WorldWideScience

Sample records for endocannabinoid-degrading enzyme fatty

  1. Δ9-tetrahydrocannabinol and endocannabinoid degradative enzyme inhibitors attenuate intracranial self-stimulation in mice.

    Science.gov (United States)

    Wiebelhaus, Jason M; Grim, Travis W; Owens, Robert A; Lazenka, Matthew F; Sim-Selley, Laura J; Abdullah, Rehab A; Niphakis, Micah J; Vann, Robert E; Cravatt, Benjamin F; Wiley, Jenny L; Negus, S Stevens; Lichtman, Aron H

    2015-02-01

    A growing body of evidence implicates endogenous cannabinoids as modulators of the mesolimbic dopamine system and motivated behavior. Paradoxically, the reinforcing effects of Δ(9)-tetrahydrocannabinol (THC), the primary psychoactive constituent of cannabis, have been difficult to detect in preclinical rodent models. In this study, we investigated the impact of THC and inhibitors of the endocannabinoid hydrolytic enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) on operant responding for electrical stimulation of the medial forebrain bundle [intracranial self-stimulation (ICSS)], which is known to activate the mesolimbic dopamine system. These drugs were also tested in assays of operant responding for food reinforcement and spontaneous locomotor activity. THC and the MAGL inhibitor JZL184 (4-[bis(1,3-benzodioxol-5-yl)hydroxymethyl]-1-piperidinecarboxylic acid 4-nitrophenyl ester) attenuated operant responding for ICSS and food, and also reduced spontaneous locomotor activity. In contrast, the FAAH inhibitor PF-3845 (N-3-pyridinyl-4-[[3-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenyl]methyl]-1-piperidinecarboxamide) was largely without effect in these assays. Consistent with previous studies showing that combined inhibition of FAAH and MAGL produces a substantially greater cannabimimetic profile than single enzyme inhibition, the dual FAAH-MAGL inhibitor SA-57 (4-[2-(4-chlorophenyl)ethyl]-1-piperidinecarboxylic acid 2-(methylamino)-2-oxoethyl ester) produced a similar magnitude of ICSS depression as that produced by THC. ICSS attenuation by JZL184 was associated with increased brain levels of 2-arachidonoylglycerol (2-AG), whereas peak effects of SA-57 were associated with increased levels of both N-arachidonoylethanolamine (anandamide) and 2-AG. The cannabinoid receptor type 1 receptor antagonist rimonabant, but not the cannabinoid receptor type 2 receptor antagonist SR144528, blocked the attenuating effects of THC, JZL184, and SA-57 on

  2. Crystal Structure of Fatty Acid Amide Hydrolase Bound to the Carbamate Inhibitor URB597: Discovery of a Deacylating Water Molecule and Insight into Enzyme Inactivation

    Energy Technology Data Exchange (ETDEWEB)

    Mileni, Mauro; Kamtekar, Satwik; Wood, David C.; Benson, Timothy E.; Cravatt, Benjamin F.; Stevens, Raymond C. (Scripps); (Pfizer)

    2010-08-12

    The endocannabinoid system regulates a wide range of physiological processes including pain, inflammation, and cognitive/emotional states. URB597 is one of the best characterized covalent inhibitors of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH). Here, we report the structure of the FAAH-URB597 complex at 2.3 {angstrom} resolution. The structure provides insights into mechanistic details of enzyme inactivation and experimental evidence of a previously uncharacterized active site water molecule that likely is involved in substrate deacylation. This water molecule is part of an extensive hydrogen-bonding network and is coordinated indirectly to residues lining the cytosolic port of the enzyme. In order to corroborate our hypothesis concerning the role of this water molecule in FAAH's catalytic mechanism, we determined the structure of FAAH conjugated to a urea-based inhibitor, PF-3845, to a higher resolution (2.4 {angstrom}) than previously reported. The higher-resolution structure confirms the presence of the water molecule in a virtually identical location in the active site. Examination of the structures of serine hydrolases that are non-homologous to FAAH, such as elastase, trypsin, or chymotrypsin, shows a similarly positioned hydrolytic water molecule and suggests a functional convergence between the amidase signature enzymes and serine proteases.

  3. Hepatic fatty acid oxidation : activity, localization and function of some enzymes involved

    NARCIS (Netherlands)

    A. van Tol (Arie)

    1971-01-01

    textabstractFatty acid oxidation is an important pathway for energy production in mammals and birds. In animal tissues the enzymes of fatty acid oxidation are located in the mitochondrion. Recent reports suggest that this is not the case in Castor bean endosperm. In this tissue the enzymes of

  4. Characterization of Enzymes Involved in Fatty Acid Elongation

    Science.gov (United States)

    2007-04-11

    synthases have been studied including the soluble fatty acid synthases , those involved in polyketide synthesis, and the FAE1-like 3-keto-CoA synthases ...condensation, including the soluble fatty acid synthases and the FAE1-like 3-ketoacyl-CoA synthases (FAE-KCSs) possess a catalytic triad of Cys, His...1 Fatty acid synthase required for de novo FA synthesis .................................................. 2 A. Type I FAS

  5. Biotechnological potential of insect fatty acid-modifying enzymes

    Czech Academy of Sciences Publication Activity Database

    Tupec, Michal; Buček, Aleš; Valterová, Irena; Pichová, Iva

    2017-01-01

    Roč. 72, 9/10 (2017), s. 387-403 ISSN 0939-5075 R&D Projects: GA ČR GA15-06569S; GA MŠk LD15102; GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : fatty acyl desaturases * fatty acyl reductases * lipases * pheromones Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 0.835, year: 2016 https://www.degruyter.com/view/j/znc.2017.72.issue-9-10/znc-2017-0031/znc-2017-0031. xml

  6. Chlorophyll-derived fatty acids regulate expression of lipid metabolizing enzymes in liver - a nutritional opportunity

    Directory of Open Access Journals (Sweden)

    Wolfrum Christian

    2001-01-01

    Full Text Available Nutritional values of fatty acid classes are normally discussed on the basis of their saturated, monounsaturated and polyunsaturated structures with implicit understanding that they are straight-chain. Here we focus on chlorophyll-derived phytanic and pristanic acids that are minor isoprenoid branched-chain lipid constituents in food, but of unknown nutritional value. After describing the enzyme machinery that degrades these nutrient fatty acids in the peroxisome, we show by the criteria of a mouse model and of a human cell culture model that they induce with high potency expression of enzymes responsible for beta-oxidation of straight-chain fatty acids in the peroxisome. We summarize present mechanistic knowledge on fatty acid signaling to the nucleus, which involves protein/protein contacts between peroxisome proliferator activated receptor (PPAR and fatty acid binding protein (FABP. In this signaling event the branched-chain fatty acids are the most effective ones. Finally, on the basis of this nutrient-gene interaction we discuss nutritional opportunities and therapeutic aspects of the chlorophyll-derived fatty acids.

  7. Shc proteins influence the activities of enzymes involved in fatty acid oxidation and ketogenesis.

    Science.gov (United States)

    Hagopian, Kevork; Tomilov, Alexey A; Tomilova, Natalia; Kim, Kyoungmi; Taylor, Sandra L; Lam, Adam K; Cortopassi, Gino A; McDonald, Roger B; Ramsey, Jon J

    2012-12-01

    ShcKO mice have low body fat and resist weight gain on a high fat diet, indicating that Shc proteins may influence enzymes involved in β-oxidation. To investigate this idea, the activities of β-oxidation and ketone body metabolism enzymes were measured. The activities of β-oxidation enzymes (acyl-CoA dehydrogenase, 3-hydroxyacyl-CoA dehydrogenase and ketoacyl-CoA thiolase) in liver and hindlimb skeletal muscle, ketolytic enzymes (acetoacetyl-CoA thiolase, β-hydroxybutyrate dehydrogenase and 3-oxoacid-CoA transferase) in skeletal muscle, and ketogenic enzymes (acetoacetyl-CoA thiolase and β-hydroxybutyrate dehydrogenase) in liver were measured from wild-type and ShcKO mice. The activities of β-oxidation enzymes were increased (P<.05) in the ShcKO compared to wild-type mice in the fasted but not the fed state. In contrast, no uniform increases in the ketolytic enzyme activities were observed between ShcKO and wild-type mice. In liver, the activities of ketogenic enzymes were increased (P<.05) in ShcKO compared to wild-type mice in both the fed and fasted states. Levels of phosphorylated hormone sensitive lipase from adipocytes were also increased (P<.05) in fasted ShcKO mice. These studies indicate that the low Shc levels in ShcKO mice result in increased liver and muscle β-oxidation enzyme activities in response to fasting and induce chronic increases in the activity of liver ketogenic enzymes. Decreases in the level of Shc proteins should be considered as possible contributors to the increase in activity of fatty acid oxidation enzymes in response to physiological conditions which increase reliance on fatty acids as a source of energy. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities.

    Science.gov (United States)

    Akhtar, M Kalim; Turner, Nicholas J; Jones, Patrik R

    2013-01-02

    Aliphatic hydrocarbons such as fatty alcohols and petroleum-derived alkanes have numerous applications in the chemical industry. In recent years, the renewable synthesis of aliphatic hydrocarbons has been made possible by engineering microbes to overaccumulate fatty acids. However, to generate end products with the desired physicochemical properties (e.g., fatty aldehydes, alkanes, and alcohols), further conversion of the fatty acid is necessary. A carboxylic acid reductase (CAR) from Mycobacterium marinum was found to convert a wide range of aliphatic fatty acids (C(6)-C(18)) into corresponding aldehydes. Together with the broad-substrate specificity of an aldehyde reductase or an aldehyde decarbonylase, the catalytic conversion of fatty acids to fatty alcohols (C(8)-C(16)) or fatty alkanes (C(7)-C(15)) was reconstituted in vitro. This concept was applied in vivo, in combination with a chain-length-specific thioesterase, to engineer Escherichia coli BL21(DE3) strains that were capable of synthesizing fatty alcohols and alkanes. A fatty alcohol titer exceeding 350 mg·L(-1) was obtained in minimal media supplemented with glucose. Moreover, by combining the CAR-dependent pathway with an exogenous fatty acid-generating lipase, natural oils (coconut oil, palm oil, and algal oil bodies) were enzymatically converted into fatty alcohols across a broad chain-length range (C(8)-C(18)). Together with complementing enzymes, the broad substrate specificity and kinetic characteristics of CAR opens the road for direct and tailored enzyme-catalyzed conversion of lipids into user-ready chemical commodities.

  9. Squalene mono-oxygenase, a key enzyme in cholesterol synthesis, is stabilized by unsaturated fatty acids.

    Science.gov (United States)

    Stevenson, Julian; Luu, Winnie; Kristiana, Ika; Brown, Andrew J

    2014-08-01

    SM (squalene mono-oxygenase) catalyses the first oxygenation step in cholesterol synthesis, immediately before the formation of the steroid backbone at lanosterol. SM is an important control point in the pathway, and is regulated at the post-translational level by accelerated cholesterol-dependent ubiquitination and proteasomal degradation, which is associated with the accumulation of squalene. Using model cell systems, we report that SM is stabilized by unsaturated fatty acids. Treatment with unsaturated fatty acids such as oleate, but not saturated fatty acids, increased protein levels of SM or SM-N100-GFP (the first 100 amino acids of SM fused to GFP) at the post-translational level and partially overcame cholesterol-dependent degradation, as well as reversing cholesterol-dependent squalene accumulation. Maximum stabilization required activation of fatty acids, but not triacylglycerol or phosphatidylcholine synthesis. The mechanism of oleate-mediated stabilization appeared to occur through reduced ubiquitination by the E3 ubiquitin ligase MARCH6. Stabilization of a cholesterol biosynthetic enzyme by unsaturated fatty acids may help maintain a constant cholesterol/phospholipid ratio.

  10. Effect of thymol and carvacrol feed supplementation on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities, and immune response in broiler chickens

    NARCIS (Netherlands)

    Hashemipour, H.; Kermanshahi, H.; Golian, A.; Veldkamp, T.

    2013-01-01

    This trial was conducted to evaluate the effects of dietary supplementation of phytogenic product containing an equal mixture of thymol and carvacrol at 4 levels (0, 60, 100, and 200 mg/kg of diet) on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities,

  11. Correlation of secretory phospholipase-A2 activity and fatty acids in cerebrospinal fluid with liver enzymes tests

    Directory of Open Access Journals (Sweden)

    Sepideh Ghodoosifar

    2016-02-01

    Full Text Available Introduction: The aim was to determine whether secretory phospholipase-A2 (sPLA2 activity and fatty acids in cerebrospinal fluid (CSF are correlated with liver enzymes tests. Methods: CSF and serum samples were collected from 49 patients (age 18-65 as part of routine diagnostic testing. Along with serum liver enzymes aspartate aminotransferase (AST, alanine aminotransferase (ALT and alkaline phosphatase (ALP, the fatty acid composition of CSF was measured by gas liquid chromatography. CSF enzyme activities of sPLA2 were measured using the standard assay with diheptanoyl thio-phosphatidylcholin as substrate. Results: The saturated fatty acids (SFAs including palmitic acid and stearic acid were positively, and the unsaturated fatty acids including oleic acid and linoleic acid were negatively correlated with liver enzymes tests. In regression analysis with adjustment for body mass index (BMI, the elevated liver enzymes tests were positively associated with activity of sPLA2 (β > 0.31, P 0.38, P < 0.010 and negatively with total monounsaturated fatty acids (MUFAs (β < -0.40, P < 0.001 contents of CSF. Conclusion: CSF activity of sPLA2 and fatty acids may be linked to peripheral markers of liver function, suggesting an indirect impact of central fatty acids on hepatocytes function and metabolism.

  12. Characterization of fatty acid modifying enzyme activity in staphylococcal mastitis isolates and other bacteria

    Directory of Open Access Journals (Sweden)

    Lu Thea

    2012-06-01

    Full Text Available Abstract Background Fatty acid modifying enzyme (FAME has been shown to modify free fatty acids to alleviate their bactericidal effect by esterifying fatty acids to cholesterol or alcohols. Although it has been shown in previous studies that FAME is required for Staphylococcus aureus survival in skin abscesses, FAME is poorly studied compared to other virulence factors. FAME activity had also been detected in coagulase-negative staphylococci (CNS. However, FAME activity was only surveyed after a bacterial culture was grown for 24 h. Therefore if FAME activity was earlier in the growth phase, it would not have been detected by the assay and those strains would have been labeled as FAME negative. Results Fifty CNS bovine mastitis isolates and several S. aureus, Escherichia coli, and Streptococcus uberis strains were assayed for FAME activity over 24 h. FAME activity was detected in 54% of CNS and 80% S. aureus strains surveyed but none in E. coli or S. uberis. While some CNS strains produced FAME activity comparable to the lab strain of S. aureus, the pattern of FAME activity varied among strains and across species of staphylococci. All CNS that produced FAME activity also exhibited lipase activity. Lipase activity relative to colony forming units of these CNS decreased over the 24 h growth period. No relationship was observed between somatic cell count in the milk and FAME activity in CNS. Conclusions Some staphylococcal species surveyed produced FAME activity, but E. coli and S. uberis strains did not. All FAME producing CNS exhibited lipase activity which may indicate that both these enzymes work in concert to alter fatty acids in the bacterial environment.

  13. Five Fatty Aldehyde Dehydrogenase Enzymes from Marinobacter and Acinetobacter spp. and Structural Insights into the Aldehyde Binding Pocket

    Energy Technology Data Exchange (ETDEWEB)

    Bertram, Jonathan H.; Mulliner, Kalene M.; Shi, Ke; Plunkett, Mary H.; Nixon, Peter; Serratore, Nicholas A.; Douglas, Christopher J.; Aihara, Hideki; Barney, Brett M.; Parales, Rebecca E.

    2017-04-07

    ABSTRACT

    Enzymes involved in lipid biosynthesis and metabolism play an important role in energy conversion and storage and in the function of structural components such as cell membranes. The fatty aldehyde dehydrogenase (FAldDH) plays a central function in the metabolism of lipid intermediates, oxidizing fatty aldehydes to the corresponding fatty acid and competing with pathways that would further reduce the fatty aldehydes to fatty alcohols or require the fatty aldehydes to produce alkanes. In this report, the genes for four putative FAldDH enzymes fromMarinobacter aquaeoleiVT8 and an additional enzyme fromAcinetobacter baylyiwere heterologously expressed inEscherichia coliand shown to display FAldDH activity. Five enzymes (Maqu_0438, Maqu_3316, Maqu_3410, Maqu_3572, and the enzyme reported under RefSeq accession no.WP_004927398) were found to act on aldehydes ranging from acetaldehyde to hexadecanal and also acted on the unsaturated long-chain palmitoleyl and oleyl aldehydes. A comparison of the specificities of these enzymes with various aldehydes is presented. Crystallization trials yielded diffraction-quality crystals of one particular FAldDH (Maqu_3316) fromM. aquaeoleiVT8. Crystals were independently treated with both the NAD+cofactor and the aldehyde substrate decanal, revealing specific details of the likely substrate binding pocket for this class of enzymes. A likely model for how catalysis by the enzyme is accomplished is also provided.

    IMPORTANCEThis study provides a comparison of multiple enzymes with the ability

  14. Fatty acid biosynthesis. VIII. The fate of malonyl-CoA in fatty acid biosynthesis by purified enzymes from lactating-rabbit mammary gland

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Carey, E.M.; Dils, R.

    1971-01-01

    -CoA. - 3. The preparations of acetyl-CoA carboxylase and fatty acid synthetase were each able to decarboxylate [1,3-14C2]malonyl-CoA. - 4. Both enzyme preparations acted as competitive inhibitors of 14CO2 fixation into acetyl-CoA catalysed by acetyl-CoA carboxylase in the absence of NADPH...... acid synthesis by the presence of fatty acid synthetase and NADPH. The rate of fatty acid formation was equal to that of acetyl-CoA carboxylation, without the accumulation of free malonyl-CoA to a concentration required to obtain the same rate of fatty acid synthesis from added [1,3-14C2]malonyl...

  15. Therapeutic potential of inhibitors of endocannabinoid degradation for the treatment of stress-related hyperalgesia in an animal model of chronic pain.

    Science.gov (United States)

    Lomazzo, Ermelinda; Bindila, Laura; Remmers, Floor; Lerner, Raissa; Schwitter, Claudia; Hoheisel, Ulrich; Lutz, Beat

    2015-01-01

    The occurrence of chronic stress, depression, and anxiety can increase nociception in humans and may facilitate the transition from localized to chronic widespread pain. The mechanisms underlying chronic widespread pain are still unknown, hindering the development of effective pharmacological therapies. Here, we exposed C57BL/6J mice to chronic unpredictable stress (CUS) to investigate how persistent stress affects nociception. Next, mice were treated with multiple intramuscular nerve growth factor (NGF) injections, which induced chronic widespread nociception. Thus, combination of CUS and NGF served as a model where psychophysiological impairment coexists with long-lasting hyperalgesia. We found that CUS increased anxiety- and depression-like behavior and enhanced basal nociception in mice. When co-applied with repeated NGF injections, CUS elicited a sustained long-lasting widespread hyperalgesia. In order to evaluate a potential therapeutic strategy for the treatment of chronic pain associated with stress, we hypothesized that the endocannabinoid system (ECS) may represent a target signaling system. We found that URB597, an inhibitor of the anandamide-degrading enzyme fatty acid amide hydrolase (FAAH), and JZL184, an inhibitor of the 2-arachidonoyl glycerol-degrading enzyme monoacylglycerol lipase (MAGL), increased eCB levels in the brain and periphery and were both effective in reducing CUS-induced anxiety measured by the light-dark test and CUS-induced thermal hyperalgesia. Remarkably, the long-lasting widespread hyperalgesia induced by combining CUS and NGF was effectively reduced by URB597, but not by JZL184. Simultaneous inhibition of FAAH and MAGL did not improve the overall therapeutic response. Therefore, our findings indicate that enhancement of anandamide signaling with URB597 is a promising pharmacological approach for the alleviation of chronic widespread nociception in stress-exposed mice, and thus, it could represent a potential treatment strategy

  16. OVER-EXPRESSION OF GENE ENCODING FATTY ACID METABOLIC ENZYMES IN FISH

    Directory of Open Access Journals (Sweden)

    Alimuddin Alimuddin

    2008-12-01

    Full Text Available Eicosapentaenoic acid (EPA, 20:5n-3 and docosahexaenoic acid (DHA, 22:6n-3 have important nutritional benefits in humans. EPA and DHA are mainly derived from fish, but the decline in the stocks of major marine capture fishes could result in these fatty acids being consumed less. Farmed fish could serve as promising sources of EPA and DHA, but they need these fatty acids in their diets. Generation of fish strains that are capable of synthesizing enough amounts of EPA/DHA from the conversion of α-linolenic acid (LNA, 18:3n-3 rich oils can supply a new EPA/DHA source. This may be achieved by over-expression of genes encoding enzymes involved in HUFA biosynthesis. In aquaculture, the successful of this technique would open the possibility to reduce the enrichment of live food with fish oils for marine fish larvae, and to completely substitute fish oils with plant oils without reducing the quality of flesh in terms of EPA and DHA contents. Here, three genes, i.e. Δ6-desaturase-like (OmΔ6FAD, Δ5-desaturase-like (OmΔ5FAD and elongase-like (MELO encoding EPA/DHA metabolic enzymes derived from masu salmon (Oncorhynchus masou were individually transferred into zebrafish (Danio rerio as a model to increase its ability for synthesizing EPA and DHA. Fatty acid analysis showed that EPA content in whole body of the second transgenic fish generation over-expressing OmΔ6FAD gene was 1.4 fold and that of DHA was 2.1 fold higher (P<0.05 than those in non-transgenic fish. The EPA content in whole body of transgenic fish over-expressing OmΔ5FAD gene was 1.21-fold, and that of DHA was 1.24-fold higher (P<0.05 than those in nontransgenic fish. The same patterns were obtained in transgenic fish over-expressing MELO gene. EPA content was increased by 1.30-fold and DHA content by 1.33-fold higher (P<0.05 than those in non-transgenic fish. The results of studies demonstrated that fatty acid content of fish can be enhanced by over

  17. The Peroxisomal Enzyme L-PBE Is Required to Prevent the Dietary Toxicity of Medium-Chain Fatty Acids

    Directory of Open Access Journals (Sweden)

    Jun Ding

    2013-10-01

    Full Text Available Specific metabolic pathways are activated by different nutrients to adapt the organism to available resources. Although essential, these mechanisms are incompletely defined. Here, we report that medium-chain fatty acids contained in coconut oil, a major source of dietary fat, induce the liver ω-oxidation genes Cyp4a10 and Cyp4a14 to increase the production of dicarboxylic fatty acids. Furthermore, these activate all ω- and β-oxidation pathways through peroxisome proliferator activated receptor (PPAR α and PPARγ, an activation loop normally kept under control by dicarboxylic fatty acid degradation by the peroxisomal enzyme L-PBE. Indeed, L-pbe−/− mice fed coconut oil overaccumulate dicarboxylic fatty acids, which activate all fatty acid oxidation pathways and lead to liver inflammation, fibrosis, and death. Thus, the correct homeostasis of dicarboxylic fatty acids is a means to regulate the efficient utilization of ingested medium-chain fatty acids, and its deregulation exemplifies the intricate relationship between impaired metabolism and inflammation.

  18. Biological denitrification of brine: the effect of compatible solutes on enzyme activities and fatty acid degradation.

    Science.gov (United States)

    Cyplik, Paweł; Piotrowska-Cyplik, Agnieszka; Marecik, Roman; Czarny, Jakub; Drozdzyńska, Agnieszka; Chrzanowski, Łukasz

    2012-09-01

    The effect of the addition of compatible solutes (ectoine and trehalose) on the denitrification process of saline wastewater was studied. In saline wastewater, it was observed that the initial concentration of nitrates was 500 mg N l⁻¹. A fatty substance isolated from oiled bleaching earth (waste of vegetable oil refining process) was used as a source of carbon.The consortium, which was responsible for the denitrification process originated from the wastewater of the vegetable oil industry. The consortium of microorganisms was identified by the use of restriction fragment length polymorphism of 16S rRNA gene amplicons and sequencing techniques. It was noted that ectoine affects significantly the activity of lipase and nitrate reductase, and resulted in faster denitrification compared to saline wastewater with the addition of trehalose or control saline wastewater (without compatible solutes). It was observed that relative enzyme activities of lipase and nitrate reductase increased by 32 and 35%, respectively, in the presence of 1 mM ectoine. This resulted in an increase in specific nitrate reduction rate in the presence of 1 mM ectoine to 5.7 mg N g⁻¹ VSS h⁻¹, which was higher than in the absence of ectoine (3.2 mg N g⁻¹ VSS h⁻¹). The addition of trehalose did not have an effect on nitrate removals. Moreover, it was found that trehalose was used up completely by bacteria as a source of carbon in the denitrification process. The fatty acids were biodegraded by 74% in the presence of 1 mM ectoine.

  19. Cyclic fatty acid monomers from dietary heated fats affect rat liver enzyme activity.

    Science.gov (United States)

    Lamboni, C; Sébédio, J L; Perkins, E G

    1998-07-01

    This study was conducted to investigate the effects of dietary cyclic fatty acid monomers (CFAM), contained in heated fat from a commercial deep-fat frying operation, on rat liver enzyme activity. A partially hydrogenated soybean oil (PHSBO) used 7 d (7-DH) for frying foodstuffs, or 0.15% methylated CFAM diets was fed to male weanling rats in comparison to a control group fed a nonheated PHSBO (NH) diet in a 10-wk experiment. All diets were isocaloric with 15% fat. Animals fed either CFAM or 7-DH diets showed increased hepatic content of cytochrome (cyt.) b5 and P450 and increased activity of (E.C. 1.6.2.4) NADPH-cyt. P450 reductase in comparison to the control rats. In addition, the activities of (E.C. 2.3.1.21) carnitine palmitoyltransferase-I and (E.C. 1.1.1.42) isocitrate dehydrogenase were significantly decreased when compared to that of rats fed the NH diet. A significantly depressed activity of (E.C. 1.1.1.49) glucose 6-phosphate dehydrogenase was also observed for these animals compared to the control rats fed NH diet. Moreover, liver and microsomal proteins were significantly increased when CFAM or 7-DH diets were fed to animals in comparison to controls while liver glycogen was decreased significantly in experimental groups of rats. The results obtained in this study indicate that the CFAM in the diet from either synthetic sources or used fats increase the activity of liver enzyme systems that detoxify them.

  20. Manganese influences the expression of fatty acid synthase and malic enzyme in cultured primary chicken hepatocytes.

    Science.gov (United States)

    Lu, Lin; Wang, Meiling; Liao, Xiudong; Zhang, Liyang; Luo, Xugang

    2017-12-01

    Two experiments were designed to investigate the effects of Mn source and concentration on the mRNA expression and enzymatic activities of fatty acid synthase (FAS) and malic enzyme (ME) in cultured primary broiler hepatocytes. In Expt 1, primary broiler hepatocytes were treated with 0 (control), 0·25, 0·50 or 0·75 mmol/l of Mn as inorganic manganese chloride (MnCl2.4H2O) for 24 and 48 h. In Expt 2, primary broiler hepatocytes were incubated with 0 (control), 0·25 or 0·50 mmol/l of Mn as either manganese chloride or Mn-amino acid chelate for 48 h. The mRNA levels and activities of FAS and ME in the hepatocytes were measured in Expts 1 and 2. The results in Expt 1 showed that only at 48 h mRNA expression levels of FAS and ME in the hepatocytes decreased linearly (P0·33) on any of the measured cellular parameters. The results suggested that Mn might reduce cell damage and regulate FAS and ME expression at a transcriptional level in primary cultured broiler hepatocytes.

  1. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  2. Omega-3 fatty acid production from enzyme saccharified hemp hydrolysate using a novel marine thraustochytrid strain.

    Science.gov (United States)

    Gupta, Adarsha; Abraham, Reinu E; Barrow, Colin J; Puri, Munish

    2015-05-01

    In this work, a newly isolated marine thraustochytrid strain, Schizochytrium sp. DT3, was used for omega-3 fatty acid production by growing on lignocellulose biomass obtained from local hemp hurd (Cannabis sativa) biomass. Prior to enzymatic hydrolysis, hemp was pretreated with sodium hydroxide to open the biomass structure for the production of sugar hydrolysate. The thraustochytrid strain was able to grow on the sugar hydrolysate and accumulated polyunsaturated fatty acids (PUFAs). At the lowest carbon concentration of 2%, the PUFAs productivity was 71% in glucose and 59% in the sugars hydrolysate, as a percentage of total fatty acids. Saturated fatty acids (SFAs) levels were highest at about 49% of TFA using 6% glucose as the carbon source. SFAs of 41% were produced using 2% of SH. This study demonstrates that SH produced from lignocellulose biomass is a potentially useful carbon source for the production of omega-3 fatty acids in thraustochytrids, as demonstrated using the new strain, Schizochytrium sp. DT3. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Elevated serum liver enzymes and fatty liver changes associated with long driving among taxi drivers.

    Science.gov (United States)

    Lippmann, Steven J; Richardson, David B; Chen, Jiu-Chiuan

    2011-08-01

    Previous studies suggested increased morbidities and mortalities of liver diseases in drivers. To examine whether driving (monthly driving distance; tenure) is associated with elevated alanine aminotransferase (ALT), aspartate aminotransferase (AST), or chronic fatty liver (FL) changes, we performed a cross-sectional, secondary analysis of the Taxi Drivers' Health Study (n = 1,355), adjusting for clinical, demographic, and lifestyle factors. Prevalence of elevated ALT, elevated AST, and fatty liver changes were 22.0%, 5.1%, and 9.3%, respectively. Driving distance had a positive association with elevated ALT with a prevalence ratio of 1.35 (95% CI: 0.98, 1.89) comparing the highest versus lowest driving quartile. This association differed by alcohol use, with a corresponding prevalence ratio of 2.08 (95% CI: 1.30, 3.33) among "past/current" drinkers but no association among "never" drinkers. Similar patterns were found for AST, but estimates were less stable. We found a curvilinear response pattern for fatty liver changes; prevalence first increased with years as a taxi driver and then receded in the highest ranges of driving tenure, regardless of the alcohol history. Our results provide evidence that long driving is associated with both short-term and chronic liver insults, although alcohol use appears to modify this putative effect. Copyright © 2011 Wiley-Liss, Inc.

  4. In Vivo Roles of Fatty Acid Biosynthesis Enzymes in Biosynthesis of Biotin and α-Lipoic Acid in Corynebacterium glutamicum.

    Science.gov (United States)

    Ikeda, Masato; Nagashima, Takashi; Nakamura, Eri; Kato, Ryosuke; Ohshita, Masakazu; Hayashi, Mikiro; Takeno, Seiki

    2017-10-01

    For fatty acid biosynthesis, Corynebacterium glutamicum uses two type I fatty acid synthases (FAS-I), FasA and FasB, in addition to acetyl-coenzyme A (CoA) carboxylase (ACC) consisting of AccBC, AccD1, and AccE. The in vivo roles of the enzymes in supplying precursors for biotin and α-lipoic acid remain unclear. Here, we report genetic evidence demonstrating that the biosynthesis of these cofactors is linked to fatty acid biosynthesis through the FAS-I pathway. For this study, we used wild-type C. glutamicum and its derived biotin vitamer producer BFI-5, which was engineered to express Escherichia coli bioBF and Bacillus subtilis bioI Disruption of either fasA or fasB in strain BFI-5 led to decreased production of biotin vitamers, whereas its amplification contributed to increased production, with a larger impact of fasA in both cases. Double disruptions of fasA and fasB resulted in no biotin vitamer production. The acc genes showed a positive effect on production when amplified simultaneously. Augmented fatty acid biosynthesis was also reflected in pimelic acid production when carbon flow was blocked at the BioF reaction. These results indicate that carbon flow down the FAS-I pathway is destined for channeling into the biotin biosynthesis pathway, and that FasA in particular has a significant impact on precursor supply. In contrast, fasB disruption resulted in auxotrophy for lipoic acid or its precursor octanoic acid in both wild-type and BFI-5 strains. The phenotypes were fully complemented by plasmid-mediated expression of fasB but not fasA These results reveal that FasB plays a specific physiological role in lipoic acid biosynthesis in C. glutamicum IMPORTANCE For the de novo biosynthesis of fatty acids, C. glutamicum exceptionally uses a eukaryotic multifunctional type I fatty acid synthase (FAS-I) system comprising FasA and FasB, in contrast to most bacteria, such as E. coli and B. subtilis , which use an individual nonaggregating type II fatty acid synthase

  5. Dietary long-chain unsaturated fatty acids acutely and differently reduce the activities of lipogenic enzymes and of citrate carrier in rat liver.

    Science.gov (United States)

    Gnoni, Antonio; Giudetti, Anna M

    2016-09-01

    The activities of lipogenic enzymes appear to fluctuate with changes in the level and type of dietary fats. Polyunsaturated fatty acids (PUFAs) are known to induce on hepatic de novo lipogenesis (DNL) the highest inhibitory effect, which occurs through a long-term adaptation. Data on the acute effects of dietary fatty acids on DNL are lacking. In this study with rats, the acute 1-day effect of high-fat (15 % w/w) diets (HFDs) enriched in saturated fatty acids (SFAs) or unsaturated fatty acids (UFAs), i.e., monounsaturated (MUFA) and PUFA, of the ω-6 and ω-3 series on DNL and plasma lipid level was investigated; a comparison with a longer time feeding (21 days) was routinely carried out. After 1-day HFD administration UFA, when compared to SFA, reduced plasma triacylglycerol (TAG) level and the activities of the lipogenic enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), a decreased activity of the citrate carrier (CIC), a mitochondrial protein linked to lipogenesis, was also detected. In this respect, ω-3 PUFA was the most effective. On the other hand, PUFA maintained the effects at longer times, and the acute inhibition induced by MUFA feeding on DNL enzyme and CIC activities was almost nullified at 21 days. Mitochondrial fatty acid composition was slightly but significantly changed both at short- and long-term treatment, whereas the early changes in mitochondrial phospholipid composition vanished in long-term experiments. Our results suggest that in the early phase of administration, UFA coordinately reduced both the activities of de novo lipogenic enzymes and of CIC. ω-3 PUFA showed the greatest effect.

  6. Synthesis of 2-monoacylglycerols and structured triacylglycerols rich in polyunsaturated fatty acids by enzyme catalyzed reactions.

    Science.gov (United States)

    Rodríguez, Alicia; Esteban, Luis; Martín, Lorena; Jiménez, María José; Hita, Estrella; Castillo, Beatriz; González, Pedro A; Robles, Alfonso

    2012-08-10

    This paper studies the synthesis of structured triacylglycerols (STAGs) by a four-step process: (i) obtaining 2-monoacylglycerols (2-MAGs) by alcoholysis of cod liver oil with several alcohols, catalyzed by lipases Novozym 435, from Candida antartica and DF, from Rhizopus oryzae, (ii) purification of 2-MAGs, (iii) formation of STAGs by esterification of 2-MAGs with caprylic acid catalyzed by lipase DF, from R. oryzae, and (iv) purification of these STAGs. For the alcoholysis of cod liver oil, absolute ethanol, ethanol 96% (v/v) and 1-butanol were compared; the conditions with ethanol 96% were then optimized and 2-MAG yields of around 54-57% were attained using Novozym 435. In these 2-MAGs, DHA accounted for 24-31% of total fatty acids. In the operational conditions this lipase maintained a stable level of activity over at least 11 uses. These results were compared with those obtained with lipase DF, which deactivated after only three uses. The alcoholysis of cod liver oil and ethanol 96% catalyzed by Novozym 435 was scaled up by multiplying the reactant amounts 100-fold and maintaining the intensity of treatment constant (IOT=3g lipase h/g oil). In these conditions, the 2-MAG yield attained was about 67%; these 2-MAGs contained 36.6% DHA. The synthesized 2-MAGs were separated and purified from the alcoholysis reaction products by solvent extraction using solvents of low toxicity (ethanol and hexane); 2-MAG recovery yield and purity of the target product were approximately 96.4% and 83.9%, respectively. These 2-MAGs were transformed to STAGs using the optimal conditions obtained in a previous work. After synthesis and purification, 93% pure STAGs were obtained, containing 38% DHA at sn-2 position and 60% caprylic acid (CA) at sn-1,3 positions (of total fatty acids at these positions), i.e. the major TAG is the STAG with the structure CA-DHA-CA. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Effect of ω-3 and ω-9 fatty acid rich oils on lipoxygenases and cyclooxygenases enzymes and on the growth of a mammary adenocarcinoma model

    Directory of Open Access Journals (Sweden)

    Das Undurti N

    2010-10-01

    Full Text Available Abstract Background Nutritional factors play a major role in cancer initiation and development. Dietary polyunsaturated fatty acids (PUFAs have the ability to induce modifications in the activity of lipoxygenase (LOX and cyclooxygenase (COX enzymes that affect tumour growth. We studied the effect of two diets enriched in 6% Walnut and Peanut oils that are rich in ω-3 and ω9 PUFAs respectively on a murine mammary gland adenocarcinoma as compared with the control (C that received commercial diet. Results Peanut oil enriched diet induced an increase in membrane arachidonic acid (AA content and the cyclooxygenase enzyme derived 12-HHT (p Conclusions The results of the present study showed that Peanut oil-enriched diet protects against mammary cancer development by modulating tumour membrane fatty acids composition and LOX and COX enzyme activities.

  8. Elevation of the Yields of Very Long Chain Polyunsaturated Fatty Acids via Minimal Codon Optimization of Two Key Biosynthetic Enzymes.

    Directory of Open Access Journals (Sweden)

    Fei Xia

    Full Text Available Eicosapentaenoic acid (EPA, 20:5Δ5,8,11,14,17 and Docosahexaenoic acid (DHA, 22:6Δ4,7,10,13,16,19 are nutritionally beneficial to human health. Transgenic production of EPA and DHA in oilseed crops by transferring genes originating from lower eukaryotes, such as microalgae and fungi, has been attempted in recent years. However, the low yield of EPA and DHA produced in these transgenic crops is a major hurdle for the commercialization of these transgenics. Many factors can negatively affect transgene expression, leading to a low level of converted fatty acid products. Among these the codon bias between the transgene donor and the host crop is one of the major contributing factors. Therefore, we carried out codon optimization of a fatty acid delta-6 desaturase gene PinD6 from the fungus Phytophthora infestans, and a delta-9 elongase gene, IgASE1 from the microalga Isochrysis galbana for expression in Saccharomyces cerevisiae and Arabidopsis respectively. These are the two key genes encoding enzymes for driving the first catalytic steps in the Δ6 desaturation/Δ6 elongation and the Δ9 elongation/Δ8 desaturation pathways for EPA/DHA biosynthesis. Hence expression levels of these two genes are important in determining the final yield of EPA/DHA. Via PCR-based mutagenesis we optimized the least preferred codons within the first 16 codons at their N-termini, as well as the most biased CGC codons (coding for arginine within the entire sequences of both genes. An expression study showed that transgenic Arabidopsis plants harbouring the codon-optimized IgASE1 contained 64% more elongated fatty acid products than plants expressing the native IgASE1 sequence, whilst Saccharomyces cerevisiae expressing the codon optimized PinD6 yielded 20 times more desaturated products than yeast expressing wild-type (WT PinD6. Thus the codon optimization strategy we developed here offers a simple, effective and low-cost alternative to whole gene synthesis for high

  9. Increased fatty acid unsaturation and production of arachidonic acid by homologous over-expression of the mitochondrial malic enzyme in Mortierella alpina.

    Science.gov (United States)

    Hao, Guangfei; Chen, Haiqin; Du, Kai; Huang, Xiaoyun; Song, Yuanda; Gu, Zhennan; Wang, Lei; Zhang, Hao; Chen, Wei; Chen, Yong Q

    2014-09-01

    Malic enzyme (ME) catalyses the oxidative decarboxylation of L-malate to pyruvate and provides NADPH for intracellular metabolism, such as fatty acid synthesis. Here, the mitochondrial ME (mME) gene from Mortierella alpina was homologously over-expressed. Compared with controls, fungal arachidonic acid (ARA; 20:4 n-6) content increased by 60 % without affecting the total fatty acid content. Our results suggest that enhancing mME activity may be an effective mean to increase industrial production of ARA in M. alpina.

  10. Co-ordinate changes in enzymes of fatty acid synthesis, activation and esterification in rabbit mammary gland druing pregnancy and lactation.

    Science.gov (United States)

    Short, V J; Brindley, D N; Dils, R

    1977-01-01

    1. The activities of fatty acid synthetase, acyl-CoA synthetase, glycerol phosphate acyltransferase and phosphatidate phosphatase were measured in the mammary glands of rabbits from day 16 of pregnancy to day 15 of post partum. 2. There were significant correlations between the increases in activities of these enzymes during this period. This was the case whether the activities were expressed per mg of homogenate protein, per g wet wt. of tissue or per total wet weight of the whole glands. The only exception was the lack of correlation between the activities of fatty acid synthetase and of phosphatidate phosphatase per g wet wt. of tissue. 3. These co-ordinate increases are discussed in relation to the changes which occur in fatty acid metabolism in the mammary gland during pregnancy and lactation. PMID:192226

  11. Benefits of exenatide on obesity and non-alcoholic fatty liver disease with elevated liver enzymes in patients with type 2 diabetes.

    Science.gov (United States)

    Shao, Ning; Kuang, Hong Yu; Hao, Ming; Gao, Xin Yuan; Lin, Wen Jian; Zou, Wei

    2014-09-01

    The purpose of this study was to evaluate the advantages of exenatide treatment on obesity and non-alcoholic fatty liver disease (NAFLD) with elevated liver enzymes in patients with type 2 diabetes (T2D). A total of 60 newly diagnosed patients with obesity, NAFLD with elevated liver enzymes and T2D were included in the study. The patients were randomly divided into two groups. The exenatide treatment group (n = 30) were treated with exenatide and insulin glargine, and the intensive insulin therapy group (n = 30) were treated with insulin aspart and insulin glargine for 12 weeks. Selected clinical characteristics were determined, and ultrasonography was performed at both baseline and 12 weeks following treatment. At baseline, the clinical characteristics were matched between the two groups. After 12 weeks, fasting blood glucose (FBG), postprandial blood glucose (PBG), glycosylated haemoglobin (HbA1c), total cholesterol (TC), triglyceride (TG) and total bilirubin levels were significantly decreased in the two groups (p fatty liver was significantly higher in the exenatide group (93.3%) than the intensive insulin group (66.7%) (p obesity, non-alcoholic fatty liver disease with elevated liver enzymes and T2D. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Dietary phytic acid prevents fatty liver by reducing expression of hepatic lipogenic enzymes and modulates gut microflora in rats fed a high-sucrose diet.

    Science.gov (United States)

    Sekita, Ayaka; Okazaki, Yukako; Katayama, Tetsuyuki

    2016-06-01

    The aim of this study was to investigate the effect of phytic acid (PA) on fatty liver and gut microflora in rats fed a high-sucrose (HSC) diet. Three groups of rats were fed a high-starch (HSR) diet or an HSC diet with or without 1.02% sodium PA for 12 d. We evaluated hepatic weight, total lipids, and triacylglycerol (TG) levels, the activities and expression of hepatic lipogenic enzymes (glucose-6-phosphate dehydrogenase, malic enzyme 1, and fatty acid synthetase), and fecal microflora. The HSC diet significantly increased hepatic total lipids and TG levels, and the activities and expression of the hepatic lipogenic enzymes compared with the HSR diet. These upregulations were clearly suppressed by dietary PA. Consumption of PA elevated the fecal ratio of Lactobacillus spp. and depressed the ratio of Clostridium cocoides, and suppressed the elevation in the ratio of C. leptum induced by the HSC diet. This work showed that dietary PA ameliorates sucrose-induced fatty liver through reducing the expression of hepatic lipogenesis genes and modulates gut microflora in rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Molecular modeling and simulation of FabG, an enzyme involved in the fatty acid pathway of Streptococcus pyogenes.

    Science.gov (United States)

    Shafreen, Rajamohmed Beema; Pandian, Shunmugiah Karutha

    2013-09-01

    Streptococcus pyogenes (SP) is the major cause of pharyngitis accompanied by strep throat infections in humans. 3-keto acyl reductase (FabG), an important enzyme involved in the elongation cycle of the fatty acid pathway of S. pyogenes, is essential for synthesis of the cell-membrane, virulence factors and quorum sensing-related mechanisms. Targeting SPFabG may provide an important aid for the development of drugs against S. pyogenes. However, the absence of a crystal structure for FabG of S. pyogenes limits the development of structure-based drug designs. Hence, in the present study, a homology model of FabG was generated using the X-ray crystallographic structure of Aquifex aeolicus (PDB ID: 2PNF). The modeled structure was refined using energy minimization. Furthermore, active sites were predicted, and a large dataset of compounds was screened against SPFabG. The ligands were docked using the LigandFit module that is available from Discovery Studio version 2.5. From this list, 13 best hit ligands were chosen based on the docking score and binding energy. All of the 13 ligands were screened for Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties. From this, the two best descriptors, along with one descriptor that lay outside the ADMET plot, were selected for molecular dynamic (MD) simulation. In vitro testing of the ligands using biological assays further substantiated the efficacy of the ligands that were screened based on the in silico methods. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

    CERN Document Server

    Foulon, V; Croes, K; Waelkens, E

    1999-01-01

    Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

  15. Combined effects of temperature and metal exposure on the fatty acid composition of cell membranes, antioxidant enzyme activities and lipid peroxidation in yellow perch (Perca flavescens)

    Energy Technology Data Exchange (ETDEWEB)

    Fadhlaoui, Mariem; Couture, Patrice, E-mail: patrice.couture@ete.inrs.ca

    2016-11-15

    Highlights: • The fatty acid composition of yellow perch muscle at 9 °C was enhanced in monounsaturated and polyunsaturated fatty acids compared to fish maintained at 28 °C. • The thermal adjustment of muscle phospholipid fatty acid profiles is likely due to modifications of desaturase and elongase activities. • Exposure to Ni and Cd modified muscle phospholipid fatty acid composition in a temperature-dependent manner. • The higher fatty polyinsaturation in cold-acclimated fish did not increase their vulnerability to peroxidation. • Lower concentrations of malondialdehyde were measured in warm-acclimated, Ni-exposed fish, suggesting an overcompensation of antioxidant mechanisms that could explain their lower condition. - Abstract: The aim of this study was to investigate the combined effects of temperature and metal contamination (cadmium and nickel) on phospholipid fatty acid composition, antioxidant enzyme activities and lipid peroxidation in fish. Yellow perch were acclimated to two different temperatures (9 °C and 28 °C) and exposed either to Cd or Ni (respectively 4 μg/L and 600 μg/L) for seven weeks. Superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase activities and glutathione concentration were measured as indicators of antioxidant capacities, while malondialdehyde concentration was used as an indicator of lipid peroxidation. Poikilotherms including fish counteract the effects of temperature on phospholipid fatty acid ordering by remodelling their composition to maintain optimal fluidity. Accordingly, in our study, the fatty acid composition of yellow perch muscle at 9 °C was enhanced in monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) compared to fish maintained at 28 °C, in agreement with the theory of homeoviscous adaptation. Using ratios of various fatty acids as surrogates for desaturase and elongase activities, our data suggests that modification of the activity of these enzymes is

  16. Comparing Effects of Medication Therapy and Exercise Training with Diet on Liver enzyme Levels and Liver Sonography in Patients with Non-Alcoholic Fatty Liver Disease (NAFLD

    Directory of Open Access Journals (Sweden)

    Azadeh Nabizadeh Haghighi

    2016-03-01

    Full Text Available Background & Objectives: Non-alcoholic fatty liver disease, characterized by the deposition of fat in liver cells, can cause fibrosis, cirrhosis, and liver cell damage if not controlled. The aim of this study is to compare the effects of medication therapy and exercise training with diet on liver enzyme levels and liver sonography in patients with non-alcoholic fatty liver disease (NAFLD. Materials & Methods :In this quasi-experimental study, female patients with non-alcoholic fatty liver were randomly divided into two groups: medication therapy (n = 10 and exercise therapy (n = 10 for 8 weeks. During this period, the exercise group performed exercise training three days a week for 90 minutes per session. The drug was given to the medication group. In both groups, the diet was 500 calories less than their daily energy. Before and after intervention, blood tests and liver sonography were executed. All statistical analyses were done using SPSS for Windows version 20. Comparisons between and within groups were performed by Student's t-test and Wilcoxon test on paired and unpaired data. P < 0.05 was considered statistically significant. Results :In both groups, liver enzyme levels and disease severity in sonography reduced significantly (p<0.05. Conclusion: The findings of the present research showed that both methods of therapy have the same effect on reducing the severity of NAFLD.

  17. The effect of green tea extract supplementation on liver enzymes in patients with nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Ali Pezeshki

    2016-01-01

    Conclusions: According to the findings of this study, GTE supplementation decrease liver enzymes in patients with NAFLD. It can be claimed that GTE prescribed can be considered as a treatment to improve serum levels of liver enzymes in NAFLD patients.

  18. Upregulated mRNA expression of desaturase and elongase, two enzymes involved in highly unsaturated fatty acids biosynthesis pathways during follicle maturation in zebrafish

    Directory of Open Access Journals (Sweden)

    Enyu Yee-Ling

    2008-11-01

    Full Text Available Abstract Background Although unsaturated fatty acids such as eicosapentaenoic acid (EPA, C20:5n-3, docosahexaenoic acid (DHA, C22:6n-3 and arachidonic acid (ARA, C20:4n-6, collectively known as the highly unsaturated fatty acids (HUFA, play pivotal roles in vertebrate reproduction, very little is known about their synthesis in the ovary. The zebrafish (Danio rerio display capability to synthesize all three HUFA via pathways involving desaturation and elongation of two precursors, the linoleic acid (LA, C18:2n-6 and linolenic acid (LNA, C18:3n-3. As a prerequisite to gain full understanding on the importance and regulation of ovarian HUFA synthesis, we described here the mRNA expression pattern of two enzymes; desaturase (fadsd6 and elongase (elovl5, involved in HUFA biosynthesis pathway, in different zebrafish ovarian follicle stages. Concurrently, the fatty acid profile of each follicle stage was also analyzed. Methods mRNA levels of fadsd6 and elovl5 in different ovarian follicle stages were determined by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR assays. For analysis of the ovarian follicular fatty acid composition, gas chromatography was used. Results Our results have shown that desaturase displayed significant upregulation in expression during the oocyte maturation stage. Expression of elongase was significantly highest in pre-vitellogenic follicles, followed by maturation stage. Fatty acid composition analysis of different ovarian follicle stages also showed that ARA level was significantly highest in pre-vitellogenic and matured follicles. DHA level was highest in both late vitellogenic and maturation stage. Conclusion Collectively, our findings seem to suggest the existence of a HUFA synthesis system, which could be responsible for the synthesis of HUFA to promote oocyte maturation and possibly ovulation processes. The many advantages of zebrafish as model system to understand folliculogenesis will be

  19. The promiscuous enzyme medium-chain 3-keto-acyl-CoA thiolase triggers a vicious cycle in fatty-acid beta-oxidation.

    Directory of Open Access Journals (Sweden)

    Anne-Claire M F Martines

    2017-04-01

    Full Text Available Mitochondrial fatty-acid beta-oxidation (mFAO plays a central role in mammalian energy metabolism. Multiple severe diseases are associated with defects in this pathway. Its kinetic structure is characterized by a complex wiring of which the functional implications have hardly been explored. Repetitive cycles of reversible reactions, each cycle shortening the fatty acid by two carbon atoms, evoke competition between intermediates of different chain lengths for a common set of 'promiscuous' enzymes (enzymes with activity towards multiple substrates. In our validated kinetic model of the pathway, substrate overload causes a steep and detrimental flux decline. Here, we unravel the underlying mechanism and the role of enzyme promiscuity in it. Comparison of alternative model versions elucidated the role of promiscuity of individual enzymes. Promiscuity of the last enzyme of the pathway, medium-chain ketoacyl-CoA thiolase (MCKAT, was both necessary and sufficient to elicit the flux decline. Subsequently, Metabolic Control Analysis revealed that MCKAT had insufficient capacity to cope with high substrate influx. Next, we quantified the internal metabolic regulation, revealing a vicious cycle around MCKAT. Upon substrate overload, MCKAT's ketoacyl-CoA substrates started to accumulate. The unfavourable equilibrium constant of the preceding enzyme, medium/short-chain hydroxyacyl-CoA dehydrogenase, worked as an amplifier, leading to accumulation of upstream CoA esters, including acyl-CoA esters. These acyl-CoA esters are at the same time products of MCKAT and inhibited its already low activity further. Finally, the accumulation of CoA esters led to a sequestration of free CoA. CoA being a cofactor for MCKAT, its sequestration limited the MCKAT activity even further, thus completing the vicious cycle. Since CoA is also a substrate for distant enzymes, it efficiently communicated the 'traffic jam' at MCKAT to the entire pathway. This novel mechanism provides

  20. Impact of temperature on sea bass, Dicentrarchus labrax, retina: Fatty acid composition, expression of rhodopsin and enzymes of lipid and melatonin metabolism.

    Science.gov (United States)

    Bouaziz, Mehdi; Bejaoui, Safa; Rabeh, Imen; Besbes, Raouf; El Cafsi, M 'Hamed; Falcon, Jack

    2017-06-01

    Teleost fish are ectothermic vertebrates. Their metabolism, physiology and behavior rely on the external temperature. This study, on the retina of the sea bass Dicentrarchus labrax, reports on the impact of temperature on the fatty acid composition and mRNA abundance of key enzymes of lipid metabolism: fatty acid desaturase-2 (FADS2), fatty acid elongase-5 (ELOVL5), sterol regulatory element-binding protein-1 (SREBP-1), triglyceride lipase and phospholipase A2 (PLA2). We also report on the effects on the photopigment molecule rhodopsin and on enzymes of the melatonin synthesis pathway, namely arylalkylamine N-acetyltransferases 1a and 1b and acetylserotonin methyltransferase. Juvenile fish were placed for 30 days at 18, 23 or 28 °C. At 23 °C, the fatty acid composition of D. labrax retina showed, as generally reported for the retina of other fish species, particularly high amounts of docosahexaenoic (DHA), palmitic and oleic acids. The fatty acids composition was not significantly (P > 0.05) altered between 23 and 28 °C, but did increase at 18 °C compared to 23 and 28 °C. At 18 °C there were noticeable increases in total DHA, ecosapentaenoic, arachidonic, oleic, linoleic, palmitoleic and stearic acids. A negative correlation was found in the abundance of neutral (NL) vs. polar (PL) lipids: 18 °C induced an increase in NL and a decrease in PL, while 28 °C induced higher PL with decreased NL. In NL the changes affected mainly triglycerides. FADS2 and ELOVL5 mRNA abundance decreased from 18° to 28 °C while SREBP-1 and triglyceride lipase mRNA remained stable. Conversely PLA2 mRNA was more abundant at 23 than at 18 and 28 °C. Temperature increased and decreased rhodopsin mRNA abundance, at 28 °C and 18 °C respectively, while there was no effect on mRNA from the melatonin synthesis enzymes. In conclusion the data indicate a temperature induced redistribution of fatty acids among the lipid classes that might affect the physical properties of

  1. Study of the serum levels of polyunsaturated fatty acids and the expression of related liver metabolic enzymes in a rat valproate-induced autism model.

    Science.gov (United States)

    Zhao, Gang; Gao, Jingquan; Liang, Shuang; Wang, Xuelai; Sun, Caihong; Xia, Wei; Hao, Yanqiu; Li, Xiang; Cao, Yonggang; Wu, Lijie

    2015-08-01

    To investigate whether the decreased level of serum polyunsaturated fatty acids (PUFAs) in patients with autism is associated with the expression of related liver metabolic enzymes, we selected rats that were exposed to valproic acid (VPA) on embryonic day 12.5 (E12.5) as a model of autism. We observed the serum levels of PUFAs and the expression of related liver metabolic enzymes, including Δ5-desaturase, Δ6-desaturase and elongase (Elovl2), in VPA-exposed and control rats on postnatal day 35 (PND35) and conducted sex dimorphic analysis. We found that the levels of serum PUFAs and related liver metabolic enzymes in the VPA rats were significantly reduced, in association with autism-like behavioral changes, the abnormal expression of apoptosis-related proteins and hippocampal neuronal injury, compared to the control rats and showed sex difference in VPA group. This finding indicated that rats exposed to VPA at the embryonic stage may exhibit reduced synthesis of serum PUFAs due to the down-regulation of liver metabolic enzymes, thereby inducing nervous system injury and behavioral changes, which is affected by sex in the meantime. Copyright © 2015 ISDN. Published by Elsevier Ltd. All rights reserved.

  2. ω-3 Polyunsaturated fatty acids prevent pressure overload-induced ventricular dilation and decrease in mitochondrial enzymes despite no change in adiponectin

    Directory of Open Access Journals (Sweden)

    O'Shea Karen M

    2010-09-01

    Full Text Available Abstract Background Pathological left ventricular (LV hypertrophy frequently progresses to dilated heart failure with suppressed mitochondrial oxidative capacity. Dietary marine ω-3 polyunsaturated fatty acids (ω-3 PUFA up-regulate adiponectin and prevent LV dilation in rats subjected to pressure overload. This study 1 assessed the effects of ω-3 PUFA on LV dilation and down-regulation of mitochondrial enzymes in response to pressure overload; and 2 evaluated the role of adiponectin in mediating the effects of ω-3 PUFA in heart. Methods Wild type (WT and adiponectin-/- mice underwent transverse aortic constriction (TAC and were fed standard chow ± ω-3 PUFA for 6 weeks. At 6 weeks, echocardiography was performed to assess LV function, mice were terminated, and mitochondrial enzyme activities were evaluated. Results TAC induced similar pathological LV hypertrophy compared to sham mice in both strains on both diets. In WT mice TAC increased LV systolic and diastolic volumes and reduced mitochondrial enzyme activities, which were attenuated by ω-3 PUFA without increasing adiponectin. In contrast, adiponectin-/- mice displayed no increase in LV end diastolic and systolic volumes or decrease in mitochondrial enzymes with TAC, and did not respond to ω-3 PUFA. Conclusion These findings suggest ω-3 PUFA attenuates cardiac pathology in response to pressure overload independent of an elevation in adiponectin.

  3. Analysis of ATP-citrate lyase and malic enzyme mutants of Yarrowia lipolytica points out the importance of mannitol metabolism in fatty acid synthesis.

    Science.gov (United States)

    Dulermo, Thierry; Lazar, Zbigniew; Dulermo, Rémi; Rakicka, Magdalena; Haddouche, Ramedane; Nicaud, Jean-Marc

    2015-09-01

    The role of the two key enzymes of fatty acid (FA) synthesis, ATP-citrate lyase (Acl) and malic enzyme (Mae), was analyzed in the oleaginous yeast Yarrowia lipolytica. In most oleaginous yeasts, Acl and Mae are proposed to provide, respectively, acetyl-CoA and NADPH for FA synthesis. Acl was mainly studied at the biochemical level but no strain depleted for this enzyme was analyzed in oleaginous microorganisms. On the other hand the role of Mae in FA synthesis in Y. lipolytica remains unclear since it was proposed to be a mitochondrial NAD(H)-dependent enzyme and not a cytosolic NADP(H)-dependent enzyme. In this study, we analyzed for the first time strains inactivated for corresponding genes. Inactivation of ACL1 decreases FA synthesis by 60 to 80%, confirming its essential role in FA synthesis in Y. lipolytica. Conversely, inactivation of MAE1 has no effects on FA synthesis, except in a FA overaccumulating strain where it improves FA synthesis by 35%. This result definitively excludes Mae as a major key enzyme for FA synthesis in Y. lipolytica. During the analysis of both mutants, we observed a negative correlation between FA and mannitol level. As mannitol and FA pathways may compete for carbon storage, we inactivated YlSDR, encoding a mannitol dehydrogenase converting fructose and NADPH into mannitol and NADP+. The FA content of the resulting mutant was improved by 60% during growth on fructose, demonstrating that mannitol metabolism may modulate FA synthesis in Y. lipolytica. Copyright © 2015. Published by Elsevier B.V.

  4. Alterations in the fatty acid profile, antioxidant enzymes and protein pattern of Biomphalaria alexandrina snails exposed to the pesticides diazinon and profenfos.

    Science.gov (United States)

    Bakry, Fayez A; El-Hommossany, Karem; Abd El-Atti, Mahmoud; Ismail, Somaya M

    2016-04-01

    The use of pesticides is widespread in agricultural activities. These pesticides may contaminate the irrigation and drainage systems during agriculture activities and pests' control and then negatively affect the biotic and a biotic component of the polluted water courses. The present study aimed to evaluate the effect of the pesticides diazinon and profenfos on some biological activities of Biomphalaria alexandrina snails such as fatty acid profile, some antioxidant enzymes (thioredoxin reductase (TrxR), sorbitol dehydrogenase (SDH), superoxide dismutase (SOD), catalase (CAT) as well as glutathione reductase (GR) and lipid peroxidation (LP)) and protein patterns in snails' tissues exposed for 4 weeks to LC10 of diazinon and profenfos. The results showed that the two pesticides caused considerable reduction in survival rates and egg production of treated snails. Identification of fatty acid composition in snail tissues treated with diazinon and profenfos pesticides was carried out using gas-liquid chromatography (GLC). The results declared alteration in fatty acid profile, fluctuation in percentage of long chain and short chain fatty acid contributions either saturated or unsaturated ones, and a decrease in total lipid content in tissues of snails treated with these pesticides. The data demonstrate that there was a significant inhibition in the activities of tissues SOD, CAT, glutathione reductase (GR), TrxR, and SDH in tissues of treated snails, while a significant elevation was detected in LP as compared to the normal control. On the other hand, the electrophoretic pattern of total protein showed differences in number and molecular weights of protein bands due to the treatment of snails. It was concluded that the residues of diazinon and profenfos pesticides in aquatic environments have toxic effects onB. alexandrina snails. © The Author(s) 2013.

  5. Importance of the Long-Chain Fatty Acid Beta-Hydroxylating Cytochrome P450 Enzyme YbdT for Lipopeptide Biosynthesis in Bacillus subtilis Strain OKB105

    Directory of Open Access Journals (Sweden)

    Michael J. McInerney

    2011-03-01

    Full Text Available Bacillus species produce extracellular, surface-active lipopeptides such as surfactin that have wide applications in industry and medicine. The steps involved in the synthesis of 3-hydroxyacyl-coenzyme A (CoA substrates needed for surfactin biosynthesis are not understood. Cell-free extracts of Bacillus subtilis strain OKB105 synthesized lipopeptide biosurfactants in presence of L-amino acids, myristic acid, coenzyme A, ATP, and H2O2, which suggested that 3-hydroxylation occurs prior to CoA ligation of the long chain fatty acids (LCFAs. We hypothesized that YbdT, a cytochrome P450 enzyme known to beta-hydroxylate LCFAs, functions to form 3-hydroxy fatty acids for lipopeptide biosynthesis. An in-frame mutation of ybdT was constructed and the resulting mutant strain (NHY1 produced predominantly non-hydroxylated lipopeptide with diminished biosurfactant and beta-hemolytic activities. Mass spectrometry showed that 95.6% of the fatty acids in the NHY1 biosurfactant were non-hydroxylated compared to only ~61% in the OKB105 biosurfactant. Cell-free extracts of the NHY1 synthesized surfactin containing 3-hydroxymyristic acid from 3-hydroxymyristoyl-CoA at a specific activity similar to that of the wild type (17 ± 2 versus 17.4 ± 6 ng biosurfactant min−1·ng·protein−1, respectively. These results showed that the mutation did not affect any function needed to synthesize surfactin once the 3-hydroxyacyl-CoA substrate was formed and that YbdT functions to supply 3-hydroxy fatty acid for surfactin biosynthesis. The fact that YbdT is a peroxidase could explain why biosurfactant production is rarely observed in anaerobically grown Bacillus species. Manipulation of LCFA specificity of YbdT could provide a new route to produce biosurfactants with activities tailored to specific functions.

  6. Profile of liver enzymes in non-alcoholic fatty liver disease in patients with impaired glucose tolerance and newly detected untreated type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Debmalya Sanyal

    2015-01-01

    Full Text Available Context: The perception of non-alcoholic fatty liver disease (NAFLD as an uncommon and benign condition is rapidly changing. Approximately, 70% type 2 diabetes mellitus (T2DM patients have a fatty liver, which may follow an aggressive course with necroinflammation and fibrosis. Aims: To assess the profile of liver enzymes in subjects with impaired glucose tolerance (IGT, new onset treatment naive T2DM and normal glucose tolerance (NGT with and without NAFLD. Settings and Design: Cross-sectional clinic-based study. Subjects and Methods: 152 IGT and 158 recently detected T2DM subjects aged between 30 and 69 years, along with 160 age and gender matched controls with NGT. An ultrasonography scan of the upper abdomen was done in all patients in order to examine presence of fatty liver. Anthropometry, lipid profile, liver enzymes were also analyzed in all patients. Statistical Analysis Used: Unpaired t-test, Chi-square/Fisher Exact test (for categorical variables, Pearson/Spearmen correlation test to find significant difference, association and correlation between two or more groups respectively. Results: NAFLD was significantly associated with higher alanine aminotransferase (ALT and gamma-glutamyl transferase (GGT but not ALP levels in IGT and T2DM patients. ALT, GGT significant correlated with waist circumference, body mass index, fasting insulin, homeostatic model assessment- insulin resistance, fasting blood glucose, high density lipoprotein cholesterol, triglyceride. 57% of NAFLD patients had normal ALT between 25 and 40 U/L, 53% of NAFLD subjects had normal GGT between 15 and 30 U/L. ALT 40 U/L and GGT > 30 U/L had highest positive predictivity for presence of NAFLD in our study sample. Conclusions: Mild elevations of liver enzymes in the upper normal range are associated with features of metabolic syndrome and NAFLD even in IGT and recently detected T2DM patients. Novel cut-offs for liver enzymes are warranted in order to prevent unnecessary

  7. The Effect of Chlorella vulgaris Supplementation on Liver Enzymes, Serum Glucose and Lipid Profile in Patients with Non-Alcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Mehrangiz Ebrahimi-Mameghani

    2014-07-01

    Full Text Available Background: Non-alcoholic fatty liver disease (NAFLD is becoming a public health problem worldwide and using microalgae is a new approach on its treatment. The aim of this study was to investigate the effect of Chlorella vulgaris supplementation on liver enzymes, serum glucose and lipid profile in patients with NAFLD. Methods: This double-blind randomized placebo-controlled clinical trial was conducted on 60 NAFLD patients from specialized clinics of Tabriz University of Medical Sciences from December 2011 to July 2012. The subjects were randomly allocated into 2 groups: 1 “intervention” (n=30 received 400 mg/day vitamin E plus four 300 mg tablets of Chlorella vulgaris and, 2 “placebo” (n=30 received 400 mg/day vitamin E and four placebo tablets per day for 8 weeks. Weight, liver enzymes and metabolic factors were assessed in fasting serum and dietary data was collected at baseline and end of the study. Results: Weight, liver enzymes, fasting blood sugar (FBS and lipid profile decreased significantly in both groups (P<0.05. The differences in weight, ALP and FBS between the two groups were statistically significant (P=0.01, P=0.04 and P=0.02, respectively. Conclusion: C. vulgaris seems to improve FBS and lipid profile and therefore could be considered as an effective complementary treatment in NAFLD.

  8. Benzene Exposure Alters Expression of Enzymes Involved in Fatty Acid β-Oxidation in Male C3H/He Mice

    Directory of Open Access Journals (Sweden)

    Rongli Sun

    2016-10-01

    Full Text Available Benzene is a well-known hematotoxic carcinogen that can cause leukemia and a variety of blood disorders. Our previous study indicated that benzene disturbs levels of metabolites in the fatty acid β-oxidation (FAO pathway, which is crucial for the maintenance and function of hematopoietic and leukemic cells. The present research aims to investigate the effects of benzene on changes in the expression of key enzymes in the FAO pathway in male C3H/He mice. Results showed that benzene exposure caused reduced peripheral white blood cell (WBC, red blood cell (RBC, platelet (Pit counts, and hemoglobin (Hgb concentration. Investigation of the effects of benzene on the expression of FA transport- and β-oxidation-related enzymes showed that expression of proteins Cpt1a, Crat, Acaa2, Aldh1l2, Acadvl, Crot, Echs1, and Hadha was significantly increased. The ATP levels and mitochondrial membrane potential decreased in mice exposed to benzene. Meanwhile, reactive oxygen species (ROS, hydrogen peroxide (H2O2, and malondialdehyde (MDA levels were significantly increased in the benzene group. Our results indicate that benzene induces increased expression of FA transport and β-oxidation enzymes, mitochondrial dysfunction, and oxidative stress, which may play a role in benzene-induced hematotoxicity.

  9. The effect of dietary Chlorella vulgaris supplementation on micro-organism community, enzyme activities and fatty acid profile in the rumen liquid of goats.

    Science.gov (United States)

    Tsiplakou, E; Abdullah, M A M; Skliros, D; Chatzikonstantinou, M; Flemetakis, E; Labrou, N; Zervas, G

    2017-04-01

    Microalgae might be considered as an alternative source of fat and/or protein for ruminant's diets. However, changes in populations of ruminal micro-organisms associated with biohydrogenation process, methane and ammonia production in response to microalgae dietary supplementation have not been well characterized. Thus, 16 cross-bred goats were divided into two groups. Each goat of both groups was fed individually with alfalfa hay and concentrates separately. The concentrates of the control group had no microalgae while those of the treated group were supplemented with 10 g lyophilized Chlorella vulgaris/kg concentrate (chlor). On the 30th experimental day, samples of rumen fluid were collected for microbial DNA extraction, fatty acid profile and enzyme activity analyses. The results showed that the chlor diet compared with the control increased significantly the populations of Methanosphaera stadtmanae, Methanobrevibacter ruminantium and Methanogens bacteria and protozoa in the rumen of goats. A significant reduction in the cellulase activity and in the abundance of Ruminococcus albus, and a significant increase in the protease activity and in the abundance of Clostridium sticklandii in the rumen liquid of goats fed with the chlor diet, compared with the control, were found. Chlorella vulgaris supplementation promoted the formation of trans C 18:1 , trans-11 C 18:1 and monounsaturated fatty acids (MUFA), while the proportions of C 18:0 and long-chain fatty acids (LCFA) reduced significantly in the rumen liquid of goats. This shift in ruminal biohydrogenation pathway was accompanied by a significant increase in Butyrivibrio fibrisolvens trans C 18:1 -producing bacteria. In conclusion, the supplementation of diets with microalgae needs further investigation because it enhances the populations of methane-producing bacteria and protozoa. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  10. The Fatty Acid Biosynthesis Enzyme FabI Plays a Key Role In the Development of Liver Stage Malarial Parasites

    Science.gov (United States)

    Yu, Min; Santha Kumar, T. R.; Nkrumah, Louis J.; Coppi, Alida; Retzlaff, Silke; Li, Celeste D.; Kelly, Brendan J.; Moura, Pedro A.; Lakshmanan, Viswanathan; Freundlich, Joel S.; Valderramos, Juan-Carlos; Vilcheze, Catherine; Siedner, Mark; Tsai, Jennifer H.-C.; Falkard, Brie; Sidhu, Amar bir Singh; Purcell, Lisa A.; Gratraud, Paul; Kremer, Laurent; Waters, Andy P.; Schiehser, Guy; Jacobus, David P.; Janse, Chris J.; Ager, Arba; Jacobs, William R.; Sacchettini, James C.; Heussler, Volker; Sinnis, Photini; Fidock, David A.

    2008-01-01

    SUMMARY Fatty acid biosynthesis has been viewed as an important biological function of and therapeutic target for Plasmodium falciparum asexual blood stage infection. This apicoplast-resident type II pathway, distinct from the mammalian type I process, includes FabI. Here, we report synthetic chemistry and transfection studies concluding that Plasmodium FabI is not the target of the antimalarial activity of the bacterial FabI inhibitor triclosan. Disruption of fabI in P. falciparum or the rodent parasite P. berghei does not impede blood stage growth. In contrast, mosquito-derived fabI-deficient P. berghei sporozoites are markedly less infective for mice and typically fail to complete liver stage development in vitro. This is characterized by an inability to form intra-hepatic merosomes that normally initiate blood stage infections. These data illuminate key differences between liver and blood stage parasites in their requirements for host versus de novo synthesized fatty acids, and create new prospects for stage-specific antimalarial interventions. PMID:19064257

  11. Effects of coenzyme Q10 supplementation on the anthropometric variables, lipid profiles and liver enzymes in patients with non-alcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Elnaz Jafarvand

    2016-03-01

    Full Text Available This randomized double-blind placebo-controlled trial was conducted on 41 patients with non-alcoholic fatty liver disease. Patients in intervention group received 100 mg/day coenzyme Q10 (CoQ10 for four weeks. There was a significant reduction in waist circumference and aspartate aminotransferase concentrations after CoQ10 supplementation (p<0.05. Dietary fiber was in negative correlation with change in serum alanine aminotransferase (ALT concentrations (r = -410, p = 0.04, and dietary fat intake was in positive relation with serum triglyceride (r = 463, p = 0.04 and in negative relation with serum high-density lipoprotein cholesterol (HDL-C (r = -533, p = 0.02 in CoQ10-treated group. CoQ10 supplement is able to reduce central obesity and improve liver function in non-alcoholic fatty liver disease. Dietary factors were also significant determinants of change in liver-specific enzyme ALT and lipid profile in these patients. Further trials with higher dose of CoQ10 and longer treatment periods are warranted to better clarify these findings.

  12. In Vitro Regulation of Enzymes of the Renin-angiotensin-aldosterone System by Isoquercitrin, Phloridzin and their Long Chain Fatty Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Khushwant S. Bhullar

    2014-05-01

    Full Text Available Background: Hypertension is a crucial risk factor for development of cardiovascular and neurological diseases. Flavonoids exhibit a wide range of biological effects and have had increased interest as a dietary approach for the prevention or possible treatment of hypertension. However, continuous efforts have been made to structurally modify natural flavonoids with the hope of improving their biological activities. One of the methods used for the possible enhancement of flavonoid efficacy is enzymatic esterification of flavonoids with fatty acids. Objective: The current study is designed to investigate the antihypertensive activity of isoquercitrin (quercetin-3-O-glucoside, Q3G and phloridzin (PZ in comparison to their twelve long chain fatty acid derivatives via enzymatic inhibition of renin angiotensin aldosterone system (RAAS enzymes. Methods: The novel flavonoid esters were synthesized by the acylation of isoquercitrin and phloridzin with long chain unsaturated and saturated fatty acids (C18–C22. These acylated products were then tested for their in vitro angiotensin converting enzyme (ACE, renin and aldosterone synthase activities. Results: The linoleic and α-linolenic acid esters of PZ were the strongest (IC50 69.9-70.9 µM while Q3G and PZ (IC50 >200 µM were the weakest renin inhibitors in vitro (p≤0.05. The eicosapentaenoic acid ester of PZ (IC50 16.0 µM was the strongest inhibitor of ACE, while PZ (IC50 124.0 µM was the weakest inhibitor (p≤0.05 among all tested compounds. However, all investigated compounds had low (5.0-11.9% or no effect on aldosterone synthase inhibition (p≤0.05. The parent compound Q3G and the eicosapentaenoic acid ester of PZ emerged as the strongest ACE inhibitors. Conclusions: The structural modification of Q3G and PZ significantly improved their antihypertensive activities. The potential use of PZ derivatives as natural health products to treat hypertension needs to be further evaluated

  13. Effect of Aerobic and Resistance Exercise Training on Liver Enzymes and Hepatic Fat in Iranian Men With Nonalcoholic Fatty Liver Disease

    Science.gov (United States)

    Shamsoddini, Alireza; Sobhani, Vahid; Ghamar Chehreh, Mohammad Ebrahim; Alavian, Seyed Moayed; Zaree, Ali

    2015-01-01

    Background: Nonalcoholic fatty liver disease (NAFLD) has different prevalence rates in various parts of the world and is a risk factor for diabetes and cardiovascular disease that could progress to nonalcoholic steatohepatitis, cirrhosis, and liver failure. Objectives: The current study aimed to investigate the effect of Aerobic Training (AT) and resistance training (RT) on hepatic fat content and liver enzyme levels in Iranian men. Patients and Methods: In a randomized clinical trial study, 30 men with clinically defined NAFLD were allocated into three groups (aerobic, resistance and control). An aerobic group program consisted of 45 minutes of aerobic exercise at 60% - 75% maximum heart rate intensity, a resistance group performed seven resistance exercises at intensity of 50% - 70% of 1 repetition maximum (1RM ) and the control group had no exercise training program during the study. Before and after training, anthropometry, insulin sensitivity, liver enzymes and hepatic fat were elevated. Results: After training, hepatic fat content was markedly reduced, to a similar extent, in both the aerobic and resistance exercise training groups (P ≤ 0.05). In the two exercise training groups, alanine amino transferase and aspartate amino transferase serum levels were significantly decreased compared to the control group (P = 0.002) and (P = 0.02), respectively. Moreover, body fat (%), fat mass (kg), homeostasis model assessment insulin resistance (HOMI-IR) were all improved in the AT and RT. These changes in the AT group were independent of weight loss. Conclusions: This study demonstrated that RT and AT are equally effective in reducing hepatic fat content and liver enzyme levels among patients with NAFLD. However, aerobic exercise specifically improves NAFLD independent of any change in body weight. PMID:26587039

  14. The activity of the endocannabinoid metabolising enzyme fatty acid amide hydrolase in subcutaneous adipocytes correlates with BMI in metabolically healthy humans

    Directory of Open Access Journals (Sweden)

    Alexander Stephen PH

    2011-08-01

    Full Text Available Abstract Background The endocannabinoid system (ECS is a ubiquitously expressed signalling system, with involvement in lipid metabolism and obesity. There are reported changes in obesity of blood concentrations of the endocannabinoids anandamide (AEA and 2-arachidonoylglcyerol (2-AG, and of adipose tissue expression levels of the two key catabolic enzymes of the ECS, fatty acid amide hydrolase (FAAH and monoacylglycerol lipase (MGL. Surprisingly, however, the activities of these enzymes have not been assayed in conditions of increasing adiposity. The aim of the current study was to investigate whether FAAH and MGL activities in human subcutaneous adipocytes are affected by body mass index (BMI, or other markers of adiposity and metabolism. Methods Subcutaneous abdominal mature adipocytes, fasting blood samples and anthropometric measurements were obtained from 28 metabolically healthy subjects representing a range of BMIs. FAAH and MGL activities were assayed in mature adipocytes using radiolabelled substrates. Serum glucose, insulin and adipokines were determined using ELISAs. Results MGL activity showed no relationship with BMI or other adiposity indices, metabolic markers (fasting serum insulin or glucose or serum adipokine levels (adiponectin, leptin or resistin. In contrast, FAAH activity in subcutaneous adipocytes correlated positively with BMI and waist circumference, but not with skinfold thickness, metabolic markers or serum adipokine levels. Conclusions In this study, novel evidence is provided that FAAH activity in subcutaneous mature adipocytes increases with BMI, whereas MGL activity does not. These findings support the hypothesis that some components of the ECS are upregulated with increasing adiposity in humans, and that AEA and 2-AG may be regulated differently.

  15. The peroxisome proliferator-activated receptor alpha-selective activator ciprofibrate upregulates expression of genes encoding fatty acid oxidation and ketogenesis enzymes in rat brain.

    Science.gov (United States)

    Cullingford, Tim E; Dolphin, Colin T; Sato, Hitoshi

    2002-04-01

    Activated peroxisome proliferator activated receptor alpha (PPAR alpha) protects against the cellular inflammatory response, and is central to fatty acid-mediated upregulation of the gene encoding the key ketogenic enzyme mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (mHS). We have previously demonstrated both PPAR alpha and mHS expression in brain, implying that brain-targeted PPAR alpha activators may likewise up-regulate mHS expression in brain. Thus, to attempt pharmacological activation of brain PPAR alpha in vivo, we have administered to rats two drugs with previously defined actions in rat brain, namely the PPAR alpha-selective activator ciprofibrate and the pan-PPAR activator valproate. Using the sensitive and discriminatory RNase protection co-assay, we demonstrate that both ciprofibrate and valproate induce mHS expression in liver, the archetypal PPAR alpha-expressing organ. Furthermore, ciprofibrate potently increases mHS mRNA abundance in rat brain, together with lesser increases in two other PPAR alpha-regulated mRNAs. Thus we demonstrate, for the first time, up-regulation of expression of PPAR alpha-dependent genes including mHS in brain, with implications in the increased elimination of neuro-inflammatory lipids and concomitant increased production of neuro-protective ketone bodies.

  16. Expression of genes encoding enzymes involved in the one carbon cycle in rat placenta is determined by maternal micronutrients (folic acid, vitamin B12) and omega-3 fatty acids.

    Science.gov (United States)

    Khot, Vinita; Kale, Anvita; Joshi, Asmita; Chavan-Gautam, Preeti; Joshi, Sadhana

    2014-01-01

    We have reported that folic acid, vitamin B12, and omega-3 fatty acids are interlinked in the one carbon cycle and have implications for fetal programming. Our earlier studies demonstrate that an imbalance in maternal micronutrients influence long chain polyunsaturated fatty acid metabolism and global methylation in rat placenta. We hypothesize that these changes are mediated through micronutrient dependent regulation of enzymes in one carbon cycle. Pregnant dams were assigned to six dietary groups with varying folic acid and vitamin B12 levels. Vitamin B12 deficient groups were supplemented with omega-3 fatty acid. Placental mRNA levels of enzymes, levels of phospholipids, and glutathione were determined. Results suggest that maternal micronutrient imbalance (excess folic acid with vitamin B12 deficiency) leads to lower mRNA levels of methylene tetrahydrofolate reductase (MTHFR) and methionine synthase , but higher cystathionine b-synthase (CBS) and Phosphatidylethanolamine-N-methyltransferase (PEMT) as compared to control. Omega-3 supplementation normalized CBS and MTHFR mRNA levels. Increased placental phosphatidylethanolamine (PE), phosphatidylcholine (PC), in the same group was also observed. Our data suggests that adverse effects of a maternal micronutrient imbalanced diet may be due to differential regulation of key genes encoding enzymes in one carbon cycle and omega-3 supplementation may ameliorate most of these changes.

  17. Expression of Genes Encoding Enzymes Involved in the One Carbon Cycle in Rat Placenta is Determined by Maternal Micronutrients (Folic Acid, Vitamin B12 and Omega-3 Fatty Acids

    Directory of Open Access Journals (Sweden)

    Vinita Khot

    2014-01-01

    Full Text Available We have reported that folic acid, vitamin B12, and omega-3 fatty acids are interlinked in the one carbon cycle and have implications for fetal programming. Our earlier studies demonstrate that an imbalance in maternal micronutrients influence long chain polyunsaturated fatty acid metabolism and global methylation in rat placenta. We hypothesize that these changes are mediated through micronutrient dependent regulation of enzymes in one carbon cycle. Pregnant dams were assigned to six dietary groups with varying folic acid and vitamin B12 levels. Vitamin B12 deficient groups were supplemented with omega-3 fatty acid. Placental mRNA levels of enzymes, levels of phospholipids, and glutathione were determined. Results suggest that maternal micronutrient imbalance (excess folic acid with vitamin B12 deficiency leads to lower mRNA levels of methylene tetrahydrofolate reductase (MTHFR and methionine synthase , but higher cystathionine b-synthase (CBS and Phosphatidylethanolamine-N-methyltransferase (PEMT as compared to control. Omega-3 supplementation normalized CBS and MTHFR mRNA levels. Increased placental phosphatidylethanolamine (PE, phosphatidylcholine (PC, in the same group was also observed. Our data suggests that adverse effects of a maternal micronutrient imbalanced diet may be due to differential regulation of key genes encoding enzymes in one carbon cycle and omega-3 supplementation may ameliorate most of these changes.

  18. Inhibition of cytochrome P450 enzymes by saturated and unsaturated fatty acids in human liver microsomes, characterization of enzyme kinetics in the presence of bovine serum albumin (0.1 and 1.0% w/v) and in vitro - in vivo extrapolation of hepatic clearance.

    Science.gov (United States)

    Palacharla, Raghava Choudary; Uthukam, Venkatesham; Manoharan, Arunkumar; Ponnamaneni, Ranjith Kumar; Padala, Nagasurya Prakash; Boggavarapu, Rajesh Kumar; Bhyrapuneni, Gopinadh; Ajjala, Devender Reddy; Nirogi, Ramakrishna

    2017-04-01

    The objective of the study was to determine the effect of fatty acids on CYP enzymes and the effect of BSA on intrinsic clearance of probe substrates. The inhibitory effect of thirteen fatty acids including saturated, mono-unsaturated and polyunsaturated fatty acids on CYP enzymes, kinetic parameters and intrinsic clearance values of nine CYP marker probe substrate reactions in the absence and presence of BSA (0.1 and 1.0% w/v) were characterized in human liver microsomes. The results demonstrate that most of the unsaturated fatty acids showed marked inhibition towards CYP2C8 mediated amodiaquine N-deethylation followed by inhibition of CYP2C9 and CYP2B6 mediated activities. The addition of 0.1% BSA in the incubation markedly improved the unbound intrinsic clearance values of probe substrates by reducing the K m values with little or no effect on maximal velocity. The addition of BSA (0.1 and 1.0% w/v) did not influence the unbound intrinsic clearance of marker reactions for CYP2A6, and CYP3A4 enzymes. The addition of 0.1% w/v BSA is sufficient to determine the intrinsic clearance of marker probe reactions by metabolite formation approach. The predicted hepatic clearance values for the substrates using the well-stirred model, in the presence of BSA (0.1% BSA), are comparable to the in vivo hepatic clearance values. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effects of pectin pentaoligosaccharide from Hawthorn ( Crataegus pinnatifida Bunge. var. Major) on the activity and mRNA levels of enzymes involved in fatty acid oxidation in the liver of mice fed a high-fat diet.

    Science.gov (United States)

    Li, Tuo-Ping; Zhu, Ru-Gang; Dong, Yin-Ping; Liu, Yong-Hui; Li, Su-Hong; Chen, Gang

    2013-08-07

    The regulatory effects of haw pectin pentaoligosaccharide (HPPS) on fatty acid oxidation-related enzyme activities and mRNA levels were investigated in the liver of high fat diet induced hyperlipidemic mice. Results showed that HPPS (150 mg/kg for 10 weeks) significantly suppresses weight gain (32.3 ± 0.26 and 21.1 ± 0.14 g for high-fat diet and HPPS groups, respectively), decreases serum triacylglycerol levels (1.64 ± 0.09 and 0.91 ± 0.02 mmol/L, respectively), and increases lipid excretion in feces (55.7 ± 0.38 and 106.4 ± 0.57 mg/g for total lipid, respectively), compared to high-fat diet as control. HPPS significantly increased the hepatic fatty acid oxidation-related enzyme activities of acyl-CoA oxidase, carnitine palmitoyltransferase I, 3-ketoacyl-CoA thiolase, and 2,4-dienoyl-CoA reductase by 53.8, 74.2, 47.1, and 24.2%, respectively. Meanwhile, the corresponding mRNAs were up-regulated by 89.6, 85.8, 82.9, and 30.9%, respectively. Moreover, HPPS was able to up-regulate the gene and protein expressions of peroxisome proliferator-activated receptor α. Results suggest that continuous HPPS ingestion may be used as dietary therapy to prevent obesity and cardiovascular diseases.

  20. Strong association between non alcoholic fatty liver disease (NAFLD and low 25(OH vitamin D levels in an adult population with normal serum liver enzymes

    Directory of Open Access Journals (Sweden)

    Pozzilli Paolo

    2011-07-01

    Full Text Available Abstract Background Hypovitaminosis D has been recently recognized as a worldwide epidemic. Since vitamin D exerts significant metabolic activities, comprising free fatty acids (FFA flux regulation from the periphery to the liver, its deficiency may promote fat deposition into the hepatocytes. Aim of our study was to test the hypothesis of a direct association between hypovitaminosis D and the presence of NAFLD in subjects with various degree of insulin-resistance and related metabolic disorders. Methods We studied 262 consecutive subjects referred to the Diabetes and Metabolic Diseases clinics for metabolic evaluation. NAFLD (non-alcoholic fatty liver disease was diagnosed by upper abdomen ultrasonography, metabolic syndrome was identified according to the Third Report of National Cholesterol Education Program/Adult Treatment Panel (NCEP/ATPIII modified criteria. Insulin-resistance was evaluated by means of HOMA-IR. Fatty-Liver-Index, a recently identified correlate of NAFLD, was also estimated. Serum 25(OHvitamin D was measured by colorimetric method. Results Patients with NAFLD (n = 162,61.8% had reduced serum 25(OH vitamin D levels compared to subjects without NAFLD (14.8 ± 9.2 vs 20.5 ± 9.7 ng/ml, p Conclusions Low 25(OHvitamin D levels are associated with the presence of NAFLD independently from metabolic syndrome, diabetes and insulin-resistance profile.

  1. Adaptation to a high protein, carbohydrate-free diet induces a marked reduction of fatty acid synthesis and lipogenic enzymes in rat adipose tissue that is rapidly reverted by a balanced diet.

    Science.gov (United States)

    Brito, S M R C; Moura, M A F; Kawashita, N H; Festuccia, W T L; Garófalo, M A R; Kettelhut, I C; Migliorini, R H

    2005-06-01

    We have previously shown that in vivo lipogenesis is markedly reduced in liver, carcass, and in 4 different depots of adipose tissue of rats adapted to a high protein, carbohydrate-free (HP) diet. In the present work, we investigate the activity of enzymes involved in lipogenesis in the epididymal adipose tissue (EPI) of rats adapted to an HP diet before and 12 h after a balanced diet was introduced. Rats fed an HP diet for 15 days showed a 60% reduction of EPI fatty acid synthesis in vivo that was accompanied by 45%-55% decreases in the activities of pyruvate dehydrogenase complex, ATP-citrate lyase, acetyl-CoA carboxylase, glucose-6-phosphate dehydrogenase, and malic enzyme. Reversion to a balanced diet for 12 h resulted in a normalization of in vivo EPI lipogenesis, and in a restoration of acetyl-CoA carboxylase activity to levels that did not differ significantly from control values. The activities of ATP-citrate lyase and pyruvate dehydrogenase complex increased to about 75%-86% of control values, but the activities of glucose-6-phosphate dehydrogenase and malic enzyme remained unchanged 12 h after diet reversion. The data indicate that in rats, the adjustment of adipose tissue lipogenic activity is an important component of the metabolic adaptation to different nutritional conditions.

  2. Fatty Acid Biosynthesis IX

    DEFF Research Database (Denmark)

    Carey, E. M.; Hansen, Heinz Johs. Max; Dils, R.

    1972-01-01

    # 1. I. [I-14C]Acetate was covalently bound to rabbit mammary gland fatty acid synthetase by enzymic transacylation from [I-14C]acetyl-CoA. Per mole of enzyme 2 moles of acetate were bound to thiol groups and up to I mole of acetate was bound to non-thiol groups. # 2. 2. The acetyl-fatty acid...... synthetase complex was isolated free from acetyl-CoA. It was rapidly hydrolysed at 30°C, but hydrolysis was greatly diminished at o°C and triacetic lactone synthesis occurred. In the presence of malonyl-CoA and NADPH, all the acetate bound to fatty acid synthetase was incorporated into long-chain fatty acids....... Hydrolysis of bound acetate and incorporation of bound acetate into fatty acids were inhibited to the same extent by guanidine hydrochloride. # 3. 3. Acetate was also covalently bound to fatty acid synthetase by chemical acetylation with [I-14C]acetic anhydride in the absence of CoASH. A total of 60 moles...

  3. The fatty acid biosynthesis enzyme FabI plays a key role in the development of liver-stage malarial parasites.

    Science.gov (United States)

    Yu, Min; Kumar, T R Santha; Nkrumah, Louis J; Coppi, Alida; Retzlaff, Silke; Li, Celeste D; Kelly, Brendan J; Moura, Pedro A; Lakshmanan, Viswanathan; Freundlich, Joel S; Valderramos, Juan-Carlos; Vilcheze, Catherine; Siedner, Mark; Tsai, Jennifer H-C; Falkard, Brie; Sidhu, Amar Bir Singh; Purcell, Lisa A; Gratraud, Paul; Kremer, Laurent; Waters, Andrew P; Schiehser, Guy; Jacobus, David P; Janse, Chris J; Ager, Arba; Jacobs, William R; Sacchettini, James C; Heussler, Volker; Sinnis, Photini; Fidock, David A

    2008-12-11

    The fatty acid synthesis type II pathway has received considerable interest as a candidate therapeutic target in Plasmodium falciparum asexual blood-stage infections. This apicoplast-resident pathway, distinct from the mammalian type I process, includes FabI. Here, we report synthetic chemistry and transfection studies concluding that Plasmodium FabI is not the target of the antimalarial activity of triclosan, an inhibitor of bacterial FabI. Disruption of fabI in P. falciparum or the rodent parasite P. berghei does not impede blood-stage growth. In contrast, mosquito-derived, FabI-deficient P. berghei sporozoites are markedly less infective for mice and typically fail to complete liver-stage development in vitro. This defect is characterized by an inability to form intrahepatic merosomes that normally initiate blood-stage infections. These data illuminate key differences between liver- and blood-stage parasites in their requirements for host versus de novo synthesized fatty acids, and create new prospects for stage-specific antimalarial interventions.

  4. Evaluation of multiple-scoring system for non-alcoholic fatty liver patients based on CK18 levels, lipid profile and liver enzymes

    Directory of Open Access Journals (Sweden)

    Nahid Teimouri

    2017-04-01

    Full Text Available Background: Non-alcoholic fatty liver disease (NAFLD, the most common liver disease is usually associated with conditions such as steatosis, steatohepatitis and cirrhosis. Liver biopsy, which is the reference, gold standard and invasive method for the diagnosis of the disease may have complications. Scoring systems are among the noninvasive diagnostic methods. Numerous noninvasive scoring systems based on routinely measured clinical and laboratory parameters were provided that identifies the steatosis and advanced fibrosis in patients with NAFLD. In this study, several scoring system in patients with NAFLD were evaluated. Materials and Methods: This case-control study was carried out on sonographically established NAFLD (n=51 patients and healthy individuals (n=30. Anthropometric factors, biochemical tests and CK-18 fragment levels were evaluated. Then the scores for hepatic steatosis index, fatty liver index, aspartate aminotransferase (AST to platelets ratio index (APRI were calculated. In addition, the BARD and (non-alcoholic steatohepatitis (NASH scores were calculated. Results: In this study, as expected, except for FIB-4, there was no significant difference between the two groups. Conclusions: Scoring systems examined in this study can help to predict the presence or absence of fibrosis and NAFLD or NASH.

  5. Lutein ester profile in wheat and tritordeum can be modulated by temperature: Evidences for regioselectivity and fatty acid preferential of enzymes encoded by genes on chromosomes 7D and 7Hch.

    Science.gov (United States)

    Mattera, M G; Hornero-Méndez, D; Atienza, S G

    2017-03-15

    The increase of lutein retention through the food chain is desirable for wheat breeding. Lutein esters are more stable than free lutein during post-harvest storage and two loci on chromosomes 7D and 7H ch are important for esterification. We investigated the effect of temperature during grain filling on carotenoid accumulation and lutein ester profile including fatty acid selectivity (palmitic vs. linoleic) and regioselectivity (esterification at positions 3 vs. 3'). Three different temperature regimes were assayed (controlled, semi-controlled and non-controlled). Lutein esters were more stable than free carotenoids in vivo and the enzymes encoded by chromosomes 7H ch and 7D are complementary. Indeed, they show differential preferences for the fatty acid (palmitic and linoleic, respectively) and regioselectivity (3 and 3', respectively). Besides, H. chilense has additional genes for esterification. Finally, the increase of temperature favoured the accumulation of lutein esters with linoleic acid and the synthesis of regioisomers at position 3'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Immbolization of uricase enzyme in Langmuir and Langmuir-Blodgett films of fatty acids: possible use as a uric acid sensor.

    Science.gov (United States)

    Zanon, Nathaly C M; Oliveira, Osvaldo N; Caseli, Luciano

    2012-05-01

    Preserving the enzyme structure in solid films is key for producing various bioelectronic devices, including biosensors, which has normally been performed with nanostructured films that allow for control of molecular architectures. In this paper, we investigate the adsorption of uricase onto Langmuir monolayers of stearic acid (SA), and their transfer to solid supports as Langmuir-Blodgett (LB) films. Structuring of the enzyme in β-sheets was preserved in the form of 1-layer LB film, which was corroborated with a higher catalytic activity than for other uricase-containing LB film architectures where the β-sheets structuring was not preserved. The optimized architecture was also used to detect uric acid within a range covering typical concentrations in the human blood. The approach presented here not only allows for an optimized catalytic activity toward uric acid but also permits one to explain why some film architectures exhibit a superior performance. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. [Changes in amino acid and fatty acid contents as well as activity of some related enzymes in apple fruit during aroma production].

    Science.gov (United States)

    Nie, Lan-Chun; Sun, Jian-She; Di, Bao

    2005-12-01

    Aroma volatiles from apple (Malus domestica Borkh. var. Starkrimson) fruit at different stages of maturity were collected by solid adsorbent-Tenax-GC and determined by thermodesorption and GC-MS. Production of propyl acetate, butyl acetate, ethyl 2-methyl-butanoate and total ester volatiles and changes in concentration of the precursors of aroma biosynthsis--free amino acids and fatty acids and activities of lipoxygenases (LOX) and alcohol acetyltransferase (AAT) in apple fruits during ripening were studied. The results showed that propyl acetate and total esters were very low when the endogenous ethylene formation of the fruit was very low. At the stage of the increase in ethylene production, the rate of formation of propyl acetate and total esters increased. Butyl acetate appeared at the beginning of ethylene rise and increased thereafter. Ethyl 2-methyl-butanoate was produced at the beginning of climacteric stage and then increased sharply (Figs.1). These facts suggest that the aroma production is closely related to ethylene production. Among the 14 free amino acids detected in fruit, isoleucine which is considered to be the biosynthetic precursor of some branched chain esters showed a great increase during fruit ripening while the others decreased or remained stable (Table 1). The accumulation of isoleucine suggested that isoleucine supply in fruit may not limit the biosynthesis of esters with branched chain alkyl groups. Concentrations of free fatty acids such as palmitic, linolenic, oleic, linoleic, stearic acids increased before the increase of aroma production, decreased with the increase of aroma production and showed an increase at postclimacteric stages (Fig.2). LOX activity increased at climacteric stages and declined rapidly thereafter. AAT activity increased sharply at the early stage of fruit maturity when the aroma was very low and remained at a stable high level during fruit ripening (Fig.3) indicating that the AAT activity is not the limiting

  8. Gene expression of desaturase (FADS1 and FADS2) and Elongase (ELOVL5) enzymes in peripheral blood: association with polyunsaturated fatty acid levels and atopic eczema in 4-year-old children.

    Science.gov (United States)

    Chisaguano, Aida Maribel; Montes, Rosa; Pérez-Berezo, Teresa; Castellote, Ana Isabel; Guerendiain, Marcela; Bustamante, Mariona; Morales, Eva; García-Esteban, Raquel; Sunyer, Jordi; Franch, Angels; López-Sabater, M Carmen

    2013-01-01

    It is unknown if changes in the gene expression of the desaturase and elongase enzymes are associated with abnormal n-6 long chain polyunsaturated fatty acid (LC-PUFA) levels in children with atopic eczema (AE). We analyzed whether mRNA-expression of genes encoding key enzymes of LC-PUFA synthesis (FADS1, FADS2 and ELOVL5) is associated with circulating LC-PUFA levels and risk of AE in 4-year-old children. AE (n=20) and non-AE (n=104) children participating in the Sabadell cohort within the INfancia y Medio Ambiente (INMA) Project were included in the present study. RT-PCR with TaqMan Low-Density Array cards was used to measure the mRNA-expression of FADS1, FADS2 and ELOVL5. LC-PUFA levels were measured by fast gas chromatography in plasma phospholipids. The relationship of gene expression with LC-PUFA levels and enzyme activities was evaluated by Pearson's rank correlation coefficient, and logistic regression models were used to study its association with risk of developing AE. Children with AE had lower levels of several n-6 PUFA members, dihomo-γ-linolenic (DGLA) and arachidonic (AA) acids. mRNA-expression levels of FADS1 and 2 strongly correlated with DGLA levels and with D6D activity. FADS2 and ELOVL5 mRNA-expression levels were significantly lower in AE than in non-AE children (-40.30% and -20.36%; respectively), but no differences were found for FADS1. Changes in the mRNA-expression levels of FADS1 and 2 directly affect blood DGLA levels and D6D activity. This study suggests that lower mRNA-expressions of FADS2 and ELOVL5 are associated with higher risk of atopic eczema in young children.

  9. Uteroplacental insufficiency down regulates insulin receptor and affects expression of key enzymes of long-chain fatty acid (LCFA metabolism in skeletal muscle at birth

    Directory of Open Access Journals (Sweden)

    Puglianiello Antonella

    2008-05-01

    Full Text Available Abstract Background Epidemiological studies have revealed a relationship between early growth restriction and the subsequent development of insulin resistance and type 2 diabetes. Ligation of the uterine arteries in rats mimics uteroplacental insufficiency and serves as a model of intrauterine growth restriction (IUGR and subsequent developmental programming of impaired glucose tolerance, hyperinsulinemia and adiposity in the offspring. The objective of this study was to investigate the effects of uterine artery ligation on the skeletal muscle expression of insulin receptor and key enzymes of LCFA metabolism. Methods Bilateral uterine artery ligation was performed on day 19 of gestation in Sprague-Dawley pregnant rats. Muscle of the posterior limb was dissected at birth and processed by real-time RT-PCR to analyze the expression of insulin receptor, ACCα, ACCβ (acetyl-CoA carboxylase alpha and beta subunits, ACS (acyl-CoA synthase, AMPK (AMP-activated protein kinase, alpha2 catalytic subunit, CPT1B (carnitine palmitoyltransferase-1 beta subunit, MCD (malonyl-CoA decarboxylase in 14 sham and 8 IUGR pups. Muscle tissue was treated with lysis buffer and Western immunoblotting was performed to assay the protein content of insulin receptor and ACC. Results A significant down regulation of insulin receptor protein (p Conclusion Our data suggest that uteroplacental insufficiency may affect skeletal muscle metabolism down regulating insulin receptor and reducing the expression of key enzymes involved in LCFA formation and oxidation.

  10. Fatty acid amide hydrolase inhibitors confer anti-invasive and antimetastatic effects on lung cancer cells

    Science.gov (United States)

    Winkler, Katrin; Ramer, Robert; Dithmer, Sophie; Ivanov, Igor; Merkord, Jutta; Hinz, Burkhard

    2016-01-01

    Inhibition of endocannabinoid degradation has been suggested as tool for activation of endogenous tumor defense. One of these strategies lies in blockade of fatty acid amide hydrolase (FAAH) which catalyzes the degradation of endocannabinoids (anandamide [AEA], 2-arachidonoylglycerol [2-AG]) and endocannabinoid-like substances (N-oleoylethanolamine [OEA], N-palmitoylethanolamine [PEA]). This study addressed the impact of two FAAH inhibitors (arachidonoyl serotonin [AA-5HT], URB597) on A549 lung cancer cell metastasis and invasion. LC-MS analyses revealed increased levels of FAAH substrates (AEA, 2-AG, OEA, PEA) in cells incubated with either FAAH inhibitor. In athymic nude mice FAAH inhibitors were shown to elicit a dose-dependent antimetastatic action yielding a 67% and 62% inhibition of metastatic lung nodules following repeated administration of 15 mg/kg AA-5HT and 5 mg/kg URB597, respectively. In vitro, a concentration-dependent anti-invasive action of either FAAH inhibitor was demonstrated, accompanied with upregulation of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1). Using siRNA approaches, a causal link between the TIMP-1-upregulating and anti-invasive action of FAAH inhibitors was confirmed. Moreover, knockdown of FAAH by siRNA was shown to confer decreased cancer cell invasiveness and increased TIMP-1 expression. Inhibitor experiments point toward a role of CB2 and transient receptor potential vanilloid 1 in conferring anti-invasive effects of FAAH inhibitors and FAAH siRNA. Finally, antimetastatic and anti-invasive effects were confirmed for all FAAH substrates with AEA and OEA causing a TIMP-1-dependent anti-invasive action. Collectively, the present study provides first-time proof for an antimetastatic action of FAAH inhibitors. As mechanism of its anti-invasive properties an upregulation of TIMP-1 was identified. PMID:26930716

  11. Fatty acyl-CoA reductase

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, Steven E.; Somerville, Chris R.

    1998-12-01

    The present invention relates to bacterial enzymes, in particular to an acyl-CoA reductase and a gene encoding an acyl-CoA reductase, the amino acid and nucleic acid sequences corresponding to the reductase polypeptide and gene, respectively, and to methods of obtaining such enzymes, amino acid sequences and nucleic acid sequences. The invention also relates to the use of such sequences to provide transgenic host cells capable of producing fatty alcohols and fatty aldehydes.

  12. Fatty Liver

    Science.gov (United States)

    ... Drug Interactions Pill Identifier Commonly searched drugs Aspirin Metformin Warfarin Tramadol Lactulose Ranitidine News & Commentary Recent News ... Rarely, fat accumulates in the liver during late pregnancy. This disorder, called fatty liver of pregnancy or ...

  13. Antibacterial Targets in Fatty Acid Biosynthesis

    Science.gov (United States)

    Wright, H. Tonie; Reynolds, Kevin A.

    2008-01-01

    Summary The fatty acid biosynthesis pathway is an attractive but still largely unexploited target for development of new anti-bacterial agents. The extended use of the anti-tuberculosis drug isoniazid and the antiseptic triclosan, which are inhibitors of fatty acid biosynthesis, validates this pathway as a target for anti-bacterial development. Differences in subcellular organization of the bacterial and eukaryotic multi-enzyme fatty acid synthase systems offer the prospect of inhibitors with host vs. target specificity. Platensimycin, platencin, and phomallenic acids, newly discovered natural product inhibitors of the condensation steps in fatty acid biosynthesis, represent new classes of compounds with antibiotic potential. An almost complete catalogue of crystal structures for the enzymes of the type II fatty acid biosynthesis pathway can now be exploited in the rational design of new inhibitors, as well as the recently published crystal structures of type I FAS complexes. PMID:17707686

  14. Pectic enzymes

    NARCIS (Netherlands)

    Benen, J.A.E.; Voragen, A.G.J.; Visser, J.

    2003-01-01

    The pectic enzymes comprise a diverse group of enzymes. They consist of main-chain depolymerases and esterases active on methyl- and acetylesters of galacturonosyl uronic acid residues. The depolymerizing enzymes comprise hydrolases as wel as lyases

  15. Nickel Inhibits Mitochondrial Fatty Acid Oxidation

    Science.gov (United States)

    Uppala, Radha; McKinney, Richard W.; Brant, Kelly A.; Fabisiak, James P.; Goetzman, Eric S.

    2015-01-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation—the pathway by which fatty acids are catabolized for energy—in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with L-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 hr), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. PMID:26051273

  16. Analyzing lipid metabolism: activation and beta-oxidation of fatty acids.

    Science.gov (United States)

    Wheeler, Paul Robert

    2009-01-01

    There is massive gene replication predicted for the activation of fatty acids and their entry into the beta-oxidation cycle for fatty acid oxidation. These two steps in fatty acid metabolism are catalyzed by FadD and FadE enzymes with 36 genes predicted for each of these respective activities in Mycobacterium tuberculosis. Here we present methods for the cell-free assay of types of enzymes in live bacteria, as well as for fatty acid oxidation overall.

  17. Inhibition of volatile compounds derived from fatty acid oxygenation with chilling and heating treatments and their influences on the oxylipin pathawy gene expression and enzyme activity levels in tomato (Solanum lycopersicon

    Science.gov (United States)

    Hexanal, Z-3-hexenal, E-2-hexenal, hexanol and Z-3-hexenol are major tomato (Solanum Lycopersicon) volatile aromas derived from oxygenation of unsaturated fatty acids. Chilling or heating treatments suppress production of these C6 volatiles. The objective of this research was to determine the respon...

  18. Fatty acid biosynthesis in actinomycetes

    Science.gov (United States)

    Gago, Gabriela; Diacovich, Lautaro; Arabolaza, Ana; Tsai, Shiou-Chuan; Gramajo, Hugo

    2011-01-01

    All organisms that produce fatty acids do so via a repeated cycle of reactions. In mammals and other animals, these reactions are catalyzed by a type I fatty acid synthase (FAS), a large multifunctional protein to which the growing chain is covalently attached. In contrast, most bacteria (and plants) contain a type II system in which each reaction is catalyzed by a discrete protein. The pathway of fatty acid biosynthesis in Escherichia coli is well established and has provided a foundation for elucidating the type II FAS pathways in other bacteria (White et al., 2005). However, fatty acid biosynthesis is more diverse in the phylum Actinobacteria: Mycobacterium, possess both FAS systems while Streptomyces species have only the multi-enzyme FAS II system and Corynebacterium species exclusively FAS I. In this review we present an overview of the genome organization, biochemical properties and physiological relevance of the two FAS systems in the three genera of actinomycetes mentioned above. We also address in detail the biochemical and structural properties of the acyl-CoA carboxylases (ACCases) that catalyzes the first committed step of fatty acid synthesis in actinomycetes, and discuss the molecular bases of their substrate specificity and the structure-based identification of new ACCase inhibitors with anti-mycobacterial properties. PMID:21204864

  19. Fatty Liver

    International Nuclear Information System (INIS)

    Filippone, A.; Digiovandomenico, V.; Digiovandomenico, E.; Genovesi, N.; Bonomo, L.

    1991-01-01

    The authors report their experience with the combined use of US and CT in the study of diffuse and subtotal fatty infiltration of the liver. An apparent disagreement was initially found between the two examinations in the study of fatty infiltration. Fifty-five patients were studied with US and CT of the upper abdomen, as suggested by clinics. US showed normal liver echogenicity in 30 patients and diffuse increased echogenicity (bright liver) in 25 cases. In 5 patients with bright liver, US demonstrated a solitary hypoechoic area, appearing as a 'skip area', in the quadrate lobe. In 2 patients with bright liver, the hypoechoic area was seen in the right lobe and exhibited no typical US features of 'Skip area'. Bright liver was quantified by measuring CT density of both liver and spleen. The relative attenuation values of spleen and liver were compared on plain and enhanced CT scans. In 5 cases with a hypoechoic area in the right lobe, CT findings were suggestive of hemangioma. A good correlation was found between broght liver and CT attenuation values, which decrease with increasing fat content of the liver. Moreover, CT attenuation values confirmed US findings in the study of typical 'skip area', by demonstrating normal density - which suggests that CT can characterize normal tissue in atypical 'skip area'

  20. Enzyme Informatics

    Science.gov (United States)

    Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

  1. Unsaturated fatty acid: Metabolism, synthesis and gene regulation ...

    African Journals Online (AJOL)

    In both plants and animals, unsaturated fatty acids are considered to be essential membrane components. Also they play key roles in many cellular events. The synthesis and metabolism of unsaturated fatty acid are very complex processes, involving a variety of enzymes and regulated pathways. Most recently, research has ...

  2. Enzyme assays.

    Science.gov (United States)

    Brodelius, P E

    1991-02-01

    The past year or so has seen the development of new enzyme assays, as well as the improvement of existing ones. Assays are becoming more rapid and sensitive as a result of modifications such as amplification of the enzyme product(s). Recombinant DNA technology is now being recognized as a particularly useful tool in the search for improved assay systems.

  3. Fatty acid oxidation and ketogenesis in astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Auestad, N.

    1988-01-01

    Astrocytes were derived from cortex of two-day-old rat brain and grown in primary culture to confluence. The metabolism of the fatty acids, octanoate and palmitate, to CO{sub 2} in oxidative respiration and to the formation of ketone bodies was examined by radiolabeled tracer methodology. The net production of acetoacetate was also determined by measurement of its mass. The enzymes in the ketogenic pathway were examined by measuring enzymic activity and/or by immunoblot analyses. Labeled CO{sub 2} and labeled ketone bodies were produced from the oxidation of fatty acids labeled at carboxy- and {omega}-terminal carbons, indicating that fatty acids were oxidized by {beta}-oxidation. The results from the radiolabeled tracer studies also indicated that a substantial proportion of the {omega}-terminal 4-carbon unit of the fatty acids bypassed the {beta}-ketothiolase step of the {beta}-oxidation pathway. The ({sup 14}C)acetoacetate formed from the (1-{sup 14}C)labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. In contrast, the ({sup 14}C)acetoacetate formed from the ({omega}-1)labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1.

  4. New insights into structure and function of the different types of fatty acid-binding protein

    NARCIS (Netherlands)

    Zimmerman, Augusta Wilhelmina

    2002-01-01

    Fatty acid binding proteins (FABPs) are small cytosolic proteins with virtually identical backbone structures that facilitate the solubility and intracellular transport of fatty acids. They may also modulate the effect of fatty acids on various metabolic enzymes and receptors and on cellular

  5. Engineering the production of conjugated fatty acids in Arabidopsis thaliana leaves

    Science.gov (United States)

    The seeds of many non-domesticated plant species synthesize oils containing high amounts of a single unusual fatty acid, many of which have potential usage in industry. Despite the identification of enzymes for unusual oxidized fatty acid synthesis, the production of these fatty acids in engineered ...

  6. Uridine prevents fenofibrate-induced fatty liver.

    Directory of Open Access Journals (Sweden)

    Thuc T Le

    Full Text Available Uridine, a pyrimidine nucleoside, can modulate liver lipid metabolism although its specific acting targets have not been identified. Using mice with fenofibrate-induced fatty liver as a model system, the effects of uridine on liver lipid metabolism are examined. At a daily dosage of 400 mg/kg, fenofibrate treatment causes reduction of liver NAD(+/NADH ratio, induces hyper-acetylation of peroxisomal bifunctional enzyme (ECHD and acyl-CoA oxidase 1 (ACOX1, and induces excessive accumulation of long chain fatty acids (LCFA and very long chain fatty acids (VLCFA. Uridine co-administration at a daily dosage of 400 mg/kg raises NAD(+/NADH ratio, inhibits fenofibrate-induced hyper-acetylation of ECHD, ACOX1, and reduces accumulation of LCFA and VLCFA. Our data indicates a therapeutic potential for uridine co-administration to prevent fenofibrate-induced fatty liver.

  7. Enhancing Fatty Acid Production of Saccharomyces cerevisiae as an Animal Feed Supplement.

    Science.gov (United States)

    You, Seung Kyou; Joo, Young-Chul; Kang, Dae Hee; Shin, Sang Kyu; Hyeon, Jeong Eun; Woo, Han Min; Um, Youngsoon; Park, Chulhwan; Han, Sung Ok

    2017-12-20

    Saccharomyces cerevisiae is used for edible purposes, such as human food or as an animal feed supplement. Fatty acids are also beneficial as feed supplements, but S. cerevisiae produces small amounts of fatty acids. In this study, we enhanced fatty acid production of S. cerevisiae by overexpressing acetyl-CoA carboxylase, thioesterase, and malic enzyme associated with fatty acid metabolism. The enhanced strain pAMT showed 2.4-fold higher fatty acids than the wild-type strain. To further increase the fatty acids, various nitrogen sources were analyzed and calcium nitrate was selected as an optimal nitrogen source for fatty acid production. By concentration optimization, 672 mg/L of fatty acids was produced, which was 4.7-fold higher than wild-type strain. These results complement the low level fatty acid production and make it possible to obtain the benefits of fatty acids as an animal feed supplement while, simultaneously, maintaining the advantages of S. cerevisiae.

  8. Functional redundancy of mitochondrial enoyl-CoA isomerases in the oxidation of unsaturated fatty acids

    NARCIS (Netherlands)

    van Weeghel, Michel; te Brinke, Heleen; van Lenthe, Henk; Kulik, Wim; Minkler, Paul E.; Stoll, Maria S. K.; Sass, Jörn Oliver; Janssen, Uwe; Stoffel, Wilhelm; Schwab, K. Otfried; Wanders, Ronald J. A.; Hoppel, Charles L.; Houten, Sander M.

    2012-01-01

    Mitochondrial enoyl-CoA isomerase (ECI1) is an auxiliary enzyme involved in unsaturated fatty acid oxidation. In contrast to most of the other enzymes involved in fatty acid oxidation, a deficiency of ECI1 has yet to be identified in humans. We used wild-type (WT) and Eci1-deficient knockout (KO)

  9. Omega-6 Fatty Acids

    Science.gov (United States)

    Omega-6 fatty acids are types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean oils. Other types of omega-6 fatty acids are found in black currant seed, borage seed, ...

  10. Fatty Liver Disease

    Science.gov (United States)

    What is fatty liver disease? Your liver is the largest organ inside your body. It helps your body digest food, store energy, and remove poisons. Fatty liver disease is a condition in which fat builds up ...

  11. Metabolism of fatty acids in rat brain in microsomal membranes

    International Nuclear Information System (INIS)

    Aeberhard, E.E.; Gan-Elepano, M.; Mead, J.F.

    1980-01-01

    Using a technique in which substrate fatty acids are incorporated into microsomal membranes followd by comparison of their rates of desaturation or elongation with those of exogenous added fatty acids it has been found that the desaturation rate is more rapid for the membrane-bound substrate than for the added fatty acid. Moreover, the product of the membrane-bound substrate is incorporated into membrane phospholipid whereas the product of the exogenous substrate is found in di- and triacyl glycerols and in free fatty acids as well. These and other findings point to a normal sequence of reaction of membrane liqids with membrane-bound substrates involving transfer of fatty acid from phospholipid to the coupled enzyme systems without ready equilibration with the free fatty acid pool

  12. Immunoglobulin and fatty acids

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to a composition comprising 0.1-10 w/w % immunoglobulin (Ig), 4-14 w/w % saturated fatty acids, 4-14 w/w % mono-unsaturated fatty acids and 0-5 w/w % poly-unsaturated fatty acids, wherein the weight percentages are based on the content of dry matter in the composition...

  13. Enzyme immunoassay

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, B; Dinesen, B; Deckert, M

    1985-01-01

    An enzyme linked immunoadsorbent assay for urinary albumin using commercially available reagents is described. The assay range is 2.5-120 micrograms/l. When samples are analysed in two standard dilutions, the assayable albumin concentration range is 2.5-240 mg/l, covering the clinical range from...

  14. Selective Enrichment of Omega-3 Fatty Acids in Oils by Phospholipase A1.

    Directory of Open Access Journals (Sweden)

    Tushar Ranjan Moharana

    Full Text Available Omega fatty acids are recognized as key nutrients for healthier ageing. Lipases are used to release ω-3 fatty acids from oils for preparing enriched ω-3 fatty acid supplements. However, use of lipases in enrichment of ω-3 fatty acids is limited due to their insufficient specificity for ω-3 fatty acids. In this study use of phospholipase A1 (PLA1, which possesses both sn-1 specific activity on phospholipids and lipase activity, was explored for hydrolysis of ω-3 fatty acids from anchovy oil. Substrate specificity of PLA1 from Thermomyces lenuginosus was initially tested with synthetic p-nitrophenyl esters along with a lipase from Bacillus subtilis (BSL, as a lipase control. Gas chromatographic characterization of the hydrolysate obtained upon treatment of anchovy oil with these enzymes indicated a selective retention of ω-3 fatty acids in the triglyceride fraction by PLA1 and not by BSL. 13C NMR spectroscopy based position analysis of fatty acids in enzyme treated and untreated samples indicated that PLA1 preferably retained ω-3 fatty acids in oil, while saturated fatty acids were hydrolysed irrespective of their position. Hydrolysis of structured triglyceride,1,3-dioleoyl-2-palmitoylglycerol, suggested that both the enzymes hydrolyse the fatty acids at both the positions. The observed discrimination against ω-3 fatty acids by PLA1 appears to be due to its fatty acid selectivity rather than positional specificity. These studies suggest that PLA1 could be used as a potential enzyme for selective concentrationof ω-3 fatty acids.

  15. Circulating Endocannabinoids and the Polymorphism 385C>A in Fatty Acid Amide Hydrolase (FAAH) Gene May Identify the Obesity Phenotype Related to Cardiometabolic Risk: A Study Conducted in a Brazilian Population of Complex Interethnic Admixture

    Science.gov (United States)

    Martins, Cyro José de Moraes; Genelhu, Virginia; Pimentel, Marcia Mattos Gonçalves; Celoria, Bruno Miguel Jorge; Mangia, Rogerio Fabris; Aveta, Teresa; Silvestri, Cristoforo; Di Marzo, Vincenzo; Francischetti, Emilio Antonio

    2015-01-01

    The dysregulation of the endocannabinoid system is associated with cardiometabolic complications of obesity. Allelic variants in coding genes for this system components may contribute to differences in the susceptibility to obesity and related health hazards. These data have mostly been shown in Caucasian populations and in severely obese individuals. We investigated a multiethnic Brazilian population to study the relationships among the polymorphism 385C>A in an endocannabinoid degrading enzyme gene (FAAH), endocannabinoid levels and markers of cardiometabolic risk. Fasting plasma levels of endocannabinoids and congeners (anandamide, 2-arachidonoylglycerol, N-oleoylethanolamide and N-palmitoylethanolamide) were measured by liquid chromatography-mass spectrometry in 200 apparently healthy individuals of both genders with body mass indices from 22.5 ± 1.8 to 35.9 ± 5.5 kg/m2 (mean ± 1 SD) and ages between 18 and 60 years. All were evaluated for anthropometric parameters, blood pressure, metabolic variables, homeostatic model assessment of insulin resistance (HOMA-IR), adiponectin, leptin, C-reactive protein, and genotyping. The endocannabinoid levels increased as a function of obesity and insulin resistance. The homozygous genotype AA was associated with higher levels of anandamide and lower levels of adiponectin versus wild homozygous CC and heterozygotes combined. The levels of anandamide were independent and positively associated with the genotype AA position 385 of FAAH, C-reactive protein levels and body mass index. Our findings provide evidence for an endocannabinoid-related phenotype that may be identified by the combination of circulating anandamide levels with genotyping of the FAAH 385C>A; this phenotype is not exclusive to mono-ethnoracial populations nor to individuals with severe obesity. PMID:26561012

  16. Circulating Endocannabinoids and the Polymorphism 385C>A in Fatty Acid Amide Hydrolase (FAAH Gene May Identify the Obesity Phenotype Related to Cardiometabolic Risk: A Study Conducted in a Brazilian Population of Complex Interethnic Admixture.

    Directory of Open Access Journals (Sweden)

    Cyro José de Moraes Martins

    Full Text Available The dysregulation of the endocannabinoid system is associated with cardiometabolic complications of obesity. Allelic variants in coding genes for this system components may contribute to differences in the susceptibility to obesity and related health hazards. These data have mostly been shown in Caucasian populations and in severely obese individuals. We investigated a multiethnic Brazilian population to study the relationships among the polymorphism 385C>A in an endocannabinoid degrading enzyme gene (FAAH, endocannabinoid levels and markers of cardiometabolic risk. Fasting plasma levels of endocannabinoids and congeners (anandamide, 2-arachidonoylglycerol, N-oleoylethanolamide and N-palmitoylethanolamide were measured by liquid chromatography-mass spectrometry in 200 apparently healthy individuals of both genders with body mass indices from 22.5 ± 1.8 to 35.9 ± 5.5 kg/m2 (mean ± 1 SD and ages between 18 and 60 years. All were evaluated for anthropometric parameters, blood pressure, metabolic variables, homeostatic model assessment of insulin resistance (HOMA-IR, adiponectin, leptin, C-reactive protein, and genotyping. The endocannabinoid levels increased as a function of obesity and insulin resistance. The homozygous genotype AA was associated with higher levels of anandamide and lower levels of adiponectin versus wild homozygous CC and heterozygotes combined. The levels of anandamide were independent and positively associated with the genotype AA position 385 of FAAH, C-reactive protein levels and body mass index. Our findings provide evidence for an endocannabinoid-related phenotype that may be identified by the combination of circulating anandamide levels with genotyping of the FAAH 385C>A; this phenotype is not exclusive to mono-ethnoracial populations nor to individuals with severe obesity.

  17. The Endocannabinoid System as a Potential Therapeutic Target for Pain Modulation

    Directory of Open Access Journals (Sweden)

    Ahmet Ulugöl

    2014-06-01

    Full Text Available Although cannabis has been used for pain management for millennia, very few approved cannabinoids are indicated for the treatment of pain and other medical symptoms. Cannabinoid therapy re-gained attention only after the discovery of endocannabinoids and fatty acid amide hydrolase (FAAH and monoacylglycerol lipase (MAGL, the enzymes playing a role in endocannabinoid metabolism. Nowadays, research has focused on the inhibition of these degradative enzymes and the elevation of endocannabinoid tonus locally; special emphasis is given on multi-target analgesia compounds, where one of the targets is the endocannabinoid degrading enzyme. In this review, I provide an overview of the current understanding about the processes accounting for the biosynthesis, transport and metabolism of endocannabinoids, and pharmacological approaches and potential therapeutic applications in this area, regarding the use of drugs elevating endocannabinoid levels in pain conditions.

  18. Diagnosis of fatty liver

    International Nuclear Information System (INIS)

    Saitoh, Shuichi; Nagamine, Takeaki; Takagi, Hitoshi

    1988-01-01

    Diagnostic values of various ultrasonographic findings were evaluated from fatty infiltration ratio calculated by liver specimens in 42 patients. The ratio of the CT number of liver to those of spleen were also compared with fatty infiltration ratio in 11 patients. Fatty bandless sign one plus (perirenal bright echo between the liver and the right kidney is masked partially) or more and the fatty score 3 (it is calculated by several ultrasonographic findings) and the less than 0.90 of the ratio of CT number of liver to those of spleen were useful for diagnosis of fatty liver, the sensitivity was 100%, 87.5%, 85.7% and the accuracy was 78.1%, 81.8%, 81.8% respectively. It was considered that these criteria were suitable in screening study of fatty liver. (author)

  19. The impact of fatty acid desaturase genotype on fatty acid status and cardiovascular health in adults.

    Science.gov (United States)

    O'Neill, Colette M; Minihane, Anne-Marie

    2017-02-01

    The aim of this review was to determine the impact of the fatty acid desaturase (FADS) genotype on plasma and tissue concentrations of the long-chain (LC) n-3 PUFA, including EPA and DHA, which are associated with the risk of several diet-related chronic diseases, including CVD. In addition to dietary intakes, which are low for many individuals, tissue EPA and DHA are also influenced by the rate of bioconversion from α-linolenic acid (αLNA). Δ-5 and Δ-6 desaturase enzymes, encoded for by FADS1 and FADS2 genes, are key desaturation enzymes involved in the bioconversion of essential fatty acids (αLNA and linoleic acid (LA)) to longer chained PUFA. In general, carriers of FADS minor alleles tend to have higher habitual plasma and tissue levels of LA and αLNA, and lower levels of arachidonic acid, EPA and also to a lesser extent DHA. In conclusion, available research findings suggest that FADS minor alleles are also associated with reduced inflammation and CVD risk, and that dietary total fat and fatty acid intake have the potential to modify relationships between FADS gene variants and circulating fatty acid levels. However to date, neither the size-effects of FADS variants on fatty acid status, nor the functional SNP in FADS1 and 2 have been identified. Such information could contribute to the refinement and targeting of EPA and DHA recommendations, whereby additional LC n-3 PUFA intakes could be recommended for those carrying FADS minor alleles.

  20. Bacterial fatty acid metabolism in modern antibiotic discovery.

    Science.gov (United States)

    Yao, Jiangwei; Rock, Charles O

    2017-11-01

    Bacterial fatty acid synthesis is essential for many pathogens and different from the mammalian counterpart. These features make bacterial fatty acid synthesis a desirable target for antibiotic discovery. The structural divergence of the conserved enzymes and the presence of different isozymes catalyzing the same reactions in the pathway make bacterial fatty acid synthesis a narrow spectrum target rather than the traditional broad spectrum target. Furthermore, bacterial fatty acid synthesis inhibitors are single-targeting, rather than multi-targeting like traditional monotherapeutic, broad-spectrum antibiotics. The single-targeting nature of bacterial fatty acid synthesis inhibitors makes overcoming fast-developing, target-based resistance a necessary consideration for antibiotic development. Target-based resistance can be overcome through multi-targeting inhibitors, a cocktail of single-targeting inhibitors, or by making the single targeting inhibitor sufficiently high affinity through a pathogen selective approach such that target-based mutants are still susceptible to therapeutic concentrations of drug. Many of the pathogens requiring new antibiotic treatment options encode for essential bacterial fatty acid synthesis enzymes. This review will evaluate the most promising targets in bacterial fatty acid metabolism for antibiotic therapeutics development and review the potential and challenges in advancing each of these targets to the clinic and circumventing target-based resistance. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Omega-3 Fatty Acids

    Science.gov (United States)

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the amount of triglycerides (a fat- ... in people with very high triglycerides. Omega-3 fatty acids are in a class of medications called antilipemic ...

  2. Halogenated fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Wesén, Clas; Sundin, Peter

    1997-01-01

    Chlorinated fatty acids have been found to be major contributors to organohalogen compounds in fish, bivalves, jellyfish, and lobster, and they have been indicated to contribute considerably to organohalogens in marine mammals. Brominated fatty acids have been found in marine sponges. Also, chlor...

  3. Trans Fatty Acids

    Science.gov (United States)

    Doyle, Ellin

    1997-09-01

    Fats and their various fatty acid components seem to be a perennial concern of nutritionists and persons concerned with healthful diets. Advice on the consumption of saturated, polyunsaturated, monounsaturated, and total fat bombards us from magazines and newspapers. One of the newer players in this field is the group of trans fatty acids found predominantly in partially hydrogenated fats such as margarines and cooking fats. The controversy concerning dietary trans fatty acids was recently addressed in an American Heart Association (AHA) science advisory (1) and in a position paper from the American Society of Clinical Nutrition/American Institute of Nutrition (ASCN/AIN) (2). Both reports emphasize that the best preventive strategy for reducing risk for cardiovascular disease and some types of cancer is a reduction in total and saturated fats in the diet, but a reduction in the intake of trans fatty acids was also recommended. Although the actual health effects of trans fatty acids remain uncertain, experimental evidence indicates that consumption of trans fatty acids adversely affects serum lipid levels. Since elevated levels of serum cholesterol and triacylglycerols are associated with increased risk of cardiovascular disease, it follows that intake of trans fatty acids should be minimized.

  4. Increased Production of Fatty Acids and Triglycerides in Aspergillus oryzae by Enhancing Expressions of Fatty Acid Synthesis-Related Genes

    Energy Technology Data Exchange (ETDEWEB)

    Tamano, Koichi; Bruno, Kenneth S.; Karagiosis, Sue A.; Culley, David E.; Deng, Shuang; Collett, James R.; Umemura, Myco; Koike, Hideaki; Baker, Scott E.; Machida, Masa

    2013-01-01

    Microbial production of fats and oils is being developedas a means of converting biomass to biofuels. Here we investigate enhancing expression of enzymes involved in the production of fatty acids and triglycerides as a means to increase production of these compounds in Aspergillusoryzae. Examination of the A.oryzaegenome demonstrates that it contains twofatty acid synthases and several other genes that are predicted to be part of this biosynthetic pathway. We enhancedthe expressionof fatty acid synthesis-related genes by replacing their promoters with thepromoter fromthe constitutively highly expressedgene tef1. We demonstrate that by simply increasing the expression of the fatty acid synthasegenes we successfullyincreasedtheproduction of fatty acids and triglyceridesby more than two fold. Enhancement of expression of the fatty acid pathway genes ATP-citrate lyase and palmitoyl-ACP thioesteraseincreasedproductivity to a lesser extent.Increasing expression ofacetyl-CoA carboxylase caused no detectable change in fatty acid levels. Increases in message level for each gene were monitored usingquantitative real-time RT-PCR. Our data demonstrates that a simple increase in the abundance of fatty acid synthase genes can increase the detectable amount of fatty acids.

  5. Saturated very long chain fatty acids are required for the production of infectious human cytomegalovirus progeny.

    Directory of Open Access Journals (Sweden)

    Emre Koyuncu

    Full Text Available Human cytomegalovirus hijacks host cell metabolism, increasing the flux of carbon from glucose to malonyl-CoA, the committed precursor to fatty acid synthesis and elongation. Inhibition of acetyl-CoA carboxylase blocks the production of progeny virus. To probe further the role of fatty acid metabolism during infection, we performed an siRNA screen to identify host cell metabolic enzymes needed for the production of infectious cytomegalovirus progeny. The screen predicted that multiple long chain acyl-CoA synthetases and fatty acid elongases are needed during infection, and the levels of RNAs encoding several of these enzymes were upregulated by the virus. Roles for acyl-CoA synthetases and elongases during infection were confirmed by using small molecule antagonists. Consistent with a role for these enzymes, mass spectrometry-based fatty acid analysis with ¹³C-labeling revealed that malonyl-CoA is consumed by elongases to produce very long chain fatty acids, generating an approximately 8-fold increase in C26-C34 fatty acid tails in infected cells. The virion envelope was yet further enriched in C26-C34 saturated fatty acids, and elongase inhibitors caused the production of virions with lower levels of these fatty acids and markedly reduced infectivity. These results reveal a dependence of cytomegalovirus on very long chain fatty acid metabolism.

  6. Mitochondrial Fatty Acid Synthesis Type II: More than Just Fatty Acids*

    OpenAIRE

    Hiltunen, J. Kalervo; Schonauer, Melissa S.; Autio, Kaija J.; Mittelmeier, Telsa M.; Kastaniotis, Alexander J.; Dieckmann, Carol L.

    2009-01-01

    Eukaryotes harbor a highly conserved mitochondrial pathway for fatty acid synthesis (FAS), which is completely independent of the eukaryotic cytosolic FAS apparatus. The activities of the mitochondrial FAS system are catalyzed by soluble enzymes, and the pathway thus resembles its prokaryotic counterparts. Except for octanoic acid, which is the direct precursor for lipoic acid synthesis, other end products and functions of the mitochondrial FAS pathway are still largel...

  7. Enzyme catalysed production of phospholipids with modified fatty acid profile

    DEFF Research Database (Denmark)

    Vikbjerg, Anders Falk

    2006-01-01

    Phospholipider har stor anvendelse i levnedsmiddel-, kosmetik-, og farmaceutiske produkter for blandt andet deres emulgerende egenskaber samt evne til at danne liposomer. Interessen for at ændre på phospholipidernes struktur er stigende. Strukturændringer resulterer i ændret funktionalitet. Ved u...

  8. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...... by that enzyme...

  9. Synergistic effects of squalene and polyunsaturated fatty acid ...

    African Journals Online (AJOL)

    We have studied the synergistic effects of squalene and polyunsaturated fatty acids (PUFA concentrate) on isoprenaline-induced infarction in rats with respect to changes in the levels of plasma diagnostic marker enzymes and myocardial antioxidant defense system. Intraperitoneal injection of isoprenaline caused a ...

  10. Immobilised enzymes in biorenewables production.

    Science.gov (United States)

    Franssen, Maurice C R; Steunenberg, Peter; Scott, Elinor L; Zuilhof, Han; Sanders, Johan P M

    2013-08-07

    Oils, fats, carbohydrates, lignin, and amino acids are all important raw materials for the production of biorenewables. These compounds already play an important role in everyday life in the form of wood, fabrics, starch, paper and rubber. Enzymatic reactions do, in principle, allow the transformation of these raw materials into biorenewables under mild and sustainable conditions. There are a few examples of processes using immobilised enzymes that are already applied on an industrial scale, such as the production of High-Fructose Corn Syrup, but these are still rather rare. Fortunately, there is a rapid expansion in the research efforts that try to improve this, driven by a combination of economic and ecological reasons. This review focusses on those efforts, by looking at attempts to use fatty acids, carbohydrates, proteins and lignin (and their building blocks), as substrates in the synthesis of biorenewables using immobilised enzymes. Therefore, many examples (390 references) from the recent literature are discussed, in which we look both at the specific reactions as well as to the methods of immobilisation of the enzymes, as the latter are shown to be a crucial factor with respect to stability and reuse. The applications of the renewables produced in this way range from building blocks for the pharmaceutical and polymer industry, transport fuels, to additives for the food industry. A critical evaluation of the relevant factors that need to be improved for large-scale use of these examples is presented in the outlook of this review.

  11. [Regulation of extramitochondrial malic enzyme gene expression in lipogenic tissues].

    Science.gov (United States)

    Stelmańska, Ewa

    2007-11-06

    Extramitochondrial malic enzyme is widely distributed in mammalian tissues, including humans. The major role of this protein in the liver and white adipose tissue is the production of NADPH required for fatty-acid synthesis. Malic enzyme thus belongs to the family of lipogenic enzymes. Malic enzyme activity is regulated both by gene transcription and mRNA stability. Malic enzyme gene expression is tightly controlled by hormonal (i.e. insulin, glucagon, triiodothyronine) and nutritional conditions. There are many transcription factors which recognize special response elements present in the malic enzyme gene promoter. In this paper some important information about the structure and regulation of malic enzyme gene expression in mammalian lipogenic tissues is presented.

  12. Elevated Liver Enzymes

    Science.gov (United States)

    Symptoms Elevated liver enzymes By Mayo Clinic Staff Elevated liver enzymes may indicate inflammation or damage to cells in the liver. Inflamed or ... than normal amounts of certain chemicals, including liver enzymes, into the bloodstream, which can result in elevated ...

  13. Fatty Acid Synthesis by Indonesian Marine Diatom, Chaetoceros gracilis

    Directory of Open Access Journals (Sweden)

    ALBERTA RIKA PRATIWI

    2009-12-01

    Full Text Available Since the primary storage nutrients in diatoms consist of lipid, they are potential for the industrial fatty acid production. High value fatty acids include arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid. This study aimed to analyze fatty acid synthesis by Chaetoceros gracilis diatom during growth. There was a large increase in lipid yield from 4pg cell−1 mass of lipid per cell at the exponential phase to 283pg cell−1 at stationary phase. The lipid concentrations also increased significantly from the stationary phase to the death phase, but not significantly from the end exponential phase to the stationary phase. The relative percentage of saturated fatty acid (SAFA of the total fatty acid was higher than that of monounsaturated fatty acid (MUFA and polyunsaturated fatty acid (PUFA at all of growth phase. The highest PUFA was found at stationary phase at the same time when SAFA was being the lowest. The majority of SAFA was palmitic acid (24.03–40.35%. MUFA contained significant proportion of oleic acid (19.6–20.9%. Oleic acid, linoleic acid and á-linolenic acid were found at every stage growth. These fatty acids are considered as precursor for production of long chain PUFA-Docosahexaenoic acid (DHA/22:6ù3 through series of desaturation and elongation step with all of desaturase enzyme (Ä8-D, Ä9-D, Ä12-D, Ä15-D, Ä17-D, Ä6-D, Ä5-D, and Ä4-D and elongase enzyme (E.

  14. Expanding the product portfolio of fungal type I fatty acid synthases

    DEFF Research Database (Denmark)

    Zhu, Zhiwei; Zhou, Yongjin J.; Krivoruchko, Anastasia

    2017-01-01

    Fungal type I fatty acid synthases (FASs) are mega-enzymes with two separated, identical compartments, in which the acyl carrier protein (ACP) domains shuttle substrates to catalytically active sites embedded in the chamber wall. We devised synthetic FASs by integrating heterologous enzymes...

  15. Localization of enzymes within microbodies.

    Science.gov (United States)

    Huang, A H; Beevers, H

    1973-08-01

    Microbodies from rat liver and a variety of plant tissues were osmotically shocked and subsequently centrifuged at 40,000 g for 30 min to yield supernatant and pellet fractions. From rat liver microbodies, all of the uricase activity but little glycolate oxidase or catalase activity were recovered in the pellet, which probably contained the crystalline cores as many other reports had shown. All the measured enzymes in spinach leaf microbodies were solubilized. With microbodies from potato tuber, further sucrose gradient centrifugation of the pellet yielded a fraction at density 1.28 g/cm(3) which, presumably representing the crystalline cores, contained 7% of the total catalase activity but no uricase or glycolate oxidase activity. Using microbodies from castor bean endosperm (glyoxysomes), 50-60% of the malate dehydrogenase, fatty acyl CoA dehydrogenase, and crotonase and 90% of the malate synthetase and citrate synthetase were recovered in the pellet, which also contained 96% of the radioactivity when lecithin in the glyoxysomal membrane had been labeled by previous treatment of the tissue with [(14)C]choline. When the labeled pellet was centrifuged to equilibrium on a sucrose gradient, all the radioactivity, protein, and enzyme activities were recovered together at peak density 1.21-1.22 g/cm(3), whereas the original glyoxysomes appeared at density 1.24 g/cm(3). Electron microscopy showed that the fraction at 1.21-1.22 g/cm(3) was comprised of intact glyoxysomal membranes. All of the membrane-bound enzymes were stripped off with 0.15 M KCl, leaving the "ghosts" still intact as revealed by electron microscopy and sucrose gradient centrifugation. It is concluded that the crystalline cores of plant microbodies contain no uricase and are not particularly enriched with catalase. Some of the enzymes in glyoxysomes are associated with the membranes and this probably has functional significance.

  16. Dietary fatty acids alter mitochondrial phospholipid fatty acyl ...

    African Journals Online (AJOL)

    Dr. J. T. Ekanem

    type and relative amount of fatty acids that make up the membrane. Naturally, the phospholipid fatty acyl profiles of biological membranes vary dramatically across species2,3. For instance, the phospholpid fatty acid profiles of cellular membranes in yeasts are different from those in flies and those of mouse are different from ...

  17. Fatty acid metabolism studies of human epidermal cell cultures.

    Science.gov (United States)

    Marcelo, C L; Dunham, W R

    1993-12-01

    Adult human epidermal keratinocytes grow rapidly in medium that is essential fatty acid (EFA)-deficient. In this medium they exhibit decreased amounts of the fatty acids, 18:2, 20:3, 20:4, and contain increased amounts of monounsaturated fatty acids. [14C]- and [3H]acetate and radiolabeled fatty acids, 16:0, 18:2, and 20:4 were used to study the fatty acid metabolism of these cells. Label from acetate appeared in 14- to 20-carbon fatty acids, both saturated and monounsaturated. No label was seen in the essential fatty acid 18:2, 18:3, and 20:4. Radiolabel from [9, 10-3H]palmitic acid (16:0) was detected in 16:0, 16:1, 18:0, and 18:1. [14C]linoleic acid (18:2) was converted to 18:3, 20:2, 20:3, and 20:4, demonstrating delta 6 and delta 5 desaturase activity in keratinocytes. Label from acetate, 16:0, or 18:2 was found mostly in the cellular phospholipids while only one third of the label from [14C]arachidonic was found in the phospholipids. [14C]acetate and [14C]18:2 time course data were used to construct a model of the metabolism of these reactants, using coupled, first-order differential equations. The data show that EFA-deficient keratinocytes metabolize fatty acids using pathways previously found in liver; they suggest the positioning of 18:2 desaturase and 18:3 elongase near the plasma membrane; they indicate that for the synthesis of nonessential fatty acids the formation of 18:0 from 16:0 is the rate-determining step; and they show that the conversion of 18:2 to 20:3 is rapid. These experiments demonstrate a method to study lipid enzyme kinetics in living cells.

  18. Biocatalytic Single Enzyme Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Kim, Jungbae

    2004-03-31

    As an innovative way of enzyme stabilization, we recently developed a new enzyme composite of nano-meter scale that we call "single-enzyme nanoparticles (SENs)" (9). Each enzyme molecule is surrounded with a porous composite organic/inorganic network of less than a few nanometers think. This approach represents a new type of enzyme-containing nanostructure. In experiments with perotease (chymotrypsin, CT), the activity of single enzyme nanoparticle form of the enzyme was greatly stabilized compared to the free form, without imposing a serious mass transfer limitation of substrates. In this chapter we will describe the synthesis, characterization and catalytic activity of the new SENs.

  19. Nonalcoholic Fatty Liver Disease & NASH

    Science.gov (United States)

    ... Eating, Diet, & Nutrition Clinical Trials Wilson Disease Nonalcoholic Fatty Liver Disease & NASH View or Print All Sections Definition & Facts Nonalcoholic fatty liver disease (NAFLD) is a condition in which fat ...

  20. Omega-3 fatty acids (image)

    Science.gov (United States)

    Omega-3 fatty acids are a form of polyunsaturated fat that the body derives from food. Omega-3s (and omega-6s) are known as essential fatty acids (EFAs) because they are important for good health. ...

  1. Application of lipase technology for transesterification of fatty acid ester

    Directory of Open Access Journals (Sweden)

    JOKO SULISTYO

    2005-07-01

    Full Text Available We have reported the potency of microbial extracellular enzyme for synthesis of fatty acid ester. Further investigation was aimed to study capacity of the enzyme on bioprocess of crude palm oil by transesterification of saturated fatty acid to fatty acid ester. We have studied some lipases from culture filtrate of Candida rugosa FM-9301, Bacillus subtilis FM-9101 and Pseudomonas aerogenes FM-9201, which were preincubated in a medium containing olive oil as inducers, using a shaker under conditions that allowed for lipase production at pH 4.5-6.5 and room temperature for 5 days. Those strains shown different activities during the hydrolysis of substrates, which resulted in decreasing or increasing free fatty acids those, were liberated from media containing crude palm oil and organic solvents. The optimal transesterification condition was at temperature of 45-50C and at pH 4.5 for C. rugosa and pH 6.0 to 7.0 for P. aerogenes and B. subtilis. Under the enzyme concentration of 50% (v/v, the transesterification was rapidly occurred, while at the concentration of 20% (v/v the enzymatically biosynthesis required longer incubation period. The substrates incubated with C. rugosa lipase exhibited higher linoleic and linolenic acid (7.16 and 2.15%, respectively, than that of B. subtilis lipase (4.85% and 1.43%, respectively, while P. aerogenes lipase (3.73% and 1.11%, respectively.

  2. Redefining the role of de novo fatty acid synthesis in Plasmodium parasites.

    Science.gov (United States)

    Tarun, Alice S; Vaughan, Ashley M; Kappe, Stefan H I

    2009-12-01

    Fatty acids are essential components of membranes, and are also involved in cell signalling. Plasmodium, the parasite that causes malaria, scavenges fatty acids from its hosts. However, Plasmodium also possesses enzymes for a prokaryotic-like de novo fatty acid synthesis pathway, which resides in the apicoplast. Recent research has demonstrated that Plasmodium parasites depend on de novo fatty acid synthesis only for liver-stage development. This finding demonstrates that basic anabolic functions of Plasmodium parasites are not necessary for the growth and replication of every life cycle stage. We discuss the role of fatty acid metabolism in Plasmodium and why we believe that de novo fatty acid synthesis is only required for parasite late liver-stage development.

  3. Halogenated fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Sundin, Peter; Wesén, Clas

    1997-01-01

    Halogenated fatty acids are the major contributors to organohalogen compounds in lipids of marine mammals, fish, and bivalves. For the initial characterization of these recently noticed compounds, a determination of the halogen concentration has usually been combined with some lipid isolation and...

  4. Fatty acyl-CoA reductases of birds

    Directory of Open Access Journals (Sweden)

    Hellenbrand Janine

    2011-12-01

    Full Text Available Abstract Background Birds clean and lubricate their feathers with waxes that are produced in the uropygial gland, a holocrine gland located on their back above the tail. The type and the composition of the secreted wax esters are dependent on the bird species, for instance the wax ester secretion of goose contains branched-chain fatty acids and unbranched fatty alcohols, whereas that of barn owl contains fatty acids and alcohols both of which are branched. Alcohol-forming fatty acyl-CoA reductases (FAR catalyze the reduction of activated acyl groups to fatty alcohols that can be esterified with acyl-CoA thioesters forming wax esters. Results cDNA sequences encoding fatty acyl-CoA reductases were cloned from the uropygial glands of barn owl (Tyto alba, domestic chicken (Gallus gallus domesticus and domestic goose (Anser anser domesticus. Heterologous expression in Saccharomyces cerevisiae showed that they encode membrane associated enzymes which catalyze a NADPH dependent reduction of acyl-CoA thioesters to fatty alcohols. By feeding studies of transgenic yeast cultures and in vitro enzyme assays with membrane fractions of transgenic yeast cells two groups of isozymes with different properties were identified, termed FAR1 and FAR2. The FAR1 group mainly synthesized 1-hexadecanol and accepted substrates in the range between 14 and 18 carbon atoms, whereas the FAR2 group preferred stearoyl-CoA and accepted substrates between 16 and 20 carbon atoms. Expression studies with tissues of domestic chicken indicated that FAR transcripts were not restricted to the uropygial gland. Conclusion The data of our study suggest that the identified and characterized avian FAR isozymes, FAR1 and FAR2, can be involved in wax ester biosynthesis and in other pathways like ether lipid synthesis.

  5. Transesterification of Castor Oil Catalyzed by Liquid Enzymes

    DEFF Research Database (Denmark)

    Andrade, Thalles; Errico, Massimiliano; Christensen, Knud Villy

    2017-01-01

    Enzymes as catalysts for biodiesel production are emerging as a sustainable alternative to chemical catalysts. Enzymatic transesterification has the benefit of a low sensitivity to the water and free fatty acids content in the feed. The choice of feedstock represents a crucial point to the process...... was used to determine the optimal reaction conditions to get a high biodiesel yield and a low free fatty acids concentration. The results obtained showed that at 35 °C, 5 wt% of enzymes, 5 wt% of water, and a 6.0 alcohol-to-oil molar ratio, the yield in biodiesel was about 94% with a content of free fatty...... acids of about 6%. This condition was used to develop a reaction equilibrium model using Aspen Plus V8.8. For the main components the difference between the simulated and the experimental data was less than 6%....

  6. Polyunsaturated Fatty Acids in Male Ruminant Reproduction — A Review

    Directory of Open Access Journals (Sweden)

    Len Van Tran

    2017-05-01

    Full Text Available Fatty acids such as n-3 and n-6 polyunsaturated fatty acids (PUFA are critical nutrients, used to improve male reproductive performance through modification of fatty acid profile and maintenance of sperm membrane integrity, especially under cold shock or cryopreservation condition. Also, PUFA provide the precursors for prostaglandin synthesis and can modulate the expression patterns of many key enzymes involved in both prostaglandin and steroid metabolism. Many studies carried out on diets supplemented with PUFA have demonstrated their capability to sustain sperm motility, viability and fertility during chilling and freezing as well as improving testis development and spermatogenesis in a variety of livestock species. In addition to the type and quantity of dietary fatty acids, ways of addition of PUFA to diet or semen extender is very crucial as it has different effects on semen quality in male ruminants. Limitation of PUFA added to ruminant ration is due to biohydrogenation by rumen microorganisms, which causes conversion of unsaturated fatty acids to saturated fatty acids, leading to loss of PUFA quantity. Thus, many strategies for protecting PUFA from biohydrogenation in rumen have been developed over the years. This paper reviews four aspects of PUFA in light of previous research including rumen metabolism, biological roles, influence on reproduction, and strategies to use in male ruminants.

  7. Influence of fatty acid precursors, including food preservatives, on the growth and fatty acid composition of Listeria monocytogenes at 37 and 10degreesC.

    Science.gov (United States)

    Julotok, Mudcharee; Singh, Atul K; Gatto, Craig; Wilkinson, Brian J

    2010-03-01

    Listeria monocytogenes is a food-borne pathogen that grows at refrigeration temperatures and increases its content of anteiso-C(15:0) fatty acid, which is believed to be a homeoviscous adaptation to ensure membrane fluidity, at these temperatures. As a possible novel approach for control of the growth of the organism, the influences of various fatty acid precursors, including branched-chain amino acids and branched- and straight-chain carboxylic acids, some of which are also well-established food preservatives, on the growth and fatty acid composition of the organism at 37 degrees C and 10 degrees C were studied in order to investigate whether the organism could be made to synthesize fatty acids that would result in impaired growth at low temperatures. The results indicate that the fatty acid composition of L. monocytogenes could be modulated by the feeding of branched-chain amino acid, C(4), C(5), and C(6) branched-chain carboxylic acid, and C(3) and C(4) straight-chain carboxylic acid fatty acid precursors, but the growth-inhibitory effects of several preservatives were independent of effects on fatty acid composition, which were minor in the case of preservatives metabolized via acetyl coenzyme A. The ability of a precursor to modify fatty acid composition was probably a reflection of the substrate specificities of the first enzyme, FabH, in the condensation of primers of fatty acid biosynthesis with malonyl acyl carrier protein.

  8. Harnessing Yeast Peroxisomes for Biosynthesis of Fatty-Acid-Derived Biofuels and Chemicals with Relieved Side-Pathway Competition

    DEFF Research Database (Denmark)

    Zhou, Yongjin J.; Buijs, Nicolaas A; Zhu, Zhiwei

    2016-01-01

    to peroxisomes can increase the production of fatty-acid-derived fatty alcohols, alkanes and olefins up to 700%. In addition, we demonstrate that biosynthesis of these chemicals in the peroxisomes results in significantly decreased accumulation of byproducts formed by competing enzymes. We further demonstrate...

  9. The ENZYME data bank.

    Science.gov (United States)

    Bairoch, A

    1994-09-01

    The ENZYME data bank is a repository of information relative to the nomenclature of enzymes. It is primarily based on the recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (IUBMB) and it contains the following data for each type of characterized enzyme for which an EC (Enzyme Commission) number has been provided: EC number Recommended name Alternative names (if any) Catalytic activity Cofactors (if any) Pointers to the SWISS-PROT protein sequence entrie(s) that correspond to the enzyme (if any) Pointers to human disease(s) associated with a deficiency of the enzyme (if any).

  10. Nutrigenomics and nutrigenetics of ω3 polyunsaturated fatty acids.

    Science.gov (United States)

    Vanden Heuvel, John P

    2012-01-01

    Diets rich in ω3 polyunsaturated fatty acids (ω3-PUFAs) such as alpha-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid are associated with decreased incidence and severity of several chronic diseases including cardiovascular disease (CVD) and cancer. At least some of the beneficial effects of these dietary fatty acids are via metabolites such as prostaglandins, leukotrienes, thromboxanes, and resolvins. The effects of ω3-PUFAs are in contrast to those of fatty acids with virtually identical structures, such as the ω6-PUFAs linoleic acid and arachidonic acid, and their corresponding metabolites. The purpose of this chapter is to discuss both the nutrigenomics (nutrient-gene interactions) and nutrigenetics (genetic variation in nutrition) of dietary fatty acids with a focus on the ω3-PUFAs (Gebauer et al., 2007(1)). Important in the biological response for these fatty acids or their metabolites are cognate receptors that are able to regulate gene expression and coordinately affect metabolic or signaling pathways associated with CVD and cancer. Four nuclear receptor (NR) subfamilies will be emphasized as receptors that respond to dietary and endogenous ligands: (1) peroxisome proliferator-activated receptors, (2) retinoid X receptors, (3) liver X receptors, and (4) farnesoid X receptor. In addition to the different responses elicited by varying structures of fatty acids, responses may vary because of genetic variation in enzymes that metabolize ω3- and ω6 fatty acids or that respond to them. In particular, polymorphisms in the fatty acid desaturases and the aforementioned NRs contribute to the complexity of nutritional effects seen with ω3-PUFAs. Following a brief introduction to the health benefits of ω3-PUFAs, the regulation of gene expression by these dietary fatty acids via NRs will be characterized. Subsequently, the effects of single-nucleotide polymorphisms (SNPs) in key enzymes involved in the metabolism and response to ω3-PUFAs will

  11. Diet fat alters expression of genes for enzymes of lipogenesis in lean and obese mice.

    Science.gov (United States)

    Cheema, S K; Clandinin, M T

    1996-02-16

    The objective of this experiment was to determine the effect of polyunsaturated fatty acids on gene expression for fatty acid synthase, acetyl CoA-carboxylase, malic enzyme, pyruvate kinase, and phosphoenolpyruvate carboxykinase in obese mice. Eight-week-old female lean and obese mice were fed semi-purified diets containing 20% (w/w) fat of either high or low polyunsaturated to saturated (P/S) fatty acid ratio for four weeks. Total RNA was isolated from liver and was hybridized to cDNA probes for the above enzymes. Consumption of a high P/S diet decreased mRNA levels for all the lipogenic enzymes studied in both lean and obese mice. Compared to lean mice, obese mice exhibited a higher mRNA level for fatty acid synthase, acetyl CoA-carboxylase, malic enzyme, and pyruvate kinase in animals fed either a high or low P/S diet. Enzyme-specific activities followed the same profile as the mRNA levels in both lean and obese mice fed a high or low P/S diet. The decrease in liver fatty acid synthase mRNA level was more pronounced in lean mice compared to obese mice, suggesting that the obese mice may be more resistant to polyunsaturated fatty acid feedback control of gene expression.

  12. The Genetic Architecture of Liver Enzyme Levels: GGT, ALT and AST

    NARCIS (Netherlands)

    van Beek, J.H.D.A.; de Moor, M.H.M.; de Geus, E.J.C.; Lubke, G.H.; Vink, J.M.; Willemsen, G.; Boomsma, D.I.

    2013-01-01

    High levels of liver enzymes GGT, ALT and AST are predictive of disease and all-cause mortality and can reflect liver injury, fatty liver and/or oxidative stress. Variation in GGT, ALT and AST levels is heritable. Moderation of the heritability of these liver enzymes by age and sex has not often

  13. The genetic architecture of liver enzyme levels: GGT, ALT and AST

    NARCIS (Netherlands)

    Beek, J.H.D.H. van; Moor, M.H.M. de; Geus, E.J.C. de; Lubke, G.H.; Vink, J.M.; Willemsen, G.; Boomsma, D.I.

    2013-01-01

    %High levels of liver enzymes GGT, ALT and AST are predictive of disease and all-cause mortality and can reflect liver injury, fatty liver and/or oxidative stress. Variation in GGT, ALT and AST levels is heritable. Moderation of the heritability of these liver enzymes by age and sex has not often

  14. (Radioiodinated free fatty acids)

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, Jr., F. F.

    1987-12-11

    The traveler participated in the Second International Workshop on Radioiodinated Free Fatty Acids in Amsterdam, The Netherlands where he presented an invited paper describing the pioneering work at the Oak Ridge National Laboratory (ORNL) involving the design, development and testing of new radioiodinated methyl-branched fatty acids for evaluation of heart disease. He also chaired a technical session on the testing of new agents in various in vitro and in vivo systems. He also visited the Institute for Clinical and Experimental Nuclear Medicine in Bonn, West Germany, to review, discuss, plan and coordinate collaborative investigations with that institution. In addition, he visited the Cyclotron Research Center in Liege, Belgium, to discuss continuing collaborative studies with the Osmium-191/Iridium-191m radionuclide generator system, and to complete manuscripts and plan future studies.

  15. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  16. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels

    Science.gov (United States)

    2014-01-01

    The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed. PMID:24405789

  17. Aspects of the regulation of long-chain fatty acid oxidation in bovine liver

    International Nuclear Information System (INIS)

    Jesse, B.W.; Emery, R.S.; Thomas, J.W.

    1986-01-01

    Factors involved in regulation of bovine hepatic fatty acid oxidation were examined using liver slices. Fatty acid oxidation was measured as the conversion of l-[ 14 C] palmitate to 14 CO 2 and total [ 14 C] acid-soluble metabolites. Extended (5 to 7 d) fasting of Holstein cows had relatively little effect on palmitate oxidation to acid-soluble metabolites by liver slices, although oxidation to CO 2 was decreased. Feeding a restricted roughage, high concentrate ration to lactating cows resulted in inhibition of palmitate oxidation. Insulin, glucose, and acetate inhibited palmitate oxidation by bovine liver slices. The authors suggest the regulation of bovine hepatic fatty acid oxidation may be less dependent on hormonally induced alterations in enzyme activity as observed in rat liver and more dependent upon action of rumen fermentation products or their metabolites on enzyme systems involved in fatty acid oxidation

  18. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway.

    Directory of Open Access Journals (Sweden)

    Kamran Jawed

    Full Text Available Short-chain fatty acids (SCFAs, such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product.

  19. Metabolism of Very Long-Chain Fatty Acids: Genes and Pathophysiology

    OpenAIRE

    Sassa, Takayuki; Kihara, Akio

    2014-01-01

    Fatty acids (FAs) are highly diverse in terms of carbon (C) chain-length and number of double bonds. FAs with C>20 are called very long-chain fatty acids (VLCFAs). VLCFAs are found not only as constituents of cellular lipids such as sphingolipids and glycerophospholipids but also as precursors of lipid mediators. Our understanding on the function of VLCFAs is growing in parallel with the identification of enzymes involved in VLCFA synthesis or degradation. A variety of inherited diseases, suc...

  20. Synthesis and release of fatty acids by human trophoblast cells in culture

    International Nuclear Information System (INIS)

    Coleman, R.A.; Haynes, E.B.

    1987-01-01

    In order to determine whether placental cells can synthesize and release fatty acids, trophoblast cells from term human placentas were established in monolayer culture. The cells continued to secrete placental lactogen and progesterone and maintained specific activities of critical enzymes of triacylglycerol and phosphatidylcholine biosynthesis for 24 to 72 hr in culture. Fatty acid was rapidly synthesized from [ 14 C]acetate and released by the cells. Palmitoleic, palmitic, and oleic acids were the major fatty acids synthesized from [ 14 C]acetate and released. Small amounts of lauric, myristic, and stearic acids were also identified. [ 14 C]acetate was also incorporated into cellular triacylglycerol, phospholipid, and cholesterol, but radiolabeled free fatty acid did not accumulate intracellularly. In a pulse-chase experiment, cellular glycerolipids were labeled with [1- 14 C]oleate; trophoblast cells then released 14 C-labeled fatty acid into the media as the cellular content of labeled phospholipid and triacylglycerol decreased without intracellular accumulation of free fatty acid. Twenty percent of the 14 C-label lost from cellular glycerolipid could not be recovered as a chloroform-extractable product, suggesting that some of the hydrolyzed fatty acid had been oxidized. These data indicate that cultured placenta trophoblast cells can release fatty acids that have either been synthesized de novo or that have been hydrolyzed from cellular glycerolipids. Trophoblast cells in monolayer culture should provide an excellent model for molecular studies of placental fatty acid metabolism and release

  1. Synthesis and release of fatty acids by human trophoblast cells in culture

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, R.A.; Haynes, E.B.

    1987-11-01

    In order to determine whether placental cells can synthesize and release fatty acids, trophoblast cells from term human placentas were established in monolayer culture. The cells continued to secrete placental lactogen and progesterone and maintained specific activities of critical enzymes of triacylglycerol and phosphatidylcholine biosynthesis for 24 to 72 hr in culture. Fatty acid was rapidly synthesized from (/sup 14/C)acetate and released by the cells. Palmitoleic, palmitic, and oleic acids were the major fatty acids synthesized from (/sup 14/C)acetate and released. Small amounts of lauric, myristic, and stearic acids were also identified. (/sup 14/C)acetate was also incorporated into cellular triacylglycerol, phospholipid, and cholesterol, but radiolabeled free fatty acid did not accumulate intracellularly. In a pulse-chase experiment, cellular glycerolipids were labeled with (1-/sup 14/C)oleate; trophoblast cells then released /sup 14/C-labeled fatty acid into the media as the cellular content of labeled phospholipid and triacylglycerol decreased without intracellular accumulation of free fatty acid. Twenty percent of the /sup 14/C-label lost from cellular glycerolipid could not be recovered as a chloroform-extractable product, suggesting that some of the hydrolyzed fatty acid had been oxidized. These data indicate that cultured placenta trophoblast cells can release fatty acids that have either been synthesized de novo or that have been hydrolyzed from cellular glycerolipids. Trophoblast cells in monolayer culture should provide an excellent model for molecular studies of placental fatty acid metabolism and release.

  2. Essential fatty acids and lipid mediators. Endocannabinoids

    Directory of Open Access Journals (Sweden)

    G. Caramia

    2012-03-01

    Full Text Available In 1929 Burr and Burr discovered the essential fatty acids omega-6 and omega-3. Since then, researchers have shown a growing interest in polyunsaturated fatty acids (PUFA as precursors of “lipid mediator” molecules, often with opposing effects, prostaglandins, prostacyclins, thromboxanes, leukotrienes, lipossines, resolvines, protectines, maresins that regulate immunity, platelet aggregation, inflammation, etc. They showed that the balance between omega-3 and omega-6 acids has a profound influence on all the body’s inflammatory responses and a raised level of PUFA omega-3 in tissue correlate with a reduced incidence of degenerative cardiovascular disease, some mental illnesses such as depression, and neuro-degenerative diseases such as Alzheimer’s. The CYP-catalyzed epoxidation and hydroxylation of arachidonic acid (AA were established recently as the so-called third branch of AGE cascade. Cytochrome P450 (CYP epoxygenases convert AA to four epoxyeicosatrienoic acid (EET regioisomers, that produce vascular relaxation anti-inflammatory effects on blood vessels and in the kidney, promote angiogenesis, and protect ischemic myocardium and brain. Eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA are accessible to CYP enzymes in the same way as AA. Metabolites derived from EPA include epoxyeicosatetraenoic acids (EETR and hydroxyeicosapentaenoic acids (19- and 20-HEPE, whereas DHA include epoxydocosapentaenoic acids (EDPs hydroxydocosahexaenoic acids (21- and 22-HDoHE. For many of the CYP isoforms, the n-3 PUFAs are the preferred substrates and the available data suggest that some of the vasculo- and cardioprotective effects attributed to dietary n-3 PUFAs may be mediated by CYP-dependent metabolites of EPA and DHA. From AA derives also endocannabinoids like anandamide (N-arachidonoylethanolamine and 2-arachidonoylglycerol, capable of mimicking the pharmacological actions of the active principle of Cannabis sativa preparations such as

  3. Redox-dependent anti-inflammatory signaling actions of unsaturated fatty acids.

    Science.gov (United States)

    Delmastro-Greenwood, Meghan; Freeman, Bruce A; Wendell, Stacy Gelhaus

    2014-01-01

    Unsaturated fatty acids are metabolized to reactive products that can act as pro- or anti-inflammatory signaling mediators. Electrophilic fatty acid species, including nitro- and oxo-containing fatty acids, display salutary anti-inflammatory and metabolic actions. Electrophilicity can be conferred by both enzymatic and oxidative reactions, via the homolytic addition of nitrogen dioxide to a double bond or via the formation of α,β-unsaturated carbonyl and epoxide substituents. The endogenous formation of electrophilic fatty acids is significant and influenced by diet, metabolic, and inflammatory reactions. Transcriptional regulatory proteins and enzymes can sense the redox status of the surrounding environment upon electrophilic fatty acid adduction of functionally significant, nucleophilic cysteines. Through this covalent and often reversible posttranslational modification, gene expression and metabolic responses are induced. At low concentrations, the pleiotropic signaling actions that are regulated by these protein targets suggest that some classes of electrophilic lipids may be useful for treating metabolic and inflammatory diseases.

  4. Optimization of the Synthesis of Structured Phosphatidylcholine with Medium Chain Fatty Acid.

    Science.gov (United States)

    Ochoa-Flores, Angélica A; Hernández-Becerra, Josafat A; Cavazos-Garduño, Adriana; Vernon-Carter, Eduardo J; García, Hugo S

    2017-11-01

    Structured phosphatidylcholine was successfully produced by acidolysis between phosphatidylcholine and free medium chain fatty acid, using phospholipase A 1 immobilized on Duolite A568. Response surface methodology was applied to optimize the reaction system using three process parameters: molar ratio of substrates (phosphatidylcholine to free medium chain fatty acid), enzyme loading, and reaction temperature. All parameters evaluated showed linear and quadratic significant effects on the production of modified phosphatidylcholine; molar ratio of substrates contributed positively, but temperature influenced negatively. Increased enzyme loading also led to increased production of modified phosphatidylcholine but only during the first 9 hours of the acidolysis reaction. Optimal conditions obtained from the model were a ratio of phosphatidylcholine to free medium chain fatty acid of 1:15, an enzyme loading of 12%, and a temperature of 45°C. Under these conditions a production of modified phosphatidylcholine of 52.98 % were obtained after 24 h of reaction. The prediction was confirmed from the verification experiments; the production of modified phosphatidylcholine was 53.02%, the total yield of phosphatidylcholine 64.28% and the molar incorporation of medium chain fatty acid was 42.31%. The acidolysis reaction was scaled-up in a batch reactor with a similar production of modified phosphatidylcholine, total yield of phosphatidylcholine and molar incorporation of medium chain fatty acid. Purification by column chromatography of the structured phosphatidylcholine yielded 62.53% of phosphatidylcholine enriched with 42.52% of medium chain fatty acid.

  5. Nonalcoholic fatty liver disease

    DEFF Research Database (Denmark)

    Patrick-Melin, A J; Kalinski, M I; Kelly, K R

    2009-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a rapidly emerging chronic liver disease and is reported to affect up to 70-80% of overweight and obese individuals. NAFLD represents a spectrum of liver diseases that range from simple hepatic steatosis, to a more severe and treatment resistant stage......) are not only implicated in the development of insulin resistance and type 2 diabetes, but are also related to NAFLD. Such inflammatory mechanisms are fundamental in the progression of NAFLD toward higher risk cirrhotic states. This review outlines the leading theories of pathogenesis of NAFLD and highlights...

  6. Nonalcoholic fatty liver disease

    DEFF Research Database (Denmark)

    Patrick-Melin, A J; Kalinski, M I; Kelly, K R

    2009-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a rapidly emerging chronic liver disease and is reported to affect up to 70-80% of overweight and obese individuals. NAFLD represents a spectrum of liver diseases that range from simple hepatic steatosis, to a more severe and treatment resistant stage...... that features steatosis plus inflammation, termed nonalcoholic steatohepatitis (NASH), which may in turn progress to hepatic fibrosis, cirrhosis, and sub-acute liver failure. Thus, NAFLD and its subsequent complications create a significant health burden, and currently there is no effective treatment strategy...

  7. Antioxidant and cyclooxygenase activities of fatty acids found in food.

    Science.gov (United States)

    Henry, Geneive E; Momin, Rafikali A; Nair, Muraleedharan G; Dewitt, David L

    2002-04-10

    Several commercially available C-8 to C-24 saturated and unsaturated fatty acids (1-29) were assayed for cyclooxygenase-I (COX-I) and cyclooxygenase-II (COX-II) inhibitory and antioxidant activities. Among the saturated fatty acids tested at 60 microg mL(-1), there was an increase in antioxidant activity with increasing chain length from octanoic acid to myristic acid (C-8-C-14) and a decrease thereafter. All unsaturated fatty acids tested at 60 microg mL(-1) showed good antioxidant activity except for undecylenic acid (12), cis-5-dodecenoic acid (13), and nervonic acid (29). The highest inhibitory activities among the saturated fatty acids tested on cyclooxygenase enzymes COX-I and COX-II were observed for decanoic acid to lauric acid (3-5) at 100 microg mL(-1). Similarly, among the unsaturated fatty acids tested, the highest activities were observed for cis-8,11,14-eicosatrienoic acid (25) and cis-13,16-docosadienoic acid (27) at 100 microg mL(-1).

  8. Oxidation of furan fatty acids by soybean lipoxygenase-1 in the presence of linoleic acid.

    Science.gov (United States)

    Batna, A; Spiteller, G

    1994-04-19

    The interaction of furan fatty acids (F-acids) with lipoxygenase was investigated by incubation experiments of a synthetic dialkyl-substituted F-acid with soybean lipoxygenase-1. Originally the oxidation of furan fatty acids was assumed to be directly effected by lipoxygenase. It is now demonstrated that this reaction is a two-step process that requires the presence of lipoxygenase substrates, e.g. linoleic acid. In the first step linoleic acid is converted by the enzyme to the corresponding hydroperoxide. This attacks, probably in a radical reaction, the furan fatty acid to produce a dioxoene compound that can be detected unequivocally by gas chromatography-mass spectrometry.

  9. Omega-3 fatty acids: new insights into the pharmacology and biology of docosahexaenoic acid, docosapentaenoic acid, and eicosapentaenoic acid.

    Science.gov (United States)

    Davidson, Michael H

    2013-12-01

    Fish oil contains a complex mixture of omega-3 fatty acids, which are predominantly eicosapentaenoic acid (EPA), docosapentaenoic acid, and docosahexaenoic acid (DHA). Each of these omega-3 fatty acids has distinct biological effects that may have variable clinical effects. In addition, plasma levels of omega-3 fatty acids are affected not only by dietary intake, but also by the polymorphisms of coding genes fatty acid desaturase 1-3 for the desaturase enzymes that convert short-chain polyunsaturated fatty acids to long-chain polyunsaturated fatty acids. The clinical significance of this new understanding regarding the complexity of omega-3 fatty acid biology is the purpose of this review. FADS polymorphisms that result in either lower levels of long-chain omega-3 fatty acids or higher levels of long-chain omega-6 polyunsaturated fatty acids, such as arachidonic acid, are associated with dyslipidemia and other cardiovascular risk factors. EPA and DHA have differences in their effects on lipoprotein metabolism, in which EPA, with a more potent peroxisome proliferator-activated receptor-alpha effect, decreases hepatic lipogenesis, whereas DHA not only enhances VLDL lipolysis, resulting in greater conversion to LDL, but also increases HDL cholesterol and larger, more buoyant LDL particles. Overall, these results emphasize that blood concentrations of individual long-chain polyunsaturated fatty acids, which reflect both dietary intake and metabolic influences, may have independent, but also complementary- biological effects and reinforce the need to potentially provide a complex mixture of omega-3 fatty acids to maximize cardiovascular risk reduction.

  10. Effects of Omega-3 Fatty Acid in Nonalcoholic Fatty Liver Disease: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Wenxia Lu

    2016-01-01

    Full Text Available A meta-analysis was conducted to assess the effect of omega-3 fatty acid supplementation (n-3 PUFAs in lowering liver fat, liver enzyme (alanine aminotransferase (ALT, aspartate aminotransferase (AST, and gamma-glutamyltransferase (GGT levels, and blood lipids (triglyceride (TG, total cholesterol (TC, high density lipoprotein (HDL, and low density lipoprotein (LDL in patients with nonalcoholic fatty liver disease (NAFLD or nonalcoholic steatohepatitis (NASH. Methods. MEDLINE/PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, CINAHL, Science Citation Index (ISI Web of Science, Chinese Biomedical Literature Database (CBM, and Chinese National Knowledge Infrastructure (CNKI were searched for relevant randomized controlled trials on the effects of n-3 polyunsaturated fatty acids (PUFAs in patients with NAFLD from inception to May 2015. Ten studies were included in this meta-analysis. Results. 577 cases of NAFLD/NASH in ten randomized controlled trials (RCTs were included. The results of the meta-analysis showed that benefit changes in liver fat favored PUFA treatment, and it was also beneficial for GGT, but it was not significant on ALT, AST, TC, and LDL. Conclusions. In this meta-analysis, omega-3 PUFAs improved liver fat, GGT, TG, and HDL in patients with NAFLD/NASH. Therefore, n-3 PUFAs may be a new treatment option for NAFLD.

  11. Pathway Compartmentalization in Peroxisome of Saccharomyces cerevisiae to Produce Versatile Medium Chain Fatty Alcohols.

    Science.gov (United States)

    Sheng, Jiayuan; Stevens, Joseph; Feng, Xueyang

    2016-05-27

    Fatty alcohols are value-added chemicals and important components of a variety of industries, which have a >3 billion-dollar global market annually. Long chain fatty alcohols (>C12) are mainly used in surfactants, lubricants, detergents, pharmaceuticals and cosmetics while medium chain fatty alcohols (C6-C12) could be used as diesel-like biofuels. Microbial production of fatty alcohols from renewable feedstock stands as a promising strategy to enable sustainable supply of fatty alcohols. In this study, we report, for the first time, that medium chain fatty alcohols could be produced in yeast via targeted expression of a fatty acyl-CoA reductase (TaFAR) in the peroxisome of Saccharomyces cerevisiae. By tagging TaFAR enzyme with peroxisomal targeting signal peptides, the TaFAR could be compartmentalized into the matrix of the peroxisome to hijack the medium chain fatty acyl-CoA generated from the beta-oxidation pathway and convert them to versatile medium chain fatty alcohols (C10 &C12). The overexpression of genes encoding PEX7 and acetyl-CoA carboxylase further improved fatty alcohol production by 1.4-fold. After medium optimization in fed-batch fermentation using glucose as the sole carbon source, fatty alcohols were produced at 1.3 g/L, including 6.9% 1-decanol, 27.5% 1-dodecanol, 2.9% 1-tetradecanol and 62.7% 1-hexadecanol. This work revealed that peroxisome could be engineered as a compartmentalized organelle for producing fatty acid-derived chemicals in S. cerevisiae.

  12. Enzymes for improved biomass conversion

    Science.gov (United States)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  13. Magnetically responsive enzyme powders

    Science.gov (United States)

    Pospiskova, Kristyna; Safarik, Ivo

    2015-04-01

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (-20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties.

  14. Improving fatty acid availability for bio-hydrocarbon production in Escherichia coli by metabolic engineering.

    Directory of Open Access Journals (Sweden)

    Fengming Lin

    Full Text Available Previous studies have demonstrated the feasibility of producing fatty-acid-derived hydrocarbons in Escherichia coli. However, product titers and yields remain low. In this work, we demonstrate new methods for improving fatty acid production by modifying central carbon metabolism and storing fatty acids in triacylglycerol. Based on suggestions from a computational model, we deleted seven genes involved in aerobic respiration, mixed-acid fermentation, and glyoxylate bypass (in the order of cyoA, nuoA, ndh, adhE, dld, pta, and iclR to modify the central carbon metabolic/regulatory networks. These gene deletions led to increased total fatty acids, which were the highest in the mutants containing five or six gene knockouts. Additionally, when two key enzymes in the fatty acid biosynthesis pathway were over-expressed, we observed further increase in strain △cyoA△adhE△nuoA△ndh△pta△dld, leading to 202 mg/g dry cell weight of total fatty acids, ~250% of that in the wild-type strain. Meanwhile, we successfully introduced a triacylglycerol biosynthesis pathway into E. coli through heterologous expression of wax ester synthase/acyl-coenzyme:diacylglycerol acyltransferase (WS/DGAT enzymes. The added pathway improved both the amount and fuel quality of the fatty acids. These new metabolic engineering strategies are providing promising directions for future investigation.

  15. Improving fatty acid availability for bio-hydrocarbon production in Escherichia coli by metabolic engineering.

    Science.gov (United States)

    Lin, Fengming; Chen, Yu; Levine, Robert; Lee, Kilho; Yuan, Yingjin; Lin, Xiaoxia Nina

    2013-01-01

    Previous studies have demonstrated the feasibility of producing fatty-acid-derived hydrocarbons in Escherichia coli. However, product titers and yields remain low. In this work, we demonstrate new methods for improving fatty acid production by modifying central carbon metabolism and storing fatty acids in triacylglycerol. Based on suggestions from a computational model, we deleted seven genes involved in aerobic respiration, mixed-acid fermentation, and glyoxylate bypass (in the order of cyoA, nuoA, ndh, adhE, dld, pta, and iclR) to modify the central carbon metabolic/regulatory networks. These gene deletions led to increased total fatty acids, which were the highest in the mutants containing five or six gene knockouts. Additionally, when two key enzymes in the fatty acid biosynthesis pathway were over-expressed, we observed further increase in strain △cyoA△adhE△nuoA△ndh△pta△dld, leading to 202 mg/g dry cell weight of total fatty acids, ~250% of that in the wild-type strain. Meanwhile, we successfully introduced a triacylglycerol biosynthesis pathway into E. coli through heterologous expression of wax ester synthase/acyl-coenzyme:diacylglycerol acyltransferase (WS/DGAT) enzymes. The added pathway improved both the amount and fuel quality of the fatty acids. These new metabolic engineering strategies are providing promising directions for future investigation.

  16. Production of Medium Chain Fatty Acids by Yarrowia lipolytica: Combining Molecular Design and TALEN to Engineer the Fatty Acid Synthase.

    Science.gov (United States)

    Rigouin, Coraline; Gueroult, Marc; Croux, Christian; Dubois, Gwendoline; Borsenberger, Vinciane; Barbe, Sophie; Marty, Alain; Daboussi, Fayza; André, Isabelle; Bordes, Florence

    2017-10-20

    Yarrowia lipolytica is a promising organism for the production of lipids of biotechnological interest and particularly for biofuel. In this study, we engineered the key enzyme involved in lipid biosynthesis, the giant multifunctional fatty acid synthase (FAS), to shorten chain length of the synthesized fatty acids. Taking as starting point that the ketoacyl synthase (KS) domain of Yarrowia lipolytica FAS is directly involved in chain length specificity, we used molecular modeling to investigate molecular recognition of palmitic acid (C16 fatty acid) by the KS. This enabled to point out the key role of an isoleucine residue, I1220, from the fatty acid binding site, which could be targeted by mutagenesis. To address this challenge, TALEN (transcription activator-like effector nucleases)-based genome editing technology was applied for the first time to Yarrowia lipolytica and proved to be very efficient for inducing targeted genome modifications. Among the generated FAS mutants, those having a bulky aromatic amino acid residue in place of the native isoleucine at position 1220 led to a significant increase of myristic acid (C14) production compared to parental wild-type KS. Particularly, the best performing mutant, I1220W, accumulates C14 at a level of 11.6% total fatty acids. Overall, this work illustrates how a combination of molecular modeling and genome-editing technology can offer novel opportunities to rationally engineer complex systems for synthetic biology.

  17. Enzymes in animal nutrition

    OpenAIRE

    Scientific Committee on Animal Nutrition

    2011-01-01

    This report brings overview of endogenous as well as exogenous enzymes and their role and importance in animal nutrition. Enzymes for animal nutrition have been systematically developed since 1980´s. Phytase, xylanase and β-glucanase are used in poultry-rising, pig breeding, aquaculture and begin to push to the ruminant nutrition. Phytase increase availability of P, Ca, Zn, digestibility of proteins and fats. Its positive effect on the environment is well described – enzymes decrease the cont...

  18. Profiling the orphan enzymes

    Science.gov (United States)

    2014-01-01

    The emergence of Next Generation Sequencing generates an incredible amount of sequence and great potential for new enzyme discovery. Despite this huge amount of data and the profusion of bioinformatic methods for function prediction, a large part of known enzyme activities is still lacking an associated protein sequence. These particular activities are called “orphan enzymes”. The present review proposes an update of previous surveys on orphan enzymes by mining the current content of public databases. While the percentage of orphan enzyme activities has decreased from 38% to 22% in ten years, there are still more than 1,000 orphans among the 5,000 entries of the Enzyme Commission (EC) classification. Taking into account all the reactions present in metabolic databases, this proportion dramatically increases to reach nearly 50% of orphans and many of them are not associated to a known pathway. We extended our survey to “local orphan enzymes” that are activities which have no representative sequence in a given clade, but have at least one in organisms belonging to other clades. We observe an important bias in Archaea and find that in general more than 30% of the EC activities have incomplete sequence information in at least one superkingdom. To estimate if candidate proteins for local orphans could be retrieved by homology search, we applied a simple strategy based on the PRIAM software and noticed that candidates may be proposed for an important fraction of local orphan enzymes. Finally, by studying relation between protein domains and catalyzed activities, it appears that newly discovered enzymes are mostly associated with already known enzyme domains. Thus, the exploration of the promiscuity and the multifunctional aspect of known enzyme families may solve part of the orphan enzyme issue. We conclude this review with a presentation of recent initiatives in finding proteins for orphan enzymes and in extending the enzyme world by the discovery of new

  19. The EBI enzyme portal

    OpenAIRE

    Alc?ntara, Rafael; Onwubiko, Joseph; Cao, Hong; de Matos, Paula; Cham, Jennifer A.; Jacobsen, Jules; Holliday, Gemma L.; Fischer, Julia D.; Rahman, Syed Asad; Jassal, Bijay; Goujon, Mikael; Rowland, Francis; Velankar, Sameer; L?pez, Rodrigo; Overington, John P.

    2012-01-01

    The availability of comprehensive information about enzymes plays an important role in answering questions relevant to interdisciplinary fields such as biochemistry, enzymology, biofuels, bioengineering and drug discovery. At the EMBL European Bioinformatics Institute, we have developed an enzyme portal (http://www.ebi.ac.uk/enzymeportal) to provide this wealth of information on enzymes from multiple in-house resources addressing particular data classes: protein sequence and structure, reacti...

  20. Enzyme catalysed tandem reactions

    OpenAIRE

    Oroz-Guinea, Isabel; García-Junceda, Eduardo

    2013-01-01

    To transfer to the laboratory, the excellent efficiency shown by enzymes in Nature, biocatalysis, had to mimic several synthetic strategies used by the living organisms. Biosynthetic pathways are examples of tandem catalysis and may be assimilated in the biocatalysis field for the use of isolated multi-enzyme systems in the homogeneous phase. The concurrent action of several enzymes that work sequentially presents extraordinary advantages from the synthetic point of view, since it permits a r...

  1. Enzymes from extremophiles.

    Science.gov (United States)

    Demirjian, D C; Morís-Varas, F; Cassidy, C S

    2001-04-01

    The industrial application of enzymes that can withstand harsh conditions has greatly increased over the past decade. This is mainly a result of the discovery of novel enzymes from extremophilic microorganisms. Recent advances in the study of extremozymes point to the acceleration of this trend. In particular, enzymes from thermophilic organisms have found the most practical commercial use to date because of their overall inherent stability. This has also led to a greater understanding of stability factors involved in adaptation of these enzymes to their unusual environments.

  2. Artificial Enzymes, "Chemzymes"

    DEFF Research Database (Denmark)

    Bjerre, Jeannette; Rousseau, Cyril Andre Raphaël; Pedersen, Lavinia Georgeta M

    2008-01-01

    "Chemzymes", based on cyclodextrins and other molecules. Only the chemzymes that have shown enzyme-like activity that has been quantified by different methods will be mentioned. This review will summarize the work done in the field of artificial glycosidases, oxidases, epoxidases, and esterases, as well......Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models...

  3. Magnetically responsive enzyme powders

    International Nuclear Information System (INIS)

    Pospiskova, Kristyna; Safarik, Ivo

    2015-01-01

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction

  4. Enzymes in Fermented Fish.

    Science.gov (United States)

    Giyatmi; Irianto, H E

    Fermented fish products are very popular particularly in Southeast Asian countries. These products have unique characteristics, especially in terms of aroma, flavor, and texture developing during fermentation process. Proteolytic enzymes have a main role in hydrolyzing protein into simpler compounds. Fermentation process of fish relies both on naturally occurring enzymes (in the muscle or the intestinal tract) as well as bacteria. Fermented fish products processed using the whole fish show a different characteristic compared to those prepared from headed and gutted fish. Endogenous enzymes like trypsin, chymotrypsin, elastase, and aminopeptidase are the most involved in the fermentation process. Muscle tissue enzymes like cathepsins, peptidases, transaminases, amidases, amino acid decarboxylases, glutamic dehydrogenases, and related enzymes may also play a role in fish fermentation. Due to the decreased bacterial number during fermentation, contribution of microbial enzymes to proteolysis may be expected prior to salting of fish. Commercial enzymes are supplemented during processing for specific purposes, such as quality improvement and process acceleration. In the case of fish sauce, efforts to accelerate fermentation process and to improve product quality have been studied by addition of enzymes such as papain, bromelain, trypsin, pepsin, and chymotrypsin. © 2017 Elsevier Inc. All rights reserved.

  5. Enzyme Vs. Extremozyme -32 ...

    Indian Academy of Sciences (India)

    Enzyme Vs. Extremozyme. What Makes Extremozymes Function Under Harsh Conditions? Santosh Kumar is ... extremozymes to high temperature or pH so that enzymes from mesophiles can be engineered to behave .... alkalinity (above pH 10, soda lake) from which extremozymes have been isolated. F C Lowyer of the ...

  6. Industrial Enzymes and Biocatalysis

    Science.gov (United States)

    McAuliffe, Joseph C.; Aehle, Wolfgang; Whited, Gregory M.; Ward, Donald E.

    All life processes are the result of enzyme activity. In fact, life itself, whether plant or animal, involves a complex network of enzymatic reactions. An enzyme is a protein that is synthesized in a living cell. It catalyzes a thermodynamically possible reaction so that the rate of the reaction is compatible with the numerous biochemical processes essential for the growth and maintenance of a cell. The synthesis of an enzyme thus is under tight metabolic regulations and controls that can be genetically or environmentally manipulated sometimes to cause the overproduction of an enzyme by the cell. An enzyme, like chemical catalysts, in no way modifies the equilibrium constant or the free energy change of a reaction.

  7. Fermentative Extraction of Coconut Oil to Maintain A Quality of Medium Chain Fatty Acid

    Directory of Open Access Journals (Sweden)

    Farid Salahudin

    2014-06-01

    Full Text Available Coconut oil is healthy vegetable oil because it contains Medium Chain Fatty Acid (MCFA. The used of bleaching agent and excessive heating in coconut oil process will produce low quality oil (rancid. Therefore, it is necessary to processing that does not use chemicals and excessive heating such as fermentation using microbe and enzyme. The aim of this study was to find out the effect of bromelin enzyme concentration and Saccharomyces cereviceae fermentation to MCFA content in coconut oil. This research was done by adding the enzyme bromelain at 0, 50, 100, 200 and 400 ppm and S. cereviceae inoculated in coconut milk. The resulting oil is then tested the water content, acid number and fatty acid content. The result showed that fermentation with 200 ppm bromeline enzyme and S. cereviceae inoculation can produce the best quality coconut oil containing MCFA that meet the APCC standard.

  8. MILK FAT FATTY ACIDS IN RELATION TO MILK PRODUCTION AND QUALITY

    Directory of Open Access Journals (Sweden)

    Vladimír Foltys

    2012-02-01

    Full Text Available Milk fat is from a nutritional point of view of the negative evaluation because of the dominant content of saturated fatty acid with high atherogenic index. Intake of milk fat in the diet is important because of the content of monounsaturated fatty acids, acting favorably against cardiovascular diseases and especially of essential fatty acids, linoleic, alpha linolenic and conjugated linoleic acid (CLA, which is found only in meat and milk of ruminants. These are precursors of biologically active substances - hormones and enzymes. The analysis of relations of fatty acids in milk fat to qualitative-production parameters of milk shows that the correlations of fatty acids with lactation stage and qualitative-production parameters of milk are quite weak in dairy cows with stable type of nutrition in form of whole-the-year feeding mixed feed ration in lowland agricultural area. Changes in milk fat composition are caused by the change in the ratio of de novo and depot fatty acids. Relation of fatty acids to the evaluated parameters lies with their metabolic origin and neither acid nor group underlies the specific influence of the studied parameters, by the means of which it would be possible to influence its proportion in milk fat. And so it is not possible to influence some group or a desirable fatty acid, e.g. CLA, without the influence on total milk fat.

  9. Effect of Non-Esterified Fatty Acids on Fatty Acid Metabolism-Related Genes in Calf Hepatocytes Cultured in Vitro

    Directory of Open Access Journals (Sweden)

    Peng Li

    2013-11-01

    Full Text Available Background: NEFA plays numerous roles in the metabolism of glucose, lipids, and proteins. A number of experimental studies have shown that NEFA may have an important role in fatty acid metabolism in the liver, especially in dairy cows that experience negative energy balance (NEB during early lactation. Methods: In this study, using fluorescent quantitative RT-PCR, ELISA, and primary hepatocytes cultured in vitro, we examined the effect of NEFA (0, 0.2, 0.4, 0.8, 1.6, and 3.2 mmol/L on fatty acid metabolism by monitoring the mRNA and protein expression of the following key enzymes: long chain acyl-CoA synthetase (ACSL, carnitine palmitoyltransferase IA (CPT IA, long chain acyl-CoA dehydrogenase (ACADL, and acetyl-CoA carboxylase (ACC. Results: The mRNA and protein expression levels of ACSL and ACADL markedly increased as the concentration of NEFA in the media was increased. The mRNA and protein expression levels of CPT IA were enhanced significantly when the NEFA concentrations increased from 0 to 1.6 mmol/L and decreased significantly when the NEFA concentrations increased from 1.6 to 3.2 mmol/L. The mRNA and protein expression of ACC decreased gradually with increasing concentrations of NEFA. Conclusion: These findings indicate that increased NEFA significantly promote the activation and β-oxidation of fatty acids, but very high NEFA concentrations may inhibit the translocation of fatty acids into mitochondria of hepatocytes. This may explain the development of ketosis or liver lipidosis in dairy cows. CPT IA might be the key control enzyme of the fatty acid oxidation process in hepatocytes.

  10. Genetic defects in fatty acid beta-oxidation and acyl-CoA dehydrogenases. Molecular pathogenesis and genotype-phenotype relationships

    DEFF Research Database (Denmark)

    Gregersen, Niels; Bross, Peter; Andresen, Brage S

    2004-01-01

    Mitochondrial fatty acid oxidation deficiencies are due to genetic defects in enzymes of fatty acid beta-oxidation and transport proteins. Genetic defects have been identified in most of the genes where nearly all types of sequence variations (mutation types) have been associated with disease. In...

  11. Prevalence of Nonalcoholic Fatty Liver Disease in Normal-weight and Overweight Preadolescent Children in Haryana, India.

    Science.gov (United States)

    Das, Manoja Kumar; Bhatia, Vidyut; Sibal, Anupam; Gupta, Abha; Gopalan, Sarath; Sardana, Raman; Sahni, Reeti; Roy, Ankur; Arora, Narendra K

    2017-12-15

    To document the prevalence of non-alcoholic fatty liver disease (NAFLD) and metabolic parameters among normal-weight and overweight schoolchildren. Cross-sectional study. Thirteen private schools in urban Faridabad, Haryana. 961 school children aged 5-10 years. Ultrasound testing was done, and 215 with fatty liver on ultrasound underwent further clinical, biochemical and virological testing. Prevalence of fatty liver on ultrasound, and NAFLD and its association with biochemical abnormalities and demographic risk factors. On ultrasound, 215 (22.4%) children had fatty liver; 18.9% in normal-weight and 45.6% in overweight category. Presence and severity of fatty liver disease increased with body mass index (BMI) and age. Among the children with NAFLD, elevated SGOT and SGPT was observed in 21.5% and 10.4% children, respectively. Liver enzyme derangement was significantly higher in overweight children (27% vs 19.4% in normal-weight) and severity of fatty liver (28% vs 20% in mild fatty liver cases). Eleven (8.1%) children with NAFLD had metabolic syndrome. Higher BMI (OR 35.9), severe fatty liver disease (OR 1.7) and female sex (OR 1.9) had strong association with metabolic syndrome. 22.4% of normal-weight and overweight children aged 5-10 years had fatty liver. A high proportion (18.9%) of normal-weight children with fatty liver on ultrasound indicates the silent burden in the population.

  12. Co-ordinate activation of lipogenic enzymes in hepatocellular carcinoma.

    Science.gov (United States)

    Yahagi, Naoya; Shimano, Hitoshi; Hasegawa, Kiyoshi; Ohashi, Kenichi; Matsuzaka, Takashi; Najima, Yuho; Sekiya, Motohiro; Tomita, Sachiko; Okazaki, Hiroaki; Tamura, Yoshiaki; Iizuka, Yoko; Ohashi, Ken; Nagai, Ryozo; Ishibashi, Shun; Kadowaki, Takashi; Makuuchi, Masatoshi; Ohnishi, Shin; Osuga, Jun-ichi; Yamada, Nobuhiro

    2005-06-01

    Hepatocellular carcinoma is a very common neoplastic disease in countries where hepatitis viruses B and/or C are prevalent. Small hepatocellular carcinoma lesions detected by ultrasonography at an early stage are often hyperechoic because they are composed of well-differentiated cancer cells that are rich in triglyceride droplets. The triglyceride content of hepatocytes depends in part on the rate of lipogenesis. Key lipogenic enzymes, such as fatty acid synthase, are co-ordinately regulated at the transcriptional level. We therefore examined the mRNA expression of lipogenic enzymes in human hepatocellular carcinoma samples from 10 patients who had undergone surgical resection. All of the samples exhibited marked elevation of expression of mRNA for lipogenic enzymes, such as fatty acid synthase, acetyl-CoA carboxylase and ATP citrate lyase, compared with surrounding non-cancerous liver tissue. In contrast, the changes in mRNA expression of SREBP-1, a transcription factor that regulates a battery of lipogenic enzymes, did not show a consistent trend. In some cases where SREBP-1 was elevated, the main contributing isoform was SREBP-1c rather than SREBP-1a. Thus, lipogenic enzymes are markedly induced in hepatocellular carcinomas, and in some cases SREBP-1c is involved in this activation.

  13. Fermentative Extraction of Coconut Oil to Maintain a Quality of Medium Chain Fatty Acid

    OpenAIRE

    Salahudin, Farid; Supriyatna, Nana

    2014-01-01

    Coconut oil is healthy vegetable oil because it contains Medium Chain Fatty Acid (MCFA). The used of bleaching agent and excessive heating in coconut oil process will produce low quality oil (rancid). Therefore, it is necessary to processing that does not use chemicals and excessive heating such as fermentation using microbe and enzyme. The aim of this study was to find out the effect of bromelin enzyme concentration and Saccharomyces cereviceae fermentation to MCFA content in coconut oil. Th...

  14. Elongation of exogenous fatty acids by the bioluminescent bacterium Vibrio harveyi

    International Nuclear Information System (INIS)

    Byers, D.M.

    1989-01-01

    Bioluminescent bacteria require myristic acid (C14:0) to produce the myristaldehyde substrate of the light-emitting luciferase reaction. Since both endogenous and exogenous C14:0 can be used for this purpose, the metabolism of exogenous fatty acids by luminescent bacteria has been investigated. Both Vibrio harveyi and Vibrio fischeri incorporated label from [1-14C]myristic acid (C14:0) into phospholipid acyl chains as well as into CO2. In contrast, Photobacterium phosphoreum did not exhibit phospholipid acylation or beta-oxidation using exogenous fatty acids. Unlike Escherichia coli, the two Vibrio species can directly elongate fatty acids such as octanoic (C8:0), lauric (C12:0), and myristic acid, as demonstrated by radio-gas liquid chromatography. The induction of bioluminescence in late exponential growth had little effect on the ability of V. harveyi to elongate fatty acids, but it did increase the amount of C14:0 relative to C16:0 labeled from [14C]C8:0. This was not observed in a dark mutant of V. harveyi that is incapable of supplying endogenous C14:0 for luminescence. Cerulenin preferentially decreased the labeling of C16:0 and of unsaturated fatty acids from all 14C-labeled fatty acid precursors as well as from [14C]acetate, suggesting that common mechanisms may be involved in elongation of fatty acids from endogenous and exogenous sources. Fatty acylation of the luminescence-related synthetase and reductase enzymes responsible for aldehyde synthesis exhibited a chain-length preference for C14:0, which also was indicated by reverse-phase thin-layer chromatography of the acyl groups attached to these enzymes. The ability of V. harveyi to activate and elongate exogenous fatty acids may be related to an adaptive requirement to metabolize intracellular C14:0 generated by the luciferase reaction during luminescence development

  15. Insertion-Deletions In a FADS2 Intron 1 Conserved Regulatory Locus Control Expression Of Fatty Acid Desaturases 1 and 2 And Modulate Response To Simvastatin

    OpenAIRE

    Reardon, Holly T.; Zhang, Jimmy; Kothapalli, Kumar S.D.; Kim, Andrea J.; Park, Woo Jung; Brenna, J. Thomas

    2012-01-01

    The fatty acid desaturase genes (FADS1 and FADS2) code for enzymes required for synthesis of omega-3 and omega-6 long-chain polyunsaturated fatty acids (LCPUFA) important in the central nervous system, inflammatory response, and cardiovascular health. SNPs in these genes are associated with numerous health outcomes, but it is unclear how genetic variation affects enzyme function. Here, lymphoblasts obtained from Japanese participants in the International HapMap Project were evaluated for asso...

  16. Sex Differences in the Expression of Hepatic Drug Metabolizing Enzymes

    OpenAIRE

    Waxman, David J.; Holloway, Minita G.

    2009-01-01

    Sex differences in pharmacokinetics and pharmacodynamics characterize many drugs and contribute to individual differences in drug efficacy and toxicity. Sex-based differences in drug metabolism are the primary cause of sex-dependent pharmacokinetics and reflect underlying sex differences in the expression of hepatic enzymes active in the metabolism of drugs, steroids, fatty acids and environmental chemicals, including cytochromes P450 (P450s), sulfotransferases, glutat...

  17. Fatty acid-producing hosts

    Science.gov (United States)

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  18. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances

    Directory of Open Access Journals (Sweden)

    Je Min Lee

    2016-01-01

    Full Text Available Polyunsaturated fatty acids (PUFAs are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism.

  19. Fatty acyltranferases in serum in cystic fibrosis (CF) patients

    International Nuclear Information System (INIS)

    Zielenski, J.; Newman, L.J.; Slomiany, B.L.; Slomiany, A.

    1987-01-01

    Studies on serum and gastrointestinal secretion from CF patient is suggest that defective accumulation of mucus in gastrointestinal tract and excessive amount of a protease resistant peptides in serum are related to the abnormal activity of enzymes responsible for fatty acylation of proteins. Here, the authors investigated the fatty acyltransferase activities in serum of normal and CF patients. A 15μl of serum was mixed with 0.85 nmol [ 14 C]palmitoyl CoA, 200μg of serine and threonine and incubated at 37 0 C for 30 min. The incubates were immediately frozen, dried extracted with C/M and chromatographed in chloroform/methanol/water. The incorporation of [ 14 C]palmitate was determined using linear radioscanner and authoradiography. The results of HPTLC revealed that CF serum in addition of ACAT and LCAT contained enzymes responsible for the transfer of [ 14 C]palmitate to monoacylphosphoglycerides, and serine and threonine. In normal serum the formation of a small amount of palmitoyl serine and palmitoyl threonine was also observed but the acylation of monoacylphosphoglycerides was not detectable. The authors conclude that in cystic fibrosis the abnormal fatty acyltransferases are responsible for the occurrence of protease resistant glycoprotein, unusual peptides in serum and possibly for the modification of membrane proteins and lipids

  20. 21 CFR 172.860 - Fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Fatty acids. 172.860 Section 172.860 Food and Drugs... Multipurpose Additives § 172.860 Fatty acids. The food additive fatty acids may be safely used in food and in... and their associated fatty acids manufactured from fats and oils derived from edible sources: Capric...

  1. Binding of acyl CoA by fatty acid binding protein and the effect on fatty acid activation

    International Nuclear Information System (INIS)

    Burrier, R.E.; Manson, C.R.; Brecher, P.

    1987-01-01

    The ability of purified rat liver and heart fatty acid binding proteins (FABPs) to bind oleoyl CoA and modulate acyl CoA synthesis by microsomal membranes was investigated. Using binding assays employing either Lipidex 1000 or multilamellar liposomes to sequester unbound ligand, rat liver but not rat heart FABP was shown to bind radiolabeled acyl CoA. Binding studies suggest that liver FABP has a single binding site for acyl CoA which is separate from the two binding sites for fatty acids. Experiments were then performed to determine how binding may influence acyl CoA metabolism by liver microsomes or heart sarcoplasmic reticulum. Using liposomes as fatty acid donors, liver FABP stimulated acyl CoA production whereas heart FABP did not stimulate production over control values. 14 C-Fatty acid-FABP complexes were prepared, incubated with membranes and acyl CoA synthetase activity was determined. Up to 70% of the fatty acid could be converted to acyl CoA in the presence of liver FABP but in the presence of heart FABP, only 45% of the fatty acid was converted. The amount of product formed was not changed by additional membrane, enzyme cofactor, or incubation time. Liver but not heart FABP bound the acyl CoA formed and removed it from the membranes. These studies suggest that liver FABP can increase the amount of acyl CoA by binding this ligand thereby removing it from the membrane and possibly aiding transport within the cell

  2. Binding of acyl CoA by fatty acid binding protein and the effect on fatty acid activation

    Energy Technology Data Exchange (ETDEWEB)

    Burrier, R.E.; Manson, C.R.; Brecher, P.

    1987-05-01

    The ability of purified rat liver and heart fatty acid binding proteins (FABPs) to bind oleoyl CoA and modulate acyl CoA synthesis by microsomal membranes was investigated. Using binding assays employing either Lipidex 1000 or multilamellar liposomes to sequester unbound ligand, rat liver but not rat heart FABP was shown to bind radiolabeled acyl CoA. Binding studies suggest that liver FABP has a single binding site for acyl CoA which is separate from the two binding sites for fatty acids. Experiments were then performed to determine how binding may influence acyl CoA metabolism by liver microsomes or heart sarcoplasmic reticulum. Using liposomes as fatty acid donors, liver FABP stimulated acyl CoA production whereas heart FABP did not stimulate production over control values. /sup 14/C-Fatty acid-FABP complexes were prepared, incubated with membranes and acyl CoA synthetase activity was determined. Up to 70% of the fatty acid could be converted to acyl CoA in the presence of liver FABP but in the presence of heart FABP, only 45% of the fatty acid was converted. The amount of product formed was not changed by additional membrane, enzyme cofactor, or incubation time. Liver but not heart FABP bound the acyl CoA formed and removed it from the membranes. These studies suggest that liver FABP can increase the amount of acyl CoA by binding this ligand thereby removing it from the membrane and possibly aiding transport within the cell.

  3. Characterization of Fatty Acids in Crenarchaeota by GC-MS and NMR

    Directory of Open Access Journals (Sweden)

    Timothy Hamerly

    2015-01-01

    Full Text Available Lipids composed of condensed isoprenyl units connected to glycerol backbones by ether linkages are a distinguishing feature of Archaea. Data suggesting that fatty acids with linear hydrocarbon chains are present in some Archaea have been available for decades. However, lack of genomic and biochemical evidence for the metabolic machinery required to synthesize and degrade fatty acids has left the field unclear on this potentially significant biochemical aspect. Because lipids are energy currency and cell signaling molecules, their presence in Archaea is significant for understanding archaeal biology. A recent large-scale bioinformatics analysis reignited the debate as to the importance of fatty acids in Archaea by presenting genetic evidence for the presence of enzymes required for anabolic and catabolic fatty acid metabolism across the archaeal domain. Here, we present direct biochemical evidence from gas chromatography-mass spectrometry (GC-MS and nuclear magnetic resonance (NMR spectroscopy for the presence of fatty acids in two members of the Crenarchaeota, Sulfolobus solfataricus and Ignicoccus hospitalis. This is the first report providing biochemical data for the existence of fatty acids in these Crenarchaeota, opening new discussions on energy balance and the potential for the discovery of new thermostable enzymes for industry.

  4. Serum Paraoxonase 1 Activity Is Associated with Fatty Acid Composition of High Density Lipoprotein

    Directory of Open Access Journals (Sweden)

    Maryam Boshtam

    2013-01-01

    Full Text Available Introduction. Cardioprotective effect of high density lipoprotein (HDL is, in part, dependent on its related enzyme, paraoxonase 1 (PON1. Fatty acid composition of HDL could affect its size and structure. On the other hand, PON1 activity is directly related to the structure of HDL. This study was designed to investigate the association between serum PON1 activity and fatty acid composition of HDL in healthy men. Methods. One hundred and forty healthy men participated in this research. HDL was separated by sequential ultracentrifugation, and its fatty acid composition was analyzed by gas chromatography. PON1 activity was measured spectrophotometrically using paraxon as substrate. Results. Serum PON1 activity was directly correlated with the amount of stearic acid and dihomo-gamma-linolenic acid (DGLA. PON1/HDL-C was directly correlated with the amount of miristic acid, stearic acid, and DGLA and was inversely correlated with total amount of ω6 fatty acids of HDL. Conclusion. The fatty acid composition of HDL could affect the activity of its associated enzyme, PON1. As dietary fats are the major determinants of serum lipids and lipoprotein composition, consuming some special dietary fatty acids may improve the activity of PON1 and thereby have beneficial effects on health.

  5. Enzymic lactose hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.J.; Brand, J.C.

    1980-01-01

    Acid or enzymic hydrolysis can be used to hydrolyze lactose. Advantages of both are compared and details of enzymic hydrolysis using yeast or fungal enzymes given. The new scheme outlined involves recycling lactase. Because lactose and lactase react to ultrafiltration (UF) membranes differently separation is possible. Milk or milk products are ultrafiltered to separate a concentrate from a lactose-rich permeate which is treated with lactase in a reactor until hydrolysis reaches a required level. The lactase can be removed by UF as it does not permeate the membrane, and it is recycled back to the reactor. Permeate from the second UF stage may or may not be recombined with the concentrate from the first stage to produce a low lactose product (analysis of a typical low-lactose dried whole milk is given). Batch or continuous processes are explained and a batch process without enzyme recovery is discussed. (Refs. 4).

  6. Indicators: Sediment Enzymes

    Science.gov (United States)

    Sediment enzymes are proteins that are produced by microorganisms living in the sediment or soil. They are indicators of key ecosystem processes and can help determine which nutrients are affecting the biological community of a waterbody.

  7. Enzymes in Analytical Chemistry.

    Science.gov (United States)

    Fishman, Myer M.

    1980-01-01

    Presents tabular information concerning recent research in the field of enzymes in analytic chemistry, with methods, substrate or reaction catalyzed, assay, comments and references listed. The table refers to 128 references. Also listed are 13 general citations. (CS)

  8. Enzyme Vs. Extremozyme -32 ...

    Indian Academy of Sciences (India)

    Enzyme Vs. Extremozyme. What Makes Extremozymes Function Under Harsh Conditions? Santosh Kumar is doing his Ph D at Biotechnology. Centre, Indian Institute of. Technology, Bombay. His research interests include: enzymology, metabolism, metabolic regulation and metabolic engineering of a filamentous fungi,.

  9. Membrane Assisted Enzyme Fractionation

    DEFF Research Database (Denmark)

    Yuan, Linfeng

    . In this thesis, separations using crossflow elecro-membrane filtration (EMF) of amino acids, bovine serum albumin (BSA) and industrial enzymes from Novozymes were performed. The main objective of this study was to investigate the technological feasibility of EMF in the application of industrial enzyme...... fractionation, such as removal of a side activity from the main enzyme activity. As a proof-of-concept, amino acids were used as model solution to test the feasibility of EMF in the application of amphoteric molecule separation. A single amino acid was used to illustrate the effect of an electric field...... on the separation performance were very small in the investigated range. The mass transport of each enzyme can be well explained by the Extended-Nernst-Planck equation. Better separation was observed at lower feed concentration, higher solution pH in the investigated range and with a polysulfone (PS) MF membrane...

  10. Advances in enzyme immobilisation

    CSIR Research Space (South Africa)

    Brady, D

    2009-07-10

    Full Text Available improved protein binding capacity. Novel methods of enzyme self immobilisation have been developed (CLEC, CLEA, Spherezyme), as well as carrier materials (Dendrispheres), encapsulation (PEI Microspheres), and entrapment. Apart from retention, recovery...

  11. Enzyme catalysed tandem reactions.

    Science.gov (United States)

    Oroz-Guinea, Isabel; García-Junceda, Eduardo

    2013-04-01

    To transfer to the laboratory, the excellent efficiency shown by enzymes in Nature, biocatalysis, had to mimic several synthetic strategies used by the living organisms. Biosynthetic pathways are examples of tandem catalysis and may be assimilated in the biocatalysis field for the use of isolated multi-enzyme systems in the homogeneous phase. The concurrent action of several enzymes that work sequentially presents extraordinary advantages from the synthetic point of view, since it permits a reversible process to become irreversible, to shift the equilibrium reaction in such a way that enantiopure compounds can be obtained from prochiral or racemic substrates, reduce or eliminate problems due to product inhibition or prevent the shortage of substrates by dilution or degradation in the bulk media, etc. In this review we want to illustrate the developments of recent studies involving in vitro multi-enzyme reactions for the synthesis of different classes of organic compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Overproduction of ligninolytic enzymes

    Science.gov (United States)

    Elisashvili, Vladimir; Kachlishvili, Eva; Torok, Tamas

    2014-06-17

    Methods, compositions, and systems for overproducing ligninolytic enzymes from the basidiomycetous fungus are described herein. As described, the method can include incubating a fungal strain of Cerrena unicolor IBB 303 in a fermentation system having growth medium which includes lignocellulosic material and then cultivating the fungal strain in the fermentation system under conditions wherein the fungus expresses the ligninolytic enzymes. In some cases, the lignocellulosic material is mandarin peel, ethanol production residue, walnut pericarp, wheat bran, wheat straw, or banana peel.

  13. Measurement of enzyme activity.

    Science.gov (United States)

    Harris, T K; Keshwani, M M

    2009-01-01

    To study and understand the nature of living cells, scientists have continually employed traditional biochemical techniques aimed to fractionate and characterize a designated network of macromolecular components required to carry out a particular cellular function. At the most rudimentary level, cellular functions ultimately entail rapid chemical transformations that otherwise would not occur in the physiological environment of the cell. The term enzyme is used to singularly designate a macromolecular gene product that specifically and greatly enhances the rate of a chemical transformation. Purification and characterization of individual and collective groups of enzymes has been and will remain essential toward advancement of the molecular biological sciences; and developing and utilizing enzyme reaction assays is central to this mission. First, basic kinetic principles are described for understanding chemical reaction rates and the catalytic effects of enzymes on such rates. Then, a number of methods are described for measuring enzyme-catalyzed reaction rates, which mainly differ with regard to techniques used to detect and quantify concentration changes of given reactants or products. Finally, short commentary is given toward formulation of reaction mixtures used to measure enzyme activity. Whereas a comprehensive treatment of enzymatic reaction assays is not within the scope of this chapter, the very core principles that are presented should enable new researchers to better understand the logic and utility of any given enzymatic assay that becomes of interest.

  14. Association between pancreatitis and fatty liver disease

    Directory of Open Access Journals (Sweden)

    GAO Fan

    2017-01-01

    Full Text Available Pancreatitis is a common digestive disease with a high mortality rate. Clinical physicians often encounter patients with pancreatitis and fatty liver disease. This article investigates the association between pancreatitis and fatty liver disease from the aspects of the prevalence of fatty liver disease in patients with pancreatitis, the influence of fatty liver disease on the prognosis of pancreatitis, and pancreatitis induced by acute fatty liver disease during pregnancy.

  15. ADS genes for reducing saturated fatty acid levels in seed oils

    Science.gov (United States)

    Heilmann, Ingo H.; Shanklin, John

    2010-02-02

    The present invention relates to enzymes involved in lipid metabolism. In particular, the present invention provides coding sequences for Arabidopsis Desaturases (ADS), the encoded ADS polypeptides, and methods for using the sequences and encoded polypeptides, where such methods include decreasing and increasing saturated fatty acid content in plant seed oils.

  16. Castor phospholipid:diacylglycerol acyltransferase facilitates efficient metabolism of hydroxy fatty acids in transgenic Arabidopsis

    Science.gov (United States)

    Producing unusual fatty acids (FAs) in crop plants has been a long-standing goal of green chemistry. However, expression of the enzymes that catalyze the primary synthesis of these unusual FAs in transgenic plants typically results in low levels of the desired FA. For example, seed-specific expressi...

  17. Process Intensification of Enzymatic Fatty Acid Butyl Ester Synthesis Using a Continuous Centrifugal Contactor Separator

    NARCIS (Netherlands)

    Ilmi, Miftahul; Abduh, Muhammad Yusuf; Hommes, Arne; Winkelman, Jozef; Hidayat, C.; Heeres, Hero

    2018-01-01

    Fatty acid butyl esters were synthesized from sunflower oil with 1-butanol using a homogeneous Rhizomucor miehei lipase in a biphasic organic (triglyceride, 1-butanol, hexane)– water (with enzyme) system in a continuous setup consisting of a cascade of a stirred tank reactor and a continuous

  18. Metabolic adaptations during lactogenesis. Fatty acid synthesis in rabbit mammary tissue during pregnancy and lactation

    Science.gov (United States)

    Mellenberger, R. W.; Bauman, D. E.

    1974-01-01

    1. Mammary tissue was obtained from rabbits at various stages of pregnancy and lactation and used for tissue-slice incubations (to measure the rate of fatty acid synthesis and CO2 production) and to determine relevant enzymic activities. A biphasic adaptation in fatty acid synthetic capacity during lactogenesis was noted. 2. The first lactogenic response occurred between day 15 and 24 of pregnancy. Over this period fatty acid synthesis (from acetate) increased 14-fold and the proportions of fatty acids synthesized changed to those characteristic of milk fat (77–86% as C8:0+C10:0 acids). 3. The second lactogenic response occurred post partum as indicated by increased rates of fatty acid synthesis and CO2 production (from acetate and glucose) and increased enzymic activities. 4. Major increases in enzymic activities between mid-pregnancy and lactation were noted for ATP citrate lyase (EC 4.1.3.8), acetyl-CoA synthetase (EC 6.2.1.1), acetyl-CoA carboxylase (EC 6.4.1.2), fatty acid synthetase, glucose 6-phosphate dehydrogenase (EC 1.1.1.49), and 6-phosphogluconate dehydrogenase (EC 1.1.1.44). Smaller increases in activity occurred with glycerol 3-phosphate dehydrogenase (EC 1.1.1.8) and NADP+–isocitrate dehydrogenase (EC 1.1.1.42) and the activity of NADP+–malate dehydrogenase (EC 1.1.1.40) was negligible at all periods tested. 5. During pregnancy and lactation there was a close temporal relationship between fatty acid synthetic capacity and the activities of ATP citrate lyase (r=0.94) and acetyl-CoA carboxylase (r=0.90). PMID:4154742

  19. Tuning of acyl-ACP thioesterase activity directed for tailored fatty acid synthesis.

    Science.gov (United States)

    Feng, Yanbin; Zhang, Yunxiu; Wang, Yayue; Liu, Jiao; Liu, Yinghui; Cao, Xupeng; Xue, Song

    2018-04-01

    Medium-chain fatty acids have attracted significant attention as sources of biofuels in recent years. Acyl-ACP thioesterase, which is considered as the key enzyme to determine the carbon chain length, catalyzes the termination of de novo fatty acid synthesis. Although recombinant medium-chain acyl-ACP thioesterase (TE) affects the fatty acid profile in heterologous cells, tailoring of the fatty acid composition merely by engineering a specific TE is still intractable. In this study, the activity of a C8-C10-specific thioesterase FatB2 from Cuphea hookeriana on C10-ACP was quantified twice as high as that on C8-ACP based on a synthetic C8-C16 acyl-ACP pool in vitro. Whereas in vivo, it was demonstrated that ChFatB2 preferred to accumulate C8 fatty acids with 84.9% composition in the ChFatB2-engineered E. coli strain. To achieve C10 fatty acid production, ChFatB2 was rationally tuned based on structural investigation and enzymatic analysis. An I198E mutant was identified to redistribute the C8-ACP flow, resulting in C10 fatty acid being produced as the principal component at 57.6% of total fatty acids in vivo. It was demonstrated that the activity of TE relative to β-ketoacyl-ACP synthases (KAS) directly determined the fatty acid composition. Our results provide a prospective strategy in tailoring fatty acid synthesis by tuning of TE activities based on TE-ACP interaction.

  20. Chronic pancreatitis: a sequela of acute fatty liver of pregnancy.

    Science.gov (United States)

    Apiratpracha, Wichian; Yoshida, Eric M; Scudamore, Charles H; Charles, Scudamore H; Weiss, Alan A; Byrne, Michael F

    2008-02-01

    Chronic pancreatitis following acute fatty liver of pregnancy is rarely reported. We treated a 34-year-old woman who developed acute fatty liver of pregnancy (AFLP) after delivery by caesarean section at 32 weeks of gestation. AFLP was complicated by acute pancreatitis and multiple organ failure. The management of the disease was primarily supportive. She recovered from acute fulminant liver failure and multi-organ failure, apart from the development of symptomatic chronic pancreatitis thereafter. Investigations failed to identify any other causes of chronic pancreatitis. The patient responded very well to pancreatic enzyme supplement for the treatment of steatorrhoea. To our knowledge, this is the first report of chronic pancreatitis as a consequence of multi-organ dysfunction caused by AFLP.

  1. An in vitro fatty acylation assay reveals a mechanism for Wnt recognition by the acyltransferase Porcupine.

    Science.gov (United States)

    Asciolla, James J; Miele, Matthew M; Hendrickson, Ronald C; Resh, Marilyn D

    2017-08-18

    Wnt proteins are a family of secreted signaling proteins that play key roles in regulating cell proliferation in both embryonic and adult tissues. Production of active Wnt depends on attachment of palmitoleate, a monounsaturated fatty acid, to a conserved serine by the acyltransferase Porcupine (PORCN). Studies of PORCN activity relied on cell-based fatty acylation and signaling assays as no direct enzyme assay had yet been developed. Here, we present the first in vitro assay that accurately recapitulates PORCN-mediated fatty acylation of a Wnt substrate. The critical feature is the use of a double disulfide-bonded Wnt peptide that mimics the two-dimensional structure surrounding the Wnt acylation site. PORCN-mediated Wnt acylation was abolished when the Wnt peptide was treated with DTT, and did not occur with a linear (non-disulfide-bonded) peptide, or when the double disulfide-bonded Wnt peptide contained Ala substituted for the Ser acylation site. We exploited this in vitro Wnt acylation assay to provide direct evidence that the small molecule LGK974, which is in clinical trials for managing Wnt-driven tumors, is a bona fide PORCN inhibitor whose IC 50 for inhibition of Wnt fatty acylation in vitro closely matches that for inhibition of Wnt signaling. Side-by-side comparison of PORCN and Hedgehog acyltransferase (HHAT), two enzymes that attach 16-carbon fatty acids to secreted proteins, revealed that neither enzyme will accept the other's fatty acyl-CoA or peptide substrates. These findings illustrate the unique enzyme-substrate selectivity exhibited by members of the membrane-bound O -acyl transferase family. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Inhibition of steroid 5 alpha-reductase by specific aliphatic unsaturated fatty acids.

    Science.gov (United States)

    Liang, T; Liao, S

    1992-01-01

    Human or rat microsomal 5 alpha-reductase activity, as measured by enzymic conversion of testosterone into 5 alpha-dihydrotestosterone or by binding of a competitive inhibitor, [3H]17 beta-NN-diethulcarbamoyl-4-methyl-4-aza-5 alpha-androstan-3-one ([3H]4-MA) to the reductase, is inhibited by low concentrations (less than 10 microM) of certain polyunsaturated fatty acids. The relative inhibitory potencies of unsaturated fatty acids are, in decreasing order: gamma-linolenic acid greater than cis-4,7,10,13,16,19-docosahexaenoic acid = cis-6,9,12,15-octatetraenoic acid = arachidonic acid = alpha-linolenic acid greater than linoleic acid greater than palmitoleic acid greater than oleic acid greater than myristoleic acid. Other unsaturated fatty acids such as undecylenic acid, erucic acid and nervonic acid, are inactive. The methyl esters and alcohol analogues of these compounds, glycerols, phospholipids, saturated fatty acids, retinoids and carotenes were inactive even at 0.2 mM. The results of the binding assay and the enzymic assay correlated well except for elaidic acid and linolelaidic acid, the trans isomers of oleic acid and linoleic acid respectively, which were much less active than their cis isomers in the binding assay but were as potent in the enzymic assay. gamma-Linolenic acid had no effect on the activities of two other rat liver microsomal enzymes: NADH:menadione reductase and glucuronosyl transferase. gamma-Linolenic acid, the most potent inhibitor tested, decreased the Vmax. and increased Km values of substrates, NADPH and testosterone, and promoted dissociation of [3H]4-MA from the microsomal reductase. gamma-Linolenic acid, but not the corresponding saturated fatty acid (stearic acid), inhibited the 5 alpha-reductase activity, but not the 17 beta-dehydrogenase activity, of human prostate cancer cells in culture. These results suggest that unsaturated fatty acids may play an important role in regulating androgen action in target cells. PMID:1637346

  3. Dietary fatty acids influence sperm quality and function.

    Science.gov (United States)

    Ferramosca, A; Moscatelli, N; Di Giacomo, M; Zara, V

    2017-05-01

    Recently, obesity has been linked to male infertility. In animal models the administration of a high-fat diet caused a reduction in sperm quality, by impairing gamete energy metabolism. The aim of this study was to investigate a possible effect of dietary fatty acids supplementation in the modulation of sperm energy metabolism and, in turn, in the improvement of sperm quality in rats fed a high-fat diet. Sexually mature male Sprague-Dawley rats were divided into four groups and fed for 4 weeks a standard diet (control group), a high-fat diet (enriched in 35% of fat and 15% sucrose), a high-fat diet supplemented with 2.5% olive oil (a source of monounsaturated fatty acids) or a high-fat diet supplemented with 2.5% krill oil (a source of n-3 polyunsaturated fatty acids). Liver and adipose tissue weight, plasma glucose, insulin and lipid concentrations were determined. Activities of enzymes involved in sperm energetic metabolism were evaluated by spectrophotometric assays. Sperm mitochondrial respiratory efficiency was also assayed. The obtained results suggest that olive oil partially counteracts the negative effects of a high-fat diet on sperm quality, by increasing gamete motility, by reducing oxidative stress and slightly improving mitochondrial respiration efficiency. On the other hand, krill oil determines an increase in sperm concentration and motility, an increase in the activities of lactate dehydrogenase, Krebs cycle enzymes and respiratory chain complexes; a parallel increase in the cellular levels of ATP and a reduction in oxidative damage were also observed. These results suggest that dietary fatty acids are able to positively influence sperm quality and function. © 2017 American Society of Andrology and European Academy of Andrology.

  4. Random-walk enzymes

    Science.gov (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-01-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C → U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics. PMID:26465508

  5. Random-walk enzymes

    Science.gov (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  6. Fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C.

    Science.gov (United States)

    Lin, Zhaoyu; Liu, Fei; Shi, Peiliang; Song, Anying; Huang, Zan; Zou, Dayuan; Chen, Qin; Li, Jianxin; Gao, Xiang

    2018-02-26

    Changes in metabolic pathway preferences are key events in the reprogramming process of somatic cells to induced pluripotent stem cells (iPSCs). The optimization of metabolic conditions can enhance reprogramming; however, the detailed underlying mechanisms are largely unclear. By comparing the gene expression profiles of somatic cells, intermediate-phase cells, and iPSCs, we found that carnitine palmitoyltransferase (Cpt)1b, a rate-limiting enzyme in fatty acid oxidation, was significantly upregulated in the early stage of the reprogramming process. Mouse embryonic fibroblasts isolated from transgenic mice carrying doxycycline (Dox)-inducible Yamanaka factor constructs were used for reprogramming. Various fatty acid oxidation-related metabolites were added during the reprogramming process. Colony counting and fluorescence-activated cell sorting (FACS) were used to calculate reprogramming efficiency. Fatty acid oxidation-related metabolites were measured by liquid chromatography-mass spectrometry. Seahorse was used to measure the level of oxidative phosphorylation. We found that overexpression of cpt1b enhanced reprogramming efficiency. Furthermore, palmitoylcarnitine or acetyl-CoA, the primary and final products of Cpt1-mediated fatty acid oxidation, also promoted reprogramming. In the early reprogramming process, fatty acid oxidation upregulated oxidative phosphorylation and downregulated protein kinase C activity. Inhibition of protein kinase C also promoted reprogramming. We demonstrated that fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C activity in the early stage of the reprogramming process. This study reveals that fatty acid oxidation is crucial for the reprogramming efficiency.

  7. Alterations in polyunsaturated fatty acid composition of Voandzeia subterranea seeds upon gamma irradiation

    International Nuclear Information System (INIS)

    Andrianarison, R.H.; Rakotoarisoa, Z.; Tixier, M.; Beneytout, J.L.

    1992-01-01

    Exposure of V. subterranea seeds, a herbaceous plant from Madagascar belonging to the family of legumes, to gamma irradiation resulted in a polyunsaturated fatty acids decrease associated with the formation of UV-absorbing substances. The finding that products containing conjugated diene structure are formed during lipid extract irradiation indicates that hydroperoxy fatty acids may arise not only by enzymatic reactions but also by nonenzymatic oxygenation of polyunsaturated fatty acids promoted by ionizing radiation. Dehulled green seeds, flour made from dehulled green seeds, and lipid extract were studied for irradiation dose dependent changes in fatty acids compositions and hydroperoxydiene synthesis. The irradiation dose is more efficient in lipid extract than in dehulled green seeds or in flour made from these seeds, suggesting that the formation of UV-absorbing products is not a reliable clue for enzyme activity owing to the absence of protein in lipid extract. A homolytic pathway for the biogenesis of hydroperoxy fatty acids from polyunsaturated fatty acids is proposed. This involves an initiating radical which promotes a chain mechanism in which the O2 adsorbed is converted to hydroperoxide. Conclusively, preservation of fatty acid oxygenation should be a primary goal in the ionizing radiation processes of V. subterranea seeds and generally in the preservation of food of plant origin by ionizing radiation

  8. Elucidation of the Role of 3-Hydroxy Fatty Acids in Cryptococcus-amoeba Interactions

    Directory of Open Access Journals (Sweden)

    Olihile M. Sebolai

    2017-04-01

    Full Text Available We previously reported that 3-hydroxy fatty acids promoted the survival of cryptococcal cells when acted upon by amoebae. To expand on this, the current study sought to explain how these molecules may protect cells. Our data suggest that 3-hydroxy fatty acids may subvert the internalization of cryptococcal cells via suppression of the levels of a fetuin A-like amoebal protein, which may be important for enhancing phagocytosis. Additionally, we show that an acapsular strain (that is devoid of 3-hydroxy fatty acids was protected against the effects of hydrogen peroxide when exogenous 3-hydroxy fatty acids were present, but not in the absence of 3-hydroxy fatty acids. A similar response profile was noted when a strain with a capsule was challenged with hydrogen peroxide. We also show that cryptococcal cells that naturally produce 3-hydroxy fatty acids were more resistant to the effects of amoebapore (an amoeba-specific hydrolytic enzyme, compared to cells that do not produce these molecules. Taken together, our findings suggest that 3-hydroxy fatty acids possess an anti-phagocytic activity that may be expressed when cells interact with macrophages. This may allow the yeast cells to evade immuno-processing.

  9. Biochemical precursor effects on the fatty acid production in cell suspension cultures of Theobroma cacao L.

    Science.gov (United States)

    Parra, O; Gallego, A M; Urrea, A; Rojas, L F; Correa, C; Atehortúa, L

    2017-02-01

    Cocoa butter (CB) is composed of 96% palmitic, stearic, oleic, linoleic and linolenic fatty acids that are responsible for the hardness, texture and fusion properties of chocolate. Through in vitro plant cell culture it is possible to modify CB lipid profiles and to study the fatty acid biosynthesis pathway on a subcellular level, evaluating fundamental aspects to enhance in vitro fatty acid production in a specific and controlled way. In this research, culture media was supplemented with acetate, biotin, pyruvate, bicarbonate and glycerol at three different concentrations and the effects on the biomass production (g/L), cell viability, and fatty acids profile and production was evaluated in in vitro cell suspensions culture. It was found that biotin stimulated fatty acid synthesis without altering cell viability and cell growth. It was also evident a change in the lipid profile of cell suspensions, increasing middle and long chain fatty acids proportion, which are unusual to those reported in seeds; thus implying that it is possible to modify lipid profiles according to the treatment used. According to the results of sucrose gradients and enzyme assays performed, it is proposed that cacao cells probably use the pentose phosphate pathway, mitochondria being the key organelle in the carbon flux for the synthesis of reductant power and fatty acid precursors. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Enzyme recycling in lignocellulosic biorefineries

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Pinelo, Manuel

    2017-01-01

    platform. Cellulases are the most important enzymes required in this process, but the complex nature of lignocellulose requires several other enzymes (hemicellulases and auxiliary enzymes) for efficient hydrolysis. Enzyme recycling increases the catalytic productivity of the enzymes by reusing them...... upscaled and tested in industrial settings, mainly because of many difficulties with recycling of enzymes from the complex lignocellulose hydrolyzate at industrially relevant conditions, i.e., high solids loadings. The challenges are associated with the large number of different enzymes required...... for efficient hydrolysis, enzyme stability, and the detrimental interaction between enzyme and lignin. This review provides a comprehensive overview of the various methods for enzyme recovery and recycling, for example recycling of free enzymes, readsorption to fresh material, recycling of solids, membrane...

  11. Biosynthetic control of the natural abundance of carbon 13 at specific positions within fatty acids in Escherichia coli. Evidence regarding the coupling of fatty acid and phospholipid synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Monson, K.D.; Hayes, J.M.

    1980-12-10

    Stable carbon isotope ratios (/sup 13/C//sup 12/C) at natural abundance levels have been determined for individual carbon atoms in each of the major phospholipid fatty acids of Escherichia coli grown on glucose as the sole carbon source. Two models were constructed for the isotope effects and carbon flow pathways which must be responsible for the observed isotopic fractionations. Both models incorporate a branch in the carbon flow at which fatty acyl-acyl carrier protein (acyl-ACP) is utilized either for complex lipid synthesis or for elongation by fatty acid synthetase. Depletion of carbon 13 in the carboxyl groups of myristic and palmitoleic acids (relative to carbonyl groups in precursor acyl-ACP's) was observed to occur at this branching site. Only one of the models was consistent both with this observation and with the observation that exogenous fatty acids are incorporated into phospholipids but are not elongated. The successful model has free fatty acid as the intermediate product coupling fatty acid biosynthesis to phospholipid synthesis. Essential to this pathway are those reactions catalyzed by thioesterases I and II as well as acyl-ACP synthetase, enzymes whose roles have previously been unknown in vivo.

  12. Angiotensin-converting enzyme

    DEFF Research Database (Denmark)

    Sørensen, P G; Rømer, F K; Cortes, D

    1984-01-01

    In order to evaluate bleomycin-associated lung damage in humans, lung function parameters and serum levels of the endothelial-bound angiotensin-converting enzyme (ACE) were determined by serial measurements in 11 patients who were treated for testicular cancer. None developed clinical or radiolog......In order to evaluate bleomycin-associated lung damage in humans, lung function parameters and serum levels of the endothelial-bound angiotensin-converting enzyme (ACE) were determined by serial measurements in 11 patients who were treated for testicular cancer. None developed clinical...

  13. Metabolism of very long-chain Fatty acids: genes and pathophysiology.

    Science.gov (United States)

    Sassa, Takayuki; Kihara, Akio

    2014-02-01

    Fatty acids (FAs) are highly diverse in terms of carbon (C) chain-length and number of double bonds. FAs with C>20 are called very long-chain fatty acids (VLCFAs). VLCFAs are found not only as constituents of cellular lipids such as sphingolipids and glycerophospholipids but also as precursors of lipid mediators. Our understanding on the function of VLCFAs is growing in parallel with the identification of enzymes involved in VLCFA synthesis or degradation. A variety of inherited diseases, such as ichthyosis, macular degeneration, myopathy, mental retardation, and demyelination, are caused by mutations in the genes encoding VLCFA metabolizing enzymes. In this review, we describe mammalian VLCFAs by highlighting their tissue distribution and metabolic pathways, and we discuss responsible genes and enzymes with reference to their roles in pathophysiology.

  14. Metabolism of Very Long-Chain Fatty Acids: Genes and Pathophysiology

    Science.gov (United States)

    Sassa, Takayuki; Kihara, Akio

    2014-01-01

    Fatty acids (FAs) are highly diverse in terms of carbon (C) chain-length and number of double bonds. FAs with C>20 are called very long-chain fatty acids (VLCFAs). VLCFAs are found not only as constituents of cellular lipids such as sphingolipids and glycerophospholipids but also as precursors of lipid mediators. Our understanding on the function of VLCFAs is growing in parallel with the identification of enzymes involved in VLCFA synthesis or degradation. A variety of inherited diseases, such as ichthyosis, macular degeneration, myopathy, mental retardation, and demyelination, are caused by mutations in the genes encoding VLCFA metabolizing enzymes. In this review, we describe mammalian VLCFAs by highlighting their tissue distribution and metabolic pathways, and we discuss responsible genes and enzymes with reference to their roles in pathophysiology. PMID:24753812

  15. The ENZYME database in 2000.

    Science.gov (United States)

    Bairoch, A

    2000-01-01

    The ENZYME database is a repository of information related to the nomenclature of enzymes. In recent years it has became an indispensable resource for the development of metabolic databases. The current version contains information on 3705 enzymes. It is available through the ExPASy WWW server (http://www.expasy.ch/enzyme/ ).

  16. Chlorpromazine and carnitine-dependency of rat liver peroxisomal beta-oxidation of long-chain fatty acids.

    OpenAIRE

    Vamecq, J

    1987-01-01

    The enzyme targets for chlorpromazine inhibition of rat liver peroxisomal and mitochondrial oxidations of fatty acids were studied. Effects of chlorpromazine on total fatty acyl-CoA synthetase activity, on both the first and the third steps of peroxisomal beta-oxidation, on the entry of fatty acyl-CoA esters into the peroxisome and on catalase activity, which allows breakdown of the H2O2 generated during the acyl-CoA oxidase step, were analysed. On all these metabolic processes, chlorpromazin...

  17. Gene expression for peroxisome-associated enzymes in hepatocellular carcinomas induced by ciprofibrate, a hypolipidemic compound

    International Nuclear Information System (INIS)

    Rao, M.S.; Nemali, M.R.; Reddy, J.K.

    1986-01-01

    Administration of hypolipidemic compounds leads to marked proliferation of peroxisomes and peroxisome-associated enzymes (PAE) in the livers of rodents and non-rodent species. The increase peroxisome-associated enzymes such as fatty acid β-oxidation system and catalase is shown to be due to an increase in the levels of mRNA. In this experiment they have examined hepatocellular carcinomas (HCC), induced in male F-344 rats by ciprofibrate (0.025%, w/w for 60 weeks), for gene expression of PAE. Total RNA was purified from HCC as well as from control and ciprofibrate (0.025% for 2 weeks) fed rat livers. Northern blot analysis was performed using [32/sub p/]cDNA probes for albumin, fatty acetyl-CoA oxidase, enoyl-CoA hydratase 3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme and catalase. mRNA levels in HCC for albumin, fatty acid β-oxidation enzymes and catalase were comparable with those levels observed in the livers of rats given ciprofibrate for 2 weeks. In control livers the mRNAs for β-oxidation enzymes were low. Albumin mRNA levels in all the 3 groups were comparable. Additional studies are necessary to determine whether the increased level of mRNAs for the β-oxidation enzymes in HCC is due to the effect of ciprofibrate or to the gene amplification

  18. Unsaturated fatty acids protect trophoblast cells from saturated fatty acid-induced autophagy defects.

    Science.gov (United States)

    Hong, Ye-Ji; Ahn, Hyo-Ju; Shin, Jongdae; Lee, Joon H; Kim, Jin-Hoi; Park, Hwan-Woo; Lee, Sung Ki

    2018-02-01

    Dysregulated serum fatty acids are associated with a lipotoxic placental environment, which contributes to increased pregnancy complications via altered trophoblast invasion. However, the role of saturated and unsaturated fatty acids in trophoblastic autophagy has yet to be explored. Here, we demonstrated that prolonged exposure of saturated fatty acids interferes with the invasiveness of human extravillous trophoblasts. Saturated fatty acids (but not unsaturated fatty acids) inhibited the fusion of autophagosomes and lysosomes, resulting in the formation of intracellular protein aggregates. Furthermore, when the trophoblast cells were exposed to saturated fatty acids, unsaturated fatty acids counteracted the effects of saturated fatty acids by increasing degradation of autophagic vacuoles. Saturated fatty acids reduced the levels of the matrix metalloproteinases (MMP)-2 and MMP-9, while unsaturated fatty acids maintained their levels. In conclusion, saturated fatty acids induced decreased trophoblast invasion, of which autophagy dysfunction plays a major role. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The surface science of enzymes

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Nørskov, Jens Kehlet

    2002-01-01

    One of the largest challenges to science in the coming years is to find the relation between enzyme structure and function. Can we predict which reactions an enzyme catalyzes from knowledge of its structure-or from its amino acid sequence? Can we use that knowledge to modify enzyme function......? To solve these problems we must understand in some detail how enzymes interact with reactants from its surroundings. These interactions take place at the surface of the enzyme and the question of enzyme function can be viewed as the surface science of enzymes. In this article we discuss how to describe...... catalysis by enzymes, and in particular the analogies between enzyme catalyzed reactions and surface catalyzed reactions. We do this by discussing two concrete examples of reactions catalyzed both in nature (by enzymes) and in industrial reactors (by inorganic materials), and show that although analogies...

  20. Magnetically responsive enzyme powders

    Czech Academy of Sciences Publication Activity Database

    Pospišková, K.; Šafařík, Ivo

    2015-01-01

    Roč. 380, APR 2015 (2015), s. 197-200 ISSN 0304-8853 R&D Projects: GA MŠk(CZ) LD13021 Institutional support: RVO:67179843 Keywords : enzyme powders * cross-linking * magnetic modification * magnetic separation * magnetic iron oxides particles * microwave-assisted synthesis Subject RIV: CE - Biochemistry Impact factor: 2.357, year: 2015

  1. ISFET based enzyme sensors

    NARCIS (Netherlands)

    van der Schoot, Bart H.; Bergveld, Piet

    1987-01-01

    This paper reviews the results that have been reported on ISFET based enzyme sensors. The most important improvement that results from the application of ISFETs instead of glass membrane electrodes is in the method of fabrication. Problems with regard to the pH dependence of the response and the

  2. Implantable enzyme amperometric biosensors.

    Science.gov (United States)

    Kotanen, Christian N; Moussy, Francis Gabriel; Carrara, Sandro; Guiseppi-Elie, Anthony

    2012-05-15

    The implantable enzyme amperometric biosensor continues as the dominant in vivo format for the detection, monitoring and reporting of biochemical analytes related to a wide range of pathologies. Widely used in animal studies, there is increasing emphasis on their use in diabetes care and management, the management of trauma-associated hemorrhage and in critical care monitoring by intensivists in the ICU. These frontier opportunities demand continuous indwelling performance for up to several years, well in excess of the currently approved seven days. This review outlines the many challenges to successful deployment of chronically implantable amperometric enzyme biosensors and emphasizes the emerging technological approaches in their continued development. The foreign body response plays a prominent role in implantable biotransducer failure. Topics considering the approaches to mitigate the inflammatory response, use of biomimetic chemistries, nanostructured topographies, drug eluting constructs, and tissue-to-device interface modulus matching are reviewed. Similarly, factors that influence biotransducer performance such as enzyme stability, substrate interference, mediator selection and calibration are reviewed. For the biosensor system, the opportunities and challenges of integration, guided by footprint requirements, the limitations of mixed signal electronics, and power requirements, has produced three systems approaches. The potential is great. However, integration along the multiple length scales needed to address fundamental issues and integration across the diverse disciplines needed to achieve success of these highly integrated systems, continues to be a challenge in the development and deployment of implantable amperometric enzyme biosensor systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Photoperiodism and Enzyme Activity

    Science.gov (United States)

    Queiroz, Orlando; Morel, Claudine

    1974-01-01

    Metabolic readjustments after a change from long days to short days appear, in Kalanchoe blossfeldiana, to be achieved through the operation of two main mechanisms: variation in enzyme capacity, and circadian rhythmicity. After a lag time, capacity in phosphoenolpyruvate carboxylase and capacity in aspartate aminotransferase increase exponentially and appear to be allometrically linked during 50 to 60 short days; then a sudden fall takes place in the activity of the former. Malic enzyme and alanine aminotransferase behave differently. Thus, the operation of the two sections of the pathway (before and after the malate step) give rise to a continuously changing functional compartmentation in the pathway. Circadian rhythmicity, on the other hand, produces time compartmentation through phase shifts and variation in amplitude, independently for each enzyme. These characteristics suggest that the operation of a so-called biological clock would be involved. We propose the hypothesis that feedback regulation would be more accurate and efficient when applied to an already oscillating, clock-controlled enzyme system. PMID:16658749

  4. Identification of enzymes involved in oxidation of phenylbutyrate.

    Science.gov (United States)

    Palir, Neža; Ruiter, Jos P N; Wanders, Ronald J A; Houtkooper, Riekelt H

    2017-05-01

    In recent years the short-chain fatty acid, 4-phenylbutyrate (PB), has emerged as a promising drug for various clinical conditions. In fact, PB has been Food and Drug Administration-approved for urea cycle disorders since 1996. PB is more potent and less toxic than its metabolite, phenylacetate (PA), and is not just a pro-drug for PA, as was initially assumed. The metabolic pathway of PB, however, has remained unclear. Therefore, we set out to identify the enzymes involved in the β-oxidation of PB. We used cells deficient in specific steps of fatty acid β-oxidation and ultra-HPLC to measure which enzymes were able to convert PB or its downstream products. We show that the first step in PB oxidation is catalyzed solely by the enzyme, medium-chain acyl-CoA dehydrogenase. The second (hydration) step can be catalyzed by all three mitochondrial enoyl-CoA hydratase enzymes, i.e., short-chain enoyl-CoA hydratase, long-chain enoyl-CoA hydratase, and 3-methylglutaconyl-CoA hydratase. Enzymes involved in the third step include both short- and long-chain 3-hydroxyacyl-CoA dehydrogenase. The oxidation of PB is completed by only one enzyme, i.e., long-chain 3-ketoacyl-CoA thiolase. Taken together, the enzymatic characteristics of the PB degradative pathway may lead to better dose finding and limiting the toxicity of this drug. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  5. Engineering the production of conjugated fatty acids in Arabidopsis thaliana leaves.

    Science.gov (United States)

    Yurchenko, Olga; Shockey, Jay M; Gidda, Satinder K; Silver, Maxwell I; Chapman, Kent D; Mullen, Robert T; Dyer, John M

    2017-08-01

    The seeds of many nondomesticated plant species synthesize oils containing high amounts of a single unusual fatty acid, many of which have potential usage in industry. Despite the identification of enzymes for unusual oxidized fatty acid synthesis, the production of these fatty acids in engineered seeds remains low and is often hampered by their inefficient exclusion from phospholipids. Recent studies have established the feasibility of increasing triacylglycerol content in plant leaves, which provides a novel approach for increasing energy density of biomass crops. Here, we determined whether the fatty acid composition of leaf oil could be engineered to accumulate unusual fatty acids. Eleostearic acid (ESA) is a conjugated fatty acid produced in seeds of the tung tree (Vernicia fordii) and has both industrial and nutritional end-uses. Arabidopsis thaliana lines with elevated leaf oil were first generated by transforming wild-type, cgi-58 or pxa1 mutants (the latter two of which contain mutations disrupting fatty acid breakdown) with the diacylglycerol acyltransferases (DGAT1 or DGAT2) and/or oleosin genes from tung. High-leaf-oil plant lines were then transformed with tung FADX, which encodes the fatty acid desaturase/conjugase responsible for ESA synthesis. Analysis of lipids in leaves revealed that ESA was efficiently excluded from phospholipids, and co-expression of tung FADX and DGAT2 promoted a synergistic increase in leaf oil content and ESA accumulation. Taken together, these results provide a new approach for increasing leaf oil content that is coupled with accumulation of unusual fatty acids. Implications for production of biofuels, bioproducts, and plant-pest interactions are discussed. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Mechanisms involved in the selective transfer of long chain polyunsaturted fatty acids to the fetus

    Directory of Open Access Journals (Sweden)

    Alfonso eGil-Sánchez

    2011-09-01

    Full Text Available The concentration of long chain polyunsaturated fatty acid (LCPUFA in the fetal brain increases dramatically from the third trimester until 18 months of life. Several studies have shown an association between the percentage of maternal plasma docosahexaenoic acid (DHA during gestation and development of the cognitive functions in the neonate. Since only very low levels of LCPUFA are synthesized in the fetus and placenta, their primary source for the fetus is that of maternal origin. Both in vitro and human in vivo studies using labelled fatty acids have shown the preferential transfer of LCPUFA from the placenta to the fetus compared with other fatty acids, although the mechanisms involved are still uncertain. The placenta takes up circulating maternal non-esterified fatty acids (NEFA and fatty acids released mainly by maternal lipoprotein lipase and endothelial lipase. These NEFA may enter the cell by passive diffusion or by means of membrane carrier proteins. Once in the cytosol, NEFA bind to cytosolic fatty acid-binding proteins for transfer to the fetal circulation or can be oxidized within the trophoblasts and even re-esterified and stored in lipid droplets (LD. Although trophoblast cells are not specialized in lipid storage, LCPUFA may up-regulate peroxisome proliferator activated receptor-γ (PPARγ and hence the gene expression of fatty acid transport carriers, fatty acid acyl-CoA synthetases and adipophilin or other enzymes related with lipolysis, modifying their rate of placental transfer and metabolization. The placental transfer of LCPUFA during pregnancy seems to be a key factor in the neurological development of the fetus. Increased knowledge on the factors that modify placental transfer of fatty acids would contribute to our understanding of this complex process.

  7. Conjugated Fatty Acid Synthesis

    Science.gov (United States)

    Rawat, Richa; Yu, Xiao-Hong; Sweet, Marie; Shanklin, John

    2012-01-01

    Conjugated linolenic acids (CLNs), 18:3 Δ9,11,13, lack the methylene groups found between the double bonds of linolenic acid (18:3 Δ9,12,15). CLNs are produced by conjugase enzymes that are homologs of the oleate desaturases FAD2. The goal of this study was to map the domain(s) within the Momordica charantia conjugase (FADX) responsible for CLN formation. To achieve this, a series of Momordica FADX-Arabidopsis FAD2 chimeras were expressed in the Arabidopsis fad3fae1 mutant, and the transformed seeds were analyzed for the accumulation of CLN. These experiments identified helix 2 and the first histidine box as a determinant of conjugase product partitioning into punicic acid (18:3 Δ9cis,11trans,13cis) or α-eleostearic acid (18:3 Δ9cis,11trans,13trans). This was confirmed by analysis of a FADX mutant containing six substitutions in which the sequence of helix 2 and first histidine box was converted to that of FAD2. Each of the six FAD2 substitutions was individually converted back to the FADX equivalent identifying residues 111 and 115, adjacent to the first histidine box, as key determinants of conjugase product partitioning. Additionally, expression of FADX G111V and FADX G111V/D115E resulted in an approximate doubling of eleostearic acid accumulation to 20.4% and 21.2%, respectively, compared with 9.9% upon expression of the native Momordica FADX. Like the Momordica conjugase, FADX G111V and FADX D115E produced predominantly α-eleostearic acid and little punicic acid, but the FADX G111V/D115E double mutant produced approximately equal amounts of α-eleostearic acid and its isomer, punicic acid, implicating an interactive effect of residues 111 and 115 in punicic acid formation. PMID:22451660

  8. ECERIFERUM2-LIKE Proteins Have Unique Biochemical and Physiological Functions in Very-Long-Chain Fatty Acid Elongation1[OPEN

    Science.gov (United States)

    Haslam, Tegan M.; Haslam, Richard; Thoraval, Didier; Pascal, Stéphanie; Delude, Camille; Domergue, Frédéric; Fernández, Aurora Mañas; Beaudoin, Frédéric; Napier, Johnathan A.; Kunst, Ljerka; Joubès, Jérôme

    2015-01-01

    The extension of very-long-chain fatty acids (VLCFAs) for the synthesis of specialized apoplastic lipids requires unique biochemical machinery. Condensing enzymes catalyze the first reaction in fatty acid elongation and determine the chain length of fatty acids accepted and produced by the fatty acid elongation complex. Although necessary for the elongation of all VLCFAs, known condensing enzymes cannot efficiently synthesize VLCFAs longer than 28 carbons, despite the prevalence of C28 to C34 acyl lipids in cuticular wax and the pollen coat. The eceriferum2 (cer2) mutant of Arabidopsis (Arabidopsis thaliana) was previously shown to have a specific deficiency in cuticular waxes longer than 28 carbons, and heterologous expression of CER2 in yeast (Saccharomyces cerevisiae) demonstrated that it can modify the acyl chain length produced by a condensing enzyme from 28 to 30 carbon atoms. Here, we report the physiological functions and biochemical specificities of the CER2 homologs CER2-LIKE1 and CER2-LIKE2 by mutant analysis and heterologous expression in yeast. We demonstrate that all three CER2-LIKEs function with the same small subset of condensing enzymes, and that they have different effects on the substrate specificity of the same condensing enzyme. Finally, we show that the changes in acyl chain length caused by each CER2-LIKE protein are of substantial importance for cuticle formation and pollen coat function. PMID:25596184

  9. Omega-3 Fatty Acids during Pregnancy

    Science.gov (United States)

    OMEGA-3 FATTY ACIDS DURING PREGNANCY S HARE W ITH W OMEN OMEGA-3 FATTY ACIDS DURING PREGNANCY During pregnancy, your baby gets most ... you eat and vitamins you take. Omega-3 fatty acids (omega-3s) are an important family of building ...

  10. Acute fatty liver in pregnancy.

    NARCIS (Netherlands)

    Tan, A.; Krieken, J.H.J.M. van; Peters, W.H.M.; Steegers, E.A.P.

    2002-01-01

    When confronted with liver abnormalities during the third trimester of pregnancy, one should consider acute fatty liver of pregnancy. The differential diagnosis with (pre-)eclampsia and HELLP syndrome is sometimes difficult. In these cases a liver biopsy is helpful though rarely performed during

  11. Effect of Lorenzo's Oil on Hepatic Gene Expression and the Serum Fatty Acid Level in abcd1-Deficient Mice.

    Science.gov (United States)

    Morita, Masashi; Honda, Ayako; Kobayashi, Akira; Watanabe, Yuichi; Watanabe, Shiro; Kawaguchi, Kosuke; Takashima, Shigeo; Shimozawa, Nobuyuki; Imanaka, Tsuneo

    2017-05-31

    Lorenzo's oil is known to decrease the saturated very long chain fatty acid (VLCFA) level in the plasma and skin fibroblasts of X-linked adrenoleukodystrophy (ALD) patients. However, the involvement of Lorenzo's oil in in vivo fatty acid metabolism has not been well elucidated. To investigate the effect of Lorenzo's oil on fatty acid metabolism, we analyzed the hepatic gene expression together with the serum fatty acid level in Lorenzo's oil-treated wild-type and abcd1-deficient mice. The change in the serum fatty acid level in Lorenzo's oil-treated abcd1-defcient mice was quite similar to that in the plasma fatty acid level in ALD patients supplemented with Lorenzo's oil. In addition, we found that the hepatic gene expression of two peroxisomal enzymes, Dbp and Scp2, and three microsomal enzymes, Elovl1, 2, and 3, were significantly stimulated by Lorenzo's oil. Our findings indicate that Lorenzo's oil activates hepatic peroxisomal fatty acid β-oxidation at the transcriptional level. In contrast, the transcriptional stimulation of Elovl1, 2, and 3 by Lorenzo's oil does not cause changes in the serum fatty acid level. It seems likely that the inhibition of these elongation activities by Lorenzo's oil results in a decrease in saturated VLCFA. Thus, these results not only contribute to a clarification of the mechanism by which the saturated VLCFA level is reduced in the serum of ALD patients by Lorenzo's oil-treatment, but also suggest the development of a new therapeutic approach to peroxisomal β-oxidation enzyme deficiency, especially mild phenotype of DBP deficiency.

  12. Uronic polysaccharide degrading enzymes.

    Science.gov (United States)

    Garron, Marie-Line; Cygler, Miroslaw

    2014-10-01

    In the past several years progress has been made in the field of structure and function of polysaccharide lyases (PLs). The number of classified polysaccharide lyase families has increased to 23 and more detailed analysis has allowed the identification of more closely related subfamilies, leading to stronger correlation between each subfamily and a unique substrate. The number of as yet unclassified polysaccharide lyases has also increased and we expect that sequencing projects will allow many of these unclassified sequences to emerge as new families. The progress in structural analysis of PLs has led to having at least one representative structure for each of the families and for two unclassified enzymes. The newly determined structures have folds observed previously in other PL families and their catalytic mechanisms follow either metal-assisted or Tyr/His mechanisms characteristic for other PL enzymes. Comparison of PLs with glycoside hydrolases (GHs) shows several folds common to both classes but only for the β-helix fold is there strong indication of divergent evolution from a common ancestor. Analysis of bacterial genomes identified gene clusters containing multiple polysaccharide cleaving enzymes, the Polysaccharides Utilization Loci (PULs), and their gene complement suggests that they are organized to process completely a specific polysaccharide. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Lipopolysaccharide-induced pulmonary inflammation is not accompanied by a release of anandamide into the lavage fluid or a down-regulation of the activity of fatty acid amide hydrolase

    DEFF Research Database (Denmark)

    Holt, S.; J. Fowler, C.; Rocksén, D.

    2004-01-01

    The effect of lipopolysaccharide inhalation upon lung anandamide levels, anandamide synthetic enzymes and fatty acid amide hydrolase has been investigated. Lipopolysaccharide exposure produced a dramatic extravasation of neutrophils and release of tumour necrosis factor a into the bronchoalveolar...

  14. Endocrine causes of nonalcoholic fatty liver disease.

    Science.gov (United States)

    Marino, Laura; Jornayvaz, François R

    2015-10-21

    Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the industrialized world. The prevalence of NAFLD is increasing, becoming a substantial public health burden. NAFLD includes a broad spectrum of disorders, from simple conditions such as steatosis to severe manifestations such as fibrosis and cirrhosis. The relationship of NAFLD with metabolic alterations such as type 2 diabetes is well described and related to insulin resistance, with NAFLD being recognized as the hepatic manifestation of metabolic syndrome. However, NAFLD may also coincide with endocrine diseases such as polycystic ovary syndrome, hypothyroidism, growth hormone deficiency or hypercortisolism. It is therefore essential to remember, when discovering altered liver enzymes or hepatic steatosis on radiological exams, that endocrine diseases can cause NAFLD. Indeed, the overall prognosis of NAFLD may be modified by treatment of the underlying endocrine pathology. In this review, we will discuss endocrine diseases that can cause NALFD. Underlying pathophysiological mechanisms will be presented and specific treatments will be reviewed.

  15. Improved production of fatty acids by Saccharomyces cerevisiae through screening a cDNA library from the oleaginous yeast Yarrowia lipolytica

    DEFF Research Database (Denmark)

    Shi, Shuobo; Ji, Haichuan; Siewers, Verena

    2016-01-01

    for screening a cDNA library from the oleaginous yeast Yarrowia lipolytica for identification of genes/enzymes that were able to enhance free FA accumulation in Saccharomyces cerevisiae. Several novel enzymes resulting in increasing FA accumulation were discovered. These targets include a GPI anchor protein...... method for high-throughput evaluation of the content of free FAs, but also give new insight into how enzymes from Y. lipolytica may increase the production of fatty acids in S. cerevisiae....

  16. Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart.

    Science.gov (United States)

    Thapa, Dharendra; Zhang, Manling; Manning, Janet R; Guimarães, Danielle A; Stoner, Michael W; O'Doherty, Robert M; Shiva, Sruti; Scott, Iain

    2017-08-01

    Lysine acetylation is a reversible posttranslational modification and is particularly important in the regulation of mitochondrial metabolic enzymes. Acetylation uses acetyl-CoA derived from fuel metabolism as a cofactor, thereby linking nutrition to metabolic activity. In the present study, we investigated how mitochondrial acetylation status in the heart is controlled by food intake and how these changes affect mitochondrial metabolism. We found that there was a significant increase in cardiac mitochondrial protein acetylation in mice fed a long-term high-fat diet and that this change correlated with an increase in the abundance of the mitochondrial acetyltransferase-related protein GCN5L1. We showed that the acetylation status of several mitochondrial fatty acid oxidation enzymes (long-chain acyl-CoA dehydrogenase, short-chain acyl-CoA dehydrogenase, and hydroxyacyl-CoA dehydrogenase) and a pyruvate oxidation enzyme (pyruvate dehydrogenase) was significantly upregulated in high-fat diet-fed mice and that the increase in long-chain and short-chain acyl-CoA dehydrogenase acetylation correlated with increased enzymatic activity. Finally, we demonstrated that the acetylation of mitochondrial fatty acid oxidation proteins was decreased after GCN5L1 knockdown and that the reduced acetylation led to diminished fatty acid oxidation in cultured H9C2 cells. These data indicate that lysine acetylation promotes fatty acid oxidation in the heart and that this modification is regulated in part by the activity of GCN5L1. NEW & NOTEWORTHY Recent research has shown that acetylation of mitochondrial fatty acid oxidation enzymes has greatly contrasting effects on their activity in different tissues. Here, we provide new evidence that acetylation of cardiac mitochondrial fatty acid oxidation enzymes by GCN5L1 significantly upregulates their activity in diet-induced obese mice. Copyright © 2017 the American Physiological Society.

  17. AMP-activated kinase restricts Rift Valley fever virus infection by inhibiting fatty acid synthesis.

    Directory of Open Access Journals (Sweden)

    Theresa S Moser

    Full Text Available The cell intrinsic innate immune responses provide a first line of defense against viral infection, and often function by targeting cellular pathways usurped by the virus during infection. In particular, many viruses manipulate cellular lipids to form complex structures required for viral replication, many of which are dependent on de novo fatty acid synthesis. We found that the energy regulator AMPK, which potently inhibits fatty acid synthesis, restricts infection of the Bunyavirus, Rift Valley Fever Virus (RVFV, an important re-emerging arthropod-borne human pathogen for which there are no effective vaccines or therapeutics. We show restriction of RVFV both by AMPK and its upstream activator LKB1, indicating an antiviral role for this signaling pathway. Furthermore, we found that AMPK is activated during RVFV infection, leading to the phosphorylation and inhibition of acetyl-CoA carboxylase, the first rate-limiting enzyme in fatty acid synthesis. Activating AMPK pharmacologically both restricted infection and reduced lipid levels. This restriction could be bypassed by treatment with the fatty acid palmitate, demonstrating that AMPK restricts RVFV infection through its inhibition of fatty acid biosynthesis. Lastly, we found that this pathway plays a broad role in antiviral defense since additional viruses from disparate families were also restricted by AMPK and LKB1. Therefore, AMPK is an important component of the cell intrinsic immune response that restricts infection through a novel mechanism involving the inhibition of fatty acid metabolism.

  18. Mediation of inflammation, obesity and fatty liver disease by advanced glycation endoproducts.

    Science.gov (United States)

    Xiong, D-D; Zhang, M; Li, N; Gai, J-F; Mao, L; Li, M

    2017-11-01

    Fatty liver may induce various complications including chronic hepatitis or liver cirrhosis, and is frequently occurred in obesity individuals. Advanced glycosylation end products (AGEs) were known to play a critical role in multiple liver diseases. This study, therefore, aimed to study the effect of AGEs on obesity, related liver cirrhosis and inflammation, on an obesity fatty liver rat model. A total of 60 Sprague Dawley (SD) rats were randomly divided into control, model and AGEs inhibitor groups (n=20 each). AGEs level, body weight and liver function were examined in each animal, followed by hematoxylin-eosin (HE) staining to detect the pathological change of liver. Further Real-time PCR and enzyme-linked immunosorbent assay (ELISA) were employed to detect inflammatory cytokine levels including tumor necrosis factor (TNF)-α and interleukin (IL)-6. AGEs level was significantly elevated in obesity fatty liver model rats, which also had higher total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL-C) and high-density lipoprotein (HDL-C) levels, along with deteriorated liver function and higher TNF-α and IL-6 levels. The application of AGEs inhibitor aminoguanidine significantly improved liver functions and lower TNF-α or IL-6 levels when compared to the model group (pObesity fatty liver can promote AGEs level, further causing pathological changes and increased secretion of inflammatory cytokines. The inhibition of AGEs can improve the metabolism of fatty acids, decrease inflammatory cytokines and benefit the treatment of obesity fatty liver.

  19. Extraction of Coconut Oil from Coconut Milk Foulants Using Enzyme

    Directory of Open Access Journals (Sweden)

    Saikhwan Phanida

    2016-01-01

    Full Text Available Coconut milk manufacturing process encounters problems with foulants formed during pasteurization process. For example, fouling layers reduce heat transfer efficiency of a heat exchanger. As the fouling layers are considered as waste, this research aimed at extracting coconut oil from the foulants to produce a product from the waste. A model coconut milk foulant was used to simulate foulants formed during batch pasteurization process and coconut oil was extracted from the foulant using celloulase enzyme. The extracted oil then was evaluated in terms of fatty acid composition and antioxidant properties (total phenolic and flavonoid contents. The antioxidant activities were evaluated using DPPH (1,1-diphenyl-2-picrylhydrazyl radical scavenging and FRAP (Ferric reducing antioxidant power methods. Results showed that the oil extracted from the foulants appeared similar to virgin coconut oil (VCO; the extracted oil appeared as clear viscous liquid with aroma associated with roasted coconut. The oil extracted using enzyme contained all fatty acids found in VCO in lower proportions but large extent of linoleic acid was found. Antioxidant capacity was similar to that of VCO. The foulants after the extraction of fat using enzyme were easier to clean suggesting the possibility to couple cleaning of coconut milk foulants and oil extraction in the same process.

  20. Transesterification of Castor Oil Catalyzed by Liquid Enzymes

    DEFF Research Database (Denmark)

    Andrade, Thalles Allan; Errico, Massimiliano; Christensen, Knud Villy

    2017-01-01

    economy. Based on this, and considering its low influence with food production, castor oil was investigated as a potential feedstock. Compared to other vegetable oils, it has a higher polarity resulting in better system homogeneity during reaction. The enzyme tested as catalyst was Eversa Transform. Four...... main reaction parameters were investigated for the optimization of the reaction route: the temperature was varied from 35 to 45 °C, the water content between 0-10 wt%, the enzyme content in the range of 2-10 wt%, and the alcohol-to-oil molar ratio from 4.5 to 7.5. The Response Surface Methodology...... was used to determine the optimal reaction conditions to get a high biodiesel yield and a low free fatty acids concentration. The results obtained showed that at 35 °C, 5 wt% of enzymes, 5 wt% of water, and a 6.0 alcohol-to-oil molar ratio, the yield in biodiesel was about 94% with a content of free fatty...

  1. Arabidopsis ECERIFERUM2 Is a Component of the Fatty Acid Elongation Machinery Required for Fatty Acid Extension to Exceptional Lengths1[W][OA

    Science.gov (United States)

    Haslam, Tegan M.; Mañas-Fernández, Aurora; Zhao, Lifang; Kunst, Ljerka

    2012-01-01

    Primary aerial surfaces of land plants are coated by a lipidic cuticle, which forms a barrier against transpirational water loss and protects the plant from diverse stresses. Four enzymes of a fatty acid elongase complex are required for the synthesis of very-long-chain fatty acid (VLCFA) precursors of cuticular waxes. Fatty acid elongase substrate specificity is determined by a condensing enzyme that catalyzes the first reaction carried out by the complex. In Arabidopsis (Arabidopsis thaliana), characterized condensing enzymes involved in wax synthesis can only elongate VLCFAs up to 28 carbons (C28) in length, despite the predominance of C29 to C31 monomers in Arabidopsis stem wax. This suggests additional proteins are required for elongation beyond C28. The wax-deficient mutant eceriferum2 (cer2) lacks waxes longer than C28, implying that CER2, a putative BAHD acyltransferase, is required for C28 elongation. Here, we characterize the cer2 mutant and demonstrate that green fluorescent protein-tagged CER2 localizes to the endoplasmic reticulum, the site of VLCFA biosynthesis. We use site-directed mutagenesis to show that the classification of CER2 as a BAHD acyltransferase based on sequence homology does not fit with CER2 catalytic activity. Finally, we provide evidence for the function of CER2 in C28 elongation by an assay in yeast (Saccharomyces cerevisiae). PMID:22930748

  2. The pivotal role of malic enzyme in enhancing oil accumulation in green microalga Chlorella pyrenoidosa.

    Science.gov (United States)

    Xue, Jiao; Wang, Lan; Zhang, Lin; Balamurugan, Srinivasan; Li, Da-Wei; Zeng, Hao; Yang, Wei-Dong; Liu, Jie-Sheng; Li, Hong-Ye

    2016-07-07

    The fast growing photosynthetic microalgae have been widely used in aquaculture, food, health, and biofuels. Recent findings in the diatom has proposed a pivotal role of NADP-malic enzyme in generation of NADPH as an important supply of reducing power for fatty acid biosynthesis. To test the lipogenic malic enzyme for fatty acid synthesis in green algae, here the malic enzyme gene PtME from the oleaginous diatom Phaeodactylum tricornutum was expressed in a representative green microalga Chlorella pyrenoidosa. The engineered C. pyrenoidosa strain showed higher enzymatic activity of malic enzyme which subsequently promoted fatty acid synthesis. The neutral lipid content was significantly increased by up to 3.2-fold than wild type determined by Nile red staining, and total lipid content reached 40.9 % (dry cell weight). The engineered strain exhibited further lipid accumulation subjected to nitrogen deprivation condition. Upon nitrogen deprivation, engineered microalgae accumulated total lipid up to 58.7 % (dry cell weight), a 4.6-fold increase over the wild type cells under normal culture condition. At cellular level, increased volume and number of oil bodies were observed in the engineered microalgal cells. These findings suggested that malic enzyme is a pivotal regulator in lipid accumulation in green microalga C. pyrenoidosa, and presenting a breakthrough of generating ideal algal strains for algal nutrition and biofuels.

  3. Halophilic Bacteria as a Source of Novel Hydrolytic Enzymes

    Directory of Open Access Journals (Sweden)

    Encarnación Mellado

    2013-01-01

    Full Text Available Hydrolases constitute a class of enzymes widely distributed in nature from bacteria to higher eukaryotes. The halotolerance of many enzymes derived from halophilic bacteria can be exploited wherever enzymatic transformations are required to function under physical and chemical conditions, such as in the presence of organic solvents and extremes in temperature and salt content. In recent years, different screening programs have been performed in saline habitats in order to isolate and characterize novel enzymatic activities with different properties to those of conventional enzymes. Several halophilic hydrolases have been described, including amylases, lipases and proteases, and then used for biotechnological applications. Moreover, the discovery of biopolymer-degrading enzymes offers a new solution for the treatment of oilfield waste, where high temperature and salinity are typically found, while providing valuable information about heterotrophic processes in saline environments. In this work, we describe the results obtained in different screening programs specially focused on the diversity of halophiles showing hydrolytic activities in saline and hypersaline habitats, including the description of enzymes with special biochemical properties. The intracellular lipolytic enzyme LipBL, produced by the moderately halophilic bacterium Marinobacter lipolyticus, showed advantages over other lipases, being an enzyme active over a wide range of pH values and temperatures. The immobilized LipBL derivatives obtained and tested in regio- and enantioselective reactions, showed an excellent behavior in the production of free polyunsaturated fatty acids (PUFAs. On the other hand, the extremely halophilic bacterium, Salicola marasensis sp. IC10 showing lipase and protease activities, was studied for its ability to produce promising enzymes in terms of its resistance to temperature and salinity.

  4. NRSA enzyme decomposition model data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Microbial enzyme activities measured at more than 2000 US streams and rivers. These enzyme data were then used to predict organic matter decomposition and microbial...

  5. Gene-diet interaction of a common FADS1 variant with marine polyunsaturated fatty acids for fatty acid composition in plasma and erythrocytes among men.

    Science.gov (United States)

    Takkunen, Markus J; de Mello, Vanessa D; Schwab, Ursula S; Kuusisto, Johanna; Vaittinen, Maija; Ågren, Jyrki J; Laakso, Markku; Pihlajamäki, Jussi; Uusitupa, Matti I J

    2016-02-01

    Limited information exists on how the relationship between dietary intake of fat and fatty acids in erythrocytes and plasma is modulated by polymorphisms in the FADS gene cluster. We examined gene-diet interaction of total marine PUFA intake with a known gene encoding Δ-5 desaturase enzyme (FADS1) variant (rs174550) for fatty acids in erythrocyte membranes and plasma phospholipids (PL), cholesteryl esters (CE), and triglycerides (TG). In this cross-sectional study, fatty acid compositions were measured using GC, and total intake of polyunsaturated fat from fish and fish oil was estimated using a food frequency questionnaire in a subsample (n = 962) of the Metabolic Syndrome in Men Study. We found nominally significant gene-diet interactions for eicosapentaenoic acid (EPA, 20:5n-3) in erythrocytes (pinteraction = 0.032) and for EPA in plasma PL (pinteraction = 0.062), CE (pinteraction = 0.035), and TG (pinteraction = 0.035), as well as for docosapentaenoic acid (22:5n-3) in PL (pinteraction = 0.007). After excluding omega-3 supplement users, we found a significant gene-diet interaction for EPA in erythrocytes (pinteraction FADS1 (p = 1.5 × 10(-10) ). FADS1 variants may modulate the relationship between marine fatty acid intake and circulating levels of long-chain omega-3 fatty acids. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Curcumin improves alcoholic fatty liver by inhibiting fatty acid biosynthesis.

    Science.gov (United States)

    Guo, Chang; Ma, Jingfan; Zhong, Qionghong; Zhao, Mengyuan; Hu, Tianxing; Chen, Tong; Qiu, Longxin; Wen, Longping

    2017-08-01

    Alcoholic fatty liver is a threat to human health. It has been long known that abstinence from alcohol is the most effective therapy, other effective therapies are not available for the treatment in humans. Curcumin has a great potential for anti-oxidation and anti-inflammation, but the effect on metabolic reconstruction remains little known. Here we performed metabolomic analysis by gas chromatography/mass spectrometry and explored ethanol pathogenic insight as well as curcumin action pattern. We identified seventy-one metabolites in mouse liver. Carbohydrates and lipids were characteristic categories. Pathway analysis results revealed that ethanol-induced pathways including biosynthesis of unsaturated fatty acids, fatty acid biosynthesis and pentose and glucuronate interconversions were suppressed by curcumin. Additionally, ethanol enhanced galactose metabolism and pentose phosphate pathway. Glyoxylate and dicarboxylate metabolism and pyruvate metabolism were inhibited in mice fed ethanol diet plus curcumin. Stearic acid, oleic acid and linoleic acid were disease biomarkers and therapical biomarkers. These results reflect the landscape of hepatic metabolism regulation. Our findings illustrate ethanol pathological pathway and metabolic mechanism of curcumin therapy. Copyright © 2017. Published by Elsevier Inc.

  7. Fluorescing fatty acids in rat fatty liver models.

    Science.gov (United States)

    Croce, Anna C; Ferrigno, Andrea; Di Pasqua, Laura G; Berardo, Clarissa; Mannucci, Barbara; Bottiroli, Giovanni; Vairetti, Mariapia

    2017-06-01

    The autofluorescence (AF) of NAD(P)H and flavins has been at the basis of many in-situ studies of liver energy metabolism and functionality. Conversely, few data have been so far reported on fluorescing lipids. In this work we investigated the AF of liver lipid extracts from two fatty liver models, Wistar rats fed with MCD diet for 12 days (Wi-MCD), and obese (fa/fa) Zucker rats. Among the most abundant fatty acids in the lipid extracts, indicated by mass spectrometry, arachidonic acid (AA) exhibited higher quantum yield than the other fluorescing fatty acids (FLFA), and red shifted AF spectrum. This allowed to estimate the AA contribution to the overall emission of lipid extracts by curve fitting analysis. AA prevailed in obese Zucker livers, accounting for the different AF spectral profiles between the two models. AF and mass spectrometry indicated also a different balance between the fluorescing fraction and the overall amount of AA in the two models. The ability of AF to detect directly AA and FLFA was demonstrated, suggesting its supportive role as tool in wide-ranging applications, from the control of animal origin food, to experimental investigations on liver fat accumulation, lipotoxicity and disease progression, with potential translation to the clinics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The Catalytic Function of Enzymes.

    Science.gov (United States)

    Splittgerber, Allan G.

    1985-01-01

    Discusses: structure of the enzyme molecule; active site; reaction mechanism; transition state; factors affecting enzyme reaction rates, concentration of enzyme; concentration of substrate; product concentration; temperature effects and pH effects; factors causing a lowering of activation energy; proximity and orientation effects; substrate strain…

  9. Enzymes as Sensors.

    Science.gov (United States)

    Staiano, Maria; Pennacchio, Angela; Varriale, Antonio; Capo, Alessandro; Majoli, Adelia; Capacchione, Clotilde; D'Auria, Sabato

    2017-01-01

    Over the last few decades the development of new technologies, the fabrication of new materials, and the introduction of nanotechnologies created new trends in a series of advances that produced innovations in biological sensing devices with a wide range of application from health, security, defense, food, and medicine, to the environment. Specificity, low cost, rapidity, sensitivity, and multiplicity are some of the reasons for their growth, and their commercial success is expected to increase in the next future. Biosensors are devices in which the recognition part of the target molecule is accomplished by biological macromolecules such as proteins, enzymes, antibodies, aptamers, etc. These biomolecules are able to bind to the target molecules with high selectivity and specificity. The interaction between the target molecule and the specific biomolecule is reflected as a change of the biomolecule structural features. The extent of this change is strictly related to the biosensor response. Fluorescence spectroscopy, due to its sensitivity, is often used as the principal technique to monitor biological interactions, and thus the biosensor response as well. Both the intrinsic ultraviolet fluorescence of protein, arising from aromatic amino acids (tryptophan, tyrosine, and phenylalanine), and extrinsic fluorescent labels emitting in the visible region of the spectrum together allow for very flexible transduction of the analyte recognition, suitable for many different applications. This chapter focuses special attention on enzymes as practically unmatched recognition elements for biosensors and emphasizes the potential advantages of customized biosensor devices using apo- or holo forms of enzymes also isolated from thermophile sources. © 2017 Elsevier Inc. All rights reserved.

  10. Fatty acid uptake in normal human myocardium

    International Nuclear Information System (INIS)

    Vyska, K.; Meyer, W.; Stremmel, W.; Notohamiprodjo, G.; Minami, K.; Machulla, H.J.; Gleichmann, U.; Meyer, H.; Koerfer, R.

    1991-01-01

    Fatty acid binding protein has been found in rat aortic endothelial cell membrane. It has been identified to be a 40-kDa protein that corresponds to a 40-kDa fatty acid binding protein with high affinity for a variety of long chain fatty acids isolated from rat heart myocytes. It is proposed that this endothelial membrane fatty acid binding protein might mediate the myocardial uptake of fatty acids. For evaluation of this hypothesis in vivo, influx kinetics of tracer-labeled fatty acids was examined in 15 normal subjects by scintigraphic techniques. Variation of the plasma fatty acid concentration and plasma perfusion rate has been achieved by modulation of nutrition state and exercise conditions. The clinical results suggest that the myocardial fatty acid influx rate is saturable by increasing fatty acid plasma concentration as well as by increasing plasma flow. For analysis of these data, functional relations describing fatty acid transport from plasma into myocardial tissue in the presence and absence of an unstirred layer were developed. The fitting of these relations to experimental data indicate that the free fatty acid influx into myocardial tissue reveals the criteria of a reaction on a capillary surface in the vicinity of flowing plasma but not of a reaction in extravascular space or in an unstirred layer and that the fatty acid influx into normal myocardium is a saturable process that is characterized by the quantity corresponding to the Michaelis-Menten constant, Km, and the maximal velocity, Vmax, 0.24 ± 0.024 mumol/g and 0.37 ± 0.013 mumol/g(g.min), respectively. These data are compatible with a nondiffusional uptake process mediated by the initial interaction of fatty acids with the 40-kDa membrane fatty acid binding protein of cardiac endothelial cells

  11. Protein Crystal Malic Enzyme

    Science.gov (United States)

    1992-01-01

    Malic Enzyme is a target protein for drug design because it is a key protein in the life cycle of intestinal parasites. After 2 years of effort on Earth, investigators were unable to produce any crystals that were of high enough quality and for this reason the structure of this important protein could not be determined. Crystals obtained from one STS-50 were of superior quality allowing the structure to be determined. This is just one example why access to space is so vital for these studies. Principal Investigator is Larry DeLucas.

  12. The potential role of omega-3 fatty acids supplements in increasing athletic performance

    Directory of Open Access Journals (Sweden)

    Șerban GLIGOR

    2017-03-01

    Full Text Available Polyunsaturated omega-3 and omega-6 fatty acids are essential fatty acids that cannot be produced by the body itself and therefore must be provided through nutrition. Omega-6 and particularly omega-3 fatty acids have important roles in the organism, contributing to the maintenance and promotion of health. The optimal proportion of omega-6/omega-3 fatty acids is 2:1, or even better 1:1. They are involved in normal growth and development, play a role in the prevention of coronary and cardiovascular diseases, of diabetes mellitus, of arterial hypertension, arthritis and cancer. Omega-3 fatty acids mainly have an anti-inflammatory effect, but also act as hypolipidemic and antithrombotic agents. A potential role of omega-3 fatty acids is that of increasing physical performance. Their role in the physical activity refers on one side to the global health of athletes and on the other side to their anti-inflammatory effect, as high intensity physical exercise induces increased free-radical production and microtraumas, with the induction of an inflammatory status. The anti-inflammatory effect of these fatty acids manifests through an increased production of endogenous antioxidant enzymes, through decreasing the production of prostaglandins metabolites, decreasing the production of leukotriene B4, etc. They are also effective on reducing muscle pain post eccentric exercise and on decreasing the severity of bronchoconstriction induced by exercise, as well as improving pulmonary function variables. In conclusion it seems that supplementing diets with omega-3 fatty acids, apart from having benefic effects on health and on the prevention and management of certain affections, proves to be a beneficial for physical activity and athletic performance.

  13. Fatty acid acylation of proteins: specific roles for palmitic, myristic and caprylic acids

    Directory of Open Access Journals (Sweden)

    Rioux Vincent

    2016-05-01

    Full Text Available Fatty acid acylation of proteins corresponds to the co- or post-translational covalent linkage of an acyl-CoA, derived from a fatty acid, to an amino-acid residue of the substrate protein. The cellular fatty acids which are involved in protein acylation are mainly saturated fatty acids. Palmitoylation (S-acylation corresponds to the reversible attachment of palmitic acid (C16:0 via a thioester bond to the side chain of a cysteine residue. N-terminal myristoylation refers to the covalent attachment of myristic acid (C14:0 by an amide bond to the N-terminal glycine of many eukaryotic and viral proteins. Octanoylation (O-acylation typically concerns the formation of an ester bond between octanoic acid (caprylic acid, C8:0 and the side chain of a serine residue of the stomach peptide ghrelin. An increasing number of proteins (enzymes, hormones, receptors, oncogenes, tumor suppressors, proteins involved in signal transduction, eukaryotic and viral structural proteins have been shown to undergo fatty acid acylation. The addition of the acyl moiety is required for the protein function and usually mediates protein subcellular localization, protein-protein interaction or protein-membrane interaction. Therefore, through the covalent modification of proteins, these saturated fatty acids exhibit emerging specific and important roles in modulating protein functions. This review provides an overview of the recent findings on the various classes of protein acylation leading to the biological ability of saturated fatty acids to regulate many pathways. Finally, the nutritional links between these elucidated biochemical mechanisms and the physiological roles of dietary saturated fatty acids are discussed.

  14. Lipid peroxidation and antioxidant enzymes in male infertility.

    Directory of Open Access Journals (Sweden)

    Dandekar S

    2002-07-01

    Full Text Available BACKGROUND AND AIM: Mammalian spermatozoa are rich in polyunsaturated fatty acids and are very susceptible to attack by reactive oxygen species (ROS and membrane lipid peroxide ion. Normally a balance is maintained between the amount of ROS produced and that scavenged. Cellular damage arises when this equilibrium is disturbed. A shift in the levels of ROS towards pro-oxidants in semen and vaginal secretions can induce an oxidative stress on spermatozoa. The aim was to study lipid peroxidation and antioxidant enzymes such as catalase, glutathione peroxidase and superoxide dismutase (SOD and to correlate the same, with the ′water test′, in male infertility. SETTINGS: Experimental study. SUBJECTS AND METHODS: Ejaculates from a total of 83 infertile and fertile healthy individuals were obtained. Lipid peroxidation and antioxidant enzyme levels were studied and correlated with water test. RESULTS: The results indicate that (i the antioxidant enzyme catalase showed no significant changes in the various pathological samples, (ii antioxidant enzymes SOD and glutathione peroxidase correlate positively with asthenozoospermic samples and (iii the degree of lipid peroxidation also correlates positively with the poorly swollen sperm tails. The increase in SOD and glutathione peroxidase values, in the pathological cases represents an attempt made to overcome the reactive oxygen species. CONCLUSION: Water test could be used as a preliminary marker test for sperm tail damage by reactive oxygen species, since it correlates very well with lipid peroxidation and antioxidant enzymes.

  15. The effects of trans-fatty acids on TAG regulation in mice depend on dietary unsaturated fatty acids.

    Science.gov (United States)

    Saín, Juliana; González, Marcela Aída; Lavandera, Jimena Verónica; Scalerandi, María Victoria; Bernal, Claudio Adrián

    2016-08-01

    The aim of this study was to investigate the effects of trans-fatty acids (TFA) on liver and serum TAG regulation in mice fed diets containing different proportions of n-3, n-6 and n-9 unsaturated fatty acids (UFA) from olive (O), maize (C) or rapeseed (R) oils partially substituted or not with TFA (Ot, Ct and Rt, respectively). Male CF1 mice were fed (30 d) one of these diets. The effects of the partial substitution (1 %, w/w) of different UFA with TFA on the activity and expression of hepatic enzymes involved in lipogenesis and fatty acids oxidation were evaluated, as well as their transcription factor expressions. Some of the mechanisms involved in the serum TAG regulation, hepatic VLDL rich in TAG (VLDL-TAG) secretion rate and lipoprotein lipase (LPL) activity were assessed. In liver, TFA induced an increase in TAG content in the Ot and Rt groups, and this effect was associated with an imbalance between lipogenesis and β-oxidation. In the Ot group, exacerbated lipogenesis may be one of the mechanisms responsible for the liver steatosis induced by TFA, whereas in Rt it has been related to a decreased β-oxidation, compared with their respective controls. The enhanced hepatic VLDL-TAG secretion in the Ot and Rt groups was compensated with a differential removal of TAG by LPL enzyme in extrahepatic tissues, leading to unchanged serum TAG levels. In brief, the effects of low levels of TFA on liver and serum TAG regulation in mice depend on the dietary proportions of n-3, n-6 and n-9 UFA.

  16. The age-related inverse relationship between ob and lipogenic enzymes genes expression in rat white adipose tissue.

    Science.gov (United States)

    Nogalska, Anna; Pankiewicz, Areta; Goyke, Elzbieta; Swierczynski, Julian

    2003-04-01

    To determine whether increase of serum leptin (the known natural inhibitor of lipogenic enzymes gene expression) concentration would account for the age-related decrease in lipogenesis (a) serum leptin concentration; (b) leptin mRNA abundance; (c) the rate of fatty acid synthesis in vivo; (d) lipogenic enzymes activity and (e) mRNA levels were assayed in white adipose tissue (WAT) of male young and old rats. We found that leptin mRNA abundance in WAT and serum leptin concentration was much lower in young than in old animals. In contrast, the rate of fatty acid synthesis in WAT was much higher in young animals. The old rats displayed much lower lipogenic enzymes activities (acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), ATP-citrate lyase (ACL), malic enzyme (ME), glucose 6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase 6PGDH) and mRNA abundance as compared to young rats. Considering the inverse relationship between serum leptin concentration and lipogenic enzymes genes expression and known inhibitory effect of leptin on lipogenic enzymes gene expression, one can conclude that the increase of ob gene expression could at least partly account for the reduced WAT lipogenic enzymes genes expression in old animals.

  17. Nonalcoholic Fatty Liver Disease Treatment

    Directory of Open Access Journals (Sweden)

    M Sadeghian

    2014-04-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is increasing in pediatric age group parallel to the growing prevalence of obesity and overweight all around the world. So changing in life style and   interventions on obesogenic environment is cornerstone of NAFLD therapy in obese children. Some experts recommend that children and adolescents be encouraged to follow a low-fat, low-glycemic-index diet that includes eating a minimum of 5 servings of vegetables and fruits daily, engaging in physical activity for at least 1 hour daily, and minimizing television/computer time to 2 hours daily.  In spite of effectiveness of weight loss and exercise in improvement NAFLD, this goal is very difficult to be achieved and pharmacological approaches have become necessary. Pharmacologic therapies against one or more specific factors and/or molecules involved in the development of NAFLD (i.e., insulin resistance, free fatty acid lipid toxicity, and oxidative stress also might slow the progression of NAFLD to NASH or cirrhosis.  On this basis, insulin sensitizers, antioxidants, cytoprotective agents, and dietary supplementations have been evaluated in pediatric clinical trials but there is no approved pharmacologic therapy for NAFLD or NASH. Not all obese children affected by NAFLD. Diet modification and regular exercise beside to serial medical follow up highly suggested for this group of children. Normal weight and thin children with NAFLD or NASH should be investigated appropriately in a logical manner based on causes of primary liver steatosis in children and treatment of underlying disease can cause improvement fatty liver in these patients.   Keywords: Non-alcoholic fatty liver disease; Non-alcoholic steatohepatitis; Children; Steatosis; Treatment

  18. Kinetic controlled affinity labeling of target enzyme with thioester chemistry.

    Science.gov (United States)

    Tomohiro, Takenori; Nakabayashi, Masahiro; Sugita, Yuka; Morimoto, Shota

    2016-08-01

    High specificity has been an important feature in affinity labeling for target profiling. Especially, to label targets via rapidly progressing reactions with consumption of ligand (probe), high specificity of reaction with common functional groups of target protein should be achieved without reactions with similar groups of non-target proteins. Herein, we demonstrate the kinetic controlled affinity labeling of acyl CoA synthetase using a fatty acid analogue containing a phenylthioester linkage. High specificity was attained by accelerating the labeling rate in the binding pocket. This approach could be useful for profiling a series of target enzymes and transporters in signal transduction pathways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. MAT1A variants modulate the effect of dietary fatty acids on plasma homocysteine concentrations and DNA damage

    Science.gov (United States)

    Dietary n-3 polyunsaturated fatty acids (PUFA) are associated with decreased plasma homocysteine (Hcy), an important biomarker for cardiovascular disease. Methionine adenosyltransferase (MAT1A) is an enzyme involved in formation of form S-adenosylmethionine during methionine metabolism. The objectiv...

  20. Lipase catalyzed synthesis of neutral glycerides rich in micronutrients from rice bran oil fatty acid distillate.

    Science.gov (United States)

    Nandi, Sumit; Gangopadhyay, Sarbani; Ghosh, Santinath

    2008-01-01

    Neutral glycerides with micronutrients like sterols, tocopherols and squalene may be prepared from cheap raw material like rice bran oil fatty acid distillate (RBO FAD). RBO FAD is an important byproduct of vegetable oil refining industries in the physical refining process. Glycerides like triacylglycerols (TAG), diacylglycerols (DAG) and monoacylglycerols (MAG) containing significant amounts of unsaponifiable matter like sterols, tocopherols and hydrocarbons (mainly squalene) may certainly be considered as novel functional food ingredients. Fatty acids present in RBO FAD were esterified with glycerol of varying amount (1:0.33, 1:0.5, 1:1 and 1:1.5 of FAD : glycerol ratio) for 8 h using non-specific enzyme NS 40013 (Candida antartica). After esterification the product mixture containing mono, di- and triglycerides was purified by molecular distillation to remove excess free fatty acids and also other volatile undesirable components. The purified product containing sterols, tocopherols and squalene can be utilized in various food formulations.

  1. The Biochemistry and Physiology of Mitochondrial Fatty Acid β-Oxidation and Its Genetic Disorders.

    Science.gov (United States)

    Houten, Sander M; Violante, Sara; Ventura, Fatima V; Wanders, Ronald J A

    2016-01-01

    Mitochondrial fatty acid β-oxidation (FAO) is the major pathway for the degradation of fatty acids and is essential for maintaining energy homeostasis in the human body. Fatty acids are a crucial energy source in the postabsorptive and fasted states when glucose supply is limiting. But even when glucose is abundantly available, FAO is a main energy source for the heart, skeletal muscle, and kidney. A series of enzymes, transporters, and other facilitating proteins are involved in FAO. Recessively inherited defects are known for most of the genes encoding these proteins. The clinical presentation of these disorders may include hypoketotic hypoglycemia, (cardio)myopathy, arrhythmia, and rhabdomyolysis and illustrates the importance of FAO during fasting and in hepatic and (cardio)muscular function. In this review, we present the current state of knowledge on the biochemistry and physiological functions of FAO and discuss the pathophysiological processes associated with FAO disorders.

  2. Double-bilayer: a new phase formed by lysophospholipids and the corresponding fatty acid

    Directory of Open Access Journals (Sweden)

    Sérgio S. Funari

    2009-01-01

    Full Text Available The product of catalytic activity of the enzyme phospholipase A2, which resembles the core unit of animal toxins, on phospholipids is a 1:1 mixture of lysolipid and fatty acid. This mixture was studied by time-resolved simultaneous small- and wide angle x-ray diffraction over the temperature range from 23 to 53.5ºC. An unusually large lamellar structure was observed, with d = 11 nm, contradicting the complex functional dimer model between lysolipid and fatty acid. It can be explained by formation of a "double-bilayer", a new phase consisting of two different bilayers, one formed by lysophospholipid and other by fatty acid, bound together by head group interactions. Its strucutre was confirmed by simulations of the X-ray scattering pattern.

  3. Fatty acids identified in the Burmese python promote beneficial cardiac growth.

    Science.gov (United States)

    Riquelme, Cecilia A; Magida, Jason A; Harrison, Brooke C; Wall, Christopher E; Marr, Thomas G; Secor, Stephen M; Leinwand, Leslie A

    2011-10-28

    Burmese pythons display a marked increase in heart mass after a large meal. We investigated the molecular mechanisms of this physiological heart growth with the goal of applying this knowledge to the mammalian heart. We found that heart growth in pythons is characterized by myocyte hypertrophy in the absence of cell proliferation and by activation of physiological signal transduction pathways. Despite high levels of circulating lipids, the postprandial python heart does not accumulate triglycerides or fatty acids. Instead, there is robust activation of pathways of fatty acid transport and oxidation combined with increased expression and activity of superoxide dismutase, a cardioprotective enzyme. We also identified a combination of fatty acids in python plasma that promotes physiological heart growth when injected into either pythons or mice.

  4. Identification of two Nereis virens [Annelida: Polychaeta] cytochrome P450 enzymes and induction by xenobiotics

    DEFF Research Database (Denmark)

    Rewitz, Kim; Kjellerup, C; Jørgensen, A

    2004-01-01

    Nereis virens. These are the first CYP sequences reported in annelids. The deduced amino acid sequences both share highest identities to mammalian CYP4F enzymes (61% and 58%), indicating membership of the CYP4 family (accordingly, referred to as CYP41 and CYP42, respectively). The CYP42 gene expression......Cytochrome P450 (CYP) enzyme catalysed metabolism of xenobiotics such as polycyclic aromatic hydrocarbons (PAHs) are known to occur in polychaetes. Yet specific polychaete CYP enzymes have so far not been identified. Here, we report two partial CYP cDNA sequences, both of 453 bp, characterised from...... compounds such as fatty acids. Crude oil and benz(a)anthracene significantly induced CYP42 gene expression 2.6-fold, and because CYP enzymes often are induced by their own substrates, this induction may indicate involvement of N. virens CYP4 enzymes in the detoxification of environmental contaminants...

  5. Clinical investigation of fatty liver by CT

    International Nuclear Information System (INIS)

    Kato, Katsumoto; Takayama, Tetsuo; Sano, Hiroshi; Katada, Naoyuki; Takeichi, Masayuki

    1984-01-01

    CT findings of 56 cases of diffuse fatty infiltration comfirmed by liver biopsy were investigated and compared with those of chronic hepatitis and liver cirrhosis. We found that the diagnosis of severe fatty infiltration (fatty liver) can be specifically possible when the ratios of CT values of liver to those of spleen are less than 0.85 and it is reasonable criterion for diagnosis of fatty liver by CT. This criterion was satisfied by 197 studies (2.9%), 169 cases with fatty liver (diffuse: 141 cases, focal: 28 cases) of 6800 CT studies of liver. Obesity, diabetes and alcohol abuse were main causative factors in both diffuse and focal fatty liver. The percentage of cases showing no abnormal results in blood chemistry tests was great compared with the previous report based on liver biopsy. The changes of CT values of liver faithfully reflected the improvement of each causal factor and reciprocal changes were observed between diffuse and focal fatty liver in repeated CT examination. So, CT is useful in estimating the effect of treatment as well as in diagnosis of fatty liver. Focal fatty liver is temporary manifestation during the proscess of development or improvement of fatty liver. (author)

  6. Do fatty acids affect fetal programming?

    Science.gov (United States)

    Kabaran, Seray; Besler, H Tanju

    2015-08-13

    In this study discussed the primary and regulatory roles of fatty acids, and investigated the affects of fatty acids on metabolic programming. Review of the literature was carried out on three electronic databases to assess the roles of fatty acids in metabolic programming. All abstracts and full-text articles were examined, and the most relevant articles were selected for screening and inclusion in this review. The mother's nutritional environment during fetal period has important effects on long term health. Fatty acids play a primary role in growth and development. Alterations in fatty acid intake in the fetal period may increase the risk of obesity and metabolic disorders in later life. Maternal fatty acid intakes during pregnancy and lactation are passed to the fetus and the newborn via the placenta and breast milk, respectively. Imbalances in fatty acid intake during the fetal period change the fatty acid composition of membrane phospholipids, which can cause structural and functional problems in cells. Additionally, the metabolic and neuroendocrine environments of the fetus and the newborn play key roles in the regulation of energy balance. Imbalances in fatty acid intake during pregnancy and lactation may result in permanent changes in appetite control, neuroendocrine function and energy metabolism in the fetus, leading to metabolic programming. Further studies are needed to determine the role of fatty acid intake in metabolic programming.

  7. Changes of α-glycerophosphate dehydrogenase activity in fatty liver of rats by amino acid imbalance

    International Nuclear Information System (INIS)

    Ogura, Masaji; Katsunuma, Eiichi; Akabane, Tomoko; Ogawa, Seiichi

    1976-01-01

    The previous study on the lipogenesis in the fatty livers of rats, which was induced by feeding the diet with imbalanced amino acid, revealed that the induction of this type of fatty livers was due mainly to the acceleration of triglyceride synthesis by the increase in both synthesis and esterification of fatty acid in the livers. Although many studies have been carried out on the dietary control of α-glycerophosphate dehydrogenase activity in rat livers, the enzyme change in amino acid imbalance has not been reported. In the present study, in order to elucidate the difference in the supply of glycerol moiety of triglyceride due to the imbalance, the change of the α-glycerophosphate dehydrogenase activity in livers was investigated. The experimental diets were 8% casein basal diet and basal + 0.3% DL-methionine imbalanced diet. 5 rats of each group were killed after 0.5 and 10 days on the diet, and the analysis of the lipid content in the livers and the determination of the α-glycerophosphate dehydrogenase activity were carried out. The linear response of the enzyme activity to time and protein concentration was obtained. The development of fatty livers was observed in the imbalanced diet group in the feeding period of 10 days. It was found that the specific activity of the imbalanced diet group increased significantly in 5 and 10 days as compared with that of the basal diet group. The elevation in the enzyme activity may suggest that the supply of α-glycerophosphate for triglyceride synthesis is also increased in this type of fatty livers. (Kako, I.)

  8. Sunflower (Helianthus annuus) fatty acid synthase complex: enoyl-[acyl carrier protein]-reductase genes.

    Science.gov (United States)

    González-Thuillier, Irene; Venegas-Calerón, Mónica; Garcés, Rafael; von Wettstein-Knowles, Penny; Martínez-Force, Enrique

    2015-01-01

    Enoyl-[acyl carrier protein]-reductases from sunflower. A major factor contributing to the amount of fatty acids in plant oils are the first steps of their synthesis. The intraplastidic fatty acid biosynthetic pathway in plants is catalysed by type II fatty acid synthase (FAS). The last step in each elongation cycle is carried out by the enoyl-[ACP]-reductase, which reduces the dehydrated product of β-hydroxyacyl-[ACP] dehydrase using NADPH or NADH. To determine the mechanisms involved in the biosynthesis of fatty acids in sunflower (Helianthus annuus) seeds, two enoyl-[ACP]-reductase genes have been identified and cloned from developing seeds with 75 % identity: HaENR1 (GenBank HM021137) and HaENR2 (HM021138). The two genes belong to the ENRA and ENRB families in dicotyledons, respectively. The genetic duplication most likely originated after the separation of di- and monocotyledons. RT-qPCR revealed distinct tissue-specific expression patterns. Highest expression of HaENR1 was in roots, stems and developing cotyledons whereas that of H a ENR2 was in leaves and early stages of seed development. Genomic DNA gel blot analyses suggest that both are single-copy genes. In vivo activity of the ENR enzymes was tested by complementation experiments with the JP1111 fabI(ts) E. coli strain. Both enzymes were functional demonstrating that they interacted with the bacterial FAS components. That different fatty acid profiles resulted infers that the two Helianthus proteins have different structures, substrate specificities and/or reaction rates. The latter possibility was confirmed by in vitro analysis with affinity-purified heterologous-expressed enzymes that reduced the crotonyl-CoA substrate using NADH with different V max.

  9. Clonage et caractérisation de deux gènes codant des enzymes lipolytiques de la microalgue Isochrysis galbana

    OpenAIRE

    Kerviel, Vincent

    2014-01-01

    Lipolytic enzymes present in all known species play a key role in lipid metabolism and are involved in several industrial processes. They catalyse lipid hydrolysis and synthesis. Actually and particularly in microalgae, isolation and characterization of this type of enzyme remains an unexplored research area.The potential of the lipidic content of microalgae in food industry or energy field requires specific lipolytic enzymes. Docosahexaenoic acid (DHA), an 3 poly insaturated fatty acid (3 ...

  10. Functional replacement of the Saccharomyces cerevisiae fatty acid synthase with a bacterial type II system allows flexible product profiles.

    Science.gov (United States)

    Fernandez-Moya, Ruben; Leber, Christopher; Cardenas, Javier; Da Silva, Nancy A

    2015-12-01

    The native yeast type I fatty acid synthase (FAS) is a complex, rigid enzyme, and challenging to engineer for the production of medium- or short-chain fatty acids. Introduction of a type II FAS is a promising alternative as it allows expression control for each discrete enzyme and the addition of heterologous thioesterases. In this study, the native Saccharomyces cerevisiae FAS was functionally replaced by the Escherichia coli type II FAS (eFAS) system. The E. coli acpS + acpP (together), fabB, fabD, fabG, fabH, fabI, fabZ, and tesA were expressed in individual S. cerevisiae strains, and enzyme activity was confirmed by in vitro activity assays. Eight genes were then integrated into the yeast genome, while tesA or an alternate thioesterase gene, fatB from Ricinus communis or TEII from Rattus novergicus, was expressed from a multi-copy plasmid. Native FAS activity was eliminated by knocking out the yeast FAS2 gene. The strains expressing only the eFAS as de novo fatty acid source grew without fatty acid supplementation demonstrating that this type II FAS is able to functionally replace the native yeast FAS. The engineered strain expressing the R. communis fatB thioesterase increased total fatty acid titer 1.7-fold and shifted the fatty acid profile towards C14 production, increasing it from <1% in the native strain to more than 30% of total fatty acids, and reducing C18 production from 39% to 8%. © 2015 Wiley Periodicals, Inc.

  11. Topicality of identification of free fatty acids pattern in biologic substrates in the diagnosis of gastroenterological diseases

    Directory of Open Access Journals (Sweden)

    V.I. Didenko

    2017-04-01

    Full Text Available The article shows the role of free fatty acids in the pathogenesis of metabolic and gastroenterological disorders. An expediency of gas chromatography method for determination of free fatty acids pattern in biologic samples (blood serum, urine, feces and other was substantiated. The role of free fatty acids in the cell structure components formation, energetic homeostasis and signal molecules or their precursor production was shown. So, disorders of regulation of free fatty acids metabolism lead to systemic fails of insulin action, such as glucose metabolism in adipocytes, muscles and liver. Increase in several fractions of lipid pattern takes place in different pathologic states. These changes occur earlier than changes of enzymes activity or other protein markers. For example, short chain fatty acids can be used for identification of syndrome of bacterial overgrowth in the intestines. Increasе in polyunsaturated fatty acid fraction activates inflammation process, immune reactions, blood hypercoagulation, activation of lipid peroxidation. Also, arachidonic (C20:0, dodecanoic (C12:0 and linoleic (C18:3 acids are markers of inflammation processes. In addition, deficiency of free fatty acids is very important aspect of diagnois. It can’t be uncertified by standard laboratory methods. Proven fact is that essential fatty acids can be a cause of metabolic syndrome, non-alcoholic fatty liver disease formation such as other diseases associated with metabolism. So, only chromatography today is a method for determination fatty acid pattern. The advantages of gas chromatography are rapid realization and high accuracy. Thus, identification of trace concentrations (about 10–12 mole is possible. Implementation of this method into the clinical practice of gastroenterology specialists allows the early diagnosis of pathologies and choice of correct treatment.

  12. From fat to FAT (CD36/SR-B2): Understanding the regulation of cellular fatty acid uptake.

    Science.gov (United States)

    Glatz, Jan F C; Luiken, Joost J F P

    2017-05-01

    The molecular mechanisms underlying the cellular uptake of long-chain fatty acids and the regulation of this process have been elucidated in appreciable detail in the last decades. Two main players in this field, each discovered in the early 1990s, are (i) a membrane-associated protein first identified in adipose ('fat') tissue and referred to as putative fatty acid translocase (FAT)/CD36 (now officially designated as SR-B2) which facilitates the transport of fatty acids across the plasma membrane, and (ii) the family of transcription factors designated peroxisome proliferator-activated receptors (PPARα, PPARγ, and PPARβ/δ) for which fatty acids and fatty acid metabolites are the preferred ligand. CD36/SR-B2 is the predominant membrane protein involved in fatty acid uptake into intestinal enterocytes, adipocytes and cardiac and skeletal myocytes. The rate of cellular fatty acid uptake is regulated by the subcellular vesicular recycling of CD36/SR-B2 from endosomes to the plasma membrane. Fatty acid-induced activation of PPARs results in the upregulation of the expression of genes encoding various proteins and enzymes involved in cellular fatty acid utilization. Both CD36/SR-B2 and the PPARs have been implicated in the derangements in fatty acid and lipid metabolism occurring with the development of pathophysiological conditions, such as high fat diet-induced insulin resistance and diabetic cardiomyopathy, and have been suggested as targets for metabolic intervention. In this brief review we discuss the discovery and current understanding of both CD36/SR-B2 and the PPARs in metabolic homeostasis. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  13. Enzymatic Lipophilization of Phenolic Acids through Esterification with Fatty Alcohols in Organic Solvents

    DEFF Research Database (Denmark)

    Yang, Zhiyong; Guo, Zheng; Xu, Xuebing

    2012-01-01

    fatty alcohols from C4 to C18. The conversion of DHCA was significantly affected by the carbons of fatty alcohol chains. Roughly 95% conversion was achieved within 3 days when DHCA was esterified with hexanol (C6), while only 56% and 44% conversion were achieved when esterified with 1-butanol...... and octadecenol respectively. However, the conversions of ferulic and caffeic acids under the same conditions were much lower than DHCA. The optimal mixture ratio of hexane to butanone was found to be 65:35. Using octanol and DHCA as model, the reaction parameters, such as temperature, enzyme load, reaction time...... and substrate molar ratio, were optimized with response surface modelling (RSM). The optimum conditions are finalized as: temperature 60 oC, reaction time 7 days, enzyme load 100 mg, and substrate molar ratio 4.34 (octanol/DHCA)....

  14. Effect of alpha-linolenic, capric and lauric acid on the fatty acid biosynthesis in Staphylococcus aureus.

    Science.gov (United States)

    Sado-Kamdem, Sylvain L; Vannini, Lucia; Guerzoni, M Elisabetta

    2009-02-28

    The antimicrobial activity of alpha-linolenic, capric and lauric acids on Staphylococcus aureus was studied in relation to their effect on the de novo fatty acid biosynthesis. Labelled acetate was used as integrated carbon source and traced in the de novo fatty acid by using a GC-Mass spectrometer and the single ion monitoring (SIM) technique. The detection of the incorporation of the labelled carbon into the individual cell fatty acids (FAs) provided an insight into the different effects of alpha-linolenic, capric and lauric acids on the FA biosynthesis. The results suggested that FAs pathway is the major target of alpha-linolenic acid and that other enzymes in addition to FabI are involved in S. aureus response mechanism when medium chain fatty acids are present.

  15. Activity of the acyl-CoA synthetase ACSL6 isoforms: role of the fatty acid Gate-domains

    Directory of Open Access Journals (Sweden)

    Siliakus Melvin

    2010-04-01

    Full Text Available Abstract Background Activation of fatty acids by acyl-CoA synthetase enzymes is required for de novo lipid synthesis, fatty acid catabolism, and remodeling of biological membranes. Human long-chain acyl-CoA synthetase member 6, ASCL6, is a form present in the plasma membrane of cells. Splicing events affecting the amino-terminus and alternative motifs near the ATP-binding site generate different isoforms of ACSL6. Results Isoforms with different fatty acid Gate-domain motifs have different activity and the form lacking this domain, isoform 3, showed no detectable activity. Enzymes truncated of the first 40 residues generate acyl-CoAs at a faster rate than the full-length protein. The gating residue, which prevents entry of the fatty acid substrate unless one molecule of ATP has already accessed the catalytic site, was identified as a tyrosine for isoform 1 and a phenylalanine for isoform 2 at position 319. All isoforms, with or without a fatty acid Gate-domain, as well as recombinant protein truncated of the N-terminus, can interact to form enzymatic complexes with identical or different isoforms. Conclusion The alternative fatty acid Gate-domain motifs are essential determinants for the activity of the human ACSL6 isoforms, which appear to act as homodimeric enzyme as well as in complex with other spliced forms. These findings provide evidence that the diversity of these enzyme species could produce the variety of acyl-CoA synthetase activities that are necessary to generate and repair the hundreds of lipid species present in membranes.

  16. Rate controlling steps in fatty acid oxidation by unloaded rodent soleus muscle.

    Science.gov (United States)

    Stein, T P; Schluter, M D; Grindeland, R E; Moran, M M; Baer, L A; Wade, C E

    2002-07-01

    In response to decreased usage skeletal muscle undergoes an adaptive reductive remodeling due to the decrease in tension on the weight bearing components of the musculo-skeletal system. Accompanying a shift in fiber type is an increased reliance of carbohydrate metabolism and decreased reliance on fat for energy. These responses have been found with both space flight and ground based models of disuse atrophy including the chronically adapted rodent hind limb suspended (HLS) rat (1, 4-7, 10, 11). In addition, after space flight, the ability of soleus muscle homogenates to oxidize palmitate is decreased. We have previously shown that expression of the mRNA of enzymes involved in beta-oxidation is reduced in the soleus muscle of HLS rats. At the same time mRNA expression of enzymes involved in glycolysis was increased. This study extends these observations to address the question of whether the decrease in beta-oxidation is caused by a reduction in the capacity of the pathway to oxidize fat or the regulation is effected before fatty acids enter the mitochondria, i.e. the reduced capacity of the fatty acid oxidation pathway is because less fat is available for oxidation. The two key steps involved in fatty acid uptake into the cells are lipoprotein lipase and the transport of the free fatty acids produced by lipoprotein lipase into the cell via the carnitine acyltransferase system.

  17. Role of hepatic lipogenesis in the susceptibility to fatty liver in the goose (Anser anser).

    Science.gov (United States)

    Mourot, J; Guy, G; Lagarrigue, S; Peiniau, P; Hermier, D

    2000-05-01

    In response to overfeeding, the Landes goose develops a fatty liver that is twice as large as that of the Poland goose, despite similar food intake. The role of hepatic lipogenesis in the genetic susceptibility to fatty liver was assessed in male overfed geese of the two breeds. For a similar hepatic protein content, total activities of malic enzyme, glucose-6-phosphate dehydrogenase, acetyl-Coa-carboxylase and fatty acid synthase, and specific activity and mRNA level of malic enzyme were about two-fold higher in the Landes goose. In the Poland goose, the weight of the fatty liver was correlated positively with the specific activity of ME and the VLDL concentration, which was not the case in the Landes breed. These results show that: (1) hepatic lipogenesis remains very active until the end of the overfeeding period; (2) the pentose-phosphate pathway may function in birds, contrary to what is assumed usually; (3) the level of hepatic lipogenesis is a major factor in the susceptibility to hepatic steatosis in different breeds of geese; and (4) ME activity may be a limiting factor of lipid synthesis in the less susceptible Poland breed.

  18. Dynamic simulations on the mitochondrial fatty acid Beta-oxidation network

    Directory of Open Access Journals (Sweden)

    Weinberger Klaus M

    2009-01-01

    Full Text Available Abstract Background The oxidation of fatty acids in mitochondria plays an important role in energy metabolism and genetic disorders of this pathway may cause metabolic diseases. Enzyme deficiencies can block the metabolism at defined reactions in the mitochondrion and lead to accumulation of specific substrates causing severe clinical manifestations. Ten of the disorders directly affecting mitochondrial fatty acid oxidation have been well-defined, implicating episodic hypoketotic hypoglycemia provoked by catabolic stress, multiple organ failure, muscle weakness, or hypertrophic cardiomyopathy. Additionally, syndromes of severe maternal illness (HELLP syndrome and AFLP have been associated with pregnancies carrying a fetus affected by fatty acid oxidation deficiencies. However, little is known about fatty acids kinetics, especially during fasting or exercise when the demand for fatty acid oxidation is increased (catabolic stress. Results A computational kinetic network of 64 reactions with 91 compounds and 301 parameters was constructed to study dynamic properties of mitochondrial fatty acid β-oxidation. Various deficiencies of acyl-CoA dehydrogenase were simulated and verified with measured concentrations of indicative metabolites of screened newborns in Middle Europe and South Australia. The simulated accumulation of specific acyl-CoAs according to the investigated enzyme deficiencies are in agreement with experimental data and findings in literature. Investigation of the dynamic properties of the fatty acid β-oxidation reveals that the formation of acetyl-CoA – substrate for energy production – is highly impaired within the first hours of fasting corresponding to the rapid progress to coma within 1–2 hours. LCAD deficiency exhibits the highest accumulation of fatty acids along with marked increase of these substrates during catabolic stress and the lowest production rate of acetyl-CoA. These findings might confirm gestational loss to

  19. Evolution of Enzyme Kinetic Mechanisms.

    Science.gov (United States)

    Ulusu, Nuriye Nuray

    2015-06-01

    This review paper discusses the reciprocal kinetic behaviours of enzymes and the evolution of structure-function dichotomy. Kinetic mechanisms have evolved in response to alterations in ecological and metabolic conditions. The kinetic mechanisms of single-substrate mono-substrate enzyme reactions are easier to understand and much simpler than those of bi-bi substrate enzyme reactions. The increasing complexities of kinetic mechanisms, as well as the increasing number of enzyme subunits, can be used to shed light on the evolution of kinetic mechanisms. Enzymes with heterogeneous kinetic mechanisms attempt to achieve specific products to subsist. In many organisms, kinetic mechanisms have evolved to aid survival in response to changing environmental factors. Enzyme promiscuity is defined as adaptation to changing environmental conditions, such as the introduction of a toxin or a new carbon source. Enzyme promiscuity is defined as adaptation to changing environmental conditions, such as the introduction of a toxin or a new carbon source. Enzymes with broad substrate specificity and promiscuous properties are believed to be more evolved than single-substrate enzymes. This group of enzymes can adapt to changing environmental substrate conditions and adjust catalysing mechanisms according to the substrate's properties, and their kinetic mechanisms have evolved in response to substrate variability.

  20. Roles of abnormal lipid metabolism in pathogenesis of non-alcoholic fatty liver disease

    OpenAIRE

    LU Ran; HONG Tianpei

    2015-01-01

    The prevalence of non-alcoholic fatty liver disease (NAFLD) keeps rising worldwide along with the increasing prevalence of metabolic diseases such as obesity, type 2 diabetes, and dyslipidemia. Although most NAFLD patients present with simple steatosis of hepatocytes, some patients progress to non-alcoholic steatohepatitis, liver cirrhosis, and even cancer. In the Western world, NAFLD is the most common cause of elevated liver enzymes, and hence there has been a growing interest in this disea...

  1. Genetic variation in genes of the fatty acid synthesis pathway and breast cancer risk

    DEFF Research Database (Denmark)

    Campa, Daniele; McKay, James; Sinilnikova, Olga

    2009-01-01

    Fatty acid synthase (FAS) is the major enzyme of lipogenesis. It catalyzes the NADPH-dependent condensation of acetyl-CoA and malonyl-CoA to produce palmitic acid. Transcription of the FAS gene is controlled synergistically by the transcription factors ChREBP (carbohydrate response element-bindin...... and by subgroups of age, menopausal status, hormone replacement therapy (HRT) use or BMI. On the other hand, we found that two SNPs in FASN were associated with BMI....

  2. Metabolic adaptations during lactogenesis. Fatty acid and lactose synthesis in cow mammary tissue.

    Science.gov (United States)

    Mellenberger, R W; Bauman, D E; Nelson, D R

    1973-11-01

    1. Mammary-tissue biopsies were obtained from multiparous cows at 30 and 7 days pre partum and 7 and 40 days post partum. Investigations of the effect of lactogenesis on fatty acid and lactose synthesis involved measurements of biosynthetic capacity (tissue-slice incubations in vitro) and activities of relevant enzymes. 2. Fatty acid synthesis from acetate increased over 20-fold from 30 days pre partum to 40 days post partum. Changes in the lipogenic capacity of mammary-tissue slices more closely paralleled increases in the activities of acetyl-CoA carboxylase (EC 6.4.1.2) and acetyl-CoA synthetase (EC 6.2.1.1) than of other enzymes involved in acetate incorporation into fatty acids or in NADPH generation. 3. Lactose biosynthesis by mammary-tissue slices, lactose synthetase activity (EC 2.4.1.22) and alpha-lactalbumin concentration were all negligible at 30 days pre partum but increased 2.5-4-fold between 7 days pre partum and 40 days post partum. Phosphoglucomutase (EC 2.7.5.1), UDP-glucose pyrophosphorylase (EC 2.7.7.9) and UDP-glucose 4-epimerase (EC 5.1.3.2) had substantial activities at 30 days pre partum and increased less dramatically during lactogenesis. 4. Results are consistent with acetyl-CoA carboxylase and perhaps acetyl-CoA synthetase representing the regulatory enzyme(s) in fatty acid synthesis, with lactose synthetase (alpha-lactalbumin) serving a similar function in lactose biosynthesis.

  3. Isolation and characterization of unsaturated fatty acid auxotrophs of Streptococcus pneumoniae and Streptococcus mutans.

    Science.gov (United States)

    Altabe, Silvia; Lopez, Paloma; de Mendoza, Diego

    2007-11-01

    Unsaturated fatty acid (UFA) biosynthesis is essential for the maintenance of membrane structure and function in many groups of anaerobic bacteria. Like Escherichia coli, the human pathogen Streptococcus pneumoniae produces straight-chain saturated fatty acids (SFA) and monounsaturated fatty acids. In E. coli UFA synthesis requires the action of two gene products, the essential isomerase/dehydratase encoded by fabA and an elongation condensing enzyme encoded by fabB. S. pneumoniae lacks both genes and instead employs a single enzyme with only an isomerase function encoded by the fabM gene. In this paper we report the construction and characterization of an S. pneumoniae 708 fabM mutant. This mutant failed to grow in complex medium, and the defect was overcome by addition of UFAs to the growth medium. S. pneumoniae fabM mutants did not produce detectable levels of monounsaturated fatty acids as determined by gas chromatography-mass spectrometry and thin-layer chromatography analysis of the radiolabeled phospholipids. We also demonstrate that a fabM null mutant of the cariogenic organism Streptococcus mutants is a UFA auxotroph, indicating that FabM is the only enzyme involved in the control of membrane fluidity in streptococci. Finally we report that the fabN gene of Enterococcus faecalis, coding for a dehydratase/isomerase, complements the growth of S. pneumoniae fabM mutants. Taken together, these results suggest that FabM is a potential target for chemotherapeutic agents against streptococci and that S. pneumoniae UFA auxotrophs could help identify novel genes encoding enzymes involved in UFA biosynthesis.

  4. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.

    Science.gov (United States)

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika

    2016-01-01

    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  5. Enzyme changes associated with mitochondrial malic enzyme deficiency in mice

    Energy Technology Data Exchange (ETDEWEB)

    Mohrenweiser, H.W.; Erickson, R.P.

    1979-01-01

    A genetically determined absence of mitochondrial malic enzyme (EC 1.1.1.40) in c/sup 3H//c/sup 6H/ mice is accompanied by a four-fold increase in liver glucose-6-phosphate dehydrogenase and a two-fold increase for 6-phosphogluconate dehydrogenase activity. Smaller increases in the activity of serine dehydratase and glutamic oxaloacetic transaminase are observed while the level of glutamic pyruvate transaminase activity is reduced in the liver of deficient mice. Unexpectedly, the level of activity of total malic enzyme in the livers of mitochrondrial malic enzyme-deficient mice is increased approximately 50% compared to littermate controls. No similar increase in solublle malic enzyme activity is observed in heart of kidney tissue of mutant mice and the levels of total malic enzyme in these tissues are in accord with expected levels of activity in mitochondrial malic enzyme-deficient mice. The divergence in levels of enzyme activity between mutant and wild-type mice begins at 19 to 21 days of age. Immunoinactivation experiments with monospecific antisera to the soluble malic enzyme and glucose-6-phosphate dehydrogenase demonstrate that the activity increases represent increases in the amount of enzyme protein. The alterations are not consistent with a single hormonal response.

  6. Thioesterase activity and acyl-CoA/fatty acid cross-talk of hepatocyte nuclear factor-4{alpha}.

    Science.gov (United States)

    Hertz, Rachel; Kalderon, Bella; Byk, Tamara; Berman, Ina; Za'tara, Ghadeer; Mayer, Raphael; Bar-Tana, Jacob

    2005-07-01

    Hepatocyte nuclear factor-4alpha (HNF-4alpha) activity is modulated by natural and xenobiotic fatty acid and fatty acyl-CoA ligands as a function of their chain length, unsaturation, and substitutions. The acyl-CoA site of HNF-4alpha is reported here to consist of the E-F domain, to bind long-chain acyl-CoAs but not the respective free acids, and to catalyze the hydrolysis of bound fatty acyl-CoAs. The free acid pocket, previously reported in the x-ray structure of HNF-4alpha E-domain, entraps fatty acids but excludes acyl-CoAs. The acyl-CoA and free acid sites are distinctive and noncongruent. Free fatty acid products of HNF-4alpha thioesterase may exchange with free acids entrapped in the fatty acid pocket of HNF-4alpha. Cross-talk between the acyl-CoA and free fatty acid binding sites is abrogated by high affinity, nonhydrolyzable acyl-CoA ligands of HNF-4alpha that inhibit its thioesterase activity. Hence, HNF-4alpha transcriptional activity is controlled by its two interrelated acyl ligands and two binding sites interphased in tandem by the thioesterase activity. The acyl-CoA/free-acid and receptor/enzyme duality of HNF-4alpha extends the paradigm of nuclear receptors.

  7. Diagnostic methods of fatty liver disease

    International Nuclear Information System (INIS)

    Kukuk, Guido Matthias; Sprinkart, Alois Martin; Traeber, Frank

    2017-01-01

    Fatty liver disease is defined as an abnormal accumulation of lipids into the cytoplasm of hepatocytes. Different kinds of fatty liver diseases are becoming the most important etiologies of end-stage liver disease in the western world. Because fatty liver is a theoretically reversible process, timely and accurate diagnosis is a prerequisite for potential therapeutic options. This work describes major diagnostic methods and discusses particular advantages and disadvantages of various techniques.

  8. Fatty acid synthesis by spinach chloroplasts, 2

    International Nuclear Information System (INIS)

    Yamada, Mitsuhiro; Nakamura, Yasunori

    1975-01-01

    By incorporation of 3 H 2 O into the fatty acid chain in the presence of unlabelled precursor, we showed that fatty acids are synthesized from PGA, PEP and pyruvate by intact spinach chloroplasts in the light. 13 C-tracer experiments confirmed that 1-C of pyruvate is decarboxylated and 2-C is incorporated into fatty acids by the chloroplasts. The patterns of fatty acids synthesized from PGA and pyruvate were the same as that from acetate. The highest rate of fatty acid synthesis was reached at the physiological concentration of PGA (3 mM) and pyruvate (1 mM). These results indicate the operation of the following path in the chloroplasts in light: PGA→PEP→pyruvate→acetylCoA→fatty acids. Since citrate and OAA were much less active and malate and glyoxylate were inert as precursors for fatty acid synthesis, PEP or pyruvate carboxylation, citrate lyase reaction and malate synthetase reaction are not involved in the formation of acetylCoA and fatty acids. Since pyruvate was much more effective as a substrate for fatty acid synthesis than lactate, acetaldehyde or acetate, direct decarboxylation path is considered to be the primary path from pyruvate to acetylCoA. The insignificant effect of chloroplast-washing on fatty acid synthesis from PGA and pyruvate indicates that the glycolytic path from PGA to pyruvate is associated with the chloroplasts. Since pyruvate was more effectively incorporated into fatty acids than acetylCoA, it is unlikely that pyruvate decarboxylation to acetylCoA is due to mitochondria contaminating the chloroplast preparation. On the basis of measurements of 3 H 2 O incorporation in the light and dark, the activity of fatty acid synthesis in spincah leaves appears to be shared by the activities in chloroplasts (87%) and other organelles (13%). (author)

  9. The intracellular parasite Toxoplasma gondii depends on the synthesis of long chain and very long-chain unsaturated fatty acids not supplied by the host cell

    Science.gov (United States)

    Ramakrishnan, Srinivasan; Docampo, Melissa D.; MacRae, James I.; Ralton, Julie E.; Rupasinghe, Thusitha; McConville, Malcolm J.; Striepen, Boris

    2015-01-01

    SUMMARY Apicomplexa are parasitic protozoa that cause important human diseases including malaria, cryptosporidiosis and toxoplasmosis. The replication of these parasites within their target host cell is dependent on both salvage as well as de novo synthesis of fatty acids. In T. gondii, fatty acid synthesis via the apicoplast-localized FASII is essential for pathogenesis, while the role of two other fatty acid biosynthetic complexes remains unclear. Here we demonstrate that the ER-localized fatty acid elongation (ELO) is essential for parasite growth. Conditional knock-down of the non-redundant hydroxyacyl-CoA dehydratase and enoyl-CoA reductase enzymes in the ELO pathway severely repressed intracellular parasite growth. 13C-glucose and 13C-acetate labeling and comprehensive lipidomic analyses of these mutants showed a selective defect in synthesis of unsaturated long and very long chain fatty acids (LCFAs and VLCFAs) and depletion of phosphatidylinositol and phosphatidylethanolamine species containing unsaturated LCFAs and VLCFAs. This requirement for ELO pathway was by-passed by supplementing the media with specific fatty acids, indicating active, but inefficient import of host fatty acids. Our experiments highlight a gap between the fatty acid needs of the parasite and availability of specific fatty acids in the host cell that the parasite has to close using a dedicated synthesis and modification pathway. PMID:25825226

  10. The intracellular parasite Toxoplasma gondii depends on the synthesis of long-chain and very long-chain unsaturated fatty acids not supplied by the host cell.

    Science.gov (United States)

    Ramakrishnan, Srinivasan; Docampo, Melissa D; MacRae, James I; Ralton, Julie E; Rupasinghe, Thusitha; McConville, Malcolm J; Striepen, Boris

    2015-07-01

    Apicomplexa are parasitic protozoa that cause important human diseases including malaria, cryptosporidiosis and toxoplasmosis. The replication of these parasites within their target host cell is dependent on both salvage as well as de novo synthesis of fatty acids. In Toxoplasma gondii, fatty acid synthesis via the apicoplast-localized FASII is essential for pathogenesis, while the role of two other fatty acid biosynthetic complexes remains unclear. Here, we demonstrate that the ER-localized fatty acid elongation (ELO) complexes are essential for parasite growth. Conditional knockdown of the nonredundant hydroxyacyl-CoA dehydratase and enoyl-CoA reductase enzymes in the ELO pathway severely repressed intracellular parasite growth. (13) C-glucose and (13) C-acetate labeling and comprehensive lipidomic analyses of these mutants showed a selective defect in synthesis of unsaturated long and very long-chain fatty acids (LCFAs and VLCFAs) and depletion of phosphatidylinositol and phosphatidylethanolamine species containing unsaturated LCFAs and VLCFAs. This requirement for ELO pathway was bypassed by supplementing the media with specific fatty acids, indicating active but inefficient import of host fatty acids. Our experiments highlight a gap between the fatty acid needs of the parasite and availability of specific fatty acids in the host cell that the parasite has to close using a dedicated synthesis and modification pathway. © 2015 John Wiley & Sons Ltd.

  11. Fatty acid metabolism: target for metabolic syndrome

    OpenAIRE

    Wakil, Salih J.; Abu-Elheiga, Lutfi A.

    2009-01-01

    Fatty acids are a major energy source and important constituents of membrane lipids, and they serve as cellular signaling molecules that play an important role in the etiology of the metabolic syndrome. Acetyl-CoA carboxylases 1 and 2 (ACC1 and ACC2) catalyze the synthesis of malonyl-CoA, the substrate for fatty acid synthesis and the regulator of fatty acid oxidation. They are highly regulated and play important roles in the energy metabolism of fatty acids in animals, including humans. They...

  12. Enzyme molecules in solitary confinement.

    Science.gov (United States)

    Liebherr, Raphaela B; Gorris, Hans H

    2014-09-12

    Large arrays of homogeneous microwells each defining a femtoliter volume are a versatile platform for monitoring the substrate turnover of many individual enzyme molecules in parallel. The high degree of parallelization enables the analysis of a statistically representative enzyme population. Enclosing individual enzyme molecules in microwells does not require any surface immobilization step and enables the kinetic investigation of enzymes free in solution. This review describes various microwell array formats and explores their applications for the detection and investigation of single enzyme molecules. The development of new fabrication techniques and sensitive detection methods drives the field of single molecule enzymology. Here, we introduce recent progress in single enzyme molecule analysis in microwell arrays and discuss the challenges and opportunities.

  13. Penetration Enzymes of Schistosome Cercariae.

    Science.gov (United States)

    1982-10-12

    schistosomules; *: (4) differences in intraspecific geographical strains of Schistosoma mansoni; and (5) snail -parasite relationships. (1) Cercarial Enzymes...3) Skin surface lipid can be used to stimulate cercarial secretion which can be collected in vitro. (4) Since postacetabular gland mucus is not water...enzyme activity throughout the patency of infection in snails exposed to 8 to 10 or to I miracidium, required recording cercarial harvests and enzyme

  14. Production of saccharifying enzyme using the wastewater of a shochu distillery

    Energy Technology Data Exchange (ETDEWEB)

    Morimura, S.; Kida, K.; Yakita, Y.; Sonoda, Y. (Kumamoto University, Kumamoto (Japan). Faculty of Engineering); Myoga, H. (Organo Co. LTd., Tokyo (Japan))

    1991-05-25

    A saccharifying enzyme was produced using wastewater from a shochu distillery. Since the wastewater contained highly concentrated volatile fatty acids and those severely inhibited cell growth at low pH as converted to their free forms, the initial pH ranging from 4.5 to 6.0 was optimum. It was suggested that cell autolysis facilitated the release of the saccharifying enzyme, however, a released protease digested the enzyme with a subsequent decrease in activity. The enzyme was purified easily, and the purified enzyme was homogeneous as analyzed by disc electrophoresis. The enzyme was characterized by a molecular weight of 54,000 Da, an isoelectric point of pH 3.6, and the optimum reaction temperature and pH of 50-55{degree}C and 4.5-5.5, respectively. The enzyme could digest no raw starch, and the hydrolyzate of soluble starch by the enzyme was composed of two to four oligosaccharides. Based on above results and the amino acid sequence in a N-terminal, the enzyme produced was concluded to be {alpha}-amylase. 11 refs., 8 figs., 6 tabs.

  15. Effect of overexpression of fatty acid 9-hydroperoxide lyase in tomatoes (Lycopersicon esculentum Mill.).

    Science.gov (United States)

    Matsui, K; Fukutomi, S; Wilkinson, J; Hiatt, B; Knauf, V; Kajwara, T

    2001-11-01

    To modify the flavor properties of tomato fruits, cucumber fatty acid hydroperoxide lyase (HPL), which can act on 9-hydroperoxides of fatty acids to form volatile C9-aldehydes, was introduced to tomato plants. Through enzyme assay, high activity of the introduced HPL could be found in either the leaves or fruits of transgenic tomatoes; however, the composition of volatile short-chain aldehydes and alcohols in the transgenic tomato fruits was little modified. This was unexpected because tomato fruits have high lipoxygenase activity to form 9-hydroperoxides. When linoleic acid was added to a crude homogenate prepared from the transgenic tomato fruits, a high amount of C9-aldehyde was formed, but the amount of C6-aldehyde was almost equivalent to that in nontransgenic tomatoes. Through quantification of fatty acid hydroperoxides, it has been revealed that 13-hydroperoxides of fatty acids are preferably formed from endogenous substrate, whereas 9-hydroperoxides are formed from fatty acids added exogenously. From these observations, possible mechanisms to regulate metabolic flow of the lyase pathway are discussed.

  16. Tracing the fate of dietary fatty acids: metabolic studies of postprandial lipaemia in human subjects.

    Science.gov (United States)

    Fielding, Barbara

    2011-08-01

    Most postprandial studies have investigated the response of a single meal, yet the ingestion of sequential meals is more typical in a Western society. The aim of this review is to explain how natural and stable isotope tracers of fatty acids have been used to investigate the metabolism of dietary fat after single and multiple meals, with a focus on in vivo measurements of adipose tissue metabolism. When stable isotope tracers are combined with arteriovenous difference measurements, very specific measurements of metabolic flux across tissues can be made. We have found that adipose tissue is a net importer of dietary fat for 5 h following a single test meal and for most of the day during a typical three-meal eating pattern. When dietary fat is cleared from plasma, some fatty acids 'spillover' into the plasma and contribute up to 50% of postprandial plasma NEFA concentrations. Therefore, plasma NEFA concentrations after a meal reflect the balance between intracellular and extracellular lipolysis in adipose tissue. This balance is altered after the acute ingestion of fructose. The enzyme lipoprotein lipase is a key modulator of fatty acid flux in adipose tissue and its rate of action is severely diminished in obese men. In conclusion, in vivo studies of human metabolism can quantify the way that adipose tissue fatty acid trafficking modulates plasma lipid concentrations. This has implications for the flux of fatty acids to tissues that are susceptible to ectopic fat deposition such as the liver and muscle.

  17. Mouse models for disorders of mitochondrial fatty acid beta-oxidation.

    Science.gov (United States)

    Schuler, A Michele; Wood, Philip A

    2002-01-01

    Mitochondrial beta-oxidation of fatty acids is vital for energy production in periods of fasting and other metabolic stress. Human patients have been identified with inherited disorders of mitochondrial beta-oxidation of fatty acids with enzyme deficiencies identified at many of the steps in this pathway. Although these patients exhibit a range of disease processes, Reye-like illness (hypoketotic-hypoglycemia, hyperammonemia and fatty liver) and cardiomyopathy are common findings. There have been several mouse models developed to aid in the study of these disease conditions. The characterized mouse models include inherited deficiencies of very long-chain acyl-CoA dehydrogenase, long-chain acyl-CoA dehydrogenase, short-chain acyl-CoA dehydrogenase, mitochondrial trifunctional protein-alpha, and medium-/short-chain hydroxyacyl-CoA dehydrogenase. Mouse mutants developed, but presently incompletely characterized as models, include carnitine palmitoyltransferase-1a and medium-chain acyl-CoA dehydrogenase deficiencies. In general, the mouse models of disorders of mitochondrial fatty acid beta-oxidation have shown clinical signs that include Reye-like syndrome and cardiomyopathy, and many are cold intolerant. It is expected that these mouse models will provide vital contributions in understanding the mechanisms of disease pathogenesis of fatty acid oxidation disorders and the development of appropriate treatments and supportive care.

  18. Intake of fatty acids in Western Europe with emphasis on trans fatty acids: The TRANSFAIR study

    NARCIS (Netherlands)

    Hulshof, K.F.A.M; Erp van - Baart, M.A.; Anttolainen, M.; Becker, W.; Church, S.M.; Couet, C.; Hermann-Kunz, E.; Kesteloot, H.; Leth, T.; Martins, I.; Moreiras, O.; Moschandreas, J.; Pizzoferrato, L.; Rimestad, A.H.; Thorgeirsdottir, H.; Amelsvoort, J.M.M. van; Aro, A.; Kafatos, A.G.; Lanzmann-Petithory, D.; Poppel, G. van

    1999-01-01

    Objective: To assess the intake of trans fatty acids (TFA) and other fatty acids in 14 Western European countries. Design and subjects: A maximum of 100 foods per country were sampled and centrally analysed. Each country calculated the intake of individual trans and other fatty acids, clusters of

  19. Enzyme Mimics: Advances and Applications.

    Science.gov (United States)

    Kuah, Evelyn; Toh, Seraphina; Yee, Jessica; Ma, Qian; Gao, Zhiqiang

    2016-06-13

    Enzyme mimics or artificial enzymes are a class of catalysts that have been actively pursued for decades and have heralded much interest as potentially viable alternatives to natural enzymes. Aside from having catalytic activities similar to their natural counterparts, enzyme mimics have the desired advantages of tunable structures and catalytic efficiencies, excellent tolerance to experimental conditions, lower cost, and purely synthetic routes to their preparation. Although still in the midst of development, impressive advances have already been made. Enzyme mimics have shown immense potential in the catalysis of a wide range of chemical and biological reactions, the development of chemical and biological sensing and anti-biofouling systems, and the production of pharmaceuticals and clean fuels. This Review concerns the development of various types of enzyme mimics, namely polymeric and dendrimeric, supramolecular, nanoparticulate and proteinic enzyme mimics, with an emphasis on their synthesis, catalytic properties and technical applications. It provides an introduction to enzyme mimics and a comprehensive summary of the advances and current standings of their applications, and seeks to inspire researchers to perfect the design and synthesis of enzyme mimics and to tailor their functionality for a much wider range of applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Enzymes From Rare Actinobacterial Strains.

    Science.gov (United States)

    Suriya, J; Bharathiraja, S; Manivasagan, P; Kim, S-K

    Actinobacteria constitute rich sources of novel biocatalysts and novel natural products for medical and industrial utilization. Although actinobacteria are potential source of economically important enzymes, the isolation and culturing are somewhat tough because of its extreme habitats. But now-a-days, the rate of discovery of novel compounds producing actinomycetes from soil, freshwater, and marine ecosystem has increased much through the developed culturing and genetic engineering techniques. Actinobacteria are well-known source of their bioactive compounds and they are the promising source of broad range of industrially important enzymes. The bacteria have the capability to degrade a range of pesticides, hydrocarbons, aromatic, and aliphatic compounds (Sambasiva Rao, Tripathy, Mahalaxmi, & Prakasham, 2012). Most of the enzymes are mainly derived from microorganisms because of their easy of growth, minimal nutritional requirements, and low-cost for downstream processing. The focus of this review is about the new, commercially useful enzymes from rare actinobacterial strains. Industrial requirements are now fulfilled by the novel actinobacterial enzymes which assist the effective production. Oxidative enzymes, lignocellulolytic enzymes, extremozymes, and clinically useful enzymes are often utilized in many industrial processes because of their ability to catalyze numerous reactions. Novel, extremophilic, oxidative, lignocellulolytic, and industrially important enzymes from rare Actinobacterial population are discussed in this chapter. © 2016 Elsevier Inc. All rights reserved.

  1. Enzyme therapeutics for systemic detoxification.

    Science.gov (United States)

    Liu, Yang; Li, Jie; Lu, Yunfeng

    2015-08-01

    Life relies on numerous biochemical processes working synergistically and correctly. Certain substances disrupt these processes, inducing living organism into an abnormal state termed intoxication. Managing intoxication usually requires interventions, which is referred as detoxification. Decades of development on detoxification reveals the potential of enzymes as ideal therapeutics and antidotes, because their high substrate specificity and catalytic efficiency are essential for clearing intoxicating substances without adverse effects. However, intrinsic shortcomings of enzymes including low stability and high immunogenicity are major hurdles, which could be overcome by delivering enzymes with specially designed nanocarriers. Extensive investigations on protein delivery indicate three types of enzyme-nanocarrier architectures that show more promise than others for systemic detoxification, including liposome-wrapped enzymes, polymer-enzyme conjugates, and polymer-encapsulated enzymes. This review highlights recent advances in these nano-architectures and discusses their applications in systemic detoxifications. Therapeutic potential of various enzymes as well as associated challenges in achieving effective delivery of therapeutic enzymes will also be discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Interaction of (n-3) and (n-6) fatty acids in desaturation and chain elongation of essential fatty acids in cultured glioma cells

    International Nuclear Information System (INIS)

    Cook, H.W.; Spence, M.W.

    1987-01-01

    Recent research in various biological systems has revived interest in interactions between the (n-6) and (n-3) essential fatty acids. We have utilized cultured glioma cells to show that linolenic acid, 18:3(n-3), is rapidly desaturated and chain elongated; 20:5(n-3) is the major product and accumulates almost exclusively in phospholipids. We examined effects of various (n-6), (n-3), (n-9) and (n-7) fatty acids at 40 microM concentration on desaturation and chain elongation processes using [1- 14 C]18:3(n-3) as substrate. In general, monoenoic fatty acids were without effect. The (n-6) fatty acids (18:2, 18:3, 20:3, 20:4 and 22:4) had little effect on total product formed. There was a shift of labeled product to triacylglycerol, and in phospholipids, slightly enhanced conversion of 20:5 to 22:5 was evident. In contrast, 22:6(n-3) was inhibitory, whereas 20:3(n-3) and 20:5(n-3) had much less effect. At concentrations less than 75 microM, all acids were inhibitory. Most products were esterified to phosphatidylcholine, but phosphatidylethanolamine also contained a major portion of 20:5 and 22:5. We provide a condensed overview of how the (n-6) and (n-3) fatty acids interact to modify relative rates of desaturation and chain elongation, depending on the essential fatty acid precursor. Thus, the balance between these dietary acids can markedly influence enzymes providing crucial membrane components and substrates for biologically active oxygenated derivatives

  3. Direct comparison of enzyme histochemical and immunohistochemical methods to localize an enzyme

    NARCIS (Netherlands)

    van Noorden, Cornelis J. F.

    2002-01-01

    Immunohistochemical localization of enzymes is compared directly with localization of enzyme activity with (catalytic) enzyme histochemical methods. The two approaches demonstrate principally different aspects of an enzyme. The immunohistochemical method localizes the enzyme protein whether it is

  4. Inhibition of aldo-keto reductase family 1 member B10 by unsaturated fatty acids.

    Science.gov (United States)

    Hara, Akira; Endo, Satoshi; Matsunaga, Toshiyuki; Soda, Midori; El-Kabbani, Ossama; Yashiro, Koji

    2016-11-01

    A human member of the aldo-keto reductase (AKR) superfamily, AKR1B10, is a cytosolic NADPH-dependent reductase toward various carbonyl compounds including reactive aldehydes, and is normally expressed in intestines. The enzyme is overexpressed in several extraintestinal cancers, and suggested as a potential target for cancer treatment. We found that saturated and cis-unsaturated fatty acids inhibit AKR1B10. Among the saturated fatty acids, myristic acid was the most potent, showing the IC 50 value of 4.2 μM cis-Unsaturated fatty acids inhibited AKR1B10 more potently, and linoleic, arachidonic, and docosahexaenoic acids showed the lowest IC 50 values of 1.1 μM. The inhibition by these fatty acids was reversible and kinetically competitive with respect to the substrate, showing the K i values of 0.24-1.1 μM. These fatty acids, except for α-linoleic acid, were much less inhibitory to structurally similar aldose reductase. Site-directed mutagenesis study suggested that the fatty acids interact with several active site residues of AKR1B10, of which Gln114, Val301 and Gln303 are responsible for the inhibitory selectivity. Linoleic and arachidonic acids also effectively inhibited AKR1B10-mediated 4-oxo-2-nonenal metabolism in HCT-15 cells. Thus, the cis-unsaturated fatty acids may be used as an adjuvant therapy for treatment of cancers that up-regulate AKR1B10. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Reprint of: Marine OMEGA-3 fatty acids in the prevention of cardiovascular disease.

    Science.gov (United States)

    Mori, Trevor A

    2018-04-12

    Omega-6 (ω6) and omega-3 (ω3) fatty acids are two classes of dietary polyunsaturated fatty acids derived from linoleic acid (18:2ω6) and α-linolenic acid (18:3ω3), respectively. Enzymatic metabolism of linoleic and α-linolenic acids generates arachidonic acid (20:4ω6) and eicosapentaenoic acid (20:5ω3; EPA), respectively, both of which are substrates for enzymes that yield eicosanoids with multiple and varying physiological functions. Further elongation and desaturation of EPA yields the 22-carbon fatty acid docosahexaenoic acid (22:6ω3; DHA). The main dietary source of EPA and DHA for human consumption is fish, especially oily fish. There is considerable evidence that EPA and DHA are protective against cardiovascular disease (heart disease and stroke), particularly in individuals with pre-existing disease. ω3 Fatty acids benefit multiple risk factors including blood pressure, blood vessel function, heart function and blood lipids, and they have antithrombotic, anti-inflammatory and anti-oxidative actions. ω3 Fatty acids do not adversely interact with medications. Supplementation with ω3 fatty acids is recommended in individuals with elevated blood triglyceride levels and patients with coronary heart disease. A practical recommendation for the general population is to increase ω3 fatty acid intake by incorporating fish as part of a healthy diet that includes increased fruits and vegetables, and moderation of salt intake. Health authorities recommend the general population should consume at least two oily fish meals per week. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Marine OMEGA-3 fatty acids in the prevention of cardiovascular disease.

    Science.gov (United States)

    Mori, Trevor A

    2017-11-01

    Omega-6 (ω6) and omega-3 (ω3) fatty acids are two classes of dietary polyunsaturated fatty acids derived from linoleic acid (18:2ω6) and α-linolenic acid (18:3ω3), respectively. Enzymatic metabolism of linoleic and α-linolenic acids generates arachidonic acid (20:4ω6) and eicosapentaenoic acid (20:5ω3; EPA), respectively, both of which are substrates for enzymes that yield eicosanoids with multiple and varying physiological functions. Further elongation and desaturation of EPA yields the 22-carbon fatty acid docosahexaenoic acid (22:6ω3; DHA). The main dietary source of EPA and DHA for human consumption is fish, especially oily fish. There is considerable evidence that EPA and DHA are protective against cardiovascular disease (heart disease and stroke), particularly in individuals with pre-existing disease. ω3 Fatty acids benefit multiple risk factors including blood pressure, blood vessel function, heart function and blood lipids, and they have antithrombotic, anti-inflammatory and anti-oxidative actions. ω3 Fatty acids do not adversely interact with medications. Supplementation with ω3 fatty acids is recommended in individuals with elevated blood triglyceride levels and patients with coronary heart disease. A practical recommendation for the general population is to increase ω3 fatty acid intake by incorporating fish as part of a healthy diet that includes increased fruits and vegetables, and moderation of salt intake. Health authorities recommend the general population should consume at least two oily fish meals per week. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Regulation of the Omega-3 Fatty Acid Biosynthetic Pathway in Atlantic Salmon Hepatocytes.

    Directory of Open Access Journals (Sweden)

    Marte Avranden Kjær

    Full Text Available Limited availability of the n-3 fatty acids EPA and DHA have led to an interest in better understanding of the n-3 biosynthetic pathway and its regulation. The biosynthesis of alpha-linolenic acid to EPA and DHA involves several complex reaction steps including desaturation-, elongation- and peroxisomal beta-oxidation enzymes. The aims of the present experiments were to gain more knowledge on how this biosynthesis is regulated over time by different doses and fatty acid combinations. Hepatocytes isolated from salmon were incubated with various levels and combinations of oleic acid, EPA and DHA. Oleic acid led to a higher expression of the Δ6 fatty acid desaturase (fad genes Δ6fad_a, Δ6fad_b, Δ6fad_c and the elongase genes elovl2 compared with cells cultured in medium enriched with DHA. Further, the study showed rhythmic variations in expression over time. Levels were reached where a further increase in specific fatty acids given to the cells not stimulated the conversion further. The gene expression of Δ6fad_a_and Δ6fad_b responded similar to fatty acid treatment, suggesting a co-regulation of these genes, whereas Δ5fad and Δ6fad_c showed a different regulation pattern. EPA and DHA induced different gene expression patterns, especially of Δ6fad_a. Addition of radiolabelled alpha-linolenic acid to the hepatocytes confirmed a higher degree of elongation and desaturation in cells treated with oleic acid compared to cells treated with DHA. This study suggests a complex regulation of the conversion process of n-3 fatty acids. Several factors, such as that the various gene copies are differently regulated, the gene expression show rhythmic variations and gene expression only affected to a certain level, determines when you get the maximum conversion of the beneficial n-3 fatty acids.

  8. Manipulation of the Endocannabinoid System in Colitis: A Comprehensive Review.

    Science.gov (United States)

    Leinwand, Kristina L; Gerich, Mark E; Hoffenberg, Edward J; Collins, Colm B

    2017-02-01

    Inflammatory bowel disease (IBD) is a lifelong disease of the gastrointestinal tract whose annual incidence and prevalence is on the rise. Current immunosuppressive therapies available for treatment of IBD offer limited benefits and lose effectiveness, exposing a significant need for the development of novel therapies. In the clinical setting, cannabis has been shown to provide patients with IBD symptomatic relief, although the underlying mechanisms of their anti-inflammatory effects remain unclear. This review reflects our current understanding of how targeting the endocannabinoid system, including cannabinoid receptors 1 and 2, endogenous cannabinoids anandamide and 2-arachidonoylglycerol, atypical cannabinoids, and degrading enzymes including fatty acid amide hydrolase and monoacylglycerol lipase, impacts murine colitis. In addition, the impact of cannabinoids on the human immune system is summarized. Cannabinoid receptors 1 and 2, endogenous cannabinoids, and atypical cannabinoids are upregulated in inflammation, and their presence and stimulation attenuate murine colitis, whereas cannabinoid receptor antagonism and cannabinoid receptor deficient models reverse these anti-inflammatory effects. In addition, inhibition of endocannabinoid degradation through monoacylglycerol lipase and fatty acid amide hydrolase blockade can also attenuate colitis development, and is closely linked to cannabinoid receptor expression. Although manipulation of the endocannabinoid system in murine colitis has proven to be largely beneficial in attenuating inflammation, there is a paucity of human study data. Further research is essential to clearly elucidate the specific mechanisms driving this anti-inflammatory effect for the development of therapeutics to target inflammatory disease such as IBD.

  9. Enzyme structure, enzyme function and allozyme diversity in ...

    African Journals Online (AJOL)

    In estimates of population genetic diversity based on allozyme heterozygosity, some enzymes are regularly more variable than others. Evolutionary theory suggests that functionally less important molecules, or parts of molecules, evolve more rapidly than more important ones; the latter enzymes should then theoretically be ...

  10. Immobilized enzymes: understanding enzyme - surface interactions at the molecular level.

    Science.gov (United States)

    Hoarau, Marie; Badieyan, Somayesadat; Marsh, E Neil G

    2017-11-22

    Enzymes immobilized on solid supports have important and industrial and medical applications. However, their uses are limited by the significant reductions in activity and stability that often accompany the immobilization process. Here we review recent advances in our understanding of the molecular level interactions between proteins and supporting surfaces that contribute to changes in stability and activity. This understanding has been facilitated by the application of various surface-sensitive spectroscopic techniques that allow the structure and orientation of enzymes at the solid/liquid interface to be probed, often with monolayer sensitivity. An appreciation of the molecular interactions between enzyme and surface support has allowed the surface chemistry and method of enzyme attachement to be fine-tuned such that activity and stability can be greatly enhanced. These advances suggest that a much wider variety of enzymes may eventually be amenable to immobilization as green catalysts.

  11. Computational enzyme design: transitioning from catalytic proteins to enzymes.

    Science.gov (United States)

    Mak, Wai Shun; Siegel, Justin B

    2014-08-01

    The widespread interest in enzymes stem from their ability to catalyze chemical reactions under mild and ecologically friendly conditions with unparalleled catalytic proficiencies. While thousands of naturally occurring enzymes have been identified and characterized, there are still numerous important applications for which there are no biological catalysts capable of performing the desired chemical transformation. In order to engineer enzymes for which there is no natural starting point, efforts using a combination of quantum chemistry and force-field based protein molecular modeling have led to the design of novel proteins capable of catalyzing chemical reactions not catalyzed by naturally occurring enzymes. Here we discuss the current status and potential avenues to pursue as the field of computational enzyme design moves forward. Published by Elsevier Ltd.

  12. Lipase immobilization and production of fatty acid methyl esters from canola oil using immobilized lipase

    International Nuclear Information System (INIS)

    Yuecel, Yasin; Demir, Cevdet; Dizge, Nadir; Keskinler, Buelent

    2011-01-01

    Lipase enzyme from Aspergillus oryzae (EC 3.1.1.3) was immobilized onto a micro porous polymeric matrix which contains aldehyde functional groups and methyl esters of long chain fatty acids (biodiesel) were synthesized by transesterification of crude canola oil using immobilized lipase. Micro porous polymeric matrix was synthesized from styrene-divinylbenzene (STY-DVB) copolymers by using high internal phase emulsion technique and two different lipases, Lipozyme TL-100L ® and Novozym 388 ® , were used for immobilization by both physical adsorption and covalent attachment. Biodiesel production was carried out with semi-continuous operation. Methanol was added into the reactor by three successive additions of 1:4 M equivalent of methanol to avoid enzyme inhibition. The transesterification reaction conditions were as follows: oil/alcohol molar ratio 1:4; temperature 40 o C and total reaction time 6 h. Lipozyme TL-100L ® lipase provided the highest yield of fatty acid methyl esters as 92%. Operational stability was determined with immobilized lipase and it indicated that a small enzyme deactivation occurred after used repeatedly for 10 consecutive batches with each of 24 h. Since the process is yet effective and enzyme does not leak out from the polymer, the method can be proposed for industrial applications. -- Research highlights: → Lipozyme TL-100L and Novozym 388 were immobilized onto micro porous polymeric matrix by both physical adsorption and covalent linking. → Immobilized enzymes were used for synthesis of fatty acid methyl esters by transesterification of canola oil and methanol using semi-continuous operation system. → According to chromatographic analysis, Lipase Lipozyme TL-100L resulted in the highest yield of methyl ester as 92%.

  13. Expression of Malic Enzymes in Sebaceous Lesions.

    Science.gov (United States)

    Su, Ting-Fu; Gao, Hong-Wei

    2016-08-01

    Malic enzymes (MEs) are involved in fatty acid biosynthesis and lipid accumulation, and their expression in sebocytes and sebaceous lesions has not been investigated. The aims of this study were to examine ME1 and ME2 expression in normal skin and sebaceous lesions. A total of 68 cases including 5 specimens of normal skin, 12 facial lesions showing sebaceous hyperplasia, 18 sebaceous adenomas, 10 sebaceomas, 13 steatocystomas, and 10 sebaceous carcinomas were examined for the expression of ME1 and ME2. All benign and malignant sebaceous lesions showed ME1 in clear cells and ME2 in nonclear cells, respectively. ME1/ME2 phenotype is seen in basal sebocytes, basal keratinocytes, sweat glands, and outer root sheath cells and hence not specific. This study demonstrates that ME1/ME2 expression phenotype may have a potential to be a valuable marker for sebaceous differentiation. It is necessary to perform large-scale studies including skin tumors with a clear cell morphology that may mimic sebaceous differentiation.

  14. Expression of lipogenic enzymes in chickens.

    Science.gov (United States)

    Rosebrough, R W; Russell, B A; Poch, S M; Richards, M P

    2007-05-01

    Hubbard x Hubbard chickens (Gallus gallus) growing from 7 to 28 days of age were fed 12 or 30% protein diets and then switched to the diets containing the opposite level of protein. Birds were killed on days 28, 29, 30 and 31. Measurements taken included in vitro lipogenesis (IVL), malic enzyme (ME), isocitrate dehydrogenase (ICD) and aspartate aminotransferase (AAT) activities and the expression of the genes for ME, fatty acid synthase (FAS) and acetyl coenzyme carboxylase (ACC). Gene expression was determined with a combined RT-PCR using SYBR green as a fluorescent probe monitored in a real time mode. IVL and ME activity were inversely related to dietary protein levels (12 to 30%) and to acute changes in either level. In contrast, both ICD and AAT activities were increased by any increase in dietary protein. Lipogenic gene expression was inversely related to protein level, whether fed on an acute or chronic basis. It appears that real time RT-PCR is an acceptable method of estimating gene expression in birds. In addition, further work will focus on primer sizes that might further optimize RT-PCR as an instrument for studying the regulation of avian lipid metabolism. Results of the present study demonstrate a continued role for protein in the regulation of broiler metabolism. However, it should be pointed out that metabolic regulation at the gene level only occurs when feeding very high levels of dietary protein.

  15. Enzyme Mechanism and Slow-Onset Inhibition of Plasmodium falciparum Enoyl-Acyl Carrier Protein Reductase by an Inorganic Complex

    Science.gov (United States)

    de Medeiros, Patrícia Soares de Maria; Ducati, Rodrigo Gay; Basso, Luiz Augusto; Santos, Diógenes Santiago; da Silva, Luiz Hildebrando Pereira

    2011-01-01

    Malaria continues to be a major cause of children's morbidity and mortality worldwide, causing nearly one million deaths annually. The human malaria parasite, Plasmodium falciparum, synthesizes fatty acids employing the Type II fatty acid biosynthesis system (FAS II), unlike humans that rely on the Type I (FAS I) pathway. The FAS II system elongates acyl fatty acid precursors of the cell membrane in Plasmodium. Enoyl reductase (ENR) enzyme is a member of the FAS II system. Here we present steady-state kinetics, pre-steady-state kinetics, and equilibrium fluorescence spectroscopy data that allowed proposal of P. falciparum ENR (PfENR) enzyme mechanism. Moreover, building on previous results, the present study also evaluates the PfENR inhibition by the pentacyano(isoniazid)ferrateII compound. This inorganic complex represents a new class of lead compounds for the development of antimalarial agents focused on the inhibition of PfENR. PMID:21603269

  16. A combination of plasma phospholipid fatty acids and its association with incidence of type 2 diabetes: The EPIC-InterAct case-cohort study

    Science.gov (United States)

    Sharp, Stephen J.; Kröger, Janine; Griffin, Julian L.; Sluijs, Ivonne; Agudo, Antonio; Ardanaz, Eva; Balkau, Beverley; Boeing, Heiner; Chajes, Veronique; Dow, Courtney; Fagherazzi, Guy; Feskens, Edith J. M.; Franks, Paul W.; Gavrila, Diana; Gunter, Marc; Kaaks, Rudolf; Key, Timothy J.; Khaw, Kay-Tee; Kühn, Tilman; Melander, Olle; Molina-Portillo, Elena; Nilsson, Peter M.; Olsen, Anja; Overvad, Kim; Palli, Domenico; Panico, Salvatore; Rolandsson, Olov; Sieri, Sabina; Slimani, Nadia; Spijkerman, Annemieke M. W.; Tjønneland, Anne; Langenberg, Claudia; Riboli, Elio

    2017-01-01

    Background Combinations of multiple fatty acids may influence cardiometabolic risk more than single fatty acids. The association of a combination of fatty acids with incident type 2 diabetes (T2D) has not been evaluated. Methods and findings We measured plasma phospholipid fatty acids by gas chromatography in 27,296 adults, including 12,132 incident cases of T2D, over the follow-up period between baseline (1991–1998) and 31 December 2007 in 8 European countries in EPIC-InterAct, a nested case-cohort study. The first principal component derived by principal component analysis of 27 individual fatty acids (mole percentage) was the main exposure (subsequently called the fatty acid pattern score [FA-pattern score]). The FA-pattern score was partly characterised by high concentrations of linoleic acid, stearic acid, odd-chain fatty acids, and very-long-chain saturated fatty acids and low concentrations of γ-linolenic acid, palmitic acid, and long-chain monounsaturated fatty acids, and it explained 16.1% of the overall variability of the 27 fatty acids. Based on country-specific Prentice-weighted Cox regression and random-effects meta-analysis, the FA-pattern score was associated with lower incident T2D. Comparing the top to the bottom fifth of the score, the hazard ratio of incident T2D was 0.23 (95% CI 0.19–0.29) adjusted for potential confounders and 0.37 (95% CI 0.27–0.50) further adjusted for metabolic risk factors. The association changed little after adjustment for individual fatty acids or fatty acid subclasses. In cross-sectional analyses relating the FA-pattern score to metabolic, genetic, and dietary factors, the FA-pattern score was inversely associated with adiposity, triglycerides, liver enzymes, C-reactive protein, a genetic score representing insulin resistance, and dietary intakes of soft drinks and alcohol and was positively associated with high-density-lipoprotein cholesterol and intakes of polyunsaturated fat, dietary fibre, and coffee (p < 0

  17. A combination of plasma phospholipid fatty acids and its association with incidence of type 2 diabetes: The EPIC-InterAct case-cohort study.

    Science.gov (United States)

    Imamura, Fumiaki; Sharp, Stephen J; Koulman, Albert; Schulze, Matthias B; Kröger, Janine; Griffin, Julian L; Huerta, José M; Guevara, Marcela; Sluijs, Ivonne; Agudo, Antonio; Ardanaz, Eva; Balkau, Beverley; Boeing, Heiner; Chajes, Veronique; Dahm, Christina C; Dow, Courtney; Fagherazzi, Guy; Feskens, Edith J M; Franks, Paul W; Gavrila, Diana; Gunter, Marc; Kaaks, Rudolf; Key, Timothy J; Khaw, Kay-Tee; Kühn, Tilman; Melander, Olle; Molina-Portillo, Elena; Nilsson, Peter M; Olsen, Anja; Overvad, Kim; Palli, Domenico; Panico, Salvatore; Rolandsson, Olov; Sieri, Sabina; Sacerdote, Carlotta; Slimani, Nadia; Spijkerman, Annemieke M W; Tjønneland, Anne; Tumino, Rosario; van der Schouw, Yvonne T; Langenberg, Claudia; Riboli, Elio; Forouhi, Nita G; Wareham, Nick J

    2017-10-01

    Combinations of multiple fatty acids may influence cardiometabolic risk more than single fatty acids. The association of a combination of fatty acids with incident type 2 diabetes (T2D) has not been evaluated. We measured plasma phospholipid fatty acids by gas chromatography in 27,296 adults, including 12,132 incident cases of T2D, over the follow-up period between baseline (1991-1998) and 31 December 2007 in 8 European countries in EPIC-InterAct, a nested case-cohort study. The first principal component derived by principal component analysis of 27 individual fatty acids (mole percentage) was the main exposure (subsequently called the fatty acid pattern score [FA-pattern score]). The FA-pattern score was partly characterised by high concentrations of linoleic acid, stearic acid, odd-chain fatty acids, and very-long-chain saturated fatty acids and low concentrations of γ-linolenic acid, palmitic acid, and long-chain monounsaturated fatty acids, and it explained 16.1% of the overall variability of the 27 fatty acids. Based on country-specific Prentice-weighted Cox regression and random-effects meta-analysis, the FA-pattern score was associated with lower incident T2D. Comparing the top to the bottom fifth of the score, the hazard ratio of incident T2D was 0.23 (95% CI 0.19-0.29) adjusted for potential confounders and 0.37 (95% CI 0.27-0.50) further adjusted for metabolic risk factors. The association changed little after adjustment for individual fatty acids or fatty acid subclasses. In cross-sectional analyses relating the FA-pattern score to metabolic, genetic, and dietary factors, the FA-pattern score was inversely associated with adiposity, triglycerides, liver enzymes, C-reactive protein, a genetic score representing insulin resistance, and dietary intakes of soft drinks and alcohol and was positively associated with high-density-lipoprotein cholesterol and intakes of polyunsaturated fat, dietary fibre, and coffee (p < 0.05 each). Limitations include potential

  18. A combination of plasma phospholipid fatty acids and its association with incidence of type 2 diabetes: The EPIC-InterAct case-cohort study.

    Directory of Open Access Journals (Sweden)

    Fumiaki Imamura

    2017-10-01

    Full Text Available Combinations of multiple fatty acids may influence cardiometabolic risk more than single fatty acids. The association of a combination of fatty acids with incident type 2 diabetes (T2D has not been evaluated.We measured plasma phospholipid fatty acids by gas chromatography in 27,296 adults, including 12,132 incident cases of T2D, over the follow-up period between baseline (1991-1998 and 31 December 2007 in 8 European countries in EPIC-InterAct, a nested case-cohort study. The first principal component derived by principal component analysis of 27 individual fatty acids (mole percentage was the main exposure (subsequently called the fatty acid pattern score [FA-pattern score]. The FA-pattern score was partly characterised by high concentrations of linoleic acid, stearic acid, odd-chain fatty acids, and very-long-chain saturated fatty acids and low concentrations of γ-linolenic acid, palmitic acid, and long-chain monounsaturated fatty acids, and it explained 16.1% of the overall variability of the 27 fatty acids. Based on country-specific Prentice-weighted Cox regression and random-effects meta-analysis, the FA-pattern score was associated with lower incident T2D. Comparing the top to the bottom fifth of the score, the hazard ratio of incident T2D was 0.23 (95% CI 0.19-0.29 adjusted for potential confounders and 0.37 (95% CI 0.27-0.50 further adjusted for metabolic risk factors. The association changed little after adjustment for individual fatty acids or fatty acid subclasses. In cross-sectional analyses relating the FA-pattern score to metabolic, genetic, and dietary factors, the FA-pattern score was inversely associated with adiposity, triglycerides, liver enzymes, C-reactive protein, a genetic score representing insulin resistance, and dietary intakes of soft drinks and alcohol and was positively associated with high-density-lipoprotein cholesterol and intakes of polyunsaturated fat, dietary fibre, and coffee (p < 0.05 each. Limitations

  19. Hepatic unsaturated fatty acids in patients with non-alcoholic fatty liver disease assessed by 3.0 T MR spectroscopy

    International Nuclear Information System (INIS)

    Werven, J.R. van; Schreuder, T.C.M.A.; Nederveen, A.J.; Lavini, C.; Jansen, P.L.M.; Stoker, J.

    2010-01-01

    Rationale and objective: Non-alcoholic fatty liver disease (NAFLD) is related to the metabolic syndrome and obesity. Proton magnetic resonance spectroscopy ( 1 H MRS) is a non-invasive technique to assess hepatic triglyceride content (HTGC) and allows assessment of unsaturated fatty acids (UFA). There is increasing evidence that hepatic UFA are associated with the development of NAFLD. Therefore the objective of this study was to assess hepatic UFA in patients with NAFLD using 1 H MRS. Materials and methods: We included 26 consecutive patients with deranged liver enzymes, with and without type 2 diabetes mellitus (DM2), suspected for NAFLD. Liver function and metabolic parameters were assessed. 1 H MRS measurements were performed at 3.0 T. From the 1 H MR spectra two ratios were calculated: ratio 1 (UFA); unsaturated fatty acid peak vs. reference water peak and ratio 2 (HTGC); total fatty acid peak vs. reference water peak. Results: Twenty-six patients were included. In these patients hepatic UFA (ratio 1) correlated with AST/ALT ratio (r = -0.46, p = 0.02), glucose levels (r = 0.46, p = 0.018), HOMA-IR (r = 0.59, p = 0.004) and HTGC (r = 0.81, p 1 H MRS. 1 H MRS determined hepatic UFA correlate with clinical and metabolic parameters associated with NAFLD. Hepatic UFA are increased in patients with DM2. This study provides evidence for the use of non-invasive 1 H MRS to assess hepatic UFA in vivo.

  20. Digestive enzymes of some earthworms.

    Science.gov (United States)

    Mishra, P C; Dash, M C

    1980-10-15

    4 species of tropical earthworms differed with regard to enzyme activity. The maximum activity of protease and of cellulase occurred in the posterior region of the gut of the earthworms. On the average Octochaetona surensis shows maximum activity and Drawida calebi shows minimum activity for all the enzymes studied.

  1. Enzyme Kinetics? Elementary, my dear

    Indian Academy of Sciences (India)

    In addition, enzymes usually exhibit a remarkable specificity for the reactants and reactions, including the ability to distinguish between optical isomers 1. The Principle of Catalysis. An enzyme, like a catalyst, only increases the rate of a reaction without altering itself at the end of the reaction. Consider the interconversion of ...

  2. Dioxygenation of polyunsaturated fatty acids in fungi

    NARCIS (Netherlands)

    Wadman, M.W.

    2007-01-01

    Polyunsaturated fatty acids play a central role in all biological systems. They are constituents of the plasma membrane and serve as precursors to signaling molecules generated in response to external events. The conversion of polyunsaturated fatty acids into signaling molecules starts by the

  3. Effect of fatty acids on leukocyte function

    Directory of Open Access Journals (Sweden)

    Pompéia C.

    2000-01-01

    Full Text Available Fatty acids have various effects on immune and inflammatory responses, acting as intracellular and intercellular mediators. Polyunsaturated fatty acids (PUFAs of the omega-3 family have overall suppressive effects, inhibiting lymphocyte proliferation, antibody and cytokine production, adhesion molecule expression, natural killer cell activity and triggering cell death. The omega-6 PUFAs have both inhibitory and stimulatory effects. The most studied of these is arachidonic acid that can be oxidized to eicosanoids, such as prostaglandins, leukotrienes and thromboxanes, all of which are potent mediators of inflammation. Nevertheless, it has been found that many of the effects of PUFA on immune and inflammatory responses are not dependent on eicosanoid generation. Fatty acids have also been found to modulate phagocytosis, reactive oxygen species production, cytokine production and leukocyte migration, also interfering with antigen presentation by macrophages. The importance of fatty acids in immune function has been corroborated by many clinical trials in which patients show improvement when submitted to fatty acid supplementation. Several mechanisms have been proposed to explain fatty acid modulation of immune response, such as changes in membrane fluidity and signal transduction pathways, regulation of gene transcription, protein acylation, and calcium release. In this review, evidence is presented to support the proposition that changes in cell metabolism also play an important role in the effect of fatty acids on leukocyte functioning, as fatty acids regulate glucose and glutamine metabolism and mitochondrial depolarization.

  4. ω-3 Fatty acids reverse lipotoxity through induction of autophagy in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Chen, Yi; Xu, Chengfu; Yan, Tianlian; Yu, Chaohui; Li, Youming

    2015-01-01

    The aim of this study was to evaluate the effect of ω-3 fatty acids on nonalcoholic fatty liver disease concerning hepatocyte lipid accumulation as well as apoptosis induced by free fatty acids (FFAs) and to explore the underlying mechanism involving autophagy. Hepatocytes were incubated with a mixture of free fatty acids (FFAs) to mimic in vitro lipotoxicity in the pathogenesis of nonalcoholic fatty liver disease, presented by lipid accumulation and cellular apoptosis. Chemical inhibitor or inducer of autophagy and genetic deficit cells, as well as ω-3 fatty acids were used as intervention. The autophagic role of ω-3 fatty acids was investigated using Western blot and immunofluorescence. The underlying mechanism of ω-3 fatty acids involving autophagy was preliminarily explored by quantitative real-time polymerase chain reaction and Western blot. FFAs induce lipid accumulation and apoptosis in hepatocytes. Inhibition or genetic defect of autophagy increases lipid accumulation induced by FFA, whereas induction acts inversely. ω-3 Fatty acids reduced lipid accumulation and inhibited apoptosis induced by FFA. ω-3 Fatty acids induced autophagy by downregulating stearoyl-CoA desaturase 1 expression in hepatocytes. ω-3 Fatty acids exert protective effects on hepatocytes against lipotoxicity through induction of autophagy, as demonstrated by inhibition of lipid accumulation and apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Enzyme-carrying electrospun nanofibers.

    Science.gov (United States)

    Jia, Hongfei

    2011-01-01

    Compared to other nanomaterials as supports for enzyme immobilization, nanofibers provide a promising configuration in balancing the key factors governing the catalytic performance of the immobilized enzymes including surface area-to-volume ratio, mass transfer resistance, effective loading, and the easiness to recycle. Synthetic and natural polymers can be fabricated into nanofibers via a physical process called electrospinning. The process requires only simple apparatus to operate, yet has proved to be very flexible in the selection of feedstock materials and also effective to control and manipulate the properties of the resulting nanofibers such as size and surface morphology, which are typically important parameters for enzyme immobilization supports. This chapter describes a protocol for the preparation of nanofibrous enzyme, involving the synthesis and end-group functionalization of polystyrene, production of electrospun nanofibers, and surface immobilization of enzyme via covalent attachment.

  6. Positron emitter labeled enzyme inhibitors

    International Nuclear Information System (INIS)

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-01-01

    This invention involves a new strategy for imagining and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography

  7. Glycosyltransferases and non-alcoholic fatty liver disease

    Science.gov (United States)

    Zhan, Yu-Tao; Su, Hai-Ying; An, Wei

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease and its incidence is increasing worldwide. However, the underlying mechanisms leading to the development of NAFLD are still not fully understood. Glycosyltransferases (GTs) are a diverse class of enzymes involved in catalyzing the transfer of one or multiple sugar residues to a wide range of acceptor molecules. GTs mediate a wide range of functions from structure and storage to signaling, and play a key role in many fundamental biological processes. Therefore, it is anticipated that GTs have a role in the pathogenesis of NAFLD. In this article, we present an overview of the basic information on NAFLD, particularly GTs and glycosylation modification of certain molecules and their association with NAFLD pathogenesis. In addition, the effects and mechanisms of some GTs in the development of NAFLD are summarized. PMID:26937136

  8. Proteasome inhibitor treatment reduced fatty acid, triacylglycerol and cholesterol synthesis.

    Science.gov (United States)

    Oliva, Joan; French, Samuel W; Li, Jun; Bardag-Gorce, Fawzia

    2012-08-01

    In the present study, the beneficial effects of proteasome inhibitor treatment in reducing ethanol-induced steatosis were investigated. A microarray analysis was performed on the liver of rats injected with PS-341 (Bortezomib, Velcade), and the results showed that proteasome inhibitor treatment significantly reduced the mRNA expression of SREBP-1c, and the downstream lipogenic enzymes, such as fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), which catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the rate-limiting step in fatty acid synthesis. ELOVL6, which is responsible for fatty acids long chain elongation, was also significantly downregulated by proteasome inhibitor treatment. Moreover, PS-341 administration significantly reduced the expression of acyl-glycerol-3-phosphate acyltransferase (AGPAT), and diacylglycerol acyltransferase (DGAT), enzyme involved in triacylglycerol (TAG) synthesis. Finally, PS-341 was found to downregulate the enzyme 3-hydroxy-3-methylglutaryl-CoenzymeA synthase (HMG-CoA synthase) that is responsible for cholesterol synthesis. Proteasome inhibitor was also found to play a role in intestinal lipid adsorption because apolipoproteins A (apoA-I, apoAII, apoA-IV and ApoCIII) were downregulated by proteasome inhibitor treatment, especially ApoA-II that is known to be a marker of alcohol consumption. Proteasome inhibitor treatment also decreased apobec-1 complementation factor (ACF) leading to lower level of editing and production of ApoB protein. Moreover apolipoprotein C-III, a major component of chylomicrons was significantly downregulated. However, lipoprotein lipase (Lpl) and High density lipoprotein binding protein (Hdlbp) mRNA levels were increased by proteasome inhibitor treatment. These results suggested that proteasome inhibitor treatment could be used to reduce the alcohol-enhanced lipogenesis and alcohol-induced liver steatosis. A morphologic analysis, performed on the liver of rats fed ethanol for one month and

  9. Dynamic regulation of fatty acid pools for improved production of fatty alcohols in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Teixeira, Paulo Goncalves; Ferreira, Raphael; Zhou, Yongjin J.

    2017-01-01

    loss of precursors that compromises the process yield. In the present study, we aimed for dynamic expression of the fatty acyl-CoA synthetase gene FAA1 to regulate FFA and acyl-CoA pools in order to improve fatty alcohol production yields. Results: We analyzed the metabolite dynamics of a faa1 Delta...... faa4 Delta strain constitutively expressing a carboxylic acid reductase from Mycobacterium marinum (MmCAR) and an endogenous alcohol dehydrogenase (Adh5) for in vivo production of fatty alcohols from FFAs. We observed production of fatty acids and fatty alcohols with different rates leading to high...... levels of FFAs not being converted to the final product. To address the issue, we expressed the MmCAR + Adh5 pathway together with a fatty acyl-CoA reductase from Marinobacter aquaeolei to enable fatty alcohol production simultaneously from FFA and acyl-CoA, respectively. Then, we expressed FAA1 under...

  10. Sedimentary Fatty Alcohols in Kapas Island, Terengganu

    International Nuclear Information System (INIS)

    Noor Farahin Amiruddin; Mohamad Iznul Muazim Mohamad Zabidi; Nurul Fathihah Mt Nanyan; Masni Mohd Ali; Masni Mohd Ali

    2015-01-01

    A geochemical study was carried out to identify the composition and sources of fatty alcohols in Kapas Island, Terengganu, Malaysia. Fatty alcohols in surface sediments were extracted and analyzed using Gas Chromatography - Mass Spectrometry (GC-MS). A total of 23 fatty alcohol compounds were identified in the Kapas Island sediment. Total concentrations of fatty alcohols ranged from 0.53 to 21.31 ng/ g dry weight and the highest total concentration was found at S2, which is probably due to its location profile that is located north of Kapas Island which is close to several small islands. The short chain/ long chain fatty alcohol ratio and alcohol source index (ASI) were used together to identify the dominant input in Kapas Island. Kapas Island sediments contained a mixture of organic sources, of which terrestrial sources were indicated to be the most abundant sources in these marine sediments. (author)

  11. Effect of sulfonylureas on hepatic fatty acid oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Patel, T.B.

    1986-08-01

    In isolated rat livers perfused with oleic acid (0.1 mM), infusion of tolbutamide or glyburide decreased the rate of ketogenesis in a dose-dependent manner. The inhibition of fatty acid oxidation was maximal at 2.0 mM and 10 M concentrations of tolbutamide and glyburide, respectively. Neither tolbutamide nor glyburide inhibited ketogenesis in livers perfused with octanoate. The inhibition of hepatic ketogenesis by sulfonylureas was independent of perfusate oleic acid concentration. Additionally, in rat livers perfused with oleic acid in the presence of L-(-)-carnitine (10 mM), submaximal concentrations of tolbutamide and glyburide did not inhibit hepatic ketogenesis. Finally, glyburide infusion into livers perfused with (U- $C)oleic acid (0.1 mM) increased the rate of UC label incorporation into hepatic triglycerides by 2.5-fold. These data suggest that both tolbutamide and glyburide inhibit long-chain fatty acid oxidation by inhibition the key regulatory enzyme, carnitine palmitoyltransferase I, most probably by competing with L-(-)-carnitine.

  12. The Thr-His Connection on the Distal Heme of Catalase-Related Hemoproteins: A Hallmark of Reaction with Fatty Acid Hydroperoxides.

    Science.gov (United States)

    Mashhadi, Zahra; Newcomer, Marcia E; Brash, Alan R

    2016-11-03

    This review focuses on a group of heme peroxidases that retain the catalase fold in structure, yet show little or no reaction with hydrogen peroxide. Instead of having a role in oxidative defense, these enzymes are involved in secondary metabolite biosynthesis. The prototypical enzyme is catalase-related allene oxide synthase, an enzyme that converts a specific fatty acid hydroperoxide to the corresponding allene oxide (epoxide). Other catalase-related enzymes form allylic epoxides, aldehydes, or a bicyclobutane fatty acid. In all catalases (including these relatives), a His residue on the distal face of the heme is absolutely required for activity. Its immediate neighbor in sequence as well as in 3 D space is conserved as Val in true catalases and Thr in the fatty acid hydroperoxide-metabolizing enzymes. Thr-His on the distal face of the heme is critical in switching the substrate specificity from H 2 O 2 to fatty acid hydroperoxide. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Impact of bariatric surgery on non-alcoholic fatty liver disease.

    Science.gov (United States)

    Major, Piotr; Pędziwiatr, Michał; Rubinkiewicz, Mateusz; Stanek, Maciej; Głuszewska, Anna; Pisarska, Magdalena; Małczak, Piotr; Budzyński, Andrzej; Budzyński, Piotr

    2017-04-30

    Introduction; p to 300 million people have the body mass index (BMI) greater than 30 kg/m2. Obesity is the cause of many serious diseases, such as type 2 diabetes, hypertension, and non-alcoholic fatty liver disease (NAFLD). Bariatric surgery is the only effective method of achieving weight loss in patients with morbid obesity. The aim of the study was to assess the impact of bariatric surgery on non-alcoholic fatty liver disease in patients operated on due to morbid obesity. We included 20 patients who were qualified for bariatric procedures based on BMI > 40 kg/ m2 or BMI > 35kg/m2 with the presence of comorbidities. The average body weight in the group was 143.85kg, with an average BMI of 49.16kg/m2. Before the procedure, we evaluated the severity of non-alcoholic fatty liver disease in each patient using the Sheriff-Saadeh ultrasound scale. We also evaluated the levels of liver enzymes. Follow-up evaluation was performed twelve months after surgery. Twelve months after surgery, the average weight was 102.34 kg. The mean %WL was 33.01%, %EWL was 58.8%, and %EBMIL was 61.37%. All patients showed remission of fatty liver disease. Liver damage, evaluated with ultrasound imaging, decreased from an average of 1.85 on the Sheriff-Saadeh scale, before surgery, to 0.15 twelve months after surgery (p < 0.001). As regards liver enzymes, the level of alanine aminotransferase decreased from 64.5 (U/l) to 27.95 (U/l) (p < 0.001), and the level of aspartate aminotransferase decreased from 54.4 (U/l) to 27.2 (U/l). Bariatric procedures not only lead to a significant and lasting weight loss, but they also contribute to the reduction of fatty liver disease and improve liver function.

  14. Nanostructure L-asparaginase-fatty acid bioconjugate: synthesis, preformulation study and biological assessment.

    Science.gov (United States)

    Ashrafi, Hajar; Amini, Mohsen; Mohammadi-Samani, Soliman; Ghasemi, Younes; Azadi, Amir; Tabandeh, Mohammad Reza; Kamali-Sarvestani, Eskandar; Daneshamouz, Saeid

    2013-11-01

    The present study aims to develop a novel L-asparaginase fatty acid bioconjugates and characterize their applicability for intravenous delivery of L-asparaginase. These bioconjugates were achieved by covalent linkage of fatty acids having different chain lengths (C12, C16 and C22) to the native enzyme. To determine the optimum conditions of bioconjugation, the effect of lipid:protein ratios, reaction time and medium composition on enzyme activity and conjugation degree were evaluated. The native and bioconjugates have been characterized by activity, conjugation degree, particle size, and zeta potential. The results showed that bioconjugated L-asparaginase were more resistant to proteolysis, more stable at different pH, and had prolonged plasma half-life, compared to the native form. From partition coefficient study, the modified enzymes showed approximately 15-fold increase in hydrophobicity. Secondary structure analysis using circular dichroism revealed alteration after lipid conjugation. In addition, the Michaelis constant of the native enzyme was 3.38 mM, while the bioconjugates showed the higher affinity to the substrate L-asparagine. These findings indicate that new lipid bioconjugation could be a very useful strategy for intravenous delivery of L-asparaginase. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Lifestyle Modification through Dietary Intervention: Health Promotion of Patients with Non-Alcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Manoochehr Khoshbaten

    2011-12-01

    Full Text Available Background: Prevalence of non-alcoholic fatty liver disease (NAFLD is more common worldwide and no certain treatment apart from lifestyle modification has been established yet. Available data consistently show that energy intake is significantly higher in patients with NAFLD than in individuals with no evidence of fatty liver. Changing nutritional behaviors seems to be the primary approach for treatment, simultaneously addressing all the clinical and biochemical defects. This study was aimed to examine the effects of two different composition of low energy diet (diet I vs. diet II on non-alcoholic fatty liver disease patients.Methods: In this double-blind randomized controlled trial, 44 ultrasonography-proven overweight non-alcoholic fatty liver disease patients were divided into two groups and received two low-energy diets (-500 kcal less than energy requirement individually inc. diet I (Carbohydrate: Fat: Protein: 55:25:20 and diet II (Carbohydrate: Fat: Protein: 40:40:20 for six weeks. Anthropometric and biochemical measures as well as liver enzymes were assessed after 12 hours fasting.Results: After diet I and diet II, weight decreased significantly (%1.82 and %2.45, respectively. Liver enzymes and echogenicity decreased significantly by both diet I and diet II. Mean of triglyceride concentration decreased (%18.09 after diet II (P=0.023, while there was no significant change after diet I. Significant correlations were found between changes in aspartate aminotransferase with triglyceride and LDL-C diet I.Conclusion: Low energy diets can decrease liver enzymes regardless of their composition, while diet II seems to be more effective than diet I in reduction of weight and triglyceride level.

  16. Peroxisomal. beta. -oxidation enzyme proteins in adrenoleukodystrophy: distinction between x-linked adrenoleukodystrophy and neonatal adrenoleukodystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.W.; Watkins, P.A.; Osumi, T.; Hashimoto, T.; Moser, H.W.

    1987-03-01

    Very long chain fatty acids, which accumulate in plasma and tissues in x-linked adrenoleukodystrophy (ALD), neonatal ALD, and the Zellweger cerebrohepatorenal syndrome, are degraded by the peroxisomal ..beta..-oxidation pathway, consisting of acyl-CoA oxidase, the bifunctional enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase, and ..beta..-ketothiolase. A marked deficiency of all three enzyme proteins was reported in livers from patients with the Zellweger syndrome, a disorder in which peroxisomes are decreased or absent. Peroxisomes are not as markedly decreased in neonatal ALD and appear normal in x-linked ALD. Immunoblot analysis of the peroxisomal ..beta..-oxidation enzymes revealed an almost complete lack of the bifunctional enzymes in neonatal ALD liver, similar to the finding in Zellweger tissues. In contrast, acyl-CoA oxidase and ..beta..-ketothiolase were present in neonatal ALD liver, although the thiolase appeared to be in precursor form (2-3 kDa larger than the mature enzyme) in neonatal ALD. Unlike either neonatal ALD or Zellweger syndrome, all three peroxisomal ..beta..-oxidation enzymes were present in x-linked ALD liver. Despite the absence in neonatal ALD liver of bifunctional enzyme protein, its mRNA was detected by RNA blot analysis in fibroblasts from these patients. These observations suggest that lack of bifunctional enzyme protein in neonatal ALD results from either abnormal translation of the mRNA or degradation of the enzyme prior to its entry into peroxisomes.

  17. The Genetic Architecture of Liver Enzyme Levels: GGT, ALT and AST

    OpenAIRE

    van Beek, Jenny H. D. A.; de Moor, Marleen H. M.; de Geus, Eco J. C.; Lubke, Gitta H.; Vink, Jacqueline M.; Willemsen, Gonneke; Boomsma, Dorret I.

    2013-01-01

    High levels of liver enzymes GGT, ALT and AST are predictive of disease and all-cause mortality and can reflect liver injury, fatty liver and/or oxidative stress. Variation in GGT, ALT and AST levels is heritable. Moderation of the heritability of these liver enzymes by age and sex has not often been explored, and it is not clear to what extent non-additive genetic and shared environmental factors may play a role. To examine the genetic architecture of GGT, ALT and AST, plasma levels were ass...

  18. Clinical characteristics of acute cholecystitis with elevated liver enzymes not associated with choledocholithiasis.

    Science.gov (United States)

    Song, Sang Hee; Kwon, Chang-Il; Jin, Sun Mi; Park, Hyun Jung; Chung, Chul Woon; Kwon, Sung Won; Ko, Kwang Hyun; Hong, Sung Pyo

    2014-04-01

    Elevated liver enzymes are observed occasionally in patients with acute cholecystitis who do not have choledocholithiasis. The etiology and mechanism of this phenomenon are not well known. We aimed to compare the clinical characteristics between acute cholecystitis with and without choledocholithiasis in patients with elevated liver enzymes. The medical records of acute cholecystitis patients who underwent cholecystectomy between January 2001 and October 2011 were retrospectively reviewed. We retrieved data of patients who showed abnormal liver enzymes and underwent endoscopic retrograde cholangiopancreatography, magnetic resonance cholangiopancreatography, or intraoperative cholangiography. We analyzed clinical characteristics and comorbidities in 424 patients. Among 424 cholecystectomy patients with abnormal liver enzymes, 178 (42%) patients did not have choledocholithiasis and 246 (58%) patients had choledocholithiasis. The median AST, ALT, and total bilirubin were 47, 82.5 IU/dl, and 1.21 mg/dl, respectively, in patients without choledocholithiasis and 58, 96 IU/dl, and 1.53 mg/dl, respectively, in patients with choledocholithiasis. In a multivariate logistic regression analysis, fatty liver [odds ratio (OR): 0.218; Pcholedocholithiasis. Elevated liver enzymes in patients with cholecystitis who do not have choledocholithiasis are correlated with the presence of fatty liver and the severity of radiologic finding.

  19. BAKERY ENZYMES IN CEREAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Václav Koman

    2012-10-01

    Full Text Available Normal 0 21 false false false SK X-NONE X-NONE Bread is the most common and traditional food in the world. For years, enzymes such as malt and fungal alpha-amylase have been used in bread making. Due to the changes in the baking industry and the ever-increasing demand for more natural products, enzymes have gained real importance in bread-making. If an enzyme is added, it is often destroyed by the heat during the baking process. For generations, enzymes have been used for the improvement of texture and appearance, enhancement of nutritional values and generation of appealing flavours and aromas. Enzymes used in bakery industry constitute nearly one third of the market. The bakery products have undergone radical improvements in quality over the past years in terms of flavour, texture and shelf-life. The the biggest contributor for these improvementsis the usage of enzymes. Present work seeks to systematically describe bakery enzymes, their classification, benefits, usage and chemical reactions in the bread making process.doi:10.5219/193

  20. Consequences of Essential Fatty Acids

    Directory of Open Access Journals (Sweden)

    Bill Lands

    2012-09-01

    Full Text Available Essential fatty acids (EFA are nutrients that form an amazingly large array of bioactive mediators that act on a large family of selective receptors. Nearly every cell and tissue in the human body expresses at least one of these receptors, allowing EFA-based signaling to influence nearly every aspect of human physiology. In this way, the health consequences of specific gene-environment interactions with these nutrients are more extensive than often recognized. The metabolic transformations have similar competitive dynamics for the n-3 and n-6 homologs when converting dietary EFA from the external environment of foods into the highly unsaturated fatty acid (HUFA esters that accumulate in the internal environment of cells and tissues. In contrast, the formation and action of bioactive mediators during tissue responses to stimuli tend to selectively create more intense consequences for n-6 than n-3 homologs. Both n-3 and n-6 nutrients have beneficial actions, but many common health disorders are undesired consequences of excessive actions of tissue n-6 HUFA which are preventable. This review considers the possibility of preventing imbalances in dietary n-3 and n-6 nutrients with informed voluntary food choices. That action may prevent the unintended consequences that come from eating imbalanced diets which support excessive chronic actions of n-6 mediators that harm human health. The consequences from preventing n-3 and n-6 nutrient imbalances on a nationwide scale may be very large, and they need careful evaluation and implementation to avoid further harmful consequences for the national economy.

  1. Stability of Enzymes in Granular Enzyme Products for Laundry Detergents

    DEFF Research Database (Denmark)

    Biran, Suzan; Bach, Poul; Simonsen, Ole

    Enzymes have long been of interest to the detergent industry due to their ability to improve the cleaning efficiency of synthetic detergents, contribute to shortening washing times, and reduce energy and water consumption, provision of environmentally friendlier wash water effluents and fabric care....... However, incorporating enzymes in detergent formulations gives rise to numerous practical problems due to their incompatibility with and stability against various detergent components. In powdered detergent formulations, these issues can be partly overcome by physically isolating the enzymes in separate...... of enzymes, high local pH in granule, oxygen, defects in granulate structure and the effect of other detergent components. However, the actual mechanism of inactivation is not known yet. It is believed that a combination of the factors mentioned above plays a role in the activity loss, and is the focus...

  2. Ethanol Extract of Pinus koraiensis Leaf Ameliorates Alcoholic Fatty Liver via the Activation of LKB1-AMPK Signaling In Vitro and In Vivo.

    Science.gov (United States)

    Hong, Sang-Hyuk; Lee, Hyemin; Lee, Hyo-Jung; Kim, Bonglee; Nam, Min-Ho; Shim, Bum-Sang; Kim, Sung-Hoon

    2017-05-01

    Although Pinus koraiensis leaf (PKL) was reported for its anti-diabetes, anti-obesity and anticancer effects as a folk remedy, the inhibitory effect of PKL on alcoholic fatty liver has never been elucidated yet. This study investigated the molecular mechanisms of PKL on alcoholic fatty liver in HepG2 cells, Sprague Dawley (SD) rats and Imprinting Control Region (ICR) mice. Pinus koraiensis leaf increased phosphorylation of liver kinase B1 (LKB1)/AMP-activated protein kinase signaling, low-density lipoprotein receptor and decreased fatty acid biosynthesis-related proteins such as sterol regulatory element-binding protein 1c, fatty acid synthase, 3-hydroxy-3-methylglutaryl-CoA reductase in HepG2 cells. In SD rats with 25% alcohol-induced fatty liver, PKL suppressed the levels of aspartate aminotransferase and triglyceride and also enhanced the activities of antioxidant enzymes including superoxide dismutase, glutathione peroxidase and glutathione s-transferase compared with untreated control. Furthermore, PKL increased serum alcohol dehydrogenase and serum aldehyde dehydrogenase, but decreased serum alcohol concentration in ICR mice after alcohol administration. Consistently, histochemical analysis revealed that PKL attenuated alcohol-induced fatty liver in SD rats. Overall, these findings suggest that PKL ameliorates alcohol-induced fatty liver via activation of LKB1-AMP-activated protein kinase and modulation of proteins related to lipogenesis synthesis, cholesterol synthesis and fatty acid oxidation. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Long-term effect of medium-chain triglyceride on hepatic enzymes catalyzing lipogenesis and cholesterogenesis in rats

    International Nuclear Information System (INIS)

    Takase, Sachiko; Morimoto, Ayami; Nakanishi, Mayumi; Muto, Yasutoshi.

    1977-01-01

    This study was conducted to investigate the long-term effect of dietary medium-chain triglyceride (MCT) as compared with that of corn oil feeding on lipid metabolism in rats. Both serum cholesterol and triglyceride levels in MCT-fed rats showed significant decrease during the experimental period of eight weeks, although liver cholesterol and triglyceride contents were not distinguishable between the two groups. Significant elevation of the activity of lipogenic enzymes, such as fatty acid synthetase (FAS) and malic enzyme (ME) of the liver, was observed in MCT-fed rats without any fat accumulation of the liver (fatty liver). The increase of lipogenic enzyme activity was accompanied by a significant reduction of essential fatty acids (EFA) such as 18:2 (ωsigma) and 20:4 (ωsigma) in total liver lipid. In contrast, hepatic β-hydroxy-β-methylglutaryl CoA(HMG-CoA) reductase activity was significantly decreased in MCT-fed rats, that would play an important role in achieving hypocholesterolemia. From these results obtained in a long-term experiment, it is concluded that exogenous MCT depresses the key enzyme catalyzing cholesterol synthesis with a concomitant elevation of lipogenic enzyme activity in the rat liver. (auth.)

  4. Pediatric Fatty Liver Disease (PeFLD): all is not NAFLD - pathophysiological insights and approach to management.

    Science.gov (United States)

    Hegarty, Robert; Deheragoda, Maesha; Fitzpatrick, Emer; Dhawan, Anil

    2018-02-19

    The recognition of a pattern of steatotic liver injury where histology mimicked alcoholic liver disease but alcohol consumption was denied, led to the identification of non-alcoholic fatty liver disease (NAFLD). Non-alcoholic fatty liver disease has since become the most common chronic liver disease in adults owing to the global epidemic of obesity. However, in pediatrics, the term NAFLD seems incongruous: alcohol consumption is largely not a factor and inherited metabolic disorders (IMD) can mimic or co-exist with a diagnosis of NAFLD. The term pediatric fatty liver disease (PeFLD) may be more appropriate. In this article, we summarise the known causes of steatosis in children according to their typical, clinical presentation: 1. acute liver failure 2. neonatal or infantile jaundice 3. hepatomegaly, splenomegaly or hepato-splenomegaly 4. developmental delay / psychomotor retardation and perhaps most commonly; 5. the asymptomatic child with incidental discovery of abnormal liver enzymes. We offer this model as a means to provide pathophysiological insights and an approach to management of the ever more complex subject of fatty liver. Lay summary Fatty liver disease caused by sedentary lifestyle is the most common long-term liver disease in adults today. Caution must be exercised when calling children with fatty liver disease as there may be hidden, genetically inherited problems with their metabolism. Copyright © 2018. Published by Elsevier B.V.

  5. Molecular Cloning and Functional Expression of a Δ9- Fatty Acid Desaturase from an Antarctic Pseudomonas sp. A3

    Science.gov (United States)

    Garba, Lawal; Mohamad Ali, Mohd Shukuri; Oslan, Siti Nurbaya; Rahman, Raja Noor Zaliha Raja Abd

    2016-01-01

    Fatty acid desaturase enzymes play an essential role in the synthesis of unsaturated fatty acids. Pseudomonas sp. A3 was found to produce a large amount of palmitoleic and oleic acids after incubation at low temperatures. Using polymerase Chain Reaction (PCR), a novel Δ9- fatty acid desaturase gene was isolated, cloned, and successfully expressed in Escherichia coli. The gene was designated as PA3FAD9 and has an open reading frame of 1,185 bp which codes for 394 amino acids with a predicted molecular weight of 45 kDa. The activity of the gene product was confirmed via GCMS, which showed a functional putative Δ9-fatty acid desaturase capable of increasing the total amount of cellular unsaturated fatty acids of the E. coli cells expressing the gene. The results demonstrate that the cellular palmitoleic acids have increased two-fold upon expression at 15°C using only 0.1 mM IPTG. Therefore, PA3FAD9 from Pseudomonas sp.A3 codes for a Δ9-fatty acid desaturase-like protein which was actively expressed in E. coli. PMID:27494717

  6. Homology analyses of the protein sequences of fatty acid synthases from chicken liver, rat mammary gland, and yeast

    International Nuclear Information System (INIS)

    Chang, Soo-Ik; Hammes, G.G.

    1989-01-01

    Homology analyses of the protein sequences of chicken liver and rat mammary gland fatty acid synthases were carried out. The amino acid sequences of the chicken and rat enzymes are 67% identical. If conservative substitutions are allowed, 78% of the amino acids are matched. A region of low homologies exists between the functional domains, in particular around amino acid residues 1059-1264 of the chicken enzyme. Homologies between the active sites of chicken and rat and of chicken and yeast enzymes have been analyzed by an alignment method. A high degree of homology exists between the active sites of the chicken and rat enzymes. However, the chicken and yeast enzymes show a lower degree of homology. The DADPH-binding dinucleotide folds of the β-ketoacyl reductase and the enoyl reductase sites were identified by comparison with a known consensus sequence for the DADP- and FAD-binding dinucleotide folds. The active sites of all of the enzymes are primarily in hydrophobic regions of the protein. This study suggests that the genes for the functional domains of fatty acid synthase were originally separated, and these genes were connected to each other by using different connecting nucleotide sequences in different species. An alternative explanation for the differences in rat and chicken is a common ancestry and mutations in the joining regions during evolution

  7. GRE Enzymes for Vector Analysis

    Data.gov (United States)

    U.S. Environmental Protection Agency — Microbial enzyme data that were collected during the 2004-2006 EMAP-GRE program. These data were then used by Moorhead et al (2016) in their ecoenzyme vector...

  8. PIXE analysis of Zn enzymes

    International Nuclear Information System (INIS)

    Solis, C.; Oliver, A.; Andrade, E.; Ruvalcaba-Sil, J.L.; Romero, I.; Celis, H.

    1999-01-01

    Zinc is a necessary component in the action and structural stability of many enzymes. Some of them are well characterized, but in others, Zn stoichiometry and its association is not known. PIXE has been proven to be a suitable technique for analyzing metallic proteins embedded in electrophoresis gels. In this study, PIXE has been used to investigate the Zn content of enzymes that are known to carry Zn atoms. These include the carbonic anhydrase, an enzyme well characterized by other methods and the cytoplasmic pyrophosphatase of Rhodospirillum rubrum that is known to require Zn to be stable but not how many metal ions are involved or how they are bound to the enzyme. Native proteins have been purified by polyacrylamide gel electrophoresis and direct identification and quantification of Zn in the gel bands was performed with an external proton beam of 3.7 MeV energy

  9. The fatty liver dystrophy (fld) mutation: Developmentally related alterations in hepatic triglyceride metabolism and protein expression

    Energy Technology Data Exchange (ETDEWEB)

    Reue, K.; Rehnmark, S.; Cohen, R.D.; Leete, T.H.; Doolittle, M.H. [West Los Angeles VA Medical Center, CA (United States). Lipid Research Lab.]|[Univ. of California, Los Angeles, CA (United States). Dept. of Medicine; Giometti, C.S.; Mishler, K. [Argonne National Lab., IL (United States); Slavin, B.G. [Univ. of Southern California, Los Angeles, CA (United States)

    1997-07-01

    Fatty liver dystrophy (fld) is an autosomal recessive mutation in mice characterized by hypertriglyceridemia and development of a fatty liver in the early neonatal period. Also associated with the fld phenotype is a tissue-specific deficiency in the expression of lipoprotein lipase and hepatic lipase, as well as elevations in hepatic apolipoprotein A-IV and apolipoprotein C-II mRNA levels. Although these lipid abnormalities resolve at the age of weaning, adult mutant mice exhibit a peripheral neuropathy associated with abnormal myelin formation. The fatty liver in fld/fld neonates is characterized by the accumulation of large triglyceride droplets within the parenchymal cells, and these droplets persist within isolated hepatocytes maintained in culture for several days. To identify the metabolic defect that leads to lipid accumulation, the authors investigated several aspects of cellular triglyceride metabolism. The mutant mice exhibited normal activity of acid triacylglycerol lipase, an enzyme thought to be responsible for hydrolysis of dietary triglycerides in the liver. Metabolic labeling studies performed with oleic acid revealed that free fatty acids accumulate in the liver of 3 day old fld/fld mice, but not in adults. This accumulation in liver was mirrored by elevated free fatty acid levels in plasma of fld/fld neonates, with levels highest in very young mice and returning to normal by the age of one month. Quantitation of fatty acid oxidation in cells isolated from fld/fld neonates revealed that oxidation rate is reduced 60% in hepatocytes and 40% in fibroblasts; hepatocytes from adult fld/fld mice exhibited an oxidation rate similar to those from wild-type mice.

  10. Pathological hypertrophy and cardiac dysfunction are linked to aberrant endogenous unsaturated fatty acid metabolism

    Science.gov (United States)

    Salomé Campos, Dijon Henrique; Grippa Sant’Ana, Paula; Okoshi, Katashi; Padovani, Carlos Roberto; Masahiro Murata, Gilson; Nguyen, Son; Kolwicz, Stephen C.; Cicogna, Antonio Carlos

    2018-01-01

    Pathological cardiac hypertrophy leads to derangements in lipid metabolism that may contribute to the development of cardiac dysfunction. Since previous studies, using high saturated fat diets, have yielded inconclusive results, we investigated whether provision of a high-unsaturated fatty acid (HUFA) diet was sufficient to restore impaired lipid metabolism and normalize diastolic dysfunction in the pathologically hypertrophied heart. Male, Wistar rats were subjected to supra-valvar aortic stenosis (SVAS) or sham surgery. After 6 weeks, diastolic dysfunction and pathological hypertrophy was confirmed and both sham and SVAS rats were treated with either normolipidic or HUFA diet. At 18 weeks post-surgery, the HUFA diet failed to normalize decreased E/A ratios or attenuate measures of cardiac hypertrophy in SVAS animals. Enzymatic activity assays and gene expression analysis showed that both normolipidic and HUFA-fed hypertrophied hearts had similar increases in glycolytic enzyme activity and down-regulation of fatty acid oxidation genes. Mass spectrometry analysis revealed depletion of unsaturated fatty acids, primarily linoleate and oleate, within the endogenous lipid pools of normolipidic SVAS hearts. The HUFA diet did not restore linoleate or oleate in the cardiac lipid pools, but did maintain body weight and adipose mass in SVAS animals. Overall, these results suggest that, in addition to decreased fatty acid oxidation, aberrant unsaturated fatty acid metabolism may be a maladaptive signature of the pathologically hypertrophied heart. The HUFA diet is insufficient to reverse metabolic remodeling, diastolic dysfunction, or pathologically hypertrophy, possibly do to preferentially partitioning of unsaturated fatty acids to adipose tissue. PMID:29494668

  11. Elevated body mass index and fatty liver

    Directory of Open Access Journals (Sweden)

    Marović Dragana

    2008-01-01

    Full Text Available Introduction Obesity and overweight, expressed by elevated Body Mass Index (BMI, result from excessive consumption of fatty food and carbohydrates above the body needs. The fat from the blood, through free fatty acids, is taken directly into the liver. Objective The aim of this study was to examine correlation among the accepted ultrasonography findings of the fatty liver and the normal ultrasonography findings and the elevated average level of BMI and those with normal BMI in examinees in one investigation. All was done aimed at proving that the BMI is one of the direct factors of the increased occurence of fatty liver. METHOD The method of the investigation consisted of anthropometric measuring of height and weight on the basis of which there were established BMI values. Consequently, the examinees were divided in two groups: one with normal BMI (under 24.9 kg/m2 and the other with increased BMI (over 25 kg/m2. Fatty liver was diagnosed when the liver of the examinees was observed by ultrasonography. Thus there were given subgroups of the examinees, one with the findings of fatty liver and the second with a normal finding, without changes. After that, the obtained results were statistically analysed. Results It was found that the average level of BMI in the examinees was by two units higher in the subgroup with ultrasonography findings of fatty liver than the average value of BMI in the subgroup with the normal ultrasonography findings of the liver. The difference was tested by the Student's t-test and a significant difference was found. The difference in frequencies of the appearance of the finding of fatty liver in the subgroups was tested by χ2-test. A statistically significant difference was found in frequencies of the appearance of fatty liver in the subgroup with the increased value of BMI. Conclusion The increased BMI, which is represented by overweight and obesity, is one of the direct risk factors which cause fatty liver, checked by

  12. Enzymes: principles and biotechnological applications

    Science.gov (United States)

    Robinson, Peter K.

    2015-01-01

    Enzymes are biological catalysts (also known as biocatalysts) that speed up biochemical reactions in living organisms, and which can be extracted from cells and then used to catalyse a wide range of commercially important processes. This chapter covers the basic principles of enzymology, such as classification, structure, kinetics and inhibition, and also provides an overview of industrial applications. In addition, techniques for the purification of enzymes are discussed. PMID:26504249

  13. CHANGES IN THE LEVEL OF THE FATTY ACID SYNTHESIZING ENZYMES DURING STARVATION

    Science.gov (United States)

    Eagle - Picher Co., Joplin, Mo. RESEARCH ON AMMONIA BATTERY SYSTEM. Final rept., 1 July 60-30 June 62, by D. J. Doan, L. R. Wood and others. 30 July 62...cells), Mercury co pound , Sulfates S ILV R CO POU S Chlorides Anodes (El c roly ic c lls), Magn sium electrodes, Battery s par ors, Bin

  14. 1-Monoglyceride production from lipase-catalyzed esterification of glycerol and fatty acid in reverse micelles.

    Science.gov (United States)

    Hayes, D G; Gulari, E

    1991-08-20

    Glycerol-fatty acid esterification has been conducted with lipase from R. delemar in water/AOT/isooctane reverse micellar media, with the major product being 1-monoglyceride, a useful food-emulsifier. 1,3-diglyceride was also synthesized, but to a much lesser extent. For a given set of initial conditions, the reaction productivity, measured in terms of the initial product formation rate, V(0), and the final or equilibrium concentration of product, is optimal for a particular concentration of each surfactant, fatty acid, glycerol, and water. Many of these optimal values correlate well with a "critical" region on the phase diagram. Also, results indicate lipase-catalyzed esterification stops due to the achievement of kinetic equilibrium expect for a few cases where enzyme deactivation is severe. Dynamic light scattering was employed to examine the influence of water, glycerol, and fatty acid on micellar and interfacial structure. Results from this technique indicate enzyme kinetic are linked to interfacial phenomena and the presence of substrates at the interfacial region.

  15. Functional redundancy of mitochondrial enoyl-CoA isomerases in the oxidation of unsaturated fatty acids.

    Science.gov (United States)

    van Weeghel, Michel; te Brinke, Heleen; van Lenthe, Henk; Kulik, Wim; Minkler, Paul E; Stoll, Maria S K; Sass, Jörn Oliver; Janssen, Uwe; Stoffel, Wilhelm; Schwab, K Otfried; Wanders, Ronald J A; Hoppel, Charles L; Houten, Sander M

    2012-10-01

    Mitochondrial enoyl-CoA isomerase (ECI1) is an auxiliary enzyme involved in unsaturated fatty acid oxidation. In contrast to most of the other enzymes involved in fatty acid oxidation, a deficiency of ECI1 has yet to be identified in humans. We used wild-type (WT) and Eci1-deficient knockout (KO) mice to explore a potential presentation of human ECI1 deficiency. Upon food withdrawal, Eci1-deficient mice displayed normal blood β-hydroxybutyrate levels (WT 1.09 mM vs. KO 1.10 mM), a trend to lower blood glucose levels (WT 4.58 mM vs. KO 3.87 mM, P=0.09) and elevated blood levels of unsaturated acylcarnitines, in particular C12:1 acylcarnitine (WT 0.03 μM vs. KO 0.09 μM, Pisomerase (Eci2) in mitochondria. Knockdown of Eci2 in Eci1-deficient fibroblasts caused a more pronounced accumulation of C12:1 acylcarnitine on incubation with unsaturated fatty acids (12-fold, P<0.05). We conclude that Eci2 compensates for Eci1 deficiency explaining the mild phenotype of Eci1-deficient mice. Hypoglycemia and accumulation of C12:1 acylcarnitine might be diagnostic markers to identify ECI1 deficiency in humans.

  16. Adrenal disorders and non-alcoholic fatty liver disease.

    Science.gov (United States)

    Papanastasiou, Labrini; Fountoulakis, Stelios; Vatalas, Ioannis-Anastasios

    2017-06-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the developed world and its pathogenesis is complex and multifactorial. It is considered the hepatic manifestation of the metabolic syndrome and is the leading cause of hepatic cirrhosis. This review aims to present current knowledge on the involvement of the adrenal glands in the development of NAFLD. Clinical and animal studies have shown that excess glucocorticoids (GC) have been implicated in the pathogenesis of NAFLD. Patients with NAFLD seem to have a subtle chronic activation of the hypothalamic pituitary adrenal axis leading to a state of subclinical hypercortisolism. Regulators of GC such as 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), an enzyme that regenerates cortisol from inactive cortisone, and 5α/5β-reductases, enzymes that increase cortisol clearance, are implicated in the development of NAFLD by amplifying local GC action. Adrenal androgen (dehydroepiandrosterone) abnormalities and increased aldosterone levels may also have a role in the development of NAFLD whereas the contribution of adrenergic signaling in NAFLD pathogenesis remains unclear.

  17. Seasonal changes on total fatty acid composition of carp ( Cyprinus ...

    African Journals Online (AJOL)

    the third highest fatty acid in total fatty acids. MUFAs were found to be higher than SFAs and polyunsaturated fatty acids (PUFAs) in all seasons. Docosahexaenoic acid C22:6 3, linoleic acid C18:2 6 and eicosapentaenoic acid C20:5 3 were the highest levels among the PUFAs. The percentages of 3 fatty acid were higher ...

  18. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Lactylic esters of fatty acids. 172.848 Section 172... CONSUMPTION Multipurpose Additives § 172.848 Lactylic esters of fatty acids. Lactylic esters of fatty acids... prepared from lactic acid and fatty acids meeting the requirements of § 172.860(b) and/or oleic acid...

  19. Adipose tissue fatty acid patterns and changes in anthropometry

    DEFF Research Database (Denmark)

    Dahm, Christina Catherine; Gorst-Rasmussen, Anders; Jakobsen, Marianne Uhre

    2011-01-01

    Diets rich in n-3 long chain polyunsaturated fatty acids (LC-PUFA), but low in n-6 LC-PUFA and 18:1 trans-fatty acids (TFA), may lower the risk of overweight and obesity. These fatty acids have often been investigated individually. We explored associations between global patterns in adipose tissu...... fatty acids and changes in anthropometry....

  20. Determination of the seasonal changes on total fatty acid ...

    African Journals Online (AJOL)

    USER

    2010-07-26

    Jul 26, 2010 ... Total fatty acid compositions and seasonal variations of Oncorhynchus mykiss in Ivriz Dam Lake, Turkey were investigated using gas chromatographic method. A total of 38 different fatty acids were determined in the fatty acid composition of rainbow trout. Polyunsaturated fatty acids (PUFAs) were found to ...

  1. Determination of the seasonal changes on total fatty acid ...

    African Journals Online (AJOL)

    Total fatty acid compositions and seasonal variations of Oncorhynchus mykiss in Ivriz Dam Lake, Turkey were investigated using gas chromatographic method. A total of 38 different fatty acids were determined in the fatty acid composition of rainbow trout. Polyunsaturated fatty acids (PUFAs) were found to be higher than ...

  2. Engineering Cellulase Enzymes for Bioenergy

    Science.gov (United States)

    Atreya, Meera Elizabeth

    Sustainable energy sources, such as biofuels, offer increasingly important alternatives to fossil fuels that contribute less to global climate change. The energy contained within cellulosic biofuels derives from sunlight energy stored in the form of carbon-carbon bonds comprising sugars such as glucose. Second-generation biofuels are produced from lignocellulosic biomass feedstocks, including agricultural waste products and non-food crops like Miscanthus, that contain lignin and the polysaccharides hemicellulose and cellulose. Cellulose is the most abundant biological material on Earth; it is a polymer of glucose and a structural component of plant cell walls. Accessing the sugar is challenging, as the crystalline structure of cellulose resists degradation; biochemical and thermochemical means can be used to depolymerize cellulose. Cellulase enzymes catalyze the biochemical depolymerization of cellulose into glucose. Glucose can be used as a carbon source for growth of a biofuel-producing microorganism. When it converts glucose to a hydrocarbon fuel, this microbe completes the biofuels process of transforming sunlight energy into accessible, chemical energy capable of replacing non-renewable transportation fuels. Due to strong intermolecular interactions between polymer chains, cellulose is significantly more challenging to depolymerize than starch, a more accessible polymer of glucose utilized in first-generation biofuels processes (often derived from corn). While most mammals cannot digest cellulose (dietary fiber), certain fungi and bacteria produce cellulase enzymes capable of hydrolyzing it. These organisms secrete a wide variety of glycoside hydrolase and other classes of enzymes that work in concert. Because cellulase enzymes are slow-acting and expensive to produce, my aim has been to improve the properties of these enzymes as a means to make a cellulosic biofuels process possible that is more efficient and, consequently, more economical than current

  3. Δ9 desaturase from Trypanosoma cruzi: Key enzyme in the parasite metabolism. Cloning and overexpression.

    Science.gov (United States)

    Woelke, Mariela R; Paulucci, Natalia S; Selva, Armentano; Garban, Hermes; de Lema, Mirta García

    2017-01-01

    Desaturases, key enzymes in the metabolism of fatty acids, regulate the physical and biochemical properties of membranes. They adjust the composition of saturated and unsaturated fatty acids in response to changes in the environmental. We demonstrated the existence of Δ9 desaturase activity in epimastigotes of the Trypanosoma cruzi Tulahuen strain. In the present study, showed that this enzyme has an approximate molecular mass of 50kDa and a pI value of approximately 9. In order to characterize the Δ9 desaturase of Trypanosoma cruzi, (TcΔ9DES) we have cloned, sequenced and expressed in Escherichia coli. The gene consists of 1300bp and encodes a peptide of 433 amino acids with a molecular weight of 50kDa. Analysis of the amino acid sequence revealed three clusters of histidine and two hydrophobic regions, characteristic of membrane-bound desaturases. Gene expression studies showed that TcΔ9DES was overexpressed as an active protein. Fatty acid analysis showed that the expressed protein was confirmed to be functional with Δ9 desaturase activity. This enzyme changed the fatty acid profile of TcΔ9DES-expressing E. coli, decreasing the levels of palmitic (16:0) and stearic (18:0) acids and enhancing palmitoleic (16:1Δ9) and monounsaturated 18 carbons fatty acids. When [1-14C]palmitic or [1-14C]stearic acid was used as substrate, TcΔ9DES-expressing E. coli exhibited high desaturase activity associated with increased levels of monounsaturated fatty acids, suggesting that the TcΔ9DES enzyme was actively expressed in E. coli. To check the commitment of TcΔ9DES against sterol biosynthesis inhibitors we tested the activity under ketoconazole effect. Native TcΔ9DES, showed a significant activity inhibition. Since TcΔ9DES has shown active participation under different environmental factors, among them, ketoconazole, we consider that it plays a critical role in the metabolism of the parasite. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Heterologous transporter expression for improved fatty alcohol secretion in yeast

    DEFF Research Database (Denmark)

    Hu, Yating; Zhu, Zhiwei; Nielsen, Jens

    2017-01-01

    transporters tested, human FATP1 was shown to mediate fatty alcohol export in a high fatty alcohol production yeast strain. An approximately five-fold increase of fatty alcohol secretion was achieved. The results indicate that the overall cell fitness benefited from fatty alcohol secretion and that the acyl...... as a free fatty acid importer to date. We furthermore successfully identified the functional domain of FATP1 involved in fatty alcohol export through domain exchange between FATP1 and another transporter, FATP4. This study may facilitate a successful commercialization of fatty alcohol production in yeast...

  5. Fatty Acid Binding Proteins in Prostate Cancer

    National Research Council Canada - National Science Library

    Jett, Marti

    2000-01-01

    We have shown that there is a distinct pattern of fatty acid binding protein (FAEP) expression in prostate cancer vs normal cells and that finding has be confirmed in patient samples of biopsy specimens...

  6. CT number of the fatty liver

    International Nuclear Information System (INIS)

    Maeda, Hiroko; Kawai, Takeshi; Kanasaki, Yoshiki; Akagi, Hiroaki

    1981-01-01

    This report is studied on CT number and CT images of the eight cases with fatty liver. Five of these cases showed the reversal of densities of the liver and vessels. In these cases, the diagnoses of the fatty liver were easible. In other cases, the diagnoses were possible only by comparison of the CT number of the liver and spleen because the CT number of normal liver were higher than those of the spleen. In the results which we examined the correlation of the CT number and specific gravities of the blood, normal saline, distilled water, mayonnaise, eatable iol, ethyl alcohol and lard, we observed the linear relationship between CT number and specific gravities. And so, we think that the diagnosis of the fatty liver and the degree of fatty infiltration can be guessed by the CT number of the liver and spleen. (author)

  7. Synthesis of new fatty acids amides from aminolysis of fatty acid methyl esters (FAMEs)

    International Nuclear Information System (INIS)

    Lopes, Carolina R.; Montes D'Oca, Caroline da Ros; Duarte, Rodrigo da C.; Kurz, Marcia H.S.; Primel, Ednei G.; Clementin, Rosilene M.; Villarreyes, Joaquin Ariel M.; Montes D'Oca, Marcelo G.

    2010-01-01

    Recent biochemical and pharmacological studies have led to the characterization of different fatty acid amides as a new family of biologically active lipids. Here, we describe the synthesis of new amides from C16:0, 18:0, 18:1 and 18:1, OH fatty acids (FFA) families with cyclic and acyclic amines and demonstrate for the first time that these compounds produce cytotoxic effects. Application of this method to the synthesis of fatty acid amides was performed using the esters aminolysis as a key step and various carboxylic amides were prepared in good yield from fatty acid methyl esters (FAMEs). (author)

  8. Determination of Fatty Acid Composition and Total Trans Fatty Acids in Cereal-Based Turkish Foods

    OpenAIRE

    DAĞLIOĞLU, Orhan; TAŞAN, Murat

    2014-01-01

    The fatty acid composition and trans fatty acids of 13 cereal-based foods produced by Turkish companies were analysed by capillary gas-liquid chromatography. The total fat contents of the samples ranged from 1.8 to 37.9%. Traditional Turkish white bread and bulgur had the lowest fat content (1.8% and 2.3% respectively) and wafer the highest (37.9%). The major fatty acids in the samples were C16:0, C18:0, trans C18:1, C18:1 and C18:2. Total unsaturated fatty acid contents varied bet...

  9. Activation of PPARα by Oral Clofibrate Increases Renal Fatty Acid Oxidation in Developing Pigs

    Directory of Open Access Journals (Sweden)

    Yonghui He

    2017-12-01

    Full Text Available The objective of this study was to evaluate the effects of peroxisome proliferator-activated receptor α (PPARα activation by clofibrate on both mitochondrial and peroxisomal fatty acid oxidation in the developing kidney. Ten newborn pigs from 5 litters were randomly assigned to two groups and fed either 5 mL of a control vehicle (2% Tween 80 or a vehicle containing clofibrate (75 mg/kg body weight, treatment. The pigs received oral gavage daily for three days. In vitro fatty acid oxidation was then measured in kidneys with and without mitochondria inhibitors (antimycin A and rotenone using [1-14C]-labeled oleic acid (C18:1 and erucic acid (C22:1 as substrates. Clofibrate significantly stimulated C18:1 and C22:1 oxidation in mitochondria (p < 0.001 but not in peroxisomes. In addition, the oxidation rate of C18:1 was greater in mitochondria than peroxisomes, while the oxidation of C22:1 was higher in peroxisomes than mitochondria (p < 0.001. Consistent with the increase in fatty acid oxidation, the mRNA abundance and enzyme activity of carnitine palmitoyltransferase I (CPT I in mitochondria were increased. Although mRNA of mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme A synthase (mHMGCS was increased, the β-hydroxybutyrate concentration measured in kidneys did not increase in pigs treated with clofibrate. These findings indicate that PPARα activation stimulates renal fatty acid oxidation but not ketogenesis.

  10. A clinical and biochemical profile of biopsy-proven non-alcoholic fatty liver disease subjects

    International Nuclear Information System (INIS)

    Khurram, M.; Mushraf, M.

    2007-01-01

    To describe clinical and biochemical features of patients with biopsy-proven non-alcoholic fatty liver disease (NAFLD). Fifty patients of either and of all ages were included, who had ultrasound evidence of fatty liver, deranged liver enzymes, and negative history of alcohol uptake. Serological/biochemical tests/markers of other liver diseases were negative. Each subject underwent liver biopsy reported by a single histopathologist. Clinical (symptoms, hypertension, hepatomegaly, and obesity) and biochemical evaluation (for diabetes, lipid abnormalities, and aspartate to alanine aminotransferase ratio (AST/ALT)) of each subject was done. Chi-square and t-tests were used for p-value calculation for finding significant difference between fatty liver and non-alcoholic steato-hepatitis groups. Thirty three (66%) patients were female and 34% were male. Mean age was 45.50+-11.50 years. Histopathologically, 62% subjects had fatty liver alone, while 38% had nonalcoholic steatohepatitis (NASH). Fatigue (100%), hypertriglyceridemia (80%), hepatomegaly (72%), AST/ALT ratio <1 (72%), and obesity/overweight (54%) were common NAFLD-related features. Except for hypertriglycedemia (p-value 0.008), no statistically significant association was noted between these features and histopathological subtypes of NAFLD. NAFLD-related clinical and biochemical features included fatigue, obesity, hepatomegaly, AST/ALT ratio <1, and hypertriglycedemia. Significant relationship existed between hypertriglyceridemia and NASH. (author)

  11. PDIA3 Knockdown Exacerbates Free Fatty Acid-Induced Hepatocyte Steatosis and Apoptosis.

    Directory of Open Access Journals (Sweden)

    Xue-qun Zhang

    Full Text Available Nonalcoholic fatty liver disease (NAFLD has emerged as one of the most common chronic liver disease over the past decades. Endoplasmic reticulum stress (ERS plays a pivotal role during the development of NAFLD. This study aims to analyze the potential role of protein disulfide isomerase A3 precursor (PDIA3, one of the ER chaperones, in free fatty acid-induced cell model of NAFLD. Human liver L02 cell line was treated with sodium palmitate for 24 hours, which developed severe intracellular lipid accumulation. The increased protein level of PDIA3 was detected via immunoblotting analysis in the fat loaded cell models of NAFLD. siRNA-mediated knockdown of PDIA3 in L02 cells not only increased the cellular lipid accumulation, but also exacerbated hepatocytes apoptosis induced by sodium palmitate. Further investigation revealed that knockdown of PDIA3 up-regulated protein expression of fatty acid synthase (FAS, a key enzyme involved in fatty acid synthesis. PDIA3 knockdown also up-regulated key molecules of ERS pathway, including glucose-regulated protein 78 (GRP78, phospho-PKR-like ER kinase (p-PERK, and C/EBP homologous protein (CHOP. Our results suggested that ER chaperone PDIA3 plays a pivotal role in FFA-induced hepatocyte steatosis and apoptosis.

  12. Erythrocyte polyunsaturated fatty acid composition is associated with depression and FADS genotype in Caucasians.

    Science.gov (United States)

    Cribb, Lachlan; Murphy, Jenifer; Froud, Amy; Oliver, Georgina; Bousman, Chad A; Ng, Chee H; Sarris, Jerome

    2017-05-29

    Polyunsaturated fatty acids (PUFAs) play an important role in the pathophysiology of major depressive disorder (MDD), related, in part, to their role in inflammatory systems. The enzymes δ-5 and δ-6 desaturase are the rate-limiting steps in the metabolism of PUFAs and are encoded in the genes fatty acid desaturase (FADS) 1 and 2, respectively. Single nucleotide polymorphisms (SNPs) and haplotypes within the FADS gene cluster have been shown to influence PUFA composition. The objective of this study was to determine whether key omega-3 (n-3) and omega-6 (n-6) fatty acids may be associated with depression, and to explore the role of FADS genotype in PUFA variation. Four erythrocyte long chain (LC) fatty acids (linoleic acid [LA], α-linolenic acid [ALA], arachidonic acid [AA] and Eicosapentaenoic acid [EPA]), as well as six SNPs (rs174537, rs174547, rs174570, rs174575, rs498793 and rs3834458) within the FADS gene cluster were measured in a sample of 207 participants (154 with MDD versus 53 non-depressed controls). The precursor LC-PUFAs LA and ALA appeared to be negatively associated with depression (P FADS gene cluster. These results provide support for the consideration of PUFA composition, diet and FADS genetic variation in the pathophysiology of MDD.

  13. Molecular cloning and functional characterization of a Δ6-fatty acid desaturase gene from Rhizopus oryzae.

    Science.gov (United States)

    Zhu, Yu; Zhang, Bi-Bo

    2013-09-01

    The objective was to screen for and isolate a novel enzyme with the specific activity of a Δ6-fatty acid desaturase from Rhizopus oryzae. In this study, R. oryzae was identified as a novel fungal species that produces large amounts of γ-linolenic acid. A full-length cDNA, designated here as RoD6D, with high homology to fungal Δ6-fatty acid desaturase genes was isolated from R. oryzae by using the rapid amplification of cDNA ends method. It had an open reading frame of 1176 bp encoding a deduced polypeptide of 391 amino acids. Bioinformatics analysis characterized the putative RoD6D protein as a typical membrane-bound desaturase, including three conserved histidine-rich motifs, a hydropathy profile, and a cytochrome b5 -like domain in the N terminus. When the coding sequence was expressed in the Saccharomyces cerevisiae strain INVScl, the encoded product of RoD6D exhibited Δ6-fatty acid desaturase activity that led to the accumulation of γ-linolenic acid. The corresponding genomic sequence of RoD6D was 1565 bp in length, with five introns. This is the first report on the characterization and gene cloning of a Δ6-fatty acid desaturase of R. oryzae from Douchi. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Volatiles and fatty oil of Cucurbita maxima

    OpenAIRE

    Veličković, Dragan T.; Ristić, Mihailo S.; Karabegović, Ivana T.; Stojičević, Saša S.; Nikolić, Nada Č.; Lazić, Miodrag L.

    2015-01-01

    The subjects of this study are volatile fractions from the fruit, leaf and seed of the pumpkin (Cucurbita maxima), as well as the oil extracted from the seeds of the above plant, with its fatty acid composition and antioxidant activity. The isolation of volatiles was performed by the hydrodistillation process with the Clevenger type apparatus. Seed oil was extracted in a Soxhlet extractor using petroleum ether. The preparation of fatty acid methyl esters was performed according to the AOAC me...

  15. Overview of Omega-3 Fatty Acid Therapies

    OpenAIRE

    Bradberry, J. Chris; Hilleman, Daniel E.

    2013-01-01

    Products containing omega-3 fatty acids, such as krill oil and fish oils, have been effective in lowering triglyceride levels. Although no data have suggested that the low-density lipoprotein-cholesterol (LDL-C) increases associated with some omega-3 fatty acid formulations lead to adverse outcomes, these elevations in LDL-C levels may compromise the achievement of lipid targets. Thus, there is a need for agents that can lower triglyceride levels without increasing LDL-C levels.

  16. Enzymes and Enzyme Activity Encoded by Nonenveloped Viruses.

    Science.gov (United States)

    Azad, Kimi; Banerjee, Manidipa; Johnson, John E

    2017-09-29

    Viruses are obligate intracellular parasites that rely on host cell machineries for their replication and survival. Although viruses tend to make optimal use of the host cell protein repertoire, they need to encode essential enzymatic or effector functions that may not be available or accessible in the host cellular milieu. The enzymes encoded by nonenveloped viruses-a group of viruses that lack any lipid coating or envelope-play vital roles in all the stages of the viral life cycle. This review summarizes the structural, biochemical, and mechanistic information available for several classes of enzymes and autocatalytic activity encoded by nonenveloped viruses. Advances in research and development of antiviral inhibitors targeting specific viral enzymes are also highlighted.

  17. Molecular cloning and characterization of the sheep malic enzyme cDNA.

    Science.gov (United States)

    Stefos, Georgios C; Argyrokastritis, Alexandros; Bizelis, Iosif; Rogdakis, Emmanuel

    2008-10-15

    Malic enzyme catalyzes decarboxylation of malate to pyruvate and CO(2), providing de novo biosynthesis of fatty acids with NADPH. Since lipogenesis in ruminants, contrarily to some monogastric species like human and rodents, occurs predominantly in adipose tissue, the activity of many lipogenic enzymes is higher in adipose tissue compared to liver. Expression of malic enzyme is regulated by nutrition; refeeding after a period of starvation results to an induction of the enzyme. Here we present the nucleotide sequence of two transcripts of the ovine cytosolic malic enzyme gene that differ at the length of the 3' UTR. These are the first published cDNA sequences for ruminant species and share high similarity with the corresponding sequences of other species. Malic enzyme mRNA was present in every ovine tissue that was examined. In agreement with the fact that adipose tissue is the major lipogenic site for ruminants, mRNA levels in adipose tissue were higher than in liver. Refeeding after two weeks of caloric restriction resulted in a two-fold increase of the mRNA level of malic enzyme in adipose tissue.

  18. Repertoire of malic enzymes in yeast and fungi: insight into their evolutionary functional and structural significance.

    Science.gov (United States)

    Vorapreeda, Tayvich; Thammarongtham, Chinae; Cheevadhanarak, Supapon; Laoteng, Kobkul

    2013-12-01

    Malic enzyme (ME) is one of the important enzymes for furnishing the cofactor NAD(P)H for the biosynthesis of fatty acids and sterols. Due to the existence of multiple ME isoforms in a range of oleaginous microbes, a molecular basis for the evolutionary relationships amongst the enzymes in oleaginous fungi was investigated using sequence analysis and structural modelling. Evolutionary distance and structural characteristics were used to discriminate the MEs of yeasts and fungi into several groups. Interestingly, the NADP(+)-dependent MEs of Mucoromycotina had an unusual insertion region (FLxxPG) that was not found in other fungi. However, the subcellular compartment of the Mucoromycotina enzyme could not be clearly identified by an analysis of signal peptide sequences. A constructed structural model of the ME of Mucor circinelloides suggested that the insertion region is located at the N-terminus of the enzyme (aa 159-163). In addition, it is presumably part of the dimer interface region of the enzyme, which might provide a continuously positively charged pocket for the efficient binding of negatively charged effector molecules. The discovery of the unique structure of the Mucoromycotina ME suggests the insertion region could be involved in particular kinetics of this enzyme, which may indicate its involvement in the lipogenesis of industrially important oleaginous microbes.

  19. Giardia fatty acyl-CoA synthetases as potential drug targets

    Directory of Open Access Journals (Sweden)

    Fengguang eGuo

    2015-07-01

    Full Text Available Giardiasis caused by Giardia intestinalis (syn. G. lamblia, G. duodenalis is one of the leading causes of diarrheal parasitic diseases worldwide. Although limited drugs to treat giardiasis are available, there are concerns regarding toxicity in some patients and the emerging drug resistance. By data-mining genome sequences, we observed that G. intestinalis is incapable of synthesizing fatty acids de novo. However, this parasite has five long-chain fatty acyl-CoA synthetases (GiACS1 to GiACS5 to activate fatty acids scavenged from the host. ACS is an essential enzyme because fatty acids need to be activated to form acyl-CoA thioesters before they can enter subsequent metabolism. In the present study, we performed experiments to explore whether some GiACS enzymes could serve as drug targets in Giardia. Based on the high-throughput datasets and protein modeling analyses, we initially studied the GiACS1 and GiACS2, because genes encoding these two enzymes were found to be more consistently expressed in varied parasite life cycle stages and when interacting with host cells based on previously reported transcriptome data. These two proteins were cloned and expressed as recombinant proteins. Biochemical analysis revealed that both had apparent substrate preference towards palmitic acid (C16:0 and myristic acid (C14:0, and allosteric or Michaelis-Menten kinetics on palmitic acid or ATP. The ACS inhibitor triacsin C inhibited the activity of both enzymes (IC50 = 1.56 µM, Ki = 0.18 µM for GiACS1 and IC50 = 2.28 µM, Ki = 0.23 µM for GiACS2, respectively and the growth of G. intestinalis in vitro (IC50 = 0.8 µM. As expected from giardial evolutionary characteristics, both GiACSs displayed differences in overall folding structure as compared with their human counterparts. These observations support the notion that some of the GiACS enzymes may be explored as drug targets in this parasite.

  20. Omega-3 Fatty Acids and Inflammatory Processes

    Directory of Open Access Journals (Sweden)

    Philip C. Calder

    2010-03-01

    Full Text Available Long chain fatty acids influence inflammation through a variety of mechanisms; many of these are mediated by, or at least associated with, changes in fatty acid composition of cell membranes. Changes in these compositions can modify membrane fluidity, cell signaling leading to altered gene expression, and the pattern of lipid mediator production. Cell involved in the inflammatory response are typically rich in the n-6 fatty acid arachidonic acid, but the contents of arachidonic acid and of the n-3 fatty acids eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA can be altered through oral administration of EPA and DHA. Eicosanoids produced from arachidonic acid have roles in inflammation. EPA also gives rise to eicosanoids and these often have differing properties from those of arachidonic acid-derived eicosanoids. EPA and DHA give rise to newly discovered resolvins which are anti-inflammatory and inflammation resolving. Increased membrane content of EPA and DHA (and decreased arachidonic acid content results in a changed pattern of production of eicosanoids and resolvins. Changing the fatty acid composition of cells involved in the inflammatory response also affects production of peptide mediators of inflammation (adhesion molecules, cytokines etc.. Thus, the fatty acid composition of cells involved in the inflammatory response influences their function; the contents of arachidonic acid, EPA and DHA appear to be especially important. The anti-inflammatory effects of marine n-3 PUFAs suggest that they may be useful as therapeutic agents in disorders with an inflammatory component.

  1. Rethinking fundamentals of enzyme action.

    Science.gov (United States)

    Northrop, D B

    1999-01-01

    Despite certain limitations, investigators continue to gainfully employ concepts rooted in steady-state kinetics in efforts to draw mechanistically relevant inferences about enzyme catalysis. By reconsidering steady-state enzyme kinetic behavior, this review develops ideas that allow one to arrive at the following new definitions: (a) V/K, the ratio of the maximal initial velocity divided by the Michaelis-Menten constant, is the apparent rate constant for the capture of substrate into enzyme complexes that are destined to yield product(s) at some later point in time; (b) the maximal velocity V is the apparent rate constant for the release of substrate from captured complexes in the form of free product(s); and (c) the Michaelis-Menten constant K is the ratio of the apparent rate constants for release and capture. The physiologic significance of V/K is also explored to illuminate aspects of antibiotic resistance, the concept of "perfection" in enzyme catalysis, and catalytic proficiency. The conceptual basis of congruent thermodynamic cycles is also considered in an attempt to achieve an unambiguous way for comparing an enzyme-catalyzed reaction with its uncatalyzed reference reaction. Such efforts promise a deeper understanding of the origins of catalytic power, as it relates to stabilization of the reactant ground state, stabilization of the transition state, and reciprocal stabilizations of ground and transition states.

  2. Nonclassical Kinetics of Clonal yet Heterogeneous Enzymes.

    Science.gov (United States)

    Park, Seong Jun; Song, Sanggeun; Jeong, In-Chun; Koh, Hye Ran; Kim, Ji-Hyun; Sung, Jaeyoung

    2017-07-06

    Enzyme-to-enzyme variation in the catalytic rate is ubiquitous among single enzymes created from the same genetic information, which persists over the lifetimes of living cells. Despite advances in single-enzyme technologies, the lack of an enzyme reaction model accounting for the heterogeneous activity of single enzymes has hindered a quantitative understanding of the nonclassical stochastic outcome of single enzyme systems. Here we present a new statistical kinetics and exactly solvable models for clonal yet heterogeneous enzymes with possibly nonergodic state dynamics and state-dependent reactivity, which enable a quantitative understanding of modern single-enzyme experimental results for the mean and fluctuation in the number of product molecules created by single enzymes. We also propose a new experimental measure of the heterogeneity and nonergodicity for a system of enzymes.

  3. Human carbonyl reductase 1 participating in intestinal first-pass drug metabolism is inhibited by fatty acids and acyl-CoAs.

    Science.gov (United States)

    Hara, Akira; Endo, Satoshi; Matsunaga, Toshiyuki; El-Kabbani, Ossama; Miura, Takeshi; Nishinaka, Toru; Terada, Tomoyuki

    2017-08-15

    Human carbonyl reductase 1 (CBR1), a member of the short-chain dehydrogenase/reductase (SDR) superfamily, reduces a variety of carbonyl compounds including endogenous isatin, prostaglandin E 2 and 4-oxo-2-nonenal. It is also a major non-cytochrome P450 enzyme in the phase I metabolism of carbonyl-containing drugs, and is highly expressed in the intestine. In this study, we found that long-chain fatty acids and their CoA ester derivatives inhibit CBR1. Among saturated fatty acids, myristic, palmitic and stearic acids were inhibitory, and stearic acid was the most potent (IC 50 9µM). Unsaturated fatty acids (oleic, elaidic, γ-linolenic and docosahexaenoic acids) and acyl-CoAs (palmitoyl-, stearoyl- and oleoyl-CoAs) were more potent inhibitors (IC 50 1.0-2.5µM), and showed high inhibitory selectivity to CBR1 over its isozyme CBR3 and other SDR superfamily enzymes (DCXR and DHRS4) with CBR activity. The inhibition by these fatty acids and acyl-CoAs was competitive with respect to the substrate, showing the K i values of 0.49-1.2µM. Site-directed mutagenesis of the substrate-binding residues of CBR1 suggested that the interactions between the fatty acyl chain and the enzyme's Met141 and Trp229 are important for the inhibitory selectivity. We also examined CBR1 inhibition by oleic acid in cellular levels: The fatty acid effectively inhibited CBR1-mediated 4-oxo-2-nonenal metabolism in colon cancer DLD1 cells and increased sensitivity to doxorubicin in the drug-resistant gastric cancer MKN45 cells that highly express CBR1. The results suggest a possible new food-drug interaction through inhibition of CBR1-mediated intestinal first-pass drug metabolism by dietary fatty acids. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Enhanced Promiscuity of Lipase-Inorganic Nanocrystal Composites in the Epoxidation of Fatty Acids in Organic Media.

    Science.gov (United States)

    Hua, Xiufu; Xing, Yi; Zhang, Xuan

    2016-06-29

    In the present study, Candida antarctica lipase B (CALB) was encapsulated in inorganic nanocrystal composites with flower-like shapes, retaining 92% of its catalytic activity compared to that of native lipase. Surprisingly, CALB-inorganic crystal nanoflowers exhibited promiscuous activity at levels 25- and 4-fold higher than those of native lipase and the commercial immobilized lipase Novozym 435, respectively, as demonstrated by the chemoenzymatic epoxidation of fatty acids conducted in organic media. To the best of our knowledge, we showed for the first time that the promiscuity of enzymes can be significantly improved by enzyme immobilization, suggesting that the enzyme-inorganic nanocrystal composites are a very promising type of immobilized enzyme that can be used to address the challenge of the extremely low efficiency of enzymatic promiscuity.

  5. Campylobacter jejuni fatty acid synthase II: Structural and functional analysis of [beta]-hydroxyacyl-ACP dehydratase (FabZ)

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, Andrew S.; Yokoyama, Takeshi; Choi, Kyoung-Jae; Yeo, Hye-Jeong; (Houston)

    2009-08-14

    Fatty acid biosynthesis is crucial for all living cells. In contrast to higher organisms, bacteria use a type II fatty acid synthase (FAS II) composed of a series of individual proteins, making FAS II enzymes excellent targets for antibiotics discovery. The {beta}-hydroxyacyl-ACP dehydratase (FabZ) catalyzes an essential step in the FAS II pathway. Here, we report the structure of Campylobacter jejuni FabZ (CjFabZ), showing a hexamer both in crystals and solution, with each protomer adopting the characteristic hot dog fold. Together with biochemical analysis of CjFabZ, we define the first functional FAS II enzyme from this pathogen, and provide a framework for investigation on roles of FAS II in C. jejuni virulence

  6. Influence of Indigenous Starter Cultures on the Free Fatty Acids Content During Ripening in Artisan Sausages Produced in the Basilicata Region

    Directory of Open Access Journals (Sweden)

    Fabio Favati

    2003-01-01

    Full Text Available The influence of indigenous starter cultures on the free fatty acids content during ripening of »salsiccia«, a typical dry fermented sausage produced in the Basilicata region, was studied. Three batches of »salsiccia« were produced using different starter mixtures (Lactobacillus sakei G20 and Staphylococcus xylosus S81; L. sakei G20 and S. xylosus S142; L. sakei G20 and S. xylosus S206, while the control batch was produced without a starter. The amounts of free fatty acids present in the samples at the end of the ripening period were not significantly different, suggesting that the lipolytic enzymes naturally occurring in meat could play a predominant role in the free fatty acids release. Oleic and linoleic acids were present in the highest concentrations, while only small quantities of short chain fatty acids were detected, with acetic acid being the most representative one.

  7. Electric Fields and Enzyme Catalysis.

    Science.gov (United States)

    Fried, Stephen D; Boxer, Steven G

    2017-06-20

    What happens inside an enzyme's active site to allow slow and difficult chemical reactions to occur so rapidly? This question has occupied biochemists' attention for a long time. Computer models of increasing sophistication have predicted an important role for electrostatic interactions in enzymatic reactions, yet this hypothesis has proved vexingly difficult to test experimentally. Recent experiments utilizing the vibrational Stark effect make it possible to measure the electric field a substrate molecule experiences when bound inside its enzyme's active site. These experiments have provided compelling evidence supporting a major electrostatic contribution to enzymatic catalysis. Here, we review these results and develop a simple model for electrostatic catalysis that enables us to incorporate disparate concepts introduced by many investigators to describe how enzymes work into a more unified framework stressing the importance of electric fields at the active site.

  8. Enzyme-Based Listericidal Nanocomposites

    Science.gov (United States)

    Solanki, Kusum; Grover, Navdeep; Downs, Patrick; Paskaleva, Elena E.; Mehta, Krunal K.; Lee, Lillian; Schadler, Linda S.; Kane, Ravi S.; Dordick, Jonathan S.

    2013-01-01

    Cell lytic enzymes represent an alternative to chemical decontamination or use of antibiotics to kill pathogenic bacteria, such as listeria. A number of phage cell lytic enzymes against listeria have been isolated and possess listericidal activity; however, there has been no attempt to incorporate these enzymes onto surfaces. We report three facile routes for the surface incorporation of the listeria bacteriophage endolysin Ply500: covalent attachment onto FDA approved silica nanoparticles (SNPs), incorporation of SNP-Ply500 conjugates into a thin poly(hydroxyethyl methacrylate) film; and affinity binding to edible crosslinked starch nanoparticles via construction of a maltose binding protein fusion. These Ply500 formulations were effective in killing L. innocua (a reduced pathogenic surrogate) at challenges up to 105 CFU/ml both in non-growth sustaining PBS as well as under growth conditions on lettuce. This strategy represents a new route toward achieving highly selective and efficient pathogen decontamination and prevention in public infrastructure. PMID:23545700

  9. Enzymes in CO2 Capture

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gladis, Arne; Thomsen, Kaj

    The enzyme Carbonic Anhydrase (CA) can accelerate the absorption rate of CO2 into aqueous solutions by several-fold. It exist in almost all living organisms and catalyses different important processes like CO2 transport, respiration and the acid-base balances. A new technology in the field...... of carbon capture is the application of enzymes for acceleration of typically slow ternary amines or inorganic carbonates. There is a hidden potential to revive currently infeasible amines which have an interesting low energy consumption for regeneration but too slow kinetics for viable CO2 capture. The aim...... of this work is to discuss the measurements of kinetic properties for CA promoted CO2 capture solvent systems. The development of a rate-based model for enzymes will be discussed showing the principles of implementation and the results on using a well-known ternary amine for CO2 capture. Conclusions...

  10. Photosynthetic fuel for heterologous enzymes

    DEFF Research Database (Denmark)

    Mellor, Silas Busck; Vavitsas, Konstantinos; Nielsen, Agnieszka Janina Zygadlo

    2017-01-01

    Plants, cyanobacteria, and algae generate a surplus of redox power through photosynthesis, which makes them attractive for biotechnological exploitations. While central metabolism consumes most of the energy, pathways introduced through metabolic engineering can also tap into this source of reduc......Plants, cyanobacteria, and algae generate a surplus of redox power through photosynthesis, which makes them attractive for biotechnological exploitations. While central metabolism consumes most of the energy, pathways introduced through metabolic engineering can also tap into this source...... on electrostatically steered complex formation, they form productive electron transfer complexes with non-native enzymes. A handful of examples demonstrate channeling of photosynthetic electrons to drive the activity of heterologous enzymes, and these focus mainly on hydrogenases and cytochrome P450s. However......, competition from native pathways and inefficient electron transfer rates present major obstacles, which limit the productivity of heterologous reactions coupled to photosynthesis. We discuss specific approaches to address these bottlenecks and ensure high productivity of such enzymes in a photosynthetic...

  11. Type II fatty acid synthesis is essential only for malaria parasite late liver stage development.

    Science.gov (United States)

    Vaughan, Ashley M; O'Neill, Matthew T; Tarun, Alice S; Camargo, Nelly; Phuong, Thuan M; Aly, Ahmed S I; Cowman, Alan F; Kappe, Stefan H I

    2009-03-01

    Intracellular malaria parasites require lipids for growth and replication. They possess a prokaryotic type II fatty acid synthesis (FAS II) pathway that localizes to the apicoplast plastid organelle and is assumed to be necessary for pathogenic blood stage replication. However, the importance of FAS II throughout the complex parasite life cycle remains unknown. We show in a rodent malaria model that FAS II enzymes localize to the sporozoite and liver stage apicoplast. Targeted deletion of FabB/F, a critical enzyme in fatty acid synthesis, did not affect parasite blood stage replication, mosquito stage development and initial infection in the liver. This was confirmed by knockout of FabZ, another critical FAS II enzyme. However, FAS II-deficient Plasmodium yoelii liver stages failed to form exo-erythrocytic merozoites, the invasive stage that first initiates blood stage infection. Furthermore, deletion of FabI in the human malaria parasite Plasmodium falciparum did not show a reduction in asexual blood stage replication in vitro. Malaria parasites therefore depend on the intrinsic FAS II pathway only at one specific life cycle transition point, from liver to blood.

  12. Gastric lipase: localization of the enzyme in the stomach

    International Nuclear Information System (INIS)

    DeNigris, S.J.; Hamosh, M.; Hamosh, P.; Kasbekar, D.K.

    1986-01-01

    Isolated gastric glands prepared from human and rabbit stomach secrete lipase in response to secretagogues. They have investigated the localization of this enzyme in three species (rabbit, baboon, guinea pig). Gastric mucosa was sampled from the cardia (C), fundus-smooth (FS), fundus-ruggae (FR) and the antral area (A). Lipase activity was measured in mucosal homogenates using 3 H-triolein as substrate and is expressed in units (U) = nmols free fatty acid released/min/mg wet weight. The localization of lipase is compared with that of pepsin (measured by hydrolysis of 2% hemoglobin at pH 1.8 and expressed in I.U.). Lipase is localized in a well defined area in the rabbit and is diffusely distributed in both guinea pig and baboon. The distribution of lipase and pepsin containing cells differs in all three species. The cellular origin of gastric lipase remains to be determined

  13. Evidence for a high fatty acid synthesis activity in interscapular brown adipose tissue of genetically obese Zucker rats.

    OpenAIRE

    Lavau, M; Bazin, R; Karaoghlanian, Z; Guichard, C

    1982-01-01

    Obese (fa/fa) rats (30 days old) exhibited a 50% increase in the weight of interscapular brown adipose tissue compared with their lean (Fa/fa) littermates. The tissue weight increase was accounted for by an increased fat content. Lipogenesis in vivo, as assessed by the incorporation of 3H from 3H2O into lipid, was increased 5-fold in brown adipose tissue of obese as compared with lean rats. Accordingly, acetyl-CoA carboxylase, fatty acid synthetase, citrate-cleavage enzyme and malic enzyme in...

  14. Omega-3 and Omega-6 Fatty Acids Act as Inhibitors of the Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9 Activity.

    Science.gov (United States)

    Nicolai, Eleonora; Sinibaldi, Federica; Sannino, Gianpaolo; Laganà, Giuseppina; Basoli, Francesco; Licoccia, Silvia; Cozza, Paola; Santucci, Roberto; Piro, Maria Cristina

    2017-08-01

    Polyunsaturated fatty acids have been reported to play a protective role in a wide range of diseases characterized by an increased metalloproteinases (MMPs) activity. The recent finding that omega-3 and omega-6 fatty acids exert an anti-inflammatory effect in periodontal diseases has stimulated the present study, designed to determine whether such properties derive from a direct inhibitory action of these compounds on the activity of MMPs. To this issue, we investigated the effect exerted by omega-3 and omega-6 fatty acids on the activity of MMP-2 and MMP-9, two enzymes that actively participate to the destruction of the organic matrix of dentin following demineralization operated by bacteria acids. Data obtained (both in vitro and on ex-vivo teeth) reveal that omega-3 and omega-6 fatty acids inhibit the proteolytic activity of MMP-2 and MMP-9, two enzymes present in dentin. This observation is of interest since it assigns to these compounds a key role as MMPs inhibitors, and stimulates further study to better define their therapeutic potentialities in carious decay.

  15. Internal friction in enzyme reactions.

    Science.gov (United States)

    Rauscher, Anna; Derényi, Imre; Gráf, László; Málnási-Csizmadia, András

    2013-01-01

    The empirical concept of internal friction was introduced 20 years ago. This review summarizes the results of experimental and theoretical studies that help to uncover the nature of internal friction. After the history of the concept, we describe the experimental challenges in measuring and interpreting internal friction based on the viscosity dependence of enzyme reactions. We also present speculations about the structural background of this viscosity dependence. Finally, some models about the relationship between the energy landscape and internal friction are outlined. Alternative concepts regarding the viscosity dependence of enzyme reactions are also discussed. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  16. Substrate mediated enzyme prodrug therapy

    DEFF Research Database (Denmark)

    Fejerskov, Betina; Jarlstad Olesen, Morten T; Zelikin, Alexander N

    2017-01-01

    Substrate mediated enzyme prodrug therapy (SMEPT) is a biomedical platform developed to perform a localized synthesis of drugs mediated by implantable biomaterials. This approach combines the benefits and at the same time offers to overcome the drawbacks for traditional pill-based drug administra......Substrate mediated enzyme prodrug therapy (SMEPT) is a biomedical platform developed to perform a localized synthesis of drugs mediated by implantable biomaterials. This approach combines the benefits and at the same time offers to overcome the drawbacks for traditional pill-based drug...

  17. Enzyme and biochemical producing fungi

    DEFF Research Database (Denmark)

    Lübeck, Peter Stephensen; Lübeck, Mette; Nilsson, Lena

    2010-01-01

    We are developing a biorefinery concept for biological production of chemicals, drugs, feed and fuels using plant biomass as raw material in well-defined cell-factories. Among the important goals is the discovery of new biocatalysts for production of enzymes, biochemicals and fuels and already our...... screening of a large collection of fungal strains isolated from natural habitats have resulted in identification of strains with high production of hydrolytic enzymes and excretion of organic acids. Our research focuses on creating a fungal platform based on synthetic biology for developing new cell...

  18. Immunomodulatory Effects of Chitotriosidase Enzyme

    Directory of Open Access Journals (Sweden)

    Mohamed A. Elmonem

    2016-01-01

    Full Text Available Chitotriosidase enzyme (EC: 3.2.1.14 is the major active chitinase in the human body. It is produced mainly by activated macrophages, in which its expression is regulated by multiple intrinsic and extrinsic signals. Chitotriosidase was confirmed as essential element in the innate immunity against chitin containing organisms such as fungi and protozoa; however, its immunomodulatory effects extend far beyond innate immunity. In the current review, we will try to explore the expanding spectrum of immunological roles played by chitotriosidase enzyme in human health and disease and will discuss its up-to-date clinical value.

  19. Recent developments in the antiprotozoal and anticancer activities of the 2-alkynoic fatty acids

    Science.gov (United States)

    Carballeira, Néstor M.

    2013-01-01

    The 2-alkynoic fatty acids are an interesting group of synthetic compounds that display antimycobacterial, antifungal, anticancer, and pesticidal activities but their antiprotozoal activity has received little attention until recently. In this review we have summarized our present knowledge of the biomedical potential of the 2-hexadecynoic acid (2-HDA) and 2-octadecynoic acid (2-ODA) together with several mechanistic pieces of work attesting to the fact that these compounds, and their metabolites, are good fatty acid biosynthesis inhibitors. The antiprotozoal activity of 2-HDA and 2-ODA against Leishmania donovani and Plasmodium falciparum, parasites responsible for visceral leishmaniasis and malaria, respectively, is also reviewed. The evidence obtained so far supports the fact that these fatty acids are good inhibitors of the L. donovani DNA topoisomerase IB enzyme (LdTopIB) and the potency of LdTopIB inhibition is chain length dependent. We also demonstrate the generality of the antiprotozoal activity of 2-HDA and 2-ODA against P. falciparum, and review our present knowledge of their inhibition of key P. falciparum enzymes such as PfFabZ, PfFabG, and PfFabI together with some possible modes of inhibition. Recent research by our group has also demonstrated that 2-ODA displays antineoplastic activity, specifically against the neuroblastoma SH-SY5Y cell line via lactate dehydrogenase (LDH) release, which is a cell death mechanism principally associated to necrosis. This is the first comprehensive review of the medicinal chemistry of this interesting group of acetylenic fatty acids. PMID:23727443

  20. Effects of varying levels of n-6:n-3 fatty acid ratio on plasma fatty acid ...

    African Journals Online (AJOL)

    This study investigated the effects of varying dietary levels of n-6:n-3 fatty acid ratio on plasma fatty acid composition and prostanoid synthesis in pregnant rats. Four groups consisting of seven rats per group of non pregnant rats were fed diets with either a very low n-6:n-3 ratio of 50% soybean oil (SBO): 50% cod liver oil ...

  1. Homogeneously catalysed hydrogenation of unsaturated fatty acids to unsaturated fatty alcohols

    NARCIS (Netherlands)

    Stouthamer, B.; Vlugter, J.C.

    1965-01-01

    The use of copper and cadmium oxides or soaps as catalysts for the hydrogenation of unsaturated fatty acids to unsaturated fatty alcohols has been investigated. It is shown that copper soaps homogeneously activate hydrogen. When copper and cadmium oxides are used as catalysts, they react with the

  2. Phospholipid fatty acids analysis-fatty acid methyl ester (PLFA-FAME)

    African Journals Online (AJOL)

    This study aims to develop certain perspectives based on the principle of on-site remediation of the soil through biological means known as "bioremediation" against soil pollution issues resulting from fuel contamination in our country and to reveal the fatty acid profile in the final soils. The fatty acid profile of the soils was ...

  3. Structural Characterisation of FabG from Yersinia pestis, a Key Component of Bacterial Fatty Acid Synthesis.

    Science.gov (United States)

    Nanson, Jeffrey D; Forwood, Jade K

    2015-01-01

    Ketoacyl-acyl carrier protein reductases (FabG) are ubiquitously expressed enzymes that catalyse the reduction of acyl carrier protein (ACP) linked thioesters within the bacterial type II fatty acid synthesis (FASII) pathway. The products of these enzymes, saturated and unsaturated fatty acids, are essential components of the bacterial cell envelope. The FASII reductase enoyl-ACP reductase (FabI) has been the focus of numerous drug discovery efforts, some of which have led to clinical trials, yet few studies have focused on FabG. Like FabI, FabG appears to be essential for survival in many bacteria, similarly indicating the potential of this enzyme as a drug target. FabG enzymes are members of the short-chain alcohol dehydrogenase/reductase (SDR) family, and like other SDRs, exhibit highly conserved secondary and tertiary structures, and contain a number of conserved sequence motifs. Here we describe the crystal structures of FabG from Yersinia pestis (YpFabG), the causative agent of bubonic, pneumonic, and septicaemic plague, and three human pandemics. Y. pestis remains endemic in many parts of North America, South America, Southeast Asia, and Africa, and a threat to human health. YpFabG shares a high degree of structural similarity with bacterial homologues, and the ketoreductase domain of the mammalian fatty acid synthase from both Homo sapiens and Sus scrofa. Structural characterisation of YpFabG, and comparison with other bacterial FabGs and the mammalian fatty acid synthase, provides a strong platform for virtual screening of potential inhibitors, rational drug design, and the development of new antimicrobial agents to combat Y. pestis infections.

  4. In Silico Structure Prediction of Human Fatty Acid Synthase–Dehydratase: A Plausible Model for Understanding Active Site Interactions

    OpenAIRE

    Arun John; Vetrivel Umashankar; A. Samdani; Manoharan Sangeetha; Subramanian Krishnakumar; Perinkulam Ravi Deepa

    2016-01-01

    Fatty acid synthase (FASN, UniProt ID: P49327) is a multienzyme dimer complex that plays a critical role in lipogenesis. Consequently, this lipogenic enzyme has gained tremendous biomedical importance. The role of FASN and its inhibition is being extensively researched in several clinical conditions, such as cancers, obesity, and diabetes. X-ray crystallographic structures of some of its domains, such as ?-ketoacyl synthase, acetyl transacylase, malonyl transacylase, enoyl reductase, ?-ketoac...

  5. Structural Characterisation of FabG from Yersinia pestis, a Key Component of Bacterial Fatty Acid Synthesis.

    Directory of Open Access Journals (Sweden)

    Jeffrey D Nanson

    Full Text Available Ketoacyl-acyl carrier protein reductases (FabG are ubiquitously expressed enzymes that catalyse the reduction of acyl carrier protein (ACP linked thioesters within the bacterial type II fatty acid synthesis (FASII pathway. The products of these enzymes, saturated and unsaturated fatty acids, are essential components of the bacterial cell envelope. The FASII reductase enoyl-ACP reductase (FabI has been the focus of numerous drug discovery efforts, some of which have led to clinical trials, yet few studies have focused on FabG. Like FabI, FabG appears to be essential for survival in many bacteria, similarly indicating the potential of this enzyme as a drug target. FabG enzymes are members of the short-chain alcohol dehydrogenase/reductase (SDR family, and like other SDRs, exhibit highly conserved secondary and tertiary structures, and contain a number of conserved sequence motifs. Here we describe the crystal structures of FabG from Yersinia pestis (YpFabG, the causative agent of bubonic, pneumonic, and septicaemic plague, and three human pandemics. Y. pestis remains endemic in many parts of North America, South America, Southeast Asia, and Africa, and a threat to human health. YpFabG shares a high degree of structural similarity with bacterial homologues, and the ketoreductase domain of the mammalian fatty acid synthase from both Homo sapiens and Sus scrofa. Structural characterisation of YpFabG, and comparison with other bacterial FabGs and the mammalian fatty acid synthase, provides a strong platform for virtual screening of potential inhibitors, rational drug design, and the development of new antimicrobial agents to combat Y. pestis infections.

  6. Plasma cathepsin D correlates with histological classifications of fatty liver disease in adults and responds to intervention

    OpenAIRE

    Walenbergh, Sofie M. A.; Houben, Tom; Rensen, Sander S.; Bieghs, Veerle; Hendrikx, Tim; van Gorp, Patrick J.; Oligschlaeger, Yvonne; Jeurissen, Mike L. J.; Gijbels, Marion J. J.; Buurman, Wim A.; Vreugdenhil, Anita C. E.; Greve, Jan Willem M.; Plat, Jogchum; Hofker, Marten H.; Kalhan, Satish

    2016-01-01

    Non-alcoholic steatohepatitis (NASH) is characterized by liver lipid accumulation and inflammation. The mechanisms that trigger hepatic inflammation are poorly understood and subsequently, no specific non-invasive markers exist. We previously demonstrated a reduction in the plasma lysosomal enzyme, cathepsin D (CatD), in children with NASH compared to children without NASH. Recent studies have raised the concept that non-alcoholic fatty liver disease (NAFLD) in adults is distinct from childre...

  7. Chylomicron Remnants and Nonesterified Fatty Acids Differ in Their Ability to Inhibit Genes Involved in Lipogenesis in Rats123

    OpenAIRE

    Kohan, Alison B.; Qing, Yang; Cyphert, Holly A.; Tso, Patrick; Salati, Lisa M.

    2010-01-01

    Primary hepatocytes treated with nonesterified PUFA have been used as a model for analyzing the inhibitory effects of dietary polyunsaturated fats on lipogenic gene expression. Although nonesterified fatty acids play an important signaling role in starvation, they do not completely recapitulate the mechanism of dietary fat presentation to the liver, which is delivered via chylomicron remnants. To test the effect of remnant TG on lipogenic enzyme expression, chylomicron remnants were generated...

  8. Effects of endocannabinoid system modulation on cognitive and emotional behavior

    Directory of Open Access Journals (Sweden)

    Claudio eZanettini

    2011-09-01

    Full Text Available Cannabis has long been known to produce cognitive and emotional effects. Research has shown that cannabinoid drugs produce these effects by driving the brain's endogenous cannabinoid system and that this system plays a modulatory role in many cognitive and emotional processes. This review focuses on the effects of endocannabinoid-system modulation in animal models of cognition (learning and memory and emotion (anxiety and depression. We review studies in which natural or synthetic cannabinoid agonists were administered to directly stimulate cannabinoid receptors or, conversely, where cannabinoid antagonists were administered to inhibit the activity of cannabinoid receptors. In addition, studies are reviewed that involved genetic disruption of cannabinoid receptors or genetic or pharmacological manipulation of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH. Endocannabinoids affect the function of many neurotransmitter systems, some of which play opposing roles. The diversity of cannabinoid roles and the complexity of task-dependent activation of neuronal circuits may lead to the effects of endocannabinoid system modulation being strongly dependent on environmental conditions. Recent findings are reviewed that raise the possibility that endocannabinoid signaling may change the impact of environmental influences on emotional and cognitive behavior rather than affecting one or another specific behavior.

  9. Production of unusual fatty acids in rapeseed

    Directory of Open Access Journals (Sweden)

    Roscoe Thomas

    2002-01-01

    Full Text Available Vegetable-derived oils are of interest for industrial applications partly because of the chemical similarity of plant oils to mineral oils but also because of the economic need to reduce overproduction of seed oils for nutritional use. Complex oils can be produced in seeds as a low cost agricultural product based on renewable solar energy that requires less refining and is biodegradable and thus produces less adverse effects on the environment. In addition, biotechnologies have accelerated selection programmes and increased the genetic diversity available for the development of new varieties of oilseeds with specific fatty acid compositions. In the developing oilseed, energy and carbon are stored as lipid under the form of triacylglycerol, that is, a glycerol molecule to which three fatty acids are esterified. Fatty acids comprise a linear chain of carbon atoms, the first of which carries an organic acid group. The chain length and the presence of double bonds determine the properties of the fatty acid which in turn determine the physical and chemical properties of the oil of storage lipids and hence their economic value. In addition to the common C16- and C18-saturated and unsaturated fatty acids of membrane lipids, the seed storage lipids of many plant species contain unusual fatty acids (UFAs which can vary in chain length, in the degree of unsaturation, possess double bonds in unusual positions, or can contain additional functional groups such as hydroxy, epoxy, cyclic and acetylenic groups [1]. These unusual fatty acids are of value as industrial feedstocks and their uses include the production of fuels and lubricants, soap and detergents, paints and varnishes, adhesives and plastics (Figure 1.

  10. Effect of Telmisartan or Losartan for Treatment of Nonalcoholic Fatty Liver Disease: Fatty Liver Protection Trial by Telmisartan or Losartan Study (FANTASY

    Directory of Open Access Journals (Sweden)

    Takumi Hirata

    2013-01-01

    Full Text Available Aim. This study compared the effects of telmisartan and losartan on nonalcoholic fatty liver disease (NAFLD and biochemical markers of insulin resistance in hypertensive NAFLD patients with type 2 diabetes mellitus. Methods. This was a randomized, open-label, parallel-group comparison of therapy with telmisartan or losartan. Nineteen hypertensive NAFLD patients with type 2 diabetes were randomly assigned to receive telmisartan at a dose of 20 mg once a day (n=12 or losartan at a dose of 50 mg once a day (n=7 for 12 months. Body fat area as determined by CT scanning and hepatic fat content based on the liver-to-spleen (L/S ratio, as well as several parameters of glycemic and lipid metabolism, were compared before and after 12 months. Results. The telmisartan group showed a significant decline in serum free fatty acid (FFA level (from 0.87±0.26 to 0.59±0.22 mEq/L (mean ± SD, P=0.005 and a significant increase in L/S ratio (P=0.049 evaluated by CT scan, while these parameters were not changed in the losartan group. Conclusion. Although there was no significant difference in improvement in liver enzymes with telmisartan and losartan treatment in hypertensive NAFLD patients with type 2 diabetes after 12 months, it is suggested that telmisartan may exert beneficial effects by improving fatty liver.

  11. Anti-fatty liver effects of oils from Zingiber officinale and Curcuma longa on ethanol-induced fatty liver in rats.

    Science.gov (United States)

    Nwozo, Sarah Onyenibe; Osunmadewa, Damilola Adeola; Oyinloye, Babatunji Emmanuel

    2014-01-01

    The present study is aimed at evaluating the protective effects of oils from Zingiber officinale (ginger) and Curcuma longa (turmeric) on acute ethanol-induced fatty liver in male Wistar rats. Ferric reducing antioxidant power activity and oxygen radical absorbance capacity of the oils were evaluated ex vivo. Rats were pretreated for 28 d with standard drug (Livolin Forte) and oils from Z. officinale and C. longa before they were exposed to 45% ethanol (4.8 g/kg) to induce acute fatty liver. Histological changes were observed and the degree of protection was measured by using biochemical parameters such as alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase activities. Serum triglyceride (TG) level, total cholesterol (TC) level and the effects of both oils on reduced gluthatione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD) and hepatic malondialdehyde (MDA) levels were estimated. Oils from Z. officinale and C. longa at a dose of 200 mg/kg showed hepatoprotection by decreasing the activities of serum enzymes, serum TG, serum TC and hepatic MDA, while they significantly restored the level of GSH as well as GST and SOD activities. Histological examination of rats tissues was related to the obtained results. From the results it may be concluded that oils from Z. officinale and C. longa (200 mg/kg) exhibited hepatoprotective activity in acute ethanol-induced fatty liver and Z. officinale oil was identified to have better effects than C. longa oil.

  12. Fatty Acid Composition of Meat from Ruminants, with Special Emphasis on trans Fatty Acids

    DEFF Research Database (Denmark)

    Leth, Torben; Ovesen, L.; Hansen, K.

    1998-01-01

    , respectively). Cis monounsaturated fatty acids were 49.2 +/- 3.1, 44.9 +/- 1.8, and 37.7 +/- 1.7, and polyunsaturated fatty acids were 3.3 +/- 0.7, 5.8 +/- 2.0, and 5.0 +/- 0.1 g/100 g fatty acids in beef, veal, and lamb, respectively. Beef contained 2.1 +/- 0.8 g trans C-18:1 per 100 g fatty acids, about half....... The overlap between cis and trans C-18:1 by capillary GLC was verified by argentation-thin-layer chromatography followed by GLC, on three samples of veal and three samples of lamb. In veal 1.0 g, and in lamb 1.4 g trans C-18:1 per 100 g fatty acids were hidden under the cis C-18:1 peak. The mean intake...

  13. Challenges in enriching milk fat with polyunsaturated fatty acids.

    Science.gov (United States)

    Lanier, Jennifer Stamey; Corl, Benjamin A

    2015-01-01

    Milk fatty acid composition is determined by several factors including diet. The milk fatty acid profile of dairy cows is low in polyunsaturated fatty acids, especially those of the n-3 series. Efforts to change and influence fatty acid profile with longer chain polyunsaturated fatty acids have proven challenging. Several barriers prevent easy transfer of dietary polyunsaturated fatty acids to milk fat including rumen biohydrogenation and fatty acid esterification. The potential for cellular uptake and differences in fatty acid incorporation into milk fat might also have an effect, though this has received less research effort. Given physiological impediments to enriching milk fat with polyunsaturated fatty acids, manipulating the genome of the cow might provide a greater increase than diet alone, but this too may be challenged by the physiology of the cow.

  14. Metabolic Flux Between Unsaturated and Saturated Fatty Acids is Controlled by the FabA:FabB Ratio in the Fully Reconstituted Fatty Acid Biosynthetic Pathway of E. coli#

    Science.gov (United States)

    Xiao, Xirui; Yu, Xingye; Khosla, Chaitan

    2013-01-01

    The entire fatty acid biosynthetic pathway from Escherichia coli, starting from the acetyl-CoA carboxylase, has been reconstituted in vitro from fourteen purified protein components. Radiotracer analysis verified stoichiometric conversion of acetyl-CoA and NAD(P)H into the free fatty acid product, allowing implementation of a facile spectrophotometric assay for kinetic analysis of this multi-enzyme system. At steady state, a maximum turnover rate of 0.5 s−1 was achieved. Under optimal turnover conditions, the predominant products were C16 and C18 saturated as well as monounsaturated fatty acids. The reconstituted system allowed us to quantitatively interrogate the factors that influence metabolic flux toward unsaturated versus saturated fatty acids. In particular, the concentrations of the dehydratase FabA and the β-ketoacyl synthase FabB were found to be crucial for controlling this property. By altering these variables, the percentage of unsaturated fatty acid produced could be adjusted between 10 and 50% without significantly affecting the maximum turnover rate of the pathway. Our reconstituted system provides a powerful tool to understand and engineer rate-limiting and regulatory steps in this complex and practically significant metabolic pathway. PMID:24147979

  15. Indoleamine 2,3-dioxygenase, by degrading L-tryptophan, enhances carnitine palmitoyltransferase I activity and fatty acid oxidation, and exerts fatty acid-dependent effects in human alloreactive CD4+ T-cells.

    Science.gov (United States)

    Eleftheriadis, Theodoros; Pissas, Georgios; Sounidaki, Maria; Tsogka, Konstantina; Antoniadis, Nikolaos; Antoniadi, Georgia; Liakopoulos, Vassilios; Stefanidis, Ioannis

    2016-11-01

    Indoleamine 2,3-dioxygenase (IDO) is expressed in antigen-presenting cells and by degrading L-tryptophan along the kynurenine pathway suppresses CD4+ T-cell proliferation, induces apoptosis and promotes differentiation towards a regulatory as opposed to an effector phenotype. Recent findings revealed that the above effects may be mediated through alterations in T-cell metabolism. In this study, the effect of IDO on fatty acid β-oxidation in CD4+ T-cells was evaluated in human mixed lymphocyte reactions (MLRs) using the IDO inhibitor, 1-DL-methyl-tryptophan. Protein analysis of CD4+ T-cells isolated from the MLR showed that L-tryptophan degradation acts by activating the general control non‑derepressible 2 kinase and aryl-hydrocarbon receptor in T-cells. In the absence of IDO inhibition, fatty acid oxidation increased along with increased activity of carnitine palmitoyltransferase I (CPT1), the latter due to the increased expression of CPT1 isoenzymes and alterations in acetyl-CoA carboxylase 2, the enzyme that controls CPT1 activity. Increased fatty acid oxidation due to the action of IDO was accompanied by an increased expression of forkhead box P3 (FoxP3) and a decreased expression of related orphan receptor γt (RORγt), the signature transcription factors of regulatory T-cells and T helper 17 cells, respectively. However, in MLR and in the presence of fatty acid in the culture medium, IDO did not inhibit proliferation. Additionally, fatty acid protected the CD4+ T-cells against apoptosis. Thus, IDO, by degrading L-tryptophan, enhances CPT1 activity and fatty acid oxidation, and exerts fatty acid-dependent effects in human alloreactive CD4+ T-cells.

  16. Serum Osteocalcin Levels in Children With Nonalcoholic Fatty Liver Disease.

    Science.gov (United States)

    Amin, Saleh; El Amrousy, Doaa; Elrifaey, Shaymaa; Gamal, Rasha; Hodeib, Hossam

    2018-01-01

    The aim of the study was to investigate the relationship between osteocalcin and nonalcoholic fatty liver disease (NAFLD) in children with obesity. 60 obese children with NAFLD were taken as a patient group and 60 obese children and normal liver with matching age, sex, and body mass index were taken as a control group. Anthropometric measurements, abdominal ultrasonography for diagnosis and grading of NAFLD, and laboratory investigations in the form of liver function tests, lipid profile, fasting serum glucose and insulin, and serum osteocalcin levels were done for all children. Patients with NAFLD were further divided into patients with metabolic syndrome (MS) and patients without MS. Age of NAFLD children was (10.55 ± 2.71), 20 boys and 40 girls, whereas age of children in control group was (10.05 ± 3.51), 24 boys and 36 girls (P > 0.05). Patients with NAFLD showed significant increase in waist and hip circumference, alanine aminotransferase, alkaline phosphatase, total cholesterol, triglycerides, insulin resistance (IR), fasting serum glucose, and insulin, but lower serum osteocalcin level than control group. Serum osteocalcin level is inversely correlated with waist circumference, triglyceride, liver enzymes, fasting serum insulin, fasting serum glucose, IR, and grades of fatty liver. Increase in alanine aminotransferase, total cholesterol, triglycerides, fasting insulin, and IR went with increase in degree of hepatic steatosis. Serum osteocalcin level <44.5 ng/mL is a good predictor for severity of hepatic steatosis with sensitivity and specificity of 80%. Osteocalcin plays an important role in glucose and lipid metabolism for protection against NAFLD occurrence and progression. Moreover, it could be a useful marker for progression of NAFLD in children with obesity.

  17. Phage lytic enzymes targeting streptococci

    Science.gov (United States)

    Streptococcal pathogens contribute to a wide variety of human and livestock diseases. There is a need for new antimicrobials to replace over-used conventional antibiotics. Bacteriophage (viruses that infect bacteria) endolysins (enzymes that help degrade the bacterial cell wall) are ideal candidat...

  18. Enzyme recovery using reversed micelles

    NARCIS (Netherlands)

    Dekker, M.

    1990-01-01

    The objective of this study was to develop a liquid-liquid extraction process for the recovery of extracellular enzymes. The potentials of reaching this goal by using reversed micelles in an organic solvent have been investigated.

    Reversed micelles are aggregates of surfactant

  19. Kathepsine C : Een allosterisch enzyme

    NARCIS (Netherlands)

    Gorter, Jeannette

    1969-01-01

    In chapter I an introduction into allosteric systems is given. In chapter II is a detailed method is described for the applica of Gly-Phe--p. nitroanilide (GPNA) as a substrate for the activity assay of the lysosomal enzyme cathepsin C. It is an allosteric which is activated by Cl-, Br-, 1-, CNS-,

  20. Growth medium-dependent regulation of Myxococcus xanthus fatty acid content is controlled by the esg locus.

    Science.gov (United States)

    Bartholomeusz, G; Zhu, Y; Downard, J

    1998-10-01

    We compared the cellular fatty acid profiles of Myxococcus xanthus cells grown in either a Casitone-based complex medium or a chemically defined medium. The cells grown in the complex medium had a much higher content of the abundant branched-chain fatty acid iso-15:0 and several other branched-chain species. The higher branched-chain fatty acid content of the cells grown in the complex medium was dependent on the esg locus, which encodes the E1alpha and E1beta components of a branched-chain keto acid dehydrogenase (BCKAD) multienzyme complex involved in branched-chain fatty acid biosynthesis. Cells grown in the complex medium were also found to have a higher level of esg transcription and more BCKAD enzyme activity than cells from the chemically defined medium. The level of esg transcription appears to be an important factor in the growth medium-dependent regulation of the M. xanthus branched-chain fatty acid content.

  1. Chlorogenic acid from honeysuckle improves hepatic lipid dysregulation and modulates hepatic fatty acid composition in rats with chronic endotoxin infusion.

    Science.gov (United States)

    Zhou, Yan; Ruan, Zheng; Wen, Yanmei; Yang, Yuhui; Mi, Shumei; Zhou, Lili; Wu, Xin; Ding, Sheng; Deng, Zeyuan; Wu, Guoyao; Yin, Yulong

    2016-03-01

    Chlorogenic acid as a natural hydroxycinnamic acid has protective effect for liver. Endotoxin induced metabolic disorder, such as lipid dysregulation and hyperlipidemia. In this study, we investigated the effect of chlorogenic acid in rats with chronic endotoxin infusion. The Sprague-Dawley rats with lipid metabolic disorder (LD group) were intraperitoneally injected endotoxin. And the rats of chlorogenic acid-LD group were daily received chlorogenic acid by intragastric administration. In chlorogenic acid-LD group, the area of visceral adipocyte was decreased and liver injury was ameliorated, as compared to LD group. In chlorogenic acid-LD group, serum triglycerides, free fatty acids, hepatic triglycerides and cholesterol were decreased, the proportion of C20:1, C24:1 and C18:3n-6, Δ9-18 and Δ6-desaturase activity index in the liver were decreased, and the proportion of C18:3n-3 acid was increased, compared to the LD group. Moreover, levels of phosphorylated AMP-activated protein kinase, carnitine palmitoyltransferase-I, and fatty acid β-oxidation were increased in chlorogenic acid-LD group compared to LD rats, whereas levels of fatty acid synthase and acetyl-CoA carboxylase were decreased. These findings demonstrate that chlorogenic acid effectively improves hepatic lipid dysregulation in rats by regulating fatty acid metabolism enzymes, stimulating AMP-activated protein kinase activation, and modulating levels of hepatic fatty acids.

  2. Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and non-alcoholic fatty liver conditions in mice.

    Science.gov (United States)

    Lin, Chih-Wen; Zhang, Hao; Li, Min; Xiong, Xiwen; Chen, Xi; Chen, Xiaoyun; Dong, Xiaocheng C; Yin, Xiao-Ming

    2013-05-01

    Pharmacological approaches can potentially improve fatty liver condition in alcoholic and non-alcoholic fatty liver diseases. The salutary effects of reducing lipid synthesis or promoting lipid oxidation have been well reported, but the benefits of increasing lipid degradation have yet to be well explored. Macroautophagy is a cellular degradation process that can remove subcellular organelles including lipid droplets. We thus investigated whether pharmacological modulation of macroautophagy could be an effective approach to alleviate fatty liver condition and liver injury. C57BL/6 mice were given ethanol via intraperitoneal injection (acute) or by a 4-week oral feeding regime (chronic), or high fat diet for 12 weeks. An autophagy enhancer, carbamazepine or rapamycin, or an autophagy inhibitor, chloroquine, was given before sacrifice. Activation of autophagy, level of hepatic steatosis, and blood levels of triglycerides, liver enzyme, glucose and insulin were measured. In both acute and chronic ethanol condition, macroautophagy was activated. Carbamazepine, as well as rapamycin, enhanced ethanol-induced macroautophagy in hepatocytes in vitro and in vivo. Hepatic steatosis and liver injury were exacerbated by chloroquine, but alleviated by carbamazepine. The protective effects of carbamazepine and rapamycin in reducing steatosis and in improving insulin sensitivity were also demonstrated in high fat diet-induced non-alcoholic fatty liver condition. These findings indicate that pharmacological modulation of macroautophagy in the liver can be an effective strategy for reducing fatty liver condition and liver injury. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  3. Simultaneous conversion of free fatty acids and triglycerides to biodiesel by immobilized Aspergillus oryzae expressing Fusarium heterosporum lipase.

    Science.gov (United States)

    Amoah, Jerome; Quayson, Emmanuel; Hama, Shinji; Yoshida, Ayumi; Hasunuma, Tomohisa; Ogino, Chiaki; Kondo, Akihiko

    2017-03-01

    The presence of high levels of free fatty acids (FFA) in oil is a barrier to one-step biodiesel production. Undesirable soaps are formed during conventional chemical methods, and enzyme deactivation occurs when enzymatic methods are used. This work investigates an efficient technique to simultaneously convert a mixture of free fatty acids and triglycerides (TAG). A partial soybean hydrolysate containing 73.04% free fatty acids and 24.81% triglycerides was used as a substrate for the enzymatic production of fatty acid methyl ester (FAME). Whole-cell Candida antarctica lipase B-expressing Aspergillus oryzae, and Novozym 435 produced only 75.2 and 73.5% FAME, respectively. Fusarium heterosporum lipase-expressing A. oryzae produced more than 93% FAME in 72 h using three molar equivalents of methanol. FFA and TAG were converted simultaneously in the presence of increasing water content that resulted from esterification. Therefore, F. heterosporum lipase with a noted high level of tolerance of water could be useful in the industrial production of biodiesel from feedstock that has high proportion of free fatty acids. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  5. Maternal high-fat-diet programs rat offspring liver fatty acid metabolism.

    Science.gov (United States)

    Seet, Emily L; Yee, Jennifer K; Jellyman, Juanita K; Han, Guang; Ross, Michael G; Desai, Mina

    2015-06-01

    In offspring exposed in utero to a maternal diet high in fat (HF), we have previously demonstrated that despite similar birth weights, HF adult offspring at 6 months of age had significantly higher body weights, greater adiposity, and increased triacylglycerol (TAG) levels as compared to controls. We hypothesized that a maternal HF diet predisposes to offspring adiposity via a programmed increase in the synthesis of monounsaturated fatty acids in the liver and hence increased substrate availability for liver TAG synthesis. We further hypothesized that programmed changes in offspring liver fatty acid metabolism are associated with increased liver expression of the lipogenic enzyme stearoyl-CoA desaturase-1 (SCD-1). Female rats were maintained on a HF diet rich in monounsaturated fatty acids (MUFA) prior to and throughout pregnancy and lactation. After birth, newborns were nursed by the same dam, and all offspring were weaned to control diet. Plasma and liver fatty acid compositions were determined using gas chromatography/mass spectrometry. Fatty acid C16 desaturation indices of palmitoleic/palmitic and (vaccenic + palmitoleic)/palmitic and the C18 desaturation index of oleic/stearic were calculated. Liver protein abundance of SCD-1 was analyzed in newborns and adult offspring. Plasma and liver C16 desaturation indices were decreased in HF newborns, but increased in the adult offspring. Liver SCD-1 expression was increased in the HF adult offspring. These data show that the maternal HF diet during pregnancy and lactation increases offspring liver SCD-1 protein abundance and alters the liver C16 desaturase pathway.

  6. Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI Study.

    Directory of Open Access Journals (Sweden)

    Toshiko Tanaka

    2009-01-01

    Full Text Available Polyunsaturated fatty acids (PUFA have a role in many physiological processes, including energy production, modulation of inflammation, and maintenance of cell membrane integrity. High plasma PUFA concentrations have been shown to have beneficial effects on cardiovascular disease and mortality. To identify genetic contributors of plasma PUFA concentrations, we conducted a genome-wide association study of plasma levels of six omega-3 and omega-6 fatty acids in 1,075 participants in the InCHIANTI study on aging. The strongest evidence for association was observed in a region of chromosome 11 that encodes three fatty acid desaturases (FADS1, FADS2, FADS3. The SNP with the most significant association was rs174537 near FADS1 in the analysis of arachidonic acid (AA; p = 5.95 x 10(-46. Minor allele homozygotes had lower AA compared to the major allele homozygotes and rs174537 accounted for 18.6% of the additive variance in AA concentrations. This SNP was also associated with levels of eicosadienoic acid (EDA; p = 6.78 x 10(-9 and eicosapentanoic acid (EPA; p = 1.07 x 10(-14. Participants carrying the allele associated with higher AA, EDA, and EPA also had higher low-density lipoprotein (LDL-C and total cholesterol levels. Outside the FADS gene cluster, the strongest region of association mapped to chromosome 6 in the region encoding an elongase of very long fatty acids 2 (ELOVL2. In this region, association was observed with EPA (rs953413; p = 1.1 x 10(-6. The effects of rs174537 were confirmed in an independent sample of 1,076 subjects participating in the GOLDN study. The ELOVL2 SNP was associated with docosapentanoic and DHA but not with EPA in GOLDN. These findings show that polymorphisms of genes encoding enzymes in the metabolism of PUFA contribute to plasma concentrations of fatty acids.

  7. Differential gene expression and lipid metabolism in fatty liver induced by acute ethanol treatment in mice

    International Nuclear Information System (INIS)

    Yin Huquan; Kim, Mingoo; Kim, Ju-Han; Kong, Gu; Kang, Kyung-Sun; Kim, Hyung-Lae; Yoon, Byung-IL; Lee, Mi-Ock; Lee, Byung-Hoon

    2007-01-01

    Ethanol induces cumulative liver damage including steatosis, steatohepatitis and cirrhosis. The aim of this study is to investigate the global intrahepatic gene expression profile in the mouse liver treated with ethanol. A single oral dose of 0.5 or 5 g/kg ethanol was administered to male ICR mice, and liver samples were obtained after 6, 24 and 72 h. Histopathological evaluation showed typical fatty livers in the high-dose group at 24 h. Microarray analysis identified 28 genes as being ethanol responsive (two-way ANOVA; p < 0.05), after adjustment by the Benjamini-Hochberg multiple testing correction; these genes displayed ≥ 2-fold induction or repression. The expression of genes that are known to be involved in fatty acid synthesis was examined. The transcript for lipogenic transcription factor, sterol regulatory element (SRE)-binding factor 1 (Srebf1), was upregulated by acute ethanol exposure. Of the genes known to contain SRE or SRE-like sequences and to be regulated by SRE-binding protein 1 (SREBP1), those encoding malic enzyme (Mod1), ATP-citrate lyase (Acly), fatty acid synthase (Fasn) and stearyl-CoA desaturase (Scd1) were induced by ethanol. Quantitative real-time PCR confirmed the changes in the expression levels of the selected genes. The change in the Srebf1 mRNA level correlates well with that of the SREBP1 protein expression as well as its binding to the promoters of the target genes. The present study identifies differentially expressed genes that can be applied to the biomarkers for alcohol-binge-induced fatty liver. These results support the hypothesis by which ethanol-induced steatosis in mice is mediated by the fatty acid synthetic pathway regulated by SREBP1

  8. Fatty acid oxidation in skeletal and cardiac muscle

    International Nuclear Information System (INIS)

    Glatz, J.F.C.

    1983-01-01

    The biochemical investigations described in this thesis deal with two aspects of fatty acid oxidation in muscle: a comparison of the use of cell-free and cellular systems for oxidation measurements, and studies on the assay and the role of the fatty acid binding protein in fatty acid metabolism. The fatty acid oxidation rates are determined radiochemically by the sum of 14 CO 2 and 14 C-labeled acid-soluble products formed during oxidation of [ 14 C]-fatty acids. A radiochemical procedure for the assay of fatty acid binding by proteins is described. (Auth.)

  9. [Study of the inborn errors of mitochondrial fatty acid beta-oxidation deficiency].

    Science.gov (United States)

    Zhu, Jin-ming; Yang, Zi

    2006-04-18

    Mitochondrial fatty acids beta-oxidation is a repetitive process of four steps which provides the major source of energy for heart, liver and skeletal muscle. Several enzymes are involved in this spiral cycle. The medium-chain acyl-CoA dehydrogenase (MCAD), the short-chain acyl-CoA dehydrogenase (SCAD), the long-chain 3-hydroxy acyl-CoA dehydrogenase (LCHAD) and the carnitine-palmitoyl-CoA transferase II (CPT II) deficiency have been recognized as the most common inborn errors of metabolism and frequently reported in their association with sudden infant death (SID). The prevalent mutations in these genes need further investigation in different populations.

  10. Spinach thylakoid polyphenol oxidase isolation, activation, and properties of the native chloroplast enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Golbeck, J.H.; Cammarata, K.V.

    1981-05-01

    Polyphenol oxidase activity (E.C. 1.14,18.1) has been found in two enzyme species isolated from thylakoid membranes of spinach chloroplasts. The proteins were released from the membrane by sonication and purified >900-fold by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatography. The enzymes appear to be the tetramer and monomer of a subunit with a molecular weight of 42,500 as determined by lithium dodecyl sulfate gel electrophoresis. Sonication releases polyphenol oxidase from the membrane largely in the latent state. In the absence of added fatty acids, the isolated enzyme spontaneously, but slowly, activates with time. Purified polyphenol oxidase utilizes o-diphenols as substrates and shows no detectable levels of monophenol or p-diphenol oxidase activities. Suitable substrates include chlorogenic acid, catechol, caffeic acid, pyrogallol, and dopamine; however, the enzyme is substrate-inhibited by the last four at concentrations near their K/sub m/. A large seasonal variation in polyphenol oxidase activity may result from a decrease in enzyme content rather than inhibition of the enzyme present.

  11. Enzymes involved in cholesterol homeostasis in outer vs inner cortices of the guinea pig adrenal

    International Nuclear Information System (INIS)

    Brody, R.I.

    1988-01-01

    Adrenocortical cells require cholesterol for steroid hormone synthesis. Intracellular free cholesterol levels are maintained by the actions of three key enzymes: HMG CoA reductase, a rate limiting enzyme of cholesterol biosynthesis, acyl CoA:cholesterol acyltransferase (ACAT), which esterifies cholesterol to fatty acids, and cholesterol ester hydrolase (CEH), which releases stored cholesterol by clearing the ester bond. The guinea pig adrenal cortex, which can be separated into a lipid-rich outer zone and a lipid-poor inner zone, provides a good model in which to determine whether the morphological differences in these regions correlate with functional distinctions in enzymes of cholesterol homeostasis. These studies have shown that there are great differences in these enzymes in the outer and inner zones of the guinea pig adrenal cortex. The cholesterol-rich outer zone possesses greater activities of ACAT and CEH than the inner zone, and, in untreated animals, these enzymes are nearly maximally stimulated. Both zones had substantial levels of HMG CoA reductase, as measured by enzyme assay and ELISA, and these levels increased following ACTH stimulation. However, only the outer zone incorporated 14 C-acetate into steroids and cholesterol to any great degree in vitro, and only in this zone was incorporation increased following incubation of cultures with ACTH. The discrepancies between HMG CoA reductase levels and 14 C-acetate incorporation in the inner zone indicate that cholesterol synthesis must be regulated differently in this zone

  12. Heavy enzymes--experimental and computational insights in enzyme dynamics.

    Science.gov (United States)

    Swiderek, Katarzyna; Ruiz-Pernía, J Javier; Moliner, Vicent; Tuñón, Iñaki

    2014-08-01

    The role of protein motions in the chemical step of enzyme-catalyzed reactions is the subject of an open debate in the scientific literature. The systematic use of isotopically substituted enzymes has been revealed as a useful tool to quantify the role of these motions. According to the Born-Oppenheimer approximation, changing the mass of the protein does not change the forces acting on the system but alters the frequencies of the protein motions, which in turn can affect the rate constant. Experimental and theoretical studies carried out in this field are presented in this article and discussed in the framework of Transition State Theory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Fatty acids, endocannabinoids and inflammation.

    Science.gov (United States)

    Witkamp, Renger

    2016-08-15

    From their phylogenetic and pharmacological classification it might be inferred that cannabinoid receptors and their endogenous ligands constitute a rather specialised and biologically distinct signalling system. However, the opposite is true and accumulating data underline how much the endocannabinoid system is intertwined with other lipid and non-lipid signalling systems. Endocannabinoids per se have many structural congeners, and these molecules exist in dynamic equilibria with different other lipid-derived mediators, including eicosanoids and prostamides. With multiple crossroads and shared targets, this creates a versatile system involved in fine-tuning different physiological and metabolic processes, including inflammation. A key feature of this 'expanded' endocannabinoid system, or 'endocannabinoidome', is its subtle orchestration based on interactions between a relatively small number of receptors and multiple ligands with different but partly overlapping activities. Following an update on the role of the 'endocannabinoidome' in inflammatory processes, this review continues with possible targets for intervention at the level of receptors or enzymes involved in formation or breakdown of endocannabinoids and their congeners. Although its pleiotropic character poses scientific challenges, the 'expanded' endocannabinoid system offers several opportunities for prevention and therapy of chronic diseases. In this respect, successes are more likely to come from 'multiple-target' than from 'single-target' strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. High ω-3:ω-6 fatty acids ratio increases fatty acid binding protein 4 and extracellular secretory phospholipase A2IIa in human ectopic endometrial cells

    Science.gov (United States)

    Khanaki, Korosh; Sadeghi, Mohammad Reza; Akhondi, Mohammad Mehdi; Darabi, Masoud; Mehdizadeh, Amir; Shabani, Mahdi; Rahimipour, Ali; Nouri, Mohammad

    2014-01-01

    Background: Endometriosis, a common chronic inflammatory disorder, is defined by the atypical growth of endometrium- like tissue outside of the uterus. Secretory phospholipase A2 group IIa (sPLA2-IIa) and fatty acid binding protein4 (FABP4) play several important roles in the inflammatory diseases. Objective: Due to reported potential anti-inflammatory effects of ω-3 and ω-6 fatty acids, the purpose of the present study was to investigate the effects of ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) on fatty acid binding protein 4 and extracellular secretory phospholipase A2IIa in cultured endometrial cells. Materials and Methods: Ectopic and eutopic endometrial tissues obtained from 15 women were snap frozen. After thawing and tissue digestion, primary mixed stromal and endometrial epithelial cell culture was performed for 8 days in culture mediums supplemented with normal and high ratios of ω-3 and ω-6 PUFA. sPLA2-IIa in the culture medium and FABP4 level was determined using enzyme immuno assay (EIA) technique. Results: Within ectopic endometrial cells group, the level of cellular FABP4 and extracellular sPLA2-IIa were remarkably increased under high ω-3 PUFA exposure compared with control condition (p=0.014 and p=0.04 respectively). Conclusion: ω-3 PUFAs may increase the level of cellular FABP4 and extracellular sPLA2-IIa in ectopic endometrial cells, since sPLAIIa and FABP4 may affect endometriosis via several mechanisms, more relevant studies are encouraged to know the potential effect of increased cellular FABP4 and extracellular sPLA2-IIa on endometriosis. PMID:25709631

  15. Identification of a Δ5-like fatty acyl desaturase from the cephalopod Octopus vulgaris (Cuvier 1797) involved in the biosynthesis of essential fatty acids.

    Science.gov (United States)

    Monroig, Oscar; Navarro, Juan C; Dick, James R; Alemany, Frederic; Tocher, Douglas R

    2012-08-01

    Long-chain polyunsaturated fatty acids (LC-PUFA) have been identified as essential compounds for common octopus (Octopus vulgaris), but precise dietary requirements have not been determined due, in part, to the inherent difficulties of performing feeding trials on paralarvae. Our objective is to establish the essential fatty acid (EFA) requirements for paralarval stages of the common octopus through characterisation of the enzymes of endogenous LC-PUFA biosynthetic pathways. In this study, we isolated a cDNA with high homology to fatty acyl desaturases (Fad). Functional characterisation in recombinant yeast showed that the octopus Fad exhibited Δ5-desaturation activity towards saturated and polyunsaturated fatty acyl substrates. Thus, it efficiently converted the yeast's endogenous 16:0 and 18:0 to 16:1n-11 and 18:1n-13, respectively, and desaturated exogenously added PUFA substrates 20:4n-3 and 20:3n-6 to 20:5n-3 (EPA) and 20:4n-6 (ARA), respectively. Although the Δ5 Fad enables common octopus to produce EPA and ARA, the low availability of its adequate substrates 20:4n-3 and 20:3n-6, either in the diet or by limited endogenous synthesis from C(18) PUFA, might indicate that EPA and ARA are indeed EFA for this species. Interestingly, the octopus Δ5 Fad can also participate in the biosynthesis of non-methylene-interrupted FA, PUFA that are generally uncommon in vertebrates but have been found previously in marine invertebrates, including molluscs, and now also confirmed to be present in specific tissues of common octopus.

  16. Methoxylated fatty acids in Blumeria graminis conidia.

    Science.gov (United States)

    Muchembled, Jérôme; Sahraoui, Anissa Lounès-Hadj; Laruelle, Frédéric; Palhol, Fabien; Couturier, Daniel; Grandmougin-Ferjani, Anne; Sancholle, Michel

    2005-04-01

    The total fatty acids (FA) composition of Blumeria graminis f.sp. tritici conidia, the causal agent of wheat powdery mildew, was analyzed as a function of their age. A total of 19 FA (C12-C24 saturated and unsaturated) and unusual methoxylated fatty acids (mFA) were detected in young, intermediate and old conidia. Two very long chain methoxylated FA were identified by GC-MS as 3-methoxydocosanoic and 3-methoxytetracosanoic acids. Medium chain FA were predominant in young conidia (75%, including 13% of mFA) while very long chain fatty acids constituted the major compounds in old conidia (74%, including 30% of mFA). We have shown for the first time that the total FA composition is strongly correlated with the age of B. graminis f.sp. tritici (Bgt) conidia.

  17. Fatty acid composition of Swedish bakery products, with emphasis on trans-fatty acids.

    Science.gov (United States)

    Trattner, Sofia; Becker, Wulf; Wretling, Sören; Öhrvik, Veronica; Mattisson, Irene

    2015-05-15

    Trans-fatty acids (TFA) have been associated with increased risk of coronary heart disease, by affecting blood lipids and inflammation factors. Current nutrition recommendations emphasise a limitation of dietary TFA intake. The aim of this study was to investigate fatty acid composition in sweet bakery products, with emphasis on TFA, on the Swedish market and compare fatty acid composition over time. Products were sampled in 2001, 2006 and 2007 and analysed for fatty acid composition by using GC. Mean TFA levels were 0.7% in 2007 and 5.9% in 2001 of total fatty acids. In 1995-97, mean TFA level was 14.3%. In 2007, 3 of 41 products had TFA levels above 2% of total fatty acids. TFA content had decreased in this product category, while the proportion of saturated (SFA) and polyunsaturated (PUFA) fatty acids had increased, mostly through increased levels of 16:0 and 18:2 n-6, respectively. The total fat content remained largely unchanged. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Production of FAME biodiesel in E. coli by direct methylation with an insect enzyme

    Science.gov (United States)

    Sherkhanov, Saken; Korman, Tyler P.; Clarke, Steven G; Bowie, James U.

    2016-01-01

    Most biodiesel currently in use consists of fatty acid methyl esters (FAMEs) produced by transesterification of plant oils with methanol. To reduce competition with food supplies, it would be desirable to directly produce biodiesel in microorganisms. To date, the most effective pathway for the production of biodiesel in bacteria yields fatty acid ethyl esters (FAEEs) at up to ~1.5 g/L. A much simpler route to biodiesel produces FAMEs by direct S-adenosyl-L-methionine (SAM) dependent methylation of free fatty acids, but FAME production by this route has been limited to only ~16 mg/L. Here we employ an alternative, broad spectrum methyltransferase, Drosophila melanogaster Juvenile Hormone Acid O-Methyltransferase (DmJHAMT). By introducing DmJHAMT in E. coli engineered to produce medium chain fatty acids and overproduce SAM, we obtain medium chain FAMEs at titers of 0.56 g/L, a 35-fold increase over titers previously achieved. Although considerable improvements will be needed for viable bacterial production of FAMEs and FAEEs for biofuels, it may be easier to optimize and transport the FAME production pathway to other microorganisms because it involves fewer enzymes. PMID:27053100

  19. Ruminant and industrially produced trans fatty acids

    DEFF Research Database (Denmark)

    Stender, Steen; Astrup, Arne; Dyerberg, Jørn

    2008-01-01

    Fatty acids of trans configuration in our food come from two different sources - industrially produced partially hydrogenated fat (IP-TFA) used in frying oils, margarines, spreads, and in bakery products, and ruminant fat in dairy and meat products (RP-TFA). The first source may contain up to 60......% of the fatty acids in trans form compared to the content in ruminant fat which generally does not exceed 6%. In Western Europe, including Scandinavia, the average daily intake of IP-TFA has decreased during the recent decade due to societal pressure and a legislative ban, whereas the intake of RP-TFA has...

  20. Fatty acids in an estuarine mangrove ecosystem

    Directory of Open Access Journals (Sweden)

    Nabeel M Alikunhi

    2010-06-01

    Full Text Available Los ácidos grasos se han utilizado con éxito para estudiar la transferencia de materia orgánica en las redes alimentarias costeras y estuarinas. Para delinear las interacciones tróficas en las redes, se analizaron perfiles de ácidos grasos en las especies de microbios (Azotobacter vinelandii y Lactobacillus xylosus, camarones (Metapenaeus monoceros y Macrobrachium rosenbergii y peces (Mugil cephalus, que están asociadas con la descomposición de las hojas de dos especies de mangle, Rhizophora apiculata y Avicennia marina. Los ácidos grasos, con excepción de los de cadena larga, exhiben cambios durante la descomposición de las hojas de mangle, con una reducción de los ácidos grasos saturados y un aumento de los monoinsaturados. Los ácidos grasos ramificados están ausentes en las hojas de mangle sin descomponer, pero presentes de manera significativa en las hojas descompuestas, en camarones y peces, representando una fuente importante para ellos. Esto revela que los microbios son productores dominantes que contribuyen significativamente con los peces y camarones en el ecosistema de manglar. Este trabajo demuestra que los marcadores biológicos de los ácidos grasos son una herramienta eficaz para la identificación de las interacciones tróficas entre los productores dominantes y consumidores en este manglar.Fatty acids have been successfully used to trace the transfer of organic matter in coastal and estuarine food webs. To delineate these web connections, fatty acid profiles were analyzed in species of microbes (Azotobacter vinelandii, and Lactobacillus xylosus, prawns (Metapenaeus monoceros and Macrobrachium rosenbergii and finfish (Mugil cephalus, that are associated with decomposing leaves of two mangrove species, Rhizophora apiculata and Avicennia marina. The fatty acids, except long chain fatty acids, exhibit changes during decomposition of mangrove leaves with a reduction of saturated fatty acids and an increase of

  1. Fatty liver incidence and predictive variables

    International Nuclear Information System (INIS)

    Tsuneto, Akira; Seto, Shinji; Maemura, Koji; Hida, Ayumi; Sera, Nobuko; Imaizumi, Misa; Ichimaru, Shinichiro; Nakashima, Eiji; Akahoshi, Masazumi

    2010-01-01

    Although fatty liver predicts ischemic heart disease, the incidence and predictors of fatty liver need examination. The objective of this study was to determine fatty liver incidence and predictive variables. Using abdominal ultrasonography, we followed biennially through 2007 (mean follow-up, 11.6±4.6 years) 1635 Nagasaki atomic bomb survivors (606 men) without fatty liver at baseline (November 1990 through October 1992). We examined potential predictive variables with the Cox proportional hazard model and longitudinal trends with the Wilcoxon rank-sum test. In all, 323 (124 men) new fatty liver cases were diagnosed. The incidence was 19.9/1000 person-years (22.3 for men, 18.6 for women) and peaked in the sixth decade of life. After controlling for age, sex, and smoking and drinking habits, obesity (relative risk (RR), 2.93; 95% confidence interval (CI), 2.33-3.69, P<0.001), low high-density lipoprotein-cholesterol (RR, 1.87; 95% CI, 1.42-2.47; P<0.001), hypertriglyceridemia (RR, 2.49; 95% CI, 1.96-3.15; P<0.001), glucose intolerance (RR, 1.51; 95% CI, 1.09-2.10; P=0.013) and hypertension (RR, 1.63; 95% CI, 1.30-2.04; P<0.001) were predictive of fatty liver. In multivariate analysis including all variables, obesity (RR, 2.55; 95% CI, 1.93-3.38; P<0.001), hypertriglyceridemia (RR, 1.92; 95% CI, 1.41-2.62; P<0.001) and hypertension (RR, 1.31; 95% CI, 1.01-1.71; P=0.046) remained predictive. In fatty liver cases, body mass index and serum triglycerides, but not systolic or diastolic blood pressure, increased significantly and steadily up to the time of the diagnosis. Obesity, hypertriglyceridemia and, to a lesser extent, hypertension might serve as predictive variables for fatty liver. (author)

  2. Fatty acids and terpenoids from Trigonia fasciculata

    OpenAIRE

    Mafezoli,Jair; Santos,Regina Helena A.; Gambardela,Maria Teresa P.; Silveira,Edilberto R.

    2003-01-01

    The fatty portion of the hexane extract from roots of Trigonia fasciculata has been determined by GC/MS analysis of the methyl ester mixture. Seventeen fatty acids were identified and oleic acid (38.8%) was the major component. The GC/MS analysis of the less polar fraction of the non-saponifiable part of the root hexane extract allowed the identification of fifteen sesquiterpenes and alpha-santalene (28.4%) was the major component. Chromatography over silica gel of the more polar fraction all...

  3. The Danish trans-fatty acids ban

    DEFF Research Database (Denmark)

    Vallgårda, Signild

    2017-01-01

    In 2003 an executive order was issued banning industrially produced trans-fatty acids above a low level in food items in Denmark. To date, only a few other countries have followed Denmark’s example. The way health consequences of trans fats were translated by the different actors enabled the crea......In 2003 an executive order was issued banning industrially produced trans-fatty acids above a low level in food items in Denmark. To date, only a few other countries have followed Denmark’s example. The way health consequences of trans fats were translated by the different actors enabled...

  4. Cells and methods for producing fatty alcohols

    Science.gov (United States)

    Pfleger, Brian F.; Youngquist, Tyler J.

    2017-07-18

    Recombinant cells and methods for improved yield of fatty alcohols. The recombinant cells harbor a recombinant thioesterase gene, a recombinant acyl-CoA synthetase gene, and a recombinant acyl-CoA reductase gene. In addition, a gene product from one or more of an acyl-CoA dehydrogenase gene, an enoyl-CoA hydratase gene, a 3-hydroxyacyl-CoA dehydrogenase gene, and a 3-ketoacyl-CoA thiolase gene in the recombinant cells is functionally deleted. Culturing the recombinant cells produces fatty alcohols at high yields.

  5. Enzyme technology: Key to selective biorefining

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2014-01-01

    to the reaction is a unique trait of enzyme catalysis. Since enzyme selectivity means that a specific reaction is catalysed between particular species to produce definite products, enzymes are particularly fit for converting specific compounds in mixed biomass streams. Since enzymes are protein molecules...... their rational use in biorefinery processes requires an understanding of the basic features of enzymes and reaction traits with respect to specificity, kinetics, reaction optima, stability and structure-function relations – we are now at a stage where it is possible to use nature’s enzyme structures as starting...... point and then improve the functional traits by targeted mutation of the protein. The talk will display some of our recent hypotheses related to enzyme action, recently obtained results within knowledge-based enzyme improvements as well as cast light on research methods used in optimizing enzyme...

  6. Consumer attitudes to enzymes in food production

    DEFF Research Database (Denmark)

    Søndergaard, Helle Alsted; Grunert, Klaus G.; Scholderer, Joachim

    2005-01-01

    The use of enzymes in food production has potential benefits for both food manufacturers and consumers. A central question is how consumers react to new ways of producing foods with enzymes. This study investigates the formation of consumer attitudes to different enzyme production methods in thre...... to technological progress are the socio-political attitudes that have the highest predictive value regarding attitudes to enzyme production methods.......The use of enzymes in food production has potential benefits for both food manufacturers and consumers. A central question is how consumers react to new ways of producing foods with enzymes. This study investigates the formation of consumer attitudes to different enzyme production methods in three...... European countries. Results show that consumers are most positive towards non-GM enzyme production methods. The enzyme production method is by far the most important factor for the formation of buying intentions compared to price and benefits. Results also show that environmental concern and attitudes...

  7. Validity criteria for the diagnosis of fatty liver by M probe-based controlled attenuation parameter.

    Science.gov (United States)

    Wong, Vincent Wai-Sun; Petta, Salvatore; Hiriart, Jean-Baptiste; Cammà, Calogero; Wong, Grace Lai-Hung; Marra, Fabio; Vergniol, Julien; Chan, Anthony Wing-Hung; Tuttolomondo, Antonino; Merrouche, Wassil; Chan, Henry Lik-Yuen; Le Bail, Brigitte; Arena, Umberto; Craxì, Antonio; de Lédinghen, Victor

    2017-09-01

    Controlled attenuation parameter (CAP) can be performed together with liver stiffness measurement (LSM) by transient elastography (TE) and is often used to diagnose fatty liver. We aimed to define the validity criteria of CAP. CAP was measured by the M probe prior to liver biopsy in 754 consecutive patients with different liver diseases at three centers in Europe and Hong Kong (derivation cohort, n=340; validation cohort, n=414; 101 chronic hepatitis B, 154 chronic hepatitis C, 349 non-alcoholic fatty liver disease, 37 autoimmune hepatitis, 49 cholestatic liver disease, 64 others; 277 F3-4; age 52±14; body mass index 27.2±5.3kg/m 2 ). The primary outcome was the diagnosis of fatty liver, defined as steatosis involving ≥5% of hepatocytes. The area under the receiver-operating characteristics curve (AUROC) for CAP diagnosis of fatty liver was 0.85 (95% CI 0.82-0.88). The interquartile range (IQR) of CAP had a negative correlation with CAP (r=-0.32, pvalidity parameter. In the derivation cohort, the IQR of CAP was associated with the accuracy of CAP (AUROC 0.86, 0.89 and 0.76 in patients with IQR of CAP validation cohort was 0.90 and 0.77 in patients with IQR of CAP validity of CAP for the diagnosis of fatty liver is lower if the IQR of CAP is ≥40dB/m. Lay summary: Controlled attenuation parameter (CAP) is measured by transient elastography (TE) for the detection of fatty liver. In this large study, using liver biopsy as a reference, we show that the variability of CAP measurements based on its interquartile range can reflect the accuracy of fatty liver diagnosis. In contrast, other clinical factors such as adiposity and liver enzyme levels do not affect the performance of CAP. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  8. Recent developments in altering the fatty acid composition of ruminant-derived foods.

    Science.gov (United States)

    Shingfield, K J; Bonnet, M; Scollan, N D

    2013-03-01

    lipogenic genes. Breed influences both milk and muscle fat content, although recent studies have confirmed the occurrence of genetic variability in transcript abundance and activity of enzymes involved in lipid synthesis and identified polymorphisms for several key lipogenic genes in lactating and growing cattle. Although nutrition is the major factor influencing the fatty acid composition of ruminant-derived foods, further progress can be expected through the use of genomic or marker-assisted selection to increase the frequency of favourable genotypes and the formulation of diets to exploit this genetic potential.

  9. Potency of pre–post treatment of coenzyme Q10 and melatonin supplement in ameliorating the impaired fatty acid profile in rodent model of autism

    Directory of Open Access Journals (Sweden)

    Afaf El-Ansary

    2016-03-01

    Full Text Available Background: Abnormalities in fatty acid metabolism and membrane fatty acid composition play a part in a wide range of neurodevelopmental and psychiatric disorders. Altered fatty acid homeostasis as a result of insufficient dietary supplementation, genetic defects, the function of enzymes involved in their metabolism, or mitochondrial dysfunction contributes to the development of autism. Objective: This study evaluates the association of altered brain lipid composition and neurotoxicity related to autism spectrum disorders in propionic acid (PA–treated rats. Design: Forty-eight young male western albino rats were used in this study. They were grouped into six equal groups with eight rats in each. The first group received only phosphate buffered saline (control group. The second group received a neurotoxic dose of buffered PA (250 mg/kg body weight/day for 3 consecutive days. The third and fourth groups were intoxicated with PA as described above followed by treatment with either coenzyme Q (4.5 mg/kg body weight or melatonin (10 mg/kg body weight for 1 week (therapeutically treated groups. The fifth and sixth groups were administered both compounds for 1 week prior to PA (protected groups. Methyl esters of fatty acid were extracted with hexane, and the fatty acid composition of the extract was analyzed on a gas chromatography. Results: The obtained data proved that fatty acids are altered in brain tissue of PA-treated rats. All saturated fatty acids were increased while all unsaturated fatty acids were significantly decreased in the PA-treated group and relatively ameliorated in the pre–post melatonin and coenzyme Q groups. Conclusions: Melatonin and coenzyme Q were effective in restoring normal level of most of the impaired fatty acids in PA-intoxicated rats which could help suggest both as supplements to ameliorate the autistic features induced in rat pups.

  10. PPAR/RXR Regulation of Fatty Acid Metabolism and Fatty Acid -Hydroxylase (CYP4 Isozymes: Implications for Prevention of Lipotoxicity in Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    James P. Hardwick

    2009-01-01

    Full Text Available Fatty liver disease is a common lipid metabolism disorder influenced by the combination of individual genetic makeup, drug exposure, and life-style choices that are frequently associated with metabolic syndrome, which encompasses obesity, dyslipidemia, hypertension, hypertriglyceridemia, and insulin resistant diabetes. Common to obesity related dyslipidemia is the excessive storage of hepatic fatty acids (steatosis, due to a decrease in mitochondria -oxidation with an increase in both peroxisomal -oxidation, and microsomal -oxidation of fatty acids through peroxisome proliferator activated receptors (PPARs. How steatosis increases PPAR activated gene expression of fatty acid transport proteins, peroxisomal and mitochondrial fatty acid -oxidation and -oxidation of fatty acids genes regardless of whether dietary fatty acids are polyunsaturated (PUFA, monounsaturated (MUFA, or saturated (SFA may be determined by the interplay of PPARs and HNF4 with the fatty acid transport proteins L-FABP and ACBP. In hepatic steatosis and steatohepatitis, the -oxidation cytochrome P450 CYP4A gene expression is increased even with reduced hepatic levels of PPAR. Although numerous studies have suggested the role ethanol-inducible CYP2E1 in contributing to increased oxidative stress, Cyp2e1-null mice still develop steatohepatitis with a dramatic increase in CYP4A gene expression. This strongly implies that CYP4A fatty acid -hydroxylase P450s may play an important role in the development of steatohepatitis. In this review and tutorial, we briefly describe how fatty acids are partitioned by fatty acid transport proteins to either anabolic or catabolic pathways regulated by PPARs, and we explore how medium-chain fatty acid (MCFA CYP4A and long-chain fatty acid (LCFA CYP4F -hydroxylase genes are regulated in fatty liver. We finally propose a hypothesis that increased CYP4A expression with a decrease in CYP4F genes may promote the progression of steatosis to

  11. Intake of fatty acids in Western Europe with emphasis on trans fatty acids: The TRANSFAIR study

    DEFF Research Database (Denmark)

    Hulshof, K. F. A. M.; Erp-Baart, M. A. van; Anttolainen, M.

    1999-01-01

    and from clusters of fatty acids was less. Only in Finland, Italy, Norway and Portugal total fat did provide on average less than 35% of energy intake. Saturated fatty acids (SFA) provided on average between 10% and 19% of total energy intake, with the lowest contribution in most Mediterranean countries......-7%. Conclusion: The current intake of TFA in most Western European countries does not appear to be a reason for major concern. In several countries a considerable proportion of energy was derived from SFA. It would therefore be prudent to reduce intake of all cholesterol-raising fatty acids, TFA included...

  12. Platelet Counts and Liver Enzymes after Bariatric Surgery

    Directory of Open Access Journals (Sweden)

    Hans-Erik Johansson

    2013-01-01

    Full Text Available Background. Obesity is characterized by liver steatosis, chronic inflammation, and increased liver enzymes, that is, gamma-glutamyltransferase (GGT and alanine aminotransferase (ALT, markers for nonalcoholic fatty liver disease (NAFLD and liver fat content. Increased platelet counts (PCs are associated with inflammatory conditions and are a valuable biomarker of the degree of fibrosis in NAFLD. We investigated alterations in PC, GGT, and ALT after biliopancreatic diversion with duodenal switch (BPD-DS and Roux-en-Y gastric bypass (RYGBP. Methods. Ten morbidly obese patients (body mass index, BMI: 53.5±3.8 kg/m2 who underwent BPD-DS were evaluated preoperatively (baseline and 1 year (1st followup and 3 years (2nd followup after surgery and compared with 21 morbidly obese patients (BMI: 42.3±5.2 kg/m2 who underwent RYGBP. Results. Over the 3 years of followup, changes in BPD-DS and RYGBP patients (BPD-DS/RYGBP were as follows: BMI (−44%/−24%, GGT (−63%/−52%, and ALT (−48%/−62%. PC decreased (−21% statistically significantly only in BPD-DS patients. Conclusions. Morbidly obese patients treated by RYGBP or BPD-DS show sustained reductions in BMI, ALT, and GGT. The decrease in PC and liver enzymes after BPD-DS may reflect a more pronounced decrease of liver-fat-content-related inflammation and, as a result, a lowered secondary thrombocytosis.

  13. Genetics Home Reference: fatty acid hydroxylase-associated neurodegeneration

    Science.gov (United States)

    ... fatty acid 2-hydroxylase adds a single oxygen atom to a hydrogen atom at a particular point on a fatty acid ... direct-to-consumer genetic testing? What is precision medicine? What is newborn screening? New Pages Obstructive sleep ...

  14. Genetics Home Reference: non-alcoholic fatty liver disease

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions NAFLD Non-alcoholic fatty liver disease Printable PDF Open All Close All Enable ... view the expand/collapse boxes. Description Non-alcoholic fatty liver disease ( NAFLD ) is a buildup of excessive fat ...

  15. Fatty Acid–Regulated Transcription Factors in the Liver

    Science.gov (United States)

    Jump, Donald B.; Tripathy, Sasmita; Depner, Christopher M.

    2014-01-01

    Fatty acid regulation of hepatic gene transcription was first reported in the early 1990s. Several transcription factors have been identified as targets of fatty acid regulation. This regulation is achieved by direct fatty acid binding to the transcription factor or by indirect mechanisms where fatty acids regulate signaling pathways controlling the expression of transcription factors or the phosphorylation, ubiquitination, or proteolytic cleavage of the transcription factor. Although dietary fatty acids are well-established regulators of hepatic transcription factors, emerging evidence indicates that endogenously generated fatty acids are equally important in controlling transcription factors in the context of glucose and lipid homeostasis. Our first goal in this review is to provide an up-to-date examination of the molecular and metabolic bases of fatty acid regulation of key transcription factors controlling hepatic metabolism. Our second goal is to link these mechanisms to nonalcoholic fatty liver disease (NAFLD), a growing health concern in the obese population. PMID:23528177

  16. Fatty Acid Compositions of Six Wild Edible Mushroom Species

    Science.gov (United States)

    Günç Ergönül, Pelin; Akata, Ilgaz; Kalyoncu, Fatih; Ergönül, Bülent

    2013-01-01

    The fatty acids of six wild edible mushroom species (Boletus reticulatus, Flammulina velutipes var. velutipes, Lactarius salmonicolor, Pleurotus ostreatus, Polyporus squamosus, and Russula anthracina) collected from different regions from Anatolia were determined. The fatty acids were identified and quantified by gas chromatography and studied using fruit bodies. Fatty acid composition varied among species. The dominant fatty acid in fruit bodies of all mushrooms was cis-linoleic acid (18 : 2). Percentage of cis-linoleic acid in species varied from 22.39% to 65.29%. The other major fatty acids were, respectively, cis-oleic, palmitic, and stearic acids. Fatty acids analysis of the mushrooms showed that the unsaturated fatty acids were at higher concentrations than saturated fatty acids. PMID:23844377

  17. Fatty Acid Compositions of Six Wild Edible Mushroom Species

    Directory of Open Access Journals (Sweden)

    Pelin Günç Ergönül

    2013-01-01

    Full Text Available The fatty acids of six wild edible mushroom species (Boletus reticulatus, Flammulina velutipes var. velutipes, Lactarius salmonicolor, Pleurotus ostreatus, Polyporus squamosus, and Russula anthracina collected from different regions from Anatolia were determined. The fatty acids were identified and quantified by gas chromatography and studied using fruit bodies. Fatty acid composition varied among species. The dominant fatty acid in fruit bodies of all mushrooms was cis-linoleic acid (18 : 2. Percentage of cis-linoleic acid in species varied from 22.39% to 65.29%. The other major fatty acids were, respectively, cis-oleic, palmitic, and stearic acids. Fatty acids analysis of the mushrooms showed that the unsaturated fatty acids were at higher concentrations than saturated fatty acids.

  18. Malolactic enzyme from Oenococcus oeni

    Science.gov (United States)

    Schümann, Christina; Michlmayr, Herbert; del Hierro, Andrés M.; Kulbe, Klaus D.; Jiranek, Vladimir; Eder, Reinhard; Nguyen, Thu-Ha

    2013-01-01

    Malolactic enzymes (MLE) are known to directly convert L-malic acid into L-lactic acid with a catalytical requirement of nicotinamide adenine dinucleotide (NAD+) and Mn2+; however, the reaction mechanism is still unclear. To study a MLE, the structural gene from Oenococcus oeni strain DSM 20255 was heterologously expressed in Escherichia coli, yielding 22.9 kU l−1 fermentation broth. After affinity chromatography and removal of apparently inactive protein by precipitation, purified recombinant MLE had a specific activity of 280 U mg−1 protein with a recovery of approximately 61%. The enzyme appears to be a homodimer with a molecular mass of 128 kDa consisting of two 64 kDa subunits. Characterization of the recombinant enzyme showed optimum activity at pH 6.0 and 45°C, and Km, Vmax and kcat values of 4.9 mM, 427 U mg−1 and 456 sec−1 for L-malic acid, 91.4 µM, 295 U mg−1 and 315 sec−1 for NAD+ and 4.6 µM, 229 U mg−1 and 244 sec−1 for Mn2+, respectively. The recombinant MLE retained 95% of its activity after 3 mo at room temperature and 7 mo at 4°C. When using pyruvic acid as substrate, the enzyme showed the conversion of pyruvic acid with detectable L-lactate dehydrogenase (L-LDH) activity and oxidation of NADH. This interesting observation might explain that MLE catalyzes a redox reaction and hence, the requirements for NAD+ and Mn2+ during the conversion of L-malic to L-lactic acid. PMID:23196745

  19. Modulation of Medium-Chain Fatty Acid Synthesis in Synechococcus sp. PCC 7002 by Replacing FabH with a Chaetoceros ketoacyl-ACP synthase

    Directory of Open Access Journals (Sweden)

    Huiya eGu

    2016-05-01

    Full Text Available The isolation or engineering of algal cells synthesizing high levels of medium-chain fatty acids (MCFAs is attractive to mitigate the high clouding point of longer chain fatty acids in algal based biodiesel. To develop a more informed understanding of MCFA synthesis is photosynthetic microorganisms, we isolated several algae from Great Salt Lake and screened this collection for MCFA accumulation to identify strains naturally accumulating high levels of MCFA. A diatom, Chaetoceros sp. GSL56, accumulated particularly high levels of C14 (up to 40%, with the majority of C14 fatty acids (~2/3 allocated in triacylglycerols. Using whole cell transcriptome sequencing and de novo assembly, putative genes encoding fatty acid synthesis enzymes were identified. Enzymes from this Chaetoceros sp. were expressed in the cyanobacterium Synechococcus sp. PCC 7002 to validate gene function and to determine whether eukaryotic enzymes lacking bacteria evolutionary control mechanisms could be used to improve MCFA production in this promising production strains. Replacement of the Synechococcus 7002 native FabH with a Chaetoceros ketoacyl-ACP synthase III increased MCFA synthesis up to five fold. The level of increase is dependent on promoter strength and culturing conditions.

  20. Allosteric regulation of epigenetic modifying enzymes.

    Science.gov (United States)

    Zucconi, Beth E; Cole, Philip A

    2017-08-01

    Epigenetic enzymes including histone modifying enzymes are key regulators of gene expression in normal and disease processes. Many drug development strategies to target histone modifying enzymes have focused on ligands that bind to enzyme active sites, but allosteric pockets offer potentially attractive opportunities for therapeutic development. Recent biochemical studies have revealed roles for small molecule and peptide ligands binding outside of the active sites in modulating the catalytic activities of histone modifying enzymes. Here we highlight several examples of allosteric regulation of epigenetic enzymes and discuss the biological significance of these findings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Lignin-degrading enzyme activities.

    Science.gov (United States)

    Chen, Yi-ru; Sarkanen, Simo; Wang, Yun-Yan

    2012-01-01

    Over the past three decades, the activities of four kinds of enzyme have been purported to furnish the mechanistic foundations for macromolecular lignin depolymerization in decaying plant cell walls. The pertinent fungal enzymes comprise lignin peroxidase (with a relatively high redox potential), manganese peroxidase, an alkyl aryl etherase, and laccase. The peroxidases and laccase, but not the etherase, are expressed extracellularly by white-rot fungi. A number of these microorganisms exhibit a marked preference toward lignin in their degradation of lignocellulose. Interestingly, some white-rot fungi secrete both kinds of peroxidase but no laccase, while others that are equally effective express extracellular laccase activity but no peroxidases. Actually, none of these enzymes has been reported to possess significant depolymerase activity toward macromolecular lignin substrates that are derived with little chemical modification from the native biopolymer. Here, the assays commonly employed for monitoring the traditional fungal peroxidases, alkyl aryl etherase, and laccase are described in their respective contexts. A soluble native polymeric substrate that can be isolated directly from a conventional milled-wood lignin preparation is characterized in relation to its utility in next-generation lignin-depolymerase assays.

  2. Substrate mediated enzyme prodrug therapy.

    Directory of Open Access Journals (Sweden)

    Betina Fejerskov

    Full Text Available In this report, we detail Substrate Mediated Enzyme Prodrug Therapy (SMEPT as a novel approach in drug delivery which relies on enzyme-functionalized cell culture substrates to achieve a localized conversion of benign prodrug(s into active therapeutics with subsequent delivery to adhering cells or adjacent tissues. For proof-of-concept SMEPT, we use surface adhered micro-structured physical hydrogels based on poly(vinyl alcohol, β-glucuronidase enzyme and glucuronide prodrugs. We demonstrate enzymatic activity mediated by the assembled hydrogel samples and illustrate arms of control over rate of release of model fluorescent cargo. SMEPT was not impaired by adhering cells and afforded facile time - and dose - dependent uptake of the in situ generated fluorescent cargo by hepatic cells, HepG2. With the use of a glucuronide derivative of an anticancer drug, SN-38, SMEPT afforded a decrease in cell viability to a level similar to that achieved using parent drug. Finally, dose response was achieved using SMEPT and administration of judiciously chosen concentration of SN-38 glucuronide prodrug thus revealing external control over drug delivery using drug eluting surface. We believe that this highly adaptable concept will find use in diverse biomedical applications, specifically surface mediated drug delivery and tissue engineering.

  3. Dietary saponins of sea cucumber alleviate orotic acid-induced fatty liver in rats via PPARα and SREBP-1c signaling

    Directory of Open Access Journals (Sweden)

    Nagao Koji

    2010-03-01

    Full Text Available Abstract Background Nonalcoholic fatty liver disease is the most common chronic liver disease in the world, and is becoming increasingly prevalent. Saponins of sea cucumber (SSC are proven to exhibit various biological activities. Therefore, the present study was undertaken to examine the effect of saponins extracted from sea cucumber (Pearsonothuria graeffei on the preventive activity of fatty liver in rats. Methods Male Wistar rats were randomly divided into five groups, including normal control group, fatty liver model group, SSC-treated group with SSC at levels of 0.01%, 0.03% and 0.05%. Model rats were established by administration with 1% orotic acid (OA. After the experiment period, serum total cholesterol (TC, triglyceride (TG, and hepatic lipid concentrations were determined. To search for a possible mechanism, we examined the changes of key enzymes and transcriptional factors involved in hepatic lipids biosynthesis, fatty acid β-oxidation. Results Both 0.03% and 0.05% SSC treatment alleviated hepatic steatosis and reduced serum TG and TC concentration significantly in OA fed rats. Hepatic lipogenic enzymes, such as fatty acid synthase (FAS, malic enzyme (ME, and glucose-6-phosphate dehydrogenase (G6PDH activities were inhibited by SSC treatment. SSC also decreased the gene expression of FAS, ME, G6PDH and sterol-regulatory element binding protein (SREBP-1c. Otherwise, the rats feeding with SSC showed increased carnitine palmitoyl transferase (CPT activity in the liver. Hepatic peroxisome proliferator-activated receptor (PPARα, together with its target gene CPT and acyl-CoA oxidase (ACO mRNA expression were also upregulated by SSC. Conclusions According to our study, the lipids-lowering effect of dietary SSC may be partly associated with the enhancement of β-oxidation via PPARα activation. In addition, the inhibited SREBP-1c- mediated lipogenesis caused by SSC may also contribute to alleviating fatty liver.

  4. Bioorthogonal Chemical Reporters for Monitoring Unsaturated Fatty-Acylated Proteins

    OpenAIRE

    Thinon, Emmanuelle; Percher, Avital; Hang, Howard C.

    2016-01-01

    Dietary unsaturated fatty acids, such as oleic acid, have been shown to be covalently incorporated into a small subset of proteins but the generality and diversity of this protein modification has not been studied. We synthesized unsaturated fatty acid chemical reporters and determined their protein targets in mammalian cells. The unsaturated fatty acid chemical reporters can induce the formation of lipid droplets and be incorporated site-specifically onto known fatty-acylated proteins and la...

  5. 21 CFR 172.863 - Salts of fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Salts of fatty acids. 172.863 Section 172.863 Food... Multipurpose Additives § 172.863 Salts of fatty acids. The food additive salts of fatty acids may be safely..., magnesium, potassium, and sodium salts of the fatty acids conforming with § 172.860 and/or oleic acid...

  6. Unsaturated fatty acids in the diet of inpatients

    OpenAIRE

    KONHEFROVÁ, Veronika

    2015-01-01

    The thesis with the name "Unsaturated fatty acids in the diet of inpatients" is divided into a theoretical and a research parts. The theoretical part is focused on sorting out lipids and the recommended daily dosing. Next there are described the chemical structure of fatty acids and basic differences between saturated (SFA) and unsaturated (trans and cis) fatty acids. The biggest part of the theory is formed by the unsaturated fatty acids, their characteristics, food source and their effect o...

  7. Influence of sporophore development, damage, storage, and tissue specificity on the enzymic formation of volatiles in mushrooms (Agaricus bisporus).

    Science.gov (United States)

    Combet, Emilie; Henderson, Janey; Eastwood, Daniel C; Burton, Kerry S

    2009-05-13

    The enzymic oxidation of the polyunsaturated fatty acid-linoleic acid leads, in fungi, to the formation of a unique class of nonconjugated hydroperoxides, which are cleaved to form eight-carbon volatiles characteristic of mushroom and fungal flavor. However, the enzymes involved in this biosynthetic pathway, the bioavailability of the fatty acid substrate, and the occurrence of the reaction products (hydroperoxides and eight-carbon volatiles) are not fully understood. This study investigated the lipids, fatty acids, and hydroperoxide levels, as well as eight-carbon volatile variations in the fungal model Agaricus bisporus, according to four parameters: sporophore development, postharvest storage, tissue type, and damage. Eight-carbon volatiles were measured using solid phase microextraction and gas chromatography-mass spectrometry. Tissue disruption had a major impact on the volatile profile, both qualitatively and quantitatively; 3-octanone was identified as the main eight-carbon volatile in whole and sliced sporophore, an observation overlooked in previous studies due to the use of tissue disruption and solvent extraction for analysis. Fatty acid oxidation and eight-carbon volatile emissions decreased with sporophore development and storage, and differed according to tissue type. The release of 1-octen-3-ol and 3-octanone by incubation of sporophore tissue homogenate with free linoleic acid was inhibited by acetylsalicylic acid, providing evidence for the involvement of a heme-dioxygenase in eight-carbon volatile production.

  8. Regulatory properties of malic enzyme in the oleaginous yeast, Yarrowia lipolytica, and its non-involvement in lipid accumulation.

    Science.gov (United States)

    Zhang, Huaiyuan; Zhang, Luning; Chen, Haiqin; Chen, Yong Q; Ratledge, Colin; Song, Yuanda; Chen, Wei

    2013-12-01

    Malic enzyme (EC 1.1.1.40) converts L-malate to pyruvate and CO2 providing NADPH for metabolism especially for lipid biosynthesis in oleaginous microorganisms. However, its role in the oleaginous yeast, Yarrowia lipolytica, is unclear. We have cloned the malic enzyme gene (YALI0E18634g) from Y. lipolytica into pET28a, expressed it in Escherichia coli and purified the recombinant protein (YlME). YlME used NAD(+) as the primary cofactor. Km values for NAD(+) and NADP(+) were 0.63 and 3.9 mM, respectively. Citrate, isocitrate and α-ketoglutaric acid (>5 mM) were inhibitory while succinate (5-15 mM) increased NADP(+)- but not NAD(+)-dependent activity. To determine if fatty acid biosynthesis could be increased in Y. lipolytica by providing additional NADPH from an NADP(+)-dependent malic enzyme, the malic enzyme gene (mce2) from an oleaginous fungus, Mortierella alpina, was expressed in Y. lipolytica. No significant changes occurred in lipid content or fatty acid profiles suggesting that malic enzyme is not the main source of NADPH for lipid accumulation in Y. lipolytica.

  9. Altered mRNA expression of hepatic lipogenic enzyme and PPARalpha in rats fed dietary levan from Zymomonas mobilis.

    Science.gov (United States)

    Kang, Soon Ah; Hong, Kyunghee; Jang, Ki-Hyo; Kim, Yun-Young; Choue, Ryowon; Lim, Yoongho

    2006-06-01

    Levan or high molecular beta-2,6-linked fructose polymer is produced extracellularly from sucrose-based substrates by bacterial levansucrase. In the present study, to investigate the effect of levan feeding on serum leptin, hepatic lipogenic enzyme and peroxisome proliferation-activated receptor (PPAR) alpha expression in high-fat diet-induced obese rats, 4-week-old Sprague-Dawley male rats were fed high-fat diet (beef tallow, 40% of calories as fat), and, 6 weeks later, the rats were fed 0%, 1%, 5% or 10% levan-supplemented diets for 4 weeks. Serum leptin and insulin level were dose dependently reduced in levan-supplemented diet-fed rats. The mRNA expressions of hepatic fatty acid synthase and acetyl CoA carboxylase, which are the key enzymes in fatty acid synthesis, were down-regulated by dietary levan. However, dietary levan did not affect the gene expression of hepatic malic enzyme, phosphatidate phosphohydrolase and HMG CoA reductase. Also, the lipogenic enzyme gene expression in the white adipose tissue (WAT) was not affected by the diet treatments. However, hepatic PPARalpha mRNA expression was dose dependently up-regulated by dietary levan, whereas PPARgamma in the WAT was not changed. The results suggest that the in vivo hypolipidemic effect of dietary levan, including anti-obesity and lipid-lowering, may result from the inhibition of lipogenesis and stimulation of lipolysis, accompanied with regulation of hepatic lipogenic enzyme and PPARalpha gene expression.

  10. Seasonal changes on total fatty acid composition of carp (Cyprinus ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... The effects of seasonal variation on the fatty acid composition of carps Cyprinus carpio were determined. A total of 38 different fatty ... recent years, fish lipids have been focused on as being beneficial for human health. .... The principal fatty acids of both fractions (neutral and phospholipids) were palmitic ...

  11. Functional alteration of breast muscle fatty acid profile by ...

    African Journals Online (AJOL)

    ajl yemi

    2011-03-28

    Mar 28, 2011 ... Breast muscle fatty acid (FA) profile was studied in broiler chickens fed at different levels of n-6:n-3 polyunsaturated fatty acid (PUFA) ratios ... The fast growing demand of omega-3 enriched meat and meat products, lead producers to ..... Chia seed (Salvia hispanica L.) as an [omega]-3 fatty acid source for ...

  12. Naturally occurring fatty acids: Source, chemistry, and uses

    Science.gov (United States)

    Natural occurring fatty acids are a large and complex class of compounds found in plants and animals. Fatty acids are abundant and of interest because of their renewability, biodegradability, biocompatibility, low cost, and fascinating chemistry. Of the many fatty acids, only 20-25 of them are widel...

  13. Fatty acid composition of human milk and infant formulas

    Directory of Open Access Journals (Sweden)

    Ivančica Delaš

    2005-04-01

    Full Text Available The appropriate fatty acid composition of membrane lipids is necessary for structure and function of the developing nervous system. Rapid synthesis of brain tissue occurs during the last trimester of pregnancy and the early postnatal weeks. This synthesis of brain structure involves the formation of complex lipids, many of which contain significant quantities of essential fatty acids and their higher homologs. This study was undertaken to elucidate how fatty acid compositions of available diets for infants meet the requirements for essential fatty acids. Samples of infant formulas, present on the market, as well as milk samples obtained from breast feeding mothers, were extracted by chloroform : methanol mixtures in order to obtain total lipids. Fatty acid methyl esters were prepared and fatty acid composition was revealed by gas chromatography. Special interest was directed to the content of long chain polyunsaturated fatty acids. The results have shown that infant formulas, designed to substitute mothers’ breast milk, contain medium chain fatty acids (C 10:0, C 12:0, along with the other saturated fatty acids, in the amounts acceptable for infants’ energy consumption. Although linoleic acid (C18:2, n-6 was present at the level expected to cover needs for essential fatty acids, most of the tested products did not contain sufficient amounts of long chain polyunsaturated fatty acids, despite the fact that these fatty acids are necessary for undisturbed brain development, ignoring the strong recommendations that they should be used as a supplement in infants’ food.

  14. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    DEFF Research Database (Denmark)

    Refsgaard, Hanne; Tsai, Lin; Stadtman, Earl

    2000-01-01

    The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(lll)/O-2] depends on the degree of unsaturation of the fatty acid. The fatty acid...

  15. Effect Of Intraruminal Infussion Of Saturated And Unsaturated Fatty ...

    African Journals Online (AJOL)

    This study describes the effect of intraruminal infusion of diferent proportions of palmitic (saturated fatty acid) and linolenic (unsaturated fatty acid) on rumen degradability of organic matter fraction of Pennisetium purpureum, total volatile fatty acid and total methane productions in West African Dwarf sheep. Five combination ...

  16. Effects of commercial enrichment products on fatty acid components ...

    African Journals Online (AJOL)

    Red pepper paste (ZA), AlgaMac 3050 (ZB) and Spresso (ZC) on fatty acid compositions in rotifers (Brachionus plicatilis) which were intensively cultured on a mixture of ω3 algae and ω3 yeast. Enriched rotifers were seen to have higher level of unsaturated fatty acids of linoleic acid (LOA) and total n-6 unsaturated fatty acid ...

  17. Changes over time in muscle fatty acid composition of Malaysian ...

    African Journals Online (AJOL)

    use

    2011-12-12

    Dec 12, 2011 ... Key words: Fatty acid, lipid, muscle, Malaysian mahseer, Tor tambroides. INTRODUCTION. The content of long chain n-3 polyunsaturated fatty acids. (n-3 PUFAs) differentiates fish from the other food products. These fatty acids are important beneficial nutrients for the prevention of human coronary disease,.

  18. 40 CFR 721.3629 - Triethanolamine salts of fatty acids.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Triethanolamine salts of fatty acids... Substances § 721.3629 Triethanolamine salts of fatty acids. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as triethanolamine salts of fatty...

  19. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyglycerol esters of fatty acids. 172.854 Section... HUMAN CONSUMPTION Multipurpose Additives § 172.854 Polyglycerol esters of fatty acids. Polyglycerol esters of fatty acids, up to and including the decaglycerol esters, may be safely used in food in...

  20. Erythrocyte membrane fatty acids in multiple sclerosis patients and ...

    African Journals Online (AJOL)

    The risk of developing multiple sclerosis (MS) is associated with increased dietary intake of saturated fatty acids. For many years it has been suspected that this disease might be associated with an imbalance between unsaturated and saturated fatty acids. We determined erythrocyte membrane fatty acids levels in Hot ...

  1. Effect of altitude on fatty acid composition in Turkish hazelnut ...

    African Journals Online (AJOL)

    The objective of this study was to evaluate the change of fatty acid composition in Delisava, Yomra, Sivri and Karayaglı Turkish hazelnut varieties with altitude. Fatty acid composition were determined by gas chromatography (GC) equiped with flame ionisation detector (FID) after obtained fatty acid methyl esters from crude ...

  2. 21 CFR 573.914 - Salts of volatile fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Salts of volatile fatty acids. 573.914 Section 573... Food Additive Listing § 573.914 Salts of volatile fatty acids. (a) Identity. The food additive is a... contains ammonium or calcium salts of volatile fatty acids and shall conform to the following...

  3. 21 CFR 172.859 - Sucrose fatty acid esters.

    Science.gov (United States)

    2010-04-01

    ... solvents which may be used in the preparation of sucrose fatty acid esters are those generally recognized... preparation of sucrose fatty acid esters. (b) Sucrose fatty acid esters meet the following specifications: (1..., 5100 Paint Branch Pkwy., College Park, MD 20740, or available for inspection at the National Archives...

  4. A method for measuring fatty acid oxidation in C. elegans

    DEFF Research Database (Denmark)

    Elle, Ida Coordt; Rødkær, Steven Vestergaard; Fredens, Julius

    2012-01-01

    different fatty acid oxidation rates. We show that starvation results in increased fatty acid oxidation, which is independent of the transcription factor NHR-49. On the contrary, fatty acid oxidation is reduced to approximately 70% in animals lacking the worm homolog of the insulin receptor, DAF-2. Hence...

  5. What health professionals should know about omega-3 fatty acid ...

    African Journals Online (AJOL)

    distillation, which removes short-chain and saturated fatty acids, it is now possible for manufacturers of these ... in red blood cell membranes, expressed as a percentage of total fatty acids) was determined at baseline, ... of EPA and DHA into the red blood cell membrane fatty acids (a 160% increase from baseline) when ...

  6. What health professionals should know about omega-3 fatty acid ...

    African Journals Online (AJOL)

    Western diets are often deficient in n-3 fatty acids because of an insufficient intake of cold water oily fish. The main n-3 fatty acids in fatty fish are ... To date, no formally accepted dietary reference intakes for EPA and DHA exist, while international intake recommendations differ widely. Supplementation is an easy and ...

  7. Fatty Acid Content of Indonesian Aquatic Microalgae

    Directory of Open Access Journals (Sweden)

    TRI PRARTONO

    2010-12-01

    Full Text Available High utilization of fossil fuel increases the level of carbon dioxide in the atmosphere and results in global warming phenomenon. These things establish the world's thought to look for the other alternative energy that can reduce the use of fossil fuel even to be replaced by the substitute. Recently, Indonesia has been doing the research of microalgae as a feedstock of an alternative biofuel. Fatty acid content that microalgae have is also high to produce biofuel. The steps used in this research is a 7 days cultivation, harvesting, extraction using hexane, and fatty acid identification using Gas Chromatography of microalgae species. Fatty acid component in some species such as Chlorella sp., Scenedesmus sp., Nannochloropsis sp., and Isochrysis sp. is between 0.21-29.5%; 0.11-25.16%; 0.30-42.32%; 2.06-37.63%, respectively, based on dry weight calculation. The high content of fatty acid in some species of microalgae showed the potential to be the feedstock of producing biofuel in overcoming the limited utilization from petroleum (fossil fuel presently.

  8. Fatty Acid Content of Indonesian Aquatic Microalgae

    Directory of Open Access Journals (Sweden)

    TRI PRARTONO

    2010-12-01

    Full Text Available High utilization of fossil fuel increases the level of carbon dioxide in the atmosphere and results in global warming phenomenon. These things establish the world’s thought to look for the other alternative energy that can reduce the use of fossil fuel even to be replaced by the substitute. Recently, Indonesia has been doing the research of microalgae as a feedstock of an alternative biofuel. Fatty acid content that microalgae have is also high to produce biofuel. The steps used in this research is a 7 days cultivation, harvesting, extraction using hexane, and fatty acid identification using Gas Chromatography of microalgae species. Fatty acid component in some species such as Chlorella sp., Scenedesmus sp., Nannochloropsis sp., and Isochrysis sp. is between 0.21-29.5%; 0.11-25.16%; 0.30-42.32%; 2.06-37.63%, respectively, based on dry weight calculation. The high content of fatty acid in some species of microalgae showed the potential to be the feedstock of producing biofuel in overcoming the limited utilization from petroleum (fossil fuel presently.

  9. Omega-3 fatty acid supplementation in horses

    Directory of Open Access Journals (Sweden)

    Tanja Hess

    2014-12-01

    Full Text Available Polyunsaturated omega-3 fatty acids (n-3 PUFA are a family of essential fatty acids with many biological activities. These fatty acids are incorporated into cell membranes, changing their structural and functional characteristics. N-3 PUFA can act by modulating inflammatory responses at different levels. Omega-3 PUFA can be converted in the body to longer-chain n-3 PUFA at a limited rate and are differently converted in body systems. It appears that when specific longer-chain n-3 PUFA are desired these need to be supplemented directly in the diet. In different species some evidence indicates a potential effect on improving insulin sensitivity. Recently, a novel class of n-3 PUFA-derived anti-inflammatory mediators have been recognized, termed E-series and D-series resolvins, formed from EPA and DHA, respectively. N-3 PUFA derived resolvins and protectins are heavily involved in the resolution of inflammation. Supplementation with n-3 fatty acids in horses may help manage chronic inflammatory conditions such as osteoarthritis, equine metabolic syndrome, laminitis, and thereby help to improve longevity of sport horse.

  10. Lipid and fatty acid requirements of tilapias

    Science.gov (United States)

    Tilapia have been shown to have a dietary requirement for linoleic (n-6) series fatty acids (18:2n-6 or 20:4n-6). The optimum dietary levels of n-6 reported were 0.5 and 1% for redbelly tilapia (Tilapia zillii) and Nile tilapia (Oreochromis niloticus), respectively. Tilapia have been suggested to al...

  11. Modular Regiospecific Synthesis of Nitrated Fatty Acids

    DEFF Research Database (Denmark)

    Hock, Katharina J.; Grimmer, Jennifer; Göbel, Dominik

    2016-01-01

    Endogenous nitrated fatty acids are an important class of signaling molecules. Herein a modular route for the efficient and regiospecific preparation of nitrooleic acids as well as various analogues is described. The approach is based on a simple set of alkyl halides as common building blocks...

  12. Dietary Fatty Acids and Predementia Syndromes

    Directory of Open Access Journals (Sweden)

    Vincenzo Solfrizzi

    2009-01-01

    Full Text Available An increasing body of epidemiological evidence suggests that elevated saturated fatty acids (SFA could have negative effects on age-related cognitive decline (ARCD. Furthermore, a reduction of risk for cognitive decline and mild cognitive impairment (MCI has been found in population samples with elevated fish consumption, and high intake of monounsaturated fatty acids (MUFA and polyunsaturated fatty acids (PUFA, particularly n-3 PUFA. However, recent findings from clinical trials with n-3 PUFA supplementation showed efficacy on depressive symptoms in non–Vapolipoprotein E (APOE ε4 carriers, and on cognitive symptoms only in very mild Alzheimer's disease (AD subgroups, MCI patients, and cognitively unimpaired non-APOE ε4 carriers. These data, together with epidemiological evidence, support the idea that n-3 PUFA may play a role in maintaining adequate cognitive functioning in predementia syndromes, but not when the AD process has already taken over. Therefore, at present, no definitive dietary recommendations on fish and unsaturated fatty acids consumption, or lower intake of saturated fat, in relation to the risk for dementia and cognitive decline are possible.

  13. Oxidative decarboxylation of unsaturated fatty acids

    NARCIS (Netherlands)

    Klis, van der F.; Hoorn, van den M.H.; Blaauw, R.; Haveren, van J.; Es, van D.S.

    2011-01-01

    Long-chain internal olefins were prepared by silver(II)-catalyzed oxidative decarboxylation of unsaturated fatty acids by sodium peroxydisulfate. Similar to saturated carboxylic acids, 1-alkenes were the major decarboxylation product in the additional presence of copper(II), whereas in the absence

  14. Fatty acid biosynthesis in pea root plastids

    International Nuclear Information System (INIS)

    Stahl, R.J.; Sparace, S.A.

    1989-01-01

    Fatty acid biosynthesis from [1- 14 C]acetate was optimized in plastids isolated from primary root tips of 7-day-old germinating pea seeds. Fatty acid synthesis was maximum at approximately 80 nmoles/hr/mg protein in the presence of 200 μM acetate, 0.5 mM each of NADH, NADPH and CoA, 6 mM each of ATP and MgCl 2 , 1 mM each of the MnCl 2 and glycerol-3-phosphate, 15 mM KHCO 3 , and 0.1M Bis-tris-propane, pH 8.0 incubated at 35C. At the standard incubation temperature of 25C, fatty acid synthesis was linear from up to 6 hours with 80 to 100 μg/mL plastid protein. ATP and CoA were absolute requirements, whereas KHCO 3 , divalent cations and reduced nucleotides all improved activity by 80 to 85%. Mg 2+ and NADH were the preferred cation and nucleotide, respectively. Dithiothreitol and detergents were generally inhibitory. The radioactive products of fatty acid biosynthesis were approximately 33% 16:0, 10% 18:0 and 56% 18:1 and generally did not vary with increasing concentrations of each cofactor

  15. Study on Fatty Constituents in Coicis Semen

    OpenAIRE

    田, 瑞華; 丁, 怡; 野原, 稔弘; 高井, 一也; 滝口, 靖憲; 大塚, 英明; 山崎, 和男; RUI-HUA, TIAN; YI, DING; TOSHIHIRO, NOHARA; KAZUYA, TAKAI; YASUNORI, TAKIGUCHI; HIDEAKI, OHTUKA; KAZUO, YAMASAKI; 熊本大学薬学部

    1997-01-01

    From Coicis Semen, seeds of Coix lachryma-jobi var. ma-yuen, usual seven triglycerides, three fatty acids and a phospholipid were isolated but no coixenolide. We confirmed that any substance corresponding to coixenolide was not present in an extract of Coicis Semen by using synthesized coixenolide as reference.

  16. Fatty Acid Composition of Meat from Ruminants, with Special Emphasis on trans Fatty Acids

    DEFF Research Database (Denmark)

    Leth, Torben; Ovesen, L.; Hansen, K.

    1998-01-01

    . The overlap between cis and trans C-18:1 by capillary GLC was verified by argentation-thin-layer chromatography followed by GLC, on three samples of veal and three samples of lamb. In veal 1.0 g, and in lamb 1.4 g trans C-18:1 per 100 g fatty acids were hidden under the cis C-18:1 peak. The mean intake...... esters was performed by gas-liquid chromatography (GLC) on a polar 50-m capillary column CP Sil 88 with flame-ionization detection. Lamb had the highest content of saturated fatty acids (52.8 +/- 1.8 g/100 g fatty acids), higher than beef and veal (45.3 +/- 3.1 and 45.4 +/- 0.8 g/100 g fatty acids...

  17. Fatty Acid Induced Remodeling within the Human Liver Fatty Acid-binding Protein*

    OpenAIRE

    Sharma, Ashwani; Sharma, Amit

    2011-01-01

    We crystallized human liver fatty acid-binding protein (LFABP) in apo, holo, and intermediate states of palmitic acid engagement. Structural snapshots of fatty acid recognition, entry, and docking within LFABP support a heads-in mechanism for ligand entry. Apo-LFABP undergoes structural remodeling, where the first palmitate ingress creates the atomic environment for placement of the second palmitate. These new mechanistic insights will facilitate development of pharmacological agents against ...

  18. Fatty liver index and hepatic steatosis index for prediction of non-alcoholic fatty liver disease in type 1 diabetes.

    Science.gov (United States)

    Sviklāne, Laura; Olmane, Evija; Dzērve, Zane; Kupčs, Kārlis; Pīrāgs, Valdis; Sokolovska, Jeļizaveta

    2018-01-01

    Little is known about the diagnostic value of hepatic steatosis index (HSI) and fatty liver index (FLI), as well as their link to metabolic syndrome in type 1 diabetes mellitus. We have screened the effectiveness of FLI and HSI in an observational pilot study of 40 patients with type 1 diabetes. FLI and HSI were calculated for 201 patients with type 1 diabetes. Forty patients with FLI/HSI values corresponding to different risk of liver steatosis were invited for liver magnetic resonance study. In-phase/opposed-phase technique of magnetic resonance was used. Accuracy of indices was assessed from the area under the receiver operating characteristic curve. Twelve (30.0%) patients had liver steatosis. For FLI, sensitivity was 90%; specificity, 74%; positive likelihood ratio, 3.46; negative likelihood ratio, 0.14; positive predictive value, 0.64; and negative predictive value, 0.93. For HSI, sensitivity was 86%; specificity, 66%; positive likelihood ratio, 1.95; negative likelihood ratio, 0.21; positive predictive value, 0.50; and negative predictive value, 0.92. Area under the receiver operating characteristic curve for FLI was 0.86 (95% confidence interval [0.72; 0.99]); for HSI 0.75 [0.58; 0.91]. Liver fat correlated with liver enzymes, waist circumference, triglycerides, and C-reactive protein. FLI correlated with C-reactive protein, liver enzymes, and blood pressure. HSI correlated with waist circumference and C-reactive protein. FLI ≥ 60 and HSI ≥ 36 were significantly associated with metabolic syndrome and nephropathy. The tested indices, especially FLI, can serve as surrogate markers for liver fat content and metabolic syndrome in type 1 diabetes. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  19. Serum acid sphingomyelinase is upregulated in chronic hepatitis C infection and non alcoholic fatty liver disease.

    Science.gov (United States)

    Grammatikos, Georgios; Mühle, Christiane; Ferreiros, Nerea; Schroeter, Sirkka; Bogdanou, Dimitra; Schwalm, Stephanie; Hintereder, Gudrun; Kornhuber, Johannes; Zeuzem, Stefan; Sarrazin, Christoph; Pfeilschifter, Josef

    2014-07-01

    Sphingolipids constitute bioactive molecules with functional implications in homeostasis and pathogenesis of various diseases. However, the role of sphingolipids as possible disease biomarkers in chronic liver disease remains largely unexplored. In the present study we used mass spectrometry and spectrofluorometry methods in order to quantify various sphingolipid metabolites and also assess the activity of an important corresponding regulating enzyme in the serum of 72 healthy volunteers as compared to 69 patients with non-alcoholic fatty liver disease and 69 patients with chronic hepatitis C virus infection. Our results reveal a significant upregulation of acid sphingomyelinase in the serum of patients with chronic liver disease as compared to healthy individuals (phepatitis C infection acid sphingomyelinase activity correlated significantly with markers of hepatic injury (r=0.312, p=0.009) and showed a high discriminative power. Accumulation of various (dihydro-) ceramide species was identified in the serum of patients with non-alcoholic fatty liver disease (pliver disease (phepatic injury was identified. Chronic hepatitis C virus infection and non-alcoholic fatty liver disease induce a significant upregulation of serum acid sphingomyelinase which appears as a novel biomarker in chronic hepatopathies. Further studies are required to elucidate the potential of the sphingolipid signaling pathway as putative therapeutic target in chronic liver disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Activation of PPARα by Oral Clofibrate Increases Renal Fatty Acid Oxidation in Developing Pigs.

    Science.gov (United States)

    He, Yonghui; Khan, Imad; Bai, Xiumei; Odle, Jack; Xi, Lin

    2017-12-08

    The objective of this study was to evaluate the effects of peroxisome proliferator-activated receptor α (PPARα) activation by clofibrate on both mitochondrial and peroxisomal fatty acid oxidation in the developing kidney. Ten newborn pigs from 5 litters were randomly assigned to two groups and fed either 5 mL of a control vehicle (2% Tween 80) or a vehicle containing clofibrate (75 mg/kg body weight, treatment). The pigs received oral gavage daily for three days. In vitro fatty acid oxidation was then measured in kidneys with and without mitochondria inhibitors (antimycin A and rotenone) using [1- 14 C]-labeled oleic acid (C18:1) and erucic acid (C22:1) as substrates. Clofibrate significantly stimulated C18:1 and C22:1 oxidation in mitochondria ( p oxidation rate of C18:1 was greater in mitochondria than peroxisomes, while the oxidation of C22:1 was higher in peroxisomes than mitochondria ( p oxidation, the mRNA abundance and enzyme activity of carnitine palmitoyltransferase I (CPT I) in mitochondria were increased. Although mRNA of mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme A synthase (mHMGCS) was increased, the β-hydroxybutyrate concentration measured in kidneys did not increase in pigs treated with clofibrate. These findings indicate that PPARα activation stimulates renal fatty acid oxidation but not ketogenesis.