence of expectation and attention on pain processing can be mapped onto changes in effective connectivity between or within specific neuronal populations, using a canonical microcircuit (CMC) model of hierarchical processing. We thus implemented a CMC within dynamic causal modelling for magnetoencephalography in human subjects, to investigate how expectation violation and attention to pain modulate intrinsic (within-source) and extrinsic (between-source) connectivity in the somatosensory hierarchy. This enabled us to establish whether both expectancy and attentional processes are mediated by a similar precision-encoding mechanism within a network of somatosensory, frontal and parietal sources. We found that both unexpected and attended pain modulated the gain of superficial pyramidal cells in primary and secondary somatosensory cortex. This modulation occurred in the context of increased lateralized recurrent connectivity between somatosensory and fronto-parietal sources, driven by unexpected painful occurrences. Finally, the strength of effective connectivity parameters in S1, S2 and IFG predicted individual differences in subjective pain modulation ratings. Our findings suggest that neuromodulatory gain control in the somatosensory hierarchy underlies the influence of both expectation violation and attention on cortical processing and pain perception. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Spinal cord stimulation and modulation of neuropathic pain

    NARCIS (Netherlands)

    de Vos, Cecilia Cecilia Clementine

    2013-01-01

    This thesis reports on the opportunities of several new applications of spinal cord stimulation (SCS) for the treatment of neuropathic pain. Our pilot study and consecutively performed international randomised controlled trial on effects of SCS in patients with painful diabetic neuropathy showed

  16. Exposure to Virtual Social Stimuli Modulates Subjective Pain Reports

    Directory of Open Access Journals (Sweden)

    Jacob M Vigil

    2014-01-01

    Full Text Available BACKGROUND: Contextual factors, including the gender of researchers, influence experimental and patient pain reports. It is currently not known how social stimuli influence pain percepts, nor which types of sensory modalities of communication, such as auditory, visual or olfactory cues associated with person perception and gender processing, produce these effects.

  17. Modulation of oral heat and cold pain by irritant chemicals.

    Science.gov (United States)

    Albin, Kelly C; Carstens, Mirela Iodi; Carstens, E

    2008-01-01

    Common food irritants elicit oral heat or cool sensations via actions at thermosensitive transient receptor potential (TRP) channels. We used a half-tongue, 2-alternative forced-choice procedure coupled with bilateral pain intensity ratings to investigate irritant effects on heat and cold pain. The method was validated in a bilateral thermal difference detection task. Capsaicin, mustard oil, and cinnamaldehyde enhanced lingual heat pain elicited by a 49 degrees C stimulus. Mustard oil and cinnamaldehyde weakly enhanced lingual cold pain (9.5 degrees C), whereas capsaicin had no effect. Menthol significantly enhanced cold pain and weakly reduced heat pain. To address if capsaicin's effect was due to summation of perceptually similar thermal and chemical sensations, one-half of the tongue was desensitized by application of capsaicin. Upon reapplication, capsaicin elicited little or no irritant sensation yet still significantly enhanced heat pain on the capsaicin-treated side, ruling out summation. In a third experiment, capsaicin significantly enhanced pain ratings to graded heat stimuli (47 degrees C to 50 degrees C) resulting in an upward shift of the stimulus-response function. Menthol may induce cold hyperalgesia via enhanced thermal gating of TRPM8 in peripheral fibers. Capsaicin, mustard oil, and cinnamaldehyde may induce heat hyperalgesia via enhanced thermal gating of TRPV1 that is coexpressed with TRPA1 in peripheral nociceptors.

  18. 3-Iodothyronamine, a Novel Endogenous Modulator of Transient Receptor Potential Melastatin 8?

    Directory of Open Access Journals (Sweden)

    Noushafarin Khajavi

    2017-08-01

    Full Text Available The decarboxylated and deiodinated thyroid hormone (TH derivative, 3-iodothyronamine (3-T1AM, is suggested to be involved in energy metabolism and thermoregulation. G protein-coupled receptors (GPCRs are known as the main targets for 3-T1AM; however, transient receptor potential channels (TRPs were also recently identified as new targets of 3-T1AM. This article reviews the current knowledge of a putative novel role of 3-T1AM in the modulation of TRPs. Specifically, the TRP melastatin 8 (TRPM8 was identified as a target of 3-T1AM in different cell types including neoplastic cells, whereby 3-T1AM significantly increased cytosolic Ca2+ through TRPM8 activation. Similarly, the β-adrenergic receptor is involved in 3-T1AM-induced Ca2+ influx. Therefore, it has been suggested that 3-T1AM-induced Ca2+ mobilization might be due to β-adrenergic receptor/TRPM8 channel interaction, which adds to the complexity of GPCR regulation by TRPs. It has been revealed that TRPM8 activation leads to a decline in TRPV1 activity, which may be of therapeutic benefit in clinical circumstances such as treatment of TRPV1-mediated inflammatory hyperalgesia, colitis, and dry eye syndrome. This review also summarizes the inverse association between changes in TRPM8 and TRPV1 activity after 3-T1AM stimulation. This finding prompted further detailed investigations of the interplay between 3-T1AM and the GPCR/TRPM8 axis and indicated the probability of additional GPCR/TRP constellations that are modulated by this TH derivative.

  19. Pain Perception Can Be Modulated by Mindfulness Training: A Resting-state fMRI Study

    Directory of Open Access Journals (Sweden)

    I-Wen Su

    2016-11-01

    Full Text Available The multi-dimensional nature of pain renders difficult a holistic understanding of it. The conceptual framework of pain is said to be cognitive-evaluative, in addition to being sensory-discriminative and affective-motivational. To compare participants’ brain-behavior response before and after a six-week mindfulness-based stress reduction (MBSR training course on mindfulness in relation to pain modulation, three questionnaires (the Dallas Pain Questionnaire, Short Form McGill Pain Questionnaire-SFMPQ, and Kentucky Inventory of Mindfulness as well as resting-state functional magnetic resonance imaging (fMRI were administered to participants, divided into a pain-afflicted group (N=18 and a control group (N=16. Our results showed that the pain-afflicted group experienced significantly less pain after the mindfulness treatment than before, as measured by the SFMPQ. In conjunction, an increased connection from the anterior insular cortex (AIC to the dorsal anterior midcingulate cortex (daMCC was observed in the post-training pain-afflicted group and a significant correlation was found between AIC-daMCC connectivity and SFMPQ scores. The results suggest that mindfulness training can modulate the brain network dynamics underlying the subjective experience of pain.

  20. Brain Mechanisms Supporting Modulation of Pain by Mindfulness Meditation

    Science.gov (United States)

    Zeidan, F.; Martucci, K.T.; Kraft, R.A.; Gordon, N.S.; McHaffie, J.G.; Coghill, R.C.

    2011-01-01

    The subjective experience of one’s environment is constructed by interactions among sensory, cognitive, and affective processes. For centuries, meditation has been thought to influence such processes by enabling a non-evaluative representation of sensory events. To better understand how meditation influences the sensory experience, we employed arterial spin labeling (ASL) functional magnetic resonance imaging to assess the neural mechanisms by which mindfulness meditation influences pain in healthy human participants. After four-days of mindfulness meditation training, meditating in the presence of noxious stimulation significantly reduced pain-unpleasantness by 57% and pain-intensity ratings by 40% when compared to rest. A two factor repeated measures analysis of variance was used to identify interactions between meditation and pain-related brain activation. Meditation reduced pain-related activation of the contra lateral primary somatosensory cortex. Multiple regression analysis was used to identify brain regions associated with individual differences in the magnitude of meditation-related pain reductions. Meditation-induced reductions in pain intensity ratings were associated with increased activity in the anterior cingulate cortex and anterior insula, areas involved in the cognitive regulation of nociceptive processing. Reductions in pain unpleasantness ratings were associated with orbitofrontal cortex activation, an area implicated in reframing the contextual evaluation of sensory events. Moreover, reductions in pain unpleasantness also were associated with thalamic deactivation, which may reflect a limbic gating mechanism involved in modifying interactions between afferent in put and executive-order brain areas. Taken together, these data indicate that meditation engages multiple brain mechanisms that alter the construction of the subjectively available pain experience from afferent information. PMID:21471390

  1. Witnessing hateful people in pain modulates brain activity in regions associated with physical pain and reward.

    Directory of Open Access Journals (Sweden)

    Glenn Ryan Fox

    2013-10-01

    Full Text Available How does witnessing a hateful person in pain compare to witnessing a likable person in pain? The current study compared the brain bases for how we perceive likable people in pain with those of viewing hateful people in pain. While social bonds are built through sharing the plight and pain of others in the name of empathy, viewing a hateful person in pain also has many potential ramifications. In this functional Magnetic Resonance Imaging (fMRI study, Caucasian Jewish male participants viewed videos of (1 disliked, hateful, anti-Semitic individuals, and (2 liked, non-hateful, tolerant individuals in pain. The results showed that, compared with viewing liked people, viewing hateful people in pain elicited increased responses in regions associated with observation of physical pain (the insular cortex, the anterior cingulate cortex, and the somatosensory cortex, reward processing (the striatum, and frontal regions associated with emotion regulation. Functional connectivity analyses revealed connections between seed regions in the left anterior cingulate cortex and right insular cortex with reward regions, the amygdala, and frontal regions associated with emotion regulation. These data indicate that regions of the brain active while viewing someone in pain may be more active in response to the danger or threat posed by witnessing the pain of a hateful individual more so than the desire to empathize with a likable person’s pain.

  2. A genetic polymorphism of the endogenous opioid dynorphin modulates monetary reward anticipation in the corticostriatal loop.

    Directory of Open Access Journals (Sweden)

    Mikhail Votinov

    Full Text Available The dynorphin/κ-opioid receptor (KOP-R system has been shown to play a role in different types of behavior regulation, including reward-related behavior and drug craving. It has been shown that alleles with 3 or 4 repeats (HH genotype of the variable nucleotide tandem repeat (68-bp VNTR functional polymorphism of the prodynorphin (PDYN gene are associated with higher levels of dynorphin peptides than alleles with 1 or 2 repeats (LL genotype. We used fMRI on N = 71 prescreened healthy participants to investigate the effect of this polymorphism on cerebral activation in the limbic-corticostriatal loop during reward anticipation. Individuals with the HH genotype showed higher activation than those with the LL genotype in the medial orbitofrontal cortex (mOFC when anticipating a possible monetary reward. In addition, the HH genotype showed stronger functional coupling (as assessed by effective connectivity analyses of mOFC with VMPFC, subgenual anterior cingulate cortex, and ventral striatum during reward anticipation. This hints at a larger sensitivity for upcoming rewards in individuals with the HH genotype, resulting in a higher motivation to attain these rewards. These findings provide first evidence in humans that the PDYN polymorphism modulates neural processes associated with the anticipation of rewards, which ultimately may help to explain differences between genotypes with respect to addiction and drug abuse.

  3. A genetic polymorphism of the endogenous opioid dynorphin modulates monetary reward anticipation in the corticostriatal loop.

    Science.gov (United States)

    Votinov, Mikhail; Pripfl, Juergen; Windischberger, Christian; Kalcher, Klaudius; Zimprich, Alexander; Zimprich, Fritz; Moser, Ewald; Lamm, Claus; Sailer, Uta

    2014-01-01

    The dynorphin/κ-opioid receptor (KOP-R) system has been shown to play a role in different types of behavior regulation, including reward-related behavior and drug craving. It has been shown that alleles with 3 or 4 repeats (HH genotype) of the variable nucleotide tandem repeat (68-bp VNTR) functional polymorphism of the prodynorphin (PDYN) gene are associated with higher levels of dynorphin peptides than alleles with 1 or 2 repeats (LL genotype). We used fMRI on N = 71 prescreened healthy participants to investigate the effect of this polymorphism on cerebral activation in the limbic-corticostriatal loop during reward anticipation. Individuals with the HH genotype showed higher activation than those with the LL genotype in the medial orbitofrontal cortex (mOFC) when anticipating a possible monetary reward. In addition, the HH genotype showed stronger functional coupling (as assessed by effective connectivity analyses) of mOFC with VMPFC, subgenual anterior cingulate cortex, and ventral striatum during reward anticipation. This hints at a larger sensitivity for upcoming rewards in individuals with the HH genotype, resulting in a higher motivation to attain these rewards. These findings provide first evidence in humans that the PDYN polymorphism modulates neural processes associated with the anticipation of rewards, which ultimately may help to explain differences between genotypes with respect to addiction and drug abuse.

  4. The Social Modulation of Pain: Others as Predictive Signals of Salience – a Systematic Review

    Science.gov (United States)

    Krahé, Charlotte; Springer, Anne; Weinman, John A.; Fotopoulou, Aikaterini

    2013-01-01

    Several studies in cognitive neuroscience have investigated the cognitive and affective modulation of pain. By contrast, fewer studies have focused on the social modulation of pain, despite a plethora of relevant clinical findings. Here we present the first review of experimental studies addressing how interpersonal factors, such as the presence, behavior, and spatial proximity of an observer, modulate pain. Based on a systematic literature search, we identified 26 studies on experimentally induced pain that manipulated different interpersonal variables and measured behavioral, physiological, and neural pain-related responses. We observed that the modulation of pain by interpersonal factors depended on (1) the degree to which the social partners were active or were perceived by the participants to possess possibility for action; (2) the degree to which participants could perceive the specific intentions of the social partners; (3) the type of pre-existing relationship between the social partner and the person in pain, and lastly, (4) individual differences in relating to others and coping styles. Based on these findings, we propose that the modulation of pain by social factors can be fruitfully understood in relation to a recent predictive coding model, the free energy framework, particularly as applied to interoception and social cognition. Specifically, we argue that interpersonal interactions during pain may function as social, predictive signals of contextual threat or safety and as such influence the salience of noxious stimuli. The perception of such interpersonal interactions may in turn depend on (a) prior beliefs about interpersonal relating and (b) the certainty or precision by which an interpersonal interaction may predict environmental threat or safety. PMID:23888136

  5. The social modulation of pain: Others as predictive signals of salience – A systematic review

    Directory of Open Access Journals (Sweden)

    Charlotte eKrahé

    2013-07-01

    Full Text Available Several studies in cognitive neuroscience have investigated the cognitive and affective modulation of pain. By contrast, fewer studies have focused on the social modulation of pain, despite a plethora of relevant clinical findings. Here we present the first review of experimental studies addressing how interpersonal factors, such as the presence, behaviour and spatial proximity of an observer, modulate pain. Based on a systematic literature search we identified twenty-six studies on experimentally-induced pain that manipulated different interpersonal variables and measured behavioural, physiological and neural pain-related responses. We observed that the modulation of pain by interpersonal factors depended on (1 the degree to which the social partners were active or were perceived by the participants to possess possibility for action; (2 the degree to which participants could perceive the specific intentions of the social partners; (3 the type of pre-existing relationship between the social partner and the person in pain, and lastly, (4 individual differences in relating to others and coping styles. Based on these findings, we propose that the modulation of pain by social factors can be fruitfully understood in relation to a recent predictive coding model, the free energy framework, particularly as applied to interoception and social cognition. Specifically, we argue that interpersonal interactions during pain may function as social, predictive signals of contextual threat or safety and as such influence the salience of noxious stimuli. The perception of such interpersonal interactions may in turn depend on (a prior beliefs about interpersonal relating and (b the certainty or precision by which an interpersonal interaction may predict environmental threat or safety.

  6. The social modulation of pain: others as predictive signals of salience - a systematic review.

    Science.gov (United States)

    Krahé, Charlotte; Springer, Anne; Weinman, John A; Fotopoulou, Aikaterini

    2013-01-01

    Several studies in cognitive neuroscience have investigated the cognitive and affective modulation of pain. By contrast, fewer studies have focused on the social modulation of pain, despite a plethora of relevant clinical findings. Here we present the first review of experimental studies addressing how interpersonal factors, such as the presence, behavior, and spatial proximity of an observer, modulate pain. Based on a systematic literature search, we identified 26 studies on experimentally induced pain that manipulated different interpersonal variables and measured behavioral, physiological, and neural pain-related responses. We observed that the modulation of pain by interpersonal factors depended on (1) the degree to which the social partners were active or were perceived by the participants to possess possibility for action; (2) the degree to which participants could perceive the specific intentions of the social partners; (3) the type of pre-existing relationship between the social partner and the person in pain, and lastly, (4) individual differences in relating to others and coping styles. Based on these findings, we propose that the modulation of pain by social factors can be fruitfully understood in relation to a recent predictive coding model, the free energy framework, particularly as applied to interoception and social cognition. Specifically, we argue that interpersonal interactions during pain may function as social, predictive signals of contextual threat or safety and as such influence the salience of noxious stimuli. The perception of such interpersonal interactions may in turn depend on (a) prior beliefs about interpersonal relating and (b) the certainty or precision by which an interpersonal interaction may predict environmental threat or safety.

  7. In vivo pharmacological interactions between a type II positive allosteric modulator of α7 nicotinic ACh receptors and nicotinic agonists in a murine tonic pain model.

    Science.gov (United States)

    Freitas, K; Negus, S S; Carroll, F I; Damaj, M I

    2013-06-01

    The α7 nicotinic ACh receptor subtype is abundantly expressed in the CNS and in the periphery. Recent evidence suggests that α7 nicotinic ACh receptor (nAChR) subtypes, which can be activated by an endogenous cholinergic tone comprising ACh and the α7 agonist choline, play an important role in chronic pain and inflammation. In this study, we evaluated whether type II α7 positive allosteric modulator PNU-120596 induces antinociception on its own and in combination with choline in the formalin pain model. We assessed the effects of PNU-120596 and choline and the nature of their interactions in the formalin test using an isobolographic analysis. In addition, we evaluated the interaction of PNU-120596 with PHA-54613, an exogenous selective α7 nAChR agonist, in the formalin test. Finally, we assessed the interaction between PNU-120596 and nicotine using acute thermal pain, locomotor activity, body temperature and convulsing activity tests in mice. We found that PNU-120596 dose-dependently attenuated nociceptive behaviour in the formalin test after systemic administration in mice. In addition, mixtures of PNU-120596 and choline synergistically reduced formalin-induced pain. PNU-120596 enhanced the effects of nicotine and α7 agonist PHA-543613 in the same test. In contrast, PNU-120596 failed to enhance nicotine-induced convulsions, hypomotility and antinociception in acute pain models. Surprisingly, it enhanced nicotine-induced hypothermia via activation of α7 nAChRs. Our results demonstrate that type II α7 positive allosteric modulators produce antinociceptive effects in the formalin test through a synergistic interaction with the endogenous α7 agonist choline. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  8. Fibromyalgia, milnacipran and experimental pain modulation: study protocol for a double blind randomized controlled trial.

    Science.gov (United States)

    Macian, Nicolas; Pereira, Bruno; Shinjo, Coralie; Dubray, Claude; Pickering, Gisèle

    2015-04-03

    The prevalence of fibromyalgia increases worldwide and is characterized by widespread and chronic pain. Treatment is difficult and includes both drug and non-drug approaches. Milnacipran, an antidepressant, is used for fibromyalgia, with a possible beneficial effect on central pain modulation. Our hypothesis is that the efficacy of milnacipran in fibromyalgia depends on the performance of pain inhibitory controls. A randomized, double blind, clinical trial (NCT01747044) with two parallel groups, in 48 women with fibromyalgia, is planned in the Clinical Pharmacology Center, University Hospital, Clermont-Ferrand, France. Conditioned pain modulation (estimated with thermal stimuli using a numeric pain rating scale), the primary endpoint measure, is evaluated before and one month after treatment with milnacipran or placebo. Secondary outcome measures include the predictability of pain descending pathways performance for milnacipran efficacy, tolerance and cognitive function. Data analysis is performed using mixed models; the tests are two-sided, with a type I error set at alpha = 0.05. Not only will this trial allow estimation of the beneficial effect of milnacipran on pain and on descending pain pathways but it will also evaluate whether the performance of this modulatory system could be predictive of its efficacy in alleviating pain. This method would allow clinicians to take a pro-active attitude by performing a rapid psychophysical test before starting milnacipran treatment and would avoid unnecessary prescription while preventing therapeutic failure in patients who often face this recurrent problem. ClinicalTrials.gov NCT01747044 .

  9. A comparison between the neural correlates of laser and electric pain stimulation and their modulation by expectation.

    Science.gov (United States)

    Hird, E J; Jones, A K P; Talmi, D; El-Deredy, W

    2018-01-01

    Pain is modulated by expectation. Event-related potential (ERP) studies of the influence of expectation on pain typically utilise laser heat stimulation to provide a controllable nociceptive-specific stimulus. Painful electric stimulation has a number of practical advantages, but is less nociceptive-specific. We compared the modulation of electric versus laser-evoked pain by expectation, and their corresponding pain-evoked and anticipatory ERPs. We developed understanding of recognised methods of laser and electric stimulation. We tested whether pain perception and neural activity induced by electric stimulation was modulated by expectation, whether this expectation elicited anticipatory neural correlates, and how these measures compared to those associated with laser stimulation by eliciting cue-evoked expectations of high and low pain in a within-participant design. Despite sensory and affective differences between laser and electric pain, intensity ratings and pain-evoked potentials were modulated equivalently by expectation, though ERPs only correlated with pain ratings in the laser pain condition. Anticipatory correlates differentiated pain intensity expectation to laser but not electric pain. Previous studies show that laser-evoked potentials are modulated by expectation. We extend this by showing electric pain-evoked potentials are equally modulated by expectation, within the same participants. We also show a difference between the pain types in anticipation. Though laser-evoked potentials express a stronger relationship with pain perception, both laser and electric stimulation may be used to study the modulation of pain-evoked potentials by expectation. Anticipatory-evoked potentials are elicited by both pain types, but they may reflect different processes. Copyright © 2017. Published by Elsevier B.V.

  10. Sprouty4 is an endogenous negative modulator of TrkA signaling and neuronal differentiation induced by NGF.

    Directory of Open Access Journals (Sweden)

    Fernando C Alsina

    Full Text Available The Sprouty (Spry family of proteins represents endogenous regulators of downstream signaling pathways induced by receptor tyrosine kinases (RTKs. Using real time PCR, we detect a significant increase in the expression of Spry4 mRNA in response to NGF, indicating that Spry4 could modulate intracellular signaling pathways and biological processes induced by NGF and its receptor TrkA. In this work, we demonstrate that overexpression of wild-type Spry4 causes a significant reduction in MAPK and Rac1 activation and neurite outgrowth induced by NGF. At molecular level, our findings indicate that ectopic expression of a mutated form of Spry4 (Y53A, in which a conserved tyrosine residue was replaced, fail to block both TrkA-mediated Erk/MAPK activation and neurite outgrowth induced by NGF, suggesting that an intact tyrosine 53 site is required for the inhibitory effect of Spry4 on NGF signaling. Downregulation of Spry4 using small interference RNA knockdown experiments potentiates PC12 cell differentiation and MAPK activation in response to NGF. Together, these findings establish a new physiological mechanism through which Spry4 regulates neurite outgrowth reducing not only the MAPK pathway but also restricting Rac1 activation in response to NGF.

  11. Safety assessment considerations for food and feed derived from plants with genetic modifications that modulate endogenous gene expression and pathways.

    Science.gov (United States)

    Kier, Larry D; Petrick, Jay S

    2008-08-01

    The current globally recognized comparative food and feed safety assessment paradigm for biotechnology-derived crops is a robust and comprehensive approach for evaluating the safety of both the inserted gene product and the resulting crop. Incorporating many basic concepts from food safety, toxicology, nutrition, molecular biology, and plant breeding, this approach has been used effectively by scientists and regulatory agencies for 10-15 years. Current and future challenges in agriculture include the need for improved yields, tolerance to biotic and abiotic stresses, and improved nutrition. The next generation of biotechnology-derived crops may utilize regulatory proteins, such as transcription factors that modulate gene expression and/or endogenous plant pathways. In this review, we discuss the applicability of the current safety assessment paradigm to biotechnology-derived crops developed using modifications involving regulatory proteins. The growing literature describing the molecular biology underlying plant domestication and conventional breeding demonstrates the naturally occurring genetic variation found in plants, including significant variation in the classes, expression, and activity of regulatory proteins. Specific examples of plant modifications involving insertion or altered expression of regulatory proteins are discussed as illustrative case studies supporting the conclusion that the current comparative safety assessment process is appropriate for these types of biotechnology-developed crops.

  12. The endogenous retroviral insertion in the human complement C4 gene modulates the expression of homologous genes by antisense inhibition.

    Science.gov (United States)

    Schneider, P M; Witzel-Schlömp, K; Rittner, C; Zhang, L

    2001-02-01

    Intron 9 contains the complete endogenous retrovirus HERV-K(C4) as a 6.4-kb insertion in 60% of human C4 genes. The retroviral insertion is in reverse orientation to the C4 coding sequence. Therefore, expression of C4 could lead to the transcription of an antisense RNA, which might protect against exogenous retroviral infections. To test this hypothesis, open reading frames from the HERV sequence were subcloned in sense orientiation into a vector allowing expression of a beta-galactosidase fusion protein. Mouse L cells which had been stably transfected with either the human C4A or C4B gene both carrying the HERV insertion (LC4 cells), and L(Tk-) cells without the C4 gene were transiently transfected either with a retroviral construct or with the wild-type vector. Expression was monitored using an enzymatic assay. We demonstrated that (1) HERV-K(C4) antisense mRNA transcripts are present in cells constitutively expressing C4, (2) expression of retroviral-like constructs is significantly downregulated in cells expressing C4, and (3) this downregulation is further modulated in a dose-dependent fashion following interferon-gamma stimulation of C4 expression. These results support the hypothesis of a genomic antisense strategy mediated by the HERV-K(C4) insertion as a possible defense mechanism against exogenous retroviral infections.

  13. Overexpression of Arachis hypogaea AREB1 Gene Enhances Drought Tolerance by Modulating ROS Scavenging and Maintaining Endogenous ABA Content

    Directory of Open Access Journals (Sweden)

    Ling Li

    2013-06-01

    Full Text Available AhAREB1 (Arachis hypogaea Abscisic-acid Response Element Binding Protein 1 is a member of the basic domain leucine zipper (bZIP-type transcription factor in peanut. Previously, we found that expression of AhAREB1 was specifically induced by abscisic acid (ABA, dehydration and drought. To understand the drought defense mechanism regulated by AhAREB1, transgenic Arabidopsis overexpressing AhAREB1 was conducted in wild-type (WT, and a complementation experiment was employed to ABA non-sensitivity mutant abi5 (abscisic acid-insensitive 5. Constitutive expression of AhAREB1 confers water stress tolerance and is highly sensitive to exogenous ABA. Microarray and further real-time PCR analysis revealed that drought stress, reactive oxygen species (ROS scavenging, ABA synthesis/metabolism-related genes and others were regulated in transgenic Arabidopsis overexpressing AhAREB1. Accordingly, low level of ROS, but higher ABA content was detected in the transgenic Arabidopsis plants’ overexpression of AhAREB1. Taken together, it was concluded that AhAREB1 modulates ROS accumulation and endogenous ABA level to improve drought tolerance in transgenic Arabidopsis.

  14. Review of overlap between thermoregulation and pain modulation in fibromyalgia

    Science.gov (United States)

    Larson, Alice A.; Pardo, José V.; Pasley, Jeffrey D.

    2013-01-01

    Fibromyalgia syndrome is characterized by widespread pain that is exacerbated by cold and stress but relieved by warmth. We review the points along thermal and pain pathways where temperature may influence pain. We also present evidence addressing the possibility that brown adipose tissue activity is linked to the pain of fibromyalgia given that cold initiates thermogenesis in brown adipose tissue via adrenergic activity, while warmth suspends thermogenesis. Although females have a higher incidence of fibromyalgia as well as more resting thermogenesis, they are less able to recruit brown adipose tissue in response to chronic stress than males. In addition, conditions that are frequently comorbid with fibromyalgia compromise brown adipose activity making it less responsive to sympathetic stimulation. This results in lower body temperatures, lower metabolic rates, and lower circulating cortisol/corticosterone in response to stress - characteristics of fibromyalgia. In the periphery, sympathetic nerves to brown adipose also project to surrounding tissues, including tender points characterizing fibromyalgia. As a result, the musculoskeletal hyperalgesia associated with conditions like fibromyalgia may result from referred pain in the adjacent muscle and skin. PMID:23887348

  15. Cannabidiol and endogenous opioid peptide-mediated mechanisms modulate antinociception induced by transcutaneous electrostimulation of the peripheral nervous system.

    Science.gov (United States)

    Gonçalves, Thais Cristina Teixeira; Londe, Anna Karla; Albano, Rafael Isaac Pires; de Araújo Júnior, Artur Teixeira; de Aguiar Azeredo, Mariana; Biagioni, Audrey Francisco; Vasconcellos, Thiago Henrique Ferreira; Dos Reis Ferreira, Célio Marcos; Teixeira, Dulcinéa Gonçalves; de Souza Crippa, José Alexandre; Vieira, Débora; Coimbra, Norberto Cysne

    2014-12-15

    Transcutaneous electrical nerve stimulation (TENS) is a non-pharmacological therapy for the treatment of pain. The present work investigated the effect of cannabidiol, naloxone and diazepam in combination with 10 Hz and 150 Hz TENS. Male Wistar rats were submitted to the tail-flick test (baseline), and each rodent received an acute administration (intraperitoneal) of naloxone (3.0mg/kg), diazepam (1.5mg/kg) or cannabidiol (0.75 mg/kg, 1.5mg/kg, 3.0mg/kg, 4.5mg/kg, 6.0mg/kg and 12.0mg/kg); 10 min after the acute administration, 10 Hz or 150 Hz TENS or a sham procedure was performed for 30 min. Subsequently, tail-flick measures were recorded over a 90-min period, at 5-min intervals. 10 Hz TENS increased the nociceptive threshold during the 90-min period. This antinociceptive effect was reversed by naloxone pre-treatment, was not altered by diazepam pre-treatment and was abolished by cannabidiol pre-treatment (1.5mg/kg). Moreover, 150 Hz TENS increased tail-flick latencies by 35 min post-treatment, which was partially inhibited by naloxone pre-treatment and totally inhibited by cannabidiol (1.5mg/kg). These data suggest the involvement of the endogenous opioid system and the cannabinoid-mediated neuromodulation of the antinociception induced by transcutaneous electrostimulation at 10 Hz and 150 Hz TENS. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Descending pain modulation and its interaction with peripheral sensitization following sustained isometric muscle contraction in fibromyalgia

    DEFF Research Database (Denmark)

    Ge, H-Y; Nie, Hongling; Graven-Nielsen, Thomas

    2012-01-01

    OBJECTIVE: Sustained isometric muscle contraction (fatiguing contraction) recruits segmental and/or extrasegmental descending inhibition in healthy subjects but not in fibromyalgia (FM). We hypothesized that fatiguing contraction may shift descending pain modulation from inhibition towards...... facilitation and that the effect of descending pain modulation be dependent on peripheral muscle pain sensitivity. METHODS: Pressure pain thresholds (PPT) were measured from 13 points bilaterally in the upper trapezius muscle and from the mid-point bilaterally in the tibialis anterior before-, immediately......) than healthy control groups (286.2±24.1s) (P0.05). Following the contraction, PPTs were increased significantly and heterogeneously in the upper trapezius over time, but not, in the tibialis anterior muscle in healthy controls. However, PPT were significantly decreased over time in the tibialis...

  17. Modulation of vagal tone enhances gastroduodenal motility and reduces somatic pain sensitivity.

    Science.gov (United States)

    Frøkjaer, J B; Bergmann, S; Brock, C; Madzak, A; Farmer, A D; Ellrich, J; Drewes, A M

    2016-04-01

    The parasympathetic nervous system, whose main neural substrate is the vagus nerve, exerts a fundamental antinociceptive role and influences gastrointestinal sensori-motor function. Our research question was to whether combined electrical and physiological modulation of vagal tone, using transcutaneous electrical vagal nerve stimulation (t-VNS) and deep slow breathing (DSB) respectively, could increase musculoskeletal pain thresholds and enhance gastroduodenal motility in healthy subjects. Eighteen healthy subjects were randomized to a subject-blinded, sham-controlled, cross-over study with an active protocol including stimulation of auricular branch of the vagus nerve, and breathing at full inspiratory capacity and forced full expiration. Recording of cardiac derived parameters including cardiac vagal tone, moderate pain thresholds to muscle, and bone pressure algometry, conditioned pain modulation using a cold pressor test and a liquid meal ultrasonographic gastroduodenal motility test were performed. Cardiac vagal tone increased during active treatment with t-VNS and DSB compared to sham (p = 0.009). In comparison to sham, thresholds to bone pain increased (p = 0.001), frequency of antral contractions increased (p = 0.004) and gastroduodenal motility index increased (p = 0.016) with active treatment. However, no effect on muscle pain thresholds and conditioned pain modulation was seen. This experimental study suggests that this noninvasive approach with combined electrical and physiological modulation of vagal tone enhances gastroduodenal motility and reduces somatic pain sensitivity. These findings warrant further investigation in patients with disorders characterized with chronic pain and gastrointestinal dysmotility such as functional dyspepsia and irritable bowel syndrome. © 2016 John Wiley & Sons Ltd.

  18. [Lumbar post-laminectomy syndrome: II. Pain management using neuro-modulation techniques].

    Science.gov (United States)

    Robaina Padrón, F J

    2008-02-01

    The application of neuro-modulation techniques in general is currently gaining acceptance in various aspects of medicine. Neuro-modulation is defined as: "Therapeutical interventions using implantable devices to modify the functioning of central, peripheral and autonomic nervous systems". Following lumbar disc surgery, or lumbar spine surgery in general, several chronic pain syndromes can result, either in the lumbar region and/or in the lower limbs. The current status is for the application of surgery to the degenerative spine (degenerative disc disease and lumbar stenosis) for the relief of chronic pain. A review of the methodology of evidence based medicine, show that the instrumented and fusion techniques are not the answered despite 20 years of the use of these techniques following failure of surgery for the relief of back pain syndrome. Neuro-modulation techniques represent a step in the right direction for the management of these chronic pain syndromes. Frequently they enable the resolution of chronic pain following spine surgery without having to resort to repeat surgery. We describe here the different neuro-modulation techniques (spinal cord stimulation, spinal drug infusions) which can be used in the case of back surgery failure, and we describe technical aspects and "tricks of the trade" for the correct implantation of the devices used in techniques. Neuro-modulation techniques are applied to the management of chronic pain following disc surgery and represent a valid alternative to repeat surgery and/or arthrodesis (instrumented or not). Neurosurgeons are again called to play active roles in the field of neuro-modulation for the treatment.

  19. The contribution of the endogenous TRPV1 ligands 9-HODE and 13-HODE to nociceptive processing and their role in peripheral inflammatory pain mechanisms.

    Science.gov (United States)

    Alsalem, Mohammad; Wong, Amy; Millns, Paul; Arya, Pallavi Huma; Chan, Michael Siang Liang; Bennett, Andrew; Barrett, David A; Chapman, Victoria; Kendall, David A

    2013-04-01

    The transient receptor potential vanilloid type 1 (TRPV1) plays a fundamental role in the detection of heat and inflammatory pain responses. Here we investigated the contribution of two potential endogenous ligands [9- and 13- hydroxyoctadecadienoic acid (HODE)] to TRPV1-mediated noxious responses and inflammatory pain responses. 9- and 13-HODE, and their precursor, linoleic acid, were measured in dorsal root ganglion (DRG) neurons and in the hindpaws of control and carrageenan-inflamed rats by liquid chromatography/tandem electrospray mass spectrometry. Calcium imaging studies of DRG neurons were employed to determine the role of TRPV1 in mediating linoleic acid, 9-HODE- and 13-HODE-evoked responses, and the contribution of 15-lipoxygenase to the generation of the HODEs. Behavioural studies investigated the contribution of 9- and 13-HODE and 15-lipoxygenase to inflammatory pain behaviour. 9-HODE (35 ± 7 pmol g(-1)) and 13-HODE (32 ± 6 pmol g(-1)) were detected in hindpaw tissue, but were below the limits of detection in DRGs. Following exposure to linoleic acid, 9- and 13-HODE were detected in DRGs and TRPV1 antagonist-sensitive calcium responses evoked, which were blocked by the 15-lipoxygenase inhibitor PD146176 and an anti-13-HODE antibody. Levels of linoleic acid were significantly increased in the carrageenan-inflamed hindpaw (P PD146176 significantly (P < 0.01) attenuated carrageenan-induced hyperalgesia. This study demonstrates that, although 9- and 13-HODE can activate TRPV1 in DRG cell bodies, the evidence for a role of these lipids as endogenous peripheral TRPV1 ligands in a model of inflammatory pain is at best equivocal. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  20. Descending pain modulation in irritable bowel syndrome (IBS): a systematic review and meta-analysis.

    Science.gov (United States)

    Chakiath, Rosemary J; Siddall, Philip J; Kellow, John E; Hush, Julia M; Jones, Mike P; Marcuzzi, Anna; Wrigley, Paul J

    2015-12-10

    Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder. While abdominal pain is a dominant symptom of IBS, many sufferers also report widespread hypersensitivity and present with other chronic pain conditions. The presence of widespread hypersensitivity and extra-intestinal pain conditions suggests central nervous dysfunction. While central nervous system dysfunction may involve the spinal cord (central sensitisation) and brain, this review will focus on one brain mechanism, descending pain modulation. We will conduct a comprehensive search for the articles indexed in the databases Ovid MEDLINE, Ovid Embase, Ovid PsycINFO and Cochrane Central Register of Controlled Trial (CENTRAL) from their inception to August 2015, that report on any aspect of descending pain modulation in irritable bowel syndrome. Two independent reviewers will screen studies for eligibility, assess risk of bias and extract relevant data. Results will be tabulated and, if possible, a meta-analysis will be carried out. The systematic review outlined in this protocol aims to summarise current knowledge regarding descending pain modulation in IBS. PROSPERO CRD42015024284.

  1. TRANSCUTANEOUS ELECTRIC NERVE STIMULATION IN MODULATION OF PAIN OF TENDER POINTS IN SYNDROME FIBROMYALGIA: CASE STUDY

    Directory of Open Access Journals (Sweden)

    Isabel Mara Magalhães Rori

    2008-08-01

    Full Text Available The Fibromyalgia is a syndrome of pain and chronic diffuse, characterized by the presence of at least 11 of 18 points called anatomically specific tender points, painful on palpation. As the pain diffuse the main symptom of fibromyalgia. The current treatment is focused mainly to the reduction of symptoms. Physiotherapy has animportant role in improving the control of pain. This study aimed to verify the effectiveness of the main TENS of low frequency and high intensity in modulating pain of tender points of patients with fibromyalgia. For this was a case study of patient R. S. S., 38-yearold female carrier of the syndrome of fibromyalgia attended school in the clinic of the Faculty of Integrated Ceará (FISIOFIC. The patient was treated with the TENS-pain Acupuncture points in a total of twelve care and pain assessed before starting treatment and after three attendants. There was a significant reduction in pain intensity at 77.7% of the tender points in the second evaluation and 88.8% of the points in the other assessments. It was concluded that there was a reduction in the pain of tender points of the patient showing the analgesia promoted by TENS, so it should be used as a complementary treatment programs associated with other treatments and also served as a good technique to locate the tender points.

  2. Reduced modulation of pain in older adults following isometric and aerobic exercise

    Science.gov (United States)

    Naugle, Kelly M.; Naugle, Keith E.; Riley, Joseph L.

    2016-01-01

    Laboratory based studies show that acute aerobic and isometric exercise reduces sensitivity to painful stimuli in young healthy individuals, indicative of a hypoalgesic response. However, little is known regarding the effect of aging on exercise-induced hypoalgesia (EIH). The purpose of this study was to examine age differences in EIH following submaximal isometric exercise, and moderate and vigorous aerobic exercise. Healthy older and younger adults completed one training session and four testing sessions consisting of either a submaximal isometric handgrip exercise, vigorous or moderate intensity stationary cycling, or quiet rest (control). The following measures were taken pre and post exercise/quiet rest: 1) pressure pain thresholds (PPTs), 2) suprathreshold pressure pain ratings, 3) pain ratings during 30-s of prolonged noxious heat stimulation, and 3) temporal summation of heat pain. The results revealed age differences in EIH following isometric and aerobic exercise, with younger adults experiencing greater EIH compared to older adults. The age differences in EIH varied across pain induction techniques and exercise type. These results provide evidence for abnormal pain modulation following acute exercise in older adults. PERSPECTIVE This article enhances our understanding of the influence of a single bout of exercise on pain sensitivity and perception in healthy older compared to younger adults. This knowledge could potentially help clinicians optimize exercise as a method of pain management. PMID:26993959

  3. Endogenous Locus Reporter Assays.

    Science.gov (United States)

    Liu, Yaping; Hermes, Jeffrey; Li, Jing; Tudor, Matthew

    2018-01-01

    Reporter gene assays are widely used in high-throughput screening (HTS) to identify compounds that modulate gene expression. Traditionally a reporter gene assay is built by cloning an endogenous promoter sequence or synthetic response elements in the regulatory region of a reporter gene to monitor transcriptional activity of a specific biological process (exogenous reporter assay). In contrast, an endogenous locus reporter has a reporter gene inserted in the endogenous gene locus that allows the reporter gene to be expressed under the control of the same regulatory elements as the endogenous gene, thus more accurately reflecting the changes seen in the regulation of the actual gene. In this chapter, we introduce some of the considerations behind building a reporter gene assay for high-throughput compound screening and describe the methods we have utilized to establish 1536-well format endogenous locus reporter and exogenous reporter assays for the screening of compounds that modulate Myc pathway activity.

  4. Acute Psychosocial Stress and Emotion Regulation Skills Modulate Empathic Reactions to Pain in Others

    Directory of Open Access Journals (Sweden)

    Gabriele eBuruck

    2014-05-01

    Full Text Available Psychosocial stress affects resources for adequate coping with environmental demands. A crucial question in this context is the extent to which acute psychosocial stressors impact empathy and emotion regulation. In the present study, 120 participants were randomly assigned to a control group vs. a group confronted with the Trier Social Stress Test, an established paradigm for the induction of acute psychosocial stress. Empathy for pain as a specific subgroup of empathy was assessed via pain intensity ratings during a pain-picture task. Self-reported emotion regulation skills were measured as predictors using an established questionnaire. Stressed individuals scored significantly lower on the appraisal of pain pictures. A regression model was chosen to find variables that further predict the pain ratings. These findings implicate that acute psychosocial stress might impair empathic processes to observed pain in another person and the ability to accept one’s emotion additionally predicts the empathic reaction. Furthermore, the ability to tolerate negative emotions modulated the relation between stress and pain judgments, and thus influenced core cognitive-affective functions relevant for coping with environmental challenges. In conclusion, our study emphasizes the necessity of reducing negative emotions in terms of empathic distress when confronted with pain of another person under psychosocial stress, in order to be able to retain pro-social behavior.

  5. α2δ Modulators for management of compression neuropathic pain: A review of three case series

    Directory of Open Access Journals (Sweden)

    Tariq A Tramboo

    2009-01-01

    Conclusion: These results indicate the effectiveness of a2d modulators for management of neuropathic pain secondary to compression radiculopathy. The results also suggest a possible therapeutic superiority of LYRICA over locally available generic brands of pregabalin and gabapentin. These findings need to be further examined in randomized, controlled trials.

  6. Respiratory hypoalgesia? Breath-holding, but not respiratory phase modulates nociceptive flexion reflex and pain intensity.

    Science.gov (United States)

    Jafari, Hassan; Van de Broek, Karlien; Plaghki, Léon; Vlaeyen, Johan W S; Van den Bergh, Omer; Van Diest, Ilse

    2016-03-01

    Several observations suggest that respiratory phase (inhalation vs. exhalation) and post-inspiratory breath-holds could modulate pain and the nociceptive reflex. This experiment aimed to investigate the role of both mechanisms. Thirty-two healthy participants received supra-threshold electrocutaneous stimulations to elicit both the Nociceptive Flexion Reflex (NFR) and pain, either during spontaneous inhalations or exhalations, or during three types of instructed breath-holds: following exhalation, at mid-inhalation and at full-capacity inhalation. Whether the electrocutaneous stimulus was applied during inhalation or exhalation did not affect the NFR or pain. Self-reported pain was reduced and the NFR was increased during breath-holding compared to spontaneous breathing. Whereas the type of breath-hold did not impact on self-reported pain, breath-holds at full-capacity inhalation and following exhalation were associated with a lower NFR amplitude compared to breath-holds at mid-inhalation. The present findings confirm that breath-holding can modulate pain (sensitivity) and suggest that both attentional distraction and changes in vagal activity may underlie the observed effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Somatosensory symptoms and signs and conditioned pain modulation in chronic post-stroke shoulder pain

    NARCIS (Netherlands)

    Roosink, M.; Renzenbrink, G.J.; Buitenweg, J.R.; Dongen, R.T.M. van; Geurts, A.C.H.; IJzerman, M.J.

    2011-01-01

    Persistent shoulder pain is a common complication after stroke. Its etiology and underlying mechanisms are not well understood and treatment is generally unsatisfactory. The objective of this study was to assess the role of central sensitization and disinhibition in chronic stroke patients with

  8. Music modulation of pain perception and pain-related activity in the brain, brain stem, and spinal cord: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Dobek, Christine E; Beynon, Michaela E; Bosma, Rachael L; Stroman, Patrick W

    2014-10-01

    The oldest known method for relieving pain is music, and yet, to date, the underlying neural mechanisms have not been studied. Here, we investigate these neural mechanisms by applying a well-defined painful stimulus while participants listened to their favorite music or to no music. Neural responses in the brain, brain stem, and spinal cord were mapped with functional magnetic resonance imaging spanning the cortex, brain stem, and spinal cord. Subjective pain ratings were observed to be significantly lower when pain was administered with music than without music. The pain stimulus without music elicited neural activity in brain regions that are consistent with previous studies. Brain regions associated with pleasurable music listening included limbic, frontal, and auditory regions, when comparing music to non-music pain conditions. In addition, regions demonstrated activity indicative of descending pain modulation when contrasting the 2 conditions. These regions include the dorsolateral prefrontal cortex, periaqueductal gray matter, rostral ventromedial medulla, and dorsal gray matter of the spinal cord. This is the first imaging study to characterize the neural response of pain and how pain is mitigated by music, and it provides new insights into the neural mechanism of music-induced analgesia within the central nervous system. This article presents the first investigation of neural processes underlying music analgesia in human participants. Music modulates pain responses in the brain, brain stem, and spinal cord, and neural activity changes are consistent with engagement of the descending analgesia system. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.

  9. Teaching Pain Management in Interprofessional Medical Education: A Review of Three Portal of Geriatric Online Education Modules.

    Science.gov (United States)

    Madaus, Stacy M; Lim, Lionel S

    2016-10-01

    Chronic pain is an international healthcare crisis that affects an estimated 1.5 billion individuals worldwide, but pain management is not emphasized in the medical school curriculum, and thus supplemental education is essential. The Portal of Geriatric Online Education (POGOe) is a free repository of teaching modules for use by geriatric educators and learners. This article highlights three teaching modules available on this site: It's My Old Back Again: An Approach to Diagnosing and Managing Back Pain in the Older Adult (POGOe ID: 21670), Computer Based Learning Workbook, Third Edition module on Pain Management (POGOe ID: 21036), and Aging Q3 Curriculum on Pain Management of Older Adult Patients (POGOe ID: 21187). These modules were chosen based on their ability to address the major topics that the International Association for the Study of Pain proposes should be included in medical school curricula: mulitdimensional nature of pain, pain assessment and measurement, management of pain, and clinical conditions resulting in pain in older adults. They were also selected for their ability to be adapted for interprofessional education and how well they integrate basic science and clinical principles. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  10. Immunoglobulin production in vitro in major depression: A pilot study on the modulating action of endogenous cortisol

    NARCIS (Netherlands)

    F.J. Kok (Frans); C.J. Heijnen (Cobi); J.A. Bruijn (Jan); H.G.M. Westenberg (Herman G.); J.M. van Ree (Jan)

    1995-01-01

    textabstractTo investigate the possible differential sensitivity of hydrocortisone (HCO) on immunoglobulin (Ig) production in depression in relation to endogenous cortisol levels, blood was obtained at 8 am and 4 pm from 10 inpatients with major depression according to DSM-III-R criteria and 10 age-

  11. Re-education begins at home: an overview of the discovery of in vivo-active small molecule modulators of endogenous stem cells.

    Science.gov (United States)

    Um, JungIn; Lee, Ji-Hyung; Jung, Da-Woon; Williams, Darren R

    2018-04-01

    Degenerative diseases, such as Alzheimer's disease, heart disease and arthritis cause great suffering and are major socioeconomic burdens. An attractive treatment approach is stem cell transplantation to regenerate damaged or destroyed tissues. However, this can be problematic. For example, donor cells may not functionally integrate into the host tissue. An alternative methodology is to deliver bioactive agents, such as small molecules, directly into the diseased tissue to enhance the regenerative potential of endogenous stem cells. Areas covered: In this review, the authors discuss the necessity of developing these small molecules to treat degenerative diseases and survey progress in their application as therapeutics. They describe both the successes and caveats of developing small molecules that target endogenous stem cells to induce tissue regeneration. This article is based on literature searches which encompass databases for biomedical research and clinical trials. These small molecules are also categorized per their target disease and mechanism of action. Expert opinion: The development of small molecules targeting endogenous stem cells is a high-profile research area. Some compounds have made the successful transition to the clinic. Novel approaches, such as modulating the stem cell niche or targeted delivery to disease sites, should increase the likelihood of future successes in this field.

  12. Disordered conditioned pain modulation system in patients with posttraumatic cold intolerance.

    Science.gov (United States)

    Smits, E S; Selles, R W; Huygen, F J P; Duraku, L S; Hovius, S E R; Walbeehm, E T

    2014-01-01

    Conditioned pain modulation (CPM) is a phenomenon of 'pain inhibiting pain' that is important for understanding idiopathic pain syndromes. Because the pathophysiology of posttraumatic cold intolerance is still unknown but it could involve similar mechanisms as idiopathic pain syndromes, we evaluated the functioning of the CPM system in patients with posttraumatic cold intolerance compared to healthy controls. Fourteen healthy controls and 24 patients diagnosed with cold intolerance using the Cold Intolerance Symptom Severity questionnaire were included in the study. Of the 24 patients with cold intolerance, 11 had a nerve lesion and 13 an amputation of one or more digits. To quantify the CPM, pain threshold for mechanical pressure was measured at the affected region as a baseline measure. Then, the contralateral hand received a cold stimulus of ice water to evoke the noxious conditioning. After the cold stimulus, the pain threshold for mechanical pressure was determined again. The absolute and relative changes in algometer pressure (CPM effect) between pre- and post-conditioning were significantly smaller in the cold intolerance group compared to the control group (absolute p = 0.019, relative p = 0.004). The CPM effect was significantly different between the control group and the subgroups of nerve lesion (p = 0.003) and amputation patients (p = 0.011). In this study, we found a CPM effect after a cold stimulus in both controls and patients. A significant weaker CPM effect compared to the controls was found, as in other chronic pain conditions. The CPM system within patients with cold intolerance is altered. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  13. High frequency electrical stimulation concurrently induces central sensitization and ipsilateral inhibitory pain modulation.

    Science.gov (United States)

    Vo, L; Drummond, P D

    2013-03-01

    In healthy humans, analgesia to blunt pressure develops in the ipsilateral forehead during various forms of limb pain. The aim of the current study was to determine whether this analgesic response is induced by ultraviolet B radiation (UVB), which evokes signs of peripheral sensitization, or by high-frequency electrical stimulation (HFS), which triggers signs of central sensitization. Before and after HFS and UVB conditioning, sensitivity to heat and to blunt and sharp stimuli was assessed at and adjacent to the treated site in the forearm. In addition, sensitivity to blunt pressure was measured bilaterally in the forehead. The effect of ipsilateral versus contralateral temple cooling on electrically evoked pain in the forearm was then examined, to determine whether HFS or UVB conditioning altered inhibitory pain modulation. UVB conditioning triggered signs of peripheral sensitization, whereas HFS conditioning triggered signs of central sensitization. Importantly, ipsilateral forehead analgesia developed after HFS but not UVB conditioning. In addition, decreases in electrically evoked pain at the HFS-treated site were greater during ipsilateral than contralateral temple cooling, whereas decreases at the UVB-treated site were similar during both procedures. HFS conditioning induced signs of central sensitization in the forearm and analgesia both in the ipsilateral forehead and the HFS-treated site. This ipsilateral analgesia was not due to peripheral sensitization or other non-specific effects, as it failed to develop after UVB conditioning. Thus, the supra-spinal mechanisms that evoke central sensitization might also trigger a hemilateral inhibitory pain modulation process. This inhibitory process could sharpen the boundaries of central sensitization or limit its spread. © 2012 European Federation of International Association for the Study of Pain Chapters.

  14. MnTM-4-PyP modulates endogenous antioxidant responses and protects primary cortical neurons against oxidative stress.

    Science.gov (United States)

    Cheng, Kuo-Yuan; Guo, Fei; Lu, Jia-Qi; Cao, Yuan-Zhao; Wang, Tian-Chang; Yang, Qi; Xia, Qing

    2015-05-01

    Oxidative stress is a direct cause of injury in various neural diseases. Manganese porphyrins (MnPs), a large category of superoxide dismutase (SOD) mimics, shown universally to have effects in numerous neural disease models in vivo. Given their complex intracellular redox activities, detailed mechanisms underlying the biomedical efficacies are not fully elucidated. This study sought to investigate the regulation of endogenous antioxidant systems by a MnP (MnTM-4-PyP) and its role in the protection against neural oxidative stress. Primary cortical neurons were treated with MnTM-4-PyP prior to hydrogen peroxide-induced oxidative stress. MnTM-4-PyP increased cell viability, reduced intracellular level of reactive oxygen species, inhibited mitochondrial apoptotic pathway, and ameliorated endoplasmic reticulum function. The protein levels and activities of endogenous SODs were elevated, but not those of catalase. SOD2 transcription was promoted in a transcription factor-specific manner. Additionally, we found FOXO3A and Sirt3 levels also increased. These effects were not observed with MnTM-4-PyP alone. Induction of various levels of endogenous antioxidant responses by MnTM-4-PyP has indispensable functions in its protection for cortical neurons against hydrogen peroxide-induced oxidative stress. © 2014 John Wiley & Sons Ltd.

  15. New Insights into the Role of Macrophages in Adipose Tissue Inflammation and Fatty Liver Disease: Modulation by Endogenous Omega-3 Fatty Acid-derived Lipid Mediators

    Directory of Open Access Journals (Sweden)

    Joan eClària

    2011-10-01

    Full Text Available Obesity is causally linked to a chronic state of low-grade inflammation in adipose tissue. Prolonged, unremitting inflammation in this tissue has a direct impact on insulin-sensitive tissues (i.e. liver and its timely resolution is a critical step toward reducing the prevalence of related co-morbidities such as insulin resistance and non-alcoholic fatty liver disease. This article describes the current state-of-the-art knowledge and novel insights into the role of macrophages in adipose tissue inflammation, with special emphasis on the progressive changes in macrophage polarization observed over the course of obesity. In addition, this article extends the discussion to the contribution of Kupffer cells, the liver resident macrophages, to metabolic liver disease. Special attention is given to the modulation of macrophage responses by omega-3-PUFAs, and more importantly by resolvins, which are potent anti-inflammatory and pro-resolving autacoids generated from docosahexaenoic and eicosapentaenoic acids. In fact, resolvins have been shown to work as endogenous stop signals in inflamed adipose tissue and to return this tissue to homeostasis by inducing a phenotypic switch in macrophage polarization toward a pro-resolving phenotype. Collectively, this article offers new views on the role of macrophages in metabolic disease and their modulation by endogenously-generated omega-3-PUFA-derived lipid mediators.

  16. Photic Injury to Cultured RPE Varies Among Individual Cells in Proportion to Their Endogenous Lipofuscin Content as Modulated by Their Melanosome Content

    Science.gov (United States)

    Zareba, Mariusz; Skumatz, Christine M. B.; Sarna, Tadeusz J.; Burke, Janice M.

    2014-01-01

    Purpose. We determined whether photic stress differentially impairs organelle motility of RPE lipofuscin and melanin granules, whether lethal photic stress kills cells in proportion to lipofuscin abundance, and whether killing is modulated by melanosome content. Methods. Motility of endogenous lipofuscin and melanosome granules within the same human RPE cells in primary culture was quantified by real-time imaging during sublethal blue light irradiation. Cell death during lethal irradiation was quantified by dynamic imaging of the onset of nuclear propidium iodide fluorescence. Analyzed were individual cells containing different amounts of autofluorescent lipofuscin, or similar amounts of lipofuscin and a varying content of phagocytized porcine melanosomes, or phagocytized black latex beads (control for light absorbance). Results. Lipofuscin granules and melanosomes showed motility slowing with mild irradiation, but slowing was greater for lipofuscin. On lethal irradiation, cell death was earlier in cells with higher lipofuscin content, but delayed by the copresence of melanosomes. Delayed death did not occur with black beads, suggesting that melanosome protection was due to properties of the biological granule, not simple screening. Conclusions. Greater organelle motility slowing of the more photoreactive lipofuscin granule compared to melanosomes suggests that lipofuscin mediates mild photic injury within RPE cells. With lethal light stress endogenous lipofuscin mediates killing, but the effect is cell autonomous and modulated by coincident melanosome content. Developing methods to quantify the frequency of individual cells with combined high lipofuscin and low melanosome content may have value for predicting the photic stress susceptibility of the RPE monolayer in situ. PMID:25034597

  17. Effects of the carrier frequency of interferential current on pain modulation in patients with chronic nonspecific low back pain: a protocol of a randomised controlled trial

    Science.gov (United States)

    2013-01-01

    Background Low back pain is an important public health problem that is associated with poor quality of life and disability. Among the electrophysical treatments, interferential current (IFC) has not been studied in patients with low back pain in a high-quality randomised controlled trial examining not only pain, but pain mechanisms and function. Methods/design A three-arm randomised controlled trial with patient and assessor blinded to the group allocation. One hundred fifty patients with chronic, nonspecific low back pain from outpatient physical therapy clinics in Brazil. The patients will be randomly allocated into 3 groups (IFC 1 kHz, IFC 4 kHz or Placebo IFC). The interferential current will be applied three days per week (30 minutes per session) over four weeks. Primary outcome: Pain intensity. Secondary outcomes: The pressure pain threshold, global impression of recovery, disability, function, conditioned pain modulation and temporal summation of pain, discomfort caused by the current. All outcomes will be measured at 4 weeks and 4 months after randomisation. The between-group differences will be calculated by using linear mixed models and Tukey’s post-hoc tests. Discussion The use of a placebo group and double-blinding assessor and patients strengthen this study. The present study is the first to compare different IFC carrier frequencies in patients with chronic low back pain. Trial registration Brazilian Registry of Clinical Trials: http://RBR-8n4hg2 PMID:23802771

  18. Effects of the carrier frequency of interferential current on pain modulation in patients with chronic nonspecific low back pain: a protocol of a randomised controlled trial.

    Science.gov (United States)

    Corrêa, Juliana Barbosa; Costa, Leonardo Oliveira Pena; de Oliveira, Naiane Teixeira Bastos; Sluka, Kathleen A; Liebano, Richard Eloin

    2013-06-27

    Low back pain is an important public health problem that is associated with poor quality of life and disability. Among the electrophysical treatments, interferential current (IFC) has not been studied in patients with low back pain in a high-quality randomised controlled trial examining not only pain, but pain mechanisms and function. A three-arm randomised controlled trial with patient and assessor blinded to the group allocation. One hundred fifty patients with chronic, nonspecific low back pain from outpatient physical therapy clinics in Brazil. The patients will be randomly allocated into 3 groups (IFC 1 kHz, IFC 4 kHz or Placebo IFC). The interferential current will be applied three days per week (30 minutes per session) over four weeks. Pain intensity. The pressure pain threshold, global impression of recovery, disability, function, conditioned pain modulation and temporal summation of pain, discomfort caused by the current. All outcomes will be measured at 4 weeks and 4 months after randomisation. The between-group differences will be calculated by using linear mixed models and Tukey's post-hoc tests. The use of a placebo group and double-blinding assessor and patients strengthen this study. The present study is the first to compare different IFC carrier frequencies in patients with chronic low back pain. Brazilian Registry of Clinical Trials: http://RBR-8n4hg2.

  19. Modulation of the endogenous antioxidants paraoxonase-1 and urate by pesticide exposure and genetic variants of xenobiotic-metabolizing enzymes.

    Science.gov (United States)

    Hernández, Antonio F; Gil, Fernando; Lacasaña, Marina; Rodríguez-Barranco, Miguel; Gómez-Martin, Antonio; Lozano, David; Pla, Antonio

    2013-11-01

    This study evaluated the association between pesticide exposure in farmworkers and plasma levels of the endogenous antioxidants urate and paraoxonase-1 (PON1) enzyme activities (paraoxonase, arylesterase and diazoxonase, three substrate-specific assays for measuring PON1 function) by using generalized estimating equations (GEEs). Decreases in plasma and erythrocyte cholinesterases (BChE and AChE, respectively) were used as biomarkers of pesticide exposure. We also assessed the contribution of genetic polymorphisms of the pesticide-metabolising enzymes PON1, glutathione S-transferases (GST) and cholinesterase variants (BCHE) on plasma levels of endogenous antioxidants and potential gene-environment interactions. A dual effect was observed on paraoxonase depending on the pattern of pesticide exposure. Thus, exposure to anticholinesterase pesticides was associated with decreased paraoxonase activity and urate levels whereas long-term pesticide exposure showed an association with increased paraoxonase activity. Significant interactions were observed between BChE activity and PON1 regulatory region polymorphisms on arylesterase and diazoxonase activities, and between AChE activity (a biomarker for long-term pesticide exposure) and PON1192RR genotype on arylesterase activity. These findings suggest that pesticide exposure may affect plasma antioxidant potential and that relevant gene-pesticide interactions may play a mechanistic role in oxidative stress-induced diseases following pesticide exposure. Nonetheless, more studies are needed to better characterise these interactions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Endogenous opioids contribute to insensitivity to pain in humans and mice lacking sodium channel Nav1.7.

    Science.gov (United States)

    Minett, Michael S; Pereira, Vanessa; Sikandar, Shafaq; Matsuyama, Ayako; Lolignier, Stéphane; Kanellopoulos, Alexandros H; Mancini, Flavia; Iannetti, Gian D; Bogdanov, Yury D; Santana-Varela, Sonia; Millet, Queensta; Baskozos, Giorgios; MacAllister, Raymond; Cox, James J; Zhao, Jing; Wood, John N

    2015-12-04

    Loss-of-function mutations in the SCN9A gene encoding voltage-gated sodium channel Nav1.7 cause congenital insensitivity to pain in humans and mice. Surprisingly, many potent selective antagonists of Nav1.7 are weak analgesics. We investigated whether Nav1.7, as well as contributing to electrical signalling, may have additional functions. Here we report that Nav1.7 deletion has profound effects on gene expression, leading to an upregulation of enkephalin precursor Penk mRNA and met-enkephalin protein in sensory neurons. In contrast, Nav1.8-null mutant sensory neurons show no upregulated Penk mRNA expression. Application of the opioid antagonist naloxone potentiates noxious peripheral input into the spinal cord and dramatically reduces analgesia in both female and male Nav1.7-null mutant mice, as well as in a human Nav1.7-null mutant. These data suggest that Nav1.7 channel blockers alone may not replicate the analgesic phenotype of null mutant humans and mice, but may be potentiated with exogenous opioids.

  1. The Modulation of Pain by Circadian and Sleep-Dependent Processes: A Review of the Experimental Evidence

    DEFF Research Database (Denmark)

    Hagenauer, Megan; Crodelle, Jennifer; Piltz, Sofia Helena

    2017-01-01

    conditions, pain sensitivity varies across the 24 h day, with highest sensitivity occurring during the evening in humans. Pain sensitivity is also modulated by sleep behavior, with pain sensitivity increasing in response to the build-up of homeostatic sleep pressure following sleep deprivation or sleep...... of physiologically meaningful stimulation levels. Following this normalization, we find that the estimated impact of the daily rhythm and of sleep deprivation on experimental pain measurements is surprisingly consistent across different pain modalities. We also review evidence documenting the impact of circadian...... rhythms and sleep deprivation on the neural circuitry in the spinal cord underlying pain sensation. The characterization of sleep-dependent and circadian influences on pain sensitivity in this review paper is used to develop and constrain the mathematical models introduced in the two companion articles....

  2. Modulation of neural circuits underlying temporal production by facial expressions of pain.

    Directory of Open Access Journals (Sweden)

    Daniela Ballotta

    Full Text Available According to the Scalar Expectancy Theory, humans are equipped with a biological internal clock, possibly modulated by attention and arousal. Both emotions and pain are arousing and can absorb attentional resources, thus causing distortions of temporal perception. The aims of the present single-event fMRI study were to investigate: a whether observation of facial expressions of pain interferes with time production; and b the neural network subserving this kind of temporal distortions. Thirty healthy volunteers took part in the study. Subjects were asked to perform a temporal production task and a concurrent gender discrimination task, while viewing faces of unknown people with either pain-related or neutral expressions. Behavioural data showed temporal underestimation (i.e., longer produced intervals during implicit pain expression processing; this was accompanied by increased activity of right middle temporal gyrus, a region known to be active during the perception of emotional and painful faces. Psycho-Physiological Interaction analyses showed that: 1 the activity of middle temporal gyrus was positively related to that of areas previously reported to play a role in timing: left primary motor cortex, middle cingulate cortex, supplementary motor area, right anterior insula, inferior frontal gyrus, bilateral cerebellum and basal ganglia; 2 the functional connectivity of supplementary motor area with several frontal regions, anterior cingulate cortex and right angular gyrus was correlated to the produced interval during painful expression processing. Our data support the hypothesis that observing emotional expressions distorts subjective time perception through the interaction of the neural network subserving processing of facial expressions with the brain network involved in timing. Within this frame, middle temporal gyrus appears to be the key region of the interplay between the two neural systems.

  3. Modulation of neural circuits underlying temporal production by facial expressions of pain

    Science.gov (United States)

    Lui, Fausta; Porro, Carlo Adolfo; Nichelli, Paolo Frigio; Benuzzi, Francesca

    2018-01-01

    According to the Scalar Expectancy Theory, humans are equipped with a biological internal clock, possibly modulated by attention and arousal. Both emotions and pain are arousing and can absorb attentional resources, thus causing distortions of temporal perception. The aims of the present single-event fMRI study were to investigate: a) whether observation of facial expressions of pain interferes with time production; and b) the neural network subserving this kind of temporal distortions. Thirty healthy volunteers took part in the study. Subjects were asked to perform a temporal production task and a concurrent gender discrimination task, while viewing faces of unknown people with either pain-related or neutral expressions. Behavioural data showed temporal underestimation (i.e., longer produced intervals) during implicit pain expression processing; this was accompanied by increased activity of right middle temporal gyrus, a region known to be active during the perception of emotional and painful faces. Psycho-Physiological Interaction analyses showed that: 1) the activity of middle temporal gyrus was positively related to that of areas previously reported to play a role in timing: left primary motor cortex, middle cingulate cortex, supplementary motor area, right anterior insula, inferior frontal gyrus, bilateral cerebellum and basal ganglia; 2) the functional connectivity of supplementary motor area with several frontal regions, anterior cingulate cortex and right angular gyrus was correlated to the produced interval during painful expression processing. Our data support the hypothesis that observing emotional expressions distorts subjective time perception through the interaction of the neural network subserving processing of facial expressions with the brain network involved in timing. Within this frame, middle temporal gyrus appears to be the key region of the interplay between the two neural systems. PMID:29447256

  4. Adaptations in responsiveness of brainstem pain-modulating neurons in acute compared with chronic inflammation.

    Science.gov (United States)

    Cleary, Daniel R; Heinricher, Mary M

    2013-06-01

    Despite similar behavioral hypersensitivity, acute and chronic pain have distinct neural bases. We used intraplantar injection of complete Freund's adjuvant to directly compare activity of pain-modulating neurons in the rostral ventromedial medulla (RVM) in acute vs chronic inflammation. Heat-evoked and von Frey-evoked withdrawal reflexes and corresponding RVM neuronal activity were recorded in lightly anesthetized animals either during the first hour after complete Freund's adjuvant injection (acute) or 3 to 10 days later (chronic). Thermal and modest mechanical hyperalgesia during acute inflammation were associated with increases in the spontaneous activity of pain-facilitating ON-cells and suppression of pain-inhibiting OFF-cells. Acute hyperalgesia was reversed by RVM block, showing that the increased activity of RVM ON-cells is necessary for acute behavioral hypersensitivity. In chronic inflammation, thermal hyperalgesia had resolved but mechanical hyperalgesia had become pronounced. The spontaneous discharges of ON- and OFF-cells were not different from those in control subjects, but the mechanical response thresholds for both cell classes were reduced into the innocuous range. RVM block in the chronic condition worsened mechanical hyperalgesia. These studies identify distinct contributions of RVM ON- and OFF-cells to acute and chronic inflammatory hyperalgesia. During early immune-mediated inflammation, ON-cell spontaneous activity promotes hyperalgesia. After inflammation is established, the antinociceptive influence of OFF-cells is dominant, yet the lowered threshold for the OFF-cell pause allows behavioral responses to stimuli that would normally be considered innocuous. The efficacy of OFF-cells in counteracting sensitization of ascending transmission pathways could therefore be an important determining factor in development of chronic inflammatory pain. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All

  5. Topiramate modulates trigeminal pain processing in thalamo-cortical networks in humans after single dose administration.

    Science.gov (United States)

    Hebestreit, Julia M; May, Arne

    2017-01-01

    Migraine is the sixth most common cause of disability in the world. Preventive migraine treatment is used to reduce frequency, severity and duration of attacks and therefore lightens the burden on the patients' quality of life and reduces disability. Topiramate is one of the preventive migraine treatments of proven efficacy. The mechanism of action underlying the preventive effect of topiramate in migraine remains largely unknown. Using functional magnetic resonance imaging (fMRI) we examined the central effects of a single dose of topiramate (100mg) on trigeminal pain in humans, compared to placebo (mannitol). In this prospective, within subject, randomized, placebo-controlled and double-blind study, 23 healthy participants received a standardized nociceptive trigeminal stimulation and control stimuli whilst being in the scanner. No differences in the subjective intensity ratings of the painful stimuli were observed between topiramate and placebo sessions. In contrast, topiramate significantly decreased the activity in the thalamus and other pain processing areas. Additionally, topiramate increased functional coupling between the thalamus and several brain regions such as the bilateral precuneus, posterior cingulate cortex and secondary somatosensory cortex. These data suggest that topiramate exhibits modulating effects on nociceptive processing in thalamo-cortical networks during trigeminal pain and that the preventive effect of topiramate on frequent migraine is probably mediated by an effect on thalamo-cortical networks.

  6. Nitric oxide modulated the expression of DREAM/calsenilin/KChIP3 in inflammatory pain of rats.

    Science.gov (United States)

    Jin, Hong-Bo; Yang, Yong-Liang; Song, Ying-Li; Yang, Yong-Bin; Li, Yu-Rong

    2012-12-01

    Downstream regulatory element antagonistic modulator (DREAM) is a critical transcriptional repressor for pain modulation. The role of nitric oxide (NO) plays in modulating DREAM pain pathway in the periphery is unclear. Therefore, we investigated the role of the NO in modulation of the expression of DREAM in formalin-induced rat inflammatory pain models. Male Sprague-Dawley rats were randomly distributed into four groups: the normal group, formalin test group, Nω-nitro-L-arginine (l-NNA) group, and morphine group. One hundred microliters of 2.5 % formalin was injected into the plantar surface of the right hindpaw of rats. l-NNA (40 nmol/L) and morphine (40 nmol/L) were injected intrathecally in the hindpaw before formalin injection. The nociceptive behavioral reaction was recorded. After the formalin test, the expression of DREAM mRNA and protein in the spinal cord of the four groups were measured. The nociceptive reaction induced by injection of formalin exhibited two phases. Morphine and l-NNA significantly decreased pain scores of the second phase. The expression of DREAM was significantly increased in the rat spinal cord after formalin-induced pain. Morphine significantly upregulated the expression of DREAM, and the formalin-induced upregulation was significantly attenuated by l-NNA. NO may play an important role in the DREAM pathway modulation of inflammatory pain.

  7. Cognitive modulation of pain and predictive coding. Comment on “Facing the experience of pain: A neuropsychological perspective” by Fabbro and Crescentini

    Science.gov (United States)

    Pagnoni, Giuseppe; Porro, Carlo A.

    2014-09-01

    Pain is a phenomenologically complex experience whose sensory and psychological dimensions are deeply intertwined. In their perspective article, Fabbro and Crescentini [1] review the physiological and neural mechanisms underlying nociception and its cognitive modulation within the broader concept of suffering, which includes psychological pain [2] in its culturally mediated and existentially nuanced forms. The tight link between affective and cognitive processes, on the one hand, and pain, on the other, is illustrated by examining in turn the placebo effect, empathy for other people's afflictions, clinical depression, and the role that mindfulness-based practices may play in alleviating suffering.

  8. µ-Conotoxins Modulating Sodium Currents in Pain Perception and Transmission: A Therapeutic Potential

    Directory of Open Access Journals (Sweden)

    Elisabetta Tosti

    2017-09-01

    Full Text Available The Conus genus includes around 500 species of marine mollusks with a peculiar production of venomous peptides known as conotoxins (CTX. Each species is able to produce up to 200 different biological active peptides. Common structure of CTX is the low number of amino acids stabilized by disulfide bridges and post-translational modifications that give rise to different isoforms. µ and µO-CTX are two isoforms that specifically target voltage-gated sodium channels. These, by inducing the entrance of sodium ions in the cell, modulate the neuronal excitability by depolarizing plasma membrane and propagating the action potential. Hyperexcitability and mutations of sodium channels are responsible for perception and transmission of inflammatory and neuropathic pain states. In this review, we describe the current knowledge of µ-CTX interacting with the different sodium channels subtypes, the mechanism of action and their potential therapeutic use as analgesic compounds in the clinical management of pain conditions.

  9. Similarities between exercise-induced hypoalgesia and conditioned pain modulation in humans

    DEFF Research Database (Denmark)

    Vægter, Henrik Bjarke; Handberg, Gitte; Graven-Nielsen, Thomas

    2014-01-01

    Pain inhibitory mechanisms are often assessed by paradigms of exercise-induced hypoalgesia (EIH) and conditioned pain modulation (CPM). In this study it was hypothesised that the spatial and temporal manifestations of EIH and CPM were comparable. Eighty healthy subjects (40 females), between 18......-65 years participated in this randomized repeated-measures crossover trial with data collection on two different days. CPM was assessed by two different cold pressor tests (hand,foot). EIH was assessed through two intensities of aerobic bicycling exercises and two intensities of isometric muscle...... tests and after all of the exercise conditions, except low intensity bicycling. EIH after bicycling was increased in women compared to men. CPM and the EIH response after isometric exercises were comparable in men and women and not affected by age. The EIH response was larger in the exercising body part...

  10. Systemic Exercise-Induced Hypoalgesia Following Isometric Exercise Reduces Conditioned Pain Modulation

    DEFF Research Database (Denmark)

    Alsouhibani, Ali; Vaegter, Henrik Bjarke; Hoeger Bement, Marie

    2018-01-01

    Objective: Physically active individuals show greater conditioned pain modulation (CPM) compared with less active individuals. Understanding the effects of acute exercise on CPM may allow for a more targeted use of exercise in the management of pain. This study investigated the effects of acute...... isometric exercise on CPM. In addition, the between-session and within-session reliability of CPM was investigated. Design: Experimental, randomized crossover study. Setting: Laboratory at Marquette University. Subjects: Thirty healthy adults (19.3±1.5 years, 15 males). Methods: Subjects underwent CPM....... Results: PPTs increased during ice water immersion (i.e., CPM), and quadriceps PPT increased after exercise (P CPM decreased similarly following exercise and quiet rest (P > 0.05). CPM within-session reliability was fair to good (intraclass correlation coefficient [ICC] = 0...

  11. Atypical central pain processing in sensory modulation disorder: absence of temporal summation and higher after-sensation.

    Science.gov (United States)

    Bar-Shalita, T; Vatine, J-J; Yarnitsky, D; Parush, S; Weissman-Fogel, I

    2014-02-01

    Sensory over-responsivity (SOR), a subtype of the proposed sensory modulation disorder (SMD), is characterized by over-responsiveness to stimuli in several sensory modalities. SMD individuals demonstrate abnormal responses to naturally occurring stimuli in a manner that interferes with daily life participation. Previous psychophysical testing of the somatosensory system revealed that SOR individuals rated pain sensations higher than controls, demonstrating hyperalgesia that can be centrally mediated. Temporal summation (TS) of second pain and after-sensation are manifestations of central sensitization; therefore, this study explored these measures for better characterization of central pain processing in SOR. Twelve SOR adults and 12 healthy controls participated. TS was produced by a train of fifteen repetitive heat pulses, 0.7 s duration each, and 2 s of inter-stimulus interval, applied to the thenar-eminence, while four pain ratings were obtained. An after-sensation was then measured for 5 min, obtaining six pain ratings. No TS of pain was indicated in the SOR group (SOR: p = 0.36; control: p sensation, individuals with SOR continued to report pain for the duration of the 5 min measured (p = 0.002). These results demonstrate an atypical response pattern, suggesting alteration in pain processing and/or modulation at a central level in individuals with SOR. These possible neural changes may manifest themselves as interference with daily functioning as well as shed light on some of the between-subject variability seen in psychophysical testing in non-painful subjects.

  12. What colour is my arm? Changes in skin colour of an embodied virtual arm modulates pain threshold

    Directory of Open Access Journals (Sweden)

    Matteo eMartini

    2013-07-01

    Full Text Available It has been demonstrated that visual inputs can modulate pain. However, the influence of skin colour on pain perception is unknown. Red skin is associated to inflamed, hot and more sensitive skin while blue is associated to cold. We aimed to test whether the colour of the skin would alter the heat pain threshold. To this end, we used an immersive virtual environment where we induced embodiment of a virtual arm that was co-located with the real one and seen from a first person perspective. Virtual reality allowed us to dynamically modify the colour of the skin of the virtual arm. In order to test pain threshold, increasing ramps of heat stimulation applied on the participants’ arm were delivered concomitantly with the gradual intensification of different colours on the embodied avatar’s arm. We found that a reddened arm significantly decreased the pain threshold compared with normal and bluish coloured skin. This effect was specific when red was seen in the arm, while seeing red in a spot outside the arm did not decrease pain threshold. These results demonstrate an influence of skin colour on pain perception. This top-down modulation of pain through visual input suggests a potential use of embodied virtual bodies for pain therapy.

  13. Muscle pain induced by static contraction in rats is modulated by peripheral inflammatory mechanisms.

    Science.gov (United States)

    Santos, Diogo Francisco da Silva Dos; Melo Aquino, Bruna de; Jorge, Carolina Ocanha; Azambuja, Graciana de; Schiavuzzo, Jalile Garcia; Krimon, Suzy; Neves, Juliana Dos Santos; Parada, Carlos Amilcar; Oliveira-Fusaro, Maria Claudia Gonçalves

    2017-09-01

    Muscle pain is an important health issue and frequently related to static force exertion. The aim of this study is to evaluate whether peripheral inflammatory mechanisms are involved with static contraction-induced muscle pain in rats. To this end, we developed a model of muscle pain induced by static contraction performed by applying electrical pulses through electrodes inserted into muscle. We also evaluated the involvement of neutrophil migration, bradykinin, sympathetic amines and prostanoids. A single session of sustained static contraction of gastrocnemius muscle induced acute mechanical muscle hyperalgesia without affecting locomotor activity and with no evidence of structural damage in muscle tissue. Static contraction increased levels of creatine kinase but not lactate dehydrogenase, and induced neutrophil migration. Dexamethasone (glucocorticoid anti-inflammatory agent), DALBK (bradykinin B1 antagonist), Atenolol (β1 adrenoceptor antagonist), ICI 118,551 (β2 adrenoceptor antagonist), indomethacin (cyclooxygenase inhibitor), and fucoidan (non-specific selectin inhibitor) all reduced static contraction-induced muscle hyperalgesia; however, the bradykinin B2 antagonist, bradyzide, did not have an effect on static contraction-induced muscle hyperalgesia. Furthermore, an increased hyperalgesic response was observed when the selective bradykinin B1 agonist des-Arg 9 -bradykinin was injected into the previously stimulated muscle. Together, these findings demonstrate that static contraction induced mechanical muscle hyperalgesia in gastrocnemius muscle of rats is modulated through peripheral inflammatory mechanisms that are dependent on neutrophil migration, bradykinin, sympathetic amines and prostanoids. Considering the clinical relevance of muscle pain, we propose the present model of static contraction-induced mechanical muscle hyperalgesia as a useful tool for the study of mechanisms underlying static contraction-induced muscle pain. Copyright © 2017 IBRO

  14. Adaptations in responsiveness of brainstem pain-modulating neurons in acute compared to chronic inflammation

    Science.gov (United States)

    Cleary, Daniel R.; Heinricher, Mary M.

    2013-01-01

    Despite similar behavioral hypersensitivity, acute and chronic pain have distinct neural bases. Here we used intraplantar injection of Complete Freund’s Adjuvant (CFA) to directly compare activity of pain-modulating neurons in the rostral ventromedial medulla (RVM) in acute versus chronic inflammation. Heat- and von Frey-evoked withdrawal reflexes and corresponding RVM neuronal activity were recorded in lightly anesthetized animals either during the first hour after CFA injection (acute) or 3–10 days later (chronic). Thermal and modest mechanical hyperalgesia during acute inflammation were associated with increases in the spontaneous activity of pain-facilitating ON-cells and suppression of pain-inhibiting OFF-cells. Acute hyperalgesia was reversed by RVM block, showing that the increased activity of RVM ON-cells is necessary for acute behavioral hypersensitivity. In chronic inflammation, thermal hyperalgesia had resolved, but mechanical hyperalgesia had become pronounced. The spontaneous discharges of ON- and OFF-cells were not different from controls, but the mechanical response thresholds for both cell classes were reduced into the innocuous range. RVM block in the chronic condition worsened mechanical hyperalgesia. These studies identify distinct contributions of RVM ON- and OFF-cells to acute and chronic inflammatory hyperalgesia. During early immune-mediated inflammation, ON-cell spontaneous activity promotes hyperalgesia. After inflammation is established, the anti-nociceptive influence of OFF-cells is dominant, yet the lowered threshold for the OFF-cell pause allows behavioral responses to stimuli that would normally be considered innocuous. The efficacy of OFF-cells in counteracting sensitization of ascending transmission pathways could therefore be an important determining factor in development of chronic inflammatory pain. PMID:23588008

  15. Pain and sensory detection threshold response to acupuncture is modulated by coping strategy and acupuncture sensation.

    Science.gov (United States)

    Lee, Jeungchan; Napadow, Vitaly; Park, Kyungmo

    2014-09-01

    Acupuncture has been shown to reduce pain, and acupuncture-induced sensation may be important for this analgesia. In addition, cognitive coping strategies can influence sensory perception. However, the role of coping strategy on acupuncture modulation of pain and sensory thresholds, and the association between acupuncture sensation and these modulatory effects, is currently unknown. Electroacupuncture (EA) was applied at acupoints ST36 and GB39 of 61 healthy adults. Different coping conditions were experimentally designed to form an active coping strategy group (AC group), who thought they could control EA stimulation intensity, and a passive coping strategy group (PC group), who did not think they had such control. Importantly, neither group was actually able to control EA stimulus intensity. Quantitative sensory testing was performed before and after EA, and consisted of vibration (VDT), mechanical (MDT), warm (WDT), and cold (CDT) detection thresholds, and pressure (PPT), mechanical (MPT), heat (HPT) and cold (CPT) pain thresholds. Autonomic measures (e.g. skin conductance response, SCR) were also acquired to quantify physiological response to EA under different coping conditions. Subjects also reported the intensity of any acupuncture-induced sensations. Coping strategy was induced with successful blinding in 58% of AC subjects. Compared to PC, AC showed greater SCR to EA. Under AC, EA reduced PPT and CPT. In the AC group, improved pain and sensory thresholds were correlated with acupuncture sensation (VDTchange vs. MI: r=0.58, CDTchange vs. tingling: r=0.53, CPTchange vs. tingling; r=0.55, CPTchange vs. dull; r=0.55). However, in the PC group, improved sensory thresholds were negatively correlated with acupuncture sensation (CDTchange vs. intensity sensitization: r=-0.52, WDTchange vs. fullness: r=-0.57). Our novel approach was able to successfully induce AC and PC strategies to EA stimulation. The interaction between psychological coping strategy and

  16. Inactivity Is Nycthemeral, Endogenously Generated, Homeostatically Regulated, and Melatonin Modulated in a Free-Living Platyhelminth Flatworm.

    Science.gov (United States)

    Omond, Shauni; Ly, Linh M T; Beaton, Russell; Storm, Jonathan J; Hale, Matthew W; Lesku, John A

    2017-10-01

    Sleep either appeared once early in the evolution of animals, or at multiple instances over evolutionary time. Understanding whether sleep is a diagnostic trait for members of the kingdom Animalia has important implications for our understanding of the evolution of sleep and sleep functions. Unfortunately, knowledge on the phylogenetic breadth of sleep is restricted to vertebrates, a few arthropods and molluscs, and one species of nematode. There is a dearth of information on the other 30 or so animal phyla. Here, we provide original data on a previously unstudied group of animals with respect to sleep: platyhelminth flatworms. These free-living animals are relatively simple, with a rudimentary central nervous system and absence of many other specialized physiological systems. Despite this simplicity, inactive flatworms appeared to be sleeping. Specifically, quiescence was organized in a circadian manner, occurring largely during the daytime. This basic rhythm persisted under constant darkness, suggesting that it was endogenously generated. Active flatworms responded more readily to stimulation, and flatworms recovered lost sleep by sleeping longer after a 3-hour period of inactivity deprivation. We were also able to increase inactivity in a dose-dependent manner with exposure to melatonin, a hormone that increases sleep in diurnal animals. Taken together, these data expand our understanding of the phylogenetic extent of sleep and reinforce the idea that sleep evolved early in the evolutionary history of animals. However, additional studies on other types of animals are required for a comprehensive understanding of the origin(s) and evolution of sleep. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  17. Modulation of formalin-induced pain-related behaviour by clonidine and yohimbine in the Speke's hinged tortoise (Kiniskys spekii)

    DEFF Research Database (Denmark)

    Makau, C M; Towett, P K; Abelson, K S P

    2017-01-01

    The study was designed to investigate the involvement of noradrenergic and serotonergic receptor systems in the modulation of formalin-induced pain-related behaviour in the Speke's hinged tortoise. Intradermal injection of 100 μL of formalin at a dilution of 12.5% caused pain-related behaviour...... reduction in the duration of the formalin-induced pain-related behaviour. The effect of clonidine was reversed by intrathecal administration of yohimbine at a dose of 26.7 μg/kg. The effect of yohimbine at a dose of 50 μg/kg was reversed by intrathecal injection of 20 μg/kg of the serotonergic receptor...... in tortoises. The data also suggest that testudines have noradrenergic and serotonergic systems that appear to play a role in the modulation of pain in this species....

  18. Experimental muscle pain produces central modulation of proprioceptive signals arising from jaw muscle spindles.

    Science.gov (United States)

    Capra, N F; Ro, J Y

    2000-05-01

    The aim of the present study was to investigate the effects of intramuscular injection with hypertonic saline, a well-established experimental model for muscle pain, on central processing of proprioceptive input from jaw muscle spindle afferents. Fifty-seven cells were recorded from the medial edge of the subnucleus interpolaris (Vi) and the adjacent parvicellular reticular formation from 11 adult cats. These cells were characterized as central units receiving jaw muscle spindle input based on their responses to electrical stimulation of the masseter nerve, muscle palpation and jaw stretch. Forty-five cells, which were successfully tested with 5% hypertonic saline, were categorized as either dynamic-static (DS) (n=25) or static (S) (n=20) neurons based on their responses to different speeds and amplitudes of jaw movement. Seventy-six percent of the cells tested with an ipsilateral injection of hypertonic saline showed a significant modulation of mean firing rates (MFRs) during opening and/or holding phases. The most remarkable saline-induced change was a significant reduction of MFR during the hold phase in S units (100%, 18/18 modulated). Sixty-nine percent of the DS units (11/16 modulated) also showed significant changes in MFRs limited to the hold phase. However, in the DS neurons, the MFRs increased in seven units and decreased in four units. Finally, five DS neurons showed significant changes of MFRs during both opening and holding phases. Injections of isotonic saline into the ipsilateral masseter muscle had little effect, but hypertonic saline injections made into the contralateral masseter muscle produced similar results to ipsilateral injections with hypertonic saline. These results unequivocally demonstrate that intramuscular injection with an algesic substance, sufficient to produce muscle pain, produces significant changes in the proprioceptive properties of the jaw movement-related neurons. Potential mechanisms involved in saline-induced changes in the

  19. Cerebral responses and role of the prefrontal cortex in conditioned pain modulation: an fMRI study in healthy subjects

    Science.gov (United States)

    Bogdanov, Volodymyr B.; Viganò, Alessandro; Noirhomme, Quentin; Bogdanova, Olena V.; Guy, Nathalie; Laureys, Steven; Renshaw, Perry F.; Dallel, Radhouane; Phillips, Christophe; Schoenen, Jean

    2017-01-01

    The mechanisms underlying conditioned pain modulation (CPM) are multifaceted. We searched for a link between individual differences in prefrontal cortex activity during multi-trial heterotopic noxious cold conditioning and modulation of the cerebral response to phasic heat pain. In 24 healthy female subjects, we conditioned laser heat stimuli to the left hand by applying alternatively ice-cold or lukewarm compresses to the right foot. We compared pain ratings with cerebral fMRI BOLD responses. We also analyzed the relation between CPM and BOLD changes produced by the heterotopic cold conditioning itself, as well as the impact of anxiety and habituation of cold-pain ratings. Specific cerebral activation was identified in precuneus and left posterior insula/SII, respectively, during early and sustained phases of cold application. During cold conditioning, laser pain decreased (n = 7), increased (n = 10) or stayed unchanged (n = 7). At the individual level, the psychophysical effect was directly proportional to the cold-induced modulation of the laser-induced BOLD response in left posterior insula/SII. The latter correlated with the BOLD response recorded 80 s earlier during the initial 10-s phase of cold application in anterior cingulate, orbitofrontal and lateral prefrontal cortices. High anxiety and habituation of cold pain were associated with greater laser heat-induced pain during heterotopic cold stimulation. The habituation was also linked to the early cold-induced orbitofrontal responses. We conclude that individual differences in conditioned pain modulation are related to different levels of prefrontal cortical activation by the early part of the conditioning stimulus, possibly due to different levels in trait anxiety. PMID:25461267

  20. Naringin ameliorates acetic acid induced colitis through modulation of endogenous oxido-nitrosative balance and DNA damage in rats

    Science.gov (United States)

    Kumar, Venkatashivam Shiva; Rajmane, Anuchandra Ramchandra; Adil, Mohammad; Kandhare, Amit Dattatraya; Ghosh, Pinaki; Bodhankar, Subhash Laxman

    2014-01-01

    The aim of this study was to evaluate the effect of naringin on experimentally induced inflammatory bowel disease in rats. Naringin (20, 40 and 80 mg/kg) was given orally for 7 days to Wistar rats before induction of colitis by intrarectal instillation of 2 mL of 4% (v/v) acetic acid solution. The degree of colonic mucosal damage was analyzed by examining mucosal damage, ulcer area, ulcer index and stool consistency. Intrarectal administration of 4% acetic acid resulted in significant modulation of serum alkaline phosphatase, lactate dehydrogenase, superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA) and myeloperoxidase (MPO) content along with colonic nitric oxide (NO), xanthine oxidase (XO) level and protein carbonyl content in the colonic tissue as well as in blood. Naringin (40 and 80 mg/kg) exerted a dose dependent (P < 0.05) ameliorative effect, as it significantly increased hematological parameter as well as colonic SOD and GSH. There was a significant (P < 0.05) and dose dependant inhibition of macroscopical score, ulcer area along with colonic MDA, MPO activity by the 7 days of pretreatment of naringin (40 and 80 mg/kg). Biochemical studies revealed a significant (P < 0.05) dose dependant inhibition in serum alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) levels by pretreatment of naringin. Increased levels of colonic NO, XO, protein carbonyl content and DNA damage were also significantly decreased by naringin pretreatment. The findings of the present investigation propose that naringin has an anti-inflammatory, anti-oxidant and anti-apoptotic potential effect at colorectal sites as it modulates the production and expression of oxidative mediators such as MDA, MPO, NO and XO, thus reducing DNA damage. PMID:24683411

  1. Three-finger snake neurotoxins and Ly6 proteins targeting nicotinic acetylcholine receptors: pharmacological tools and endogenous modulators.

    Science.gov (United States)

    Tsetlin, Victor I

    2015-02-01

    Snake venom neurotoxins and lymphocyte antigen 6 (Ly6) proteins, most of the latter being membrane tethered by a glycosylphosphatidylinositol (GPI) anchor, have a variety of biological activities, but their three-finger (3F) folding combines them in one Ly6/neurotoxin family. Subsets of two groups, represented by α-neurotoxins and Lynx1, respectively, interact with nicotinic acetylcholine receptors (nAChR) and, hence, are of therapeutic interest for the treatment of neurodegenerative diseases, pain, and cancer. Information on the mechanisms of action and 3D structure of the binding sites, which is required for drug design, is available from the 3D structure of α-neurotoxin complexes with nAChR models. Here, I compare the structural and functional features of α-neurotoxins versus Lynx1 and its homologs to get a clearer picture of Lynx1-nAChR interactions that is necessary for fundamental science and practical applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Opioid involvement in the perception of pain due to endurance exercise in trained man

    DEFF Research Database (Denmark)

    Paulev, P E; Thorbøll, J E; Nielsen, U

    1989-01-01

    The purpose of this study was to evaluate the role of endogenous opiates in modulating physical performance during dynamic exercise in conscious man. The plasma concentration of beta-endorphin (BEP) and of adrenocorticotropic hormone (ACTH) along with muscle pain (McGuill Pain Questionnaire) were...

  3. Peripheral Galanin Receptor 2 as a Target for the Modulation of Pain

    Directory of Open Access Journals (Sweden)

    Richard P. Hulse

    2012-01-01

    Full Text Available The neuropeptide galanin is widely expressed in the nervous system and has an important role in nociception. It has been shown that galanin can facilitate and inhibit nociception in a dose-dependent manner, principally through the central nervous system, with enhanced antinociceptive actions after nerve injury. However, following nerve injury, expression of galanin within the peripheral nervous system is dramatically increased up to 120-fold. Despite this striking increase in the peripheral nervous system, few studies have investigated the role that galanin plays in modulating nociception at the primary afferent nociceptor. Here, we summarise the recent work supporting the role of peripherally expressed galanin with particular reference to the dual actions of the galanin receptor 2 in neuropathic pain highlighting this as a potential target analgesic.

  4. Opioid modulation of facial itch- and pain-related responses and grooming behavior in rats.

    Science.gov (United States)

    Spradley, Jessica M; Davoodi, Auva; Carstens, Mirela Iodi; Carstens, Earl

    2012-09-01

    Intradermal facial injections of pruritogens or algogens elicit distinct behavioral hindlimb scratch or forelimb wiping responses in rodents. We systematically investigated the parameters and opioid modulation of these evoked behaviors and spontaneous facial grooming in rats. Serotonin (5-HT) elicited hindlimb scratch bouts with few wipes. Scratching was attenuated by the µ-opiate antagonist naltrexone but not morphine. In contrast, cheek injection of mustard oil (allyl-isothiocyanate (AITC)) elicited ipsilateral forelimb wipes but little hindlimb scratching. AITC-evoked wiping was significantly attenuated by morphine but not naltrexone. Spontaneous facial grooming by the forepaws was attenuated by naltrexone, whereas morphine did not affect grooming behavior before or after cheek injections of 5-HT or AITC. These data validate that the rodent "cheek" model discriminates between itch- and pain-related behaviors. Naltrexone sensitivity of facial grooming and 5-HT-evoked scratch-ing suggests a common functionality. Forelimb wipes may represent a nocifensive response akin to rubbing an injury to relieve pain.

  5. Spinal translocator protein (TSPO) modulates pain behavior in rats with CFA-induced monoarthritis.

    Science.gov (United States)

    Hernstadt, Hayley; Wang, Shuxing; Lim, Grewo; Mao, Jianren

    2009-08-25

    Translocator protein 18 kDa (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), is predominantly located in the mitochondrial outer membrane and plays an important role in steroidogenesis, immunomodulation, cell survival and proliferation. Previous studies have shown an increased expression of TSPO centrally in neuropathology, as well as in injured nerves. TSPO has also been implicated in modulation of nociception. In the present study, we examined the hypothesis that TSPO is involved in the initiation and maintenance of inflammatory pain using a rat model of Complete Freund's Adjuvant (CFA)-induced monoarthritis of the tibio-tarsal joint. Immunohistochemistry was performed using Iba-1 (microglia), NeuN (neurons), anti-Glial Fibrillary Acidic Protein, GFAP (astrocytes) and anti-PBR (TSPO) on Days 1, 7 and 14 after CFA-induced arthritis. Rats with CFA-induced monoarthritis showed mechanical allodynia and thermal hyperalgesia on the ipsilateral hindpaw, which correlated with the increased TSPO expression in ipsilateral laminae I-II on all experimental days. Iba-1 expression in the ipsilateral dorsal horn was also increased on Days 7 and 14. Moreover, TSPO was colocalized with Iba-1, GFAP and NeuN within the spinal cord dorsal horn. The TSPO agonist Ro5-4864, given intrathecally, dose-dependently retarded or prevented the development of mechanical allodynia and thermal hyperalgesia in rats with CFA-induced monoarthritis. These findings provide evidence that spinal TSPO is involved in the development and maintenance of inflammatory pain behaviors in rats. Thus, spinal TSPO may present a central target as a complementary therapy to reduce inflammatory pain.

  6. Co-release of endogenous ATP and [{sup 3}H]noradrenaline from rat hypothalamic slices: origin and modulation by {alpha}{sub 2}-adrenoceptors

    Energy Technology Data Exchange (ETDEWEB)

    Vizi, E.S. [Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest (Hungary); Lajtha, A.; Sershen, H. [Center for Neurochemistry, The N.S. Kline Institute for Psychiatric Research, Orangeburg, New York (United States); Sperlagh, B. [Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest (Hungary)

    1997-10-17

    was without effect. In contrast, neither of the {alpha}{sub 2}-antagonists significantly affected the evoked-release of ATP.In summary, we report here that endogenous ATP and [{sup 3}H]noradrenaline are co-released stimulation-dependently from superfused rat hypothalamic slices. A significant part of the release of both compounds is derived from the nerve terminals, originating from the A1 catecholaminergic cell group of brainstem nuclei. Unlike that from the peripheral sympathetic transmission, noradrenaline and {alpha}{sub 1}-adrenoceptor agonists were unable to promote the release of ATP. Conversely, parallel ATP and noradrenaline release could be induced by nicotine receptor activation, but this release does not originate from the same nerve endings. The evoked-release of [{sup 3}H]noradrenaline is inhibited by endogenous noradrenaline via {alpha}{sub 2AD} subtype of adrenoreceptors, while the release of ATP is not subject to this autoinhibitory modulation. In conclusion, our results support the view that ATP is involved in the neurotransmission in the hypothalamus, but the sources of the released ATP and noradrenaline seem to be not identical under different stimulatory and modulatory conditions. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. The long-term impact of tissue injury on pain processing and modulation: a study on ex-prisoners of war who underwent torture.

    Science.gov (United States)

    Defrin, R; Ginzburg, K; Mikulincer, M; Solomon, Z

    2014-04-01

    Tissue injury may, in some instances, induce chronic pain lasting for decades. Torture survivors suffer from high rates of chronic pain and hypersensitivity in the previously injured regions. Whether torture survivors display generalized alterations in pain perception and modulation, and whether such alterations underlie their chronic pain is unknown. We aimed at exploring the long-term alterations in pain perception and modulation in torture survivors. In order to address these questions, a systematic quantitative somatosensory evaluation was performed in individuals (n = 60) who suffer from chronic pain, and who, decades previously, were tortured, resulting in substantial tissue damage. These individuals were compared with age- and sex-matched individuals (n = 44) of similar background. Testing included the measurement of pain threshold and pain tolerance, perceived suprathreshold stimuli, conditioned pain modulation (CPM) and temporal summation of pain (TSP) in intact body regions. Chronic pain was found highly prevalent (86.6%) among torture survivors, who exhibited higher suprathreshold pain ratings (p < 0.05), poorer CPM (p < 0.0001) and stronger TSP (p < 0.0001) than controls. Significant differences in CPM and TSP were also found between torture survivors and controls with chronic pain. Chronic pain intensity among torture survivors correlated negatively with the magnitude of CPM (r = -0.47, p < 0.01). Torture appears to induce generalized dysfunctional pain modulation that may underlie the intense chronic pain experienced by torture survivors decades after torture. The results may be generalized to instances where chronic pain exists for decades after severe injury in non-tortured populations and emphasize the importance of preventive care. © 2013 European Pain Federation - EFIC®

  8. State anxiety and depression as factors modulating and influencing postoperative pain in dental implant surgery. A prospective clinical survey

    Science.gov (United States)

    Gómez-de Diego, Rafael; Cutando-Soriano, Antonio; Montero-Martín, Javier; Prados-Frutos, Juan C.

    2014-01-01

    Objetives: To determine whether preoperative state anxiety and depression modulate or influence objective and subjective postoperative pain following dental implant insertion. Study Design: Prospective, clinical study with 7-day follow-up of a sample of 105 subjects who preoperatively completed the state anxiety questionnaire (STAI-E) and Beck Depression Inventory (BDI) and postoperatively, at 2 and 7 days, recorded objective pain with the Semmes-Weinstein mechanical esthesiometer (SW test) and subjective pain with the Visual Analog Scale (VAS). Results: 85.6% and 81.5% of patients, respectively, recorded no signs of state anxiety or depression. The correlation between anxiety and depression for both maxillary bones was the lower (P=0.02). The correlation between subjective and objective pain at 2 and 7 days, and the anatomic regions intervened, was statistically significant in the mandible at day 7 (P<0.01), and highly significant (P<0.001) for the other variables. The correlation between state anxiety and objective pain at day 7 was nearly statistically significant (P=0.07). Conclusions: The correlation between state anxiety and depression, and objective and subjective pain at day 7 was not statistically significant. A strong correlation was found between objective and subjective pain in the immediate postoperative period. Key words:Anxiety, depression, postoperative pain, dental implants. PMID:24880447

  9. SR-16234, a Novel Selective Estrogen Receptor Modulator for Pain Symptoms with Endometriosis: An Open-label Clinical Trial.

    Science.gov (United States)

    Harada, Tasuku; Ohta, Ikuko; Endo, Yusuke; Sunada, Hiroshi; Noma, Hisashi; Taniguchi, Fuminori

    2017-12-01

    SR-16234 is a selective estrogen receptor modulator (SERM) structurally different from approved SERM and has been reported to have estrogen receptor (ER) α antagonistic activity and strong affinity with a weak partial agonistic activity to ERβ receptor. SR-16234 showed strong inhibitory effects on transplanted endometrial cysts in the endometriosis model of rat and mouse. In this clinical trial, efficacy and safety of SR-16234 have been evaluated in endometriosis patients. This trial was an open-label single arm clinical trial. Ten patients with dysmenorrhea and pelvic pain associated with endometriosis and adenomyosis were enrolled in this trial, and received 40 mg of SR-16234 once daily for 12 weeks. The primary endpoint was the visual analogue scale (VAS) of pelvic pain. The secondary endpoints included dysmenorrhea score, pelvic pain score, objective observations (stiffness of Douglas' pouch, limitation of uterine movement, size of ovarian chocolate cysts, thickness of endometrium, and serum CA125 concentration) and safety. After oral administration of SR-16234 40 mg for 12 weeks, there were statistically significant decreases in pelvic pain VAS, total pelvic pain score, total dysmenorrhea score, stiffness of Douglas' pouch, limitation of uterine movement compared with the baseline values. The present trial suggested that a selective estrogen receptor modulator could be used for treatment of pain associated with endometriosis for the first time.

  10. Conditioned Pain Modulation and Pressure Pain Sensitivity in the Adult Danish General Population: The DanFunD Study

    DEFF Research Database (Denmark)

    Skovbjerg, Sine; Jørgensen, Torben; Arendt-Nielsen, Lars

    2017-01-01

    was associated with lower PPTs (P body mass index and sex. CPM potency was lower in female compared with male participants (P ≤ .003), whereas no association with age was found. Higher level of education (P ≤ .05), premature withdrawal from the cold pressor test...... with cold pressor pain (hand) for 2 minutes. Conditioning pain intensity was assessed using a visual analog scale and questionnaire data were collected. Female sex (P body sites. For the trapezius muscle, high perceived stress...

  11. An investigation into the analgesic effects of different frequencies of the amplitude-modulated wave of interferential current therapy on cold-induced pain in normal subjects.

    Science.gov (United States)

    Johnson, Mark I; Tabasam, Ghazala

    2003-09-01

    To investigate the analgesic effects of different amplitude-modulated frequencies of interferential current therapy (IFT) on cold-induced pain in healthy subjects. Single-blind parallel group methodology was used. Subjects completed 6 cycles of the cold-induced pain test (2 pretreatment, 2 during treatment, 2 posttreatment). During each cycle, subjects plunged their hand into iced water and the time taken to reach pain threshold was recorded. The hand remained immersed in the iced water for a further 30 seconds, after which the self-reports of pain intensity and pain unpleasantness were recorded. Laboratory in the United Kingdom. Sixty unpaid, pain-free volunteers without a known pathology that could cause pain. IFT delivered on the nondominant arm at a "strong but comfortable" intensity without visible muscle twitches, using a quadripolar application technique at 1 of 6 possible amplitude modulated "beat" frequencies (20, 60, 100, 140, 180, 220Hz). The percentage change in pain threshold, pain intensity, and pain unpleasantness from the pretreatment baseline. Two-way repeated-measures analyses of variance found no effects for groups for pain threshold (P=.11) or pain ratings (P>.05). There were no effects for cycle for any of the outcome measures. Effects for group by cycle interaction were noted for pain intensity and unpleasantness ratings (P<.05), although post hoc analysis failed to determine the nature of this interaction. Experimentally induced cold pain was not influenced by IFT frequencies.

  12. Chronic whiplash and central sensitization; an evaluation of the role of a myofascial trigger points in pain modulation

    Directory of Open Access Journals (Sweden)

    Freeman Michael D

    2009-04-01

    Full Text Available Abstract Objective it has been established that chronic neck pain following whiplash is associated with the phenomenon of central sensitization, in which injured and uninjured parts of the body exhibit lowered pain thresholds due to an alteration in central pain processing. it has furthermore been hypothesized that peripheral sources of nociception in the muscles may perpetuate central sensitization in chronic whiplash. the hypothesis explored in the present study was whether myofascial trigger points serve as a modulator of central sensitization in subjects with chronic neck pain. Design controlled case series. Setting outpatient chronic pain clinic. Subjects seventeen patients with chronic and intractable neck pain and 10 healthy controls without complaints of neck pain. Intervention symptomatic subjects received anesthetic infiltration of myofascial trigger points in the upper trapezius muscles and controls received the anesthetic in the thigh. Outcome measures: pre and post injection cervical range of motion, pressure pain thresholds (ppt over the infraspinatus, wrist extensor, and tibialis anterior muscles. sensitivity to light (photophobia and subjects' perception of pain using a visual analog scale (vas were also evaluated before and after injections. only the ppt was evaluated in the asymptomatic controls. Results immediate (within 1 minute alterations in cervical range of motion and pressure pain thresholds were observed following an average of 3.8 injections with 1–2 cc of 1% lidocaine into carefully identified trigger points. cervical range of motion increased by an average of 49% (p = 0.000 in flexion and 44% (p = 0.001 in extension, 47% (p = 0.000 and 28% (p Conclusion the present data suggest that myofascial trigger points serve to perpetuate lowered pain thresholds in uninjured tissues. additionally, it appears that lowered pain thresholds associated with central sensitization can be immediately reversed, even when associated

  13. The Effects of Yin, Yang and Qi in the Skin on Pain

    Directory of Open Access Journals (Sweden)

    James David Adams

    2016-01-01

    Full Text Available The most effective and safe treatment site for pain is in the skin. This chapter discusses the reasons to treat pain in the skin. Pain is sensed in the skin through transient receptor potential cation channels and other receptors. These receptors have endogenous agonists (yang and antagonists (yin that help the body control pain. Acupuncture works through modulation of these receptor activities (qi in the skin; as do moxibustion and liniments. The treatment of pain in the skin has the potential to save many lives and improve pain therapy in most patients.

  14. The effect of a 5-HT2A receptor antagonist on pain-related behavior, endogenous 5-hydroxytryptamine production, and the expression 5-HT2A receptors in dorsal root ganglia in a rat lumbar disc herniation model.

    Science.gov (United States)

    Kato, Kinshi; Sekiguchi, Miho; Kikuchi, Shin-ichi; Konno, Shin-ichi

    2015-03-15

    Controlled, interventional, animal study. To evaluate the effect of a 5-HT2A receptor antagonist on pain-related behavior, endogenous 5-hydroxytryptamine (5-HT) plasma levels, and expression of 5-HT2A receptors in dorsal root ganglia (DRGs) in a rat lumbar disc herniation model. Application of nucleus pulposus on the nerve root induces immediate peripheral 5-HT production and the expression of 5-HT2A receptors in the adjacent DRG. However, the efficacy of a 5-HT2A receptor antagonist for pain relief in this situation and the mechanism remain unknown. Autologous nucleus pulposus was applied to the left L5 nerve root of 91 adult female Sprague-Dawley rats. The selective 5-HT2A receptor antagonist sarpogrelate hydrochloride (SPG; 1 mg/kg or 10 mg/kg) or vehicle was administered orally once a day from 1 to 21 days postoperatively. Von Frey tests were used to test pain behavior before and after surgery. To assess the effect of SPG on endogenous 5-HT release surrounding the inflamed nerve root, we measured levels of 5-hydroxyindole acetic acid, a 5-HT metabolite, in plasma. Expression of 5-HT2A receptors in the left L5 DRG was examined with immunoblotting. The higher dose (10 mg/kg) of SPG significantly improved the mechanical withdrawal thresholds from 5 to 21 days after surgery compared with vehicle treatment. 5-hydroxyindole acetic acid in plasma was not significantly different among any groups at any time points. Both doses of SPG inhibited the expression of 5-HT2A receptors after surgery compared with vehicle treatment. A selective 5-HT2A receptor antagonist attenuated pain-related behavior and suppressed 5-HT2A receptor expression in the DRG, but did not affect peripheral 5-HT production. Selective 5-HT2A receptor antagonists may attenuate sciatica by blocking and downregulating 5-HT2A receptors in DRGs in lumbar disc herniation. NA.

  15. Seeing One's Own Painful Hand Positioned in the Contralateral Space Reduces Subjective Reports of Pain and Modulates Laser Evoked Potentials.

    Science.gov (United States)

    Valentini, Elia; Koch, Katharina; Aglioti, Salvatore Maria

    2015-06-01

    Studies report that viewing the body or keeping one's arms crossed while receiving painful stimuli may have an analgesic effect. Interestingly, changes in ratings of pain are accompanied by a reduction of brain metabolism or of laser evoked potentials amplitude. What remains unknown is the link between visual analgesia and crossed-arms related analgesia. Here, we investigated pain perception and laser evoked potentials in 3 visual contexts while participants kept their arms in a crossed or uncrossed position during vision of 1) one's own hand, 2) a neutral object in the same spatial location, and 3) a fixation cross placed in front of the participant. We found that having vision of the affected body part in the crossed-arms position was associated with a significant reduction in pain reports. However, no analgesic effect of having vision of the hand in an uncrossed position or of crossing the arms alone was found. The increase of the late vertex laser evoked potential P2 amplitude indexed a general effect of vision of the hand. Our results hint at a complex interaction between cross-modal input and body representation in different spatial frames of reference and at the same time question the effect of visual analgesia and crossed-arms analgesia alone. We found that nociceptive stimuli delivered to the hand in a crossed-arms position evoke less pain than in a canonical anatomic position. Yet we report no significant analgesic effect of vision or crossing the arms on their own. These findings foster the integration of visuospatial and proprioceptive information in rehabilitation protocols. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.

  16. Pain modulation is affected differently in medication-overuse headache and chronic myofascial pain - A multimodal MRI study.

    Science.gov (United States)

    Michels, Lars; Christidi, Foteini; Steiger, Vivian R; Sándor, Peter S; Gantenbein, Andreas R; Landmann, Gunther; Schreglmann, Sebastian R; Kollias, Spyros; Riederer, Franz

    2017-07-01

    Background Neuroimaging studies revealed structural and functional changes in medication-overuse headache (MOH), but it remains unclear whether similar changes could be observed in other chronic pain disorders. Methods In this cross-sectional study, we investigated functional connectivity (FC) with resting-state functional magnetic resonance imaging (fMRI) and white matter integrity using diffusion tensor imaging (DTI) to measure fractional anisotropy (FA) and mean diffusivity (MD) in patients with MOH ( N = 12) relative to two control groups: patients with chronic myofascial pain (MYO; N = 11) and healthy controls (CN; N = 16). Results In a data-driven approach we found hypoconnectivity in the fronto-parietal attention network in both pain groups relative to CN (i.e. MOH < CN and MYO < CN). In contrast, hyperconnectivity in the saliency network (SN) was detected only in MOH, which correlated with FA in the insula. In a seed-based analysis we investigated FC between the periaqueductal grey (PAG) and all other brain regions. In addition to overlapping hyperconnectivity seen in patient groups (relative to CN), MOH had a distinct connectivity pattern with lower FC to parieto-occipital regions and higher FC to orbitofrontal regions compared to controls. FA and MD abnormalities were mostly observed in MOH, involving the insula. Conclusions Hyperconnectivity within the SN along with associated white matter changes therein suggest a particular role of this network in MOH. In addition, abnormal connectivity between the PAG and other pain modulatory (frontal) regions in MOH are consistent with dysfunctional central pain control.

  17. Peroxisome Proliferator-Activated Receptor Agonists Modulate Neuropathic Pain: a Link to Chemokines?

    Directory of Open Access Journals (Sweden)

    Caroline eFreitag

    2014-08-01

    Full Text Available Chronic pain presents a widespread and intractable medical problem. While numerous pharmaceuticals are used to treat chronic pain, drugs that are safe for extended use and highly effective at treating the most severe pain do not yet exist. Chronic pain resulting from nervous system injury (neuropathic pain is common in conditions ranging from multiple sclerosis to HIV-1 infection to type II diabetes. Inflammation caused by neuropathy is believed to contribute to the generation and maintenance of neuropathic pain. Chemokines are key inflammatory mediators, several of which (MCP-1, RANTES, MIP-1α, fractalkine, SDF-1 among others have been linked to chronic, neuropathic pain in both human conditions and animal models. The important roles chemokines play in inflammation and pain make them an attractive therapeutic target. Peroxisome proliferator-activated receptors are a family of nuclear receptors known for their roles in metabolism. Recent research has revealed that PPARs also play a role in inflammatory gene repression. PPAR agonists have wide-ranging effects including inhibition of chemokine expression and pain behavior reduction in animal models. Experimental evidence suggests a connection between PPAR agonists' pain ameliorating effects and suppression of inflammatory gene expression, including chemokines. In early clinical research, one PPARα agonist, palmitoylethanolamide, shows promise in relieving chronic pain. If this link can be better established, PPAR agonists may represent a new drug therapy for neuropathic pain.

  18. Modulation of formalin-induced pain-related behaviour by clonidine and yohimbine in the Speke's hinged tortoise (Kiniskys spekii).

    Science.gov (United States)

    Makau, C M; Towett, P K; Abelson, K S P; Kanui, T I

    2017-10-01

    The study was designed to investigate the involvement of noradrenergic and serotonergic receptor systems in the modulation of formalin-induced pain-related behaviour in the Speke's hinged tortoise. Intradermal injection of 100 μL of formalin at a dilution of 12.5% caused pain-related behaviour (hindlimb withdrawal) that lasted for a mean time of 19.28 min (monophasic response). Intrathecal administration of clonidine (α 2 -adrenergic receptor agonist) and yohimbine (α 2 -adrenergic receptor antagonist) at a dose of 40 μg/kg and 37.5 μg/kg or 50 μg/kg, respectively, caused a highly significant reduction in the duration of the formalin-induced pain-related behaviour. The effect of clonidine was reversed by intrathecal administration of yohimbine at a dose of 26.7 μg/kg. The effect of yohimbine at a dose of 50 μg/kg was reversed by intrathecal injection of 20 μg/kg of the serotonergic receptor antagonist methysergide maleate. When performing antagonistic reactions, the administration of the antagonist was followed immediately by that of the agonist. The study indicates that for experimental purposes, intrathecal route of drug administration through the atlanto-occipital joint is effective in tortoises. The data also suggest that testudines have noradrenergic and serotonergic systems that appear to play a role in the modulation of pain in this species. © 2016 John Wiley & Sons Ltd.

  19. Avoiding Opioids and Their Harmful Side Effects in the Postoperative Patient: Exogenous Opioids, Endogenous Endorphins, Wellness, Mood, and Their Relation to Postoperative Pain.

    Science.gov (United States)

    Stephan, Bradley C; Parsa, Fereydoun D

    2016-03-01

    Prescribed opioids are routinely used for many postoperative patients. However, these medications have daunting adverse effects on the body's innate pain management system--the action of the beta-endorphins. The prescribed opioids not only severely impair the function of the mu-opioid receptors, but also inhibit the release of beta-endorphin. This is unfortunate, because beta-endorphin appears to be a much more potent agonist of the mu-opioid receptor than opioids. In addition, beta-endorphin indirectly elevates dopamine, a neurotransmitter related to feelings of euphoria. Therefore, by prescribing opioids, practitioners may inadvertently prolong and increase the overall intensity of the postoperative patients' pain as well as herald anhedonia. This article highlights the relationships between prescribed (exogenous) opioids, beta-endorphins, mu-opioid receptors, wellness, mood, and postoperative pain. The role of patient education, opioid alternatives, and additional recommendations regarding pain control in the postoperative patient are also discussed.

  20. Pain

    OpenAIRE

    H.W. Snyman

    1980-01-01

    The medical profession has always been under pressure to supply public explanations of the diseases with which it deals. On the other hand, it is an old characteristic of the profession to devise comprehensive and unifying theories on all sorts of medical problems. Both these statements apply to pain - one of the most important and clinically striking phenomena and expressions of man since his origin in the mists of time.

  1. Pain

    Directory of Open Access Journals (Sweden)

    H.W. Snyman

    1980-09-01

    Full Text Available The medical profession has always been under pressure to supply public explanations of the diseases with which it deals. On the other hand, it is an old characteristic of the profession to devise comprehensive and unifying theories on all sorts of medical problems. Both these statements apply to pain - one of the most important and clinically striking phenomena and expressions of man since his origin in the mists of time.

  2. A Combined Water Extract of Frankincense and Myrrh Alleviates Neuropathic Pain in Mice via Modulation of TRPV1

    Directory of Open Access Journals (Sweden)

    Danyou Hu

    2017-01-01

    Full Text Available Frankincense and myrrh are widely used in clinics as a pair of herbs to obtain a synergistic effect for relieving pain. To illuminate the analgesia mechanism of frankincense and myrrh, we assessed its effect in a neuropathic pain mouse model. Transient receptor potential vanilloid 1 (TRPV1 plays a crucial role in neuropathic pain and influences the plasticity of neuronal connectivity. We hypothesized that the water extraction of frankincense and myrrh (WFM exerted its analgesia effect by modulating the neuronal function of TRPV1. In our study, WFM was verified by UHPLC-TQ/MS assay. In vivo study showed that nociceptive response in mouse by heat and capsaicin induced were relieved by WFM treatment. Furthermore, thermal hypersensitivity and mechanical allodynia were also alleviated by WFM treatment in a chronic constriction injury (CCI mouse model. CCI resulted in increased TRPV1 expression at both the mRNA and protein levels in predominantly small-to-medium neurons. However, after WFM treatment, TRPV1 expression was reverted in real-time PCR, Western blot, and immunofluorescence experiments. Calcium response to capsaicin was also decreased in cultured DRG neurons from CCI model mouse after WFM treatment. In conclusion, WFM alleviated CCI-induced mechanical allodynia and thermal hypersensitivity via modulating TRPV1.

  3. Endogene opioider og deres terapeutiske anvendelse i smertebehandling

    DEFF Research Database (Denmark)

    Juul, A; Pedersen, A T

    1990-01-01

    Cancer patients with chronic pain and obstetric patients have participated in clinical trials of the analgesic effects of endogenous opioids. It is possible to achieve adequate relief of pain in these patients following epidural or intrathecal administration of endogenous opioids. Further...

  4. Endogene opioider og deres terapeutiske anvendelse i smertebehandling

    DEFF Research Database (Denmark)

    Juul, A; Pedersen, A T

    1990-01-01

    Cancer patients with chronic pain and obstetric patients have participated in clinical trials of the analgesic effects of endogenous opioids. It is possible to achieve adequate relief of pain in these patients following epidural or intrathecal administration of endogenous opioids. Further investi...

  5. Plasticity-Related PKMζ Signaling in the Insular Cortex Is Involved in the Modulation of Neuropathic Pain after Nerve Injury

    Directory of Open Access Journals (Sweden)

    Jeongsoo Han

    2015-01-01

    Full Text Available The insular cortex (IC is associated with important functions linked with pain and emotions. According to recent reports, neural plasticity in the brain including the IC can be induced by nerve injury and may contribute to chronic pain. Continuous active kinase, protein kinase Mζ (PKMζ, has been known to maintain the long-term potentiation. This study was conducted to determine the role of PKMζ in the IC, which may be involved in the modulation of neuropathic pain. Mechanical allodynia test and immunohistochemistry (IHC of zif268, an activity-dependent transcription factor required for neuronal plasticity, were performed after nerve injury. After ζ-pseudosubstrate inhibitory peptide (ZIP, a selective inhibitor of PKMζ injection, mechanical allodynia test and immunoblotting of PKMζ, phospho-PKMζ (p-PKMζ, and GluR1 and GluR2 were observed. IHC demonstrated that zif268 expression significantly increased in the IC after nerve injury. Mechanical allodynia was significantly decreased by ZIP microinjection into the IC. The analgesic effect lasted for 12 hours. Moreover, the levels of GluR1, GluR2, and p-PKMζ were decreased after ZIP microinjection. These results suggest that peripheral nerve injury induces neural plasticity related to PKMζ and that ZIP has potential applications for relieving chronic pain.

  6. δ-opioid receptor and somatostatin receptor-4 heterodimerization: possible implications in modulation of pain associated signaling.

    Directory of Open Access Journals (Sweden)

    Rishi K Somvanshi

    Full Text Available Pain relief is the principal action of opioids. Somatostatin (SST, a growth hormone inhibitory peptide is also known to alleviate pain even in cases when opioids fail. Recent studies have shown that mice are prone to sustained pain and devoid of analgesic effect in the absence of somatostatin receptor 4 (SSTR4. In the present study, using brain slices, cultured neurons and HEK-293 cells, we showed that SSTR4 and δ-Opioid receptor (δOR exist in a heteromeric complex and function in synergistic manner. SSTR4 and δOR co-expressed in cortical/striatal brain regions and spinal cord. Using cultured neuronal cells, we describe the heterogeneous complex formation of SSTR4 and δOR at neuronal cell body and processes. Cotransfected cells display inhibition of cAMP/PKA and co-activation of SSTR4 and δOR oppose receptor trafficking induced by individual receptor activation. Furthermore, downstream signaling pathways either associated with withdrawal or pain relief are modulated synergistically with a predominant role of SSTR4. Inhibition of cAMP/PKA and activation of ERK1/2 are the possible cellular adaptations to prevent withdrawal induced by chronic morphine use. Our results reveal direct intra-membrane interaction between SSTR4 and δOR and provide insights for the molecular mechanism for the anti-nociceptive property of SST in combination with opioids as a potential therapeutic approach to avoid undesirable withdrawal symptoms.

  7. The control of tonic pain by active relief learning.

    Science.gov (United States)

    Zhang, Suyi; Mano, Hiroaki; Lee, Michael; Yoshida, Wako; Kawato, Mitsuo; Robbins, Trevor W; Seymour, Ben

    2018-02-27

    Tonic pain after injury characterises a behavioural state that prioritises recovery. Although generally suppressing cognition and attention, tonic pain needs to allow effective relief learning to reduce the cause of the pain. Here, we describe a central learning circuit that supports learning of relief and concurrently suppresses the level of ongoing pain. We used computational modelling of behavioural, physiological and neuroimaging data in two experiments in which subjects learned to terminate tonic pain in static and dynamic escape-learning paradigms. In both studies, we show that active relief-seeking involves a reinforcement learning process manifest by error signals observed in the dorsal putamen. Critically, this system uses an uncertainty ('associability') signal detected in pregenual anterior cingulate cortex that both controls the relief learning rate, and endogenously and parametrically modulates the level of tonic pain. The results define a self-organising learning circuit that reduces ongoing pain when learning about potential relief. © 2018, Zhang et al.

  8. The control of tonic pain by active relief learning

    Science.gov (United States)

    Mano, Hiroaki; Lee, Michael; Yoshida, Wako; Kawato, Mitsuo; Robbins, Trevor W

    2018-01-01

    Tonic pain after injury characterises a behavioural state that prioritises recovery. Although generally suppressing cognition and attention, tonic pain needs to allow effective relief learning to reduce the cause of the pain. Here, we describe a central learning circuit that supports learning of relief and concurrently suppresses the level of ongoing pain. We used computational modelling of behavioural, physiological and neuroimaging data in two experiments in which subjects learned to terminate tonic pain in static and dynamic escape-learning paradigms. In both studies, we show that active relief-seeking involves a reinforcement learning process manifest by error signals observed in the dorsal putamen. Critically, this system uses an uncertainty (‘associability’) signal detected in pregenual anterior cingulate cortex that both controls the relief learning rate, and endogenously and parametrically modulates the level of tonic pain. The results define a self-organising learning circuit that reduces ongoing pain when learning about potential relief. PMID:29482716

  9. Cultural modulation of the neural correlates of emotional pain perception: the role of other-focusedness.

    Science.gov (United States)

    Cheon, Bobby K; Im, Dong-Mi; Harada, Tokiko; Kim, Ji-Sook; Mathur, Vani A; Scimeca, Jason M; Parrish, Todd B; Park, Hyunwook; Chiao, Joan Y

    2013-06-01

    Cultures vary in the extent to which they emphasize group members to habitually attend to the needs, perspectives, and internal experiences of others compared to the self. Here we examined the influence that collectivistic and individualistic cultural environments may play on the engagement of the neurobiological processes that underlie the perception and processing of emotional pain. Using cross-cultural fMRI, Korean and Caucasian-American participants passively viewed scenes of others in situations of emotional pain and distress. Regression analyses revealed that the value of other-focusedness was associated with heightened neural response within the affective pain matrix (i.e. anterior cingulate cortex and insula) to a greater extent for Korean relative to Caucasian-American participants. These findings suggest that mindsets promoting attunement to the subjective experience of others may be especially critical for pain-related and potentially empathic processing within collectivistic relative to individualistic cultural environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Avoiding Opioids and Their Harmful Side Effects in the Postoperative Patient: Exogenous Opioids, Endogenous Endorphins, Wellness, Mood, and Their Relation to Postoperative Pain

    OpenAIRE

    Stephan, Bradley C; Parsa, Fereydoun D

    2016-01-01

    Prescribed opioids are routinely used for many postoperative patients. However, these medications have daunting adverse effects on the body's innate pain management system - the action of the beta-endorphins. The prescribed opioids not only severely impair the function of the mu-opioid receptors, but also inhibit the release of beta-endorphin. This is unfortunate, because beta-endorphin appears to be a much more potent agonist of the mu-opioid receptor than opioids. In addition, beta-endorphi...

  11. An investigation into the effects of frequency-modulated transcutaneous electrical nerve stimulation (TENS) on experimentally-induced pressure pain in healthy human participants.

    Science.gov (United States)

    Chen, Chih-Chung; Johnson, Mark I

    2009-10-01

    Frequency-modulated transcutaneous electrical nerve stimulation (TENS) delivers currents that fluctuate between preset boundaries over a fixed period of time. This study compared the effects of constant-frequency TENS and frequency-modulated TENS on blunt pressure pain in healthy human volunteers. Thirty-six participants received constant-frequency TENS (80 pps), frequency-modulated TENS (20 to 100 pps), and placebo (no current) TENS at a strong nonpainful intensity in a randomized cross-over manner. Pain threshold was taken from the forearm using pressure algometry. There were no statistical differences between constant-frequency TENS and frequency-modulated TENS after 20 minutes (OR = 1.54; CI, 0.29, 8.23, P = 1.0). Both constant-frequency TENS and frequency-modulated TENS were superior to placebo TENS (OR = 59.5, P TENS does not influence hypoalgesia to any greater extent than constant-frequency TENS when currents generate a strong nonpainful paraesthesia at the site of pain. The finding that frequency-modulated TENS and constant-frequency TENS were superior to placebo TENS provides further evidence that a strong yet nonpainful TENS intensity is a prerequisite for hypoalgesia. This study provides evidence that TENS, delivered at a strong nonpainful intensity, increases pain threshold to pressure algometry in healthy participants over and above that seen with placebo (no current) TENS. Frequency-modulated TENS does not increase hypoalgesia to any appreciable extent to that seen with constant-frequency TENS.

  12. Tempol modulates changes in xenobiotic permeability and occludin oligomeric assemblies at the blood-brain barrier during inflammatory pain

    Science.gov (United States)

    Lochhead, Jeffrey J.; McCaffrey, Gwen; Sanchez-Covarrubias, Lucy; Finch, Jessica D.; DeMarco, Kristin M.; Quigley, Colleen E.; Davis, Thomas P.

    2012-01-01

    Our laboratory has shown that λ-carrageenan-induced peripheral inflammatory pain (CIP) can alter tight junction (TJ) protein expression and/or assembly leading to changes in blood-brain barrier xenobiotic permeability. However, the role of reactive oxygen species (ROS) and subsequent oxidative stress during CIP is unknown. ROS (i.e., superoxide) are known to cause cellular damage in response to pain/inflammation. Therefore, we examined oxidative stress-associated effects at the blood-brain barrier (BBB) in CIP rats. During CIP, increased staining of nitrosylated proteins was detected in hind paw tissue and enhanced presence of protein adducts containing 3-nitrotyrosine occurred at two molecular weights (i.e., 85 and 44 kDa) in brain microvessels. Tempol, a pharmacological ROS scavenger, attenuated formation of 3-nitrotyrosine-containing proteins in both the hind paw and in brain microvessels when administered 10 min before footpad injection of λ-carrageenan. Similarly, CIP increased 4-hydroxynoneal staining in brain microvessels and this effect was reduced by tempol. Brain permeability to [14C]sucrose and [3H]codeine was increased, and oligomeric assemblies of occludin, a critical TJ protein, were altered after 3 h CIP. Tempol attenuated both [14C]sucrose and [3H]codeine brain uptake as well as protected occludin oligomers from disruption in CIP animals, suggesting that ROS production/oxidative stress is involved in modulating BBB functional integrity during pain/inflammation. Interestingly, tempol administration reduced codeine analgesia in CIP animals, indicating that oxidative stress during pain/inflammation may affect opioid delivery to the brain and subsequent efficacy. Taken together, our data show for the first time that ROS pharmacological scavenging is a viable approach for maintaining BBB integrity and controlling central nervous system drug delivery during acute inflammatory pain. PMID:22081706

  13. Menstrual cycle, beta-endorphins, and pain sensitivity in premenstrual dysphoric disorder.

    Science.gov (United States)

    Straneva, Patricia A; Maixner, William; Light, Kathleen C; Pedersen, Cort A; Costello, Nancy L; Girdler, Susan S

    2002-07-01

    This study examined pain sensitivity and pain modularity mechanisms (e.g., beta-endorphin levels, blood pressure) in women with premenstrual dysphoric disorder (PMDD; n = 27) and healthy controls (n = 27) during the follicular and luteal phases of the menstrual cycle. Physiological measures were taken during rest and ischemic pain testing. In both cycle phases, PMDD women (a) displayed lower resting cortisol and beta-endorphin levels and (b) exhibited shorter pain threshold and tolerance times and greater pain unpleasantness ratings during pain. PMDD women also reported greater pain unpleasantness and intensity and had lower beta-endorphin levels in their luteal phase and tended to display higher blood pressure levels at rest and during pain testing. Results suggest that endogenous opioids may be pathophysiologically relevant to PMDD and that the hypothalamic-pituitary-gonadal axis may modulate pain sensitivity in PMDD.

  14. Pain Modulation in Waking and Hypnosis in Women: Event-Related Potentials and Sources of Cortical Activity

    Science.gov (United States)

    De Pascalis, Vilfredo; Varriale, Vincenzo; Cacace, Immacolata

    2015-01-01

    Using a strict subject selection procedure, we tested in High and Low Hypnotizable subjects (HHs and LHs) whether treatments of hypoalgesia and hyperalgesia, as compared to a relaxation-control, differentially affected subjective pain ratings and somatosensory event-related potentials (SERPs) during painful electric stimulation. Treatments were administered in waking and hypnosis conditions. LHs showed little differentiation in pain and distress ratings between hypoalgesia and hyperalgesia treatments, whereas HHs showed a greater spread in the instructed direction. HHs had larger prefrontal N140 and P200 waves of the SERPs during hypnotic hyperalgesia as compared to relaxation-control treatment. Importantly, HHs showed significant smaller frontocentral N140 and frontotemporal P200 waves during hypnotic hypoalgesia. LHs did not show significant differences for these SERP waves among treatments in both waking and hypnosis conditions. Source localization (sLORETA) method revealed significant activations of the bilateral primary somatosensory (BA3), middle frontal gyrus (BA6) and anterior cingulate cortices (BA24). Activity of these contralateral regions significantly correlated with subjective numerical pain scores for control treatment in waking condition. Moreover, multivariate regression analyses distinguished the contralateral BA3 as the only region reflecting a stable pattern of pain coding changes across all treatments in waking and hypnosis conditions. More direct testing showed that hypnosis reduced the strength of the association of pain modulation and brain activity changes at BA3. sLORETA in HHs revealed, for the N140 wave, that during hypnotic hyperalgesia, there was an increased activity within medial, supramarginal and superior frontal gyri, and cingulated gyrus (BA32), while for the P200 wave, activity was increased in the superior (BA22), middle (BA37), inferior temporal (BA19) gyri and superior parietal lobule (BA7). Hypnotic hypoalgesia in HHs, for N

  15. Pain modulation in waking and hypnosis in women: event-related potentials and sources of cortical activity.

    Directory of Open Access Journals (Sweden)

    Vilfredo De Pascalis

    Full Text Available Using a strict subject selection procedure, we tested in High and Low Hypnotizable subjects (HHs and LHs whether treatments of hypoalgesia and hyperalgesia, as compared to a relaxation-control, differentially affected subjective pain ratings and somatosensory event-related potentials (SERPs during painful electric stimulation. Treatments were administered in waking and hypnosis conditions. LHs showed little differentiation in pain and distress ratings between hypoalgesia and hyperalgesia treatments, whereas HHs showed a greater spread in the instructed direction. HHs had larger prefrontal N140 and P200 waves of the SERPs during hypnotic hyperalgesia as compared to relaxation-control treatment. Importantly, HHs showed significant smaller frontocentral N140 and frontotemporal P200 waves during hypnotic hypoalgesia. LHs did not show significant differences for these SERP waves among treatments in both waking and hypnosis conditions. Source localization (sLORETA method revealed significant activations of the bilateral primary somatosensory (BA3, middle frontal gyrus (BA6 and anterior cingulate cortices (BA24. Activity of these contralateral regions significantly correlated with subjective numerical pain scores for control treatment in waking condition. Moreover, multivariate regression analyses distinguished the contralateral BA3 as the only region reflecting a stable pattern of pain coding changes across all treatments in waking and hypnosis conditions. More direct testing showed that hypnosis reduced the strength of the association of pain modulation and brain activity changes at BA3. sLORETA in HHs revealed, for the N140 wave, that during hypnotic hyperalgesia, there was an increased activity within medial, supramarginal and superior frontal gyri, and cingulated gyrus (BA32, while for the P200 wave, activity was increased in the superior (BA22, middle (BA37, inferior temporal (BA19 gyri and superior parietal lobule (BA7. Hypnotic hypoalgesia in

  16. Pain modulation in waking and hypnosis in women: event-related potentials and sources of cortical activity.

    Science.gov (United States)

    De Pascalis, Vilfredo; Varriale, Vincenzo; Cacace, Immacolata

    2015-01-01

    Using a strict subject selection procedure, we tested in High and Low Hypnotizable subjects (HHs and LHs) whether treatments of hypoalgesia and hyperalgesia, as compared to a relaxation-control, differentially affected subjective pain ratings and somatosensory event-related potentials (SERPs) during painful electric stimulation. Treatments were administered in waking and hypnosis conditions. LHs showed little differentiation in pain and distress ratings between hypoalgesia and hyperalgesia treatments, whereas HHs showed a greater spread in the instructed direction. HHs had larger prefrontal N140 and P200 waves of the SERPs during hypnotic hyperalgesia as compared to relaxation-control treatment. Importantly, HHs showed significant smaller frontocentral N140 and frontotemporal P200 waves during hypnotic hypoalgesia. LHs did not show significant differences for these SERP waves among treatments in both waking and hypnosis conditions. Source localization (sLORETA) method revealed significant activations of the bilateral primary somatosensory (BA3), middle frontal gyrus (BA6) and anterior cingulate cortices (BA24). Activity of these contralateral regions significantly correlated with subjective numerical pain scores for control treatment in waking condition. Moreover, multivariate regression analyses distinguished the contralateral BA3 as the only region reflecting a stable pattern of pain coding changes across all treatments in waking and hypnosis conditions. More direct testing showed that hypnosis reduced the strength of the association of pain modulation and brain activity changes at BA3. sLORETA in HHs revealed, for the N140 wave, that during hypnotic hyperalgesia, there was an increased activity within medial, supramarginal and superior frontal gyri, and cingulated gyrus (BA32), while for the P200 wave, activity was increased in the superior (BA22), middle (BA37), inferior temporal (BA19) gyri and superior parietal lobule (BA7). Hypnotic hypoalgesia in HHs, for N

  17. Empathy for pain-related dorsolateral prefrontal activity is modulated by angry face perception.

    Science.gov (United States)

    Enzi, Björn; Amirie, Scharbanu; Brüne, Martin

    2016-11-01

    Empathy, i.e., the ability to perceive and share another person's affective state, is associated with activity in a complex neural network, including the anterior insula, the anterior and mid-cingulate cortex, and the lateral prefrontal cortex. Here, we were interested in the question how facial emotions influence the activation of the 'pain network'. In the present study, we used functional magnetic resonance imaging to investigate the neuronal correlates of empathy for pain and its interaction with emotional face recognition in 20 healthy subjects. We identified various brain regions commonly associated with empathy for pain, including the right mid-cingulate cortex, the left anterior insula (AI), and the left dorsolateral prefrontal cortex (dlPFC), with an increased neuronal response in the left dlPFC after the presentation of angry faces. Furthermore, a negative correlation between psychological measures of alexithymia and empathy for pain-related brain activity was observed in the left AI. The dlPFC is an important brain region involved in cognitive reappraisal or in 'top-down' control of the limbic system. Our findings could therefore reflect a regulatory response associated with distancing from negatively valenced stimuli. Moreover, our results underline the involvement of the AI in empathy for pain responses and their relationship to alexithymia.

  18. Endogenous opiates and behavior: 2014.

    Science.gov (United States)

    Bodnar, Richard J

    2016-01-01

    This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants). This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular

  19. The Endocannabinoid System as a Potential Therapeutic Target for Pain Modulation

    Directory of Open Access Journals (Sweden)

    Ahmet Ulugöl

    2014-06-01

    Full Text Available Although cannabis has been used for pain management for millennia, very few approved cannabinoids are indicated for the treatment of pain and other medical symptoms. Cannabinoid therapy re-gained attention only after the discovery of endocannabinoids and fatty acid amide hydrolase (FAAH and monoacylglycerol lipase (MAGL, the enzymes playing a role in endocannabinoid metabolism. Nowadays, research has focused on the inhibition of these degradative enzymes and the elevation of endocannabinoid tonus locally; special emphasis is given on multi-target analgesia compounds, where one of the targets is the endocannabinoid degrading enzyme. In this review, I provide an overview of the current understanding about the processes accounting for the biosynthesis, transport and metabolism of endocannabinoids, and pharmacological approaches and potential therapeutic applications in this area, regarding the use of drugs elevating endocannabinoid levels in pain conditions.

  20. Dry Needling at Myofascial Trigger Spots of Rabbit Skeletal Muscles Modulates the Biochemicals Associated with Pain, Inflammation, and Hypoxia

    Science.gov (United States)

    Hsieh, Yueh-Ling; Yang, Shun-An; Yang, Chen-Chia; Chou, Li-Wei

    2012-01-01

    Background and Purpose. Dry needling is an effective therapy for the treatment of pain associated with myofascial trigger point (MTrP). However, the biochemical effects of dry needling that are associated with pain, inflammation, and hypoxia are unclear. This study investigated the activities of β-endorphin, substance P, TNF-α, COX-2, HIF-1α, iNOS, and VEGF after different dosages of dry needling at the myofascial trigger spots (MTrSs) of a skeletal muscle in rabbit. Materials and Methods. Dry needling was performed either with one dosage (1D) or five dosages (5D) into the biceps femoris with MTrSs in New Zealand rabbits. Biceps femoris, serum, and dorsal root ganglion (DRG) were sampled immediately and 5 d after dry needling for β-endorphin, substance P, TNF-α, COX-2, HIF-1α, iNOS, and VEGF immunoassays. Results. The 1D treatment enhanced the β-endorphin levels in the biceps femoris and serum and reduced substance P in the biceps femoris and DRG. The 5D treatment reversed these effects and was accompanied by increase of TNF-α, COX-2, HIF-1α, iNOS, and VEGF production in the biceps femoris. Moreover, the higher levels of these biochemicals were still maintained 5 d after treatment. Conclusion. Dry needling at the MTrSs modulates various biochemicals associated with pain, inflammation, and hypoxia in a dose-dependent manner. PMID:23346198

  1. Dry Needling at Myofascial Trigger Spots of Rabbit Skeletal Muscles Modulates the Biochemicals Associated with Pain, Inflammation, and Hypoxia

    Directory of Open Access Journals (Sweden)

    Yueh-Ling Hsieh

    2012-01-01

    Full Text Available Background and Purpose. Dry needling is an effective therapy for the treatment of pain associated with myofascial trigger point (MTrP. However, the biochemical effects of dry needling that are associated with pain, inflammation, and hypoxia are unclear. This study investigated the activities of β-endorphin, substance P, TNF-α, COX-2, HIF-1α, iNOS, and VEGF after different dosages of dry needling at the myofascial trigger spots (MTrSs of a skeletal muscle in rabbit. Materials and Methods. Dry needling was performed either with one dosage (1D or five dosages (5D into the biceps femoris with MTrSs in New Zealand rabbits. Biceps femoris, serum, and dorsal root ganglion (DRG were sampled immediately and 5 d after dry needling for β-endorphin, substance P, TNF-α, COX-2, HIF-1α, iNOS, and VEGF immunoassays. Results. The 1D treatment enhanced the β-endorphin levels in the biceps femoris and serum and reduced substance P in the biceps femoris and DRG. The 5D treatment reversed these effects and was accompanied by increase of TNF-α, COX-2, HIF-1α, iNOS, and VEGF production in the biceps femoris. Moreover, the higher levels of these biochemicals were still maintained 5 d after treatment. Conclusion. Dry needling at the MTrSs modulates various biochemicals associated with pain, inflammation, and hypoxia in a dose-dependent manner.

  2. Virtual Visual Effect of Hospital Waiting Room on Pain Modulation in Healthy Subjects and Patients with Chronic Migraine

    Directory of Open Access Journals (Sweden)

    Marina de Tommaso

    2013-01-01

    Full Text Available Environmental context has an important impact on health and well being. We aimed to test the effects of a visual distraction induced by classical hospital waiting room (RH versus an ideal room with a sea view (IH, both represented in virtual reality (VR, on subjective sensation and cortical responses induced by painful laser stimuli (LEPs in healthy volunteers and patients with chronic migraine (CM. Sixteen CM and 16 controls underwent 62 channels LEPs from the right hand, during a fully immersive VR experience, where two types of waiting rooms were simulated. The RH simulated a classical hospital waiting room while the IH represented a room with sea viewing. CM patients showed a reduction of laser pain rating and vertex LEPs during the IH vision. The sLORETA analysis confirmed that in CM patients the two VR simulations induced a different modulation of bilateral parietal cortical areas (precuneus and superior parietal lobe, and superior frontal and cingulate girus, in respect to controls. The architectural context may interfere with pain perception, depending upon the status of subject. Many variables may change patients’ outcome and support the use of VR technology to test the best conditions for their management.

  3. Physical Activity May Be Associated with Conditioned Pain Modulation in Women but Not Men among Healthy Individuals

    Directory of Open Access Journals (Sweden)

    Yukiko Shiro

    2017-01-01

    Full Text Available Background. Conditioned pain modulation (CPM, a phenomenon also known as diffuse noxious inhibitory control, is thought to be affected by various factors, including sex and level of physical activity. However, the involvement of these factors in CPM remains unclear. Methods. Eighty-six healthy young subjects (M/F, 43/43 participated in this study. Participants were assessed on the basis of their mechanical pressure pain threshold (PPT, CPM response, body mass index (BMI, basal metabolic rate (BMR, and duration of moderate-to-vigorous physical activity (MVPA over a week, using a motion counter. Response to CPM was evaluated as PPT during painful cold stimulation relative to baseline PPT. Results. Men showed significantly higher baseline PPT than women; however, this difference was no longer significant after controlling for confounders. Stepwise multiple linear regression analyses revealed BMR to be a significant contributor towards baseline PPT in the entire study population. In contrast, although there were no significant contributors to CPM response among men and in the overall study group, MVPA was positively associated with CPM response among women (β = 0.397. Conclusions. These results suggest that, among healthy young individuals, CPM response may be associated with moderate-to-vigorous physical activity in women but not in men.

  4. Local ASIC3 modulates pain and disease progression in a rat model of osteoarthritis

    Directory of Open Access Journals (Sweden)

    Izumi Masashi

    2012-08-01

    Full Text Available Abstract Background Recent data have suggested a relationship between acute arthritic pain and acid sensing ion channel 3 (ASIC3 on primary afferent fibers innervating joints. The purpose of this study was to clarify the role of ASIC3 in a rat model of osteoarthritis (OA which is considered a degenerative rather than an inflammatory disease. Methods We induced OA via intra-articular mono-iodoacetate (MIA injection, and evaluated pain-related behaviors including weight bearing measured with an incapacitance tester and paw withdrawal threshold in a von Frey hair test, histology of affected knee joint, and immunohistochemistry of knee joint afferents. We also assessed the effect of ASIC3 selective peptide blocker (APETx2 on pain behavior, disease progression, and ASIC3 expression in knee joint afferents. Results OA rats showed not only weight-bearing pain but also mechanical hyperalgesia outside the knee joint (secondary hyperalgesia. ASIC3 expression in knee joint afferents was significantly upregulated approximately twofold at Day 14. Continuous intra-articular injections of APETx2 inhibited weight distribution asymmetry and secondary hyperalgesia by attenuating ASIC3 upregulation in knee joint afferents. Histology of ipsilateral knee joint showed APETx2 worked chondroprotectively if administered in the early, but not late phase. Conclusions Local ASIC3 immunoreactive nerve is strongly associated with weight-bearing pain and secondary hyperalgesia in MIA-induced OA model. APETx2 inhibited ASIC3 upregulation in knee joint afferents regardless of the time-point of administration. Furthermore, early administration of APETx2 prevented cartilage damage. APETx2 is a novel, promising drug for OA by relieving pain and inhibiting disease progression.

  5. Facilitatory and inhibitory pain mechanisms are altered in patients with carpal tunnel syndrome.

    Directory of Open Access Journals (Sweden)

    Benjamin Soon

    Full Text Available Preliminary evidence from studies using quantitative sensory testing suggests the presence of central mechanisms in patients with carpal tunnel syndrome (CTS as apparent by widespread hyperalgesia. Hallmarks of central mechanisms after nerve injuries include nociceptive facilitation and reduced endogenous pain inhibition. Methods to study nociceptive facilitation in CTS so far have been limited to quantitative sensory testing and the integrity of endogenous inhibition remains unexamined. The aim of this study was therefore to investigate changes in facilitatory and inhibitory processing in patients with CTS by studying hypersensitivity following experimentally induced pain (facilitatory mechanisms and the efficacy of conditioned pain modulation (CPM, inhibitory mechanisms. Twenty-five patients with mild to moderate CTS and 25 age and sex matched control participants without CTS were recruited. Increased pain facilitation was evaluated via injection of hypertonic saline into the upper trapezius. Altered pain inhibition through CPM was investigated through cold water immersion of the foot as the conditioning stimulus and pressure pain threshold over the thenar and hypothenar eminence bilaterally as the test stimulus. The results demonstrated that patients with CTS showed a greater duration (p = 0.047, intensity (p = 0.044 and area (p = 0.012 of pain in response to experimentally induced pain in the upper trapezius and impaired CPM compared to the control participants (p = 0.006. Although typically considered to be driven by peripheral mechanisms, these findings indicate that CTS demonstrates characteristics of altered central processing with increased pain facilitation and reduced endogenous pain inhibition.

  6. Predictability of painful stimulation modulates the somatosensory-evoked potential in the rat

    NARCIS (Netherlands)

    Schaap, M.W.H.; van Oostrom, H.; Doornenbal, A.; Baars, A.M.; Arndt, S.S.; Hellebrekers, L.J.

    2013-01-01

    Abstract Somatosensory-evoked potentials (SEPs) are used in humans and animals to increase knowledge about nociception and pain. Since the SEP in humans increases when noxious stimuli are administered unpredictably, predictability potentially influences the SEP in animals as well. To assess the

  7. Too Hard to Control: Compromised Pain Anticipation and Modulation in Mild Traumatic Brain Injury

    Science.gov (United States)

    2014-01-07

    insula activation during pain anticipation in individuals recovered from anorexia nervosa : evidence of interoceptive dysregulation. Int J Eat Disord ...criteria for current mood or anxiety disorder . We found that relative to healthy comparison subjects, after controlling for traumatic and depressive...with rehabilitative care and markedly increase treatment costs.15–18 Psychiatric conditions such as post-traumatic stress disorder (PTSD) and depression

  8. Central terminal sensitization of TRPV1 by descending serotonergic facilitation modulates chronic pain.

    Science.gov (United States)

    Kim, Yu Shin; Chu, Yuxia; Han, Liang; Li, Man; Li, Zhe; LaVinka, Pamela Colleen; Sun, Shuohao; Tang, Zongxiang; Park, Kyoungsook; Caterina, Michael J; Ren, Ke; Dubner, Ronald; Wei, Feng; Dong, Xinzhong

    2014-02-19

    The peripheral terminals of primary nociceptive neurons play an essential role in pain detection mediated by membrane receptors like TRPV1, a molecular sensor of heat and capsaicin. However, the contribution of central terminal TRPV1 in the dorsal horn to chronic pain has not been investigated directly. Combining primary sensory neuron-specific GCaMP3 imaging with a trigeminal neuropathic pain model, we detected robust neuronal hyperactivity in injured and uninjured nerves in the skin, soma in trigeminal ganglion, and central terminals in the spinal trigeminal nucleus. Extensive TRPV1 hyperactivity was observed in central terminals innervating all dorsal horn laminae. The central terminal TRPV1 sensitization was maintained by descending serotonergic (5-HT) input from the brainstem. Central blockade of TRPV1 or 5-HT/5-HT3A receptors attenuated central terminal sensitization, excitatory primary afferent inputs, and mechanical hyperalgesia in the territories of injured and uninjured nerves. Our results reveal central mechanisms facilitating central terminal sensitization underlying chronic pain. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Smooth Pursuit Eye Movement Deficits in Patients With Whiplash and Neck Pain are Modulated by Target Predictability.

    Science.gov (United States)

    Janssen, Malou; Ischebeck, Britta K; de Vries, Jurryt; Kleinrensink, Gert-Jan; Frens, Maarten A; van der Geest, Jos N

    2015-10-01

    This is a cross-sectional study. The purpose of this study is to support and extend previous observations on oculomotor disturbances in patients with neck pain and whiplash-associated disorders (WADs) by systematically investigating the effect of static neck torsion on smooth pursuit in response to both predictably and unpredictably moving targets using video-oculography. Previous studies showed that in patients with neck complaints, for instance due to WAD, extreme static neck torsion deteriorates smooth pursuit eye movements in response to predictably moving targets compared with healthy controls. Eye movements in response to a smoothly moving target were recorded with video-oculography in a heterogeneous group of 55 patients with neck pain (including 11 patients with WAD) and 20 healthy controls. Smooth pursuit performance was determined while the trunk was fixed in 7 static rotations relative to the head (from 45° to the left to 45° to right), using both predictably and unpredictably moving stimuli. Patients had reduced smooth pursuit gains and smooth pursuit gain decreased due to neck torsion. Healthy controls showed higher gains for predictably moving targets compared with unpredictably moving targets, whereas patients with neck pain had similar gains in response to both types of target movements. In 11 patients with WAD, increased neck torsion decreased smooth pursuit performance, but only for predictably moving targets. Smooth pursuit of patients with neck pain is affected. The previously reported WAD-specific decline in smooth pursuit due to increased neck torsion seems to be modulated by the predictability of the movement of the target. The observed oculomotor disturbances in patients with WAD are therefore unlikely to be induced by impaired neck proprioception alone. 3.

  10. E-learning module on chronic low back pain in older adults: evidence of effect on medical student objective structured clinical examination performance.

    Science.gov (United States)

    Weiner, Debra K; Morone, Natalia E; Spallek, Heiko; Karp, Jordan F; Schneider, Michael; Washburn, Carol; Dziabiak, Michael P; Hennon, John G; Elnicki, D Michael

    2014-06-01

    The Institute of Medicine has highlighted the urgent need to close undergraduate and graduate educational gaps in treating pain. Chronic low back pain (CLBP) is one of the most common pain conditions, and older adults are particularly vulnerable to potential morbidities associated with misinformed treatment. An e-learning case-based interactive module was developed at the University of Pittsburgh Center of Excellence in Pain Education, one of 12 National Institutes of Health-designated centers, to teach students important principles for evaluating and managing CLBP in older adults. A team of six experts in education, information technology, pain management, and geriatrics developed the module. Teaching focused on common errors, interactivity, and expert modeling and feedback. The module mimicked a patient encounter using a standardized patient (the older adult with CLBP) and a pain expert (the patient provider). Twenty-eight medical students were not exposed to the module (Group 1) and 27 were exposed (Group 2). Their clinical skills in evaluating CLBP were assessed using an objective structured clinical examination (OSCE). Mean scores were 62.0 ± 8.6 for Group 1 and 79.5 ± 10.4 for Group 2 (P students (60.7%) and 26 of 27 Group 2 students (96.3%) passed. The CLBP OSCE was one of 10 OSCE stations in which students were tested at the end of a Combined Ambulatory Medicine and Pediatrics Clerkship. There were no between-group differences in performance on eight of the other nine OSCE stations. This module significantly improved medical student clinical skills in evaluating CLBP. Additional research is needed to ascertain the effect of e-learning modules on more-advanced learners and on improving the care of older adults with CLBP. © 2014, Copyright the Authors Journal compilation © 2014, The American Geriatrics Society.

  11. Fasting modulates GH/IGF-I axis and its regulatory systems in the mammary gland of female mice: Influence of endogenous cortistatin.

    Science.gov (United States)

    Villa-Osaba, Alicia; Gahete, Manuel D; Cordoba-Chacon, José; de Lecea, Luis; Castaño, Justo P; Luque, Raúl M

    2016-10-15

    Growth hormone (GH) and insulin-like growth factor-I (IGF-I) are essential factors in mammary-gland (MG) development and are altered during fasting. However, no studies have investigated the alterations in the expression of GH/IGF-I and its regulatory systems (somatostatin/cortistatin and ghrelin) in MG during fasting. Therefore, this study was aimed at characterizing the regulation of GH/IGF-I/somatostatin/cortistatin/ghrelin-systems expression in MG of fasted female-mice (compared to fed-controls) and the influence of endogenous-cortistatin (using cortistatin-knockouts). Fasting decreased IGF-I while increased IGF-I/Insulin-receptors expression in MGs. Fasting provoked an increase in GH expression that might be associated to enhanced ghrelin-variants/ghrelin-O-acyl-transferase enzyme expression, while an upregulation of somatostatin-receptors was observed. However, cortistatin-knockouts mice showed a decrease in GH and somatostatin receptor-subtypes expression. Altogether, we demonstrate that GH/IGF-I, somatostatin/cortistatin and ghrelin systems expression is altered in MG during fasting, suggesting a relevant role in coordinating its response to metabolic stress, wherein endogenous cortistatin might be essential for an appropriate response. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Does amplitude-modulated frequency have a role in the hypoalgesic response of interferential current on pressure pain sensitivity in healthy subjects? A randomised crossover study.

    Science.gov (United States)

    Fuentes C, Jorge; Armijo-Olivo, Susan; Magee, David J; Gross, Douglas

    2010-03-01

    To investigate the hypoalgesic effect of amplitude-modulated frequency during interferential current therapy using an experimentally induced mechanical pain model in normal subjects. This study examined pain pressure sensitivities achieved when the amplitude-modulated frequency parameter was present (100Hz) and absent (0Hz). Randomised controlled crossover trial with repeated measures. University research laboratory. Forty-six healthy volunteers (23 males, 23 females). Two interferential therapy protocols (with and without amplitude-modulated frequencies) were applied to the lumbar area on two different days. Pressure pain thresholds over the lumbar area were measured before, during and after application of the interferential therapy protocols. A three-way analysis of variance with repeated measures failed to show any statistically significant difference between the two protocols in modifying pressure pain threshold values (mean difference 0.017kg/cm(2), 95% confidence interval -0.384 to 0.350, P=0.93). Statistically significant differences were identified (Pinterferential therapy did not influence mechanical pain sensitivity in healthy subjects. Amplitude-modulated frequency is therefore unlikely to have a physiological hypoalgesic effect.

  13. Motor cortex changes after amputation are modulated by phantom limb motor control rather than pain

    DEFF Research Database (Denmark)

    Raffin, Estelle E.; Pascal, Giraux,; Karen, Reilly,

    Amputation of a limb induces reorganization within the contralateral primary motor cortex (M1-c) (1-3). In the case of hand amputation, M1-c areas evoking movements in the face and the remaining part of the upper-limb expand toward the hand area. Despite this expansion, the amputated hand still...... retains a residual M1-c activity when amputees perform phantom limb movements (4-5). Except a correlation between phantom limb pain and M1-c expansion of the face (2-3), the relationship between the ability to voluntary move the phantom hand, the level of phantom limb pain, the degree of M1-c...... reorganization and the residual M1-c activity of the amputated hand is unknown. This fMRI study aimed to determine this relationship...

  14. Does anodal transcranial direct current stimulation modulate sensory perception and pain? A meta-analysis study.

    Science.gov (United States)

    Vaseghi, B; Zoghi, M; Jaberzadeh, S

    2014-09-01

    The primary aim of this systematic review was to evaluate the effects of anodal transcranial direct current stimulation (a-tDCS) on sensory (STh) and pain thresholds (PTh) in healthy individuals and pain levels (PL) in patients with chronic pain. Electronic databases were searched for a-tDCS studies. Methodological quality was examined using the PEDro and Downs and Black (D&B) assessment tools. a-tDCS of the primary motor cortex (M1) increases both STh (P<0.005, with the effect size of 22.19%) and PTh (P<0.001, effect size of 19.28%). In addition, STh was increased by a-tDCS of the primary sensory cortex (S1) (P<0.05 with an effect size of 4.34). Likewise, PL decreased significantly in the patient group following application of a-tDCS to both the M1 and dorsolateral prefrontal cortex (DLPFC). The average decrease in visual analogue score was 14.9% and 19.3% after applying a-tDCS on the M1 and DLPFC. Moreover, meta-analysis showed that in all subgroups (except a-tDCS of S1) active a-tDCS and sham stimulation produced significant differences. This review provides evidence for the effectiveness of a-tDCS in increasing STh/PTh in healthy group and decreasing PL in patients. However, due to small sample sizes in the included studies, our results should be interpreted cautiously. Given the level of blinding did not considered in inclusion criteria, the result of current study should be interpreted with caution. Site of stimulation should have a differential effect over pain relief. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. The role of spinal cord vanilloid (TRPV1) receptors in pain modulation

    Czech Academy of Sciences Publication Activity Database

    Špicarová, Diana; Paleček, Jiří

    2008-01-01

    Roč. 57, Suppl.3 (2008), S69-S77 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA305/06/1115; GA ČR(CZ) GA304/08/0256; GA MŠk(CZ) LC554 Grant - others:EC(XE) LSH-CT-2004-511978 Institutional research plan: CEZ:AV0Z50110509 Keywords : pain * TRPV1 * spinal cord Subject RIV: FH - Neurology Impact factor: 1.653, year: 2008

  16. Modulation of the nicotinic alpha-bungarotoxin site in chromaffin cells in culture by a factor(s) endogenous to neuronal tissue.

    Science.gov (United States)

    Quik, M; Fournier, S; Trifaró, J M

    1986-04-30

    An endogenous factor(s) which affects the in vitro binding of (alpha-BGT) to rat brain membranes has previously been found in brain supernatant. This fraction, as well as a partially purified preparation of this material from bovine brain, is here shown to affect the binding of alpha-BGT to chromaffin cell membranes. To study possible long term effects, the supernatant extract was added to adrenal medullary chromaffin cells in culture. The cells were incubated for several days and at the end of this time, the medium bathing the cells, which contained the endogenous factor(s), was removed and alpha-BGT binding to the cells measured. Binding to control cultures had shown that alpha-BGT bound to the chromaffin cells in a saturable manner, with high affinity (Kd = 1.5 nM) and the specificity of a nicotinic receptor ligand. After incubation of the cells with supernatant factor, a marked decline in the number of alpha-BGT binding sites was observed with no change in affinity. This does not appear to be due to a detrimental effect on the cells as cell number did not appear to be decreased in the cultures preincubated with the supernatant extract and the DNA and protein content were similar in the control and treated cultures. The possibility that there was some non-specific detrimental effect to the chromaffin cell membrane was considered; however, the stimulated release of noradrenaline from the cells was not affected by treatment of the cultures in the presence of the supernatant fractions. In addition, tyrosine hydroxylase activity was significantly increased in the treated cultures. D-Tubo-curarine, an antagonist at the acetylcholine receptor, caused an increase in alpha-BGT binding after 7 days of treatment, while the agonist nicotine and choline had no effect. These results suggest that in brain supernatant there may exist an endogenous factor(s), which may function in the regulation of the nicotinic-like alpha-BGT receptors in neuronal cell.

  17. Social Laughter Triggers Endogenous Opioid Release in Humans.

    Science.gov (United States)

    Manninen, Sandra; Tuominen, Lauri; Dunbar, Robin I; Karjalainen, Tomi; Hirvonen, Jussi; Arponen, Eveliina; Hari, Riitta; Jääskeläinen, Iiro P; Sams, Mikko; Nummenmaa, Lauri

    2017-06-21

    The size of human social networks significantly exceeds the network that can be maintained by social grooming or touching in other primates. It has been proposed that endogenous opioid release after social laughter would provide a neurochemical pathway supporting long-term relationships in humans (Dunbar, 2012), yet this hypothesis currently lacks direct neurophysiological support. We used PET and the μ-opioid-receptor (MOR)-specific ligand [ 11 C]carfentanil to quantify laughter-induced endogenous opioid release in 12 healthy males. Before the social laughter scan, the subjects watched laughter-inducing comedy clips with their close friends for 30 min. Before the baseline scan, subjects spent 30 min alone in the testing room. Social laughter increased pleasurable sensations and triggered endogenous opioid release in thalamus, caudate nucleus, and anterior insula. In addition, baseline MOR availability in the cingulate and orbitofrontal cortices was associated with the rate of social laughter. In a behavioral control experiment, pain threshold-a proxy of endogenous opioidergic activation-was elevated significantly more in both male and female volunteers after watching laughter-inducing comedy versus non-laughter-inducing drama in groups. Modulation of the opioidergic activity by social laughter may be an important neurochemical pathway that supports the formation, reinforcement, and maintenance of human social bonds. SIGNIFICANCE STATEMENT Social contacts are vital to humans. The size of human social networks significantly exceeds the network that can be maintained by social grooming in other primates. Here, we used PET to show that endogenous opioid release after social laughter may provide a neurochemical mechanism supporting long-term relationships in humans. Participants were scanned twice: after a 30 min social laughter session and after spending 30 min alone in the testing room (baseline). Endogenous opioid release was stronger after laughter versus the

  18. Central Sensitization Is Modulated Following Trigger Point Anesthetization in Patients with Chronic Pain from Whiplash Trauma. A Double-Blind, Placebo-Controlled, Crossover Study.

    Science.gov (United States)

    Nystrom, N Ake; Freeman, Michael D

    2018-01-01

    Central sensitization (CS) with low peripheral pain thresholds (PPTs) is a common finding among patients with chronic pain after whiplash (CPWI). While it has been proposed that myofascial myofascial trigger points (MTrPs) may act as modulators of central sensitization, previously reported findings are conflicting and inconclusive. The present study was designed to investigate immediate responsiveness of CS to alterations in nociceptive input. Controlled, double-blind, cross-over. Thirty-one patients with chronic pain (trapezius myalgia) and CS after whiplash. Participants were referred by randomization to group A for injection of a single peripheral pain generator (MTrP or other discrete tender point) with local anesthetic or to group B for sham injection and cross-over. Documentation of PPT (Algometer), maximum jaw opening (caliper), and grip strength (Vigorimeter), as well as subjective overall pain (visual analog scale [VAS]), was made before and after each intervention. Statistical analysis of data (Student's t test, analysis of variance) confirmed that peripheral pain thresholds were significantly higher and maximum jaw opening significantly greater after anesthetizing a focal pain generator in the trapezius, but not after a sham injection. In contrast with the objective variables, subjective generalized pain improved (VAS) after not only an injection of local anesthetic, but also, and to a similar extent, after a sham injection. CS, as expressed by lowered PPT, is a rapidly adjusting physiological response to nociceptive stimuli in some patients with chronic pain after whiplash. PPT are likely modulated by myofascial tender points in selected patients with CS. With reference to the present findings, surgical ablation of MTrPs is discussed as a potential treatment modality for CS. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  19. Analgesic effect of ADX71441, a positive allosteric modulator (PAM) of GABAB receptor in a rat model of bladder pain.

    Science.gov (United States)

    Kannampalli, Pradeep; Poli, Sonia-Maria; Boléa, Christelle; Sengupta, Jyoti N

    2017-11-01

    Therapeutic use of GABA B receptor agonists for conditions like chronic abdominal pain, overactive bladder (OAB) and gastroesophageal reflux disease (GERD) is severely affected by poor blood-brain barrier permeability and potential side effects. ADX71441 is a novel positive allosteric modulator (PAM) of the GABA B receptor that has shown encouraging results in pre-clinical models of anxiety, pain, OAB and alcohol addiction. The present study investigates the analgesic effect of ADX71441 to noxious stimulation of the urinary bladder and colon in rats. In female Sprague-Dawley rats, systemic (i.p), but not intrathecal (i.t), administration of ADX71441 produced a dose-dependent decrease in viscero-motor response (VMR) to graded urinary bladder distension (UBD) and colorectal distension (CRD). Additionally, intra-cerebroventricular (i.c.v.) administration of ADX71441 significantly decreased the VMRs to noxious UBD. In electrophysiology experiments, the drug did not attenuate the responses of UBD-sensitive pelvic nerve afferent (PNA) fibers to UBD. In contrast, ADX71441 significantly decreased the responses of UBD-responsive lumbosacral (LS) spinal neurons in spinal intact rats. However, ADX71441 did not attenuate these LS neurons in cervical (C1-C2) spinal transected rats. During cystometrogram (CMG) recordings, ADX71441 (i.p.) significantly decreased the VMR to slow infusion without affecting the number of voiding contraction. These results indicate that ADX71441 modulate bladder nociception via its effect at the supra-spinal sites without affecting the normal bladder motility and micturition reflex in naïve adult rats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. TAFA4, a Chemokine-like Protein, Modulates Injury-Induced Mechanical and Chemical Pain Hypersensitivity in Mice

    Directory of Open Access Journals (Sweden)

    Marie-Claire Delfini

    2013-10-01

    Full Text Available C-low-threshold mechanoreceptors (C-LTMRs are unique among C-unmyelinated primary sensory neurons. These neurons convey two opposite aspects of touch sensation: a sensation of pleasantness, and a sensation of injury-induced mechanical pain. Here, we show that TAFA4 is a specific marker of C-LTMRs. Genetic labeling in combination with electrophysiological recordings show that TAFA4+ neurons have intrinsic properties of mechano-nociceptors. TAFA4-null mice exhibit enhanced mechanical and chemical hypersensitivity following inflammation and nerve injury as well as increased excitability of spinal cord lamina IIi neurons, which could be reversed by intrathecal or bath application of recombinant TAFA4 protein. In wild-type C57/Bl6 mice, intrathecal administration of TAFA4 strongly reversed carrageenan-induced mechanical hypersensitivity, suggesting a potent analgesic role of TAFA4 in pain relief. Our data provide insights into how C-LTMR-derived TAFA4 modulates neuronal excitability and controls the threshold of somatic sensation.

  1. Endogenous Lunar Volatiles

    Science.gov (United States)

    McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Anand, M.; Boyce, J. W.; Burney, D.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Klima, R. L.; Magna, T.; Ni, P.; Steenstra, E.; Tartèse, R.; Vander Kaaden, K. E.

    2018-04-01

    This abstract discusses numerous outstanding questions on the topic of endogenous lunar volatiles that will need to be addressed in the coming years. Although substantial insights into endogenous lunar volatiles have been gained, more work remains.

  2. Paediatric pain management

    African Journals Online (AJOL)

    The pain definition can be applied to any patient regardless of age, however paediatric ... Pain is defined by the International Association for the Study of Pain (IASP) as an “unpleasant sensory and emotional experience, associated with .... to increased levels of endogenous cannabinoids, inhibiting cyclooxygenases in the.

  3. Eugenol reduces acute pain in mice by modulating the glutamatergic and tumor necrosis factor alpha (TNF-α) pathways.

    Science.gov (United States)

    Dal Bó, Wladmir; Luiz, Ana Paula; Martins, Daniel F; Mazzardo-Martins, Leidiane; Santos, Adair R S

    2013-10-01

    Eugenol is utilized together with zinc oxide in odontological clinical for the cementation of temporary prostheses and the temporary restoration of teeth and cavities. This work explored the antinociceptive effects of the eugenol in different models of acute pain in mice and investigated its possible modulation of the inhibitory (opioid) and excitatory (glutamatergic and pro-inflammatory cytokines) pathways of nociceptive signaling. The administration of eugenol (3-300 mg/kg, p.o., 60 min or i.p., 30 min) inhibited 82 ± 10% and 90 ± 6% of the acetic acid-induced nociception, with ID₅₀ values of 51.3 and 50.2 mg/kg, respectively. In the glutamate test, eugenol (0.3-100 mg/kg, i.p.) reduced the response behavior by 62 ± 5% with an ID₅₀ of 5.6 mg/kg. In addition, the antinociceptive effect of eugenol (10 mg/kg, i.p.) in the glutamate test was prevented by the i.p. treatment for mice with naloxone. The pretreatment of mice with eugenol (10 mg/kg, i.p.) was able to inhibit the nociception induced by the intrathecal (i.t.) injection of glutamate (37 ± 9%), kainic (acid kainite) (41 ± 12%), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) (55 ± 5%), and substance P (SP) (39 ± 8%). Furthermore, eugenol (10 mg/kg, i.p.) also inhibited biting induced by tumor necrosis factor alpha (TNF-α, 65 ± 8%). These results extend our current knowledge of eugenol and confirm that it promotes significant antinociception against different mouse models of acute pain. The mechanism of action appears to involve the modulation of the opioid system and glutamatergic receptors (i.e., kainate and AMPA), and the inhibition of TNF-α. Thus, eugenol could represent an important compound in the treatment for acute pain. © 2012 The Authors Fundamental and Clinical Pharmacology © 2012 Société Française de Pharmacologie et de Thérapeutique.

  4. Effects of the carrier frequency of interferential current on pain modulation and central hypersensitivity in people with chronic nonspecific low back pain: A randomized placebo-controlled trial.

    Science.gov (United States)

    Corrêa, J B; Costa, L O P; Oliveira, N T B; Lima, W P; Sluka, K A; Liebano, R E

    2016-11-01

    Interferential current (IFC) is commonly used for pain relief, but the effects of carrier frequency of the current and its action on pain mechanisms remain unclear. This randomized placebo-controlled trial tested the effects of IFC in people with chronic nonspecific low back pain. One hundred and fifty participants were randomly allocated into three groups: 1 kHz, 4 kHz and placebo. The primary outcomes were pain intensity at rest in the first session (immediate effect of the IFC), after 12 sessions, 4 months after randomization (follow-up) and during movement (first and last session). The secondary outcomes were disability, global perceived effect, functional performance, discomfort caused by the IFC, use of analgesics and physiological measures of pain. Only during the first session, there was a significant decrease in pain intensity in the active groups. However, there were no differences in the improvement of pain at rest or during movement in the active groups compared to the placebo group in the remaining sessions. The frequency use of analgesics was significantly decreased in the active groups. For pain physiology measures, there was a significant increase in pressure pain thresholds in both active groups compared to the placebo group and a reduction in the temporal summation in the 1 kHz group compared to the other groups. These results suggest that although the IFC has changed some physiological mechanisms of pain and showed decrease frequency use of pain medication, there was no change in the primary aim, pain intensity. WHAT DOES THIS STUDY ADD?: The interferential current (IFC) presented advantages in the physiological measures of pain and showed decrease frequency use of pain medication. Future studies should investigate analgesic intake with IFC treatment. © 2016 European Pain Federation - EFIC®.

  5. Conditioning pain stimulation does not affect itch induced by intra-epidermal histamine pricks but aggravates neurogenic inflammation in healthy volunteers.

    Science.gov (United States)

    Andersen, H H; Imai, Y; Petersen, K K; Koenig, J; Elberling, J; Arendt-Nielsen, L

    2016-03-01

    This study investigated whether itch induced by intra-epidermal histamine is subjected to modulation by a standardized conditioned pain modulation (CPM) paradigm in 24 healthy volunteers. CPM was induced by computer-controlled cuff pressure algometry and histamine was introduced to the volar forearm by skin prick test punctures. Moreover, neurogenic inflammation and wheal reactions induced by histamine and autonomic nervous system responses (heart rate variability and skin conductance) were monitored. CPM did not modulate the intensity of histamine-induced itch suggesting that pruriceptive signaling is not inhibited by pain-recruited endogenous modulation, however, CPM was found to aggravate histamine-induced neurogenic inflammation, likely facilitated by efferent sympathetic fibers.

  6. Conditioning pain stimulation does not affect itch induced by intra-epidermal histamine pricks but aggravates neurogenic inflammation in healthy volunteers

    DEFF Research Database (Denmark)

    Andersen, Hjalte Holm; Imai, Yosuke; Petersen, Kristian Kjær

    2016-01-01

    This study investigated whether itch induced by intra-epidermal histamine is subjected to modulation by a standardized conditioned pain modulation (CPM) paradigm in 24 healthy volunteers. CPM was induced by computer-controlled cuff pressure algometry and histamine was introduced to the volar...... forearm by skin prick test punctures. Moreover, neurogenic inflammation and wheal reactions induced by histamine and autonomic nervous system responses (heart rate variability and skin conductance) were monitored. CPM did not modulate the intensity of histamine-induced itch suggesting that pruriceptive...... signaling is not inhibited by pain-recruited endogenous modulation, however, CPM was found to aggravate histamine-induced neurogenic inflammation, likely facilitated by efferent sympathetic fibers....

  7. The efficacy of playing a virtual reality game in modulating pain for children with acute burn injuries: a randomized controlled trial [ISRCTN87413556].

    Science.gov (United States)

    Das, Debashish A; Grimmer, Karen A; Sparnon, Anthony L; McRae, Sarah E; Thomas, Bruce H

    2005-03-03

    The management of burn injuries is reported as painful, distressing and a cause of anxiety in children and their parents. Child's and parents' pain and anxiety, often contributes to extended time required for burns management procedures, in particular the process of changing dressings. The traditional method of pharmacologic analgesia is often insufficient to cover the burnt child's pain, and it can have deleterious side effects 12. Intervention with Virtual Reality (VR) games is based on distraction or interruption in the way current thoughts, including pain, are processed by the brain. Research on adults supports the hypothesis that virtual reality has a positive influence on burns pain modulation. This study investigates whether playing a virtual reality game, decreases procedural pain in children aged 5-18 years with acute burn injuries. The paper reports on the findings of a pilot study, a randomised trial, in which seven children acted as their own controls though a series of 11 trials. Outcomes were pain measured using the self-report Faces Scale and findings of interviews with parent/carer and nurses. The average pain scores (from the Faces Scale) for pharmacological analgesia only was, 4.1 (SD 2.9), while VR coupled with pharmacological analgesia, the average pain score was 1.3 (SD 1.8) The study provides strong evidence supporting VR based games in providing analgesia with minimal side effects and little impact on the physical hospital environment, as well as its reusability and versatility, suggesting another option in the management of children's acute pain.

  8. The efficacy of playing a virtual reality game in modulating pain for children with acute burn injuries: A randomized controlled trial [ISRCTN87413556

    Directory of Open Access Journals (Sweden)

    McRae Sarah E

    2005-03-01

    Full Text Available Abstract Background The management of burn injuries is reported as painful, distressing and a cause of anxiety in children and their parents. Child's and parents' pain and anxiety, often contributes to extended time required for burns management procedures, in particular the process of changing dressings. The traditional method of pharmacologic analgesia is often insufficient to cover the burnt child's pain, and it can have deleterious side effects 12. Intervention with Virtual Reality (VR games is based on distraction or interruption in the way current thoughts, including pain, are processed by the brain. Research on adults supports the hypothesis that virtual reality has a positive influence on burns pain modulation. Methods This study investigates whether playing a virtual reality game, decreases procedural pain in children aged 5–18 years with acute burn injuries. The paper reports on the findings of a pilot study, a randomised trial, in which seven children acted as their own controls though a series of 11 trials. Outcomes were pain measured using the self-report Faces Scale and findings of interviews with parent/carer and nurses. Results The average pain scores (from the Faces Scale for pharmacological analgesia only was, 4.1 (SD 2.9, while VR coupled with pharmacological analgesia, the average pain score was 1.3 (SD 1.8 Conclusion The study provides strong evidence supporting VR based games in providing analgesia with minimal side effects and little impact on the physical hospital environment, as well as its reusability and versatility, suggesting another option in the management of children's acute pain.

  9. Short-term test-retest-reliability of conditioned pain modulation using the cold-heat-pain method in healthy subjects and its correlation to parameters of standardized quantitative sensory testing.

    Science.gov (United States)

    Gehling, Julia; Mainka, Tina; Vollert, Jan; Pogatzki-Zahn, Esther M; Maier, Christoph; Enax-Krumova, Elena K

    2016-08-05

    Conditioned Pain Modulation (CPM) is often used to assess human descending pain inhibition. Nine different studies on the test-retest-reliability of different CPM paradigms have been published, but none of them has investigated the commonly used heat-cold-pain method. The results vary widely and therefore, reliability measures cannot be extrapolated from one CPM paradigm to another. Aim of the present study was to analyse the test-retest-reliability of the common heat-cold-pain method and its correlation to pain thresholds. We tested the short-term test-retest-reliability within 40 ± 19.9 h using a cold-water immersion (10 °C, left hand) as conditioning stimulus (CS) and heat pain (43-49 °C, pain intensity 60 ± 5 on the 101-point numeric rating scale, right forearm) as test stimulus (TS) in 25 healthy right-handed subjects (12females, 31.6 ± 14.1 years). The TS was applied 30s before (TSbefore), during (TSduring) and after (TSafter) the 60s CS. The difference between the pain ratings for TSbefore and TSduring represents the early CPM-effect, between TSbefore and TSafter the late CPM-effect. Quantitative sensory testing (QST, DFNS protocol) was performed on both sessions before the CPM assessment. paired t-tests, Intraclass correlation coefficient (ICC), standard error of measurement (SEM), smallest real difference (SRD), Pearson's correlation, Bland-Altman analysis, significance level p test-retest-reliability of the early CPM-effect using the heat-cold-pain method in healthy subjects achieved satisfying results in terms of the ICC. The SRD of the early CPM effect showed that an individual change of > 20 NRS can be attributed to a real change rather than chance. The late CPM-effect was weaker and not reliable.

  10. The endocannabinoid system and pain.

    Science.gov (United States)

    Guindon, Josée; Hohmann, Andrea G

    2009-12-01

    The therapeutic potential of cannabinoids has been the topic of extensive investigation following the discovery of cannabinoid receptors and their endogenous ligands. Cannabinoid receptors and their endogenous ligands are present at supraspinal, spinal and peripheral levels. Cannabinoids suppress behavioral responses to noxious stimulation and suppress nociceptive processing through activation of cannabinoid CB(1) and CB(2) receptor subtypes. Endocannabinoids, the brain's own cannabis-like substances, share the same molecular target as Delta(9)-tetrahydrocannabinol, the main psychoactive component in cannabis. Endocannabinoids serve as synaptic circuit breakers and regulate multiple physiological and pathological conditions, e.g. regulation of food intake, immunomodulation, inflammation, analgesia, cancer, addictive behavior, epilepsy and others. This review will focus on uncovering the roles of anandamide and 2-arachidonoylglycerol, the two best characterized endocannabinoids identified to date, in controlling nociceptive responding. The roles of anandamide and 2-arachidonoylglycerol, released under physiological conditions, in modulating nociceptive responding at different levels of the neuraxis will be emphasized in this review. Effects of modulation of endocannabinoid levels through inhibition of endocannabinoid hydrolysis and uptake is also compared with effects of exogenous administration of synthetic endocannabinoids in acute, inflammatory and neuropathic pain models. Finally, the therapeutic potential of the endocannabinoid signaling system is discussed in the context of identifying novel pharmacotherapies for the treatment of pain.

  11. Post-transcriptional modulation of protein phosphatase PPP2CA and tumor suppressor PTEN by endogenous siRNA cleaved from hairpin within PTEN mRNA 3'UTR in human liver cells.

    Science.gov (United States)

    Gao, Yu-En; Wang, Yuan; Chen, Fu-Quan; Feng, Jin-Yan; Yang, Guang; Feng, Guo-Xing; Yang, Zhe; Ye, Li-Hong; Zhang, Xiao-Dong

    2016-07-01

    Increasing evidence shows that mRNAs exert regulatory function along with coding proteins. Recently we report that a hairpin within YAP mRNA 3'UTR can modulate the Hippo signaling pathway. PTEN is a tumor suppressor, and is mutated in human cancers. In this study we examined whether PTEN mRNA 3'UTR contained a hairpin structure that could regulate gene regulation at the post-transcriptional level. The secondary structure of PTEN mRNA 3'UTR was analyzed using RNAdraw and RNAstructure. Function of hairpin structure derived from the PTEN mRNA 3'UTR was examined using luciferase reporter assay, RT-PCR and Western blotting. RNA-immunoprecipitation (RIP) assay was used to analyze the interaction between PTEN mRNA and microprocessor Drosha and DGCR8. Endogenous siRNA (esiRNA) derived from PTEN mRNA 3'UTR was identified by RT-PCR and rt-PCR, and its target genes were predicted using RNAhybrid. A bioinformatics analysis revealed that PTEN mRNA contained a hairpin structure (termed PTEN-sh) within 3'UTR, which markedly increased the reporter activities of AP-1 and NF-κB in 293T cells. Moreover, treatment with PTEN-sh (1 and 2 μg) dose-dependently inhibited the expression of PTEN in human liver L-O2 cells. RIP assay demonstrated that the microprocessor Drosha and DGCR8 was bound to PTEN-sh in L-O2 cells, leading to the cleavage of PTEN-sh from PTEN mRNA 3'UTR. In addition, microprocessor Dicer was involved in the processing of PTEN-sh. Interestingly, esiRNA (termed PTEN-sh-3p21) cleaved from PTEN-sh was identified in 293T cells and human liver tissues, which was found to target the mRNA 3'UTRs of protein phosphatase PPP2CA and PTEN in L-O2 cells. Treatment of L-O2 or Chang liver cells with PTEN-sh-3p21 (50, 100 nmol/L) promoted the cell proliferation in dose- and time-dependent manners. The endogenous siRNA (PTEN-sh-3p21) cleaved from PTEN-sh within PTEN mRNA 3'UTR modulates PPP2CA and PTEN at the post-transcriptional level in liver cells.

  12. Post-transcriptional modulation of protein phosphatase PPP2CA and tumor suppressor PTEN by endogenous siRNA cleaved from hairpin within PTEN mRNA 3′UTR in human liver cells

    Science.gov (United States)

    Gao, Yu-en; Wang, Yuan; Chen, Fu-quan; Feng, Jin-yan; Yang, Guang; Feng, Guo-xing; Yang, Zhe; Ye, Li-hong; Zhang, Xiao-dong

    2016-01-01

    Aim: Increasing evidence shows that mRNAs exert regulatory function along with coding proteins. Recently we report that a hairpin within YAP mRNA 3′UTR can modulate the Hippo signaling pathway. PTEN is a tumor suppressor, and is mutated in human cancers. In this study we examined whether PTEN mRNA 3′UTR contained a hairpin structure that could regulate gene regulation at the post-transcriptional level. Methods: The secondary structure of PTEN mRNA 3′UTR was analyzed using RNAdraw and RNAstructure. Function of hairpin structure derived from the PTEN mRNA 3′UTR was examined using luciferase reporter assay, RT-PCR and Western blotting. RNA-immunoprecipitation (RIP) assay was used to analyze the interaction between PTEN mRNA and microprocessor Drosha and DGCR8. Endogenous siRNA (esiRNA) derived from PTEN mRNA 3′UTR was identified by RT-PCR and rt-PCR, and its target genes were predicted using RNAhybrid. Results: A bioinformatics analysis revealed that PTEN mRNA contained a hairpin structure (termed PTEN-sh) within 3′UTR, which markedly increased the reporter activities of AP-1 and NF-κB in 293T cells. Moreover, treatment with PTEN-sh (1 and 2 μg) dose-dependently inhibited the expression of PTEN in human liver L-O2 cells. RIP assay demonstrated that the microprocessor Drosha and DGCR8 was bound to PTEN-sh in L-O2 cells, leading to the cleavage of PTEN-sh from PTEN mRNA 3′UTR. In addition, microprocessor Dicer was involved in the processing of PTEN-sh. Interestingly, esiRNA (termed PTEN-sh-3p21) cleaved from PTEN-sh was identified in 293T cells and human liver tissues, which was found to target the mRNA 3′UTRs of protein phosphatase PPP2CA and PTEN in L-O2 cells. Treatment of L-O2 or Chang liver cells with PTEN-sh-3p21 (50, 100 nmol/L) promoted the cell proliferation in dose- and time-dependent manners. Conclusion: The endogenous siRNA (PTEN-sh-3p21) cleaved from PTEN-sh within PTEN mRNA 3′UTR modulates PPP2CA and PTEN at the post

  13. An E-learning Module on Chronic Low Back Pain in Older Adults: Effect on Medical Resident Attitudes, Confidence, Knowledge, and Clinical Skills.

    Science.gov (United States)

    Jacobs, Zachary G; Elnicki, D Michael; Perera, Subashan; Weiner, Debra K

    2018-01-05

    To determine 1) the feasibility of implementing an e-learning module on chronic low back pain (CLBP) in an older adult into an existing internal medicine residency curriculum and 2) the impact of this module on resident attitudes, confidence, knowledge, and clinical skills relating to CLBP. Participants were assigned to complete either the online module (N = 73) or the Yale Office-based curriculum on CLBP (N = 70). Attitudes, confidence, and knowledge were evaluated pre- and postintervention via survey. A retrospective blinded chart review of resident clinic encounters was conducted, wherein diagnosis codes and physical exam documentation were rated as basic or advanced. There was no improvement in overall knowledge scores in either group (60% average on both metrics). There were tendencies for greater improvements in the intervention group compared with controls for confidence in managing fibromyalgia (2.4 to 2.9 vs 2.5 to 2.5, P = 0.06) and leg length discrepancy (1.8 to 2.5 vs 1.5 to 1.9, P = 0.05). Those exposed to the online module also showed an increase in the percentage of physical exam documentation rated as advanced following the intervention (13% to 32%, P = 0.006), whereas the control group showed no change (14% to 12%, P = 0.68). An online module on CLBP in the older adult was a feasible addition to an existing curriculum for internal medicine residents. The module positively and substantively impacted resident clinical behaviors, as evidenced by enhanced sophistication in physical exam documentation; it also was associated with improved confidence in certain aspects of chronic pain management. © 2018 American Academy of Pain Medicine. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  14. Effects of administration of histamine and its H1, H2, and H3 receptor antagonists into the primary somatosensory cortex on inflammatory pain in rats

    Directory of Open Access Journals (Sweden)

    Esmaeal Tamaddonfard

    2014-01-01

    These results indicate that at PSC levels, histamine through post-synaptic H1, H2, and pre-synaptic H3 receptors might be involved in pain modulation. The endogenous opioid system may be involved in histamine- and thioperamide-induced antinociception.

  15. Endogenous Prospect Theory

    OpenAIRE

    Schmidt, Ulrich; Zank, Horst

    2010-01-01

    In previous models of (cumulative) prospect theory reference-dependence of preferences is imposed beforehand and the location of the reference point is exogenously determined. This paper provides an axiomatization of a new specification of cumulative prospect theory, termed endogenous prospect theory, where reference-dependence is derived from preference conditions and a unique reference point arises endogenously.

  16. Methylated DNA Immunoprecipitation Analysis of Mammalian Endogenous Retroviruses.

    Science.gov (United States)

    Rebollo, Rita; Mager, Dixie L

    2016-01-01

    Endogenous retroviruses are repetitive sequences found abundantly in mammalian genomes which are capable of modulating host gene expression. Nevertheless, most endogenous retrovirus copies are under tight epigenetic control via histone-repressive modifications and DNA methylation. Here we describe a common method used in our laboratory to detect, quantify, and compare mammalian endogenous retrovirus DNA methylation. More specifically we describe methylated DNA immunoprecipitation (MeDIP) followed by quantitative PCR.

  17. Pain tolerance predicts human social network size.

    Science.gov (United States)

    Johnson, Katerina V-A; Dunbar, Robin I M

    2016-04-28

    Personal social network size exhibits considerable variation in the human population and is associated with both physical and mental health status. Much of this inter-individual variation in human sociality remains unexplained from a biological perspective. According to the brain opioid theory of social attachment, binding of the neuropeptide β-endorphin to μ-opioid receptors in the central nervous system (CNS) is a key neurochemical mechanism involved in social bonding, particularly amongst primates. We hypothesise that a positive association exists between activity of the μ-opioid system and the number of social relationships that an individual maintains. Given the powerful analgesic properties of β-endorphin, we tested this hypothesis using pain tolerance as an assay for activation of the endogenous μ-opioid system. We show that a simple measure of pain tolerance correlates with social network size in humans. Our results are in line with previous studies suggesting that μ-opioid receptor signalling has been elaborated beyond its basic function of pain modulation to play an important role in managing our social encounters. The neuroplasticity of the μ-opioid system is of future research interest, especially with respect to psychiatric disorders associated with symptoms of social withdrawal and anhedonia, both of which are strongly modulated by endogenous opioids.

  18. Facilitated Pronociceptive Pain Mechanisms in Radiating Back Pain Compared With Localized Back Pain

    DEFF Research Database (Denmark)

    Vaegter, Henrik Bjarke; Palsson, Thorvaldur Skuli; Graven-Nielsen, Thomas

    2017-01-01

    pressure pain threshold (cPPT), tolerance (cPTT), temporal summation of pain (TSP: increase in pain scores to ten repeated stimulations at cPTT intensity), and conditioning pain modulation (CPM: increase in cPPT during cuff pain conditioning on the contralateral leg). Heat detection (HDT) and heat pain...

  19. Pain as a reward: changing the meaning of pain from negative to positive co-activates opioid and cannabinoid systems.

    Science.gov (United States)

    Benedetti, Fabrizio; Thoen, Wilma; Blanchard, Catherine; Vighetti, Sergio; Arduino, Claudia

    2013-03-01

    Pain is a negative emotional experience that is modulated by a variety of psychological factors through different inhibitory systems. For example, endogenous opioids and cannabinoids have been found to be involved in stress and placebo analgesia. Here we show that when the meaning of the pain experience is changed from negative to positive through verbal suggestions, the opioid and cannabinoid systems are co-activated and these, in turn, increase pain tolerance. We induced ischemic arm pain in healthy volunteers, who had to tolerate the pain as long as possible. One group was informed about the aversive nature of the task, as done in any pain study. Conversely, a second group was told that the ischemia would be beneficial to the muscles, thus emphasizing the usefulness of the pain endurance task. We found that in the second group pain tolerance was significantly higher compared to the first one, and that this effect was partially blocked by the opioid antagonist naltrexone alone and by the cannabinoid antagonist rimonabant alone. However, the combined administration of naltrexone and rimonabant antagonized the increased tolerance completely. Our results indicate that a positive approach to pain reduces the global pain experience through the co-activation of the opioid and cannabinoid systems. These findings may have a profound impact on clinical practice. For example, postoperative pain, which means healing, can be perceived as less unpleasant than cancer pain, which means death. Therefore, the behavioral and/or pharmacological manipulation of the meaning of pain can represent an effective approach to pain management. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  20. A3 adenosine receptor agonist prevents the development of paclitaxel-induced neuropathic pain by modulating spinal glial-restricted redox-dependent signaling pathways.

    Science.gov (United States)

    Janes, Kali; Esposito, Emanuela; Doyle, Timothy; Cuzzocrea, Salvatore; Tosh, Dillip K; Jacobson, Kenneth A; Salvemini, Daniela

    2014-12-01

    Chemotherapy-induced peripheral neuropathy accompanied by chronic neuropathic pain is the major dose-limiting toxicity of several anticancer agents including the taxane paclitaxel (Taxol). A critical mechanism underlying paclitaxel-induced neuropathic pain is the increased production of peroxynitrite in spinal cord generated in response to activation of the superoxide-generating enzyme, NADPH oxidase. Peroxynitrite in turn contributes to the development of neuropathic pain by modulating several redox-dependent events in spinal cord. We recently reported that activation of the Gi/Gq-coupled A3 adenosine receptor (A3AR) with selective A3AR agonists (ie, IB-MECA) blocked the development of chemotherapy induced-neuropathic pain evoked by distinct agents, including paclitaxel, without interfering with anticancer effects. The mechanism or mechanisms of action underlying these beneficial effects has yet to be explored. We now demonstrate that IB-MECA attenuates the development of paclitaxel-induced neuropathic pain by inhibiting the activation of spinal NADPH oxidase and two downstream redox-dependent systems. The first relies on inhibition of the redox-sensitive transcription factor (NFκB) and mitogen activated protein kinases (ERK and p38) resulting in decreased production of neuroexcitatory/proinflammatory cytokines (TNF-α, IL-1β) and increased formation of the neuroprotective/anti-inflammatory IL-10. The second involves inhibition of redox-mediated posttranslational tyrosine nitration and modification (inactivation) of glia-restricted proteins known to play key roles in regulating synaptic glutamate homeostasis: the glutamate transporter GLT-1 and glutamine synthetase. Our results unravel a mechanistic link into biomolecular signaling pathways employed by A3AR activation in neuropathic pain while providing the foundation to consider use of A3AR agonists as therapeutic agents in patients with chemotherapy-induced peripheral neuropathy. Copyright © 2014

  1. WHAT IS ENDOGENOUS IN ENDOGENOUS GROWTH MODEL?

    OpenAIRE

    Öztürkler, Harun; Bozgeyik, Yusuf

    2014-01-01

    The neoclassical growth model predicts that as soon as technologic improvements and innovations are not provided the growth in per capita income would stop in long term. However, the long-run data for many countries indicate that positive rates of per capita income growth can persist over the long term. Growth theorists of the 1950s and 1960s recognized this modeling deficiency and usually patched it up by assuming that technological progress occurs in an exogenous manner. The endogenous grow...

  2. The role of circulating sex hormones in menstrual cycle dependent modulation of pain-related brain activation

    Science.gov (United States)

    Veldhuijzen, Dieuwke S.; Keaser, Michael L.; Traub, Deborah S.; Zhuo, Jiachen; Gullapalli, Rao P.; Greenspan, Joel D.

    2013-01-01

    Sex differences in pain sensitivity have been consistently found but the basis for these differences is incompletely understood. The present study assessed how pain-related neural processing varies across the menstrual cycle in normally cycling, healthy females, and whether menstrual cycle effects are based on fluctuating sex hormone levels. Fifteen subjects participated in four test sessions during their menstrual, mid-follicular, ovulatory, and midluteal phases. Brain activity was measured while nonpainful and painful stimuli were applied with a pressure algometer. Serum hormone levels confirmed that scans were performed at appropriate cycle phases in 14 subjects. No significant cycle phase differences were found for pain intensity or unpleasantness ratings of stimuli applied during fMRI scans. However, lower pressure pain thresholds were found for follicular compared to other phases. Pain-specific brain activation was found in several regions traditionally associated with pain processing, including the medial thalamus, anterior and mid-insula, mid-cingulate, primary and secondary somatosensory cortices, cerebellum, and frontal regions. The inferior parietal lobule, occipital gyrus, cerebellum and several frontal regions demonstrated interaction effects between stimulus level and cycle phase, indicating differential processing of pain-related responses across menstrual cycle phases. Correlational analyses indicated that cycle-related changes in pain sensitivity measures and brain activation were only partly explained by varying sex hormone levels. These results show that pain-related cerebral activation varies significantly across the menstrual cycle, even when perceived pain intensity and unpleasantness remain constant. The involved brain regions suggest that cognitive pain or more general bodily awareness systems are most susceptible to menstrual cycle effects. PMID:23528204

  3. Cell and molecular approaches to the attenuation of pain after spinal cord injury.

    Science.gov (United States)

    Eaton, Mary J

    2006-01-01

    Recent experimental research to treat spinal cord injury (SCI) pain has greatly increased our understanding of how such chronic pain might be modulated in the human population. Neuropathic pain is caused by the structural and biochemical changes associated with the peripheral and central nervous system damage associated with nervous system trauma, often leading to an imbalance in endogenous excitatory and inhibitory spinal systems that modulate sensory processing. But current pharmacological therapies are often ineffective over time for the greater number of patients. Although there are a variety of useful surgical and pharmacologic interventions (including electric stimulation, implantable mechanical pumps and a myriad of drugs for pain relief) cell and molecular technologies are a new frontier in pain medicine. These other potential therapeutic agents of pain are based on current and developing treatment strategies elucidated from recent research, especially concerning central spinal sensitization, and the spinal mechanisms that are thought to be the origin and ongoing cause of chronic pain, even when the injury is peripheral in location. Newly developing translational strategies such as molecular agents, viral-mediated gene transfer or cellular transplants to treat chronic pain are being evaluated in a variety of peripheral and central injury models. They seek to address both the causes of neuropathic pain, to interfere with its development and maintenance over time, and give the injured person with pain an improved quality-of-life that allows them to better deal with the larger tasks of daily life and the strenuous rehabilitation that might also improve motor function after SCI.

  4. Representational momentum in dynamic facial expressions is modulated by the level of expressed pain: Amplitude and direction effects.

    Science.gov (United States)

    Prigent, Elise; Amorim, Michel-Ange; de Oliveira, Armando Mónica

    2018-01-01

    Humans have developed a specific capacity to rapidly perceive and anticipate other people's facial expressions so as to get an immediate impression of their emotional state of mind. We carried out two experiments to examine the perceptual and memory dynamics of facial expressions of pain. In the first experiment, we investigated how people estimate other people's levels of pain based on the perception of various dynamic facial expressions; these differ both in terms of the amount and intensity of activated action units. A second experiment used a representational momentum (RM) paradigm to study the emotional anticipation (memory bias) elicited by the same facial expressions of pain studied in Experiment 1. Our results highlighted the relationship between the level of perceived pain (in Experiment 1) and the direction and magnitude of memory bias (in Experiment 2): When perceived pain increases, the memory bias tends to be reduced (if positive) and ultimately becomes negative. Dynamic facial expressions of pain may reenact an "immediate perceptual history" in the perceiver before leading to an emotional anticipation of the agent's upcoming state. Thus, a subtle facial expression of pain (i.e., a low contraction around the eyes) that leads to a significant positive anticipation can be considered an adaptive process-one through which we can swiftly and involuntarily detect other people's pain.

  5. Modulation of laser-evoked potentials and pain perception by transcutaneous electrical nerve stimulation (TENS): a placebo-controlled study in healthy volunteers.

    Science.gov (United States)

    Vassal, François; Créac'h, C; Convers, Ph; Laurent, B; Garcia-Larrea, L; Peyron, R

    2013-09-01

    To investigate the effects of transcutaneous electrical nerve stimulation (TENS) on brain nociceptive responses (laser-evoked potentials, LEPs) and pain perception. Twenty healthy subjects were included. Nociceptive CO(2)-laser pulses were sequentially delivered to the dorsum of both feet. The amplitude of LEPs and nociceptive thresholds were collected in three consecutive conditions: T1: "sham" TENS (2 Hz/low-intensity) positioned heterotopically, over the left thigh; T2: "active" TENS (120 Hz/low-intensity) applied homotopically, over the left common peroneal nerve; and T3: "sham" TENS (replication of condition T1). Compared with "sham" TENS, "active" TENS significantly decreased the LEPs amplitude. This effect was observed exclusively when "active" TENS was applied ipsilaterally to the painful stimulus. Nociceptive thresholds increased with sessions in both limbs, but the increase observed during the "active" condition of TENS (T2) exceeded significantly that observed during the condition T3 only on the foot ipsilateral to TENS. Compared with a credible placebo TENS, high-frequency TENS induced a significant attenuation of both the acute pain and LEPs induced by noxious stimuli applied on the same dermatome. This modulation of subjective and objective concomitants of pain processing reflects a real neurophysiological TENS-related effect on nociceptive transmission. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Neural Habituation to Painful Stimuli Is Modulated by Dopamine: Evidence from a Pharmacological fMRI Study

    Directory of Open Access Journals (Sweden)

    Eva M. Bauch

    2017-12-01

    Full Text Available In constantly changing environments, it is crucial to adaptively respond to threatening events. In particular, painful stimuli are not only processed in terms of their absolute intensity, but also with respect to their context. While contextual pain processing can simply entail the repeated processing of information (i.e., habituation, it can, in a more complex form, be expressed through predictions of magnitude before the delivery of nociceptive information (i.e., adaptive coding. Here, we investigated the brain regions involved in the adaptation to nociceptive electrical stimulation as well as their link to dopaminergic neurotransmission (placebo/haloperidol. The main finding is that haloperidol changed the habituation to the absolute pain intensity over time. More precisely, in the placebo condition, activity in left postcentral gyrus and midcingulate cortex increased linearly with pain intensity only in the beginning of the experiment and subsequently habituated. In contrast, when the dopaminergic system was blocked by haloperidol, a linear increase with pain intensity was present throughout the entire experiment. Finally, there were no adaptive coding effects in any brain regions. Together, our findings provide novel insights into the nature of pain processing by suggesting that dopaminergic neurotransmission plays a specific role for the habituation to painful stimuli over time.

  7. The Endogenous Exposome

    Science.gov (United States)

    Nakamura, Jun; Mutlu, Esra; Sharma, Vyom; Collins, Leonard; Bodnar, Wanda; Yu, Rui; Lai, Yongquan; Moeller, Benjamin; Lu, Kun; Swenberg, James

    2014-01-01

    The concept of the Exposome, is a compilation of diseases and one’s lifetime exposure to chemicals, whether the exposure comes from environmental, dietary, or occupational exposures; or endogenous chemicals that are formed from normal metabolism, inflammation, oxidative stress, lipid peroxidation, infections, and other natural metabolic processes such as alteration of the gut microbiome. In this review, we have focused on the Endogenous Exposome, the DNA damage that arises from the production of endogenous electrophilic molecules in our cells. It provides quantitative data on endogenous DNA damage and its relationship to mutagenesis, with emphasis on when exogenous chemical exposures that produce identical DNA adducts to those arising from normal metabolism cause significant increases in total identical DNA adducts. We have utilized stable isotope labeled chemical exposures of animals and cells, so that accurate relationships between endogenous and exogenous exposures can be determined. Advances in mass spectrometry have vastly increased both the sensitivity and accuracy of such studies. Furthermore, we have clear evidence of which sources of exposure drive low dose biology that results in mutations and disease. These data provide much needed information to impact quantitative risk assessments, in the hope of moving towards the use of science, rather than default assumptions. PMID:24767943

  8. Multiple sites and actions of gabapentin-induced relief of ongoing experimental neuropathic pain.

    Science.gov (United States)

    Bannister, Kirsty; Qu, Chaoling; Navratilova, Edita; Oyarzo, Janice; Xie, Jennifer Yanhua; King, Tamara; Dickenson, Anthony H; Porreca, Frank

    2017-12-01

    Gabapentin (GBP) is a first-line therapy for neuropathic pain, but its mechanisms and sites of action remain uncertain. We investigated GBP-induced modulation of neuropathic pain following spinal nerve ligation (SNL) in rats. Intravenous or intrathecal GBP reversed evoked mechanical hypersensitivity and produced conditioned place preference (CPP) and dopamine (DA) release in the nucleus accumbens (NAc) selectively in SNL rats. Spinal GBP also significantly inhibited dorsal horn wide-dynamic-range neuronal responses to a range of evoked stimuli in SNL rats. By contrast, GBP microinjected bilaterally into the rostral anterior cingulate cortex (rACC), produced CPP, and elicited NAc DA release selectively in SNL rats but did not reverse tactile allodynia and had marginal effects on wide-dynamic-range neuronal activity. Moreover, blockade of endogenous opioid signaling in the rACC prevented intravenous GBP-induced CPP and NAc DA release but failed to block its inhibition of tactile allodynia. Gabapentin, therefore, can potentially act to produce its pain relieving effects by (a) inhibition of injury-induced spinal neuronal excitability, evoked hypersensitivity, and ongoing pain and (b) selective supraspinal modulation of affective qualities of pain, without alteration of reflexive behaviors. Consistent with previous findings of pain relief from nonopioid analgesics, GBP requires engagement of rACC endogenous opioid circuits and downstream activation of mesolimbic reward circuits reflected in learned pain-motivated behaviors. These findings support the partial separation of sensory and affective dimensions of pain in this experimental model and suggest that modulation of affective-motivational qualities of pain may be the preferential mechanism of GBP's analgesic effects in patients.

  9. The chemokine Bv8/prokineticin 2 is up-regulated in inflammatory granulocytes and modulates inflammatory pain

    OpenAIRE

    Giannini, Elisa; Lattanzi, Roberta; Nicotra, Annalisa; Campese, Antonio F.; Grazioli, Paola; Screpanti, Isabella; Balboni, Gianfranco; Salvadori, Severo; Sacerdote, Paola; Negri, Lucia

    2009-01-01

    Neutrophil migration into injured tissues is invariably accompanied by pain. Bv8/prokineticin 2 (PK2), a chemokine characterized by a unique structural motif comprising five disulfide bonds, is highly expressed in inflamed tissues associated to infiltrating cells. Here, we demonstrate the fundamental role of granulocyte-derived PK2 (GrPK2) in initiating inflammatory pain and driving peripheral sensitization. In animal models of complete Freund's adjuvant-induced paw inflammation the developme...

  10. The role of nicotinic acetylcholine and opioid systems of the ventral orbital cortex in modulation of formalin-induced orofacial pain in rats.

    Science.gov (United States)

    Yousofizadeh, Shahnaz; Tamaddonfard, Esmaeal; Farshid, Amir Abbas

    2015-07-05

    Nicotinic acetylcholine and opioid receptors are involved in modulation of pain. In the present study, we investigated the effects of microinjection of nicotinic acetylcholine and opioid compounds into the ventral orbital cortex (VOC) on the formalin-induced orofacial pain in rats. For this purpose, two guide cannulas were placed into the left and right sides of the VOC of the brain. Orofacial pain was induced by subcutaneous injection of a diluted formalin solution (50μl, 1.5%) into the right vibrissa pad and face rubbing durations were recorded at 3-min blocks for 45min. Formalin produced a marked biphasic pain response (first phase: 0-3min and second phase: 15-33min). Epibatidine (a nicotinic receptor agonist) at doses of 0.05, 0.1 and 0.2μg/site, morphine (an opioid receptor agonist) at doses of 0.5, 1 and 2μg/site and their sub-analgesic doses (0.025μg/site epibatidine with 0.25μg/site morphine) combination treatment suppressed the second phase of pain. The antinociceptive effect induced by 0.2μg/site of epibatidine, but not morphine (2μg/site), was prevented by 2μg/site of mecamylamine (a nicotinic receptor antagonist). Naloxone (an opioid receptor antagonist) at a dose of 2μg/site prevented the antinociceptive effects induced by 2μg/site of morphine and 0.2μg/site of epibatidine. No above-mentioned chemical compounds affected locomotor activity. These results showed that at the VOC level, epibatidine and morphine produced antinociception. In addition, opioid receptor might be involved in epibatidine-induced antinociception, but the antinociception induced by morphine was not mediated through nicotinic acetylcholine receptor. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Cannabinoid-mediated modulation of neuropathic pain and microglial accumulation in a model of murine type I diabetic peripheral neuropathic pain

    Directory of Open Access Journals (Sweden)

    Ellis Connie L

    2010-03-01

    Full Text Available Abstract Background Despite the frequency of diabetes mellitus and its relationship to diabetic peripheral neuropathy (DPN and neuropathic pain (NeP, our understanding of underlying mechanisms leading to chronic pain in diabetes remains poor. Recent evidence has demonstated a prominent role of microglial cells in neuropathic pain states. One potential therapeutic option gaining clinical acceptance is the cannabinoids, for which cannabinoid receptors (CB are expressed on neurons and microglia. We studied the accumulation and activation of spinal and thalamic microglia in streptozotocin (STZ-diabetic CD1 mice and the impact of cannabinoid receptor agonism/antagonism during the development of a chronic NeP state. We provided either intranasal or intraperitoneal cannabinoid agonists/antagonists at multiple doses both at the initiation of diabetes as well as after establishment of diabetes and its related NeP state. Results Tactile allodynia and thermal hypersensitivity were observed over 8 months in diabetic mice without intervention. Microglial density increases were seen in the dorsal spinal cord and in thalamic nuclei and were accompanied by elevation of phosphorylated p38 MAPK, a marker of microglial activation. When initiated coincidentally with diabetes, moderate-high doses of intranasal cannabidiol (cannaboid receptor 2 agonist and intraperitoneal cannabidiol attenuated the development of an NeP state, even after their discontinuation and without modification of the diabetic state. Cannabidiol was also associated with restriction in elevation of microglial density in the dorsal spinal cord and elevation in phosphorylated p38 MAPK. When initiated in an established DPN NeP state, both CB1 and CB2 agonists demonstrated an antinociceptive effect until their discontinuation. There were no pronociceptive effects demonstated for either CB1 or CB2 antagonists. Conclusions The prevention of microglial accumulation and activation in the dorsal spinal

  12. Individuals with chronic low back pain do not modulate the level of transversus abdominis muscle contraction across different postures.

    Science.gov (United States)

    Miura, Takuya; Yamanaka, Masanori; Ukishiro, Kengo; Tohyama, Harukazu; Saito, Hiroshi; Samukawa, Mina; Kobayashi, Takumi; Ino, Takumi; Takeda, Naoki

    2014-12-01

    The aim of this study was to evaluate the thickness of the transversus abdominis (TrA) muscle in three basic postures in subjects with and without chronic low back pain. Subjects were classified into a chronic low back pain group (n = 27) and a healthy control group (n = 23). The thickness of the TrA muscle was measured at rest and during the abdominal drawing-in manoeuvre (ADIM) in supine, sitting and standing postures using B-mode ultrasound imaging. Contraction ratio (TrA thickness during the ADIM/TrA thickness at rest) was calculated for each posture. At rest, the TrA thickness in the sitting and standing postures was significantly greater than in the supine posture (p low back pain group. TrA thickness was similar in the low back pain and control group in all three postures. During the ADIM, TrA thickness was significantly greater in the control group than in the chronic low back pain group in all three postures. The contraction ratio was also significantly higher in the control group than in the chronic low back pain group in all three postures. These results indicate that the automatic postural contraction of the TrA observed in the control subjects in the sitting and standing postures was not demonstrated in subjects with chronic low back pain. The present study revealed the one aspect of different response of the TrA muscle to changing posture between two groups. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Peripheral endothelin B receptor agonist-induced antinociception involves endogenous opioids in mice.

    Science.gov (United States)

    Quang, Phuong N; Schmidt, Brian L

    2010-05-01

    Endothelin-1 (ET-1) produced by various cancers is known to be responsible for inducing pain. While ET-1 binding to ETAR on peripheral nerves clearly mediates nociception, effects from binding to ETBR are less clear. The present study assessed the effects of ETBR activation and the role of endogenous opioid analgesia in carcinoma pain using an orthotopic cancer pain mouse model. mRNA expression analysis showed that ET-1 was nearly doubled while ETBR was significantly down-regulated in a human oral SCC cell line compared to normal oral keratinocytes (NOK). Squamous cell carcinoma (SCC) cell culture treated with an ETBR agonist (10(-4)M, 10(-5)M, and 10(-6) M BQ-3020) significantly increased the production of beta-endorphin without any effects on leu-enkephalin or dynorphin. Cancer inoculated in the hind paw of athymic mice with SCC induced significant pain, as indicated by reduction of paw withdrawal thresholds in response to mechanical stimulation, compared to sham-injected and NOK-injected groups. Intratumor administration of 3mg/kg BQ-3020 attenuated cancer pain by approximately 50% up to 3h post-injection compared to PBS-vehicle and contralateral injection, while intratumor ETBR antagonist BQ-788 treatment (100 and 300microg/kg and 3mg/kg) had no effects. Local naloxone methiodide (500microg/kg) or selective mu-opioid receptor antagonist (CTOP, 500microg/kg) injection reversed ETBR agonist-induced antinociception in cancer animals. We propose that these results demonstrate that peripheral ETBR agonism attenuates carcinoma pain by modulating beta-endorphins released from the SCC to act on peripheral opioid receptors found in the cancer microenvironment. Copyright 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  14. Decisions with endogenous frames

    NARCIS (Netherlands)

    Dalton, P.S.; Ghosal, S.

    2012-01-01

    We develop a model of decision-making with endogenous frames and contrast the normative implications of our model to those of choice theoretic models in which observed choices are determined by exogenous frames or ancillary conditions. We argue that, frames, though they may be taken as given by the

  15. The Endogenous Feedback Network

    DEFF Research Database (Denmark)

    Augustenborg, Claudia Carrara

    2010-01-01

    proposals, it will first be considered the extents of their reciprocal compatibility, tentatively shaping an integrated, theoretical profile of consciousness. A new theory, the Endogenous Feedback Network (EFN) will consequently be introduced which, beside being able to accommodate the main tenets...

  16. Plasticity of Signaling by Spinal Estrogen Receptor α, κ-Opioid Receptor, and Metabotropic Glutamate Receptors over the Rat Reproductive Cycle Regulates Spinal Endomorphin 2 Antinociception: Relevance of Endogenous-Biased Agonism.

    Science.gov (United States)

    Liu, Nai-Jiang; Murugaiyan, Vijaya; Storman, Emiliya M; Schnell, Stephen A; Kumar, Arjun; Wessendorf, Martin W; Gintzler, Alan R

    2017-11-15

    We previously showed that intrathecal application of endomorphin 2 [EM2; the highly specific endogenous μ-opioid receptor (MOR) ligand] induces antinociception that varies with stage of the rat estrous cycle: minimal during diestrus and prominent during proestrus. Earlier studies, however, did not identify proestrus-activated signaling strategies that enable spinal EM2 antinociception. We now report that in female rats, increased spinal dynorphin release and κ-opioid receptor (KOR) signaling, as well as the emergence of glutamate-activated metabotropic glutamate receptor 1 (mGluR 1 ) signaling, are critical to the transition from an EM2 nonresponsive state (during diestrus) to an analgesically responsive state (during proestrus). Differential signaling by mGluR 1 , depending on its activation by membrane estrogen receptor α (mERα; during diestrus) versus glutamate (during proestrus), concomitant with the ebb and flow of spinal dynorphin/KOR signaling, functions as a switch, preventing or promoting, respectively, spinal EM2 antinociception. Importantly, EM2 and glutamate-containing varicosities appose spinal neurons that express MOR along with mGluRs and mERα, suggesting that signaling mechanisms regulating analgesic effectiveness of intrathecally applied EM2 also pertain to endogenous EM2. Regulation of spinal EM2 antinociception by both the nature of the endogenous mGluR 1 activator (i.e., endogenous biased agonism at mGluR 1 ) and changes in spinal dynorphin/KOR signaling represent a novel mechanism for modulating analgesic responsiveness to endogenous EM2 (and perhaps other opioids). This points the way for developing noncanonical pharmacological approaches to pain management by harnessing endogenous opioids for pain relief. SIGNIFICANCE STATEMENT The current prescription opioid abuse epidemic underscores the urgency to develop alternative pharmacotherapies for managing pain. We find that the magnitude of spinal endomorphin 2 (EM2) antinociception not only

  17. PREEMPTIVE SINGLE-DOSE PREGABALIN IN MODULATION OF POSTOPERATIVE PAIN AND OPIOID REQUIREMENT AFTER LAPAROSCOPIC CHOLECYSTECTOMY- A RANDOMIZED CLINICAL STUDY

    Directory of Open Access Journals (Sweden)

    Rajib Hazarika

    2018-01-01

    Full Text Available BACKGROUND With the enormous advancement in the field of laparoscopic cholecystectomy, postoperative pain has substantially reduced as compared to open procedures. However, postoperative pain is still the most frequent complaint, which can hamper recovery, mandate inpatient admission and thereby increase the cost of such care. Preemptive analgesia attenuates sensitisation of pain before surgery so as to reduce postoperative hyperalgesia and allodynia. Pregabalin is a structural analog of γ-aminobutyric acid, which shows analgesic, anticonvulsant, and anxiolytic effects. The aim of the present study was to evaluate the effectiveness of preemptive oral pregabalin on postoperative pain and opioid consumption in patients undergoing laparoscopic cholecystectomy. MATERIALS AND METHODS Eighty adult patients of ASA I and II undergoing laparoscopic cholecystectomy were randomly divided into two groups to receive either pregabalin 150 mg capsule or a matching placebo (vitamin B complex capsule 1 hour before surgery. Anaesthesia technique was standardised in both the groups. Postoperative pain was assessed at 0, 1, 2, 3, 6, 9, 12, 18 and 24 hours period postoperatively by a 10 cm visual analogue scale, where 0, no pain; 10, worst imaginable pain. Subjects received Inj. Tramadol hydrochloride (1 mg/kg IV as a rescue analgesic whenever VAS score was ≥4. Occurrence of any side effects like nausea, vomiting, sedation, headache and dizziness was also noted. Statistical Analysis Used- Data analysis was done using PASW 18.0 software. Results were analysed by Mann-Whitney U-test, large sample difference in proportion test and Fisher’s Exact test. RESULTS Patients in the pregabalin group had significantly lower pain scores at all the time intervals in comparison to placebo group (p<0.05. Total postoperative tramadol consumption in the pregabalin group was statistically significantly lower than in the control group (p<0.05 and also time to first request for

  18. Botulinum Toxin Type A—A Modulator of Spinal Neuron–Glia Interactions under Neuropathic Pain Conditions

    Directory of Open Access Journals (Sweden)

    Ewelina Rojewska

    2018-04-01

    Full Text Available Neuropathic pain represents a significant clinical problem because it is a chronic condition often refractory to available therapy. Therefore, there is still a strong need for new analgesics. Botulinum neurotoxin A (BoNT/A is used to treat a variety of clinical diseases associated with pain. Glia are in continuous bi-directional communication with neurons to direct the formation and refinement of synaptic connectivity. This review addresses the effects of BoNT/A on the relationship between glia and neurons under neuropathic pain. The inhibitory action of BoNT/A on synaptic vesicle fusion that blocks the release of miscellaneous pain-related neurotransmitters is known. However, increasing evidence suggests that the analgesic effect of BoNT/A is mediated through neurons and glial cells, especially microglia. In vitro studies provide evidence that BoNT/A exerts its anti-inflammatory effect by diminishing NF-κB, p38 and ERK1/2 phosphorylation in microglia and directly interacts with Toll-like receptor 2 (TLR2. Furthermore, BoNT/A appears to have no more than a slight effect on astroglia. The full activation of TLR2 in astroglia appears to require the presence of functional TLR4 in microglia, emphasizing the significant interaction between those cell types. In this review, we discuss whether and how BoNT/A affects the spinal neuron–glia interaction and reduces the development of neuropathy.

  19. Neurokinin-1 (NK-1 receptor and brain-derived neurotrophic factor (BDNF gene expression is differentially modulated in the rat spinal dorsal horn and hippocampus during inflammatory pain

    Directory of Open Access Journals (Sweden)

    McCarson Kenneth E

    2007-10-01

    Full Text Available Abstract Persistent pain produces complex alterations in sensory pathways of the central nervous system (CNS through activation of various nociceptive mechanisms. However, the effects of pain on higher brain centers, particularly the influence of the stressful component of pain on the limbic system, are poorly understood. Neurokinin-1 (NK-1 receptors and brain-derived neurotrophic factor (BDNF, known neuromediators of hyperalgesia and spinal central sensitization, have also been implicated in the plasticity and neurodegeneration occurring in the hippocampal formation during exposures to various stressors. Results of this study showed that injections of complete Freund's adjuvant (CFA into the hind paw increased NK-1 receptor and BDNF mRNA levels in the ipsilateral dorsal horn, supporting an important role for these nociceptive mediators in the amplification of ascending pain signaling. An opposite effect was observed in the hippocampus, where CFA down-regulated NK-1 receptor and BDNF gene expression, phenomena previously observed in immobilization models of stress and depression. Western blot analyses demonstrated that in the spinal cord, CFA also increased levels of phosphorylated cAMP response element-binding protein (CREB, while in the hippocampus the activation of this transcription factor was significantly reduced, further suggesting that tissue specific transcription of either NK-1 or BDNF genes may be partially regulated by common intracellular transduction mechanisms mediated through activation of CREB. These findings suggest that persistent nociception induces differential regional regulation of NK-1 receptor and BDNF gene expression and CREB activation in the CNS, potentially reflecting varied roles of these neuromodulators in the spinal cord during persistent sensory activation vs. modulation of the higher brain structures such as the hippocampus.

  20. Endogenous growth and the environment

    NARCIS (Netherlands)

    Withagen, C.A.A.M.; Vellinga, N.

    2001-01-01

    This paper examines the relationship between environmental policy and growth, from the perspective of endogenous growth theory. In particular three standard endogenous growth models are supplemented with environmental issues, such as pollution and exhaustibility of natural resources. It is found

  1. Pregabalin and placebo responders show different effects on central pain processing in chronic pancreatitis patients

    Directory of Open Access Journals (Sweden)

    Bouwense SA

    2015-07-01

    Full Text Available Stefan AW Bouwense,1 Søren S Olesen,2 Asbjørn M Drewes,2 Harry van Goor,1 Oliver HG Wilder-Smith31Pain and Nociception Neuroscience Research Group, Department of Surgery, Radboud university medical center, Nijmegen, The Netherlands; 2Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark; 3Pain and Nociception Neuroscience Research Group, Department of Anaesthesiology, Pain and Palliative Medicine, Radboud university medical center, Nijmegen, The NetherlandsBackground: Pain control in chronic pancreatitis is a major challenge; the mechanisms behind analgesic treatment are poorly understood. This study aims to investigate the differences in pain sensitivity and modulation in chronic pancreatitis patients, based on their clinical response (responders vs nonresponders to placebo or pregabalin treatment. Methods: This study was part of a randomized, double-blind, placebo-controlled trial evaluating the analgesic effects of pregabalin and placebo in chronic pancreatitis. Post hoc, patients were assigned to one of four groups, ie, responders and nonresponders to pregabalin (n=16; n=15 or placebo (n=12; n=17 treatment. Responders were defined as patients with >30% pain reduction after 3 weeks of treatment. We measured change in pain sensitivity before and after the treatment using electric pain detection thresholds (ePDT in dermatomes C5 (generalized effects and Ventral T10 (segmental effects. Descending endogenous pain modulation was quantified via conditioned pain modulation (CPM paradigm. Results: Sixty patients were analyzed in a per-protocol analysis. ePDT change in C5 was significant vs baseline and greater in pregabalin (1.3 mA vs placebo responders (−0.1 mA; P=0.015. This was not so for ePDT in Ventral T10. CPM increased more in pregabalin (9% vs placebo responders (−17%; P<0.001. CPM changed significantly vs baseline only for pregabalin responders (P=0.006. Conclusion: This hypothesis

  2. Monocular channels have a functional role in endogenous orienting.

    Science.gov (United States)

    Saban, William; Sekely, Liora; Klein, Raymond M; Gabay, Shai

    2018-03-01

    The literature has long emphasized the role of higher cortical structures in endogenous orienting. Based on evolutionary explanation and previous data, we explored the possibility that lower monocular channels may also have a functional role in endogenous orienting of attention. Sensitive behavioral manipulation was used to probe the contribution of monocularly segregated regions in a simple cue - target detection task. A central spatially informative cue, and its ensuing target, were presented to the same or different eyes at varying cue-target intervals. Results indicated that the onset of endogenous orienting was apparent earlier when the cue and target were presented to the same eye. The data provides converging evidence for the notion that endogenous facilitation is modulated by monocular portions of the visual stream. This, in turn, suggests that higher cortical mechanisms are not exclusively responsible for endogenous orienting, and that a dynamic interaction between higher and lower neural levels, might be involved. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Endogenous Entry in Contests

    OpenAIRE

    John Morgan; Henrik Orzen; Martin Sefton

    2008-01-01

    We report the results of laboratory experiments on rent-seeking contests with endogenous participation. Theory predicts that (a) contest entry and rent-seeking expenditures increase with the size of the prize; and (b) earnings are equalized between the contest and the outside option. While the directional predictions offered in (a) are supported in the data, the level predictions are not. Prediction (b) is not supported in the data: When the prize is large, contest participants earn more than...

  4. Stimulating endogenous cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Amanda eFinan

    2015-09-01

    Full Text Available The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration,a combination of these approaches couldameliorate the overall repair process to incorporate the participation ofmultiple cell players.

  5. Endogenous retroviruses and animal reproduction.

    Science.gov (United States)

    Prudhomme, S; Bonnaud, B; Mallet, F

    2005-01-01

    Endogenous retroviruses (ERV), as part of the host genetic heritage, are transmissible to the next generation in a Mendelian way. Their abundance in animal genomes and their expression primarily detected in germ cells, embryonic tissues and cancer cell lines, raised the question of their biological significance. This article reviews the possible role of ERVs in the physiology and diseases of animal reproduction, from Drosophila to human. In males, there is no trivial involvement of ERVs in a physiological process. Conversely, a spermatogenesis defect was associated in the human male with HERV-K expression and HERV15-induced chromosomal alteration, leading to cancer and infertility, respectively. In females, the study of insect ERVs (IERV) pointed out the overlap between genetics and virology with the genetic-dependent regulation of ZAM and the non-infectious and infectious life cycles of gypsy. The pattern of ERVs expression in rodent, ovine and human females suggest a hormone-dependent mechanism consistent with the mammalian oestrus cycle regulation. The differentiation of the mammary epithelium and breast tumorigenesis involving the mouse mammary tumour viruses (MMTV) illustrate the intimate connection between endogenous and exogenous retroviruses. Last, as a major site of ERVs transcription, placenta contributed to our understanding of ERVs modulation of neighbouring gene expression. As an interface, i.e. a site of conflicts and exchanges, placenta should resist infection and protect the foetus against the maternal immune system. Retroviral envelopes could theoretically provide such features due to receptor interference, immunosuppression and fusion properties, as shown by the HERV-W envelope involved in the syncytiotrophoblast formation. We conclude with an insight on the evolutionary and epigenetic consequences of the relationships of ERV guests with their animal hosts.

  6. Endogenous Opioid Function and Responses to Morphine: The Moderating Effects of Anger Expressiveness.

    Science.gov (United States)

    Burns, John W; Bruehl, Stephen; France, Christopher R; Schuster, Erik; Orlowska, Daria; Chont, Melissa; Gupta, Rajnish K; Buvanendran, Asokumar

    2017-08-01

    Long-term use of opioid analgesics may be ineffective or associated with significant negative side effects for some people. At present, there is no sound method of identifying optimal opioid candidates. Individuals with chronic low back pain (n = 89) and healthy control individuals (n = 102) underwent ischemic pain induction with placebo, opioid blockade (naloxone), and morphine in counterbalanced order. They completed the Spielberger Anger-Out subscale. Endogenous opioid function × Anger-out × Pain status (chronic pain, healthy control) interactions were tested for morphine responses to ischemic threshold, tolerance, and pain intensity (McGill Sensory and Affective subscales) and side effects. For individuals with chronic pain and healthy control participants, those with low endogenous opioid function and low anger-out scores exhibited the largest morphine analgesic responses, whereas those with high anger-out and low endogenous opioid function showed relatively weaker morphine analgesic responses. Further, individuals with chronic pain with low endogenous opioid function and low anger-out scores also reported the fewest negative effects to morphine, whereas those with low endogenous opioid function and high anger-out reported the most. Findings point toward individuals with chronic pain who may strike a favorable balance of good analgesia with few side effects, as well as those who have an unfavorable balance of poor analgesia and many side effects. We sought to identify optimal candidates for opioid pain management. Low back pain patients who express anger and also have deficient endogenous opioid function may be poor candidates for opioid therapy. In contrast, low back patients who tend not to express anger and who also have deficient endogenous opioid function may make optimal candidates for opioid therapy. Copyright © 2017 American Pain Society. Published by Elsevier Inc. All rights reserved.

  7. Feasibility of NonInvasive Brain Modulation for Management of Pain Related to Chemoradiotherapy in Patients with Advanced Head and Neck Cancer

    Directory of Open Access Journals (Sweden)

    Xiaosu Hu

    2016-09-01

    Full Text Available Patients with head and neck cancer often experience a significant decrease in their quality of life during chemoradiotherapy (CRT due to treatment-related pain, which is frequently classified as severe. Transcranial direct current stimulation (tDCS is a method of non-invasive brain stimulation that has been frequently used in experimental and clinical pain studies. In this pilot study, we investigated the clinical impact and central mechanisms of twenty primary motor cortex (M1 stimulation sessions with tDCS during seven weeks of CRT for head and neck cancer. From 48 patients screened, seven met the inclusion criteria and were enrolled. Electroencephalography (EEG data were recorded before and after tDCS stimulation as well as across the trial to monitor short and long-term impact on brain function. The compliance rate during the long trial was extremely high (98.4%, and patients mostly reported mild side effects in line with the literature (e.g., tingling. Compared to a large standard of care study from our institution, our initial results indicate that M1-tDCS stimulation has a pain relief effect during the CRT that resulted in a significant attenuation of weight reduction and dysphagia normally observed in these patients. These results translated to our patient cohort not needing feeding tubes or IV fluids. Power spectra analysis of EEG data indicated significant changes in α, β and γ bands immediately after tDCS stimulation and, in addition, α, δ and θ bands over the long term in the seventh stimulation week (p < 0.05. The independent component EEG clustering analysis showed estimated functional brain regions including precuneus and superior frontal gyrus (SFG in the seventh week of tDCS stimulation. These areas colocalize with our previous positron emission tomography (PET study where there was activation in the endogenous μ-opioid system during M1-tDCS. This study provides preliminary evidence demonstrating the feasibility and

  8. Topical Treatment with Xiaozheng Zhitong Paste (XZP Alleviates Bone Destruction and Bone Cancer Pain in a Rat Model of Prostate Cancer-Induced Bone Pain by Modulating the RANKL/RANK/OPG Signaling

    Directory of Open Access Journals (Sweden)

    Yanju Bao

    2015-01-01

    Full Text Available To explore the effects and mechanisms of Xiaozheng Zhitong Paste (XZP on bone cancer pain, Wistar rats were inoculated with vehicle or prostate cancer PC-3 into the tibia bone and treated topically with inert paste, XZP at 15.75, 31.5, or 63 g/kg twice per day for 21 days. Their bone structural damage, nociceptive behaviors, bone osteoclast and osteoblast activity, and the levels of OPG, RANL, RNAK, PTHrP, IGF-1, M-CSF, IL-8, and TNF-α were examined. In comparison with that in the placebo group, significantly reduced numbers of invaded cancer cells, decreased levels of bone damage and mechanical threshold and paw withdrawal latency, lower levels of serum TRACP5b, ICTP, PINP, and BAP, and less levels of bone osteoblast and osteoclast activity were detected in the XZP-treated rats (P<0.05. Moreover, significantly increased levels of bone OPG but significantly decreased levels of RANL, RNAK, PTHrP, IGF-1, M-CSF, IL-8, and TNF-α were detected in the XZP-treated rats (P<0.05 for all. Together, XZP treatment significantly mitigated the cancer-induced bone damage and bone osteoclast and osteoblast activity and alleviated prostate cancer-induced bone pain by modulating the RANKL/RANK/OPG pathway and bone cancer-related inflammation in rats.

  9. Cortistatin attenuates inflammatory pain via spinal and peripheral actions.

    Science.gov (United States)

    Morell, María; Camprubí-Robles, María; Culler, Michael D; de Lecea, Luis; Delgado, Mario

    2014-03-01

    Clinical pain, as a consequence of inflammation or injury of peripheral organs (inflammatory pain) or nerve injury (neuropathic pain), represents a serious public health issue. Treatment of pain-related suffering requires knowledge of how pain signals are initially interpreted and subsequently transmitted and perpetuated. To limit duration and intensity of pain, inhibitory signals participate in pain perception. Cortistatin is a cyclic-neuropeptide that exerts potent inhibitory actions on cortical neurons and immune cells. Here, we found that cortistatin is a natural analgesic component of the peripheral nociceptive system produced by peptidergic nociceptive neurons of the dorsal root ganglia in response to inflammatory and noxious stimuli. Moreover, cortistatin is produced by GABAergic interneurons of deep layers of dorsal horn of spinal cord. By using cortistatin-deficient mice, we demonstrated that endogenous cortistatin critically tunes pain perception in physiological and pathological states. Furthermore, peripheral and spinal injection of cortistatin potently reduced nocifensive behavior, heat hyperalgesia and tactile allodynia in experimental models of clinical pain evoked by chronic inflammation, surgery and arthritis. The analgesic effects of cortistatin were independent of its anti-inflammatory activity and directly exerted on peripheral and central nociceptive terminals via Gαi-coupled somatostatin-receptors (mainly sstr2) and blocking intracellular signaling that drives neuronal plasticity including protein kinase A-, calcium- and Akt/ERK-mediated release of nociceptive peptides. Moreover, cortistatin could modulate, through its binding to ghrelin-receptor (GHSR1), pain-induced sensitization of secondary neurons in spinal cord. Therefore, cortistatin emerges as an anti-inflammatory factor with potent analgesic effects that offers a new approach to clinical pain therapy, especially in inflammatory states. Copyright © 2013 Elsevier Inc. All rights

  10. Mas-Related Gene (Mrg C Activation Attenuates Bone Cancer Pain via Modulating Gi and NR2B.

    Directory of Open Access Journals (Sweden)

    Yu'e Sun

    Full Text Available This study is to investigate the role of Mas-related gene (Mrg C in the pathogenesis and treatment of bone cancer pain (BCP.BCP mouse model was established by osteosarcoma cell inoculation. Pain-related behaviors were assessed with the spontaneous lifting behavior test and mechanical allodynia test. Expression levels of MrgC, Gi, and NR2B in the spinal cord were detected with Western blot analysis and immunohistochemistry.Pain-related behavior tests showed significantly increased spontaneous flinches (NSF and decreased paw withdrawal mechanical threshold (PWMT in mouse models of BCP. Western blot analysis showed that, compared with the control group and before modeling, all the expression levels of MrgC, Gi, and NR2B in the spinal cord of BCP mice were dramatically elevated, which were especially increased at day 7 after operation and thereafter, in a time-dependent manner. Moreover, the treatment of MrgC agonist BAM8-22 significantly up-regulated Gi and down-regulated NR2B expression levels, in the spinal cord of BCP mice, in a time-dependent manner. On the other hand, anti-MrgC significantly down-regulated Gi expression, while dramatically up-regulated NR2B expression, in the BCP mice. Similar results were obtained from the immunohistochemical detection. Importantly, BAM8-22 significantly attenuated the nociceptive behaviors in the BCP mice.Our results indicated the MrgC-mediated Gi and NR2B expression alterations in the BCP mice, which might contribute to the pain hypersensitivity. These findings may provide a novel strategy for the treatment of BCP in clinic.

  11. Electromagnetic field in control tissue regeneration, pelvic pain, neuro-inflammation and modulation of non-neuronal cells.

    Science.gov (United States)

    Aragona, S E; Mereghetti, G; Lotti, J; Vosa, A; Lotti, T; Canavesi, E

    In scientific literature, magnetic fields are used both in basic science and clinical research. They are often used to treat pain and neuro-inflammation disorders thanks to their influence on cellular responses. Our project was born from the regenerative support that we wanted to give to those diseases characterized by neuro-inflammation, nerve lesion, muscles and tissues disorders that can transform the symptom (e.g. neuropathic pelvic pain) in disease. In this study, we examined the action of pulsed electromagnetic fields (PEMFs) on skin lesion regeneration and the repetitive trans-pelvic magnetic stimulation (rTPMS) on patients affected by incontinence and post-surgical problems, sexual dysfunction, and pelvic pain. In rTPMS for post-surgery urinary incontinence, 40 patients affected by post-surgery urinary incontinence were enrolled. Twenty patients (post-prostatectomy) were treated with rTPMS and 20 with conventional therapies. In PEMF for the regeneration of skin tissue, 50 patients affected by various types of skin lesions (70% low legs vascular lesions) were treated with pulsed electromagnetic fields (PEMFs) twice per week and subsequently with home treatment (Home Care device) twice per day. In rTPMS study, results were evaluated after 3 months. In 10 patients (7 post prostatectomy, 3 cystourethrocele) which were submitted to 18 sessions, twice a week, an improvement of incontinence in 75% of cases with patient compliance was recorded and the quality of life up to 100% also improved. Utilizing PEMFs for the regeneration of skin tissue, following 3 months of AIMED protocol treatment, we reached a reduction of 50% of lesion area in the 60% of cases; 35% of cases healed completely. The use of rTPMS allows training muscles to adequately respond to inflammatory stimulus that causes muscle accommodation deficits with altered contractility or spastic painful contracture in pelvic district. It also stimulates a series of regenerative phenomena due to the action of

  12. The role of the endocannabinoid system in pain.

    Science.gov (United States)

    Woodhams, Stephen G; Sagar, Devi Rani; Burston, James J; Chapman, Victoria

    2015-01-01

    Preparations of the Cannabis sativa plant have been used to analgesic effect for millenia, but only in recent decades has the endogenous system responsible for these effects been described. The endocannabinoid (EC) system is now known to be one of the key endogenous systems regulating pain sensation, with modulatory actions at all stages of pain processing pathways. The EC system is composed of two main cannabinoid receptors (CB1 and CB2) and two main classes of endogenous ligands or endocannabinoids (ECs). The receptors have distinct expression profiles, with CB1 receptors found at presynaptic sites throughout the peripheral and central nervous systems (PNS and CNS, respectively), whilst CB2 receptor is found principally (but not exclusively) on immune cells. The endocannabinoid ligands are lipid neurotransmitters belonging to either the N-acyl ethanolamine (NAEs) class, e.g. anandamide (AEA), or the monoacylglycerol class, e.g. 2-arachidonoyl glycerol (2-AG). Both classes are short-acting transmitter substances, being synthesised on demand and with signalling rapidly terminated by specific enzymes. ECs acting at CB1 negatively regulate neurotransmission throughout the nervous system, whilst those acting at CB2 regulate the activity of CNS immune cells. Signalling through both of these receptor subtypes has a role in normal nociceptive processing and also in the development resolution of acute pain states. In this chapter, we describe the general features of the EC system as related to pain and nociception and discuss the wealth of preclinical and clinical data involving targeting the EC system with focus on two areas of particular promise: modulation of 2-AG signalling via specific enzyme inhibitors and the role of spinal CB2 in chronic pain states.

  13. The Role of the Periaqueductal Gray in the Modulation of Pain in Males and Females: Are the Anatomy and Physiology Really that Different?

    Directory of Open Access Journals (Sweden)

    Dayna R. Loyd

    2009-01-01

    Full Text Available Anatomical and physiological studies conducted in the 1960s identified the periaqueductal gray (PAG and its descending projections to the rostral ventromedial medulla (RVM and spinal cord dorsal horn, as a primary anatomical pathway mediating opioid-based analgesia. Since these initial studies, the PAG-RVM-spinal cord pathway has been characterized anatomically and physiologically in a wide range of vertebrate species. Remarkably, the majority of these studies were conducted exclusively in males with the implicit assumption that the anatomy and physiology of this circuit were the same in females; however, this is not the case. It is well established that morphine administration produces greater antinociception in males compared to females. Recent studies indicate that the PAG-RVM pathway contributes to the sexually dimorphic actions of morphine. This manuscript will review our anatomical, physiological, and behavioral data identifying sex differences in the PAG-RVM pathway, focusing on its role in pain modulation and morphine analgesia.

  14. The Endogenous Feedback Network

    DEFF Research Database (Denmark)

    Augustenborg, Claudia Carrara

    2010-01-01

    proposals, it will first be considered the extents of their reciprocal compatibility, tentatively shaping an integrated, theoretical profile of consciousness. A new theory, the Endogenous Feedback Network (EFN) will consequently be introduced which, beside being able to accommodate the main tenets...... of the reviewed theories, appears able to compensate for the explanatory gaps they leave behind. The EFN proposes consciousness as the phenomenon emerging from a distinct network of neural paths broadcasting the neural changes associated to any mental process. It additionally argues for the need to include a 5th...

  15. A Comparison of the 2/3/5 Selective Positive Allosteric Modulators L-838,417 and TPA023 in Preclinical Models of Inflammatory and Neuropathic Pain

    Directory of Open Access Journals (Sweden)

    Sarah Nickolls

    2011-01-01

    Full Text Available GABAA receptors containing α2/3 subunits are current targets in the battle to develop new pain medications, as they are expressed in the spinal cord where increasing inhibitory drive should result in analgesia. However, this approach is prone to a range of side effects including sedation, cognitive impairment, and abuse as a consequence of the widespread influence of GABA. The ability to make subtype selective low-efficacy benzodiazepine compounds, which potentiate the action of GABA at specific α subunits, has the potential to reduce this side effect profile. In this study, we have investigated the effects of the medium-efficacy positive allosteric modulator (PAM L-838,417 and the low-efficacy PAM TPA023 in a number of preclinical inflammatory and neuropathic pain models. We conclude that either the higher level of efficacy at α2/3 or efficacy at α5 is required for compounds to have a significant analgesic effect in a range of models, and, therefore, although the side-effect profile of compounds can be reduced compared to typical benzodiazepines, it is unlikely that it can be completely eliminated.

  16. Role of ventrolateral orbital cortex muscarinic and nicotinic receptors in modulation of capsaicin-induced orofacial pain-related behaviors in rats.

    Science.gov (United States)

    Tamaddonfard, Esmaeal; Erfanparast, Amir; Abbas Farshid, Amir; Delkhosh-Kasmaie, Fatmeh

    2017-11-15

    Acetylcholine, as a major neurotransmitter, mediates many brain functions such as pain. This study was aimed to investigate the effects of microinjection of muscarinic and nicotinic acetylcholine receptor antagonists and agonists into the ventrolateral orbital cortex (VLOC) on capsaicin-induced orofacial nociception and subsequent hyperalgesia. The right side of VLOC was surgically implanted with a guide cannula in anaesthetized rats. Orofacial pain-related behaviors were induced by subcutaneous injection of a capsaicin solution (1.5µg/20µl) into the left vibrissa pad. The time spent face rubbing with ipsilateral forepaw and general behavior were recorded for 10min, and then mechanical hyperalgesia was determined using von Frey filaments at 15, 30, 45 and 60min post-capsaicin injection. Alone intra-VLOC microinjection of atropine (a muscarinic acetylcholine receptor antagonist) and mecamylamine (a nicotinic acetylcholine receptor antagonist) at a similar dose of 200ng/site did not alter nocifensive behavior and hyperalgesia. Microinjection of oxotremorine (a muscarinic acetylcholine receptor agonist) at doses of 50 and 100ng/site and epibatidine (a nicotinic acetylcholine receptor agonist) at doses of 12.5, 25, 50 and 100ng/site into the VLOC suppressed pain-related behaviors. Prior microinjections of 200ng/site atropine and mecamylamine (200ng/site) prevented oxotremorine (100ng/site)-, and epibatidine (100ng/site)-induced antinociception, respectively. None of the above-mentioned chemicals changed general behavior. These results showed that the VLOC muscarinic and nicotinic acetylcholine receptors might be involved in modulation of orofacial nociception and hypersensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. PSD95 gene specific siRNAs attenuate neuropathic pain through modulating neuron sensibility and postsynaptic CaMKIIα phosphorylation.

    Science.gov (United States)

    Le, Shen; Xu, Li; Wen, Chen; Li, Xu; Wei, Liu; Xue-rong, Yu; Yu-guang, Huang

    2011-12-01

    To observe the effects of PSD95 gene specific siRNAs on neuropathic pain relief, neuron viability, and postsynaptic calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) phosphorylation in vitro and in vivo. Gene-specific siRNAs of rat PSD95 were synthesized chemically for transfection. Adult male Sprague-Dawley (SD) rats were randomly divided into 3 groups: naïve group (n=6), sham group (n=6), and sciatic nerve chronic constriction injury (CCI) group (n=24). The CCI group was further divided into 4 groups (n=6 in each group), which were pretreated with normal saline, transfection vehicle, negative control siRNAs, and PSD95 gene specific siRNAs respectively. All the subgroups received corresponding agents intrathecally for 3 days, started one day before the CCI of sciatic nerve. Both mechanical allodynia and thermal hyperalgesia were measured on post-operative day 3 and 7. PSD95 gene silenced NG108-15 cells were further stimulated by glutamate, with the cell viability and the expression/phosphorylation of CaMKIIα measured by MTT cell proliferation assay and Western blot, respectively. The siRNAs decreased PSD95 mRNA level significantly both in vivo and in vitro. Neuropathic pain rats pretreated with PSD95 gene specific siRNAs exhibited significant elevation in the mechanical withdrawal threshold and paw withdrawal thermal latency, without affecting the baseline nociception. PSD95 gene silencing enhanced neuronal tolerance against the glutamate excitotoxicity, meanwhile the phosphorylation of CaMKIIα Thr286 was attenuated. Pre-emptive administration of PSD95 gene specific siRNAs may attenuate the central sensitization CaMKIIα-related signaling cascades, leading to the relief of neuropathic pain.

  18. Endogenous cannabinoids and appetite.

    Science.gov (United States)

    Kirkham, T C; Williams, C M

    2001-06-01

    Since pre-history, Cannabis sativa has been exploited for its potent and manifold pharmacological actions. Amongst the most renowned of these actions is a tendency to provoke ravenous eating. The characterization of the psychoactive principals in cannabis (exogenous cannabinoids) and, more recently, the discovery of specific brain cannabinoid receptors and their endogenous ligands (endocannabinoids) has stimulated research into the physiological roles of endocannabinoid systems. In this review, we critically discuss evidence from the literature that describe studies on animals and human subjects to support endocannabinoid involvement in the control of appetite. We describe the hyperphagic actions of the exogenous cannabinoid, Delta9-tetrahydrocannabinol, and the endogenous CB1 ligands, anandamide and 2-arachidonylglycerol, and present evidence to support a specific role of endocannabinoid systems in appetitive processes related to the incentive and reward properties of food. A case is made for more comprehensive and systematic analyses of cannabinoid actions on eating, in the anticipation of improved therapies for disorders of appetite and body weight, and a better understanding of the biopsychological processes underlying hunger.

  19. The Endocannabinoid System, Cannabinoids, and Pain

    Directory of Open Access Journals (Sweden)

    Perry G. Fine

    2013-10-01

    Full Text Available The endocannabinoid system is involved in a host of homeostatic and physiologic functions, including modulation of pain and inflammation. The specific roles of currently identified endocannabinoids that act as ligands at endogenous cannabinoid receptors within the central nervous system (primarily but not exclusively CB1 receptors and in the periphery (primarily but not exclusively CB2 receptors are only partially elucidated, but they do exert an influence on nociception. Exogenous plant-based cannabinoids (phytocannabinoids and chemically related compounds, like the terpenes, commonly found in many foods, have been found to exert significant analgesic effects in various chronic pain conditions. Currently, the use of Δ9-tetrahydrocannabinol is limited by its psychoactive effects and predominant delivery route (smoking, as well as regulatory or legal constraints. However, other phytocannabinoids in combination, especially cannabidiol and β-caryophyllene, delivered by the oral route appear to be promising candidates for the treatment of chronic pain due to their high safety and low adverse effects profiles. This review will provide the reader with the foundational basic and clinical science linking the endocannabinoid system and the phytocannabinoids with their potentially therapeutic role in the management of chronic pain.

  20. Combining Semi-Endogenous and Fully Endogenous Growth: a Generalization.

    OpenAIRE

    Cozzi, Guido

    2017-01-01

    This paper shows that combining the semi-endogenous and the fully endogenous growth mechanisms with a general CES aggregator, either growth process can prevail in the balanced growth path depending on their degree of complementarity/substitutability. Policy-induced long-run economic switches to the fully endogenous steady state as the R&D employment ratio surpasses a positive threshold are possible if the two growth engines are gross substitutes.

  1. Cancer pain and current theory for pain control.

    Science.gov (United States)

    Kahan, Brian

    2014-05-01

    This article discusses current trends in managing cancer pain, with specific regard to opioid transmission, descending pathway inhabitation, and ways to facilitate the endogenous antinociceptive chemicals in the human body. Various techniques for opioid and nonopioid control of potential pain situations of patients with cancer are discussed. The benefits of using pharmacogenetics to assess the appropriate medications are addressed. Finally, specific treatment of abdominal cancer pain using radiofrequency lesioning is discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The drug candidate, ADX71441, is a novel, potent and selective positive allosteric modulator of the GABABreceptor with a potential for treatment of anxiety, pain and spasticity.

    Science.gov (United States)

    Kalinichev, Mikhail; Girard, Françoise; Haddouk, Hasnaà; Rouillier, Mélanie; Riguet, Eric; Royer-Urios, Isabelle; Mutel, Vincent; Lütjens, Robert; Poli, Sonia

    2017-03-01

    Positive allosteric modulation of the GABA B receptor is a promising alternative to direct activation of the receptor as a therapeutic approach for treatment of addiction, chronic pain, anxiety, epilepsy, autism, Fragile X syndrome, and psychosis. Here we describe in vitro and in vivo characterization of a novel, potent and selective GABA B positive allosteric modulator (PAM) N-(5-(4-(4-chloro-3-fluorobenzyl)-6-methoxy-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3H)-yl)-2-fluorophenyl)acetamide (ADX71441). In vitro, Schild plot and reversibility tests at the target confirmed PAM properties of the compound. In mice and rats ADX71441 is bioavailable after oral administration and is brain penetrant. A single dose of ADX71441 had an anxiolytic-like profile in the mouse marble burying test (minimum effective dose; MED 3 mg/kg) as well as in the elevated plus maze test in mice and rats (both MED 3 mg/kg). Also, in mice, acute administration of ADX71441 reduced visceral pain-associated behaviors in the acetic acid-induced writhing test. ADX71441 dose-dependently reduced time on rotarod in rats (MED 10 mg/kg) indicative of muscle-relaxant qualities. ADX71441 reduced locomotor activity in mice (10 mg/kg) and rats (3 mg/kg) after single dose; however, following sub-chronic administration in mice, 30 mg/kg ADX71441 was associated with normal locomotor activity. While acute administration of ADX71441 reduced body temperature in rats and mice (both MED 10 mg/kg), the effect in the former was transient, rapidly returning to normal levels despite high concentrations of the compound remaining in plasma. Thus, the GABA B PAM ADX71441 represents a valid therapeutic approach for development of novel treatment of anxiety, pain and spasticity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Pain in Down's Syndrome

    Directory of Open Access Journals (Sweden)

    Federica Mafrica

    2006-01-01

    Full Text Available Pain is a homeostatic mechanism that intervenes to protect the organism from harmful stimuli that could damage its integrity. It is made up of two components: the sensory-discriminative component, which identifies the provenance and characteristics of the type of pain; and the affective-motivational component, on which emotional reflexes, following the painful sensation, depend.There is a system for pain control at an encephalic and spinal level, principally made up of the periaqueductal grey matter, the periventricular area, the nucleus raphe magnus, and the pain-inhibition complex situated in the posterior horns of the spinal cord. Through the activation of these pain-control systems, the nervous system suppresses the afference of pain signals. Endogenous opioids represent another analgesic system.In the course of various studies on pain transmission in Down patients, the reduced tolerance of pain and the incapacity to give a qualitative and quantitative description emerged in a powerful way. All of these aspects cause difficulty in evaluating pain. This is linked to several learning difficulties. However, it cannot be excluded that in these anomalies of pain perception, both the anatomical and the neurotransmitter alteration, typical of this syndrome, may hold a certain importance.This fact may have important clinical repercussions that could affect the choice of therapeutic and rehabilitative schemes for treatment of pathologies in which pain is the dominant symptom, such as postoperative pain. It could influence research on analgesics that are more suitable for these patients, the evaluation of the depth of analgesia during surgical operation, and ultimately, absence of obvious pain manifestations. In conclusion, alterations of the central nervous system, neurotransmitters, pain transmission, and all related problems should be considered in the management of pain in patients with Down's syndrome, especially by algologists and

  4. Endogenous Monetary Policy Regime Change

    OpenAIRE

    Troy Davig; Eric M. Leeper

    2006-01-01

    This paper makes changes in monetary policy rules (or regimes) endogenous. Changes are triggered when certain endogenous variables cross specified thresholds. Rational expectations equilibria are examined in three models of threshold switching to illustrate that (i) expectations formation effects generated by the possibility of regime change can be quantitatively important; (ii) symmetric shocks can have asymmetric effects; (iii) endogenous switching is a natural way to formally model preempt...

  5. Endogeneity Of Indonesian Money Supply

    OpenAIRE

    Rachma, Meutia Safrina

    2010-01-01

    There has been a long debate about the endogeneity of money supply. The main objective of this article is to identify whether money supply in Indonesia is an exogenous or an endogenous variable. Using a Vector Autoregressive model and monthly data 1997(5)-2010(6), the estimation result shows that money supply in Indonesia is an endogenous variable. The movement of broad money supply does influence the movement of base money and Consumer Price Index. Consequently, the central bank does not hav...

  6. Habits, aspirations and endogenous fertility

    OpenAIRE

    Luciano Fanti

    2012-01-01

    Motivated by the increasing literature on endogenous preferences as well as on endogenous fertility, this paper investigates the implications of the interaction of the endogenous determination of the number of children with habit and aspiration formation in an OLG model. In contrast with the previous literature, we show that greater aspirations may lead to higher savings, and more interestingly, always increase the neoclassical economic growth.

  7. ENDOGENEITY OF INDONESIAN MONEY SUPPLY

    OpenAIRE

    Rachma, Meutia Safrina

    2011-01-01

    There has been a long debate about the endogeneity of money supply. The main objective of this article is to identify whether money supply in Indonesia is an exogenous or an endogenous variable. Using a Vector Autoregressive model and monthly data 1997(5)-2010(6), the estimation result shows that money supply in Indonesia is an endogenous variable. The movement of broad money supply does influence the movement of base money and Consumer Price Index. Consequently, the central bank does not hav...

  8. Effect of a high-dose target-controlled naloxone infusion on pain and hyperalgesia in patients following groin hernia repair: study protocol for a randomized controlled trial

    DEFF Research Database (Denmark)

    Pereira, Manuel Pedro; Utke Werner, Mads; Berg Dahl, Joergen

    2015-01-01

    transition from supine to standing position, and evoked by pressure algometry) and the secondary outcomes (secondary hyperalgesia/allodynia, pressure pain thresholds, assessed at the surgical site and at the mirror-site in the contralateral groin, and, opioid withdrawal symptoms) will be assessed......BACKGROUND: Central sensitization is modulated by the endogenous opioid system and plays a major role in the development and maintenance of pain. Recent animal studies performed following resolution of inflammatory pain showed reinstatement of tactile hypersensitivity induced by administration...... of a mu-opioid-antagonist, suggesting latent sensitization is mediated by endogenous opioids. In a recent crossover study in healthy volunteers, following resolution of a first-degree burn, 4 out of 12 volunteers developed large secondary areas of hyperalgesia areas after a naloxone infusion, while...

  9. Endogenous Lunar Volatiles

    Science.gov (United States)

    McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Boyce, J. W.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Magna, T.; Ni, P.; Tartese, R.; hide

    2017-01-01

    The chapter will begin with an introduction that defines magmatic volatiles (e.g., H, F, Cl, S) versus geochemical volatiles (e.g., K, Rb, Zn). We will discuss our approach of understanding both types of volatiles in lunar samples and lay the ground work for how we will determine the overall volatile budget of the Moon. We will then discuss the importance of endogenous volatiles in shaping the "Newer Views of the Moon", specifically how endogenous volatiles feed forward into processes such as the origin of the Moon, magmatic differentiation, volcanism, and secondary processes during surface and crustal interactions. After the introduction, we will include a re-view/synthesis on the current state of 1) apatite compositions (volatile abundances and isotopic compositions); 2) nominally anhydrous mineral phases (moderately to highly volatile); 3) volatile (moderately to highly volatile) abundances in and isotopic compositions of lunar pyroclastic glass beads; 4) volatile (moderately to highly volatile) abundances in and isotopic compositions of lunar basalts; 5) volatile (moderately to highly volatile) abundances in and isotopic compositions of melt inclusions; and finally 6) experimental constraints on mineral-melt partitioning of moderately to highly volatile elements under lunar conditions. We anticipate that each section will summarize results since 2007 and focus on new results published since the 2015 Am Min review paper on lunar volatiles [9]. The next section will discuss how to use sample abundances of volatiles to understand the source region and potential caveats in estimating source abundances of volatiles. The following section will include our best estimates of volatile abundances and isotopic compositions (where permitted by available data) for each volatile element of interest in a number of important lunar reservoirs, including the crust, mantle, KREEP, and bulk Moon. The final section of the chapter will focus upon future work, outstanding questions

  10. Endogenous fertility and development traps with endogenous lifetime

    OpenAIRE

    Fanti, Luciano; Gori, Luca

    2010-01-01

    We extend the literature on endogenous lifetime and economic growth by Chakraborty (2004) and Bunzel and Qiao (2005) to endogenous fertility. We show that development traps due to underinvestments in health cannot appear when fertility is an economic decision variable and the costs of children are represented by a constant fraction of the parents' income used for their upbringing.

  11. Endogenous opioids regulate moment-to-moment neuronal communication and excitability

    Science.gov (United States)

    Winters, Bryony L.; Gregoriou, Gabrielle C.; Kissiwaa, Sarah A.; Wells, Oliver A.; Medagoda, Danashi I.; Hermes, Sam M.; Burford, Neil T.; Alt, Andrew; Aicher, Sue A.; Bagley, Elena E.

    2017-01-01

    Fear and emotional learning are modulated by endogenous opioids but the cellular basis for this is unknown. The intercalated cells (ITCs) gate amygdala output and thus regulate the fear response. Here we find endogenous opioids are released by synaptic stimulation to act via two distinct mechanisms within the main ITC cluster. Endogenously released opioids inhibit glutamate release through the δ-opioid receptor (DOR), an effect potentiated by a DOR-positive allosteric modulator. Postsynaptically, the opioids activate a potassium conductance through the μ-opioid receptor (MOR), suggesting for the first time that endogenously released opioids directly regulate neuronal excitability. Ultrastructural localization of endogenous ligands support these functional findings. This study demonstrates a new role for endogenously released opioids as neuromodulators engaged by synaptic activity to regulate moment-to-moment neuronal communication and excitability. These distinct actions through MOR and DOR may underlie the opposing effect of these receptor systems on anxiety and fear. PMID:28327612

  12. Associations Between Cognitive Performance and Pain in Chronic Fatigue Syndrome: Comorbidity with Fibromyalgia Does Matter.

    Science.gov (United States)

    Ickmans, Kelly; Meeus, Mira; De Kooning, Margot; Lambrecht, Luc; Pattyn, Nathalie; Nijs, Jo

    2015-01-01

    In addition to the frequently reported pain complaints, performance-based cognitive capabilities in patients with chronic fatigue syndrome (CFS) with and without comorbid fibromyalgia (FM) are significantly worse than those of healthy controls. In various chronic pain populations, cognitive impairments are known to be related to pain severity. However, to the best of our knowledge, the association between cognitive performance and experimental pain measurements has never been examined in CFS patients. This study aimed to examine the association between cognitive performance and self-reported as well as experimental pain measurements in CFS patients with and without FM. Observational study. The present study took place at the Vrije Universiteit Brussel and the University of Antwerp. Forty-eight (18 CFS-only and 30 CFS+FM) patients and 30 healthy controls were studied. Participants first completed 3 performance-based cognitive tests designed to assess selective and sustained attention, cognitive inhibition, and working memory capacity. Seven days later, experimental pain measurements (pressure pain thresholds [PPT], temporal summation [TS], and conditioned pain modulation [CPM]) took place and participants were asked to fill out 3 questionnaires to assess self-reported pain, fatigue, and depressive symptoms. In the CFS+FM group, the capacity of pain inhibition was significantly associated with cognitive inhibition. Self-reported pain was significantly associated with simple reaction time in CFS-only patients. The CFS+FM but not the CFS-only group showed a significantly lower PPT and enhanced TS compared with controls. The cross-sectional nature of this study does not allow for inferences of causation. The results underline disease heterogeneity in CFS by indicating that a measure of endogenous pain inhibition might be a significant predictor of cognitive functioning in CFS patients with FM, while self-reported pain appears more appropriate to predict cognitive

  13. The expression of spinal methyl-CpG-binding protein 2, DNA methyltransferases and histone deacetylases is modulated in persistent pain states

    Directory of Open Access Journals (Sweden)

    Tochiki Keri K

    2012-02-01

    Full Text Available Abstract Background DNA CpG methylation is carried out by DNA methyltransferases and induces chromatin remodeling and gene silencing through a transcription repressor complex comprising the methyl-CpG-binding protein 2 (MeCP2 and a subset of histone deacetylases. Recently, we have found that MeCP2 activity had a crucial role in the pattern of gene expression seen in the superficial dorsal horn rapidly after injection of Complete Freund's Adjuvant (CFA in the rat ankle joint. The aim of the present study was to analyse the changes in expression of MeCP2, DNA methyltransferases and a subset of histone deacetylases in the superficial dorsal horn during the maintenance phase of persistent pain states. In this process, the cell specific expression of MeCP2 was also investigated. Results Using immunohistochemistry, we found that neurones, oligodendrocytes and astrocytes expressed MeCP2. Microglia, oligodendrocyte precursor cells and Schwann cells never showed any positive stain for MeCP2. Quantitative analyses showed that MeCP2 expression was increased in the superficial dorsal horn 7 days following CFA injection in the ankle joint but decreased 7 days following spared nerve injury. Overall, the expression of DNA methyltransferases and a subset of histone deacetylases followed the same pattern of expression. However, there were no significant changes in the expression of the MeCP2 targets that we had previously shown are regulated in the early time points following CFA injection in the ankle joint. Finally, the expression of MeCP2 was also down regulated in damaged dorsal root ganglion neurones following spared nerve injury. Conclusion Our results strongly suggest that changes in chromatin compaction, regulated by the binding of MeCP2 complexes to methylated DNA, are involved in the modulation of gene expression in the superficial dorsal horn and dorsal root ganglia during the maintenance of persistent pain states.

  14. Role of the Cannabinoid System in Pain Control and Therapeutic Implications for the Management of Acute and Chronic Pain Episodes

    Science.gov (United States)

    Manzanares, J; Julian, MD; Carrascosa, A

    2006-01-01

    Cannabis extracts and synthetic cannabinoids are still widely considered illegal substances. Preclinical and clinical studies have suggested that they may result useful to treat diverse diseases, including those related with acute or chronic pain. The discovery of cannabinoid receptors, their endogenous ligands, and the machinery for the synthesis, transport, and degradation of these retrograde messengers, has equipped us with neurochemical tools for novel drug design. Agonist-activated cannabinoid receptors, modulate nociceptive thresholds, inhibit release of pro-inflammatory molecules, and display synergistic effects with other systems that influence analgesia, especially the endogenous opioid system. Cannabinoid receptor agonists have shown therapeutic value against inflammatory and neuropathic pains, conditions that are often refractory to therapy. Although the psychoactive effects of these substances have limited clinical progress to study cannabinoid actions in pain mechanisms, preclinical research is progressing rapidly. For example, CB1mediated suppression of mast cell activation responses, CB2-mediated indirect stimulation of opioid receptors located in primary afferent pathways, and the discovery of inhibitors for either the transporters or the enzymes degrading endocannabinoids, are recent findings that suggest new therapeutic approaches to avoid central nervous system side effects. In this review, we will examine promising indications of cannabinoid receptor agonists to alleviate acute and chronic pain episodes. Recently, Cannabis sativa extracts, containing known doses of tetrahydrocannabinol and cannabidiol, have granted approval in Canada for the relief of neuropathic pain in multiple sclerosis. Further double-blind placebo-controlled clinical trials are needed to evaluate the potential therapeutic effectiveness of various cannabinoid agonists-based medications for controlling different types of pain. PMID:18615144

  15. Endogenous uveitis in children.

    Science.gov (United States)

    Merritt, J C

    1979-07-01

    Endogenous uveitis, with its ocular sequalae, accounts for a significant number of blind children in the world today. Even though these children are asymptomatic by ophthalmic history, they usually present with ocular pathology compatible with chronic intraocular inflammation. Although loss of vision is invariably due to cataract formation, fluorescein angiogram, binocular indirect ophthalmoloscopy, and fundus contact lens examination often reveal pathology of the optic nerve and retina, accounting for a significant degree of visual loss. While actual etiologic agents are usually not identified in the majority of children, toxoplasmosis, sarcoidosis, and childhood arthropathies occur with such high frequency that mention is made of these diseases. Conventional surgical procedures for ocular sequalae such as cataract and glaucoma, are known to yield poor results. Corticosteroids administered either topically, periocularly, or systemically appear to be of value in the treatment of these diseases, although control studies have not been done. Efforts to lessen the visual morbidity in these children should begin by a cross-fertilization of information between primary care physicians, pediatricians, and ophthalmologists.

  16. Endogenous cannabinoid release within prefrontal-limbic pathways affects memory consolidation of emotional training

    NARCIS (Netherlands)

    Morena, M.; Roozendaal, B.; Trezza, V.; Ratano, P.; Peloso, A.; Hauer, D.; Atsak, P.; Trabace, L.; Cuomo, V.; McGaugh, J.L.; Schelling, G.; Campolongo, P.

    2014-01-01

    Previous studies have provided extensive evidence that administration of cannabinoid drugs after training modulates the consolidation of memory for an aversive experience. The present experiments investigated whether the memory consolidation is regulated by endogenously released cannabinoids. The

  17. [Sleep deprivation and pain: a review of the newest literature].

    Science.gov (United States)

    Karmann, A J; Kundermann, B; Lautenbacher, S

    2014-04-01

    It has now been established that sleep deprivation or fragmentation causes hyperalgesia which cannot be explained by a general change in somatosensory perception. However, it has not yet been clarified which of the sleep stages are most relevant for this effect. The seemingly paradoxical effects of sleep deprivation on pain-evoked brain potentials on the one hand and the subjective pain report on the other hand suggest complex changes in gating mechanisms. As the effects on pain and affect can be dissociated a common mechanism of action seems unlikely. Data from animal studies suggest that hyperalgesia due to sleep deprivation might be particularly strong under preexisting neuropathic conditions. Together with results from animal research the finding that endogenous pain modulation (CPM) is impaired by sleep deprivation suggests that the serotoninergic system mediates the effect of sleep deprivation on pain perception. However, other neurotransmitters and neuromodulators still have to be considered. The clinically relevant question arises why sleep deprivation induces hyperalgesia more easily in certain individuals than in others and why this effect then has a longer duration?

  18. 59 eyes with endogenous endophthalmitis

    DEFF Research Database (Denmark)

    Bjerrum, Søren Solborg; la Cour, Morten

    2017-01-01

    BACKGROUND: To study the epidemiology of patients with endogenous endophthalmitis in Denmark. MATERIAL AND METHODS: Retrospective and prospective case series of 59 eyes in patients with endogenous endophthalmitis in Denmark between 2000 and 2016. RESULTS: The age of the patients ranged from 28...... identified microorganisms. The sources of endogenous endophthalmitis were diverse and were not identified in 36% of the patients. Diabetes (36%) was the most predisposing medical illness. A total of 15% of the patients died within the first year after surgery for endophthalmitis and half of the patients died...... during follow up. The mortality of patients was 22.6 times higher compared to a Danish background population. Culture positive patients had a higher mortality compared to culture negative patients. CONCLUSIONS: Endogenous endophthalmitis is a heterogeneous condition which is reflected in the age...

  19. ENDOGENEITY OF INDONESIAN MONEY SUPPLY

    Directory of Open Access Journals (Sweden)

    Meutia Safrina Rachma

    2011-09-01

    Full Text Available There has been a long debate about the endogeneity of money supply. The main objective of this article is to identify whether money supply in Indonesia is an exogenous or an endogenous variable. Using a Vector Autoregressive model and monthly data 1997(5-2010(6, the estimation result shows that money supply in Indonesia is an endogenous variable. The movement of broad money supply does influence the movement of base money and Consumer Price Index. Consequently, the central bank does not have control power on money supply. The bank is only able to maintain the stability and control the movement of broad money supply. Keywords: Endogenous variable, money supply, vector autoregressionJEL classification numbers: E51, E52, E58

  20. ADX71943 and ADX71441, novel positive allosteric modulators of the GABABreceptor with distinct central/peripheral profiles, show efficacy in the monosodium iodoacetate model of chronic osteoarthritis pain in the rat.

    Science.gov (United States)

    Kalinichev, Mikhail; Donovan-Rodriguez, Tansy; Girard, Françoise; Haddouk, Hasnaá; Royer-Urios, Isabelle; Schneider, Manfred; Bate, Simon T; Marker, Cheryl; Pomonis, James D; Poli, Sonia

    2017-01-15

    We tested novel positive allosteric modulators (PAMs) of the γ-aminobutyric acid receptor B (GABA B ), ADX71943 and ADX71441in the monosodium iodoacetate model of chronic osteoarthritis pain in rats with the objective to delineate the role of peripheral versus central GABA B receptor populations in modulation of chronic pain. Anesthetized Sprague-Dawley rats received an injection of monosodium iodoacetate into the knee and were tested for hyperalgesia starting post-MIA day 14. Effects of compounds on ipsilateral joint compression threshold were evaluated on post-MIA day 14 (after acute treatment), as well as after repeated, daily treatment on days 21 and 28 (ADX71943 only) and were compared to those of celecoxib (30mg/kg, p.o.). The PAMs were also tested in the rat rotarod test for potential muscle-relaxant effects. Acutely, ADX71943 (1-30mg/kg, p.o.), the peripherally restricted PAM, resulted in similar increases in pain threshold across the doses on day 14, while showing reduced efficacy on day 21 and no efficacy on day 28. A clear reduction in the efficacy of celecoxib across testing was also noted in this experiment. Acutely ADX71441 (0.3-15mg/kg, p.o.), the central-peripheral PAM, resulted in over 2-fold increases in pain threshold at 15mg/kg (but not at lower doses) on day 14, while causing more modest effects on day 21. Celecoxib increased pain threshold after both acute and daily treatment, showing overall similar efficacy. Thus, early, presumably more inflammatory phase of osteoarthritis pain in more sensitive to GABA B PAMs with peripherally restricted profile, while later, presumably more neuropathic phase is more sensitive to PAMs with central-peripheral profile. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Biopsychosocial Factors Associated with Prurigo Nodularis in Endogenous Eczema.

    Science.gov (United States)

    Oh, Choon Chiat; Li, Huihua; Lee, Wellington; Tey, Hong Liang

    2015-01-01

    Prurigo nodularis is a dermatological manifestation secondary to chronic scratching or picking on focal areas of the skin. Its pathogenesis remains poorly understood, and limited data has indicated its association with psychological factors. To determine the biological, psychological and social factors associated with the occurrence of prurigo nodularis in patients with underlying endogenous eczema. A prospective case-control questionnaire -based study on patients with endogenous eczema, with and without prurigo nodules, was performed. The Impact of Skin Disease on Daily Life questionnaire was used to assess dimensions of physical functioning, including extent and severity of skin disease, itch, pain, fatigue and scratching, as well as dimensions of psychological and social functioning, including mood, illness cognition, disease-related impact, stigmatization and social support. Thirty-six cases and 47 controls were recruited. Patients with endogenous eczema and prurigo nodules indicated a higher itch score on the visual analog scale over the previous 4 weeks compared to those without prurigo nodules (p=0.0292). There were no significant differences between the 2 groups in the scores reflecting the other parameters of physical, psychological and social functioning. In patients with endogenous eczema, those with prurigo nodules experience a greater itch intensity compared to those without prurigo nodules. There were no other physical, psychological and social factors that were found to be associated with the occurrence of prurigo nodules in endogenous eczema.

  2. Staphylococcal endogenous endophthalmitis in association with pyogenic vertebral osteomyelitis.

    Science.gov (United States)

    Steeples, L R; Jones, N P

    2016-01-01

    PURPOSE To describe pyogenic vertebral osteomyelitis as a rare infection associated with endogenous endophthalmitis.METHODS A retrospective review of three patients with endogenous endophthalmitis and sepsis due to underlying Staphylococcal vertebral osteomyelitis presenting during a 21-month time period. The ophthalmic and systemic features and management and outcomes are presented.RESULTS One patient developed unilateral endophthalmitis with cervical spine osteomyelitis, Staphylococcus aureus being isolated from blood cultures. The second presented with bilateral endophthalmitis with disseminated Methicillin-resistant S. aureus (MRSA) infection, with thoracic and lumbar discitis and para-spinal abscesses. MRSA was cultured from vitreous, blood, and synovial fluid. Both patients received prolonged courses of intravenous antibiotics. Intravitreal antibiotic therapy was used in the second patient. Excellent visual and systemic outcomes were achieved in both cases with no ocular complications. The third patient developed lumbar osteomyelitis following spinal surgery and presented with disseminated S. aureus sepsis including unilateral endogenous endophthalmitis. Despite systemic antibiotics and intensive care the patient died.CONCLUSIONS Endogenous endophthalmitis should be suspected in septic patients developing eye symptoms. Endogenous endophthalmitis with staphylococcal bone infection is a rare but serious condition. Osteomyelitis should be considered as an infective source in any such patient reporting bone pain or reduced spinal mobility. Prompt investigation and treatment can achieve favourable visual and systemic outcomes.

  3. Effects of electroacupuncture on orphanin FQ immunoreactivity and preproorphanin FQ mRNA in nucleus of raphe magnus in the neuropathic pain rats.

    Science.gov (United States)

    Ma, Fei; Xie, Hong; Dong, Zhi-Qiang; Wang, Yan-Qing; Wu, Gen-Cheng

    2004-07-15

    Orphanin FQ (OFQ) is an endogenous ligand for opioid receptor-like-1 (ORL1) receptor. Previous studies have shown that both OFQ immunoreactivity and preproorphanin FQ (ppOFQ) mRNA expression could be observed in the brain regions involved in pain modulation, e.g., nucleus of raphe magnus (NRM), dorsal raphe nucleus (DRN), and ventrolateral periaqueductal gray (vlPAG). It was reported that electroacupuncture (EA) has analgesic effect on neuropathic pain, and the analgesic effect was mediated by the endogenous opioid peptides. In the present study, we investigated the effects of EA on the changes of OFQ in the neuropathic pain rats. In the sciatic nerve chronic constriction injury (CCI) model, we investigated the changes of ppOFQ mRNA and OFQ immunoreactivity in NRM after EA by in situ hybridization (ISH) and immunohistochemistry methods, respectively. Then, the ppOFQ mRNA-positive and OFQ immunoreactive cells were counted under a computerized image analysis system. The results showed that expression of ppOFQ mRNA decreased and OFQ immunoreactivity increased after EA treatment in the neuropathic pain rats. These results indicated that EA modulated OFQ synthesis and OFQ peptide level in NRM of the neuropathic pain rats. Copyright 2004 Elsevier Inc.

  4. Psychological aspects of pain.

    Science.gov (United States)

    Gorczyca, Rafał; Filip, Rafał; Walczak, Ewa

    2013-01-01

    functional magnetic resonance imaging (fMRI) was used showed that pain catastrophizing, independent of the influence of depression, was significantly associated with increased activity in brain areas related to anticipation of pain, attention to pain, emotional aspects of pain and motor control. Pain behaviour is a conditioned pain. Care and concern on the part of others, secondarily enhance a patient's pain behaviours, which lead to an increase in the intensity of the pain experienced. A history of early life adversity (ELA) - rejection, neglect, physical or sexual abuse is related to the development of irritable bowel syndrome (IBS) in adulthood. Ovarian hormones have been shown to modulate pain sensitivity. IMAGING OF THE HUMAN BRAIN IN CHRONIC PAIN: Acute pain and chronic pain are encoded in different regions of the brain. Chronic pain can be considered a driving force that carves cortical anatomy and physiology, creating the chronic pain brain/ mind state. Cognitive-behavioural methods of pain treatment in domains of pain experience, cognitive coping and appraisal (positive coping measures), and reduced pain experience are effective in reducing pain in patients.

  5. Use of a multimedia module to aid the informed consent process in patients undergoing gynecologic laparoscopy for pelvic pain: randomized controlled trial.

    Science.gov (United States)

    Ellett, Lenore; Villegas, Rocio; Beischer, Andrew; Ong, Nicole; Maher, Peter

    2014-01-01

    To determine whether providing additional information to the standard consent process, in the form of a multimedia module (MM), improves patient knowledge about operative laparoscopy without increasing anxiety. Randomized controlled trial (Canadian Task Force classification I). Two outpatient gynecologic clinics, one in a private hospital and the other in a public teaching hospital. Forty-one women aged 19 to 51 years (median, 35.6 years) requiring operative laparoscopy for investigation and treatment of pelvic pain. Following the standard informed consent process, patients were randomized to watch the MM (intervention group, n = 21) or not (control group, n = 20). The surgeon was blinded to the group assignments. All patients completed a knowledge questionnaire and the Spielberger short-form State-Trait Anxiety Inventory. Six weeks after recruitment, patients completed the knowledge questionnaire and the State-Trait Anxiety Inventory a second time to assess knowledge retention and anxiety scores. Patient knowledge of operative laparoscopy, anxiety level, and acceptance of the MM were recorded. The MM intervention group demonstrated superior knowledge scores. Mean (SE) score in the MM group was 11.3 (0.49), and in the control group was 7.9 (0.50) (p <.001) (maximum score, 14). This did not translate into improved knowledge scores 6 weeks later; the score in the MM group was 8.4 (0.53) vs. 7.8 (0.50) in the control group (p = .44). There was no difference in anxiety levels between the groups at intervention or after 6 weeks. Overall, patients found the MM acceptable, and 18 women (86%) in the intervention group and 12 (60%) in the control group stated they would prefer this style of informed consent in the future. Use of an MM enhances the informed consent process by improving patient knowledge, in the short term, without increasing anxiety. Copyright © 2014 AAGL. Published by Elsevier Inc. All rights reserved.

  6. Methadone for Cancer Pain

    Directory of Open Access Journals (Sweden)

    Eric E. Prommer

    2010-07-01

    Full Text Available Pain is one of the most common and incapacitating symptoms experienced by patients with advanced cancer. Methadone is a potent opioid with strong affinity for the µ opioid receptor. In addition to being a potent µ opioid receptor ligand, methadone blocks the N-methyl-D-aspartic acid receptor and modulates neurotransmitters involved in descending pain modulation. These 3 properties enhance analgesic activity. Methadone’s lack of active metabolites makes it an attractive option when opioid responsiveness declines and renal insufficiency complicates opioid therapy. A lipophilic opioid, methadone can be given by multiple routes. Clinical trial data show equivalence with morphine as an analgesic in moderate to severe cancer pain. Further investigations are needed to define the role of methadone in the management of breakthrough pain and neuropathic pain and to determine whether it is truly superior to morphine, the gold standard of cancer analgesia.

  7. Relationship Between ABCB1 Polymorphisms and Cold Pain Sensitivity Among Healthy Opioid-naive Malay Males.

    Science.gov (United States)

    Zahari, Zalina; Lee, Chee Siong; Ibrahim, Muslih Abdulkarim; Musa, Nurfadhlina; Mohd Yasin, Mohd Azhar; Lee, Yeong Yeh; Tan, Soo Choon; Mohamad, Nasir; Ismail, Rusli

    2017-09-01

    Endogenous and exogenous opioids are substrates of the permeability glycoprotein (P-gp) efflux transporter, which is encoded by the ABCB1 (MDR1) gene. Genetic polymorphisms of ABCB1 may contribute to interindividual differences in pain modulation and analgesic responses. We investigated the relationship between ABCB1 polymorphisms and cold pain sensitivity among healthy males. Cold pain responses, including pain threshold and pain tolerance, were measured using the cold-pressor test (CPT). DNA was extracted from whole blood and genotyped for ABCB1 polymorphisms, including c.1236C>T (rs1128503), c.2677G>T/A (rs2032582), and c.3435C>T (rs1045642), using the allelic discrimination real-time polymerase chain reaction. A total of 152 participants were recruited in this observational study. Frequencies of mutated allele for c.1236C>T, c.2677G>T/A, and c.3435C>T polymorphisms were 56.6%, 49.7%, and 43.4%, respectively. Our results revealed an association of the CGC/CGC diplotype (c.1236C>T, c.2677G>T/A, and c.3435C>T) with cold pain sensitivity. Participants with the CGC/CGC diplotype had 90% and 72% higher cold pain thresholds (87.62 seconds vs. 46.19 seconds, P = 0.010) and cold pain tolerances (97.24 seconds vs. 56.54 seconds, P = 0.021), respectively, when compared with those without the diplotype. The CGC/CGC diplotype of ABCB1 polymorphisms was associated with variability in cold pain threshold and pain tolerance in healthy males. © 2016 World Institute of Pain.

  8. Pain-relevant anxiety affects desire for pain relief, but not pain perception

    Directory of Open Access Journals (Sweden)

    Adriana Banozic

    2017-01-01

    Full Text Available Background: Pain context plays a significant role in the perception of pain. Despite recent interest in vicarious learning and anxiety in pain modulation, there have been no attempts to explore pain modulation by specific environmental cues. Aims: Therefore, the present study evaluated pain responses in the condition that was attributed as either anxiety relevant (AR or anxiety irrelevant. Materials and Methods: Participants were exposed to both conditions through social observational learning. Pain perception was assessed by means of a visual analog scale ranging from 0 = no pain to 10 = maximum imaginable pain. State anxiety, empathy, expectancy, and desire for pain relief were also measured at both neutral and emotionally inducing conditions. Results: No effect of relevancy of anxiety for the pain context on any of the pain-related constructs was found. However, participants in the AR condition reported an increased desire for pain relief. Maximizing similarities between observed and experienced pain context did not enhance observational learning effects in the emotionally inducing condition regardless of its relevance, but significant changes were found in comparison to the affectively neutral group. Conclusions: These results could have potentially significant clinical implications suggesting that even though observing painful procedures does not increase pain it could affect medication usage.

  9. Shaped magnetic field pulses by multi-coil repetitive transcranial magnetic stimulation (rTMS) differentially modulate anterior cingulate cortex responses and pain in volunteers and fibromyalgia patients

    Science.gov (United States)

    2013-01-01

    Background Repetitive transcranial magnetic stimulation (rTMS) has shown promise in the alleviation of acute and chronic pain by altering the activity of cortical areas involved in pain sensation. However, current single-coil rTMS technology only allows for effects in surface cortical structures. The ability to affect activity in certain deep brain structures may however, allow for a better efficacy, safety, and tolerability. This study used PET imaging to determine whether a novel multi-coil rTMS would allow for preferential targeting of the dorsal anterior cingulate cortex (dACC), an area always activated with pain, and to provide preliminary evidence as to whether this targeted approach would allow for efficacious, safe, and tolerable analgesia both in a volunteer/acute pain model as well as in fibromyalgia chronic pain patients. Methods Part 1: Different coil configurations were tested in a placebo-controlled crossover design in volunteers (N = 16). Tonic pain was induced using a capsaicin/thermal pain model and functional brain imaging was performed by means of H215O positron emission tomography – computed tomography (PET/CT) scans. Differences in NRS pain ratings between TMS and sham treatment (NRSTMS-NRSplacebo) which were recorded each minute during the 10 minute PET scans. Part 2: 16 fibromyalgia patients were subjected to 20 multi-coil rTMS treatments over 4 weeks and effects on standard pain scales (Brief Pain Inventory, item 5, i.e. average pain NRS over the last 24 hours) were recorded. Results A single 30 minute session using one of 3 tested rTMS coil configurations operated at 1 Hz consistently produced robust reduction (mean 70% on NRS scale) in evoked pain in volunteers. In fibromyalgia patients, the 20 rTMS sessions also produced a significant pain inhibition (43% reduction in NRS pain over last 24 hours), but only when operated at 10 Hz. This degree of pain control was maintained for at least 4 weeks after the final session

  10. Th cells promote CTL survival and memory via acquired pMHC-I and endogenous IL-2 and CD40L signaling and by modulating apoptosis-controlling pathways.

    Directory of Open Access Journals (Sweden)

    Channakeshava Sokke Umeshappa

    Full Text Available Involvement of CD4(+ helper T (Th cells is crucial for CD8(+ cytotoxic T lymphocyte (CTL-mediated immunity. However, CD4(+ Th's signals that govern CTL survival and functional memory are still not completely understood. In this study, we assessed the role of CD4(+ Th cells with acquired antigen-presenting machineries in determining CTL fates. We utilized an adoptive co-transfer into CD4(+ T cell-sufficient or -deficient mice of OTI CTLs and OTII Th cells or Th cells with various gene deficiencies pre-stimulated in vitro by ovalbumin (OVA-pulsed dendritic cell (DCova. CTL survival was kinetically assessed in these mice using FITC-anti-CD8 and PE-H-2K(b/OVA257-264 tetramer staining by flow cytometry. We show that by acting via endogenous CD40L and IL-2, and acquired peptide-MHC-I (pMHC-I complex signaling, CD4(+ Th cells enhance survival of transferred effector CTLs and their differentiation into the functional memory CTLs capable of protecting against highly-metastasizing tumor challenge. Moreover, RT-PCR, flow cytometry and Western blot analysis demonstrate that increased survival of CD4(+ Th cell-helped CTLs is matched with enhanced Akt1/NF-κB activation, down-regulation of TRAIL, and altered expression profiles with up-regulation of prosurvival (Bcl-2 and down-regulation of proapoptotic (Bcl-10, Casp-3, Casp-4, Casp-7 molecules. Taken together, our results reveal a previously unexplored mechanistic role for CD4(+ Th cells in programming CTL survival and memory recall responses. This knowledge could also aid in the development of efficient adoptive CTL cancer therapy.

  11. Past Pain Experience and Experimentally induced Pain Perception.

    Science.gov (United States)

    Paquet, Aude; Plansont, Brigitte; Labrunie, Anaïs; Malauzat, Dominique; Girard, Murielle

    2017-12-01

    Many intercurrent factors may be involved in the modulation of the pain message and its expression, such as the previous experience of pain built along the life. In this study, we aimed to determine whether susceptibility to experimentally induced pain is differentially influenced by the individual previous painful experience in subjects with schizophrenia (SC) major depression (MD), and controls (C). The SC (30), MD (32) and C (30) groups participated in experimental pain tests (application of pressure and induction of ischemia) after a semi-structured interview to make an inventory of the previous painful experiences, and the evaluation of anxiety either with autonomic (heart rate, blood pressure) or psychological (Hospital Anxiety Depression scale HAD) measures, and catastrophism. The reported pain intensities, severities, duration, of the previous pain events, and the number of previous painful events were equivalent in the three groups, except for the number of painful events experimented before the last six months which was lower in the MD group. Experimental pain sensitivity was influenced by the diagnosis, the HAD scores or the number and intensities of previous lived painful events. The lack of a past experience of pain was comparable for the different groups, suggesting that psychiatric disorders do not affect the experience of pain associated with daily life or past events. For each subject, the reported previous experience of pain influences the present feeling of pain.

  12. The effects of elevated pain inhibition on endurance exercise performance

    Directory of Open Access Journals (Sweden)

    Andrew Flood

    2017-03-01

    Full Text Available Background The ergogenic effects of analgesic substances suggest that pain perception is an important regulator of work-rate during fatiguing exercise. Recent research has shown that endogenous inhibitory responses, which act to attenuate nociceptive input and reduce perceived pain, can be increased following transcranial direct current stimulation of the hand motor cortex. Using high-definition transcranial direct current stimulation (HD-tDCS; 2 mA, 20 min, the current study aimed to examine the effects of elevated pain inhibitory capacity on endurance exercise performance. It was hypothesised that HD-tDCS would enhance the efficiency of the endogenous pain inhibitory response and improve endurance exercise performance. Methods Twelve healthy males between 18 and 40 years of age (M = 24.42 ± 3.85 were recruited for participation. Endogenous pain inhibitory capacity and exercise performance were assessed before and after both active and sham (placebo stimulation. The conditioned pain modulation protocol was used for the measurement of pain inhibition. Exercise performance assessment consisted of both maximal voluntary contraction (MVC and submaximal muscular endurance performance trials using isometric contractions of the non-dominant leg extensors. Results Active HD-tDCS (pre-tDCS, −.32 ± 1.33 kg; post-tDCS, −1.23 ± 1.21 kg significantly increased pain inhibitory responses relative to the effects of sham HD-tDCS (pre-tDCS, −.91 ± .92 kg; post-tDCS, −.26 ± .92 kg; p = .046. Irrespective of condition, peak MVC force and muscular endurance was reduced from pre- to post-stimulation. HD-tDCS did not significantly influence this reduction in maximal force (active: pre-tDCS, 264.89 ± 66.87 Nm; post-tDCS, 236.33 ± 66.51 Nm; sham: pre-tDCS, 249.25 ± 88.56 Nm; post-tDCS, 239.63 ± 67.53 Nm or muscular endurance (active: pre-tDCS, 104.65 ± 42.36 s; post-tDCS, 93.07 ± 33.73 s; sham: pre-tDCS, 123.42 ± 72.48 s; post

  13. Endogenous scheduling preferences and congestion

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Small, Kenneth

    2017-01-01

    We consider the timing of activities through a dynamic model of commuting with congestion, in which workers care solely about leisure and consumption. Implicit preferences for the timing of the commute form endogenously due to temporal agglomeration economies. Equilibrium exists uniquely and is i......We consider the timing of activities through a dynamic model of commuting with congestion, in which workers care solely about leisure and consumption. Implicit preferences for the timing of the commute form endogenously due to temporal agglomeration economies. Equilibrium exists uniquely...

  14. Pain modulation effect of breathing-controlled electrical stimulation (BreEStim) is not likely to be mediated by deep and fast voluntary breathing

    Science.gov (United States)

    Hu, Huijing; Li, Shengai; Li, Sheng

    2015-01-01

    Voluntary breathing-controlled electrical stimulation (BreEStim), a novel non-invasive and non-pharmacological treatment protocol for neuropathic pain management, was reported to selectively reduce the affective component of pain possibly by increasing pain threshold. The underlying mechanisms involved in the analgesic effect of BreEStim were considered to result from combination of multiple internal pain coping mechanisms triggered during BreEStim. Findings from our recent studies have excluded possible roles of acupuncture and aversiveness and habituation of painful electrical stimulation in mediating the analgesia effect of BreEStim. To further investigate the possible role of voluntary breathing during BreEStim, the effectiveness of fast and deep voluntary breathing-only and BreEStim on experimentally induced pain was compared in healthy human subjects. Results showed no change in electrical pain threshold after Breathing-only, but a significant increase in electrical pain threshold after BreEStim. There was no statistically significant change in other thresholds after Breathing-only and BreEStim. The findings suggest that the analgesic effect of BreEStim is not likely attributed to fast and deep voluntary breathing. Possible mechanisms are discussed. PMID:26382644

  15. Ephrins and pain.

    Science.gov (United States)

    Vasileiou, Ioanna; Adamakis, Ioannis; Patsouris, Efstratios; Theocharis, Stamatios

    2013-08-01

    The ephrin receptor family is the largest family of receptor tyrosine kinases, which comprises 14 members that are divided into A and B subclasses. The ephrin receptor (Eph-receptor) ligands are named ephrins. Ephrins/Eph receptors interact with a variety of membrane receptors that respond to chemokines, neurotransmitters or growth factors. A growing body of evidence indicates that ephrins/Eph receptors are involved in the modulation of different types of pain. A literature review summarizing the most recent data in terms of ephrins and their ligands and their association with different types of pain. Moreover, the latest knowledge regarding the involvement of ephrins/Eph receptors in pain modulation as well as its possible therapeutic perspectives are presented. The ephrins/Eph receptors system seems to be an emerging target for pain drug discovery, because it is involved in the pathophysiology of many types of pain. The modulation of different types of pain by selective agonists or antagonists may hold tremendous therapeutic potential in various pain conditions mentioned in this review. However, the current limited but promising data, merit consideration and further investigation.

  16. Dose escalation by image-guided intensity-modulated radiotherapy leads to an increase in pain relief for spinal metastases: a comparison study with a regimen of 30 Gy in 10 fractions.

    Science.gov (United States)

    He, Jinlan; Xiao, Jianghong; Peng, Xingchen; Duan, Baofeng; Li, Yan; Ai, Ping; Yao, Min; Chen, Nianyong

    2017-12-22

    Under the existing condition that the optimum radiotherapy regimen for spinal metastases is controversial, this study investigates the benefits of dose escalation by image-guided intensity-modulated radiotherapy (IG-IMRT) with 60-66 Gy in 20-30 fractions for spinal metastases. In the dose-escalation group, each D50 of planning gross tumor volume (PGTV) was above 60 Gy and each Dmax of spinal cord planning organ at risk volume (PRV) was below 48 Gy. The median biological effective dose (BED) of Dmax of spinal cord was lower in the dose-escalation group compared with that in the 30-Gy group (69.70 Gy vs. 83.16 Gy, p pain responses were better in the dose-escalation group than those in the 30-Gy group ( p = 0.005 and p = 0.024), and the complete pain relief rates were respectively 73.69% and 34.29% ( p = 0.006), 73.69% and 41.38% ( p = 0.028) in two compared groups. In the dose-escalation group, there is a trend of a longer duration of pain relief, a longer overall survival and a lower incidence of acute radiation toxicities. No late radiation toxicities were observed in both groups. Dosimetric parameters and clinical outcomes, including pain response, duration of pain relief, radiation toxicities and overall survival, were compared among twenty-five metastatic spinal lesions irradiated with the dose-escalation regimen and among forty-four lesions treated with the 30-Gy regimen. Conventionally-fractionated IG-IMRT for spinal metastases could escalate dose to the vertebral lesions while sparing the spinal cord, achieving a better pain relief without increasing radiation complications.

  17. Chronic Pain

    Science.gov (United States)

    ... pain. Psychotherapy, relaxation and medication therapies, biofeedback, and behavior modification may also be employed to treat chronic pain. × ... pain. Psychotherapy, relaxation and medication therapies, biofeedback, and behavior modification may also be employed to treat chronic pain. ...

  18. Heel pain

    Science.gov (United States)

    Pain - heel ... Heel pain is most often the result of overuse. However, it may be caused by an injury. Your heel ... on the heel Conditions that may cause heel pain include: Swelling and pain in the Achilles tendon ...

  19. Flank pain

    Science.gov (United States)

    Pain - side; Side pain ... Flank pain can be a sign of a kidney problem. But, since many organs are in this area, other causes are possible. If you have flank pain and fever , chills, blood in the urine, or ...

  20. [Functional imaging of pain].

    Science.gov (United States)

    Peyron, Roland

    2014-01-01

    In this review, we summarize the contribution of functional imaging to the question of nociception in humans. In the beginning of the 90's, brain areas supposed to be involved in physiological pain processes essentially concerned the primary somatosensory area (SI), thalamus, and anterior cingulate cortex. In spite of these a priori hypotheses, the first imaging studies revealed that the main brain areas and those providing the most consistent activations in pain conditions were the insular and the SII cortices, bilaterally. This has been checked with other techniques such as intracerebral recordings of evoked potentials after nociceptive stimulations with laser showing a consistent response in the operculo-insular area whose amplitude correlates with pain intensity. In spite of electrode implantations in other areas of the brain, only rare and inconsistent responses have been found outside the operculo-insular cortices. With electrical stimulation delivered directly in the brain, it has also been shown that stimulation in this area only - and not in other brain areas - was able to elicit a painful sensation. Thus, over the last 15 years, the operculo-insular cortex has been re-discovered as a main area of pain integration, mainly in its sensory and intensity aspects. In neuropathic pain also, these areas have been demonstrated as being abnormally recruited, bilaterally, in response to innocuous stimuli. These results suggest that plastic changes may occur in brain areas that were pre-defined for generating pain sensations. Conversely, when the brain activations concomitant to pain relief were taken in account, a large number of studies pointed out medial prefrontal and rostral cingulate areas as being associated with pain controls. Interestingly, these activations may correlate with the magnitude of pain relief, with the activation of the peri-acqueductal grey (PAG) and, at least in some instances, with the involvement of endogenous opioids. © Société de

  1. [Nocioceptive pain, neuropathic pain and pain memory].

    Science.gov (United States)

    Montero-Homs, Jordi

    2009-01-01

    Pain is a cognitive evaluation. Its appearance in the new functional image systems is promising. Nocioceptive pain, usually acute or persistent, is useful to prevent animals from getting injured. Chronic pain is disease per se: It is due to a sensitisation phenomena and pain memory with an important relationship with emotions. Neuropathic pain is a neurological symptom due to a somatosensorial system dysfunction. In this case, axonal ectopic generation of impulses and synaptic hyperexcitability occurs. In persistent cases, sensitisation phenomenon and memory of pain appear together with neuropathic pain. Pain treatment should be physiopathologicaly orientated. Pain units, specialized in analgesic treatment and some invasive techniques, are usually competent in the treatment of nocioceptive pain. Neuropathic pain should have a neurologic diagnosis and treatment. But neurologist need to be more and more interested in the chronic pain related with memory and sensitisation: better knowledge of the cerebral mechanisms in this phenomenon can add to this pathology in our field.

  2. Endogenous scheduling preferences and congestion

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Small, Kenneth

    2010-01-01

    and leisure, but agglomeration economies at home and at work lead to scheduling preferences forming endogenously. Using bottleneck congestion technology, we obtain an equilibrium queuing pattern consistent with a general version of the Vickrey bottleneck model. However, the policy implications are different...

  3. Monopoly Insurance and Endogenous Information

    DEFF Research Database (Denmark)

    Lagerlöf, Johan N. M.; Schottmüller, Christoph

    2018-01-01

    We study a monopoly insurance model with endogenous information acquisi- tion. Through a continuous effort choice, consumers can determine the precision of a privately observed signal that is informative about their accident risk. The equilibrium effort is, depending on parameter values, either...

  4. The periodontal pain paradox: Difficulty on pain assesment in dental patients (The periodontal pain paradox hypothesis

    Directory of Open Access Journals (Sweden)

    Haryono Utomo

    2006-12-01

    Full Text Available In daily dental practice, the majority of patients’ main complaints are related to pain. Most patients assume that all pains inside the oral cavity originated from the tooth. One particular case is thermal sensitivity; sometimes patients were being able to point the site of pain, although there is neither visible caries nor secondary caries in dental radiograph. In this case, gingival recession and dentin hypersensitivity are first to be treated to eliminate the pain. If these treatments failed, pain may misdiagnose as pulpal inflammation and lead to unnecessary root canal treatment. Study in pain during periodontal instrumentation of plaque-related periodontitis revealed that the majority of patients feel pain and discomfort during probing and scaling. It seems obvious because an inflammation, either acute or chronic is related to a lowered pain threshold. However, in contrast, in this case report, patient suffered from chronic gingivitis and thermal sensitivity experienced a relative pain-free sensation during probing and scaling. Lowered pain threshold which accompanied by a blunted pain perception upon periodontal instrumentation is proposed to be termed as the periodontal pain paradox. The objective of this study is to reveal the possibility of certain factors in periodontal inflammation which may involved in the periodontal pain paradox hypothesis. Patient with thermal hypersensitivity who was conducted probing and scaling, after the relative pain-free instrumentation, thermal hypersensitivity rapidly disappeared. Based on the successful periodontal treatment, it is concluded that chronic gingivitis may modulate periodontal pain perception which termed as periodontal pain paradox

  5. Reduced basal ganglia μ-opioid receptor availability in trigeminal neuropathic pain: A pilot study

    Directory of Open Access Journals (Sweden)

    DosSantos Marcos

    2012-09-01

    Full Text Available Abstract Background Although neuroimaging techniques have provided insights into the function of brain regions involved in Trigeminal Neuropathic Pain (TNP in humans, there is little understanding of the molecular mechanisms affected during the course of this disorder. Understanding these processes is crucial to determine the systems involved in the development and persistence of TNP. Findings In this study, we examined the regional μ-opioid receptor (μOR availability in vivo (non-displaceable binding potential BPND of TNP patients with positron emission tomography (PET using the μOR selective radioligand [11C]carfentanil. Four TNP patients and eight gender and age-matched healthy controls were examined with PET. Patients with TNP showed reduced μOR BPND in the left nucleus accumbens (NAc, an area known to be involved in pain modulation and reward/aversive behaviors. In addition, the μOR BPND in the NAc was negatively correlated with the McGill sensory and total pain ratings in the TNP patients. Conclusions Our findings give preliminary evidence that the clinical pain in TNP patients can be related to alterations in the endogenous μ-opioid system, rather than only to the peripheral pathology. The decreased availability of μORs found in TNP patients, and its inverse relationship to clinical pain levels, provide insights into the central mechanisms related to this condition. The results also expand our understanding about the impact of chronic pain on the limbic system.

  6. Modulation of the endogenous omega-3 fatty acid and oxylipin profile in vivo—A comparison of the fat-1 transgenic mouse with C57BL/6 wildtype mice on an omega-3 fatty acid enriched diet

    Science.gov (United States)

    Ostermann, Annika I.; Waindok, Patrick; Schmidt, Moritz J.; Chiu, Cheng-Ying; Smyl, Christopher; Rohwer, Nadine; Weylandt, Karsten-H.

    2017-01-01

    Dietary intervention and genetic fat-1 mice are two models for the investigation of effects associated with omega-3 polyunsaturated fatty acids (n3-PUFA). In order to assess their power to modulate the fatty acid and oxylipin pattern, we thoroughly compared fat-1 and wild-type C57BL/6 mice on a sunflower oil diet with wild-type mice on the same diet enriched with 1% EPA and 1% DHA for 0, 7, 14, 30 and 45 days. Feeding led after 14–30 days to a high steady state of n3-PUFA in all tissues at the expense of n6-PUFAs. Levels of n3-PUFA achieved by feeding were higher compared to fat-1 mice, particularly for EPA (max. 1.7% in whole blood of fat-1 vs. 7.8% following feeding). Changes in PUFAs were reflected in most oxylipins in plasma, brain and colon: Compared to wild-type mice on a standard diet, arachidonic acid metabolites were overall decreased while EPA and DHA oxylipins increased with feeding more than in fat-1 mice. In plasma of n3-PUFA fed animals, EPA and DHA metabolites from the lipoxygenase and cytochrome P450 pathways dominated over ARA derived counterparts.Fat-1 mice show n3-PUFA level which can be reached by dietary interventions, supporting the applicability of this model in n3-PUFA research. However, for specific questions, e.g. the role of EPA derived mediators or concentration dependent effects of (individual) PUFA, feeding studies are necessary. PMID:28886129

  7. Modulation of the endogenous omega-3 fatty acid and oxylipin profile in vivo-A comparison of the fat-1 transgenic mouse with C57BL/6 wildtype mice on an omega-3 fatty acid enriched diet.

    Directory of Open Access Journals (Sweden)

    Annika I Ostermann

    Full Text Available Dietary intervention and genetic fat-1 mice are two models for the investigation of effects associated with omega-3 polyunsaturated fatty acids (n3-PUFA. In order to assess their power to modulate the fatty acid and oxylipin pattern, we thoroughly compared fat-1 and wild-type C57BL/6 mice on a sunflower oil diet with wild-type mice on the same diet enriched with 1% EPA and 1% DHA for 0, 7, 14, 30 and 45 days. Feeding led after 14-30 days to a high steady state of n3-PUFA in all tissues at the expense of n6-PUFAs. Levels of n3-PUFA achieved by feeding were higher compared to fat-1 mice, particularly for EPA (max. 1.7% in whole blood of fat-1 vs. 7.8% following feeding. Changes in PUFAs were reflected in most oxylipins in plasma, brain and colon: Compared to wild-type mice on a standard diet, arachidonic acid metabolites were overall decreased while EPA and DHA oxylipins increased with feeding more than in fat-1 mice. In plasma of n3-PUFA fed animals, EPA and DHA metabolites from the lipoxygenase and cytochrome P450 pathways dominated over ARA derived counterparts.Fat-1 mice show n3-PUFA level which can be reached by dietary interventions, supporting the applicability of this model in n3-PUFA research. However, for specific questions, e.g. the role of EPA derived mediators or concentration dependent effects of (individual PUFA, feeding studies are necessary.

  8. Modulation of the endogenous omega-3 fatty acid and oxylipin profile in vivo-A comparison of the fat-1 transgenic mouse with C57BL/6 wildtype mice on an omega-3 fatty acid enriched diet.

    Science.gov (United States)

    Ostermann, Annika I; Waindok, Patrick; Schmidt, Moritz J; Chiu, Cheng-Ying; Smyl, Christopher; Rohwer, Nadine; Weylandt, Karsten-H; Schebb, Nils Helge

    2017-01-01

    Dietary intervention and genetic fat-1 mice are two models for the investigation of effects associated with omega-3 polyunsaturated fatty acids (n3-PUFA). In order to assess their power to modulate the fatty acid and oxylipin pattern, we thoroughly compared fat-1 and wild-type C57BL/6 mice on a sunflower oil diet with wild-type mice on the same diet enriched with 1% EPA and 1% DHA for 0, 7, 14, 30 and 45 days. Feeding led after 14-30 days to a high steady state of n3-PUFA in all tissues at the expense of n6-PUFAs. Levels of n3-PUFA achieved by feeding were higher compared to fat-1 mice, particularly for EPA (max. 1.7% in whole blood of fat-1 vs. 7.8% following feeding). Changes in PUFAs were reflected in most oxylipins in plasma, brain and colon: Compared to wild-type mice on a standard diet, arachidonic acid metabolites were overall decreased while EPA and DHA oxylipins increased with feeding more than in fat-1 mice. In plasma of n3-PUFA fed animals, EPA and DHA metabolites from the lipoxygenase and cytochrome P450 pathways dominated over ARA derived counterparts.Fat-1 mice show n3-PUFA level which can be reached by dietary interventions, supporting the applicability of this model in n3-PUFA research. However, for specific questions, e.g. the role of EPA derived mediators or concentration dependent effects of (individual) PUFA, feeding studies are necessary.

  9. A randomized, Phase IIb study investigating oliceridine (TRV130), a novel µ-receptor G-protein pathway selective (μ-GPS) modulator, for the management of moderate to severe acute pain following abdominoplasty.

    Science.gov (United States)

    Singla, Neil; Minkowitz, Harold S; Soergel, David G; Burt, David A; Subach, Ruth Ann; Salamea, Monica Y; Fossler, Michael J; Skobieranda, Franck

    2017-01-01

    Oliceridine (TRV130), a novel μ-receptor G-protein pathway selective (μ-GPS) modulator, was designed to improve the therapeutic window of conventional opioids by activating G-protein signaling while causing low β-arrestin recruitment to the μ receptor. This randomized, double-blind, patient-controlled analgesia Phase IIb study was conducted to investigate the efficacy, safety, and tolerability of oliceridine compared with morphine and placebo in patients with moderate to severe pain following abdominoplasty (NCT02335294; oliceridine is an investigational agent not yet approved by the US Food and Drug Administration). Patients were randomized to receive postoperative regimens of intravenous oliceridine (loading/patient-controlled demand doses [mg/mg]: 1.5/0.10 [regimen A]; 1.5/0.35 [regimen B]), morphine (4.0/1.0), or placebo with treatment initiated within 4 hours of surgery and continued as needed for 24 hours. Two hundred patients were treated (n=39, n=39, n=83, and n=39 in the oliceridine regimen A, oliceridine regimen B, morphine, and placebo groups, respectively). Patients were predominantly female (n=198 [99%]) and had a mean age of 38.2 years, weight of 71.2 kg, and baseline pain score of 7.7 (on 11-point numeric pain rating scale). Patients receiving the oliceridine regimens had reductions in average pain scores (model-based change in time-weighted average versus placebo over 24 hours) of 2.3 and 2.1 points, respectively ( P =0.0001 and P =0.0005 versus placebo); patients receiving morphine had a similar reduction (2.1 points; P opioids; no serious AEs were reported with oliceridine. These results suggest that oliceridine may provide effective, rapid analgesia in patients with moderate to severe postoperative pain, with an acceptable safety/tolerability profile and potentially wider therapeutic window than morphine.

  10. Endogenous respiration of Polyporus sulphureus

    International Nuclear Information System (INIS)

    Li, S.M.W.; Siehr, D.J.

    1980-01-01

    Thirty percent of the dry weight of the basidiomycete Polyporus sulphureus is triterpenoid acid. The endogenous respiratory quotient of this organism is 0.8 indicating that the triterpenoid is being used as an endogenous storage material. Monosaccharides did not seem to be utilized as exogenous substrates but Krebs-cycle intermediates stimulated oxygen uptake. Pyruvic acid inhibited oxygen uptake. Studies with 14 C-labeled glucose indicated that 27% of the glucose was metabolized by way of glycolysis. The hexose-monophosphate pathway was the major metabolic path for the utilization of glucose. Despite the fact that P. sulphureus is associated with brown rot, its carbon metabolism suggests that it utilizes substances associated with the degradation of lignin more readily than it does glucose

  11. Current advances in orthodontic pain.

    Science.gov (United States)

    Long, Hu; Wang, Yan; Jian, Fan; Liao, Li-Na; Yang, Xin; Lai, Wen-Li

    2016-06-30

    Orthodontic pain is an inflammatory pain that is initiated by orthodontic force-induced vascular occlusion followed by a cascade of inflammatory responses, including vascular changes, the recruitment of inflammatory and immune cells, and the release of neurogenic and pro-inflammatory mediators. Ultimately, endogenous analgesic mechanisms check the inflammatory response and the sensation of pain subsides. The orthodontic pain signal, once received by periodontal sensory endings, reaches the sensory cortex for pain perception through three-order neurons: the trigeminal neuron at the trigeminal ganglia, the trigeminal nucleus caudalis at the medulla oblongata and the ventroposterior nucleus at the thalamus. Many brain areas participate in the emotion, cognition and memory of orthodontic pain, including the insular cortex, amygdala, hippocampus, locus coeruleus and hypothalamus. A built-in analgesic neural pathway-periaqueductal grey and dorsal raphe-has an important role in alleviating orthodontic pain. Currently, several treatment modalities have been applied for the relief of orthodontic pain, including pharmacological, mechanical and behavioural approaches and low-level laser therapy. The effectiveness of nonsteroidal anti-inflammatory drugs for pain relief has been validated, but its effects on tooth movement are controversial. However, more studies are needed to verify the effectiveness of other modalities. Furthermore, gene therapy is a novel, viable and promising modality for alleviating orthodontic pain in the future.

  12. Exogenic and endogenic Europa minerals

    Science.gov (United States)

    Maynard-Casely, H. E.; Brand, H. E. A.; Wilson, S. A.

    2016-12-01

    The Galileo Near Infrared Mapping Spectrometer (NIMS) identified a significant `non-ice' component upon the surface of Jupiter's moon Europa. Current explanations invoke both endogenic and exogenic origins for this material. It has long been suggested that magnesium and sodium sulfate minerals could have leached from the rock below a putative ocean (endogenic) 1 and that sulfuric acid hydrate minerals could have been radiologically produced from ionised sulfur originally from Io's volcanoes (exogenic) 2. However, a more recent theory proposes that the `non-ice' component could be radiation damaged NaCl leached from Europa's speculative ocean 3. What if the minerals are actually from combination of both endogenic and exogenic sources? To investigate this possibility we have focused on discovering new minerals that might form in the combination of the latter two cases, that is a mixture of leached sulfates hydrates with radiologically produced sulfuric acid. To this end we have explored a number of solutions in the MgSO4-H2SO4-H2O and Na2SO4-H2SO4-H2O systems, between 80 and 280 K with synchrotron x-ray powder diffraction. We report a number of new materials formed in this these ternary systems. This suggests that it should be considered that the `non-ice' component of the Europa's surface could be a material derived from endogenic and exogenic components. 1 Kargel, J. S. Brine volcanism and the interior structures of asteroids and icy satellites. Icarus 94, 368-390 (1991). 2 Carlson, R. W., Anderson, M. S., Mehlman, R. & Johnson, R. E. Distribution of hydrate on Europa: Further evidence for sulfuric acid hydrate. Icarus 177, 461-471, doi:10.1016/j.icarus.2005.03.026 (2005). 3 Hand, K. P. & Carlson, R. W. Europa's surface color suggests an ocean rich with sodium chloride. Geophysical Research Letters, 2015GL063559, doi:10.1002/2015gl063559 (2015).

  13. Money, banks and endogenous volatility

    OpenAIRE

    Pere Gomis-Porqueras

    2000-01-01

    In this paper I consider a monetary growth model in which banks provide liquidity, and the government fixes a constant rate of money creation. There are two underlying assets in the economy, money and capital. Money is dominated in rate of return. In contrast to other papers with a larger set of government liabilities, I find a unique equilibrium when agents' risk aversion is moderate. However, indeterminacies and endogenous volatility can be observed when agents are relatively risk averse.

  14. Endogenous Population and Environmental Quality

    OpenAIRE

    Phu NGUYEN VAN

    2002-01-01

    This paper provides with empirical and theoretical studies of the relationship between population, economic growth and environmental quality. Using a simple endogenous growth model we obtain results close to empirical findings. We show existence of a sustainable balanced growth path (BGP) equilibrium in which perpetual economic growth goes in parallel with environmental quality preservation. At the BGP equilibrium, when all exogenous factors are controlled, a negative relationship between fer...

  15. Psychosocial, Physical, and Neurophysiological Risk Factors for Chronic Neck Pain: A Prospective Inception Cohort Study.

    Science.gov (United States)

    Shahidi, Bahar; Curran-Everett, Douglas; Maluf, Katrina S

    2015-12-01

    The purpose of this investigation was to identify modifiable risk factors for the development of first-onset chronic neck pain among an inception cohort of healthy individuals working in a high-risk occupation. Candidate risk factors identified from previous studies were categorized into psychosocial, physical, and neurophysiological domains, which were assessed concurrently in a baseline evaluation of 171 office workers within the first 3 months of hire. Participants completed monthly online surveys over the subsequent year to identify the presence of chronic interfering neck pain, defined as a Neck Disability Index score ≥5 points for 3 or more months. Data were analyzed using backward logistic regression to identify significant predictors within each domain, which were then entered into a multivariate regression model adjusted for age, sex, and body mass index. Development of chronic interfering neck pain was predicted by depressed mood (odds ratio [OR] = 3.36, 95% confidence interval [CI] = 1.10-10.31, P = .03), cervical extensor endurance (OR = .92, 95% CI, .87-.97, P = .001), and diffuse noxious inhibitory control (OR = .90, 95% CI, .83-.98, P = .02) at baseline. These findings provide the first evidence that individuals with preexisting impairments in mood and descending pain modulation may be at greater risk for developing chronic neck pain when exposed to peripheral nociceptive stimuli such as that produced during muscle fatigue. Depressed mood, poor muscle endurance, and impaired endogenous pain inhibition are predisposing factors for the development of new-onset chronic neck pain of nonspecific origin in office workers. These findings may assist with primary prevention by allowing clinicians to screen for individuals at risk of developing chronic neck pain. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.

  16. Spinal Gap Junction Channels in Neuropathic Pain

    OpenAIRE

    Jeon, Young Hoon; Youn, Dong Ho

    2015-01-01

    Damage to peripheral nerves or the spinal cord is often accompanied by neuropathic pain, which is a complex, chronic pain state. Increasing evidence indicates that alterations in the expression and activity of gap junction channels in the spinal cord are involved in the development of neuropathic pain. Thus, this review briefly summarizes evidence that regulation of the expression, coupling, and activity of spinal gap junction channels modulates pain signals in neuropathic pain states induced...

  17. REFERENCE MODELS OF ENDOGENOUS ECONOMIC GROWTH

    OpenAIRE

    GEAMĂNU MARINELA

    2012-01-01

    The new endogenous growth theories are a very important research area for shaping the most effective policies and long term sustainable development strategies. Endogenous growth theory has emerged as a reaction to the imperfections of neoclassical theory, by the fact that the economic growth is the endogenous product of an economical system.

  18. Rational Basis for the Use of Bergamot Essential Oil in Complementary Medicine to Treat Chronic Pain.

    Science.gov (United States)

    Rombolà, L; Amantea, D; Russo, R; Adornetto, A; Berliocchi, L; Tridico, L; Corasaniti, M T; Sakurada, S; Sakurada, T; Bagetta, G; Morrone, L A

    2016-01-01

    In complementary medicine, aromatherapy uses essential oils to improve agitation and aggression observed in dementia, mood, depression, anxiety and chronic pain. Preclinical research studies have reported that the essential oil obtained from bergamot (BEO) fruit (Citrus bergamia, Risso) modifies normal and pathological synaptic plasticity implicated, for instance, in nociceptive and neuropathic pain. Interestingly, recent results indicated that BEO modulates sensitive perception of pain in different models of nociceptive, inflammatory and neuropathic pain modulating endogenous systems. Thus, local administration of BEO inhibited the nociceptive behavioral effect induced by intraplantar injection of capsaicin or formalin in mice. Similar effects were observed with linalool and linalyl acetate, major volatile components of the phytocomplex, Pharmacological studies showed that the latter effects are reversed by local or systemic pretreatment with the opioid antagonist naloxone hydrochloride alike with naloxone methiodide, high affinity peripheral μ-opioid receptor antagonist. These results and the synergistic effect observed following systemic or intrathecal injection of an inactive dose of morphine with BEO or linalool indicated an activation of peripheral opioid system. Recently, in neuropathic pain models systemic or local administration of BEO or linalool induced antiallodynic effects. In particular, in partial sciatic nerve ligation (PSNL) model, intraplantar injection of the phytocomplex or linalool in the ipsilateral hindpaw, but not in the contralateral, reduced PSNL-induced extracellularsignal- regulated kinase (ERK) activation and mechanical allodynia. In neuropathic pain high doses of morphine are needed to reduce pain. Interestingly, combination of inactive doses of BEO or linalool with a low dose of morphine induced antiallodynic effects in mice. Peripheral cannabinoid and opioid systems appear to be involved in the antinociception produced by

  19. Cancer pain

    International Nuclear Information System (INIS)

    Swerdlow, M.; Ventafridda, V.

    1987-01-01

    This book contains 13 chapters. Some of the chapter titles are: Importance of the Problem; Neurophysiology and Biochemistry of Pain; Assessment of Pain in Patients with Cancer; Drug Therapy; Chemotherapy and Radiotherapy for Cancer Pain; Sympton Control as it Relates to Pain Control; and Palliative Surgery in Cancer Pain Treatment

  20. Enterococcus faecalis Endogenous Endophthalmitis from Valvular Endocarditis

    Directory of Open Access Journals (Sweden)

    Sidnei Barge

    2013-01-01

    Full Text Available We report a case of a 74-year-old female, with a mitral heart valve, who presented with pain and blurred vision in the right eye for 2 days. Her visual acuity was light perception (LP in the right eye and 20/40 in the left eye. Slit lamp examination showed corneal edema and hypopyon, and a view of the right fundus was impossible. Echography showed vitreous condensation. One day after presentation, the patient developed acute lung edema requiring hospitalization, so she was not submitted to vitreous tap and intravitreal treatment. The cardiac and systemic evaluations revealed a mitral endocarditis secondary to Enterococcus faecalis. The patient improved systemically with treatment with gentamicin, vancomycin, and linezolid. Her visual acuity remained as no LP, and her intraocular pressure (IOP has been controlled with brimonidine bid despite developing a total cataract with 360° posterior synechia. A cardiac source for endogenous endophthalmitis should be considered in the presence of a prosthetic cardiac valve. The treatment and followup must be made in cooperation with a cardiologist specialist, but the ophthalmologist can play a key role in the diagnosis.

  1. Endogenous attention and illusory line motion depend on task set.

    Science.gov (United States)

    Chica, Ana B; Charras, Pom; Lupiáñez, Juan

    2008-09-01

    Task set has been shown to determine some important cognitive operations like conscious perception [Rafal, R. D., Ward, R., & Danziger, S. (2006). Selection for action and selection for awareness: Evidence from hemispatial neglect. Brain Research, 1080(1), 2-8], and the exogenous orienting of spatial attention [Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 1030-1044; Lupiáñez, J., Ruz, M., Funes, M. J., & Milliken, B. (2007). The manifestation of attentional capture: Facilitation or IOR depending on task demands. Psychological Research, 71(1), 77-91]. In the present study we investigate whether endogenous attention would also be task-dependent. We use an illusion of movement, the illusory line motion [Hikosaka, O., Miyauchi, S., & Shimojo, S. (1993). Focal visual attention produces illusory temporal order and motion sensation. Vision Research, 33(9), 1219-1240] to explore this question. Our results revealed that endogenously attending to detect the appearance of a target produce different consequences in modulating the illusion of movement than endogenously attending to discriminate one of its features. We suggest that endogenous attention is implemented differently depending on the task at hand, producing different effects on perceptual integration.

  2. Increased pain sensitivity in accident-related chronic pain patients with comorbid posttraumatic stress

    DEFF Research Database (Denmark)

    Vaegter, Henrik Bjarke; Andersen, Tonny Elmose; Harvold, Mathea

    2018-01-01

    OBJECTIVES: Posttraumatic stress disorder (PTSD) is prevalent in chronic pain, and associated with increased pain, hyperalgesia and psychological distress. This study aimed to investigate anti-nociceptive and pro-nociceptive pain mechanisms, pain intensity, and psychological distress (depression......, anxiety, pain catastrophizing, and fear of movement) in patients with accident-related chronic spinal pain with (N=44) and without (N=64) comorbid PTSD characteristics. METHODS: Cuff algometry was performed on lower legs to assess pressure pain threshold (cPPT), tolerance (cPTT), temporal summation...... of pain (TSP: increase in pain scores to ten repeated stimulations), and conditioning pain modulation (CPM: increase in cPPT during cuff pain conditioning on the contralateral leg). Warmth detection threshold (WDT) and heat pain threshold (HPT) at the hand were also assessed. Clinical pain intensity...

  3. Repetitive treatment with diluted bee venom reduces neuropathic pain via potentiation of locus coeruleus noradrenergic neuronal activity and modulation of spinal NR1 phosphorylation in rats.

    Science.gov (United States)

    Kang, Suk-Yun; Roh, Dae-Hyun; Yoon, Seo-Yeon; Moon, Ji-Young; Kim, Hyun-Woo; Lee, Hye-Jung; Beitz, Alvin J; Lee, Jang-Hern

    2012-02-01

    We previously demonstrated that a single injection of diluted bee venom (DBV) temporarily alleviates thermal hyperalgesia, but not mechanical allodynia, in neuropathic rats. The present study was designed to determine whether repetitive injection of DBV produces more potent analgesic effects on neuropathy-induced nociception and whether those effects are associated with increased neuronal activity in the locus coeruleus (LC) and with the suppression of spinal NMDA receptor NR1 subunit phosphorylation (pNR1). DBV (.25 mg/kg) was administered subcutaneously twice a day for 2 weeks beginning on day 15 post-chronic constrictive injury surgery. Pain responses were examined and potential changes in LC Fos expression and spinal pNR1 expression were determined. Repetitive DBV administration significantly reduced mechanical allodynia, as well as thermal hyperalgesia. The activity of LC noradrenergic neurons was increased and spinal pNR1 expression was significantly suppressed by repetitive DBV as compared with those of vehicle or single DBV injection. These suppressive effects of repetitive DBV on neuropathic pain and spinal pNR1 were prevented by intrathecal pretreatment of idazoxan, an alpha-2 adrenoceptor antagonist. These results indicate that repetitive DBV produces potent analgesic effects on neuropathic pain and this is associated with the activation of the LC noradrenergic system and with a reduction in spinal pNR1. The results of current study demonstrate that repetitive administration of DBV significantly suppresses neuropathic pain. Furthermore, this study provides mechanistic information that repetitive treatment of DBV can produce more potent analgesic effect than single DBV treatment, indicating a potential novel strategy for the management of chronic pain. Copyright © 2012 American Pain Society. Published by Elsevier Inc. All rights reserved.

  4. Back Pain

    Science.gov (United States)

    ... Accessed May 29, 2015. Adult acute and subacute low back pain. Bloomington, Minn.: Institute for Clinical Systems Improvement. http://www.icsi.org/low_back_pain/adult_low_back_pain__8.html. Accessed June ...

  5. Abdominal Pain

    Science.gov (United States)

    ... to ease your pain. For instance, eat smaller meals if your pain is accompanied by indigestion. Avoid ... http://www.mayoclinic.org/symptoms/abdominal-pain/basics/definition/SYM-20050728 . Mayo Clinic Footer Legal Conditions and ...

  6. Knee pain

    Science.gov (United States)

    Pain - knee ... Knee pain can have different causes. Being overweight puts you at greater risk for knee problems. Overusing your knee can trigger knee problems that cause pain. If you have a history of arthritis, it ...

  7. Breast pain

    Science.gov (United States)

    Pain - breast; Mastalgia; Mastodynia; Breast tenderness ... There are many possible causes for breast pain. For example, changes in the level of of hormones during menstruation or pregnancy often cause breast pain. Some swelling and tenderness just before ...

  8. Foot pain

    Science.gov (United States)

    Pain - foot ... Foot pain may be due to: Aging Being on your feet for long periods of time Being overweight A ... sports activity Trauma The following can cause foot pain: Arthritis and gout . Common in the big toe, ...

  9. Eye pain

    Science.gov (United States)

    Ophthalmalgia; Pain - eye ... Pain in the eye can be an important symptom of a health problem. Make sure you tell your health care provider if you have eye pain that does not go away. Tired eyes or ...

  10. Wrist pain

    Science.gov (United States)

    Pain - wrist; Pain - carpal tunnel; Injury - wrist; Arthritis - wrist; Gout - wrist; Pseudogout - wrist ... Carpal tunnel syndrome: A common cause of wrist pain is carpal tunnel syndrome . You may feel aching, ...

  11. Ankle pain

    Science.gov (United States)

    Pain - ankle ... Ankle pain is often due to an ankle sprain. An ankle sprain is an injury to the ligaments, which ... the joint. In addition to ankle sprains, ankle pain can be caused by: Damage or swelling of ...

  12. On the origins of endogenous thoughts.

    Science.gov (United States)

    Tillas, Alexandros

    2017-05-01

    Endogenous thoughts are thoughts that we activate in a top-down manner or in the absence of the appropriate stimuli. We use endogenous thoughts to plan or recall past events. In this sense, endogenous thinking is one of the hallmarks of our cognitive lives. In this paper, I investigate how it is that we come to possess endogenous control over our thoughts. Starting from the close relation between language and thinking, I look into speech production-a process motorically controlled by the inferior frontal gyrus (IFG). Interestingly, IFG is also closely related to silent talking, as well as volition. The connection between IFG and volition is important given that endogenous thoughts are or at least greatly resemble voluntary actions. Against this background, I argue that IFG is key to understanding the origins of conscious endogenous thoughts. Furthermore, I look into goal-directed thinking and show that IFG plays a key role also in unconscious endogenous thinking.

  13. Postoperative pain

    DEFF Research Database (Denmark)

    Kehlet, H; Dahl, J B

    1993-01-01

    Treatment of postoperative pain has not received sufficient attention by the surgical profession. Recent developments concerned with acute pain physiology and improved techniques for postoperative pain relief should result in more satisfactory treatment of postoperative pain. Such pain relief may...... also modify various aspects of the surgical stress response, and nociceptive blockade by regional anesthetic techniques has been demonstrated to improve various parameters of postoperative outcome. It is therefore stressed that effective control of postoperative pain, combined with a high degree...

  14. Cannabinoids and Pain

    Directory of Open Access Journals (Sweden)

    J Michael Walker

    2001-01-01

    Full Text Available Cannabinoids have been used to treat pain for many centuries. However, only during the past several decades have rigorous scientific methods been applied to understand the mechanisms of cannabinoid action. Cannabinoid receptors were discovered in the late 1980s and have been found to mediate the effects of cannabinoids on the nervous system. Several endocannabinoids were subsequently identified. Many studies of cannabinoid analgesia in animals during the past century showed that cannabinoids block all types of pain studied. These effects were found to be due to the suppression of spinal and thalamic nociceptive neurons, independent of any actions on the motor systems. Spinal, supraspinal and peripheral sites of cannabinoid analgesia have been identified. Endocannabinoids are released upon electrical stimulation of the periaqueductal gray, and in response to inflammation in the extremities. These observations and others thus suggest that a natural function of cannabinoid receptors and their endogenous ligands is to regulate pain sensitivity. The therapeutic potential of cannabinoids remains an important topic for future investigations, with previous work suggesting utility in clinical studies of cancer and surgical pain. New modes of delivery and/or new compounds lacking the psychotropic properties of the standard cannabinoid ligands offer promise for cannabinoid therapeutics for pain.

  15. Period Pain

    Science.gov (United States)

    ... pain relievers such as nonsteroidal anti-inflammatory drugs (NSAIDs). NSAIDs include ibuprofen and naproxen. Besides relieving pain, NSAIDs reduce the amount of prostaglandins that your uterus ...

  16. Motor cortex stimulation for neuropathic pain: From phenomenology to mechanisms.

    Science.gov (United States)

    Garcia-Larrea, Luis; Peyron, Roland

    2007-01-01

    Motor cortex stimulation (MCS) is relatively recent neurosurgical technique for pain control, the use of which is growing steadily since its description in the last decade. While clinical series show that at least 50% of patients with chronic, pharmacoresistant neuropathic pain may benefit from this technique, the mechanisms of action of MCS remain elusive. In this review, we synthesise a number of studies that, combining electrophysiology and functional imaging, have permitted to proceed from phenomenology to models that may account for part of such mechanisms. MCS appears to trigger rapid and phasic activation in the lateral thalamus, which leads to a cascade of events of longer time-course in medial thalamus, anterior cingulate/orbitofrontal cortices and periaqueductal grey matter. Activity in these latter structures is delayed relative to actual cortical neurostimulation and becomes maximal during the hours that follow MCS arrest. Current hypotheses suggest that MCS may act through at least two mechanisms: activation of perigenual cingulate and orbitofrontal areas may modulate the emotional appraisal of pain, rather than its intensity, while top down activation of brainstem PAG may lead to descending inhibition toward the spinal cord. Recent evidence also points to a possible secretion of endogenous opioids triggered by chronic MCS. This, along with the delayed and long-lasting activation of several brain structures, is consistent with the clinical effects of MCS, which may also last for hours or days after MCS discontinuation.

  17. Mechanisms of the placebo effect in pain and psychiatric disorders.

    Science.gov (United States)

    Holmes, R D; Tiwari, A K; Kennedy, J L

    2016-11-01

    Placebo effect research over the past 15 years has improved our understanding of how placebo treatments reduce patient symptoms. The expectation of symptom improvement is the primary factor underlying the placebo effect. Such expectations are shaped by past experiences, contextual cues and biological traits, which ultimately modulate one's degree of response to a placebo. The body of evidence that describes the physiology of the placebo effect has been derived from mechanistic studies primarily restricted to the setting of pain. Imaging findings support the role of endogenous opioid and dopaminergic networks in placebo analgesia in both healthy patients as well as patients with painful medical conditions. In patients with psychiatric illnesses such as anxiety disorders or depression, a vast overlap in neurological changes is observed in drug responders and placebo responders supporting the role of serotonergic networks in placebo response. Molecular techniques have been relatively underutilized in understanding the placebo effect until recently. We present an overview of the placebo responder phenotypes and genetic markers that have been associated with the placebo effect in pain, schizophrenia, anxiety disorders and depression.

  18. Endogenous, Imperfectly Competitive Business Cycles

    DEFF Research Database (Denmark)

    Whitta-Jacobsen, Hans Jørgen

    by monopolistic competition. An implicit assumption of barriers to entry justifies that the number of firms is fixed even when positive profits occur. It turns out that both market power of firms on the product markets and market power of unions on the labor markets make the occurrence of cycles more likely......We investigate how imperfect competition affects the occurrence and the properties of endogenous, rational expectations business cycles in an overlapping generations model with constant returns to scale in production. The model has explicit product and labor markets all characterized...

  19. The Effect of Intrathecal Administration of Muscimol on Modulation of Neuropathic Pain Symptoms Resulting from Spinal Cord Injury; an Experimental Study

    Directory of Open Access Journals (Sweden)

    Marjan Hosseini

    2014-09-01

    Full Text Available Introduction: Neuropathic pain can be very difficult to treat and it is one of the important medical challenging about pain treatments. Muscimol as a new agonist of gamma-Aminobutyric acid receptor type A (GABAA have been introduced for pain management. Thus, the present study was performed to evaluate the pain alleviating effect of intrathecal injection of different doses of muscimol as GABAA receptor agonist in spinal cord injury (SCI model of neuropathic pain. Methods: In the present experimental study male Wistar rats were treated by muscimol 0.01, 0.1 or 1 µg/10ul, intrathecally (i.t. three weeks after induction of spinal cord injury using compression injury model. Neuropathic pain symptoms were assessed at before treatment, 15 minutes, one hour and three hours after muscimol administration. The time of peak effect and optimum dosage was assessed by repeated measures analysis of variance and analysis of covariance, respectively. Results: Muscimol with the dose of 0.01 µg in 15 minutes caused to improve the thermal hyperalgesia (df: 24, 5; F= 6.6; p<0.001, mechanical hyperalgesia (df: 24, 5; F= 7.8; p<0.001, cold allodynia (df: 24, 5; F= 6.96; p<0.001, and mechanical allodynia (df: 24, 5; F= 15.7; p<0.001. The effect of doses of 0.1 µg and 1 µg were also significant. In addition, the efficacy of different doses of muscimol didn't have difference on thermal hyperalgesia (df: 24, 5; F= 1.52; p= 0.24, mechanical hyperalgesia (df: 24, 5; F= 0.3; p= -0.75, cold allodynia (df: 24, 5; F= 0.8; p= -0.56, and mechanical allodynia (df: 24, 5; F= 1.75; p= 0.86. Conclusion: The finding of the present study revealed that using muscimol with doses of 0.01µg, 0.1µg, and 1 µg reduces the symptoms of neuropathic pain. Also the effect of GABAA agonist is short term and its effectiveness gradually decreases by time.

  20. A randomized, Phase IIb study investigating oliceridine (TRV130, a novel µ-receptor G-protein pathway selective (µ-GPS modulator, for the management of moderate to severe acute pain following abdominoplasty

    Directory of Open Access Journals (Sweden)

    Singla N

    2017-10-01

    Full Text Available Neil Singla,1 Harold S Minkowitz,2 David G Soergel,3 David A Burt,3 Ruth Ann Subach,3 Monica Y Salamea,3 Michael J Fossler,3 Franck Skobieranda3 1Lotus Clinical Research, Pasadena, CA, 2Memorial Hermann Memorial City Medical Center, Houston, TX, 3Trevena, Inc, King of Prussia, PA, USA Background: Oliceridine (TRV130, a novel µ-receptor G-protein pathway selective (µ-GPS modulator, was designed to improve the therapeutic window of conventional opioids by activating G-protein signaling while causing low β-arrestin recruitment to the µ receptor. This randomized, double-blind, patient-controlled analgesia Phase IIb study was conducted to investigate the efficacy, safety, and tolerability of oliceridine compared with morphine and placebo in patients with moderate to severe pain following abdominoplasty (NCT02335294; oliceridine is an investigational agent not yet approved by the US Food and Drug Administration. Methods: Patients were randomized to receive postoperative regimens of intravenous oliceridine (loading/patient-controlled demand doses [mg/mg]: 1.5/0.10 [regimen A]; 1.5/0.35 [regimen B], morphine (4.0/1.0, or placebo with treatment initiated within 4 hours of surgery and continued as needed for 24 hours. Results: Two hundred patients were treated (n=39, n=39, n=83, and n=39 in the oliceridine regimen A, oliceridine regimen B, morphine, and placebo groups, respectively. Patients were predominantly female (n=198 [99%] and had a mean age of 38.2 years, weight of 71.2 kg, and baseline pain score of 7.7 (on 11-point numeric pain rating scale. Patients receiving the oliceridine regimens had reductions in average pain scores (model-based change in time-weighted average versus placebo over 24 hours of 2.3 and 2.1 points, respectively (P=0.0001 and P=0.0005 versus placebo; patients receiving morphine had a similar reduction (2.1 points; P<0.0001 versus placebo. A lower prevalence of adverse events (AEs related to nausea, vomiting, and respiratory

  1. Endogenous Receptor Agonists: Resolving Inflammation

    Directory of Open Access Journals (Sweden)

    Gerhard Bannenberg

    2007-01-01

    Full Text Available Controlled resolution or the physiologic resolution of a well-orchestrated inflammatory response at the tissue level is essential to return to homeostasis. A comprehensive understanding of the cellular and molecular events that control the termination of acute inflammation is needed in molecular terms given the widely held view that aberrant inflammation underlies many common diseases. This review focuses on recent advances in the understanding of the role of arachidonic acid and ω-3 polyunsaturated fatty acids (PUFA–derived lipid mediators in regulating the resolution of inflammation. Using a functional lipidomic approach employing LC-MS-MS–based informatics, recent studies, reviewed herein, uncovered new families of local-acting chemical mediators actively biosynthesized during the resolution phase from the essential fatty acids eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. These new families of local chemical mediators are generated endogenously in exudates collected during the resolution phase, and were coined resolvins and protectins because specific members of these novel chemical families control both the duration and magnitude of inflammation in animal models of complex diseases. Recent advances on the biosynthesis, receptors, and actions of these novel anti-inflammatory and proresolving lipid mediators are reviewed with the aim to bring to attention the important role of specific lipid mediators as endogenous agonists in inflammation resolution.

  2. Human-Specific Endogenous Retroviruses

    Directory of Open Access Journals (Sweden)

    Anton Buzdin

    2007-01-01

    Full Text Available This review focuses on a small family of human-specific genomic repetitive elements, presented by 134 members that shaped ~330 kb of the human DNA. Although modest in terms of its copy number, this group appeared to modify the human genome activity by endogenizing ~50 functional copies of viral genes that may have important implications in the immune response, cancer progression, and antiretroviral host defense. A total of 134 potential promoters and enhancers have been added to the human DNA, about 50% of them in the close gene vicinity and 22% in gene introns. For 60 such human-specific promoters, their activity was confirmed by in vivo assays, with the transcriptional level varying ~1000-fold from hardly detectable to as high as ~3% of β-actin transcript level. New polyadenylation signals have been provided to four human RNAs, and a number of potential antisense regulators of known human genes appeared due to human-specific retroviral insertional activity. This information is given here in the context of other major genomic changes underlining differences between human and chimpanzee DNAs. Finally, a comprehensive database, is available for download, of human-specific and polymorphic endogenous retroviruses is presented, which encompasses the data on their genomic localization, primary structure, encoded viral genes, human gene neighborhood, transcriptional activity, and methylation status.

  3. Human endogenous retroviruses and cancer.

    Science.gov (United States)

    Gonzalez-Cao, María; Iduma, Paola; Karachaliou, Niki; Santarpia, Mariacarmela; Blanco, Julià; Rosell, Rafael

    2016-12-01

    Human endogenous retroviruses (HERVs) are retroviruses that infected human genome millions of years ago and have persisted throughout human evolution. About 8% of our genome is composed of HERVs, most of which are nonfunctional because of epigenetic control or deactivating mutations. However, a correlation between HERVs and human cancer has been described and many tumors, such as melanoma, breast cancer, germ cell tumors, renal cancer or ovarian cancer, express HERV proteins, mainly HERV-K (HML6) and HERV-K (HML2). Although the causative role of HERVs in cancer is controversial, data from animal models demonstrated that endogenous retroviruses are potentially oncogenic. HERV protein expression in human cells generates an immune response by activating innate and adaptive immunities. Some HERV-derived peptides have antigenic properties. For example, HERV-K (HML-6) encodes the HER-K MEL peptide recognized by CD8+ lymphocytes. In addition, HERVs are two-edged immunomodulators. HERVs show immunosuppressive activity. The presence of genomic retroviral elements in host-cell cytosol may activate an interferon type I response. Therefore, targeting HERVs through cellular vaccines or immunomodulatory drugs combined with checkpoint inhibitors is attracting interest because they could be active in human tumors.

  4. Back Pain with Leg Pain.

    Science.gov (United States)

    Vulfsons, Simon; Bar, Negev; Eisenberg, Elon

    2017-07-01

    The clinical diagnostic dilemma of low back pain that is associated with lower limb pain is very common. In relation to back pain that radiates to the leg, the International Association for the Study of Pain (IASP) states: "Pain in the lower limb should be described specifically as either referred pain or radicular pain. In cases of doubt no implication should be made and the pain should be described as pain in the lower limb." Bogduks' editorial in the journal PAIN (2009) helps us to differentiate and define the terms somatic referred pain, radicular pain, and radiculopathy. In addition, there are other pathologies distal to the nerve root that could be relevant to patients with back pain and leg pain such as plexus and peripheral nerve involvement. Hence, the diagnosis of back pain with leg pain can still be challenging. In this article, we present a patient with back and leg pain. The patient appears to have a radicular pain syndrome, but has no neurological impairment and shows signs of myofascial involvement. Is there a single diagnosis or indeed two overlapping syndromes? The scope of our article encompasses the common diagnostic possibilities for this type of patient. A discussion of treatment is beyond the scope of this article and depends on the final diagnosis/diagnoses made.

  5. Endogenous retroviral promoter exaptation in human cancer

    Directory of Open Access Journals (Sweden)

    Artem Babaian

    2016-12-01

    Full Text Available Abstract Cancer arises from a series of genetic and epigenetic changes, which result in abnormal expression or mutational activation of oncogenes, as well as suppression/inactivation of tumor suppressor genes. Aberrant expression of coding genes or long non-coding RNAs (lncRNAs with oncogenic properties can be caused by translocations, gene amplifications, point mutations or other less characterized mechanisms. One such mechanism is the inappropriate usage of normally dormant, tissue-restricted or cryptic enhancers or promoters that serve to drive oncogenic gene expression. Dispersed across the human genome, endogenous retroviruses (ERVs provide an enormous reservoir of autonomous gene regulatory modules, some of which have been co-opted by the host during evolution to play important roles in normal regulation of genes and gene networks. This review focuses on the “dark side” of such ERV regulatory capacity. Specifically, we discuss a growing number of examples of normally dormant or epigenetically repressed ERVs that have been harnessed to drive oncogenes in human cancer, a process we term onco-exaptation, and we propose potential mechanisms that may underlie this phenomenon.

  6. Pain modulatory phenotypes differentiate subgroups with different clinical and experimental pain sensitivity

    DEFF Research Database (Denmark)

    Vaegter, Henrik Bjarke; Graven-Nielsen, Thomas

    2016-01-01

    between subgroups. Cuff algometry was performed on lower legs in 400 chronic pain patients to assess pressure pain threshold (cPPT), pressure pain tolerance (cPTT), temporal summation of pain (TSP: increase in pain scores to ten repeated stimulations), and conditioned pain modulation (CPM: increase in c......PPT during cuff pain conditioning on the contralateral leg). Heat detection (HDT) and heat pain thresholds (HPT) at clinical painful and non-painful body areas were assessed. Based on TSP and CPM four distinct groups were formed: Group 1 (n=85) had impaired CPM and facilitated TSP. Group 2 (n=148) had...... impaired CPM and normal TSP. Group 3 (n=45) had normal CPM and facilitated TSP. Group 4 (n=122) had normal CPM and normal TSP. Group 1 showed more pain regions compared with the other three groups (PCPM and facilitated TSP plays an important role in widespread pain. Group 1...

  7. Muscle pain

    African Journals Online (AJOL)

    Key Summary Points. • Muscle pain, known as myalgia, can be in one targeted area or across many muscles, occurring with overexertion or overuse of these muscles. • Pain can be classified as acute or chronic pain and further categorized as nociceptive or neuropathic. • Causes of muscle pain include stress, physical ...

  8. Electromagnetic Field Devices and Their Effects on Nociception and Peripheral Inflammatory Pain Mechanisms.

    Science.gov (United States)

    Ross, Christina L; Teli, Thaleia; Harrison, Benjamin S

    2016-03-01

    Context • During cell-communication processes, endogenous and exogenous signaling affects normal and pathological developmental conditions. Exogenous influences, such as extra-low-frequency (ELF) electromagnetic fields (EMFs) have been shown to affect pain and inflammation by modulating G-protein coupling receptors (GPCRs), downregulating cyclooxygenase-2 (Cox-2) activity, and downregulating inflammatory modulators, such as tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) as well as the transcription factor nuclear factor kappa B (NF-κB). EMF devices could help clinicians who seek an alternative or complementary treatment for relief of patients chronic pain and disability. Objective • The research team intended to review the literature on the effects of EMFs on inflammatory pain mechanisms. Design • We used a literature search of articles published in PubMed using the following key words: low-frequency electromagnetic field therapy, inflammatory pain markers, cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), opioid receptors, G-protein coupling receptors, and enzymes. Setting • The study took place at the Wake Forest School of Medicine in Winston-Salem, NC, USA. Results • The mechanistic pathway most often considered for the biological effects of EMF is the plasma membrane, across which the EMF signal induces a voltage change. Oscillating EMF exerts forces on free ions that are present on both sides of the plasma membrane and that move across the cell surface through transmembrane proteins. The ions create a forced intracellular vibration that is responsible for phenomena such as the influx of extracellular calcium (Ca2+) and the binding affinity of calmodulin (CaM), which is the primary transduction pathway to the secondary messengers, cAMP and cGMP, which have been found to influence inflammatory pain. Conclusions • An emerging body of evidence indicates the existence of a frequency

  9. Insufficient Evidence Supports the Use of Low-Level Laser Therapy to Accelerate Tooth Movement, Prevent Orthodontic Relapse, and Modulate Acute Pain During Orthodontic Treatment.

    Science.gov (United States)

    Farsaii, Adrian; Al-Jewair, Thikriat

    2017-09-01

    Efficacy of low-level laser therapy in accelerating tooth movement, preventing relapse and managing acute pain during orthodontic treatment in humans: A systematic review. Sonesson M, De Geer E, Subraian J, Petrén S. BMC Oral Health 2017;17:11. No funding was obtained for this study TYPE OF STUDY/DESIGN: Systematic review. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Endogenous money: the evolutionary versus revolutionary views

    OpenAIRE

    Louis-Philippe Rochon; Sergio Rossi

    2013-01-01

    The purpose of this paper is to shed light on the endogenous nature of money. Contrary to the established post-Keynesian, or evolutionary, view, this paper argues that money has always been endogenous, irrespective of the historical period. Instead of the evolutionary theory of money and banking that can be traced back to Chick (1986), this paper puts forward a revolutionary definition of endogenous money consistent with many aspects of post-Keynesian economics as well as with the monetary ci...

  11. Endogenous price flexibility and optimal monetary policy

    OpenAIRE

    Ozge Senay; Alan Sutherland

    2014-01-01

    Much of the literature on optimal monetary policy uses models in which the degree of nominal price flexibility is exogenous. There are, however, good reasons to suppose that the degree of price flexibility adjusts endogenously to changes in monetary conditions. This article extends the standard new Keynesian model to incorporate an endogenous degree of price flexibility. The model shows that endogenizing the degree of price flexibility tends to shift optimal monetary policy towards complete i...

  12. Endogenous Market Structures and International Trade

    OpenAIRE

    Etro Federico

    2010-01-01

    I extend the endogenous market structures approach to international trade theory and policy. When markets are characterized by strategic interactions and endogenous entry, opening up to trade decreases the price level, and increases concentration and the production of each firm, with a positive competition effect on welfare. With endogenous entry of foreign firms in the domestic market it is optimal to set a positive import tariff decreasing in the ratio between entry costs and market size. W...

  13. Binary choice models with endogenous regressors

    OpenAIRE

    Christopher Baum; Yingying Dong; Arthur Lewbel; Tao Yang

    2012-01-01

    Dong and Lewbel have developed the theory of simple estimators for binary choice models with endogenous or mismeasured regressors, depending on a `special regressor' as defined by Lewbel (J. Econometrics, 2000). `Control function' methods such as Stata's ivprobit are generally only valid when endogenous regressors are consistent. The estimators proposed here can be used with limited, censored, continuous or discrete endogenous regressors, and have significant advantages over alternatives such...

  14. Endogenous, Imperfectly Competitive Business Cycles

    DEFF Research Database (Denmark)

    Whitta-Jacobsen, Hans Jørgen

    We investigate how imperfect competition affects the occurrence and the properties of endogenous, rational expectations business cycles in an overlapping generations model with constant returns to scale in production. The model has explicit product and labor markets all characterized...... by monopolistic competition. An implicit assumption of barriers to entry justifies that the number of firms is fixed even when positive profits occur. It turns out that both market power of firms on the product markets and market power of unions on the labor markets make the occurrence of cycles more likely....... In particular, imperfect competition on the product markets and the positive profits associated with it may have the effect that there is a cycle even if the labor supply curve is increasing in the real-wage rate. For competitive cycles is required not only a decreasing labor supply curve, but a wage elasticity...

  15. When endogenous spatial attention improves conscious perception: effects of alerting and bottom-up activation.

    Science.gov (United States)

    Botta, Fabiano; Lupiáñez, Juan; Chica, Ana B

    2014-01-01

    Recent studies have consistently demonstrated that conscious perception interacts with exogenous attentional orienting, but it can be dissociated from endogenous attentional orienting (Chica Lasaponara, et al., 2011; Wyart & Tallon-Baudry, 2008). It has been hypothesized that enhanced conscious processing at exogenously attended locations results from a synergistic action of spatial orienting, bottom-up activation, and phasic alerting induced by the abrupt onset of the exogenous cue (Chica, Lasaponara, et al., 2011). Instead, as endogenous cues need more time to be interpreted, the phasic alerting they produce may have dissipated when the target appears. Furthermore, endogenous cues presumably elicit a weak bottom-up activation at the cued location. Consistent with these hypotheses, we observed that endogenous attention modulated conscious perception, but only when phasic alerting or bottom-up activation was increased. Results are discussed in the context of recent theoretical models of consciousness (Dehaene, Changeux, Naccache, Sackur, & Sergent, 2006). Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Pain hypersensitivity mechanisms at a glance

    OpenAIRE

    Gangadharan, V.; Kuner, R.

    2013-01-01

    There are two basic categories of pain: physiological pain, which serves an important protective function, and pathological pain, which can have a major negative impact on quality of life in the context of human disease. Major progress has been made in understanding the molecular mechanisms that drive sensory transduction, amplification and conduction in peripheral pain-sensing neurons, communication of sensory inputs to spinal second-order neurons, and the eventual modulation of sensory sign...

  17. Hypoalgesia After Exercise and the Cold Pressor Test is Reduced in Chronic Musculoskeletal Pain Patients With High Pain Sensitivity

    DEFF Research Database (Denmark)

    Vaegter, Henrik B; Handberg, Gitte; Graven-Nielsen, Thomas

    2016-01-01

    OBJECTIVES: In chronic pain patients, impaired conditioned pain modulation (CPM) and exercise-induced hypoalgesia (EIH) have been reported. No studies have compared CPM and EIH in chronic musculoskeletal pain patients with high pain sensitivity (HPS) and low pain sensitivity (LPS). MATERIALS.......005). Pain tolerance increased after the cold pressor test and exercise in both groups (PCPM and EIH were partly impaired in chronic pain patients with high versus less pain sensitivity, suggesting that the CPM and EIH responses depend on the degree of pain sensitivity. This has clinical...

  18. The interactions of multisensory integration with endogenous and exogenous attention

    Science.gov (United States)

    Tang, Xiaoyu; Wu, Jinglong; Shen, Yong

    2016-01-01

    Stimuli from multiple sensory organs can be integrated into a coherent representation through multiple phases of multisensory processing; this phenomenon is called multisensory integration. Multisensory integration can interact with attention. Here, we propose a framework in which attention modulates multisensory processing in both endogenous (goal-driven) and exogenous (stimulus-driven) ways. Moreover, multisensory integration exerts not only bottom-up but also top-down control over attention. Specifically, we propose the following: (1) endogenous attentional selectivity acts on multiple levels of multisensory processing to determine the extent to which simultaneous stimuli from different modalities can be integrated; (2) integrated multisensory events exert top-down control on attentional capture via multisensory search templates that are stored in the brain; (3) integrated multisensory events can capture attention efficiently, even in quite complex circumstances, due to their increased salience compared to unimodal events and can thus improve search accuracy; and (4) within a multisensory object, endogenous attention can spread from one modality to another in an exogenous manner. PMID:26546734

  19. The interactions of multisensory integration with endogenous and exogenous attention.

    Science.gov (United States)

    Tang, Xiaoyu; Wu, Jinglong; Shen, Yong

    2016-02-01

    Stimuli from multiple sensory organs can be integrated into a coherent representation through multiple phases of multisensory processing; this phenomenon is called multisensory integration. Multisensory integration can interact with attention. Here, we propose a framework in which attention modulates multisensory processing in both endogenous (goal-driven) and exogenous (stimulus-driven) ways. Moreover, multisensory integration exerts not only bottom-up but also top-down control over attention. Specifically, we propose the following: (1) endogenous attentional selectivity acts on multiple levels of multisensory processing to determine the extent to which simultaneous stimuli from different modalities can be integrated; (2) integrated multisensory events exert top-down control on attentional capture via multisensory search templates that are stored in the brain; (3) integrated multisensory events can capture attention efficiently, even in quite complex circumstances, due to their increased salience compared to unimodal events and can thus improve search accuracy; and (4) within a multisensory object, endogenous attention can spread from one modality to another in an exogenous manner. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Aspergillus terreus endogenous endophthalmitis: Report of a case and review of literature

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar Panigrahi

    2014-01-01

    Full Text Available We report a rare case of Aspergillus terreus endogenous endophthalmitis in an immunocompetent patient with subretinal abscess and also review the reported cases. A 50-year-old healthy male presented with sudden painful loss of vision in right eye. He was diagnosed with endogenous endophthalmitis and underwent urgent vitrectomy. Aspergillus terreus growth was obtained in culture. At final follow-up, there was complete resolution of the infection but visual acuity was poor due to macular scar. Aspergillus terreus is a rare cause of endophthalmitis with usually poor outcomes. Newer antifungals like Voriconazole can be sometimes associated with better prognosis.

  1. Spinal Circuits Transmitting Mechanical Pain and Itch.

    Science.gov (United States)

    Duan, Bo; Cheng, Longzhen; Ma, Qiufu

    2018-02-01

    In 1905, Henry Head first suggested that transmission of pain-related protopathic information can be negatively modulated by inputs from afferents sensing innocuous touch and temperature. In 1965, Melzak and Wall proposed a more concrete gate control theory of pain that highlights the interaction between unmyelinated C fibers and myelinated A fibers in pain transmission. Here we review the current understanding of the spinal microcircuits transmitting and gating mechanical pain or itch. We also discuss how disruption of the gate control could cause pain or itch evoked by innocuous mechanical stimuli, a hallmark symptom for many chronic pain or itch patients.

  2. Pain hypersensitivity mechanisms at a glance.

    Science.gov (United States)

    Gangadharan, Vijayan; Kuner, Rohini

    2013-07-01

    There are two basic categories of pain: physiological pain, which serves an important protective function, and pathological pain, which can have a major negative impact on quality of life in the context of human disease. Major progress has been made in understanding the molecular mechanisms that drive sensory transduction, amplification and conduction in peripheral pain-sensing neurons, communication of sensory inputs to spinal second-order neurons, and the eventual modulation of sensory signals by spinal and descending circuits. This poster article endeavors to provide an overview of how molecular and cellular mechanisms underlying nociception in a physiological context undergo plasticity in pathophysiological states, leading to pain hypersensitivity and chronic pain.

  3. Decreased pain perception by unconscious emotional pictures

    Directory of Open Access Journals (Sweden)

    Irene Peláez

    2016-10-01

    Full Text Available Pain perception arises from a complex interaction between a nociceptive stimulus and different emotional and cognitive factors, which appear to be mediated by both automatic and controlled systems. Previous evidence has shown that whereas conscious processing of unpleasant stimuli enhances pain perception, emotional influences on pain under unaware conditions are much less known. The aim of the present study was to investigate the modulation of pain perception by unconscious emotional pictures through an emotional masking paradigm. Two kinds of both somatosensory (painful and non-painful and emotional stimulation (negative and neutral pictures were employed. Fifty pain-free participants were asked to rate the perception of pain they were feeling in response to laser-induced somatosensory stimuli as faster as they can. Data from pain intensity and reaction times were measured. Statistical analyses revealed a significant effect for the interaction between pain and emotional stimulation, but surprisingly this relationship was opposite to expected. In particular, lower pain intensity scores and longer reaction times were found in response to negative images being strengthened this effect for painful stimulation. Present findings suggest a clear pain perception modulation by unconscious emotional contexts. Attentional capture mechanisms triggered by unaware negative stimulation could explain this phenomenon leading to a withdrawal of processing resources from pain.

  4. Endogenous timing factors in bird migration

    Science.gov (United States)

    Gwinner, E. G.

    1972-01-01

    Several species of warbler birds were observed in an effort to determine what initiates and terminates migration. Environmental and endogenous timing mechanisms were analyzed. The results indicate that endogenous stimuli are dominant factors for bird migration especially for long distances. It was concluded that environmental factors act as an assist mechanism.

  5. Endogenous Peer Effects: Fact or Fiction?

    Science.gov (United States)

    Yeung, Ryan; Nguyen-Hoang, Phuong

    2016-01-01

    The authors examine endogenous peer effects, which occur when a student's behavior or outcome is a function of the behavior or outcome of his or her peer group. Endogenous peer effects have important implications for educational policies such as busing, school choice and tracking. In this study, the authors quantitatively review the literature on…

  6. Applying Endogenous Knowledge in the African Context ...

    African Journals Online (AJOL)

    The question presented in this article is how to improve the dispute resolution competence of practitioners in Africa. The response offered involves enhancing the endogenous knowledge of a dispute and how to resolve it. This requires not only an understanding of what endogenous knowledge is, but also an alignment of ...

  7. CITROBACTER ENDOGENOUS ENDOPHTHALMITIS: A CASE REPORT AND REVIEW OF THE LITERATURE.

    Science.gov (United States)

    Wong, Daniel H T; Liu, Candice C H; Tong, Justin M K; Luk, Wei-Kwang; Li, Kenneth K W

    2017-11-16

    We present a case of endogenous endophthalmitis because of an unusual bacterium, Citrobacter koseri. A 57-year-old woman without previous history of eye surgery or trauma presented with diabetic ketoacidosis and a painful right eye with the reduction of vision. C. koseri was identified in blood culture; thus, a diagnosis of right eye endogenous endophthalmitis was made. Intravenous and intravitreal antibiotics were both started, and vitreous culture further confirmed C. koseri as the causative organism. Computed tomography of the abdomen and pelvis revealed a right C-shaped perinephric abscess, which was drained under ultrasound guidance. Because of rapid progression to corneal melting, evisceration was performed. Cases of endogenous endophthalmitis caused by Citrobacter are very limited, and a review of all published cases in the English literature and the present case revealed that endogenous Citrobacter endophthalmitis arose almost entirely from Citrobacter renal infection. Early recognition and drainage of renal abscess may lower the chance of uncontrolled infection and endogenous spread to the eyes. Despite prompt and intensive treatment, the clinical outcome of Citrobacter endogenous endophthalmitis seems to be poor.

  8. Endogenous and exogenous components in the circadian variation of core body temperature in humans

    NARCIS (Netherlands)

    Hiddinga, AE; Beersma, DGM; VandenHoofdakker, RH

    Core body temperature is predominantly modulated by endogenous and exogenous components. In the present study we tested whether these two components can be reliably assessed in a protocol which lasts for only 120 h. In this so-called forced desynchrony protocol, 12 healthy male subjects (age 23.7

  9. Nonpharmaceutical approaches to pain management.

    Science.gov (United States)

    Corti, Lisa

    2014-03-01

    A nonpharmaceutical approach to managing pain is one that does not employ a medication. The use of such approaches, in conjunction with pharmaceuticals as part of multimodal methods to managing pain, is becoming more popular as evidence is emerging to support their use. Cold therapy, for one, is used to reduce the inflammation and tissue damage seen in acute injuries and can be very effective at reducing acute pain. Incorporating the use of superficial heat therapy when treating pain associated with chronic musculoskeletal conditions is often employed as heat increases blood flow, oxygen delivery, and tissue extensibility. Acupuncture is gaining acceptance in veterinary medicine. Research is confirming that release of endogenous endorphins and enkephalins from the application of needles at specific points around the body can effectively control acute and chronic pain. The use of 2 newer therapies-extracorporeal shockwave therapy and platelet-rich plasma-represent an attempt to eliminate the causes of pain at the tissue level by promoting tissue healing and regeneration. Reviewed in this article, these therapies are intended to be used in conjunction with pharmaceuticals as part of a multimodal approach to pain management. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Chronic Pain

    Science.gov (United States)

    ... people who have chronic pain may also have low self-esteem, depression, and anger. Symptoms of chronic pain Chronic ... itself often leads to other symptoms. These include low self-esteem, anger, depression, anxiety, or frustration. What causes chronic ...

  11. Ankle Pain

    Science.gov (United States)

    ... it follows an injury. Even a relatively benign ankle injury can be quite painful, at least at first. ... improve after several weeks Self-care For many ankle injuries, self-care measures ease the pain. Examples include: ...

  12. Elbow Pain

    Science.gov (United States)

    ... pain is often caused by overuse. Many sports, hobbies and jobs require repetitive hand, wrist or arm ... Accessed Jan. 16, 2016. Jan. 11, 2018 Original article: http://www.mayoclinic.org/symptoms/elbow-pain/basics/ ...

  13. Finger pain

    Science.gov (United States)

    Pain - finger ... Nearly everyone has had finger pain at some time. You may have: Tenderness Burning Stiffness Numbness Tingling Coldness Swelling Change in skin color Redness Many conditions, such ...

  14. Habituating pain

    DEFF Research Database (Denmark)

    Ajslev, Jeppe Zielinski Nguyen; Lund, Henrik Lambrecht; Møller, Jeppe Lykke

    2013-01-01

    the industry reproduce physical strain and the habituation of pain as unquestioned conditions in construction work. The understanding of this mutual reinforcement of the necessity of physically straining, painful, high-paced construction work provides fruitful perspectives on the overrepresentation...

  15. Differences between endogenous and exogenous emotion inhibition in the human brain.

    Science.gov (United States)

    Kühn, Simone; Haggard, Patrick; Brass, Marcel

    2014-05-01

    The regulation of emotions is an integral part of our mental health. It has only recently been investigated using brain imaging techniques. In most studies, participants are instructed by a cue to inhibit a specific emotional reaction. The aim of the present study was to investigate the alternative situation where a person decides to inhibit an emotion as an act of endogenous self-control. Healthy participants viewed highly arousing pictures with negative valence. In the endogenous condition, participants could freely choose on each trial to inhibit or feel the emotions elicited by the picture. In an exogenous condition, a visual cue instructed them to either feel or inhibit the emotion elicited by the picture. Participants' subjective ratings of intensity of experienced emotion showed an interaction effect between source of control (endogenous/exogenous) and feel/inhibit based on a stronger modulation between feel and inhibition for the endogenous compared to the exogenous condition. Endogenous inhibition of emotions was associated with dorso-medial prefrontal cortex activation, whereas exogenous inhibition was found associated with lateral prefrontal cortex activation. Thus, the brain regions for both endogenous and exogenous inhibition of emotion are highly similar to those for inhibition of motor actions in Brass and Haggard (J Neurosci 27:9141-9145, 2007), Kühn et al. (Hum Brain Mapp 30:2834-2843, 2009). Functional connectivity analyses showed that dorsofrontomedial cortex exerts greater control onto pre-supplementary motor area during endogenous inhibition compared to endogenous feel. This functional dissociation between an endogenous, fronto-medial and an exogenous, fronto-lateral inhibition centre has important implications for our understanding of emotion regulation in health and psychopathology.

  16. Endogenous synthesis of corticosteroids in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Shimpei Higo

    Full Text Available BACKGROUND: Brain synthesis of steroids including sex-steroids is attracting much attention. The endogenous synthesis of corticosteroids in the hippocampus, however, has been doubted because of the inability to detect deoxycorticosterone (DOC synthase, cytochrome P450(c21. METHODOLOGY/PRINCIPAL FINDINGS: The expression of P450(c21 was demonstrated using mRNA analysis and immmunogold electron microscopic analysis in the adult male rat hippocampus. DOC production from progesterone (PROG was demonstrated by metabolism analysis of (3H-steroids. All the enzymes required for corticosteroid synthesis including P450(c21, P450(2D4, P450(11β1 and 3β-hydroxysteroid dehydrogenase (3β-HSD were localized in the hippocampal principal neurons as shown via in situ hybridization and immunoelectron microscopic analysis. Accurate corticosteroid concentrations in rat hippocampus were determined by liquid chromatography-tandem mass spectrometry. In adrenalectomized rats, net hippocampus-synthesized corticosterone (CORT and DOC were determined to 6.9 and 5.8 nM, respectively. Enhanced spinogenesis was observed in the hippocampus following application of low nanomolar (10 nM doses of CORT for 1 h. CONCLUSIONS/SIGNIFICANCE: These results imply the complete pathway of corticosteroid synthesis of 'pregnenolone →PROG→DOC→CORT' in the hippocampal neurons. Both P450(c21 and P450(2D4 can catalyze conversion of PROG to DOC. The low nanomolar level of CORT synthesized in hippocampal neurons may play a role in modulation of synaptic plasticity, in contrast to the stress effects by micromolar CORT from adrenal glands.

  17. Human endogenous retroviruses and ADHD.

    Science.gov (United States)

    Balestrieri, Emanuela; Pitzianti, Mariabernarda; Matteucci, Claudia; D'Agati, Elisa; Sorrentino, Roberta; Baratta, Antonia; Caterina, Rosa; Zenobi, Rossella; Curatolo, Paolo; Garaci, Enrico; Sinibaldi-Vallebona, Paola; Pasini, Augusto

    2014-08-01

    Several lines of evidences suggest that human endogenous retroviruses (HERVs) are implicated in the development of many complex diseases with a multifactorial aetiology and a strong heritability, such as neurological and psychiatric diseases. Attention deficit hyperactivity Disorder (ADHD) is a neurodevelopmental disorder that results from a complex interaction of environmental, biological and genetic factors. Our aim was to analyse the expression levels of three HERV families (HERV-H, K and W) in patients with ADHD. The expression of retroviral mRNAs from the three HERV families was evaluated in peripheral blood mononuclear cells (PBMCs) from 30 patients with ADHD and 30 healthy controls by quantitative RT-PCR. The expression levels of HERV-H are significantly higher in patients with ADHD compared to healthy controls, while there are no differences in the expression levels of HERV-K and W. Since the ADHD aetiology is due to a complex interaction of environmental, biological and genetic factors, HERVs may represent one link among these factors and clinical phenotype of ADHD. A future confirmation of HERV-H overexpression in a larger number of ADHD patients will make possible to identify it as a new parameter for this clinical condition, also contributing to deepen the study on the role of HERVs in the neurodevelopment diseases.

  18. Phantom Pain

    Science.gov (United States)

    ... Because this is yet another version of tangled sensory wires, the result can be pain. A number of other factors are believed to contribute to phantom pain, including damaged nerve endings, scar tissue at the site of the amputation and the physical memory of pre-amputation pain in the affected area. ...

  19. Chest Pain

    Science.gov (United States)

    ... or tightness in your chest Crushing or searing pain that radiates to your back, neck, jaw, shoulders, and one or both arms Pain that lasts ... com. Accessed Sept. 6, 2017. Yelland MJ. Outpatient evaluation of the adult with chest pain. https://www.uptodate.com/contents/search. Accessed Sept. ...

  20. Neck Pain

    Science.gov (United States)

    ... arms or hands or if you have shooting pain into your shoulder or down your arm. Symptoms Signs and symptoms ... org/search/Pages/results.aspx?k=Chronic neck pain. Accessed June 11, 2015. Isaac Z. Evaluation of the patient with neck pain and cervical ...

  1. Spinal pain

    International Nuclear Information System (INIS)

    Izzo, R.; Popolizio, T.; D’Aprile, P.; Muto, M.

    2015-01-01

    Highlights: • Purpose of this review is to address the current concepts on the pathophysiology of discogenic, radicular, facet and dysfunctional spinal pain, focusing on the role of the imaging in the diagnostic setting, to potentially address a correct approach also to minimally invasive interventional techniques. • Special attention will be given to the discogenic pain, actually considered as the most frequent cause of chronic low back pain. • The correct distinction between referred pain and radicular pain contributes to give a more correct approach to spinal pain. • The pathogenesis of chronic pain renders this pain a true pathology requiring a specific management. - Abstract: The spinal pain, and expecially the low back pain (LBP), represents the second cause for a medical consultation in primary care setting and a leading cause of disability worldwide [1]. LBP is more often idiopathic. It has as most frequent cause the internal disc disruption (IDD) and is referred to as discogenic pain. IDD refers to annular fissures, disc collapse and mechanical failure, with no significant modification of external disc shape, with or without endplates changes. IDD is described as a separate clinical entity in respect to disc herniation, segmental instability and degenerative disc desease (DDD). The radicular pain has as most frequent causes a disc herniation and a canal stenosis. Both discogenic and radicular pain also have either a mechanical and an inflammatory genesis. For to be richly innervated, facet joints can be a direct source of pain, while for their degenerative changes cause compression of nerve roots in lateral recesses and in the neural foramina. Degenerative instability is a common and often misdiagnosed cause of axial and radicular pain, being also a frequent indication for surgery. Acute pain tends to extinguish along with its cause, but the setting of complex processes of peripheral and central sensitization may influence its evolution in chronic

  2. Spinal pain

    Energy Technology Data Exchange (ETDEWEB)

    Izzo, R., E-mail: roberto1766@interfree.it [Neuroradiology Department, A. Cardarelli Hospital, Naples (Italy); Popolizio, T., E-mail: t.popolizio1@gmail.com [Radiology Department, Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo (Fg) (Italy); D’Aprile, P., E-mail: paoladaprile@yahoo.it [Neuroradiology Department, San Paolo Hospital, Bari (Italy); Muto, M., E-mail: mutomar@tiscali.it [Neuroradiology Department, A. Cardarelli Hospital, Napoli (Italy)

    2015-05-15

    Highlights: • Purpose of this review is to address the current concepts on the pathophysiology of discogenic, radicular, facet and dysfunctional spinal pain, focusing on the role of the imaging in the diagnostic setting, to potentially address a correct approach also to minimally invasive interventional techniques. • Special attention will be given to the discogenic pain, actually considered as the most frequent cause of chronic low back pain. • The correct distinction between referred pain and radicular pain contributes to give a more correct approach to spinal pain. • The pathogenesis of chronic pain renders this pain a true pathology requiring a specific management. - Abstract: The spinal pain, and expecially the low back pain (LBP), represents the second cause for a medical consultation in primary care setting and a leading cause of disability worldwide [1]. LBP is more often idiopathic. It has as most frequent cause the internal disc disruption (IDD) and is referred to as discogenic pain. IDD refers to annular fissures, disc collapse and mechanical failure, with no significant modification of external disc shape, with or without endplates changes. IDD is described as a separate clinical entity in respect to disc herniation, segmental instability and degenerative disc desease (DDD). The radicular pain has as most frequent causes a disc herniation and a canal stenosis. Both discogenic and radicular pain also have either a mechanical and an inflammatory genesis. For to be richly innervated, facet joints can be a direct source of pain, while for their degenerative changes cause compression of nerve roots in lateral recesses and in the neural foramina. Degenerative instability is a common and often misdiagnosed cause of axial and radicular pain, being also a frequent indication for surgery. Acute pain tends to extinguish along with its cause, but the setting of complex processes of peripheral and central sensitization may influence its evolution in chronic

  3. Potential mechanisms supporting the value of motor cortex stimulation to treat chronic pain syndromes

    Directory of Open Access Journals (Sweden)

    Marcos Fabio DosSantos

    2016-02-01

    Full Text Available Throughout the first years of the twenty-first century, neurotechnologies such as motor cortex stimulation (MCS, transcranial magnetic stimulation (TMS and transcranial direct current stimulation (tDCS have attracted scientific attention and been considered as potential tools to centrally modulate chronic pain, especially for those conditions more difficult to manage and refractory to all types of available pharmacological therapies. Interestingly, although the role of the motor cortex in pain has not been fully clarified, it is one of the cortical areas most commonly targeted by invasive and non-invasive neuromodulation technologies. Recent studies have provided significant advances concerning the establishment of the clinical effectiveness of primary motor cortex stimulation to treat different chronic pain syndromes. Concurrently, the neuromechanisms related to each method of primary motor cortex (M1 modulation have been unveiled. In this respect, the most consistent scientific evidence originates from MCS studies, which indicate the activation of top-down controls driven by M1 stimulation. This concept has also been applied to explain M1-TMS mechanisms. Nevertheless, activation of remote areas in the brain, including cortical and subcortical structures, has been reported with both invasive and non-invasive methods and the participation of major neurotransmitters (e.g. glutamate, GABA and serotonin as well as the release of endogenous opioids has been demonstrated. In this critical review, the putative mechanisms underlying the use of motor cortex stimulation to provide relief from chronic migraine and other types of chronic pain are discussed. Emphasis is placed on the most recent scientific evidence obtained from chronic pain research studies involving MCS and non-invasive neuromodulation methods (e.g. tDCS and TMS, which are analyzed comparatively.

  4. Potential Mechanisms Supporting the Value of Motor Cortex Stimulation to Treat Chronic Pain Syndromes.

    Science.gov (United States)

    DosSantos, Marcos F; Ferreira, Natália; Toback, Rebecca L; Carvalho, Antônio C; DaSilva, Alexandre F

    2016-01-01

    Throughout the first years of the twenty-first century, neurotechnologies such as motor cortex stimulation (MCS), transcranial magnetic stimulation (TMS), and transcranial direct current stimulation (tDCS) have attracted scientific attention and been considered as potential tools to centrally modulate chronic pain, especially for those conditions more difficult to manage and refractory to all types of available pharmacological therapies. Interestingly, although the role of the motor cortex in pain has not been fully clarified, it is one of the cortical areas most commonly targeted by invasive and non-invasive neuromodulation technologies. Recent studies have provided significant advances concerning the establishment of the clinical effectiveness of primary MCS to treat different chronic pain syndromes. Concurrently, the neuromechanisms related to each method of primary motor cortex (M1) modulation have been unveiled. In this respect, the most consistent scientific evidence originates from MCS studies, which indicate the activation of top-down controls driven by M1 stimulation. This concept has also been applied to explain M1-TMS mechanisms. Nevertheless, activation of remote areas in the brain, including cortical and subcortical structures, has been reported with both invasive and non-invasive methods and the participation of major neurotransmitters (e.g., glutamate, GABA, and serotonin) as well as the release of endogenous opioids has been demonstrated. In this critical review, the putative mechanisms underlying the use of MCS to provide relief from chronic migraine and other types of chronic pain are discussed. Emphasis is placed on the most recent scientific evidence obtained from chronic pain research studies involving MCS and non-invasive neuromodulation methods (e.g., tDCS and TMS), which are analyzed comparatively.

  5. Biased Agonism of Endogenous Opioid Peptides at the μ-Opioid Receptor.

    Science.gov (United States)

    Thompson, Georgina L; Lane, J Robert; Coudrat, Thomas; Sexton, Patrick M; Christopoulos, Arthur; Canals, Meritxell

    2015-08-01

    Biased agonism is having a major impact on modern drug discovery, and describes the ability of distinct G protein-coupled receptor (GPCR) ligands to activate different cell signaling pathways, and to result in different physiologic outcomes. To date, most studies of biased agonism have focused on synthetic molecules targeting various GPCRs; however, many of these receptors have multiple endogenous ligands, suggesting that "natural" bias may be an unappreciated feature of these GPCRs. The μ-opioid receptor (MOP) is activated by numerous endogenous opioid peptides, remains an attractive therapeutic target for the treatment of pain, and exhibits biased agonism in response to synthetic opiates. The aim of this study was to rigorously assess the potential for biased agonism in the actions of endogenous opioids at the MOP in a common cellular background, and compare these to the effects of the agonist d-Ala2-N-MePhe4-Gly-ol enkephalin (DAMGO). We investigated activation of G proteins, inhibition of cAMP production, extracellular signal-regulated kinase 1 and 2 phosphorylation, β-arrestin 1/2 recruitment, and MOP trafficking, and applied a novel analytical method to quantify biased agonism. Although many endogenous opioids displayed signaling profiles similar to that of DAMGO, α-neoendorphin, Met-enkephalin-Arg-Phe, and the putatively endogenous peptide endomorphin-1 displayed particularly distinct bias profiles. These may represent examples of natural bias if it can be shown that they have different signaling properties and physiologic effects in vivo compared with other endogenous opioids. Understanding how endogenous opioids control physiologic processes through biased agonism can reveal vital information required to enable the design of biased opioids with improved pharmacological profiles and treat diseases involving dysfunction of the endogenous opioid system. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  6. Pain, decisions and actions: a motivational perspective

    Directory of Open Access Journals (Sweden)

    Katja eWiech

    2013-04-01

    Full Text Available Because pain signals potential harm to the organism, it immediately attracts attention and motivates decisions and action. However, pain is also subject to motivations – an aspect that has led to considerable changes in our understanding of (chronic pain over the recent years. The relationship between pain and motivational states is therefore clearly bidirectional.This review provides an overview on behavioral and neuroimaging studies investigating motivational aspects of pain. We highlight recent insights into the modulation of pain through fear and social factors, summarize findings on the role of pain in fear conditioning, avoidance learning and goal conflicts and discuss evidence on pain-related cognitive interference and motivational aspects of pain relief.

  7. Gravity effects on endogenous movements

    Science.gov (United States)

    Johnsson, Anders; Antonsen, Frank

    Gravity effects on endogenous movements A. Johnsson * and F. Antonsen *+ * Department of Physics, Norwegian University of Science and Technology,NO-7491, Trond-heim, Norway, E-mail: anders.johnsson@ntnu.no + Present address: Statoil Research Center Trondheim, NO-7005, Trondheim, Norway Circumnutations in stems/shoots exist in many plants and often consists of more or less regular helical movements around the plumb line under Earth conditions. Recent results on circumnu-tations of Arabidopsis in space (Johnsson et al. 2009) showed that minute amplitude oscilla-tions exist in weightlessness, but that centripetal acceleration (mimicking the gravity) amplified and/or created large amplitude oscillations. Fundamental mechanisms underlying these results will be discussed by modeling the plant tissue as a cylinder of cells coupled together. As a starting point we have modeled (Antonsen 1998) standing waves on a ring of biological cells, as first discussed in a classical paper (Turing 1952). If the coupled cells can change their water content, an `extension' wave could move around the ring. We have studied several, stacked rings of cells coupled into a cylinder that together represent a cylindrical plant tissue. Waves of extensions travelling around the cylinder could then represent the observable circumnutations. The coupling between cells can be due to cell-to-cell diffusion, or to transport via channels, and the coupling can be modeled to vary in both longitudinal and transversal direction of the cylinder. The results from ISS experiments indicate that this cylindrical model of coupled cells should be able to 1) show self-sustained oscillations without the impact of gravity (being en-dogenous) and 2) show how an environmental factor like gravity can amplify or generate the oscillatory movements. Gravity has been introduced in the model by a negative, time-delayed feed-back transport across the cylinder. This represents the physiological reactions to acceler

  8. Spontaneous pain attacks: neuralgic pain

    NARCIS (Netherlands)

    de Bont, L.G.

    2006-01-01

    Paroxysmal orofacial pains can cause diagnostic problems, especially when different clinical pictures occur simultaneously. Pain due to pulpitis, for example, may show the same characteristics as pain due to trigeminal neuralgia would. Moreover, the trigger point of trigeminal neuralgia can either

  9. Ejaculatory pain

    DEFF Research Database (Denmark)

    Aasvang, Eske K; Møhl, Bo; Kehlet, Henrik

    2007-01-01

    and treatment strategies. METHODS: Ten patients with severe pain-related sexual dysfunction and ejaculatory pain were assessed in detail by quantitative sensory testing and interviewed by a psychologist specialized in evaluating sexual functional disorders and were compared with a control group of 20 patients....... CONCLUSIONS: Postherniotomy ejaculatory pain and pain-related sexual dysfunction is a specific chronic pain state that may be caused by pathology involving the vas deferens and/or nerve damage. Therapeutic strategies should therefore include neuropathic pain treatment and/or surgical exploration.......BACKGROUND: Sexual dysfunction due to ejaculatory and genital pain after groin hernia surgery may occur in approximately 2.5% of patients. However, the specific psychosexological and neurophysiologic characteristics have not been described, thereby precluding assessment of pathogenic mechanisms...

  10. Treatment of skeletal impairment in patients with endogenous hypercortisolism: when and how?

    Science.gov (United States)

    Scillitani, A; Mazziotti, G; Di Somma, C; Moretti, S; Stigliano, A; Pivonello, R; Giustina, A; Colao, A

    2014-02-01

    Guidelines for the management of osteoporosis induced by endogenous hypercortisolism are not available. Both the American College of Rheumatology and the International Osteoporosis Foundation recommend to modulate the treatment of exogenous glucocorticoid-induced osteoporosis (GIO) based on the individual fracture risk profile (calculated by FRAX) and dose of glucocorticoid used, but it is difficult to translate corticosteroid dosages to different degrees of endogenous hypercortisolism, and there are no data on validation of FRAX stratification method in patients with endogenous hypercortisolism. Consequently, it is unclear whether such recommendations may be adapted to patients with endogenous hypercortisolism. Moreover, patients with exogenous GIO take glucocorticoids since suffering a disease that commonly affects bone. On the other hand, the correction of coexistent risk factors, which may contribute to increase the fracture risk in patients exposed to glucocorticoid excess, and the removal of the cause of endogenous hypercortisolism, may lead to the recovery of bone health. Although the correction of hypercortisolism and of possible coexistent risk factors is necessary to favor the normalization of bone turnover with recovery of bone mass; in some patients, the fracture risk could not be normalized and specific anti-osteoporotic drugs should be given. Who, when, and how the patient with endogenous hypercortisolism should be treated with bone-active therapy is discussed.

  11. Musical Agency during Physical Exercise Decreases Pain

    Science.gov (United States)

    Fritz, Thomas H.; Bowling, Daniel L.; Contier, Oliver; Grant, Joshua; Schneider, Lydia; Lederer, Annette; Höer, Felicia; Busch, Eric; Villringer, Arno

    2018-01-01

    Objectives: When physical exercise is systematically coupled to music production, exercisers experience improvements in mood, reductions in perceived effort, and enhanced muscular efficiency. The physiology underlying these positive effects remains unknown. Here we approached the investigation of how such musical agency may stimulate the release of endogenous opioids indirectly with a pain threshold paradigm. Design: In a cross-over design we tested the opioid-hypothesis with an indirect measure, comparing the pain tolerance of 22 participants following exercise with or without musical agency. Method: Physical exercise was coupled to music by integrating weight-training machines with sensors that control music-synthesis in real time. Pain tolerance was measured as withdrawal time in a cold pressor test. Results: On average, participants tolerated cold pain for ~5 s longer following exercise sessions with musical agency. Musical agency explained 25% of the variance in cold pressor test withdrawal times after factoring out individual differences in general pain sensitivity. Conclusions: This result demonstrates a substantial pain reducing effect of musical agency in combination with physical exercise, probably due to stimulation of endogenous opioid mechanisms. This has implications for exercise endurance, both in sports and a multitude of rehabilitative therapies in which physical exercise is effective but painful. PMID:29387030

  12. Musical Agency during Physical Exercise Decreases Pain

    Directory of Open Access Journals (Sweden)

    Thomas H. Fritz

    2018-01-01

    Full Text Available Objectives: When physical exercise is systematically coupled to music production, exercisers experience improvements in mood, reductions in perceived effort, and enhanced muscular efficiency. The physiology underlying these positive effects remains unknown. Here we approached the investigation of how such musical agency may stimulate the release of endogenous opioids indirectly with a pain threshold paradigm.Design: In a cross-over design we tested the opioid-hypothesis with an indirect measure, comparing the pain tolerance of 22 participants following exercise with or without musical agency.Method: Physical exercise was coupled to music by integrating weight-training machines with sensors that control music-synthesis in real time. Pain tolerance was measured as withdrawal time in a cold pressor test.Results: On average, participants tolerated cold pain for ~5 s longer following exercise sessions with musical agency. Musical agency explained 25% of the variance in cold pressor test withdrawal times after factoring out individual differences in general pain sensitivity.Conclusions: This result demonstrates a substantial pain reducing effect of musical agency in combination with physical exercise, probably due to stimulation of endogenous opioid mechanisms. This has implications for exercise endurance, both in sports and a multitude of rehabilitative therapies in which physical exercise is effective but painful.

  13. Musical Agency during Physical Exercise Decreases Pain.

    Science.gov (United States)

    Fritz, Thomas H; Bowling, Daniel L; Contier, Oliver; Grant, Joshua; Schneider, Lydia; Lederer, Annette; Höer, Felicia; Busch, Eric; Villringer, Arno

    2017-01-01

    Objectives: When physical exercise is systematically coupled to music production, exercisers experience improvements in mood, reductions in perceived effort, and enhanced muscular efficiency. The physiology underlying these positive effects remains unknown. Here we approached the investigation of how such musical agency may stimulate the release of endogenous opioids indirectly with a pain threshold paradigm. Design: In a cross-over design we tested the opioid-hypothesis with an indirect measure, comparing the pain tolerance of 22 participants following exercise with or without musical agency. Method: Physical exercise was coupled to music by integrating weight-training machines with sensors that control music-synthesis in real time. Pain tolerance was measured as withdrawal time in a cold pressor test. Results: On average, participants tolerated cold pain for ~5 s longer following exercise sessions with musical agency. Musical agency explained 25% of the variance in cold pressor test withdrawal times after factoring out individual differences in general pain sensitivity. Conclusions: This result demonstrates a substantial pain reducing effect of musical agency in combination with physical exercise, probably due to stimulation of endogenous opioid mechanisms. This has implications for exercise endurance, both in sports and a multitude of rehabilitative therapies in which physical exercise is effective but painful.

  14. Current concepts in the recognition and classification of pain with special emphasis on orofacial pain: a review.

    Science.gov (United States)

    Muriithi, A W; Chindia, M L

    1993-11-01

    Despite extensive investigation, pain cannot always be adequately diagnosed or cured. Subsequently, the management of pain can be daunting. The diagnosis of pain, however, is crucial to its effective management because of the grave influence that pain has on the quality of life. The biggest drawback in the management of pain is the lack of understanding, on the part of the practitioner, of the peripheral and central modulation of pain. The objective of this paper is to briefly review the current concepts in the recognition of and classification of pain, with emphasis on orofacial pain.

  15. Pain genes.

    Directory of Open Access Journals (Sweden)

    Tom Foulkes

    2008-07-01

    Full Text Available Pain, which afflicts up to 20% of the population at any time, provides both a massive therapeutic challenge and a route to understanding mechanisms in the nervous system. Specialised sensory neurons (nociceptors signal the existence of tissue damage to the central nervous system (CNS, where pain is represented in a complex matrix involving many CNS structures. Genetic approaches to investigating pain pathways using model organisms have identified the molecular nature of the transducers, regulatory mechanisms involved in changing neuronal activity, as well as the critical role of immune system cells in driving pain pathways. In man, mapping of human pain mutants as well as twin studies and association studies of altered pain behaviour have identified important regulators of the pain system. In turn, new drug targets for chronic pain treatment have been validated in transgenic mouse studies. Thus, genetic studies of pain pathways have complemented the traditional neuroscience approaches of electrophysiology and pharmacology to give us fresh insights into the molecular basis of pain perception.

  16. Endogenous Money, Output and Prices in India

    OpenAIRE

    Das, Rituparna

    2009-01-01

    This paper proposes to quantify the macroeconometric relationships among the variables broad money, lending by banks, price, and output in India using simultaneous equations system keeping in view the issue of endogeneity.

  17. A merge model with endogenous technological change

    Energy Technology Data Exchange (ETDEWEB)

    Kypreos, S.; Bahn, O.

    2002-03-01

    A new version of the MERGE model, called MERGE-ETL, has been developed to consider endogenous technological change in the energy system. The basic formulation of MERGE-ETL as well as some first results are reported here. (author)

  18. Endogenous vs. exogenous regulations in the commons

    DEFF Research Database (Denmark)

    Abatayo, Anna Lou; Lynham, John

    2016-01-01

    potential confounds in previous experiments. A key feature of our experimental design is to have the exact same regulations chosen endogenously as those that are imposed exogenously. When we compare the same regulations chosen endogenously to those externally imposed, we observe no differences in extraction...... levels among CPR users in a laboratory experiment. We also observe no differences between weak external regulations and no regulations, after controlling for a potential confound. However, when we add communication to our endogenous treatment, we observe significant behavioral differences between...... endogenous regulations with communication and exogenous regulations without communication. Our results suggest that externally imposed regulations do not crowd out intrinsic motivations in the lab and they confirm that communication facilitates cooperation to reduce extraction....

  19. Contagion risk in endogenous financial networks

    International Nuclear Information System (INIS)

    Li, Shouwei; Sui, Xin

    2016-01-01

    Highlights: • We propose an endogenous financial network model. • Endogenous networks include interbank networks, inter-firm networks and bank-firm networks. • We investigate contagion risk in endogenous financial networks. - Abstract: In this paper, we investigate contagion risk in an endogenous financial network, which is characterized by credit relationships connecting downstream and upstream firms, interbank credit relationships and credit relationships connecting firms and banks. The findings suggest that: increasing the number of potential lenders randomly selected can lead to an increase in the number of bank bankruptcies, while the number of firm bankruptcies presents a trend of increase after the decrease; after the intensity of choice parameter rises beyond a threshold, the number of bankruptcies in three sectors (downstream firms, upstream firms and banks) shows a relatively large margin of increase, and keeps at a relatively high level; there exists different trends for bankruptcies in different sectors with the change of the parameter of credits’ interest rates.

  20. Endogenous Money Supply and Money Demand

    OpenAIRE

    Woon Gyu Choi; Seonghwan Oh

    2000-01-01

    This paper explores the behavior of money demand by explicitly accounting for the money supply endogeneity arising from endogenous monetary policy and financial innovations. Our theoretical analysis indicates that money supply factors matter in the money demand function when the money supply partially responds to money demand. Our empirical results with U.S. data provide strong evidence for the relevance of the policy stance to the demand for MI under a regime in which monetary policy is subs...