WorldWideScience

Sample records for endocrine disrupting activity

  1. In vitro screening for endocrine disruptive activity in selected South ...

    African Journals Online (AJOL)

    Various waterborne anthropogenic contaminants disrupt the endocrine systems of wildlife and humans, targeting reproductive pathways, among others. Very little is known, however, regarding the occurrence of endocrine disruptive activity in South African freshwater ecosystems, and coastal ecosystems have not been ...

  2. In vitro screening for endocrine disruptive activity in selected South African harbours and river mouths

    CSIR Research Space (South Africa)

    Truter, JC

    2015-12-01

    Full Text Available Various waterborne anthropogenic contaminants disrupt the endocrine systems of wildlife and humans, targeting reproductive pathways, among others. Very little is known, however, regarding the occurrence of endocrine disruptive activity in South...

  3. Endocrine Disrupting Chemicals (EDCs)

    Science.gov (United States)

    ... Pacientes y Cuidadores Hormones and Health The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) Steroid and Hormone Abuse Peer ... and Health › Endocrine Disrupting Chemicals (EDCs) The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) EDCs Myth vs. Fact Steroid ...

  4. Endocrine active chemicals and endocrine disruption in Minnesota streams and lakes: implications for aquatic resources, 1994-2008

    Science.gov (United States)

    Lee, Kathy E.; Schoenfuss, Heiko L.; Barber, Larry B.; Writer, Jeff H.; Blazer, Vicki; Keisling, Richard L.; Ferrey, Mark L.

    2010-01-01

    The U.S. Geological Survey, in cooperation with St. Cloud State University, Minnesota Department of Health, Minnesota Pollution Control Agency, Minnesota Department of Natural Resources, Metropolitan Council Environmental Services, and the University of Minnesota, has conducted field monitoring studies and laboratory research to determine the presence of endocrine active chemicals and the incidence of endocrine disruption in Minnesota streams and lakes during 1994–2008. Endocrine active chemicals are chemicals that interfere with the natural regulation of endocrine systems, and may mimic or block the function of natural hormones in fish or other organisms. This interference commonly is referred to as endocrine disruption. Indicators of endocrine disruption in fish include vitellogenin (female egg yolk protein normally expressed in female fish) in male fish, oocytes present in male fish testes, reduced reproductive success, and changes in reproductive behavior.

  5. Organizational and activational effects of estrogenic endocrine disrupting chemicals

    Directory of Open Access Journals (Sweden)

    Silbergeld Ellen K.

    2002-01-01

    Full Text Available Endocrine disruption is a hypothesis of common mode of action that may define a set of structurally varied chemicals, both natural and synthetic. Their common mode of action may suggest that they produce or contribute to similar toxic effects, although this has been difficult to demonstrate. Insights from developmental biology suggest that development of hormone sensitive systems, such as the brain and the genitourinary tract, may be particularly sensitive to EDCs. Because these systems are both organized and later activated by hormones, the brain and vagina may be valuable model systems to study the toxicity of EDCs in females and to elucidate mechanisms whereby early exposures appear to affect long term function.

  6. Symbiotic Gene Activation is Interrupted by Endocrine Disrupting Chemicals

    Directory of Open Access Journals (Sweden)

    Jennifer E. Fox

    2001-01-01

    Full Text Available Endocrine disrupting chemicals (EDCs include organochlorine pesticides, plastics manufacturing by-products, and certain herbicides[1]. These chemicals have been shown to disrupt hormonal signaling in exposed wildlife, lab animals, and mammalian cell culture by binding to estrogen receptors (ER-α and ER-β and affecting the expression of estrogen responsive genes[2,3]. Additionally, certain plant chemicals, termed phytoestrogens, are also able to bind to estrogen receptors and modulate gene expression, and as such also may be considered EDCs[4]. One example of phytoestrogen action is genistein, a phytochemical produced by soybeans, binding estrogen receptors, and changing expression of estrogen responsive genes which certain studies have linked to a lower incidence of hormonally related cancers in Japanese populations[5]. Why would plants make compounds that are able to act as estrogens in the human body? Obviously, soybeans do not intentionally produce phytoestrogens to prevent breast cancer in Japanese women.

  7. QSAR Models for Reproductive Toxicity and Endocrine Disruption Activity

    Directory of Open Access Journals (Sweden)

    Marjan Vračko

    2010-03-01

    Full Text Available Reproductive toxicity is an important regulatory endpoint, which is required in registration procedures of chemicals used for different purposes (for example pesticides. The in vivo tests are expensive, time consuming and require large numbers of animals, which must be sacrificed. Therefore an effort is ongoing to develop alternative In vitro and in silico methods to evaluate reproductive toxicity. In this review we describe some modeling approaches. In the first example we describe the CAESAR model for prediction of reproductive toxicity; the second example shows a classification model for endocrine disruption potential based on counter propagation artificial neural networks; the third example shows a modeling of relative binding affinity to rat estrogen receptor, and the fourth one shows a receptor dependent modeling experiment.

  8. Endocrine disrupting chemicals

    DEFF Research Database (Denmark)

    Mandrup, Karen

    suggested as particularly sensitive to endocrine disruption. Mammary gland examination in toxicological studies may be useful for improving knowledge on possible influences of EDCs on human mammary glands and also be useful for detection of endocrine disrupting effects of chemicals as part of safety testing....... To improve knowledge on possible influences of endocrine disrupters on female reproductive system, the effects of EDCs on genital malformations in females and the development of mammary glands were studied in the present project. AIMS: The aims for the studies on male and female mammary gland development...... effects on prepubertal female rat mammary glands were observed at lower levels than those affecting other endpoints studied. CONCLUSION: The present findings in rats suggest that EDCs may affect mammary gland development in women and men, although risk assessment including comparison with exposure...

  9. A Rat α-Fetoprotein Binding Activity Prediction Model to Facilitate Assessment of the Endocrine Disruption Potential of Environmental Chemicals

    Directory of Open Access Journals (Sweden)

    Huixiao Hong

    2016-03-01

    Full Text Available Endocrine disruptors such as polychlorinated biphenyls (PCBs, diethylstilbestrol (DES and dichlorodiphenyltrichloroethane (DDT are agents that interfere with the endocrine system and cause adverse health effects. Huge public health concern about endocrine disruptors has arisen. One of the mechanisms of endocrine disruption is through binding of endocrine disruptors with the hormone receptors in the target cells. Entrance of endocrine disruptors into target cells is the precondition of endocrine disruption. The binding capability of a chemical with proteins in the blood affects its entrance into the target cells and, thus, is very informative for the assessment of potential endocrine disruption of chemicals. α-fetoprotein is one of the major serum proteins that binds to a variety of chemicals such as estrogens. To better facilitate assessment of endocrine disruption of environmental chemicals, we developed a model for α-fetoprotein binding activity prediction using the novel pattern recognition method (Decision Forest and the molecular descriptors calculated from two-dimensional structures by Mold2 software. The predictive capability of the model has been evaluated through internal validation using 125 training chemicals (average balanced accuracy of 69% and external validations using 22 chemicals (balanced accuracy of 71%. Prediction confidence analysis revealed the model performed much better at high prediction confidence. Our results indicate that the model is useful (when predictions are in high confidence in endocrine disruption risk assessment of environmental chemicals though improvement by increasing number of training chemicals is needed.

  10. Endocrine disrupting activities of the flavonoid nutraceuticals luteolin and quercetin

    OpenAIRE

    Nordeen, Steven K.; Bona, Betty J.; Jones, David N.; Lambert, James R.; Jackson, Twila A.

    2013-01-01

    Dietary plant flavonoids have been proposed to contribute to cancer prevention, neuroprotection, and cardiovascular health through their anti-oxidant, anti-inflammatory, pro-apoptotic, and antiproliferative activities. As a consequence, flavonoid supplements are aggressively marketed by the nutraceutical industry for many purposes, including pediatric applications, despite inadequate understanding of their value and drawbacks. We show that two flavonoids, luteolin and quercetin, are promiscuo...

  11. Endocrine-Disrupting Activity of Hydraulic Fracturing Chemicals and Adverse Health Outcomes After Prenatal Exposure in Male Mice

    National Research Council Canada - National Science Library

    Kassotis, Christopher D; Klemp, Kara C; Vu, Danh C; Lin, Chung-Ho; Meng, Chun-Xia; Besch-Williford, Cynthia L; Pinatti, Lisa; Zoeller, R. Thomas; Drobnis, Erma Z; Balise, Victoria D; Isiguzo, Chiamaka J; Williams, Michelle A; Tillitt, Donald E; Nagel, Susan C

    2015-01-01

    .... We measured the endocrine-disrupting activities of 24 chemicals used and/or produced by oil and gas operations for five nuclear receptors using a reporter gene assay in human endometrial cancer cells...

  12. Toxicity and estrogenic endocrine disrupting activity of phthalates and their mixtures.

    Science.gov (United States)

    Chen, Xueping; Xu, Shisan; Tan, Tianfeng; Lee, Sin Ting; Cheng, Shuk Han; Lee, Fred Wang Fat; Xu, Steven Jing Liang; Ho, Kin Chung

    2014-03-14

    Phthalates, widely used in flexible plastics and consumer products, have become ubiquitous contaminants worldwide. This study evaluated the acute toxicity and estrogenic endocrine disrupting activity of butyl benzyl phthalate (BBP), di(n-butyl) phthalate (DBP), bis(2-ethylhexyl) phthalate (DEHP), diisodecyl phthalate (DIDP), diisononyl phthalate (DINP), di-n-octyl phthalate (DNOP) and their mixtures. Using a 72 h zebrafish embryo toxicity test, the LC50 values of BBP, DBP and a mixture of the six phthalates were found to be 0.72, 0.63 and 0.50 ppm, respectively. The other four phthalates did not cause more than 50% exposed embryo mortality even at their highest soluble concentrations. The typical toxicity symptoms caused by phthalates were death, tail curvature, necrosis, cardio edema and no touch response. Using an estrogen-responsive ChgH-EGFP transgenic medaka (Oryzias melastigma) eleutheroembryos based 24 h test, BBP demonstrated estrogenic activity, DBP, DEHP, DINP and the mixture of the six phthalates exhibited enhanced-estrogenic activity and DIDP and DNOP showed no enhanced- or anti-estrogenic activity. These findings highlighted the developmental toxicity of BBP and DBP, and the estrogenic endocrine disrupting activity of BBP, DBP, DEHP and DINP on intact organisms, indicating that the widespread use of these phthalates may cause potential health risks to human beings.

  13. Toxicity and Estrogenic Endocrine Disrupting Activity of Phthalates and Their Mixtures

    Directory of Open Access Journals (Sweden)

    Xueping Chen

    2014-03-01

    Full Text Available Phthalates, widely used in flexible plastics and consumer products, have become ubiquitous contaminants worldwide. This study evaluated the acute toxicity and estrogenic endocrine disrupting activity of butyl benzyl phthalate (BBP, di(n-butyl phthalate (DBP, bis(2-ethylhexyl phthalate (DEHP, diisodecyl phthalate (DIDP, diisononyl phthalate (DINP, di-n-octyl phthalate (DNOP and their mixtures. Using a 72 h zebrafish embryo toxicity test, the LC50 values of BBP, DBP and a mixture of the six phthalates were found to be 0.72, 0.63 and 0.50 ppm, respectively. The other four phthalates did not cause more than 50% exposed embryo mortality even at their highest soluble concentrations. The typical toxicity symptoms caused by phthalates were death, tail curvature, necrosis, cardio edema and no touch response. Using an estrogen-responsive ChgH-EGFP transgenic medaka (Oryzias melastigma eleutheroembryos based 24 h test, BBP demonstrated estrogenic activity, DBP, DEHP, DINP and the mixture of the six phthalates exhibited enhanced-estrogenic activity and DIDP and DNOP showed no enhanced- or anti-estrogenic activity. These findings highlighted the developmental toxicity of BBP and DBP, and the estrogenic endocrine disrupting activity of BBP, DBP, DEHP and DINP on intact organisms, indicating that the widespread use of these phthalates may cause potential health risks to human beings.

  14. QSAR classification models for the screening of the endocrine-disrupting activity of perfluorinated compounds.

    Science.gov (United States)

    Kovarich, S; Papa, E; Li, J; Gramatica, P

    2012-01-01

    Perfluorinated compounds (PFCs) are a class of emerging pollutants still widely used in different materials as non-adhesives, waterproof fabrics, fire-fighting foams, etc. Their toxic effects include potential for endocrine-disrupting activity, but the amount of experimental data available for these pollutants is limited. The use of predictive strategies such as quantitative structure-activity relationships (QSARs) is recommended under the REACH regulation, to fill data gaps and to screen and prioritize chemicals for further experimentation, with a consequent reduction of costs and number of tested animals. In this study, local classification models for PFCs were developed to predict their T4-TTR (thyroxin-transthyretin) competing potency. The best models were selected by maximizing the sensitivity and external predictive ability. These models, characterized by robustness, good predictive power and a defined applicability domain, were applied to predict the activity of 33 other PFCs of environmental concern. Finally, classification models recently published by our research group for T4-TTR binding of brominated flame retardants and for estrogenic and anti-androgenic activity were applied to the studied perfluorinated chemicals to compare results and to further evaluate the potential for these PFCs to cause endocrine disruption.

  15. Endocrine disrupting compounds

    DEFF Research Database (Denmark)

    Bøgh, I B; Christensen, P; Dantzer, V

    2001-01-01

    With the growing concern that environmental chemicals might impair human and animal fertility, it is important to investigate the possible influence of these substances on sexual differentiation and genital development of mammals. Many of these substances are suspected to interfere with endocrine...... processes, and exposure during critical periods of prenatal development might affect reproductive performance over several generations. Alkylphenols and their metabolites are lipophilic substances exerting apparent estrogenic action in in vitro and in vivo testing systems. With the widespread industrial use...

  16. Pentachlorophenol-Induced Cytotoxic, Mitogenic, and Endocrine-Disrupting Activities in Channel Catfish, Ictalurus punctatus

    Directory of Open Access Journals (Sweden)

    Paul B. Tchounwou

    2004-09-01

    Full Text Available Pentachlorophenol (PCP is an organochlorine compound that has been widely used as a biocide in several industrial, agricultural, and domestic applications. Although it has been shown to induce systemic toxicity and carcinogenesis in several experimental studies, the literature is scarce regarding its toxic mechanisms of action at the cellular and molecular levels. Recent investigations in our laboratory have shown that PCP induces cytotoxicity and transcriptionally activates stress genes in human liver carcinoma (HepG2 cells [1]. In this research, we hypothesize that environmental exposure to PCP may trigger cytotoxic, mitogenic, and endocrine-disrupting activities in aquatic organisms including fish. To test this hypothesis, we carried out in vitro cultures of male channel catfish hepatocytes, and performed the fluorescein diacetate assay (FDA to assess for cell viability, and the Western Blot analysis to assess for vitellogenin expression following exposure to PCP. Data obtained from FDA experiments indicated a strong dose-response relationship with respect to PCP cytotoxicity. Upon 48 hrs of exposure, the chemical dose required to cause 50% reduction in cell viability (LD50 was computed to be 1,987.0 + 9.6 μg PCP/mL. The NOAEL and LOAEL were 62.5 + 10.3 μg PCP/mL and 125.0+15.2 μg PCP/mL, respectively. At lower levels of exposure, PCP was found to be mitogenic, showing a strong dose- and time-dependent response with regard to cell proliferation. Western Blot analysis demonstrated the potential of PCP to cause endocrine-disrupting activity, as evidenced by the up regulation of the 125-kDa vitellogenin protein the hepatocytes of male channel catfish.

  17. A computational approach predicting CYP450 metabolism and estrogenic activity of an endocrine disrupting compound (PCB-30).

    Science.gov (United States)

    Harris, Jason B; Eldridge, Melanie L; Sayler, Gary; Menn, Fu-Min; Layton, Alice C; Baudry, Jerome

    2014-07-01

    Endocrine disrupting chemicals influence growth and development through interactions with the hormone system, often through binding to hormone receptors such as the estrogen receptor. Computational methods can predict endocrine disrupting chemical activity of unmodified compounds, but approaches predicting activity following metabolism are lacking. The present study uses a well-known environmental contaminant, PCB-30 (2,4,6-trichlorobiphenyl), as a prototype endocrine disrupting chemical and integrates predictive (computational) and experimental methods to determine its metabolic transformation by cytochrome P450 3A4 (CYP3A4) and cytochrome P450 2D6 (CYP2D6) into estrogenic byproducts. Computational predictions suggest that hydroxylation of PCB-30 occurs at the 3- or 4-phenol positions and leads to metabolites that bind more strongly than the parent molecule to the human estrogen receptor alpha (hER-α). Gas chromatography-mass spectrometry experiments confirmed that the primary metabolite for CYP3A4 and CYP2D6 is 4-hydroxy-PCB-30, and the secondary metabolite is 3-hydroxy-PCB-30. Cell-based bioassays (bioluminescent yeast expressing hER-α) confirmed that hydroxylated metabolites are more estrogenic than PCB-30. These experimental results support the applied model's ability to predict the metabolic and estrogenic fate of PCB-30, which could be used to identify other endocrine disrupting chemicals involved in similar pathways. © 2014 SETAC.

  18. QSAR classification models for the prediction of endocrine disrupting activity of brominated flame retardants.

    Science.gov (United States)

    Kovarich, Simona; Papa, Ester; Gramatica, Paola

    2011-06-15

    The identification of potential endocrine disrupting (ED) chemicals is an important task for the scientific community due to their diffusion in the environment; the production and use of such compounds will be strictly regulated through the authorization process of the REACH regulation. To overcome the problem of insufficient experimental data, the quantitative structure-activity relationship (QSAR) approach is applied to predict the ED activity of new chemicals. In the present study QSAR classification models are developed, according to the OECD principles, to predict the ED potency for a class of emerging ubiquitary pollutants, viz. brominated flame retardants (BFRs). Different endpoints related to ED activity (i.e. aryl hydrocarbon receptor agonism and antagonism, estrogen receptor agonism and antagonism, androgen and progesterone receptor antagonism, T4-TTR competition, E2SULT inhibition) are modeled using the k-NN classification method. The best models are selected by maximizing the sensitivity and external predictive ability. We propose simple QSARs (based on few descriptors) characterized by internal stability, good predictive power and with a verified applicability domain. These models are simple tools that are applicable to screen BFRs in relation to their ED activity, and also to design safer alternatives, in agreement with the requirements of REACH regulation at the authorization step. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Preliminary investigation into the possible endocrine disrupting ...

    African Journals Online (AJOL)

    JTEkanem

    Preliminary investigation into the possible endocrine disrupting activity of Bonny light crude oil contaminated - diet on Wistar albino rats. Olawale OTITOJU. 1* and Ikechukwu N. E. ONWURAH. 2. 1Department of Biochemistry, Kogi State University, P M B 1008 Anyigba, Kogi State, Nigeria. 2Dept of Biochemistry, Pollution ...

  20. Adsorption of selected pharmaceuticals and an endocrine disrupting compound by granular activated carbon. 2. Model prediction

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Z.; Peldszus, S.; Huck, P.M. [University of Waterloo, Waterloo, ON (Canada). NSERC Chair in Water Treatment

    2009-03-01

    The adsorption of two representative pharmaceutically active compounds (PhACs) naproxen and carbamazepine and one endocrine disrupting compound (EDC) nonylphenol was studied in pilot-scale granular activated carbon (GAC) adsorbers using post-sedimentation (PS) water from a full-scale drinking water treatment plant. The GAC adsorbents were coal-based Calgon Filtrasorb 400 and coconut shell-based PICA CTIF TE. Acidic naproxen broke through fastest while nonylphenol was removed best, which was consistent with the degree to which fouling affected compound removals. Model predictions and experimental data were generally in good agreement for all three compounds, which demonstrated the effectiveness and robustness of the pore and surface diffusion model (PSDM) used in combination with the time-variable parameter approach for predicting removals at environmentally relevant concentrations (i.e., ng/L range). Sensitivity analyses suggested that accurate determination of film diffusion coefficients was critical for predicting breakthrough for naproxen and carbamazepine, in particular when high removals are targeted. Model simulations demonstrated that GAC carbon usage rates (CURs) for naproxen were substantially influenced by the empty bed contact time (EBCT) at the investigated conditions. Model-based comparisons between GAC CURs and minimum CURs for powdered activated carbon (PAC) applications suggested that PAC would be most appropriate for achieving 90% removal of naproxen, whereas GAC would be more suitable for nonylphenol. 25 refs., 4 figs., 1 tab.

  1. Heavy Metals Acting as Endocrine Disrupters

    Directory of Open Access Journals (Sweden)

    Bogdan Georgescu

    2011-10-01

    Full Text Available Last years researches focused on several natural and synthetic compounds that may interfere with the major functionsof the endocrine system and were termed endocrine disrupters. Endocrine disrupters are defined as chemicalsubstances with either agonist or antagonist endocrine effects in human and animals. These effects may be achievedby interferences with the biosynthesis or activity of several endogenous hormones. Recently, it was demonstratedthat heavy metals such as cadmium (Cd, arsen (As, mercury (Hg, nickel (Ni, lead (Pb and zinc (Zn may exhibitendocrine-disrupting activity in animal experiments. Emerging evidence of the intimate mechanisms of action ofthese heavy metals is accumulating. It was revealed, for example, that the Zn atom from the Zn fingers of theestrogen receptor can be replaced by several heavy metal molecules such as copper, cobalt, Ni and Cd. By replacingthe Zn atom with Ni or copper, binding of the estrogen receptor to the DNA hormone responsive elements in the cellnucleus is prevented. In both males and females, low-level exposure to Cd interferes with the biological effects ofsteroid hormones in reproductive organs. Arsen has the property to bind to the glucocorticoid receptor thusdisturbing glucocorticoids biological effects. With regard to Hg, this may induce alterations in male and femalefertility, may affect the function of the hypothalamo-pituitary-thyroid axis or the hypothalamo-pituitary-adrenal axis,and disrupt biosynthesis of steroid hormones.

  2. Mechanistic evaluation of endocrine disrupting chemicals

    DEFF Research Database (Denmark)

    Taxvig, Camilla

    BACKGROUND: This PhD project is part of the research area concerning effects of endocrine disrupters at the National Food Institute at DTU in Denmark. Endocrine disrupting chemicals (EDCs) have proved to be important for improper development of the male reproductive organs and subsequent for the ......BACKGROUND: This PhD project is part of the research area concerning effects of endocrine disrupters at the National Food Institute at DTU in Denmark. Endocrine disrupting chemicals (EDCs) have proved to be important for improper development of the male reproductive organs and subsequent......, and f) effect on PPAR α and γ using a transactivation assay. For the in vitro metabolism studies, ten selected EDCs: five azole fungicides, three parabens, and two phthalates, were tested in vitro in the T-screen assay to determine possible changes in the ability of the EDCs to bind to and activate...... when looking at the metabolism of the azole fungicides. The PCBinduced rat microsomes gave a statistically significant difference between the amount of parent compound before and after treatment with the microsomes for four out of the five azole fungicides tested. When using the human liver S9...

  3. Evidence for endocrine disruption in invertebrates.

    Science.gov (United States)

    Oetken, Matthias; Bachmann, Jean; Schulte-Oehlmann, Ulrike; Oehlmann, Jörg

    2004-01-01

    The issue of endocrine disruption (ED) in invertebrates has generated remarkably little interest in the past compared to research with aquatic vertebrates in this area. However, with more than 95% of all known species in the animal kingdom, invertebrates constitute a very important part of the global biodiversity with key species for the structure and function of aquatic and terrestrial ecosystems. Despite the fact that ED in invertebrates has been investigated on a smaller scale than in vertebrates, invertebrates provide some of the best documented examples for deleterious effects in wildlife populations following an exposure to endocrine-active substances. The article provides an overview of the diversity in endocrine systems of invertebrates. The principal susceptibility of invertebrates to endocrine-active compounds is demonstrated with the case studies of tributyltin effects in mollusks and of insect growth regulators, the latter as purposely synthesized endocrine disrupters. The additional evidence for ED in invertebrates from laboratory and field studies is summarized as an update and amendment of the EDIETA report from 1998. Finally, conclusions about the scale and implications of the observed effects are drawn and research needs are defined.

  4. The fish embryo as an alternative model for the assessment of endocrine active environmental chemicals : elucidation of endocrine disruptive mechanisms and identification of relevant effect endpoints using transcriptomics

    OpenAIRE

    Schiller, Viktoria

    2013-01-01

    Endocrine disruption can impact health and reproduction in wildlife and is therefore highly concerned in the environmental risk assessment. The current approach in the evaluation of endocrine disruption relies on long-term reproductive and animal intensive studies, which implicit time consuming and cost intensive tests. Thus, there is an increasing demand for alternative testing. This thesis intended to examine the suitability of the fish embryo test as such an alternative approach in testing...

  5. Adsorption of selected endocrine disrupting compounds and pharmaceuticals on activated biochars

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chanil [Department of Civil and Environmental Engineering, University of South Carolina, Columbia, SC 29208 (United States); Park, Junyeong [Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695 (United States); Lim, Kwang Hun [Department of Chemistry, East Carolina University, Greenville, NC 27858 (United States); Park, Sunkyu [Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695 (United States); Heo, Jiyong [Department of Civil and Environmental Engineering, Korea Army Academy at Young-Cheon, PO Box 135-1, Changhari, Gogyeongmeon, Young-cheon 770-849, Gyeongbuk (Korea, Republic of); Her, Namguk [Department of Chemistry and Environmental Sciences, Korea Army Academy at Young-Cheon, PO Box 135-1, Changhari, Gogyeongmeon, Young-cheon 770-849, Gyeongbuk (Korea, Republic of); Oh, Jeill; Yun, Soyoung [Department of Civil and Environmental Engineering, Chung-Ang University, Dongjak-Ku, Seoul 156-756 (Korea, Republic of); Yoon, Yeomin, E-mail: yoony@cec.sc.edu [Department of Civil and Environmental Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2013-12-15

    Highlights: • Biochars were prepared at different gas environments. • The competitive adsorption among EDCs/PhACs were investigated. • Aromaticity of adsorbent plays a significant role for EDCs/PhACs adsorption. -- Abstract: Chemically activated biochar produced under oxygenated (O-biochar) and oxygen-free (N-biochar) conditions were characterized and the adsorption of endocrine disrupting compounds (EDCs): bisphenol A (BPA), atrazine (ATR), 17 α-ethinylestradiol (EE2), and pharmaceutical active compounds (PhACs); sulfamethoxazole (SMX), carbamazepine (CBM), diclofenac (DCF), ibuprofen (IBP) on both biochars and commercialized powdered activated carbon (PAC) were investigated. Characteristic analysis of adsorbents by solid-state nuclear magnetic resonance (NMR) was conducted to determine better understanding about the EDCs/PhACs adsorption. N-biochar consisted of higher polarity moieties with more alkyl (0–45 ppm), methoxyl (45–63 ppm), O-alkyl (63–108 ppm), and carboxyl carbon (165–187 ppm) content than other adsorbents, while aromaticity of O-biochar was higher than that of N-biochar. O-biochar was composed mostly of aromatic moieties, with low H/C and O/C ratios compared to the highly polarized N-biochar that contained diverse polar functional groups. The higher surface area and pore volume of N-biochar resulted in higher adsorption capacity toward EDCs/PhACs along with atomic-level molecular structural property than O-biochar and PAC. N-biochar had a highest adsorption capacity of all chemicals, suggesting that N-biochar derived from loblolly pine chip is a promising sorbent for agricultural and environmental applications. The adsorption of pH-sensitive dissociable SMX, DCF, IBP, and BPA varied and the order of adsorption capacity was correlated with the hydrophobicity (K{sub ow}) of adsorbates throughout the all adsorbents, whereas adsorption of non-ionizable CBM, ATR, and EE2 in varied pH allowed adsorbents to interact with hydrophobic property

  6. Screening breeding sites of the common toad (Bufo bufo) in England and Wales for evidence of endocrine disrupting activity.

    Science.gov (United States)

    Pickford, Daniel B; Jones, Alexandra; Velez-Pelez, Alejandra; Orton, Frances; Iguchi, Taisen; Mitsui, Naoko; Tooi, Osamu

    2015-07-01

    Anuran amphibians are often present in agricultural landscapes and may therefore be exposed to chemicals in surface waters used for breeding. We used passive accumulation devices (SPMD and POCIS) to sample contaminants from nine breeding sites of the Common toad (Bufo bufo) across England and Wales, measuring endocrine activity of the extracts in a recombinant yeast androgen screen (YAS) and yeast estrogen screen (YES) and an in vitro vitellogenin induction screen in primary culture of Xenopus laevis hepatocytes. We also assessed hatching, growth, survival, and development in caged larvae in situ, and sampled metamorphs for gonadal histopathology. None of the SPMD extracts exhibited estrogen receptor or androgen receptor agonist activity, while POCIS extracts from two sites in west-central England exhibited concentration-dependent androgenic activity in the YAS. Three sites exhibited significant estrogenic activity in both the YES and the Xenopus hepatocyte. Hatching rates varied widely among sites, but there was no consistent correlation between hatching rate and intensity of agricultural activity, predicted concentrations of agrochemicals, or endocrine activity measured in YES/YAS assays. While a small number of intersex individuals were observed, their incidence could not be associated with predicted pesticide exposure or endocrine activitity measured in the in vitro screens. There were no significant differences in sex ratio, as determined by gonadal histomorphology among the study sites, and no significant correlation was observed between proportion of males and predicted exposure to agrochemicals. However, a negative correlation did become apparent in later sampling periods between proportion of males and estrogenic activity of the POCIS sample, as measured in the YES. Our results suggest that larval and adult amphibians may be exposed to endocrine disrupting chemicals in breeding ponds, albeit at low concentrations, and that chemical contaminants other than

  7. Comparative potential of black tea leaves waste to granular activated carbon in adsorption of endocrine disrupting compounds from aqueous solution

    Directory of Open Access Journals (Sweden)

    A.O. Ifelebuegu

    2015-07-01

    Full Text Available The adsorption properties and mechanics of selected endocrine disrupting compounds; 17 β-estradiol, 17 α – ethinylestradiol and bisphenol A on locally available black tea leaves waste and granular activated carbon were investigated. The results obtained indicated that the kinetics of adsorption were pH, adsorbent dose, contact time and temperature dependent with equilibrium being reached at 20 to 40 minutes for tea leaves waste and 40 to 60 minutes for granular activated compound. Maximum adsorption capacities of 3.46, 2.44 and 18.35 mg/g were achieved for tea leaves waste compared to granular activated compound capacities of 4.01, 2.97 and 16.26 mg/g for 17 β- estradiol, 17 α-ethinylestradiol and bisphenol A respectively. Tea leaves waste adsorption followed pseudo-first order kinetics while granular activated compound fitted better to the pseudo-second order kinetic model. The experimental isotherm data for both tea leaves waste and granular activated compound showed a good fit to the Langmuir, Freundlich and Temkin isotherm models with the Langmuir model showing the best fit. The thermodynamic and kinetic data for the adsorption indicated that the adsorption process for tea leaves waste was predominantly by physical adsorption while the granular activated compound adsorption was more chemical in nature. The results have demonstrated the potential of waste tea leaves for the adsorptive removal of endocrine disrupting compounds from water.

  8. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site

    Energy Technology Data Exchange (ETDEWEB)

    Kassotis, Christopher D., E-mail: christopher.kassotis@duke.edu [Nicholas School of the Environment, Duke University, Durham, NC 27708 (United States); Iwanowicz, Luke R. [U.S. Geological Survey, Leetown Science Center, Fish Health Branch, 11649 Leetown Road, Kearneysville, WV 25430 (United States); Akob, Denise M.; Cozzarelli, Isabelle M.; Mumford, Adam C. [U.S. Geological Survey, National Research Program, 12201 Sunrise Valley Drive, MS 430, Reston, VA 20192 (United States); Orem, William H. [U.S. Geological Survey, Eastern Energy Resources Science Center, 12201 Sunrise Valley Drive, MS 956, Reston, VA 20192 (United States); Nagel, Susan C., E-mail: nagels@health.missouri.edu [Department of Obstetrics, Gynecology and Women' s Health, University of Missouri, Columbia, MO 65211 (United States)

    2016-07-01

    Currently, > 95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby. - Highlights: • Oil and gas wastewater disposal may increase endocrine disrupting activity in water. • Tested EDC activity in surface water near oil and gas wastewater injection site. • Water downstream had significantly

  9. Endocrine-Disrupting Activity of Hydraulic Fracturing Chemicals and Adverse Health Outcomes After Prenatal Exposure in Male Mice.

    Science.gov (United States)

    Kassotis, Christopher D; Klemp, Kara C; Vu, Danh C; Lin, Chung-Ho; Meng, Chun-Xia; Besch-Williford, Cynthia L; Pinatti, Lisa; Zoeller, R Thomas; Drobnis, Erma Z; Balise, Victoria D; Isiguzo, Chiamaka J; Williams, Michelle A; Tillitt, Donald E; Nagel, Susan C

    2015-12-01

    Oil and natural gas operations have been shown to contaminate surface and ground water with endocrine-disrupting chemicals. In the current study, we fill several gaps in our understanding of the potential environmental impacts related to this process. We measured the endocrine-disrupting activities of 24 chemicals used and/or produced by oil and gas operations for five nuclear receptors using a reporter gene assay in human endometrial cancer cells. We also quantified the concentration of 16 of these chemicals in oil and gas wastewater samples. Finally, we assessed reproductive and developmental outcomes in male C57BL/6J mice after the prenatal exposure to a mixture of these chemicals. We found that 23 commonly used oil and natural gas operation chemicals can activate or inhibit the estrogen, androgen, glucocorticoid, progesterone, and/or thyroid receptors, and mixtures of these chemicals can behave synergistically, additively, or antagonistically in vitro. Prenatal exposure to a mixture of 23 oil and gas operation chemicals at 3, 30, and 300 μg/kg · d caused decreased sperm counts and increased testes, body, heart, and thymus weights and increased serum testosterone in male mice, suggesting multiple organ system impacts. Our results suggest possible adverse developmental and reproductive health outcomes in humans and animals exposed to potential environmentally relevant levels of oil and gas operation chemicals.

  10. Endocrine-disrupting activity of hydraulic fracturing chemicals and adverse health outcomes after prenatal exposure in male mice

    Science.gov (United States)

    Kassotis, Christopher D.; Klemp, Kara C.; Vu, Danh C.; Lin, Chung-Ho; Meng, Chun-Xia; Besch-Williford, Cynthia L.; Pinatti, Lisa; Zoeller, R. Thomas; Drobnis, Erma Z.; Balise, Victoria D.; Isiguzo, Chiamaka J.; Williams, Michelle A.; Tillitt, Donald E.; Nagel, Susan C.

    2015-01-01

    Oil and natural gas operations have been shown to contaminate surface and ground water with endocrine-disrupting chemicals. In the current study, we fill several gaps in our understanding of the potential environmental impacts related to this process. We measured the endocrine-disrupting activities of 24 chemicals used and/or produced by oil and gas operations for five nuclear receptors using a reporter gene assay in human endometrial cancer cells. We also quantified the concentration of 16 of these chemicals in oil and gas wastewater samples. Finally, we assessed reproductive and developmental outcomes in male C57BL/6J mice after the prenatal exposure to a mixture of these chemicals. We found that 23 commonly used oil and natural gas operation chemicals can activate or inhibit the estrogen, androgen, glucocorticoid, progesterone, and/or thyroid receptors, and mixtures of these chemicals can behave synergistically, additively, or antagonistically in vitro. Prenatal exposure to a mixture of 23 oil and gas operation chemicals at 3, 30, and 300 μg/kg · d caused decreased sperm counts and increased testes, body, heart, and thymus weights and increased serum testosterone in male mice, suggesting multiple organ system impacts. Our results suggest possible adverse developmental and reproductive health outcomes in humans and animals exposed to potential environmentally relevant levels of oil and gas operation chemicals.

  11. Report on Criteria for Endocrine Disrupters

    DEFF Research Database (Denmark)

    Holbech, Henrik

    2011-01-01

    This report has been prepared by the Danish Centre on Endocrine Disrupters as a project contracted by the Danish Environmental Protection Agency. The Danish Centre on Endocrine Disrupters is an interdisciplinary scientific network without walls. The main purpose of the Centre is to build and gather...... new knowledge on endocrine disrupters with the focus on providing information requested for the preventive work of the regulatory authorities. The Centre is financed by the Ministry of the Environment and the scientific work programme is followed by an international scientific advisory board....... The overall aim of this project is to provide a science based proposal for criteria for endocrine disrupters. The terms of reference for the project specify elements to be included and/or addressed when developing the criteria (Annex 1). Also, several international reports and papers dealing with assessment...

  12. as endocrine disrupting contaminants (EDCs)

    African Journals Online (AJOL)

    The challenges of removing EDCs and other pollutants at South African wastewater treatment .... of a particular component within one endocrine axis may also ...... HPG. Hypothalamic-pituitary gonadal. HPT. Hypothalamic-pituitary thyroid.

  13. Endocrine disrupting chemicals: harmful substances and how to test them

    Directory of Open Access Journals (Sweden)

    Olea-Serrano Nicolás

    2002-01-01

    Full Text Available This paper presents an analysis of the opinions of different groups from: scientists, international regulatory bodies, non-governmental organizations and industry; with an interest in the problem of identifying chemical substances with endocrine disrupting activity. There is also discussion of the consequences that exposure to endocrine disruptors may have for human health, considering concrete issues related to: the estimation of risk; the tests that must be used to detect endocrine disruption; the difficulties to establish an association between dose, time of exposure, individual susceptibility, and effect; and the attempts to create a census of endocrine disruptors. Finally, it is proposed that not all hormonal mimics should be included under the single generic denomination of endocrine disruptors.

  14. Manufacturing doubt about endocrine disrupter science

    DEFF Research Database (Denmark)

    Bergman, Åke; Becher, Georg; Blumberg, Bruce

    2015-01-01

    We present a detailed response to the critique of "State of the Science of Endocrine Disrupting Chemicals 2012" (UNEP/WHO, 2013) by financial stakeholders, authored by Lamb et al. (2014). Lamb et al.'s claim that UNEP/WHO (2013) does not provide a balanced perspective on endocrine disruption......) report is not particularly erudite and that their critique is not intended to be convincing to the scientific community, but to confuse the scientific data. Consequently, it promotes misinterpretation of the UNEP/WHO (2013) report by non-specialists, bureaucrats, politicians and other decision makers...

  15. Use of an In Vitro, Nuclear Receptor Assay Panel to Characterize the Endocrine-Disrupting Activity Load of Wastewater Treatment Plant Effluent Extracts

    Science.gov (United States)

    Use of an In Vitro, Nuclear Receptor Assay Panel to Characterize the Endocrine-Disrupting Activity Load of Wastewater Treatment Plant Effluent Extracts Katie B. Paul 1.2, Ruth Marfil-Vega 1 Marc A. Mills3, Steve 0. Simmons2, Vickie S. Wilson4, Kevin M. Crofton2 10ak Rid...

  16. Endocrine-Disrupting Chemicals: Associated Disorders and Mechanisms of Action

    Directory of Open Access Journals (Sweden)

    Sam De Coster

    2012-01-01

    Full Text Available The incidence and/or prevalence of health problems associated with endocrine-disruption have increased. Many chemicals have endocrine-disrupting properties, including bisphenol A, some organochlorines, polybrominated flame retardants, perfluorinated substances, alkylphenols, phthalates, pesticides, polycyclic aromatic hydrocarbons, alkylphenols, solvents, and some household products including some cleaning products, air fresheners, hair dyes, cosmetics, and sunscreens. Even some metals were shown to have endocrine-disrupting properties. Many observations suggesting that endocrine disruptors do contribute to cancer, diabetes, obesity, the metabolic syndrome, and infertility are listed in this paper. An overview is presented of mechanisms contributing to endocrine disruption. Endocrine disruptors can act through classical nuclear receptors, but also through estrogen-related receptors, membrane-bound estrogen-receptors, and interaction with targets in the cytosol resulting in activation of the Src/Ras/Erk pathway or modulation of nitric oxide. In addition, changes in metabolism of endogenous hormones, cross-talk between genomic and nongenomic pathways, cross talk with estrogen receptors after binding on other receptors, interference with feedback regulation and neuroendocrine cells, changes in DNA methylation or histone modifications, and genomic instability by interference with the spindle figure can play a role. Also it was found that effects of receptor activation can differ in function of the ligand.

  17. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site.

    Science.gov (United States)

    Kassotis, Christopher D; Iwanowicz, Luke R; Akob, Denise M; Cozzarelli, Isabelle M; Mumford, Adam C; Orem, William H; Nagel, Susan C

    2016-07-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Preliminary investigation into the possible endocrine disrupting ...

    African Journals Online (AJOL)

    Many chemicals have recently been demonstrated to be Endocrine-disrupting compounds and may potential interfere with normal reproductive processes. In this study, we quantified the effect of Bonnylight crude oil contaminated diet on Wister albino rats. Forty-five rats (twenty male and twenty five females) were expose to ...

  19. Science and policy on endocrine disrupters must not be mixed

    DEFF Research Database (Denmark)

    Bergman, Åke; Andersson, Anna-Maria; Becher, Georg

    2013-01-01

    The "common sense" intervention by toxicology journal editors regarding proposed European Union endocrine disrupter regulations ignores scientific evidence and well-established principles of chemical risk assessment. In this commentary, endocrine disrupter experts express their concerns about a r...

  20. Anthropogenic tracers, endocrine disrupting chemicals, and endocrine disruption in Minnesota lakes

    Science.gov (United States)

    Writer, J.H.; Barber, L.B.; Brown, G.K.; Taylor, H.E.; Kiesling, R.L.; Ferrey, M.L.; Jahns, N.D.; Bartell, S.E.; Schoenfuss, H.L.

    2010-01-01

    Concentrations of endocrine disrupting chemicals and endocrine disruption in fish were determined in 11 lakes across Minnesota that represent a range of trophic conditions and land uses (urban, agricultural, residential, and forested) and in which wastewater treatment plant discharges were absent. Water, sediment, and passive polar organic integrative samplers (POCIS) were analyzed for steroidal hormones, alkylphenols, bisphenol A, and other organic and inorganic molecular tracers to evaluate potential non-point source inputs into the lakes. Resident fish from the lakes were collected, and caged male fathead minnows were deployed to evaluate endocrine disruption, as indicated by the biological endpoints of plasma vitellogenin and gonadal histology. Endocrine disrupting chemicals, including bisphenol A, 17??-estradiol, estrone, and 4-nonylphenol were detected in 90% of the lakes at part per trillion concentrations. Endocrine disruption was observed in caged fathead minnows and resident fish in 90% of the lakes. The widespread but variable occurrence of anthropogenic chemicals in the lakes and endocrine disruption in fish indicates that potential sources are diverse, not limited to wastewater treatment plant discharges, and not entirely predictable based on trophic status and land use. ?? 2010.

  1. Anthropogenic tracers, endocrine disrupting chemicals, and endocrine disruption in Minnesota lakes.

    Science.gov (United States)

    Writer, Jeffrey H; Barber, Larry B; Brown, Greg K; Taylor, Howard E; Kiesling, Richard L; Ferrey, Mark L; Jahns, Nathan D; Bartell, Steve E; Schoenfuss, Heiko L

    2010-12-01

    Concentrations of endocrine disrupting chemicals and endocrine disruption in fish were determined in 11 lakes across Minnesota that represent a range of trophic conditions and land uses (urban, agricultural, residential, and forested) and in which wastewater treatment plant discharges were absent. Water, sediment, and passive polar organic integrative samplers (POCIS) were analyzed for steroidal hormones, alkylphenols, bisphenol A, and other organic and inorganic molecular tracers to evaluate potential non-point source inputs into the lakes. Resident fish from the lakes were collected, and caged male fathead minnows were deployed to evaluate endocrine disruption, as indicated by the biological endpoints of plasma vitellogenin and gonadal histology. Endocrine disrupting chemicals, including bisphenol A, 17β-estradiol, estrone, and 4-nonylphenol were detected in 90% of the lakes at part per trillion concentrations. Endocrine disruption was observed in caged fathead minnows and resident fish in 90% of the lakes. The widespread but variable occurrence of anthropogenic chemicals in the lakes and endocrine disruption in fish indicates that potential sources are diverse, not limited to wastewater treatment plant discharges, and not entirely predictable based on trophic status and land use. Published by Elsevier B.V.

  2. Influence of naturally occurring dissolved organic matter, colloids, and cations on nanofiltration of pharmaceutically active and endocrine disrupting compounds.

    Science.gov (United States)

    Sadmani, A H M Anwar; Andrews, Robert C; Bagley, David M

    2014-12-01

    This study examined the rejection of selected pharmaceutically active (PhAC) and endocrine disrupting compounds (EDCs) when using nanofiltration as a function of naturally occurring dissolved organic matter (DOM), colloidal particles, cations and their interactions. Lake Ontario water served as a source of natural DOM and colloidal particles. PhAC/EDC rejection experiments were conducted using raw Lake Ontario water and Lake Ontario water that was pre-treated with either ultrafiltration to remove colloidal particles, or fluidized ion exchange resins to remove DOM. Additionally, the concentration of cations (Ca(2+), Mg(2+), and Na(+)) in the raw and pre-treated water matrices was varied. While ionic PhACs and EDCs exhibited high rejections from all the water matrices examined, neutral compounds were most effectively rejected in water containing DOM and no colloids, and least effectively rejected from colloid-containing water with increased cations but no DOM. The presence of DOM significantly improved compound rejection and the increase in cation concentration significantly decreased rejection. The presence of colloids had comparatively little effect except to mitigate the impact of increased cation concentration, apparently providing some cation-buffering capacity. The sequence in which constituents are removed from waters during treatment may significantly impact PhAC and EDC removal, especially of neutral compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Pollution by endocrine disrupting estrogens in aquatic ecosystems ...

    African Journals Online (AJOL)

    Jane Erike-Etchie

    This study aimed to assess the extent of pollution of aquatic ecosystems by endocrine disrupting .... Water from these tributaries is collected in the Mindu dam whose purpose is to supply drinking water to Morogoro urban area but also used for fishing activities. ... were supplied by Santa Cruz Biotechnology, Texas, USA.

  4. Pollution by endocrine disrupting estrogens in aquatic ecosystems ...

    African Journals Online (AJOL)

    The study was carried out in Morogoro urban and peri-urban areas. The main sources of fresh water for domestic uses, fishing and agricultural activities in the study areas including the Mindu dam catchment area, Ngerengere and Morogoro Rivers were assessed. The endocrine disrupting estrogens in water samples were ...

  5. SPE-HPLC purification of endocrine disrupting compounds from human serum for assessment of xenoestrogenic activity

    DEFF Research Database (Denmark)

    Hjelmborg, P.S.; Ghisari, Mandana; Bonefeld-Jørgensen, Eva

    2006-01-01

    Assessment of xenoestrogenic activity in human serum samples requires the removal of endogenous sex hormones to assure that the activity measured originates from xenobiotic compounds only. Serum samples representing high, medium and lower accumulation of persistent organic pollutants (POPs) were...... response curve. 17β-Estradiol titrations showed that the xenoestrogenic effects were mediated via ER. Moreover, our SPE-HPLC-ERE-CALUX assay was demonstrated to elicit high interlaboratory correlation. In the present study the combination of SPE-HPLC purification and the ex vivo estrogenic responses...

  6. Comparison of UV photolysis, nanofiltration, and their combination to remove hormones from a drinking water source and reduce endocrine disrupting activity.

    Science.gov (United States)

    Sanches, Sandra; Rodrigues, Alexandre; Cardoso, Vitor V; Benoliel, Maria J; Crespo, João G; Pereira, Vanessa J

    2016-06-01

    A sequential water treatment combining low pressure ultraviolet direct photolysis with nanofiltration was evaluated to remove hormones from water, reduce endocrine disrupting activity, and overcome the drawbacks associated with the individual processes (production of a nanofiltration-concentrated retentate and formation of toxic by-products). 17β-Estradiol, 17α-ethinylestradiol, estrone, estriol, and progesterone were spiked into a real water sample collected after the sedimentation process of a drinking water treatment plant. Even though the nanofiltration process alone showed similar results to the combined treatment in terms of the water quality produced, the combined treatment offered advantage in terms of the load of the retentate and decrease in the endocrine-disrupting activity of the samples. Moreover, the photolysis by-products produced, with higher endocrine disrupting activity than the parent compounds, were effectively retained by the membrane. The combination of direct LP/UV photolysis with nanofiltration is promising for a drinking water utility that needs to cope with sudden punctual discharges or deterioration of the water quality and wants to decrease the levels of chemicals in the nanofiltration retentate.

  7. Risk Evaluation of Endocrine-Disrupting Chemicals

    Directory of Open Access Journals (Sweden)

    Laura Gioiosa

    2015-10-01

    Full Text Available We review here our studies on early exposure to low doses of the estrogenic endocrine-disrupting chemical bisphenol A (BPA on behavior and metabolism in CD-1 mice. Mice were exposed in utero from gestation day (GD 11 to delivery (prenatal exposure or via maternal milk from birth to postnatal day 7 (postnatal exposure to 10 µg/kg body weight/d of BPA or no BPA (controls. Bisphenol A exposure resulted in long-term disruption of sexually dimorphic behaviors. Females exposed to BPA pre- and postnatally showed increased anxiety and behavioral profiles similar to control males. We also evaluated metabolic effects in prenatally exposed adult male offspring of dams fed (from GD 9 to 18 with BPA at doses ranging from 5 to 50 000 µg/kg/d. The males showed an age-related significant change in a number of metabolic indexes ranging from food intake to glucose regulation at BPA doses below the no observed adverse effect level (5000 µg/kg/d. Consistent with prior findings, low but not high BPA doses produced significant effects for many outcomes. These findings provide further evidence of the potential risks that developmental exposure to low doses of the endocrine disrupter BPA may pose to human health, with fetuses and infants being highly vulnerable.

  8. Human biological monitoring of suspected endocrine-disrupting compounds

    Science.gov (United States)

    Faniband, Moosa; Lindh, Christian H; Jönsson, Bo AG

    2014-01-01

    Endocrine-disrupting compounds are exogenous agents that interfere with the natural hormones of the body. Human biological monitoring is a powerful method for monitoring exposure to endocrine disrupting compounds. In this review, we describe human biological monitoring systems for different groups of endocrine disrupting compounds, polychlorinated biphenyls, brominated flame retardants, phthalates, alkylphenols, pesticides, metals, perfluronated compounds, parabens, ultraviolet filters, and organic solvents. The aspects discussed are origin to exposure, metabolism, matrices to analyse, analytical determination methods, determinants, and time trends. PMID:24369128

  9. Neuro-endocrine disruption in molluscs

    DEFF Research Database (Denmark)

    Holbech, Henrik; Bech Sanderhoff, Lene; Waller, Stine P.

    The Mollusca phylum is the second largest animal phylum with around 85,000 registered mollusc species and increasing attention to effects of chemicals on the molluscan endocrine system have been given during the last years. This includes initiation of the development of OECD test guidelines (TG......) to assess the effect of chemicals in molluscs. To date no endocrine specific mollusc biomarkers have though been validated and included in draft test guidelines due to lack of knowledge of the endocrine system. Here we investigate effects of pharmaceuticals targeting serotonin and dopamine in a cost...... efficient and fast in vivo system using embryos of the freshwater pulmonate gastropod Lymnaea stagnalis (the great pond snail). It is known that serotonin and dopamine are involved in many reproductive processes in molluscs Incl. egg maturation and spawning and that pedal ciliary activity causing L...

  10. Bird populations as sentinels of endocrine disrupting chemicals

    Directory of Open Access Journals (Sweden)

    Claudio Carere

    2010-03-01

    Full Text Available Exposure to endocrine disrupting chemicals (EDCs is a widespread phenomenon in nature. Although the mechanisms of action of EDCs are actively studied, the consequences of endocrine disruption (ED at the population level and the adaptations evolved to cope with chronic EDC exposure have been overlooked. Birds probably represent the animal taxon most successfully adapted to synanthropic life. Hence, birds share with humans a similar pattern of exposure to xenobiotics. In this article, we review case studies on patterns of behaviour that deviate from the expectation in bird species exposed to EDCs. We provide behavioural and ecological parameters to be used as endpoints of ED; methodological requirements and caveats based on species-specific life-history traits, behavioural repertoires, developmental styles, and possibility of captive breeding; a list of species that could be used as sentinels to assess the quality of man-made environment.

  11. Endocrine disrupting chemicals and growth of children.

    Science.gov (United States)

    Botton, Jérémie; Kadawathagedara, Manik; de Lauzon-Guillain, Blandine

    2017-06-01

    According to the "environmental obesogen hypothesis", early-life (including in utero) exposure to endocrine disrupting chemicals (EDCs) may disturb the mechanisms involved in adipogenesis or energy storage, and thus may increase the susceptibility to overweight and obesity. Animal models have shown that exposure to several of these chemicals could induce adipogenesis and mechanisms have been described. Epidemiological studies are crucial to know whether this effect could also be observed in humans. We aimed at summarizing the literature in epidemiology on the relationship between EDCs exposure and child's growth. Overall, epidemiological studies suggest that pre- and/or early postnatal exposure to some EDCs may increase the risk of overweight or obesity during childhood. In that review, we present some limitations of these studies, mainly in exposure assessment, that currently prevent to conclude about causality. Recent advances in epidemiology should bring further knowledge. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Criteria for endocrine disrupters: report from the Danish centre on Endocrine Disrupters (CEHOS)

    DEFF Research Database (Denmark)

    Holbech, Henrik; Bjerregaard, Poul; Hass, Ulla

    The aim of this session is to give a presentation of the report (both ENV and HH) on criteria carried out by the Danish Centre on Endocrine Disrupters (CEHOS) as a project contracted by the Danish Environmental Protection Agency. CEHOS is an interdisciplinary scientific network without walls...... and gives examples of available ED data and relevant placement in groups. The overall purpose of the report is to provide scientific background for Danish input to the ongoing EU work within this field....

  13. Endocrine disruption: fact or urban legend?

    Science.gov (United States)

    Nohynek, Gerhard J; Borgert, Christopher J; Dietrich, Daniel; Rozman, Karl K

    2013-12-16

    Endocrine disruptors (EDs) are substances that cause adverse health effects via endocrine-mediated mechanisms in an intact organism or its progeny or (sub) populations. Purported EDCs in personal care products include 4-MBC (UV filter) or parabens that showed oestrogenic activity in screening tests, although regulatory toxicity studies showed no adverse effects on reproductive endpoints. Hormonal potency is the key issue of the safety of EDCs. Oestrogen-based drugs, e.g. the contraceptive pill or the synthetic oestrogen DES, possess potencies up to 7 orders of magnitude higher than those of PCP ingredients; yet, in utero exposure to these drugs did not adversely affect fertility or sexual organ development of offspring unless exposed to extreme doses. Additive effects of EDs are unlikely due to the multitude of mechanisms how substances may produce a hormone-like activity; even after uptake of different substances with a similar mode of action, the possibility of additive effects is reduced by different absorption, metabolism and kinetics. This is supported by a number of studies on mixtures of chemical EDCs. Overall, despite of 20 years of research a human health risk from exposure to low concentrations of exogenous chemical substances with weak hormone-like activities remains an unproven and unlikely hypothesis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Human biological monitoring of suspected endocrine-disrupting compounds

    Directory of Open Access Journals (Sweden)

    Moosa Faniband

    2014-02-01

    Full Text Available Endocrine-disrupting compounds are exogenous agents that interfere with the natural hormones of the body. Human biological monitoring is a powerful method for monitoring exposure to endocrine disrupting compounds. In this review, we describe human biological monitoring systems for different groups of endocrine disrupting compounds, polychlorinated biphenyls, brominated flame retardants, phthalates, alkylphenols, pesticides, metals, perfluronated compounds, parabens, ultraviolet filters, and organic solvents. The aspects discussed are origin to exposure, metabolism, matrices to analyse, analytical determination methods, determinants, and time trends.

  15. Contribution of the Endocrine Perspective in the Evaluation of Endocrine Disrupting Chemical Effects

    DEFF Research Database (Denmark)

    Bourguignon, Jean-Pierre; Juul, Anders; Franssen, Delphine

    2016-01-01

    Debate makes science progress. In the field of endocrine disruption, endocrinology has brought up findings that substantiate a specific perspective on the definition of endocrine disrupting chemicals (EDCs), the role of the endocrine system and the endpoints of hormone and EDC actions among other...... issues. This paper aims at discussing the relevance of the endocrine perspective with regard to EDC effects on pubertal timing. Puberty involves particular sensitivity to environmental conditions. Reports about the advancing onset of puberty in several countries have led to the hypothesis...

  16. Retinoid metabolism in invertebrates: when evolution meets endocrine disruption.

    Science.gov (United States)

    André, A; Ruivo, R; Gesto, M; Castro, L Filipe C; Santos, M M

    2014-11-01

    Recent genomic and biochemical evidence in invertebrate species pushes back the origin of the retinoid metabolic and signaling modules to the last common ancestor of all bilaterians. However, the evolution of retinoid pathways are far from fully understood. In the majority of non-chordate invertebrate lineages, the ongoing functional characterization of retinoid-related genes (metabolism and signaling pathways), as well as the characterization of the endogenous retinoid content (precursors and active retinoids), is still incomplete. Despite limited, the available data supports the presence of biologically active retinoid pathways in invertebrates. Yet, the mechanisms controlling the spatial and temporal distribution of retinoids as well as their physiological significance share similarities and differences with vertebrates. For instance, retinol storage in the form of retinyl esters, a key feature for the maintenance of retinoid homeostatic balance in vertebrates, was only recently demonstrated in some mollusk species, suggesting that such ability is older than previously anticipated. In contrast, the enzymatic repertoire involved in this process is probably unlike that of vertebrates. The suggested ancestry of active retinoid pathways implies that many more metazoan species might be potential targets for endocrine disrupting chemicals. Here, we review the current knowledge about the occurrence and functionality of retinoid metabolic and signaling pathways in invertebrate lineages, paying special attention to the evolutionary origin of retinoid storage mechanisms. Additionally, we summarize existing information on the endocrine disruption of invertebrate retinoid modules by environmental chemicals. Research priorities in the field are highlighted. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Endocrine Disruption of Vasopressin Systems and Related Behaviors

    Directory of Open Access Journals (Sweden)

    Heather B. Patisaul

    2017-06-01

    Full Text Available Endocrine disrupting chemicals (EDCs are chemicals that interfere with the organizational or activational effects of hormones. Although the vast majority of the EDC literature focuses on steroid hormone signaling related impacts, growing evidence from a myriad of species reveals that the nonapeptide hormones vasopressin (AVP and oxytocin (OT may also be EDC targets. EDCs shown to alter pathways and behaviors coordinated by AVP and/or OT include the plastics component bisphenol A (BPA, the soy phytoestrogen genistein (GEN, and various flame retardants. Many effects are sex specific and likely involve action at nuclear estrogen receptors. Effects include the elimination or reversal of well-characterized sexually dimorphic aspects of the AVP system, including innervation of the lateral septum and other brain regions critical for social and other non-reproductive behaviors. Disruption of magnocellular AVP function has also been reported in rats, suggesting possible effects on hemodynamics and cardiovascular function.

  18. Endocrine disrupting properties in vivo of widely used azole fungicides

    DEFF Research Database (Denmark)

    Taxvig, Camilla; Vinggaard, Anne; Hass, Ulla

    2008-01-01

    The endocrine-disrupting potential of four commonly used azole fungicides, propiconazole, tebuconazole, epoxiconazole and ketoconazole, were tested in two short-term in vivo studies. Initially, the antiandrogenic effects of propiconazole and tebuconazole (50, 100 and 150 mg/kg body weight/day eac...... as endocrine disruptors in vivo, although the profile of action in vivo varies. As ketoconazole is known to implicate numerous endocrine-disrupting effects in humans, the concern for the effects of the other tested azole fungicides in humans is growing.......The endocrine-disrupting potential of four commonly used azole fungicides, propiconazole, tebuconazole, epoxiconazole and ketoconazole, were tested in two short-term in vivo studies. Initially, the antiandrogenic effects of propiconazole and tebuconazole (50, 100 and 150 mg/kg body weight/day each...

  19. ENDOCRINE-DISRUPTING CONTAMINANTS AND REPRODUCTION IN VERTEBRATE WILDLIFE.

    Science.gov (United States)

    The fields of toxicology, endocrinology, and reproductive physiology recently have combined resources to study the effects of endocrine-disrupting contaminants (EDCs) in wildlife populations. EDCs include a wide variety of chemicals that are only related by the ability to disrupt...

  20. CONTAMINANT-ASSOCIATED ENDOCRINE DISRUPTION IN REPTILES.

    Science.gov (United States)

    The data presented suggest that contaminants can alter the endocrine and reproductive system of reptiles by mimicking hormones and by various mechanisms other than direct hormonal mimicry. However, these data indicate, as do many other studies using various vertebrates, that a fo...

  1. Endocrine disrupting chemicals – probability of adverse environmental effect

    Directory of Open Access Journals (Sweden)

    Henryka Langauer-Lewowicka

    2015-03-01

    Full Text Available The paper presents some information about current state of knowledge of the risk due to exposure to endocrine disrupting chemicals (EDCs. Endocrine disruptors are defined as chemicals substances with either agonist or antagonist endocrine effects in human and wildlife. Exposure to EDCs in animals models correlate positively with an increased incidence of malformations of genital tract, on neoplasmas, obesity, alternations on male and female reproduction and changes in neuroendocrinology and behavior. Results from animal models, human clinical observations and epidemiological studies converge to implicate EDCs as a significant risk to public health.

  2. Recent Advances on Endocrine Disrupting Effects of UV Filters

    Directory of Open Access Journals (Sweden)

    Jiaying Wang

    2016-08-01

    Full Text Available Ultraviolet (UV filters are used widely in cosmetics, plastics, adhesives and other industrial products to protect human skin or products against direct exposure to deleterious UV radiation. With growing usage and mis-disposition of UV filters, they currently represent a new class of contaminants of emerging concern with increasingly reported adverse effects to humans and other organisms. Exposure to UV filters induce various endocrine disrupting effects, as revealed by increasing number of toxicological studies performed in recent years. It is necessary to compile a systematic review on the current research status on endocrine disrupting effects of UV filters toward different organisms. We therefore summarized the recent advances on the evaluation of the potential endocrine disruptors and the mechanism of toxicity for many kinds of UV filters such as benzophenones, camphor derivatives and cinnamate derivatives.

  3. Review: Endocrine disrupting chemicals (phenol and phthalates) in ...

    African Journals Online (AJOL)

    Endocrinedisrupting chemicals have been reported in water, sediment and serum, as well as in fish tissue samples, at a level that could trigger endocrine disruption in humans and wildlife. Although some monitoring has been reported, particularly in water systems within the country, information on EDCs in other ...

  4. Possible endocrine disrupting effects of parabens and their metabolites

    DEFF Research Database (Denmark)

    Boberg, Julie; Taxvig, Camilla; Christiansen, Sofie

    2010-01-01

    Parabens are preservatives used in a wide range of cosmetic products, including products for children, and some are permitted in foods. However, there is concern for endocrine disrupting effects. This paper critically discusses the conclusions of recent reviews and original research papers...

  5. Endocrine disrupting chemicals (phenol and phthalates) in the ...

    African Journals Online (AJOL)

    There has been increasing concern about the impacts of exposure to chemical compounds with endocrine disrupting activi- ties in the environment, ... natural and synthetic organic compounds, but are mostly man- made products such as ...... and organochlorine pesticides, PCBs, and semi-volatile organic compounds in ...

  6. Endocrine-disrupting chemicals and public health protection

    DEFF Research Database (Denmark)

    Zoeller, R Thomas; Brown, T R; Doan, L L

    2012-01-01

    exposures to have potent and irreversible effects. Finally, with regard to the current program designed to detect putative EDC, namely, the Endocrine Disruptor Screening Program, we offer recommendations for strengthening this program through the incorporation of basic endocrine principles to promote......An endocrine-disrupting chemical (EDC) is an exogenous chemical, or mixture of chemicals, that can interfere with any aspect of hormone action. The potential for deleterious effects of EDC must be considered relative to the regulation of hormone synthesis, secretion, and actions and the variability...... in regulation of these events across the life cycle. The developmental age at which EDC exposures occur is a critical consideration in understanding their effects. Because endocrine systems exhibit tissue-, cell-, and receptor-specific actions during the life cycle, EDC can produce complex, mosaic effects...

  7. Thyroid effects of endocrine disrupting chemicals

    DEFF Research Database (Denmark)

    Boas, Malene; Feldt-Rasmussen, Ulla; Main, Katharina M

    2012-01-01

    In recent years, many studies of thyroid-disrupting effects of environmental chemicals have been published. Of special concern is the exposure of pregnant women and infants, as thyroid disruption of the developing organism may have deleterious effects on neurological outcome. Chemicals may exert...... thyroid effects through a variety of mechanisms of action, and some animal experiments and in vitro studies have focused on elucidating the mode of action of specific chemical compounds. Long-term human studies on effects of environmental chemicals on thyroid related outcomes such as growth...... and development are still lacking. The human exposure scenario with life long exposure to a vast mixture of chemicals in low doses and the large physiological variation in thyroid hormone levels between individuals render human studies very difficult. However, there is now reasonably firm evidence that PCBs have...

  8. Metabolism of UV-filter benzophenone-3 by rat and human liver microsomes and its effect on endocrine-disrupting activity

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Yoko, E-mail: y-watanabe@nichiyaku.ac.jp [Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553 (Japan); Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Saitama 362-0806 (Japan); Kojima, Hiroyuki; Takeuchi, Shinji [Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo 060-0819 (Japan); Uramaru, Naoto [Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Saitama 362-0806 (Japan); Sanoh, Seigo [Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553 (Japan); Sugihara, Kazumi [Faculty of Pharmaceutical Science, Hiroshima International University, Koshingai 5-1-1, Kure, Hiroshima 737-0112 (Japan); Kitamura, Shigeyuki [Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Saitama 362-0806 (Japan); Ohta, Shigeru [Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553 (Japan)

    2015-01-15

    Benzophenone-3 (2-hydroxy-4-methoxybenzophenone; BP-3) is widely used as sunscreen for protection of human skin and hair from damage by ultraviolet (UV) radiation. In this study, we examined the metabolism of BP-3 by rat and human liver microsomes, and the estrogenic and anti-androgenic activities of the metabolites. When BP-3 was incubated with rat liver microsomes in the presence of NADPH, 2,4,5-trihydroxybenzophenone (2,4,5-triOH BP) and 3-hydroxylated BP-3 (3-OH BP-3) were newly identified as metabolites, together with previously detected metabolites 5-hydroxylated BP-3 (5-OH BP-3), a 4-desmethylated metabolite (2,4-diOH BP) and 2,3,4-trihydroxybenzophenone (2,3,4-triOH BP). In studies with recombinant rat cytochrome P450, 3-OH BP-3 and 2,4,5-triOH BP were mainly formed by CYP1A1. BP-3 was also metabolized by human liver microsomes and CYP isoforms. In estrogen reporter (ER) assays using estrogen-responsive CHO cells, 2,4-diOH BP exhibited stronger estrogenic activity, 2,3,4-triOH BP exhibited similar activity, and 5-OH BP-3, 2,4,5-triOH BP and 3-OH BP-3 showed lower activity as compared to BP-3. Structural requirements for activity were investigated in a series of 14 BP-3 derivatives. When BP-3 was incubated with liver microsomes from untreated rats or phenobarbital-, 3-methylcholanthrene-, or acetone-treated rats in the presence of NADPH, estrogenic activity was increased. However, liver microsomes from dexamethasone-treated rats showed decreased estrogenic activity due to formation of inactive 5-OH BP-3 and reduced formation of active 2,4-diOH BP. Anti-androgenic activity of BP-3 was decreased after incubation with liver microsomes. - Highlights: • Metabolic modification of the endocrine-disrupting activity of BP-3 was examined. • 2,4,5-TriOH BP and 3-OH BP-3 were identified as new BP-3 metabolites. • 2,4-DiOH BP and 2,3,4-triOH BP exhibited high or similar estrogenic activities. • Estrogenic activity of BP-3 was enhanced by incubation with rat liver

  9. Putative effects of endocrine disrupters on pubertal development in the human

    DEFF Research Database (Denmark)

    Teilmann, Grete; Juul, Anders; Skakkebaek, Niels E

    2002-01-01

    -called endocrine disrupters. Precocious puberty has been described in several case reports of accidental exposure to oestrogenic compounds in cosmetic products, food and pharmaceuticals. Local epidemics of premature thelarche have also been suggested to be linked to endocrine disrupters. Children adopted from...... developing countries to industrialized countries often develop precocious puberty. Not only precocious puberty, but also delayed puberty can, theoretically, be associated with exposure to endocrine disrupters. While it is very plausible that endocrine disrupters may disturb pubertal development...

  10. Neuroendocrine and behavioral implications of endocrine disrupting chemicals in quail

    Science.gov (United States)

    Ottinger, M.A.; Abdelnabi, M.A.; Henry, P.; McGary, S.; Thompson, N.; Wu, J.M.

    2001-01-01

    Studies in our laboratory have focused on endocrine, neuroendocrine, and behavioral components of reproduction in the Japanese quail. These studies considered various stages in the life cycle, including embryonic development, sexual maturation, adult reproductive function, and aging. A major focus of our research has been the role of neuroendocrine systems that appear to synchronize both endocrine and behavioral responses. These studies provide the basis for our more recent research on the impact of endocrine disrupting chemicals (EDCs) on reproductive function in the Japanese quail. These endocrine active chemicals include pesticides, herbicides, industrial products, and plant phytoestrogens. Many of these chemicals appear to mimic vertebrate steroids, often by interacting with steroid receptors. However, most EDCs have relatively weak biological activity compared to native steroid hormones. Therefore, it becomes important to understand the mode and mechanism of action of classes of these chemicals and sensitive stages in the life history of various species. Precocial birds, such as the Japanese quail, are likely to be sensitive to EDC effects during embryonic development, because sexual differentiation occurs during this period. Accordingly, adult quail may be less impacted by EDC exposure. Because there are a great many data available on normal development and reproductive function in this species, the Japanese quail provides an excellent model for examining the effects of EDCs. Thus, we have begun studies using a Japanese quail model system to study the effects of EDCs on reproductive endocrine and behavioral responses. In this review, we have two goals: first, to provide a summary of reproductive development and sexual differentiation in intact Japanese quail embryos, including ontogenetic patterns in steroid hormones in the embryonic and maturing quail. Second, we discuss some recent data from experiments in our laboratory in which EDCs have been tested in

  11. Endocrine Disruption and In Vitro Ecotoxicology: Recent Advances and Approaches.

    Science.gov (United States)

    Wagner, Martin; Kienle, Cornelia; Vermeirssen, Etiënne L M; Oehlmann, Jörg

    Endocrine-disrupting chemicals (EDCs) are man-made compounds interfering with hormone signaling. Omnipresent in the environment, they can cause adverse effects in a wide range of wildlife. Accordingly, Endocrine Disruption is one focal area of ecotoxicology. Because EDCs induce complex response patterns in vivo via a wide range of mechanisms of action, in vitro techniques have been developed to reduce and understand endocrine toxicity. In this review we revisit the evidence for endocrine disruption in diverse species and the underlying molecular mechanisms. Based on this, we examine the battery of in vitro bioassays currently in use in ecotoxicological research and discuss the following key questions. Why do we use in vitro techniques? What endpoints are we looking at? Which applications are we using in vitro bioassays for? How can we put in vitro data into a broader context? And finally, what is the practical relevance of in vitro data? In critically examining these questions, we review the current state-of-the-art of in vitro (eco)toxicology, highlight important limitations and challenges, and discuss emerging trends and future research needs.

  12. Neuroendocrine disruption without direct endocrine mode of action: Polychloro-biphenyls (PCBs) and bisphenol A (BPA) as case studies.

    Science.gov (United States)

    Pinson, Anneline; Franssen, Delphine; Gérard, Arlette; Parent, Anne-Simone; Bourguignon, Jean-Pierre

    Endocrine disruption is commonly thought to be restricted to a direct endocrine mode of action i.e. the perturbation of the activation of a given type of hormonal receptor by its natural ligand. Consistent with the WHO definition of an endocrine disrupter, a key issue is the "altered function(s) of the endocrine system". Such altered functions can result from different chemical interactions, beyond agonistic or antagonistic effect at a given receptor. Based on neuroendocrine disruption by polychlorinated biphenyls and bisphenol A, this paper proposes different mechanistic paradigms that can result in adverse health effects. They are a consequence of altered endocrine function(s) secondary to chemical interaction with different steps in the physiological regulatory processes, thus accounting for a possibly indirect endocrine mode of action. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  13. Pharmaceutically active compounds and endocrine disrupting chemicals in water, sediments and mollusks in mangrove ecosystems from Singapore.

    Science.gov (United States)

    Bayen, Stéphane; Estrada, Elvagris Segovia; Juhel, Guillaume; Kit, Lee Wei; Kelly, Barry C

    2016-08-30

    This study investigated the occurrence of bisphenol A (BPA), atrazine and selected pharmaceutically active compounds (PhACs) in mangrove habitats in Singapore in 2012-2013, using multiple tools (sediment sampling, POCIS and filter feeder molluscs). Using POCIS, the same suite of contaminants (atrazine, BPA and eleven PhACs) was detected in mangrove waters in 28-days deployments in both 2012 and 2013. POCIS concentrations ranged from pg/L to μg/L. Caffeine, BPA, carbamazepine, E1, triclosan, sulfamerazine, sulfamethazine, and lincomycin were also detected in mangrove sediments from the low pg/g dw (e.g. carbamazepine) to ng/g dw (e.g. BPA). The detection of caffeine, carbamazepine, BPA, sulfamethoxazole or lincomycin in bivalve tissues also showed that these chemicals are bioavailable in the mangrove habitat. Since there are some indications that some pharmaceutically active substances may be biologically active in the low ppb range in marine species, further assessment should be completed based on ecotoxicological data specific to mangrove species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Polluted Pathways: Mechanisms of Metabolic Disruption by Endocrine Disrupting Chemicals.

    Science.gov (United States)

    Mimoto, Mizuho S; Nadal, Angel; Sargis, Robert M

    2017-06-01

    Environmental toxicants are increasingly implicated in the global decline in metabolic health. Focusing on diabetes, herein, the molecular and cellular mechanisms by which metabolism disrupting chemicals (MDCs) impair energy homeostasis are discussed. Emerging data implicate MDC perturbations in a variety of pathways as contributors to metabolic disease pathogenesis, with effects in diverse tissues regulating fuel utilization. Potentiation of traditional metabolic risk factors, such as caloric excess, and emerging threats to metabolism, such as disruptions in circadian rhythms, are important areas of current and future MDC research. Increasing evidence also implicates deleterious effects of MDCs on metabolic programming that occur during vulnerable developmental windows, such as in utero and early post-natal life as well as pregnancy. Recent insights into the mechanisms by which MDCs alter energy homeostasis will advance the field's ability to predict interactions with classical metabolic disease risk factors and empower studies utilizing targeted therapeutics to treat MDC-mediated diabetes.

  15. Are Endocrine Disrupting Compounds a Health Risk in Drinking Water?

    Directory of Open Access Journals (Sweden)

    Ian R. Falconer

    2006-06-01

    Full Text Available There has been a great deal of international discussion on the nature and relevance of endocrine disrupting compounds in the environment. Changes in reproductive organs of fish and mollusks have been demonstrated in rivers downstream of sewage discharges in Europe and in North America, which have been attributed to estrogenic compounds in the effluent. The anatomical and physiological changes in the fauna are illustrated by feminization of male gonads. The compounds of greatest hormonal activity in sewage effluent are the natural estrogens 17β-estradiol, estrone, estriol and the synthetic estrogen ethinylestradiol. Androgens are also widely present in wastewaters. Investigations of anthropogenic chemical contaminants in freshwaters and wastewaters have shown a wide variety of organic compounds, many of which have low levels of estrogenic activity. In many highly populated countries the drinking water is sourced from the same rivers and lakes that are the recipients of sewage and industrial discharge. The River Thames which flows through London, England, has overall passed through drinking water and sewage discharge 5 times from source to mouth of the river. Under these types of circumstance, any accumulation of endocrine disrupting compounds from sewage or industry potentially affects the quality of drinking water. Neither basic wastewater treatment nor basic drinking water treatment will eliminate the estrogens, androgens or detergent breakdown products from water, due to the chemical stability of the structures. Hence a potential risk to health exists; however present data indicate that estrogenic contamination of drinking water is very unlikely to result in physiologically detectable effects in consumers. Pesticide, detergent and industrial contamination remain issues of concern. As a result of this concern, increased attention is being given to enhanced wastewater treatment in locations where he effluent is directly or indirectly in

  16. Adsorption of selected pharmaceuticals and an endocrine disrupting compound by granular activated carbon. 1. Adsorption capacity and kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Z.; Peldszus, S.; Huck, P.M. [University of Waterloo, Waterloo, ON (Canada). NSERC Chair in Water Treatment

    2009-03-01

    The adsorption of two representative PhACs (naproxen and carbamazepine) and one EDC (nonylphenol) were evaluated on two granular activated carbons (GAC) namely coal-based Calgon Filtrasorb 400 and coconut shell-based PICA CTIF TE. The primary objective was to investigate preloading effects by natural organic matter (NOM) on adsorption capacity and kinetics under conditions and concentrations (i.e., ng/L) relevant for drinking water treatment. Isotherms demonstrated that all compounds were significantly negatively impacted by NOM fouling. Adsorption capacity reduction was most severe for the acidic naproxen, followed by the neutral carbamazepine and then the more hydrophobic nonylphenol. The GAC with the wider pore size distribution had considerably greater NOM loading, resulting in lower adsorption capacity. Different patterns for the change in Freundlich KF and 1/n with time revealed different competitive mechanisms for the different compounds. Mass transport coefficients determined by short fixed-bed (SFB) tests with virgin and preloaded GAC demonstrated that film diffusion primarily controls mass transfer on virgin and preloaded carbon. Naproxen suffered the greatest deteriorative effect on kinetic parameters due to preloading, followed by carbamazepine, and then nonylphenol. A type of surface NOM/biofilm, which appeared to add an additional mass transfer resistance layer and thus reduce film diffusion, was observed. In addition, electrostatic interactions between NOM/biofilm and the investigated compounds are proposed to contribute to the reduction of film diffusion. A companion paper building on this work describes treatability studies in pilot-scale GAC adsorbers and the effectiveness of a selected fixed-bed model. 32 refs., 3 figs., 2 tabs.

  17. Endocrine-disrupting chemicals and the regulation of energy balance.

    Science.gov (United States)

    Nadal, Angel; Quesada, Ivan; Tudurí, Eva; Nogueiras, Rubén; Alonso-Magdalena, Paloma

    2017-09-01

    Energy balance involves the adjustment of food intake, energy expenditure and body fat reserves through homeostatic pathways. These pathways include a multitude of biochemical reactions, as well as hormonal cues. Dysfunction of this homeostatic control system results in common metabolism-related pathologies, which include obesity and type 2 diabetes mellitus. Metabolism-disrupting chemicals (MDCs) are a particular class of endocrine-disrupting chemicals that affect energy homeostasis. MDCs affect multiple endocrine mechanisms and thus different cell types that are implicated in metabolic control. MDCs affect gene expression and the biosynthesis of key enzymes, hormones and adipokines that are essential for controlling energy homeostasis. This multifaceted spectrum of actions precludes compensatory responses and favours metabolic disorders. Herein, we review the main mechanisms used by MDCs to alter energy balance. This work should help to identify new MDCs, as well as novel targets of their action.

  18. Mixture effects of endocrine disrupting compounds in vitro

    DEFF Research Database (Denmark)

    Kjærstad, Mia Birkhøj; Taxvig, Camilla; Andersen, H. R.

    2010-01-01

    P>Four different equi-molar mixtures were investigated for additive endocrine disrupting effects in vitro using the concentration addition model. It was found that additive effects on the same molecular target (the androgen receptor; AR) can be predicted for both mixtures of compounds with effect...... on AR could not be predicted under assumption of additivity in our model system. For a mixture containing three azole fungicides (epoxiconazole, propiconazole and tebuconazole), the observed AR antagonistic effects were close to the predicted effect assuming additivity. Azole fungicides are known...... assuming additivity. Overall these and other studies show that weak endocrine disrupting compounds, like parabens and azole fungicides, give rise to combination effects when they occur in mixtures. These combination effects should be taken into account in regulatory risk assessment not to under...

  19. Multiple endocrine disrupting effects in rats perinatally exposed to butylparaben

    DEFF Research Database (Denmark)

    Boberg, Julie; Petersen, Marta Axelstad; Svingen, Terje

    2016-01-01

    ) expression was reduced in prepubertal, but not adult animals exposed to butylparaben. In adult testes, Nr5a1 expression was reduced at all doses, indicating persistent disruption of steroidogenesis. Prostate histology was altered at prepuberty and adult prostate weights were reduced in the high dose group....... Thus, butylparaben exerted endocrine disrupting effects on both male and female offspring. The observed adverse developmental effect on sperm count at the lowest dose is highly relevant to risk assessment, as this is the lowest observed adverse effect level in a study on perinatal exposure...

  20. Biomarkers used in Environmental Health with focus on Endocrine Disrupters

    DEFF Research Database (Denmark)

    Krüger, Tanja; Ghisari, Mandana; Long, Manhai

    2012-01-01

    Endocrine-disrupting chemicals (EDCs) are compounds that either mimic or block endogenous hormones and can disrupt the normal function of the body. Bio-monitoring is the assessment of internal doses of EDCs and has been used for decades to provide information about exposures to chemicals giving...... in human blood is important and ex vivo cell systems have been introduced to enable the assessment of the integrated level of xenobiotic transactivity in humans. Biomonitoring studies for exposure biomarkers have shown that there are geographical differences in the bioaccumulated POP levels...

  1. Obesity, Diabetes, and Associated Costs of Exposure to Endocrine-Disrupting Chemicals in the European Union

    NARCIS (Netherlands)

    Legler, J.; Fletcher, T.; Govarts, E.; Porta, M.; Blumberg, B.; Heindel, J.J.; Trasande, L.

    2016-01-01

    Context: Obesityanddiabetes are epidemic in the European Union(EU). Exposure to endocrine-disrupting chemicals (EDCs) is increasingly recognized as a contributor, independent of diet and physical activity. Objective: The objective was to estimate obesity, diabetes, and associated costs that can be

  2. Toxicological profiling of sediments with in vitro mechanisms-based bioassays for endocrine disruption

    NARCIS (Netherlands)

    Houtman, C.J.; Cenijn, P.H.; Hamers, T.; Lamoree, M.H.; Legler, J.; Murk, A.J.; Brouwer, A.

    2004-01-01

    In vitro bioassays are valuable tools for screening environmental samples for the presence of bioactive (e.g., endocrine-disrupting) compounds. They can be used to direct chemical analysis of active compounds in toxicity identification and evaluation (TIE) approaches. In the present study, five in

  3. Thyroid endocrine disruption and external body morphology of Zebrafish

    Science.gov (United States)

    Sharma, Prakash; Grabowski, Timothy B.; Patino, Reynaldo

    2016-01-01

    This study examined the effects thyroid-active compounds during early development on body morphology of Zebrafish (Danio rerio). Three-day postfertilization (dpf) larvae were exposed to goitrogen [methimazole (MZ, 0.15 mM)], combination of MZ (0.15 mM) and thyroxine (T4, 2 nM), T4 (2 nM), or control (reconstituted water) treatments until 33 dpf and subsequently maintained in reconstituted water until 45 dpf. Samples were taken at 33 and 45 dpf for multivariate analysis of geometric distances between selected homologous landmarks placed on digital images of fish, and for histological assessment of thyrocytes. Body mass, standard length, and pectoral fin length were separately measured on remaining fish at 45 dpf. Histological analysis confirmed the hypothyroid effect (increased thyrocyte height) of MZ and rescue effect of T4 co-administration. Geometric distance analysis showed that pectoral and pelvic fins shifted backward along the rostrocaudal axis under hypothyroid conditions at 45 dpf and that T4 co-treatment prevented this shift. Pectoral fin length at 45 dpf was reduced by exposure to MZ and rescued by co-administration of T4, but it was not associated with standard length. Methimazole caused a reduction in body mass and length at 45 dpf that could not be rescued by T4 co-administration, and non-thyroidal effects of MZ on body shape were also recognized at 33 and 45 dpf. Alterations in the length and position of paired fins caused by exposure to thyroid-disrupting chemicals during early development, as shown here for Zebrafish, could affect physical aspects of locomotion and consequently other important organismal functions such as foraging, predator avoidance, and ultimately survival and recruitment into the adult population. Results of this study also suggest the need to include rescue treatments in endocrine disruption studies that rely on goitrogens as reference for thyroid-mediated effects.

  4. Endocrine Disrupters: the new players able to affect the epigenome.

    Directory of Open Access Journals (Sweden)

    Lavinia eCasati

    2015-06-01

    Full Text Available Epigenetics represents the way by which the environment is able to program the genome; there are three main levels of epigenetic control on genome: DNA methylation, post-translational histone modification and microRNA expression. The term Epigenetics has been widened by NIH to include both heritable changes in gene activity and expression but also stable, long-term alterations in the transcriptional potential of a cell that are not necessarily heritable. These changes might be produced mostly by the early life environment and might affect health influencing the susceptibility to develop diseases, from cancer to mental disorder, during the entire life span. The most studied environmental influences acting on epigenome are diet, infections, wasting, child care, smoking and environmental pollutants, in particular endocrine disrupters (EDs. These are environmental xenobiotics able to interfere with the normal development of the male and female reproductive systems of wildlife, of experimental animals and possibly of humans, disrupting the normal reproductive functions. Data from literature indicate that EDs can act at different levels of epigenetic control, in some cases transgenerationally, in particular when the exposure to these compounds occurs during the prenatal and earliest period of life. Some of the best characterized EDs will be considered in this review. Among the EDs, vinclozolin (VZ and methoxychlor (MXC promote epigenetic transgenerational effects. Polychlorinated biphenils (PCBs, the most widespread environmental EDs, affect histone post-translational modifications in a dimorphic way, possibly as the result of an alteration of gene expression of the enzymes involved in histone modification, as the demethylase Jarid1b, an enzyme also involved in regulating the interaction of androgens with their receptor.

  5. Levels of endocrine disrupting compounds in South China Sea.

    Science.gov (United States)

    Zhang, Li-Peng; Wang, Xin-Hong; Ya, Miao-Lei; Wu, Yu-Ling; Li, Yong-Yu; Zhang, Zu-lin

    2014-08-30

    The occurrence of estrogens in the aquatic environment has become a major concern worldwide because of their strong endocrine disrupting potency. In this study, concentrations of four estrogenic compounds, estrone (E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), estriol (E3) were determined with liquid chromatography-tandem mass spectrometry analyses in surface water from South China Sea, and distributions and potential risks of their estrogenic activity were assessed. The estrogenic compounds E1, E2 and E3 were detected in most of the samples, with their concentrations up to 11.16, 3.71 and 21.63 ng L(-1). However, EE2 was only detected in 3 samples. Causality analysis, EEQ values from chemical analysis identified E2 as the main responsible compounds. Based on the EEQ values in the surface water, high estrogenic risks were in the coastal water, and low estrogenic risks in the open sea. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  6. Environmental effect assessment for sexual endocrine-disrupting chemicals: Fish testing strategy.

    Science.gov (United States)

    Knacker, Thomas; Boettcher, Melanie; Frische, Tobias; Rufli, Hans; Stolzenberg, Hans-Christian; Teigeler, Matthias; Zok, Sabine; Braunbeck, Thomas; Schäfers, Christoph

    2010-10-01

    Current standard testing and assessment tools are not designed to identify specific and biologically highly sensitive modes of action of chemicals, such as endocrine disruption. This information, however, can be important to define the relevant endpoints for an assessment and to characterize thresholds of their sublethal, population-relevant effects. Starting a decade ago, compound-specific risk assessment procedures were amended by specifically addressing endocrine-disrupting properties of substances. In 2002, the Conceptual Framework, agreed upon by OECD's Task Force on Endocrine Disrupters Testing and Assessment, did not propose specific testing strategies, and appropriate testing methods had not yet been developed and approved. In the meantime, the OECD Test Guidelines Programme has undertaken important steps to revise established and to develop new test methods, which can be used to identify and quantify effects of endocrine-disrupting chemicals on mammals, birds, amphibians, fish, and invertebrates. For fish testing of endocrine-disrupting chemicals, the first Test Guidelines have recently been adopted by the OECD and validation of further test systems is under progress. Based on these test systems and the experience gained during their validation procedures, we propose a 3-step fish testing strategy: 1) Weight-of-evidence approach for identifying potential sexual endocrine-disrupting chemicals; even after advanced specification of systematic criteria, this step of establishing initial suspicion will still require expert judgment; 2) in vivo evaluation of sexual endocrine-disrupting activity in fish by applying in vivo fish screening assays; sufficient data are available to diagnose the aromatase-inhibition and estrogen-receptor agonist mechanisms of action by indicative endpoints (biomarkers), whereas the ability of the respective biomarkers in the screening assay to identify the estrogen-receptor antagonists and androgen-receptor agonists and antagonists

  7. Persistent developmental toxicity in rat offspring after low dose exposure to a mixture of endocrine disrupting pesticides

    DEFF Research Database (Denmark)

    Jacobsen, Pernille Rosenskjold; Petersen, Marta Axelstad; Boberg, Julie

    2012-01-01

    There is growing concern of permanent damage to the endocrine and nervous systems after developmental exposure to endocrine disrupting chemicals. In this study the permanent reproductive and neurobehavioral effects of combined exposure to five endocrine disrupting pesticides, epoxiconazole...

  8. 78 FR 57859 - Draft Guidance for Industry on Endocrine Disruption Potential of Drugs: Nonclinical Evaluation...

    Science.gov (United States)

    2013-09-20

    ... determine the potential for a drug to disrupt the endocrine system. This draft guidance also discusses... compounds that have the potential to interfere with some aspect of the endocrine system of an organism or its progeny. Any component of the endocrine system can be a target of endocrine disruptors, although...

  9. Endocrine disrupting compounds exposure and testis development in mammals

    Science.gov (United States)

    Egbowona, Biola F.; Mustapha, Olajide A.

    2011-01-01

    In the last few decades, there is substantial evidence that male reproductive function is deteriorating in humans and wildlife and this is associated with unintentional exposure to widely used synthetic chemicals. Subsequently, much has been done to show that certain chemicals in the environment adversely interfere with the developing fetal gonads of the laboratory animals. Some in vitro studies have demonstrated treatment-induced reproductive problems in offspring exposed to endocrine disrupting compounds (EDC) which are similar to those observed in wildlife and human population. Few EDC studies have demonstrated that there are certain periods of gestation when the developing fetus is highly sensitive and at risk of small endocrine changes. Similar observations have been made in the sewage sludge model, however, while animal studies have been insightful in providing valuable information about the range of effects that can be attributed to in utero exposure to EDCs, varying levels of maternal doses administered in different studies exaggerated extrapolation of these results to human. Thus the EDC concentration representative of fetal exposure levels is uncertain because of the complexities of its nature. So far, the level of fetal exposure can only be roughly estimated. There is substantial evidence from animal data to prove that EDCs can adversely affect reproductive development and function in male and more has accumulated on the mechanisms by which they exert their effects. This paper therefore, reviews previous studies to highlight the extent to which testis development can be disrupted during fetal life. PMID:29255381

  10. Widespread endocrine disruption and reproductive impairment in an estuarine fish population exposed to seasonal hypoxia.

    Science.gov (United States)

    Thomas, Peter; Rahman, Md Saydur; Khan, Izhar A; Kummer, James A

    2007-11-07

    The long-term effects on marine fish populations of the recent increase worldwide in the incidence of coastal hypoxia are unknown. Here we show that chronic environmental exposure of Atlantic croaker (Micropogonias undulatus) to hypoxia in a Florida estuary caused marked suppression of ovarian and testicular growth which was accompanied by endocrine disruption. Laboratory hypoxia studies showed that the endocrine disruption was associated with impairment of reproductive neuroendocrine function and decreases in hypothalamic serotonin (5-HT) content and the activity of the 5-HT biosynthetic enzyme, tryptophan hydroxylase. Pharmacological restoration of hypothalamic 5-HT levels also restored neuroendocrine function, indicating that the stimulatory serotonergic neuroendocrine pathway is a major site of hypoxia-induced inhibition. Inhibition of tryptophan hydroxylase activity to downregulate reproductive activity could have evolved as an adaptive mechanism to survive periodic hypoxia, but in view of the recent increased incidence of coastal hypoxia could become maladaptive and potentially affect fish population abundance and threaten valuable fishery resources.

  11. Endocrine disrupters in the Llobregat river basin; Disruptores endocrinos en la cuenca del rio Llobregat

    Energy Technology Data Exchange (ETDEWEB)

    Romero, J.; Ventura, F.; Marti, I.; Cancho, B. [AGBAR Societat General d' Aigues de Barcelona S. A. (Spain)

    1999-07-01

    Endocrine disrupters are chemicals capable of modulating the endocrine system. These chemicals may have a natural or an anthropogenic origin. The latter are the most important to international organisms due to their potential hazardous effects on human health and wildlife. An important group of substances such as pesticides, surfactants, alkylphenols, phthalates and bisphenol A are considered as endocrine disrupters: adverse effects like cancer, infertility and alterations of sexual organs are related with their presence. Phthalates and alkylphenols (ethoxylated nonylphenols and their acidic metabolites) are the main endocrine disrupters identified in the Llobregat river water using different analytical techniques. No pesticides have been identified in significative concentrations due to the low agricultural activity in this area. The contamination levels, at the {mu} g/l values, are in agreement with those cited by other authors in the literature. Llobregat raw water is treated in the Sant Joan Despi plant with a complex treatment able to reduce and/or eliminate these compounds. Only phthalates and ethoxylated nonylphenols are identified in treated water (at sub-{mu}g/l levels). Brominated ethoxylated nonylphenols are formed in the water treatment plant due to the high bromide level in Llobregat raw water. (Author) 23 refs.

  12. Fifteen years after "Wingspread"- Environmental Endocrine Disrupters and human and wildlife health: Where we are today and where we need to go.

    Science.gov (United States)

    In 1991 a group of expert scientists at a Wingspread work session on endocrine disrupting chemicals (EDCs) concluded that "Many compounds introduced into the environment by human activity are capable of disrupting the endocrine system of animals, including fish, wildlife, and hum...

  13. Use of external metabolizing systems when testing for endocrine disruption in the T-screen assay

    DEFF Research Database (Denmark)

    Taxvig, Camilla; Olesen, Pelle Thonning; Nellemann, Christine Lydia

    2011-01-01

    different in vitro systems for biotransformation of ten known endocrine disrupting chemicals (EDs): five azole fungicides, three parabens and 2 phthalates, b) to determine possible changes in the ability of the EDs to bind and activate the thyroid receptor (TR) in the in vitro T-screen assay after......Although, it is well-established that information on the metabolism of a substance is important in the evaluation of its toxic potential, there is limited experience with incorporating metabolic aspects into in vitro tests for endocrine disrupters. The aim of the current study was a) to study...... biotransformation and c) to investigate the endogenous metabolic capacity of the GH3 cells, the cell line used in the T-screen assay, which is a proliferation assay used for the in vitro detection of agonistic and antagonistic properties of compounds at the level of the TR.The two in vitro metabolizing systems...

  14. A proposed framework for the systematic review and integrated assessment (SYRINA) of endocrine disrupting chemicals

    DEFF Research Database (Denmark)

    Vandenberg, Laura N.; Agerstrand, Marlene; Beronius, Anna

    2016-01-01

    on Chemical Safety (IPCS) and World Health Organization (WHO) definition of an EDC, which requires appraisal of evidence regarding 1) association between exposure and an adverse effect, 2) association between exposure and endocrine disrupting activity, and 3) a plausible link between the adverse effect......Background: The issue of endocrine disrupting chemicals (EDCs) is receiving wide attention from both the scientific and regulatory communities. Recent analyses of the EDC literature have been criticized for failing to use transparent and objective approaches to draw conclusions about the strength...... of evidence linking EDC exposures to adverse health or environmental outcomes. Systematic review methodologies are ideal for addressing this issue as they provide transparent and consistent approaches to study selection and evaluation. Objective methods are needed for integrating the multiple streams...

  15. Endocrine disruptive effects in vitro of conazole antifungals used as pesticides and pharmaceutical

    DEFF Research Database (Denmark)

    Kjærstad, Mia Birkhøj; Taxvig, Camilla; Nellemann, Christine Lydia

    2010-01-01

    Widely used conazole antifungals were tested for endocrine disruptive effects using a panel of in vitro assays. They all showed endocrine disrupting potential and ability to act via several different mechanisms. Overall the imidazoles (econazole, ketoconazole, miconazole, prochloraz) were more po...

  16. Scientific principles for the identification of endocrine-disrupting chemicals: a consensus statement

    DEFF Research Database (Denmark)

    Solecki, Roland; Kortenkamp, Andreas; Bergman, Åke

    2017-01-01

    Endocrine disruption is a specific form of toxicity, where natural and/or anthropogenic chemicals, known as "endocrine disruptors" (EDs), trigger adverse health effects by disrupting the endogenous hormone system. There is need to harmonize guidance on the regulation of EDs, but this has been...

  17. Putative effects of endocrine disrupters on pubertal development in the human

    DEFF Research Database (Denmark)

    Teilmann, Grete; Juul, Anders; Skakkebaek, Niels E

    2002-01-01

    -called endocrine disrupters. Precocious puberty has been described in several case reports of accidental exposure to oestrogenic compounds in cosmetic products, food and pharmaceuticals. Local epidemics of premature thelarche have also been suggested to be linked to endocrine disrupters. Children adopted from...

  18. Endocrine disrupting chemicals in indoor and outdoor air

    Science.gov (United States)

    Rudel, Ruthann A.; Perovich, Laura J.

    The past 50 years have seen rapid development of new building materials, furnishings, and consumer products and a corresponding explosion in new chemicals in the built environment. While exposure levels are largely undocumented, they are likely to have increased as a wider variety of chemicals came into use, people began spending more time indoors, and air exchange rates decreased to improve energy efficiency. As a result of weak regulatory requirements for chemical safety testing, only limited toxicity data are available for these chemicals. Over the past 15 years, some chemical classes commonly used in building materials, furnishings, and consumer products have been shown to be endocrine disrupting chemicals - that is they interfere with the action of endogenous hormones. These include PCBs, used in electrical equipment, caulking, paints and surface coatings; chlorinated and brominated flame retardants, used in electronics, furniture, and textiles; pesticides, used to control insects, weeds, and other pests in agriculture, lawn maintenance, and the built environment; phthalates, used in vinyl, plastics, fragrances, and other products; alkylphenols, used in detergents, pesticide formulations, and polystyrene plastics; and parabens, used to preserve products like lotions and sunscreens. This paper summarizes reported indoor and outdoor air concentrations, chemical use and sources, and toxicity data for each of these chemical classes. While industrial and transportation-related pollutants have been shown to migrate indoors from outdoor sources, it is expected that indoor sources predominate for these consumer product chemicals; and some studies have identified indoor sources as the predominant factor influencing outdoor ambient air concentrations in densely populated areas. Mechanisms of action, adverse effects, and dose-response relationships for many of these chemicals are poorly understood and no systematic screening of common chemicals for endocrine disrupting

  19. Bisphenol A, an endocrine-disrupting chemical, and brain development.

    Science.gov (United States)

    Itoh, Kyoko; Yaoi, Takeshi; Fushiki, Shinji

    2012-08-01

    Bisphenol A (BPA) is an endocrine-disrupting chemical, widely used in various industries and the field of dentistry. The consequent increase in BPA exposure among humans has led us to some concerns regarding the potential deleterious effects on reproduction and brain development. The emphasis of this review is on the effects of prenatal and lactational exposure to low doses of BPA on brain development in mice. We demonstrated that prenatal exposure to BPA affected fetal murine neocortical development by accelerating neuronal differentiation/migration during the early embryonic stage, which was associated with up- and down-regulation of the genes critical for brain development, including the basic helix-loop-helix transcription factors. In the adult mice brains, both abnormal neocortical architecture and abnormal corticothalamic projections persisted in the group exposed to the BPA. Functionally, BPA exposure disturbed murine behavior, accompanied with a disrupted neurotransmitter system, including monoamines, in the postnatal development period and in adult mice. We also demonstrated that epigenetic alterations in promoter-associated CpG islands might underlie some of the effects on brain development after exposure to BPA. © 2012 Japanese Society of Neuropathology.

  20. Effects of Common Pesticides on Prostaglandin D2 (PGD2) Inhibition in SC5 Mouse Sertoli Cells, Evidence of Binding at the COX-2 Active Site, and Implications for Endocrine Disruption

    Science.gov (United States)

    Kugathas, Subramaniam; Audouze, Karine; Ermler, Sibylle; Orton, Frances; Rosivatz, Erika; Scholze, Martin; Kortenkamp, Andreas

    2015-01-01

    Background: There are concerns that diminished prostaglandin action in fetal life could increase the risk of congenital malformations. Many endocrine-disrupting chemicals have been found to suppress prostaglandin synthesis, but to our knowledge, pesticides have never been tested for these effects. Objectives: We assessed the ability of pesticides that are commonly used in the European Union to suppress prostaglandin D2 (PGD2) synthesis. Methods: Changes in PGD2 secretion in juvenile mouse Sertoli cells (SC5 cells) were measured using an ELISA. Coincubation with arachidonic acid (AA) was conducted to determine the site of action in the PGD2 synthetic pathway. Molecular modeling studies were performed to assess whether pesticides identified as PGD2-active could serve as ligands of the cyclooxygenase-2 (COX-2) binding pocket. Results: The pesticides boscalid, chlorpropham, cypermethrin, cyprodinil, fenhexamid, fludioxonil, imazalil (enilconazole), imidacloprid, iprodione, linuron, methiocarb, o-phenylphenol, pirimiphos-methyl, pyrimethanil, and tebuconazole suppressed PGD2 production. Strikingly, some of these substances—o-phenylphenol, cypermethrin, cyprodinil, linuron, and imazalil (enilconazole)—showed potencies (IC50) in the range between 175 and 1,500 nM, similar to those of analgesics intended to block COX enzymes. Supplementation with AA failed to reverse this effect, suggesting that the sites of action of these pesticides are COX enzymes. The molecular modeling studies revealed that the COX-2 binding pocket can accommodate most of the pesticides shown to suppress PGD2 synthesis. Some of these pesticides are also capable of antagonizing the androgen receptor. Conclusions: Chemicals with structural features more varied than previously thought can suppress PGD2 synthesis. Our findings signal a need for in vivo studies to establish the extent of endocrine-disrupting effects that might arise from simultaneous interference with PGD2 signaling and androgen action

  1. Effects of Common Pesticides on Prostaglandin D2 (PGD2) Inhibition in SC5 Mouse Sertoli Cells, Evidence of Binding at the COX-2 Active Site, and Implications for Endocrine Disruption.

    Science.gov (United States)

    Kugathas, Subramaniam; Audouze, Karine; Ermler, Sibylle; Orton, Frances; Rosivatz, Erika; Scholze, Martin; Kortenkamp, Andreas

    2016-04-01

    There are concerns that diminished prostaglandin action in fetal life could increase the risk of congenital malformations. Many endocrine-disrupting chemicals have been found to suppress prostaglandin synthesis, but to our knowledge, pesticides have never been tested for these effects. We assessed the ability of pesticides that are commonly used in the European Union to suppress prostaglandin D2 (PGD2) synthesis. Changes in PGD2 secretion in juvenile mouse Sertoli cells (SC5 cells) were measured using an ELISA. Coincubation with arachidonic acid (AA) was conducted to determine the site of action in the PGD2 synthetic pathway. Molecular modeling studies were performed to assess whether pesticides identified as PGD2-active could serve as ligands of the cyclooxygenase-2 (COX-2) binding pocket. The pesticides boscalid, chlorpropham, cypermethrin, cyprodinil, fenhexamid, fludioxonil, imazalil (enilconazole), imidacloprid, iprodione, linuron, methiocarb, o-phenylphenol, pirimiphos-methyl, pyrimethanil, and tebuconazole suppressed PGD2 production. Strikingly, some of these substances-o-phenylphenol, cypermethrin, cyprodinil, linuron, and imazalil (enilconazole)-showed potencies (IC50) in the range between 175 and 1,500 nM, similar to those of analgesics intended to block COX enzymes. Supplementation with AA failed to reverse this effect, suggesting that the sites of action of these pesticides are COX enzymes. The molecular modeling studies revealed that the COX-2 binding pocket can accommodate most of the pesticides shown to suppress PGD2 synthesis. Some of these pesticides are also capable of antagonizing the androgen receptor. Chemicals with structural features more varied than previously thought can suppress PGD2 synthesis. Our findings signal a need for in vivo studies to establish the extent of endocrine-disrupting effects that might arise from simultaneous interference with PGD2 signaling and androgen action. Kugathas S, Audouze K, Ermler S, Orton F, Rosivatz E

  2. Environmental analysis of endocrine disrupting effects from hydrocarbon contaminants in the ecosystem. 1998 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    McLachlan, J.

    1998-06-01

    'The objective of this project is to determine how environmental contaminants, namely hydrocarbons, can act as hormones or anti-hormones (i.e., environmental hormones) in different species present in aquatic ecosystems. Species of particular focus are those which can serve as sentinel species (e.g., amphibians) and, thus, provide early warning signals for more widespread impacts on an ecosystem and its wildlife and human inhabitants. This reports the progress of 1.5 years of a three-year grant awarded to the Tulane/Xavier Center for Bioenvironmental Research (CBR). A growing body of evidence suggests that chemicals in the environment can disrupt the endocrine system of animals (i.e., wildlife and humans) and adversely impact the development of these species. Because of the multitude of known endocrine-disrupting chemicals and the numerous industrial and government sectors producing these chemicals, almost every federal agency has initiated research on the endocrine effects of chemicals relevant to their operations. This study represents the Department of Energy (DOE) Basic Energy Sciences'' only research on the impacts of endocrine-disrupting chemicals. The activities employed by this project to determine these impacts include development of biotechnology screens (in vitro), animal screens (in vivo), and other analyses of aquatic ecosystem biomarkers of exposure. The results from this study can elucidate how chemicals in the environment, including those from DOE activities, can signal (and alter) the development of a number of species in aquatic ecosystems. These signals can have detrimental impacts not only on an organismal level, but also on community, population, and entire ecosystem levels, including humans.'

  3. Endocrine-disrupting chemicals and obesity development in humans: A review

    DEFF Research Database (Denmark)

    Tang-Péronard, Jeanett; Andersen, Helle Raun; Jensen, Tina Kold

    2011-01-01

    This study reviewed the literature on the relations between exposure to chemicals with endocrine-disrupting abilities and obesity in humans. The studies generally indicated that exposure to some of the endocrine-disrupting chemicals was associated with an increase in body size in humans. The resu...... predisposing to later weight gain. The study findings suggest that some endocrine disruptors may play a role for the development of the obesity epidemic, in addition to the more commonly perceived putative contributors.......This study reviewed the literature on the relations between exposure to chemicals with endocrine-disrupting abilities and obesity in humans. The studies generally indicated that exposure to some of the endocrine-disrupting chemicals was associated with an increase in body size in humans...

  4. Persistent Endocrine-Disrupting Chemicals and Fatty Liver Disease.

    Science.gov (United States)

    Deierlein, Andrea L; Rock, Sarah; Park, Sally

    2017-12-01

    Non-alcoholic fatty liver disease (NAFLD) is the most prominent chronic liver disease in Western countries, affecting approximately 25% of the population worldwide. Sex-specific differences in the development of NAFLD are apparent. While obesity and insulin resistance are major contributors to the increasing prevalence of NAFLD, a growing body of literature suggests that exposure to persistent endocrine-disrupting chemicals (pEDCs) may also play a role. This review summarizes recent (2011 and later) scientific literature investigating exposures to pEDCs, specifically persistent organic pollutants (POPs), and NAFLD, with a focus on sex-specific associations. The overwhelming majority of studies were conducted in single-sex animal models and provide biological evidence that exposures to 2,3,7,8-tetrachlorodibenzo-p-dioxin polychlorinated biphenyls, and other POPs or POP mixtures are negatively associated with liver health. There were four cross-sectional epidemiological studies in humans that reported associations for several POPs, including polychlorinated biphenyls and perfluorinated chemicals, with elevated liver enzymes. Only one of these studies, using a sample of gastric bypass surgery patients, examined sex-specific associations of POPs and liver enzymes, finding adverse associations among women only. The noticeable lack of studies investigating how differences (i.e., biochemical, physiological, and behavioral) between men and women may influence associations of pEDCs and NAFLD represents a large research gap in environmental health. Sexual dimorphism in metabolic processes throughout the body, including the liver, is established but often overlooked in the designs and analyses of studies. Other factors identified in this review that may also act to modulate associations of environmental chemicals and NAFLD are reproductive status and dietary nutrient intakes, which also remain understudied in the literature. Despite knowledge of sexual dimorphism in the

  5. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals

    Science.gov (United States)

    Chappell, V. A.; Fenton, S. E.; Flaws, J. A.; Nadal, A.; Prins, G. S.; Toppari, J.; Zoeller, R. T.

    2015-01-01

    The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans—especially during development—may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the

  6. Endocrine disrupting potentials of Bisphenol A, Bisphenol A dimethacrylate, 4-n-Nonyl-phenol and 4-Octylphenol assessed in cell model systems for effects on the estrogen-, androgen-, aryl hydrocarbon-receptor and aromatase activity

    DEFF Research Database (Denmark)

    Bonefeld-Jørgensen, Eva Cecilie; Long, Manhai; Hofmeister, Marlene V

      An array of plastic components is known to possess endocrine disruption (ED) potentials. Bisphenol A (BPA) and BPA-Dimethacrylate (BPA-DM) are monomers used to high extent in the plastic industry and as dental sealants. Alkylphenols such as 4-n-nonylphenol (NP) and 4-octylphenol (OP) are widely...... used as surfactants. We have investigated the effect in vitro of these four plasticizers in four cell culture model systems.The estrogenic potencies were analyzed using the stable ERE-luciferase transfected cell line MVLN measuring the relative estrogen receptor (ER) transactivated luciferase units...... (RLU). Effects on the Androgen receptor (AR) trans-activation were investigated by co-transfection of the CHO-K1 hamster cells using the reporter vector MMTV-LUC and the AR expression vector pSVAR0. Effects on the CYP19 aromatase, an important enzyme in the steroid synthesis pathway involved...

  7. The EDKB: an established knowledge base for endocrine disrupting chemicals.

    Science.gov (United States)

    Ding, Don; Xu, Lei; Fang, Hong; Hong, Huixiao; Perkins, Roger; Harris, Steve; Bearden, Edward D; Shi, Leming; Tong, Weida

    2010-10-07

    Endocrine disruptors (EDs) and their broad range of potential adverse effects in humans and other animals have been a concern for nearly two decades. Many putative EDs are widely used in commercial products regulated by the Food and Drug Administration (FDA) such as food packaging materials, ingredients of cosmetics, medical and dental devices, and drugs. The Endocrine Disruptor Knowledge Base (EDKB) project was initiated in the mid 1990's by the FDA as a resource for the study of EDs. The EDKB database, a component of the project, contains data across multiple assay types for chemicals across a broad structural diversity. This paper demonstrates the utility of EDKB database, an integral part of the EDKB project, for understanding and prioritizing EDs for testing. The EDKB database currently contains 3,257 records of over 1,800 EDs from different assays including estrogen receptor binding, androgen receptor binding, uterotropic activity, cell proliferation, and reporter gene assays. Information for each compound such as chemical structure, assay type, potency, etc. is organized to enable efficient searching. A user-friendly interface provides rapid navigation, Boolean searches on EDs, and both spreadsheet and graphical displays for viewing results. The search engine implemented in the EDKB database enables searching by one or more of the following fields: chemical structure (including exact search and similarity search), name, molecular formula, CAS registration number, experiment source, molecular weight, etc. The data can be cross-linked to other publicly available and related databases including TOXNET, Cactus, ChemIDplus, ChemACX, Chem Finder, and NCI DTP. The EDKB database enables scientists and regulatory reviewers to quickly access ED data from multiple assays for specific or similar compounds. The data have been used to categorize chemicals according to potential risks for endocrine activity, thus providing a basis for prioritizing chemicals for more

  8. Minireview: Transgenerational Epigenetic Inheritance: Focus on Endocrine Disrupting Compounds

    Science.gov (United States)

    Rissman, Emilie F.

    2014-01-01

    The idea that what we eat, feel, and experience influences our physical and mental state and can be transmitted to our offspring and even to subsequent generations has been in the popular realm for a long time. In addition to classic gene mutations, we now recognize that some mechanisms for inheritance do not require changes in DNA. The field of epigenetics has provided a new appreciation for the variety of ways biological traits can be transmitted to subsequent generations. Thus, transgenerational epigenetic inheritance has emerged as a new area of research. We have four goals for this minireview. First, we describe the topic and some of the nomenclature used in the literature. Second, we explain the major epigenetic mechanisms implicated in transgenerational inheritance. Next, we examine some of the best examples of transgenerational epigenetic inheritance, with an emphasis on those produced by exposing the parental generation to endocrine-disrupting compounds (EDCs). Finally, we discuss how whole-genome profiling approaches can be used to identify aberrant epigenomic features and gain insight into the mechanism of EDC-mediated transgenerational epigenetic inheritance. Our goal is to educate readers about the range of possible epigenetic mechanisms that exist and encourage researchers to think broadly and apply multiple genomic and epigenomic technologies to their work. PMID:24885575

  9. Mate choice, sexual selection, and endocrine-disrupting chemicals.

    Science.gov (United States)

    Gore, Andrea C; Holley, Amanda M; Crews, David

    2017-09-11

    Humans have disproportionately affected the habitat and survival of species through environmental contamination. Important among these anthropogenic influences is the proliferation of organic chemicals, some of which perturb hormone systems, the latter referred to as endocrine-disrupting chemicals (EDCs). EDCs are widespread in the environment and affect all levels of reproduction, including development of reproductive organs, hormone release and regulation through the life cycle, the development of secondary sexual characteristics, and the maturation and maintenance of adult physiology and behavior. However, what is not well-known is how the confluence of EDC actions on the manifestation of morphological and behavioral sexual traits influences mate choice, a process that requires the reciprocal evaluation of and/or acceptance of a sexual partner. Moreover, the outcomes of EDC-induced perturbations are likely to influence sexual selection; yet this has rarely been directly tested. Here, we provide background on the development and manifestation of sexual traits, reproductive competence, and the neurobiology of sexual behavior, and evidence for their perturbation by EDCs. Selection acts on individuals, with the consequences manifest in populations, and we discuss the implications for EDC contamination of these processes, and the future of species. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Information/testing strategy for identification of substances with endocrine disrupting properties

    DEFF Research Database (Denmark)

    Hass, Ulla; Christiansen, Sofie; Bjerregaard, Poul

    . The overall scope of this project is to provide a science based input to the ongoing work in EU with regard to endocrine disruptors, i.e. the development of criteria for identification, REACH review on EDs and the revised strategy for the future work on endocrine disruptors, focusing on adequate detection......This report has been prepared by the Danish Centre on Endocrine Disrupters (CeHoS) as a project contracted by the Danish Environmental Protection Agency. The Danish Centre on Endocrine Disrupters is an interdisciplinary scientific network without walls. The main purpose of the Centre is to build...... and gather new knowledge on endocrine disrupters (EDs) with the focus on providing information requested for the preventive work of the regulatory authorities. The Centre is financed by the Ministry of the Environment and the scientific work programme is followed by an international scientific advisory board...

  11. Endocrine disrupting effects in rats perinatally exposed to a dietary relevant mixture of phytoestrogens

    DEFF Research Database (Denmark)

    Boberg, Julie; Mandrup, Karen; Jacobsen, Pernille Rosenskjold

    2013-01-01

    genes in testis and prostate were unaffected. Decreased serum estradiol was seen in genistein-exposed dams. This study indicated adverse effects at high intake levels in rats, but does not provide evidence for risk of phytoestrogen-mediated endocrine disruption at normal human dietary consumption levels......Dietary phytoestrogens may prevent certain human diseases, but endocrine activity has been reported in animal studies. Sprague-Dawley rats were exposed perinatally to a 1-, 10- or 100-fold “high human dietary intake” mixture of 12 phytoestrogens consisting of mainly the lignan secoisolarici resinol...... and the isoflavones genistein and daidzein.This mixture induced persistent adverse effects, as adult male mammary glands showed hypertrophic growth. A reduced anogenital distance in newborn males indicated an anti-androgenic mode of action. Testosterone levels, testis and prostate weights, and expression of selected...

  12. Photocatalytic activity of ZnO doped with Ag on the degradation of endocrine disrupting under UV irradiation and the investigation of its antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Bechambi, Olfa [Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie des Matériaux et Catalyse, 2092, Tunis (Tunisia); Chalbi, Manel [Laboratoire de Bioprocédés Environnementaux, Centre de Biotechnologie de Sfax, B.P. 1177, 3018 Sfax (Tunisia); Najjar, Wahiba, E-mail: najjarwahiba2014@gmail.com [Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie des Matériaux et Catalyse, 2092, Tunis (Tunisia); Sayadi, Sami [Laboratoire de Bioprocédés Environnementaux, Centre de Biotechnologie de Sfax, B.P. 1177, 3018 Sfax (Tunisia)

    2015-08-30

    Graphical abstract: - Highlights: • A series of Ag-doped ZnO were synthesized via hydrothermal method. • Effect of doping with silver on the textural, structural optical properties of ZnO. • The photocatalytic activity has been tested using bisphenol A and nonylphenol. • The highest degradation efficiency was obtained with 1% Ag. • Ag doping enhances the photocatalytic and antibacterial activities of ZnO. - Abstract: Ag-doped ZnO photocatalysts with different Ag molar content (0.0, 0.5, 1.0, 2.0 and 4.0%) were prepared via hydrothermal method. The X-ray diffraction (XRD), Nitrogen physisorption at 77 K, Fourier transformed infrared spectroscopy (FTIR), UV–-Visible spectroscopy, Photoluminescence spectra (PL) and Raman spectroscopy were used to characterize the structural, textural and optical properties of the samples. The results showed that Ag-doping does not change the average crystallite size with the Ag low content (≤1.0%) but slightly decreases with Ag high content (>1.0%). The specific surface area (S{sub BET}) increases with the increase of the Ag content. The band gap values of ZnO are decreased with the increase of the Ag doping level. The results of the photocatalytic degradation of bisphenol A (BPA) and nonylphenol (NP) in aqueous solutions under UV irradiation and in the presence of hydrogen peroxide (H{sub 2}O{sub 2}) showed that silver ions doping greatly improved the photocatalytic efficiency of ZnO. The TOC conversion BPA and NP are 72.1% and 81.08% respectively obtained using 1% Ag-doped ZnO. The enhancement of photocatalytic activity is ascribed to the fact that the modification of ZnO with an appropriate amount of Ag can increase the separation efficiency of the photogenerated electrons-holes in ZnO. The antibacterial activity of the catalysts which uses Escherichia coli as a model for Gram-negative bacteria confirmed that Ag-doped ZnO possessed more antibacterial activity than the pure ZnO.

  13. Development of a Biosensor for Identifying Novel Endocrine-Disrupting Chemicals

    National Research Council Canada - National Science Library

    Standley, Laurel J

    2008-01-01

    Substantial evidence indicates that endocrine disrupting chemicals (EDCs) particularly those that interact with the estrogen receptor may play a role in reproduction and hormonal cancers in humans and animals...

  14. Removal of Selected Endocrine Disrupting Chemicals During On-Site Wastewater Treatment Using A Constructed Wetland

    Science.gov (United States)

    Significant research has shown that domestic and industrial wastewater can be a source of endocrine disrupting chemicals (EDCs) to the environment. Much of this research has focused on municipal and industrial centralized wastewater treatment plants. These plants have been show...

  15. Human Fetal Testis Xenografts Are Resistant to Phthalate-Induced Endocrine Disruption

    National Research Council Canada - National Science Library

    Nicholas E. Heger; Susan J. Hall; Moses A. Sandrof; Elizabeth V. McDonnell; Janan B. Hensley; Erin N. McDowell; Kayla A. Martin; Kevin W. Gaido; Kamin J. Johnson; Kim Boekelheide

    2012-01-01

    .... Impomntly, ex vivo phthalate exposure of the letal testis does not recapitulate the species-specific endocrine disruption, demonstrating me need for a new bioassay to assess the human response to phthalates. Objectives...

  16. An in vitro investigation of endocrine disrupting effects of the mycotoxin alternariol

    Energy Technology Data Exchange (ETDEWEB)

    Frizzell, Caroline [Institute for Global Food Security, School of Biological Sciences, Queen' s University Belfast, Northern Ireland (United Kingdom); Ndossi, Doreen [Section of Experimental Biomedicine, Norwegian School of Veterinary Science, Oslo (Norway); Sokoine University of Agriculture, Morogoro (Tanzania, United Republic of); Kalayou, Shewit [Section of Experimental Biomedicine, Norwegian School of Veterinary Science, Oslo (Norway); Mekelle University College of Veterinary Medicine, Mekelle (Ethiopia); Eriksen, Gunnar S. [Norwegian Veterinary Institute, Oslo (Norway); Verhaegen, Steven [Section of Experimental Biomedicine, Norwegian School of Veterinary Science, Oslo (Norway); Sørlie, Morten [Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås (Norway); Elliott, Christopher T. [Institute for Global Food Security, School of Biological Sciences, Queen' s University Belfast, Northern Ireland (United Kingdom); Ropstad, Erik [Section of Experimental Biomedicine, Norwegian School of Veterinary Science, Oslo (Norway); Connolly, Lisa, E-mail: l.connolly@qub.ac.uk [Institute for Global Food Security, School of Biological Sciences, Queen' s University Belfast, Northern Ireland (United Kingdom)

    2013-08-15

    Alternariol (AOH) is a mycotoxin commonly produced by Alternaria alternata on a wide range of foods. Few studies to date have been performed to evaluate the effects of AOH on endocrine activity. The present study makes use of in vitro mammalian cellular based assays and gene expression to investigate the ability of AOH to act as an endocrine disruptor by various modes of action. Reporter gene assays (RGAs), incorporating natural steroid hormone receptors for oestrogens, androgens, progestagens and glucocorticoids were used to identify endocrine disruption at the level of nuclear receptor transcriptional activity, and the H295R steroidogenesis assay was used to assess endocrine disruption at the level of gene expression and steroid hormone production. AOH exhibited a weak oestrogenic response when tested in the oestrogen responsive RGA and binding of progesterone to the progestagen receptor was shown to be synergistically increased in the presence of AOH. H295R cells when exposed to 0.1–1000 ng/ml AOH, did not cause a significant change in testosterone and cortisol hormones but exposure to 1000 ng/ml (3.87 μM) AOH resulted in a significant increase in estradiol and progesterone production. In the gene expression study following exposure to 1000 ng/ml (3.87 μM) AOH, only one gene NR0B1 was down-regulated, whereas expression of mRNA for CYP1A1, MC2R, HSD3B2, CYP17, CYP21, CYP11B2 and CYP19 was up-regulated. Expression of the other genes investigated did not change significantly. In conclusion AOH is a weak oestrogenic mycotoxin that also has the ability to interfere with the steroidogenesis pathway. - Highlights: • Alternariol was investigated for endocrine disrupting activity. • Reporter gene assays and the H295R steroidogenesis assay have been used. • An oestrogenic effect of alternariol was observed. • This can lead to an increase in expression of the progesterone receptor. • Alternariol is capable of modulating hormone production and gene expression.

  17. A proposed framework for the systematic review and integrated assessment (SYRINA) of endocrine disrupting chemicals

    DEFF Research Database (Denmark)

    Vandenberg, Laura N.; Agerstrand, Marlene; Beronius, Anna

    2016-01-01

    on Chemical Safety (IPCS) and World Health Organization (WHO) definition of an EDC, which requires appraisal of evidence regarding 1) association between exposure and an adverse effect, 2) association between exposure and endocrine disrupting activity, and 3) a plausible link between the adverse effect...... and evaluate each stream of evidence; 6) Integrate evidence across all streams; 7) Draw conclusions, make recommendations, and evaluate uncertainties. The proposed method is tailored to the IPCS/WHO definition of an EDC but offers flexibility for use in the context of other definitions of EDCs...

  18. Introduction to the science and regulation concerning endocrine disrupting chemicals: the challenges ahead

    OpenAIRE

    Leopold, Annegaaike; Kraak, Glen Van Der; Manibusan, Mary K.; Andersson, Niklas; Wheeler, James R.

    2016-01-01

    Presentations in session one of the Society of Environmental Toxicology and Chemistry (SETAC) North America Focused Topic Meeting: Endocrine Disruption (February 4 – 6, 2014) described where the science and the regulations have arrived and identified the key challenges that lie ahead. The first presentation gave an overview of where the endocrine disrupting chemical (EDC) issue currently stands in terms of science and policy. It introduced the significant debate about whether suspected EDCs s...

  19. A path forward in the debate over health impacts of endocrine disrupting chemicals

    DEFF Research Database (Denmark)

    Zoeller, Robert T; Bergmann, Åke; Becher, Georg

    2014-01-01

    and risk assessment reviewed the various aspects of the debate to identify the most significant areas of dispute and to propose a path forward. We identified four areas of debate. The first is about the definitions for terms such as "endocrine disrupting chemical", "adverse effects", and "endocrine system......Several recent publications reflect debate on the issue of "endocrine disrupting chemicals" (EDCs), indicating that two seemingly mutually exclusive perspectives are being articulated separately and independently. Considering this, a group of scientists with expertise in basic science, medicine...

  20. Integrative assessment of enantioselectivity in endocrine disruption and immunotoxicity of synthetic pyrethroids

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Meirong [Research Center of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Chen Fang [College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018 (China); Wang Cui; Zhang Quan [Research Center of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Gan Jianying [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States); Liu Weiping, E-mail: wliu@zjut.edu.c [Research Center of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China)

    2010-05-15

    The increasing release of chiral chemicals into the environment dictates attention to a better understanding of enantioselectivity in their human and ecotoxicological effects. Although enantioselectivity has been considered in many recent studies, there is little effort for discerning the connection between different processes, and as such, our current knowledge about chiral contaminants is rather scattered and incoherent. In this study, we simultaneously evaluated enantioselectivity of two chiral pesticides, lambda-cyhalothrin (LCT) and (Z)-cis-bifenthrin (cis-BF), in immunotoxicity to macrophage cells (RAW264.7), and endocrine disruption activity in human breast carcinoma cell line MCF-7. Analysis of cell proliferation, cell viability, apoptosis, and receptor gene expression showed significant differences between the enantiomers of LCT or cis-BF in estrogenic potential and immunocytotoxicity. The selectivity in these effects consistently followed the same direction, with (-)-LCT or 1S-cis-BF displaying a greater activity than its counterpart. The consistency was attributed to interplaying mechanisms in the closely interacting immune and endocrine systems. The underlying interplays suggest that other chiral xenobiotics may also show a directional enantioselectivity in immunotoxicity and endocrine toxicity. Given that many biological processes are inter-related, enantioselectivity may follow specific patterns that can be revealed via integrative assessments as demonstrated in this study. - Chiral contaminants should consider multiple effects and relate directions of enantioselectivity to their interplaying processes.

  1. Endocrine-disrupting effect of the ultraviolet filter benzophenone-3 in zebrafish, Danio rerio

    DEFF Research Database (Denmark)

    Kinnberg, Karin Lund; Petersen, Gitte I.; Albrektsen, Mette

    2015-01-01

    The chemical ultraviolet (UV) filter benzophenone-3 (BP-3) is suspected to be an endocrine disruptor based on results from in vitro and in vivo testing. However, studies including endpoints of endocrine adversity are lacking. The present study investigated the potential endocrine-disrupting effects...... not affect the vitellogenin concentration in TG 234. After 12 d exposure of adult male zebrafish, a slight but yet significant increase in the vitellogenin concentration was observed at 268 µg/L but not at 63 µg/L and 437 µg/l BP-3. Skewing of the sex ratio is a marker of an endocrine mediated mechanism...... as well as a marker of adversity and therefore the conclusion of the investigation is that BP-3 is an endocrine-disrupting chemical in accordance with the World Health Organization's definition....

  2. Bisphenol A and phthalate endocrine disruption of parental and social behaviors

    Science.gov (United States)

    Rosenfeld, Cheryl S.

    2015-01-01

    Perinatal exposure to endocrine disrupting chemicals (EDCs) can induce promiscuous neurobehavioral disturbances. Bisphenol A and phthalates are two widely prevalent and persistent EDCs reported to lead to such effects. Parental and social behaviors are especially vulnerable to endocrine disruption, as these traits are programmed by the organizational-activational effects of testosterone and estrogen. Exposure to BPA and other EDCs disrupts normal maternal care provided by rodents and non-human primates, such as nursing, time she spends hunched over and in the nest, and grooming her pups. Paternal care may also be affected by BPA. No long-term study has linked perinatal exposure to BPA or other EDC and later parental behavioral deficits in humans. The fact that the same brain regions and neural hormone substrates govern parental behaviors in animal models and humans suggests that this suite of behaviors may also be vulnerable in the latter. Social behaviors, such as communication, mate choice, pair bonding, social inquisitiveness and recognition, play behavior, social grooming, copulation, and aggression, are compromised in animal models exposed to BPA, phthalates, and other EDCs. Early contact to these chemicals is also correlated with maladaptive social behaviors in children. These behavioral disturbances may originate by altering the fetal or adult gonadal production of testosterone or estrogen, expression of ESR1, ESR2, and AR in the brain regions governing these behaviors, neuropeptide/protein hormone (oxytocin, vasopressin, and prolactin) and their cognate neural receptors, and/or through epimutations. Robust evidence exists for all of these EDC-induced changes. Concern also exists for transgenerational persistence of such neurobehavioral disruptions. In sum, evidence for social and parental deficits induced by BPA, phthalates, and related chemicals is strongly mounting, and such effects may ultimately compromise the overall social fitness of populations to

  3. Bisphenol A and Phthalate Endocrine Disruption of Parental and Social Behaviors

    Directory of Open Access Journals (Sweden)

    Cheryl Susan Rosenfeld

    2015-03-01

    Full Text Available Perinatal exposure to endocrine disrupting compounds (EDCs can induce promiscuous neurobehavioral disturbances. Bisphenol A and phthalates are two widely prevalent and persistent EDCs reported to lead to such effects. Parental and social behaviors are especially vulnerable to endocrine disruption, as these traits are programmed by the organizational-activational effects of testosterone and estrogen. BPA and other EDC exposure disrupts normal maternal care provided by rodents and non-human primates, such as nursing, time she spends hunched over and in the nest, and grooming her pups. Paternal care may also be affected by BPA. No long term study has linked perinatal exposure to BPA or other EDC and later parental behavioral deficits in humans. The fact that the same brain regions and neural hormone substrates govern parental behaviors in animal models and humans suggests that this suite of behaviors may also be vulnerable in the latter. Social behaviors, such as communication, mate choice, pair bonding, social inquisitiveness and recognition, play behavior, social grooming, copulation, and aggression, are compromised in animal models exposed to BPA, phthalates, and other EDCs. Early contact to these chemicals is also correlated with maladaptive social behaviors in children. These behavioral disturbances may originate by altering the fetal or adult gonadal production of testosterone or estrogen, expression of ESR1, ESR2, and AR in the brain regions governing these behaviors, neuropeptide/ protein hormone (oxytocin, vasopressin, and prolactin and their cognate neural receptors, and/or through epimutations. Robust evidence exists for all of these EDC-induced changes. Concern also exists for transgenerational persistence of such neurobehavioral disruptions. In sum, evidence for social and parental deficits induced by BPA, phthalates, and related chemicals is strongly mounting, and such effects may ultimately compromise the overall social fitness of

  4. Endocrine Disruption: Computational Perspectives on Human Sex Hormone-Binding Globulin and Phthalate Plasticizers

    Science.gov (United States)

    Sheikh, Ishfaq A.; Turki, Rola F.; Abuzenadah, Adel M.; Damanhouri, Ghazi A.; Beg, Mohd A.

    2016-01-01

    Phthalates are a class of high volume production chemicals used as plasticizers for household and industrial use. Several members of this chemical family have endocrine disrupting activity. Owing to ubiquitous environmental distribution and exposure of human population at all stages of life, phthalate contamination is a continuous global public health problem. Clinical and experimental studies have indicated that several phthalates are associated with adverse effects on development and function of human and animal systems especially the reproductive system and exposures during pregnancy and early childhood are by far of utmost concern. Sex hormone-binding globulin (SHBG) is a plasma carrier protein that binds androgens and estrogens and represents a potential target for phthalate endocrine disruptor function in the body. In the present study, the binding mechanism of the nine phthalates i.e. DMP, DBP, DIBP, BBP, DNHP, DEHP, DNOP, DINP, DIDP with human SHBG was delineated by molecular docking simulation. Docking complexes of the nine phthalates displayed interactions with 15–31 amino acid residues of SHBG and a commonality of 55–95% interacting residues between natural ligand of SHBG, dihydrotestosterone, and the nine phthalate compounds was observed. The binding affinity values were more negative for long chain phthalates DEHP, DNOP, DINP, and DIDP compared to short chain phthalates such as DMP and DBP. The Dock score and Glide score values were also higher for long chain phthalates compared to short chain phthalates. Hence, overlapping of interacting amino acid residues between phthalate compounds and natural ligand, dihydrotestosterone, suggested potential disrupting activity of phthalates in the endocrine homeostasis function of SHBG, with long chain phthalates expected to be more potent than the short chain phthalates. PMID:26963243

  5. Multi-class of endocrine disrupting compounds in aquaculture ecosystems and health impacts in exposed biota.

    Science.gov (United States)

    Ismail, Nur Afifah Hanun; Wee, Sze Yee; Aris, Ahmad Zaharin

    2017-12-01

    Fishes are a major protein food source for humans, with a high economic value in the aquaculture industry. Because endocrine disrupting compounds (EDCs) have been introduced into aquatic ecosystems, the exposure of humans and animals that depend on aquatic foods, especially fishes, should be seriously considered. EDCs are emerging pollutants causing global concern because they can disrupt the endocrine system in aquatic organisms, mammals, and humans. These pollutants have been released into the environment through many sources, e.g., wastewater treatment plants, terrestrial run-off (industrial activities, pharmaceuticals, and household waste), and precipitation. The use of pharmaceuticals, pesticides, and fertilizers for maintaining and increasing fish health and growth also contributes to EDC pollution in the water body. Human and animal exposure to EDCs occurs via ingestion of contaminated matrices, especially aquatic foodstuffs. This paper aims to review human EDC exposure via fish consumption. In respect to the trace concentration of EDCs in fish, types of instrument and clean-up method are of great concerns. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Thyroid endocrine system disruption by pentachlorophenol: an in vitro and in vivo assay.

    Science.gov (United States)

    Guo, Yongyong; Zhou, Bingsheng

    2013-10-15

    The present study aimed to evaluate the disruption caused to the thyroid endocrine system by pentachlorophenol (PCP) using in vitro and in vivo assays. In the in vitro assay, rat pituitary GH3 cells were exposed to 0, 0.1, 0.3, and 1.0 μM PCP. PCP exposure significantly downregulated basal and triiodothyronine (T3)-induced Dio 1 transcription, indicating the antagonistic activity of PCP in vitro. In the in vivo assay, zebrafish embryos were exposed to 0, 1, 3, and 10 μg/L of PCP until 14 days post-fertilization. PCP exposure resulted in decreased thyroxine (T4) levels, but elevated contents of whole-body T3. PCP exposure significantly upregulated the mRNA expression of genes along hypothalamic-pituitary-thyroid (HPT) axis, including those encoding thyroid-stimulating hormone, sodium/iodide symporter, thyroglobulin, Dio 1 and Dio 2, alpha and beta thyroid hormone receptor, and uridinediphosphate-glucuronosyl-transferase. PCP exposure did not influence the transcription of the transthyretin (TTR) gene. The results indicate that PCP potentially disrupts the thyroid endocrine system both in vitro and in vivo. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Degrading Endocrine Disrupting Chemicals from Wastewater by TiO Photocatalysis: A Review

    Directory of Open Access Journals (Sweden)

    Jin-Chung Sin

    2012-01-01

    Full Text Available Widespread concerns continue to be raised about the impacts of exposure to chemical compounds with endocrine disrupting activities. To date, the percolation of endocrine disrupting chemical (EDC effluent into the aquatic system remains an intricate challenge abroad the nations. With the innovation of advanced oxidation processes (AOPs, there has been a consistent growing interest in this research field. Hence, the aim of this paper is to focus one such method within the AOPs, namely, heterogeneous photocatalysis and how it is used on the abatement of EDCs, phthalates, bisphenol A and chlorophenols in particular, using TiO2-based catalysts. Degradation mechanisms, pathways, and intermediate products of various EDCs for TiO2 photocatalysis are described in detail. The effect of key operational parameters on TiO2 photocatalytic degradation of various EDCs is then specifically covered. Finally, the future prospects together with the challenges for the TiO2 photocatalysis on EDCs degradation are summarized and discussed.

  8. Atrazine acts as an endocrine disrupter by inhibiting cAMP-specific phosphodiesterase-4

    Energy Technology Data Exchange (ETDEWEB)

    Kucka, Marek [Section on Cellular Signaling, Program in Developmental Neuroscience, NICHD, NIH, Bethesda, MD (United States); Pogrmic-Majkic, Kristina; Fa, Svetlana [Laboratory for Ecotoxicology, Department of Biology and Ecology, University of Novi Sad, Faculty of Sciences, 21000 Novi Sad (Serbia); Stojilkovic, Stanko S. [Section on Cellular Signaling, Program in Developmental Neuroscience, NICHD, NIH, Bethesda, MD (United States); Kovacevic, Radmila, E-mail: radmila.kovacevic@dbe.uns.ac.rs [Laboratory for Ecotoxicology, Department of Biology and Ecology, University of Novi Sad, Faculty of Sciences, 21000 Novi Sad (Serbia)

    2012-11-15

    Atrazine, one of the most commonly used herbicides worldwide, acts as an endocrine disruptor, but the mechanism of its action has not been characterized. In this study, we show that atrazine rapidly increases cAMP levels in cultured rat pituitary and testicular Leydig cells in a concentration-dependent manner, but less effectively than 3-isobutyl-1-methylxanthine, a competitive non-specific inhibitor of phosphodiesterases (PDEs). In forskolin (an activator of adenylyl cyclase)- and probenecid (an inhibitor of cyclic nucleotide transporters)-treated cells, but not in 3-isobutyl-1-methylxanthine-treated cells, atrazine further increased cAMP levels, indicating that inhibition of PDEs accounts for accumulation of cAMP. In contrast to cAMP, atrazine did not alter cGMP levels, further indicating that it inhibits cAMP-specific PDEs. Atrazine-induced changes in cAMP levels were sufficient to stimulate prolactin release in pituitary cells and androgen production in Leydig cells, indicating that it acts as an endocrine disrupter both in cells that secrete by exocytosis of prestored hormones and in cells that secrete by de novo hormone synthesis. Rolipram abolished the stimulatory effect of atrazine on cAMP release in both cell types, suggesting that it acts as an inhibitor of PDE4s, isoforms whose mRNA transcripts dominate in pituitary and Leydig cells together with mRNA for PDE8A. In contrast, immortalized lacto-somatotrophs showed low expression of these mRNA transcripts and several fold higher cAMP levels compared to normal pituitary cells, and atrazine was unable to further increase cAMP levels. These results indicate that atrazine acts as a general endocrine disrupter by inhibiting cAMP-specific PDE4s. -- Highlights: ► Atrazine stimulates cAMP accumulation in pituitary and Leydig cells. ► Atrazine also stimulates PRL and androgens secretion. ► Stimulatory effects of atrazine were abolished in cells with IBMX-inhibited PDEs. ► Atrazine specificity toward c

  9. Experimental designs to assess endocrine disrupting effects in invertebrates. A review.

    Science.gov (United States)

    Barata, Carlos; Porte, Cinta; Baird, Donald J

    2004-08-01

    In order to gain basic understanding of the ecological effects of vertebrate Endocrine Disrupting Chemicals (EDCs), many research groups are currently testing these chemicals using aquatic invertebrates. Small crustaceans, such as cladocerans and copepods, are of particular interest since they are ecologically important and their short life cycles allow obtaining information on demographic parameters. Despite the existence of diverse literature on the development, growth and reproductive effects of EDCs on these crustaceans, only a few studies have unambiguously assessed a truly endocrine disrupting effect. This review discusses new experimental designs to differentiate between endocrine disruption and other causes of reproductive and developmental impairment. Our findings clearly illustrate that many studies may have falsely concluded that chemicals have endocrine disrupting modes of action when in fact a much simpler explanation was not previously ruled out (e.g., egg mortality, feeding inhibition). This means that there is an urgent need for integration of toxic effects on energy intake to toxicity assessments. Such an approach would permit different ectotoxicological models of action, including endocrine disrupting effects, to be distinguished and their relative roles in the overall toxic response to be clarified.

  10. Development and application of QSAR models for mechanisms related to endocrine disruption

    DEFF Research Database (Denmark)

    Abildgaard Rosenberg, Sine

    is a background section, comprising 1) an introduction to the endocrine system with a focus on thyroid hormones (THs) and their essential function in neurodevelopment as well as a description of how chemicals may interference with endocrine mechanisms and cause adverse effects, 2) an introduction to the applied......Humans are daily exposed to a wide variety of man-made chemicals through food, consumer products, water, air inhalation etc. For the main part of these chemicals no or only very limited information is available on their potential to cause endocrine disruption. Traditionally such information has...... information on the mode of action of chemicals in a faster and cheaper way. The main purpose in this PhD project was to develop QSAR models for mechanisms related to endocrine disruption and apply the models to predict 10,000s of chemicals to which humans are potentially exposed. The first part of the thesis...

  11. Effects of endocrine disrupting heavy metals on pituitary and ...

    African Journals Online (AJOL)

    Association of hypogonadism and visceral obesity (VO) was recently demonstrated in male auto-mechanics occupationally exposed to endocrine disruptors (ED)-lead, cadmium, mercury and arsenic, known to alter the hypothalamic-pituitary-testicular axis. The effects of exposure to these EDs on pituitary and gonadal ...

  12. Analysis of Endocrine Disruption in Southern California Coastal Fish using an Aquatic Multi-Species Microarray

    OpenAIRE

    Michael E. Baker; Ruggeri, Barbara; Sprague, L. James; Eckhardt-Ludka, Colleen; Lapira, Jennifer; Wick, Ivan; Soverchia, Laura; Ubaldi, Massimo; Polzonetti-Magni, Alberta Maria; Vidal-Dorsch, Doris; Bay, Steven; Gully, Joseph R.; Jesus A. Reyes; Kevin M Kelley; SCHLENK, DANIEL

    2009-01-01

    Background Endocrine disruptors include plasticizers, pesticides, detergents, and pharmaceuticals. Turbot and other flatfish are used to characterize the presence of chemicals in the marine environment. Unfortunately, there are relatively few genes of turbot and other flatfish in GenBank, which limits the use of molecular tools such as microarrays and quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) to study disruption of endocrine responses in sentinel fish captured by ...

  13. Disruption of parenting behaviors in california mice, a monogamous rodent species, by endocrine disrupting chemicals.

    Directory of Open Access Journals (Sweden)

    Sarah A Johnson

    Full Text Available The nature and extent of care received by an infant can affect social, emotional and cognitive development, features that endure into adulthood. Here we employed the monogamous, California mouse (Peromyscus californicus, a species, like the human, where both parents invest in offspring care, to determine whether early exposure to endocrine disrupting chemicals (EDC: bisphenol A, BPA; ethinyl estradiol, EE of one or both parents altered their behaviors towards their pups. Females exposed to either compound spent less time nursing, grooming and being associated with their pups than controls, although there was little consequence on their weight gain. Care of pups by males was less affected by exposure to BPA and EE, but control, non-exposed females appeared able to "sense" a male partner previously exposed to either compound and, as a consequence, reduced their own parental investment in offspring from such pairings. The data emphasize the potential vulnerability of pups born to parents that had been exposed during their own early development to EDC, and that effects on the male, although subtle, also have consequences on overall parental care due to lack of full acceptance of the male by the female partner.

  14. Polish Society of Endocrinology Position statement on endocrine disrupting chemicals (EDCs).

    Science.gov (United States)

    Rutkowska, Aleksandra; Rachoń, Dominik; Milewicz, Andrzej; Ruchała, Marek; Bolanowski, Marek; Jędrzejuk, Diana; Bednarczuk, Tomasz; Górska, Maria; Hubalewska-Dydejczyk, Alicja; Kos-Kudła, Beata; Lewiński, Andrzej; Zgliczyński, Wojciech

    2015-01-01

    With the reference to the position statements of the Endocrine Society, the Paediatric Endocrine Society, and the European Society of Paediatric Endocrinology, the Polish Society of Endocrinology points out the adverse health effects caused by endocrine disrupting chemicals (EDCs) commonly used in daily life as components of plastics, food containers, pharmaceuticals, and cosmetics. The statement is based on the alarming data about the increase of the prevalence of many endocrine disorders such as: cryptorchidism, precocious puberty in girls and boys, and hormone-dependent cancers (endometrium, breast, prostate). In our opinion, it is of human benefit to conduct epidemiological studies that will enable the estimation of the risk factors of exposure to EDCs and the probability of endocrine disorders. Increasing consumerism and the industrial boom has led to severe pollution of the environment with a corresponding negative impact on human health; thus, there is great necessity for the biomonitoring of EDCs in Poland.

  15. Toxicity tests with crustaceans for detecting sublethal effects of potential endocrine disrupting chemicals

    DEFF Research Database (Denmark)

    Wollenberger, Leah

    New and updated test methods to detect and characterise endocrine disrupting chemicals are urgently needed for the purpose of environmental risk assessment. Although endocrine disruption in invertebrates has not been studied as extensive as in vertebrates, in particular in fish, numerous reports...... regulated by hormones such as growth, molting, sexual maturation and reproduction. The primary endpoints were larval development ratio, egg production and sex ratio. Exposure experiments were conducted with naturally occurring and synthetic vertebrate and invertebrate hormones as well as compounds known...... to act as endocrine disrupters in vertebrates. Larval development ratio was identified to be a remarkably sensitive endpoint. The larval development test with A. tonsa is rapid, cost-effective, easily to perform and results in full concentration-response relationships allowing the determination...

  16. Mixtures of endocrine-disrupting contaminants induce adverse developmental effects in preweaning rats

    DEFF Research Database (Denmark)

    Petersen, Marta Axelstad; Christiansen, Sofie; Boberg, Julie

    2014-01-01

    Reproductive toxicity was investigated in rats after developmental exposure to a mixture of 13 endocrine-disrupting contaminants, including pesticides, plastic and cosmetic ingredients, and paracetamol. The mixture was composed on the basis of information about high-end human exposures, and the d......Reproductive toxicity was investigated in rats after developmental exposure to a mixture of 13 endocrine-disrupting contaminants, including pesticides, plastic and cosmetic ingredients, and paracetamol. The mixture was composed on the basis of information about high-end human exposures...... to the safety margin covered by the regulatory uncertainty factor of 100. This suggests that highly exposed human population groups may not be sufficiently protected against mixtures of endocrine-disrupting chemicals....

  17. Using short-term bioassays to evaluate the endocrine disrupting capacity of the pesticides linuron and fenoxycarb.

    Science.gov (United States)

    Spirhanzlova, Petra; De Groef, Bert; Nicholson, Freda E; Grommen, Sylvia V H; Marras, Giulia; Sébillot, Anthony; Demeneix, Barbara A; Pallud-Mothré, Sophie; Lemkine, Gregory F; Tindall, Andrew J; Du Pasquier, David

    2017-10-01

    Several short-term whole-organism bioassays based on transgenic aquatic models are now under validation by the OECD (Organization for Economic Co-operation and Development) to become standardized test guidelines for the evaluation of the endocrine activity of substances. Evaluation of the endocrine disrupting capacity of pesticides will be a domain of applicability of these future reference tests. The herbicide linuron and the insecticide fenoxycarb are two chemicals commonly used in agricultural practices. While numerous studies indicate that linuron is likely to be an endocrine disruptor, there is little information available on the effect of fenoxycarb on vertebrate endocrine systems. Using whole-organism bioassays based on transgenic Xenopus laevis tadpoles and medaka fry we assessed the potential of fenoxycarb and linuron to disrupt thyroid, androgen and estrogen signaling. In addition we used in silico approach to simulate the affinity of these two pesticides to human hormone receptors. Linuron elicited thyroid hormone-like activity in tadpoles at all concentrations tested and, showed an anti-estrogenic activity in medaka at concentrations 2.5mg/L and higher. Our experiments suggest that, in addition to its previously established anti-androgenic action, linuron exhibits thyroid hormone-like responses, as well as acting at the estrogen receptor level to inhibit estrogen signaling. Fenoxycarb on the other hand, did not cause any changes in thyroid, androgen or estrogen signaling at the concentrations tested. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. [Impact of endocrine disrupting chemicals on birth outcomes].

    Science.gov (United States)

    Chen Zee, E; Cornet, P; Lazimi, G; Rondet, C; Lochard, M; Magnier, A M; Ibanez, G

    2013-10-01

    Endocrine disruptors are ubiquitous chemicals contaminants in the environment, wildlife, and humans. Their adverse effects on reproduction are well-documented. There is growing evidence that they can contribute to the current emergence of chronic diseases. Our aim is to assess the relationships between endocrine disruptors and the neonatal health outcomes. Two persons have independently reviewed Medline and Toxline databases about the following pollutants: bisphenol A, phthalates, parabens, brominated flame retardants and perfluorinated compounds. Only the human epidemiological studies, in general population with an abstract available, published between 2007 January the 1st and 2011 December the 31st, were analysed. The quality of each study was assessed with the Strobe score. Twenty-five out of 680 studies were included in the analysis. All pollutants were widely detected in maternal and new borns samples. Most of the studies have shown associations between bisphenol A, brominated flame retardants and perfluorinated compounds and lower birth weight. The effects on gestational age were less documented and have shown no clear connection. Results for phthalates were more ambiguous. Only one non-instructive study was found on parabens. Due to the inherent methological bias on endocrine disruptors research, further additional studies on environmental health must be investigated. It seems necessary to adopt preventive health measures first for vulnerable population. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  19. Commercial processed food may have endocrine-disrupting potential: soy-based ingredients making the difference.

    Science.gov (United States)

    Omoruyi, Iyekhoetin Matthew; Kabiersch, Grit; Pohjanvirta, Raimo

    2013-01-01

    Processed and packaged food items as well as ready-to-eat snacks are neglected and poorly characterised sources of human exposure to endocrine-disrupting chemicals (EDCs). In this study we investigated the presence of xenoestrogens in commercially processed and packaged Finnish foods, arising from substances deliberately added or inadvertently contaminating the food, substances formed as a result of food processing, or substances leaching from food packaging materials. Samples were obtained in three separate batches of equivalent products from both a supermarket and a local representative of a global chain of hamburger restaurants and extracted by a solid-phase extraction method. Their endocrine-disrupting potential was determined by yeast bioluminescent assay, using two recombinant yeast strains Saccharomyces cerevisiae BMAEREluc/ERα and S. cerevisiae BMA64/luc. In this test system, the majority of samples (both foodstuffs and wrappers) analysed proved negative. However, all batches of industrially prepared hamburgers (but not those obtained from a hamburger restaurant) as well as pepper salami significantly induced luciferase activity in the BMAEREluc/ERα yeast strain indicating the presence of xenoestrogens, with estradiol equivalents of these products ranging from 0.2 to 443 pg g(-1). All three products contained soy-based ingredients, which apparently accounted for, or at least contributed to, their high estrogenic activity, since no signal in the assay was observed with extracts of the packaging material, while two different soy sauces tested yielded an intense signal (28 and 54 pg ml(-1) estradiol-equivalent). These findings imply that by and large chemicals arising in the processing or packaging of foodstuffs in Finland constitute an insignificant source of xenoestrogens to consumers. However, soy-derived ingredients in certain food items might render the entire products highly estrogenic. The estrogenic activity of soy is attributed to isoflavones whose

  20. ENDOCRINE-DISRUPTING CHEMICALS: PREPUBERTAL EXPOSURES AND EFFECTS ON SEXUAL MATURATION AND THYROID FUNCTION IN THE MALE RAT. A FOCUS ON THE EDSTAC RECOMMENDATIONS. ENDOCRINE DISRUPTER SCREENING AND TESTING ADVISORY COMMITTEE

    Science.gov (United States)

    Endocrine-disrupting chemicals: prepubertal exposures and effects on sexual maturation and thyroid function in the male rat. A focus on the EDSTAC recommendations. Endocrine Disrupter Screening and Testing Advisory Committee.Stoker TE, Parks LG, Gray LE, Cooper RL.

  1. Are the mediterraneantop predators exposed to toxicological risk due to endocrine disrupters?

    Science.gov (United States)

    Fossi, M C; Casini, S; Marsili, L; Ausili, A; di Sciara, G N

    2001-12-01

    Man-made endocrine disrupting chemicals (EDCs) range across all continents and oceans; some geographic areas are potentially more threatened than others: one of these is the Mediterranean Sea. This basin has limited exchange of water with the Atlantic Ocean and is surrounded by some of the most heavily populated and industrialized countries in the world. Accordingly, levels of some xenobiotics are much higher here than in other seas and oceans. In this research the unexplored hypothesis that Mediterranean top predator species (such as large pelagic fish and marine mammals) are potentially at risk due to EDCs is investigated. Here we illustrate the development of sensitive biomarkers (Vitellogenin, Zona Radiata proteins) for evaluation of toxicological risk in top marine predators (Xiphias gladius, Thunnus thynnus thynnus), and nonlethal techniques, such as nondestructive biomarkers (BPMO activities in skin biopsy), for the hazard assessment of threatened species exposed to EDCs, such as marine mammals (Stenella coeruleoalba, Tursiops truncatus, Delphinus delphis, and Balaenoptera physalus).

  2. Label-Free Biosensor Detection of Endocrine Disrupting Compounds Using Engineered Estrogen Receptors

    Directory of Open Access Journals (Sweden)

    Rita La Spina

    2017-12-01

    Full Text Available Endocrine Disrupting Compounds (EDCs are chemical substances shown to interfere with endogenous hormones affecting the endocrine, immune and nervous systems of mammals. EDCs are the causative agents of diseases including reproductive disorders and cancers. This highlights the urgency to develop fast and sensitive methods to detect EDCs, which are detrimental even at very low concentrations. In this work, we propose a label-free surface plasmon resonance (SPR biosensor method to detect specific EDCs (17 β-estradiol (E2, ethinyl-estradiol, 4-nonylphenol, tamoxifen through their binding to estrogen receptor alpha (ERα. We show that the use of rationally designed ERα (as bio-recognition element in combination with conformation-sensitive peptides (as amplification agent, resulting in increased responses enables the detection of low parts per billion (ppb levels of E2. As a proof of concept, this bioassay was used to detect E2 in (spiked real water samples from fish farms, rivers and the sea at low ppb levels after concentration by solid phase extraction. In addition, the present SPR assay that combines a conformation-sensitive peptide with an array of ERα mutants is very promising for the assessment of the risk of potential estrogenic activity for chemical substances.

  3. QSAR modeling and prediction of the endocrine-disrupting potencies of brominated flame retardants.

    Science.gov (United States)

    Papa, Ester; Kovarich, Simona; Gramatica, Paola

    2010-05-17

    In the European Union REACH regulation, the chemicals with particularly harmful behaviors, such as endocrine disruptors (EDs), are subject to authorization, and the identification of safer alternatives to these chemicals is required. In this context, the use of quantitative structure-activity relationships (QSAR) becomes particularly useful to fill the data gap due to the very small number of experimental data available to characterize the environmental and toxicological profiles of new and emerging pollutants with ED behavior such as brominated flame retardants (BFRs). In this study, different QSAR models were developed on different responses of endocrine disruption measured for several BFRs. The multiple linear regression approach was applied to a variety of theoretical molecular descriptors, and the best models, which were identified from all of the possible combinations of the structural variables, were internally validated for their performance using the leave-one-out (Q(LOO)(2) = 73-91%) procedure and scrambling of the responses. External validation was provided, when possible, by splitting the data sets in training and test sets (range of Q(EXT)(2) = 76-90%), which confirmed the predictive ability of the proposed equations. These models, which were developed according to the principles defined by the Organization for Economic Co-operation and Development to improve the regulatory acceptance of QSARs, represent a simple tool for the screening and characterization of BFRs.

  4. In vitro screening of the endocrine disrupting potency of brominated flame retardants and their metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Hamers, T.; Kamstra, J.H. [Inst. for Environmental Studies (IVM), Amsterdam (Netherlands); Sonneveld, E. [BioDetection Systems (BDS), Amsterdam (Netherlands); Murk, A.J. [Wageningen Univ., Toxicology Group, Wageningen (Netherlands); Zegers, B.N.; Boon, J.P. [Royal Netherlands Inst. for Sea Research (NIOZ), Den Burg (Netherlands); Brouwer, A. [Umea Univ., Umea (Sweden)

    2004-09-15

    Substantial evidence is recently becoming available that brominated flame retardants (BFRs) are potential endocrine disruptors. The toxicological profile of BFRs, however, is too incomplete and insufficient to perform human and ecological risk assessment. To fill these gaps, the EU funded research program FIRE was started in December 2002. This program aims at the identification and toxicological characterization of the most potent and environmentally relevant BFRs and their possible risk for human and wildlife health. As part of a hazard identification approach, twenty seven BFRs have been selected within the framework of FIRE for pre-screening their endocrinedisrupting potencies. Selection of test compounds was based on a maximal variation in physicochemical characteristics of BFRs within the test set, allowing the establishment of quantitative structure-activity relationships (QSARs). In addition, environmental relevance (e.g. high production volumes and persistence) and availability for testing were used as selection criteria. BFRs were tested in seven different in vitro bioassays for their potency to interfere via estrogenic, thyroidal, androgenic, progestagenic, and Ah-receptor mediated pathways. Metabolisation rates of BFRs were determined using phenobarbital-induced rat liver microsomes. Finally, the endocrine disrupting potency of the metabolites was determined in the same in vitro bio-assays and compared to the potency of the parent compounds.

  5. Phenyl-functionalized magnetic palm-based powdered activated carbon for the effective removal of selected pharmaceutical and endocrine-disruptive compounds.

    Science.gov (United States)

    Wong, Kien Tiek; Yoon, Yeomin; Snyder, Shane A; Jang, Min

    2016-06-01

    Triethoxyphenylsilane (TEPS)-functionalized magnetic palm-based powdered activated carbon (MPPAC-TEPS) was prepared and characterized using various spectroscopic methods, and then tested for the removal of bisphenol A, carbamazepine, ibuprofen and clofibric acid. Magnetite film on MPPAC-TEPS was homogeneously coated on the outer surface of palm-based powdered activated carbon (PPAC) through a hydrothermal co-precipitation technique. Followed by silanization of phenyl-functionalized organosilane on MPPAC's magnetic film. As results, micro/mesopore surface area and volume increased without significant pore clogging and iron (Fe) dissolution under the acidic conditions was greatly decreased. The unique structural and chemical features of MPPAC-TEPS were found to be the main reasons for the enhanced adsorption rates and removal capacities of POPs. The presence of electrolytes and different pH values greatly affected the sorption efficiencies. The dominant sorption mechanism of POPs by MPPAC-TEPS was determined to be π-π interaction (physisorption), based on thermodynamic (ΔG°) and differential scanning calorimetry (DSC). Thermal regeneration at a low temperature (350 °C) was an effective method to desorb the retained POPs and enabled to reactivate MPPAC-TEPS with sustained sorption rates and capacities, whereas PPAC was largely exhausted. As a new type of sorbent for POPs, MPPAC-TEPS has operational advantages, such as magnetic separation and stable regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The Japanese Quail as an avian model for testing endocrine disrupting chemicals: endocrine and behavioral end points

    Science.gov (United States)

    Ottinger, M.A.; Abdelnabi, M.A.; Thompson, N.; Wu, J.; Henry, K.; Humphries, E.; Henry, P.F.P.

    2000-01-01

    Birds have extremely varied reproductive strategies. As such, the impact of endocrine disrupting chemicals (EDCs) can greatly differ across avian species. Precocial species, such as Japanese quail appear to be most sensitive to EDC effects during embryonic development, particularly sexual differentiation. A great deal is known about the ontogeny of Japanese quail (Coturnix japonica) relative to endocrine, neuro-endocrine, and behavioral components of reproduction. Therefore, this species provides an excellent model for understanding effects of EDCs on reproductive biology with exposure at specific stages of the life cycle. The purpose of these experiments was to conduct a 1- or 2- generation experiment with positive or negative control chemicals and to determine changes in selected end points. Japanese quail embryos were exposed to estradiol benzoate (EB; positive control) in a 2-generation design or to fadrozole (FAD; negative control) in a 1-generation design. Embryonic EB treatment resulted in significant reductions (pbehaviors as well as increased lag time (26 vs 148 sec; control vs EB) in behavioral tests. Fadrozole exposure resulted in reduced hatchability of fertile eggs, particularly at higher doses. There were no significant effects on courtship and mating behavior of males although males showed an increased lag time in their responses, nally, a behavioral test for studying motor and fear responses in young chicks was used; chicks exposed to an estrogenic pesticide (methoxychlor) showed some deficits. In summary, the use of appropriate and reliable end points that are responsive to endocrine disruption are critical for assessment of EDCs. Supported in part by EPA grant R826134.

  7. Endocrine disruption in a terrestrial isopod under exposure to bisphenol A and vinclozin.

    NARCIS (Netherlands)

    Lemos, M.F.L.; van Gestel, C.A.M.; Soares, A.M.V.M.

    2009-01-01

    Background, aim, and scope In the past decade there has been an increasing awareness about the possible consequences of human and wildlife exposure to endocrine disrupting compounds (EDCs). Bisphenol A (BPA) and vinclozolin (Vz) are EDCs which impacts on vertebrates have been largely investigated.

  8. Development and validation of in vitro bioassays for thyroid hormone receptor mediated endocrine disruption

    NARCIS (Netherlands)

    Freitas, de J.

    2012-01-01

    Thyroid hormones regulate crucial processes in vertebrates such as reproduction, development and energy metabolism. Endocrine disruption via the thyroid hormone system is gaining more attention both from scientists and regulators, because of the increasing incidence of hormone-related cancers and

  9. Effects of endocrine disrupting chemicals on in vitro global DNA methylation and adipocyte differentation

    NARCIS (Netherlands)

    Bastos Sales, L.; Kamstra, J.H.; Cenijn, P.H.; van Rijt, L.S.; Hamers, T.; Legler, J.

    2013-01-01

    Recent studies suggest that endocrine disrupting chemicals (EDCs) may form a risk factor for obesity by altering energy metabolism through epigenetic gene regulation. The goal of this study is to investigate the effects of a range of EDCs with putative obesogenic properties on global DNA methylation

  10. Effects of endocrine disrupting chemicals on in vitro global DNA methylation and adipocyte differentiation

    NARCIS (Netherlands)

    Bastos Sales, L.; Kamstra, J. H.; Cenijn, P. H.; van Rijt, L. S.; Hamers, T.; Legler, J.

    2013-01-01

    Recent studies suggest that endocrine disrupting chemicals (EDCs) may form a risk factor for obesity by altering energy metabolism through epigenetic gene regulation. The goal of this study is to investigate the effects of a range of EDCs with putative obesogenic properties on global DNA methylation

  11. Mixtures of environmentally relevant endocrine disrupting chemicals affect mammary gland development in female and male rats

    DEFF Research Database (Denmark)

    Mandrup, Karen Riiber; Johansson, Hanna Katarina Lilith; Boberg, Julie

    2015-01-01

    Estrogenic chemicals are able to alter mammary gland development in female rodents, but little is known on the effects of anti-androgens and mixtures of endocrine disrupting chemicals (EDCs) with dissimilar modes of action. Pregnant rat dams were exposed during gestation and lactation to mixtures...

  12. Estimating Burden and Disease Costs of Exposure to Endocrine-Disrupting Chemicals in the European Union

    NARCIS (Netherlands)

    Trasande, L.; Zoeller, R.T.; Hass, U.; Kortenkamp, A.; Grandjean, P.; Peterson Myers, J.; Bellanger, M.; Hauser, R.; Legler, J.; Skakkebaek, N.E.; Heindel, J.J.

    2016-01-01

    Context: Rapidly increasing evidence has documented that endocrine-disrupting chemicals (EDCs) contribute substantially to disease and disability. Objective: The objective was to quantify a range of health and economic costs that can be reasonably attributed to EDC exposures in the European Union

  13. Impact of Endocrine Disruptions on Man: The likely Causes and Effects

    African Journals Online (AJOL)

    It is now common knowledge that synthetic chemicals in the environment can find access into the body of humans and wildlife, thereby mimicking the action of endogenous hormones that regulate maintenance of normal growth, metabolism and reproduction. The chemicals able to do this are known as Endocrine Disrupting ...

  14. Mixtures of endocrine disrupting contaminants modelled on human high end exposures

    DEFF Research Database (Denmark)

    Christiansen, Sofie; Kortenkamp, A.; Petersen, Marta Axelstad

    2012-01-01

    in vivo endocrine disrupting effects and information about human exposures was available, including phthalates, pesticides, UV‐filters, bisphenol A, parabens and the drug paracetamol. The mixture ratio was chosen to reflect high end human intakes. To make decisions about the dose levels for studies...

  15. Removal Of Endocrine Disrupting Chemicals By A Constructed Wetland For On-Site Domestic Wastewater Treatment

    Science.gov (United States)

    Research has shown that domestic and industrial wastewater can be a source of endocrine disrupting chemicals (EDCs) to the environment. Much of this research has focused on municipal and industrial centralized wastewater treatment plants (WWTPs). These WWTPs have been shown to ...

  16. Altered steroid metabolism in several teleost species exposed to endocrine disrupting substances in refuse dump leachate

    NARCIS (Netherlands)

    Noaksson, E.; Linderoth, M.; Bosveld, A.T.C.; Balk, L.

    2003-01-01

    Endocrine disruption associated with reproductive failure has been reported previously in female perch (Perca fluviatilis) and roach (Rutilus rutilus) from Lake Molnbyggen in Sweden and in female brook trout (Salvelinus fontinalis) from Vadbäcken, a stream emptying into Molnbyggen. Both Molnbyggen

  17. Reproductive Biomarkers of Endocrine Disruption in Adult Male ...

    African Journals Online (AJOL)

    Histological and ultrastructural studies revealed germinal and Sertoli cell degeneration and necrosis, displacement of Sertoli cysts, capillary endothelial wall necrosis and basement membrane disruption in the testis of the treated groups. There were significant reductions in testicular germinal depth and interstitial width in ...

  18. Alternatives to in vivo tests to detect endocrine disrupting chemicals (EDCs) in fish and amphibians – interactions with estrogens, androgens, and thyroid hormones

    Science.gov (United States)

    Endocrine disruption is considered a highly relevant endpoint for environmental risk assessment of chemicals, plant protection products, biocides and pharmaceuticals. Therefore, screening for endocrine disruption – with focus on vertebrates (fish and amphibians) and estrogen, and...

  19. Occupational exposure to endocrine-disrupting chemicals and the risk of uveal melanoma

    DEFF Research Database (Denmark)

    Behrens, Thomas; Lynge, Elsebeth; Cree, Ian

    2012-01-01

    OBJECTIVES: We investigated the association between occupational exposure to endocrine-disrupting chemicals (EDC) and the risk of uveal melanoma using international data of a case-control study from nine European countries. METHODS: After exclusion of proxy interviews, 280 cases and 3084 control......-disrupting agents. We constructed several exposure scores, taking into account intensity of exposure, use of personal protective equipment, and exposure duration. We calculated unconditional logistic regression analyses, adjusting for country, age, sex, eye color and a history of ocular damage due to intense...... ultraviolet (UV) exposure. RESULTS: The overall exposure prevalence to EDC was low reaching a maximum of 11% for heavy metals with endocrine-disrupting properties. Although working in some industries was associated with increased melanoma risk [such as dry cleaning: odds ratio (OR) 6.15, 95% confidence...

  20. Comparison of different advanced treatment processes in removing endocrine disruption effects from municipal wastewater secondary effluent.

    Science.gov (United States)

    Sun, Jie; Wang, Jing; Zhang, Rui; Wei, Dongyang; Long, Qin; Huang, Yu; Xie, Xianchuan; Li, Aimin

    2017-02-01

    In this study, secondary effluent from the Wulongkou (WLK) municipal wastewater plant (Zhengzhou, China) was tested for its toxicity effects before and after five advanced treatment processes (ATPs, i.e. coagulation sedimentation, nan da magnetic polyacrylic anion exchange resin (NDMP) resin adsorption, activated carbon adsorption, ozonation and electro-adsorption). Results showed that estrogen disruption effects (EDEs) were particularly significant for the raw secondary effluent among the studied dioxin-like toxicity effect, androgenic/anti-androgenic response effect, EDEs, and genotoxicity effect. And E1, E2, and EE2 were the main endocrine disruption chemicals (EDCs) contributing to EDEs. Except coagulation sedimentation, all the other four ATPs were efficient in removing the steroid estrogens (i.e. E1, E2, and EE2), but were inefficient in the artificial EDC (i.e. DBP, OP and BPA) removal. In the ATPs treated samples, vitellogenin (VTG) in zebrafish were largely removed. However, they were still significant in comparison with the control, probably due to artificial EDCs. Therefore, finding ways to thoroughly remove EDEs and EDCs from the secondary effluent will be a new research direction in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Proteomic response of Macrobrachium rosenbergii hepatopancreas exposed to chlordecone: Identification of endocrine disruption biomarkers?

    Science.gov (United States)

    Lafontaine, Anne; Baiwir, Dominique; Joaquim-Justo, Célia; De Pauw, Edwin; Lemoine, Soazig; Boulangé-Lecomte, Céline; Forget-Leray, Joëlle; Thomé, Jean-Pierre; Gismondi, Eric

    2017-07-01

    The present work is the first study investigating the impacts of chlordecone, an organochlorine insecticide, on the proteome of the decapod crustacean Macrobrachium rosenbergii, by gel-free proteomic analysis. The hepatopancreas protein expression variations were analysed in organisms exposed to three environmental relevant concentrations of chlordecone (i.e. 0.2, 2 and 20µg/L). Results revealed that 62 proteins were significantly up- or down-regulated in exposed prawns compared to controls. Most of these proteins are involved in important physiological processes such as ion transport, defense mechanisms and immune system, cytoskeleton dynamics, or protein synthesis and degradation. Moreover, it appears that 6% of the deregulated protein are involved in the endocrine system and in the hormonal control of reproduction or development processes of M. rosenbergii (e.g. vitellogenin, farnesoic acid o-methyltransferase). These results indicate that chlordecone is potentially an endocrine disruptor compound for decapods, as already observed in vertebrates. These protein modifications could lead to disruptions of M. rosenbergii growth and reproduction, and therefore of the fitness population on the long-term. Besides, these disrupted proteins could be suggested as biomarkers of exposure for endocrine disruptions in invertebrates. However, further investigations are needed to complete understanding of action mechanisms of chlordecone on proteome and endocrine system of crustaceans. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Endocrine-Disrupting Chemicals and Oil and Natural Gas Operations: Potential Environmental Contamination and Recommendations to Assess Complex Environmental Mixtures.

    Science.gov (United States)

    Kassotis, Christopher D; Tillitt, Donald E; Lin, Chung-Ho; McElroy, Jane A; Nagel, Susan C

    2016-03-01

    Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. Although these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals that are used throughout the process, including many known or suspected endocrine-disrupting chemicals. We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and antihormonal activities for chemicals used. We discuss the literature on a) surface and groundwater contamination by oil and gas extraction operations, and b) potential human exposure, particularly in the context of the total hormonal and antihormonal activities present in surface and groundwater from natural and anthropogenic sources; we also discuss initial analytical results and critical knowledge gaps. In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures. We describe a need for an endocrine-centric component for overall health assessments and provide information supporting the idea that using such a component will help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs.

  3. Endocrine-disrupting chemicals and oil and natural gas operations: Potential environmental contamination and recommendations to assess complex environmental mixtures

    Science.gov (United States)

    Kassotis, Christopher D.; Tillitt, Donald E.; Lin, Chung-Ho; McElroy, Jane A.; Nagel, Susan C.

    2016-01-01

    Background: Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. While these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals used throughout the process, including many known or suspected endocrine-disrupting chemicals.Objectives: We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and anti-hormonal activities for chemicals used.Methods: We discuss the literature on 1) surface and ground water contamination by oil and gas extraction operations, and 2) potential human exposure, particularly in context of the total hormonal and anti-hormonal activities present in surface and ground water from natural and anthropogenic sources, with initial analytical results and critical knowledge gaps discussed.Discussion: In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures.Conclusions: We describe a need for an endocrine-centric component for overall health assessments and provide supporting information that using this may help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs.

  4. Molasses as a possible cause of an ''endocrine disruptive syndrome'' in calves

    Directory of Open Access Journals (Sweden)

    M.S. Masgoret

    2009-09-01

    Full Text Available During the mid 1990s a potentially serious, chronic syndrome was reported in well-managed beef and dairy herds from unrelated parts of South Africa. Farmers reported that it manifested as various combinations of decreased production, decreased weaning masses, apparent immune breakdown in previously immunocompetent animals, increased reproductive disorders, various mineral imbalances in non-deficient areas and goitre, noticeable as enlarged thyroid glands. The farmers associated this syndrome with certain batches of sugar cane molasses and molasses-based products. The syndrome was reminiscent of an ''endocrine disruptive syndrome''. The objective of this study was to evaluate the suspected endocrine disruptive effect of molasses included in cattle feed. Using existing in vitro assays, four batches of molasses syrup were screened for possible inclusion in a calf feeding trial. Two batches were selected for the trial. Thirty-two, 4- to 6-week-old, weaned Holstein bull calves were included in the single phase, three treatment, parallel design experiment. In two of the groups of calves, two different batches of molasses were included in their rations respectively. The control group was fed a ration to which no molasses was added, but which was balanced for energy and mineral content. The mass gain of the calves was recorded over the 6-month study period. The calves were clinically examined every week and clinical pathology parameters, immune responses and endocrine effects were regularly evaluated. Even though endocrine disrupting effects were detected with the in vitro screening assays, these could not be reproduced in the calves in the experiment. The two batches of molasses utilized in the calf feeding trial did not induce major differences in any of the parameters measured, with the exception of a lower mass gain in one of the molasses-fed groups (Group 1, which tended towards significance. The results of the study indicate that the two batches

  5. Endocrine disrupting potential of PAHs and their alkylated analogues associated with oil spills.

    Science.gov (United States)

    Lee, Sangwoo; Hong, Seongjin; Liu, Xiaoshan; Kim, Cheolmin; Jung, Dawoon; Yim, Un Hyuk; Shim, Won Joon; Khim, Jong Seong; Giesy, John P; Choi, Kyungho

    2017-09-20

    Polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs are known to be major toxic contaminants in spills of petroleum hydrocarbons (oil). Spilled oil undergoes weathering and over time, PAHs go through a series of compositional changes. PAHs can disrupt endocrine functions, and the type of functions affected and associated potencies vary with the type and alkylation status of PAH. In this study, the potential of five major PAHs of crude oil, i.e., naphthalene, fluorene, dibenzothiophene, phenanthrene, and chrysene, and their alkylated analogues (n = 25), to disrupt endocrine functions was evaluated by use of MVLN-luc and H295R cell lines. In the MVLN-luc bioassay, seven estrogen receptor (ER) agonists were detected among 30 tested PAHs. The greatest ER-mediated potency was observed for 1-methylchrysene (101.4%), followed by phenanthrene and its alkylated analogues (range of %-E2max from 1.6% to 47.3%). In the H295R bioassay, significantly greater syntheses of steroid hormones were observed for 20 PAHs. For major PAHs and their alkylated analogues, disruption of steroidogenesis appeared to be more significant than ER-mediated effects. The number and locations of alkyl-moieties alone could not explain differences in the types or the potencies of toxicities. This observation shows that disruption of endocrine functions by some constituents of oil spills could be underestimated if only parent compounds are considered in assessments of hazard and risk.

  6. Regenerative response and endocrine disrupters in crinoid echinoderms: an old experimental model, a new ecotoxicological test.

    Science.gov (United States)

    Candia Carnevali, M D

    2005-01-01

    The regenerative phenomena that reproduce developmental processes in adult organisms and are regulated by endocrine and neurohumoral mechanisms can provide new sensitive tests for monitoring the effects of exposure to anthropogenic chemicals such as endocrine disrupter (ED) contaminants. These pollutants in fact can be bioaccumulated by the organisms, causing dysfunctions in steroid hormone production/metabolism and activities and inducing dramatic effects on reproductive competence, development and growth in many animals, man included. Current research is exploring the effects of exposure to different classes of compounds well known for their ED activity, such as polychlorinated biphenyls (PCBs), nonylphenols and organotins, on regenerative potential of echinoderms, a relatively unexplored and promising applied approach which offers the unique chance to study physiological developmental processes in adult animals. The selected test species is the crinoid Antedon mediterranea, which represents a valuable experimental model for investigation into the regenerative process from the macroscopic to the molecular level. The present study employs an integrated approach which combines exposure experiments, chemical analysis and biological analysis utilizing classical methods of light (LM) and electron (TEM and SEM) microscopy and immunocytochemistry. The experiments were carried out on experimentally induced arm regenerations in controlled conditions with exposure concentrations comparable to those of moderately polluted coastal zones in order to reproduce common conditions of exposure to environmental contaminants. The results of the exposure tests were analysed in terms of effects at the whole organism, at the tissue and cellular level, and possible sites of action of EDs. Our results show that prolonged exposure to these compounds significantly affects the regenerative mechanisms by inducing appreciable anomalies in terms of regeneration times, overall growth, general

  7. Endocrine-disrupting effects of cattle feedlot effluent on an aquatic sentinel species, the fathead minnow.

    Science.gov (United States)

    Orlando, Edward F; Kolok, Alan S; Binzcik, Gerry A; Gates, Jennifer L; Horton, Megan K; Lambright, Christy S; Gray, L Earl; Soto, Ana M; Guillette, Louis J

    2004-01-01

    Over the last decade, research has examined the endocrine-disrupting action of various environmental pollutants, including hormones, pharmaceuticals, and surfactants, in sewage treatment plant effluent. Responding to the growth of concentrated animal feeding operations (CAFOs) and the pollutants present in their wastewater (e.g., nutrients, pharmaceuticals, and hormones), the U.S. Environmental Protection Agency developed a new rule that tightens the regulation of CAFOs. In this study, we collected wild fathead minnows (Pimephales promelas) exposed to feedlot effluent (FLE) and observed significant alterations in their reproductive biology. Male fish were demasculinized (having lower testicular testosterone synthesis, altered head morphometrics, and smaller testis size). Defeminization of females, as evidenced by a decreased estrogen:androgen ratio of in vitro steroid hormone synthesis, was also documented. We did not observe characteristics in either male or female fish indicative of exposure to environmental estrogens. Using cells transfected with the human androgen receptor, we detected potent androgenic responses from the FLE. Taken together, our morphologic, endocrinologic, and in vitro gene activation assay data suggest two hypotheses: a) there are potent androgenic substance(s) in the FLE, and/or b) there is a complex mixture of androgenic and estrogenic substances that alter the hypothalamic-pituitary-gonadal axis, inhibiting the release of gonadotropin-releasing hormone or gonadotropins. This is the first study demonstrating that the endocrine and reproductive systems of wild fish can be adversely affected by FLE. Future studies are needed to further investigate the effects of agricultural runoff and to identify the biologically active agents, whether natural or pharmaceutical in origin. PMID:14998752

  8. From 'omics to otoliths: responses of an estuarine fish to endocrine disrupting compounds across biological scales.

    Directory of Open Access Journals (Sweden)

    Susanne M Brander

    Full Text Available Endocrine disrupting chemicals (EDCs cause physiological abnormalities and population decline in fishes. However, few studies have linked environmental EDC exposures with responses at multiple tiers of the biological hierarchy, including population-level effects. To this end, we undertook a four-tiered investigation in the impacted San Francisco Bay estuary with the Mississippi silverside (Menidia audens, a small pelagic fish. This approach demonstrated links between different EDC sources and fish responses at different levels of biological organization. First we determined that water from a study site primarily impacted by ranch run-off had only estrogenic activity in vitro, while water sampled from a site receiving a combination of urban, limited ranch run-off, and treated wastewater effluent had both estrogenic and androgenic activity. Secondly, at the molecular level we found that fish had higher mRNA levels for estrogen-responsive genes at the site where only estrogenic activity was detected but relatively lower expression levels where both estrogenic and androgenic EDCs were detected. Thirdly, at the organism level, males at the site exposed to both estrogens and androgens had significantly lower mean gonadal somatic indices, significantly higher incidence of severe testicular necrosis and altered somatic growth relative to the site where only estrogens were detected. Finally, at the population level, the sex ratio was significantly skewed towards males at the site with measured androgenic and estrogenic activity. Our results suggest that mixtures of androgenic and estrogenic EDCs have antagonistic and potentially additive effects depending on the biological scale being assessed, and that mixtures containing androgens and estrogens may produce unexpected effects. In summary, evaluating EDC response at multiple tiers is necessary to determine the source of disruption (lowest scale, i.e. cell line and what the ecological impact will be

  9. Removal of phenolic endocrine disrupting compounds from waste activated sludge using UV, H2O2, and UV/H2O2 oxidation processes: effects of reaction conditions and sludge matrix.

    Science.gov (United States)

    Zhang, Ai; Li, Yongmei

    2014-09-15

    Removal of six phenolic endocrine disrupting compounds (EDCs) (estrone, 17β-estradiol, 17α-ethinylestradiol, estriol, bisphenol A, and 4-nonylphenols) from waste activated sludge (WAS) was investigated using ultraviolet light (UV), hydrogen peroxide (H2O2), and the combined UV/H2O2 processes. Effects of initial EDC concentration, H2O2 dosage, and pH value were investigated. Particularly, the effects of 11 metal ions and humic acid (HA) contained in a sludge matrix on EDC degradation were evaluated. A pseudo-first-order kinetic model was used to describe the EDC degradation during UV, H2O2, and UV/H2O2 treatments of WAS. The results showed that the degradation of the 6 EDCs during all the three oxidation processes fitted well with pseudo-first-order kinetics. Compared with the sole UV irradiation or H2O2 oxidation process, UV/H2O2 treatment was much more effective for both EDC degradation and WAS solubilization. Under their optimal conditions, the EDC degradation rate constants during UV/H2O2 oxidation were 45-197 times greater than those during UV irradiation and 11-53 times greater than those during H2O2 oxidation. High dosage of H2O2 and low pH were favorable for the degradation of EDCs. Under the conditions of pH = 3, UV wavelength = 253.7 nm, UV fluence rate = 0.069 mW cm(-2), and H2O2 dosage = 0.5 mol L(-1), the removal efficiencies of E1, E2, EE2, E3, BPA, and NP in 2 min were 97%, 92%, 95%, 94%, 89%, and 67%, respectively. The hydroxyl radical (OH) was proved to take the most important role for the removal of EDCs. Metal ions in sludge could facilitate the removal of EDCs during UV/H2O2 oxidation. Fe, Ag, and Cu ions had more obvious effects compared with other metal ions. The overall role of HA was dependent on the balance between its competition as organics and its catalysis/photosensitization effects. These indicate that the sludge matrix plays an important role in the degradation of EDCs. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. An investigation of endocrine disrupting effects and toxic mechanisms modulated by benzo[a]pyrene in female scallop Chlamys farreri

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Shuangmei; Pan, Luqing, E-mail: panlq@ouc.edu.cn; Sun, Xiaohua

    2013-11-15

    Highlights: •B[a]P disturbed progesterone, 17β-estradiol and testosterone production in scallop. •B[a]P inhibited 3β-HSD, CYP17 and 17β-HSD expression after a 10-day exposure. •B[a]P of lower dose elevated AHR-CYP1A expression but high dose B[a]P inhibited them. •ER and vitellogenin transcription was consistent with AHR after B[a]P exposure. •B[a]P exposure induced relatively developmental delay and impairment of ovary. -- Abstract: The purpose of this study was to investigate the endocrine disrupting effects induced by benzo[a]pyrene (B[a]P) and explore the underlying mechanisms in mollusks. In this study, sexually mature female Chlamys farreri were exposed to benzo[a]pyrene for 10 days at four different concentrations as 0, 0.025, 0.5 and 10 μg/L. Sex steroids were identified and quantified by electrochemiluminescence immunoassay (ECLIA) method and results showed that exposure to B[a]P exerts great suppression on 17β-estradiol, testosterone production and disrupts progesterone levels in ovary. Transcription of genes were detected and measured by real-time RT-PCR. It showed that at day 10 B[a]P inhibited 3β-HSD, CYP17 and 17β-HSD mRNA expression in a dose-dependent manner, which suggests that they could be potential targets of B[a]P that disrupt steroidogenic machinery. Moreover, 0.025 μg/L B[a]P activated transcription of aryl hydrocarbon receptor (AHR), AHR nuclear translocator (ARNT), CYP1A1 and estrogen receptor (ER), while 10 μg/L B[a]P suppressed all of them. The consistency of their responses to B[a]P exposure implies that AHR action may be involved in invertebrate CYP regulation and ER transcription despite of unknown mechanisms. Additionally, B[a]P exposure could induce ovarian impairment and developmental delay in C. farreri. Overall, sensitivity of C. farreri to endocrine disruption and toxicity suggests that C. farreri is a suitable species for study of endocrine-disrupting effects in marine invertebrates. This study will form a

  11. Assessment of endocrine-disrupting chemicals attenuation in a coastal plain stream prior to wastewater treatment plant closure

    Science.gov (United States)

    Bradley, Paul M.; Journey, Celeste

    2014-01-01

    The U.S. Geological Survey is conducting a combined pre/post-closure assessment at a long-term wastewater treatment plant (WWTP) site at Fort Gordon near Augusta, Georgia. Here, we assess select endocrine-active chemicals and benthic macroinvertebrate community structure prior to closure of the WWTP. Substantial downstream transport and limited instream attenuation of endocrine-disrupting chemicals (EDCs) was observed in Spirit Creek over a 2.2-km stream segment downstream of the WWTP outfall. A modest decline (less than 20% in all cases) in surface water detections was observed with increasing distance downstream of the WWTP and attributed to partitioning to the sediment. Estrogens detected in surface water in this study included estrone (E1), 17β-estradiol (E2), and estriol (E3). The 5 ng/l and higher mean estrogen concentrations observed in downstream locations indicated that the potential for endocrine disruption was substantial. Concentrations of alkylphenol ethoxylate (APE) metabolite EDCs also remained statistically elevated above levels observed at the upstream control site. Wastewater-derived pharmaceutical and APE metabolites were detected in the outflow of Spirit Lake, indicating the potential for EDC transport to aquatic ecosystems downstream of Fort Gordon. The results indicate substantial EDC occurrence, downstream transport, and persistence under continuous supply conditions and provide a baseline for a rare evaluation of ecosystem response to WWTP closure.

  12. Impact of exposure to endocrine disrupters in utero and in childhood on adult reproduction

    DEFF Research Database (Denmark)

    Norgil Damgaard, Ida; Main, Katharina Maria; Toppari, Jorma

    2002-01-01

    Recent reports have demonstrated a decline in human male reproductive health: high and probably increasing prevalence of cryptorchidism and hypospadias, low and probably decreasing semen quality, a rising incidence of testicular cancer and a growing demand for assisted reproduction. These changes...... seem to be interrelated and may be symptoms of a common underlying entity, the testicular dysgenesis syndrome, with foundations in fetal life due to adverse environmental influences. Wildlife experience and animal studies have provided evidence that fetal or perinatal exposure to endocrine disrupters...... results in disturbed sexual differentiation and urogenital malformations followed by decreased reproductive health in adult life. This chapter reviews existing evidence for a connection between (i) exposure to endocrine disrupters in fetal life and childhood and (ii) adult reproductive health in humans...

  13. Advancing research on endocrine disrupting chemicals in breast cancer: Expert panel recommendations.

    Science.gov (United States)

    Teitelbaum, Susan L; Belpoggi, Fiorella; Reinlib, Les

    2015-07-01

    Breast cancer incidence continues to increase in the US and Europe, a reflection of the growing influence of environment factors that interact with personal genetics. The US Environmental Protection Agency estimates that there are approximately 10,000 endocrine disrupting chemicals among the common daily exposures that could affect the risk of disease. The daunting tasks of identifying, characterizing, and elucidating the mechanisms of endocrine disrupting chemicals in breast cancer need to be addressed to produce a comprehensive model that will facilitate preventive strategies and public policy. An expert panel met to describe and bring attention to needs linking common environmental exposures, critical windows of exposure, and optimal times of assessment in investigating breast cancer risk. The group included investigators with extensive experience in the use of rodent models and in leading population studies and produced a set of recommendations for effective approaches to gaining insights into the environmental origins of breast cancer across the lifespan. Published by Elsevier Inc.

  14. Endocrine disruption of sexual selection by an estrogenic herbicide in the mealworm beetle (Tenebrio molitor).

    Science.gov (United States)

    McCallum, Malcolm L; Matlock, Makensey; Treas, Justin; Safi, Barroq; Sanson, Wendy; McCallum, Jamie L

    2013-12-01

    The role that endocrine disruption could play in sexual selection remains relatively untested, and although estrogens occur in insects, little information exists about their biological role in insect reproduction. Atrazine is a commonly applied herbicide that mimics estrogen in vertebrates. Tenebrio molitor were raised from egg to adult under a gradation of environmentally relevant atrazine exposures and a non-treated control. Atrazine was delivered in the drinking water ad libitum. Female T. molitor were provided with a choice between unrelated males raised under three levels of atrazine exposures. Female preference for males demonstrated a non-monotonic inverted U-shaped response to atrazine exposure. There was no significant difference between the control and the high exposure to atrazine. Excluding the control, female preference increased as exposure concentration increased. These results have important repercussions for nonlethal effects of endocrine disruption on populations, their capacity to interfere with sexual selection, and the role of estrogen in pheromone communication among insects.

  15. Evaluation of Endocrine Disrupting Compounds Migration in Household Food Containers under Domestic Use Conditions.

    Science.gov (United States)

    Sáiz, Jorge; Gómara, Belén

    2017-08-09

    Plasticizers and plastic monomers are commonly used in packaging. Most of them act as endocrine disrupters and are susceptible to migrate from the packaging to the food. We evaluated the migration of endocrine disrupting compounds from three different household food containers to four food simulants under different domestic treatments and for different periods of time, with the aim of reproducing real domestic conditions. The results showed that the migration to the simulants increased with the storage time, up to more than 50 times in certain cases. The heating power seemed to increase the migration processes (up to more than 30 times), and reusing containers produced an increase or decrease of the concentrations depending on the container type and the simulant. The concentrations found were lower than other concentrations reported (always less than 4000 pg/mL, down to less than 20 pg/mL), which might be a consequence of the domestic conditions used.

  16. Combined exposure to endocrine disrupting pesticides impairs parturition and causes pup mortality in rats

    DEFF Research Database (Denmark)

    Hansen, Pernille Reimer; Christiansen, Sofie; Boberg, Julie

    Risk assessment is currently based on the no observed adverse effect level (NOAELs) for single compounds. Humans are exposed to a mixture of chemicals and epidemiological studies have reported some associations between endocrine disrupting effects and combined exposure to certain pesticides....... Although laboratory animal studies have shown that some endocrine disrupting pesticides can affect reproduction and sexual differentiation, individual pesticides may appear to be present in human tissues at too low levels to cause concern for adverse reproductive effects. However, recent studies in our...... to five pesticides, i.e. procymidone, mancozeb, tebuconazole, epoxiconazole and prochloraz. Common features for the three azole fungicides are that they increase gestational length possibly because of an increase in progesterone levels in dams. Groups of 8 time-mated Wistar rats (HanTac:WH) were gavaged...

  17. Environmental epigenomics: Current approaches to assess epigenetic effects of endocrine disrupting compounds (EDC's) on human health.

    Science.gov (United States)

    Tapia-Orozco, Natalia; Santiago-Toledo, Gerardo; Barrón, Valeria; Espinosa-García, Ana María; García-García, José Antonio; García-Arrazola, Roeb

    2017-04-01

    Environmental Epigenomics is a developing field to study the epigenetic effect on human health from exposure to environmental factors. Endocrine disrupting chemicals have been detected primarily in pharmaceutical drugs, personal care products, food additives, and food containers. Exposure to endocrine-disrupting chemicals (EDCs) has been associated with a high incidence and prevalence of many endocrine-related disorders in humans. Nevertheless, further evidence is needed to establish a correlation between exposure to EDC and human disorders. Conventional detection of EDCs is based on chemical structure and concentration sample analysis. However, substantial evidence has emerged, suggesting that cell exposure to EDCs leads to epigenetic changes, independently of its chemical structure with non-monotonic low-dose responses. Consequently, a paradigm shift in toxicology assessment of EDCs is proposed based on a comprehensive review of analytical techniques used to evaluate the epigenetic effects. Fundamental insights reported elsewhere are compared in order to establish DNA methylation analysis as a viable method for assessing endocrine disruptors beyond the conventional study approach of chemical structure and concentration analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Disruption of Reproductive Aging in Female and Male Rats by Gestational Exposure to Estrogenic Endocrine Disruptors

    OpenAIRE

    Walker, Deena M.; Kermath, Bailey A.; Woller, Michael J.; Gore, Andrea C.

    2013-01-01

    Polychlorinated biphenyls (PCBs) are industrial contaminants and known endocrine-disrupting chemicals. Previous work has shown that gestational exposure to PCBs cause changes in reproductive neuroendocrine processes. Here we extended work farther down the life spectrum and tested the hypothesis that early life exposure to Aroclor 1221 (A1221), a mixture of primarily estrogenic PCBs, results in sexually dimorphic aging-associated alterations to reproductive parameters in rats, and gene express...

  19. Biological and enzymatic treatment of bisphenol A and other endocrine disrupting compounds: a review.

    Science.gov (United States)

    Husain, Qayyum; Qayyum, Shariq

    2013-09-01

    Bisphenol A is predominantly used as an intermediate in the production of polycarbonate plastics and epoxy resins. Traces of bisphenol A released into the environment can reach into the wastewater and soil via application of sewage sludge from wastewater treatment systems that receive water containing bisphenol A, or from leachate from uncontrolled landfills. In this study we have made an effort to review the work on the presence of bisphenol A and other related endocrine disrupting compounds in the environment and their impact on the life of living organisms including human beings. Bisphenol A has several implications on the health of human beings as well it can also affect the growth of plants and animals. Number of physicochemical methods such as adsorption, membrane based filtration, ozonation, fenton, electrochemical and photochemical degradation has been used for the removal of bisphenol A. However, these methods have some inherent limitations and therefore cannot be used for large scale treatment of such pollutants. The alternative procedures have attracted the attention of environmental scientists. Biological methods are looking quite promising and these procedures are helpful in the complete degradation of bisphenol A and related compounds. Several bacterial, fungal, and algal strains and mixed cultures have successfully been employed for the degradation of bisphenol A. Recently, enzymatic methods have attracted the attention of the environmentalists for the treatment of bisphenol A and other endocrine disrupting compounds. Numerous types of oxidoreductases; laccases, tyrosinases, manganese peroxidase, lignin peroxidase, polyphenol oxidases, horseradish peroxidase and bitter gourd peroxidase have exhibited their potential for the remediation of such types of compounds. The cytochrome P 450 monooxygenases and hemoglobin have also participated in the degradation of bisphenol A and other related endocrine disrupting compounds. Various redox mediators

  20. Refinement of the ECETOC approach to identify endocrine disrupting properties of chemicals in ecotoxicology.

    Science.gov (United States)

    Weltje, Lennart; Wheeler, James R; Weyers, Arnd; Galay-Burgos, Malyka

    2013-12-16

    To use and implement an assessment scheme for the evaluation of endocrine disrupting properties of chemicals in ecotoxicology, the types of effect need to be agreed. Effects that merit further consideration in this context should fulfil the following three criteria: caused by an endocrine mode of action, be adverse, and be relevant at the population level to reflect the protection goal of ecotoxicological assessments. Thereafter, a comparison of effect values, regardless of the causative mechanisms, should be made, firstly to determine if endocrine toxicity generates the lowest endpoint within a taxon, and secondly if it is the lowest endpoint compared to that of other taxa living in the same compartment. These comparisons inform on two levels of specificity and determine if endocrine-mediated side-effects determine the ecotoxicological profile of a chemical. Various quantitative measures for the assessment of potency are also presented, which could assist in determining how to handle substances in the risk assessment when a regulatory concern is identified. Finally, derogation criteria should be defined for compounds that were designed as endocrine disruptors for non-vertebrates and those for which there is 'negligible exposure'. This paper discusses and provides proposals on how to apply these concepts for assessment of substances. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Search for the evidence of endocrine disruption in the aquatic environment: Lessons to be learned from joint biological and chemical monitoring in the European Project COMPREHEND

    NARCIS (Netherlands)

    Eggen, R.I.L.; Bengtsson, B.E.; Bowmer, C.T.; Gerritsen, A.A.M.; Gibert, M.; Hylland, K.; Johnson, A.C.; Leonards, P.E.G.; Nakari, T.; Norrgren, L.; Sumpter, J.P.; Suter, M.J.F.; Svenson, A.; Pickering, A.D.

    2003-01-01

    Between January 1999 and December 2001, the European Community project COMPREHEND was performed. The overall aim of COMPREHEND was to assess endocrine disruption in the aquatic environment in Europe, consequent to effluent discharge, with emphasis on estrogenic activity. COMPREHEND demonstrated the

  2. Endocrine disrupting chemicals in Minnesota lakes - Water-quality and hydrological data from 2008 and 2010

    Science.gov (United States)

    Barber, Larry B.; Writer, Jeffrey H.; Keefe, Steffanie K.; Brown, Greg K.; Ferrey, Mark L.; Jahns, Nathan D.; Kiesling, Richard L.; Lundy, James R.; Poganski, Beth H.; Rosenberry, Donald O.; Taylor, Howard E.; Woodruff, Olivia P.; Schoenfuss, Heiko L.

    2012-01-01

    Understanding the sources, fate, and effects of endocrine disrupting chemicals in aquatic ecosystems is important for water-resource management. This study was conducted during 2008 and 2010 to establish a framework for assessing endocrine disrupting chemicals, and involved a statewide survey of their occurrence in 14 Minnesota lakes and a targeted study of different microhabitats on a single lake. The lakes ranged in size from about 0.1 to 100 square kilometers, varied in trophic status from oligotrophic to eutrophic, and spanned a range of land-uses from wetlands and forest to agricultural and urban use. Water and sediment samples were collected from the near-shore littoral environment and analyzed for endocrine disrupting chemicals, including trace elements, acidic organic compounds, neutral organic compounds, and steroidal hormones. In addition, polar organic compound integrative samplers were deployed for 21 days and analyzed for the same organic compounds. One lake was selected for a detailed microhabitat study of multiple near-shore environments. This report compiles the results from the field measurements and laboratory chemical analysis of water, sediment, and polar organic compound integrative sampler samples collected during 2008 and 2010. Most of the organic compounds measured were not detected in any of the water samples, although a few compounds were detected in several of the lakes.

  3. Endocrine potency of wastewater: Contents of endocrine disrupting chemicals and effects measured by in vivo and in vitro assays

    DEFF Research Database (Denmark)

    Kusk, Kresten Ole; Krüger, Tanja; Long, Manhai

    2011-01-01

    properties: phthalate metabolites, parabens, industrial phenols, ultraviolet screens, and natural and synthetic steroid estrogens. The endocrine disrupting bioactivity and toxicity of the extracts were analyzed in cell culture assay for the potency to affect the function of the estrogen, androgen, aryl...... hydrocarbon, and thyroid receptors as well as the steroid hormone synthesis. The early-life stage (ELS) development was tested in a marine copepod. The concentrations of all analyzed chemicals were reduced in effluents compared with influents, and for some to below the detection limit. Influent as well...... of EDCs was reduced in the STPs but not eliminated, as verified by the applied bioassays that all responded to the extracts of effluent samples. Our data suggest that the wastewater treatment processes are not efficient enough to prevent contamination of environmental surface waters. © 2010 SETAC....

  4. Recommended approaches to the scientific evaluation of ecotoxicological hazards and risks of endocrine-active substances

    DEFF Research Database (Denmark)

    Matthiessen, Peter; Ankley, Gerald T.; Biever, Ronald C

    2017-01-01

    . Case studies were undertaken on 6 endocrine-active substances (EAS-not necessarily proven EDS, but substances known to interact directly with the endocrine system) that are representative of a range of perturbations of the endocrine system and considered to be data rich in relevant information......A SETAC Pellston Workshop(®) "Environmental Hazard and Risk Assessment Approaches for Endocrine-Active Substances (EHRA)" was held in February 2016 in Pensacola, Florida, USA. The primary objective of the workshop was to provide advice, based on current scientific understanding, to regulators...... and policy makers; the aim being to make considered, informed decisions on whether to select an ecotoxicological hazard- or a risk-based approach for regulating a given endocrine-disrupting substance (EDS) under review. The workshop additionally considered recent developments in the identification of EDS...

  5. Perspectivas en disrupción endocrina Perspectives in endocrine disruption

    Directory of Open Access Journals (Sweden)

    N. Olea

    2002-06-01

    Full Text Available La descripción de alteraciones en la función reproductora de algunas especies de animales salvajes, junto a la demostración de la exposición humana y animal a sustancias químicas con actividad hormonal ­agonista y antagonista­ generó, hace dos décadas, lo que se conoce hoy día como hipótesis de disrupción endocrina. Se trata de un problema emergente de salud medioambiental que ha cuestionado algunos de los paradigmas en que se fundamenta el control y la regulación de uso de los compuestos químicos. La necesidad de incluir en los tests toxicológicos habituales nuevos objetivos de investigación, que se refieren específicamente al desarrollo y crecimiento de las especies y a la homeostasis y funcionalidad de los sistemas hormonales, ha venido a complicar tanto la evaluación de los nuevos compuestos químicos como la revaluación de los existentes. Sus repercusiones sobre la reglamentación y el comercio internacional no se han hecho esperar y a ambos lados del Atlántico se han diseñado y establecido sistemas de cribado de disruptores endocrinos y se han desarrollado programas de investigación con objeto de cualificar y cuantificar los efectos adversos sobre la salud humana y animal y poder actuar con medidas de prevención.Two decades ago, reports of alterations in the reproductive function of some wild animal species and clear evidence of human and animal exposure to chemical substances with hormonal activity ­agonist and antagonist­ generated what is known now as the hypothesis of endocrine disruption. This is an emerging environmental health problem that has challenged some of the paradigms on which the control and regulation of the use of chemical compounds is based. The need to include in routine toxicology tests new research objectives that specifically refer to the development and growth of species and to the homeostasis and functionality of hormonal systems, has served to complicate both the evaluation of new

  6. Male Reproductive Disorders, Diseases, and Costs of Exposure to Endocrine-Disrupting Chemicals in the European Union

    DEFF Research Database (Denmark)

    Hauser, Russ; Skakkebaek, Niels E.; Hass, Ulla

    2015-01-01

    Introduction: Increasing evidence suggests that endocrine-disrupting chemicals (EDCs) contribute to male reproductive diseases and disorders. Purpose: To estimate the incidence/prevalence of selected male reproductive disorders/diseases and associated economic costs that can be reasonably...

  7. Direct action of endocrine disrupting chemicals on human sperm

    DEFF Research Database (Denmark)

    Schiffer, Christian; Müller, Astrid; Egeberg, Dorte L

    2014-01-01

    sperm. We show that structurally diverse EDCs activate the sperm-specific CatSper channel and, thereby, evoke an intracellular Ca(2+) increase, a motility response, and acrosomal exocytosis. Moreover, EDCs desensitize sperm for physiological CatSper ligands and cooperate in low-dose mixtures to elevate...

  8. Paraoxonase 1 Activity in Endocrine Diseases

    Directory of Open Access Journals (Sweden)

    Özlem Tarçın

    2011-06-01

    Full Text Available Paraoxonase is an esterase bound to high-density lipoproteins which by metabolizing lipid peroxides, prevents their accumulation on low-density lipoproteins. It also hydrolyzes various organophosphorus compounds. Considering the role of PON1 in hydrolyzing phospholipid and cholesteryl-ester hydroperoxides and thus protecting lipoproteins against oxidative modification, it can be concluded that PON1 may be an indicator of the risk of atherosclerosis/coronary artery disease development. Recent studies have also shown that PON activity was related to several disorders, including endocrine disorders as well. In this paper, we review the relation of PON1 activity with endocrine diseases like diabetes, thyroid dysfunction, osteoporosis, polycystic ovary syndrome (PCOS, obesity and dyslipidemia. Turk Jem 2011; 15: 33-8

  9. Simulated solar UV-irradiation of endocrine disrupting chemical octylphenol

    Energy Technology Data Exchange (ETDEWEB)

    Neamtu, Mariana, E-mail: mariana.neamtu@web.de [Technical University of Iasi, Department of Environmental Engineering and Management, Bd. D. Mangeron 71A, 700050 Iasi (Romania)] [University of Karlsruhe, Water Chemistry, Engler-Bunte-Institute, Engler-Bunte-Ring 1, 76131 Karlsruhe (Germany); Popa, Dana-Melania [University of Karlsruhe, Water Chemistry, Engler-Bunte-Institute, Engler-Bunte-Ring 1, 76131 Karlsruhe (Germany)] [' Lucian Blaga' University of Sibiu, Str. Ion Ratiu 5-7, 550012 Sibiu (Romania); Frimmel, Fritz H. [University of Karlsruhe, Water Chemistry, Engler-Bunte-Institute, Engler-Bunte-Ring 1, 76131 Karlsruhe (Germany)

    2009-05-30

    The photolysis of octylphenol (OP) was investigated using a solar simulator in the absence/presence of dissolved natural organic matter (DNOM), HCO{sub 3}{sup -}, NO{sub 3}{sup -} and Fe(III) ions. The effects of different parameters such as initial pH, initial concentration of substrate, temperature, and the effect of hydrogen peroxide concentration on photodegradation of octylphenol in aqueous solution have been assessed. The results indicate that the oxidation rate increases in the presence of H{sub 2}O{sub 2}, nitrate and DNOM. Phenol, 1,4-dihydroxylbenzene and 1,4-benzoquinone were identified as intermediate products of photodegradation of octylphenol, through an HPLC method. In addition, the disappearance of the estrogenic activity of octylphenol during irradiation using YES test was investigated. Based upon the YES test results, there was a strong decrease of estrogenic activity of octylphenol after 8 h irradiation in the presence of hydrogen peroxide.

  10. Low dose effects and non-monotonic dose responses for endocrine active chemicals: Science to practice workshop: Workshop summary

    DEFF Research Database (Denmark)

    Beausoleil, Claire; Ormsby, Jean-Nicolas; Gies, Andreas

    2013-01-01

    A workshop was held in Berlin September 12–14th 2012 to assess the state of the science of the data supporting low dose effects and non-monotonic dose responses (“low dose hypothesis”) for chemicals with endocrine activity (endocrine disrupting chemicals or EDCs). This workshop consisted...

  11. Prepubertal subchronic exposure to soy milk and glyphosate leads to endocrine disruption.

    Science.gov (United States)

    Nardi, Jessica; Moras, Patricia Bonamigo; Koeppe, Carina; Dallegrave, Eliane; Leal, Mirna Bainy; Rossato-Grando, Luciana Grazziotin

    2017-02-01

    Lactose intolerance is characterized by low or inexistent levels of lactase, and the main treatment consists of dietary changes, especially replacing dairy milk by soy milk. Soy contains phytoestrogens, substances with known estrogenic activity, besides, glyphosate-based herbicides are extensively used in soy crops, being frequently a residue in soy beans, bringing to a concern regarding the consumption of soy-based products, especially for children in breastfeeding period with lactose intolerance. This study evaluated the pubertal toxicity of a soy milk rich feeding (supplemented or not with glyphosate, doses of 50 and 100 mg/kg) during prepubertal period in male rats. Endocrine disruption was observed through decrease in testosterone levels, decrease in Sertoli cell number and increase in the percentage of degenerated Sertoli and Leydig cells in animals receiving soy milk supplemented with glyphosate (both doses) and in animals treated only with soy milk. Animals treated with soy milk with glyphosate (both doses) showed decrease spermatids number and increase of epididymal tail mass compared to control, and decrease in the diameter of seminiferous tubules compared to soy milk control group. Animals receiving soy milk supplemented with 100 mg/kg glyphosate showed decrease in round spermatids and increase in abnormal sperm morphology, compared to control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Modulation of cytokine expression in human macrophages by endocrine-disrupting chemical Bisphenol-A

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanzhen; Mei, Chenfang [State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070 (China); Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070 (China); Liu, Hao [Affiliated Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou 510095 (China); Wang, Hongsheng [Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Zeng, Guoqu; Lin, Jianhui [State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070 (China); Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070 (China); Xu, Meiying, E-mail: xumy@gdim.cn [State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070 (China); Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070 (China)

    2014-09-05

    Highlights: • Effects of BPA on the cytokines expression of human macrophages were investigated. • BPA increased pro-inflammation cytokines TNF-α and IL-6 production. • BPA decreased anti-inflammation IL-10 and TGF-β production. • ERα/β/ERK/NF-κB signaling involved in BPA-mediated cytokines expression. - Abstract: Exposure to environmental endocrine-disrupting chemical Bisphenol-A (BPA) is often associated with dysregulated immune homeostasis, but the mechanisms remain unclear. In the present study, the effects of BPA on the cytokines responses of human macrophages were investigated. Treatment with BPA increased pro-inflammation cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production, but decreased anti-inflammation cytokines interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) production in THP1 macrophages, as well as in primary human macrophages. BPA effected cytokines expression through estrogen receptor α/β (ERα/β)-dependent mechanism with the evidence of ERα/β antagonist reversed the expression of cytokines. We also identified that activation of extracellular regulated protein kinases (ERK)/nuclear factor κB (NF-κB) signal cascade marked the effects of BPA on cytokines expression. Our results indicated that BPA effected inflammatory responses of macrophages via modulating of cytokines expression, and provided a new insight into the link between exposure to BPA and human health.

  13. Malathion exposure induces the endocrine disruption and growth retardation in the catfish, Clarias batrachus (Linn.).

    Science.gov (United States)

    Lal, Bechan; Sarang, Mukesh Kumar; Kumar, Pankaj

    2013-01-15

    Many hormones are known for their role in the regulation of metabolic activities and somatic growth in fishes. The present study deals with the effects of malathion (an organophosphorous pesticide) on the levels of metabolic hormones that are responsible for promotion of somatic and ovarian growth of the freshwater catfish, Clarias batrachus. Malathion treatment for thirty days drastically reduced the food intake and body weight of fish. These fish also exhibited a great avoidance to food. Exposure of catfish to malathion reduced the levels of thyroxine (T(4)), triiodothyronine (T(3)), growth hormone (GH), insulin like growth factor-I (IGF-I), testosterone (T) and estradiol-17β (E(2)) in a dose dependent manner during all the studied reproductive phases, in general, except that malathion increased the level of GH during the quiescence phase. Significant reduction in muscle and hepatic protein content also occurred in the malathion-treated fish. Malathion exposure induced lipolysis too in the liver and muscle. The results thus support that malathion treatment disrupts the endocrine functions and the olfactory sensation responsible for food intake and gustatory feeding behavior, which ultimately leads to retardation of fish growth. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Thyroid endocrine disruption in zebrafish larvae after exposure to mono-(2-ethylhexyl phthalate (MEHP.

    Directory of Open Access Journals (Sweden)

    Wenhui Zhai

    Full Text Available Phthalates are extensively used as plasticizers in a variety of daily-life products, resulting in widespread distribution in aquatic environments. However, limited information is available on the endocrine disrupting effects of phthalates in aquatic organisms. The aim of the present study was to examine whether exposure to mono-(2-ethylhexyl phthalate (MEHP, the hydrolytic metabolite of di-(2-ethylhexyl phthalate (DEHP disrupts thyroid endocrine system in fish. In this study, zebrafish (Danio rerio embryos were exposed to different concentrations of MEHP (1.6, 8, 40, and 200 μg/L from 2 h post-fertilization (hpf to 168 hpf. The whole-body content of thyroid hormone and transcription of genes involved in the hypothalamic-pituitary-thyroid (HPT axis were examined. Treatment with MEHP significantly decreased whole-body T4 contents and increased whole-body T3 contents, indicating thyroid endocrine disruption. The upregulation of genes related to thyroid hormone metabolism (Dio2 and UGT1ab might be responsible for decreased T4 contents. Elevated gene transcription of Dio1 was also observed in this study, which might assist to degrade increased T3 contents. Exposure to MEHP also significantly induced transcription of genes involved in thyroid development (Nkx2.1 and Pax8 and thyroid hormone synthesis (TSHβ, NIS and TG. However, the genes encoding proteins involved in TH transport (transthyretin, TTR was transcriptionally significantly down-regulated after exposure to MEHP. Overall, these results demonstrate that acute exposure to MEHP alters whole-body contents of thyroid hormones in zebrafish embryos/larvae and changes the transcription of genes involved in the HPT axis, thus exerting thyroid endocrine toxicity.

  15. Analysis of endocrine disrupting pesticides by capillary GC with mass spectrometric detection.

    Science.gov (United States)

    Matisová, Eva; Hrouzková, Svetlana

    2012-09-04

    Endocrine disrupting chemicals, among them many pesticides, alter the normal functioning of the endocrine system of both wildlife and humans at very low concentration levels. Therefore, the importance of method development for their analysis in food and the environment is increasing. This also covers contributions in the field of ultra-trace analysis of multicomponent mixtures of organic pollutants in complex matrices. With this fact conventional capillary gas chromatography (CGC) and fast CGC with mass spectrometric detection (MS) has acquired a real importance in the analysis of endocrine disrupting pesticide (EDP) residues. This paper provides an overview of GC methods, including sample preparation steps, for analysis of EDPs in a variety of matrices at ultra-trace concentration levels. Emphasis is put on separation method, mode of MS detection and ionization and obtained limits of detection and quantification. Analysis time is one of the most important aspects that should be considered in the choice of analytical methods for routine analysis. Therefore, the benefits of developed fast GC methods are important.

  16. Analysis of Endocrine Disrupting Pesticides by Capillary GC with Mass Spectrometric Detection

    Directory of Open Access Journals (Sweden)

    Svetlana Hrouzková

    2012-09-01

    Full Text Available Endocrine disrupting chemicals, among them many pesticides, alter the normal functioning of the endocrine system of both wildlife and humans at very low concentration levels. Therefore, the importance of method development for their analysis in food and the environment is increasing. This also covers contributions in the field of ultra-trace analysis of multicomponent mixtures of organic pollutants in complex matrices. With this fact conventional capillary gas chromatography (CGC and fast CGC with mass spectrometric detection (MS has acquired a real importance in the analysis of endocrine disrupting pesticide (EDP residues. This paper provides an overview of GC methods, including sample preparation steps, for analysis of EDPs in a variety of matrices at ultra-trace concentration levels. Emphasis is put on separation method, mode of MS detection and ionization and obtained limits of detection and quantification. Analysis time is one of the most important aspects that should be considered in the choice of analytical methods for routine analysis. Therefore, the benefits of developed fast GC methods are important.

  17. Analysis of Endocrine Disrupting Pesticides by Capillary GC with Mass Spectrometric Detection

    Science.gov (United States)

    Matisová, Eva; Hrouzková, Svetlana

    2012-01-01

    Endocrine disrupting chemicals, among them many pesticides, alter the normal functioning of the endocrine system of both wildlife and humans at very low concentration levels. Therefore, the importance of method development for their analysis in food and the environment is increasing. This also covers contributions in the field of ultra-trace analysis of multicomponent mixtures of organic pollutants in complex matrices. With this fact conventional capillary gas chromatography (CGC) and fast CGC with mass spectrometric detection (MS) has acquired a real importance in the analysis of endocrine disrupting pesticide (EDP) residues. This paper provides an overview of GC methods, including sample preparation steps, for analysis of EDPs in a variety of matrices at ultra-trace concentration levels. Emphasis is put on separation method, mode of MS detection and ionization and obtained limits of detection and quantification. Analysis time is one of the most important aspects that should be considered in the choice of analytical methods for routine analysis. Therefore, the benefits of developed fast GC methods are important. PMID:23202677

  18. A path forward in the debate over health impacts of endocrine disrupting chemicals.

    Science.gov (United States)

    Zoeller, R Thomas; Bergman, Åke; Becher, Georg; Bjerregaard, Poul; Bornman, Riana; Brandt, Ingvar; Iguchi, Taisen; Jobling, Susan; Kidd, Karen A; Kortenkamp, Andreas; Skakkebaek, Niels E; Toppari, Jorma; Vandenberg, Laura N

    2014-12-22

    Several recent publications reflect debate on the issue of "endocrine disrupting chemicals" (EDCs), indicating that two seemingly mutually exclusive perspectives are being articulated separately and independently. Considering this, a group of scientists with expertise in basic science, medicine and risk assessment reviewed the various aspects of the debate to identify the most significant areas of dispute and to propose a path forward. We identified four areas of debate. The first is about the definitions for terms such as "endocrine disrupting chemical", "adverse effects", and "endocrine system". The second is focused on elements of hormone action including "potency", "endpoints", "timing", "dose" and "thresholds". The third addresses the information needed to establish sufficient evidence of harm. Finally, the fourth focuses on the need to develop and the characteristics of transparent, systematic methods to review the EDC literature. Herein we identify areas of general consensus and propose resolutions for these four areas that would allow the field to move beyond the current and, in our opinion, ineffective debate.

  19. Towards an internationally harmonized test method for reproductive and developmental effects of endocrine disrupters in marine copepods

    DEFF Research Database (Denmark)

    Kusk, Kresten Ole; Wollenberger, Leah

    2007-01-01

    with marine copepods (Acartia tonsa, Nitocra spinipes, Tisbe battagliai, and Amphiascus tenuiremis). The present paper gives an overview on the endocrine system of crustaceans with special emphasis on development and reproduction, which are targets for endocrine disruption, and reviews available methods......New and updated methods to detect and characterize endocrine disrupting chemicals (EDCs) are urgently needed for the purpose of environmental risk assessment since these substances are often not detected using existing chronic toxicity tests. Numerous reports on the effects of EDCs on crustacean...... development and reproduction have been published and the development of life-cycle tests with crustaceans has been prioritized within the OECD work program for endocrine disrupter testing and assessment. As a result, Sweden, and Denmark initiated a proposal for development of a full life-cycle test...

  20. Endocrine disrupters, microRNAs, and primordial germ cells: a dangerous cocktail.

    Science.gov (United States)

    Brieño-Enríquez, Miguel Angel; Larriba, Eduardo; Del Mazo, Jesús

    2016-09-15

    Endocrine-disrupting chemicals (EDCs) are environmental pollutants that may change the homeostasis of the endocrine system, altering the differentiation of germ cells with consequences for reproduction. In mammals, germ cell differentiation begins with primordial germ cells (PGCs) during embryogenesis. Primordial germ cell development and gametogenesis are genetically regulated processes, in which the posttranscriptional gene regulation could be mediated by small noncoding RNAs (sncRNAs) such as microRNAs (miRNAs). Here, we review the deleterious effects of exposure during fetal life to EDCs mediated by deregulation of ncRNAs, and specifically miRNAs on PGC differentiation. Moreover, the environmental stress induced by exposure to some EDCs during the embryonic window of development could trigger reproductive dysfunctions transgenerationally transmitted by epigenetic mechanisms with the involvement of miRNAs expressed in germ line cells. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Estimating Burden and Disease Costs of Exposure to Endocrine-Disrupting Chemicals in the European Union

    DEFF Research Database (Denmark)

    Trasande, Leonardo; Zoeller, R. Thomas; Hass, Ulla

    2015-01-01

    Rapidly increasing evidence has documented that endocrine-disrupting chemicals (EDCs) contribute substantially to disease and disability. Objective: The objective was to quantify a range of health and economic costs that can be reasonably attributed to EDC exposures in the European Union (EU......). Design: A Steering Committee of scientists adapted the Intergovernmental Panel on Climate Change weight-of-evidence characterization for probability of causation based upon levels of available epidemiological and toxicological evidence for one or more chemicals contributing to disease by an endocrine...... disruptor mechanism. To evaluate the epidemiological evidence, the Steering Committee adapted the World Health Organization Grading of Recommendations Assessment, Development and Evaluation (GRADE) Working Group criteria, whereas the Steering Committee adapted definitions recently promulgated by the Danish...

  2. Negative impact of endocrine-disrupting compounds on human reproductive health.

    Science.gov (United States)

    Balabanič, Damjan; Rupnik, Marjan; Klemenčič, Aleksandra Krivograd

    2011-01-01

    There is increasing concern about chemical pollutants that are able to mimic hormones, the so-called endocrine-disrupting compounds (EDCs), because of their structural similarity to endogenous hormones, their ability to interact with hormone transport proteins or because of their potential to disrupt hormone metabolic pathways. Thus, the effects of endogenous hormones can be mimicked or, in some cases, completely blocked. A substantial number of environmental pollutants, such as polychlorinated biphenyls, dioxins, polycyclic aromatic hydrocarbons, phthalates, bisphenol A, pesticides, alkylphenols and heavy metals (arsenic, cadmium, lead, mercury), have been shown to disrupt endocrine function. These compounds can cause reproductive problems by decreasing sperm count and quality, increasing the number of testicular germ cells and causing male breast cancer, cryptorchidism, hypospadias, miscarriages, endometriosis, impaired fertility, irregularities of the menstrual cycle, and infertility. Although EDCs may be released into the environment in different ways, the main sources is industrial waste water. The present paper critically reviews the current knowledge of the impact of EDCs on reproductive disorders in humans.

  3. EDC IMPACT: Reduced sperm counts in rats exposed to human relevant mixtures of endocrine disrupters

    Directory of Open Access Journals (Sweden)

    M Axelstad

    2018-01-01

    Full Text Available Human semen quality is declining in many parts of the world, but the causes are ill defined. In rodents, impaired sperm production can be seen with early life exposure to certain endocrine-disrupting chemicals, but the effects of combined exposures are not properly investigated. In this study, we examined the effects of early exposure to the painkiller paracetamol and mixtures of human relevant endocrine-disrupting chemicals in rats. One mixture contained four estrogenic compounds; another contained eight anti-androgenic environmental chemicals and a third mixture contained estrogens, anti-androgens and paracetamol. All exposures were administered by oral gavage to time-mated Wistar dams rats (n = 16–20 throughout gestation and lactation. In the postnatal period, testicular histology was affected by the total mixture, and at the end of weaning, male testis weights were significantly increased by paracetamol and the high doses of the total and the anti-androgenic mixture, compared to controls. In all dose groups, epididymal sperm counts were reduced several months after end of exposure, i.e. at 10  months of age. Interestingly, the same pattern of effects was seen for paracetamol as for mixtures with diverse modes of action. Reduced sperm count was seen at a dose level reflecting human therapeutic exposure to paracetamol. Environmental chemical mixtures affected sperm count at the lowest mixture dose indicating an insufficient margin of safety for the most exposed humans. This causes concern for exposure of pregnant women to paracetamol as well as environmental endocrine disrupters.

  4. Review of Bioassays for Monitoring Fate and Transport ofEstrogenic Endocrine Disrupting Compounds in Water

    Energy Technology Data Exchange (ETDEWEB)

    CGCampbell@lbl.gov

    2004-01-30

    Endocrine disrupting compounds (EDCs) are recognizedcontaminants threatening water quality. Despite efforts in sourceidentification, few strategies exist for characterization or treatment ofthis environmental pollution. Given that there are numerous EDCs that cannegatively affect humans and wildlife, general screening techniques likebioassays and biosensors provide an essential rapid and intensiveanalysis capacity. Commonly applied bioassays include the ELISA and YESassays, but promising technologies include ER-CALUXa, ELRA, Endotecta,RIANA, and IR-bioamplification. Two biosensors, Endotecta and RIANA, arefield portable using non-cellular biological detection strategies.Environmental management of EDCs in water requires integration ofbiosensors and bioassays for monitoring and assessment.

  5. Late-life effects on rat reproductive system after developmental exposure to mixtures of endocrine disrupters

    DEFF Research Database (Denmark)

    Isling, Louise Krag; Boberg, Julie; Jacobsen, Pernille Rosenskjold

    2014-01-01

    ). Onset of puberty and estrous cyclicity at 9 and 12 months of age were assessed. Few female offspring showed significantly regular estrus cyclicity at 12 months of age in the TotalMix450 and AAMix450 groups compared with controls. In 19-month-old male offspring, epididymal sperm counts were lower than...... group. Developmental exposure of rats to the highest dose of a human-relevant mixture of endocrine disrupters induced adverse effects late in life, manifested as earlier female reproductive senescence, reduced sperm counts, higher score for prostate atypical hyperplasia, and higher incidence...

  6. The exposure of fetuses and children to endocrine disrupting chemicals: a European Society for Paediatric Endocrinology (ESPE) and Pediatric Endocrine Society (PES) call to action statement

    DEFF Research Database (Denmark)

    Skakkebæk, Niels E; Toppari, Jorma; Söder, Olle

    2011-01-01

    carried out by basic and experimental scientists and wildlife researchers. Relatively few clinical scientists have been engaged in research on this topic to date. The aim of this statement is to have pediatric endocrinologists consider the issue of endocrine disrupters in their clinical work and research....

  7. The exposure of fetuses and children to endocrine disrupting chemicals: a European Society for Paediatric Endocrinology (ESPE) and Pediatric Endocrine Society (PES) call to action statement

    DEFF Research Database (Denmark)

    Skakkebæk, Niels E; Toppari, Jorma; Söder, Olle

    2011-01-01

    During recent years, evidence has accumulated that both wildlife species and humans are exposed to ubiquitous endocrine-disrupting chemicals. Some are persistent in our bodies; others are nonpersistent but are produced in large quantities. Hitherto, the bulk of research in this area has been carr...

  8. Conifer Diterpene Resin Acids Disrupt Juvenile Hormone-Mediated Endocrine Regulation in the Indian Meal Moth Plodia interpunctella.

    Science.gov (United States)

    Oh, Hyun-Woo; Yun, Chan-Seok; Jeon, Jun Hyoung; Kim, Ji-Ae; Park, Doo-Sang; Ryu, Hyung Won; Oh, Sei-Ryang; Song, Hyuk-Hwan; Shin, Yunhee; Jung, Chan Sik; Shin, Sang Woon

    2017-07-03

    Diterpene resin acids (DRAs) are important components of oleoresin and greatly contribute to the defense strategies of conifers against herbivorous insects. In the present study, we determined that DRAs function as insect juvenile hormone (JH) antagonists that interfere with the juvenile hormone-mediated binding of the JH receptor Methoprene-tolerant (Met) and steroid receptor coactivator (SRC). Using a yeast two-hybrid system transformed with Met and SRC from the Indian meal moth Plodia interpunctella, we tested the interfering activity of 3704 plant extracts against JH III-mediated Met-SRC binding. Plant extracts from conifers, especially members of the Pinaceae, exhibited strong interfering activity, and four active interfering DRAs (7α-dehydroabietic acid, 7-oxodehydroabietic acid, dehydroabietic acid, and sandaracopimaric acid) were isolated from roots of the Japanese pine Pinus densiflora. The four isolated DRAs, along with abietic acid, disrupted the juvenile hormone-mediated binding of P. interpunctella Met and SRC, although only 7-oxodehydroabietic acid disrupted larval development. These results demonstrate that DRAs may play a defensive role against herbivorous insects via insect endocrine-disrupting activity.

  9. Fate of steroid hormones and endocrine activities in swine manure disposal and treatment facilities.

    Science.gov (United States)

    Combalbert, Sarah; Bellet, Virginie; Dabert, Patrick; Bernet, Nicolas; Balaguer, Patrick; Hernandez-Raquet, Guillermina

    2012-03-01

    Manure may contain high concern endocrine-disrupting compounds (EDCs) such as steroid hormones, naturally produced by pigs, which are present at μgL(-1) levels. Manure may also contain other EDCs such as nonylphenols (NP), polycyclic aromatic hydrocarbons (PAHs) and dioxins. Thus, once manure is applied to the land as soil fertilizer these compounds may reach aquifers and consequently living organisms, inducing abnormal endocrine responses. In France, manure is generally stored in anaerobic tanks prior spreading on land; when nitrogen removal is requested, manure is treated by aerobic processes before spreading. However, little is known about the fate of hormones and multiple endocrine-disrupting activities in such manure disposal and treatment systems. Here, we determined the fate of hormones and diverse endocrine activities during manure storage and treatment by combining chemical analysis and in vitro quantification of estrogen (ER), aryl hydrocarbon (AhR), androgen (AR), pregnane-X (PXR) and peroxysome proliferator-activated γ (PPARγ) receptor-mediated activities. Our results show that manure contains large quantities of hormones and activates ER and AhR, two of the nuclear receptors studied. Most of these endocrine activities were found in the solid fraction of manure and appeared to be induced mainly by hormones and other unidentified pollutants. Hormones, ER and AhR activities found in manure were poorly removed during manure storage but were efficiently removed by aerobic treatment of manure. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. The epidemiologic evidence linking prenatal and postnatal exposure to endocrine disrupting chemicals with male reproductive disorders

    DEFF Research Database (Denmark)

    Bonde, Jens Peter; Flachs, Esben Meulengracht; Rimborg, Susie

    2017-01-01

    BACKGROUND: More than 20 years ago, it was hypothesized that exposure to prenatal and early postnatal environmental xenobiotics with the potential to disrupt endogenous hormone signaling might be on the causal path to cryptorchidism, hypospadias, low sperm count and testicular cancer. Several...... was to systematically synthesize published data on the risk of cryptorchidism, hypospadias, low sperm counts and testicular cancer following in utero or infant exposure to chemicals that have been included on the European Commission's list of Category 1 endocrine disrupting chemicals defined as having documented...... and exposures documented by biochemical analyses of biospecimens including maternal blood or urine, placenta or fat tissue as well as amnion fluid, cord blood or breast milk; this was followed by meta-analysis of quantitative data. OUTCOMES: The literature search resulted in 1314 references among which we...

  11. Enantioselective disruption of the endocrine system by Cis-Bifenthrin in the male mice.

    Science.gov (United States)

    Jin, Yuanxiang; Wang, Jiangcong; Pan, Xiuhong; Miao, Wenyu; Lin, Xiaojian; Wang, Linggang; Fu, Zhengwei

    2015-07-01

    Bifenthrin (BF), as a chiral pyrethroid, is widely used to control field and household pests in China. At present, the commercial BF is a mixed compound containing cis isomers (cis-BF) including two enantiomers of 1R-cis-BF and 1S-cis-BF. In the present study, the two individual cis-BF enantiomers were separated by a preparative supercritical fluid chromatography. Then, four week-old adolescent male ICR mice were orally administered 1R-cis-BF and 1S-cis-BF separately daily for 3 weeks at doses of 0, 7.5 and 15 mg/kg/day, respectively. Results showed that the transcription status of some genes involved in cholesterol synthesis and transport as well as testosterone (T) synthesis in the testes were influenced by cis-BF enantiomers. Especially, we observed that the transcription status of key genes on the pathway of T synthesis including cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc) and cytochrome P450 17α-hydroxysteroid dehydrogenase (P45017α)) were selectively altered in the testis of mice when treated with 1S-cis-BF, suggesting that it is the possible reason to explain why the lower serum T concentration in 1S-cis-BF treated group. Taken together, it concluded that both of the cis-BF enantiomers have the endocrine disruption activities, while 1S-cis-BF was higher than 1R-cis-BF in mice when exposed during the puberty. The data was helpful to understand the toxicity of cis-BF in mammals under enantiomeric level. © 2014 Wiley Periodicals, Inc.

  12. An overview of estrogen-associated endocrine disruption in fishes: evidence of effects on reproductive and immune physiology

    Science.gov (United States)

    Iwanowicz, L.R.; Blazer, V.S.

    2011-01-01

    Simply and perhaps intuitively defined, endocrine disruption is the abnormal modulation of normal hormonal physiology by exogenous chemicals. In fish, endocrine disruption of the reproductive system has been observed worldwide in numerous species and is known to affect both males and females. Observations of biologically relevant endocrine disruption most commonly occurs near waste water treatment plant outfalls, pulp and paper mills, and areas of high organic loading sometimes associated with agricultural practices. Estrogenic endocrine disrupting chemicals (EEDCs) have received an overwhelmingly disproportionate amount of scientific attention compared to other EDCs in recent years. In male fishes, exposure to EEDCs can lead to the induction of testicular oocytes (intersex), measurable plasma vitellogenin protein, altered sex steroid profiles, abnormal spawning behavior, skewed population sex ratios, and lessened reproductive success. Interestingly, contemporary research purports that EDCs modulate aspects of non-reproductive physiology including immune function. Here we present an overview of endocrine disruption in fishes associated with estrogenic compounds, implications of this phenomenon, and examples of EDC related research findings by our group in the Potomac River Watershed, USA.

  13. Infant and mother related outcomes from exposure to metals with endocrine disrupting properties during pregnancy

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, A. [Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa (Canada); Kumarathasan, P. [Environmental Health Science and Research Bureau, Health Canada, Ottawa (Canada); Gomes, J., E-mail: jgomes@uottawa.ca [Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa (Canada); McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa (Canada)

    2016-11-01

    Background: Endocrine-related adverse health effects from exposure to heavy metals such as lead, arsenic, cadmium, and mercury are yet to be adequately described. The purpose of this review was to gain insight into maternal exposure to heavy metals, and to identify potential endocrine-related adverse health effects in the mother and the infant. Methods: Relevant databases were searched for original research reports and a total of 46 articles were retained for scrutiny. Required data was extracted from these studies and their methodology was assessed. Results: Impaired fetal growth was observed from exposure to all endocrine disrupting metals, while exposure to lead and arsenic were associated with spontaneous abortion, stillbirth and neonatal deaths. Maternal exposure to arsenic was associated with impaired glucose tolerance in these mothers. Conclusion: Impaired fetal growth, fetal loss, and neonatal deaths were significantly associated with heavy metals exposure during pregnancy; however, hypertension and gestational diabetes require further investigation. - Highlights: • Low and high dose exposure to lead was associated with low birth weight, preterm birth, stillbirths, spontaneous abortions and hypertension. • Exposure to arsenic was associated with fetal loss, stillbirths and spontaneous abortions. • Exposure to cadmium was associated with low birth weight. • Exposure to mercury was associated with spontaneous abortions and neurotoxic effects. • Exposure to copper was associated with low birth weight and spontaneous abortions and exposure to zinc was associated with low birth weight.

  14. EDCs DataBank: 3D-Structure database of endocrine disrupting chemicals.

    Science.gov (United States)

    Montes-Grajales, Diana; Olivero-Verbel, Jesus

    2015-01-02

    Endocrine disrupting chemicals (EDCs) are a group of compounds that affect the endocrine system, frequently found in everyday products and epidemiologically associated with several diseases. The purpose of this work was to develop EDCs DataBank, the only database of EDCs with three-dimensional structures. This database was built on MySQL using the EU list of potential endocrine disruptors and TEDX list. It contains the three-dimensional structures available on PubChem, as well as a wide variety of information from different databases and text mining tools, useful for almost any kind of research regarding EDCs. The web platform was developed employing HTML, CSS and PHP languages, with dynamic contents in a graphic environment, facilitating information analysis. Currently EDCs DataBank has 615 molecules, including pesticides, natural and industrial products, cosmetics, drugs and food additives, among other low molecular weight xenobiotics. Therefore, this database can be used to study the toxicological effects of these molecules, or to develop pharmaceuticals targeting hormone receptors, through docking studies, high-throughput virtual screening and ligand-protein interaction analysis. EDCs DataBank is totally user-friendly and the 3D-structures of the molecules can be downloaded in several formats. This database is freely available at http://edcs.unicartagena.edu.co. Copyright © 2014. Published by Elsevier Ireland Ltd.

  15. Parental exposure to microcystin-LR induced thyroid endocrine disruption in zebrafish offspring, a transgenerational toxicity.

    Science.gov (United States)

    Cheng, Houcheng; Yan, Wei; Wu, Qin; Liu, Chunsheng; Gong, Xiuying; Hung, Tien-Chieh; Li, Guangyu

    2017-11-01

    Microcystin-LR is the most poisonous and commonly encountered hepatotoxin produced by cyanobacteria in an aquatic ecosystem, and it may cause thyroid dysfunction in fish. The present study aimed to reveal the effects of transgenerational toxicity of MCLR on the thyroid endocrine system under sub-chronic exposure conditions. Adult zebrafish (F0) were exposed to environmentally relevant concentrations (1, 5 and 25 μg/L) of MCLR for 45 days. The produced F1 embryos were then tested without further MCLR treatment. In the F0 generation, exposure to 25 μg/L MCLR reduced thyroxine (T4) but not 3, 5, 3'-triiodothyronine (T3) levels in females, while the T4 and T3 levels were unchanged in males. After parental exposure to MCLR, we observed a decreased hatching and growth retardation correlated with reduced thyroid hormone levels in the F1 offspring. The gene transcription and protein expression along the hypothalamic-pituitary-thyroid axis were detected to further investigate the possible mechanisms of MCLR-induced thyroid disruption. Our results indicated MCLR could disturb the thyroid endocrine system under environmentally relevant concentrations and the disrupting effects could be remarkably transmitted to its F1 offspring. We regard these adverse effects as a parental transgenerational toxicity of MCLR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Endocrine disruption in aquatic systems: up-scaling research to address ecological consequences.

    Science.gov (United States)

    Windsor, Fredric M; Ormerod, Steve J; Tyler, Charles R

    2018-02-01

    Endocrine-disrupting chemicals (EDCs) can alter biological function in organisms at environmentally relevant concentrations and are a significant threat to aquatic biodiversity, but there is little understanding of exposure consequences for populations, communities and ecosystems. The pervasive nature of EDCs within aquatic environments and their multiple sub-lethal effects make assessments of their impact especially important but also highly challenging. Herein, we review the data on EDC effects in aquatic systems focusing on studies assessing populations and ecosystems, and including how biotic and abiotic processes may affect, and be affected by, responses to EDCs. Recent research indicates a significant influence of behavioural responses (e.g. enhancing feeding rates), transgenerational effects and trophic cascades in the ecological consequences of EDC exposure. In addition, interactions between EDCs and other chemical, physical and biological factors generate uncertainty in our understanding of the ecological effects of EDCs within aquatic ecosystems. We illustrate how effect thresholds for EDCs generated from individual-based experimental bioassays of the types commonly applied using chemical test guidelines [e.g. Organisation for Economic Co-operation and Development (OECD)] may not necessarily reflect the hazards associated with endocrine disruption. We argue that improved risk assessment for EDCs in aquatic ecosystems urgently requires more ecologically oriented research as well as field-based assessments at population-, community- and food-web levels. © 2017 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  17. Thyroid endocrine disruption in zebrafish larvae following exposure to hexaconazole and tebuconazole.

    Science.gov (United States)

    Yu, Liang; Chen, Mengli; Liu, Yihua; Gui, Wenjun; Zhu, Guonian

    2013-08-15

    The widely used triazole fungicides have the potential to disrupt endocrine system, but little is known of such effects or underlying mechanisms of hexaconazole (HEX) and tebuconazole (TEB) in fish. In the present study, zebrafish (Danio rerio) embryos were exposed to various concentrations of HEX (0.625, 1.25 and 2.5 mg/L) and TEB (1, 2 and 4 mg/L) from fertilization to 120 h post-fertilization (hpf). The whole body content of thyroid hormone and transcription of genes in the hypothalamic-pituitary-thyroid (HPT) axis were analyzed. The results showed that thyroxine (T4) levels were significantly decreased, while triiodothyronine (T3) concentrations were significantly increased after exposure to HEX and TEB, indicating thyroid endocrine disruption. Exposure to HEX significantly induced the transcription of all the measured genes (i.e., corticotrophin-releasing hormone (CRH), thyroid-stimulating hormone (TSHβ), sodium/iodide symporter (NIS), transthyretin (TTR), uridine diphosphate glucuronosyltransferase (UGT1ab), thyronine deiodinase (Dio1 and Dio2), thyroid hormone receptors (TRα and TRβ) in the HPT axis, but did not affect the transcription of thyroglobulin (TG). However, TEB exposure resulted in the upregulation of all the measured genes, excepting that TG, Dio1and TRα had not changed significantly. The overall results indicated that exposure to HEX and TEB could alter thyroid hormone levels as well as gene transcription in the HPT axis in zebrafish larvae. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Misregulated inflammation as an outcome of early-life exposure to endocrine-disrupting chemicals.

    Science.gov (United States)

    Dietert, Rodney R

    2012-01-01

    This review introduces a potential unifying concept involving the risk of chronic diseases in which early-life exposure to endocrine-disrupting chemicals (EDCs) can program host responses for misregulated inflammation. Inflammation is a part of host defense against pathogenic challenges and one of the processes necessary for normal tissue homeoregulation and for reproduction (e.g., implantation, labor). Deviations from tightly regulated inflammation present a significant health risk because unresolved inflammation can compromise tissue function and increase the risk for later-life cancer in the affected target tissue. The critical windows of innate immune vulnerability during prenatal and neonatal maturation are when developmental programming and the trajectory for childhood and adult inflammatory responses are largely established. Misregulated inflammation is a common thread that links most significant chronic diseases and conditions across all physiologic systems as well as the associated comorbid conditions. As a result, chronic diseases exist both as a myriad of conditions and as an integrated, dysfunctionally connected unit. Because the hormone microenvironment exerts a significant effect on resident innate immune cell function, endocrine disruption is likely to produce misregulated inflammation in tissues. Among the factors determining specific health risks and disease outcomes across a lifetime are the age of exposure, sex, genetic background, and transgenerational epigenetic experiences. Additional research into early-life EDC exposure and misregulation of inflammation appears to be a useful avenue for reducing environmental health risks.

  19. Endocrine Disrupting Effects of Triclosan on the Placenta in Pregnant Rats.

    Directory of Open Access Journals (Sweden)

    Yixing Feng

    Full Text Available Triclosan (TCS is a broad-spectrum antimicrobial agent that is frequently used in pharmaceuticals and personal care products. Reports have shown that TCS is a potential endocrine disruptor; however, the potential effects of TCS on placental endocrine function are unclear. The aim of this study was to investigate the endocrine disrupting effects of TCS on the placenta in pregnant rats. Pregnant rats from gestational day (GD 6 to GD 20 were treated with 0, 30, 100, 300 and 600 mg/kg/d TCS followed by analysis of various biochemical parameters. Of the seven tissues examined, the greatest bioaccumulation of TCS was observed in the placenta. Reduction of gravid uterine weight and the occurrence of abortion were observed in the 600 mg/kg/d TCS-exposed group. Moreover, hormone detection demonstrated that the serum levels of progesterone (P, estradiol (E2, testosterone (T, human chorionic gonadotropin (hCG and prolactin (PRL were decreased in groups exposed to higher doses of TCS. Real-time quantitative reverse transcriptase-polymerase chain reaction (Q-RT-PCR analysis revealed a significant increase in mRNA levels for placental steroid metabolism enzymes, including UDP-glucuronosyltransferase 1A1 (UGT1A1, estrogen sulfotransferase 1E1 (SULT1E1, steroid 5α-reductase 1 (SRD5A1 and steroid 5α-reductase 2 (SRD5A2. Furthermore, the transcriptional expression levels of progesterone receptor (PR, estrogen receptor (ERα and androgen receptor (AR were up-regulated. Taken together, these data demonstrated that the placenta was a target tissue of TCS and that TCS induced inhibition of circulating steroid hormone production might be related to the altered expression of hormone metabolism enzyme genes in the placenta. This hormone disruption might subsequently affect fetal development and growth.

  20. Estimating burden and disease costs of exposure to endocrine-disrupting chemicals in the European union.

    Science.gov (United States)

    Trasande, Leonardo; Zoeller, R Thomas; Hass, Ulla; Kortenkamp, Andreas; Grandjean, Philippe; Myers, John Peterson; DiGangi, Joseph; Bellanger, Martine; Hauser, Russ; Legler, Juliette; Skakkebaek, Niels E; Heindel, Jerrold J

    2015-04-01

    Rapidly increasing evidence has documented that endocrine-disrupting chemicals (EDCs) contribute substantially to disease and disability. The objective was to quantify a range of health and economic costs that can be reasonably attributed to EDC exposures in the European Union (EU). A Steering Committee of scientists adapted the Intergovernmental Panel on Climate Change weight-of-evidence characterization for probability of causation based upon levels of available epidemiological and toxicological evidence for one or more chemicals contributing to disease by an endocrine disruptor mechanism. To evaluate the epidemiological evidence, the Steering Committee adapted the World Health Organization Grading of Recommendations Assessment, Development and Evaluation (GRADE) Working Group criteria, whereas the Steering Committee adapted definitions recently promulgated by the Danish Environmental Protection Agency for evaluating laboratory and animal evidence of endocrine disruption. Expert panels used the Delphi method to make decisions on the strength of the data. Expert panels achieved consensus at least for probable (>20%) EDC causation for IQ loss and associated intellectual disability, autism, attention-deficit hyperactivity disorder, childhood obesity, adult obesity, adult diabetes, cryptorchidism, male infertility, and mortality associated with reduced testosterone. Accounting for probability of causation and using the midpoint of each range for probability of causation, Monte Carlo simulations produced a median cost of €157 billion (or $209 billion, corresponding to 1.23% of EU gross domestic product) annually across 1000 simulations. Notably, using the lowest end of the probability range for each relationship in the Monte Carlo simulations produced a median range of €109 billion that differed modestly from base case probability inputs. EDC exposures in the EU are likely to contribute substantially to disease and dysfunction across the life course with costs in

  1. Early endocrine disruptors exposure acts on 3T3-L1 differentiation and endocrine activity

    Directory of Open Access Journals (Sweden)

    Sofiane Boudalia

    2017-06-01

    Conclusion: This study confirms that EDs singularly or in mixtures, introduced during early stages of life, could affect the differentiation and the endocrine activity of adipocytes, and can act as potential factors for obesity.

  2. Endocrine Disrupters in Human Blood and Breast Milk: Extraction Methodologies, Cellular Uptake and Effect on Key Nuclear Receptor Functions

    DEFF Research Database (Denmark)

    Hjelmborg, Philip Sebastian

    2010-01-01

    -products from incineration plants, plastic additives, technical industry products, pesticides from the farming industry and detergent degradation products. Many of these substances can interfere with the hormonal system in organisms. The common name for these compounds is endocrine disrupters (EDCs). Some EDCs...... are persistent to degradation and are also called persistent organic pollutants (POPs). Endocrine disrupters are compounds that can interfere with an organism’s hormone system by interacting with the hormone receptors. Many of an organism’s body functions are controlled by interactions between hormones...... and hormone receptors and disturbance of these interactions can result in diseases and malfunctions. Compounds that exhibit endocrine disrupting properties have been linked to many diseases including genital malformations, neurological disorders, reproductive problems, insulin resistance and cancers. All...

  3. Assessment of the endocrine-disrupting effects of short-chain chlorinated paraffins in in vitro models.

    Science.gov (United States)

    Zhang, Quan; Wang, Jinghua; Zhu, Jianqiang; Liu, Jing; Zhang, Jianyun; Zhao, Meirong

    2016-09-01

    Short-chain chlorinated paraffins (SCCPs), which are candidate persistent organic pollutants (POPs) according to the Stockholm Convention, are of great concern because of their persistent bioaccumulation, long-range transport and potential adverse health effects. However, data on the endocrine-disrupting effects of SCCPs remain scarce. In this study, we first adopted two in vitro models (reporter gene assays and H295R cell line) to investigate the endocrine-disrupting effects of three SCCPs (C10-40.40%, C10-66.10% and C11-43.20%) via receptor mediated and non-receptor mediated pathway. The dual-luciferase reporter gene assay revealed that all test chemicals significantly induced estrogenic effects, which were mediated by estrogen receptor α (ERα), in the following order: C11-43.20%>C10-66.10%>C10-40.40%. Notably, C10-40.40% and C10-66.10% also demonstrated remarkable anti-estrogenic activities. Only C11-43.20% showed glucocorticoid receptor-mediated (GR) antagonistic activity, with a RIC20 value of 2.6×10(-8)mol/L. None of the SCCPs showed any agonistic or antagonistic activities against thyroid receptor β (TRβ). Meanwhile, all test SCCPs stimulated the secretion of 17β-estradiol (E2). Both C10-66.10% and C11-43.20% increased the production of cortisol at a high level in H295R cell lines. In order to explore the possible mechanism underlying the endocrine-disrupting effects of SCCPs through the non-receptor pathway, the mRNA levels of 9 steroidogenic genes were measured by real-time polymerase chain reaction (RT-PCR). StAR, 17βHSD, CYP11A1, CYP11B1, CYP19 and CYP21 were upregulated in a concentration-dependent manner by all chemicals. The data provided here emphasized that comprehensive assessments of the health and ecological risks of emerging contaminants, such as SCCPs, are of great concern and should be investigated further. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Ecotoxicological hazard and risk assessment of endocrine active substances.

    Science.gov (United States)

    Leopold, Annegaaike; Roberts, Mike; Matthiessen, Peter

    2017-03-01

    This collection of papers provides state-of-the-art science on a complex topic that has been challenging for scientists and regulators for a long time. The papers emanated from the Society of Environmental Toxicology and Chemistry (SETAC) Pellston Workshop® Environmental Hazard and Risk Assessment Approaches for Endocrine-Active Substances (EHRA). Forty-eight international experts met in early February 2016 to discuss whether the environmental risks posed by endocrine-disrupting substances (EDS) can be reliably assessed. The primary conclusion of the workshop was that if data on environmental exposure, effects on sensitive species and life-stages, delayed effects, and effects at low concentrations are robust, initiating environmental risk assessment of EDS is scientifically sound and reliable. Integr Environ Assess Manag 2017;13:264-266. © 2016 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2016 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

  5. [Study on contamimation of endocrine disrupting chemicals in aquatic environment of Qiantang River].

    Science.gov (United States)

    Cai, Delei; Chen, Jiang; Fu, Jianyun; Zheng, Yunyan; Song, Yanhua; Yan, Jun; Ding, Gangqiang

    2011-07-01

    To study contamination of endocrine disrupting chemicals (EDCs) in aquatic environment of Qiantang River. Carp vitellogenin (VTG) content in serum and ethoxyresorufin-o-deethylase (EROD) activity in liver of wild crucian, pesticide content including organic cholorine, organic phosphorus and pyrethroid in its muscle from 7 monitoring sites including Zhangtan (ZT), Jiekou (JK), Jiangjunyan (JJY), Yandongguan (YDG), Tonglu (TL), Fuyang (FY) and Yuanpu (YP) in Qiantang river were detected. And chemical analysis of water quality was carried on in four sites. EROD activity in crucian from ZT, JJY, FY and YP [(23.51 +/- 4.17), (16.79 +/- 7.39), (18.74 +/- 5.16), (18.65 +/- 8.86) nmol x g(-1) pro x min(-1), respectively] was significantly higher than that of control ((7.84 +/- 2.42) nmol x g(-1) pro x min(-1)), and VTG content in wild crucian from ZT, TL, FY and YP [(1.536 +/- 0.521), (16.404 +/- 13.579), (19.672 +/- 16.354) and (17.079 +/- 18.397)] microg/ml, respectively) was significantly higher than that of control [(0.400 +/- 0.099) (microg/ ml]. No significantly difference in biomarkers was observed between other site and control. From high to low, in total organophosphorus, it was followed as: TL, YDG, YP, FY, QZ, JK, JJY (EPN was up to 2695.64, 611.96 microg/kg in TL and YDG, respectively). In total organochlorine: TL, YP, YDG, FY, QZ, JK and JJY (tetradifon content in muscle of wild crucian from TL was up to 3962.17 microg/kg). For pyrethroid pesticides: TL, YDG, YP, ZT, JK, FY and JJY (alpha-tetramethrin and alpha-phenothrin was comparatively high in TL and YDG, up to 371.54, 239.62 microg/kg in the former, 416.23, 189.15 microg/kg in the latter, respectively). Aquatic environment of these sites including ZT, TL, FY and YP in Qiantang river received comparatively high EDCs, whose effects may be mainly due to pesticide pollution. Obvious organic contamination occurred in these sites including ZT, JJY, FY and YP. Changes of chemicals in water and EROD activity in

  6. Environmental Analysis of Endocrine Disrupting Effects from Hydrocarbon Contaminants in the Ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    McLachlan, John A.

    2000-06-01

    This annual report summarizes the progress of three years of a three-year grant awarded to the Center for Bioenvironmental Research (CBR) at Tulane and Xavier Universities. The objective of this project is to determine how environmental contaminants, namely hydrocarbons, can act as hormones or anti-hormones in different species present in aquatic ecosystems. The three major areas of research include (1) a biotechnology based screening system to identify potential hormone mimics and antagonists; (2) an animal screening system to identify biomarkers of endocrine effects; and (3) a literature review to identify compounds at various DOE sites that are potential endocrine disruptors. Species of particular focus in this study are those which can serve as sentinel species (e.g., amphibians) and, thus, provide early warning signals for more widespread impacts on an ecosystem and its wildlife and human inhabitants. The focus of the literature research was to provide an analysis of the contaminants located on or around various Department of Energy (DOE) sites that are or have the potential to function as endocrine disruptors and to correlate the need for studying endocrine disruptors to DOE's programmatic needs. Previous research within the Center for Bioenvironmental Research at Tulane and Xavier Universities has focused on understanding the effects of environmental agents on the human and wildlife health and disease. In particular this research has focused on how exogenous agents can function to mimic or disrupt normal endocrine signaling, i.e. estrogen, thyroid within various systems from whole animal studies with fish, amphibians and insects to human cancer cell lines. Significant work has focused on the estrogenic and anti-estrogenic action of both synthetic organochlorine chemicals and naturally produced phytochemicals. Recent projects have extended these research objectives to examination of these environmental agents on the symbiotic relationship between

  7. EDC IMPACT: Reduced sperm counts in rats exposed to human relevant mixtures of endocrine disrupters

    DEFF Research Database (Denmark)

    Axelstad Petersen, Marta; Hass, Ulla; Scholze, M.

    2018-01-01

    and the high doses of the total and the anti-androgenic mixture, compared to controls. In all dose groups, epididymal sperm counts were reduced several months after end of exposure, i.e. at 10 months of age. Interestingly, the same pattern of effects was seen for paracetamol as for mixtures with diverse modes......Human semen quality is declining in many parts of the world, but the causes are ill defined. In rodents, impaired sperm production can be seen with early life exposure to certain endocrine-disrupting chemicals, but the effects of combined exposures are not properly investigated. In this study, we...... of action. Reduced sperm count was seen at a dose level reflecting human therapeutic exposure to paracetamol. Environmental chemical mixtures affected sperm count at the lowest mixture dose indicating an insufficient margin of safety for the most exposed humans. This causes concern for exposure of pregnant...

  8. Sex reversal assessments reveal different vulnerability to endocrine disruption between deeply diverged anuran lineages

    Science.gov (United States)

    Tamschick, Stephanie; Rozenblut-Kościsty, Beata; Ogielska, Maria; Lehmann, Andreas; Lymberakis, Petros; Hoffmann, Frauke; Lutz, Ilka; Kloas, Werner; Stöck, Matthias

    2016-01-01

    Multiple anthropogenic stressors cause worldwide amphibian declines. Among several poorly investigated causes is global pollution of aquatic ecosystems with endocrine disrupting compounds (EDCs). These substances interfere with the endocrine system and can affect the sexual development of vertebrates including amphibians. We test the susceptibility to an environmentally relevant contraceptive, the artificial estrogen 17α-ethinylestradiol (EE2), simultaneously in three deeply divergent systematic anuran families, a model-species, Xenopus laevis (Pipidae), and two non-models, Hyla arborea (Hylidae) and Bufo viridis (Bufonidae). Our new approach combines synchronized tadpole exposure to three EE2-concentrations (50, 500, 5,000 ng/L) in a flow-through-system and pioneers genetic and histological sexing of metamorphs in non-model anurans for EDC-studies. This novel methodology reveals striking quantitative differences in genetic-male-to-phenotypic-female sex reversal in non-model vs. model species. Our findings qualify molecular sexing in EDC-analyses as requirement to identify sex reversals and state-of-the-art approaches as mandatory to detect species-specific vulnerabilities to EDCs in amphibians. PMID:27029458

  9. Toxicological characteristics of endocrine-disrupting chemicals: developmental toxicity, carcinogenicity, and mutagenicity.

    Science.gov (United States)

    Choi, Seul Min; Yoo, Sun Dong; Lee, Byung Mu

    2004-01-01

    It is generally accepted that endocrine-disrupting chemicals (EDCs) play a role in a variety of adverse health effects in an intact organism or its progeny as a consequence of changes in the endocrine system. Primary toxic effects of EDCs were reported to be related to infertility, reduction in sperm count, and teratogenicity, but other important toxic effects of EDCs such as carcinogenicity and mutagenicity have also been demonstrated. The aim of the present study was to systematically analyze the toxicological characteristics of EDCs in pesticides, industrial chemicals, and metals. A comprehensive literature survey on the 48 EDCs classified by the Centers for Disease Control and Prevention (CDC) was conducted using a number of databases which included Medline, Toxline, and Toxnet. The survey results revealed that toxicological characteristics of EDCs were shown to produce developmental toxicity (81%), carcinogenicity (79%, when positive in at least one animal species; 48%, when classified based on IARC evaluation), mutagenicity (79%), immunotoxicity (52%), and neurotoxicity (50%). Regarding the hormone-modulating effects of the 48 EDCs, estrogenic effects were the most predominant in pesticides, while effects on thyroid hormone were found for heavy metals. EDCs showing estrogen-modulating effects were closely related to carcinogenicity or mutagenicity with a high degree of sensitivity. Systematic information on the toxicological characteristics of the EDCs will be useful for future research directions on EDCs, the development of new screening methods, legal regulation, and for investigations of their mechanism of action.

  10. Mugilid Fish Are Sentinels of Exposure to Endocrine Disrupting Compounds in Coastal and Estuarine Environments

    Directory of Open Access Journals (Sweden)

    Maren Ortiz-Zarragoitia

    2014-09-01

    Full Text Available Effects on fish reproduction can result from a variety of toxicity mechanisms first operating at the molecular level. Notably, the presence in the environment of some compounds termed endocrine disrupting chemicals (EDCs can cause adverse effects on reproduction by interfering with the endocrine system. In some cases, exposure to EDCs leads to the animal feminization and male fish may develop oocytes in testis (intersex condition. Mugilid fish are well suited sentinel organisms to study the effects of reproductive EDCs in the monitoring of estuarine/marine environments. Up-regulation of aromatases and vitellogenins in males and juveniles and the presence of intersex individuals have been described in a wide array of mullet species worldwide. There is a need to develop new molecular markers to identify early feminization responses and intersex condition in fish populations, studying mechanisms that regulate gonad differentiation under exposure to xenoestrogens. Interestingly, an electrophoresis of gonad RNA, shows a strong expression of 5S rRNA in oocytes, indicating the potential of 5S rRNA and its regulating proteins to become useful molecular makers of oocyte presence in testis. Therefore, the use of these oocyte markers to sex and identify intersex mullets could constitute powerful molecular biomarkers to assess xenoestrogenicity in field conditions.

  11. Towards an integrated biosensor array for simultaneous and rapid multi-analysis of endocrine disrupting chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Scognamiglio, Viviana, E-mail: viviana.scognamiglio@mlib.ic.cnr.it [IC-CNR Istituto di Cristallografia, AdR1 Dipartimento Agroalimentare - Via Salaria Km 29.3 00015, Rome (Italy); Pezzotti, Italo; Pezzotti, Gianni; Cano, Juan; Manfredonia, Ivano [Biosensor S.r.l. - Via degli Olmetti 44 00060 Formello, Rome (Italy); Buonasera, Katia [IC-CNR Istituto di Cristallografia, AdR1 Dipartimento Agroalimentare - Via Salaria Km 29.3 00015, Rome (Italy); Arduini, Fabiana; Moscone, Danila; Palleschi, Giuseppe [Universita di Roma Tor Vergata, Dipartimento di Scienze e Tecnologie Chimiche - Via della Ricerca Scientifica 00133, Rome (Italy); Giardi, Maria Teresa [IC-CNR Istituto di Cristallografia, AdR1 Dipartimento Agroalimentare - Via Salaria Km 29.3 00015, Rome (Italy)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer A multitask biosensor for the detection of endocrine disrupting chemicals is proposed. Black-Right-Pointing-Pointer The sensing system employ an array of biological recognition elements. Black-Right-Pointing-Pointer Amperometric and optical transduction methods are provided in an integrated biosensor together with flow control systems. Black-Right-Pointing-Pointer The biosensing device results in an integrated, automatic and portable system for environmental and agrifood application. - Abstract: In this paper we propose the construction and application of a portable multi-purpose biosensor array for the simultaneous detection of a wide range of endocrine disruptor chemicals (EDCs), based on the recognition operated by various enzymes and microorganisms. The developed biosensor combines both electrochemical and optical transduction systems, in order to increase the number of chemical species which can be monitored. Considering to the maximum residue level (MRL) of contaminants established by the European Commission, the biosensor system was able to detect most of the chemicals analysed with very high sensitivity. In particular, atrazine and diuron were detected with a limit of detection of 0.5 nM, with an RSD% less than 5%; paraoxon and chlorpyrifos were revealed with a detection of 5 {mu}M and 4.5 {mu}M, respectively, with an RSD% less than 6%; catechol and bisphenol A were identified with a limit of detection of 1 {mu}M and 35 {mu}M respectively, with an RSD% less than 5%.

  12. Sex reversal assessments reveal different vulnerability to endocrine disruption between deeply diverged anuran lineages.

    Science.gov (United States)

    Tamschick, Stephanie; Rozenblut-Kościsty, Beata; Ogielska, Maria; Lehmann, Andreas; Lymberakis, Petros; Hoffmann, Frauke; Lutz, Ilka; Kloas, Werner; Stöck, Matthias

    2016-03-31

    Multiple anthropogenic stressors cause worldwide amphibian declines. Among several poorly investigated causes is global pollution of aquatic ecosystems with endocrine disrupting compounds (EDCs). These substances interfere with the endocrine system and can affect the sexual development of vertebrates including amphibians. We test the susceptibility to an environmentally relevant contraceptive, the artificial estrogen 17α-ethinylestradiol (EE2), simultaneously in three deeply divergent systematic anuran families, a model-species, Xenopus laevis (Pipidae), and two non-models, Hyla arborea (Hylidae) and Bufo viridis (Bufonidae). Our new approach combines synchronized tadpole exposure to three EE2-concentrations (50, 500, 5,000 ng/L) in a flow-through-system and pioneers genetic and histological sexing of metamorphs in non-model anurans for EDC-studies. This novel methodology reveals striking quantitative differences in genetic-male-to-phenotypic-female sex reversal in non-model vs. model species. Our findings qualify molecular sexing in EDC-analyses as requirement to identify sex reversals and state-of-the-art approaches as mandatory to detect species-specific vulnerabilities to EDCs in amphibians.

  13. Burden of disease and costs of exposure to endocrine disrupting chemicals in the European Union: an updated analysis

    DEFF Research Database (Denmark)

    Trasande, L.; Zoeller, R. T.; Hass, Ulla

    2016-01-01

    disrupting chemical causation for IQ loss and associated intellectual disability; autism; attention deficit hyperactivity disorder; endometriosis; fibroids; childhood obesity; adult obesity; adult diabetes; cryptorchidism; male infertility, and mortality associated with reduced testosterone. Accounting...... to contribute substantially to disease and dysfunction across the life course with costs in the hundreds of billions of Euros per year. These estimates represent only those endocrine disrupting chemicals with the highest probability of causation; a broader analysis would have produced greater estimates...

  14. Obesity, diabetes, and associated costs of exposure to endocrine-disrupting chemicals in the European Union.

    Science.gov (United States)

    Legler, Juliette; Fletcher, Tony; Govarts, Eva; Porta, Miquel; Blumberg, Bruce; Heindel, Jerrold J; Trasande, Leonardo

    2015-04-01

    Obesity and diabetes are epidemic in the European Union (EU). Exposure to endocrine-disrupting chemicals (EDCs) is increasingly recognized as a contributor, independent of diet and physical activity. The objective was to estimate obesity, diabetes, and associated costs that can be reasonably attributed to EDC exposures in the EU. An expert panel evaluated evidence for probability of causation using weight-of-evidence characterization adapted from that applied by the Intergovernmental Panel on Climate Change. Exposure-response relationships and reference levels were evaluated for relevant EDCs, and biomarker data were organized from peer-reviewed studies to represent European exposure and burden of disease. Cost estimation as of 2010 utilized published cost estimates for childhood obesity, adult obesity, and adult diabetes. Setting, Patients and Participants, and Intervention: Cost estimation was performed from the societal perspective. The panel identified a 40% to 69% probability of dichlorodiphenyldichloroethylene causing 1555 cases of overweight at age 10 (sensitivity analysis: 1555-5463) in 2010 with associated costs of €24.6 million (sensitivity analysis: €24.6-86.4 million). A 20% to 39% probability was identified for dichlorodiphenyldichloroethylene causing 28 200 cases of adult diabetes (sensitivity analysis: 28 200-56 400) with associated costs of €835 million (sensitivity analysis: €835 million-16.6 billion). The panel also identified a 40% to 69% probability of phthalate exposure causing 53 900 cases of obesity in older women and €15.6 billion in associated costs. Phthalate exposure was also found to have a 40% to 69% probability of causing 20 500 new-onset cases of diabetes in older women with €607 million in associated costs. Prenatal bisphenol A exposure was identified to have a 20% to 69% probability of causing 42 400 cases of childhood obesity, with associated lifetime costs of €1.54 billion. EDC exposures in the EU contribute

  15. Comparative responses to endocrine disrupting compounds in early life stages of Atlantic salmon, Salmo salar

    Science.gov (United States)

    Duffy, Tara A.; Iwanowicz, Luke R.; McCormick, Stephen D.

    2014-01-01

    Atlantic salmon (Salmo salar) are endangered anadromous fish that may be exposed to feminizing endocrine disrupting compounds (EDCs) during early development, potentially altering physiological capacities, survival and fitness. To assess differential life stage sensitivity to common EDCs, we carried out short-term (four day) exposures using three doses each of 17α-ethinylestradiol (EE2), 17β-estradiol (E2), and nonylphenol (NP) on four early life stages; embryos, yolk-sac larvae, feeding fry and one year old smolts. Differential response was compared using vitellogenin (Vtg, a precursor egg protein) gene transcription. Smolts were also examined for impacts on plasma Vtg, cortisol, thyroid hormones (T4/T3) and hepatosomatic index (HSI). Compound-related mortality was not observed in any life stage, but Vtg mRNA was elevated in a dose-dependent manner in yolk-sac larvae, fry and smolts but not in embyos. The estrogens EE2 and E2 were consistently stronger inducers of Vtg than NP. Embryos responded significantly to the highest concentration of EE2 only, while older life stages responded to the highest doses of all three compounds, as well as intermediate doses of EE2 and E2. Maximal transcription was greater for fry among the three earliest life stages, suggesting fry may be the most responsive life stage in early development. Smolt plasma Vtg was also significantly increased, and this response was observed at lower doses of each compound than was detected by gene transcription suggesting this is a more sensitive indicator at this life stage. HSI was increased at the highest doses of EE2 and E2 and plasma T3 decreased at the highest dose of EE2. Our results indicate that all life stages after hatching are potentially sensitive to endocrine disruption by estrogenic compounds and that physiological responses were altered over a short window of exposure, indicating the potential for these compounds to impact fish in the wild.

  16. Perinatal exposure to mixtures of endocrine disrupting chemicals reduces female rat follicle reserves and accelerates reproductive aging

    DEFF Research Database (Denmark)

    Johansson, Hanna Katarina Lilith; Jacobsen, Pernille Rosenskjold; Hass, Ulla

    2016-01-01

    Exposure to endocrine disrupting chemicals (EDCs) during development can have negative consequences later in life. In this study we investigated the effect of perinatal exposure to mixtures of human relevant EDCs on the female reproductive system. Rat dams were exposed to a mixture of phthalates...

  17. TRANSGENERATIONAL (IN UTERO/LACTATIONAL) EXPOSURE PROTOCOL TO INVESTIGATE THE EFFECTS OF ENDOCRINE DISRUPTING COMPOUNDS (EDCS) IN RATS

    Science.gov (United States)

    This protocol is designed to evaluate the effects of Endocrine Disrupting Compounds (EDCs) through fetal (transplacental) and/or neonatal (via the dam's milk) exposure during the critical periods of reproductive organogenesis in the rat. Continued direct exposure to the F1 pups...

  18. Occurrence of pharmaceuticals and endocrine disrupting compounds in macroalgaes, bivalves, and fish from coastal areas in Europe

    NARCIS (Netherlands)

    Álvarez-Muñoz, D.; Rodríguez-Mozaz, S.; Maulvault, A.L.; Tediosi, A.; Fernández-Tejedor, M.; Heuvel, Van den F.; Kotterman, M.; Marques, A.; Barceló, D.

    2015-01-01

    The ocurrence and levels of PhACs, Endocrine Disrupting and related Compounds (EDCs) in seafood from potential contaminated areas in Europe has been studied. Macroalgae (S. accharina latissima and Laminaria digitata), bivalves (Mytilus galloprovincialis, Mytilus spp., Chamalea gallina and

  19. Endocrine-disrupting effects and reproductive toxicity of low dose MCLR on male frogs (Rana nigromaculata) in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Xiuying; Cai, Chenchen; Wang, Jia; Gao, Nana; Zhang, Hangjun, E-mail: zhanghangjun@gmail.com

    2014-10-15

    Highlights: • Low-dose MCLR (1 μg/L) elicits a potential ecological effect on amphibian populations. • MCLR can induce abnormal sperm morphologies and activities on male frogs. • MCLR can induce a decrease in serum testosterone and an increase in serum estradiol of male frogs. • MCLR can increase SF-1 protein levels and decrease P450 aromatase levels in the gonads of frogs. - Abstract: Toxic cyanobacterial blooms are potential global threats to aquatic ecosystems and human health. The World Health Organization has set a provisional guideline limit of 1 μg/L microcystin-LR (MCLR) in freshwater. However, MCLR concentrations in several water bodies have exceeded this level. Despite this recommended human safety standard, MCLR-induced endocrine-disrupting effects and reproductive toxicity on male frog (Rana nigromaculata) were demonstrated in this study. Results showed that sperm motility and sperm count were significantly and negatively correlated with exposure time and concentration. By contrast, abnormal sperm rate was positively correlated with both parameters. Ultrastructural observation results revealed abnormal sperm morphologies, vacuoles in spermatogenic cells, cell dispersion, incomplete cell structures, and deformed nucleoli. These results indicated that MCLR could induce toxic effects on the reproductive system of frogs, significantly decrease testosterone content, and rapidly increase estradiol content. Prolonged exposure and increased concentration enhanced the relative expression levels of P450 aromatase and steroidogenic factor 1; thus, endocrine function in frogs was disrupted. This study is the first to demonstrate in vivo MCLR toxicity in the reproductive system of male R. nigromaculata. This study provided a scientific basis of the global decline in amphibian populations.

  20. Hypothesis-driven weight of evidence analysis to determine potential endocrine activity of MTBE.

    Science.gov (United States)

    de Peyster, Ann; Mihaich, Ellen

    2014-08-01

    Endocrine-related endpoints in animals have been reported to respond to high doses of methyl tertiary-butyl ether (MTBE), however, a systematic and transparent evaluation of endocrine potential has not been published. Resolving whether MTBE exhibits endocrine activity is important given regulatory and public interest in endocrine disrupting substances and their potential for causing adverse effects in humans or wildlife. A weight-of-evidence (WoE) analysis was conducted, focusing on hypotheses related to the potential for MTBE to interact with estrogen, androgen, and thyroid pathways, and steroidogenesis. To reach scientifically justified conclusions based on the totality of evidence, this WoE procedure involved a semi-quantitative relevance weighting of each endpoint for each hypothesis and systematic consideration of each endpoint in various study designs. This procedure maximized use of an extensive body of relevant and reliable literature on MTBE with evidence supporting or opposing a given mode of action hypothesis. Evaluating the strength and consistency of observations from many MTBE studies also provided a way to assess whether high doses used in experiments with MTBE confound identification of direct endocrine system responses. Based on results of studies using mammalian and fish models and in vitro screening assays, this WoE assessment reveals that MTBE lacks direct endocrine activity. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Early Life Exposure to Endocrine Disrupting Chemicals and Childhood Obesity and Neurodevelopment

    Science.gov (United States)

    Braun, Joseph M.

    2017-01-01

    Endocrine disrupting chemicals (EDCs) may increase the risk of childhood diseases by disrupting hormonally mediated processes critical for growth and development during gestation, infancy, or childhood. The fetus, infant, and child may have enhanced sensitivity to environmental stressors like EDCs due to rapid development and greater exposure to some EDCs that results from their developmentally appropriate behavior, anatomy, and physiology. This review summarizes epidemiological studies examining the relations of early-life exposure to bisphenol A (BPA), phthalates, triclosan, and perfluoroalkyl substance (PFAS) with childhood neurobehavioral disorders and obesity. The available epidemiological evidence suggests that prenatal exposure to several of these ubiquitous EDCs is associated with adverse neurobehavior (BPA and phthalates) and excess adiposity or increased risk of obesity/overweight (PFAS). Quantifying the effects of EDC mixtures, improving EDC exposure assessment, reducing bias from confounding, identifying periods of heightened vulnerability, and elucidating the presence and nature of sexually dimorphic EDC effects would result in stronger inferences from epidemiological studies. Ultimately, better estimates of the causal effects of EDC exposures on child health could help identify susceptible sub-populations and lead to public health interventions to reduce these exposures. PMID:27857130

  2. Burden of disease and costs of exposure to endocrine disrupting chemicals in the European Union: an updated analysis

    DEFF Research Database (Denmark)

    Trasande, L.; Zoeller, R. T.; Hass, Ulla

    2016-01-01

    A previous report documented that endocrine disrupting chemicals contribute substantially to certain forms of disease and disability. In the present analysis, our main objective was to update a range of health and economic costs that can be reasonably attributed to endocrine disrupting chemical...... exposures in the European Union, leveraging new burden and disease cost estimates of female reproductive conditions from accompanying report. Expert panels evaluated the epidemiologic evidence, using adapted criteria from the WHO Grading of Recommendations Assessment, Development and Evaluation Working...... disrupting chemical causation for IQ loss and associated intellectual disability; autism; attention deficit hyperactivity disorder; endometriosis; fibroids; childhood obesity; adult obesity; adult diabetes; cryptorchidism; male infertility, and mortality associated with reduced testosterone. Accounting...

  3. Endocrine Treatment of Transsexual Persons

    Science.gov (United States)

    ... Pacientes y Cuidadores Hormones and Health The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) Steroid and Hormone Abuse Peer ... About Clinical Trials Hormones and Health The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) Steroid and Hormone Abuse Peer ...

  4. TRIENNIAL REPRODUCTION SYMPOSIUM: Environmental programming of reproduction during fetal life: Effects of intrauterine position and the endocrine disrupting chemical bisphenol A.

    Science.gov (United States)

    Vom Saal, F S

    2016-07-01

    During critical periods in fetal life, there is an increased vulnerability to perturbations in endocrine function due to environmental factors. Small shifts in concentrations of hormones that regulate the differentiation of organs, such as estradiol and testosterone, can have permanent effects on morphology, enzymatic activity, and hormone receptors in tissues as well as neurobehavioral effects. These changes can lead to effects throughout life, including impacting the risk for various diseases (referred to as the Developmental Origins of Adult Health and Disease hypothesis). The intrauterine position phenomenon concerns the consequence for fetuses of randomly implanting next to embryos of the same or opposite sex. An intrauterine position next to males vs. females results in small differences in serum testosterone and estradiol during fetal life that are associated with marked effects on life history (such as lifetime fecundity) in both males and females born in litters (mice, rats, gerbils, rabbits, and swine) as well as human twins. Research with mice subsequently demonstrated that a very small experimental change in fetal serum estradiol levels altered organogenesis and caused permanent changes in organ function. Taken together, these findings led to the hypothesis that environmental chemicals that mimic or antagonize hormone action (e.g., endocrine disrupting chemicals) could also be causing harm at very low exposures (the "low dose" hypothesis) within the range of exposure of humans, domesticated animals, and wildlife. There is now extensive evidence from experimental laboratory animals, sheep, and humans that fetal exposure to very low (presumably safe) doses of the endocrine disrupting chemical bisphenol A (BPA), which exhibits estrogenic activity, can cause permanent changes that can increase the risk of a wide array of diseases. The reasons that federal regulatory agencies are ignoring the massive literature showing adverse effects of BPA and other

  5. Endocrine activity of mycotoxins and mycotoxin mixtures.

    Science.gov (United States)

    Demaegdt, Heidi; Daminet, Britt; Evrard, Annick; Scippo, Marie-Louise; Muller, Marc; Pussemier, Luc; Callebaut, Alfons; Vandermeiren, Karine

    2016-10-01

    Reporter gene assays incorporating nuclear receptors (estrogen, androgen, thyroid β and PPARγ2) have been implemented to assess the endocrine activity of 13 mycotoxins and their mixtures. As expected, zearalenone and its metabolites α-zearalenol and β- zearalenol turned out to have the strongest estrogenic potency (EC50 8,7 10-10 ± 0,8; 3,1 10-11 ± 0,5 and 1,3 10-8 ± 0,3 M respectively). The metabolite of deoxynivalenol, 3-acetyl-deoxynivalenol also had estrogenic activity (EC50 3,8 10-7 ± 1,1 M). Furthermore, most of the mycotoxins (and their mixtures) showed anti-androgenic effects (15-acetyldeoxynivalenol, 3-acetyl-deoxynivalenol and α-zearalenol with potencies within one order of magnitude of that of the reference compound flutamide). In particular, deoxynivalenol and 15-acetyl-deoxynivalenol acted as antagonists for the PPARy2 receptor. When testing mixtures of mycotoxins on the same cell systems, we showed that most of the mixtures reacted as predicted by the concentration addition (CA) theory. Generally, the CA was within the 95% confidence interval of the observed ones, only minor deviations were detected. Although these reporter gene tests cannot be directly extrapolated in vivo, they can be the basis for further research. Especially the additive effects of ZEN and its metabolites are of importance and could have repercussions in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Generation and characterization of gsuα:EGFP transgenic zebrafish for evaluating endocrine-disrupting effects

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xiaoxia [Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei (China); University of Chinese Academy of Sciences, Beijing (China); Chen, Xiaowen; Jin, Xia; He, Jiangyan [Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei (China); Yin, Zhan, E-mail: zyin@ihb.ac.cn [Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei (China); Ningbo Laboratory, State Key Laboratory of Freshwater Ecology and Biotechnology (China)

    2014-07-01

    The glycoprotein subunit α (gsuα) gene encodes the shared α subunit of the three pituitary heterodimeric glycoprotein hormones: follicle-stimulating hormone β (Fshβ), luteinizing hormone β (Lhβ) and thyroid stimulating hormone β (Tshβ). In our current study, we identified and characterized the promoter region of zebrafish gsuα and generated a stable gsuα:EGFP transgenic line, which recapitulated the endogenous gsuα expression in the early developing pituitary gland. A relatively conserved regulatory element set is presented in the promoter regions of zebrafish and three other known mammalian gsuα promoters. Our results also demonstrated that the expression patterns of the gsuα:EGFP transgene were all identical to those expression patterns of the endogenous gsuα expression in the pituitary tissue when our transgenic fish were treated with various endocrine chemicals, including forskolin (FSK), SP600125, trichostatin A (TSA), KClO{sub 4}, dexamethasone (Dex), β-estradiol and progesterone. Thus, this gsuα:EGFP transgenic fish reporter line provides another valuable tool for investigating the lineage development of gsuα-expressing gonadotrophins and the coordinated regulation of various glycoprotein hormone subunit genes. These reporter fish can serve as a novel platform to perform screenings of endocrine-disrupting chemicals (EDCs) in vivo as well. - Highlights: • Identification of the promoter of zebrafish glycoprotein subunit α (gsuα) gene • Generation of stable transmission gsuα:EGFP transgenic zebrafish reporter • Demonstration of the recapitulation of the gsuα:EGFP and endogenous gsuα expression • Suggestion of the gsuα:EGFP transgenic zebrafish as a novel platform for EDC study.

  7. Impedance Biosensing to detect food allergens, endocrine disrupting chemicals, and food pathogens

    Science.gov (United States)

    Radhakrishnan, Rajeswaran

    Electrochemical impedance biosensors can be viewed as an AC electroanalytical method for the analyte detection in the fields of biomedicine, environmental monitoring, and food and agriculture, amongst others. The most common format for AC impedance biosensing involves surface immobilization of an antibody, receptor protein, DNA strand, or other species capable of bio-recognition, and AC impedance detection of the binding event. Technological application of AC impedance biosensors has been hindered by several obstacles, including the more complex circuitry required for AC relative to DC electrochemistry, chemical and physical interference arising from non-specific adsorption, and the stability and reproducibility of protein immobilization. One focus of these PhD studies is on methods to reduce or compensate for non-specific adsorption, including sample dilution, site blocking with BSA, and the use of control electrodes onto which reference antibodies are immobilized. Examples that will be presented include impedance detection of food pathogens, such as Listeria monocytogenes, using a mouse monoclonal antibody immobilized onto an Au electrode. This yields detection limits of 5 CFU/ml and 4 CFU/ml for ideal solutions and filtered tomato extract, respectively. Control experiments with an Au electrode onto which a mouse monoclonal antibody to GAPDH is immobilized demonstrate that non-specific adsorption is insignificant for the system and methodology studied here. Control experiments with Salmonella enterica demonstrate no cross-reactivity to this food pathogen. In addition, Detection of two endocrine-disrupting chemicals (EDC), norfluoxetine and BDE-47, is reported here by impedance biosensing, with a detection limit of 8.5 and 1.3 ng/ml for norfluoxetine and BDE-47, respectively. Additional research has focused on alternative substrates and linker chemistries for protein immobilization, including the use of degenerate (highly doped) Si and bidendate thiol monolayer

  8. Effects of copper on growth, metamorphosis and endocrine disruption of Bufo gargarizans larvae.

    Science.gov (United States)

    Wang, Chao; Liang, Gang; Chai, Lihong; Wang, Hongyuan

    2016-01-01

    Chinese toad (Bufo gargarizans) tadpoles were exposed to copper (1, 6.4, 32 and 64μgL(-1) copper) from the beginning of larval period through completion of metamorphosis. We examined the effects of chronic copper exposure on mortality, growth, time to metamorphosis, tail resorption time, body size at the metamorphic climax (Gs 42) and completion of metamorphosis (Gs 46) and thyroid gland histology. In addition, type 2 and 3 iodothyronine deiodinase (Dio2 and Dio3), thyroid hormone receptors (TRα and TRβ) mRNA levels were also measured to assess disruption of TH synthesis. Our result showed that 6.4-64μgL(-1) copper concentration increased the mortality and inhibited the growth of B. gargarizans tadpoles. In addition, significant reduction in size at Gs 42 and a time delay to Gs 42 were observed at 6.4-64μgL(-1) copper treatments. Moreover, histological examinations have clearly revealed that 64μgL(-1) copper caused follicular cell hyperplasia in thyroid gland. According to real-time PCR results, exposure to 32 and 64μgL(-1) copper significantly up-regulated mRNA expression of Dio3, but down-regulated mRNA expression of TRα and TRβ mRNA level. We concluded that copper delayed amphibian metamorphosis through changing mRNA expression of Dio3, TRα and TRβ, which suggests that copper might have the endocrine-disrupting effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. The multigenerational effects of water contamination and endocrine disrupting chemicals on the fitness of Drosophila melanogaster.

    Science.gov (United States)

    Quesada-Calderón, Suany; Bacigalupe, Leonardo Daniel; Toro-Vélez, Andrés Fernando; Madera-Parra, Carlos Arturo; Peña-Varón, Miguel Ricardo; Cárdenas-Henao, Heiber

    2017-08-01

    Water pollution due to human activities produces sedimentation, excessive nutrients, and toxic chemicals, and this, in turn, has an effect on the normal endocrine functioning of living beings. Overall, water pollution may affect some components of the fitness of organisms (e.g., developmental time and fertility). Some toxic compounds found in polluted waters are known as endocrine disruptors (ED), and among these are nonhalogenated phenolic chemicals such as bisphenol A and nonylphenol. To evaluate the effect of nonhalogenated phenolic chemicals on the endocrine system, we subjected two generations (F0 and F1) of Drosophila melanogaster to different concentrations of ED. Specifically, treatments involved wastewater, which had the highest level of ED (bisphenol A and nonylphenol) and treated wastewater from a constructed Heliconia psittacorum wetland with horizontal subsurface water flow (He); the treated wastewater was the treatment with the lowest level of ED. We evaluated the development time from egg to pupa and from pupa to adult as well as fertility. The results show that for individuals exposed to treated wastewater, the developmental time from egg to pupae was shorter in individuals of the F1 generation than in the F0 generation. Additionally, the time from pupae to adult was longer for flies growing in the H. psittacorum treated wastewater. Furthermore, fertility was lower in the F1 generation than in the F0 generation. Although different concentrations of bisphenol A and nonylphenol had no significant effect on the components of fitness of D. melanogaster (developmental time and fertility), there was a trend across generations, likely as a result of selection imposed on the flies. It is possible that the flies developed different strategies to avoid the effects of the various environmental stressors.

  10. Removal of endocrine disrupting compounds from wastewater by microalgae co-immobilized in alginate beads.

    Science.gov (United States)

    Solé, Alba; Matamoros, Víctor

    2016-12-01

    Microalgae systems have been found to be efficient for removing microcontaminants from wastewater effluents, but the effectiveness of immobilized microalgae for removing endocrine disrupting compounds (EDCs) has not yet been addressed. This paper assesses the effect of free and immobilized microalgae on removal efficiency for 6 EDCs by mixing them in 2.5 L reactors with treated wastewater. The experimental design also included control reactors without microalgae. After 10 days of incubation, 64 and 89% of the NH4-N and 90 and 96% of total phosphorous (TP) had been eliminated in the free microalgae and immobilized microalgae reactors, respectively, while the control reactors eliminated only 40% and 70% of the NH4-N and TP, respectively. Both the free and immobilized microalgae reactors were able to remove up to 80% of most of the studied EDCs within 10 days of incubation. Free microalgae were found to increase the kinetic removal rate for bisphenol A, 17-α-ethinylestradiol, and 4-octylphenol (25%, 159%, and 41%, respectively). Immobilizing the microalgae in alginate beads additionally enhanced the kinetic removal rate for bisphenol AF, bisphenol F, and 2,4-dichlorophenol. This study shows that the use of co-immobilized microalgae-based wastewater treatment systems increases the removal efficiency for nutrients and some EDCs from wastewater effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Sources of endocrine-disrupting compounds in North Carolina waterways: a geographic information systems approach

    Science.gov (United States)

    Sackett, Dana K.; Pow, Crystal Lee; Rubino, Matthew J.; Aday, D.D.; Cope, W. Gregory; Kullman, Seth W.; Rice, J.A.; Kwak, Thomas J.; Law, L.M.

    2015-01-01

    The presence of endocrine-disrupting compounds (EDCs), particularly estrogenic compounds, in the environment has drawn public attention across the globe, yet a clear understanding of the extent and distribution of estrogenic EDCs in surface waters and their relationship to potential sources is lacking. The objective of the present study was to identify and examine the potential input of estrogenic EDC sources in North Carolina water bodies using a geographic information system (GIS) mapping and analysis approach. Existing data from state and federal agencies were used to create point and nonpoint source maps depicting the cumulative contribution of potential sources of estrogenic EDCs to North Carolina surface waters. Water was collected from 33 sites (12 associated with potential point sources, 12 associated with potential nonpoint sources, and 9 reference), to validate the predictive results of the GIS analysis. Estrogenicity (measured as 17β-estradiol equivalence) ranged from 0.06 ng/L to 56.9 ng/L. However, the majority of sites (88%) had water 17β-estradiol concentrations below 1 ng/L. Sites associated with point and nonpoint sources had significantly higher 17β-estradiol levels than reference sites. The results suggested that water 17β-estradiol was reflective of GIS predictions, confirming the relevance of landscape-level influences on water quality and validating the GIS approach to characterize such relationships.

  12. Endocrine disrupting compounds and echinoderms: new ecotoxicological sentinels for the marine ecosystem.

    Science.gov (United States)

    Sugni, Michela; Mozzi, Daniela; Barbaglio, Alice; Bonasoro, Francesco; Candia Carnevali, Maria Daniela

    2007-02-01

    Echinoderms are valuable test species in marine ecotoxicology and offer a wide range of biological processes appropriate for this approach. In spite of this potential, available data in literature are still rather limited, particularly with regard to the possible effects of endocrine disrupter compounds (EDCs). This review presents echinoderms as useful models for ecotoxicological tests and gives a brief overview of the most significant results obtained in recent years, particularly in the context of the COMPRENDO EU project. In this research project two different aspects of echinoderm physiology, plausibly regulated by humoral mechanisms, were investigated: reproductive biology and regenerative development. Selected EDCs suspected for their androgenic or antiandrogenic action were tested at low concentrations. The results obtained so far showed that different parameters such as regenerative growth, histological pattern, egg diameter and gonad maturation were affected by the exposure to the selected compounds. These results substantiate that reproductive and regenerative phenomena of echinoderms can be considered valuable alternative models for studies on EDCs and confirm that these compounds interfere with fundamental physiological processes, including growth, development and reproductive competence.

  13. Mechanistic insight into degradation of endocrine disrupting chemical by hydroxyl radical: An experimental and theoretical approach.

    Science.gov (United States)

    Xiao, Ruiyang; Gao, Lingwei; Wei, Zongsu; Spinney, Richard; Luo, Shuang; Wang, Donghong; Dionysiou, Dionysios D; Tang, Chong-Jian; Yang, Weichun

    2017-12-01

    Advanced oxidation processes (AOPs) based on formation of free radicals at ambient temperature and pressure are effective for treating endocrine disrupting chemicals (EDCs) in waters. In this study, we systematically investigated the degradation kinetics of bisphenol A (BPA), a representative EDC by hydroxyl radical (OH) with a combination of experimental and theoretical approaches. The second-order rate constant (k) of BPA with OH was experimentally determined to be 7.2 ± 0.34 × 10(9) M(-1) s(-1) at pH 7.55. We also calculated the thermodynamic and kinetic behaviors for the bimolecular reactions by density functional theory (DFT) using the M05-2X method with 6-311++G** basis set and solvation model based on density (SMD). The results revealed that H-abstraction on the phenol group is the most favorable pathway for OH. The theoretical k value corrected by the Collins-Kimball approach was determined to be 1.03 × 10(10) M(-1) s(-1), which is in reasonable agreement with the experimental observation. These results are of fundamental and practical importance in understanding the chemical interactions between OH and BPA, and aid further AOPs design in treating EDCs during wastewater treatment processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Association between Endocrine Disrupting Phenols in Colostrums and Maternal and Infant Health

    Directory of Open Access Journals (Sweden)

    B. Yi

    2013-01-01

    Full Text Available Bisphenol A (BPA and alkylphenols (APs are well-known endocrine disrupting chemicals (EDCs which may threat the next generations' health. We performed biomonitoring of these phenols in colostrums to assess risk of the phenols in breast-fed neonates. Study subjects were the lactating mothers who delivered babies within 2 weeks (N=325; 30.67 ± 3.45 years and their neonates (N=326; embryonic period, 39.1 ± 1.5 weeks. BPA, nonylphenol (NP, and octylphenol (OP in colostrums were quantified with LC/MS/MS. Information for environmental exposure sources of the phenols was obtained by questionnaires. As results, median level of BPA in colostrums was 7.8 ng/mL, while most NP or OP was not detected. Regarding health risks of phenols, levels of total NP in colostrums were elevated among sick mothers with toxemia, thyroid disorders, gastritis, and so forth than health mothers (3.51 ± 4.98 versus 2.04 ± 3.71 ng/mL, P=0.02. Dairy products intake and detergents use were positively correlated with total BPA levels (Ps<0.05. In conclusion, we estimate most neonates who are exposed to BPA rather than NP or OP via colostrums and recommend continuous biomonitoring of the phenols to clarify their suspected health risk on neonates and pregnant or gestation mothers.

  15. Exploitation of Trametes versicolor for bioremediation of endocrine disrupting chemicals in bioreactors.

    Directory of Open Access Journals (Sweden)

    Cinzia Pezzella

    Full Text Available Endocrine disrupting chemicals (EDCs are environmental contaminants causing increasing concerns due to their toxicity, persistence and ubiquity. In the present study, degradative capabilities of Trametes versicolor, Pleurotus ostreatus and Phanerochaete chrysosporium to act on five EDCs, which represent different classes of chemicals (phenols, parabens and phthalate and were first applied as single compounds, were assessed. T. versicolor was selected due to its efficiency against target EDCs and its potentialities were exploited against a mixture of EDCs in a cost-effective bioremediation process. A fed-batch approach as well as a starvation strategy were applied in order to reduce the need for input of 'fresh' biomass, and avoid the requirement for external nutrients. The fungus was successfully operated in two different bioreactors over one week. Semi-batch cultures were carried out by daily adding a mixture of EDCs to the bioreactors in a total of five consecutive degradation cycles. T. versicolor was able to efficiently remove all compounds during each cycle converting up to 21 mg L-1 day-1 of the tested EDCs. The maintained ability of T. versicolor to remove EDCs without any additional nutrients represents the main outcome of this study, which enables to forecast its application in a water treatment process.

  16. Adipogenic Effects of a Combination of the Endocrine-Disrupting Compounds Bisphenol A, Diethylhexylphthalate, and Tributyltin

    Directory of Open Access Journals (Sweden)

    Ronald Biemann

    2014-01-01

    Full Text Available Objective: The food contaminants bisphenol A (BPA, diethylhexylphthalate (DEHP, and tributyltin (TBT are potent endocrine-disrupting compounds (EDC known to interfere with adipogenesis. EDC usually act in mixtures and not as single compounds. The aim of this study was to investigate the effects of a simultaneous exposure of BPA, DEHP, and TBT on mesenchymal stem cell differentiation into adipocytes. Methods: Multipotent murine mesenchymal stem cells (C3H10T1/2 were exposed to EDC mixtures in high concentrations, i.e. MIX-high (10 µmol/l BPA, 100 µmol/l DEHP, 100 nmol/l TBT, and in environmentally relevant concentrations, i.e. MIX-low (10 nmol/l BPA, 100 nmol/l DEHP, 1 nmol/l TBT. The exposure was performed either for the entire culture time (0-12 days or at distinct stages of adipogenic differentiation. At day 12 of cell culture, the amount of adipocytes, triglyceride content (TG, and adipogenic marker gene expression were analyzed. Results: MIX-high increased the development of adipocytes and the expression of adipogenic marker genes independently of the exposure window. The total TG amount was not increased. The low-concentrated EDC mixture had no obvious impact on adipogenesis. Conclusion: In EDC mixtures, the adipogenic effect of TBT and DEHP predominates single effects of BPA. Mixture effects of EDC are not deducible from single compound experiments.

  17. Endocrine-disrupting chemicals in the Pearl River Delta and coastal environment: sources, transfer, and implications.

    Science.gov (United States)

    Xu, Weihai; Yan, Wen; Huang, Weixia; Miao, Li; Zhong, Lifeng

    2014-12-01

    A study was conducted to investigate the occurrence and behavior of six endocrine-disrupting chemicals (EDCs) in sewage, river water, and seawater from the Pearl River Delta (PRD). The six EDCs under study were 4-nonylphenol (NP), bisphenol A (BPA), 17α-ethynylestradiol (EE2), estrone (E2), 17β-estradiol (E2), and estriol (E3). These EDCs, predominated by BPA, were found in high levels in the influents and the effluents of sewage treatment plants in the area. The relatively high concentrations (0.23-625 ng/L) of the EDCs detected in the receiving river water suggested that the untreated sewage discharge was a major contributor. The EDCs detected in eight outlets of the Pear River and the Pear River Estuary were in the ranges of 1.2-234 and 0.2-178 ng/L, respectively. The estrogen equivalents in the aquatic environments under study ranged from 0.08 to 4.5 ng/L, with E1 and EE2 being the two predominant contributors. As the fluxes of the EDCs from the PRD region to the nearby ocean are over 500 tons each year, the results of this study point to the potential that Pearl River is a significant source of the EDCs to the local environment there.

  18. Extent of endocrine disruption in fish of western and Alaskan National Parks

    Science.gov (United States)

    Schreck, Carl B.; Kent, Michael

    2013-01-01

    In 2008 2009, 998 fish were collected from 43 water bodies across 11 western Alaskan national parks and analyzed for reproductive abnormalities. Exposure to estrogenic substances such as pesticides can induce abnormalities like intersex. Results suggest there is a greater propensity for male intersex fish collected from parks located in the Rocky Mountains, and specifically in Rocky Mountain NP. Individual male intersex fish were also identified at Lassen Volcanic, Yosemite, and WrangellSt. Elias NPs. The preliminary finding of female intersex was determined to be a false positive. The overall goal of this project was to assess the general health of fish from eleven western national parks to infer whether health impacts may be linked to contaminant health thresholds for animal andor human health. This was accomplished by evaluating the presence of intersex fish with eggs developing in male gonads or sperm developing in female gonads using histology. In addition, endocrine disrupting compounds and other contaminants were quantified in select specimens. General histologic appearance of the gonadal tissue and spleen were observed to assess health.

  19. Concentration levels of endocrine disrupting chemicals in environmental media of Korea

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Junheon; Choi, Kyunghee; Kim, Sangdon; Kim, Eunji; Kim, Eunkyoung; Jeon, Sung-Hwan; Na, Jin-Gyun [National Institute of Environmental Research, Incheon (Korea)

    2004-09-15

    Introduction As the public is more concerned about endocrine disrupting chemicals (EDCs), the Ministry of Environment in Korea has designed and established a mid- and long-term research plan on EDCs. Since 1999, the National Institute of Environmental Research has investigated the impact of EDCs on the natural ecosystem and carried out the field test for environmental monitoring. The goal of this study was to measure the contamination level of EDCs in a variety of environmental media, such as water, sediment, soil and air and to provide a basis for the sound management of EDCs and policy-making for the control of EDCs in Korea. Environmental monitoring sites were selected at representative sites through the nation. In 2002, 310 samples were collected from 122 sites of water, sediment, soil and air. The target EDCs examined were 93 chemicals in 45 chemical groups including Dioxin, coplanar PCBs, PCBs. Results show that 46 chemicals (31 chemical groups) including dioxins were detected in at least one environmental medium, while 47 chemicals including aldrin were not detected in any environmental media. In this study, the results of the fourth year of environmental monitoring are reported.

  20. Sources of endocrine-disrupting compounds in North Carolina waterways: a geographic information systems approach.

    Science.gov (United States)

    Sackett, Dana K; Pow, Crystal Lee; Rubino, Matthew J; Aday, D Derek; Cope, W Gregory; Kullman, Seth; Rice, James A; Kwak, Thomas J; Law, Mac

    2015-02-01

    The presence of endocrine-disrupting compounds (EDCs), particularly estrogenic compounds, in the environment has drawn public attention across the globe, yet a clear understanding of the extent and distribution of estrogenic EDCs in surface waters and their relationship to potential sources is lacking. The objective of the present study was to identify and examine the potential input of estrogenic EDC sources in North Carolina water bodies using a geographic information system (GIS) mapping and analysis approach. Existing data from state and federal agencies were used to create point and nonpoint source maps depicting the cumulative contribution of potential sources of estrogenic EDCs to North Carolina surface waters. Water was collected from 33 sites (12 associated with potential point sources, 12 associated with potential nonpoint sources, and 9 reference), to validate the predictive results of the GIS analysis. Estrogenicity (measured as 17β-estradiol equivalence) ranged from 0.06 ng/L to 56.9 ng/L. However, the majority of sites (88%) had water 17β-estradiol concentrations below 1 ng/L. Sites associated with point and nonpoint sources had significantly higher 17β-estradiol levels than reference sites. The results suggested that water 17β-estradiol was reflective of GIS predictions, confirming the relevance of landscape-level influences on water quality and validating the GIS approach to characterize such relationships. © 2014 SETAC.

  1. Multigenerational and transgenerational effects of endocrine disrupting chemicals: A role for altered epigenetic regulation?

    Science.gov (United States)

    Xin, Frances; Susiarjo, Martha; Bartolomei, Marisa S

    2015-07-01

    Increasing evidence has highlighted the critical role of early life environment in shaping the future health outcomes of an individual. Moreover, recent studies have revealed that early life perturbations can affect the health of subsequent generations. Hypothesized mechanisms of multi- and transgenerational inheritance of abnormal developmental phenotypes include epigenetic misregulation in germ cells. In this review, we will focus on the available data demonstrating the ability of endocrine disrupting chemicals (EDCs), including bisphenol A (BPA), phthalates, and parabens, to alter epigenetic marks in rodents and humans. These epigenetic marks include DNA methylation, histone post-translational modifications, and non-coding RNAs. We also review the current evidence for multi- and transgenerational inheritance of abnormal developmental changes in the offspring following EDC exposure. Based on published results, we conclude that EDC exposure can alter the mouse and human epigenome, with variable tissue susceptibilities. Although increasing data suggest that exposure to EDCs is linked to transgenerational inheritance of reproductive, metabolic, or neurological phenotypes, more studies are needed to validate these observations and to elucidate further whether these developmental changes are directly associated with the relevant epigenetic alterations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Multigenerational and transgenerational effects of endocrine disrupting chemicals: A role for altered epigenetic regulation?

    Science.gov (United States)

    Xin, Frances; Susiarjo, Martha; Bartolomei, Marisa S.

    2015-01-01

    Increasing evidence has highlighted the critical role of early life environment in shaping the future health outcomes of an individual. Moreover, recent studies have revealed that early life perturbations can affect the health of subsequent generations. Hypothesized mechanisms of multi- and transgenerational inheritance of abnormal developmental phenotypes include epigenetic misregulation in germ cells. In this review, we will focus on the available data demonstrating the ability of endocrine disrupting chemicals (EDCs), including bisphenol A (BPA), phthalates, and parabens, to alter epigenetic marks in rodents and humans. These epigenetic marks include DNA methylation, histone post-translational modifications, and non-coding RNAs. We also review the current evidence for multi- and transgenerational inheritance of abnormal developmental changes in the offspring following EDC exposure. Based on published results, we conclude that EDC exposure can alter the mouse and human epigenome, with variable tissue susceptibilities. Although increasing data suggest that exposure to EDCs is linked to transgenerational inheritance of reproductive, metabolic, or neurological phenotypes, more studies are needed to validate these observations and to elucidate further whether these developmental changes are directly associated with the relevant epigenetic alterations. PMID:26026600

  3. Endocrine disrupting compounds in drinking water supply system and human health risk implication.

    Science.gov (United States)

    Wee, Sze Yee; Aris, Ahmad Zaharin

    2017-09-01

    To date, experimental and epidemiological evidence of endocrine disrupting compounds (EDCs) adversely affecting human and animal populations has been widely debated. Notably, human health risk assessment is required for risk mitigation. The lack of human health risk assessment and management may thus unreliably regulate the quality of water resources and efficiency of treatment processes. Therefore, drinking water supply systems (DWSSs) may be still unwarranted in assuring safe access to potable drinking water. Drinking water supply, such as tap water, is an additional and crucial route of human exposure to the health risks associated with EDCs. A holistic system, incorporating continuous research in DWSS monitoring and management using multi-barrier approach, is proposed as a preventive measure to reduce human exposure to the risks associated with EDCs through drinking water consumption. The occurrence of EDCs in DWSSs and corresponding human health risk implications are analyzed using the Needs, Approaches, Benefits, and Challenges (NABC) method. Therefore, this review may act as a supportive tool in protecting human health and environmental quality from EDCs, which is essential for decision-making regarding environmental monitoring and management purposes. Subsequently, the public could have sustainable access to safer and more reliable drinking water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Exploitation of Trametes versicolor for bioremediation of endocrine disrupting chemicals in bioreactors.

    Science.gov (United States)

    Pezzella, Cinzia; Macellaro, Gemma; Sannia, Giovanni; Raganati, Francesca; Olivieri, Giuseppe; Marzocchella, Antonio; Schlosser, Dietmar; Piscitelli, Alessandra

    2017-01-01

    Endocrine disrupting chemicals (EDCs) are environmental contaminants causing increasing concerns due to their toxicity, persistence and ubiquity. In the present study, degradative capabilities of Trametes versicolor, Pleurotus ostreatus and Phanerochaete chrysosporium to act on five EDCs, which represent different classes of chemicals (phenols, parabens and phthalate) and were first applied as single compounds, were assessed. T. versicolor was selected due to its efficiency against target EDCs and its potentialities were exploited against a mixture of EDCs in a cost-effective bioremediation process. A fed-batch approach as well as a starvation strategy were applied in order to reduce the need for input of 'fresh' biomass, and avoid the requirement for external nutrients. The fungus was successfully operated in two different bioreactors over one week. Semi-batch cultures were carried out by daily adding a mixture of EDCs to the bioreactors in a total of five consecutive degradation cycles. T. versicolor was able to efficiently remove all compounds during each cycle converting up to 21 mg L-1 day-1 of the tested EDCs. The maintained ability of T. versicolor to remove EDCs without any additional nutrients represents the main outcome of this study, which enables to forecast its application in a water treatment process.

  5. Disparities in Environmental Exposures to Endocrine-Disrupting Chemicals and Diabetes Risk in Vulnerable Populations.

    Science.gov (United States)

    Ruiz, Daniel; Becerra, Marisol; Jagai, Jyotsna S; Ard, Kerry; Sargis, Robert M

    2017-11-15

    Burgeoning epidemiological, animal, and cellular data link environmental endocrine-disrupting chemicals (EDCs) to metabolic dysfunction. Disproportionate exposure to diabetes-associated EDCs may be an underappreciated contributor to disparities in metabolic disease risk. The burden of diabetes is not uniformly borne by American society; rather, this disease disproportionately affects certain populations, including African Americans, Latinos, and low-income individuals. The purpose of this study was to review the evidence linking unequal exposures to EDCs with racial, ethnic, and socioeconomic diabetes disparities in the U.S.; discuss social forces promoting these disparities; and explore potential interventions. Articles examining the links between chemical exposures and metabolic disease were extracted from the U.S. National Library of Medicine for the period of 1966 to 3 December 2016. EDCs associated with diabetes in the literature were then searched for evidence of racial, ethnic, and socioeconomic exposure disparities. Among Latinos, African Americans, and low-income individuals, numerous studies have reported significantly higher exposures to diabetogenic EDCs, including polychlorinated biphenyls, organochlorine pesticides, multiple chemical constituents of air pollution, bisphenol A, and phthalates. This review reveals that unequal exposure to EDCs may be a novel contributor to diabetes disparities. Efforts to reduce the individual and societal burden of diabetes should include educating clinicians on environmental exposures that may increase disease risk, strategies to reduce those exposures, and social policies to address environmental inequality as a novel source of diabetes disparities. © 2017 by the American Diabetes Association.

  6. Sources and levels of endocrine disrupting compounds (EDCs) in Kuwait's coastal areas.

    Science.gov (United States)

    Saeed, Talat; Al-Jandal, Noura; Abusam, Abdalla; Taqi, Hameeda; Al-Khabbaz, Ahmad; Zafar, Jamal

    2017-05-15

    The sources and levels of endocrine disrupting compounds in Kuwait's coastal areas were investigated. Phthalates, alkylphenols and estrogens were measured in the inflows and outflows of three sewage treatment plants as well as in the seawater and sediments from the sewage impacted coastal areas. Phthalate levels in the inflow of the treatment plants ranged from 8.9 to 78.3μg/l; alkylphenols from 0.7 to 279ng/l and estrogens from 30 to 368ng/l. On average, the treatment plants removed about 80% of these compounds. The outflows, however, contained significant levels of all three classes of compounds. The seawater from the sewage impacted area also contained detectable levels of these compounds. Sediment samples from these locations contained elevated levels of phthalates (ranging from 2145 to 15,722μg/kg) and lower levels of alkylphenols (ranging from 2.49 to 15.14μg/kg) and estrogens (ranging from 4.1 to 214μg/kg, dry wt.). Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. [A memoir of my researches on xenobiotic metabolism for 48 years--researches on Kanemi Yusho and endocrine disrupting chemicals].

    Science.gov (United States)

    Yoshihara, Shin'ichi

    2013-01-01

    The author started a research on xenobiotic metabolism at Graduate School of Pharmaceutical Sciences, Kyushu University in 1965. In 1968, an epidemic of a "strange disease", called Yusho, occurred in western Japan. The epidemic was soon identified to be a food poisoning caused by the ingestion of commercial Kanemi rice bran oil which had been accidentally contaminated with large amounts of polychlorinated biphenyls (PCBs) and their related compounds such as polychlorinated dibenzofurans (PCDFs.) At first, in this review, our toxicological studies on Yusho during the early thirty years were briefly described. Next, the studies on aldehyde oxidase, a molybdenum hydroxylase, which is involved in the lactam formation reaction such as 1-phenyl-2-(2-oxopyrrolidine)pentane(oxoprolintane) from 1-phenyl-2-pyrrolidinopentane(prolintane) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP) lactam from 1-methyl-4-phenyl-2,3-dihydropyridinium ion (MPDP⁺) were also presented. Finally, we investigated how the xenobiotic metabolism of endocrine disrupting chemicals such as bisphenol A (BPA) and some isoflavones affects their estrogenic activities. In this study, we demonstrated that BPA is converted to 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), an active metabolite as estrogen, by rat liver S9. In the cases of isoflavones, although genistein was inactivated, biochanin A, 4'-methoxy analogue of genistein, was activated to genistein by O-demethylation with rat liver S9.

  8. Endocrine disrupting effects of zearalenone, alpha- and beta-zearalenol at the level of nuclear receptor binding and steroidogenesis.

    Science.gov (United States)

    Frizzell, C; Ndossi, D; Verhaegen, S; Dahl, E; Eriksen, G; Sørlie, M; Ropstad, E; Muller, M; Elliott, C T; Connolly, L

    2011-10-10

    The mycotoxin zearalenone (ZEN) is a secondary metabolite of fungi which is produced by certain species of the genus Fusarium and can occur in cereals and other plant products. Reporter gene assays incorporating natural steroid receptors and the H295R steroidogenesis assay have been implemented to assess the endocrine disrupting activity of ZEN and its metabolites α-zearalenol (α-ZOL) and β-zearalenol (β-ZOL). α-ZOL exhibited the strongest estrogenic potency (EC(50) 0.022±0.001 nM), slightly less potent than 17-β estradiol (EC(50) 0.015±0.002 nM). ZEN was ~70 times less potent than α-ZOL and twice as potent as β-ZOL. Binding of progesterone to the progestagen receptor was shown to be synergistically increased in the presence of ZEN, α-ZOL or β-ZOL. ZEN, α-ZOL or β-ZOL increased production of progesterone, estradiol, testosterone and cortisol hormones in the H295R steroidogenesis assay, with peak productions at 10 μM. At 100 μM, cell viability decreased and levels of hormones were significantly reduced except for progesterone. β-ZOL increased estradiol concentrations more than α-ZOL or ZEN, with a maximum effect at 10 μM, with β-ZOL (562±59 pg/ml)>α-ZOL (494±60 pg/ml)>ZEN (375±43 pg/ml). The results indicate that ZEN and its metabolites can act as potential endocrine disruptors at the level of nuclear receptor signalling and by altering hormone production. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Combined exposure to endocrine disrupting pesticides impairs parturition, causes pup mortality and affects sexual differentiation in rats

    DEFF Research Database (Denmark)

    Jacobsen, Pernille Rosenskjold; Christiansen, Sofie; Boberg, Julie

    2010-01-01

    , even though the doses of the single compounds are below their individual NOAELs for anti-androgenic effects. Consequently, we have initiated a large project where the purpose is to study mixture effects of endocrine disrupting pesticides at low doses. In the initial range-finding mixture studies, rats...... were gavaged during gestation and lactation with five doses of a mixture of the fungicides procymidone, mancozeb, epoxyconazole, tebuconazole and prochloraz. The mixture ratio was chosen according to the doses of each individual pesticide that produced no observable effects on pregnancy length and pup...... show that doses of endocrine disrupting pesticides, which appear to induce no effects on gestation length, parturition and pup mortality when judged on their own, induced marked adverse effects on these endpoints in concert with other pesticides. In addition, the sexual differentiation of the offspring...

  10. Corticosteroid Production in H295R Cells During Exposure to 3 Endocrine Disrupters Analyzed With LC-MS/MS

    DEFF Research Database (Denmark)

    Winther, Christina S; Nielsen, Frederik Knud; Hansen, Martin

    2013-01-01

    The adrenocortical human cell line H295R is a valuable tool for screening endocrine disrupting compounds. In general, previous research focus has been on the production of the 2 sex steroids, 17β-estradiol and testosterone, and less attention has been paid to other important steroid end points......295R cell line. The method was applied by studying the effects of 2 model endocrine disrupters, ketoconazole and prochloraz, the pharmaceutical budesonide, and the inducer forskolin on the steroid production in this cell line. Dose-response curves were obtained for the correlation between hormone...... concentrations and the concentration of the individual disruptors. Exposing cells to ketoconazole resulted in a decrease in cortisol and corticosterone concentrations in a dose-dependent manner with EC50 values of 0.24 and 0.40 μmol/L, respectively. The same applied for cells exposed to prochloraz with EC50...

  11. Peer-reviewed and unbiased research, rather than 'sound science', should be used to evaluate endocrine-disrupting chemicals.

    Science.gov (United States)

    Trasande, Leonardo; Vandenberg, Laura N; Bourguignon, Jean-Pierre; Myers, John Peterson; Slama, Remy; Vom Saal, Frederick; Zoeller, Robert Thomas

    2016-11-01

    Evidence increasingly confirms that synthetic chemicals disrupt the endocrine system and contribute to disease and disability across the lifespan. Despite a United Nations Environment Programme/WHO report affirmed by over 100 countries at the Fourth International Conference on Chemicals Management, 'manufactured doubt' continues to be cast as a cloud over rigorous, peer-reviewed and independently funded scientific data. This study describes the sources of doubt and their social costs, and suggested courses of action by policymakers to prevent disease and disability. The problem is largely based on the available data, which are all too limited. Rigorous testing programmes should not simply focus on oestrogen, androgen and thyroid. Tests should have proper statistical power. 'Good laboratory practice' (GLP) hardly represents a proper or even gold standard for laboratory studies of endocrine disruption. Studies should be evaluated with regard to the contamination of negative controls, responsiveness to positive controls and dissection techniques. Flaws in many GLP studies have been identified, yet regulatory agencies rely on these flawed studies. Peer-reviewed and unbiased research, rather than 'sound science', should be used to evaluate endocrine-disrupting chemicals. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  12. Waterborne exposure to BPS causes thyroid endocrine disruption in zebrafish larvae.

    Science.gov (United States)

    Zhang, Dan-Hua; Zhou, En-Xiang; Yang, Zhu-Lin

    2017-01-01

    Bisphenol S (BPS) is widely used as a raw material in industry, resulting in its ubiquitous distribution in natural environment, including the aqueous environment. However, the effect of BPS on the thyroid endocrine system is largely unknown. In this study, zebrafish (Danio rerio) embryos were exposed to BPS at 1, 3, 10, and 30 μg/L, from 2 h post-fertilization (hpf) to 168hpf. Bioconcentration of BPS and whole-body thyroid hormones (THs), thyroid-stimulating hormone (TSH) concentrations as well as transcriptional profiling of key genes related to the hypothalamic-pituitary-thyroid (HPT) axis were examined. Chemical analysis indicated that BPS was accumulated in zebrafish larvae. Thyroxine (T4) and triiodothyronine (T3) levels were significantly decreased at ≥ 10 and 30 μg/L of BPS, respectively. However, TSH concentration was significantly induced in the 10 and 30 μg/L BPS-treated groups. After exposure to BPS, the mRNA expression of corticotrophin releasing hormone (crh) and thyroglobulin (tg) genes were up-regulated at ≥10 μg/L of BPS, in a dose-response manner. The transcription of genes involved in thyroid development (pax8) and synthesis (sodium/iodide symporter, slc5a5) were also significantly increased in the 30 μg/L of BPS treatment group. Moreover, exposure to 10 μg/L or higher concentration of BPS significantly up-regulated genes related to thyroid hormone metabolism (deiodinases, dio1, dio2 and uridinediphosphate glucoronosyltransferases, ugt1ab), which might be responsible for the altered THs levels. However, the transcript of transthyretin (ttr) was significantly down-regulated at ≥ 3 μg/L of BPS, while the mRNA levels of thyroid hormone receptors (trα and trβ) and dio3 remained unchanged. All the results indicated that exposure to BPS altered the whole-body THs and TSH concentrations and changed the expression profiling of key genes related to HPT axis, thus triggering thyroid endocrine disruption.

  13. Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liying; Sedykh, Alexander; Tripathi, Ashutosh [Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC (United States); Zhu, Hao [The Rutgers Center for Computational and Integrative Biology, Rutgers University, Camden, NJ (United States); Department of Chemistry, Rutgers University, Camden, NJ (United States); Afantitis, Antreas; Mouchlis, Varnavas D.; Melagraki, Georgia [NovaMechanics Ltd., Nicosia (Cyprus); Rusyn, Ivan, E-mail: iir@unc.edu [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC (United States); Tropsha, Alexander, E-mail: alex_tropsha@unc.edu [Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC (United States)

    2013-10-01

    Identification of endocrine disrupting chemicals is one of the important goals of environmental chemical hazard screening. We report on the development of validated in silico predictors of chemicals likely to cause estrogen receptor (ER)-mediated endocrine disruption to facilitate their prioritization for future screening. A database of relative binding affinity of a large number of ERα and/or ERβ ligands was assembled (546 for ERα and 137 for ERβ). Both single-task learning (STL) and multi-task learning (MTL) continuous quantitative structure–activity relationship (QSAR) models were developed for predicting ligand binding affinity to ERα or ERβ. High predictive accuracy was achieved for ERα binding affinity (MTL R{sup 2} = 0.71, STL R{sup 2} = 0.73). For ERβ binding affinity, MTL models were significantly more predictive (R{sup 2} = 0.53, p < 0.05) than STL models. In addition, docking studies were performed on a set of ER agonists/antagonists (67 agonists and 39 antagonists for ERα, 48 agonists and 32 antagonists for ERβ, supplemented by putative decoys/non-binders) using the following ER structures (in complexes with respective ligands) retrieved from the Protein Data Bank: ERα agonist (PDB ID: 1L2I), ERα antagonist (PDB ID: 3DT3), ERβ agonist (PDB ID: 2NV7), and ERβ antagonist (PDB ID: 1L2J). We found that all four ER conformations discriminated their corresponding ligands from presumed non-binders. Finally, both QSAR models and ER structures were employed in parallel to virtually screen several large libraries of environmental chemicals to derive a ligand- and structure-based prioritized list of putative estrogenic compounds to be used for in vitro and in vivo experimental validation. - Highlights: • This is the largest curated dataset inclusive of ERα and β (the latter is unique). • New methodology that for the first time affords acceptable ERβ models. • A combination of QSAR and docking enables prediction of affinity and function.

  14. November 6, 2017, Virtual Meeting on the Charge Questions for the Federal Insecticide, Fungicide, and Rodenticide Act Scientific Advisory Panel (FIFRA SAP) Meeting on Endocrine Disruption

    Science.gov (United States)

    This virtual FIFRA SAP meeting will be discus questions on Continuing Development of Alternative High-Throughput Screens to Determine Endocrine Disruption, focusing on Androgen Receptor, Steroidogenesis, and Thyroid Pathways

  15. Thyroid stimulating hormone levels in newborns and early life exposure to endocrine disrupting chemicals - analysis of three European mother-child cohorts

    NARCIS (Netherlands)

    de Cock, Marijke; de Boer, Michiel R; Govarts, Eva; Iszatt, Nina; Palkovicova, Lubica; Lamoree, Marja H; Schoeters, Greet; Eggesbø, Merete; Trnovec, Tomas; Legler, Juliette; van de Bor, Margot

    2017-01-01

    BACKGROUND: Various studies report interactions between thyroid hormones and early life chemical exposure. Our objective was to analyse associations between markers of endocrine disrupting chemical exposure and thyroid function in newborns, determined in heel prick blood spots. METHODS: Three

  16. Exposure to endocrine disrupting chemicals among residents of a rural vegetarian/vegan community.

    Science.gov (United States)

    Tordjman, Karen; Grinshpan, Laura; Novack, Lena; Göen, Thomas; Segev, Dar; Beacher, Lisa; Stern, Naftali; Berman, Tamar

    2016-12-01

    Endocrine-disrupting chemicals (EDCs) are increasingly thought to be involved in the rising prevalence of disorders such as obesity, diabetes, and some hormone-dependent cancers. Several lines of evidence have indicated that vegetarian and vegan diets may offer some protection from such diseases. We hypothesized that exposure to selected EDCs among residents of the unique vegetarian/vegan community of Amirim would be lower than what has recently been reported for the omnivorous population in the first Israel Biomonitoring Study (IBMS). We studied 42 Amirim residents (29 vegetarians/13 vegans; 24 women/18men, aged 50.7±13.7y). Subjects answered detailed lifestyle, and multipass, memory-based 24-hr dietary recall questionnaires. Concentrations of bisphenol A (BPA), 11 phthalate metabolites, and the isoflavone phytoestrogens (genistein and daidzein) were determined by GC or LC tandem mass-spectrometry on a spot urine sample. The results were compared to those obtained following the same methodology in the Jewish subgroup of the IBMS (n=184). While a vegetarian/vegan nutritional pattern had no effect on exposure to BPA, it seemed to confer a modest protection (~21%) from exposure to high molecular weight phthalates. Furthermore, the summed metabolites of the high molecular weight phthalate DiNP were 36% lower in vegans compared to vegetarians (Pvegetarianism and preference for organic food has a modest, but possibly valuable, impact on exposure to phthalates, while it is associated with a very steep increase in the exposure to phytoestrogens. Major reduction in exposure to EDCs will require regulatory actions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Oxidation mechanism and overall removal rates of endocrine disrupting chemicals by aquatic plants.

    Science.gov (United States)

    Reis, A R; Tabei, K; Sakakibara, Y

    2014-01-30

    The purpose of this study was to evaluate experimentally and theoretically the oxidation mechanisms and overall removal rates of phenolic endocrine disrupting chemicals (EDCs) by aquatic plants. EDCs used in this study were bisphenol-A (BPA), 2,4-dichlorophenol (2,4-DCP), 4-tert-octylphenol (4-t-OP), and pentachlorophenol (PCP). Referring to reported detection levels in aquatic environments and contaminated sites, the feed concentration of each EDC was set from 1 to 100μg/L. Experimental results showed that, except for PCP, phenolic EDCs were stably and concurrently removed by different types of aquatic plants over 70 days in long-term continuous treatments. Primal enzymes responsible for oxidation of BPA, 2,4-DCP, and 4-t-OP were peroxidases (POs). Moreover, enzymatic removal rates of BPA, 2,4-DCP, and 4-t-OP by POs were more than 2 orders of magnitude larger than those by aquatic plants. Assuming that overall removal rates of EDCs are controlled by mass transfer rates onto liquid films on the surface of aquatic plants, an electrochemical method based on the limiting current theory was developed to measure the mass transfer rates of EDCs. Because of extremely large removal rates of EDCs by POs, observed removal rates by aquatic plants were in reasonably good agreement with calculated results by a mathematical model developed based on an assumption that mass transfer limitation is a rate-limiting step. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  18. A novel ICK mutation causes ciliary disruption and lethal endocrine-cerebro-osteodysplasia syndrome.

    Science.gov (United States)

    Oud, Machteld M; Bonnard, Carine; Mans, Dorus A; Altunoglu, Umut; Tohari, Sumanty; Ng, Alvin Yu Jin; Eskin, Ascia; Lee, Hane; Rupar, C Anthony; de Wagenaar, Nathalie P; Wu, Ka Man; Lahiry, Piya; Pazour, Gregory J; Nelson, Stanley F; Hegele, Robert A; Roepman, Ronald; Kayserili, Hülya; Venkatesh, Byrappa; Siu, Victoria M; Reversade, Bruno; Arts, Heleen H

    2016-01-01

    Endocrine-cerebro-osteodysplasia (ECO) syndrome [MIM:612651] caused by a recessive mutation (p.R272Q) in Intestinal cell kinase (ICK) shows significant clinical overlap with ciliary disorders. Similarities are strongest between ECO syndrome, the Majewski and Mohr-Majewski short-rib thoracic dysplasia (SRTD) with polydactyly syndromes, and hydrolethalus syndrome. In this study, we present a novel homozygous ICK mutation in a fetus with ECO syndrome and compare the effect of this mutation with the previously reported ICK variant on ciliogenesis and cilium morphology. Through homozygosity mapping and whole-exome sequencing, we identified a second variant (c.358G > T; p.G120C) in ICK in a Turkish fetus presenting with ECO syndrome. In vitro studies of wild-type and mutant mRFP-ICK (p.G120C and p.R272Q) revealed that, in contrast to the wild-type protein that localizes along the ciliary axoneme and/or is present in the ciliary base, mutant proteins rather enrich in the ciliary tip. In addition, immunocytochemistry revealed a decreased number of cilia in ICK p.R272Q-affected cells. Through identification of a novel ICK mutation, we confirm that disruption of ICK causes ECO syndrome, which clinically overlaps with the spectrum of ciliopathies. Expression of ICK-mutated proteins result in an abnormal ciliary localization compared to wild-type protein. Primary fibroblasts derived from an individual with ECO syndrome display ciliogenesis defects. In aggregate, our findings are consistent with recent reports that show that ICK regulates ciliary biology in vitro and in mice, confirming that ECO syndrome is a severe ciliopathy.

  19. Effect of wastewater treatment facility closure on endocrine disrupting chemicals in a Coastal Plain stream

    Science.gov (United States)

    Bradley, Paul M.; Journey, Celeste; Clark, Jimmy M.

    2016-01-01

    Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insight into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The U.S. Geological Survey assessed the fate of select endocrine disrupting chemicals (EDC) in surface water and streambed sediment one year before and one year after closure of a long-term WWTF located within the Spirit Creek watershed at Fort Gordon, Georgia. Sample sites included a WWTF-effluent control located upstream from the outfall, three downstream effluent-impacted sites located between the outfall and Spirit Lake, and one downstream from the lake's outfall. Prior to closure, the 2.2-km stream segment downstream from the WWTF outfall was characterized by EDC concentrations significantly higher (α = 0.05) than at the control site; indicating substantial downstream transport and limited in-stream attenuation of EDC, including pharmaceuticals, estrogens, alkylphenol ethoxylate (APE) metabolites, and organophosphate flame retardants (OPFR). Wastewater-derived pharmaceutical, APE metabolites, and OPFR compounds were also detected in the outflow of Spirit Lake, indicating the potential for EDC transport to aquatic ecosystems downstream of Fort Gordon under effluent discharge conditions. After the WWTF closure, no significant differences in concentrations or numbers of detected EDC compounds were observed between control and downstream locations. The results indicated EDC pseudo-persistence under preclosure, continuous supply conditions, with rapid attenuation following WWTF closure. Low concentrations of EDC at the control site throughout the study and comparable concentrations in downstream locations after WWTF closure indicated additional, continuing, upstream contaminant sources within the Spirit Creek watershed. 

  20. Endocrine disruption of phenanthrene in the protogynous dusky grouper Epinephelus marginatus (Serranidae: Perciformes).

    Science.gov (United States)

    de Campos, Mariana Frias; Lo Nostro, Fabiana L; Da Cuña, Rodrigo H; Moreira, Renata Guimarães

    2017-06-23

    The dusky grouper Epinephelus marginatus is a protogynous hermaphrodite fish, that maintains high levels of plasma steroids as juveniles, as substrates for sex inversion. These fish are exposed to marine pollution from oil spills during cargo handling. Polycyclic aromatic hydrocarbons (PAHs), such as phenanthrene (Phe), are the main crude oil components and are toxic to fish, acting as endocrine disruptors (ED). This is the first study that investigated impacts of Phe as an ED in E. marginatus juveniles. An in vivo sublethal exposure (96h) to Phe was carried out at two concentrations (0.1mg/L and 1mg/L); exposure to the vehicle (ethanol; ETOH) was also performed. Plasma levels of 17β-estradiol (E2), testosterone (T) and 11-ketotestosterone (11-KT) were measured by ELISA. Gonads, liver and spleen were processed for histological analysis. In an in vitro bioassay, gonad fragments were incubated with Phe (8.91mg/L) or ETOH. Steroid levels in the culture media were measured by ELISA. The in vivo exposure to Phe triggered an increase of the area of the hepatocytes, increased number of melanomacrophagic centers and hemosiderosis in the spleen; ETOH induced similar effects on spleen. E2 and T levels did not change in plasma or in vitro media. In plasma, ETOH decreased 11-KT levels. Phenanthrene sharply reduced 11-KT levels in vitro. Although in vivo bioassay results were not unequivocal owing to ethanol effects, Phe might disrupt steroidogenesis in juvenile grouper, possibly causing dysfunctions during sex change and gonadal maturity, considering the importance of 11-KT in developing ovaries. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Female Reproductive Disorders, Diseases, and Costs of Exposure to Endocrine Disrupting Chemicals in the European Union

    Science.gov (United States)

    Hunt, Patricia A.; Sathyanarayana, Sheela; Fowler, Paul A.

    2016-01-01

    Context: A growing body of evidence suggests that endocrine-disrupting chemicals (EDCs) contribute to female reproductive disorders. Objective: To calculate the associated combined health care and economic costs attributable to specific EDC exposures within the European Union (EU). Design: An expert panel evaluated evidence for probability of causation using the Intergovernmental Panel on Climate Change weight-of-evidence characterization. Exposure-response relationships and reference levels were evaluated, and biomarker data were organized from carefully identified studies from the peer-reviewed literature to represent European exposure and approximate burden of disease as it occurred in 2010. Cost-of-illness estimation used multiple peer-reviewed sources. Setting, Patients and Participants and Intervention: Cost estimation was carried out from a societal perspective, ie, including direct costs (eg, treatment costs) and indirect costs such as productivity loss. Results: The most robust EDC-related data for female reproductive disorders exist for 1) diphenyldichloroethene-attributable fibroids and 2) phthalate-attributable endometriosis in Europe. In both cases, the strength of epidemiological evidence was rated as low and the toxicological evidence as moderate, with an assigned probability of causation of 20%–39%. Across the EU, attributable cases were estimated to be 56 700 and 145 000 women, respectively, with total combined economic and health care costs potentially reaching €163 million and €1.25 billion. Conclusions: EDCs (diphenyldichloroethene and phthalates) may contribute substantially to the most common reproductive disorders in women, endometriosis and fibroids, costing nearly €1.5 billion annually. These estimates represent only EDCs for which there were sufficient epidemiologic studies and those with the highest probability of causation. These public health costs should be considered as the EU contemplates regulatory action on EDCs. PMID

  2. Can Endocrine disrupters interfere with Ca2+ homeostasis in invertebrate cells?

    Directory of Open Access Journals (Sweden)

    L. Canesi

    2010-01-01

    Full Text Available A wide range of environmental chemicals have been shown to alter the endocrine system of both wildlife and humans. There is increasing evidence that many of these endocrine disruptors (EDs, in particular estrogenic chemicals, can rapidly affect cellular homeostasis and signaling in mammalian Ca2+ systems. In this work, in vitro and in vivo data are summarised on the effects of different compounds known or suspected as EDs on homeostasis in Ca2+ marine invertebrate, the blue mussel Mytilus spp. Both synthetic estrogens and different EDs (DES, BPA, NP, PCB congeners, etc. rapidly increased sytosolic [Ca2+] in mussel hemosytes, as evaluated by FURA2 single cell fluorescence microscopy. The observed [Ca2+] increase was unaffected by the antiestrogen Tamoxifen and was due to either increased influx or release from Ca2+ intracellular stores, depending on the compound. Moreover, different ED,s including the brominated flame retardant TBBPA (tetrabromo bisphenol A induced a dose-dependent inhibition of the plasma membrane Ca2+ -ATPase (PMCA activity from mussel gills in vitro, this supporting a direct effect on membrane pumps. The in vitro effects of EDs were observed at concentrations generally higher than those of E2. However, in vivo, mussel exposure to environmetal concentrations of Bisphenol A (BPA and of the polybrominated diphenyl ether TBDE-47 resulted in large inhibition of PMCA activity in the digestive gland. The results indicate that, in invertebrate like in mammalian systems, interference with Ca2+ homeostasis may represent a significant mode of action of a variety of EDs.

  3. Endocrine disrupting chemicals research program of the U.S. Environmental Protection Agency: summary of a peer-review report

    Science.gov (United States)

    Harding, Anna K.; Daston, George P.; Boyd, Glen R.; Lucier, George W.; Safe, Stephen H.; Stewart, Juarine; Tillitt, Donald E.; Van Der Kraak, Glen

    2006-01-01

    At the request of the U.S. Environmental Protection Agency (EPA) Office of Research and Development, a subcommittee of the Board of Scientific Counselors Executive Committee conducted an independent and open peer review of the Endocrine Disrupting Chemicals Research Program (EDC Research Program) of the U.S. EPA. The subcommittee was charged with reviewing the design, relevance, progress, scientific leadership, and resources of the program. The subcommittee found that the long-term goals and science questions in the EDC Program are appropriate and represent an understandable and solid framework for setting research priorities, representing a combination of problem-driven and core research. Long-term goal (LTG) 1, dealing with the underlying science surrounding endocrine disruptors, provides a solid scientific foundation for conducting risk assessments and making risk management decisions. LTG 2, dealing with defining the extent of the impact of endocrine-disrupting chemicals (EDCs), has shown greater progress on ecologic effects of EDCs compared with that on human health effects. LTG 3, which involves support of the Endocrine Disruptor Screening and Testing Program of the U.S. EPA, has two mammalian tests already through a validation program and soon available for use. Despite good progress, we recommend that the U.S. EPA a) strengthen their expertise in wildlife toxicology, b) expedite validation of the Endocrine Disruptors Screening and Testing Advisory Committee tests, c) continue dependable funding for the EDC Research Program, d) take a leadership role in the application of “omics” technologies to address many of the science questions critical for evaluating environmental and human health effects of EDCs, and e) continue to sponsor multidisciplinary intramural research and interagency collaborations.

  4. Revealing ecological risks of priority endocrine disrupting chemicals in four marine protected areas in Hong Kong through an integrative approach.

    Science.gov (United States)

    Xu, Elvis Genbo; Ho, Philip Wing-Lok; Tse, Zero; Ho, Shu-Leong; Leung, Kenneth Mei Yee

    2016-08-01

    Marine Protected Areas (MPAs) in Hong Kong are situated in close proximity to urbanized areas, and inevitably influenced by wastewater discharges and antifouling biocides leached from vessels. Hence, marine organisms inhabiting these MPAs are probably at risk. Here an integrative approach was employed to comprehensively assess ecological risks of eight priority endocrine disrupting chemicals (EDCs) in four MPAs of Hong Kong. We quantified their concentrations in environmental and biota samples collected in different seasons during 2013-2014, while mussels (Septifer virgatus) and semi-permeable membrane devices were deployed to determine the extent of accumulation of the EDCs. Extracts from the environmental samples were subjected to the yeast estrogen screen and a novel human cell-based catechol-O-methyltransferase ELISA to evaluate their estrogenic activities. The results indicated ecological risks of EDCs in the Cape d'Aguilar Marine Reserve. This integrated approach can effectively evaluate ecological risks of EDCs through linking their concentrations to biological effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Epigenetic regulation of non-lymphoid cells by Bisphenol-A, a model endocrine disrupter: Potential Implications for Immunoregulation

    Directory of Open Access Journals (Sweden)

    Deena eKhan

    2015-06-01

    Full Text Available Endocrine disrupting chemicals (EDC abound in the environment since many compounds are released from chemical, agricultural, pharmaceutical and consumer product industries. Many of the EDCs such as Bisphenol A (BPA have estrogenic activity or interfere with endogenous sex hormones. Experimental studies have reported a positive correlation of BPA with reproductive toxicity, altered growth and immune dysregulation. Although the precise relevance of these studies to the environmental levels is unclear, nevertheless, their potential health implications remain a concern. One possible mechanism by which BPA can alter genes is by regulating epigenetics, including microRNA, alteration of methylation and histone acetylation. There is now wealth of information on BPA effects on non-lymphoid cells and by comparison, paucity of data on effects of BPA on the immune system. In this mini review, we will highlight BPA regulation of estrogen receptor-mediated immune cell functions and in different inflammatory conditions. In addition, BPA-mediated epigenetic regulation of non-lymphoid cells is emphasized. We recognize that most of these studies are on non-lymphoid cells, and given that BPA also affects the immune system, it is plausible that BPA could have similar epigenetic regulation in immune cells. It is hoped that this review will stimulate studies in this area to ascertain whether or not BPA epigenetically regulates the cells of the immune system.

  6. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions

    Science.gov (United States)

    Barber, Larry B.; Loyo-Rosales, Jorge E.; Rice, Clifford P.; Minarik, Thomas A.; Oskouie, Ali K.

    2015-01-01

    Urban streams are an integral part of the municipal water cycle and provide a point of discharge for wastewater treatment plant (WWTP) effluents, allowing additional attenuation through dilution and transformation processes, as well as a conduit for transporting contaminants to downstream water supplies. Domestic and commercial activities dispose of wastes down-the-drain, resulting in wastewater containing complex chemical mixtures that are only partially removed during treatment. A key issue associated with WWTP effluent discharge into streams is the potential to cause endocrine disruption in fish. This study provides a long-term (1999-2009) evaluation of the occurrence of alkylphenolic endocrine disrupting chemicals (EDCs) and other contaminants discharged from WWTPs into streams in the Great Lakes and Upper Mississippi River Regions (Indiana, Illinois, Michigan, Minnesota, and Ohio). The Greater Metropolitan Chicago Area Waterways, Illinois, were evaluated to determine contaminant concentrations in the major WWTP effluents and receiving streams, and assess the behavior of EDCs from their sources within the sewer collection system, through the major treatment unit processes at a WWTP, to their persistence and transport in the receiving stream. Water samples were analyzed for alkylphenolic EDCs and other contaminants, including 4-nonylphenol (NP), 4-nonylphenolpolyethoxylates (NPEO), 4-nonylphenolethoxycarboxylic acids (NPEC), 4-tert-octylphenol (OP), 4-tert-octylphenolpolyethoxylates (OPEO), bisphenol A, triclosan, ethylenediaminetetraacetic acid (EDTA), and trace elements. All of the compounds were detected in all of the WWTP effluents, with EDTA and NPEC having the greatest concentrations. The compounds also were detected in the WWTP effluent dominated rivers. Multiple fish species were collected from river and lake sites and analyzed for NP, NPEO, NPEC, OP, and OPEO. Whole-body fish tissue analysis indicated widespread occurrence of alkylphenolic compounds

  7. Exposure assessment of prepubertal children to steroid endocrine disrupters 1. Analytical strategy for estrogens measurement in plasma at ultra-trace level

    DEFF Research Database (Denmark)

    Courant, Frédérique; Antignac, Jean-Philippe; Maume, Daniel

    2007-01-01

    Global concern has been raised in recent years over adverse effects that may result from exposure to chemicals that may interfere with the endocrine system. A specific question is related to low-dose effects and long-term exposure consequences, especially for critical populations (foetus, new born......, prepubertal children). In this context, we decided to focus our attention on steroid hormones as they are the most potent endocrine disrupters. Our general goal is to investigate whether the steroid intake through food may represent a risk for prepubertal children, from an endocrine disruption point of view...

  8. Parental occupational exposure to endocrine disrupting chemicals and male genital malformations: A study in the danish national birth cohort study

    Directory of Open Access Journals (Sweden)

    Kaerlev Linda

    2011-01-01

    Full Text Available Abstract Background Sex hormones closely regulate development of the male genital organs during fetal life. The hypothesis that xenobiotics may disrupt endogenous hormonal signalling has received considerable scientific attention, but human evidence is scarce. Objectives We analyse occurrence of hypospadias and cryptorchidism according to maternal and paternal occupational exposure to possible endocrine disrupting chemicals. Methods We conducted a follow-up study of 45,341 male singleton deliveries in the Danish National Birth Cohort during 1997-2009. Information on work during pregnancy was obtained by telephone interviews around gestational week 16. Parents' job titles were classified according to DISCO-88. A job exposure matrix for endocrine disrupting chemicals (EDCs was implemented to assess occupational exposures. The Medical Birth and National Hospital Register provided data on congenital anomalies diagnosed at birth or during follow-up, which ended in 2009. Crude and adjusted hazard ratios (HR were obtained from Cox regression models. Results Among all pregnancies, 6.3% were classified as possibly or probably exposed to EDCs. The most prevalent occupations conferring possible exposure were cleaners, laboratory technicians, hairdressers and agricultural workers (58% of all potentially exposed. The final cumulative incidence of cryptorchidism in boys was 2.2% (1002 cases, and of hypospadias 0.6% (262 cases. The occurrence of hypospadias increased when mothers were probably [HRa = 1.8 (95% CI 1.0-2.6] or possibly exposed to one or more EDCs [HRa = 2.6 (95% CI 1.8-3.4. Possible paternal exposure to heavy metals increased the risk of hypospadias [HRa 2.2 (95% CI: 1.0-3.4] and cryptorchidism [HRa 1.9 (95% CI: 1.1-2.7]. None of the exposure groups reached statistical significance. Conclusion The study provides some but limited evidence that occupational exposure to possible endocrine disrupting chemicals during pregnancy increases the risk of

  9. The role of retinoic acid receptors and their cognate ligands in reproduction in a context of triorganotin based endocrine disrupting chemicals

    Directory of Open Access Journals (Sweden)

    Macejova Dana

    2016-07-01

    Full Text Available Retinoic acid (RA, an active form of vitamin A, regulates the embryonic development, male and female reproduction and induces important effects on the cell development, proliferation, and differentiation. These effects are mediated by the retinoid (RAR and rexinoid nuclear receptors (RXR, which are considered to be a ligand-activated, DNA-binding, trans-acting, and transcription-modulating proteins, involved in a general molecular mechanism responsible for the transcriptional responses in target genes. Organotin compounds are typical environmental contaminants and suspected endocrine disrupting substances. They may affect processes of reproductive system in mammals, predominantly via nuclear receptor signaling pathways. Triorganotins, such as tributyltin chloride (TBTCl and triphenyltin chloride (TPTCl, are capable to bind to RXR molecules, and thus represent potent agonists of RXR subtypes of nuclear receptors not sharing any structural characteristics with endogenous ligands of nuclear receptors. Th is article summarizes selected effects of biologically active retinoids and rexinoids on both male and female reproduction and also deals with the effects of organotin compounds evoking endocrine disrupting actions in reproduction.

  10. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases.

    Science.gov (United States)

    Preciados, Mark; Yoo, Changwon; Roy, Deodutta

    2016-12-13

    these genes are involved with brain diseases, such as Alzheimer's Disease (AD), Parkinson's Disease, Huntington's Disease, Amyotrophic Lateral Sclerosis, Autism Spectrum Disorder, and Brain Neoplasms. For example, the search of enriched pathways showed that top ten E2 interacting genes in AD-APOE, APP, ATP5A1, CALM1, CASP3, GSK3B, IL1B, MAPT, PSEN2 and TNF-underlie the enrichment of the Kyoto Encyclopedia of Genes and Genomes (KEGG) AD pathway. With AD, the six E2-responsive genes are NRF1 target genes: APBB2, DPYSL2, EIF2S1, ENO1, MAPT, and PAXIP1. These genes are also responsive to the following EEDs: ethinyl estradiol (APBB2, DPYSL2, EIF2S1, ENO1, MAPT, and PAXIP1), BPA (APBB2, EIF2S1, ENO1, MAPT, and PAXIP1), dibutyl phthalate (DPYSL2, EIF2S1, and ENO1), diethylhexyl phthalate (DPYSL2 and MAPT). To validate findings from Comparative Toxicogenomics Database (CTD) curated data, we used Bayesian network (BN) analysis on microarray data of AD patients. We observed that both gender and NRF1 were associated with AD. The female NRF1 gene network is completely different from male human AD patients. AD-associated NRF1 target genes-APLP1, APP, GRIN1, GRIN2B, MAPT, PSEN2, PEN2, and IDE-are also regulated by E2. NRF1 regulates targets genes with diverse functions, including cell growth, apoptosis/autophagy, mitochondrial biogenesis, genomic instability, neurogenesis, neuroplasticity, synaptogenesis, and senescence. By activating or repressing the genes involved in cell proliferation, growth suppression, DNA damage/repair, apoptosis/autophagy, angiogenesis, estrogen signaling, neurogenesis, synaptogenesis, and senescence, and inducing a wide range of DNA damage, genomic instability and DNA methylation and transcriptional repression, NRF1 may act as a major regulator of EEDs-induced brain health deficits. In summary, estrogenic endocrine disrupting chemicals-modified genes in brain health deficits are part of both estrogen and NRF1 signaling pathways. Our findings suggest that in

  11. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases

    Directory of Open Access Journals (Sweden)

    Mark Preciados

    2016-12-01

    NRF1. Some of these genes are involved with brain diseases, such as Alzheimer’s Disease (AD, Parkinson’s Disease, Huntington’s Disease, Amyotrophic Lateral Sclerosis, Autism Spectrum Disorder, and Brain Neoplasms. For example, the search of enriched pathways showed that top ten E2 interacting genes in AD—APOE, APP, ATP5A1, CALM1, CASP3, GSK3B, IL1B, MAPT, PSEN2 and TNF—underlie the enrichment of the Kyoto Encyclopedia of Genes and Genomes (KEGG AD pathway. With AD, the six E2-responsive genes are NRF1 target genes: APBB2, DPYSL2, EIF2S1, ENO1, MAPT, and PAXIP1. These genes are also responsive to the following EEDs: ethinyl estradiol (APBB2, DPYSL2, EIF2S1, ENO1, MAPT, and PAXIP1, BPA (APBB2, EIF2S1, ENO1, MAPT, and PAXIP1, dibutyl phthalate (DPYSL2, EIF2S1, and ENO1, diethylhexyl phthalate (DPYSL2 and MAPT. To validate findings from Comparative Toxicogenomics Database (CTD curated data, we used Bayesian network (BN analysis on microarray data of AD patients. We observed that both gender and NRF1 were associated with AD. The female NRF1 gene network is completely different from male human AD patients. AD-associated NRF1 target genes—APLP1, APP, GRIN1, GRIN2B, MAPT, PSEN2, PEN2, and IDE—are also regulated by E2. NRF1 regulates targets genes with diverse functions, including cell growth, apoptosis/autophagy, mitochondrial biogenesis, genomic instability, neurogenesis, neuroplasticity, synaptogenesis, and senescence. By activating or repressing the genes involved in cell proliferation, growth suppression, DNA damage/repair, apoptosis/autophagy, angiogenesis, estrogen signaling, neurogenesis, synaptogenesis, and senescence, and inducing a wide range of DNA damage, genomic instability and DNA methylation and transcriptional repression, NRF1 may act as a major regulator of EEDs-induced brain health deficits. In summary, estrogenic endocrine disrupting chemicals-modified genes in brain health deficits are part of both estrogen and NRF1 signaling pathways. Our

  12. The Role of Epigenetics in the Latent Effects of Early Life Exposure to Obesogenic Endocrine Disrupting Chemicals.

    Science.gov (United States)

    Stel, Jente; Legler, Juliette

    2015-10-01

    Recent research supports a role for exposure to endocrine-disrupting chemicals (EDCs) in the global obesity epidemic. Obesogenic EDCs have the potential to inappropriately stimulate adipogenesis and fat storage, influence metabolism and energy balance and increase susceptibility to obesity. Developmental exposure to obesogenic EDCs is proposed to interfere with epigenetic programming of gene regulation, partly by activation of nuclear receptors, thereby influencing the risk of obesity later in life. The goal of this minireview is to briefly describe the epigenetic mechanisms underlying developmental plasticity and to evaluate the evidence of a mechanistic link between altered epigenetic gene regulation by early life EDC exposure and latent onset of obesity. We summarize the results of recent in vitro, in vivo, and transgenerational studies, which clearly show that the obesogenic effects of EDCs such as tributyltin, brominated diphenyl ether 47, and polycyclic aromatic hydrocarbons are mediated by the activation and associated altered methylation of peroxisome proliferator-activated receptor-γ, the master regulator of adipogenesis, or its target genes. Importantly, studies are emerging that assess the effects of EDCs on the interplay between DNA methylation and histone modifications in altered chromatin structure. These types of studies coupled with genome-wide rather than gene-specific analyses are needed to improve mechanistic understanding of epigenetic changes by EDC exposure. Current advances in the field of epigenomics have led to the first potential epigenetic markers for obesity that can be detected at birth, providing an important basis to determine the effects of developmental exposure to obesogenic EDCs in humans.

  13. Effects of carbon-based nanoparticles (CNPs) on the fate of endocrine disrupting chemicals (EDCs) in different agricultural soils.

    Science.gov (United States)

    Stumpe, Britta; Wolski, Sabrina; Marschner, Bernd

    2013-04-01

    Nanotechnology is a major innovative scientific and economic growth area. To date there is a lack about possible adverse effects that may be associated with manufactured nanomaterial in terrestrial environments. Since it is known that on the one hand carbon-based nanoparticles (CNPs) and endocrine disrupting chemicals (EDCs) strongly interact in wastewater and that on the other hand CNPs and EDCs are released together via wastewater irrigation to agricultural soils, knowledge of CNP effects on the EDC fate in the soil environment is needed for further risk assessments. The overall goal of this project is to gain a better understanding of interaction of CNPs with EDCs within the soil system. Three different soil samples were applied with different CNPs, EDCs and CNP-EDC complexes and incubated over a period of 6 weeks. The EDC mineralization as well as their uptake by soil microorganisms was monitored to describe impacts of the nanomaterial on the EDC fate. As quality control for the biological soil activity soil respiration, enzyme activities and the soil microbial biomass were monitored in all incubated soil samples. Clearly, EDCs bound in CNP complexes showed a decrease in mineralization. While the free EDCs showed a total mineralization of 34 to 45 %, the nano complexed EDCs were only mineralized to 12 to 15 %. Since no effects of the nanomaterial on the biological soil activity were observed, we conclude that the reduced EDC mineralization is directly linked to their interaction with the CNPs. Since additionally the EDC adsorption to CNPs reduced the EDC uptake by soil microorganism, we assume that CNPs generally form more or less recalcitrant aggregates which likely protect the associated EDCs from degradation.

  14. Determination of selected endocrine disrupting compounds in human fetal and newborn tissues by GC-MS.

    Science.gov (United States)

    Cappiello, Achille; Famiglini, Giorgio; Palma, Pierangela; Termopoli, Veronica; Lavezzi, Anna Maria; Matturri, Luigi

    2014-05-01

    Endocrine disrupting compounds (EDCs) include organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), carbamate pesticides, and plasticizers, such as bisphenol A (BPA). They persist in the environment because of their degradation resistance and bioaccumulate in the body tissues of humans and other mammals. Many studies are focused on the possible correlation between in utero exposure to EDCs and adverse health hazards in fetuses and newborns. In the last decade, environmental pollution has been considered a possible trigger for Sudden Infant Death Syndrome (SIDS) and Sudden Intrauterine Unexplained Death Syndrome (SIUDS), the most important death-causing syndromes in fetuses and newborns in developed countries. In this work, a rapid and sensitive analytical method was developed to determine the level of OCPs and OPPs, carbamates, and phenols in human fetal and newborn tissues (liver and brain) and to unveil the possible presence of non-targeted compounds. The target analytes where selected on the basis of their documented presence in the Trentino-Alto Adige region, an intensive agricultural area in northern Italy. A liquid-solid extraction procedure was applied on human and animal tissues and the extracts, after a solid phase extraction (SPE) clean-up procedure, were analyzed by gas chromatography coupled to a quadrupole mass spectrometric detector (GC-qMS). A GC-TOFMS (time-of-flight) instrument, because of its higher full-scan sensitivity, was used for a parallel detection of non-targeted compounds. Method validation included accuracy, precision, detection, and quantification limits (LODs; LOQs), and linearity response using swine liver and lamb brain spiked at different concentrations in the range of 0.4-8000.0 ng/g. The method gave good repeatability and extraction efficiency. Method LOQs ranged from 0.4-4.0 ng/g in the selected matrices. Good linearity was obtained over four orders of magnitude starting from LOQs. Isotopically labeled internal

  15. Influence of Endocrine Activity on Larval Development in Busseola ...

    African Journals Online (AJOL)

    The present study investigated the role of juvenile and moulting hormones in development of Busseola fusca. Morphometric measurements were used to distinguish differences in endocrine activity between non-diapause and diapause development with regard to the prothoracic glands and the corpora allata. The corpora ...

  16. The brominated flame retardants TBP-AE and TBP-DBPE antagonize the chicken androgen receptor and act as potential endocrine disrupters in chicken LMH cells.

    Science.gov (United States)

    Asnake, Solomon; Pradhan, Ajay; Kharlyngdoh, Joubert Banjop; Modig, Carina; Olsson, Per-Erik

    2015-12-01

    Increased exposure of birds to endocrine disrupting compounds has resulted in developmental and reproductive dysfunctions. We have recently identified the flame retardants, allyl-2,4,6-tribromophenyl ether (TBP-AE), 2-3-dibromopropyl-2,4,6-tribromophenyl ether (TBP-DBPE) and the TBP-DBPE metabolite 2-bromoallyl-2,4,6-tribromophenyl ether (TBP-BAE) as antagonists to both the human androgen receptor (AR) and the zebrafish AR. In the present study, we aimed at determining whether these compounds also interact with the chicken AR. In silico modeling studies showed that TBP-AE, TBP-BAE and TBP-DBPE were able to dock into to the chicken AR ligand-binding pocket. In vitro transfection assays revealed that all three brominated compounds acted as chicken AR antagonists, inhibiting testosterone induced AR activation. In addition, qRT-PCR studies confirmed that they act as AR antagonists and demonstrated that they also alter gene expression patterns of apoptotic, anti-apoptotic, drug metabolizing and amino acid transporter genes. These studies, using chicken LMH cells, suggest that TBP-AE, TBP-BAE and TBP-DBPE are potential endocrine disrupters in chicken. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Pesticide- and sex steroid analogue-induced endocrine disruption differentially targets hypothalamo-hypophyseal-gonadal system during gametogenesis in teleosts - A review.

    Science.gov (United States)

    Senthilkumaran, Balasubramanian

    2015-08-01

    Pesticide-induced endocrine disruption often mimics sex steroidal action resulting in physiological functional disarray of hypothalamo-hypophyseal-gonadal (HHG) system at multiple levels. Among various group of pesticides, organochlorine and organophosphate family of pesticides are known to impart sex steroidal mimicking activity with slightly higher resemblance to estrogens when compared to androgenic action. This review will highlight the effects of organochlorine (for e.g. endosulfan) and organophosphate (for e.g. malathion) pesticides in comparison with sex-steroid analogue-induced changes on HHG axis during gametogenesis in few teleost fish models. Interestingly, the effects of these compounds have produced differential effects in juveniles and adults which also vary based on exposure dosage and duration. Further, the treatments had caused at times sexually dimorphic effects indicating that the action of these compounds bring out serious implications in sexual development. A comprehensive overview has been provided by considering all these aspects to recognize the adverse impacts of pesticide-induced endocrine disruption with special reference to endosulfan and malathion as those had been applied even today or used before for controlling agricultural pests in several Asian countries including India. This review also compares the effects of sex-steroid analogues where in sex reversal to reproductive dysfunction is evident, which may imply the extent of sexual plasticity in teleosts compared to other vertebrates. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. A consolidated method for screening the endocrine activity of drinking water.

    Science.gov (United States)

    Chevolleau, Sylvie; Debrauwer, Laurent; Stroheker, Thomas; Viglino, Liza; Mourahib, Issam; Meireles, Maria-Helena; Grimaldi, Marina; Balaguer, Patrick; di Gioia, Lodovico

    2016-12-15

    Endocrine activity of drinking water is a matter of growing interest for scientists as well as health authorities. A concentration technique for endocrine activity screening was developed, optimized, and transposed from 200mL to 10L water samples. To avoid any contamination during concentration, the method was developed using exclusively glass, Teflon and stainless steel materials. Any potential losses were tracked using three model radiolabeled molecules, namely BPA, DEHP and 4n-NP. The final method allowed 10L water samples to be concentrated 5000-fold, with good recovery and repeatability. After validation, by concentrating spiked and non-spiked 10L samples of EVIAN natural mineral water, 14 different drinking water samples were concentrated and screened for endocrine disrupting activity using bioluminescent assays. Samples consisting of bottled water, conditioned in various materials (glass, PET) and subjected to different storage conditions, had no hormone-like activities whereas estrogenic activity was found in the filtered tap water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effects of the endocrine-disrupting chemical DDT on self-renewal and differentiation of human mesenchymal stem cells.

    Science.gov (United States)

    Strong, Amy L; Shi, Zhenzhen; Strong, Michael J; Miller, David F B; Rusch, Douglas B; Buechlein, Aaron M; Flemington, Erik K; McLachlan, John A; Nephew, Kenneth P; Burow, Matthew E; Bunnell, Bruce A

    2015-01-01

    Although the global use of the endocrine-disrupting chemical DDT has decreased, its persistence in the environment has resulted in continued human exposure. Accumulating evidence suggests that DDT exposure has long-term adverse effects on development, yet the impact on growth and differentiation of adult stem cells remains unclear. Human mesenchymal stem cells (MSCs) exposed to DDT were used to evaluate the impact on stem cell biology. We assessed DDT-treated MSCs for self-renewal, proliferation, and differentiation potential. Whole genome RNA sequencing was performed to assess gene expression in DDT-treated MSCs. MSCs exposed to DDT formed fewer colonies, suggesting a reduction in self-renewal potential. DDT enhanced both adipogenic and osteogenic differentiation, which was confirmed by increased mRNA expression of glucose transporter type 4 (GLUT4), lipoprotein lipase (LpL), peroxisome proliferator-activated receptor gamma (PPARγ), leptin, osteonectin, core binding factor 1 (CBFA1), and FBJ murine osteosarcoma viral oncogene homolog (c-Fos). Expression of factors in DDT-treated cells was similar to that in estrogen-treated MSCs, suggesting that DDT may function via the estrogen receptor (ER)-mediated pathway. The coadministration of ICI 182,780 blocked the effects of DDT. RNA sequencing revealed 121 genes and noncoding RNAs to be differentially expressed in DDT-treated MSCs compared with controls cells. Human MSCs provide a powerful biological system to investigate and identify the molecular mechanisms underlying the effects of environmental agents on stem cells and human health. MSCs exposed to DDT demonstrated profound alterations in self-renewal, proliferation, differentiation, and gene expression, which may partially explain the homeostatic imbalance and increased cancer incidence among those exposed to long-term EDCs.

  20. Uterotrophic and Hershberger assays for endocrine disruption properties of plastic food contact materials polypropylene (PP) and polyethylene terephthalate (PET).

    Science.gov (United States)

    Chung, Bu Young; Kyung, Minji; Lim, Seong Kwang; Choi, Seul Min; Lim, Duck Soo; Kwack, Seung Jun; Kim, Hyung Sik; Lee, Byung-Mu

    2013-01-01

    Plasticizers or plastic materials such as phthalates, bisphenol-A (BPA), and styrene are widely used in the plastic industry and are suspected endocrine-disrupting chemicals (EDC). Although plastic materials such as polypropylene (PP) and polyethylene terephthalate (PET) are not EDC and are considered to be safe, their potential properties as EDC have not been fully investigated. In this study, plastic samples eluted from plastic food containers (PP or PET) were investigated in Sprague-Dawley rats using Hershberger and uterotrophic assays. In the Hershberger assay, 6-wk-old castrated male rats were orally treated for 10 consecutive days with plastic effluent at 3 different doses (5 ml/kg) or vehicle control (corn oil, 1 ml/100 g) to determine the presence of both anti-androgenic and androgenic effects. Testosterone (0.4 mg/ml/kg) was subcutaneously administered for androgenic evaluation as a positive control, whereas testosterone (0.4 mg/ml/kg) and flutamide (3 mg/kg/day) were administered to a positive control group for anti-androgenic evaluation. The presence of any anti-androgenic or androgenic activities of plastic effluent was not detected. Sex accessory tissues such as ventral prostate or seminal vesicle showed no significant differences in weight between treated and control groups. For the uterotrophic assay, immature female rats were treated with plastic effluent at three different doses (5 ml/kg), with vehicle control (corn oil, 1 ml/100 g), or with ethinyl estradiol (3 μg/kg/d) for 3 d. There were no significant differences between test and control groups in vagina or uterine weight. Data suggest that effluents from plastic food containers do not appear to produce significant adverse effects according to Hershberger and uterotrophic assays.

  1. Endocrine-disrupting effects and reproductive toxicity of low dose MCLR on male frogs (Rana nigromaculata) in vivo.

    Science.gov (United States)

    Jia, Xiuying; Cai, Chenchen; Wang, Jia; Gao, Nana; Zhang, Hangjun

    2014-10-01

    Toxic cyanobacterial blooms are potential global threats to aquatic ecosystems and human health. The World Health Organization has set a provisional guideline limit of 1 μg/L microcystin-LR (MCLR) in freshwater. However, MCLR concentrations in several water bodies have exceeded this level. Despite this recommended human safety standard, MCLR-induced endocrine-disrupting effects and reproductive toxicity on male frog (Rana nigromaculata) were demonstrated in this study. Results showed that sperm motility and sperm count were significantly and negatively correlated with exposure time and concentration. By contrast, abnormal sperm rate was positively correlated with both parameters. Ultrastructural observation results revealed abnormal sperm morphologies, vacuoles in spermatogenic cells, cell dispersion, incomplete cell structures, and deformed nucleoli. These results indicated that MCLR could induce toxic effects on the reproductive system of frogs, significantly decrease testosterone content, and rapidly increase estradiol content. Prolonged exposure and increased concentration enhanced the relative expression levels of P450 aromatase and steroidogenic factor 1; thus, endocrine function in frogs was disrupted. This study is the first to demonstrate in vivo MCLR toxicity in the reproductive system of male R. nigromaculata. This study provided a scientific basis of the global decline in amphibian populations. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Detection of endocrine active substances in the aquatic environment in southern Taiwan using bioassays and LC-MS/MS.

    Science.gov (United States)

    Chen, Kuang-Yu; Chou, Pei-Hsin

    2016-06-01

    Endocrine active substances, including naturally occurring hormones and various synthetic chemicals have received much concern owing to their endocrine disrupting potencies. It is essential to monitor their environmental occurrence since these compounds may pose potential threats to biota and human health. In this study, yeast-based reporter assays were carried out to investigate the presence of (anti-)androgenic, (anti-)estrogenic, and (anti-)thyroid compounds in the aquatic environment in southern Taiwan. Liquid chromatography tandem mass spectrometry (LC-MS/MS) was also used to measure the environmental concentrations of selected endocrine active substances for assessing potential ecological risks and characterizing contributions to the endocrine disrupting activities. Bioassay results showed that anti-androgenic (ND-7489 μg L(-1) flutamide equivalent), estrogenic (ND-347 ng L(-1) 17β-estradiol equivalent), and anti-thyroid activities were detected in the dissolved and particulate phases of river water samples, while anti-estrogenic activities (ND-10 μg L(-1) 4-hydroxytamoxifen equivalent) were less often found. LC-MS/MS analysis revealed that anti-androgenic and estrogenic contaminants, such as bisphenol A, triclosan, and estrone were frequently detected in Taiwanese rivers. In addition, their risk quotient values were often higher than 1, suggesting that they may pose an ecological risk to the aquatic biota. Further identification of unknown anti-androgenic and estrogenic contaminants in Taiwanese rivers may be necessary to protect Taiwan's aquatic environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Exposure to endocrine-disrupting chemicals in the USA: a population-based disease burden and cost analysis.

    Science.gov (United States)

    Attina, Teresa M; Hauser, Russ; Sathyanarayana, Sheela; Hunt, Patricia A; Bourguignon, Jean-Pierre; Myers, John Peterson; DiGangi, Joseph; Zoeller, R Thomas; Trasande, Leonardo

    2016-12-01

    Endocrine-disrupting chemicals (EDCs) contribute to disease and dysfunction and incur high associated costs (>1% of the gross domestic product [GDP] in the European Union). Exposure to EDCs varies widely between the USA and Europe because of differences in regulations and, therefore, we aimed to quantify disease burdens and related economic costs to allow comparison. We used existing models for assessing epidemiological and toxicological studies to reach consensus on probabilities of causation for 15 exposure-response relations between substances and disorders. We used Monte Carlo methods to produce realistic probability ranges for costs across the exposure-response relation, taking into account uncertainties. Estimates were made based on population and costs in the USA in 2010. Costs for the European Union were converted to US$ (€1=$1·33). The disease costs of EDCs were much higher in the USA than in Europe ($340 billion [2·33% of GDP] vs $217 billion [1·28%]). The difference was driven mainly by intelligence quotient (IQ) points loss and intellectual disability due to polybrominated diphenyl ethers (11 million IQ points lost and 43 000 cases costing $266 billion in the USA vs 873 000 IQ points lost and 3290 cases costing $12·6 billion in the European Union). Accounting for probability of causation, in the European Union, organophosphate pesticides were the largest contributor to costs associated with EDC exposure ($121 billion), whereas in the USA costs due to pesticides were much lower ($42 billion). EDC exposure in the USA contributes to disease and dysfunction, with annual costs taking up more than 2% of the GDP. Differences from the European Union suggest the need for improved screening for chemical disruption to endocrine systems and proactive prevention. Endocrine Society, Ralph S French Charitable Foundation, and Broad Reach Foundation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effects of Exposure to the Endocrine-Disrupting Chemical Bisphenol A During Critical Windows of Murine Pituitary Development.

    Science.gov (United States)

    Eckstrum, Kirsten S; Edwards, Whitney; Banerjee, Annesha; Wang, Wei; Flaws, Jodi A; Katzenellenbogen, John A; Kim, Sung Hoon; Raetzman, Lori T

    2018-01-01

    Critical windows of development are often more sensitive to endocrine disruption. The murine pituitary gland has two critical windows of development: embryonic gland establishment and neonatal hormone cell expansion. During embryonic development, one environmentally ubiquitous endocrine-disrupting chemical, bisphenol A (BPA), has been shown to alter pituitary development by increasing proliferation and gonadotrope number in females but not males. However, the effects of exposure during the neonatal period have not been examined. Therefore, we dosed pups from postnatal day (PND)0 to PND7 with 0.05, 0.5, and 50 μg/kg/d BPA, environmentally relevant doses, or 50 μg/kg/d estradiol (E2). Mice were collected after dosing at PND7 and at 5 weeks. Dosing mice neonatally with BPA caused sex-specific gene expression changes distinct from those observed with embryonic exposure. At PND7, pituitary Pit1 messenger RNA (mRNA) expression was decreased with BPA 0.05 and 0.5 μg/kg/d in males only. Expression of Pomc mRNA was decreased at 0.5 μg/kg/d BPA in males and at 0.5 and 50 μg/kg/d BPA in females. Similarly, E2 decreased Pomc mRNA in both males and females. However, no noticeable corresponding changes were found in protein expression. Both E2 and BPA suppressed Pomc mRNA in pituitary organ cultures; this repression appeared to be mediated by estrogen receptor-α and estrogen receptor-β in females and G protein-coupled estrogen receptor in males, as determined by estrogen receptor subtype-selective agonists. These data demonstrated that BPA exposure during neonatal pituitary development has unique sex-specific effects on gene expression and that Pomc repression in males and females can occur through different mechanisms. Copyright © 2018 Endocrine Society.

  5. A novel ICK mutation causes ciliary disruption and lethal endocrine-cerebro-osteodysplasia syndrome

    NARCIS (Netherlands)

    Oud, M.M.; Bonnard, C.; Mans, D.A.; Altunoglu, U.; Tohari, S.; Ng, A.Y.; Eskin, A.; Lee, H.; Rupar, C.A.; Wagenaar, N.P. de; Wu, K.M.; Lahiry, P.; Pazour, G.J.; Nelson, S.F.; Hegele, R.A.; Roepman, R.; Kayserili, H.; Venkatesh, B.; Siu, V.M.; Reversade, B.; Arts, H.H.

    2016-01-01

    BACKGROUND: Endocrine-cerebro-osteodysplasia (ECO) syndrome [MIM:612651] caused by a recessive mutation (p.R272Q) in Intestinal cell kinase (ICK) shows significant clinical overlap with ciliary disorders. Similarities are strongest between ECO syndrome, the Majewski and Mohr-Majewski short-rib

  6. In Vitro Endocrine Disruption Screening of 3-nitro-1,2,4-triazol-5-one (NTO)

    Science.gov (United States)

    2012-09-25

    endocrine glands include the hypothalamus, pituitary, adrenal, ovaries, testes, thyroid, parathyroid , and pancreas. In response to a specific...mibolerone) to androgen and progesterone receptors in human and animal tissues. Endocrinology 118(4): 1327-33. USEPA. 2011. Weight-of-Evidence

  7. Disrupting Educational Inequalities through Youth Digital Activism

    Science.gov (United States)

    Stornaiuolo, Amy; Thomas, Ebony Elizabeth

    2017-01-01

    This article reviews scholarship on youth and young adult activism in digital spaces, as young users of participatory media sites are engaging in political, civic, social, or cultural action and advocacy online to create social change. The authors argue that youth's digital activism serves as a central mechanism to disrupt inequality, and that…

  8. Evaluation of Endocrine Disrupting Effects of Nitrate after In Utero Exposure in Rats and of Nitrate and Nitrite in the H295R and T-Screen Assay

    DEFF Research Database (Denmark)

    Hansen, Pernille Reimer; Taxvig, Camilla; Christiansen, Sofie

    2009-01-01

    Animal studies have shown that nitrate acts as an endocrine disrupter affecting the androgen production in adult males. This raises a concern for more severe endocrine disrupting effects after exposure during the sensitive period of prenatal male sexual development. As there are no existing studies...... of effects of nitrate on male sexual development, the aim of the study was to examine how in utero exposure to nitrate would affect male rat fetuses. Pregnant dams were dosed with nitrate in the drinking water from gestational day (GD) 7 to GD21 at the following dose levels 17.5, 50, 150, 450, and 900 mg...... be relevant to sufficiently address the concerns based on the indications for endocrine disrupting effects in adult animals....

  9. In vitro bioassay investigations of the endocrine disrupting potential of steviol glycosides and their metabolite steviol, components of the natural sweetener Stevia

    DEFF Research Database (Denmark)

    Shannon, Maeve; Rehfeld, Anders; Frizzell, Caroline

    2016-01-01

    a steroidal structure and therefore may have the potential to act as an endocrine disruptor in the body. Reporter gene assays (RGAs), H295R steroidogenesis assay and Ca(2+) fluorimetry based assays using human sperm cells have been used to assess the endocrine disrupting potential of two steviol glycosides...... of sperm, causing a rapid influx of Ca(2+). The response was fully inhibited using a specific CatSper inhibitor. These findings highlight the potential for steviol to act as a potential endocrine disruptor....

  10. Occurrence of endocrine disruption chemicals (Bisphenol A, 4-nonylphenol, and Octylphenol) in muscle and liver of, Cyprinus Carpino Common, from Anzali wetland, Iran.

    Science.gov (United States)

    Mortazavi, Samar; Bakhtiari, Alireza Riyahi; Sari, Abbas Esmaili; Bahramifar, Nader; Rahbarizadeh, Fatemeh

    2013-05-01

    Phenolic endocrine disrupting chemicals are environmental pollutants with xenostrogen effects in wildlife and humans. The aim of this study was to determine 4-nonylphenol, Octylphenol, and Bisphenol A residues in various tissues of carp fish samples from Anzali wetland, Iran. 4-NP, OP, and BPA were detected with GC-MS in the muscle of fish from sampling location with maximal concentrations of 8.17, 9.67 and 5.87 μg/gdw, respectively. The highest concentrations of these compounds were found in the liver by HPLC. Since many endocrine disrupting substances were significantly lipophilic, distributing of these compounds into fish tissue has been correlated with lipid content.

  11. Science and policy on endocrine disrupters must not be mixed: a reply to a “common sense” intervention by toxicology journal editors

    DEFF Research Database (Denmark)

    Bergman, Åke; Andersson, Anna-Maria; Becher, Georg

    2013-01-01

    The “common sense” intervention by toxicology journal editors regarding proposed European Union endocrine disrupter regulations ignores scientific evidence and well-established principles of chemical risk assessment. In this commentary, endocrine disrupter experts express their concerns about...... a recently published, and is in our considered opinion inaccurate and factually incorrect, editorial that has appeared in several journals in toxicology. Some of the shortcomings of the editorial are discussed in detail. We call for a better founded scientific debate which may help to overcome a polarisation...

  12. Analytical Methodologies for the Determination of Endocrine Disrupting Compounds in Biological and Environmental Samples

    Directory of Open Access Journals (Sweden)

    Zoraida Sosa-Ferrera

    2013-01-01

    Full Text Available Endocrine-disruptor compounds (EDCs can mimic natural hormones and produce adverse effects in the endocrine functions by interacting with estrogen receptors. EDCs include both natural and synthetic chemicals, such as hormones, personal care products, surfactants, and flame retardants, among others. EDCs are characterised by their ubiquitous presence at trace-level concentrations and their wide diversity. Since the discovery of the adverse effects of these pollutants on wildlife and human health, analytical methods have been developed for their qualitative and quantitative determination. In particular, mass-based analytical methods show excellent sensitivity and precision for their quantification. This paper reviews recently published analytical methodologies for the sample preparation and for the determination of these compounds in different environmental and biological matrices by liquid chromatography coupled with mass spectrometry. The various sample preparation techniques are compared and discussed. In addition, recent developments and advances in this field are presented.

  13. Mechanisms Mediating Environmental Chemical-Induced Endocrine Disruption in the Adrenal Gland

    OpenAIRE

    Daniel B Martinez-Arguelles; Vassilios ePapadopoulos

    2015-01-01

    Humans are continuously exposed to hundreds of man-made chemicals that pollute the environment in addition to multiple therapeutic drug treatments administered throughout life. Some of these chemicals, known as endocrine disruptors (EDs), mimic endogenous signals, thereby altering gene expression, influencing development, and promoting disease. Although EDs are eventually removed from the market or replaced with safer alternatives, new evidence suggests that early-life exposure leaves a finge...

  14. Endocrine Disrupting Chemicals and Endometrial Cancer: An Overview of Recent Laboratory Evidence and Epidemiological Studies

    Science.gov (United States)

    Mallozzi, Maddalena; Leone, Chiara; Manurita, Francesca; Bellati, Filippo; Caserta, Donatella

    2017-01-01

    Background: Although exposure to endocrine disruptor compounds (EDCs) has been suggested as a contributing factor to a range of women’s health disorders including infertility, polycystic ovaries and the early onset of puberty, considerable challenges remain in attributing cause and effect on gynaecological cancer. Until recently, there were relatively few epidemiological studies examining the relationship between EDCs and endometrial cancer, however, in the last years the number of these studies has increased. Methods: A systematic MEDLINE (PubMed) search was performed and relevant articles published in the last 23 years (from 1992 to 2016) were selected. Results: Human studies and animal experiments are confirming a carcinogenic effect due to the EDC exposure and its carcinogenesis process result to be complex, multifactorial and long standing, thus, it is extremely difficult to obtain the epidemiological proof of a carcinogenic effect of EDCs for the high number of confusing factors. Conclusions: The carcinogenic effects of endocrine disruptors are plausible, although additional studies are needed to clarify their mechanisms and responsible entities. Neverthless, to reduce endocrine disruptors (ED) exposure is mandatory to implement necessary measures to limit exposure, particularly during those periods of life most vulnerable to the impact of oncogenic environmental causes, such as embryonic period and puberty. PMID:28327540

  15. Biomarker Genes for Detecting Estrogenic Activity of Endocrine Disruptors via Estrogen Receptors

    Directory of Open Access Journals (Sweden)

    Hyun Yang

    2012-02-01

    Full Text Available Endocrine disruptors (EDs are compounds used in various industrial products, drugs, and cosmetics. They can be found in the environment and disturb the endocrine and reproductive systems, resulting in adverse effects to humans and wildlife such as birth defects and developmental disorders. Since several EDs have a structure similar to that of endogenous steroid hormones such as estrogens, they intend to have an affinity for steroid hormone receptors and alter hormone-mediated metabolism by binding to these receptors. EDs are therefore a global concern and assays should be developed to efficiently determine whether these compounds are detrimental to biological systems. Diverse experimental methods may help determine the endocrine disrupting potential of EDs and evaluate the adverse effects of a single and/or combination of these reagents. Currently, biomarkers have been employed to objectively measure EDs potency and understand the underlying mechanisms. Further studies are required to develop ideal screening methods and biomarkers to determine EDs potency at environmentally relevant concentrations. In this review, we describe the biomarkers for estrogenicity of EDs identified both in vitro and in vivo, and introduce a biomarker, cabindin-D9k (CaBP-9k, that may be used to assess estrogenic activity of EDs.

  16. Effects on Biotransformation, Oxidative Stress, and Endocrine Disruption in Rainbow Trout (Oncorhynchus mykiss) Exposed to Hydraulic Fracturing Flowback and Produced Water.

    Science.gov (United States)

    He, Yuhe; Folkerts, Erik J; Zhang, Yifeng; Martin, Jonathan W; Alessi, Daniel S; Goss, Greg G

    2017-01-17

    The effects of hydraulic fracturing (HF) flowback and produced water (HF-FPW), a complex saline mixture of injected HF fluids and deep formation water that return to the surface, was examined in rainbow trout (Oncorhynchus mykiss). Exposure to HF-FPWs resulted in significant induction of ethoxyresorufin-O-deethylase (EROD) activity in both liver and gill tissues. Increased lipid peroxidation via oxidative stress was also detected by thiobarbituric acid reactive substances (TBARS) assay. The mRNA expressions of a battery of genes related to biotransformation, oxidative stress, and endocrine disruption were also measured using quantitative real-time polymerase chain reaction (Q-RT-PCR). The increased expression of cyp1a (2.49 ± 0.28-fold), udpgt (2.01 ± 0.31-fold), sod (1.67 ± 0.09-fold), and gpx (1.58 ± 0.10-fold) in raw sample exposure group (7.5%) indicated elevated metabolic enzyme activity, likely through the aryl hydrocarbon receptor pathway, and generation of reactive oxygen species. In addition, the elevated vtg and era2 expression demonstrated endocrine disrupting potential exerted by HF-FPW in rainbow trout. The overall results suggested HF-FPW could cause significant adverse effects on fish, and the organic contents might play the major role in its toxicity. Future studies are needed to help fully determine the toxic mechanism(s) of HF-FPW on freshwater fish, and aid in establishing monitoring, treatment, and remediation protocols for HF-FPW.

  17. Association between glycodelin and aryl hydrocarbon receptor in Iranian breast cancer patients: impact of environmental endocrine disrupting chemicals.

    Science.gov (United States)

    Bidgoli, Sepideh Arbabi; Korani, Mitra; Bozorgi, Niloofar; Zavarhei, Mansour Djamali; Ziarati, Parisa; Akbarzadeh, Saeed

    2011-01-01

    Breast cancer affects Iranian women one decade younger than their counterparts in other countries and the underlying risk factors have remained controversial. The aryl hydrocarbon receptor (AhR) mediates the effects of many environmental endocrine disruptors and contributes to the many other genes and Gd is an endocrine-regulated glycoprotein which may induce by AhR ligands in endometrium. This study has aimed to compare the interactions between Gd and AhR and other fundamental genes (p53, K-Ras, ER, PgR, AR) between pre and post menopausal Iranian breast cancer patients. To conduct immunohistochemical studies with appropriate monoclonal antibodies, 25 premenopausal invasive ductal carcinomas and 29 postmenopausal invasive ductal carcinomas were selected retrospectively in 2008-2010 from the pathology department of Imam Khomeini hospital complex of Tehran. Higher levels of AhR in epithelial cells of premenopausal patients and breast fibroadenoma emphasized the susceptibility of these cells to environmental induced tumors. Current study demonstrated a significant association between tumoral levels of Gd and AhR (p=0.002) in breast cancers which confirms the preliminary hypothesis about the role of TCDD exposure on Gd biosynthesis and secretion in TCDD-treated endometrial epithelial cells. In summary this study showed the dual prognostic role of Gd especially in premenopausal breast cancer which could be induced by AhR overexpression. Further studies are necessary to find the direct role of breast carcinogens as well as endocrine disrupting chemicals on the differential levels of Gd in breast tumors.

  18. Enantioselective endocrine disrupting effects of omeprazole studied in the H295R cell assay and by molecular modeling

    DEFF Research Database (Denmark)

    Sørensen, Amalie Møller; Hansen, Cecilie Hurup; Bonomo, Silvia

    2016-01-01

    Enantiomers possess different pharmacokinetic and pharmacodynamic properties and this may not only influence the therapeutic effect of a drug but also its toxicological effects. In the present work we investigated the potential enantioselective endocrine disrupting effects of omeprazole (OME......) and its two enantiomers on the human steroidogenesis using the H295R cell line. Differences in production of 16 steroid hormones were analyzed using LC-MS/MS. Additionally, to evaluate the differences in binding modes of these enantiomers, docking and molecular dynamics (MD) simulations of S-omeprazole (S......-OME) and R-omeprazole (R-OME) in CYP17A1, CYP19A1 and CYP21A2 were carried out. Exposing H295R cells to OME and its enantiomers resulted in an increase of progesterone (PRO) and 17α-hydroxy-progesterone (OH-PRO) levels. At the same time, a decrease in the corticosteroid and androgen synthesis was observed...

  19. Do endocrine disrupting chemicals threaten Mediterranean swordfish? Preliminary results of vitellogenin and Zona radiata proteins in Xiphias gladius.

    Science.gov (United States)

    Fossi, M C; Casini, S; Ancora, S; Moscatelli, A; Ausili, A; Notarbartolo-di-Sciara, G

    2001-12-01

    Endocrine Disrupting Chemicals (EDCs) have the potential to alter hormone pathways that regulate reproductive processes in wildlife and fishes. In this research the hypothesis that Mediterranean top predator species (such as large pelagic fish) are potentially at risk due to EDCs is investigated. These marine organisms tend to accumulate high concentrations of EDCs such as polyhalogenated aromatic hydrocarbons (PHAHs). The potential effects of EDCs on a fish species of commercial interest, the top predator Xiphias gladius (swordfish), were investigated using vitellogenin (Vtg) and Zona radiata proteins (Zrp) as diagnostic and prognostic biomarkers. Dramatic induction of typically female proteins (Vtg and Zrp) was detected by ELISA and Western Blot in adult males of the species. These results are the first warning of the potential risk for reproductive function of Mediterranean top predators, and suggest the need for continuous monitoring of this fragile marine environment.

  20. Development of SPR Immunosensing System Using Microchannel Cell for Simultaneous Detection of Several Endocrine-Disrupting Chemicals

    Science.gov (United States)

    Miura, Norio; K. Vengatajalabathy, Gobi; Shoyama, Yukihiro; Maeda, Hideaki; Kawazumi, Hirofumi; Iwasaka, Hiroyuki

    The endocrine-disrupting chemicals affect the functioning of hormones of animals and are called “environmental hormones". They exist in various environments at very low concentrations in the range of ppt to ppb levels. Thus, highly sensitive determination of environmental hormones with high selectivity is indispensable in regulating the ecosystem, and the instrumentation that allows the on-site analysis of environmental hormones is paid much attention. In this research project, we are aiming at development of new optical immunosensing system for highly sensitive, selective, on-site and simultaneous detection of several environmental hormones at low cost. We report here the results of our research investigations on application of immunosensing technique to highly sensitive detection of environmental hormones, preparation of monoclonal antibodies, fabrication of the microchannel, miniaturization of the surface-plasmon-resonance detector, design of the compact total-sensing-system.

  1. Determination of Endocrine Disrupting Compounds in surface waters by means of chromatographic techniques coupled to mass spectrometry

    Directory of Open Access Journals (Sweden)

    M. Di Carro

    2011-01-01

    Full Text Available Two analytical methods were developed to study five endocrine disrupting compounds (4-n-nonylphenol, bisphenol A, estrone, 17β-estradiol and 17α-ethinylestradiol in waters. One method includes a fast liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS-MS analysis, while the second comprise a Stir Bar Sorptive Extraction (SBSE followed by a headspace derivatization and gaschromatography-mass spectrometry (GC-MS analysis. Passive samplers POCIS (Polar Organic Chemical Integrative Samplers were used as sampling and preconcentration steps in order to reach the very low levels of the analytes in environmental waters. Both methods were then applied to the determination of the analytes in different water samples.

  2. Adverse effects on sexual development in rat offspring after low dose exposure to a mixture of endocrine disrupting pesticides

    DEFF Research Database (Denmark)

    Hass, Ulla; Boberg, Julie; Christiansen, Sofie

    2012-01-01

    The present study investigated whether a mixture of low doses of five environmentally relevant endocrine disrupting pesticides, epoxiconazole, mancozeb, prochloraz, tebuconazole and procymidone, would cause adverse developmental toxicity effects in rats. In rat dams, a significant increase...... in gestation length was seen, while in male offspring increased nipple retention and increased incidence and severity of genital malformations were observed. Severe mixture effects on gestation length, nipple retention and genital malformations were seen at dose levels where the individual pesticides caused...... no or smaller effects when given alone. Generally, the mixture effect predictions based on dose-additivity were in good agreement with the observed effects. The results indicate that there is a need for modification of risk assessment procedures for pesticides, in order to take account of the mixture effects...

  3. A novel approach for estimating the removal efficiencies of endocrine disrupting chemicals and heavy metals in wastewater treatment processes.

    Science.gov (United States)

    Chiu, Jill M Y; Degger, Natalie; Leung, Jonathan Y S; Po, Beverly H K; Zheng, Gene J; Richardson, Bruce J; Lau, T C; Wu, Rudolf S S

    2016-11-15

    The wide occurrence of endocrine disrupting chemicals (EDCs) and heavy metals in coastal waters has drawn global concern, and thus their removal efficiencies in sewage treatment processes should be estimated. However, low concentrations coupled with high temporal fluctuations of these pollutants present a monitoring challenge. Using semi-permeable membrane devices (SPMDs) and Artificial Mussels (AMs), this study investigates a novel approach to evaluating the removal efficiency of five EDCs and six heavy metals in primary treatment, secondary treatment and chemically enhanced primary treatment (CEPT) processes. In general, the small difference between maximum and minimum values of individual EDCs and heavy metals measured from influents/effluents of the same sewage treatment plant suggests that passive sampling devices can smooth and integrate temporal fluctuations, and therefore have the potential to serve as cost-effective monitoring devices for the estimation of the removal efficiencies of EDCs and heavy metals in sewage treatment works. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Neurobehavioral deficits, diseases, and associated costs of exposure to endocrine-disrupting chemicals in the European union

    DEFF Research Database (Denmark)

    Bellanger, Martine; Demeneix, Barbara; Grandjean, Philippe

    2015-01-01

    and Participants, and Intervention: Cost estimation was carried out from a societal perspective, ie, including direct costs (eg, treatment costs) and indirect costs such as productivity loss. RESULTS: The panel identified a 70-100% probability that polybrominated diphenyl ether and organophosphate exposures......CONTEXT: Epidemiological studies and animal models demonstrate that endocrine-disrupting chemicals (EDCs) contribute to cognitive deficits and neurodevelopmental disabilities. OBJECTIVE: The objective was to estimate neurodevelopmental disability and associated costs that can be reasonably...... peer-reviewed studies to represent European exposure and approximate burden of disease. Cost estimation as of 2010 utilized lifetime economic productivity estimates, lifetime cost estimates for autism spectrum disorder, and annual costs for attention-deficit hyperactivity disorder. Setting, Patients...

  5. Short-term exposure of arsenite disrupted thyroid endocrine system and altered gene transcription in the HPT axis in zebrafish.

    Science.gov (United States)

    Sun, Hong-Jie; Li, Hong-Bo; Xiang, Ping; Zhang, Xiaowei; Ma, Lena Q

    2015-10-01

    Arsenic (As) pollution in aquatic environment may adversely impact fish health by disrupting their thyroid hormone homeostasis. In this study, we explored the effect of short-term exposure of arsenite (AsIII) on thyroid endocrine system in zebrafish. We measured As concentrations, As speciation, and thyroid hormone thyroxine levels in whole zebrafish, oxidative stress (H2O2) and damage (MDA) in the liver, and gene transcription in hypothalamic-pituitary-thyroid (HPT) axis in the brain and liver tissues of zebrafish after exposing to different AsIII concentrations for 48 h. Result indicated that exposure to AsIII increased inorganic As in zebrafish to 0.46-0.72 mg kg(-1), induced oxidative stress with H2O2 being increased by 1.4-2.5 times and caused oxidative damage with MDA being augmented by 1.6 times. AsIII exposure increased thyroxine levels by 1.3-1.4 times and modulated gene transcription in HPT axis. Our study showed AsIII caused oxidative damage, affected thyroid endocrine system and altered gene transcription in HPT axis in zebrafish. Published by Elsevier Ltd.

  6. Environmental Analysis of Endocrine Disrupting Effects from Hydrocarbon Contaminants in the Ecosystem - Final Report - 09/15/1996 - 09/14/2000

    Energy Technology Data Exchange (ETDEWEB)

    McLachlan, John A.

    2000-09-14

    The three major components of the research included: (a) a biotechnology based screening system to identify potential hormone mimics and antagonists (b) an animal screening system to identify biomarkers of endocrine effects and (c) a literature review to identify compounds at various DOE sites that are potential endocrine disruptors. Species of particular interest in this study were those that can serve as sentinel species (e.g., amphibians) and thus provide early warning signals for more widespread impacts on an ecosystem and its wildlife and human inhabitants. The objective of this basic research is to characterize the potential of common hydrocarbon contaminants in ecosystems to act as endocrine disruptors. Although the endocrine disrupting effects of contaminants such as dioxin and PCBs have been well characterized in both animals and humans, little is known about the capacities of other hydrocarbon contaminants to act as endocrine disruptors. Results obtained from this research project have provided information on endocrine disrupting contaminants for consideration in DOE's risk analyses for determining clean-up levels and priorities at contaminated DOE sites.

  7. Enantioselective endocrine disrupting effects of omeprazole studied in the H295R cell assay and by molecular modeling.

    Science.gov (United States)

    Sørensen, Amalie Møller; Hansen, Cecilie Hurup; Bonomo, Silvia; Olsen, Lars; Jørgensen, Flemming Steen; Weisser, Johan Juhl; Kretschmann, Andreas Christopher; Styrishave, Bjarne

    2016-08-01

    Enantiomers possess different pharmacokinetic and pharmacodynamic properties and this may not only influence the therapeutic effect of a drug but also its toxicological effects. In the present work we investigated the potential enantioselective endocrine disrupting effects of omeprazole (OME) and its two enantiomers on the human steroidogenesis using the H295R cell line. Differences in production of 16 steroid hormones were analyzed using LC-MS/MS. Additionally, to evaluate the differences in binding modes of these enantiomers, docking and molecular dynamics (MD) simulations of S-omeprazole (S-OME) and R-omeprazole (R-OME) in CYP17A1, CYP19A1 and CYP21A2 were carried out. Exposing H295R cells to OME and its enantiomers resulted in an increase of progesterone (PRO) and 17α-hydroxy-progesterone (OH-PRO) levels. At the same time, a decrease in the corticosteroid and androgen synthesis was observed, indicating inhibition of CYP21A2 and CYP17A1. In both cases, the effect of R-OME was smaller compared to that of the S-OME and a certain degree of enantioselectivity of CYP17A1 and CYP21A2 was suggested. Docking indicated that the N-containing rings of OME possibly could interact with the iron atom of the heme for S-OME in CYP17A1 and S- and R-OME in CYP21A2. However, density functional theory calculations suggest that the direct N-Fe interaction is weak. The study demonstrates enantioselective differences in the endocrine disrupting potential of chiral drugs such as omeprazole. These findings may have potential implications for drug safety and drug design. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Joint acute and endocrine disruptive toxicities of malathion, cypermethrin and prochloraz to embryo-larval zebrafish, Danio rerio.

    Science.gov (United States)

    Guo, Dongmei; Wang, Yanhua; Qian, Yongzhong; Chen, Chen; Jiao, Bining; Cai, Leiming; Wang, Qiang

    2017-01-01

    It remains a daunting challenge to determine ecotoxicological risks of exposure to mixtures of endocrine disrupting chemicals (EDCs) in environmental toxicology. In the present study, we investigated acute and endocrine disruptive toxicities of cypermethrin (CPM), malathion (MAL), prochloraz (PRO) and their binary mixtures of MAL + CPM and MAL + PRO to the early life stages of zebrafish. In the acute lethal toxicity test, three pesticides exhibited different levels of toxicity to zebrafish larvae, and the order of toxicity was as follows: CPM > PRO > MAL. The binary mixture of MAL + CPM displayed a synergistic effect on zebrafish larvae after exposure for 24, 48, 72 and 96 h. However, binary mixture of MAL + PRO showed an antagonistic effect. To evaluate the estrogenic effect, the expression of genes in the hypothalamic-pituitary-gonadal axis was assessed after zebrafish embryos were exposed to CPM, MAL, PRO and their binary mixtures from blastula stage (1 h post-fertilization, 1 hpf) to 14 dpf (14 d post-fertilization). Our data indicated that the transcription patterns of many key genes (vtg1, vtg2, era, erβ1, erβ2, cyp19a1a and cyp19a1b) were affected in hatched zebrafish after exposure to CPM, MAL and PRO. Moreover, following exposure to binary mixtures of 1000 μg/L MAL +4 μg/L CPM and 1000 μg/L MAL +900 μg/L PRO, the gene expressions were significantly changed compared with the individual pesticides. Our data provided a better understanding of bidirectional interactions of toxic response induced by these pesticides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. In vitro bioassay investigations of the endocrine disrupting potential of steviol glycosides and their metabolite steviol, components of the natural sweetener Stevia.

    Science.gov (United States)

    Shannon, Maeve; Rehfeld, Anders; Frizzell, Caroline; Livingstone, Christina; McGonagle, Caoimhe; Skakkebaek, Niels E; Wielogórska, Ewa; Connolly, Lisa

    2016-05-15

    The food industry is moving towards the use of natural sweeteners such as those produced by Stevia rebaudiana due to the number of health and safety concerns surrounding artificial sweeteners. Despite the fact that these sweeteners are natural; they cannot be assumed safe. Steviol glycosides have a steroidal structure and therefore may have the potential to act as an endocrine disruptor in the body. Reporter gene assays (RGAs), H295R steroidogenesis assay and Ca(2+) fluorimetry based assays using human sperm cells have been used to assess the endocrine disrupting potential of two steviol glycosides: stevioside and rebaudioside A, and their metabolite steviol. A decrease in transcriptional activity of the progestagen receptor was seen following treatment with 25,000 ng/ml steviol in the presence of progesterone (157 ng/ml) resulting in a 31% decrease in progestagen response (p=<0.01). At the level of steroidogenesis, the metabolite steviol (500-25,000 ng/ml) increased progesterone production significantly by 2.3 fold when exposed to 10,000 ng/ml (p=<0.05) and 5 fold when exposed to 25,000 ng/ml (p=<0.001). Additionally, steviol was found to induce an agonistic response on CatSper, a progesterone receptor of sperm, causing a rapid influx of Ca(2+). The response was fully inhibited using a specific CatSper inhibitor. These findings highlight the potential for steviol to act as a potential endocrine disruptor. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Mechanisms mediating environmental chemical-induced endocrine disruption in the adrenal gland

    Directory of Open Access Journals (Sweden)

    Daniel B Martinez-Arguelles

    2015-03-01

    Full Text Available Humans are continuously exposed to hundreds of man-made chemicals that pollute the environment in addition to multiple therapeutic drug treatments administered throughout life. Some of these chemicals, known as endocrine disruptors (EDs, mimic endogenous signals, thereby altering gene expression, influencing development, and promoting disease. Although EDs are eventually removed from the market or replaced with safer alternatives, new evidence suggests that early life exposure leaves a fingerprint on the epigenome, which may increase the risk of disease later in life. Epigenetic changes occurring in early life in response to environmental toxicants have been shown to affect behavior, increase cancer risk, and modify the physiology of the cardiovascular system. Thus, exposure to an ED or combination of EDs may represent a first hit to the epigenome. Only limited information is available regarding the effect of ED exposure on adrenal function. The adrenal gland controls the stress response, blood pressure, and electrolyte homeostasis. This endocrine organ therefore has an important role in physiology and is a sensitive target of EDs. We review herein the effect of ED exposure on the adrenal gland with particular focus on in utero exposure to the plasticizer di(2-ethylehyl phthalate. We discuss the challenges associated with identifying the mechanism mediating the epigenetic origins of disease and availability of biomarkers that may identify individual or population risks.

  11. Do endocrine disruptors cause hypospadias?

    Science.gov (United States)

    Botta, Sisir; Cunha, Gerald R.

    2014-01-01

    Introduction Endocrine disruptors or environmental agents, disrupt the endocrine system, leading to various adverse effects in humans and animals. Although the phenomenon has been noted historically in the cases of diethylstilbestrol (DES) and dichlorodiphenyltrichloroethane (DDT), the term “endocrine disruptor” is relatively new. Endocrine disruptors can have a variety of hormonal activities such as estrogenicity or anti-androgenicity. The focus of this review concerns on the induction of hypospadias by exogenous estrogenic endocrine disruptors. This has been a particular clinical concern secondary to reported increased incidence of hypospadias. Herein, the recent literature is reviewed as to whether endocrine disruptors cause hypospadias. Methods A literature search was performed for studies involving both humans and animals. Studies within the past 5 years were reviewed and categorized into basic science, clinical science, epidemiologic, or review studies. Results Forty-three scientific articles were identified. Relevant sentinel articles were also reviewed. Additional pertinent studies were extracted from the reference of the articles that obtained from initial search results. Each article was reviewed and results presented. Overall, there were no studies which definitely stated that endocrine disruptors caused hypospadias. However, there were multiple studies which implicated endocrine disruptors as one component of a multifactorial model for hypospadias. Conclusions Endocrine disruption may be one of the many critical steps in aberrant development that manifests as hypospadias. PMID:26816789

  12. An Assessment of the Effects of the Endocrine Disrupting Chemical 17ß-Trenbolone on Japanese Medaka Fish in a Multigenerational Exposure

    Science.gov (United States)

    Presently the research emphasis for endocrine disrupting chemicals has been on the development of short-term screening assays. However, assessing effect concentrations of the most sensitive developmental stages impacted in longer-term and multi-generation tests remains to be det...

  13. CDNA CLONING OF FATHEAD MINNOW (PIMEPHALES PROMELAS) ESTROGEN AND ANDROGEN RECEPTORS FOR USE IN STEROID RECEPTOR EXTRAPOLATION STUDIES FOR ENDOCRINE DISRUPTING CHEMICALS

    Science.gov (United States)

    cDNA Cloning of Fathead minnow (Pimephales promelas) Estrogen and Androgen Receptors for Use in Steroid Receptor Extrapolation Studies for Endocrine Disrupting Chemicals. Wilson, V.S.1,, Korte, J.2, Hartig P. 1, Ankley, G.T.2, Gray, L.E., Jr 1, , and Welch, J.E.1. 1U.S...

  14. An Investigation of the Endocrine-Disruptive Effects of Bisphenol A in Human and Rat Fetal Testes

    Science.gov (United States)

    Maamar, Millissia Ben; Lesné, Laurianne; Desdoits-Lethimonier, Christèle; Coiffec, Isabelle; Lassurguère, Julie; Lavoué, Vincent; Deceuninck, Yoann; Antignac, Jean-Philippe; Le Bizec, Bruno; Perdu, Elisabeth; Zalko, Daniel; Pineau, Charles; Chevrier, Cécile; Dejucq-Rainsford, Nathalie; Mazaud-Guittot, Séverine; Jégou, Bernard

    2015-01-01

    Few studies have been undertaken to assess the possible effects of bisphenol A (BPA) on the reproductive hormone balance in animals or humans with often contradictory results. We investigated possible direct endocrine disruption by BPA of the fetal testes of 2 rat strains (14.5–17.5 days post-coitum) and humans (8–12 gestational weeks) and under different culture conditions. BPA concentrations of 10-8M and 10-5M for 72h reduced testosterone production by the Sprague-Dawley fetal rat testes, while only 10-5M suppressed it in the Wistar strain. The suppressive effects at 10-5M were seen as early as 24h and 48h in both strains. BPA at 10-7-10-5M for 72h suppressed the levels of fetal rat Leydig cell insulin-like factor 3 (INSL3). BPA exposure at 10-8M, 10-7M, and 10-5M for 72h inhibited testosterone production in fetal human testes. For the lowest doses, the effects observed occurred only when no gonadotrophin was added to the culture media and were associated with a poorly preserved testicular morphology. We concluded that (i) BPA can display anti-androgenic effects both in rat and human fetal testes; (ii) it is essential to ascertain that the divergent effects of endocrine disruptors between species in vitro do not result from the culture conditions used, and/or the rodent strain selected; (iii) the optimization of each in vitro assay for a given species should be a major objective rather than the search of an hypothetical trans-species consensual model-system, as the organization of the testis is intrinsically different between mammalian species; (iv) due to the uncertainty existing on the internal exposure of the human fetal testis to BPA, and the insufficient number of epidemiological studies on the endocrine disruptive effects of BPA, caution should be taken in the extrapolation of our present results to the human reproductive health after fetal exposure to BPA. PMID:25706302

  15. Effects of multiwalled carbon nanotubes and triclocarban on several eukaryotic cell lines: elucidating cytotoxicity, endocrine disruption, and reactive oxygen species generation.

    Science.gov (United States)

    Simon, Anne; Maletz, Sibylle X; Hollert, Henner; Schäffer, Andreas; Maes, Hanna M

    2014-01-01

    To date, only a few reports about studies on toxic effects of carbon nanotubes (CNT) are available, and their results are often controversial. Three different cell lines (rainbow trout liver cells (RTL-W1), human adrenocortical carcinoma cells (T47Dluc), and human adrenocarcinoma cells (H295R)) were exposed to multiwalled carbon nanotubes, the antimicrobial agent triclocarban (TCC) as well as the mixture of both substances in a concentration range of 3.13 to 50 mg CNT/L, 31.25 to 500 μg TCC/L, and 3.13 to 50 mg CNT/L + 1% TCC (percentage relative to carbon nanotubes concentration), respectively. Triclocarban is a high-production volume chemical that is widely used as an antimicrobial compound and is known for its toxicity, hydrophobicity, endocrine disruption, bioaccumulation potential, and environmental persistence. Carbon nanotubes are known to interact with hydrophobic organic compounds. Therefore, triclocarban was selected as a model substance to examine mixture toxicity in this study. The influence of multiwalled carbon nanotubes and triclocarban on various toxicological endpoints was specified: neither cytotoxicity nor endocrine disruption could be observed after exposure of the three cell lines to carbon nanotubes, but the nanomaterial caused intracellular generation of reactive oxygen species in all cell types. For TCC on the other hand, cell vitality of 80% could be observed at a concentration of 2.1 mg/L for treated RTL-W1 cells. A decrease of luciferase activity in the ER Calux assay at a triclocarban concentration of 125 μg/L and higher was observed. This effect was less pronounced when multiwalled carbon nanotubes were present in the medium. Taken together, these results demonstrate that multiwalled carbon nanotubes induce the production of reactive oxygen species in RTL-W1, T47Dluc, and H295R cells, reveal no cytotoxicity, and reduce the bioavailability and toxicity of the biocide triclocarban.

  16. Use of nuclear receptor luciferase-based bioassays to detect endocrine active chemicals in a biosolids-biochar amended soil.

    Science.gov (United States)

    Anderson, Carolyn G; Joshi, Geetika; Bair, Daniel A; Oriol, Charlotte; He, Guochun; Parikh, Sanjai J; Denison, Michael S; Scow, Kate M

    2017-08-01

    Biosolids are a potentially valuable source of carbon and nutrients for agricultural soils; however, potential unintended impacts on human health and the environment must be considered. Virtually all biosolids contain trace amounts endocrine-disrupting chemicals derived from human use of pharmaceuticals and personal care products (PPCPs). One potential way to reduce the bioavailability of PPCPs is to co-apply biosolids with biochar to soil, because biochar's chemical (e.g., aromaticity) and physical properties (e.g., surface area) give it a high affinity to bind many organic chemicals in the environment. We developed a soil-specific extraction method and utilized a luciferase-based bioassay (CALUX) to detect endocrine active chemicals in a biosolids-biochar co-amendment soil greenhouse study. Both biochar (walnut shell, 900 °C) and biosolids had positive impacts on carrot and lettuce biomass accumulation over our study period. However, the walnut shell biochar stimulated aryl hydrocarbon receptor activity, suggesting the presence of potential endocrine active chemicals in the biochar. Since the biochar rate tested (100 t ha-1) is above the average agronomic rate (10-20 t ha-1), endocrine effects would not be expected in most environmental applications. The effect of high temperature biochars on endocrine system pathways must be explored further, using both quantitative analytical tools to identify potential endocrine active chemicals and highly sensitive bioanalytical assays such as CALUX to measure the resulting biological activity of such compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The epidemiologic evidence linking prenatal and postnatal exposure to endocrine disrupting chemicals with male reproductive disorders

    DEFF Research Database (Denmark)

    Bonde, Jens Peter; Flachs, Esben Meulengracht; Rimborg, Susie

    2017-01-01

    consensus statements and narrative reviews in recent years have divided the scientific community and have elicited a call for systematic transparent reviews. We aimed to fill this gap in knowledge in the field of male reproductive disorders. OBJECTIVE AND RATIONALE: The aim of this study...... identified 33 papers(28 study populations) fulfilling the eligibility criteria. These provided 85 risk estimates of links between persistent organic pollutants and rapidly metabolized compounds (phthalates and Bisphenol A) and male reproductive disorders. The overall odds ratio (OR) across all exposures...... that this increased risk was driven by any specific disorder. WIDER IMPLICATIONS: The current epidemiological evidence is compatible with a small increased risk of male reproductive disorders following prenatal and postnatal exposure to some persistent environmental chemicals classified as endocrine disruptors...

  18. An Isomer-Specific Approach to Endocrine-Disrupting Nonylphenol in Infant Food.

    Science.gov (United States)

    Günther, Klaus; Räcker, Torsten; Böhme, Roswitha

    2017-02-15

    Nonylphenols (NPs) are persistent endocrine disruptors that are priority hazardous substances of the European Union Water Framework Directive. Their presence in the environment has caused growing concern regarding their impact on human health. Recent studies have shown that nonylphenol is ubiquitous in commercially available foodstuffs and is also present in human blood. The isomer distribution of 4-nonylphenol was analyzed by gas chromatography - mass spectrometry in 44 samples of infant food. Our study shows that the distribution of nonylphenol isomers is dependent on the foodstuff analyzed. Although some isomer groups prevail, different distributions are frequent. Variations are even found in the same food group. Nonylphenol is a complex mixture of isomers, and the estrogenic potentials of each of these isomers are very different. Consequently, to determine the potential toxicological impact of NP in food, an isomer-specific approach is necessary.

  19. The use of yolk protein as biomarkers for endocrine disruption in molluscs

    DEFF Research Database (Denmark)

    Holbech, Henrik; Kinnberg, Karin Lund; Bjerregaard, Poul

    of the proteins in molluscs of different sex and life-stage. The main yolk protein was purified from gonads containing eggs of the freshwater bivalves U. pictorum and U. tumidus and from eggs dissected from egg clutches of the pulmonate gastropod L. stagnalis. The ELISAs were used to quantify the concentration...... of standardized tests in molluscs is that no specific biomarkers or endpoints for endocrine effects have been validated. Some attempts have been made to transfer biomarkers developed for vertebrates – e.g. from fish to molluscs to investigate ED effects. One example is the vertebrate yolk protein vitellogenin...... that is known to be oestrogen dependent in fish. The yolk proteins in molluscs have been proposed to have the same oestrogenic dependence and used as biomarker for oestrogenic EDs. The present work investigates the possible usability of the main yolk protein in three species of molluscs to function as biomarker...

  20. Endocrine disruption of courtship behaviour and reproduction in zebrafish (Danio rerio)

    DEFF Research Database (Denmark)

    Broch-Lips, Mia Gina Gruwier

    2011-01-01

    or counteracting the effects endogenous hormones or by interfering with hormone synthesis, transport or metabolism. This thesis deals with the effects of EDCs on the sex steroid system which is a part of the endocrine system and is essential for reproduction and reproductive behaviour. Effects of EDCs on zebrafish...... courtship behaviour have only been scarcely investigated. The aim of this project was to learn more about the effects of EDCS on the courtship behaviour and reproduction in zebrafish as well as investigating the reversibility of observed effects. I furthermore observed some interesting aspects...... of the reversibility of hormonally induced shifts in sex ratio of zebrafish. In the first part of this study zebrafish were exposed to three different environmentally relevant concentrations of the synthetic oestrogen17α-ethinylestradiol (EE2) from egg stage to sexual maturity. Secondary sexual characteristics...

  1. Bioconcentration and endocrine disruption effects of diazepam in channel catfish, Ictalurus punctatus.

    Science.gov (United States)

    Overturf, C L; Overturf, M D; Huggett, D B

    2016-01-01

    Recently, the detection of pharmaceuticals in surface waters has increased worldwide. Pharmaceuticals are typically found in the environment at concentrations well below therapeutic levels in humans; however, their mechanisms of action may be largely unknown in non-target organisms, such as teleost species. Thus, chronic exposure to these types of compounds warrants further investigation. The goal of this study was to examine the potential for diazepam, a model benzodiazepine drug, to bioconcentrate in tissues of channel catfish and to examine its ability to interact with the endocrine system through modulation of steroid hormones and/or steroidogenic genes. To investigate the bioconcentration potential of diazepam, channel catfish (Ictalurus punctatus) were exposed to 1 ng/mL diazepam for seven days, followed by clean water for another seven days, using an abbreviated OECD 305 Fish Bioconcentration Test study design. This concentration of diazepam is well below environmentally relevant concentrations of diazepam (ng/L). To evaluate steroidogenic effects, fish were exposed to 1 ng/mL diazepam for seven days only. Steroid hormone concentrations were analyzed for various tissues, as well as expression of selected steroidogenic genes. Calculated bioconcentration factors for diazepam were well below regulatory threshold values in all tissues analyzed. No changes in steroid hormone concentration were detected in any tissue analyzed; however, the steroidogenic gene cytochrome P450 side chain cleavage (P450scc) was significantly down-regulated at day 5 and 3β-hydroxy steroid dehydrogenase (3β-HSD) was significantly down-regulated at day 7 in the gonad. These results indicate that although diazepam does not significantly bioconcentrate, low-level chronic exposure to diazepam may have the potential to interact with endocrine function by altering gene expression. Copyright © 2016. Published by Elsevier Inc.

  2. Bisphenol A accumulation in eggs disrupts the endocrine regulation of growth in rainbow trout larvae

    Energy Technology Data Exchange (ETDEWEB)

    Birceanu, Oana; Servos, Mark R.; Vijayan, Mathilakath M., E-mail: matt.vijayan@ucalgary.ca

    2015-04-15

    Highlights: • BPA in eggs reduces growth and increases food conversion ratio in trout larvae. • BPA in eggs disrupts larval transcript abundance of genes involved in GH/IGF axis. • BPA in eggs disrupts thyroid hormone receptor mRNA levels. • BPA in eggs consistently suppressed IGF-1rb mRNA levels during early development. - Abstract: Bisphenol A (BPA), a monomer used in the production of plastics and epoxy resins, is ubiquitously present in the aquatic environment. BPA is considered a weak estrogen in fish, but the effects of this chemical on early developmental events are far from clear. We tested the hypothesis that BPA accumulation in eggs, mimicking maternal transfer, disrupts growth hormone/insulin-like growth factor (GH/IGF) axis function, leading to defects in larval growth in rainbow trout. Trout oocytes were exposed to 0 (control), 0.3, 3, and 30 μg ml{sup −1} BPA for 3 h, which led to an accumulation of around 0, 1, 4 and 40 ng BPA per egg, respectively. All treatment groups were fertilized with clean milt and reared in clean water for the rest of the experiment. The embryo BPA content declined over time in all groups and was completely eliminated by 42 days post-fertilization (dpf). Hatchlings from BPA accumulated eggs had higher water content and reduced total energy levels prior to first feed. There was an overall reduction in the specific growth rate and food conversion ratio in larvae reared from BPA-laden eggs. BPA accumulation disrupted the mRNA abundance of genes involved in GH/IGF axis function, including GH isoforms and their receptors, IGF-1 and -2 and IGF receptors, in a life stage-dependent manner. Also, there was a temporal disruption in the mRNA levels of thyroid hormone receptors in the larvae raised from BPA-laden eggs. Altogether, BPA accumulation in eggs, mimicking maternal transfer, affects larval growth and the mode of action involves disruption of genes involved in the GH/IGF and thyroid axes function in trout.

  3. Silencing of the Mineralocorticoid Receptor by Ribonucleic Acid Interference in Transgenic Rats Disrupts Endocrine Homeostasis

    OpenAIRE

    Lim, Hee-Young; van den Brandt, Jens; Fassnacht, Martin; Allolio, Bruno; Herold, Marco J; Reichardt, Holger M.

    2008-01-01

    Currently, gene disruption by homologous recombination in embryonic stem cells is only feasible in mice. To circumvent this problem, we silenced mineralocorticoid receptor (MR) expression by RNA interference in knockdown rats generated through lentiviral transgenesis. Analysis of the F1 progeny at 3 wk of age revealed strongly decreased MR levels. This was specific for the targeted gene and related to the abundance of the short interfering RNA. Reminiscent of MR knockout mice, the transgenic ...

  4. A hierarchical testing strategy for micropollutants in drinking water regarding their potential endocrine-disrupting effects-towards health-related indicator values.

    Science.gov (United States)

    Kuckelkorn, Jochen; Redelstein, Regine; Heide, Timon; Kunze, Jennifer; Maletz, Sibylle; Waldmann, Petra; Grummt, Tamara; Seiler, Thomas-Benjamin; Hollert, Henner

    2017-09-21

    In Germany, micropollutants that (may) occur in drinking water are assessed by means of the health-related indicator value (HRIV concept), developed by the German Federal Environment Agency. This concept offers five threshold values (≤ 0.01 to ≤ 3 μg l-1) depending on availability and completeness of data regarding genotoxicity, neurotoxicity, and germ cell-damaging potential. However, the HRIV concept is yet lacking integration of endocrine disruptors as one of the most prominent toxicological concerns in water bodies, including drinking water. Thresholds and proposed bioassays hence urgently need to be defined. Since endocrine disruption of ubiquitary chemicals as pharmaceuticals, industrial by-products, or pesticides is a big issue in current ecotoxicology, the aim of this study was to explore endocrine effects, i.e., estrogenic and androgenic effects, as an important, additional toxicological mode of action for the HRIV concept using a hierarchical set of well-known but improved bioassays. Results indicate that all of the 13 tested substances, industrial chemicals and combustion products (5), pharmaceuticals and medical agents (4), and pesticides and metabolites (4), have no affinity to the estrogen and androgen receptor in human U2OS cells without metabolic activation, even when dosed at their water solubility limit, while in contrast some of these substances showed estrogenic effects in the RYES assay, as predicted in pre-test QSAR analysis. Using a specifically developed S9-mix with the U2OS cells, those micropollutants, i.e., Benzo[a]pyrene, 2,4-Dichlorophenol, 3,3-Dichlorbenzidin, 3,4-Dichloranilin, and diclofenac, they show estrogenic effects at the same concentration range as for the yeast cells. Three of the drinking water-relevant chemicals, i.e., atrazine, tributyltin oxide, and diclofenac, caused effects on hormone production in the H295R assay, which can be correlated with changes in the expression of steroidogenic genes. One chemical, 17

  5. Endocrine disruption: In silico perspectives of interactions of di-(2-ethylhexyl)phthalate and its five major metabolites with progesterone receptor.

    Science.gov (United States)

    Sheikh, Ishfaq A; Abu-Elmagd, Muhammad; Turki, Rola F; Damanhouri, Ghazi A; Beg, Mohd A; Al-Qahtani, Mohammed

    2016-09-30

    Di-(2-ethylhexyl)phthalate (DEHP) is a common endocrine disrupting compound (EDC) present in the environment as a result of industrial activity and leaching from polyvinyl products. DEHP is used as a plasticizer in medical devices and many commercial and household items. Exposure occurs through inhalation, ingestion, and skin contact. DEHP is metabolized to a primary metabolite mono-(2-ethylhexyl)phthalate (MEHP) in the body, which is further metabolized to four major secondary metabolites, mono(2-ethyl-5-hydroxyhexyl)phthalate (5-OH-MEHP), mono(2-ethyl-5-oxyhexyl)phthalate (5-oxo-MEHP), mono(2-ethyl-5-carboxypentyl)phthalate (5-cx-MEPP) and mono[2-(carboxymethyl)hexyl]phthalate (2-cx-MMHP). DEHP and its metabolites are associated with developmental abnormalities and reproductive dysfunction within the human population. Progesterone receptor (PR) signaling is involved in important reproductive functions and is a potential target for endocrine disrupting activities of DEHP and its metabolites. This study used in silico approaches for structural binding analyses of DEHP and its five indicated major metabolites with PR. Protein Data bank was searched to retrieve the crystal structure of human PR (Id: 1SQN). PubChem database was used to obtain the structures of DEHP and its five metabolites. Docking was performed using Glide (Schrodinger) Induced Fit Docking module. DEHP and its metabolites interacted with 19-25 residues of PR with the majority of the interacting residues overlapping (82-95 % commonality) with the native bound ligand norethindrone (NET). DEHP and each of its five metabolites formed a hydrogen bonding interaction with residue Gln-725 of PR. The binding affinity was highest for NET followed by DEHP, 5-OH-MEHP, 5-oxo-MEHP, MEHP, 5-cx-MEPP, and 2-cx-MMHP. The high binding affinity of DEHP and its five major metabolites with PR as well as a high rate of overlap between PR interacting residues among DEHP and its metabolites and the native ligand, NET

  6. Introduction to the Endocrine System

    Science.gov (United States)

    ... Spikes Is mealtime insulin right for you? The Endocrine System Access more 3D visualizations by downloading the Hormone ... Endocrinologist Clinical Trials Hormones and Health The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) Steroid and Hormone Abuse Peer ...

  7. Introduction to the Endocrine System

    Science.gov (United States)

    ... Resources Featured Resource Find an Endocrinologist Search The Endocrine System Access more 3D visualizations by downloading the Hormone ... About Clinical Trials Hormones and Health The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) Steroid and Hormone Abuse Peer ...

  8. Recommended approaches to the scientific evaluation of ecotoxicological hazards and risks of endocrine-active substances

    Science.gov (United States)

    Matthiessen, Peter; Ankley, Gerald T.; Biever, Ronald C.; Bjerregaard, Poul; Borgert, Christopher; Brugger, Kristin; Blankinship, Amy; Chambers, Janice; Coady, Katherine K.; Constantine, Lisa; Dang, Zhichao; Denslow, Nancy D.; Dreier, David; Dungey, Steve; Gray, L. Earl; Gross, Melanie; Guiney, Patrick D.; Hecker, Markus; Holbech, Henrik; Iguchi, Taisen; Kadlec, Sarah; Karouna-Renier, Natalie K.; Katsiadaki, Ioanna; Kawashima, Yukio; Kloas, Werner; Krueger, Henry; Kumar, Anu; Lagadic, Laurent; Leopold, Annegaaike; Levine, Steven L.; Maack, Gerd; Marty, Sue; Meador, James P.; Mihaich, Ellen; Odum, Jenny; Ortego, Lisa; Parrott, Joanne L.; Pickford, Daniel; Roberts, Mike; Schaefers, Christoph; Schwarz, Tamar; Solomon, Keith; Verslycke, Tim; Weltje, Lennart; Wheeler, James R.; Williams, Mike; Wolf, Jeffery C.; Yamazaki, Kunihiko

    2017-01-01

    A SETAC Pellston Workshop® “Environmental Hazard and Risk Assessment Approaches for Endocrine-Active Substances (EHRA)” was held in February 2016 in Pensacola, Florida, USA. The primary objective of the workshop was to provide advice, based on current scientific understanding, to regulators and policy makers; the aim being to make considered, informed decisions on whether to select an ecotoxicological hazard- or a risk-based approach for regulating a given endocrine-disrupting substance (EDS) under review. The workshop additionally considered recent developments in the identification of EDS. Case studies were undertaken on 6 endocrine-active substances (EAS—not necessarily proven EDS, but substances known to interact directly with the endocrine system) that are representative of a range of perturbations of the endocrine system and considered to be data rich in relevant information at multiple biological levels of organization for 1 or more ecologically relevant taxa. The substances selected were 17α-ethinylestradiol, perchlorate, propiconazole, 17β-trenbolone, tributyltin, and vinclozolin. The 6 case studies were not comprehensive safety evaluations but provided foundations for clarifying key issues and procedures that should be considered when assessing the ecotoxicological hazards and risks of EAS and EDS. The workshop also highlighted areas of scientific uncertainty, and made specific recommendations for research and methods-development to resolve some of the identified issues. The present paper provides broad guidance for scientists in regulatory authorities, industry, and academia on issues likely to arise during the ecotoxicological hazard and risk assessment of EAS and EDS. The primary conclusion of this paper, and of the SETAC Pellston Workshop on which it is based, is that if data on environmental exposure, effects on sensitive species and life-stages, delayed effects, and effects at low concentrations are robust, initiating environmental risk

  9. Recommended approaches to the scientific evaluation of ecotoxicological hazards and risks of endocrine-active substances.

    Science.gov (United States)

    Matthiessen, Peter; Ankley, Gerald T; Biever, Ronald C; Bjerregaard, Poul; Borgert, Christopher; Brugger, Kristin; Blankinship, Amy; Chambers, Janice; Coady, Katherine K; Constantine, Lisa; Dang, Zhichao; Denslow, Nancy D; Dreier, David A; Dungey, Steve; Gray, L Earl; Gross, Melanie; Guiney, Patrick D; Hecker, Markus; Holbech, Henrik; Iguchi, Taisen; Kadlec, Sarah; Karouna-Renier, Natalie K; Katsiadaki, Ioanna; Kawashima, Yukio; Kloas, Werner; Krueger, Henry; Kumar, Anu; Lagadic, Laurent; Leopold, Annegaaike; Levine, Steven L; Maack, Gerd; Marty, Sue; Meador, James; Mihaich, Ellen; Odum, Jenny; Ortego, Lisa; Parrott, Joanne; Pickford, Daniel; Roberts, Mike; Schaefers, Christoph; Schwarz, Tamar; Solomon, Keith; Verslycke, Tim; Weltje, Lennart; Wheeler, James R; Williams, Mike; Wolf, Jeffrey C; Yamazaki, Kunihiko

    2017-03-01

    A SETAC Pellston Workshop® "Environmental Hazard and Risk Assessment Approaches for Endocrine-Active Substances (EHRA)" was held in February 2016 in Pensacola, Florida, USA. The primary objective of the workshop was to provide advice, based on current scientific understanding, to regulators and policy makers; the aim being to make considered, informed decisions on whether to select an ecotoxicological hazard- or a risk-based approach for regulating a given endocrine-disrupting substance (EDS) under review. The workshop additionally considered recent developments in the identification of EDS. Case studies were undertaken on 6 endocrine-active substances (EAS-not necessarily proven EDS, but substances known to interact directly with the endocrine system) that are representative of a range of perturbations of the endocrine system and considered to be data rich in relevant information at multiple biological levels of organization for 1 or more ecologically relevant taxa. The substances selected were 17α-ethinylestradiol, perchlorate, propiconazole, 17β-trenbolone, tributyltin, and vinclozolin. The 6 case studies were not comprehensive safety evaluations but provided foundations for clarifying key issues and procedures that should be considered when assessing the ecotoxicological hazards and risks of EAS and EDS. The workshop also highlighted areas of scientific uncertainty, and made specific recommendations for research and methods-development to resolve some of the identified issues. The present paper provides broad guidance for scientists in regulatory authorities, industry, and academia on issues likely to arise during the ecotoxicological hazard and risk assessment of EAS and EDS. The primary conclusion of this paper, and of the SETAC Pellston Workshop on which it is based, is that if data on environmental exposure, effects on sensitive species and life-stages, delayed effects, and effects at low concentrations are robust, initiating environmental risk

  10. Endocrine disruption induced by organochlorines (OCs): field studies and experimental models.

    Science.gov (United States)

    Ropstad, Erik; Oskam, Irma C; Lyche, Jan L; Larsen, Hans J; Lie, Elisabeth; Haave, Marte; Dahl, Ellen; Wiger, Richard; Skaare, Janneche Utne

    2006-01-08

    Long-range transport of persistent organic compounds by air and ocean currents from industrialized areas resulted in high levels of these pollutants in food webs in the Svalbard area. With the aim to test if organochlorine (OC) exposure in free-living polar bears from Svalbard affected their plasma steroid hormone concentrations, it was found that polychlorinated biphenyls (PCBs) were associated with increased progesterone levels in females. The sum of pesticides (sigma pesticides) and sigma PCBs contributed significantly negative to the variation of the plasma testosterone in males, and the overall contribution of the OCs to the plasma cortisol variation was negative. A second objective was to study the effects of selected OCs (i.e., PCB 153 and PCB 126) on animal health as a consequence of effects on endocrine-regulated functions such as reproduction and immunity in a goat model focusing on long-term and low-level exposure during the periods of fetal development and in the neonatal period. Additionally, acute exposure was studied in adult mice. The results indicated that exposure to low doses of PCB 153 in utero and in the suckling period influenced reproductive functions and both PCB 153 and PCB 126 exerted immunomodulatory effects on the offspring, whereas acute exposure of adult mice had minor effects on male reproductive function.

  11. Elucidation of endocrine disrupting mechanism of dioxin and related compounds for health risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Tohyama, Chiharu [National Institute for Environmental Studies, Tsukuba (Japan)

    2004-09-15

    The important point on health risk assessment for dioxins as well as environmental endocrine disruptors is that we should scientifically evaluate whether the actual exposure level from food and environment may pose a threat to human health not only for the present but also for the future generations. We formulated a research project, called CREST project with support from the Japan Science and Technology Agency, in order to obtain experimental evidence for risk assessment as well as for the mechanism of toxicity. We thus investigated the dose-response relationships of certain 2,3,7,8-tetrachlorodibenzo-pdioxin (TCDD)-like compounds for eliciting various endpoints. First, we administered TCDD or coplanar polychlorinated biphenyl (PCB) to rats and mice during the sensitive period from fertilization to birth. Second, we studied what kinds of adverse effects could be observed in terms of reproductive/developmental effects, cognitive/learning abilities and immune functions. Third, we focused on the actual toxicity phenotypes found at the whole body and organ/tissue levels by a forward toxicology approach, and tried to narrow down appropriate phenomena, to study the mechanism on the molecular basis by the reverse toxicology approach. In this presentation, I will summarize the outcome of the CREST project.

  12. The effect of perinatal exposure to ethinyl oestradiol or a mixture of endocrine disrupting pesticides on kisspeptin neurons in the rat hypothalamus

    DEFF Research Database (Denmark)

    Overgaard, Agnete; Holst, Klaus; Mandrup, Karen

    2013-01-01

    Early life exposure to endocrine disruptors is considered to disturb normal development of hormone sensitive parameters and contribute to advanced puberty and reduced fecundity in humans. Kisspeptin is a positive regulator of the hypothalamic–pituitary–gonadal axis, and plays a key role...... exposure to a pesticide mixture in this experimental setting. However, we find that the pesticide mancozeb tends to increase Kiss1 expression in the ARC, presumably through neurotoxic mechanisms rather than via classical endocrine disruption, calling for increased awareness that Kiss1 expression can...

  13. Desreguladores endócrinos no meio ambiente: efeitos e conseqüências Endocrine disrupters in the enviroment: part 1 - effects and consequences

    Directory of Open Access Journals (Sweden)

    Daniele Maia Bila

    2007-06-01

    Full Text Available There is an increasing interest in micropollutants in the environment that can interfere with the endocrine system, affecting health, growth and reproduction of animals and humans. These substances are known as Endocrine Disrupting Chemicals (EDCs and can be found in domestic sewage, domestic wastewater treatment plant effluents, and in natural and potable waters. There are numerous chemicals classified as EDCs, such as pesticides, chemicals used and produced by chemical industries and natural and synthetic estrogens. EDCs can be related to the increase of the incidence of anomalies in the reproductive system of animals, cancer in humans and reduction of the masculine fertility.

  14. Chemoprotective role of ethanol extract of Urtica urens L. against the toxicity of imidacloprid on endocrine disruption and ovarian morphometric in female rats, GC/MS analysis.

    Science.gov (United States)

    Mzid, Massara; Ghlissi, Zohra; Salem, Maryem Ben; Khedir, Sameh Ben; Chaabouni, Khansa; Ayedi, Fatma; Sahnoun, Zouheir; Hakim, Ahmed; Rebai, Tarek

    2018-01-01

    Imidacloprid (IMI) is a widely used in Tunisia and abroad, and high doses of IMI have been known to cause endocrine disruption. Some reports claim that Urtica urens L. (UU) can reduce toxicity thanks to it anti-inflammatory and antioxidant activities, but there is no scientific evidence justifying its use, which lets us think to its direct effect on the metabolism of the ovarian tissue. The present study was undertaken to evaluate the protective effect of UU against the toxicity of Confidor®, whose active substance is imidacloprid (IMI), in female rat, as well as the chemical compositions of UU ethanol (EtOH) extract by GC-MS. Female rats were divided into control group, 3 groups treated with IMI at 50, 200 or 300mg/kg/day and three groups co-treated with IMI (50, 200 or 300mg/kg/day)+100mg/kg/day of UU, for 60days. Blood samples were collected for the dosage of 17β-estradiol levels. Ovaries were removed for tissular dosage of malondialdehyde (MDA), advanced oxidation protein products (AOPP), glutathione (GSH), vitamin E, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx). Histological and histomorphometric examinations were performed as well. IMI caused an acute ovary injury, increased the ovary tissue levels of MDA and AOPP, and decreased the levels of GSH, vitamin E, and antioxidant enzyme activities. The number and the diameter of follicles were markedly diminished together with a reduction of the relative weight of ovaries. Compared with controls, the treated rats exhibited a significant reduction in serum 17b-estradiol levels. These results suggest an endocrine disruption by IMI which may interfere with ovarian follicles development in rat. The injection of UU EtOH extract improved the histological and all biochemical parameters cited above. In conclusion, IMI induced an acute ovary injury accompanied with disturbance of oxidant status and causes follicular atresia. Significant antioxidant activities were also observed in UU Et

  15. Endocrine disrupting chemicals: harmful substances and how to test them Produtos químicos como desreguladores endócrinos: substâncias danosas e como devem ser testadas

    Directory of Open Access Journals (Sweden)

    Nicolás Olea-Serrano

    2002-04-01

    Full Text Available This paper presents an analysis of the opinions of different groups from: scientists, international regulatory bodies, non-governmental organizations and industry; with an interest in the problem of identifying chemical substances with endocrine disrupting activity. There is also discussion of the consequences that exposure to endocrine disruptors may have for human health, considering concrete issues related to: the estimation of risk; the tests that must be used to detect endocrine disruption; the difficulties to establish an association between dose, time of exposure, individual susceptibility, and effect; and the attempts to create a census of endocrine disruptors. Finally, it is proposed that not all hormonal mimics should be included under the single generic denomination of endocrine disruptors.Este artigo apresenta uma análise das opiniões de diferentes grupos, inclusive de cientistas, agências regulatórias internacionais, organizações não-governamentais e indústrias, interessados na questão da identificação de substâncias químicas com atividade desreguladora endócrina. Os autores discutem também o impacto da exposição aos desreguladores endócrinos sobre a saúde humana, considerando as seguintes questões: estimativa de risco; testes utilizados para detectar distúrbios endócrinos; dificuldades na identificação de uma associação entre dose, tempo de exposição, suscetibilidade individual e efeito e tentativas no sentido de mapear os desreguladores endócrinos. Finalmente, os autores argumentam que nem todos os agonistas hormonais devem ser incluídos sob a denominação genérica de desreguladores endócrinos.

  16. Oxidative stress, endocrine disruption, and malformation of Bufo gargarizans embryo exposed to sub-lethal cadmium concentrations.

    Science.gov (United States)

    Wu, Chao; Zhang, Yuhui; Chai, Lihong; Wang, Hongyuan

    2017-01-01

    Thyroid hormone (TH) is critical for vertebrate postembryonic development as well as embryonic development. Chinese toad (Bufo gargarizans) embryos were exposed to different concentrations of cadmium (5, 50, 100, 200 and 500μg Cd L-1) for 7days. Malformations were monitored daily, and growth and development of embryos were measured at day 4 and 7, and type 2 and 3 iodothyronine deiodinase (Dio2 and Dio3), thyroid hormone receptors (TRα and TRβ) mRNA levels were also measured to assess disruption of TH synthesis. In addition, superoxide dismutase (SOD), glutathione peroxidase (GPx) and heat shock proteins (HSPs) mRNA expression were examined to evaluate the ability of scavenging ROS. Our results demonstrated a bimodal inhibitory effect of Cd on the embryo growth and development of Bufo gargarizans. Reduced mean stage, total length and weight were observed at 5, 50, 200 and 500, but not at 100μg Cd L-1. Embryos malformation occurred in all cadmium treatments. Morphological abnormalities of embryos are characterized by axial flexures, abdominal edema, stunted growth and fin flexure. Real-time PCR results show that exposure to cadmium down-regulated TRα and Dio3 mRNA expression and up-regulated Dio2 mRNA level. SOD and GPx mRNA expression was significantly up-regulated after cadmium exposure. We concluded that cadmium could change mRNA expression of TRα, Dio2 and Dio3 leading the inhibition of growth and development of B. gargarizans embryo, which suggests that cadmium might have the endocrine-disrupting effect in embryos. Moreover, the reduced ability of scavenging ROS induced by cadmium might be responsible for the teratogenic effects of cadmium. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Distribution and accumulation of endocrine-disrupting chemicals and pharmaceuticals in wastewater irrigated soils in Hebei, China

    Energy Technology Data Exchange (ETDEWEB)

    Chen Feng [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Ying Guangguo, E-mail: guangguo.ying@gmail.com [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Kong Lingxiao [Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Science, Baoding 07100 (China); Wang Li; Zhao Jianliang; Zhou Lijun; Zhang Lijuan [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2011-06-15

    This study investigated the occurrence of 43 emerging contaminants including 9 endocrine-disrupting chemicals and 34 pharmaceuticals in three sites in Hebei Province, north China. Each site has a wastewater irrigated plot and a separate groundwater irrigated plot for comparison purpose. The results showed that the concentrations of the target compounds in the wastewater irrigated soils were in most cases higher than those in the groundwater irrigated soils. Among the 43 target compounds, nine compounds bisphenol-A, triclocarban, triclosan, 4-nonylphenol, salicylic acid, oxytetracycline, tetracycline, trimethoprim and primidone were detected at least once in the soils. Preliminary environmental risk assessment showed that triclocarban might pose high risks to terrestrial organisms while the other detected compounds posed minimal risks. Irrigation with wastewater could lead to presence or accumulation of some emerging contaminants to some extent in irrigated soils. - Highlights: > Some EDCs and PPCPs were detected in the wastewater irrigated soils. > Application of reclaimed water could lead to accumulation of some compounds. > Groundwater has been contaminated by some compounds. > Triclocarban posed high risks to soil organisms. - Application of reclaimed wastewater on agricultural land could lead to the presence or accumulation of wastewater-related contaminants in soils.

  18. Exposure to Endocrine Disrupters and Nuclear Receptor Gene Expression in Infertile and Fertile Women from Different Italian Areas

    Directory of Open Access Journals (Sweden)

    Cinzia La Rocca

    2014-09-01

    Full Text Available Within the PREVIENI project, infertile and fertile women were enrolled from metropolitan, urban and rural Italian areas. Blood/serum levels of several endocrine disrupters (EDs (perfluorooctane sulfonate, PFOS; perfluorooctanoic acid, PFOA; di-2-ethylhexyl-phthalate, DEHP; mono-(2-ethylhexyl-phthalate, MEHP; bisphenol A, BPA were evaluated concurrently with nuclear receptors (NRs gene expression levels (ERa, ERb, AR, AhR, PPARg, PXR in peripheral blood mononuclear cells (PBMCs. Infertile women from the metropolitan area displayed significantly higher levels of: BPA compared to fertile women (14.9 vs. 0.5 ng/mL serum; BPA and MEHP compared to infertile women from urban and rural areas; enhanced expression levels of NRs, except PPARg. Infertile women from urban and rural areas had PFOA levels significantly higher than those from metropolitan areas. Our study indicates the relevance of the living environment when investigating the exposure to EDs and the modulation of the NR panel in PBMC as a suitable biomarker of the effect, to assess the EDs impact on reproductive health.

  19. Potential endocrine disruption of ovary synthesis in the Christmas Island red crab Gecarcoidea natalis by the insecticide pyriproxyfen.

    Science.gov (United States)

    Linton, Stuart; Barrow, Lauren; Davies, Claire; Harman, Laura

    2009-11-01

    The effect of the insecticide, pyriproxyfen on early ovary synthesis was examined in the Gecarcinid land crab, Gecarcoidea natalis. Crabs were fed a mixture of either leaf litter and bait containing 0.5% (wt/wt) pyriproxyfen (experimental groups), or a mixture of leaf litter and a control bait containing no pyriproxyfen (control groups), at simulated baiting doses of 2 kg ha(-1) and 4 kg ha(-1), during the period in which G. natalis synthesises its ovaries. A third group of crabs were fed ad libitum either the bait containing 0.5% Pypriproxyfen or the control bait. Pyriproxyfen affected early ovary development in G. natalis. The ovaries from crabs in the experimental groups at all baiting levels had a higher total nitrogen content and dry mass than the ovaries from crabs in the control groups. Pyriproxyfen affected the histology of the ovaries. Ovaries from animals in the experimental groups were more mature, containing more previtellogenic and early vitellogenic oocytes, of a larger diameter, than the ovaries from crabs in the control groups. Significant amounts of pyriproxyfen accumulated within the midgut gland and ovary, the hypothesised target tissues, while minor amounts of pyriproxyfen was accumulated in the muscle, a hypothesised non target tissue. Pyriproxyfen may have stimulated early ovary development and induced synthesis of yolk protein by mimicking methyl farnesoate and thus causing endocrine disruption. Given this, pyriproxyfen should not be used to control invasive insects in environments where gecarcinid and other land crab species are present.

  20. Persistent organochlorine pollutants with endocrine activity and blood steroid hormone levels in middle-aged men.

    Directory of Open Access Journals (Sweden)

    Elise Emeville

    Full Text Available BACKGROUND: Studies relating long-term exposure to persistent organochlorine pollutants (POPs with endocrine activities (endocrine disrupting chemicals on circulating levels of steroid hormones have been limited to a small number of hormones and reported conflicting results. OBJECTIVE: We examined the relationship between serum concentrations of dehydroepiandrosterone, dehydroepiandrosterone sulphate, androstenedione, androstenediol, testosterone, free and bioavailable testosterone, dihydrotestosterone, estrone, estrone sulphate, estradiol, sex-hormone binding globulin, follicle-stimulating hormone, and luteinizing hormone as a function of level of exposure to three POPs known to interfere with hormone-regulated processes in different way: dichlorodiphenyl dichloroethene (DDE, polychlorinated biphenyl (PCB congener 153, and chlordecone. METHODS: We collected fasting, morning serum samples from 277 healthy, non obese, middle-aged men from the French West Indies. Steroid hormones were determined by gas chromatography-mass spectrometry, except for dehydroepiandrosterone sulphate, which was determined by immunological assay, as were the concentrations of sex-hormone binding globulin, follicle-stimulating hormone and luteinizing hormone. Associations were assessed by multiple linear regression analysis, controlling for confounding factors, in a backward elimination procedure, in multiple bootstrap samples. RESULTS: DDE exposure was negatively associated to dihydrotestosterone level and positively associated to luteinizing hormone level. PCB 153 was positively associated to androstenedione and estrone levels. No association was found for chlordecone. CONCLUSIONS: These results suggested that the endocrine response pattern, estimated by determining blood levels of steroid hormones, varies depending on the POPs studied, possibly reflecting differences in the modes of action generally attributed to these compounds. It remains to be investigated whether

  1. Reproduction impairment and endocrine disruption in adult zebrafish (Danio rerio) after waterborne exposure to TBOEP.

    Science.gov (United States)

    Xu, Qinglong; Wu, Ding; Dang, Yao; Yu, Liqin; Liu, Chunsheng; Wang, Jianghua

    2017-01-01

    Tris (2-butoxyethyl) phosphate (TBOEP) is widely used as a substitute of polybrominated diphenyl ethers (PBDEs). It has been frequently measured at concentrations of micrograms per liter (μg/L) in surface waters and waste water. However, limited information is available about the reproduction toxicology of TBOEP. In this study, adult zebrafish pairs were exposed to TBOEP at concentrations of 0, 5, 50, and 500μg/L for 21days. The effects on reproduction, hormone concentration, transcription of genes along the hypothalamic-pituitary-gonadal (HPG) axis, and gonadal development were investigated. After exposure to TBOEP, plasma concentrations of 17β-estradiol were significantly increased in both sexes of fish, while increase of testosterone was observed only in male fish. Transcription of genes along the HPG axis was significantly influenced by exposure to TBOEP in both male and female fish. Moreover, TBOEP decreases the average number of eggs production, as well as hatching success and survival rates in offspring. Histological examination shows inhibition of oocyte maturation in females and retardation spermiation in males, respectively. The results demonstrate that TBOEP could disturb the sex hormone balance by altering regulatory circuits of the HPG axis, affect gonadal development, eventually leading to disruption of reproductive performance and the development of progeny. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Evaluation of a screening system for obesogenic compounds: screening of endocrine disrupting compounds and evaluation of the PPAR dependency of the effect.

    Science.gov (United States)

    Pereira-Fernandes, Anna; Demaegdt, Heidi; Vandermeiren, Karine; Hectors, Tine L M; Jorens, Philippe G; Blust, Ronny; Vanparys, Caroline

    2013-01-01

    Recently the environmental obesogen hypothesis has been formulated, proposing a role for endocrine disrupting compounds (EDCs) in the development of obesity. To evaluate this hypothesis, a screening system for obesogenic compounds is urgently needed. In this study, we suggest a standardised protocol for obesogen screening based on the 3T3-L1 cell line, a well-characterised adipogenesis model, and direct fluorescent measurement using Nile red lipid staining technique. In a first phase, we characterised the assay using the acknowledged obesogens rosiglitazone and tributyltin. Based on the obtained dose-response curves for these model compounds, a lipid accumulation threshold value was calculated to ensure the biological relevance and reliability of statistically significant effects. This threshold based method was combined with the well described strictly standardized mean difference (SSMD) method for classification of non-, weak- or strong obesogenic compounds. In the next step, a range of EDCs, used in personal and household care products (parabens, musks, phthalates and alkylphenol compounds), were tested to further evaluate the obesogenicity screening assay for its discriminative power and sensitivity. Additionally, the peroxisome proliferator activated receptor γ (PPARγ) dependency of the positive compounds was evaluated using PPARγ activation and antagonist experiments. Our results showed the adipogenic potential of all tested parabens, several musks and phthalate compounds and bisphenol A (BPA). PPARγ activation was associated with adipogenesis for parabens, phthalates and BPA, however not required for obesogenic effects induced by Tonalide, indicating the role of other obesogenic mechanisms for this compound.

  3. Evaluation of a screening system for obesogenic compounds: screening of endocrine disrupting compounds and evaluation of the PPAR dependency of the effect.

    Directory of Open Access Journals (Sweden)

    Anna Pereira-Fernandes

    Full Text Available Recently the environmental obesogen hypothesis has been formulated, proposing a role for endocrine disrupting compounds (EDCs in the development of obesity. To evaluate this hypothesis, a screening system for obesogenic compounds is urgently needed. In this study, we suggest a standardised protocol for obesogen screening based on the 3T3-L1 cell line, a well-characterised adipogenesis model, and direct fluorescent measurement using Nile red lipid staining technique. In a first phase, we characterised the assay using the acknowledged obesogens rosiglitazone and tributyltin. Based on the obtained dose-response curves for these model compounds, a lipid accumulation threshold value was calculated to ensure the biological relevance and reliability of statistically significant effects. This threshold based method was combined with the well described strictly standardized mean difference (SSMD method for classification of non-, weak- or strong obesogenic compounds. In the next step, a range of EDCs, used in personal and household care products (parabens, musks, phthalates and alkylphenol compounds, were tested to further evaluate the obesogenicity screening assay for its discriminative power and sensitivity. Additionally, the peroxisome proliferator activated receptor γ (PPARγ dependency of the positive compounds was evaluated using PPARγ activation and antagonist experiments. Our results showed the adipogenic potential of all tested parabens, several musks and phthalate compounds and bisphenol A (BPA. PPARγ activation was associated with adipogenesis for parabens, phthalates and BPA, however not required for obesogenic effects induced by Tonalide, indicating the role of other obesogenic mechanisms for this compound.

  4. Evaluation of a Screening System for Obesogenic Compounds: Screening of Endocrine Disrupting Compounds and Evaluation of the PPAR Dependency of the Effect

    Science.gov (United States)

    Pereira-Fernandes, Anna; Demaegdt, Heidi; Vandermeiren, Karine; Hectors, Tine L. M.; Jorens, Philippe G.; Blust, Ronny; Vanparys, Caroline

    2013-01-01

    Recently the environmental obesogen hypothesis has been formulated, proposing a role for endocrine disrupting compounds (EDCs) in the development of obesity. To evaluate this hypothesis, a screening system for obesogenic compounds is urgently needed. In this study, we suggest a standardised protocol for obesogen screening based on the 3T3-L1 cell line, a well-characterised adipogenesis model, and direct fluorescent measurement using Nile red lipid staining technique. In a first phase, we characterised the assay using the acknowledged obesogens rosiglitazone and tributyltin. Based on the obtained dose-response curves for these model compounds, a lipid accumulation threshold value was calculated to ensure the biological relevance and reliability of statistically significant effects. This threshold based method was combined with the well described strictly standardized mean difference (SSMD) method for classification of non-, weak- or strong obesogenic compounds. In the next step, a range of EDCs, used in personal and household care products (parabens, musks, phthalates and alkylphenol compounds), were tested to further evaluate the obesogenicity screening assay for its discriminative power and sensitivity. Additionally, the peroxisome proliferator activated receptor γ (PPARγ) dependency of the positive compounds was evaluated using PPARγ activation and antagonist experiments. Our results showed the adipogenic potential of all tested parabens, several musks and phthalate compounds and bisphenol A (BPA). PPARγ activation was associated with adipogenesis for parabens, phthalates and BPA, however not required for obesogenic effects induced by Tonalide, indicating the role of other obesogenic mechanisms for this compound. PMID:24155963

  5. A multiresidue method for the determination of selected endocrine disrupting chemicals in human breast milk based on a simple extraction procedure.

    Science.gov (United States)

    Rodríguez-Gómez, R; Jiménez-Díaz, I; Zafra-Gómez, A; Ballesteros, O; Navalón, A

    2014-12-01

    In recent decades, in parallel to industrial development, a large amount of new chemicals have emerged that are able to produce disorders in human endocrine system. These groups of substances, so-called endocrine disrupting chemicals (EDCs), include many families of compounds, such as parabens, benzophenone-UV filters and bisphenols. Given the demonstrated biological activity of those compounds, it is necessary to develop new analytical procedures to evaluate the exposure with the final objective of establishing, in an accurate way, relationships between EDCs concentrations and the harmful health effects observed in population. In the present work, a method based on a simplified sample treatment involving steps of precipitation, evaporation and clean-up of the extracts with C18 followed by ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis for the determination of bisphenol A and its chlorinated derivatives (monochloro-, dichloro-, trichloro- and tetrachlorobisphenol A), parabens (methyl-, ethyl-, propyl- and butylparaben) and benzophenone-UV filters (benzophenone -1,-2, -3, -6, -8 and 4-hydroxybenzophenone) in human breast milk samples is proposed and validated. The limits of detections found ranged from 0.02 to 0.05 ng mL(-1). The method was validated using matrix-matched standard calibration followed by a recovery assay with spiked samples. Recovery rates ranged from 91% to 110% and the precision (evaluated as relative standard deviation) was lower than 15% for all compounds, being within the acceptable limits for the selected bioanalytical method validation guide. The method was satisfactorily applied for the determination of these compounds in human breast milk samples collected from 10 randomly selected women. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. The Increasing Prevalence in Intersex Variation from Toxicological Dysregulation in Fetal Reproductive Tissue Differentiation and Development by Endocrine-Disrupting Chemicals

    Science.gov (United States)

    Rich, Alisa L.; Phipps, Laura M.; Tiwari, Sweta; Rudraraju, Hemanth; Dokpesi, Philip O.

    2016-01-01

    An increasing number of children are born with intersex variation (IV; ambiguous genitalia/hermaphrodite, pseudohermaphroditism, etc.). Evidence shows that endocrine-disrupting chemicals (EDCs) in the environment can cause reproductive variation through dysregulation of normal reproductive tissue differentiation, growth, and maturation if the fetus is exposed to EDCs during critical developmental times in utero. Animal studies support fish and reptile embryos exhibited IV and sex reversal when exposed to EDCs. Occupational studies verified higher prevalence of offspring with IV in chemically exposed workers (male and female). Chemicals associated with endocrine-disrupting ability in humans include organochlorine pesticides, poly-chlorinated biphenyls, bisphenol A, phthalates, dioxins, and furans. Intersex individuals may have concurrent physical disorders requiring lifelong medical intervention and experience gender dysphoria. An urgent need exists to determine which chemicals possess the greatest risk for IV and the mechanisms by which these chemicals are capable of interfering with normal physiological development in children. PMID:27660460

  7. The Increasing Prevalence in Intersex Variation from Toxicological Dysregulation in Fetal Reproductive Tissue Differentiation and Development by Endocrine-Disrupting Chemicals.

    Science.gov (United States)

    Rich, Alisa L; Phipps, Laura M; Tiwari, Sweta; Rudraraju, Hemanth; Dokpesi, Philip O

    2016-01-01

    An increasing number of children are born with intersex variation (IV; ambiguous genitalia/hermaphrodite, pseudohermaphroditism, etc.). Evidence shows that endocrine-disrupting chemicals (EDCs) in the environment can cause reproductive variation through dysregulation of normal reproductive tissue differentiation, growth, and maturation if the fetus is exposed to EDCs during critical developmental times in utero. Animal studies support fish and reptile embryos exhibited IV and sex reversal when exposed to EDCs. Occupational studies verified higher prevalence of offspring with IV in chemically exposed workers (male and female). Chemicals associated with endocrine-disrupting ability in humans include organochlorine pesticides, poly-chlorinated biphenyls, bisphenol A, phthalates, dioxins, and furans. Intersex individuals may have concurrent physical disorders requiring lifelong medical intervention and experience gender dysphoria. An urgent need exists to determine which chemicals possess the greatest risk for IV and the mechanisms by which these chemicals are capable of interfering with normal physiological development in children.

  8. Endocrine disrupting, mutagenic, and teratogenic effects of upper Danube River sediments using effect-directed analysis.

    Science.gov (United States)

    Higley, Eric; Grund, Stefanie; Jones, Paul D; Schulze, Tobias; Seiler, Thomas-B; Lübcke-von Varel, Urte; Brack, Werner; Wölz, Jan; Zielke, Hanno; Giesy, John P; Hollert, Henner; Hecker, Markus

    2012-05-01

    Effect-directed analysis (EDA) can be useful in identifying and evaluating potential toxic chemicals in matrixes. Previous investigations of extracts of sediments from the upper Danube River in Germany revealed acute nonspecific and mechanism-specific toxicity as determined by several bioassays. In the present study, EDA was used to further characterize these sediments and identify groups of potentially toxic chemicals. Four extracts of sediments were subjected to a novel fractionation scheme coupled with identification of chemicals to characterize their ability to disrupt steroidogenesis or cause mutagenic and/or teratogenic effects. All four whole extracts of sediment caused significant alteration of steroidogenesis and were mutagenic as well as teratogenic. The whole extracts of sediments were separated into 18 fractions and these fractions were then subjected to the same bioassays as the whole extracts. Fractions 7 to 15 of all four extracts were consistently more potent in both the Ames fluctuation and H295R assays. Much of this toxicity could be attributed to polycyclic aromatic hydrocarbons, sterols, and in fraction 7-naphthoic acids. Because the fraction containing polychlorinated biphenyls, polychlorodibenzodioxin/furan, dichlorodiphenyltrichloroethane, and several organophosphates did not cause any observable effects on hormone production or a mutagenic response, or were not detected in any of the samples, these compounds could be eliminated as causative agents for the observed effects. These results demonstrate the value of using EDA, which uses multiple bioassays and new fractionation techniques to assess toxicity. Furthermore, to our knowledge this is the first study using the recently developed H295R assay within EDA strategies. Copyright © 2012 SETAC.

  9. Current Limitations and Recommendations to Improve Testing for the Environmental Assessment of Endocrine Active Substances

    DEFF Research Database (Denmark)

    Coady, Katherine K; Biever, Ronald C; Denslow, Nancy D

    2017-01-01

    In this paper existing regulatory frameworks and test systems for assessing potential endocrine-active chemicals are described, and associated challenges discussed, along with proposed approaches to address these challenges. Regulatory frameworks vary somewhat across geographies, but all basically...... evaluate whether a chemical possesses endocrine activity and whether this activity can result in adverse outcomes either to humans or the environment. Current test systems include in silico, in vitro and in vivo techniques focused on detecting potential endocrine activity, and in vivo tests that collect...... apical data to detect possible adverse effects. These test systems are currently designed to robustly assess endocrine activity and/or adverse effects in the estrogen, androgen, and thyroid hormone signaling pathways; however, there are some limitations of current test systems for evaluating endocrine...

  10. Current Limitations and Recommendations to Improve Testing for the Environmental Assessment of Endocrine Active Substances

    DEFF Research Database (Denmark)

    Coady, Katherine K; Biever, Ronald C; Denslow, Nancy D

    2016-01-01

    In this paper existing regulatory frameworks and test systems for assessing potential endocrine-active chemicals are described, and associated challenges discussed, along with proposed approaches to address these challenges. Regulatory frameworks vary somewhat across geographies, but all basically...... evaluate whether a chemical possesses endocrine activity and whether this activity can result in adverse outcomes either to humans or the environment. Current test systems include in silico, in vitro and in vivo techniques focused on detecting potential endocrine activity, and in vivo tests that collect...... apical data to detect possible adverse effects. These test systems are currently designed to robustly assess endocrine activity and/or adverse effects in the estrogen, androgen, and thyroid hormone signaling pathways; however, there are some limitations of current test systems for evaluating endocrine...

  11. Peer-reviewed and unbiased research, rather than ‘sound science’, should be used to evaluate endocrine-disrupting chemicals

    Science.gov (United States)

    Trasande, Leonardo; Vandenberg, Laura N; Bourguignon, Jean-Pierre; Myers, John Peterson; Slama, Remy; Saal, Frederick vom; Zoeller, Robert Thomas

    2017-01-01

    Evidence increasingly confirms that synthetic chemicals disrupt the endocrine system and contribute to disease and disability across the lifespan. Despite a United Nations Environment Programme/WHO report affirmed by over 100 countries at the Fourth International Conference on Chemicals Management, ‘manufactured doubt’ continues to be cast as a cloud over rigorous, peer-reviewed and independently funded scientific data. This study describes the sources of doubt and their social costs, and suggested courses of action by policymakers to prevent disease and disability. The problem is largely based on the available data, which are all too limited. Rigorous testing programmes should not simply focus on oestrogen, androgen and thyroid. Tests should have proper statistical power. ‘Good laboratory practice’ (GLP) hardly represents a proper or even gold standard for laboratory studies of endocrine disruption. Studies should be evaluated with regard to the contamination of negative controls, responsiveness to positive controls and dissection techniques. Flaws in many GLP studies have been identified, yet regulatory agencies rely on these flawed studies. Peer-reviewed and unbiased research, rather than ‘sound science’, should be used to evaluate endocrine-disrupting chemicals. PMID:27417427

  12. Potential toxicological hazard due to endocrine-disrupting chemicals on Mediterranean top predators: state of art, gender differences and methodological tools.

    Science.gov (United States)

    Fossi, M C; Casini, S; Marsili, L

    2007-05-01

    Man-made endocrine-disrupting chemicals (EDCs) range across all continents and oceans. Some geographic areas are potentially more threatened than others: one of these is the Mediterranean Sea. Levels of some xenobiotics are much higher here than in other seas and oceans. In this paper we review the final results of a project supported by the Italian Ministry of the Environment, in which the hypothesis that Mediterranean top predator species (such as large pelagic fish and marine mammals) are potentially at risk due to EDCs was investigated. We illustrate the need to develop and apply sensitive methodological tools, such as biomarkers (Vitellogenin, Zona Radiata proteins and CYP1A activities) for evaluation of toxicological risk in large pelagic fish top predators (Swordfish, (Xiphias gladius), Bluefin Tuna (Thunnus thynnus thynnus)) and nondestructive biomarkers (CYP1A activities and fibroblast cell culture in skin biopsy), for the hazard assessment of threatened marine mammals species (Striped Dolphin, (Stenella coeruleoalba), Bottlenose Dolphin (Tursiops truncatus), Common Dolphin (Delphinus delphis) and Fin Whale (Balaenoptera physalus))exposed to EDCs. Differential gender susceptibility to EDCs is also explored both in large pelagic fish and in cetaceans. In cetaceans, male specimens showed higher cytochrome P450 induction (BPMO in skyn biopsies, CYP2B in fibroblasts cell cultures) by xenobiotics with respect to females.

  13. Feminization of Longnose Dace (Rhinichthys cataractae in the Oldman River, Alberta, (Canada Provides Evidence of Widespread Endocrine Disruption in an Agricultural Basin

    Directory of Open Access Journals (Sweden)

    Joyce S. Evans

    2012-01-01

    Full Text Available We sampled an abundant, native minnow (Longnose dace—Rhinichthys cataractae throughout the Oldman River, Alberta, to determine physiological responses and possible population level consequences from exposure to compounds with hormone-like activity. Sex ratios varied between sites, were female-biased, and ranged from just over 50% to almost 90%. Histological examination of gonads revealed that at the sites with >60% females in the adult population, there was up to 38% occurrence of intersex gonads in fish identified through visual examination of the gonads as male. In the majority of intersex gonad cases, there was a large proportion (approx., 50% of oocytes within the testicular tissue. In male dace, vitellogenin mRNA expression generally increased with distance downstream. We analyzed river water for 28 endocrine disrupting compounds from eight functional classes, most with confirmed estrogen-like activity, including synthetic estrogens and hormone therapy drugs characteristic of municipal wastewater effluent, plus natural hormones and veterinary pharmaceuticals characteristic of livestock production. The spatial correlation between detected chemical residues and effects to dace physiology indicate that multiple land uses have a cumulative impact on dace in the Oldman River and effects range from altered gene regulation to severely female-biased sex ratios.

  14. Bioanalytical characterisation of multiple endocrine- and dioxin-like activities in sediments from reference and impacted small rivers

    Energy Technology Data Exchange (ETDEWEB)

    Kinani, Said, E-mail: said@dcmr.polytechnique.f [Unite d' Ecotoxicologie, Institut National de l' Environnement Industriel et des Risques (INERIS), BP2, F-60550 Verneuil en Halatte (France); Departement de Chimie des Mecanismes Reactionnels, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Bouchonnet, Stephane, E-mail: stephane.bouchonnet@dcmr.polytechnique.f [Departement de Chimie des Mecanismes Reactionnels, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Creusot, Nicolas [Unite d' Ecotoxicologie, Institut National de l' Environnement Industriel et des Risques (INERIS), BP2, F-60550 Verneuil en Halatte (France); Bourcier, Sophie [Departement de Chimie des Mecanismes Reactionnels, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Balaguer, Patrick [Institut National de la Sante et de la Recherche Medicale (INSERM), U896, Montpellier, F-34298 (France); Porcher, Jean-Marc [Unite d' Ecotoxicologie, Institut National de l' Environnement Industriel et des Risques (INERIS), BP2, F-60550 Verneuil en Halatte (France); Ait-Aissa, Selim, E-mail: selim.ait-aissa@ineris.f [Unite d' Ecotoxicologie, Institut National de l' Environnement Industriel et des Risques (INERIS), BP2, F-60550 Verneuil en Halatte (France)

    2010-01-15

    A comprehensive evaluation of organic contamination was performed in sediments sampled in two reference and three impacted small streams where endocrine disruptive (ED) effects in fish have been evidenced. The approach combined quantitative chemical analyses of more than 50 ED chemicals (EDCs) and a battery of in vitro bioassays allowing the quantification of receptor-mediated activities, namely estrogen (ER), androgen (AR), dioxin (AhR) and pregnane X (PXR) receptors. At the most impacted sites, chemical analyses showed the presence of natural estrogens, organochlorine pesticides, parabens, polycyclic aromatic hydrocarbons (16 PAHs), bisphenol A and alkylphenols, while synthetic steroids, myco-estrogens and phyto-estrogens were not detected. Determination of toxic-equivalent amounts showed that 28-96% of estrogenic activities in bioassays (0.2-6.3 ng/g 17beta-estradiol equivalents) were explained by 17beta-estradiol and estrone. PAHs were major contributors (20-60%) to the total dioxin-like activities. Interestingly, high PXR and (anti)AR activities were detected; however, the targeted analysed compounds could not explain the measured biological activities. This study highlighted the presence of multiple organic EDCs in French river sediments subjected to mixed diffuse pollution, and argues for the need to further identify AR and PXR active compounds in the aquatic environment. - Multiple endocrine disrupting chemicals (ER, AR, AhR and PXR ligands) are detected in French river sediments using a panel of in vitro bioassays and analytical methods.

  15. Endocrine-Disrupting Chemicals: Some Actions of POPs on Female Reproduction

    Directory of Open Access Journals (Sweden)

    Ewa L. Gregoraszczuk

    2013-01-01

    Full Text Available Persistent organic pollutants (POPs, such as polychlorinated dibenzo-p-dioxins (PCDDs and dibenzofurans (PCDFs, polychlorinated biphenyls (PCBs, and polybrominated ethers (PBDEs, chloronaftalens (PCNs, and bisphenol A (BPA, are stable, lipophilic pollutants that affect fertility and cause serious reproductive problems, including ovotoxic action, lack of ovulation, premature ovarian failure (POF, or polycystic ovarian syndrome (PCOS. Most of the representatives of POPs influence the activation of transcription factors, not only activation of aromatic hydrocarbon receptor (AhR, but also the steroid hormone receptors. This minireview will focus on a variety of PAH activities in oocyte, ovary, placenta, and mammary gland. The complexity and diversity of factors belonging to POPs and disorders of the reproductive function of women indicate that the impact of environmental pollution as an important determinant factor in fertility should not be minimize.

  16. The hypothalamus-pituitary-thyroid axis in teleosts and amphibians: Endocrine disruption and its consequences to natural populations

    Science.gov (United States)

    Carr, J.A.; Patino, R.

    2011-01-01

    Teleosts and pond-breeding amphibians may be exposed to a wide variety of anthropogenic, waterborne contaminants that affect the hypothalamus-pituitary-thyroid (HPT) axis. Because thyroid hormone is required for their normal development and reproduction, the potential impact of HPT-disrupting contaminants on natural teleost and amphibian populations raises special concern. There is laboratory evidence indicating that persistent organic pollutants, heavy metals, pharmaceutical and personal care products, agricultural chemicals, and aerospace products may alter HPT activity, development, and reproduction in teleosts and amphibians. However, at present there is no evidence to clearly link contaminant-induced HPT alterations to impairments in teleost or amphibian population health in the field. Also, with the exception of perchlorate for which laboratory studies have shown a direct link between HPT disruption and adverse impacts on development and reproductive physiology, little is known about if or how other HPT-disrupting contaminants affect organismal performance. Future field studies should focus on establishing temporal associations between the presence of HPT-disrupting chemicals, the occurrence of HPT alterations, and adverse effects on development and reproduction in natural populations; as well as determining how complex mixtures of HPT contaminants affect organismal and population health. ?? 2010 Elsevier Inc.

  17. The hypothalamus–pituitary–thyroid axis in teleosts and amphibians: Endocrine disruption and its consequences to natural populations

    Science.gov (United States)

    Carr, J.A.; Patino, Reynaldo

    2011-01-01

    Teleosts and pond-breeding amphibians may be exposed to a wide variety of anthropogenic, waterborne contaminants that affect the hypothalamus-pituitary-thyroid (HPT) axis. Because thyroid hormone is required for their normal development and reproduction, the potential impact of HPT-disrupting contaminants on natural teleost and amphibian populations raises special concern. There is laboratory evidence indicating that persistent organic pollutants, heavy metals, pharmaceutical and personal care products, agricultural chemicals, and aerospace products may alter HPT activity, development, and reproduction in teleosts and amphibians. However, at present there is no evidence to clearly link contaminant-induced HPT alterations to impairments in teleost or amphibian population health in the field. Also, with the exception of perchlorate for which laboratory studies have shown a direct link between HPT disruption and adverse impacts on development and reproductive physiology, little is known about if or how other HPT-disrupting contaminants affect organismal performance. Future field studies should focus on establishing temporal associations between the presence of HPT-disrupting chemicals, the occurrence of HPT alterations, and adverse effects on development and reproduction in natural populations; as well as determining how complex mixtures of HPT contaminants affect organismal and population health.

  18. Identification of endocrine-disrupting effects in aquatic vertebrates and invertebrates: report from the European IDEA project.

    Science.gov (United States)

    Segner, H; Caroll, K; Fenske, M; Janssen, C R; Maack, G; Pascoe, D; Schäfers, C; Vandenbergh, G F; Watts, M; Wenzel, A

    2003-03-01

    The EU-funded project IDEA aimed to evaluate (a) what parameters and endpoints allow the detection of endocrine-mediated developmental and reproductive effects of (xeno)estrogens in life cycle- and life stage-specific toxicity tests with the zebrafish Danio rerio, a small laboratory fish used in many ecotoxicity test guidelines, and (b) whether substances that act as estrogens in vertebrates may also adversely affect the development, differentiation, and reproduction of aquatic invertebrates. The invertebrate species investigated included Hydra vulgaris, Gammarus pulex, Chironomus riparius, Hyalella azteca, and Lymnaea stagnalis. The animals were exposed to the model estrogenic chemicals ethynylestradiol (EE2), bisphenol A (BPA), and octylphenol (OP), which exert their endocrine activity in vertebrates through the estrogen receptor. As endpoints, developmental and reproductive parameters at the organism level as well as molecular and cellular parameters were measured. Life cycle exposure of zebrafish to (xeno)estrogens induced a specific, partly irreversible response pattern, consisting mainly of (a) induction of vitellogenin (VTG), (b) alterations of gonad differentiation, (c) delay of first spawning, and (d) reduced fertilization success. The effects of EE2 on zebrafish were expressed at environmentally realistic concentrations, while BPA and OP became effective at concentrations higher than those usually found in the environment. The vitellogenic response was equally sensitive as the reproductive parameters in the case of EE2, but VTG was more sensitive in the case of BPA. Partial life cycle exposure of zebrafish had lasting effects on fish development and reproduction only when the fish were exposed during the stage of juvenile bisexual gonad differentiation. In (partial) life cycle and multigeneration studies with invertebrates, (xeno)estrogenic impact was assessed by a range of developmental and reproductive parameters including hatching, growth, moulting

  19. Endocrine disrupting chemicals in mixture and obesity, diabetes and related metabolic disorders

    OpenAIRE

    Le Magueresse-Battistoni, Brigitte; Labaronne, Emmanuel; Vidal, Hubert; Naville, Danielle

    2017-01-01

    Obesity and associated metabolic disorders represent a major societal challenge in health and quality of life with large psychological consequences in addition to physical disabilities. They are also one of the leading causes of morbidity and mortality. Although, different etiologic factors including excessive food intake and reduced physical activity have been well identified, they cannot explain the kinetics of epidemic evolution of obesity and diabetes with prevalence rates reaching pandem...

  20. Endocrine disruptor activity in bottled mineral and flavoured water.

    Science.gov (United States)

    Plotan, Monika; Frizzell, Caroline; Robinson, Victoria; Elliott, Christopher T; Connolly, Lisa

    2013-02-15

    A panel of reporter gene assays (RGAs) coupled with a single solid phase extraction (SPE) step was developed and used to screen bottled mineral water for the presence of four classes of endocrine disruptors (EDs), oestrogens, androgens, progestagens and glucocorticoids. Fourteen brands of bottled mineral water in triplicate (42 samples) were analysed. Overall, hormonal activity was found in 78% of the samples. Oestrogenic, androgenic, progestagenic and glucocorticoid activity was found in 38%, 38%, 36% and 55% of the samples, respectively at an average concentration of 10 ng/l 17β-estradiol equivalent (EEQ), 26 ng/l testosterone equivalent (TEQ), 123 ng/l progesterone equivalent (PEQ) and 13.5 ng/l hydrocortisone equivalent (HEQ). The level of oestrogenic, androgenic and progestagenic activity observed is not considered a matter of concern for the consumers' health. It is unknown whether the glucocorticoid levels observed are safe. The ED source, long term exposure and mixture effects remain to be investigated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Occurrence of pharmaceuticals and endocrine disrupting compounds in macroalgaes, bivalves, and fish from coastal areas in Europe.

    Science.gov (United States)

    Álvarez-Muñoz, D; Rodríguez-Mozaz, S; Maulvault, A L; Tediosi, A; Fernández-Tejedor, M; Van den Heuvel, F; Kotterman, M; Marques, A; Barceló, D

    2015-11-01

    The occurrence and levels of PhACs, Endocrine Disrupting and related Compounds (EDCs) in seafood from potential contaminated areas in Europe has been studied. Macroalgae (Saccharina latissima and Laminaria digitata), bivalves (Mytilus galloprovincialis, Mytilus spp., Chamalea gallina and Crassostrea gigas) and fish (Liza aurata and Platichthys flesus) from Portugal, Spain, Italy, Netherlands, and Norway were analysed following 4 different analytical protocols depending on the organism and target group of contaminants. The results revealed the presence of 4 pharmaceutical compounds in macroalgae samples, 16 in bivalves and 10 in fish. To the best of our knowledge, this is the first time that PhACs have been detected in marine fish and in macroalgae. Besides, this is also the first time that dimetridazole, hydrochlorothiazide and tamsulosin have been detected in biota samples. The highest levels of PhACs corresponded to the psychiatric drug velanfaxine (up to 36.1 ng/g dry weight (dw)) and the antibiotic azithromycin (up to 13.3 ng/g dw) in bivalves from the Po delta (Italy). EDCs were not detected in macroalgae samples, however, the analysis revealed the presence of 10 EDCs in bivalves and 8 in fish. The highest levels corresponded to the organophosphorus flame retardant tris(2-butoxyethyl)phosphate (TBEP) reaching up to 98.4 ng/g dw in mullet fish from the Tagus estuary. Bivalves, in particular mussels, have shown to be good bioindicator organisms for PhACs and fish for EDCs. Taking into consideration the concentrations and frequencies of detection of PhACs and EDCs in the seafood samples analysed, a list of candidates' compounds for priorization in future studies has been proposed. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Adsorption and biodegradation of three selected endocrine disrupting chemicals in river-based artificial groundwater recharge with reclaimed municipal wastewater.

    Science.gov (United States)

    Ma, Weifang; Nie, Chao; Chen, Bin; Cheng, Xiang; Lun, Xiaoxiu; Zeng, Fangang

    2015-05-01

    Endocrine disrupting chemical (EDC) pollution in river-based artificial groundwater recharge using reclaimed municipal wastewater poses a potential threat to groundwater-based drinking water supplies in Beijing, China. Lab-scale leaching column experiments simulating recharge were conducted to study the adsorption, biodegradation, and transport characteristics of three selected EDCs: 17β-estradiol (E2), 17α-ethinylestradiol (EE2) and bisphenol A (BPA). The three recharge columns were operated under the conditions of continual sterilization recharge (CSR), continual recharge (CR), and wetting and drying alternative recharge (WDAR). The results showed that the attenuation effect of the EDCs was in the order of WDAR>CR>CSR system and E2>EE2>BPA, which followed first-order kinetics. The EDC attenuation rate constants were 0.0783, 0.0505, and 0.0479 m(-1) for E2, EE2 and BPA in the CR system, respectively. The removal rates of E2, EE2, and BPA in the CR system were 98%, 96% and 92%, which mainly depended on biodegradation and were affected by water temperature. In the CR system, the concentrations of BPA, EE2, and E2 in soil were 4, 6 and 10 times higher than in the WDAR system, respectively. According to the DGGE fingerprints, the bacterial community in the bottom layer was more diverse than in the upper layer, which was related to the EDC concentrations in the water-soil system. The dominant group was found to be proteobacteria, including Betaproteobacteria and Alphaproteobacteria, suggesting that these microbes might play an important role in EDC degradation. Copyright © 2015. Published by Elsevier B.V.

  3. Simultaneously photocatalytic treatment of hexavalent chromium (Cr(VI)) and endocrine disrupting compounds (EDCs) using rotating reactor under solar irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngji [Korea Institute of Energy Research, New and Renewable Energy Research Division, Hydrogen Laboratory, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Yonsei University, Department of Chemical and Biomolecular Engineering, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Joo, Hyunku [Korea Institute of Energy Research, New and Renewable Energy Research Division, Hydrogen Laboratory, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Her, Namguk [Korea Army Academy at Young-Cheon, Department of Chemistry and Environmental Science, 135-1 Changhari, Kokyungmeon, Young-cheon, Gyeongbuk 770-849 (Korea, Republic of); Yoon, Yeomin [University of South Carolina, Department of Civil and Environmental Engineering, Columbia, SC 29208 (United States); Sohn, Jinsik [Kookmin University, School of Civil and Environmental Engineering, 77 Jeongneung-ro, Seongbuk-gu, Seoul 136-702 (Korea, Republic of); Kim, Sungpyo [Korea University, Department of Environmental Engineering, Sejong 339-700 (Korea, Republic of); Yoon, Jaekyung, E-mail: jyoon@kier.re.kr [Korea Institute of Energy Research, New and Renewable Energy Research Division, Hydrogen Laboratory, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)

    2015-05-15

    Highlights: • Self-rotating reactor including TiO{sub 2} NTs is applied under solar irradiation. • Simultaneously photocatalysis of Cr(VI) and EDCs is observed to be up to 95%. • Photocatalytic reactions of Cr(VI) and EDCs are favorable under acidic pH. • Charge interaction and hole scavenge between TiO{sub 2} and pollutants are synergy factors. - Abstract: In this study, simultaneous treatments, reduction of hexavalent chromium (Cr(VI)) and oxidation of endocrine disrupting compounds (EDCs), such as bisphenol A (BPA), 17α-ethinyl estradiol (EE2) and 17β-estradiol (E2), were investigated with a rotating photocatalytic reactor including TiO{sub 2} nanotubes formed on titanium mesh substrates under solar UV irradiation. In the laboratory tests with a rotating type I reactor, synergy effects of the simultaneous photocatalytic reduction and oxidation of inorganic (Cr(VI)) and organic (BPA) pollutants were achieved. Particularly, the concurrent photocatalytic reduction of Cr(VI) and oxidation of BPA was higher under acidic conditions. The enhanced reaction efficiency of both pollutants was attributed to a stronger charge interaction between TiO{sub 2} nanotubes (positive charge) and the anionic form of Cr(VI) (negative charge), which are prevented recombination (electron–hole pair) by the hole scavenging effect of BPA. In the extended outdoor tests with a rotating type II reactor under solar irradiation, the experiment was extended to examine the simultaneous reduction of Cr(VI) in the presence of additional EDCs, such as EE2 and E2 as well as BPA. The findings showed that synergic effect of both photocatalytic reduction and oxidation was confirmed with single-component (Cr(VI) only), two-components (Cr(VI)/BPA, Cr(VI)/EE2, and Cr(VI)/E2), and four-components (Cr(VI)/BPA/EE2/E2) under various solar irradiation conditions.

  4. Ecological risk assessment associated to the removal of endocrine-disrupting parabens and benzophenone-4 in wastewater treatment.

    Science.gov (United States)

    Molins-Delgado, Daniel; Díaz-Cruz, M Silvia; Barceló, Damià

    2016-06-05

    The occurrence of four widely used and endocrine disrupting parabens (PBs) (methylparaben, propylparaben, butylparaben and benzylparaben) and a polar UV filter (benzophenone-4) were determined in influent and effluent wastewater from the 19 major wastewater treatment plants (WWTPs) of Catalonia, Spain. For their analysis an on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry (SPE-HPLC-MS/MS) method was developed and validated. Laboratory analysis revealed high levels for both PBs and BP4, with maximum concentrations of 5700ngL(-1) and 1806ngL(-1), respectively, in influent samples, and 137ngL(-1) and 1080ngL(-1), respectively in effluent wastewaters. Removal rates (RE%) for the target compounds in each WWTPs were calculated. RE% for parabens were almost 100%, whereas for BP4 values where in the range 5-91%. The half-life time (t1/2), hydraulic retention time (HRT), and annual mass load (ML) for each facility was estimated. Results indicated that there was no clear influence of HRT on the RE% of BP4. MLs for BP4 were in the range 0.9-110.1kgy(-1), with the highest values in the most populated areas. Finally, a risk assessment, estimated in terms of hazard quotients (HQs), was carried out for aquatic biota. HQs for the target compounds in effluent wastewaters indicated a negligible effect, whereas for some influent wastewaters' HQs pointed out that some species are at risk. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Endocrine disrupting pesticides impair the neuroendocrine regulation of reproductive behaviors and secondary sexual characters of red munia (Amandava amandava).

    Science.gov (United States)

    Pandey, Surya Prakash; Tsutsui, Kazuyoshi; Mohanty, Banalata

    2017-05-01

    The exposure effects of two endocrine disrupting pesticides (EDPs), mancozeb/MCZ and imidacloprid/IMI of the group dithiocarbamate and neonicotinoid respectively, on reproductive behaviors and secondary sexual characters have been studied in a seasonally breeding wildlife bird, red munia (Amandava amandava). Adult male birds were exposed to both the pesticides individually (0.25% LD 50 of each) as well as co-exposed (MIX-I: 0.25% LD 50 of each and MIX-II: 0.5% LD 50 of each) through food for 30d in preparatory (July-August) and breeding (September-October) phase of reproductive cycle. Singing and pairing patterns started decreasing from 2nd week to complete disappearance during 4th week of pesticides exposures at both the phases of reproductive cycles. Similar trend was observed in the disappearance of spots on the plumage as well as color of both plumage and beak which turned black/gray from red. Pesticides caused impairment of the lactotropic as well as hypothalamic-pituitary-testicular (HPT) axes as there was increased plasma PRL and decreased LH, FSH and testosterone levels. Testicular expressions of GnRH and androgen receptor/AR were significantly decreased but that of GnIH significantly increased as compared to control. Significant differences among individually- and co-exposed groups were also present. Abnormalities in sexual behaviors and secondary sexual characteristics could be linked to inhibition of HPT axis and/or direct toxicity at the level of hypothalamus, pituitary and testis. In addition, pesticide-induced hyperprolactinemia as well as impaired thyroid hormones might have also affected maintenance of reproductive behaviors. On co-exposures, the more distinct impairments might be due to cumulative toxicity of pesticides. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Testosterone conjugating activities in invertebrates: are they targets for endocrine disruptors?

    Science.gov (United States)

    Janer, G; Sternberg, R M; LeBlanc, G A; Porte, C

    2005-02-10

    Testosterone conjugation activities, microsomal acyltransferases and cytosolic sulfotransferases, were investigated in three invertebrate species, the gastropod Marisa cornuarietis, the amphipod Hyalella azteca, and the echinoderm Paracentrotus lividus. The goals of the study were to characterize steroid conjugation pathways in different invertebrate phyla and to assess the susceptibility of those processes to disruption by environmental chemicals. All three species exhibited palmitoyl-CoA: testosterone acyltransferase activity (ATAT) in the range of 100-510 pmol/min/mg protein. Despite similarities in specific activities, kinetic studies indicated that ATAT had a higher affinity for testosterone but a lower V(max) in M. cornuarietis than in P. lividus, and intermediate values were found for H. azteca. In contrast, the activity of testosterone sulfotransferase (SULT) was rather low (0.05-0.18 pmol/min/mg protein) in M. cornuarietis and H. azteca. The low activity precluded kinetic analyses and inhibition studies with these species. P. lividus digestive tube displayed high SULT activity (50-170 pmol/min/mg protein) at moderate testosterone concentrations, but was inhibited at high testosterone concentrations. The interference of model pollutants (triphenyltin (TPT), tributyltin (TBT), and fenarimol) with these conjugation pathways was investigated in vitro. Both TPT and TBT (100 microM) inhibited ATAT in P. lividus (68 and 42% inhibition, respectively), and appeared to act as non-competitive inhibitors. ATAT activity in M. cornuarietis was less affected by organotins, and a significant inhibition (20% inhibition) was detected only with TBT. Fenarimol (100 microM) did not affect ATAT in any of the species tested. Sulfation of testosterone was suppressed by the organotins as well as fenarimol when using cytosolic preparations from P. lividus. These results demonstrated the existence of interphyla differences in testosterone conjugation, and revealed that these

  7. Contributions of Abiotic and Biotic Processes to the Aerobic Removal of Phenolic Endocrine-Disrupting Chemicals in a Simulated Estuarine Aquatic Environment.

    Science.gov (United States)

    Yang, Lihua; Cheng, Qiao; Tam, Nora F Y; Lin, Li; Su, Weiqi; Luan, Tiangang

    2016-04-19

    The contributions of abiotic and biotic processes in an estuarine aquatic environment to the removal of four phenolic endocrine-disrupting chemicals (EDCs) were evaluated through simulated batch reactors containing water-only or water-sediment collected from an estuary in South China. More than 90% of the free forms of all four spiked EDCs were removed from these reactors at the end of 28 days under aerobic conditions, with the half-life of 17α-ethynylestradiol (EE2) longer than those of propylparaben (PP), nonylphenol (NP) and 17β-estradiol (E2). The interaction with dissolved oxygen contributed to NP removal and was enhanced by aeration. The PP and E2 removal was positively influenced by adsorption on suspended particles initially, whereas abiotic transformation by estuarine-dissolved matter contributed to their complete removal. Biotic processes, including degradation by active aquatic microorganisms, had significant effects on the removal of EE2. Sedimentary inorganic and organic matter posed a positive effect only when EE2 biodegradation was inhibited. Estrone (E1), the oxidizing product of E2, was detected, proving that E2 was removed by the naturally occurring oxidizers in the estuarine water matrixes. These results revealed that the estuarine aquatic environment was effective in removing free EDCs, and the contributions of abiotic and biotic processes to their removal were compound specific.

  8. Evaluation of ecotoxicological effects of endocrine disrupters during a four-year survey of the Mediterranean population of swordfish (Xiphias gladius).

    Science.gov (United States)

    Fossi, M Cristina; Casini, Silvia; Marsili, Letizia; Ancora, Stefania; Mori, Gabriele; Neri, Giovanni; Romeo, Teresa; Ausili, Antonella

    2004-01-01

    In this project we investigated the ecotoxicological effects of endocrine disrupters in a four-year survey of the Mediterranean population of swordfish (Xiphias gladius). In the Mediterranean environment, top predators, such as swordfish, accumulate high concentrations of polyhalogenated aromatic hydrocarbons (PHAHs) and toxic metals, potentially incurring high toxicological risk. The effects of organochlorines and trace elements (Hg, Cd and Pb) in 192 swordfish specimens, caught in the Strait of Messina, Sicily, Italy, were investigated using vitellogenin (Vtg), zona radiata proteins (Zrp) and CYP1A (BPMO, EROD) activities. Vtg and Zrp were found to be dramatically induced in some adult male specimens, suggesting that this species is highly exposed to estrogens in the Mediterranean Sea. A role of organochlorines in this induction phenomenon is suggested by the statistically significant correlations between Zrp in plasma and PCB concentrations in muscle (p<0.032) and Vtg in plasma and PCB concentrations in liver (p<0.034) of male specimens. Levels of trace elements in liver were in the following ranges: Hg 1-22, Cd 1-28 and Pb 0-1.6 ppm d.w. These data indicate potential reproductive alterations in large pelagic fish and suggest the need for continuous monitoring to avoid reductions in the population of this fish species of high commercial and ecological interest.

  9. Reversibility of endocrine disruption in zebrafish (Danio rerio) - comparison of different effect levels

    DEFF Research Database (Denmark)

    Baumann, Lisa; Holbech, Henrik; Schiller, V.S.

    -term effects on populations, it is essential to know whether such EDC-related effects are reversible. Three different substances selected for different modes of action were tested for their long-term impact on sex ratio, gonadal development, vitellogenin (VTG) induction and aromatase activity in zebrafish...... to estrogens. All compounds have previously been shown to cause striking effects in zebrafish, but recovery has never been studied in detail. In order to test whether EDC-related effects are reversible, an exposure scenario limited to 60 d was followed by (a) a recovery period of 40 d or (b) continued exposure...... for another 40 d. Four effects levels were examined: (1) population level: sex ratio; (2) organism level: growth; (3) organ/tissue level: histology of gonads (light microscopy); and (4) molecular level: vitellogenin induction (ELISA) and aromatase expression (RTq-PCR). Results show clear correlation...

  10. Analysis of endocrine disruption effect of Roundup® in adrenal gland of male rats

    Directory of Open Access Journals (Sweden)

    Aparamita Pandey

    2015-01-01

    Full Text Available The effect of Roundup® on adrenal gland steroidogenesis and signaling pathway associated with steroid production was investigated. Doses of 10, 50, 100 and 250 mg/kg bw/d Roundup® were administered for two weeks to adult male rats. The 10 mg/kg bw/d dose which reduced circulatory corticosterone levels, but did not change food consumption and body weight, was selected for further study. The expression of cholesterol receptor (low density lipoprotein receptor, de novo cholesterol synthesis enzyme (3-hydroxy-3-methylglutaryl-coenzyme A synthase, hormone-sensitive lipase, steroidogenic acute regulatory protein (StAR mRNA and phosphorylated form was decreased. Adrenocorticotropic hormone receptor (ACTH, melanocortin-2 receptor, expression was not changed but circulatory ACTH levels and adrenal cortex protein kinase A (PKA activity were reduced. Surprisingly, exogenous ACTH treatment rescued steroidogenesis in Roundup®-treated animals. Apoptosis was evident at 250 mg/kg bw/d, but not at 10 mg/kg bw/d dose. These results suggest that Roundup® may be inhibitory to hypothalamic–pituitary axis leading to reduction in cyclic adenosine monophosphate (cAMP/PKA pathway, StAR phosphorylation and corticosterone synthesis in the adrenal tissue.

  11. Managing the effects of endocrine disrupting chemicals in wastewater-impacted streams

    Science.gov (United States)

    Bradley, Paul M.; Kolpin, Dana W.

    2013-01-01

    eventually find its way to the environment. Not surprisingly given the direct link to profits, manufacturers intensely investigate and routinely document the potential benefits of new chemicals and chemical products. In contrast, the environmental risks associated with chemical production and uses are often investigated less intensely and are poorly communicated. An imbalance in the risk-benefit analysis of any synthetic chemical substance or naturally occurring chemical, which presence and concentration in the environment largely reflects human activities and management, is a particular concern owing to the fundamental link between chemistry and biology. Biological organisms are intrinsically a homeostatic balance of innumerable internal and external chemical interactions and, thus, inherently sensitive to changes in the external chemical environment.

  12. Managing the impacts of endocrine disrupting chemicals in wastewater-impacted streams

    Science.gov (United States)

    Journey, Celeste; Bradley, Paul M.; Kolpin, Dana W.; Bradley, Paul M.

    2013-01-01

    commercial production or use will eventually find its way to the environment [5]. Not surprisingly given the direct link to profits, manufacturers intensely investigate and routinely document the potential benefits of new chemicals and chemical products. In contrast, the environmental risks associated with chemical production and uses are often investigated less intensely and are poorly communicated. An imbalance in the risk-benefit analysis of any synthetic chemical substance or naturally occurring chemical, which presence and concentration in the environment largely reflects human activities and management, is a particular concern owing to the fundamental link between chemistry and biology. Biological organisms are intrinsically a homeostatic balance of innumerable internal and external chemical interactions and, thus, inherently sensitive to changes in the external chemical environment.

  13. Co-Formulants in Glyphosate-Based Herbicides Disrupt Aromatase Activity in Human Cells below Toxic Levels

    Directory of Open Access Journals (Sweden)

    Nicolas Defarge

    2016-02-01

    Full Text Available Pesticide formulations contain declared active ingredients and co-formulants presented as inert and confidential compounds. We tested the endocrine disruption of co-formulants in six glyphosate-based herbicides (GBH, the most used pesticides worldwide. All co-formulants and formulations were comparably cytotoxic well below the agricultural dilution of 1% (18–2000 times for co-formulants, 8–141 times for formulations, and not the declared active ingredient glyphosate (G alone. The endocrine-disrupting effects of all these compounds were measured on aromatase activity, a key enzyme in the balance of sex hormones, below the toxicity threshold. Aromatase activity was decreased both by the co-formulants alone (polyethoxylated tallow amine—POEA and alkyl polyglucoside—APG and by the formulations, from concentrations 800 times lower than the agricultural dilutions; while G exerted an effect only at 1/3 of the agricultural dilution. It was demonstrated for the first time that endocrine disruption by GBH could not only be due to the declared active ingredient but also to co-formulants. These results could explain numerous in vivo results with GBHs not seen with G alone; moreover, they challenge the relevance of the acceptable daily intake (ADI value for GBHs exposures, currently calculated from toxicity tests of the declared active ingredient alone.

  14. Co-Formulants in Glyphosate-Based Herbicides Disrupt Aromatase Activity in Human Cells below Toxic Levels

    Science.gov (United States)

    Defarge, Nicolas; Takács, Eszter; Lozano, Verónica Laura; Mesnage, Robin; Spiroux de Vendômois, Joël; Séralini, Gilles-Eric; Székács, András

    2016-01-01

    Pesticide formulations contain declared active ingredients and co-formulants presented as inert and confidential compounds. We tested the endocrine disruption of co-formulants in six glyphosate-based herbicides (GBH), the most used pesticides worldwide. All co-formulants and formulations were comparably cytotoxic well below the agricultural dilution of 1% (18–2000 times for co-formulants, 8–141 times for formulations), and not the declared active ingredient glyphosate (G) alone. The endocrine-disrupting effects of all these compounds were measured on aromatase activity, a key enzyme in the balance of sex hormones, below the toxicity threshold. Aromatase activity was decreased both by the co-formulants alone (polyethoxylated tallow amine—POEA and alkyl polyglucoside—APG) and by the formulations, from concentrations 800 times lower than the agricultural dilutions; while G exerted an effect only at 1/3 of the agricultural dilution. It was demonstrated for the first time that endocrine disruption by GBH could not only be due to the declared active ingredient but also to co-formulants. These results could explain numerous in vivo results with GBHs not seen with G alone; moreover, they challenge the relevance of the acceptable daily intake (ADI) value for GBHs exposures, currently calculated from toxicity tests of the declared active ingredient alone. PMID:26927151

  15. Exposure to modern, widespread environmental endocrine disrupting chemicals and their effect on the reproductive potential of women: an overview of current epidemiological evidence.

    Science.gov (United States)

    Karwacka, Anetta; Zamkowska, Dorota; Radwan, Michał; Jurewicz, Joanna

    2017-07-31

    Growing evidence indicates that exposure to widespread, environmental contaminants called endocrine disruptors (EDCs) negatively affects animal and human reproductive health and has been linked to several diseases including infertility. This review aims to evaluate the impact of environmental exposure to endocrine disrupting chemicals [phthalates, parabens, triclosan, bisphenol A (BPA), organochlorine (PCBs) and perfluorinated (PFCs) compounds] on the reproductive potential among women, by reviewing most recently published literature. Epidemiological studies focusing on EDCs exposure and reproductive potential among women for the last 16 years were identified by a search of the PUBMED, MEDLINE, EBSCO and TOXNET literature databases. The results of the presented studies show that exposure to EDCs impacts the reproductive potential in women, measured by ovarian reserve and by assisted reproductive technology outcomes. Exposure to environmental endocrine disrupting chemicals decrease: (i) oestradiol levels (BPA); (ii) anti-Müllerian hormone concentrations (PCBs); (iii) antral follicle count (BPA, parabens, phthalates); (iv) oocyte quality (BPA, triclosan, phthalates, PCBs); (v) fertilization rate (PFCs, PCBs); (vi) implantation (BPA, phthalates, PCBs); (vii) embryo quality (triclosan, PCBs, BPA); (viii) rate of clinical pregnancy and live births (parabens, phthalates). The studies were mostly well-designed and used prospective cohorts with the exposure assessment based on the biomarker of exposure. Considering the suggested health effects, more epidemiological data is urgently needed to confirm the presented findings.

  16. On the rumors about the silent spring: review of the scientific evidence linking occupational and environmental pesticide exposure to endocrine disruption health effects

    Directory of Open Access Journals (Sweden)

    Cocco Pierluigi

    2002-01-01

    Full Text Available Occupational exposure to some pesticides, and particularly DBCP and chlordecone, may adversely affect male fertility. However, apart from the therapeutic use of diethylstilbestrol, the threat to human reproduction posed by "endocrine disrupting" environmental contaminants has not been supported by epidemiological evidence thus far. As it concerns other endocrine effects described in experimental animals, only thyroid inhibition following occupational exposure to amitrole and mancozeb has been confirmed in humans. Cancer of the breast, endometrium, ovary, prostate, testis, and thyroid are hormone-dependent, which fostered research on the potential risk associated with occupational and environmental exposure to the so-called endocrine-disrupting pesticides. The most recent studies have ruled out the hypothesis of DDT derivatives as responsible for excess risks of cancer of the reproductive organs. Still, we cannot exclude a role for high level exposure to o,p'-DDE, particularly in post-menopausal ER+ breast cancer. On the other hand, other organochlorine pesticides and triazine herbicides require further investigation for a possible etiologic role in some hormone-dependent cancers.

  17. In vitro - in vivo correlations for endocrine activity of a mixture of currently used pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Taxvig, Camilla, E-mail: camta@food.dtu.dk [Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg (Denmark); Hadrup, Niels; Boberg, Julie; Axelstad, Marta [Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg (Denmark); Bossi, Rossana [Department of Environmental Science, Aarhus University, DK-4000 Roskilde (Denmark); Bonefeld-Jørgensen, Eva Cecilie [Department of Public Health, University of Aarhus, DK-8000 Aarhus C (Denmark); Vinggaard, Anne Marie [Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg (Denmark)

    2013-11-01

    Two pesticide mixtures were investigated for potential endocrine activity. Mix 3 consisted of bitertanol, propiconazole, and cypermethrin, and Mix 5 included malathion and terbuthylazine in addition to the three pesticides in Mix 3. All five single pesticides and the two mixtures were investigated for their ability to affect steroidogenesis in vitro in H295R cells. The pesticides alone and both mixtures affected steroidogenesis with both mixtures causing increase in progesterone and decrease in testosterone. For Mix 5 an increase in estradiol was seen as well, indicating increased aromatase activity. The two mixtures were also investigated in pregnant rats dosed from gestational day 7 to 21, followed by examination of dams and fetuses. Decreased estradiol and reduced placental testosterone were seen in dams exposed to Mix 5. Also a significant increase in aromatase mRNA-levels in female adrenal glands was found for Mix5. However, either of the two mixtures showed any effects on fetal hormone levels in plasma or testis, or on anogenital distance. Overall, potential aromatase induction was found for Mix 5 both in vitro and in vivo, but not for Mix 3, an effect likely owed to terbuthylazine in Mix 5. However, the hormonal responses in vitro were only partly reflected in vivo, probably due to some toxicokinetic issues, as the pesticide levels in the amniotic fluid also were found to be negatively affected by the number of compounds present in the mixtures. Nonetheless, the H295R assay gives hints on conceivable interference with steroidogenesis, thus generating hypotheses on in vivo effects. - Highlights: • The study examines the endocrine disrupting potential of mixtures of pesticides. • All single pesticides and both mixtures affected steroidogenesis in vitro. • Potential aromatase induction was found for Mix 5 both in vitro and in vivo. • The hormonal responses in vitro were only partly reflected in vivo.

  18. Endocrine Disrupting Chemicals (EDCs)

    Science.gov (United States)

    ... and Food Storage Materials Example EDCs: BPA, Phthalates, Phenol Electronics and Building Materials Example EDCs: Brominated Flame ... Of the hundreds of thousands of man-made chemicals, it is estimated that about 1,000 ... properties. Global production of plastics grew from 50 million ...

  19. Improvement of a two-stage carcinogenesis model to detect modifying effects of endocrine disrupting chemicals on thyroid carcinogenesis in rats.

    Science.gov (United States)

    Takagi, Hisayoshi; Mitsumori, Kunitoshi; Onodera, Hiroshi; Nasu, Masahiro; Tamura, Toru; Yasuhara, Kazuo; Takegawa, Kiyoshi; Hirose, Masao

    2002-04-08

    In order to improve the sensitivity of our previously established thyroid carcinogenesis model and to clarify whether endocrine disrupting chemicals with weak estrogenic activity have any modifying effects on the development of thyroid proliferative lesions, 6-week-old female castrated F344 rats were first given a single subcutaneous injection of 2000 mg/kg body weight of N-bis(2-hydroxypropyl)nitrosamine. From 1 week later, they received diets with: no supplement (basal diet (BD) group); cholesterol pellets containing 0.5 mg 17 beta-estradiol 3-benzoate (EB); or diet admixed with 1000 ppm methoxychlor (MXC) or 10,000 ppm bisphenol A (BPA) for 20 weeks. Furthermore, additional groups were administered 200 ppm sulfadimethoxine (SDM) in the drinking water simultaneously with the BD, EB, MXC or BPA treatments. Thyroid follicular cell hyperplasias, adenomas and/or carcinomas were induced only in the EB+SDM group, the incidences of non-malignant lesions being significantly increased, as compared with the BD+SDM group values. Furthermore, the serum level of thyroid stimulating hormone (TSH) was significantly increased in this group. No significant variation in quantitative values for thyroid proliferative lesions or TSH levels were observed in the other treated groups. The results of the present study convincingly indicate that EB, with strong estrogenic activity, but not MXC and BPA, with weak estrogenic activities, exerts promoting effects on thyroid carcinogenesis in rats. The present modified rat two-stage thyroid carcinogenesis model appears to have advantages over our previous model for screening purposes.

  20. Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment

    Energy Technology Data Exchange (ETDEWEB)

    Rochman, Chelsea M., E-mail: cmrochman@ucdavis.edu; Kurobe, Tomofumi; Flores, Ida; Teh, Swee J.

    2014-09-15

    Plastic debris is associated with several chemical pollutants known to disrupt the functioning of the endocrine system. To determine if the exposure to plastic debris and associated chemicals promotes endocrine-disrupting effects in fish, we conducted a chronic two-month dietary exposure using Japanese medaka (Oryzias latipes) and environmentally relevant concentrations of microplastic (< 1 mm) and associated chemicals. We exposed fish to three treatments: a no-plastic (i.e. negative control), virgin-plastic (i.e. virgin polyethylene pre-production pellets) and marine-plastic treatment (i.e. polyethylene pellets deployed in San Diego Bay, CA for 3 months). Altered gene expression was observed in male fish exposed to the marine-plastic treatment, whereas altered gene expression was observed in female fish exposed to both the marine- and virgin-plastic treatment. Significant down-regulation of choriogenin (Chg H) gene expression was observed in males and significant down-regulation of vitellogenin (Vtg I), Chg H and the estrogen receptor (ERα) gene expression was observed in females. In addition, histological observation revealed abnormal proliferation of germ cells in one male fish from the marine-plastic treatment. Overall, our study suggests that the ingestion of plastic debris at environmentally relevant concentrations may alter endocrine system function in adult fish and warrants further research. - Highlights: • We saw down-regulation of Chg H in males exposed to marine plastic. • We saw down-regulation of Vtg I, Chg H and ERα in females exposed to plastic. • We saw abnormal proliferation of germ cells in a male exposed to marine plastic. • Our results suggest that the ingestion of plastic may alter endocrine system function.

  1. Partitions and vertical profiles of 9 endocrine disrupting chemicals in an estuarine environment: Effect of tide, particle size and salinity.

    Science.gov (United States)

    Yang, Lihua; Cheng, Qiao; Lin, Li; Wang, Xiaowei; Chen, Baowei; Luan, Tiangang; Tam, Nora F Y

    2016-04-01

    Phenolic endocrine disrupting chemicals (EDCs) in an estuarine water column in a depth profile of five water layers (0.05 D, 0.20 D, 0.60 D, 0.80 D and 0.90 D, D = Depth, 10.7 ± 0.7 m) and their corresponding environmental parameters (tide, salinity and particle size) were investigated over a year. Water sample from each layer was further separated into three fractions, which were dissolved, coarse (SPM-D, Φ ≥ 2.7 μm) and fine (SPM-F, 2.7 μm > Φ ≥ 0.7 μm) suspended particulate matters. Most of EDCs in the water column were presented in the dissolved fraction. Vertical profiles of salinity fluctuations showed that the upper water layer was most influenced by upstream flow. Estriol (E3), mestranol (Mes) and 17α-ethynylestradiol (EE2) concentrations were significantly higher in ebb tide than in flood tide, indicating that EDCs mainly came from terrestrial source, the upstream flow. Dissolved EDCs also exhibited high levels in the surface layer (0.05 D) due to the upstream source and atmosphere deposition, followed by the bottom layer (0.90 D) owing to the re-suspension of EDCs-containing sediment. Compared to the dissolved phase, the contents of BPA, Mes and EE2 in the solid phase were affected by particle size and exhibited a trend of SPM-F > SPM-D > sediment. On the other hand, the concentrations of octylphenol (OP) and t-nonylphenol (NP), the degradation products from common nonionic surfactants, in sediment were higher than those in suspended particles, and NP concentration was higher in flood tide than that in ebb tide. For both SPM-D and SPM-F, their corresponding EDCs concentrations were negatively related to SPM concentrations due to particle concentration effect (PCE). Owing to the "salting-out effect", salinity pushed EDCs from dissolved fraction to particulate or sedimentary phase. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Endocrine disrupters and human health: could oestrogenic chemicals in body care cosmetics adversely affect breast cancer incidence in women?

    Science.gov (United States)

    Harvey, Philip W; Darbre, Philippa

    2004-01-01

    In the decade that has elapsed since the suggestion that exposure of the foetal/developing male to environmental oestrogens could be the cause of subsequent reproductive and developmental effects in men, there has been little definitive research to provide conclusions to the hypothesis. Issues of exposure and low potency of environmental oestrogens may have reduced concerns. However, the hypothesis that chemicals applied in body care cosmetics (including moisturizers, creams, sprays or lotions applied to axilla or chest or breast areas) may be affecting breast cancer incidence in women presents a different case scenario, not least in the consideration of the exposure issues. The specific cosmetic type is not relevant but the chemical ingredients in the formulations and the application to the skin is important. The most common group of body care cosmetic formulation excipients, namely p-hydroxybenzoic acid esters or parabens, have been shown recently to be oestrogenic in vitro and in vivo and now have been detected in human breast tumour tissue, indicating absorption (route and causal associations have yet to be confirmed). The hypothesis for a link between oestrogenic ingredients in underarm and body care cosmetics and breast cancer is forwarded and reviewed here in terms of: data on exposure to body care cosmetics and parabens, including dermal absorption; paraben oestrogenicity; the role of oestrogen in breast cancer; detection of parabens in breast tumours; recent epidemiology studies of underarm cosmetics use and breast cancer; the toxicology database; the current regulatory status of parabens and regulatory toxicology data uncertainties. Notwithstanding the major public health issue of the causes of the rising incidence of breast cancer in women, this call for further research may provide the first evidence that environmental factors may be adversely affecting human health by endocrine disruption, because exposure to oestrogenic chemicals through application

  3. Modulation of genotoxicity and endocrine disruptive effects of malathion by dietary honeybee pollen and propolis in Nile tilapia (Oreochromis niloticus

    Directory of Open Access Journals (Sweden)

    Mohamed M.M. Kandiel

    2014-11-01

    Full Text Available The present study aimed at verifying the usefulness of dietary 2.5% bee-pollen (BP or propolis (PROP to overcome the genotoxic and endocrine disruptive effects of malathion polluted water in Oreochromis niloticus (O. niloticus. The acute toxicity test was conducted in O. niloticus in various concentrations (0–8 ppm; mortality rate was assessed daily for 96 h. The 96 h-LC50 was 5 ppm and therefore 1/5 of the median lethal concentration (1 ppm was used for chronic toxicity assessment. In experiment (1, fish (n = 8/group were kept on a diet (BP/PROP or without additive (control and exposed daily to malathion in water at concentration of 5 ppm for 96 h “acute toxicity experiment”. Protective efficiency against the malathion was verified through chromosomal aberrations (CA, micronucleus (MN and DNA-fragmentation assessment. Survival rate in control, BP and PROP groups was 37.5%, 50.0% and 100.0%, respectively. Fish in BP and PROP groups showed a significant (P < 0.05 reduction in the frequency of CA (57.14% and 40.66%, MN (53.13% and 40.63% and DNA-fragmentation (53.08% and 30.00%. In experiment (2, fish (10 males and 5 females/group were kept on a diet with/without BP for 21 days before malathion-exposure in water at concentration of 0 ppm (control or 1 ppm (Exposed for further 10 days “chronic toxicity experiment”. BP significantly (P < 0.05 reduced CA (86.33%, MN (82.22% and DNA-fragmentation (93.11%, prolonged the sperm motility when exposed to 0.01 ppm of pollutant in vitro and increased the estradiol level in females comparing to control. In conclusion, BP can be used as a feed additive for fish prone to be raised in integrated fish farms or cage culture due to its potency to chemo-protect against genotoxicity and sperm-teratogenicity persuaded by malathion-exposure.

  4. Male reproductive disorders, diseases, and costs of exposure to endocrine-disrupting chemicals in the European Union.

    Science.gov (United States)

    Hauser, Russ; Skakkebaek, Niels E; Hass, Ulla; Toppari, Jorma; Juul, Anders; Andersson, Anna Maria; Kortenkamp, Andreas; Heindel, Jerrold J; Trasande, Leonardo

    2015-04-01

    Increasing evidence suggests that endocrine-disrupting chemicals (EDCs) contribute to male reproductive diseases and disorders. To estimate the incidence/prevalence of selected male reproductive disorders/diseases and associated economic costs that can be reasonably attributed to specific EDC exposures in the European Union (EU). An expert panel evaluated evidence for probability of causation using the Intergovernmental Panel on Climate Change weight-of-evidence characterization. Exposure-response relationships and reference levels were evaluated, and biomarker data were organized from carefully identified studies from the peer-reviewed literature to represent European exposure and approximate burden of disease as it occurred in 2010. The cost-of-illness estimation utilized multiple peer-reviewed sources. The expert panel identified low epidemiological and strong toxicological evidence for male infertility attributable to phthalate exposure, with a 40-69% probability of causing 618,000 additional assisted reproductive technology procedures, costing €4.71 billion annually. Low epidemiological and strong toxicological evidence was also identified for cryptorchidism due to prenatal polybrominated diphenyl ether exposure, resulting in a 40-69% probability that 4615 cases result, at a cost of €130 million (sensitivity analysis, €117-130 million). A much more modest (0-19%) probability of causation in testicular cancer by polybrominated diphenyl ethers was identified due to very low epidemiological and weak toxicological evidence, with 6830 potential cases annually and costs of €848 million annually (sensitivity analysis, €313-848 million). The panel assigned 40-69% probability of lower T concentrations in 55- to 64-year-old men due to phthalate exposure, with 24 800 associated deaths annually and lost economic productivity of €7.96 billion. EDCs may contribute substantially to male reproductive disorders and diseases, with nearly €15 billion annual

  5. Neurobehavioral deficits, diseases, and associated costs of exposure to endocrine-disrupting chemicals in the European Union.

    Science.gov (United States)

    Bellanger, Martine; Demeneix, Barbara; Grandjean, Philippe; Zoeller, R Thomas; Trasande, Leonardo

    2015-04-01

    Epidemiological studies and animal models demonstrate that endocrine-disrupting chemicals (EDCs) contribute to cognitive deficits and neurodevelopmental disabilities. The objective was to estimate neurodevelopmental disability and associated costs that can be reasonably attributed to EDC exposure in the European Union. An expert panel applied a weight-of-evidence characterization adapted from the Intergovernmental Panel on Climate Change. Exposure-response relationships and reference levels were evaluated for relevant EDCs, and biomarker data were organized from peer-reviewed studies to represent European exposure and approximate burden of disease. Cost estimation as of 2010 utilized lifetime economic productivity estimates, lifetime cost estimates for autism spectrum disorder, and annual costs for attention-deficit hyperactivity disorder. Setting, Patients and Participants, and Intervention: Cost estimation was carried out from a societal perspective, ie, including direct costs (eg, treatment costs) and indirect costs such as productivity loss. The panel identified a 70-100% probability that polybrominated diphenyl ether and organophosphate exposures contribute to IQ loss in the European population. Polybrominated diphenyl ether exposures were associated with 873,000 (sensitivity analysis, 148,000 to 2.02 million) lost IQ points and 3290 (sensitivity analysis, 3290 to 8080) cases of intellectual disability, at costs of €9.59 billion (sensitivity analysis, €1.58 billion to €22.4 billion). Organophosphate exposures were associated with 13.0 million (sensitivity analysis, 4.24 million to 17.1 million) lost IQ points and 59 300 (sensitivity analysis, 16,500 to 84,400) cases of intellectual disability, at costs of €146 billion (sensitivity analysis, €46.8 billion to €194 billion). Autism spectrum disorder causation by multiple EDCs was assigned a 20-39% probability, with 316 (sensitivity analysis, 126-631) attributable cases at a cost of €199 million

  6. Reproductive toxicity of the endocrine disrupters vinclozolin and bisphenol A in the terrestrial isopod Porcellio scaber (Latreille, 1804).

    NARCIS (Netherlands)

    Lemos, M.F.L.; van Gestel, C.A.M.; Soares, A.M.V.M.

    2010-01-01

    Endocrine Disruptor Compounds (EDCs) have been largely studied concerning their effects on vertebrates. Nevertheless, invertebrates as targets for these chemicals have been neglected and few studies are available. Specifically for edaphic invertebrates, data concerning the effects of EDCs is

  7. Characterization of endocrine disruption potentials of coastal sediments of Taean, Korea employing H295R and MVLN assays-Reconnaissance at 5years after Hebei Spirit oil spill.

    Science.gov (United States)

    Liu, Xiaoshan; Jung, Dawoon; Zhou, Kairu; Lee, Sangwoo; Noh, Kiwan; Khim, Jong Seong; Giesy, John P; Yim, Un Hyuk; Shim, Won Joon; Choi, Kyungho

    2018-02-01

    Endocrine disrupting potentials were assessed for sediment samples collected near Hebei Spirit oil spill (HSOS) site, between December 2007 and January 2012. For comparison, major crude oil (CO) of HSOS, or its weathered form were assessed. Both raw extracts (REs) and their fractionated samples were tested using H295R and MVLNluc bioassays. In H295R cells, REs of crude and weathered oil (WO), and nine of 14 sediments significantly increased E2 levels, which were correlated with the concentrations of PAHs. Steroidogenic disruption potentials of the sediments generally decreased over time. Among silica fractions of all REs, aromatic hydrocarbons (F2) and polar compounds (F3) caused greater E2 levels. While, in MVLN cell bioassay, only three of 14 sediment REs showed estrogen receptor binding potencies, and no temporal trend was observed. In conclusion, oil spill can cause endocrine disruption in the affected ecosystem through steroidogenic alteration for years, and such potencies attenuate over time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Endocrine disruption and oxidative stress in larvae of Chironomus dilutus following short-term exposure to fresh or aged oil sands process-affected water.

    Science.gov (United States)

    Wiseman, S B; Anderson, J C; Liber, K; Giesy, J P

    2013-10-15

    Understanding the toxicity of oil sands process-affected water (OSPW) is a significant issue associated with the production of oil from the Alberta oil sands. OSPW is acutely and chronically toxic to organisms, including larvae of Chironomus dilutus. In this study, fresh OSPW ('WIP-OSPW') was collected from the West In-Pit settling pond and aged OSPW ('FE5-OSPW') was collected from the FE5 experimental reclamation pond, both of which are located on the Syncrude Canada Ltd. lease site near Fort McMurray, Alberta, Canada. Larvae of C. dilutus were exposed to a freshwater control, WIP-OSPW, or FE5-OSPW for 4 or 7 days and survival, growth, and markers of oxidative stress and endocrine disruption were assessed. Survival was not significantly different among treatment groups. Compared to masses of larvae exposed to freshwater, masses of larvae exposed to WIP-OSPW were 49% lesser on day 4 and 62% lesser on day 7. However, organisms exposed to FE5-OSPW did not have significantly lesser masses than controls. Abundances of transcripts of glutathione-s-transferase (gst), catalase (cat), and glutathione peroxidase (gpx), which are important for the response to oxidative stress, were significantly altered in larvae exposed to WIP-OSPW, but not FE5-OSPW, relative to controls. Peroxidation of lipids was greater in larvae exposed to WIP-OSPW, but not FE5-OSPW. Exposure to fresh OSPW might have caused endocrine disruption because abundances of transcripts of the steroid hormone receptors, ultraspiricle protein (usp), ecysteroid receptor (esr), and estrogen related receptor (err) were greater in larvae exposed to WIP-OSPW for 7 days, but not FE5-OSPW. These results suggest that lesser growth of larvae of C. dilutus exposed to fresh OSPW might be due to oxidative stress and disruption of endocrine processes, and that aging of OSPW attenuates these adverse effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Endocrine disruption by environmental gestagens in amphibians - A short review supported by new in vitro data using gonads of Xenopus laevis.

    Science.gov (United States)

    Ziková, Andrea; Lorenz, Claudia; Hoffmann, Frauke; Kleiner, Wibke; Lutz, Ilka; Stöck, Matthias; Kloas, Werner

    2017-08-01

    Endocrine disruption caused by various anthropogenic compounds is of persisting concern, especially for aquatic wildlife, because surface waters are the main sink of these so-called endocrine disruptors (ED). In the past, research focused on (anti)estrogenic, (anti)androgenic, and (anti)thyroidal substances, affecting primarily reproduction and development in vertebrates; however, other endocrine systems might be also targeted by ED. Environmental gestagens, including natural progestogens (e.g. progesterone (P4)) and synthetic progestins used for contraception, are supposed to affect vertebrate reproduction via progesterone receptors. In the present paper, we review the current knowledge about gestagenic effects in amphibians, focussing on reproduction and the thyroid system. In addition, we support the literature data with results of recent in vitro experiments, demonstrating direct impacts of the gestagens levonorgestrel (LNG) and P4 on sexually differentiated gonads of larval Xenopus laevis. The results showed a higher susceptibility of female over male gonads to gestagenic ED. Only in female gonads LNG, but not P4, had direct inhibitory effects on gene expression of steroidogenic acute regulatory protein and P 450 side chain cleavage enzyme, whereas aromatase expression decreased in reaction to both gestagens. Surprisingly, beyond the expected ED effects of gestagens on reproductive physiology in amphibians, LNG drastically disrupted the thyroid system, which resembles direct effects on thyroid glands and pituitary along the pituitary-thyroid axis disturbing metamorphic development. In amphibians, environmental gestagens not only affect the reproductive system but at least LNG can impact also development by disruption of the thyroid system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Transcriptomic, cellular and life-history responses of Daphnia magna chronically exposed to benzotriazoles: Endocrine-disrupting potential and molting effects.

    Science.gov (United States)

    Giraudo, Maeva; Douville, Mélanie; Cottin, Guillaume; Houde, Magali

    2017-01-01

    Benzotriazoles (BZTs) are ubiquitous aquatic contaminants used in a wide range of industrial and domestic applications from aircraft deicers to dishwasher tablets. Acute toxicity has been reported in aquatic organisms for some of the BZTs but their mode of action remains unknown. The objectives of this study were to evaluate the transcriptomic response of D. magna exposed to sublethal doses of 1H-benzotriazole (BTR), 5-methyl-1H-benzotriazole (5MeBTR) and 5-chloro-1H-benzotriazole (5ClBTR) using RNA-sequencing and quantitative real-time PCR. Cellular and life-history endpoints (survival, number of neonates, growth) were also investigated. Significant effects on the molting frequency were observed after 21-d exposure to 5MeBTR and 5ClBTR. No effects on molting frequency were observed for BTR but RNA-seq results indicated that this BZT induced the up-regulation of genes coding for cuticular proteins, which could have compensated the molting disruption. Molting in cladocerans is actively controlled by ecdysteroid hormones. Complementary short-term temporal analysis (4- and 8-d exposure) of the transcription of genes related to molting and hormone-mediated processes indicated that the three compounds had specific modes of action. BTR induced the transcription of genes involved in 20-hydroxyecdysone synthesis, which suggests pro-ecdysteroid properties. 5ClBTR exposure induced protein activity and transcriptional levels of chitinase enzymes, associated with an impact on ecdysteroid signaling pathways, which could explain the decrease in molt frequency. Finally, 5MeBTR seemed to increase molt frequency through epigenetic processes. Overall, results suggested that molting effects observed at the physiological level could be linked to endocrine regulation impacts of BZTs at the molecular level.

  11. Occurrence of endocrine disrupting compounds in five estuaries of the northwest coast of Spain: Ecological and human health impact.

    Science.gov (United States)

    Salgueiro-González, N; Turnes-Carou, I; Viñas-Diéguez, L; Muniategui-Lorenzo, S; López-Mahía, P; Prada-Rodríguez, D

    2015-07-01

    The occurrence and spatial distribution of alkylphenols (4-tert-octylphenol, 4-n-octylphenol, 4-n-nonylphenol, nonylphenol) and bisphenol A were examined in five estuaries along the Northwest coastal area of Spain. As far as we know, no previous works about this topic could be found in the literature. A total of 98 seawater samples were collected during May 2011-July 2012 and analyzed by a highly sensitive DLLME-LC-MS/MS methodology recently developed. Results indicated nonylphenol was the most ubiquitous compound with maximal concentration of 0.337 μg L(-1) (Ría de Vigo). The environmental quality standards (EQS) established in Directive 2013/39/EU for 4-tert-octylphenol were slightly exceeded in some sampling points. Fishing harbours, water treatment plant and industrial discharges were supposed as the main sources of contamination. Low and medium ecological risk was determined in all estuaries. Possible endocrine effects on biota and population were estimated in terms of estrogenic activity and daily intake respectively, and no risk was found in any case. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Contaminant mixtures and repoductive health: Developmental toxicity effects in rats after mixed exposure to environmentally relevant endocrine disrupting chemicals, with focus on effects in females

    DEFF Research Database (Denmark)

    Jacobsen, Pernille Rosenskjold; Christiansen, Sofie; Hass, Ulla

    disorders or later onset adult diseases. However, experimental evidence on the effects of developmental exposure to environmentally relevant endocrine disrupting chemicals in females has been missing attention. Since chemical exposure can affect female reproductive development it is important to investigate...... offspring including anogenital distance (AGD), number of nipples, onset of puberty, measurements of Anti-Müllerian hormone (AMH) and estrous cyclicity at several time point during the animals life span. Results and discussion: Prolonged gestational length was observed in the Pestimix studies at mixture...

  13. Application of biotests for the characterization of exposure pathways for endocrine disrupters from plastics; Anwendung von Biotests zur Charakterisierung der Expositionspfade fuer Umwelthormone aus Kunststoffen

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Martin; Oehlmann, Joerg [Frankfurt Univ., Frankfurt am Main (Germany). Abteilung Aquatische Oekotoxikologie

    2011-12-15

    The present project aims to characterise the exposure pathways for endocrine disruptors from plastic materials. A bioassay-based approach was employed to investigate and characterise the endocrine activity. Migration studies with food packaging and plastic preforms document the leaching of estrogen-like compounds from several types of plastic in the Yeast Estrogen Screen and the E-Screen. Additionally, anti-estrogenic activity was predominant in many samples. The detection of complex migration profiles provides evidence for the leaching of several, diverse-acting endocrine disruptors. Moreover, extracts of plastic food packaging exhibited agonistic activity on the estrogen receptor, retinoid X receptor, and vitamin D receptor. A theoretical exposure assessment for marine molluscs implies that endocrine disruptors from plastic might induce relevant effect in the environment. Within the exemplary investigation of bottled mineral water, 60% of the products were characterised as significantly estrogenic using the YES and E-Screen. These in vitro data point to the plastic packaging being one source of estrogenic contamination. An in vivo study employing the estrogen-sensitive model organism Potamopyrgus antipodarum supports this hypothesis. By using several analytical techniques (GC-MS, LC-MS/MS) we identified several well-known endocrine disruptors in bottled water and the plastic material, e.g. numerous phthalates and phenols. Moreover, potent antagonists of the estrogen and androgen receptor were extracted from bottled water. In a non-target analysis (Orbitrap-MS) a compound with the exact mass of 363.1992 [M+H{sup +}] correlated highly significantly with the biological activity. On the basis of the methods optimised and applied within the project we elaborated a set of aspects that are crucial for the applicability of bioassays to characterise the endocrine activity of complex samples. Employing a bioassay-based approach we provide evidence for the presence and

  14. Association between degradation of pharmaceuticals and endocrine-disrupting compounds and microbial communities along a treated wastewater effluent gradient in Lake Mead.

    Science.gov (United States)

    Blunt, Susanna M; Sackett, Joshua D; Rosen, Michael R; Benotti, Mark J; Trenholm, Rebecca A; Vanderford, Brett J; Hedlund, Brian P; Moser, Duane P

    2017-10-19

    The role of microbial communities in the degradation of trace organic contaminants in the environment is little understood. In this study, the biotransformation potential of 27 pharmaceuticals and endocrine-disrupting compounds was examined in parallel with a characterization of the native microbial community in water samples from four sites variously impacted by urban run-off and wastewater discharge in Lake Mead, Nevada and Arizona, USA. Samples included relatively pristine Colorado River water at the upper end of the lake, nearly pure tertiary-treated municipal wastewater entering via the Las Vegas Wash, and waters of mixed influence (Las Vegas Bay and Boulder Basin), which represented a gradient of treated wastewater effluent impact. Microbial diversity analysis based on 16S rRNA gene censuses revealed the community at this site to be distinct from the less urban-impacted locations, although all sites were similar in overall diversity and richness. Similarly, Biolog EcoPlate assays demonstrated that the microbial community at Las Vegas Wash was the most metabolically versatile and active. Organic contaminants added as a mixture to laboratory microcosms were more rapidly and completely degraded in the most wastewater-impacted sites (Las Vegas Wash and Las Vegas Bay), with the majority exhibiting shorter half-lives than at the other sites or in a bacteriostatic control. Although the reasons for enhanced degradation capacity in the wastewater-impacted sites remain to be established, these data are consistent with the acclimatization of native microorganisms (either through changes in community structure or metabolic regulation) to effluent-derived trace contaminants. This study suggests that in urban, wastewater-impacted watersheds, prior exposure to organic contaminants fundamentally alters the structure and function of microbial communities, which in turn translates into greater potential for the natural attenuation of these compounds compared to more pristine

  15. Association between degradation of pharmaceuticals and endocrine-disrupting compounds and microbial communities along a treated wastewater effluent gradient in Lake Mead

    Science.gov (United States)

    Blunt, Susanna M.; Sackett, Joshua D.; Rosen, Michael R.; Benotti, Mark J.; Trenholm, Rebecca A.; Vanderford, Brett J.; Hedlund, Brian P.; Moser, Duane P.

    2018-01-01

    The role of microbial communities in the degradation of trace organic contaminants in the environment is little understood. In this study, the biotransformation potential of 27 pharmaceuticals and endocrine-disrupting compounds was examined in parallel with a characterization of the native microbial community in water samples from four sites variously impacted by urban run-off and wastewater discharge in Lake Mead, Nevada and Arizona, USA. Samples included relatively pristine Colorado River water at the upper end of the lake, nearly pure tertiary-treated municipal wastewater entering via the Las Vegas Wash, and waters of mixed influence (Las Vegas Bay and Boulder Basin), which represented a gradient of treated wastewater effluent impact. Microbial diversity analysis based on 16S rRNA gene censuses revealed the community at this site to be distinct from the less urban-impacted locations, although all sites were similar in overall diversity and richness. Similarly, Biolog EcoPlate assays demonstrated that the microbial community at Las Vegas Wash was the most metabolically versatile and active. Organic contaminants added as a mixture to laboratory microcosms were more rapidly and completely degraded in the most wastewater-impacted sites (Las Vegas Wash and Las Vegas Bay), with the majority exhibiting shorter half-lives than at the other sites or in a bacteriostatic control. Although the reasons for enhanced degradation capacity in the wastewater-impacted sites remain to be established, these data are consistent with the acclimatization of native microorganisms (either through changes in community structure or metabolic regulation) to effluent-derived trace contaminants. This study suggests that in urban, wastewater-impacted watersheds, prior exposure to organic contaminants fundamentally alters the structure and function of microbial communities, which in turn translates into greater potential for the natural attenuation of these compounds compared to more pristine

  16. Effect of pharmaceutical potential endocrine disruptor compounds on protein disulfide isomerase reductase activity using di-eosin-oxidized-glutathione.

    Directory of Open Access Journals (Sweden)

    Danièle Klett

    Full Text Available BACKGROUND: Protein Disulfide Isomerase (PDI in the endoplasmic reticulum of all cells catalyzes the rearrangement of disulfide bridges during folding of membrane and secreted proteins. As PDI is also known to bind various molecules including hormones such as estradiol and thyroxin, we considered the hypothesis that adverse effects of endocrine-disrupter compounds (EDC could be mediated through their interaction with PDI leading to defects in membrane or secreted proteins. METHODOLOGY/PRINCIPAL FINDINGS: Taking advantage of the recent description of the fluorescence self quenched substrate di-eosin-oxidized-glutathione (DiE-GSSG, we determined kinetically the effects of various potential pharmaceutical EDCs on the in-vitro reductase activity of bovine liver PDI by measuring the fluorescence of the reaction product (E-GSH. Our data show that estrogens (ethynylestradiol and bisphenol-A as well as indomethacin exert an inhibition whereas medroxyprogesteroneacetate and nortestosterone exert a potentiation of bovine PDI reductase activity. CONCLUSIONS: The present data indicate that the tested EDCs could not only affect endocrine target cells through nuclear receptors as previously shown, but could also affect these and all other cells by positively or negatively affecting PDI activity. The substrate DiE-GSSG has been demonstrated to be a convenient substrate to measure PDI reductase activity in the presence of various potential EDCs. It will certainly be usefull for the screening of potential effect of all kinds of chemicals on PDI reductase activity.

  17. A fungal P450 (CYP5136A3 capable of oxidizing polycyclic aromatic hydrocarbons and endocrine disrupting alkylphenols: role of Trp(129 and Leu(324.

    Directory of Open Access Journals (Sweden)

    Khajamohiddin Syed

    Full Text Available The model white rot fungus Phanerochaete chrysosporium, which is known for its versatile pollutant-biodegradation ability, possesses an extraordinarily large repertoire of P450 monooxygenases in its genome. However, the majority of these P450s have hitherto unknown function. Our initial studies using a genome-wide gene induction strategy revealed multiple P450s responsive to individual classes of xenobiotics. Here we report functional characterization of a cytochrome P450 monooxygenase, CYP5136A3 that showed common responsiveness and catalytic versatility towards endocrine-disrupting alkylphenols (APs and mutagenic/carcinogenic polycyclic aromatic hydrocarbons (PAHs. Using recombinant CYP5136A3, we demonstrated its oxidation activity towards APs with varying alkyl side-chain length (C3-C9, in addition to PAHs (3-4 ring size. AP oxidation involves hydroxylation at the terminal carbon of the alkyl side-chain (ω-oxidation. Structure-activity analysis based on a 3D model indicated a potential role of Trp(129 and Leu(324 in the oxidation mechanism of CYP5136A3. Replacing Trp(129 with Leu (W129L and Phe (W129F significantly diminished oxidation of both PAHs and APs. The W129L mutation caused greater reduction in phenanthrene oxidation (80% as compared to W129F which caused greater reduction in pyrene oxidation (88%. Almost complete loss of oxidation of C3-C8 APs (83-90% was observed for the W129L mutation as compared to W129F (28-41%. However, the two mutations showed a comparable loss (60-67% in C9-AP oxidation. Replacement of Leu(324 with Gly (L324G caused 42% and 54% decrease in oxidation activity towards phenanthrene and pyrene, respectively. This mutation also caused loss of activity towards C3-C8 APs (20-58%, and complete loss of activity toward nonylphenol (C9-AP. Collectively, the results suggest that Trp(129 and Leu(324 are critical in substrate recognition and/or regio-selective oxidation of PAHs and APs. To our knowledge, this is the first

  18. Development of a fast liquid chromatography-tandem mass spectrometry method for the determination of endocrine-disrupting compounds in waters.

    Science.gov (United States)

    Di Carro, Marina; Scapolla, Carlo; Liscio, Camilla; Magi, Emanuele

    2010-09-01

    A fast liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS-MS) method was developed to study five endocrine-disrupting compounds (4-n-nonylphenol, bisphenol A, estrone, 17β-estradiol and 17α-ethinylestradiol) in water. Different columns were tested; the chromatographic separation of the analytes was optimized on a Pinnacle DB biphenylic column with a water-acetonitrile gradient elution, which allowed the separation of the selected endocrine-disrupting compounds (EDCs) in less than 6 min. Quantitative analysis was performed in selected reaction monitoring (SRM) mode; two transitions were chosen for each compound, using the most abundant for quantitation. Calibration curves using bisphenol A-d (16) as internal standard were drawn, showing good correlation coefficients (0.9993-0.9998). All figures of merit of the method were satisfactory; limits of detection were in the low pg range for all analytes. The method was then applied to the determination of the analytes in real water samples: to this aim, polar organic chemical integrative samplers (POCIS) were deployed in the influent and in the effluent of a drinking water treatment plant in Liguria (Italy). The EDC level was rather low in the influent and negligible in the outlet, reflecting the expected function of the treatment plant.

  19. Combining passive samplers and biomonitors to evaluate endocrine disrupting compounds in a wastewater treatment plant by LC/MS/MS and bioassay analyses

    Energy Technology Data Exchange (ETDEWEB)

    Liscio, C. [Dipartimento di Chimica e Chimica Industriale, Universita di Genova, via Dodecaneso, 31, 16146 Genova (Italy); Magi, E., E-mail: magie@chimica.unige.i [Dipartimento di Chimica e Chimica Industriale, Universita di Genova, via Dodecaneso, 31, 16146 Genova (Italy); Di Carro, M. [Dipartimento di Chimica e Chimica Industriale, Universita di Genova, via Dodecaneso, 31, 16146 Genova (Italy); Suter, M.J.-F.; Vermeirssen, E.L.M. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Uberlandstrasse 133, 8600 Duebendorf (Switzerland)

    2009-10-15

    Two types of integrative sampling approaches (passive samplers and biomonitors) were tested for their sampling characteristics of selected endocrine disrupting compounds (EDCs). Chemical analyses (LC/MS/MS) were used to determine the amounts of five EDCs (nonylphenol, bisphenol A, estrone, 17beta-estradiol and 17alpha-ethinylestradiol) in polar organic chemical integrative samplers (POCIS) and freshwater mussels (Unio pictorum); both had been deployed in the influent and effluent of a municipal wastewater treatment plant (WWTP) in Genoa, Italy. Estrogenicity of the POCIS samples was assessed using the yeast estrogen screen (YES). Estradiol equivalent values derived from the bioassay showed a positive correlation with estradiol equivalents calculated from chemical analyses data. As expected, the amount of estrogens and EEQ values in the effluent were lower than those in the influent. Passive sampling proved to be the preferred method for assessing the presence of these compounds since employing mussels had several disadvantages both in sampling efficiency and sample analyses. - Passive sampling and biomonitoring were used to determine the amounts of endocrine disrupting compounds in wastewaters.

  20. Current limitations and recommendations to improve testing for the environmental assessment of endocrine active substances

    Science.gov (United States)

    Coady, Katherine K.; Biever, Ronald C.; Denslow, Nancy D.; Gross, Melanie; Guiney, Patrick D.; Holbech, Henrik; Karouna-Renier, Natalie K.; Katsiadaki, Ioanna; Krueger, Hank; Levine, Steven L.; Maack, Gerd; Williams, Mike; Wolf, Jeffrey C.; Ankley, Gerald T.

    2017-01-01

    In the present study, existing regulatory frameworks and test systems for assessing potential endocrine active chemicals are described, and associated challenges are discussed, along with proposed approaches to address these challenges. Regulatory frameworks vary somewhat across geographies, but all basically evaluate whether a chemical possesses endocrine activity and whether this activity can result in adverse outcomes either to humans or to the environment. Current test systems include in silico, in vitro, and in vivo techniques focused on detecting potential endocrine activity, and in vivo tests that collect apical data to detect possible adverse effects. These test systems are currently designed to robustly assess endocrine activity and/or adverse effects in the estrogen, androgen, and thyroid hormone signaling pathways; however, there are some limitations of current test systems for evaluating endocrine hazard and risk. These limitations include a lack of certainty regarding: 1) adequately sensitive species and life stages; 2) mechanistic endpoints that are diagnostic for endocrine pathways of concern; and 3) the linkage between mechanistic responses and apical, adverse outcomes. Furthermore, some existing test methods are resource intensive with regard to time, cost, and use of animals. However, based on recent experiences, there are opportunities to improve approaches to and guidance for existing test methods and to reduce uncertainty. For example, in vitro high-throughput screening could be used to prioritize chemicals for testing and provide insights as to the most appropriate assays for characterizing hazard and risk. Other recommendations include adding endpoints for elucidating connections between mechanistic effects and adverse outcomes, identifying potentially sensitive taxa for which test methods currently do not exist, and addressing key endocrine pathways of possible concern in addition to those associated with estrogen, androgen, and thyroid

  1. Occurrence of Endocrine Active Compounds and Biological Responses in the Mississippi River - Study Design and Data, June through August 2006

    Science.gov (United States)

    Lee, Kathy E.; Yaeger, Christine S.; Jahns, Nathan D.; Schoenfuss, Heiko L.

    2008-01-01

    Concern that selected chemicals in the environment may act as endocrine active compounds in aquatic ecosystems is widespread; however, few studies have examined the occurrence of endocrine active compounds and identified biological markers of endocrine disruption such as intersex occurrence in fish longitudinally in a river system. This report presents environmental data collected and analyzed by the U.S. Geological Survey, Minnesota Pollution Control Agency and St. Cloud State University as part of an integrated biological and chemical study of endocrine disruption in fish in the Mississippi River. Data were collected from water, bed sediment, and fish at 43 sites along the river from the headwaters at Lake Itasca to 14 miles downstream from Brownsville, Minnesota during June through August 2006. Twenty-four individual compounds were detected in water samples, with cholesterol, atrazine, N,N-diethyl-meta-toluamide, metolachlor, and hexahydrohexamethylcyclopentabenzopyran detected most frequently (in at least 10 percent of the samples). The number of compounds detected in water per site ranged from 0 to 8. Forty individual compounds were detected in bed-sediment samples. The most commonly detected compounds (in at least 50 percent of the samples) were indole, beta-sitosterol, cholesterol, beta-stigmastanol, 3-methyl-1H-indole, p-cresol, pyrene, phenol, fluoranthene, 3-beta coprostanol, benzo[a]pyrene, acetophenone, and 2,6-dimethylnaphthalene. The total number of detections in bed sediment (at a site) ranged from 3 to 31. The compounds NP1EO, NP2EO, and 4-nonylphenol were detected in greater than 10 percent of the samples. Most (80 percent) female fish collected had measurable concentrations of vitellogenin. Vitellogenin also was detected in 62, 63, and 33 percent of male carp, smallmouth bass, and redhorse, respectively. The one male walleye sample plasma sample analyzed had a vitellogenin detection. Vitellogenin concentrations were lower in male fish (not

  2. The evolutionary consequences of disrupted male mating signals: an agent-based modelling exploration of endocrine disrupting chemicals in the guppy.

    Directory of Open Access Journals (Sweden)

    Alistair McNair Senior

    Full Text Available Females may select a mate based on signalling traits that are believed to accurately correlate with heritable aspects of male quality. Anthropogenic actions, in particular chemicals released into the environment, are now disrupting the accuracy of mating signals to convey information about male quality. The long-term prediction for disrupted mating signals is most commonly loss of female preference. Yet, this prediction has rarely been tested using quantitative models. We use agent-based models to explore the effects of rapid disruption of mating signals. In our model, a gene determines survival. Males signal their level of genetic quality via a signal trait, which females use to select a mate. We allowed this system of sexual selection to become established, before introducing a disruption between the male signal trait and quality, which was similar in nature to that induced by exogenous chemicals. Finally, we assessed the capacity of the system to recover from this disruption. We found that within a relatively short time frame, disruption of mating signals led to a lasting loss of female preference. Decreases in mean viability at the population-level were also observed, because sexual-selection acting against newly arising deleterious mutations was relaxed. The ability of the population to recover from disrupted mating signals was strongly influenced by the mechanisms that promoted or maintained genetic diversity in traits under sexual selection. Our simple model demonstrates that environmental perturbations to the accuracy of male mating signals can result in a long-term loss of female preference for those signals within a few generations. What is more, the loss of this preference can have knock-on consequences for mean population fitness.

  3. Utilization of cross-linked laccase aggregates in a perfusion basket reactor for the continuous elimination of endocrine-disrupting chemicals.

    Science.gov (United States)

    Cabana, Hubert; Jones, J Peter; Agathos, Spiros N

    2009-04-15

    A perfusion basket reactor (BR) was developed for the continuous utilization of insolubilized laccase as cross-linked enzyme aggregates (CLEAs). The BR consisted of an unbaffled basket made of a metallic filtration module filled with CLEAs and continuously agitated by a 3-blade marine propeller. The agitation conditions influenced both the apparent laccase activity in the reactor and the stability of the biocatalyst. Optimal laccase activity was obtained at a rotational speed of 12.5 rps and the highest stability was reached at speeds of 1.7 rps or lower. The activity and stability of the biocatalyst were affected drastically upon the appearance of vortices in the reaction medium. This reactor was used for the continuous elimination of the endocrine disrupting chemicals (EDCs) nonylphenol (NP), bisphenol A (BPA), and triclosan (TCS). Optimization of EDC elimination by laccase CLEAs as a function of temperature and pH was achieved by response surface methodology using a central composite factorial design. The optimal conditions of pH and temperature were, respectively, 4.8 and 40.3 degrees C for the elimination of p353NP (a branched isomer of NP), 4.7 and 48.0 degrees C for BPA, and 4.9 and 41.2 degrees C for TCS. Finally, the BR was used for the continuous elimination of these EDCs from a 5 mg L(-1) aqueous solution using 1 mg of CLEAs at pH 5 and room temperature. Our results showed that at least 85% of these EDCs could be eliminated with a hydraulic retention time of 325 min. The performances of the BR were quite stable over a 7-day period of continuous treatment. Furthermore, this system could eliminate the same EDCs from a 100 mg L(-1) solution. Finally, a mathematical model combining the Michaelis-Menten kinetics of the laccase CLEAs and the continuous stirred tank reactor behavior of the BR was developed to predict the elimination of these xenobiotics. 2008 Wiley Periodicals, Inc.

  4. Current Limitations and Recommendations to Improve Testing for the Environmental Assessment of Endocrine Active Substances

    DEFF Research Database (Denmark)

    Coady, Katherine K; Biever, Ronald C; Denslow, Nancy D

    2017-01-01

    existing test methods are resource intensive in regard to time, cost, and use of animals. However, based on recent experiences, there are opportunities to improve approaches to, and guidance for existing test methods, and reduce uncertainty. For example, in vitro high throughput screening could be used......In this paper existing regulatory frameworks and test systems for assessing potential endocrine-active chemicals are described, and associated challenges discussed, along with proposed approaches to address these challenges. Regulatory frameworks vary somewhat across geographies, but all basically...... evaluate whether a chemical possesses endocrine activity and whether this activity can result in adverse outcomes either to humans or the environment. Current test systems include in silico, in vitro and in vivo techniques focused on detecting potential endocrine activity, and in vivo tests that collect...

  5. Widely Used Pesticides with Previously Unknown Endocrine Activity Revealed as in Vitro Antiandrogens

    Science.gov (United States)

    Orton, Frances; Rosivatz, Erika; Scholze, Martin; Kortenkamp, Andreas

    2011-01-01

    Background Evidence suggests that there is widespread decline in male reproductive health and that antiandrogenic pollutants may play a significant role. There is also a clear disparity between pesticide exposure and data on endocrine disruption, with most of the published literature focused on pesticides that are no longer registered for use in developed countries. Objective We used estimated human exposure data to select pesticides to test for antiandrogenic activity, focusing on highest use pesticides. Methods We used European databases to select 134 candidate pesticides based on highest exposure, followed by a filtering step according to known or predicted receptor-mediated antiandrogenic potency, based on a previously published quantitative structure–activity relationship (QSAR) model. In total, 37 pesticides were tested for in vitro androgen receptor (AR) antagonism. Of these, 14 were previously reported to be AR antagonists (“active”), 4 were predicted AR antagonists using the QSAR, 6 were predicted to not be AR antagonists (“inactive”), and 13 had unknown activity, which were “out of domain” and therefore could not be classified with the QSAR (“unknown”). Results All 14 pesticides with previous evidence of AR antagonism were confirmed as antiandrogenic in our assay, and 9 previously untested pesticides were identified as antiandrogenic (dimethomorph, fenhexamid, quinoxyfen, cyprodinil, λ-cyhalothrin, pyrimethanil, fludioxonil, azinphos-methyl, pirimiphos-methyl). In addition, we classified 7 compounds as androgenic. Conclusions Due to estimated antiandrogenic potency, current use, estimated exposure, and lack of previous data, we strongly recommend that dimethomorph, fludioxonil, fenhexamid, imazalil, ortho-phenylphenol, and pirimiphos-methyl be tested for antiandrogenic effects in vivo. The lack of human biomonitoring data for environmentally relevant pesticides presents a barrier to current risk assessment of pesticides on humans. PMID

  6. Canine toys and training devices as sources of exposure to phthalates and bisphenol A: quantitation of chemicals in leachate and in vitro screening for endocrine activity.

    Science.gov (United States)

    Wooten, Kimberly J; Smith, Philip N

    2013-11-01

    Chewing and mouthing behaviors exhibited by pet dogs are likely to lead to oral exposures to a variety of environmental chemicals. Products intended for chewing and mouthing uses include toys and training devices that are often made of plastics. The goal of the current study was to determine if a subset of phthalates and bisphenol A (BPA), endocrine disrupting chemicals commonly found in plastics, leach out of dog toys and training devices (bumpers) into synthetic canine saliva. In vitro assays were used to screen leachates for endocrine activity. Bumper leachates were dominated by di-2-ethylhexyl phthalate (DEHP) and BPA, with concentrations reaching low μg mL(-1) following short immersions in synthetic saliva. Simulated chewing of bumpers during immersion in synthetic saliva increased concentrations of phthalates and BPA as compared to new bumpers, while outdoor storage had variable effects on concentrations (increased DEHP; decreased BPA). Toys leached substantially lower concentrations of phthalates and BPA, with the exception of one toy which leached considerable amounts of diethyl phthalate. In vitro assays indicated anti-androgenic activity of bumper leachates, and estrogenic activity of both bumper and toy leachates. These results confirm that toys and training devices are potential sources of exposure to endocrine disrupting chemicals in pet dogs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Parental occupational exposure to endocrine disrupting chemicals and male genital malformations: A study in the Danish National Birth Cohort study

    DEFF Research Database (Denmark)

    Morales-Suarez-Varela, Maria M; Toft, Gunnar V; Jensen, Morten S

    2011-01-01

    Sex hormones closely regulate development of the male genital organs during fetal life. The hypothesis that xenobiotics may disrupt endogenous hormonal signalling has received considerable scientific attention, but human evidence is scarce....

  8. In vitro–in vivo correlations for endocrine activity of a mixture of 5 currently used pesticides

    DEFF Research Database (Denmark)

    Taxvig, Camilla; Hadrup, Niels; Boberg, Julie

    2013-01-01

    Two pesticide mixtures consisting of three and five currently used pesticides, respectively, were investigated for potential endocrine disrupting effects. Mix 3 consisted of bitertanol, propiconazole, and cypermethrin and Mix 5 contained the same 3 pesticides plus malathion and terbuthylazine. All...... five single pesticides and the two mixtures were tested in vitro in H295R cells for effects on steroidogenesis. All five pesticides individually and both mixtures affected steroidogenesis. The mixtures caused an increase in progesterone and a decrease in testosterone, and Mix 5 also increased estradiol......, indicating increased aromatase activity. The pesticide-mixtures were also investigated in vivo in pregnant rats dosed from gestational day 7 to 21, followed by examination of dams and fetuses. All 5 pesticides could be detected in the amniotic fluid, demonstrating exposure of the fetuses. Decreased estradiol...

  9. Occurrence of endocrine-disrupting and other wastewater compunds during water treatment with case studies from Lincoln, Nebraska and Berlin, Germany

    Science.gov (United States)

    Verstraeten, Ingrid M.; Heberer, T.; Vogel, J.R.; Speth, T.; Zuehlke, S.; Duennbier, U.

    2003-01-01

    Research on the fate and transport of endocrine-disrupting compounds and other organic wastewater compounds released into the environment and their potential presence in drinking water is in its infancy. Studies conducted during the last decade in Lincoln, Nebraska, and Berlin, Germany, indicate that removal of less polar compounds probably can be obtained through bank filtration, ground-water enrichment, and additional drinking-water and wastewater treatment processes. Polar compounds, such as atrazine and some metabolites, occur in drinking water obtained from contaminated surface water or ground water, but at concentrations generally lower than those occurring in wastewater and surface water. The results of the studies also suggest that concentrations of nonpolar estrogenic compounds decrease during drinking-water pretreatment processes such as bank filtration and ground-water enrichment.

  10. Paternal Occupational Exposure to Endocrine-Disrupting Chemicals as a Risk Factor for Leukaemia in Children: A Case-Control Study from the North of England

    Directory of Open Access Journals (Sweden)

    Mark S. Pearce

    2014-01-01

    Full Text Available Occupations with exposures to a variety of chemicals, including those thought to be potential endocrine disruptors, have been associated with an increased risk of leukaemia in offspring. We investigated whether an association exists between paternal occupations at birth involving such exposures and risk of leukaemia in offspring. Cases (n=958 were matched, on sex and year of birth, to controls from two independent sources, one other cancers, one cancer-free live births. Paternal occupations at birth were classified, using an occupational exposure matrix, as having “very unlikely,” “possible,” or “likely” exposure to six groups of potential endocrine-disrupting chemicals. There was a significantly increased risk of acute nonlymphocytic leukaemia (ANLL for polychlorinated organic compounds (OR 1.95, 95% CI 1.08–3.54 only in comparison with cancer-free controls, and for phthalates (OR 1.61, 95% CI 1.00–2.61 only with registry controls. A number of other, including inverse, associations were seen, but limited to one control group only. No associations were seen with likely paternal exposure to heavy metals. The associations identified in this study require further investigation, with better exposure and potential confounding (for example maternal variables information, to evaluate the likelihood of true associations to assess whether they are real or due to chance.

  11. Molecular analysis of endocrine disruption in hornyhead turbot at wastewater outfalls in southern california using a second generation multi-species microarray.

    Directory of Open Access Journals (Sweden)

    Michael E Baker

    Full Text Available Sentinel fish hornyhead turbot (Pleuronichthysverticalis captured near wastewater outfalls are used for monitoring exposure to industrial and agricultural chemicals of ~ 20 million people living in coastal Southern California. Although analyses of hormones in blood and organ morphology and histology are useful for assessing contaminant exposure, there is a need for quantitative and sensitive molecular measurements, since contaminants of emerging concern are known to produce subtle effects. We developed a second generation multi-species microarray with expanded content and sensitivity to investigate endocrine disruption in turbot captured near wastewater outfalls in San Diego, Orange County and Los Angeles California. Analysis of expression of genes involved in hormone [e.g., estrogen, androgen, thyroid] responses and xenobiotic metabolism in turbot livers was correlated with a series of phenotypic end points. Molecular analyses of turbot livers uncovered altered expression of vitellogenin and zona pellucida protein, indicating exposure to one or more estrogenic chemicals, as well as, alterations in cytochrome P450 (CYP 1A, CYP3A and glutathione S-transferase-α indicating induction of the detoxification response. Molecular responses indicative of exposure to endocrine disruptors were observed in field-caught hornyhead turbot captured in Southern California demonstrating the utility of molecular methods for monitoring environmental chemicals in wastewater outfalls. Moreover, this approach can be adapted to monitor other sites for contaminants of emerging concern in other fish species for which there are few available gene sequences.

  12. Environmentally relevant levels of λ-cyhalothrin, fenvalerate, and permethrin cause developmental toxicity and disrupt endocrine system in zebrafish (Danio rerio) embryo.

    Science.gov (United States)

    Zhang, Quan; Zhang, Yi; Du, Jie; Zhao, Meirong

    2017-10-01

    Synthetic pyrethroids (SPs) are one of the most widely used pesticides and frequently detected in the aquatic environment. Previous studies have shown that SPs posed high aquatic toxicity, but information on the developmental toxicity and endocrine disruption on zebrafish (Danio rerio) at environmentally relevant concentrations is limited. In this study, zebrafish embryos were employed to examine the adverse effects of λ-cyhalothrin (LCT), fenvalerate (FEN), and permethrin (PM) at 2.5, 10, 25, 125, 500 nM for 96 h. The results showed these 3 SPs caused dose-dependent mortality, malformation rate, and hatching rate. Thyroid hormone triiodothyronine (T3) levels were significantly decreased after exposure to LCT and FEN. Quantitative real-time PCR analysis was then performed on a series of nuclear receptors (NRs) genes involved in the hypothalamic-pituitary-gonadal (HPG), hypothalamic-pituitary-thyroid (HPT), hypothalamic-pituitary-adrenocortical (HPA) axes, and oxidative-stress-related system. Our results showed that LCT, FEN, and PM downregulated AR expression while upregulated ER1 expression, and caused alteration to ER2a and ER2b expression. As for the expression of TRα and TRβ, they were both decreased following exposure to the 3 SPs. LCT and PM downregulated the MR expression and FEN induced MR expression. In addition, the expression of GR was increased after treating with LCT, while it was suppressed after exposure to FEN and PM. The 3 SPs also caused various alterations to the expression of genes including AhRs, PPARα, and PXR. These findings suggest that these 3 SPs may cause developmental toxicity to zebrafish larvae by disrupting endocrine signaling at environmentally relevant concentrations. Copyright © 2017. Published by Elsevier Ltd.

  13. Evidence of estrogenic endocrine disruption in smallmouth and largemouth bass inhabiting Northeast U.S. National Wildlife Refuge waters: A reconnaissance study

    Science.gov (United States)

    Iwanowicz, Luke R.; Blazer, Vicki; Pinkney, A.E.; Guy, C.P.; Major, A.M.; Munney, K.; Mierzykowski, S.; Lingenfelser, S.; Secord, A.; Patnode, K.; Kubiak, T.J.; Stern, C.; Hahn, Cassidy M.; Iwanowicz, Deborah; Walsh, Heather L.; Sperry, Adam J.

    2016-01-01

    Intersex as the manifestation of testicular oocytes (TO) in male gonochoristic fishes has been used as an indicator of estrogenic exposure. Here we evaluated largemouth bass (Micropterus salmoides) or smallmouth bass (Micropterus dolomieu) form 19 National Wildlife Refuges (NWRs) in the Northeast U.S. inhabiting waters on or near NWR lands for evidence of estrogenic endocrine disruption. Waterbodies sampled included rivers, lakes, impoundments, ponds, and reservoirs. Here we focus on evidence of endocrine disruption in male bass evidenced by gonad histopathology including intersex or abnormal plasma vitellogenin (Vtg) concentrations. During the fall seasons of 2008–2010, we collected male smallmouth bass (n=118) from 12 sites and largemouth bass (n=173) from 27 sites. Intersex in male smallmouth bass was observed at all sites and ranged from 60% to 100%; in male largemouth bass the range was 0–100%. Estrogenicity, as measured using a bioluminescent yeast reporter, was detected above the probable no effects concentration (0.73 ng/L) in ambient water samples from 79% of the NWR sites. Additionally, the presence of androgen receptor and glucocorticoid receptor ligands were noted as measured via novel nuclear receptor translocation assays. Mean plasma Vtg was elevated (>0.2 mg/ml) in male smallmouth bass at four sites and in male largemouth bass at one site. This is the first reconnaissance survey of this scope conducted on US National Wildlife Refuges. The baseline data collected here provide a necessary benchmark for future monitoring and justify more comprehensive NWR-specific studies.

  14. The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters.

    Science.gov (United States)

    Archer, Edward; Petrie, Bruce; Kasprzyk-Hordern, Barbara; Wolfaardt, Gideon M

    2017-05-01

    A large number of emerging contaminants (ECs) are known to persist in surface waters, and create pressure on wastewater treatment works (WWTW) for their effective removal. Although a large database for the levels of these pollutants in water systems exist globally, there is still a lack in the correlation of the levels of these pollutants with possible long-term adverse health effects in wildlife and humans, such as endocrine disruption. The current study detected a total of 55 ECs in WWTW influent surface water, 41 ECs in effluent, and 40 ECs in environmental waters located upstream and downstream of the plant. A list of ECs persisted through the WWTW process, with 28% of all detected ECs removed by less than 50%, and 18% of all ECs were removed by less than 25%. Negative mass balances of some pharmaceuticals and metabolites were observed within the WWTW, suggesting possible back-transformation of ECs during wastewater treatment. Three parental illicit drug compounds were detected within the influent of the WWTW, with concentrations ranging between 27.6 and 147.0 ng L -1 for cocaine, 35.6-120.6 ng L -1 for mephedrone, and 270.9-450.2 ng L -1 for methamphetamine. The related environmental risks are also discussed for some ECs, with particular reference to their ability to disrupt endocrine systems. The current study propose the potential of the pharmaceuticals carbamazepine, naproxen, diclofenac and ibuprofen to be regarded as priority ECs for environmental monitoring due to their regular detection and persistence in environmental waters and their possible contribution towards adverse health effects in humans and wildlife. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. The epidemiologic evidence linking prenatal and postnatal exposure to endocrine disrupting chemicals with male reproductive disorders: a systematic review and meta-analysis.

    Science.gov (United States)

    Bonde, Jens Peter; Flachs, Esben Meulengracht; Rimborg, Susie; Glazer, Clara Helene; Giwercman, Aleksander; Ramlau-Hansen, Cecilia Høst; Hougaard, Karin Sørig; Høyer, Birgit Bjerre; Hærvig, Katia Keglberg; Petersen, Sesilje Bondo; Rylander, Lars; Specht, Ina Olmer; Toft, Gunnar; Bräuner, Elvira Vaclavik

    2016-12-01

    More than 20 years ago, it was hypothesized that exposure to prenatal and early postnatal environmental xenobiotics with the potential to disrupt endogenous hormone signaling might be on the causal path to cryptorchidism, hypospadias, low sperm count and testicular cancer. Several consensus statements and narrative reviews in recent years have divided the scientific community and have elicited a call for systematic transparent reviews. We aimed to fill this gap in knowledge in the field of male reproductive disorders. The aim of this study was to systematically synthesize published data on the risk of cryptorchidism, hypospadias, low sperm counts and testicular cancer following in utero or infant exposure to chemicals that have been included on the European Commission's list of Category 1 endocrine disrupting chemicals defined as having documented adverse effects due to endocrine disruption in at least one intact organism. A systematic literature search for original peer reviewed papers was performed in the databases PubMed and Embase to identify epidemiological studies reporting associations between the outcomes of interest and exposures documented by biochemical analyses of biospecimens including maternal blood or urine, placenta or fat tissue as well as amnion fluid, cord blood or breast milk; this was followed by meta-analysis of quantitative data. The literature search resulted in 1314 references among which we identified 33 papers(28 study populations) fulfilling the eligibility criteria. These provided 85 risk estimates of links between persistent organic pollutants and rapidly metabolized compounds (phthalates and Bisphenol A) and male reproductive disorders. The overall odds ratio (OR) across all exposures and outcomes was 1.11 (95% CI 0.91-1.35). When assessing four specific chemical subgroups with sufficient data for meta-analysis for all outcomes, we found that exposure to one of the four compounds, p,p'-DDE, was related to an elevated risk: OR 1.35 (95

  16. Approaches for predicting effects of unintended environmental exposure to an endocrine active pharmaceutical, tamoxifen

    Science.gov (United States)

    Tamoxifen is an endocrine-active pharmaceutical (EAP) that is used world-wide. Because tamoxifen is a ubiquitous pharmaceutical and interacts with estrogen receptors, a case study was conducted with this compound to (1) determine effects on reproductive endpoints in a nontarget s...

  17. In vitro - in vivo correlations for endocrine activity of a mixture of currently used pesticides

    DEFF Research Database (Denmark)

    Taxvig, Camilla; Hadrup, Niels; Boberg, Julie

    2013-01-01

    Two pesticide mixtures were investigated for potential endocrine activity. Mix 3 consisted of bitertanol, propiconazole, and cypermethrin, and Mix 5 included malathion and terbuthylazine in addition to the three pesticides in Mix 3.All five single pesticides and the two mixtures were investigated...

  18. Sleep and the endocrine system.

    Science.gov (United States)

    Morgan, Dionne; Tsai, Sheila C

    2015-07-01

    In this article, the effect of sleep and sleep disorders on endocrine function and the influence of endocrine abnormalities on sleep are discussed. Sleep disruption and its associated endocrine consequences in the critically ill patient are also reviewed. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Biomarkers of effect in endocrine disruption: how to link a functional assay to an adverse outcome pathway

    Directory of Open Access Journals (Sweden)

    Stefano Lorenzetti

    2015-06-01

    Full Text Available The development of in vitro testing strategies may achieve a cost-effective generation of comprehensive datasets on a large number of chemicals, according to the requirements of the European Regulation REACH. Much emphasis is placed on in vitro methods based on subcellular mechanisms (e.g., nuclear receptor interaction, but it is necessary to define the predictive value of molecular or biochemical changes within an adverse outcome pathway (AOP. AOP pivots on the description of the flow from a molecular initiating event through a cascade of intermediate events needed to produce a specific adverse effect at organism level: downstream responses at cell level are, therefore, essential to define an AOP. Several in vitro assays are based on human cell lines representative of endocrine-targeted tissues (e.g., prostate and on functional biomarkers of clinical relevance (e.g., PSA secretion in human prostate epithelial cells. We discuss the implementation of such functional biomarkers in the AOP context.

  20. Persistence of endocrine disruption in zebrafish (Danio rerio) after discontinued exposure to the androgen 17β-trenbolone

    DEFF Research Database (Denmark)

    Baumann, Lisa; Knörr, Susanne; Keiter, Susanne

    2014-01-01

    The aim of the present study was to investigate the effects of the androgenic endocrine disruptor 17β-trenbolone on the sexual development of zebrafish (Danio rerio) with special emphasis on the question whether adverse outcomes of developmental exposure are reversible or persistent. An exposure...... scenario including a recovery phase was chosen to assess the potential reversibility of androgenic effects. Zebrafish were exposed to environmentally relevant concentrations of 17β-trenbolone (1 - 30 ng/L) from fertilization until completion of gonad sexual differentiation (60 days post-hatch, dph......). Thereafter, exposure was either followed by 40 d of recovery in clean water or continued until 100 dph, the age when zebrafish start being able to reproduce. Fish exposed for 100 d to 10 or 30 ng/L 17β-trenbolone were masculinized at different biological effect levels, as evidenced from a concentration...

  1. The disruptive aesthetics of design activism

    DEFF Research Database (Denmark)

    Markussen, Thomas

    2011-01-01

    . In so doing, I will identify a theoretical ‘blind spot’ in the research literature, which has blocked our view of how design activism functions as an aesthetic practice and not only a socio-political one. To remedy this shortcoming, I then introduce some notions from Rancière (2004; 2010) that enable...

  2. Disruptores endocrinos. El caso particular de los xenobióticos estrogénicos. II Estrógenos sintéticos Endocrine disrupters. The case of oestrogenic xenobiotics II: synthetic oestrogens

    Directory of Open Access Journals (Sweden)

    P. Martín Olmedo

    2001-11-01

    Full Text Available En los últimos años se ha puesto en evidencia que muchas sustancias químicas de origen antropogénico son capaces de alterar el sistema endocrino de los seres vivos y se ha acuñado el nombre de disruptores endocrinos para definirlas. El número de disruptores endocrinos es una preocupación creciente si se añade a la inclusión de nuevos compuestos químicos, hasta ahora insospechados, la información generada sobre sus precursores, metabolitos y productos de degradación que tan solo ahora empiezan a conocerse. No se ha podido definir una estructura química única que permita clasificar a un compuesto químico como mimetizador de las hormonas sexuales femeninas, de tal manera que estructuras químicas similares a los estrógenos naturales, basados en el ciclopentanoperhidrofenantreno, comparten con los estilbenos, bisfenoles, bifenilos, alquilfenoles, dioxinas, furanos y parabenes su efecto hormonal estrogénico. El reconocimiento de la actividad estrogénica en diferentes modelos biológicos se ha utilizado para actualizar el censo de xenoestrógenos y poner de manifiesto fuentes de exposición humana hasta el momento insospechadas.In recent years, it has been demonstrated that endocrine systems of living beings can be altered by many chemical substances of anthropogenic origin, designated as endocrine disrupters. There are growing concerns about the number of these endocrine disrupters. It has not been possible to define a single chemical structure that allows the classification of a chemical compound as a mimic of female sex hormones, so that chemical structures similar to natural estrogens, based on cyclopentanoperhydrophenanthrene, share their hormonal effect with stilbenes, bisphenols, alkylphenols, dioxins, furans and parabenes. The recognition of estrogenic activity in different biological models has been used to update the list of xenoestrogens and reveal sources of human exposure that were previously unknown. New previously

  3. North Sea submarine cable disruptions and fishing activity

    NARCIS (Netherlands)

    Hintzen, N.T.; Machiels, M.A.M.

    2014-01-01

    At the North Sea seafloor, numerous submarine cables are positioned that connect telecommunication networks between countries. Worldwide, human activities cause most of the cable disruptions with fisheries accounting for nearly half of all reported faults. Due to a recent increase of submarine cable

  4. Endocrine activity of persistent organic pollutants accumulated in human silicone implants — Dosing in vitro assays by partitioning from silicone

    DEFF Research Database (Denmark)

    Gilbert, Dorothea; Mayer, Philipp; Pedersen, Mikael

    2015-01-01

    Persistent organic pollutants (POPs) accumulated in human tissues may pose a risk for human health by interfering with the endocrine system. This study establishes a new link between actual human internal POP levels and the endocrine active dose in vitro, applying partitioning-controlled dosing...

  5. Incidence of Breast, Prostate, Testicular, and Thyroid Cancer in Italian Contaminated Sites with Presence of Substances with Endocrine Disrupting Properties

    Directory of Open Access Journals (Sweden)

    Marta Benedetti

    2017-03-01

    Full Text Available The aim of the present study was to investigate the incidence of breast (females, prostate, testicular, and thyroid cancer in the Italian National Priority Contaminated Sites (NPCSs, served by cancer registries, where the presence of endocrine disruptors (EDs, reported to be linked to these tumours, was documented. Evidence of carcinogenicity of EDs present in NPCSs was assessed based on evaluation by international scientific institutions and committees. Standardized Incidence Ratios (SIRs were computed for each NPCS and cancer site between 1996 and 2005. Excess incidence of one or more cancer site studied was found in twelve out of fourteen NPCSs. Significantly increased SIRs were found for breast cancer in eight NPCSs, for prostate cancer in six, for thyroid cancer (both gender in four, and for testicular cancer in two. Non-significantly increased SIRs were found in five NPCSs for testicular cancer and in two for thyroid cancer (males. In a small number of instances a significant deficit was reported, mainly for thyroid and prostate cancer. Although increased incidence of one or more cancer sites studied were found in several NPCSs, the ecological study design and the multifactorial aetiology of the considered tumours do not permit concluding causal links with environmental contamination. Regarding the observation of some excesses in SIRs, continuing epidemiological surveillance is warranted.

  6. Incidence of Breast, Prostate, Testicular, and Thyroid Cancer in Italian Contaminated Sites with Presence of Substances with Endocrine Disrupting Properties.

    Science.gov (United States)

    Benedetti, Marta; Zona, Amerigo; Beccaloni, Eleonora; Carere, Mario; Comba, Pietro

    2017-03-29

    The aim of the present study was to investigate the incidence of breast (females), prostate, testicular, and thyroid cancer in the Italian National Priority Contaminated Sites (NPCSs), served by cancer registries, where the presence of endocrine disruptors (EDs), reported to be linked to these tumours, was documented. Evidence of carcinogenicity of EDs present in NPCSs was assessed based on evaluation by international scientific institutions and committees. Standardized Incidence Ratios (SIRs) were computed for each NPCS and cancer site between 1996 and 2005. Excess incidence of one or more cancer site studied was found in twelve out of fourteen NPCSs. Significantly increased SIRs were found for breast cancer in eight NPCSs, for prostate cancer in six, for thyroid cancer (both gender) in four, and for testicular cancer in two. Non-significantly increased SIRs were found in five NPCSs for testicular cancer and in two for thyroid cancer (males). In a small number of instances a significant deficit was reported, mainly for thyroid and prostate cancer. Although increased incidence of one or more cancer sites studied were found in several NPCSs, the ecological study design and the multifactorial aetiology of the considered tumours do not permit concluding causal links with environmental contamination. Regarding the observation of some excesses in SIRs, continuing epidemiological surveillance is warranted.

  7. Pharmaceuticals, personal care products and endocrine-disrupting chemicals in U.S. surface and finished drinking waters: a proposed ranking system.

    Science.gov (United States)

    Kumar, Arun; Xagoraraki, Irene

    2010-11-01

    This study developed a comprehensive ranking system, for the first time as per authors' knowledge, for prioritizing the monitoring of pharmaceuticals and personal care products and endocrine-disrupting chemicals (together termed as EOCs, hereafter; a total of 100 EOCs considered) in U.S. stream water/source water and finished drinking water (termed as "EOCRank," hereafter). The EOCRank system was developed using a total of 4 criteria: (1) occurrence, (2) treatment in drinking water treatment plants, (3) ecological effects, and (4) health effects and characterized using 7 attributes: prevalence, frequency of detection, removal, bioaccumulation, ecotoxicity (for fish, daphnid, and algae aquatic indicator species), pregnancy effects, and health effects. The health effects attribute was characterized using 7 sub-attributes: carcinogenicity, mutagenicity, impairment of fertility, central nervous system acting, endocrine effects, immunotoxicity, and developmental effects. Rank scores of EOCs were calculated as summations of multiplications of importance weights and utility functions of multiple criteria and were arranged to highlight EOCs needing immediate attention. Two different ranking lists of EOCs were developed for U.S. finished drinking water and stream water/source water and observed to differ with each other, indicating the effect of water type on ranking of EOCs. A ranking list of priority EOCs, developed using a particular criterion, was observed to differ with that, developed using multiple criteria. Health effects and treatment criteria were observed to be important criteria influencing overall data gap rank scores and need further data collection. The generalized nature of the system could be customized for specific geographical locations (occurrence information and importance weights of different components). The developed database of the EOCRank system is available on: http://www.egr.msu.edu/~xagorara/research.html). Copyright © 2010 Elsevier B.V. All

  8. Disruptores endocrinos. El caso particular de los xenobióticos estrogénicos. I Estrógenos naturales Endocrine disrupters. The case of estrogen xenobiotics

    Directory of Open Access Journals (Sweden)

    P. Martín Olmedo

    2001-06-01

    Full Text Available El interés de la comunidad científica por la exposición humana a sustancias químicas capaces de alterar el equilibrio hormonal -disruptores endocrinos— ha crecido al mismo tiempo que se han presentado pruebas de las con- secuencias de la exposición a estas sustancias sobre poblaciones animales. Como ha ocurrido en ocasiones anteriores, los datos observacionales en poblaciones animales han sido lo suficientemente sugerentes como para inducir entre los clínicos cierto grado de preocupación, por si estuvieran produciéndose efectos similares en poblaciones humanas. Si bien es cierto que los datos sobre afectación de poblaciones animales se generan mas fácilmente de forma poblacional que individual, también es verdad que las observaciones individuales en la clínica junto con algunos pocos estudios epidemiológicos han demostrado cierto paralelismo. De hecho, modelos in vitro e in vivo han servido para asignar capacidad mimetizadora hormonal a muchos compuestos químicos, tanto naturales como de producción humana, para los cuales existe riesgo de exposición. En este trabajo se revisan las premisas conceptuales sobre disrupción endocrina y como se llegó a acuñar el término.Interest of the scientific community in chemical substances able to alter the hormone balance –endocrine disrupters- has grown with increasing evidence of the consequences for animal populations of exposure to these substances. As has occurred on previous occasions, observational data on animal populations have been sufficiently suggestive to cause concerns among clinicians that similar effects may be produced in human populations. Although data on the effects on populations of animals are more easily generated than those on individuals, clinical observations on human individuals alongside the few existing epidemiological studies have shown a certain parallelism. Indeed, in vitro and in vivo models have been able to designate many chemical compounds as hormonal

  9. Role of endocrine disrupting chemicals on the tissue levels of AhR and sex steroid receptors in breast tumours

    Directory of Open Access Journals (Sweden)

    Sepideh Arbabi Bidgoli

    2016-09-01

    Full Text Available Breast cancer affects Iranian women at least one decade younger than their counterparts in other countries and the incidence of breast fibroadenoma is growing in the last two decades in Tehran. This study aimed to compare the AhR levels in premenopausal breast cancer and breast fibroadnemo with appropriate normal groups. Possible associations of AhR with lifestyle and reproductive risk factors and other fundamental genes of breast cancer and reproductive disorders were the other major goals of present study. To conduct the comparisons all possible reproductive, environmental and lifestyle risk factors of mentioned diseases were recorded in 100 breast cancer, 100 breast fibroadenoma and compared with 400 women in normal group from 2009 to 2011. AhR overexpression in epithelial cells of premenopausal patients emphasized the susceptibility of these cells to environmental induced reproductive disorders. The AhR overexpression was contributed to ER-/PgR- immunophenotype in malignant tissues. Weight gain (after 18 and after pregnancy, long term (>5yrs OCP consumption, smoking, severe stress ,history of ovarian cysts, hormonal deregulations, living near PAHs producing sources, were correlated with increased risk of breast cancer and reproductive disorders and were correlated with elevated tissue levels of AhR. It seems that increased risk of breast cancer and other reproductive tumours in Tehran may be the result of exposure to environmental endocrine disruptors. Long term exposure to environmental estrogens can increase the tissue levels of AhR and deregulate the expression pattern of sex steroid receptors and other genes in target tissues.

  10. Exposure to a complex cocktail of environmental endocrine-disrupting compounds disturbs the kisspeptin/GPR54 system in ovine hypothalamus and pituitary gland.

    Science.gov (United States)

    Bellingham, Michelle; Fowler, Paul A; Amezaga, Maria R; Rhind, Stewart M; Cotinot, Corinne; Mandon-Pepin, Beatrice; Sharpe, Richard M; Evans, Neil P

    2009-10-01

    Ubiquitous environmental chemicals, including endocrine-disrupting chemicals (EDCs), are associated with declining human reproductive health, as well as an increasing incidence of cancers of the reproductive system. Verifying such links requires animal models exposed to "real-life," environmentally relevant concentrations/mixtures of EDC, particularly in utero, when sensitivity to EDC exposure is maximal. We evaluated the effects of maternal exposure to a pollutant cocktail (sewage sludge) on the ovine fetal reproductive neuroendocrine axes, particularly the kisspeptin (KiSS-1)/GPR54 (G-protein-coupled receptor 54) system. KiSS-1, GPR54, and ERalpha (estrogen receptor alpha) mRNA expression was quantified in control (C) and treated (T) maternal and fetal (110-day) hypothalami and pituitary glands using semiquantitative reverse transcription polymerase chain reaction, and colocalization of kisspeptin with LHbeta (luteinizing hormone beta) and ERalpha in C and T fetal pituitary glands quantified using dual-labeling immunohistochemistry. Fetuses exposed in utero to the EDC mixture showed reduced KiSS-1 mRNA expression across three hypothalamic regions examined (rostral, mid, and caudal) and had fewer kisspetin immunopositive cells colocalized with both LHbeta and ERalpha in the pituitary gland. In contrast, treatment had no effect on parameters measured in the adult ewe hypothalamus or pituitary. This study demonstrates that the developing fetus is sensitive to real-world mixtures of environmental chemicals, which cause significant neuroendocrine alterations. The important role of kisspeptin/GPR54 in regulating puberty and adult reproduction means that in utero disruption of this system is likely to have long-term consequences in adulthood and represents a novel, additional pathway through which environmental chemicals perturb human reproduction.

  11. Development of a functionalized polymeric ionic liquid monolith for solid-phase microextraction of polar endocrine disrupting chemicals in aqueous samples coupled to high-performance liquid chromatography.

    Science.gov (United States)

    Feng, Juanjuan; Sun, Min; Bu, Yanan; Luo, Chuannan

    2015-09-01

    Ionic liquids (ILs) have been efficiently used as a "designer sorbent" in sample preparation. A novel 1-(3-aminopropyl)-3-(4-vinylbenzyl)imidazolium 4-styrenesulfonate IL monomer was synthesized and copolymerized with 1,6-di(3-vinylimidazolium) hexane bishexafluorophosphate IL as cross-linking agent to prepare a cross-linked polymeric ionic liquids (PILs) monolith. Coupled to high-performance liquid chromatography (HPLC), the PILs monolith was used as a solid-phase microextraction (SPME) sorbent to extract some polar endocrine disrupting chemical (EDCs) such as estrogens, bisphenol A, and phthalate esters in aqueous samples. Preparation and extraction conditions were investigated and optimized to obtain satisfactory extraction efficiency. Limits of detection (LODs) of the proposed method for three steroid estrogens and bisphenol A were 0.25 and 0.2 μg L(-1), respectively, which were lower than or comparable to some other sample preparation methods. Intra- and inter-day repeatability for all the analytes was 2.2-12%. The monolith-to-monolith repeatability was 7.4-15%. The extraction performance of the method for analysis of target estrogens in treated domestic wastewater was investigated and compared with a dispersive liquid-liquid microextraction (DLLME) method. The proposed SPME method provided better sensitivity and higher resistance to matrix interferences.

  12. Occurrence and risk assessment of pharmaceuticals and personal care products and endocrine disrupting chemicals in reclaimed water and receiving groundwater in China.

    Science.gov (United States)

    Li, Zhen; Xiang, Xi; Li, Miao; Ma, Yeping; Wang, Jihua; Liu, Xiang

    2015-09-01

    Groundwater recharge using reclaimed water is considered a promising method to alleviate groundwater depletion. However, pollutants in reclaimed water could be recharged into groundwater during this process, thereby posing a risk to groundwater and human health. In this study, 12 cities in northern China were selected for reclaimed water and groundwater sampling. Analysis of the samples revealed the presence of nine pharmaceutical and personal care products (PPCPs) and five endocrine disrupting compounds (EDCs). In reclaimed water, all the PPCPs and EDCs were found, with sulpiride (SP) and estriol (E3) being most frequently detected. In groundwater samples, only ketoprofen (KP), mefenamic acid (MA), nalidixic acid (NA) and SP were detected among PPCPs, while bisphenol-A (BPA) was dominant among the target EDCs. The risk quotients (RQs) of all target PPCPs and EDCs except 17α-ethinyl estradiol (EE2) and E3 were below 1 in groundwater samples, indicating that EE2 and E3 deserve priority preferential treatment before recharging. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Application of solid-phase extraction coupled with freezing-lipid filtration clean-up for the determination of endocrine-disrupting phenols in fish

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Yun Gyong [Hazardous Substance Research Team, Korea Basic Science Institute, Seoul 136-701 (Korea, Republic of); Department of Civil Environment Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Shin, Jeoung Hwa; Kim, Hye-Young [Hazardous Substance Research Team, Korea Basic Science Institute, Seoul 136-701 (Korea, Republic of); Khim, Jeehyeong [Department of Civil Environment Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, Mi-Kyoung [College of Pharmacy, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Hong, Jongki [College of Pharmacy, Kyung Hee University, Seoul 130-701 (Korea, Republic of)], E-mail: jhong@khu.ac.kr

    2007-11-05

    An analytical method has been developed for the determination of endocrine-disrupting phenols (eight alkylphenols and bisphenol A) in fish samples. The extraction of nine phenols from fish samples was carried out by ultrasonification. After the extraction, high levels of lipids were removed by freezing-lipid filtration instead of the traditional methods of column chromatography or saponification. During freezing-lipid filtration, about 90% of the lipids were eliminated without any significant loss of phenolic compounds. For further purification, hydrophilic-lipophilic balanced copolymer (HLB) sorbent with a poly(divinylbenzene-co-N-vinylpyrrolidone) phase and Florisil-solid-phase extraction (SPE) cartridges were used to eliminate the remaining interferences. Silyl-derivatization, with N,N'-methyl-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA), was applied to enhance the sensitivity of detection of phenolic compounds. Quantification was performed by gas chromatography/mass spectrometry (GC/MS)-selected ion monitoring (SIM) mode, using deuterium-labeled internal standards. Spiking experiments were carried out to determine the recovery, precision and detection limit of the method. The overall recoveries ranged between 70 and 120%, with relative standard deviations of 3-17% for the entire procedure. The detection limits of the method for the nine phenols ranged from 0.02 to 0.41 ng g{sup -1}. The method provided simultaneous screening and accurate confirmation of each phenol when applied to biological samples.

  14. Endocrine-disrupting compounds in reclaimed water and residential ponds and exposure potential for dislodgeable residues in turf irrigated with reclaimed water.

    Science.gov (United States)

    Sidhu, Harmanpreet S; Wilson, Patrick C; O'Connor, George A

    2015-07-01

    Endocrine-disrupting chemicals (EDCs) occur in reclaimed water (RW), which may serve as an exposure source for humans. The presence of EDCs in RW used to irrigate turf and in nearby water-retention ponds was determined. In addition, the total dislodgeable mass of each EDC was determined after irrigation (using RW) to simulate exposure of a 3-year-child playing in turf grass recently irrigated with RW. Five EDCs (estrone, 17β-estradiol, 17α-ethynylestradiol, bisphenol A, and 4-n-nonylphenol) were quantified in 28 samples of RWs (wastewater-treatment plant effluents) and 88 samples from residential surface water-retention ponds. St. Augustine variety of turf grass was irrigated with spiked RW to study dislodgement of the five EDCs overtime using a drag-sled method. Grass clippings were analyzed to relate masses of EDC on grass with masses dislodged. EDCs were detected in both RW and ponds at ng/L concentrations. Maximum EDC masses were dislodged immediately after irrigation. Dislodged masses of estrone and 17β-estradiol are two separate EDCs, 17β-estradiol and 17α-ethynylestradiol decreased rapidly and were lower than detection limits 4 h after application. Dislodged bisphenol-A and nonylphenol decreased more slowly but were not detected 6 h after application. Avoiding contact with recently irrigated turf grass should decrease the risks of exposure to these EDCs.

  15. Investigations of potential endocrine disruption and sexual dimorphism in nestling tree swallows (Tachycineta bicolor) with a range of PCB body burdens

    Science.gov (United States)

    Yorks, A.L.; Rattner, B.A.; Melancon, M.J.; Bakst, M.R.

    1998-01-01

    Polychlorinated biphenyls (PCBs) elicit endocrine disruptive effects in many species, including birds. Tree swallows (Tachycineta bicolor) were studied at eight sites, located in Maryland, Pennsylvania, and New York, with a range of PCB contamination to determine effects on gender and gonadal development of nestling offipring. Blood samples were collected from nestlings and genetic sex was determined by polymerase chain reaction amplification of sex chromatin in nucleated red blood cells. Gonads were excised and fixed for subsequent gross and histologic examination. PCB analyses of twelve-day old nestlings indicated that residue concentrations varied considerably among the eight sites. Of the 145 nestlings examined anatomically, the phenotypic sex ratio was 53% female and 47% male. No intersexes were observed. Histological observations revealed some variation such as numbers of spermatogonia and stages of follicular development among individuals. Genotypic evaluation of the 145 nestlings revealed complete concordance with phenotypic observations. Although there were significant differences in PCB exposure among study sites, there was no evidence of abnormal gonadal development or anatomical gender alteration in nestling Tree swallows.

  16. Investigation of pharmaceuticals, personal care products and endocrine disrupting chemicals in a tropical urban catchment and the influence of environmental factors.

    Science.gov (United States)

    You, Luhua; Nguyen, Viet Tung; Pal, Amrita; Chen, Huiting; He, Yiliang; Reinhard, Martin; Gin, Karina Yew-Hoong

    2015-12-01

    Previous studies showed the presence of multiple emerging organic contaminants (EOCs) in urban surface waters of Singapore even though there are no obvious direct wastewater discharges. In this study, we investigated the occurrence and distribution of 17 pharmaceuticals and personal care products (PPCPs) and endocrine disruptive compounds (EDCs) in a tropical urban catchment of Singapore. Monthly samples were collected from a reservoir and its 5 upstream tributaries during a 16-month period. Analysis of samples showed all sites had measurable PPCP and EDC concentrations, with caffeine (33.9-2980 ng/L), salicylic acid (5-838 ng/L), acetaminophen (influenced the temporal distribution of caffeine, BPA, triclosan, fipronil and DEET in the reservoir. Ecological risk assessment showed that caffeine, acetaminophen, estrone, BPA, triclosan and fipronil may warrant further survey. In particular, BPA levels exceeded the literature-based Predicted No-Effect Concentration (PNEC) value, highlighting the need for source control and/or water remediation in this urban catchment. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Passive sampling and stir bar sorptive extraction for the determination of endocrine-disrupting compounds in water by GC-MS.

    Science.gov (United States)

    Magi, Emanuele; Di Carro, Marina; Liscio, Camilla

    2010-06-01

    A new method using the extraction and preconcentration capabilities of stir bar sorptive extraction, combined with high-resolution gas chromatography and mass spectrometry, was developed for the determination of five selected endocrine-disrupting compounds (4-n-nonylphenol, bisphenol A, estrone, 17beta-estradiol, and 17alpha-ethinylestradiol) in water. In situ derivatization to transform the phenolic compounds into lipophilic and volatile analytes was carried out with acetic anhydride. Two different methods of headspace derivatization to further improve the chromatographic properties of 17beta-estradiol and 17alpha-ethinylestradiol were developed and compared. The optimized method provided good sensitivity (limits of quantitation 1.2-2.6 ng), repeatability (relative standard deviation 2-9%), and reproducibility (relative standard deviation 10-17%). Passive sampling by means of polar organic chemical integrative samplers was applied to monitor river waters used as supply sources for drinking water treatment plants in the Liguria region of Italy. The analytes showed a different distribution at the three sites considered; bisphenol A proved to be the most abundant, ranging from 185 to 459 ng per sampler.

  18. European medicinal and edible plants associated with subacute and chronic toxicity part I: Plants with carcinogenic, teratogenic and endocrine-disrupting effects.

    Science.gov (United States)

    Kristanc, Luka; Kreft, Samo

    2016-06-01

    In recent decades, the use of herbal medicines and food products has been widely embraced in many developed countries. These products are generally highly accepted by consumers who often believe that "natural" equals "safe". This is, however, an oversimplification because several botanicals have been found to contain toxic compounds in concentrations harmful to human health. Acutely toxic plants are in most cases already recognised as dangerous as a result of their traditional use, but plants with subacute and chronic toxicity are difficult or even impossible to detect by traditional use or by clinical research studies. In this review, we systematically address major issues including the carcinogenicity, teratogenicity and endocrine-disrupting effects associated with the use of herbal preparations with a strong focus on plant species that either grow natively or are cultivated in Europe. The basic information regarding the molecular mechanisms of the individual subtypes of plant-induced non-acute toxicity is given, which is followed by a discussion of the pathophysiological and clinical characteristics. We describe the genotoxic and carcinogenic effects of alkenylbenzenes, pyrrolizidine alkaloids and bracken fern ptaquiloside, the teratogenicity issues regarding anthraquinone glycosides and specific alkaloids, and discuss the human health concerns regarding the phytoestrogens and licorice consumption in detail. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Endocrine-disrupting environmental chemicals - hazards to man and animal; Hormonell wirksame Umweltchemikalien - Gefahr fuer Mensch und Tier? Seminarband der Zentralen Informationsstelle Umweltberatung Bayern. Bd. 12

    Energy Technology Data Exchange (ETDEWEB)

    Behling, G.; Koller, U.; Klemmer, A.; Haury, H.J. [comps.

    1998-08-01

    The spectrum of problems relating to endocrine-disrupting environmental chemicals was presented by competent experts from public authorities and scientific institutions. The lecturers described the current stage and future tasks of research. Their lectures focused on effects of hormone-like substances on humans and animals and an assessment of risk factors on the basis of data from scientific tests and current environmental exposure. There was also a contribution presenting the chemical industry`s view of the matter. [Deutsch] Kompetente Sachverstaendige aus Behoerden und wissenschaftlichen Einrichtungen stellten das Themenspektrum vor, fuehrten in den Forschungsstand ein und zeigten den Forschungsbedarf auf. Der Schwerpunkt lag in der Darstellung der der Auswirkungen hormonell wirksamer Substanzen, wie z.B. DDT, Dioxinen und PCBs, auf Mensch und Tier sowie in der Abschaetzung der Risikofaktoren anhand der bekannten Daten aus wissenschaftlichen Tests sowie der aktuellen Exposition in der Umwelt. Mit einem Beitrag der chemischen Industrie wurde auch deren Einschaetzung der Umweltproblematik aufgezeigt. (orig./MG) m9

  20. Construction of amphiphilic segments on polypropylene nonwoven surface and its application in removal of endocrine disrupting compounds (EDCs) from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kai [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300160 (China); School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160 (China); Wei, Junfu, E-mail: junfuwei1963@163.com [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300160 (China); School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160 (China); Zhou, Xiangyu [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300160 (China); School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160 (China); School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300160 (China); Liu, Nana [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300160 (China); School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160 (China)

    2015-05-15

    Highlights: • The amphiphilic segments on polypropylene nonwoven surface were constructed successfully. • The adsorption behavior for EDCs of the amphiphilic adsorption materials was systematically studied. • The novel amphiphilic adsorption materials have broad application prospects in EDCs removal from aqueous solution. - Abstract: The amphiphilic segments on polypropylene nonwoven (PP nonwoven) surface were constructed using the ultraviolet (UV) irradiation graft polymerization for the removal of endocrine disrupting compounds (EDCs) with different polarity from aqueous solution. The stearyl acrylate (SA) as hydrophobic functional monomer was introduced onto the surface of PP nonwoven fabric at first stage and then the hydroxyethyl acrylate (HEA) as hydrophilic functional monomer was introduced subsequently. The effect of functional monomer concentration and UV irradiation time on grafting ratio was studied and discussed. The novel amphiphilic structure was designed and constructed based on adsorption capacity for the target micropollutants. The structure and composition of the amphiphilic adsorption materials were characterized by Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and contact angle (CA). The adsorption behaviors for EDCs of the amphiphilic adsorption materials were studied and the results indicated that the adsorption capacity and adsorption rate were superior to single SA grafted PP nonwoven (PP-g-SA) and single HEA grafted PP nonwoven (PP-g-HEA). The novel amphiphilic adsorption material was efficient for the removal of EDCs with different polarity and could be utilized as a potential adsorption material for removing EDCs from aqueous solution.

  1. Construction of amphiphilic segments on polypropylene nonwoven surface and its application in removal of endocrine disrupting compounds (EDCs) from aqueous solution

    Science.gov (United States)

    Liu, Kai; Wei, Junfu; Zhou, Xiangyu; Liu, Nana

    2015-05-01

    The amphiphilic segments on polypropylene nonwoven (PP nonwoven) surface were constructed using the ultraviolet (UV) irradiation graft polymerization for the removal of endocrine disrupting compounds (EDCs) with different polarity from aqueous solution. The stearyl acrylate (SA) as hydrophobic functional monomer was introduced onto the surface of PP nonwoven fabric at first stage and then the hydroxyethyl acrylate (HEA) as hydrophilic functional monomer was introduced subsequently. The effect of functional monomer concentration and UV irradiation time on grafting ratio was studied and discussed. The novel amphiphilic structure was designed and constructed based on adsorption capacity for the target micropollutants. The structure and composition of the amphiphilic adsorption materials were characterized by Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and contact angle (CA). The adsorption behaviors for EDCs of the amphiphilic adsorption materials were studied and the results indicated that the adsorption capacity and adsorption rate were superior to single SA grafted PP nonwoven (PP-g-SA) and single HEA grafted PP nonwoven (PP-g-HEA). The novel amphiphilic adsorption material was efficient for the removal of EDCs with different polarity and could be utilized as a potential adsorption material for removing EDCs from aqueous solution.

  2. The role of phytoplankton composition, biomass and cell volume in accumulation and transfer of endocrine disrupting compounds in the Southern Baltic Sea (The Gulf of Gdansk).

    Science.gov (United States)

    Staniszewska, Marta; Nehring, Iga; Zgrundo, Aleksandra

    2015-12-01

    Endocrine disrupting compounds (EDCs) like bisphenol A (BPA), 4-tert-octylphenol (OP) and 4-nonylphenol (NP) are introduced to the trophic webs through among others phytoplankton. This paper describes BPA, OP and NP concentrations in phytoplankton in the Gulf of Gdansk (Southern Baltic Sea) in the years 2011-2012. The assays of BPA, OP and NP in samples were performed using HPLC with fluorescence detection. The concentrations of BPA, the most commonly used of the three compounds, were over ten times higher than OP and NP concentrations. The concentrations of the studied EDCs in phytoplankton from the Gulf of Gdansk depended on anthropogenic factors and on phytoplankton properties (species composition, biomass, volume). An increase in phytoplankton biomass did not always result in an increase of BPA, OP and NP concentrations. However, the load of the studied EDCs accumulated in phytoplankton biomass increase with a rise of biomass. An increase in BPA, OP and NP concentrations was effected by biomass growth and the proportions ofciliates, dinoflagellates, diatoms and green algae. A strong positive correlation between OP and NP concentrations and negative correlation between BPA concentrations and biomass of organisms with cells measuring <1000 μm(3) in volume results from the differing properties of these compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Correlation of Endocrine Disrupting Chemicals Serum Levels and White Blood Cells Gene Expression of Nuclear Receptors in a Population of Infertile Women

    Directory of Open Access Journals (Sweden)

    Donatella Caserta

    2013-01-01

    Full Text Available Significant evidence supports that many endocrine disrupting chemicals could affect female reproductive health. Aim of this study was to compare the internal exposure to bisphenol A (BPA, perfluorooctane sulphonate (PFOS, perfluorooctanoic acid (PFOA, monoethylhexyl phthalate (MEHP, and di(2-ethylhexyl phthalate (DEHP in serum samples of 111 infertile women and 44 fertile women. Levels of gene expression of nuclear receptors (ERα, ERβ, AR, AhR, PXR, and PPARγ were also analyzed as biomarkers of effective dose. The percentage of women with BPA concentrations above the limit of detection was significantly higher in infertile women than in controls. No statistically significant difference was found with regard to PFOS, PFOA, MEHP and DEHP. Infertile patients showed gene expression levels of ERα, ERβ, AR, and PXR significantly higher than controls. In infertile women, a positive association was found between BPA and MEHP levels and ERα, ERβ, AR, AhR, and PXR expression. PFOS concentration positively correlated with AR and PXR expression. PFOA levels negatively correlated with AhR expression. No correlation was found between DEHP levels and all evaluated nuclear receptors. This study underlines the need to provide special attention to substances that are still widely present in the environment and to integrate exposure measurements with relevant indicators of biological effects.

  4. Prostate-specific antigen levels in relation to background factors: are there links to endocrine disrupting chemicals and AhR expression?

    Science.gov (United States)

    Bidgoli, Sepideh Arbabi; Jabari, Nasim; Zavarhei, Mansour Djamali

    2014-01-01

    Prostate-specific antigen (PSA) is a potential biomarker for early detection of prostate cancer (PCa) but its level is known to be affected by many background factors and roles of ubiquitous toxicants have not been determined. Endocrine disrupting chemicals (EDCs) are ubiquitous reproductive toxicants used in consumer products, which promote tumor formation in some reproductive model systems by binding to AhR, but human data on its expression in prostate cancer as well as its association with PSA levels are not clear. This study aimed to evaluate the expression levels of AhR and its association with serological levels of PSA and to detect possible effects of background factors and EDC exposure history on PSA levels in PCa cases. A cross-sectional study was conducted on the tissue levels of AhR and serum levels of PSA in 53 PCa cases from 2008-2011 and associations between each and background and lifestyle related factors were determined. Although the AhR was overexpressed in PCa and correlated with the age of patients, it did not correlate with PSA levels.Of nutritional factors, increased intake of polysaturated fats and fish in the routine regimen of PCa cases increased the PSA levels significantly. AhR overexpression in PCa pontws to roles of EDCs in PCa but without any direct association with PSA levels. However, PSA levels are affected by exposure to possible toxicants in foods whichneed to be assessed as possible risk factors of PCa in future studies.

  5. Endocrine disruptors induce perturbations in endoplasmic reticulum and mitochondria of human pluripotent stem cell derivatives

    OpenAIRE

    Rajamani, Uthra; Gross, Andrew R.; Ocampo, Camille; Andres, Allen M.; Gottlieb, Roberta A.; Sareen, Dhruv

    2017-01-01

    Persistent exposure to man-made endocrine disrupting chemicals during fetal endocrine development may lead to disruption of metabolic homeostasis contributing to childhood obesity. Limited cellular platforms exist to test endocrine disrupting chemical-induced developmental abnormalities in human endocrine tissues. Here we use an human-induced pluripotent stem cell-based platform to demonstrate adverse impacts of obesogenic endocrine disrupting chemicals in the developing endocrine system. We ...

  6. Full automation of solid-phase microextraction/on-fiber derivatization for simultaneous determination of endocrine-disrupting chemicals and steroid hormones by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Yang, Lihua; Lan, Chongyu; Liu, Hongtao; Dong, Jun; Luan, Tiangang

    2006-09-01

    A fully automated method using direct immersion solid-phase microextraction (DI-SPME) and headspace on-fiber silylation for simultaneous determinations of exogenous endocrine-disrupting chemicals (EDCs) and endogenous steroid hormones in environmental aqueous and biological samples by gas chromatography-mass spectrometry (GC-MS) was developed and compared to a previously reported manual method. Three EDCs and five endocrine steroid hormones were selected to evaluate this method. The extraction and derivatization time, ion strength, pH, incubation temperature, sample volume, and extraction solvent were optimized. Satisfactory results in pure water were obtained in terms of linearity of calibration curve (R2=0.9932-1.0000), dynamic range (3 orders of magnitude), precision (4-9% RSD), as well as LOD (0.001-0.124 microg L(-1)) and LOQ (0.004-0.413 microg L(-1)), respectively. These results were similar to those obtained using a manual method, and moreover, the precision was improved. This new automated method has been applied to the determinations of target compounds in real samples used in our previous study on a manual SPME method. Exogenous octylphenol (OP), technical grade nonylphenol (t-NP), and diethylstilbestrol (DES) were at 0.13, 5.03, and 0.02 microg L(-1) in river water and 3.76, 13.25, and 0.10 microg L(-1) in fish serum, respectively. Natural steroid hormones estrone (E1), 17beta-estradiol (E2), and testosterone (T) were at 0.19, 0.11, and 6.22 microg L(-1) in river water; and in female fish serum E1, E2, and pregnenolone (PREG) were at 1.37, 1.95, and 6.25 microg L(-1), respectively. These results were confirmed by the manual method. The developed fully automated SPME and on-fiber silylation procedures showed satisfactory applications in environmental analysis and the performances show improved precision and a reduced analysis time compared to the manual method.

  7. Effects of benzophenone-3 exposure on endocrine disruption and reproduction of Japanese medaka (Oryzias latipes)—A two generation exposure study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sujin; Jung, Dawoon [School of Public Health, Seoul National University, Seoul 151-742 (Korea, Republic of); Kho, Younglim [Department of Health, Environment and Safety, Eulji University, Seongnam 461-713 (Korea, Republic of); Choi, Kyungho, E-mail: kyungho@snu.ac.kr [School of Public Health, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2014-10-15

    Highlights: • Exposure to BP-3 led to adverse reproduction effects on Japanese medaka at 26 μg/L. • Changes in sex hormones and steroidogenic gene transcription were observed. • Parental exposure to BP-3 influenced on the growth of second generation fish. - Abstract: Benzophenone-3 (BP-3) has been widely used in sunscreens and cosmetics to protect human skin from the harmful effects of UV irradiation. While BP-3 has been frequently detected in surface waters, sediments and biota, only limited information is available on its in vivo toxicity, particularly in fish. In the present study the endocrine disrupting capacity of BP-3 and its underlying mechanisms were investigated using Japanese medaka (Oryzias latipes). Adult Japanese medaka pairs (F0) were exposed to 0, 4.7, 8.4, 26, or 90 μg/L (or 0, 15, 50, 150, or 500 μg/L of BP-3 based on nominal concentration) for 14 d and its effects on sex steroid hormones, and transcription of various associated genes were determined. Following additional 14 d of exposure, the F1 eggs reproduced were counted and were further exposed to 0, 5.4, 12, or 30 μg/L of BP-3 (or 0, 15, 50, or 150 μg/L based on nominal concentrations) until 30 d after hatching. Chemical analysis of the exposed media confirmed transformation of BP-3 to benzophenone-1 (BP-1), a more potent estrogen agonist. After 14 d of the adult fish exposure, plasma concentrations of testosterone (T) significantly increased in male fish. The 17β-estradiol (E2) to T (E2/T) ratio showed significant decreases in both male and female fish. Overall down-regulation of gonadal steroidogenic genes such as star, cyp11a, cyp17, hsd3b, hsd17b3, and cyp19a was also observed. After 28 d of exposure, the daily average egg reproduction per female was significantly reduced at 26 μg/L of BP-3. However, hatchability of F1 eggs was not affected by continuous exposure. After continued exposure until 30 dph, juvenile fish showed concentration-dependent decrease of condition factor

  8. Effect of land use on pollution status and risk of fish endocrine disruption in small farmland ponds

    NARCIS (Netherlands)

    Mandiki, S.N.M.; Gillardin, V.; Martens, K.; Ercken, D.; De Roeck, E.; De Bie, T.; Declerck, S.A.J.; De Meester, L.; Brasseur, C.; Van der Heiden, E.; Schippo, M.; Kestemont, M.

    2014-01-01

    To study whether the intensity of agricultural activities affects pesticides loads in pond environment, a large number of Belgian farmland ponds were surveyed in spring 2004. Temporal distribution of pollutants was also investigated over restricted survey ponds sampled three times round year 2007.

  9. Population-relevant endpoints in the evaluation of endocrine-active substances (EAS) for ecotoxicological hazard and risk assessment.

    Science.gov (United States)

    Marty, Mary S; Blankinship, Amy; Chambers, Janice; Constantine, Lisa; Kloas, Werner; Kumar, Anupama; Lagadic, Laurent; Meador, James; Pickford, Daniel; Schwarz, Tamar; Verslycke, Tim

    2017-03-01

    For ecotoxicological risk assessment, endocrine disruptors require the establishment of an endocrine mode of action (MoA) with a plausible link to a population-relevant adverse effect. Current ecotoxicity test methods incorporate mostly apical endpoints although some also include mechanistic endpoints, subcellular-through-organ level, which can help establish an endocrine MoA. However, the link between these endpoints and adverse population-level effects is often unclear. The case studies of endocrine-active substances (EAS) (tributyltin, ethinylestradiol, perchlorate, trenbolone, propiconazole, and vinclozolin) evaluated from the Society of Environmental Toxicology and Chemistry (SETAC) Pellston Workshop ® "Ecotoxicological Hazard and Risk Assessment Approaches for Endocrine-Active Substances (EHRA)" were used to evaluate the population relevance of toxicity endpoints in various taxa according to regulatory endocrine-disruptor frameworks such as the Organisation for Economic Co-operation and Development (OECD) Conceptual Framework for Testing and Assessment of Endocrine Disruptors. A wide variety of potentially endocrine-relevant endpoints were identified for mollusks, fish, amphibians, birds, and mammals, although the strength of the relationship between test endpoints and population-level effects was often uncertain. Furthermore, testing alone is insufficient for assessing potential adaptation and recovery processes in exposed populations. For this purpose, models that link effects observed in laboratory tests to the dynamics of wildlife populations appear to be necessary, and their development requires reliable and robust data. As our understanding of endocrine perturbations and key event relationships improves, adverse population-level effects will be more easily and accurately predicted. Integr Environ Assess Manag 2017;13:317-330. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of

  10. Polyaniline-coated chitosan-functionalized magnetic nanoparticles: Preparation for the extraction and analysis of endocrine-disrupting phenols in environmental water and juice samples.

    Science.gov (United States)

    Jiang, Xilan; Cheng, Jing; Zhou, Hongbin; Li, Feng; Wu, Wenlin; Ding, Kerong

    2015-08-15

    In the present study, chitosan (CHI) functionalized Fe3O4 magnetic microspheres coated with polyaniline (PANI) were synthesized for the first time. The chitosan-functionalized magnetic microspheres (Fe3O4@CHI) were synthesized by a co-precipitation method, and then aniline was polymerized on the magnetic core. The obtained Fe3O4@CHI@PANI microspheres were spherical core-shell structure with uniform size at about 100nm with 20-30nm diameter core. The microspheres had a high saturation magnetization of 32emu g(-)(1), which was sufficient for magnetic separation. The obtained Fe3O4@CHI@PANI magnetic microspheres were applied as magnetic adsorbents for the extraction of aromatic compounds via π-π interaction between polyaniline shell and aromatic compounds. Three endocrine-disrupting phenols, including bisphenol A (BPA), 2, 4-dichlorophenol (2, 4-DCP), and triclosan (TCS) were selected as the model analytes to verify the extraction ability of Fe3O4@CHI@PANI. The hydrophilic chitosan-functionalized Fe3O4 core (Fe3O4@CHI) improved the dispersibility of Fe3O4@CHI@PANI microspheres, and then improve its extraction efficiency. The dominant parameters affecting enrichment efficiency were investigated and optimized. Under optimal condition, the proposed method was evaluated, and applied to the analysis of phenols in real water and juice samples. The results demonstrated the method based on Fe3O4@CHI@PANI magnetic microspheres had good linearity (R(2)>0.996), and limits of detection (0.10-0.13ng mL(-1)), high repeatability (RSDrecovery (85.0-106.7%). Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Effects of water warming and acidification on bioconcentration, metabolization and depuration of pharmaceuticals and endocrine disrupting compounds in marine mussels (Mytilus galloprovincialis).

    Science.gov (United States)

    Serra-Compte, Albert; Maulvault, Ana Luisa; Ca