WorldWideScience

Sample records for endocannabinoid biosynthesis evaluated

  1. Biosynthesis and Fate of Endocannabinoids.

    Science.gov (United States)

    Cascio, Maria Grazia; Marini, Pietro

    2015-01-01

    Since the discovery of the two cannabinoid receptors, CB(1) and CB(2), several molecules, commonly defined as endocannabinoids, able to bind to and functionally activate these receptors, have been discovered and characterized. Although the general thought was that the endocannabinoids were mainly derivatives of the n-6 fatty acid arachidonic acid, recent data have shown that also derivatives (ethanolamides) of n-3 fatty acids may be classified as endocannabinoids. Whether the n-3 endocannabinoids follow the same biosynthetic and metabolic routes of the n-6 endocannabinoids is not yet clear and so warrants further investigation. In this review, we describe the primary biosynthetic and metabolic pathways for the two well-established endocannabinoids, anandamide and 2-arachidonoylglycerol.

  2. ENDOCANNABINOIDS AND EICOSAMOIDS: BIOSYNTHESIS AND INTERACTIONS WITH IMMUNE RESPONSE

    Directory of Open Access Journals (Sweden)

    Yu. K. Karaman

    2013-01-01

    Full Text Available The review is dedicated to modern concepts of arachidonic acid metabolites, i.e., endocannabinoids and eicosanoids, their biosynthetic pathways, cross-talk mechanisms and participation in immune response. New information from literature and own results include data concerning overlapping enzymatic pathways controlling biosynthesis of endocannabinoids and eicosanoids. Impact of synthetic cannabinoid receptor ligands upon production rates of proinflammatory cytokines and eicosanoids is discussed, as like as relationships among immune system reactivity and expression levels of cannabinoid receptors.

  3. Biosynthesis of endocannabinoids and their modes of action in neurodegenerative diseases

    DEFF Research Database (Denmark)

    van der Stelt, M.; Veldink, G.A.; Vliegenthart, J.F.G.

    2003-01-01

    with the proteins responsible for their biosynthesis, inactivation and the cannabinoid receptors, these lipids constitute the endocannabinoid system. This system is proposed to be involved in various neurodegenerative diseases such as Parkinson's and Huntington's diseases as well as Multiple Sclerosis. It has been...... demonstrated that the endocannabinoid system can protect neurons against glutamate excitotoxicity and acute neuronal damage in both in vitro and in vivo models. In this paper we review the data concerning the involvement of the endocannabinoid system in neurodegenerative diseases in which neuronal cell death...... may be elicited by excitotoxicity. We focus on the biosynthesis of endocannabinoids and on their modes of action in animal models of these neurodegenerative diseases....

  4. Endocannabinoids

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Petersen, G.; Artmann, A.

    2006-01-01

    The endocannabinoid system embraces a group of lipid molecules, enzymes and receptor proteins. This system appears to be involved in the modulation of neurotransmitter release thereby modifying learning and memory, in the regulation of food intake, and in the modulation of inflammation and pain...

  5. Endocannabinoids and immune regulation☆

    Science.gov (United States)

    Pandey, Rupal; Mousawy, Khalida; Nagarkatti, Mitzi; Nagarkatti, Prakash

    2010-01-01

    Cannabinoid pharmacology has made important advances in recent years after the discovery of the cannabinoid receptors. These discoveries have added to our understanding of exogenous and endogenous cannabinoid signaling along with exploring the various pathways of their biosynthesis, molecular structure, inactivation, and anatomical distribution of their receptors throughout the body. The endocannabinoid system is involved in immunoregulation and neuroprotection. In this article, we have reviewed the possible mechanisms of the regulation of the immune response by endocannabinoids which include modulation of immune response in different cell types, effect on cytokine network, induction of apoptosis in immune cells and downregulation of innate and adaptive immune response. Studies from our laboratory have suggested that administration of endocannabinoids or use of inhibitors of enzymes that breakdown the endocannabinoids, leads to immunosuppression and recovery from immune-mediated injury to organs such as the liver. Thus, manipulation of endocannabinoids in vivo may constitute a novel treatment modality against inflammatory disorders. PMID:19428268

  6. Endocannabinoid transport revisited.

    Science.gov (United States)

    Nicolussi, Simon; Gertsch, Jürg

    2015-01-01

    Endocannabinoids are arachidonic acid-derived endogenous lipids that activate the endocannabinoid system which plays a major role in health and disease. The primary endocannabinoids are anandamide (AEA, N-arachidonoylethanolamine) and 2-arachidonoyl glycerol. While their biosynthesis and metabolism have been studied in detail, it remains unclear how endocannabinoids are transported across the cell membrane. In this review, we critically discuss the different models of endocannabinoid trafficking, focusing on AEA cellular uptake which is best studied. The evolution of the current knowledge obtained with different AEA transport inhibitors is reviewed and the confusions caused by the lack of their specificity discussed. A comparative summary of the most important AEA uptake inhibitors and the studies involving their use is provided. Based on a comprehensive literature analysis, we propose a model of facilitated AEA membrane transport followed by intracellular shuttling and sequestration. We conclude that novel and more specific probes will be essential to identify the missing targets involved in endocannabinoid membrane transport. © 2015 Elsevier Inc. All rights reserved.

  7. Endocannabinoids in Liver Disease

    Science.gov (United States)

    Tam, Joseph; Liu, Jie; Mukhopadhyay, Bani; Cinar, Resat; Godlewski, Grzegorz; Kunos, George

    2010-01-01

    Endocannabinoids are lipid mediators of the same cannabinoid (CB) receptors that mediate the effects of marijuana. The endocannabinoid system (ECS) consists of CB receptors, endocannabinoids, and the enzymes involved in their biosynthesis and degradation, and is present both in brain and peripheral tissues, including the liver. The hepatic ECS is activated in various liver diseases, which contributes to the underlying pathologies. In cirrhosis of various etiologies, activation of vascular and cardiac CB1 receptors by macrophage- and platelet-derived endocannabinoids contribute to the vasodilated state and cardiomyopathy, which can be reversed by CB1 blockade. In mouse models of liver fibrosis, activation of CB1 receptors on hepatic stellate cells is fibrogenic, and CB1 blockade slows the progression of fibrosis. Fatty liver induced by high-fat diets or chronic alcohol feeding depend on activation of peripheral, including hepatic CB1 receptors, which also contribute to insulin resistance and dyslipidemias. Although the documented therapeutic potential of CB1 blockade is limited by neuropsychiatric side effects, these may be mitigated by using novel, peripherally restricted CB1 antagonists. PMID:21254182

  8. PUFA-derived endocannabinoids: an overview.

    Science.gov (United States)

    Cascio, Maria Grazia

    2013-11-01

    Following on from the discovery of cannabinoid receptors, of their endogenous agonists (endocannabinoids) and of the biosynthetic and metabolic enzymes of the endocannabinoids, significant progress has been made towards the understanding of the role of the endocannabinoid system in both physiological and pathological conditions. Endocannabinoids are mainly n-6 long-chain PUFA (LCPUFA) derivatives that are synthesised by neuronal cells and inactivated via a two-step process that begins with their transport from the extracellular to the intracellular space and culminates in their intracellular degradation by hydrolysis or oxidation. Although the enzymes responsible for the biosynthesis and metabolism of endocannabinoids have been well characterised, the processes involved in their cellular uptake are still a subject of debate. Moreover, little is yet known about the roles of endocannabinoids derived from n-3 LCPUFA such as EPA and DHA. Here, I provide an overview of what is currently known about the mechanisms for the biosynthesis and inactivation of endocannabinoids, together with a brief analysis of the involvement of the endocannabinoids in both food intake and obesity. Owing to limited space, recent reviews will be often cited instead of original papers.

  9. Endocannabinoids and Their Pharmacological Actions.

    Science.gov (United States)

    Pertwee, Roger G

    2015-01-01

    The endocannabinoid system consists of G protein-coupled cannabinoid CB(1) and CB(2) receptors, of endogenous compounds known as endocannabinoids that can target these receptors, of enzymes that catalyse endocannabinoid biosynthesis and metabolism, and of processes responsible for the cellular uptake of some endocannabinoids. This review presents in vitro evidence that most or all of the following 13 compounds are probably orthosteric endocannabinoids since they have all been detected in mammalian tissues in one or more investigation, and all been found to bind to cannabinoid receptors, probably to an orthosteric site: anandamide, 2-arachidonoylglycerol, noladin ether, dihomo-γ-linolenoylethanolamide, virodhamine, oleamide, docosahexaenoylethanolamide, eicosapentaenoylethanolamide, sphingosine, docosatetraenoylethanolamide, N-arachidonoyldopamine, N-oleoyldopamine and haemopressin. In addition, this review describes in vitro findings that suggest that the first eight of these compounds can activate CB(1) and sometimes also CB(2) receptors and that another two of these compounds are CB(1) receptor antagonists (sphingosine) or antagonists/inverse agonists (haemopressin). Evidence for the existence of at least three allosteric endocannabinoids is also presented. These endogenous compounds appear to target allosteric sites on cannabinoid receptors in vitro, either as negative allosteric modulators of the CB1 receptor (pepcan-12 and pregnenolone) or as positive allosteric modulators of this receptor (lipoxin A(4)) or of the CB(2) receptor (pepcan-12). Also discussed are current in vitro data that indicate the extent to which some established or putative orthosteric endocannabinoids seem to target non-cannabinoid receptors and ion channels, particularly at concentrations at which they have been found to interact with CB(1) or CB(2) receptors.

  10. Evaluation of NHS carbamates as a potent and selective class of endocannabinoid hydrolase inhibitors.

    Science.gov (United States)

    Niphakis, Micah J; Cognetta, Armand B; Chang, Jae Won; Buczynski, Matthew W; Parsons, Loren H; Byrne, Frederika; Burston, James J; Chapman, Victoria; Cravatt, Benjamin F

    2013-09-18

    Monoacylglycerol lipase (MAGL) is a principal metabolic enzyme responsible for hydrolyzing the endogenous cannabinoid (endocannabinoid) 2-arachidonoylglycerol (2-AG). Selective inhibitors of MAGL offer valuable probes to further understand the enzyme's function in biological systems and may lead to drugs for treating a variety of diseases, including psychiatric disorders, neuroinflammation, and pain. N-Hydroxysuccinimidyl (NHS) carbamates have recently been identified as a promising class of serine hydrolase inhibitors that shows minimal cross-reactivity with other proteins in the proteome. Here, we explore NHS carbamates more broadly and demonstrate their potential as inhibitors of endocannabinoid hydrolases and additional enzymes from the serine hydrolase class. We extensively characterize an NHS carbamate 1a (MJN110) as a potent, selective, and in-vivo-active MAGL inhibitor. Finally, we demonstrate that MJN110 alleviates mechanical allodynia in a rat model of diabetic neuropathy, marking NHS carbamates as a promising class of MAGL inhibitors.

  11. The Endocannabinoid System as a Potential Therapeutic Target for Pain Modulation

    Directory of Open Access Journals (Sweden)

    Ahmet Ulugöl

    2014-06-01

    Full Text Available Although cannabis has been used for pain management for millennia, very few approved cannabinoids are indicated for the treatment of pain and other medical symptoms. Cannabinoid therapy re-gained attention only after the discovery of endocannabinoids and fatty acid amide hydrolase (FAAH and monoacylglycerol lipase (MAGL, the enzymes playing a role in endocannabinoid metabolism. Nowadays, research has focused on the inhibition of these degradative enzymes and the elevation of endocannabinoid tonus locally; special emphasis is given on multi-target analgesia compounds, where one of the targets is the endocannabinoid degrading enzyme. In this review, I provide an overview of the current understanding about the processes accounting for the biosynthesis, transport and metabolism of endocannabinoids, and pharmacological approaches and potential therapeutic applications in this area, regarding the use of drugs elevating endocannabinoid levels in pain conditions.

  12. Elevating endocannabinoid levels: pharmacological strategies and potential therapeutic applications.

    Science.gov (United States)

    Pertwee, Roger G

    2014-02-01

    The endocannabinoid system consists of cannabinoid CB1 and CB2 receptors, of endogenous agonists for these receptors known as 'endocannabinoids', and of processes responsible for endocannabinoid biosynthesis, cellular uptake and metabolism. There is strong evidence first, that this system up-regulates in certain disorders as indicated by an increased release of endocannabinoids onto their receptors and/or by increases in the expression levels or coupling efficiency of these receptors, and second, that this up-regulation often appears to reduce or abolish unwanted effects of these disorders or to slow their progression. This discovery has raised the possibility of developing a medicine that enhances up-regulation of the endocannabinoid system associated with these disorders by inhibiting the cellular uptake or intracellular metabolism of an endocannabinoid following its 'autoprotective' endogenous release. For inhibition of endocannabinoid metabolism, research has focused particularly on two highly investigated endocannabinoids, anandamide and 2-arachidonoyl glycerol, and hence on inhibitors of the main anandamide-metabolising enzyme, fatty acid amide hydrolase (FAAH), and of the main 2-arachidonoyl glycerol-metabolising enzyme, monoacylglycerol (MAG) lipase. The resulting data have provided strong preclinical evidence that selective FAAH and MAG lipase inhibitors would ameliorate the unwanted effects of several disorders, when administered alone or with a cyclooxygenase inhibitor, and that the benefit-to-risk ratio of a FAAH inhibitor would exceed that of a MAG lipase inhibitor or dual inhibitor of FAAH and MAG lipase. Promising preclinical data have also been obtained with inhibitors of endocannabinoid cellular uptake. There is now an urgent need for clinical research with these enzyme and uptake inhibitors.

  13. Metabolism of endocannabinoids.

    Science.gov (United States)

    Biernacki, Michał; Skrzydlewska, Elżbieta

    2016-08-11

    Endocannabinoids belong to a group of ester, ether and amide derivatives of fatty acids, which are endogenous ligands of receptors CB1, CB2, TRPV1 and GPR55 that are included in the endocannabinoid system of the animal organism. The best known endocannabinoids are: N-arachidonylethanolamide called anandamide (AEA) and 2-arachidonoylglycerol (2-AG). They occur in all organisms, and their highest level is observed in the brain. In this review the mechanisms of synthesis and degradation of both AEA and 2-AG are shown. Endocannabinoids are synthesized from phospholipids (mainly phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositol) located in the cell membrane. As a result of arachidonic acid transfer from phosphatidylcholine to phosphatidylethanolamine, N-arachidonoyl phosphatidylethanolamine is formed, which is hydrolyzed to AEA by phospholipase D, C and A2. However, 2-AG is formed during the hydrolysis of phosphatidylinositol catalyzed mainly by DAGL. The primary role of endocannabinoids is the activation of cannabinoid receptors. Both AEA and 2-AG are primarily agonists of the CB1 receptor and to a lower degree CB2 and TRPV1r eceptors, but 2-AG has stronger affinity for these receptors. Through activation of receptors, endocannabinoids affect cellular metabolism and participate in the metabolic processes by receptor-independent pathways. Endocannabinoids which are not bound to the receptors are degraded. The main enzymes responsible for the hydrolysis of AEA and 2-AG are FAAH and MAGL, respectively. Apart from hydrolytic degradation, endocannabinoids may also be oxidized by cyclooxygenase-2, lipoxygenases, and cytochrome P450. It has been shown that the metabolites of both endocannabinoids also have biological significance.

  14. Metabolism of endocannabinoids

    Directory of Open Access Journals (Sweden)

    Michał Biernacki

    2016-08-01

    Full Text Available Endocannabinoids belong to a group of ester, ether and amide derivatives of fatty acids, which are endogenous ligands of receptors CB1, CB2, TRPV1 and GPR55 that are included in the endocannabinoid system of the animal organism. The best known endocannabinoids are: N-arachidonylethanolamide called anandamide (AEA and 2-arachidonoylglycerol (2-AG. They occur in all organisms, and their highest level is observed in the brain. In this review the mechanisms of synthesis and degradation of both AEA and 2-AG are shown. Endocannabinoids are synthesized from phospholipids (mainly phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositol located in the cell membrane. As a result of arachidonic acid transfer from phosphatidylcholine to phosphatidylethanolamine, N-arachidonoyl phosphatidylethanolamine is formed, which is hydrolyzed to AEA by phospholipase D, C and A2. However, 2-AG is formed during the hydrolysis of phosphatidylinositol catalyzed mainly by DAGL. The primary role of endocannabinoids is the activation of cannabinoid receptors. Both AEA and 2-AG are primarily agonists of the CB1 receptor and to a lower degree CB2 and TRPV1r eceptors, but 2-AG has stronger affinity for these receptors. Through activation of receptors, endocannabinoids affect cellular metabolism and participate in the metabolic processes by receptor-independent pathways. Endocannabinoids which are not bound to the receptors are degraded. The main enzymes responsible for the hydrolysis of AEA and 2-AG are FAAH and MAGL, respectively. Apart from hydrolytic degradation, endocannabinoids may also be oxidized by cyclooxygenase-2, lipoxygenases, and cytochrome P450. It has been shown that the metabolites of both endocannabinoids also have biological significance.

  15. Endocannabinoids and exercise

    NARCIS (Netherlands)

    Dietrich, A; McDaniel, WF

    2004-01-01

    Exercise induces changes in mental status, particularly analgesia, sedation, anxiolysis, and a sense of wellbeing. The mechanisms underlying these changes remain unknown. Recent findings show that exercise increases serum concentrations of endocannabinoids, suggesting a possible explanation for a

  16. Endocannabinoids and the Heart

    Science.gov (United States)

    Hiley, C. Robin

    2009-01-01

    Endocannabinoids, such as anandamide and 2-arachidonoylglycerol, are synthesized from membrane phospholipids in the heart and other cardiovascular tissues. They activate cannabinoid CB1 and CB2 receptors, TRPV1, peroxisome proliferator-activated receptors and perhaps a novel vascular G-protein-coupled receptor. Inactivation is by cellular uptake and fatty acid amide hydrolase (FAAH). Endocannabinoids relax coronary and other arteries and decrease cardiac work, but seem not to be involved in tonic regulation of cardiovascular function. They act as a stress response system which is activated, for example, in myocardial infarction and circulatory shock. Endocannabinoids are largely protective; they decrease tissue damage and arrhythmia in myocardial infarction, may reduce progression of atherosclerosis (CB2 receptor stimulation inhibits lesion progression), and FAAH knockout mice (which have enhanced endocannabinoid levels) show decreased cardiac dysfunction with age compared to wild-types. However, endocannabinoids may mediate doxorubicin-induced cardiac dysfunction. Their signaling pathways are not fully elucidated but they can lead to changed expression of a variety of genes, including those involved in inflammatory responses. There is potential for therapeutic targeting of endocannabinoids and their receptors, but their apparent involvement in both protective and deleterious actions on the heart mean that careful risk assessment is needed before any treatment can be introduced. PMID:19276990

  17. Endocannabinoids measurement in human saliva as potential biomarker of obesity.

    Science.gov (United States)

    Matias, Isabelle; Gatta-Cherifi, Blandine; Tabarin, Antoine; Clark, Samantha; Leste-Lasserre, Thierry; Marsicano, Giovanni; Piazza, Pier Vincenzo; Cota, Daniela

    2012-01-01

    The discovery of the endocannabinoid system and of its role in the regulation of energy balance has significantly advanced our understanding of the physiopathological mechanisms leading to obesity and type 2 diabetes. New knowledge on the role of this system in humans has been acquired by measuring blood endocannabinoids. Here we explored endocannabinoids and related N-acylethanolamines in saliva and verified their changes in relation to body weight status and in response to a meal or to body weight loss. Fasting plasma and salivary endocannabinoids and N-acylethanolamines were measured through liquid mass spectrometry in 12 normal weight and 12 obese, insulin-resistant subjects. Salivary endocannabinoids and N-acylethanolamines were evaluated in the same cohort before and after the consumption of a meal. Changes in salivary endocannabinoids and N-acylethanolamines after body weight loss were investigated in a second group of 12 obese subjects following a 12-weeks lifestyle intervention program. The levels of mRNAs coding for enzymes regulating the metabolism of endocannabinoids, N-acylethanolamines and of cannabinoid type 1 (CB(1)) receptor, alongside endocannabinoids and N-acylethanolamines content, were assessed in human salivary glands. The endocannabinoids 2-arachidonoylglycerol (2-AG), N-arachidonoylethanolamide (anandamide, AEA), and the N-acylethanolamines (oleoylethanolamide, OEA and palmitoylethanolamide, PEA) were quantifiable in saliva and their levels were significantly higher in obese than in normal weight subjects. Fasting salivary AEA and OEA directly correlated with BMI, waist circumference and fasting insulin. Salivary endocannabinoids and N-acylethanolamines did not change in response to a meal. CB(1) receptors, ligands and enzymes were expressed in the salivary glands. Finally, a body weight loss of 5.3% obtained after a 12-weeks lifestyle program significantly decreased salivary AEA levels. Endocannabinoids and N-acylethanolamines are

  18. The evolution and comparative neurobiology of endocannabinoid signalling

    Science.gov (United States)

    Elphick, Maurice R.

    2012-01-01

    CB1- and CB2-type cannabinoid receptors mediate effects of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide in mammals. In canonical endocannabinoid-mediated synaptic plasticity, 2-AG is generated postsynaptically by diacylglycerol lipase alpha and acts via presynaptic CB1-type cannabinoid receptors to inhibit neurotransmitter release. Electrophysiological studies on lampreys indicate that this retrograde signalling mechanism occurs throughout the vertebrates, whereas system-level studies point to conserved roles for endocannabinoid signalling in neural mechanisms of learning and control of locomotor activity and feeding. CB1/CB2-type receptors originated in a common ancestor of extant chordates, and in the sea squirt Ciona intestinalis a CB1/CB2-type receptor is targeted to axons, indicative of an ancient role for cannabinoid receptors as axonal regulators of neuronal signalling. Although CB1/CB2-type receptors are unique to chordates, enzymes involved in biosynthesis/inactivation of endocannabinoids occur throughout the animal kingdom. Accordingly, non-CB1/CB2-mediated mechanisms of endocannabinoid signalling have been postulated. For example, there is evidence that 2-AG mediates retrograde signalling at synapses in the nervous system of the leech Hirudo medicinalis by activating presynaptic transient receptor potential vanilloid-type ion channels. Thus, postsynaptic synthesis of 2-AG or anandamide may be a phylogenetically widespread phenomenon, and a variety of proteins may have evolved as presynaptic (or postsynaptic) receptors for endocannabinoids. PMID:23108540

  19. Circulating and hepatic endocannabinoids and endocannabinoid-related molecules in patients with cirrhosis.

    Science.gov (United States)

    Caraceni, Paolo; Viola, Antonella; Piscitelli, Fabiana; Giannone, Ferdinando; Berzigotti, Annalisa; Cescon, Matteo; Domenicali, Marco; Petrosino, Stefania; Giampalma, Emanuela; Riili, Anna; Grazi, Gianluca; Golfieri, Rita; Zoli, Marco; Bernardi, Mauro; Di Marzo, Vincenzo

    2010-07-01

    Endocannabinoids include anandamide (AEA) and 2-arachidonoylglycerol (2-AG). Endocannabinoid-related molecules like oleoyl-ethanolamine (OEA) and palmitoyl-ethanolamine (PEA) have also been identified. AEA contributes to the pathogenesis of cardiovascular alterations in experimental cirrhosis, but data on the endocannabinoid system in human cirrhosis are lacking. Thus, we aimed to assess whether circulating and hepatic endocannabinoids are upregulated in cirrhotic patients and whether their levels correlate with systemic haemodynamics and liver function. The endocannabinoid levels were measured in peripheral and hepatic veins and liver tissue by isotope-dilution liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. Systemic haemodynamics were assessed by the transthoracic electrical bioimpedance technique. Portal pressure was evaluated by hepatic venous pressure gradient. Circulating AEA and, to a greater extent, PEA and OEA were significantly higher in cirrhotic patients than in controls. PEA and OEA were also increased in the cirrhotic liver tissue. AEA, OEA and PEA levels were significantly higher in peripheral than in the hepatic veins of cirrhotic patients, while the opposite occurred for 2-AG. Finally, circulating AEA, OEA and PEA correlated with parameters of liver function, such as serum bilirubin and international normalized ratio. No correlations were found with systemic haemodynamics. The endocannabinoid system is upregulated in human cirrhosis. Peripheral AEA is increased in patients with a high model of end-stage liver disease score and may reflect the extent of liver dysfunction. In contrast, the 2-AG levels, the other major endocannabinoid, are not affected by cirrhosis. The upregulation of the endocannabinoid-related molecules, OEA and PEA, is even greater than that of AEA, prompting pharmacological studies on these compounds.

  20. Endocannabinoids as Guardians of Metastasis.

    Science.gov (United States)

    Tegeder, Irmgard

    2016-02-10

    Endocannabinoids including anandamide and 2-arachidonoylglycerol are involved in cancer pathophysiology in several ways, including tumor growth and progression, peritumoral inflammation, nausea and cancer pain. Recently we showed that the endocannabinoid profiles are deranged during cancer to an extent that this manifests in alterations of plasma endocannabinoids in cancer patients, which was mimicked by similar changes in rodent models of local and metastatic cancer. The present topical review summarizes the complexity of endocannabinoid signaling in the context of tumor growth and metastasis.

  1. Endocannabinoids and the haematological system

    OpenAIRE

    Randall, M D

    2007-01-01

    Endocannabinoids are blood borne and may also be secreted by the endothelium. Accordingly, there has been interest in the interactions between (endo)cannabinoids and blood cells. There is certainly evidence that (endo)cannabinoids may promote platelet activation, indicating that they may be thrombogenic. Platelets are involved both in the metabolism and release of endocannabinoids, and so it is possible that their circulating levels may be regulated by platelets. This process is altered in di...

  2. Plasma endocannabinoid behaviour in total knee and hip arthroplasty.

    Science.gov (United States)

    Ottria, R; Cappelletti, L; Ravelli, A; Mariotti, M; Gigli, F; Romagnoli, S; Ciuffreda, P; Banfi, G; Drago, L

    2016-01-01

    Endocannabinoids are a class of lipid mediators involved in a wide range of physiological pathways including pain perception, and immunological defences. In particular, the involvement of endocannabinoids in bone metabolism and bone resorption has recently been studied. Moreover, one study on total knee arthroplasty describes the probable role of endocannabinoids in pain perception after surgery. The aim of the present study was to evaluate variations of endocannabinoid concentrations in patients undergoing total hip or total knee arthroplasty before and after surgery. Sera from 23 patients were collected at three different times: before surgery and at two different times during rehabilitation, and endocannabinoids were quantified by HPLC-MS/MS analysis. Mean values of endocannabinoids in presurgical serum samples were: 6.11±0.5 ng/ml for N-palmitoylethanolamide, 1.39±0.08ng/ml for N-stearoylethanolamide, 4.84±0.04 ng/ml for N-oleoylethanolamide, 0.44±0.03ng/ml for N-arachidonoylethanolamide, 0.84±0.05ng/ml for N-linoleoylethanolamide, 0.17±0.01ng/ml for N-α-linolenoylethanolamide. Statistical analysis showed a significant decrease of all the endocannabinoids after surgery, while there were no remarkable differences between total hip and total knee arthroplasties or between genders. Moreover, the results show no significant correlation between endocannabinoid concentrations and C-reactive protein and Erythrocyte sedimentation rate. The present study shows for the first time a specific and univocal behaviour of six endocannabinoids and N-acylethanolamides in orthopaedic surgery, suggesting the endocannabinoid system as a possible pharmacological target for presurgical therapeutics.

  3. Endocannabinoids and Schizophrenia

    Directory of Open Access Journals (Sweden)

    Stéphane Potvin

    2010-10-01

    Full Text Available The endocannabinoids anandamide and 2-arachydonoylglycerol (2-AG are lipids naturally derived from membrane precursors which bind cannabinoid receptors (CB1, CB2. This endocannabinoid system is disturbed in schizophrenia. Indeed, there seems to be an association between schizophrenia and polymorphisms of the CB1 receptor gene. Moreover, CB1 receptors are found in higher density in the prefrontal cortex, hippocampus and basal ganglia of patients with schizophrenia. Similarly, anandamide levels are increased in the cerebrospinal fluid (CSF and in the serum of schizophrenia patients, including during the prodromal state, suggesting that they may play a protective role in psychosis homeostasis. Future studies are needed to further explore the role of the endocannabinoid system in the pathophysiology of schizophrenia.

  4. Rhythmic control of endocannabinoids in the rat pineal gland.

    Science.gov (United States)

    Koch, Marco; Ferreirós, Nerea; Geisslinger, Gerd; Dehghani, Faramarz; Korf, Horst-Werner

    2015-01-01

    Endocannabinoids modulate neuroendocrine networks by directly targeting cannabinoid receptors. The time-hormone melatonin synchronizes these networks with external light condition and guarantees time-sensitive and ecologically well-adapted behaviors. Here, the endocannabinoid arachidonoyl ethanolamide (AEA) showed rhythmic changes in rat pineal glands with higher levels during the light-period and reduced amounts at the onset of darkness. Norepinephrine, the essential stimulus for nocturnal melatonin biosynthesis, acutely down-regulated AEA and other endocannabinoids in cultured pineal glands. These temporal dynamics suggest that AEA exerts time-dependent autocrine and/or paracrine functions within the pineal. Moreover, endocananbinoids may be released from the pineal into the CSF or blood stream.

  5. Endocannabinoid signaling and synaptic function

    Science.gov (United States)

    Castillo, Pablo E.; Younts, Thomas J.; Chávez, Andrés E.; Hashimotodani, Yuki

    2012-01-01

    Endocannabinoids are key modulators of synaptic function. By activating cannabinoid receptors expressed in the central nervous system, these lipid messengers can regulate several neural functions and behaviors. As experimental tools advance, the repertoire of known endocannabinoid-mediated effects at the synapse, and their underlying mechanism, continues to expand. Retrograde signaling is the principal mode by which endocannabinoids mediate short- and long-term forms of plasticity at both excitatory and inhibitory synapses. However, growing evidence suggests that endocannabinoids can also signal in a non-retrograde manner. In addition to mediating synaptic plasticity, the endocannabinoid system is itself subject to plastic changes. Multiple points of interaction with other neuromodulatory and signaling systems have now been identified. Synaptic endocannabinoid signaling is thus mechanistically more complex and diverse than originally thought. In this review, we focus on new advances in endocannabinoid signaling and highlight their role as potent regulators of synaptic function in the mammalian brain. PMID:23040807

  6. Endocannabinoids in the gastrointestinal tract.

    Science.gov (United States)

    Lee, Yunna; Jo, Jeongbin; Chung, Hae Young; Pothoulakis, Charalabos; Im, Eunok

    2016-10-01

    The endocannabinoid system mainly consists of endogenously produced cannabinoids (endocannabinoids) and two G protein-coupled receptors (GPCRs), cannabinoid receptors 1 and 2 (CB 1 and CB 2 ). This system also includes enzymes responsible for the synthesis and degradation of endocannabinoids and molecules required for the uptake and transport of endocannabinoids. In addition, endocannabinoid-related lipid mediators and other putative endocannabinoid receptors, such as transient receptor potential channels and other GPCRs, have been identified. Accumulating evidence indicates that the endocannabinoid system is a key modulator of gastrointestinal physiology, influencing satiety, emesis, immune function, mucosal integrity, motility, secretion, and visceral sensation. In light of therapeutic benefits of herbal and synthetic cannabinoids, the vast potential of the endocannabinoid system for the treatment of gastrointestinal diseases has been demonstrated. This review focuses on the role of the endocannabinoid system in gut homeostasis and in the pathogenesis of intestinal disorders associated with intestinal motility, inflammation, and cancer. Finally, links between gut microorganisms and the endocannabinoid system are briefly discussed. Copyright © 2016 the American Physiological Society.

  7. Evaluation of Biosynthetic Pathway and Engineered Biosynthesis of Alkaloids

    Directory of Open Access Journals (Sweden)

    Shinji Kishimoto

    2016-08-01

    Full Text Available Varieties of alkaloids are known to be produced by various organisms, including bacteria, fungi and plants, as secondary metabolites that exhibit useful bioactivities. However, understanding of how those metabolites are biosynthesized still remains limited, because most of these compounds are isolated from plants and at a trace level of production. In this review, we focus on recent efforts in identifying the genes responsible for the biosynthesis of those nitrogen-containing natural products and elucidating the mechanisms involved in the biosynthetic processes. The alkaloids discussed in this review are ditryptophenaline (dimeric diketopiperazine alkaloid, saframycin (tetrahydroisoquinoline alkaloid, strictosidine (monoterpene indole alkaloid, ergotamine (ergot alkaloid and opiates (benzylisoquinoline and morphinan alkaloid. This review also discusses the engineered biosynthesis of these compounds, primarily through heterologous reconstitution of target biosynthetic pathways in suitable hosts, such as Escherichia coli, Saccharomyces cerevisiae and Aspergillus nidulans. Those heterologous biosynthetic systems can be used to confirm the functions of the isolated genes, economically scale up the production of the alkaloids for commercial distributions and engineer the biosynthetic pathways to produce valuable analogs of the alkaloids. In particular, extensive involvement of oxidation reactions catalyzed by oxidoreductases, such as cytochrome P450s, during the secondary metabolite biosynthesis is discussed in details.

  8. Supply and demand for endocannabinoids

    Science.gov (United States)

    Alger, Bradley E.; Kim, Jimok

    2011-01-01

    The endocannabinoid system consists of G-protein coupled cannabinoid receptors that can be activated by cannabis-derived drugs and small lipids called endocannabinoids, plus associated biochemical machinery (precursors, synthetic and degradative enzymes, transporters). The endocannabinoid system in the brain primarily influences neuronal synaptic communication, and affects biological – functions including eating, anxiety, learning and memory, growth and development – via an array of actions throughout the nervous system. While many aspects of synaptic regulation by endocannabinoids are becoming clear, details of the subcellular organization and regulation of the endocannabinoid system are less well understood. This review focuses on recent investigations that illuminate fundamental issues of endocannabinoid storage, release, and functional roles. PMID:21507493

  9. Endocannabinoids and the haematological system

    Science.gov (United States)

    Randall, M D

    2007-01-01

    Endocannabinoids are blood borne and may also be secreted by the endothelium. Accordingly, there has been interest in the interactions between (endo)cannabinoids and blood cells. There is certainly evidence that (endo)cannabinoids may promote platelet activation, indicating that they may be thrombogenic. Platelets are involved both in the metabolism and release of endocannabinoids, and so it is possible that their circulating levels may be regulated by platelets. This process is altered in disease states such that platelet-derived endocannabinoids contribute towards hypotension in cardiovascular shock. Not only may endocannabinoids regulate platelet function and possibly lead to thrombogenesis, but they may also influence haematopoiesis. Given these emerging roles, the aim of this review is to examine the interactions between cannabinoids and blood. PMID:17704826

  10. Comparison of protective effect of ascorbic acid on redox and endocannabinoid systems interactions in in vitro cultured human skin fibroblasts exposed to UV radiation and hydrogen peroxide.

    Science.gov (United States)

    Gęgotek, Agnieszka; Bielawska, Katarzyna; Biernacki, Michał; Zaręba, Ilona; Surażyński, Arkadiusz; Skrzydlewska, Elżbieta

    2017-05-01

    The mechanisms of biological activity of commonly used natural compounds are constantly examined. Therefore, the aim of this study was to compare ascorbic acid efficacy in counteracting the consequences of UV and hydrogen peroxide treatment on lipid mediators and their regulative action on antioxidant abilities. Skin fibroblasts exposed to UVA and UVB irradiation, treated with hydrogen peroxide and ascorbic acid. The redox system was estimated through reactive oxygen species (ROS) generation (electron spin resonance spectrometer) and antioxidants level/activity (HPLC/spectrometry) which activity was evaluated by the level of phospholipid metabolites: 4-hydroxynonenal, malondialdehyde, 8-isoprostanes and endocannabinoids (GC/LC-MS) in the human skin fibroblasts. Protein and DNA oxidative modifications were also determined (LC). The expression of nuclear factor erythroid 2-related factor 2 (Nrf2), its activators and inhibitors as well as pro/anti-apoptotic proteins and endocannabinoid receptors was examined (Western blot) and collagen metabolism was evaluated by collagen biosynthesis and prolidase activity (spectrometry). UVA and UVB irradiation and hydrogen peroxide treatment enhanced activity of xanthine and NADPH oxidases resulting in ROS generation as well as diminution of antioxidant phospholipid protection (glutathione peroxidase-glutathione-vitamin E), what led to increased lipid peroxidation and decreased endocannabinoids level. Dysregulation of cannabinoid receptors expression and environment of transcription factor Nrf2 caused apoptosis induction. Ascorbic acid partially prevented ROS generation, antioxidant capacity diminution and endocannabinoid systems disturbances but only slightly protected macromolecules such as phospholipid, protein and DNA against oxidative modifications. However, ascorbic acid significantly prevented decrease in collagen type I biosynthesis. Ascorbic acid in similar degree prevents UV (UVA and UVB) and hydrogen peroxide

  11. Endocannabinoid regulation in white and brown adipose tissue following thermogenic activation.

    Science.gov (United States)

    Krott, Lucia M; Piscitelli, Fabiana; Heine, Markus; Borrino, Simona; Scheja, Ludger; Silvestri, Cristoforo; Heeren, Joerg; Di Marzo, Vincenzo

    2016-03-01

    The endocannabinoids and their main receptor, cannabinoid type-1 (CB1), suppress intracellular cyclic AMP levels and have emerged as key players in the control of energy metabolism. CB1 agonists and blockers have been reported to influence the thermogenic function of white and brown adipose tissue (WAT and BAT), affecting body weight through the inhibition and stimulation of energy expenditure, respectively. The purpose of the current study was to investigate the regulation of the endocannabinoid system in WAT and BAT following exposure to either cold or specific agonism of β3-adrenoceptors using CL316,243 (CL), conditions known to cause BAT activation and WAT browning. To address this question, we performed quantitative PCR-based mRNA profiling of genes important for endocannabinoid synthesis, degradation, and signaling, and determined endocannabinoid levels by LC-MS in WAT and BAT of control, cold-exposed, and CL-treated wild-type mice as well as primary brown adipocytes. Treatment with CL and exposure to cold caused an upregulation of endocannabinoid levels and biosynthetic enzymes in WAT. Acute β3-adrenoceptor activation increased endocannabinoids and a subset of genes of biosynthesis in BAT and primary brown adipocytes. We suggest that the cold-mediated increase in endocannabinoid tone is part of autocrine negative feed-back mechanisms controlling β3-adrenoceptor-induced BAT activation and WAT browning. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  12. An introduction to the endocannabinoid system: from the early to the latest concepts.

    Science.gov (United States)

    De Petrocellis, Luciano; Di Marzo, Vincenzo

    2009-02-01

    A rather complex and pleiotropic endogenous signalling system was discovered in the late 1990s, starting from studies on the mechanism of action of Delta(9)-tetrahydrocannabinol, the major psychoactive principle of the hemp plant Cannabis sativa. This system includes: (1) at least two G-protein-coupled receptors, known as the cannabinoid CB(1) and CB(2) receptors; (2) the endogenous agonists at these receptors, known as endocannabinoids, of which anandamide and 2-arachidonoylglycerol are the best known; and (3) proteins and enzymes for the regulation of endocannabinoid levels and action at receptors. The number of the members of this endocannabinoid signalling system seems to be ever increasing as new non-CB(1) non-CB(2) receptors for endocannabinoids, endocannabinoid-related molecules with little activity at CB(1) and CB(2) receptors, and new enzymes for endocannabinoid biosynthesis and degradation are being identified every year. The complexity of the endocannabinoid system and of its physiological and pathological function is outlined in this introductory chapter, for a better understanding of the subsequent chapters in this special issue.

  13. [The endocannabinoid system and bone].

    Science.gov (United States)

    Pura, Mikuláš; Vaňuga, Peter

    Recent studies suggest an important role for the skeletal endocannabinoid system in the regulation of bone mass in both physiological and pathological conditions. Both major endocannabinoids (anandamid and 2-arachidonoylglycerol), endocannabinoid receptors - CB1-receptor (CB1R) a CB2-receptor (CB2R) and the endocannabinoid metabolizing enzymes are present or expressed in osteoblasts and osteoclasts. Previous studies identified multiple risk and protective variants of CNR2 gene dealing with the relationship to bone density and/or osteoporosis. Selective CB1R/ CB2R-inverse agonists/antagonists and CB2R-inverse agonists/antagonists are candidates for prevention of bone mass loss and combined antiresorptive and anabolic therapy for osteoporosis.Key words: cannabinoid receptors - endocannabinoids - marijuana - osteoporosis.

  14. Endocannabinoids Measurement in Human Saliva as Potential Biomarker of Obesity

    Science.gov (United States)

    Tabarin, Antoine; Clark, Samantha; Leste-Lasserre, Thierry; Marsicano, Giovanni; Piazza, Pier Vincenzo; Cota, Daniela

    2012-01-01

    Background The discovery of the endocannabinoid system and of its role in the regulation of energy balance has significantly advanced our understanding of the physiopathological mechanisms leading to obesity and type 2 diabetes. New knowledge on the role of this system in humans has been acquired by measuring blood endocannabinoids. Here we explored endocannabinoids and related N-acylethanolamines in saliva and verified their changes in relation to body weight status and in response to a meal or to body weight loss. Methodology/Principal Findings Fasting plasma and salivary endocannabinoids and N-acylethanolamines were measured through liquid mass spectrometry in 12 normal weight and 12 obese, insulin-resistant subjects. Salivary endocannabinoids and N-acylethanolamines were evaluated in the same cohort before and after the consumption of a meal. Changes in salivary endocannabinoids and N-acylethanolamines after body weight loss were investigated in a second group of 12 obese subjects following a 12-weeks lifestyle intervention program. The levels of mRNAs coding for enzymes regulating the metabolism of endocannabinoids, N-acylethanolamines and of cannabinoid type 1 (CB1) receptor, alongside endocannabinoids and N-acylethanolamines content, were assessed in human salivary glands. The endocannabinoids 2-arachidonoylglycerol (2-AG), N-arachidonoylethanolamide (anandamide, AEA), and the N-acylethanolamines (oleoylethanolamide, OEA and palmitoylethanolamide, PEA) were quantifiable in saliva and their levels were significantly higher in obese than in normal weight subjects. Fasting salivary AEA and OEA directly correlated with BMI, waist circumference and fasting insulin. Salivary endocannabinoids and N-acylethanolamines did not change in response to a meal. CB1 receptors, ligands and enzymes were expressed in the salivary glands. Finally, a body weight loss of 5.3% obtained after a 12-weeks lifestyle program significantly decreased salivary AEA levels. Conclusions

  15. Oxyradical Stress, Endocannabinoids, and Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Anberitha T. Matthews

    2015-12-01

    Full Text Available Atherosclerosis is responsible for most cardiovascular disease (CVD and is caused by several factors including hypertension, hypercholesterolemia, and chronic inflammation. Oxidants and electrophiles have roles in the pathophysiology of atherosclerosis and the concentrations of these reactive molecules are an important factor in disease initiation and progression. Overactive NADPH oxidase (Nox produces excess superoxide resulting in oxidized macromolecules, which is an important factor in atherogenesis. Although superoxide and reactive oxygen species (ROS have obvious toxic properties, they also have fundamental roles in signaling pathways that enable cells to adapt to stress. In addition to inflammation and ROS, the endocannabinoid system (eCB is also important in atherogenesis. Linkages have been postulated between the eCB system, Nox, oxidative stress, and atherosclerosis. For instance, CB2 receptor-evoked signaling has been shown to upregulate anti-inflammatory and anti-oxidative pathways, whereas CB1 signaling appears to induce opposite effects. The second messenger lipid molecule diacylglycerol is implicated in the regulation of Nox activity and diacylglycerol lipase β (DAGLβ is a key biosynthetic enzyme in the biosynthesis eCB ligand 2-arachidonylglycerol (2-AG. Furthermore, Nrf2 is a vital transcription factor that protects against the cytotoxic effects of both oxidant and electrophile stress. This review will highlight the role of reactive oxygen species (ROS in intracellular signaling and the impact of deregulated ROS-mediated signaling in atherogenesis. In addition, there is also emerging knowledge that the eCB system has an important role in atherogenesis. We will attempt to integrate oxidative stress and the eCB system into a conceptual framework that provides insights into this pathology.

  16. The endocannabinoid system and pain.

    Science.gov (United States)

    Guindon, Josée; Hohmann, Andrea G

    2009-12-01

    The therapeutic potential of cannabinoids has been the topic of extensive investigation following the discovery of cannabinoid receptors and their endogenous ligands. Cannabinoid receptors and their endogenous ligands are present at supraspinal, spinal and peripheral levels. Cannabinoids suppress behavioral responses to noxious stimulation and suppress nociceptive processing through activation of cannabinoid CB(1) and CB(2) receptor subtypes. Endocannabinoids, the brain's own cannabis-like substances, share the same molecular target as Delta(9)-tetrahydrocannabinol, the main psychoactive component in cannabis. Endocannabinoids serve as synaptic circuit breakers and regulate multiple physiological and pathological conditions, e.g. regulation of food intake, immunomodulation, inflammation, analgesia, cancer, addictive behavior, epilepsy and others. This review will focus on uncovering the roles of anandamide and 2-arachidonoylglycerol, the two best characterized endocannabinoids identified to date, in controlling nociceptive responding. The roles of anandamide and 2-arachidonoylglycerol, released under physiological conditions, in modulating nociceptive responding at different levels of the neuraxis will be emphasized in this review. Effects of modulation of endocannabinoid levels through inhibition of endocannabinoid hydrolysis and uptake is also compared with effects of exogenous administration of synthetic endocannabinoids in acute, inflammatory and neuropathic pain models. Finally, the therapeutic potential of the endocannabinoid signaling system is discussed in the context of identifying novel pharmacotherapies for the treatment of pain.

  17. Updates in Reproduction Coming from the Endocannabinoid System

    Directory of Open Access Journals (Sweden)

    Rosaria Meccariello

    2014-01-01

    Full Text Available The endocannabinoid system (ECS is an evolutionarily conserved master system deeply involved in the central and local control of reproductive functions in both sexes. The tone of these lipid mediators—deeply modulated by the activity of biosynthetic and hydrolyzing machineries—regulates reproductive functions from gonadotropin discharge and steroid biosynthesis to the formation of high quality gametes and successful pregnancy. This review provides an overview on ECS and reproduction and focuses on the insights in the regulation of endocannabinoid production by steroids, in the regulation of male reproductive activity, and in placentation and parturition. Taken all together, evidences emerge that the activity of the ECS is crucial for procreation and may represent a target for the therapeutic exploitation of infertility.

  18. Endocannabinoids in the Dentate Gyrus

    OpenAIRE

    Frazier, Charles J.

    2007-01-01

    Recent years have produced rapid and enormous growth in our understanding of endocannabinoid-mediated signalling in the CNS. While much of the recent progress has focused on other areas of the brain, a significant body of evidence has developed that indicates the presence of a robust system for endocannabinoid-mediated signalling in the dentate gyrus. This chapter will provide an overview of our current understanding of that system based on available anatomical and physiological data.

  19. Endocannabinoids in cerebrovascular regulation.

    Science.gov (United States)

    Benyó, Zoltán; Ruisanchez, Éva; Leszl-Ishiguro, Miriam; Sándor, Péter; Pacher, Pál

    2016-04-01

    The cerebral blood flow is tightly regulated by myogenic, endothelial, metabolic, and neural mechanisms under physiological conditions, and a large body of recent evidence indicates that inflammatory pathways have a major influence on the cerebral blood perfusion in certain central nervous system disorders, like hemorrhagic and ischemic stroke, traumatic brain injury, and vascular dementia. All major cell types involved in cerebrovascular control pathways (i.e., smooth muscle, endothelium, neurons, astrocytes, pericytes, microglia, and leukocytes) are capable of synthesizing endocannabinoids and/or express some or several of their target proteins [i.e., the cannabinoid 1 and 2 (CB1 and CB2) receptors and the transient receptor potential vanilloid type 1 ion channel]. Therefore, the endocannabinoid system may importantly modulate the regulation of cerebral circulation under physiological and pathophysiological conditions in a very complex manner. Experimental data accumulated since the late 1990s indicate that the direct effect of cannabinoids on cerebral vessels is vasodilation mediated, at least in part, by CB1 receptors. Cannabinoid-induced cerebrovascular relaxation involves both a direct inhibition of smooth muscle contractility and a release of vasodilator mediator(s) from the endothelium. However, under stress conditions (e.g., in conscious restrained animals or during hypoxia and hypercapnia), cannabinoid receptor activation was shown to induce a reduction of the cerebral blood flow, probably via inhibition of the electrical and/or metabolic activity of neurons. Finally, in certain cerebrovascular pathologies (e.g., subarachnoid hemorrhage, as well as traumatic and ischemic brain injury), activation of CB2 (and probably yet unidentified non-CB1/non-CB2) receptors appear to improve the blood perfusion of the brain via attenuating vascular inflammation.

  20. Endocannabinoid system and mood disorders: priming a target for new therapies.

    Science.gov (United States)

    Micale, Vincenzo; Di Marzo, Vincenzo; Sulcova, Alexandra; Wotjak, Carsten T; Drago, Filippo

    2013-04-01

    The endocannabinoid system (ECS), comprising two G protein-coupled receptors (the cannabinoid receptors 1 and 2 [CB1 and CB2] for marijuana's psychoactive principle ∆(9)-tetrahydrocannabinol [∆(9)-THC]), their endogenous small lipid ligands (namely anandamide [AEA] and 2-arachidonoylglycerol [2-AG], also known as endocannabinoids), and the proteins for endocannabinoid biosynthesis and degradation, has been suggested as a pro-homeostatic and pleiotropic signaling system activated in a time- and tissue-specific way during physiopathological conditions. In the brain activation of this system modulates the release of excitatory and inhibitory neurotransmitters and of cytokines from glial cells. As such, the ECS is strongly involved in neuropsychiatric disorders, particularly in affective disturbances such as anxiety and depression. It has been proposed that synthetic molecules that inhibit endocannabinoid degradation can exploit the selectivity of endocannabinoid action, thus activating cannabinoid receptors only in those tissues where there is perturbed endocannabinoid turnover due to the disorder, and avoiding the potential side effects of direct CB1 and CB2 activation. However, the realization that endocannabinoids, and AEA in particular, also act at other molecular targets, and that these mediators can be deactivated by redundant pathways, has recently led to question the efficacy of such approach, thus opening the way to new multi-target therapeutic strategies, and to the use of non-psychotropic cannabinoids, such as cannabidiol (CBD), which act via several parallel mechanisms, including indirect interactions with the ECS. The state of the art of the possible therapeutic use of endocannabinoid deactivation inhibitors and phytocannabinoids in mood disorders is discussed in this review article. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Distribution of the Endocannabinoid System in the Central Nervous System.

    Science.gov (United States)

    Hu, Sherry Shu-Jung; Mackie, Ken

    2015-01-01

    The endocannabinoid system consists of endogenous cannabinoids (endocannabinoids), the enzymes that synthesize and degrade endocannabinoids, and the receptors that transduce the effects of endocannabinoids. Much of what we know about the function of endocannabinoids comes from studies that combine localization of endocannabinoid system components with physiological or behavioral approaches. This review will focus on the localization of the best-known components of the endocannabinoid system for which the strongest anatomical evidence exists.

  2. Fatty acids, endocannabinoids and inflammation.

    Science.gov (United States)

    Witkamp, Renger

    2016-08-15

    From their phylogenetic and pharmacological classification it might be inferred that cannabinoid receptors and their endogenous ligands constitute a rather specialised and biologically distinct signalling system. However, the opposite is true and accumulating data underline how much the endocannabinoid system is intertwined with other lipid and non-lipid signalling systems. Endocannabinoids per se have many structural congeners, and these molecules exist in dynamic equilibria with different other lipid-derived mediators, including eicosanoids and prostamides. With multiple crossroads and shared targets, this creates a versatile system involved in fine-tuning different physiological and metabolic processes, including inflammation. A key feature of this 'expanded' endocannabinoid system, or 'endocannabinoidome', is its subtle orchestration based on interactions between a relatively small number of receptors and multiple ligands with different but partly overlapping activities. Following an update on the role of the 'endocannabinoidome' in inflammatory processes, this review continues with possible targets for intervention at the level of receptors or enzymes involved in formation or breakdown of endocannabinoids and their congeners. Although its pleiotropic character poses scientific challenges, the 'expanded' endocannabinoid system offers several opportunities for prevention and therapy of chronic diseases. In this respect, successes are more likely to come from 'multiple-target' than from 'single-target' strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Endocannabinoid System in Neurological Disorders.

    Science.gov (United States)

    Ranieri, Roberta; Laezza, Chiara; Bifulco, Maurizio; Marasco, Daniela; Malfitano, Anna M

    2016-01-01

    Several studies support the evidence that the endocannabinoid system and cannabimimetic drugs might have therapeutic potential in numerous pathologies. These pathologies range from neurological disorders, atherosclerosis, stroke, cancer to obesity/metabolic syndrome and others. In this paper we review the endocannabinoid system signaling and its alteration in neurodegenerative disorders like multiple sclerosis, Alzheimer's disease, Parkinson's disease and Huntington's disease and discuss the main findings about the use of cannabinoids in the therapy of these pathologies. Despite different etiologies, neurodegenerative disorders exhibit similar mechanisms like neuro-inflammation, excitotoxicity, deregulation of intercellular communication, mitochondrial dysfunction and disruption of brain tissue homeostasis. Current treatments ameliorate the symptoms but are not curative. Interfering with the endocannabinoid signaling might be a valid therapeutic option in neuro-degeneration. To this aim, pharmacological intervention to modulate the endocannabinoid system and the use of natural and synthetic cannabimimetic drugs have been assessed. CB1 and CB2 receptor signaling contributes to the control of Ca2+ homeostasis, trophic support, mitochondrial activity, and inflammatory conditions. Several studies and patents suggest that the endocannabinoid system has neuro-protective properties and might be a target in neurodegenerative diseases.

  4. The Endocannabinoid System and Anxiety.

    Science.gov (United States)

    Lisboa, S F; Gomes, F V; Terzian, A L B; Aguiar, D C; Moreira, F A; Resstel, L B M; Guimarães, F S

    2017-01-01

    The medical properties of Cannabis sativa is known for centuries. Since the discovery and characterization of the endogenous cannabinoid system, several studies have evaluated how cannabinoid compounds and, particularly, how the modulation of the endocannabinoid (eCB) system influences a wide range of functions, from metabolic to mental disorders. Cannabinoids and eCB system often exert opposite effects on several functions, such as anxiety. Although the mechanisms are not completely understood, evidence points to different factors influencing those effects. In this chapter, the recent advances in research about the relationship between eCB system and anxiety disorders in humans, as well as in animal models, will be discussed. The recent data addressing modulation of the eCBs in specific brain areas, such as the medial prefrontal cortex, amygdaloid complex, bed nucleus of stria terminalis, hippocampus, and dorsal periaqueductal gray, will be summarized. Finally, data from animal models addressing the mechanisms through which the eCB system modulates anxiety-related behavior dependent on stressful situations, such as the involvement of different receptors, distinct eCBs, modulation of neurotransmitters release, HPA axis and immune system activation, and plastic mechanisms, will also be discussed. © 2017 Elsevier Inc. All rights reserved.

  5. Endocannabinoids and sleep.

    Science.gov (United States)

    Prospéro-García, Oscar; Amancio-Belmont, Octavio; Becerril Meléndez, Alline L; Ruiz-Contreras, Alejandra E; Méndez-Díaz, Mónica

    2016-12-01

    Sleep is regulated by several brain structures, neurotransmitters and neuromodulators. Endocannabinoids (eCBs) are a group of lipids with modulatory activity in the brain and bind mainly to cannabinoid receptors CB1R and CB2R, thereby modulating several brain functions, (memory, mood, food intake, pain perception). Oleoylethanolamide and palmitoylethanolamide belong to the N-acylethanolamides (NAEs) family, another type of active endogenous lipids. They bind to the peroxisome proliferator-activated receptor α but not to CB1R, thereby modulating food satiety, inflammation and pain. Both eCBs and NAEs seem to be regulating the sleep-wake cycle. Our objective is to analyze the experimental evidence published in the literature and to discuss if eCBs and NAEs are actually sleep modulators. Studies suggested 1. eCBs and NAEs are under circadian control. 2. NAEs promote wake. 3. eCBs promote non-rapid-eye movement. 4. eCBs also promote rapid-eye-movement sleep by interacting with melanin-concentrating hormone neurons in the lateral hypothalamus. 5. The pharmacological blockade of the CB1R reduces sleep while increasing wake. 6. eCBs restore sleep in a model of insomnia in rats. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Endocannabinoid system and pregnancy.

    Science.gov (United States)

    Correa, Fernando; Wolfson, Manuel L; Valchi, Paula; Aisemberg, Julieta; Franchi, Ana María

    2016-12-01

    The endocannabinoid system (eCS), is a complex system, comprising the main endogenous ligands anandamide and 2-arachidonoyl glycerol, the cannabinoid receptors CB1 and CB2 and the biosynthetic and degrading enzymes. Cumulative evidence shows that the eCS plays an important role in reproduction, from egg fertilization to parturition. Therefore, alterations in this system, either by recreation/therapeutic use of cannabis or deregulation of the endogenous cannabinoids, might lead to adverse pregnancy outcomes, including retardation in embryo development, poor blastocyst implantation, inhibition of decidualization, miscarriage and compromised placentation. Nevertheless, the molecular mechanisms by which the eCS participates in different stages of pregnancy remain poorly understood. In this review, we will examine the evidence from animal and human studies to support the role of the eCS in implantation, early-to-late pregnancy and placentation as well as the difficulties of targeting this system for treatment of female infertility. © 2016 Society for Reproduction and Fertility.

  7. Astrocytes in endocannabinoid signalling.

    Science.gov (United States)

    Navarrete, Marta; Díez, Adolfo; Araque, Alfonso

    2014-10-19

    Astrocytes are emerging as integral functional components of synapses, responding to synaptically released neurotransmitters and regulating synaptic transmission and plasticity. Thus, they functionally interact with neurons establishing tripartite synapses: a functional concept that refers to the existence of communication between astrocytes and neurons and its crucial role in synaptic function. Here, we discuss recent evidence showing that astrocytes are involved in the endocannabinoid (ECB) system, responding to exogenous cannabinoids as well as ECBs through activation of type 1 cannabinoid receptors, which increase intracellular calcium and stimulate the release of glutamate that modulates synaptic transmission and plasticity. We also discuss the consequences of ECB signalling in tripartite synapses on the astrocyte-mediated regulation of synaptic function, which reveal novel properties of synaptic regulation by ECBs, such as the spatially controlled dual effect on synaptic strength and the lateral potentiation of synaptic efficacy. Finally, we discuss the potential implications of ECB signalling for astrocytes in brain pathology and animal behaviour. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. Endocannabinoid system in neurodegenerative disorders.

    Science.gov (United States)

    Basavarajappa, Balapal S; Shivakumar, Madhu; Joshi, Vikram; Subbanna, Shivakumar

    2017-09-01

    Most neurodegenerative disorders (NDDs) are characterized by cognitive impairment and other neurological defects. The definite cause of and pathways underlying the progression of these NDDs are not well-defined. Several mechanisms have been proposed to contribute to the development of NDDs. These mechanisms may proceed concurrently or successively, and they differ among cell types at different developmental stages in distinct brain regions. The endocannabinoid system, which involves cannabinoid receptors type 1 (CB1R) and type 2 (CB2R), endogenous cannabinoids and the enzymes that catabolize these compounds, has been shown to contribute to the development of NDDs in several animal models and human studies. In this review, we discuss the functions of the endocannabinoid system in NDDs and converse the therapeutic efficacy of targeting the endocannabinoid system to rescue NDDs. © 2017 International Society for Neurochemistry.

  9. Psychopharmacology of the endocannabinoids: far beyond anandamide.

    Science.gov (United States)

    Pamplona, F A; Takahashi, R N

    2012-01-01

    The study of endocannabinoid pharmacology has proceeded from the discovery of Δ9-tetrahydrocannabinol, the main psychoactive compound in Cannabis sativa, to the identification of an endogenous endocannabinoid system that is essential for physiological modulation of neuronal functions. We have not yet achieved a complete understanding of the various roles of the endocannabinoids, but this is one of the fastest-growing fields in psychopharmacology. This review starts with a brief historical description of the discovery of the endocannabinoids and then focuses on recent pharmacological advances and recently discovered endocannabinoid mechanisms of action (e.g. functional selectivity, allosterism, and receptor trafficking). Finally, we will discuss the contention that the existence of evidence-based therapeutic applications for cannabinoids and the wide range of physiological functions affected by endocannabinoids suggests that the careful study of the endocannabinoid system may lead to the development of novel therapeutic drugs with higher societal acceptability and lower side effects profiles.

  10. Involvement of the endocannabinoid system in phencyclidine-induced cognitive deficits modelling schizophrenia.

    Science.gov (United States)

    Vigano, Daniela; Guidali, Cinzia; Petrosino, Stefania; Realini, Natalia; Rubino, Tiziana; Di Marzo, Vincenzo; Parolaro, Daniela

    2009-06-01

    Recent advances in the neurobiology of cannabinoids have renewed interest in the association between cannabis and schizophrenia. Our studies showed that chronic-intermittent phencyclidine (PCP) treatment of rats, an animal model of schizophrenia-like cognitive deficit, impaired recognition memory in the novel object recognition (NOR) test and induced alterations in CB1 receptor functionality and in endocannabinoid levels mainly in the prefrontal cortex. In this region, we observed a significant reduction in GTPgammaS binding (-41%) accompanied by an increase in the levels of the endocannabinoid 2-AG (+38%) in PCP-treated rats, suggesting that a maladaptation of the endocannabinoid system might contribute to the glutamatergic-related cognitive symptoms encountered in schizophrenia disorders. Moreover, we evaluated the ability of the main psychoactive ingredient of marijuana, Delta9-tetrahydrocannabinol (THC), to modulate the cognitive dysfunctions and neuroadaptations in the endocannabinoid system induced by PCP. Chronic THC co-treatment worsened PCP-induced cognitive impairment, without inducing any effect per se, and in parallel, it provoked a severe reduction in the levels of the other endocannabinoid, AEA, vs. either vehicle (-73%) or PCP (-64%), whereas it reversed the PCP-induced increase in 2-AG levels. These results point to the involvement of the endocannabinoid system in this pharmacological model of cognitive dysfunction, with a potentially different role of AEA and 2-AG in schizophrenia-like behaviours and suggest that prolonged cannabis use might aggravate cognitive performances induced by chronic PCP by throwing off-balance the endocannabinoid system.

  11. Biosynthesis of Silver Nanoparticles Using Oscillatoria Extract and Evaluation the Anticancer and Antibacterial Activities

    Directory of Open Access Journals (Sweden)

    T Ghasemipour

    2017-07-01

    Full Text Available Abstract Background and aim: The emergence of nanotechnology is one of the most promising areas for medical research. Today, biological methods of synthesizing nanoparticles have been considered in the fight against many diseases. The purpose of this study was to evaluate the anti-cancer and anti-bacterial activity of silver nanoparticles, biosynthesized with cyanobacteria acetate extract. Methods: In the present experimental study, the silver nanoparticles biosynthesis was performed using silver ions regeneration with cyanobacteria acetate extracts. Techniques such as X-ray diffraction, scanning electron microscopy and transient evaluation of silver nanoparticles were evaluated. In order to investigate the antibacterial activity of synthesized nanosilver, serial dilution method was used for broth microdilution test to determine minimum inhibitory concentration (MIC. The effects of silver nanoparticle toxicity on T47D breast cancer cell line were evaluated using MTT colorimetric method. Also, the proximal anxine 0.5 propidoid yodide kit and flow cytometry system were evaluated to evaluate the percentage of apoptosis and necrosis in cancer cells treated with silver nanoparticles. Results: Characterization of biosynthetic silver nanoparticles indicated that these nanoparticles had a mean size of 30 nm with dominant spherical morphology. The evaluation of the antibacterial properties of biosynthetic nanoparticles showed that the minimum inhibitory concentration for Escherichia coli, Acinetobacter Bumanni and Staphylococcus aureus was 25, 50 and 12.5 μg / ml, respectively. The results of cell proliferation of nanoparticles showed that its effect depends on the concentration and time of treatment of silver nanoparticles on cancerous cells. In addition, flow cytometric results showed an apoptotic cell death rate of 35% in the T47D cell line. Conclusion: Biosynthesis nanoparticles have anticancer and antibacterial activity and can be studied further

  12. Assay of Endocannabinoid Oxidation by Cyclooxygenase-2.

    Science.gov (United States)

    Kudalkar, Shalley N; Kingsley, Philip J; Marnett, Lawrence J

    2016-01-01

    The endocannabinoids, 2-arachidonoylglycerol (2-AG) and arachidonylethanolamide (AEA), are endogenous ligands for the cannabinoid receptors (CB1 and CB2) and are implicated in a wide array of physiological processes. These neutral arachidonic acid (AA) derivatives have been identified as efficient substrates for the second isoform of the cyclooxygenase enzyme (COX-2). A diverse family of prostaglandin glycerol esters (PG-Gs) and prostaglandin ethanolamides (PG-EAs) is generated by the action of COX-2 (and downstream prostaglandin synthases) on 2-AG and AEA. As the biological importance of the endocannabinoid system becomes more apparent, there is a tremendous need for robust, sensitive, and efficient analytical methodology for the endocannabinoids and their metabolites. In this chapter, we describe methodology suitable for carrying out oxygenation of endocannabinoids by COX-2, and analysis of products of endocannabinoid oxygenation by COX-2 and of endocannabinoids themselves from in vitro and cell assays.

  13. Endocannabinoids block status epilepticus in cultured hippocampal neurons

    Science.gov (United States)

    Deshpande, Laxmikant S.; Blair, Robert E.; Ziobro, Julie M.; Sombati, Sompong; Martin, Billy R.; DeLorenzo, Robert J.

    2008-01-01

    Status epilepticus is a serious neurological disorder associated with a significant morbidity and mortality. Antiepileptic drugs such as diazepam, phenobarbital and phenytoin are the mainstay of status epilepticus treatment. However, over 20% of status epilepticus cases are refractory to the initial treatment with two or more antiepileptic drugs. Endocannabinoids have been implicated as playing an important role in regulating seizure activity and seizure termination. This study evaluated the effects of the major endocannabinoids methanandamide and 2-arachidonylglycerol (2-AG) on status epilepticus in the low-Mg2+ hippocampal neuronal culture model. Status epilepticus in this model was resistant to treatment with phenobarbital and phenytoin. Methanandamide and 2-AG inhibited status epilepticus in a dose-dependent manner with an EC50 of 145±4.15 nM and 1.68±0.19 µM, respectively. In addition, the anti-status epilepticus effects of methanandamide and 2-AG were mediated by activation of the cannabinoid CB1 receptor since they were blocked by the cannabinoid CB1 receptor antagonist AM251. These results provide the first evidence that the endocannabinoids, methanandamide and 2-AG, are effective inhibitors of refractory status epilepticus in the hippocampal neuronal culture model and indicate that regulating the endocannabinoid system may provide a novel therapeutic approach for treating refractory status epilepticus. PMID:17174949

  14. Parasitic brain infection, endocannabinoids, and schizophrenia.

    Science.gov (United States)

    Melamede, Robert

    2009-02-01

    Cannabis use has often been associated with various forms of psychosis. Today it is well established that everyone produces marijuana-like compounds known as endocannabinoids. The endocannabinoid system is a homeostatic regulator of all body systems including the nervous system. As a result, imbalances in the endocannabinoid system have been considered as possible causes of various forms of mental illness and abnormal behavior. In this paper, a novel hypothesis is presented that suggests that an as yet undefined subset of schizophrenia is caused by an excess of endocannabinoids that are produced to protect the brain in response to infections by agents such as Toxoplasma gondii.

  15. Endocannabinoids, Related Compounds and Their Metabolic Routes

    Directory of Open Access Journals (Sweden)

    Filomena Fezza

    2014-10-01

    Full Text Available Endocannabinoids are lipid mediators able to bind to and activate cannabinoid receptors, the primary molecular targets responsible for the pharmacological effects of the Δ9-tetrahydrocannabinol. These bioactive lipids belong mainly to two classes of compounds: N-acylethanolamines and acylesters, being N-arachidonoylethanolamine (AEA and 2-arachidonoylglycerol (2-AG, respectively, their main representatives. During the last twenty years, an ever growing number of fatty acid derivatives (endocannabinoids and endocannabinoid-like compounds have been discovered and their activities biological is the subject of intense investigations. Here, the most recent advances, from a therapeutic point of view, on endocannabinoids, related compounds, and their metabolic routes will be reviewed.

  16. Endocannabinoids, related compounds and their metabolic routes.

    Science.gov (United States)

    Fezza, Filomena; Bari, Monica; Florio, Rita; Talamonti, Emanuela; Feole, Monica; Maccarrone, Mauro

    2014-10-24

    Endocannabinoids are lipid mediators able to bind to and activate cannabinoid receptors, the primary molecular targets responsible for the pharmacological effects of the Δ9-tetrahydrocannabinol. These bioactive lipids belong mainly to two classes of compounds: N-acylethanolamines and acylesters, being N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), respectively, their main representatives. During the last twenty years, an ever growing number of fatty acid derivatives (endocannabinoids and endocannabinoid-like compounds) have been discovered and their activities biological is the subject of intense investigations. Here, the most recent advances, from a therapeutic point of view, on endocannabinoids, related compounds, and their metabolic routes will be reviewed.

  17. Endocannabinoid Signaling Regulates Sleep Stability.

    Directory of Open Access Journals (Sweden)

    Matthew J Pava

    Full Text Available The hypnogenic properties of cannabis have been recognized for centuries, but endogenous cannabinoid (endocannabinoid regulation of vigilance states is poorly characterized. We report findings from a series of experiments in mice measuring sleep with polysomnography after various systemic pharmacological manipulations of the endocannabinoid system. Rapid, unbiased scoring of vigilance states was achieved using an automated algorithm that we devised and validated. Increasing endocannabinoid tone with a selective inhibitor of monoacyglycerol lipase (JZL184 or fatty acid amide hydrolase (AM3506 produced a transient increase in non-rapid eye movement (NREM sleep due to an augmentation of the length of NREM bouts (NREM stability. Similarly, direct activation of type 1 cannabinoid (CB1 receptors with CP47,497 increased NREM stability, but both CP47,497 and JZL184 had a secondary effect that reduced NREM sleep time and stability. This secondary response to these drugs was similar to the early effect of CB1 blockade with the antagonist/inverse agonist AM281, which fragmented NREM sleep. The magnitude of the effects produced by JZL184 and AM281 were dependent on the time of day this drug was administered. While activation of CB1 resulted in only a slight reduction in gamma power, CB1 blockade had dramatic effects on broadband power in the EEG, particularly at low frequencies. However, CB1 blockade did not significantly reduce the rebound in NREM sleep following total sleep deprivation. These results support the hypothesis that endocannabinoid signaling through CB1 is necessary for NREM stability but it is not necessary for sleep homeostasis.

  18. Endocannabinoid Signaling Regulates Sleep Stability.

    Science.gov (United States)

    Pava, Matthew J; Makriyannis, Alexandros; Lovinger, David M

    2016-01-01

    The hypnogenic properties of cannabis have been recognized for centuries, but endogenous cannabinoid (endocannabinoid) regulation of vigilance states is poorly characterized. We report findings from a series of experiments in mice measuring sleep with polysomnography after various systemic pharmacological manipulations of the endocannabinoid system. Rapid, unbiased scoring of vigilance states was achieved using an automated algorithm that we devised and validated. Increasing endocannabinoid tone with a selective inhibitor of monoacyglycerol lipase (JZL184) or fatty acid amide hydrolase (AM3506) produced a transient increase in non-rapid eye movement (NREM) sleep due to an augmentation of the length of NREM bouts (NREM stability). Similarly, direct activation of type 1 cannabinoid (CB1) receptors with CP47,497 increased NREM stability, but both CP47,497 and JZL184 had a secondary effect that reduced NREM sleep time and stability. This secondary response to these drugs was similar to the early effect of CB1 blockade with the antagonist/inverse agonist AM281, which fragmented NREM sleep. The magnitude of the effects produced by JZL184 and AM281 were dependent on the time of day this drug was administered. While activation of CB1 resulted in only a slight reduction in gamma power, CB1 blockade had dramatic effects on broadband power in the EEG, particularly at low frequencies. However, CB1 blockade did not significantly reduce the rebound in NREM sleep following total sleep deprivation. These results support the hypothesis that endocannabinoid signaling through CB1 is necessary for NREM stability but it is not necessary for sleep homeostasis.

  19. Endocannabinoid Signaling Regulates Sleep Stability

    Science.gov (United States)

    Pava, Matthew J.; Makriyannis, Alexandros; Lovinger, David M.

    2016-01-01

    The hypnogenic properties of cannabis have been recognized for centuries, but endogenous cannabinoid (endocannabinoid) regulation of vigilance states is poorly characterized. We report findings from a series of experiments in mice measuring sleep with polysomnography after various systemic pharmacological manipulations of the endocannabinoid system. Rapid, unbiased scoring of vigilance states was achieved using an automated algorithm that we devised and validated. Increasing endocannabinoid tone with a selective inhibitor of monoacyglycerol lipase (JZL184) or fatty acid amide hydrolase (AM3506) produced a transient increase in non-rapid eye movement (NREM) sleep due to an augmentation of the length of NREM bouts (NREM stability). Similarly, direct activation of type 1 cannabinoid (CB1) receptors with CP47,497 increased NREM stability, but both CP47,497 and JZL184 had a secondary effect that reduced NREM sleep time and stability. This secondary response to these drugs was similar to the early effect of CB1 blockade with the antagonist/inverse agonist AM281, which fragmented NREM sleep. The magnitude of the effects produced by JZL184 and AM281 were dependent on the time of day this drug was administered. While activation of CB1 resulted in only a slight reduction in gamma power, CB1 blockade had dramatic effects on broadband power in the EEG, particularly at low frequencies. However, CB1 blockade did not significantly reduce the rebound in NREM sleep following total sleep deprivation. These results support the hypothesis that endocannabinoid signaling through CB1 is necessary for NREM stability but it is not necessary for sleep homeostasis. PMID:27031992

  20. The evolving role of the endocannabinoid system in gynaecological cancer.

    Science.gov (United States)

    Ayakannu, Thangesweran; Taylor, Anthony H; Willets, Jonathan M; Konje, Justin C

    2015-01-01

    The 'endocannabinoid system' (ECS), comprising endogenous ligands (endocannabinoids) and their regulating enzymes, together with the cannabinoid receptors, has attracted a great deal of attention because it affects not only all facets of human reproduction, from gametogenesis through to parturition and beyond, but also targets key mechanisms affecting some hallmarks of cancer. Recent evidence showing that cannabinoid receptors play a very important role in the development of malignancies outside of the reproductive organs suggests a similar role for the ECS in the establishment or continued development of gynaecological malignancy. Primary papers and review articles, and primary sources within these papers, up to December 2014, on the evolving role of the ECS in cancer, with a special focus on gynaecological cancers, were obtained by Medline and PubMed searches using the search terms: 'cancer', 'cannabinoid', 'endocannabinoid', 'gynaecology' and 'malignancy'. Non-English manuscripts were excluded. More than 2100 sources were obtained from which only 112 were specifically important to the topic. Analysis of those articles supports a role of the ECS in gynaecological cancers but leaves many gaps in our knowledge that need to be filled. How some of the relevant receptors are activated and cause changes in cell phenotypes that progress to malignancy remains undiscovered and an area for future research. Increasing evidence suggests that malignant transformation within the female genital tract could be accompanied by deregulation of components of the ECS, acting through rather complex cannabinoid receptor-dependent and receptor-independent mechanisms. The paucity of studies in this area suggests that research using animal models is needed to evaluate endocannabinoid signalling in cancer networks. Future randomized clinical studies should reveal whether endocannabinoids or their derivatives prove to be useful therapeutic targets for gynaecological and other cancers.

  1. Endocannabinoid Regulation of Neuroendocrine Systems.

    Science.gov (United States)

    Tasker, Jeffrey G; Chen, Chun; Fisher, Marc O; Fu, Xin; Rainville, Jennifer R; Weiss, Grant L

    2015-01-01

    The hypothalamus is a part of the brain that is critical for sustaining life through its homeostatic control and integrative regulation of the autonomic nervous system and neuroendocrine systems. Neuroendocrine function in mammals is mediated mainly through the control of pituitary hormone secretion by diverse neuroendocrine cell groups in the hypothalamus. Cannabinoid receptors are expressed throughout the hypothalamus, and endocannabinoids have been found to exert pronounced regulatory effects on neuroendocrine function via modulation of the outputs of several neuroendocrine systems. Here, we review the physiological regulation of neuroendocrine function by endocannabinoids, focusing on the role of endocannabinoids in the neuroendocrine regulation of the stress response, food intake, fluid homeostasis, and reproductive function. Cannabis sativa (marijuana) has a long history of recreational and/or medicinal use dating back to ancient times. It was used as an analgesic, anesthetic, and antianxiety herb as early as 2600 B.C. The hedonic, anxiolytic, and mood-elevating properties of cannabis have also been cited in ancient records from different cultures. However, it was not until 1964 that the psychoactive constituent of cannabis, Δ(9)-tetrahydrocannabinol, was isolated and its chemical structure determined (Gaoni & Mechoulam, 1964). © 2015 Elsevier Inc. All rights reserved.

  2. The endocannabinoid system and spermatogenesis

    Directory of Open Access Journals (Sweden)

    Paola eGrimaldi

    2013-12-01

    Full Text Available AbstractSpermatogenesis is a complex process in which male germ cells undergo a mitotic phase followed by meiosis and by a morphogenetic process to form mature spermatozoa. Spermatogenesis is under the control of gonadotropins, steroid hormones and it is modulated by a complex network of autocrine and paracrine factors. These modulators ensure the correct progression of germ cell differentiation to form mature spermatozoa. Recently, it has been pointed out the relevance of endocannabinoids as critical modulators of male reproduction. Endocannabinoids are natural lipids able to bind to cannabinoid receptors and whose levels are regulated by specific biosynthetic and degradative enzymes. Together with their receptors and metabolic enzymes, they form the endocannabinoid system (ECS. In male reproductive tracts, they affect Sertoli cell activities, Leydig cell proliferation, germ cell differentiation, sperm motility, capacitation and acrosome reaction. The ECS interferes with the pituitary-gonadal axis, and an intricate crosstalk between ECS and steroid hormones has been highlighted. This mini-review will focus on the involvement of the ECS in the control of spermatogenesis and on the interaction between ECS and steroid hormones.

  3. Chemical Probes of Endocannabinoid Metabolism

    Science.gov (United States)

    2013-01-01

    The endocannabinoid signaling system regulates diverse physiologic processes and has attracted considerable attention as a potential pharmaceutical target for treating diseases, such as pain, anxiety/depression, and metabolic disorders. The principal ligands of the endocannabinoid system are the lipid transmitters N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), which activate the two major cannabinoid receptors, CB1 and CB2. Anandamide and 2-AG signaling pathways in the nervous system are terminated by enzymatic hydrolysis mediated primarily by the serine hydrolases fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), respectively. In this review, we will discuss the development of FAAH and MAGL inhibitors and their pharmacological application to investigate the function of anandamide and 2-AG signaling pathways in preclinical models of neurobehavioral processes, such as pain, anxiety, and addiction. We will place emphasis on how these studies are beginning to discern the different roles played by anandamide and 2-AG in the nervous system and the resulting implications for advancing endocannabinoid hydrolase inhibitors as next-generation therapeutics. PMID:23512546

  4. At the heart of the matter: the endocannabinoid system in cardiovascular function and dysfunction.

    Science.gov (United States)

    Montecucco, Fabrizio; Di Marzo, Vincenzo

    2012-06-01

    Starting from the well-documented effects of marijuana smoking on heart rate and blood pressure, the cardiovascular effects of Δ⁹-tetrahydrocannabinol (THC, the main psychotropic ingredient of Cannabis) and endocannabinoids [THC endogenous counterparts that activate cannabinoid receptor type 1 (CB₁) and 2 (CB₂)] have been thoroughly investigated. These studies were mostly aimed at establishing the molecular bases of the hypotensive actions of THC, endocannabinoids and related molecules, but also evaluated their therapeutic potential in cardiac injury protection, metabolic cardiovascular risk factors and atherosclerotic plaque vulnerability. The results of these investigations, reviewed here, also served to highlight some of the most peculiar aspects of endocannabinoid signaling, such as redundancy in endocannabinoid targets and the often dualistic role of CB₁ and CB₂ receptors during pathological conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Western Blotting of the Endocannabinoid System.

    Science.gov (United States)

    Wager-Miller, Jim; Mackie, Ken

    2016-01-01

    Measuring expression levels of G protein-coupled receptors (GPCRs) is an important step for understanding the distribution, function, and regulation of these receptors. A common approach for detecting proteins from complex biological systems is Western blotting. In this chapter, we describe a general approach to Western blotting protein components of the endocannabinoid system using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and nitrocellulose membranes, with a focus on detecting type 1 cannabinoid (CB1) receptors. When this technique is carefully used, specifically with validation of the primary antibodies, it can provide quantitative information on protein expression levels. Additional information can also be inferred from Western blotting such as potential posttranslational modifications that can be further evaluated by specific analytical techniques.

  6. The Role of the Brain's Endocannabinoid System in Pain and Its Modulation by Stress.

    Science.gov (United States)

    Corcoran, Louise; Roche, Michelle; Finn, David P

    2015-01-01

    Stress has a complex, bidirectional modulatory influence on pain. Stress may either reduce (stress-induced analgesia) or exacerbate (stress-induced hyperalgesia) pain depending on the nature, duration, and intensity of the stressor. The endogenous cannabinoid (endocannabinoid) system is present throughout the neuroanatomical pathways that mediate and modulate responses to painful stimuli. The specific role of the endocannabinoid system in the brain in pain and the modulation of pain by stress is reviewed herein. We first provide a brief overview of the endocannabinoid system, followed by a review of the evidence that the brain's endocannabinoid system modulates pain. We provide a comprehensive evaluation of the role of the endocannabinoid system supraspinally, and particularly in the rostral ventromedial medulla, periaqueductal gray, amygdala, and prefrontal cortex, in pain, stress-induced analgesia, and stress-induced hyperalgesia. Increased understanding of endocannabinoid-mediated regulation of pain and its modulation by stress will inform the development of novel therapeutic approaches for pain and its comorbidity with stress-related disorders. © 2015 Elsevier Inc. All rights reserved.

  7. Biosynthesis of gold nanoparticles and related cytotoxicity evaluation using A549 cells.

    Science.gov (United States)

    Sathishkumar, M; Pavagadhi, S; Mahadevan, A; Balasubramanian, R

    2015-04-01

    Biosynthesis of gold nanoparticles (AuNPs) has become an attractive area of research as it is environmentally benign. The toxicity of AuNPs synthesized by chemical routes has been widely studied. However, little is known about the toxicity associated with the biological synthesis of AuNPs. The present study was carried out to synthesize AuNPs using star anise (Illicium verum; a commercially available spice in abundance)and evaluate its toxicity using human epithelial lung cells (A549) in comparison with AuNPs synthesized by the traditional chemical methods (using sodium citrate and sodium borohydride). Apart from cell viability, markers of oxidative stress (reduced glutathione) and cell death (caspases) were also evaluated to understand the mechanisms of toxicity. Cell viability was observed to be 65.7 percent and 72.3 percent in cells exposed to chemically synthesized AuNPs at the highest dose (200nM) as compared to 80.2 percent for biologically synthesized AuNPs. Protective coating/capping of AuNPs by various polyphenolic compounds present in star anise extract appears to be a major contributor to lower toxicity observed in biologically synthesized AuNPs. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Evaluation of some Samoan and Peruvian medicinal plants by prostaglandin biosynthesis and rat ear oedema assays.

    Science.gov (United States)

    Dunstan, C A; Noreen, Y; Serrano, G; Cox, P A; Perera, P; Bohlin, L

    1997-06-01

    In our ongoing program to find new anti-inflammatory compounds, 58 extracts from 46 different medicinal plant species, used in treatment of inflammatory disorders-38 plants from the traditional medicine of Western Samoa and eight originating from the indigenous medicine of the Shipibo-Conibo tribe of Peruvian Amazonia-ere evaluated. The ability of all extracts to inhibit cyclooxygenase-1 catalysed prostaglandin biosynthesis in vitro was examined. Of the plant species tested 14 showed moderate to strong inhibition; including 11 Samoan and three Peruvian species. Further, 12 Samoan and all eight Peruvian species were investigated on their inhibitory activity of ethyl phenylpropiolate induced rat ear oedema in vivo. Significant activity was shown by 10 of the Samoan and by all eight Peruvian species. An additional evaluation of the most active species was provided through a compilation of existing literature documenting traditional medicinal uses, pharmacological activity and chemical constituents. Several known cyclooxygenase-1 inhibitors were reported to which the observed pharmacological activity can be attributed at least partly. The combination of chemical and pharmacological literature data and our experimental data may help to explain the anti-inflammatory use of these species in indigenous medicine.

  9. Endocannabinoid signaling in neurotoxicity and neuroprotection.

    Science.gov (United States)

    Pope, C; Mechoulam, R; Parsons, L

    2010-09-01

    The cannabis plant and products produced from it, such as marijuana and hashish, have been used for centuries for their psychoactive properties. The mechanism for how Delta(9)-tetrahydrocannabinol (THC), the active constituent of cannabis, elicits these neurological effects remained elusive until relatively recently, when specific G-protein coupled receptors were discovered that appeared to mediate cellular actions of THC. Shortly after discovery of these specific receptors, endogenous ligands (endocannabinoids) were identified. Since that time, an extensive number of papers have been published on the endocannabinoid signaling system, a widespread neuromodulatory mechanism that influences neurotransmission throughout the nervous system. This paper summarizes presentations given at the 12th International Neurotoxicology Association meeting that described the potential role of endocannabinoids in the expression of neurotoxicity. Dr. Raphael Mechoulam first gave an overview of the discovery of exogenous and endogenous cannabinoids and their potential for neuroprotection in a variety of conditions. Dr. Larry Parsons then described studies suggesting that endocannabinoid signaling may play a selective role in drug reinforcement. Dr. Carey Pope presented information on the role that endocannabinoid signaling may have in the expression of cholinergic toxicity following anticholinesterase exposures. Together, these presentations highlighted the diverse types of neurological insults that may be modulated by endocannabinoids and drugs/toxicants which might influence endocannabinoid signaling pathways. Copyright © 2009 Elsevier Inc. All rights reserved.

  10. Extraction and Simultaneous Quantification of Endocannabinoids and Endocannabinoid-Like Lipids in Biological Tissues.

    Science.gov (United States)

    Bindila, Laura; Lutz, Beat

    2016-01-01

    Extraction and quantification of endocannabinoids (eCBs) from biological tissues are essential to unravel their changes in physiological and pathophysiological conditions. We describe here an analytical protocol for extraction of endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), endocannabinoid-like lipids such as palmitoyl ethanolamide (PEA) and oleoyl ethanolamide (OEA), as well as arachidonic acid (AA) from biological tissues using liquid-liquid extraction method and simultaneous quantification by liquid chromatography multiple reaction monitoring (LC/MRM).

  11. Endocannabinoids and Human Sperm Cells

    Directory of Open Access Journals (Sweden)

    Giovanna Zolese

    2010-10-01

    Full Text Available N-acylethanolamides (NAEs are naturally occurring signaling lipids consisting of amides and esters of long-chain polyunsaturated fatty acids. Usually they are present in a very small amounts in many mammalian tissues and cells, including human reproductive tracts and fluids. Recently, the presence of N-arachidonoylethanolamide (anandamide, AEA, the most characterised member of endocannabinoids, and its congeners palmitoylethanolamide (PEA and oleylethanolamide (OEA in seminal plasma, oviductal fluid, and follicular fluids was demonstrated. AEA has been shown to bind not only type-1 (CB1 and type-2 (CB2 cannabinoid receptors, but also type-1 vanilloid receptor (TRPV1, while PEA and OEA are inactive with respect to classical cannabinoid CB1 and CB2 but activate TRPV1 or peroxisome proliferator activate receptors (PPARs. This review concerns the most recent experimental data on PEA and OEA, endocannabinoid-like molecules which appear to exert their action exclusively on sperm cells with altered features, such as membrane characteristics and kinematic parameters. Their beneficial effects on these cells could suggest a possible pharmacological use of PEA and OEA on patients affected by some forms of idiopathic infertility.

  12. Role of endocannabinoids in regulating drug dependence

    Directory of Open Access Journals (Sweden)

    Daniela Parolaro

    2007-01-01

    Full Text Available Daniela Parolaro, Daniela Vigano’, Natalia Realini, Tiziana RubinoNeuroscience Center, DBSF, University of Insubria, Busto Arsizio, ItalyAbstract: This review will discuss the latest knowledge of how the endocannabinoid system might be involved in treating addiction to the most common illicit drugs. Experimental models are providing increasing evidence for the pharmacological management of endocannabinoid signaling not only to block the direct reinforcing effects of cannabis, opioids, nicotine and ethanol, but also for preventing relapse to the various drugs of abuse, including opioids, cocaine, nicotine, alcohol and metamphetamine. Preclinical and clinical studies suggest that the endocannabinoid system can be manipulated by the CB1 receptor antagonist SR141716A, that might constitute a new generation of compounds for treating addiction across different classes of abused drugs.Keywords: Endocannabinoids, drug dependence, opioids, nicotine, alcohol, psychostimulants

  13. Cerebellar endocannabinoids: retrograde signaling from purkinje cells.

    Science.gov (United States)

    Marcaggi, Païkan

    2015-06-01

    The cerebellar cortex exhibits a strikingly high expression of type 1 cannabinoid receptor (CB1), the cannabinoid binding protein responsible for the psychoactive effects of marijuana. CB1 is primarily found in presynaptic elements in the molecular layer. While the functional importance of cerebellar CB1 is supported by the effect of gene deletion or exogenous cannabinoids on animal behavior, evidence for a role of endocannabinoids in synaptic signaling is provided by in vitro experiments on superfused acute rodent cerebellar slices. These studies have demonstrated that endocannabinoids can be transiently released by Purkinje cells and signal at synapses in a direction opposite to information transfer (retrograde). Here, following a description of the reported expression pattern of the endocannabinoid system in the cerebellum, I review the accumulated in vitro data, which have addressed the mechanism of retrograde endocannabinoid signaling and identified 2-arachidonoylglycerol as the mediator of this signaling. The mechanisms leading to endocannabinoid release, the effects of CB1 activation, and the associated synaptic plasticity mechanisms are discussed and the remaining unknowns are pointed. Notably, it is argued that the spatial specificity of this signaling and the physiological conditions required for its induction need to be determined in order to understand endocannabinoid function in the cerebellar cortex.

  14. Gut feelings about the endocannabinoid system.

    Science.gov (United States)

    Di Marzo, V; Piscitelli, F

    2011-05-01

    Stemming from the centuries-old and well known effects of Cannabis on intestinal motility and secretion, research on the role of the endocannabinoid system in gut function and dysfunction has received ever increasing attention since the discovery of the cannabinoid receptors and their endogenous ligands, the endocannabinoids. In this article, some of the most recent developments in this field are discussed, with particular emphasis on new data, most of which are published in Neurogastroenterology & Motility, on the potential tonic endocannabinoid control of intestinal motility, the function of cannabinoid type-1 (CB1) receptors in gastric function, visceral pain, inflammation and sepsis, the emerging role of cannabinoid type-2 (CB2) receptors in the gut, and the pharmacology of endocannabinoid-related molecules and plant cannabinoids not necessarily acting via cannabinoid CB1 and CB2 receptors. These novel data highlight the multi-faceted aspects of endocannabinoid function in the GI tract, support the feasibility of the future therapeutic exploitation of this signaling system for the treatment of GI disorders, and leave space for some intriguing new hypotheses on the role of endocannabinoids in the gut. © 2011 Blackwell Publishing Ltd.

  15. Endocannabinoids and neuropathic pain: focus on neuron-glia and endocannabinoid-neurotrophin interactions.

    Science.gov (United States)

    Luongo, Livio; Maione, Sabatino; Di Marzo, Vincenzo

    2014-02-01

    Although originally described as a signalling system encompassing the cannabinoid CB1 and CB2 receptors, their endogenous agonists (the endocannabinoids), and metabolic enzymes regulating the levels of such agonists, the endocannabinoid system is now viewed as being more complex, and including metabolically related endocannabinoid-like mediators and their molecular targets as well. The function and dysfunction of this complex signalling system in the molecular and cellular mechanisms of pain transduction and control has been widely studied over the last two decades. In this review article, we describe some of the latest advances in our knowledge on the role of the endocannabinoid system, in its most recent and wider conception, in pain pathways, by focusing on: (1) neuron-glia interactions; and (2) emerging data on endocannabinoid cross-talk with neurotrophins, such as nerve growth factor and brain-derived neurotrophic factor. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Peripheral endocannabinoid signaling controls hyperphagia in western diet-induced obesity.

    Science.gov (United States)

    Argueta, Donovan A; DiPatrizio, Nicholas V

    2017-03-15

    The endocannabinoid system in the brain and periphery plays a major role in controlling food intake and energy balance. We reported that tasting dietary fats was met with increased levels of the endocannabinoids, 2-arachidonoyl-sn-glycerol (2-AG) and anandamide, in the rat upper small intestine, and pharmacological inhibition of this local signaling event dose-dependently blocked sham feeding of fats. We now investigated the contribution of peripheral endocannabinoid signaling in hyperphagia associated with chronic consumption of a western-style diet in mice ([WD] i.e., high fat and sucrose). Feeding patterns were assessed in male C57BL/6Tac mice maintained for 60days on WD or a standard rodent chow (SD), and the role for peripheral endocannabinoid signaling at CB 1 Rs in controlling food intake was investigated via pharmacological interventions. In addition, levels of the endocannabinoids, 2-AG and anandamide, in the upper small intestine and circulation of mice were analyzed via liquid chromatography coupled to tandem mass spectrometry to evaluate diet-related changes in endocannabinoid signaling and the potential impact on food intake. Mice fed WD for 60days exhibited large increases in body weight, daily caloric intake, average meal size, and rate of feeding when compared to control mice fed SD. Inhibiting peripheral CB 1 Rs with the peripherally-restricted neutral cannabinoid CB 1 receptor antagonist, AM6545 (10mg/kg), significantly reduced intake of WD during a 6h test, but failed to modify intake of SD in mice. AM6545 normalized intake of WD, average meal size, and rate of feeding to levels found in SD control mice. These results suggest that endogenous activity at peripheral CB 1 Rs in WD mice is critical for driving hyperphagia. In support of this hypothesis, levels of 2-AG and anandamide in both, jejunum mucosa and plasma, of ad-libitum fed WD mice increased when compared to SC mice. Furthermore, expression of genes for primary components of the

  17. Endocannabinoid involvement in reward and impulsivity in addiction

    NARCIS (Netherlands)

    van Hell, H.H.

    2011-01-01

    Addiction is one of the most disabling diseases in the world. An important neurotransmitter system that has recently been implicated in addiction is the endocannabinoid system. The endocannabinoid system consists of cannabinoid receptors and endocannabinoid ligands that work on these receptors.

  18. Endocannabinoids and endocannabinoid-related mediators: Targets, metabolism and role in neurological disorders.

    Science.gov (United States)

    Iannotti, Fabio Arturo; Di Marzo, Vincenzo; Petrosino, Stefania

    2016-04-01

    The endocannabinoid system (ECS) is composed of two G protein-coupled receptors (GPCRs), the cannabinoid CB1 and CB2 receptors, and the two main endogenous lipid ligands of such receptors (also known as the "endocannabinoids"), anandamide and 2-arachidonoyl-glycerol. The ECS is a pleiotropic signalling system involved in all aspects of mammalian physiology and pathology, and for this reason it represents a potential target for the design and development of new therapeutic drugs. However, the endocannabinoids as well as some of their congeners also interact with a much wider range of receptors, including members of the Transient Receptor Potential (TRP) channels, Peroxisome Proliferator-Activated Receptors (PPARs), and other GPCRs. Indeed, following the discovery of the endocannabinoids, endocannabinoid-related lipid mediators, which often share the same metabolic pathways of the endocannabinoids, have also been identified or rediscovered. In this review article, we discuss the role of endocannabinoids and related lipids during physiological functions, as well as their involvement in some of the most common neurological disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Endocannabinoid metabolism by cytochrome P450 monooxygenases.

    Science.gov (United States)

    Zelasko, Susan; Arnold, William R; Das, Aditi

    2015-01-01

    The endogenous cannabinoid system was first uncovered following studies of the recreational drug Cannabis sativa. It is now recognized as a vital network of signaling pathways that regulate several physiological processes. Following the initial discovery of the cannabinoid receptors 1 (CB1) and 2 (CB2), activated by Cannabis-derived analogs, many endogenous fatty acids termed "endocannabinoids" are now known to be partial agonists of the CB receptors. At present, the most thoroughly studied endocannabinoid signaling molecules are anandamide (AEA) and 2-arachidonylglycerol (2-AG), which are both derived from arachidonic acid. Both AEA and 2-AG are also substrates for the eicosanoid-synthesizing pathways, namely, certain cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) enzymes. In the past, research in the endocannabinoid field focused on the interaction of AEA and 2-AG with the COX and LOX enzymes, but accumulating evidence also points to the involvement of CYPs in modulating endocannabinoid signaling. The focus of this review is to explore the current understanding of CYP-mediated metabolism of endocannabinoids. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. [Criteria for evaluating calcium carbonate from the point of view of chlortetracycline biosynthesis].

    Science.gov (United States)

    Velvard, L; Frane, J; Hudec, M; Kvetkova, M

    1976-01-01

    Calcium carbonate is added to fermentation media in biosynthesis of tetracyclines for providing definite pH values and binding tetracycline into insoluble complexes. Seven different samples were studied with respect to their physical properties, such as the microscopic size of the particles, their form, capacity for agglomeration, specific volume, rate of the particle precipitation and chemical properties, such as purity, buffer capacity, effect on the medium pH before and after sterilization. The above properties were studied in comparison with activity chlortetracycline biosynthesis. Microfine calcium carbonate proved to be the best from the point of view of productivity of Str. aureofaciens. With its use the activity of the culture fluid increased by 20 per cent as compared to the other samples. The titration curve of the sample had the lowest bend.

  1. Endocannabinoid modulation of dopamine neurotransmission.

    Science.gov (United States)

    Covey, Dan P; Mateo, Yolanda; Sulzer, David; Cheer, Joseph F; Lovinger, David M

    2017-09-15

    Dopamine (DA) is a major catecholamine neurotransmitter in the mammalian brain that controls neural circuits involved in the cognitive, emotional, and motor aspects of goal-directed behavior. Accordingly, perturbations in DA neurotransmission play a central role in several neuropsychiatric disorders. Somewhat surprisingly given its prominent role in numerous behaviors, DA is released by a relatively small number of densely packed neurons originating in the midbrain. The dopaminergic midbrain innervates numerous brain regions where extracellular DA release and receptor binding promote short- and long-term changes in postsynaptic neuron function. Striatal forebrain nuclei receive the greatest proportion of DA projections and are a predominant hub at which DA influences behavior. A number of excitatory, inhibitory, and modulatory inputs orchestrate DA neurotransmission by controlling DA cell body firing patterns, terminal release, and effects on postsynaptic sites in the striatum. The endocannabinoid (eCB) system serves as an important filter of afferent input that acts locally at midbrain and terminal regions to shape how incoming information is conveyed onto DA neurons and to output targets. In this review, we aim to highlight existing knowledge regarding how eCB signaling controls DA neuron function through modifications in synaptic strength at midbrain and striatal sites, and to raise outstanding questions on this topic. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology". Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Active endocannabinoids are secreted on extracellular membrane vesicles.

    Science.gov (United States)

    Gabrielli, Martina; Battista, Natalia; Riganti, Loredana; Prada, Ilaria; Antonucci, Flavia; Cantone, Laura; Matteoli, Michela; Maccarrone, Mauro; Verderio, Claudia

    2015-02-01

    Endocannabinoids primarily influence neuronal synaptic communication within the nervous system. To exert their function, endocannabinoids need to travel across the intercellular space. However, how hydrophobic endocannabinoids cross cell membranes and move extracellularly remains an unresolved problem. Here, we show that endocannabinoids are secreted through extracellular membrane vesicles produced by microglial cells. We demonstrate that microglial extracellular vesicles carry on their surface N-arachidonoylethanolamine (AEA), which is able to stimulate type-1 cannabinoid receptors (CB1), and inhibit presynaptic transmission, in target GABAergic neurons. This is the first demonstration of a functional role of extracellular vesicular transport of endocannabinoids. © 2015 The Authors.

  3. The role of endocannabinoids in pain modulation.

    Science.gov (United States)

    Zogopoulos, Panagiotis; Vasileiou, Ioanna; Patsouris, Efstratios; Theocharis, Stamatios E

    2013-02-01

    The endocannabinoid system (ES) is comprised of cannabinoid (CB) receptors, their endogenous ligands (endocannabinoids), and proteins responsible for their metabolism. Endocannabinoids serve as retrograde signaling messengers in GABAergic and glutamatergic synapses, as well as modulators of postsynaptic transmission, that interact with other neurotransmitters. Physiological stimuli and pathological conditions lead to differential increases in brain endocannabinoids that regulate distinct biological functions. Furthermore, endocannabinoids modulate neuronal, glial, and endothelial cell function and exert neuromodulatory, anti-excitotoxic, anti-inflammatory, and vasodilatory effects. Analgesia is one of the principal therapeutic targets of cannabinoids. Cannabinoid analgesia is based on the suppression of spinal and thalamic nociceptive neurons, but peripheral sites of action have also been identified. The chronic pain that occasionally follows peripheral nerve injury differs fundamentally from inflammatory pain and is an area of considerable unmet therapeutic need. Over the last years, considerable progress has been made in understanding the role of the ES in the modulation of pain. Endocannabinoids have been shown to behave as analgesics in models of both acute nociception and clinical pain such as inflammation and painful neuropathy. The framework for such analgesic effects exists in the CB receptors, which are found in areas of the nervous system important for pain processing and in immune cells that regulate the neuro-immune interactions that mediate the inflammatory hyperalgesia. The purpose of this review is to present the available research and clinical data, up to date, regarding the ES and its role in pain modulation, as well as its possible therapeutic perspectives. © 2012 The Authors Fundamental and Clinical Pharmacology © 2012 Société Française de Pharmacologie et de Thérapeutique.

  4. Characterisation of the endocannabinoid system in rat haemochorial placenta.

    Science.gov (United States)

    Fonseca, Bruno M; Correia-da-Silva, Georgina; Taylor, Anthony H; Lam, Patricia M W; Marczylo, Timothy H; Konje, Justin C; Teixeira, Natércia A

    2012-11-01

    Trophoblast cells that comprise the placenta play a crucial role in the complex cross-talk between fetus and maternal tissues. Although anandamide and 2-arachidonoylglycerol, the best studied endocannabinoids, affect trophoblast attachment and outgrowth, the functional significance of the endocannabinoid system in the development of placenta has not been established. We investigated the correlation between endocannabinoid levels and the pattern of expression of the receptors and metabolic enzymes of the endocannabinoid system during rat placental development. Here, we showed that all the endocannabinoid machinery is dynamically expressed in the functionally distinct basal and labyrinth zones of the rat placenta. Indeed, endocannabinoid levels are shown to increase with the progression of pregnancy. Together, these data support a role for the endocannabinoid system in normal placental function and evidence for a potential novel cellular target for the deleterious action of cannabis-derived compounds during the second half of pregnancy. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Visualization of Endocannabinoids in the Cell.

    Science.gov (United States)

    Oddi, Sergio; Totaro, Antonio; Maccarrone, Mauro

    2016-01-01

    A still unsolved, although critical, issue in endocannabinoid research is the mechanism by which the lipophilic compound anandamide (AEA) moves from its site of synthesis, crosses the aqueous milieu, and reaches the different intracellular compartments, where its metabolic and signaling pathways take place. The difficulty of studying intracellular AEA transport and distribution results from the lack of specific probes and techniques to track and visualize this bioactive lipid within the cell. Here, we describe the use of a biotinylated, non-hydrolyzable derivative of AEA (biotin-AEA, b-AEA) for visualizing the subcellular distribution of this endocannabinoid by means of confocal fluorescence microscopy.

  6. Early phytocannabinoid chemistry to endocannabinoids and beyond.

    Science.gov (United States)

    Mechoulam, Raphael; Hanuš, Lumír O; Pertwee, Roger; Howlett, Allyn C

    2014-11-01

    Isolation and structure elucidation of most of the major cannabinoid constituents--including Δ(9)-tetrahydrocannabinol (Δ(9)-THC), which is the principal psychoactive molecule in Cannabis sativa--was achieved in the 1960s and 1970s. It was followed by the identification of two cannabinoid receptors in the 1980s and the early 1990s and by the identification of the endocannabinoids shortly thereafter. There have since been considerable advances in our understanding of the endocannabinoid system and its function in the brain, which reveal potential therapeutic targets for a wide range of brain disorders.

  7. No more pain upon Gq-protein-coupled receptor activation: role of endocannabinoids.

    Science.gov (United States)

    Hu, Sherry Shu-Jung; Ho, Yu-Cheng; Chiou, Lih-Chu

    2014-02-01

    Marijuana has been used to relieve pain for centuries. The analgesic mechanism of its constituents, the cannabinoids, was only revealed after the discovery of cannabinoid receptors (CB1 and CB2) two decades ago. The subsequent identification of the endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG), and their biosynthetic and degradation enzymes discloses the therapeutic potential of compounds targeting the endocannabinoid system for pain control. Inhibitors of the anandamide and 2-AG degradation enzymes, fatty acid amide hydrolase and monoacylglycerol lipase, respectively, may be superior to direct cannabinoid receptor ligands as endocannabinoids are synthesized on demand and rapidly degraded, focusing action at generating sites. Recently, a promising strategy for pain relief was revealed in the periaqueductal gray (PAG). It is initiated by Gq-protein-coupled receptor (Gq PCR) activation of the phospholipase C-diacylglycerol lipase enzymatic cascade, generating 2-AG that produces inhibition of GABAergic transmission (disinhibition) in the PAG, thereby leading to analgesia. Here, we introduce the antinociceptive properties of exogenous cannabinoids and endocannabinoids, involving their biosynthesis and degradation processes, particularly in the PAG. We also review recent studies disclosing the Gq PCR-phospholipase C-diacylglycerol lipase-2-AG retrograde disinhibition mechanism in the PAG, induced by activating several Gq PCRs, including metabotropic glutamatergic (type 5 metabotropic glutamate receptor), muscarinic acetylcholine (M1/M3), and orexin 1 receptors. Disinhibition mediated by type 5 metabotropic glutamate receptor can be initiated by glutamate transporter inhibitors or indirectly by substance P, neurotensin, cholecystokinin and capsaicin. Finally, the putative role of 2-AG generated after activating the above neurotransmitter receptors in stress-induced analgesia is discussed. © 2014 Federation of European Neuroscience Societies and John

  8. Genetic Manipulation of the Endocannabinoid System.

    Science.gov (United States)

    Zimmer, Andreas

    2015-01-01

    The physiological and pathophysiological functions of the endocannabinoid system have been studied extensively using transgenic and targeted knockout mouse models. The first gene deletions of the cannabinoid CB(1) receptor were described in the late 1990s, soon followed by CB(2) and FAAH mutations in early 2000. These mouse models helped to elucidate the fundamental role of endocannabinoids as retrograde transmitters in the CNS and in the discovery of many unexpected endocannabinoid functions, for example, in the skin, bone and liver. We now have knockout mouse models for almost every receptor and enzyme of the endocannabinoid system. Conditional mutant mice were mostly developed for the CB(1) receptor, which is widely expressed on many different neurons, astrocytes and microglia, as well as on many cells outside the CNS. These mouse strains include "floxed" CB(1) alleles and mice with a conditional re-expression of CB(1). The availability of these mice made it possible to decipher the function of CB(1) in specific neuronal circuits and cell populations or to discriminate between central and peripheral effects. Many of the genetic mouse models were also used in combination with viral expression systems. The purpose of this review is to provide a comprehensive overview of the existing genetic models and to summarize some of the most important discoveries that were made with these animals.

  9. Targeting the endocannabinoid system : future therapeutic strategies

    NARCIS (Netherlands)

    Aizpurua-Olaizola, Oier; Elezgarai, Izaskun; Rico-Barrio, Irantzu; Zarandona, Iratxe; Etxebarria, Nestor; Usobiaga, Aresatz

    2017-01-01

    The endocannabinoid system (ECS) is involved in many physiological regulation pathways in the human body, which makes this system the target of many drugs and therapies. In this review, we highlight the latest studies regarding the role of the ECS and the drugs that target it, with a particular

  10. The endocannabinoid system and multiple sclerosis.

    Science.gov (United States)

    Baker, David; Pryce, Gareth

    2008-01-01

    Multiple sclerosis (MS) is a neurodegenerative disease that is characterised by repeated inflammatory/demyelinating events within the central nervous system (CNS). In addition to relapsing-remitting neurological insults, leading to loss of function, patients are often left with residual, troublesome symptoms such as spasticity and pain. These greatly diminish "quality of life" and have prompted some patients to self-medicate with and perceive benefit from cannabis. Recent advances in cannabinoid biology are beginning to support these anecdotal observations, notably the demonstration that spasticity is tonically regulated by the endogenous cannabinoid system. Recent clinical trials may indeed suggest that cannabis has some potential to relieve, pain, spasms and spasticity in MS. However, because the CB(1) cannabinoid receptor mediates both the positive and adverse effects of cannabis, therapy will invariably be associated with some unwanted, psychoactive effects. In an experimental model of MS, and in MS tissue, there are local perturbations of the endocannabinoid system in lesional areas. Stimulation of endocannabinoid activity in these areas either through increase of synthesis or inhibition of endocannabinoid degradation offers the positive therapeutic potential of the cannabinoid system whilst limiting adverse events by locally targeting the lesion. In addition, CB(1) and CB(2) cannabinoid receptor stimulation may also have anti-inflammatory and neuroprotective potential as the endocannabinoid system controls the level of neurodegeneration that occurs as a result of the inflammatory insults. Therefore cannabinoids may not only offer symptom control but may also slow the neurodegenerative disease progression that ultimately leads to the accumulation of disability.

  11. The endocannabinoid system: emotion, learning and addiction.

    Science.gov (United States)

    Moreira, Fabrício A; Lutz, Beat

    2008-06-01

    The identification of the cannabinoid receptor type 1 (CB1 receptor) was the milestone discovery in the elucidation of the behavioural and emotional responses induced by the Cannabis sativa constituent Delta(9)-tetrahydrocannabinol. The subsequent years have established the existence of the endocannabinoid system. The early view relating this system to emotional responses is reflected by the fact that N-arachidonoyl ethanolamine, the pioneer endocannabinoid, was named anandamide after the Sanskrit word 'ananda', meaning 'bliss'. However, the emotional responses to cannabinoids are not always pleasant and delightful. Rather, anxiety and panic may also occur after activation of CB1 receptors. The present review discusses three properties of the endocannabinoid system as an attempt to understand these diverse effects. First, this system typically functions 'on-demand', depending on environmental stimuli and on the emotional state of the organism. Second, it has a wide neuro-anatomical distribution, modulating brain regions with different functions in responses to aversive stimuli. Third, endocannabinoids regulate the release of other neurotransmitters that may have even opposing functions, such as GABA and glutamate. Further understanding of the temporal, spatial and functional characteristics of this system is necessary to clarify its role in emotional responses and will promote advances in its therapeutic exploitation.

  12. The endocannabinoid system and cancer: therapeutic implication.

    Science.gov (United States)

    Guindon, Josée; Hohmann, Andrea G

    2011-08-01

    The endocannabinoid system is implicated in a variety of physiological and pathological conditions (inflammation, immunomodulation, analgesia, cancer and others). The main active ingredient of cannabis, Δ(9) -tetrahydrocannabinol (Δ(9) -THC), produces its effects through activation of CB(1) and CB(2) receptors. CB(1) receptors are expressed at high levels in the central nervous system (CNS), whereas CB(2) receptors are concentrated predominantly, although not exclusively, in cells of the immune system. Endocannabinoids are endogenous lipid-signalling molecules that are generated in the cell membrane from phospholipid precursors. The two best characterized endocannabinoids identified to date are anandamide (AEA) and 2-arachidonoylglycerol (2-AG). Here we review the relationship between the endocannabinoid system and anti-tumour actions (inhibition of cell proliferation and migration, induction of apoptosis, reduction of tumour growth) of the cannabinoids in different types of cancer. This review will focus on examining how activation of the endocannabinoid system impacts breast, prostate and bone cancers in both in vitro and in vivo systems. The therapeutic potential of cannabinoids for cancer, as identified in clinical trials, is also discussed. Identification of safe and effective treatments to manage and improve cancer therapy is critical to improve quality of life and reduce unnecessary suffering in cancer patients. In this regard, cannabis-like compounds offer therapeutic potential for the treatment of breast, prostate and bone cancer in patients. Further basic research on anti-cancer properties of cannabinoids as well as clinical trials of cannabinoid therapeutic efficacy in breast, prostate and bone cancer is therefore warranted. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  13. Endocannabinoid involvement in reward and impulsivity in addiction

    OpenAIRE

    van Hell, H.H.

    2011-01-01

    Addiction is one of the most disabling diseases in the world. An important neurotransmitter system that has recently been implicated in addiction is the endocannabinoid system. The endocannabinoid system consists of cannabinoid receptors and endocannabinoid ligands that work on these receptors. Animal studies have shown that blocking the cannabinoid system prevents relapse to addiction, while activating the cannabinoid system with an agonist evokes relapse. Still, the involvement of the endoc...

  14. Classical endocannabinoid-like compounds and their regulation by nutrients

    DEFF Research Database (Denmark)

    Kleberg, Karen; Hassing, Helle A.; Hansen, Harald S.

    2014-01-01

    Endocannabinoid-like compounds are structurally related to the true endocannabinoids but do not contain highly unsaturated fatty acids, and they do not bind the cannabinoid receptors. The classical endocannabinoid-like compounds include N-acylethanolamines and 2-monoacylglycerols, and their struc......Endocannabinoid-like compounds are structurally related to the true endocannabinoids but do not contain highly unsaturated fatty acids, and they do not bind the cannabinoid receptors. The classical endocannabinoid-like compounds include N-acylethanolamines and 2-monoacylglycerols......, and their structural resemblance to the endocannabinoids makes them players in the endocannabinoid system, where they can interfere with the actions of the true endocannabinoids, because they in several cases engage the same synthesizing and degrading enzymes. In addition they have pharmacological actions of their own...... in regulating food intake, through signaling via PPARα and the vagus nerve to the brain appetite center. A chronic high-fat diet will decrease intestinal levels of these anorectic N-acylethanolamines and this may contribute to the hyperphagic effect of high-fat diet; 2-monoacylglycerols mediate endocrine...

  15. The skeletal endocannabinoid system: clinical and experimental insights.

    Science.gov (United States)

    Raphael, Bitya; Gabet, Yankel

    2016-05-01

    Recently, there has been a rapidly growing interest in the role of cannabinoids in the regulation of skeletal remodeling and bone mass, addressed in basic, translational and clinical research. Since the first publications in 2005, there are more than 1000 publications addressing the skeletal endocannabinoid system. This review focuses on the roles of the endocannabinoid system in skeletal biology via the cannabinoid receptors CB1, CB2 and others. Endocannabinoids play important roles in bone formation, bone resorption and skeletal growth, and are sometimes age, gender, species and strain dependent. Controversies in the literature and potential therapeutic approaches targeting the endocannabinoid system in skeletal disorders are also discussed.

  16. Endocannabinoid System and Synaptic Plasticity: Implications for Emotional Responses

    Directory of Open Access Journals (Sweden)

    María-Paz Viveros

    2007-01-01

    Full Text Available The endocannabinoid system has been involved in the regulation of anxiety, and proposed as an inhibitory modulator of neuronal, behavioral and adrenocortical responses to stressful stimuli. Brain regions such as the amygdala, hippocampus and cortex, which are directly involved in the regulation of emotional behavior, contain high densities of cannabinoid CB1 receptors. Mutant mice lacking CB1 receptors show anxiogenic and depressive-like behaviors as well as an altered hypothalamus pituitary adrenal axis activity, whereas enhancement of endocannabinoid signaling produces anxiolytic and antidepressant-like effects. Genetic and pharmacological approaches also support an involvement of endocannabinoids in extinction of aversive memories. Thus, the endocannabinoid system appears to play a pivotal role in the regulation of emotional states. Endocannabinoids have emerged as mediators of short- and long- term synaptic plasticity in diverse brain structures. Despite the fact that most of the studies on this field have been performed using in vitro models, endocannabinoid-mediated plasticity might be considered as a plausible candidate underlying some of the diverse physiological functions of the endogenous cannabinoid system, including developmental, affective and cognitive processes. In this paper, we will focus on the functional relevance of endocannabinoid-mediated plasticity within the framework of emotional responses. Alterations of the endocannabinoid system may constitute an important factor in the aetiology of certain neuropsychiatric disorders, and, in turn, enhancers of endocannabinoid signaling could represent a potential therapeutical tool in the treatment of both anxiety and depressive symptoms.

  17. A re-evaluation of the final step of vanillin biosynthesis in the orchid Vanilla planifolia.

    Science.gov (United States)

    Yang, Hailian; Barros-Rios, Jaime; Kourteva, Galina; Rao, Xiaolan; Chen, Fang; Shen, Hui; Liu, Chenggang; Podstolski, Andrzej; Belanger, Faith; Havkin-Frenkel, Daphna; Dixon, Richard A

    2017-07-01

    A recent publication describes an enzyme from the vanilla orchid Vanilla planifolia with the ability to convert ferulic acid directly to vanillin. The authors propose that this represents the final step in the biosynthesis of vanillin, which is then converted to its storage form, glucovanillin, by glycosylation. The existence of such a "vanillin synthase" could enable biotechnological production of vanillin from ferulic acid using a "natural" vanilla enzyme. The proposed vanillin synthase exhibits high identity to cysteine proteases, and is identical at the protein sequence level to a protein identified in 2003 as being associated with the conversion of 4-coumaric acid to 4-hydroxybenzaldehyde. We here demonstrate that the recombinant cysteine protease-like protein, whether expressed in an in vitro transcription-translation system, E. coli, yeast, or plants, is unable to convert ferulic acid to vanillin. Rather, the protein is a component of an enzyme complex that preferentially converts 4-coumaric acid to 4-hydroxybenzaldehyde, as demonstrated by the purification of this complex and peptide sequencing. Furthermore, RNA sequencing provides evidence that this protein is expressed in many tissues of V. planifolia irrespective of whether or not they produce vanillin. On the basis of our results, V. planifolia does not appear to contain a cysteine protease-like "vanillin synthase" that can, by itself, directly convert ferulic acid to vanillin. The pathway to vanillin in V. planifolia is yet to be conclusively determined. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Beyond Cannabis: Plants and the Endocannabinoid System.

    Science.gov (United States)

    Russo, Ethan B

    2016-07-01

    Plants have been the predominant source of medicines throughout the vast majority of human history, and remain so today outside of industrialized societies. One of the most versatile in terms of its phytochemistry is cannabis, whose investigation has led directly to the discovery of a unique and widespread homeostatic physiological regulator, the endocannabinoid system. While it had been the conventional wisdom until recently that only cannabis harbored active agents affecting the endocannabinoid system, in recent decades the search has widened and identified numerous additional plants whose components stimulate, antagonize, or modulate different aspects of this system. These include common foodstuffs, herbs, spices, and more exotic ingredients: kava, chocolate, black pepper, and many others that are examined in this review. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The endocannabinoid system and the brain.

    Science.gov (United States)

    Mechoulam, Raphael; Parker, Linda A

    2013-01-01

    The psychoactive constituent in cannabis, Δ(9)-tetrahydrocannabinol (THC), was isolated in the mid-1960s, but the cannabinoid receptors, CB1 and CB2, and the major endogenous cannabinoids (anandamide and 2-arachidonoyl glycerol) were identified only 20 to 25 years later. The cannabinoid system affects both central nervous system (CNS) and peripheral processes. In this review, we have tried to summarize research--with an emphasis on recent publications--on the actions of the endocannabinoid system on anxiety, depression, neurogenesis, reward, cognition, learning, and memory. The effects are at times biphasic--lower doses causing effects opposite to those seen at high doses. Recently, numerous endocannabinoid-like compounds have been identified in the brain. Only a few have been investigated for their CNS activity, and future investigations on their action may throw light on a wide spectrum of brain functions.

  20. A new face of endocannabinoids in pharmacotherapy. Part II: role of endocannabinoids in inflammation-derived cardiovaascular diseases.

    Science.gov (United States)

    Zubrzycki, M; Liebold, A; Janecka, A; Zubrzycka, M

    2014-04-01

    Endocannabinoids play an important role in cardiovascular diseases caused by inflammatory disorders. Endocannabinoids are endogenous bioactive lipids that activate cannabinoid receptors and together with enzymes responsible for their synthesis and degradation constitute endocannabinoid system. The results obtained to date suggest the involvement of endocannabinoids in the pathology of many cardiovascular diseases associated with inflammation, such as atherosclerosis, restenosis, chemotherapy-induced myocardial injury, diabetic and hepatic cirrhosis cardiomyopathy. Our better understanding of cannabinoid system may result in the development of new strategies for the treatment of such disorders.

  1. Endocannabinoids modulate apoptosis in endometriosis and adenomyosis.

    Science.gov (United States)

    Bilgic, Elif; Guzel, Elif; Kose, Sevil; Aydin, Makbule Cisel; Karaismailoglu, Eda; Akar, Irem; Usubutun, Alp; Korkusuz, Petek

    2017-06-01

    Adenomyosis that is a form of endometriosis is the growth of ectopic endometrial tissue within the muscular wall of the uterus (myometrium), which may cause dysmenorrhea and infertility. Endocannabinoid mediated apoptotic mechanisms of endometriosis and adenomyosis are not known. We hypothesized that the down regulation of endocannabinoid receptors and/or alteration in their regulatory enzymes may have a direct role in the pathogenesis of endometriosis and adenomyosis through apoptosis. Endocannabinoid receptors CB1 and CB2, their synthesizing and catabolizing enzymes (FAAH, NAPE-PLD, DAGL, MAGL) and the apoptotic indexes were immunohistochemically assessed in endometriotic and adenomyotic tissues. Findings were compared to normal endometrium and myometrium. Endometrial adenocarcinoma (Ishikawa) and ovarian endometriosis cyst wall stromal (CRL-7566) cell lines were furthermore cultured with or without cannabinoid receptor agonists. The IC50 value for CB1 and CB2 receptor agonists was quantified. Cannabinoid agonists on cell death were investigated by Annexin-V/Propidium iodide labeling with flow cytometry. CB1 and CB2 receptor levels decreased in endometriotic and adenomyotic tissues compared to the control group (p=0,001 and p=0,001). FAAH, NAPE-PLD, MAGL and DAGL enzyme levels decreased in endometriotic and adenomyotic tissues compared to control (p=0,001, p=0,001, p=0,001 and p=0,002 respectively). Apoptotic cell indexes both in endometriotic and adenomyotic tissues also decreased significantly, compared to the control group (p=0,001 and p=0,001). CB1 and CB2 receptor agonist mediated dose dependent fast anti-proliferative and pro-apoptotic effects were detected in Ishikawa and ovarian endometriosis cyst wall stromal cell lines (CRL-7566). Endocannabinoids are suggested to increase apoptosis mechanisms in endometriosis and adenomyosis. CB1 and CB2 antagonists can be considered as potential medical therapeutic agents for endometriosis and adenomyosis. Copyright

  2. Cannabis and Endocannabinoid Signaling in Epilepsy.

    Science.gov (United States)

    Katona, István

    2015-01-01

    The antiepileptic potential of Cannabis sativa preparations has been historically recognized. Recent changes in legal restrictions and new well-documented cases reporting remarkably strong beneficial effects have triggered an upsurge in exploiting medical marijuana in patients with refractory epilepsy. Parallel research efforts in the last decade have uncovered the fundamental role of the endogenous cannabinoid system in controlling neuronal network excitability raising hopes for cannabinoid-based therapeutic approaches. However, emerging data show that patient responsiveness varies substantially, and that cannabis administration may sometimes even exacerbate seizures. Qualitative and quantitative chemical variability in cannabis products and personal differences in the etiology of seizures, or in the pathological reorganization of epileptic networks, can all contribute to divergent patient responses. Thus, the consensus view in the neurologist community is that drugs modifying the activity of the endocannabinoid system should first be tested in clinical trials to establish efficacy, safety, dosing, and proper indication in specific forms of epilepsies. To support translation from anecdote-based practice to evidence-based therapy, the present review first introduces current preclinical and clinical efforts for cannabinoid- or endocannabinoid-based epilepsy treatments. Next, recent advances in our knowledge of how endocannabinoid signaling limits abnormal network activity as a central component of the synaptic circuit-breaker system will be reviewed to provide a framework for the underlying neurobiological mechanisms of the beneficial and adverse effects. Finally, accumulating evidence demonstrating robust synapse-specific pathophysiological plasticity of endocannabinoid signaling in epileptic networks will be summarized to gain better understanding of how and when pharmacological interventions may have therapeutic relevance.

  3. Biosynthesis of AgNPs using Carica Papaya peel extract and evaluation of its antioxidant and antimicrobial activities.

    Science.gov (United States)

    Kokila, T; Ramesh, P S; Geetha, D

    2016-12-01

    Waste fruit peel mediated synthesis of silver nanoparticles (AgNPs) is a green chemistry approach that links nanotechnology and biotechnology. Using biological medium such as peel extract for the biosynthesis of nanoparticles is an ecofriendly and emerging scientific trend. With this back drop the present study focused on the biosynthesis of AgNPs using Carica Papaya peel extract (CPPE) and evaluation of its antimicrobial potentials of the nanoparticles against different human pathogens and to investigate the free radical scavenging activity. Water soluble antioxidant constituents present in Carica Papaya peel extract were mainly responsible for the reduction of silver ions to nanosized Ag particles. UV-vis spectral analysis shows surface plasmon resonance band at 430nm. The presence of active proteins and phenolic groups present in the biomass before and after reduction was identified by Fourier transform infrared spectroscopy. X-ray diffraction study shows the average size of the silver nanoparticles is in the range of 28nm, as well as revealed their face centered cubic structure. Atomic force microscope image gives the 3D topological characteristic of silver nanoparticles and the particle size ranges from 10 to 30nm. The average particle size distribution of silver nanoparticles is 161nm (Dynamic light scattering) and the corresponding average zeta potential value is -20.5mV, suggesting higher stability of silver nanoparticles. Biologically synthesized nanoparticles efficiently inhibited pathogenic organisms both gram-positive and gram-negative bacteria. The biosynthesized nanoparticles might serve as a potent antioxidant as revealed by DPPH and ABT S+ assay. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. The Endocannabinoid System, Cannabinoids, and Pain

    Directory of Open Access Journals (Sweden)

    Perry G. Fine

    2013-10-01

    Full Text Available The endocannabinoid system is involved in a host of homeostatic and physiologic functions, including modulation of pain and inflammation. The specific roles of currently identified endocannabinoids that act as ligands at endogenous cannabinoid receptors within the central nervous system (primarily but not exclusively CB1 receptors and in the periphery (primarily but not exclusively CB2 receptors are only partially elucidated, but they do exert an influence on nociception. Exogenous plant-based cannabinoids (phytocannabinoids and chemically related compounds, like the terpenes, commonly found in many foods, have been found to exert significant analgesic effects in various chronic pain conditions. Currently, the use of Δ9-tetrahydrocannabinol is limited by its psychoactive effects and predominant delivery route (smoking, as well as regulatory or legal constraints. However, other phytocannabinoids in combination, especially cannabidiol and β-caryophyllene, delivered by the oral route appear to be promising candidates for the treatment of chronic pain due to their high safety and low adverse effects profiles. This review will provide the reader with the foundational basic and clinical science linking the endocannabinoid system and the phytocannabinoids with their potentially therapeutic role in the management of chronic pain.

  5. Endocannabinoids mediate neuron-astrocyte communication.

    Science.gov (United States)

    Navarrete, Marta; Araque, Alfonso

    2008-03-27

    Cannabinoid receptors play key roles in brain function, and cannabinoid effects in brain physiology and drug-related behavior are thought to be mediated by receptors present in neurons. Neuron-astrocyte communication relies on the expression by astrocytes of neurotransmitter receptors. Yet, the expression of cannabinoid receptors by astrocytes in situ and their involvement in the neuron-astrocyte communication remain largely unknown. We show that hippocampal astrocytes express CB1 receptors that upon activation lead to phospholipase C-dependent Ca2+ mobilization from internal stores. These receptors are activated by endocannabinoids released by neurons, increasing astrocyte Ca2+ levels, which stimulate glutamate release that activates NMDA receptors in pyramidal neurons. These results demonstrate the existence of endocannabinoid-mediated neuron-astrocyte communication, revealing that astrocytes are targets of cannabinoids and might therefore participate in the physiology of cannabinoid-related addiction. They also reveal the existence of an endocannabinoid-glutamate signaling pathway where astrocytes serve as a bridge for nonsynaptic interneuronal communication.

  6. Endocannabinoids and Liver Disease. III. Endocannabinoid effects on immune cells: implications for inflammatory liver diseases

    Science.gov (United States)

    Pacher, Pál; Gao, Bin

    2008-01-01

    Recent studies have implicated dysregulation of the endocannabinoid system in various liver diseases and their complications (e.g., hepatitis, fibrosis, cirrhosis, cirrhotic cardiomyopathy, and ischemia-reper-fusion), and demonstrated that its modulation by either cannabinoid 2 (CB2) receptor agonists or CB1 antagonists may be of significant therapeutic benefits. This review is aimed to focus on the triggers and sources of endocannabinoids during liver inflammation and on the novel role of CB2 receptors in the interplay between the activated endothelium and various inflammatory cells (leukocytes, lymphocytes, etc.), which play pivotal role in the early development and progression of inflammatory and other liver diseases. PMID:18239059

  7. Motion sickness, stress and the endocannabinoid system.

    Directory of Open Access Journals (Sweden)

    Alexander Choukèr

    Full Text Available BACKGROUND: A substantial number of individuals are at risk for the development of motion sickness induced nausea and vomiting (N&V during road, air or sea travel. Motion sickness can be extremely stressful but the neurobiologic mechanisms leading to motion sickness are not clear. The endocannabinoid system (ECS represents an important neuromodulator of stress and N&V. Inhibitory effects of the ECS on N&V are mediated by endocannabinoid-receptor activation. METHODOLOGY/PRINCIPAL FINDINGS: We studied the activity of the ECS in human volunteers (n = 21 during parabolic flight maneuvers (PFs. During PFs, microgravity conditions (<10(-2 g are generated for approximately 22 s which results in a profound kinetic stimulus. Blood endocannabinoids (anandamide and 2-arachidonoylglycerol, 2-AG were measured from blood samples taken in-flight before start of the parabolic maneuvers, after 10, 20, and 30 parabolas, in-flight after termination of PFs and 24 h later. Volunteers who developed acute motion sickness (n = 7 showed significantly higher stress scores but lower endocannabinoid levels during PFs. After 20 parabolas, blood anandamide levels had dropped significantly in volunteers with motion sickness (from 0.39+/-0.40 to 0.22+/-0.25 ng/ml but increased in participants without the condition (from 0.43+/-0.23 to 0.60+/-0.38 ng/ml resulting in significantly higher anandamide levels in participants without motion sickness (p = 0.02. 2-AG levels in individuals with motion sickness were low and almost unchanged throughout the experiment but showed a robust increase in participants without motion sickness. Cannabinoid-receptor 1 (CB1 but not cannabinoid-receptor 2 (CB2 mRNA expression in leucocytes 4 h after the experiment was significantly lower in volunteers with motion sickness than in participants without N&V. CONCLUSIONS/SIGNIFICANCE: These findings demonstrate that stress and motion sickness in humans are associated with impaired endocannabinoid

  8. Endocannabinoids and the Cardiovascular System in Health and Disease.

    Science.gov (United States)

    O'Sullivan, Saoirse Elizabeth

    2015-01-01

    The endocannabinoid system is widely distributed throughout the cardiovascular system. Endocannabinoids play a minimal role in the regulation of cardiovascular function in normal conditions, but are altered in most cardiovascular disorders. In shock, endocannabinoids released within blood mediate the associated hypotension through CB(1) activation. In hypertension, there is evidence for changes in the expression of CB(1), and CB(1) antagonism reduces blood pressure in obese hypertensive and diabetic patients. The endocannabinoid system is also upregulated in cardiac pathologies. This is likely to be cardioprotective, via CB(2) and CB(1) (lesser extent). In the vasculature, endocannabinoids cause vasorelaxation through activation of multiple target sites, inhibition of calcium channels, activation of potassium channels, NO production and the release of vasoactive substances. Changes in the expression or function of any of these pathways alter the vascular effect of endocannabinoids. Endocannabinoids have positive (CB(2)) and negative effects (CB(1)) on the progression of atherosclerosis. However, any negative effects of CB(1) may not be consequential, as chronic CB(1) antagonism in large scale human trials was not associated with significant reductions in atheroma. In neurovascular disorders such as stroke, endocannabinoids are upregulated and protective, involving activation of CB(1), CB(2), TRPV1 and PPARα. Although most of this evidence is from preclinical studies, it seems likely that cannabinoid-based therapies could be beneficial in a range of cardiovascular disorders.

  9. Endocannabinoid system: potential novel targets for treatment of schizophrenia.

    Science.gov (United States)

    Saito, Atsushi; Ballinger, Michael D L; Pletnikov, Mikhail V; Wong, Dean F; Kamiya, Atsushi

    2013-05-01

    Accumulating epidemiological evidences suggest that cannabis use during adolescence is a potential environmental risk for the development of psychosis, including schizophrenia. Consistently, clinical and preclinical studies, using pharmacological approaches and genetically engineered animals to target endocannabinoid signaling, reveal the multiple varieties of endocannabinoid system-mediated human and animal behaviors, including cognition and emotion. Recently, there has been substantial progress in understanding the molecular mechanisms of the endocannabinoid system for synaptic communications in the central nervous system. Furthermore, the impact of endocannabinoid signaling on diverse cellular processes during brain development has emerged. Thus, although schizophrenia has etiological complexities, including genetic heterogeneities and multiple environmental factors, it now becomes crucial to explore molecular pathways of convergence of genetic risk factors and endocannabinoid signaling, which may provide us with clues to find novel targets for therapeutic intervention. In this review, epidemiological, clinical, and pathological evidences on the role of the endocannabinoid system in the pathophysiologies of schizophrenia will be presented. We will also make a brief overview of the recent progress in understanding molecular mechanisms of the endocannabinoid system for brain development and function, with particular focus on cannabinoid receptor type 1 (CB1R)-mediated cascade, the most well-characterized cannabinoid receptor. Lastly, we will discuss the potential of the endocannabinoid system in finding novel therapeutic targets for prevention and treatment of schizophrenia. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Endocannabinoid system: potential novel targets for treatment of schizophrenia

    OpenAIRE

    Saito, Atsushi; Ballinger, Michael; Pletnikov, Mikhail V.; Wong, Dean F.; Kamiya, Atsushi

    2012-01-01

    Accumulating epidemiological evidences suggest that cannabis use during adolescence is a potential environmental risk for the development of psychosis, including schizophrenia. Consistently, clinical and preclinical studies, using pharmacological approaches and genetically engineered animals to target endocannabinoid signaling, reveal the multiple varieties of endocannabinoid system-mediated human and animal behaviors, including cognition and emotion. Recently, there has been substantial prog...

  11. Quantification of endocannabinoids in postmortem brain of schizophrenic subjects.

    Science.gov (United States)

    Muguruza, Carolina; Lehtonen, Marko; Aaltonen, Niina; Morentin, Benito; Meana, J Javier; Callado, Luis F

    2013-08-01

    Numerous studies have implicated the endocannabinoid system in the pathophysiology of schizophrenia. Endocannabinoids have been measured in blood and cerebrospinal fluid in schizophrenic patients but, to the date, there are no published reports dealing with measurements of endocannabinoid levels in schizophrenics' brain tissue. In the present study, postmortem brain samples from 19 subjects diagnosed with schizophrenia (DSM-IV) and 19 matched controls were studied. In specific brain regions, levels of four endocannabinoids (2-arachidonoylglycerol (2-AG), arachidonoylethanolamine (anandamide, AEA), dihomo-γ-linolenoylethanolamine (LEA), and docosahexaenoylethanolamine (DHEA)) and two cannabimimetic compounds (palmitoyl-ethanolamine (PEA) and oleoyl-ethanolamine (OEA)) were measured using quantitative liquid chromatography with triple quadrupole mass spectrometric detection. Suffering from schizophrenia significantly affects the brain levels of 2-AG (pendocannabinoids in different brain regions of schizophrenic subjects. Furthermore, these data evidence the involvement of the endocannabinoid system in the pathophysiology of schizophrenia. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Regulation of inflammation by cannabinoids, the endocannabinoids 2-arachidonoyl-glycerol and arachidonoyl-ethanolamide, and their metabolites.

    Science.gov (United States)

    Turcotte, Caroline; Chouinard, François; Lefebvre, Julie S; Flamand, Nicolas

    2015-06-01

    2-Arachidonoyl-glycerol (2-AG) and arachidonyl-ethanolamide (AEA) are endocannabinoids that have been implicated in many physiologic disorders, including obesity, metabolic syndromes, hepatic diseases, pain, neurologic disorders, and inflammation. Their immunomodulatory effects are numerous and are not always mediated by cannabinoid receptors, reflecting the presence of an arachidonic acid (AA) molecule in their structure, the latter being the precursor of numerous bioactive lipids that are pro- or anti-inflammatory. 2-AG and AEA can thus serve as a source of AA but can also be metabolized by most eicosanoid biosynthetic enzymes, yielding additional lipids. In this regard, enhancing endocannabinoid levels by using endocannabinoid hydrolysis inhibitors is likely to augment the levels of these lipids that could regulate inflammatory cell functions. This review summarizes the metabolic pathways involved in the biosynthesis and metabolism of AEA and 2-AG, as well as the biologic effects of the 2-AG and AEA lipidomes in the regulation of inflammation. © Society for Leukocyte Biology.

  13. Proapoptotic effect of endocannabinoids in prostate cancer cells

    Science.gov (United States)

    ORELLANA-SERRADELL, O.; POBLETE, C.E.; SANCHEZ, C.; CASTELLÓN, E.A.; GALLEGOS, I.; HUIDOBRO, C.; LLANOS, M.N.; CONTRERAS, H.R.

    2015-01-01

    In the early stages, prostate cancer is androgen- dependent; therefore, medical castration has shown significant results during the initial stages of this pathology. Despite this early effect, advanced prostate cancer is resilient to such treatment. Recent evidence shows that derivatives of Cannabis sativa and its analogs may exert a protective effect against different types of oncologic pathologies. The purpose of the present study was to detect the presence of cannabinoid receptors (CB1 and CB2) on cancer cells with a prostatic origin and to evaluate the effect of the in vitro use of synthetic analogs. In order to do this, we used a commercial cell line and primary cultures derived from prostate cancer and benign prostatic hyperplasia. The presence of the CB1 and CB2 receptors was determined by immunohistochemistry where we showed a higher expression of these receptors in later stages of the disease (samples with a high Gleason score). Later, treatments were conducted using anandamide, 2-arachidonoyl glycerol and a synthetic analog of anandamide, methanandamide. Using the MTT assay, we proved that the treatments produced a cell growth inhibitory effect on all the different prostate cancer cultures. This effect was demonstrated to be dose-dependent. The use of a specific CB1 receptor blocker (SR141716) confirmed that this effect was produced primarily from the activation of the CB1 receptor. In order to understand the MTT assay results, we determined cell cycle distribution by flow cytometry, which showed no variation at the different cell cycle stages in all the cultures after treatment. Treatment with endocannabinoids resulted in an increase in the percentage of apoptotic cells as determined by Annexin V assays and caused an increase in the levels of activated caspase-3 and a reduction in the levels of Bcl-2 confirming that the reduction in cell viability noted in the MTT assay was caused by the activation of the apoptotic pathway. Finally, we observed that

  14. A new face of endocannabinoids in pharmacotherapy. Part I: protective role of endocannabinoids in hypertension and myocardial infarction.

    Science.gov (United States)

    Zubrzycki, M; Liebold, A; Janecka, A; Zubrzycka, M

    2014-04-01

    Cannabinoids are compounds which were first isolated from the Cannabis sativa plant. For thousands of years they have been used for treatment of numerous diseases. Currently, synthetic cannabinoids and endocannabinoids are also known. Cannabinoid receptors, endocannabinoids and the enzymes that catalyze their synthesis and degradation constitute the endocannabinoid system which plays an important role in functioning of the cardiovascular system. The results obtained to date suggest the involvement of endocannabinoids in the pathology of many cardiovascular diseases, including myocardial infarction, hypertension and hypotension associated with hemorrhagic, endotoxic, and cardiogenic shock. Cardioprotective effect and dilation of coronary vessels induced by endocannabinoids deserve special attention. It cannot be excluded now that in the future our better understanding of cannabinoid system will allow to develop new strategies for treatment of cardiovascular diseases.

  15. Modulation of 3,4-methylenedioxymethamphetamine effects by endocannabinoid system.

    Science.gov (United States)

    Valverde, Olga; Rodríguez-Árias, Marta

    2013-01-01

    The amphetamine derivative 3, 4 Methylenedioxymethanphetamine (MDMA) is a powerful central nervous system stimulant that displays numerous pharmacological effects, including neurotoxicity. MDMA, or ecstasy, acts by inducing the release of different neurotransmitters depending on the animal species and, in particular, it produces the release of serotonin and dopamine. MDMA induces rewarding and reinforcing effects in rodents, primates and humans, and is currently consumed as an illicit psychostimulant among young people. One of the most reported side effects is the hyperthermic effect and the neurotoxicity on central serotonergic and dopaminergic neurons, depending on the species of animal. It seems that MDMA may also produce neurotoxic effects in humans. To date, the most consistent findings associated to MDMA consumption in humans relate to cognitive deficits in heavy users. MDMA when consumed as an illicit psychostimulant is commonly co-used with other abusers, being frequently associated with cannabinoids. The interaction between MDMA and cannabis effects is complex. Cannabis derivatives act on endocannabinoid system. Thus, at cellular levels, cannabinoids acting through CB1 cannabinoid receptors display opposite effects to those induced by MDMA, and they have been reported to develop neuroprotective actions, including the blockage of MDMA induced neurotoxicity, in laboratory animals. However, cannabis use is a recognized risk factor in the presentation and development of neuropsychiatric disorders, and also contributes to the development of psychological problems and cognitive failures observed in MDMA users. This paper represents a brief overview of the pharmacological interaction between MDMA and cannabis derivatives acting in the endocannabinoid system. We have evaluated recent findings in the literature of the most representative pharmacological effects displayed by both types of drugs. We analyze both, the synergic and opposite effects produced by these

  16. Differential Regulation of Eicosanoid and Endocannabinoid Production by Inflammatory Mediators in Human Choriodecidua.

    Directory of Open Access Journals (Sweden)

    M D Mitchell

    Full Text Available An increase in intrauterine prostaglandin production is critical for the onset and progression of labor in women and indeed all mammalian species studied. Endocannabinoids can act as substrates for enzymes of the prostaglandin biosynthetic pathways and can be utilized to generate other related compounds such as prostamides. The end products are indistinguishable by radioimmunoassay. We have separated such compounds by mass spectrometry. We now show that inflammatory stimuli such as LPS and proinflammatory cytokines act differentially on these pathways in human choriodecidua and preferentially create drive through to prostaglandin end products. These findings create doubt about the interpretation of data on prostaglandin biosynthesis in intrauterine tissues from pregnant women especially in the presence of an infection. The possibility is raised that separation of these products might reduce variability in results and lead to potential uses for their measurement in the diagnosis of preterm labor.

  17. The endocannabinoid system in canine Steroid-Responsive Meningitis-Arteritis and Intraspinal Spirocercosis.

    Science.gov (United States)

    Freundt-Revilla, Jessica; Heinrich, Franciska; Zoerner, Alexander; Gesell, Felix; Beyerbach, Martin; Shamir, Merav; Oevermann, Anna; Baumgärtner, Wolfgang; Tipold, Andrea

    2018-01-01

    Endocannabinoids (ECs) are involved in immunomodulation, neuroprotection and control of inflammation in the central nervous system (CNS). Activation of cannabinoid type 2 receptors (CB2) is known to diminish the release of pro-inflammatory factors and enhance the secretion of anti-inflammatory cytokines. Furthermore, the endocannabinoid 2-arachidonoyl glycerol (2-AG) has been proved to induce the migration of eosinophils in a CB2 receptor-dependent manner in peripheral blood and activate neutrophils independent of CB activation in humans. The aim of the current study was to investigate the influence of the endocannabinoid system in two different CNS inflammatory diseases of the dog, i.e. Steroid-Responsive Meningitis-Arteritis (SRMA) and Intraspinal Spirocercosis (IS). The two main endocannabinoids, anandamide (AEA) and 2-AG, were quantified by mass spectrometry in CSF and serum samples of dogs affected with Steroid- Responsive Meningitis-Arteritis in the acute phase (SRMA A), SRMA under treatment with prednisolone (SRMA Tr), intraspinal Spirocercosis and healthy dogs. Moreover, expression of the CB2 receptor was evaluated in inflammatory lesions of SRMA and IS and compared to healthy controls using immunohistochemistry (IHC). Dogs with SRMA A showed significantly higher concentrations of total AG and AEA in serum in comparison to healthy controls and in CSF compared to SRMA Tr (p<0.05). Furthermore, dogs with IS displayed the highest ECs concentrations in CSF, being significantly higher than in CSF samples of dogs with SRMA A (p<0.05). CSF samples that demonstrated an eosinophilic pleocytosis had the highest levels of ECs, exceeding those with neutrophilic pleocytosis, suggesting that ECs have a major effect on migration of eosinophils in the CSF. Furthermore, CB2 receptor expression was found in glial cells in the spinal cord of healthy dogs, whereas in dogs with SRMA and IS, CB2 was strongly expressed not only in glial cells but also on the cellular surface of

  18. Fetal endocannabinoids orchestrate the organization of pancreatic islet microarchitecture.

    Science.gov (United States)

    Malenczyk, Katarzyna; Keimpema, Erik; Piscitelli, Fabiana; Calvigioni, Daniela; Björklund, Peyman; Mackie, Kenneth; Di Marzo, Vincenzo; Hökfelt, Tomas G M; Dobrzyn, Agnieszka; Harkany, Tibor

    2015-11-10

    Endocannabinoids are implicated in the control of glucose utilization and energy homeostasis by orchestrating pancreatic hormone release. Moreover, in some cell niches, endocannabinoids regulate cell proliferation, fate determination, and migration. Nevertheless, endocannabinoid contributions to the development of the endocrine pancreas remain unknown. Here, we show that α cells produce the endocannabinoid 2-arachidonoylglycerol (2-AG) in mouse fetuses and human pancreatic islets, which primes the recruitment of β cells by CB1 cannabinoid receptor (CB1R) engagement. Using subtractive pharmacology, we extend these findings to anandamide, a promiscuous endocannabinoid/endovanilloid ligand, which impacts both the determination of islet size by cell proliferation and α/β cell sorting by differential activation of transient receptor potential cation channel subfamily V member 1 (TRPV1) and CB1Rs. Accordingly, genetic disruption of TRPV1 channels increases islet size whereas CB1R knockout augments cellular heterogeneity and favors insulin over glucagon release. Dietary enrichment in ω-3 fatty acids during pregnancy and lactation in mice, which permanently reduces endocannabinoid levels in the offspring, phenocopies CB1R(-/-) islet microstructure and improves coordinated hormone secretion. Overall, our data mechanistically link endocannabinoids to cell proliferation and sorting during pancreatic islet formation, as well as to life-long programming of hormonal determinants of glucose homeostasis.

  19. Crystallographic study of FABP5 as an intracellular endocannabinoid transporter

    Energy Technology Data Exchange (ETDEWEB)

    Sanson, Benoît; Wang, Tao [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Sun, Jing; Wang, Liqun; Kaczocha, Martin [Stony Brook University, Stony Brook, NY 11794-5213 (United States); Ojima, Iwao [Stony Brook University, Stony Brook, NY 1794-3400 (United States); Stony Brook University, Stony Brook, NY 11794-3400 (United States); Deutsch, Dale, E-mail: dale.deutsch@stonybrook.edu [Stony Brook University, Stony Brook, NY 11794-5213 (United States); Stony Brook University, Stony Brook, NY 11794-3400 (United States); Li, Huilin, E-mail: dale.deutsch@stonybrook.edu [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Stony Brook University, Stony Brook, NY 11794-5213 (United States); Stony Brook University, Stony Brook, NY 11794-3400 (United States)

    2014-02-01

    FABP5 was recently found to intracellularly transport endocannabinoid signaling lipids. The structures of FABP5 complexed with two endocannabinoids and an inhibitor were solved. Human FABP5 was found to dimerize via a domain-swapping mechanism. This work will help in the development of inhibitors to raise endocannabinoid levels. In addition to binding intracellular fatty acids, fatty-acid-binding proteins (FABPs) have recently been reported to also transport the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG), arachidonic acid derivatives that function as neurotransmitters and mediate a diverse set of physiological and psychological processes. To understand how the endocannabinoids bind to FABPs, the crystal structures of FABP5 in complex with AEA, 2-AG and the inhibitor BMS-309403 were determined. These ligands are shown to interact primarily with the substrate-binding pocket via hydrophobic interactions as well as a common hydrogen bond to the Tyr131 residue. This work advances our understanding of FABP5–endocannabinoid interactions and may be useful for future efforts in the development of small-molecule inhibitors to raise endocannabinoid levels.

  20. Control of synaptic function by endocannabinoid-mediated retrograde signaling

    Science.gov (United States)

    KANO, Masanobu

    2014-01-01

    Since the first reports in 2001, great advances have been made towards the understanding of endocannabinoid-mediated synaptic modulation. Electrophysiological studies have revealed that one of the two major endocannabinoids, 2-arachidonoylglycerol (2-AG), is produced from membrane lipids upon postsynaptic Ca2+ elevation and/or activation of Gq/11-coupled receptors, and released from postsynaptic neurons. The released 2-AG then acts retrogradely onto presynaptic cannabinoid CB1 receptors and induces suppression of neurotransmitter release either transiently or persistently. These forms of 2-AG-mediated retrograde synaptic modulation are functional throughout the brain. The other major endocannabinoid, anandamide, mediates a certain form of endocannabinoid-mediated long-term depression (LTD). Anandamide also functions as an agonist for transient receptor potential vanilloid receptor type 1 (TRPV1) and mediates endocannabinoid-independent and TRPV1-dependent forms of LTD. It has also been demonstrated that the endocannabinoid system itself is plastic, which can be either up- or down-regulated by experimental or environmental conditions. In this review, I will make an overview of the mechanisms underlying endocannabinoid-mediated synaptic modulation. PMID:25169670

  1. Analytical approaches for the determination of phytocannabinoids and endocannabinoids in human matrices.

    Science.gov (United States)

    Battista, Natalia; Sergi, Manuel; Montesano, Camilla; Napoletano, Sabino; Compagnone, Dario; Maccarrone, Mauro

    2014-01-01

    Over the last two decades, the role played by phytocannabinoids and endocannabinoids in medicine has gained increasing interest in the scientific community. Upon identification of the plant compound Δ(9)-tetrahydrocannabinol (THC) and of the endogenous substance anandamide (AEA), different methodological approaches and innovative techniques have been developed, in order to evaluate the content of these molecules in various human matrices. In this review, we discuss the analytical methods that are currently used for the identification of phytocannabinoids and endocannabinoids, and we summarize the benefits and limitations of these procedures. Moreover, we provide an overview of the main biological matrices that have been analyzed to date for qualitative detection and quantitative determination of these compounds. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Role of the endocannabinoid system in the control of mouse myometrium contractility during the menstrual cycle.

    Science.gov (United States)

    Pagano, Ester; Orlando, Pierangelo; Finizio, Stefania; Rossi, Antonietta; Buono, Lorena; Iannotti, Fabio Arturo; Piscitelli, Fabiana; Izzo, Angelo A; Di Marzo, Vincenzo; Borrelli, Francesca

    2017-01-15

    Cannabis and cannabinoids are known to affect female reproduction. However, the role of the endocannabinoid system in mouse uterine contractility in the dioestrus and oestrus phases has not been previously investigated. The present study aimed at filling this gap. Endocannabinoid (anandamide and 2-arachidonoylglycerol) levels were measured in mouse uterus at dioestrus and oestrus phases by liquid chromatography-mass spectrometry; quantitative reverse transcription-PCR and western blot were used to measured the expression of cannabinoid receptors and enzymes involved in the metabolism of endocannabinoids. Contractility was evaluated in vitro either on the spontaneous contractions or by stimulating the isolated uterus with exogenous spasmogens. The tissue concentrations of anandamide and 2-AG were reduced in the oestrus phase, compared to dioestrus. Uteri obtained in the dioestrus, but not oestrus, phase showed spontaneous phasic prostaglandin-mediated contractions that were reduced by ACEA (CB 1 receptor agonist) and to a lower extent by JWH133 (CB 2 receptor agonist). These inhibitory effects were counteracted by the corresponding selective antagonists. Neither ACEA nor JWH133 did affect the contractions induced by exogenous PGE 2 in the uterus from the oestrus phase. The FAAH inhibitor JNJ1661010 and, to a lower extent, the MAGL inhibitor JZL184 also reduced spontaneous contractions. It is concluded that the endocannabinoid system undergoes to adaptive changes between the oestrus and dioestrus phases. CB 1 and, to a lower extent, CB 2 receptor activation results in selective inhibition of myometrial contractility, without un-specific relaxing effects on the smooth muscle. These results might be of interest for female marijuana smokers as well as for the design of novel tocolytic agents. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The Endocannabinoid System in the Retina: From Physiology to Practical and Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Thomas Schwitzer

    2016-01-01

    Full Text Available Cannabis is one of the most prevalent drugs used in industrialized countries. The main effects of Cannabis are mediated by two major exogenous cannabinoids: ∆9-tetrahydroxycannabinol and cannabidiol. They act on specific endocannabinoid receptors, especially types 1 and 2. Mammals are endowed with a functional cannabinoid system including cannabinoid receptors, ligands, and enzymes. This endocannabinoid signaling pathway is involved in both physiological and pathophysiological conditions with a main role in the biology of the central nervous system. As the retina is a part of the central nervous system due to its embryonic origin, we aim at providing the relevance of studying the endocannabinoid system in the retina. Here, we review the distribution of the cannabinoid receptors, ligands, and enzymes in the retina and focus on the role of the cannabinoid system in retinal neurobiology. This review describes the presence of the cannabinoid system in critical stages of retinal processing and its broad involvement in retinal neurotransmission, neuroplasticity, and neuroprotection. Accordingly, we support the use of synthetic cannabinoids as new neuroprotective drugs to prevent and treat retinal diseases. Finally, we argue for the relevance of functional retinal measures in cannabis users to evaluate the impact of cannabis use on human retinal processing.

  4. The Endocannabinoid System in the Retina: From Physiology to Practical and Therapeutic Applications.

    Science.gov (United States)

    Schwitzer, Thomas; Schwan, Raymund; Angioi-Duprez, Karine; Giersch, Anne; Laprevote, Vincent

    2016-01-01

    Cannabis is one of the most prevalent drugs used in industrialized countries. The main effects of Cannabis are mediated by two major exogenous cannabinoids: ∆9-tetrahydroxycannabinol and cannabidiol. They act on specific endocannabinoid receptors, especially types 1 and 2. Mammals are endowed with a functional cannabinoid system including cannabinoid receptors, ligands, and enzymes. This endocannabinoid signaling pathway is involved in both physiological and pathophysiological conditions with a main role in the biology of the central nervous system. As the retina is a part of the central nervous system due to its embryonic origin, we aim at providing the relevance of studying the endocannabinoid system in the retina. Here, we review the distribution of the cannabinoid receptors, ligands, and enzymes in the retina and focus on the role of the cannabinoid system in retinal neurobiology. This review describes the presence of the cannabinoid system in critical stages of retinal processing and its broad involvement in retinal neurotransmission, neuroplasticity, and neuroprotection. Accordingly, we support the use of synthetic cannabinoids as new neuroprotective drugs to prevent and treat retinal diseases. Finally, we argue for the relevance of functional retinal measures in cannabis users to evaluate the impact of cannabis use on human retinal processing.

  5. Endocannabinoids and the processing of value-related signals

    Directory of Open Access Journals (Sweden)

    Miriam eMelis

    2012-02-01

    Full Text Available Endocannabinoids serve as retrograde signaling molecules at many synapses within the CNS, particularly GABAergic and glutamatergic synapses. Synapses onto midbrain dopamine (DA neurons in the ventral tegmental area (VTA make no exception to this rule. In fact, the effects of cannabinoids on dopamine transmission as well as DA-related behaviors are generally exerted through the modulation of inhibitory and excitatory afferents impinging onto DA neurons. Endocannabinoids, by regulating different forms of synaptic plasticity in the VTA, provide a critical modulation of the DA neuron output and, ultimately, of the systems driving and regulating motivated behaviors. Because DA cells exhibit diverse states of activity, which crucially depend on their intrinsic properties and afferent drive, the understanding of the role played by endocannabinoids in synaptic modulations is critical for their overall functions. Particularly, endocannabinoids by selectively inhibiting afferent activity may alter the functional states of DA neurons and potentiate the responsiveness of the reward system to phasic DA.

  6. Potentiation of electrical and chemical synaptic transmission mediated by endocannabinoids

    Science.gov (United States)

    Cachope, Roger; Mackie, Ken; Triller, Antoine; O’Brien, John; Pereda, Alberto E.

    2009-01-01

    SUMMARY Endocannabinoids are well established as inhibitors of chemical synaptic transmission via presynaptic activation of the cannabinoid type 1 receptor (CB1R). Contrasting this notion, we show that dendritic release of endocannabinoids mediates potentiation of synaptic transmission at mixed (electrical and chemical) synaptic contacts on the goldfish Mauthner cell. Remarkably, the observed enhancement was not restricted to the glutamatergic component of the synaptic response but also included a parallel increase in electrical transmission. This novel effect involved the activation of CB1 receptors and was indirectly mediated via the release of dopamine from nearby varicosities, which in turn led to potentiation of the synaptic response via a cAMP-dependent protein kinase-mediated postsynaptic mechanism. Thus, endocannabinoid release can potentiate synaptic transmission and its functional roles include the regulation of gap junction-mediated electrical synapses. Similar interactions between endocannabinoid and dopaminergic systems may be widespread and potentially relevant for the motor and rewarding effects of cannabis derivatives. PMID:18093525

  7. The Endocannabinoid Signaling System in the CNS: A Primer.

    Science.gov (United States)

    Hillard, Cecilia J

    2015-01-01

    The purpose of this chapter is to provide an introduction to the mechanisms for the regulation of endocannabinoid signaling through CB1 cannabinoid receptors in the central nervous system. The processes involved in the synthesis and degradation of the two most well-studied endocannabinoids, 2-arachidonoylglycerol and N-arachidonylethanolamine are outlined along with information regarding the regulation of the proteins involved. Signaling mechanisms and pharmacology of the CB1 cannabinoid receptor are outlined, as is the paradigm of endocannabinoid/CB1 receptor regulation of neurotransmitter release. The reader is encouraged to appreciate the importance of the endocannabinoid/CB1 receptor signaling system in the regulation of synaptic activity in the brain. © 2015 Elsevier Inc. All rights reserved.

  8. The endocannabinoid system: a general view and latest additions

    Science.gov (United States)

    Petrocellis, Luciano De; Cascio, Maria Grazia; Marzo, Vincenzo Di

    2004-01-01

    After the discovery, in the early 1990s, of specific G-protein-coupled receptors for marijuana's psychoactive principle Δ9-tetrahydrocannabinol, the cannabinoid receptors, and of their endogenous agonists, the endocannabinoids, a decade of investigations has greatly enlarged our understanding of this altogether new signalling system. Yet, while the finding of the endocannabinoids resulted in a new effort to reveal the mechanisms regulating their levels in the brain and peripheral organs under physiological and pathological conditions, more endogenous substances with a similar action, and more molecular targets for the previously discovered endogenous ligands, anandamide and 2-arachidonoylglycerol, or for some of their metabolites, were being proposed. As the scenario becomes subsequently more complicated, and the experimental tasks to be accomplished correspondingly more numerous, we briefly review in this article the latest ‘additions' to the endocannabinoid system together with earlier breakthroughs that have contributed to our present knowledge of the biochemistry and pharmacology of the endocannabinoids. PMID:14744801

  9. Arabinogalactan biosynthesis

    DEFF Research Database (Denmark)

    Poulsen, Christian Peter; Dilokpimol, Adiphol; Geshi, Naomi

    2015-01-01

    Arabinogalactan proteins are abundant cell surface proteoglycans in plants and are implicated to act as developmental markers during plant growth. We previously reported that AtGALT31A, AtGALT29A, and AtGLCAT14A-C, which are involved in the biosynthesis of arabinogalactan proteins, localize......GALT29A. Therefore, the electrostatic status of Y144, which is regulated by an unknown kinase/phosphatase system, may regulate AtGALT29A enzyme activity. Moreover, we have identified additional proteins, apyrase 3 (APY3; At1g14240) and UDPglucuronate epimerases 1 and 6 (GAE1, At4g30440; GAE6, At3g23820...

  10. Undercover Power of Endocannabinoids: Postsynaptic Ion-Channel Modulator.

    Science.gov (United States)

    Matsui, Aya; Alvarez, Veronica A

    2017-03-22

    In this issue of Neuron, Gantz and Bean (2017) show that the endocannabinoid 2-arachidonoyl glycerol (2-AG) can directly alter the properties of native ion-channel Kv 4.3 and accelerate the pacemaker activity of rodent dopamine neurons. These findings are one of the first demonstrations of postsynaptic, cell-autonomous actions of endocannabinoids in the mammalian brain. Published by Elsevier Inc.

  11. Endocannabinoid Signaling and the Hypothalamic-Pituitary-Adrenal Axis.

    Science.gov (United States)

    Hillard, Cecilia J; Beatka, Margaret; Sarvaideo, Jenna

    2016-12-06

    The elucidation of Δ9-tetrahydrocannabinol as the active principal of Cannabis sativa in 1963 initiated a fruitful half-century of scientific discovery, culminating in the identification of the endocannabinoid signaling system, a previously unknown neuromodulatory system. A primary function of the endocannabinoid signaling system is to maintain or recover homeostasis following psychological and physiological threats. We provide a brief introduction to the endocannabinoid signaling system and its role in synaptic plasticity. The majority of the article is devoted to a summary of current knowledge regarding the role of endocannabinoid signaling as both a regulator of endocrine responses to stress and as an effector of glucocorticoid and corticotrophin-releasing hormone signaling in the brain. We summarize data demonstrating that cannabinoid receptor 1 (CB1R) signaling can both inhibit and potentiate the activation of the hypothalamic-pituitary-adrenal axis by stress. We present a hypothesis that the inhibitory arm has high endocannabinoid tone and also serves to enhance recovery to baseline following stress, while the potentiating arm is not tonically active but can be activated by exogenous agonists. We discuss recent findings that corticotropin-releasing hormone in the amygdala enables hypothalamic-pituitary-adrenal axis activation via an increase in the catabolism of the endocannabinoid N-arachidonylethanolamine. We review data supporting the hypotheses that CB1R activation is required for many glucocorticoid effects, particularly feedback inhibition of hypothalamic-pituitary-adrenal axis activation, and that glucocorticoids mobilize the endocannabinoid 2-arachidonoylglycerol. These features of endocannabinoid signaling make it a tantalizing therapeutic target for treatment of stress-related disorders but to date, this promise is largely unrealized. © 2017 American Physiological Society. Compr Physiol 7:1-15, 2017. Copyright © 2017 John Wiley & Sons, Inc.

  12. Expression and function of the endocannabinoid system in glial cells.

    Science.gov (United States)

    Massi, Paola; Valenti, Marta; Bolognini, Daniele; Parolaro, Daniela

    2008-01-01

    In the last few years the role and significance of the glia in CNS function and pathology have been drastically reassessed. Glial cells physiology appears very different in healthy versus pathological brain and the recent identification of cannabinoid receptors and their endogenous ligands in glia has triggered a number of studies exploring the role of (endo)cannabinoid system in glia functionality and disease. (Endo)cannabinoids exert their effects in these cells directly affecting some important peculiar functions of the glia and actively promoting biochemical signals ending in a pro-survival fate for these cells. By contrast, (endo)cannabinoids induce a selective death in glia-derived tumor cells. Of special physiological and therapeutic relevance is the reported ability of glial cells during neuropathological conditions to release an increased amount of endocannabinoids and to overexpress cannabinoid receptors. This evidence has suggested that the endocannabinoids production by glial cells may constitute an endogenous defense mechanism preventing the propagation of neuroinflammation and cell damage. The present paper will review the evidence supporting the regulatory role of (endo)cannabinoids in glia function, holding in consideration their therapeutic potential as neuroprotective and/or anticancer agents.

  13. The Endocannabinoid System and its Modulation by Phytocannabinoids.

    Science.gov (United States)

    Di Marzo, Vincenzo; Piscitelli, Fabiana

    2015-10-01

    The endocannabinoid system is currently defined as the ensemble of the two 7-transmembrane-domain and G protein-coupled receptors for Δ(9)-tetrahydrocannabinol (but not for most other plant cannabinoids or phytocannabinoids)-cannabinoid receptor type-1 (CB1R) and cannabinoid receptor type-2 (CB2R); their two most studied endogenous ligands, the "endocannabinoids" N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG); and the enzymes responsible for endocannabinoid metabolism. However, anandamide and 2-AG, and also the phytocannabinoids, have more molecular targets than just CB1R and CB2R. Furthermore, the endocannabinoids, like most other lipid mediators, have more than just one set of biosynthetic and degrading pathways and enzymes, which they often share with "endocannabinoid-like" mediators that may or may not interact with the same proteins as Δ(9)-tetrahydrocannabinol and other phytocannabinoids. In some cases, these degrading pathways and enzymes lead to molecules that are not inactive and instead interact with other receptors. Finally, some of the metabolic enzymes may also participate in the chemical modification of molecules that have very little to do with endocannabinoid and cannabinoid targets. Here, we review the whole world of ligands, receptors, and enzymes, a true "endocannabinoidome", discovered after the cloning of CB1R and CB2R and the identification of anandamide and 2-AG, and its interactions with phytocannabinoids.

  14. The endocannabinoid system and schizophrenia: integration of evidence.

    Science.gov (United States)

    Zamberletti, Erica; Rubino, Tiziana; Parolaro, Daniela

    2012-01-01

    Cannabis derivatives produce their CNS effect through activation of the endocannabinoid system, a recently discovered signalling system comprising specific receptors, their intrinsic lipid ligands and the associated enzymatic machinery (transporters, biosynthetic and degradative enzymes). This review provides the latest preclinical and clinical breakthroughs on the endocannabinoid system's role in psychotic disorders such as schizophrenia. Data reported so far clearly indicate the presence of a dysregulation in the endocannabinoid system (both in term of cannabinoid receptors and endocannabinoid ligands) in animal models of psychosis as well as in schizophrenic patients. Based on these observations, the pharmacological modulation of the endocannabinoid system has been taken into account as a new therapeutic possibility for psychotic disorders. However, preclinical studies have not provided straightforward results, with both agonists and antagonists exhibiting positive, negative or even no effect. At human level, only cannabidiol, a non psychotropic phytocannabinoid, and the antagonist/inverse agonist rimonabant were tested, however additional controlled trials are required to confirm the therapeutic exploitation of these compounds. Another important aspect in studying the relationship between the endocannabinoid system and schizophrenia is the impact of Cannabis consumption on psychotic disorders, especially when this occurs at vulnerable ages such as adolescence. In fact literature from animal models support adolescence as a highly vulnerable age for the consequences of cannabis exposure on different domains (such as cognition and social behaviour) that are altered in psychotic disorders.

  15. Peripheral endocannabinoids regulate skeletal muscle development and maintenance

    Directory of Open Access Journals (Sweden)

    Dongjiao Zhao

    2010-12-01

    Full Text Available As a principal tissue responsible for insulin-mediated glucose uptake, skeletal muscle is important for whole-body health. The role of peripheral endocannabinoids as regulators of skeletal muscle metabolism has recently gained a lot of interest, as endocannabinoid system disorders could cause peripheral insulin resistance. We investigated the role of the peripheral endocannabinoid system in skeletal muscle development and maintenance. Cultures of C2C12 cells, primary satellite cells and mouse skeletal muscle single fibers were used as model systems for our studies. We found an increase in cannabinoid receptor type 1 (CB1 mRNA and endocannabinoid synthetic enzyme mRNA skeletal muscle cells during differentiation. We also found that activation of CB1 inhibited myoblast differentiation, expanded the number of satellite cells, and stimulated the fast-muscle oxidative phenotype. Our findings contribute to understanding of the role of the endocannabinoid system in skeletal muscle metabolism and muscle oxygen consumption, and also help to explain the effects of the peripheral endocannabinoid system on whole-body energy balance.

  16. Binge Alcohol Exposure Transiently Changes the Endocannabinoid System: A Potential Target to Prevent Alcohol-Induced Neurodegeneration.

    Science.gov (United States)

    Liput, Daniel J; Pauly, James R; Stinchcomb, Audra L; Nixon, Kimberly

    2017-11-29

    Excessive alcohol consumption leads to neurodegeneration, which contributes to cognitive decline that is associated with alcohol use disorders (AUDs). The endocannabinoid system has been implicated in the development of AUDs, but little is known about how the neurotoxic effects of alcohol impact the endocannabinoid system. Therefore, the current study investigated the effects of neurotoxic, binge-like alcohol exposure on components of the endocannabinoid system and related N-acylethanolamines (NAEs), and then evaluated the efficacy of fatty acid amide hydrolase (FAAH) inhibition on attenuating alcohol-induced neurodegeneration. Male rats were administered alcohol according to a binge model, which resulted in a transient decrease in [³H]-CP-55,940 binding in the entorhinal cortex and hippocampus following two days, but not four days, of treatment. Furthermore, binge alcohol treatment did not change the tissue content of the three NAEs quantified, including the endocannabinoid and anandamide. In a separate study, the FAAH inhibitor, URB597 was administered to rats during alcohol treatment and neuroprotection was assessed by FluoroJade B (FJB) staining. The administration of URB597 during binge treatment did not significantly reduce FJB+ cells in the entorhinal cortex or hippocampus, however, a follow up "target engagement" study found that NAE augmentation by URB597 was impaired in alcohol intoxicated rats. Thus, potential alcohol induced alterations in URB597 pharmacodynamics may have contributed to the lack of neuroprotection by FAAH inhibition.

  17. Binge Alcohol Exposure Transiently Changes the Endocannabinoid System: A Potential Target to Prevent Alcohol-Induced Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Daniel J. Liput

    2017-11-01

    Full Text Available Excessive alcohol consumption leads to neurodegeneration, which contributes to cognitive decline that is associated with alcohol use disorders (AUDs. The endocannabinoid system has been implicated in the development of AUDs, but little is known about how the neurotoxic effects of alcohol impact the endocannabinoid system. Therefore, the current study investigated the effects of neurotoxic, binge-like alcohol exposure on components of the endocannabinoid system and related N-acylethanolamines (NAEs, and then evaluated the efficacy of fatty acid amide hydrolase (FAAH inhibition on attenuating alcohol-induced neurodegeneration. Male rats were administered alcohol according to a binge model, which resulted in a transient decrease in [3H]-CP-55,940 binding in the entorhinal cortex and hippocampus following two days, but not four days, of treatment. Furthermore, binge alcohol treatment did not change the tissue content of the three NAEs quantified, including the endocannabinoid and anandamide. In a separate study, the FAAH inhibitor, URB597 was administered to rats during alcohol treatment and neuroprotection was assessed by FluoroJade B (FJB staining. The administration of URB597 during binge treatment did not significantly reduce FJB+ cells in the entorhinal cortex or hippocampus, however, a follow up “target engagement” study found that NAE augmentation by URB597 was impaired in alcohol intoxicated rats. Thus, potential alcohol induced alterations in URB597 pharmacodynamics may have contributed to the lack of neuroprotection by FAAH inhibition.

  18. Endocannabinoids as biomarkers of human reproduction.

    Science.gov (United States)

    Rapino, Cinzia; Battista, Natalia; Bari, Monica; Maccarrone, Mauro

    2014-01-01

    Infertility is a condition of the reproductive system that affects ∼10-15% of couples attempting to conceive a baby. More than half of all cases of infertility are a result of female conditions, while the remaining cases can be attributed to male factors, or to a combination of both. The search for suitable biomarkers of pregnancy outcome is a challenging issue in human reproduction, aimed at identifying molecules with predictive significance of the reproductive potential of male and female gametes. Among the various candidates, endocannabinoids (eCBs), and in particular anandamide (AEA), represent potential biomarkers of human fertility disturbances. Any perturbation of the balance between synthesis and degradation of eCBs will result in local changes of their tone in human female and male reproductive tracts, which in turn regulates various pathophysiological processes, oocyte and sperm maturation included. PubMed and Web of Science databases were searched for papers using relevant keywords like 'biomarker', 'endocannabinoid', 'infertility', 'pregnancy' and 'reproduction'. In this review, we discuss different studies on the measurements of AEA and related eCBs in human reproductive cells, tissues and fluids, where the local contribution of these bioactive lipids could be critical in ensuring normal sperm fertilizing ability and pregnancy. Based on the available data, we suggest that the AEA tone has the potential to be exploited as a novel diagnostic biomarker of infertility, to be used in association with assays of conventional hormones (e.g. progesterone, β-chorionic gonadotrophin) and semen analysis. However further quantitative research of its predictive capacity is required. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Endocannabinoids as regulators of transient receptor potential (TRP) channels: A further opportunity to develop new endocannabinoid-based therapeutic drugs.

    Science.gov (United States)

    Di Marzo, V; De Petrocellis, L

    2010-01-01

    In the late 1990's, a series of experiments carried out independently in two laboratories led to establish an important connection between the function of the endocannabinoids, which, as exemplified in this special issue, is per se very complex and ubiquitous in animals, and that of the transient receptor potential (TRP) channels, a large family of plasma membrane cation channels involved in several mammalian and non-mammalian physiological and pathological conditions, overlapping only in part with those in which the cannabinoid receptors participate. These experiments were initially based on the observation that the endocannabinoid anandamide and the xenobiotic ligand of TRP channels of V1 type (TRPV1), capsaicin, are somehow chemically similar, both compounds being fatty acid amides, as are also synthetic activators of these channels and inhibitors of anandamide cellular re-uptake. As discussed in this article, the same type of "chemical thoughts" led to the discovery of N-arachidonoyl-dopamine, an endogenous ligand of TRPV1 channels that behaves also an endocannabinoid. The overlap between the ligand recognition properties of some TRP channels and proteins of the endocannabinoid system, namely the cannabinoid receptors and the proteins and enzymes catalyzing anandamide cellular re-uptake and hydrolysis, is being actively explored through the rational design and synthesis of new endocannabinoid-based drugs with multiple mechanisms of action. These aspects are discussed in this review article, together with the possible functional and pharmacological consequences of endocannabinoid-TRP channel interactions.

  20. Endocannabinoids and the Digestive Tract and Bladder in Health and Disease.

    Science.gov (United States)

    Izzo, Angelo A; Muccioli, Giulio G; Ruggieri, Michael R; Schicho, Rudolf

    2015-01-01

    Components of the so-called endocannabinoid system, i.e., cannabinoid receptors, endocannabinoids, as well as enzymes involved in endocannabinoid synthesis and degradation, have been identified both in the gastrointestinal and in the urinary tract. Evidence suggests that the endocannabinoid system is implicated in many gastrointestinal and urinary physiological and pathophysiological processes, including epithelial cell growth, inflammation, analgesia, and motor function. A pharmacological modulation of the endocannabinoid system might be beneficial for widespread diseases such as gastrointestinal reflux disease, irritable bowel syndrome, inflammatory bowel disease, colon cancer, cystitis, and hyperactive bladder. Drugs that inhibit endocannabinoid degradation and raise the level of endocannabinoids, non-psychotropic cannabinoids (notably cannabidiol), and palmitoylethanolamide, an acylethanolamide co-released with the endocannabinoid anandamide, are promising candidates for gastrointestinal and urinary diseases.

  1. Endocannabinoid concentrations in hair are associated with PTSD symptom severity.

    Science.gov (United States)

    Wilker, Sarah; Pfeiffer, Anett; Elbert, Thomas; Ovuga, Emilio; Karabatsiakis, Alexander; Krumbholz, Aniko; Thieme, Detlef; Schelling, Gustav; Kolassa, Iris-Tatjana

    2016-05-01

    The endocannabinoid system has been implicated in the regulation of the stress response, fear memory formation, and inflammatory processes. Posttraumatic stress disorder (PTSD) can result from exposure to extreme stress and is characterized by strong, associative memories for the traumatic events experienced. Furthermore, an elevated physical disease risk has been observed in PTSD, likely to be mediated by inflammatory processes. Therefore, altered endocannabinoid regulation can be expected in individuals with PTSD. However, attempts to assess PTSD-associated differences in the endocannabinoid system from human blood samples have provided inconsistent results, possibly due to fluctuating levels of endocannabinoids. In hair, these neuromodulators are accumulated over time and thus give access to a more stable and reliable assessment. We therefore investigated PTSD-associated differences in hair concentrations of endocannabinoids (N-acyl-ethanolamides palmitoylethanolamide [PEA], oleoylethanolamide [OEA] and stearoylethanolamide [SEA]) in 38 rebel war survivors from Northern Uganda suffering from PTSD and N=38 healthy rebel war survivors without current and lifetime PTSD. PTSD diagnosis and symptom severity were assessed in structured clinical interviews employing the Posttraumatic Diagnostic Scale (PDS). A significant group difference was observed for OEA, with PTSD patients showing reduced hair concentrations. Regression analyses further revealed strong negative relationships between all investigated N-acyl-ethanolamides and symptom severity of PTSD. The observed reductions in endocannabinoids might account for the increased inflammatory state as well as for the failure to extinguish fear memories observed in PTSD. Our findings add to the accumulating evidence suggesting the endocannabinoid system as a target for pharmacological enhancement of exposure-based psychotherapy for PTSD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. [Progress in study on endocannabinoids and cannabinoid receptors in the treatment for neuropathic pain].

    Science.gov (United States)

    Liu, Peng; Zhang, Wei; Zhang, Shaobo; Zhang, Yibao; Wang, Jing

    2016-08-01

    Endocannabinoids and cannabinoid receptors are expressed in various central pain modulation regions. They maintain in dynamic changes in the expression level and distribution under different pathological and physiological conditions. These changes possess advantage as well as disadvantage. Exogenous administration of endocannabinoids exerts analgesic effect in different pain models, which is mainly mediated by the cannabinoid CB1 and CB2 receptors. Inhibition of enzymes for degrading endocannabinoids in different pain models also shows analgesic effect due to the increased local levels of endocannabinoids.

  3. Increased Contextual Fear Conditioning in iNOS Knockout Mice: Additional Evidence for the Involvement of Nitric Oxide in Stress-Related Disorders and Contribution of the Endocannabinoid System.

    Science.gov (United States)

    Lisboa, Sabrina F; Gomes, Felipe V; Silva, Andréia L; Uliana, Daniela L; Camargo, Laura H A; Guimarães, Francisco S; Cunha, Fernando Q; Joca, Sâmia R L; Resstel, Leonardo B M

    2015-01-24

    Inducible or neuronal nitric oxide synthase gene deletion increases or decreases anxiety-like behavior in mice, respectively. Since nitric oxide and endocannabinoids interact to modulate defensive behavior, the former effect could involve a compensatory increase in basal brain nitric oxide synthase activity and/or changes in the endocannabinoid system. Thus, we investigated the expression and extinction of contextual fear conditioning of inducible nitric oxide knockout mice and possible involvement of endocannabinoids in these responses. We evaluated the effects of a preferential neuronal nitric oxide synthase inhibitor, 7-nitroindazol, nitric oxide synthase activity, and mRNA changes of nitrergic and endocannabinoid systems components in the medial prefrontal cortex and hippocampus of wild-type and knockout mice. The effects of URB597, an inhibitor of the fatty acid amide hydrolase enzyme, which metabolizes the endocannabinoid anandamide, WIN55,212-2, a nonselective cannabinoid agonist, and AM281, a selective CB1 antagonist, on contextual fear conditioning were also evaluated. Contextual fear conditioning expression was similar in wild-type and knockout mice, but the latter presented extinction deficits and increased basal nitric oxide synthase activity in the medial prefrontal cortex. 7-Nitroindazol decreased fear expression and facilitated extinction in wild-type and knockout mice. URB597 decreased fear expression in wild-type and facilitated extinction in knockout mice, whereas WIN55,212-2 and AM281 increased it in wild-type mice. Nonconditioned knockout mice showed changes in the mRNA expression of nitrergic and endocannabinoid system components in the medial prefrontal cortex and hippocampus that were modified by fear conditioning. These data reinforce the involvement of the nitric oxide and endocannabinoids (anandamide) in stress-related disorders and point to a deregulation of the endocannabinoid system in situations where nitric oxide signaling is

  4. Essential fatty acids and lipid mediators. Endocannabinoids

    Directory of Open Access Journals (Sweden)

    G. Caramia

    2012-03-01

    Full Text Available In 1929 Burr and Burr discovered the essential fatty acids omega-6 and omega-3. Since then, researchers have shown a growing interest in polyunsaturated fatty acids (PUFA as precursors of “lipid mediator” molecules, often with opposing effects, prostaglandins, prostacyclins, thromboxanes, leukotrienes, lipossines, resolvines, protectines, maresins that regulate immunity, platelet aggregation, inflammation, etc. They showed that the balance between omega-3 and omega-6 acids has a profound influence on all the body’s inflammatory responses and a raised level of PUFA omega-3 in tissue correlate with a reduced incidence of degenerative cardiovascular disease, some mental illnesses such as depression, and neuro-degenerative diseases such as Alzheimer’s. The CYP-catalyzed epoxidation and hydroxylation of arachidonic acid (AA were established recently as the so-called third branch of AGE cascade. Cytochrome P450 (CYP epoxygenases convert AA to four epoxyeicosatrienoic acid (EET regioisomers, that produce vascular relaxation anti-inflammatory effects on blood vessels and in the kidney, promote angiogenesis, and protect ischemic myocardium and brain. Eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA are accessible to CYP enzymes in the same way as AA. Metabolites derived from EPA include epoxyeicosatetraenoic acids (EETR and hydroxyeicosapentaenoic acids (19- and 20-HEPE, whereas DHA include epoxydocosapentaenoic acids (EDPs hydroxydocosahexaenoic acids (21- and 22-HDoHE. For many of the CYP isoforms, the n-3 PUFAs are the preferred substrates and the available data suggest that some of the vasculo- and cardioprotective effects attributed to dietary n-3 PUFAs may be mediated by CYP-dependent metabolites of EPA and DHA. From AA derives also endocannabinoids like anandamide (N-arachidonoylethanolamine and 2-arachidonoylglycerol, capable of mimicking the pharmacological actions of the active principle of Cannabis sativa preparations such as

  5. Endocannabinoids in nervous system health and disease: the big picture in a nutshell.

    Science.gov (United States)

    Skaper, Stephen D; Di Marzo, Vincenzo

    2012-12-05

    The psychoactive component of the cannabis resin and flowers, delta9-tetrahydrocannabinol (THC), was first isolated in 1964, and at least 70 other structurally related 'phytocannabinoid' compounds have since been identified. The serendipitous identification of a G-protein-coupled cannabinoid receptor at which THC is active in the brain heralded an explosion in cannabinoid research. Elements of the endocannabinoid system (ECS) comprise the cannabinoid receptors, a family of nascent lipid ligands, the 'endocannabinoids' and the machinery for their biosynthesis and metabolism. The function of the ECS is thus defined by modulation of these receptors, in particular, by two of the best-described ligands, 2-arachidonoyl glycerol and anandamide (arachidonylethanolamide). Research on the ECS has recently aroused enormous interest not only for the physiological functions, but also for the promising therapeutic potentials of drugs interfering with the activity of cannabinoid receptors. Many of the former relate to stress-recovery systems and to the maintenance of homeostatic balance. Among other functions, the ECS is involved in neuroprotection, modulation of nociception, regulation of motor activity, neurogenesis, synaptic plasticity and the control of certain phases of memory processing. In addition, the ECS acts to modulate the immune and inflammatory responses and to maintain a positive energy balance. This theme issue aims to provide the reader with an overview of ECS pharmacology, followed by discussions on the pivotal role of this system in the modulation of neurogenesis in the developing and adult organism, memory processes and synaptic plasticity, as well as in pathological pain and brain ageing. The volume will conclude with discussions that address the proposed therapeutic applications of targeting the ECS for the treatment of neurodegeneration, pain and mental illness.

  6. Targeting the endocannabinoid system to treat anxiety-related disorders.

    Science.gov (United States)

    Korem, Nachshon; Zer-Aviv, Tomer Mizrachi; Ganon-Elazar, Eti; Abush, Hila; Akirav, Irit

    2016-05-01

    The endocannabinoid system plays an important role in the control of emotions, and its dysregulation has been implicated in several psychiatric disorders. The most common self-reported reason for using cannabis is rooted in its ability to reduce feelings of stress, tension, and anxiety. Nevertheless, there are only few studies in controlled clinical settings that confirm that administration of cannabinoids can benefit patients with a post-traumatic stress disorder (PTSD). There are considerable encouraging preclinical data to suggest that endocannabinoid-targeted therapeutics for anxiety disorders should continue. In this review, we will describe data supporting a role for the endocannabinoid system in preventing and treating anxiety-like behavior in animal models and PTSD patients. Cannabinoids have shown beneficial outcomes in rat and mouse models of anxiety and PTSD, but they also may have untoward effects that discourage their chronic usage, including anxiogenic effects. Hence, clinical and preclinical research on the endocannabinoid system should further study the effects of cannabinoids on anxiety and help determine whether the benefits of using exogenous cannabinoids outweigh the risks. In general, this review suggests that targeting the endocannabinoid system represents an attractive and novel approach to the treatment of anxiety-related disorders and, in particular, PTSD.

  7. Effects of activation of endocannabinoid system on myocardial metabolism

    Directory of Open Access Journals (Sweden)

    Agnieszka Polak

    2016-05-01

    Full Text Available Endocannabinoids exert their effect on the regulation of energy homeostasis via activation of specific receptors. They control food intake, secretion of insulin, lipids and glucose metabolism, lipid storage. Long chain fatty acids are the main myocardial energy substrate. However, the heart exerts enormous metabolic flexibility emphasized by its ability to utilzation not only fatty acids, but also glucose, lactate and ketone bodies. Endocannabinoids can directly act on the cardiomyocytes through the CB1 and CB2 receptors present in cardiomyocytes. It appears that direct activation of CB1 receptors promotes increased lipogenesis, pericardial steatosis and bioelectrical dysfunction of the heart. In contrast, stimulation of CB2 receptors exhibits cardioprotective properties, helping to maintain appropriate amount of ATP in cardiomyocytes. Furthermore, the effects of endocannabinoids at both the central nervous system and peripheral tissues, such as liver, pancreas, or adipose tissue, resulting indirectly in plasma availability of energy substrates and affects myocardial metabolism. To date, there is little evidence that describes effects of activation of the endocannabinoid system in the cardiovascular system under physiological conditions. In the present paper the impact of metabolic diseases, i. e. obesity and diabetes, as well as the cardiovascular diseases - hypertension, myocardial ischemia and myocardial infarction on the deregulation of the endocannabinoid system and its effect on the metabolism are described.

  8. Effects of activation of endocannabinoid system on myocardial metabolism.

    Science.gov (United States)

    Polak, Agnieszka; Harasim, Ewa; Chabowski, Adrian

    2016-05-21

    Endocannabinoids exert their effect on the regulation of energy homeostasis via activation of specific receptors. They control food intake, secretion of insulin, lipids and glucose metabolism, lipid storage. Long chain fatty acids are the main myocardial energy substrate. However, the heart exerts enormous metabolic flexibility emphasized by its ability to utilzation not only fatty acids, but also glucose, lactate and ketone bodies. Endocannabinoids can directly act on the cardiomyocytes through the CB1 and CB2 receptors present in cardiomyocytes. It appears that direct activation of CB1 receptors promotes increased lipogenesis, pericardial steatosis and bioelectrical dysfunction of the heart. In contrast, stimulation of CB2 receptors exhibits cardioprotective properties, helping to maintain appropriate amount of ATP in cardiomyocytes. Furthermore, the effects of endocannabinoids at both the central nervous system and peripheral tissues, such as liver, pancreas, or adipose tissue, resulting indirectly in plasma availability of energy substrates and affects myocardial metabolism. To date, there is little evidence that describes effects of activation of the endocannabinoid system in the cardiovascular system under physiological conditions. In the present paper the impact of metabolic diseases, i. e. obesity and diabetes, as well as the cardiovascular diseases - hypertension, myocardial ischemia and myocardial infarction on the deregulation of the endocannabinoid system and its effect on the metabolism are described.

  9. Endocannabinoids and striatal function: implications for addiction-related behaviours

    Science.gov (United States)

    Moreira, Fabricio A.; Jupp, Bianca; Belin, David

    2015-01-01

    Since the identification and cloning of the major cannabinoid receptor expressed in the brain almost 25 years ago research has highlighted the potential of drugs that target the endocannabinoid system for treating addiction. The endocannabinoids, anandamide and 2-arachidonoyl glycerol, are lipid-derived metabolites found in abundance in the basal ganglia and other brain areas innervated by the mesocorticolimbic dopamine systems. Cannabinoid CB1 receptor antagonists/inverse agonists reduce reinstatement of responding for cocaine, alcohol and opiates in rodents. However, compounds acting on the endocannabinoid system may have broader application in treating drug addiction by ameliorating associated traits and symptoms such as impulsivity and anxiety that perpetuate drug use and interfere with rehabilitation. As a trait, impulsivity is known to predispose to addiction and facilitate the emergence of addiction to stimulant drugs. In contrast, anxiety and elevated stress responses accompany extended drug use and may underlie the persistence of drug intake in dependent individuals. In this article we integrate and discuss recent findings in rodents showing selective pharmacological modulation of impulsivity and anxiety by cannabinoid agents. We highlight the potential of selective inhibitors of endocannabinoid metabolism, directed at fatty acid amide hydrolase and monoacylglycerol lipase, to reduce anxiety and stress responses, and discuss novel mechanisms underlying the modulation of the endocannabinoid system, including the attenuation of impulsivity, anxiety, and drug reward by selective CB2 receptor agonists. PMID:25369747

  10. A collaboration investigating endocannabinoid signalling in brain and bone.

    Science.gov (United States)

    Zimmer, Andreas

    2016-05-01

    Investigations into the cellular and molecular mechanisms underlying the psychoactive effects of cannabis preparations have led to the discovery of the endocannabinoid system. Interest in the central nervous system effects was initially the main focus of the research, but it soon became evident that the endocannabinoid system affects virtually every organ. The research field has therefore experienced a tremendous growth over the last decade and is now truly interdisciplinary. This short review provides a personal account of an interdisciplinary collaboration between Itai Bab from the Hebrew University of Jerusalem and the author. It describes the discovery of the endocannabinoid system in bone and the analysis of its functions. I am summarising the role of CB1 signalling as a modulator of sympathetic inhibition of bone formation. Thus, activation of CB1 receptors on sympathetic nerve terminals in bone, presumably from endocannabinoids released from apposing osteoblasts, reduces the inhibition of bone formation of sympathetic norepinephrine. CB2 receptors on osteoblasts and osteoclasts also modulate the proliferation and functions of these cells. Thus, activation of CB2 stimulates bone formation and represses bone resorption, whereas the genetic disruption of CB2 results in an osteoporosis-like phenotype. This signalling mechanism is clinically relevant, as shown by the association of polymorphisms in the CB2 receptor gene, CNR2, with bone density and osteoporosis. Finally, the review provides a summary of the recently discovered role of endocannabinoid signalling in one elongation. This review will also discuss the benefits of interdisciplinary and international collaborations.

  11. Effects of endocannabinoid system modulation on cognitive and emotional behavior

    Directory of Open Access Journals (Sweden)

    Claudio eZanettini

    2011-09-01

    Full Text Available Cannabis has long been known to produce cognitive and emotional effects. Research has shown that cannabinoid drugs produce these effects by driving the brain's endogenous cannabinoid system and that this system plays a modulatory role in many cognitive and emotional processes. This review focuses on the effects of endocannabinoid-system modulation in animal models of cognition (learning and memory and emotion (anxiety and depression. We review studies in which natural or synthetic cannabinoid agonists were administered to directly stimulate cannabinoid receptors or, conversely, where cannabinoid antagonists were administered to inhibit the activity of cannabinoid receptors. In addition, studies are reviewed that involved genetic disruption of cannabinoid receptors or genetic or pharmacological manipulation of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH. Endocannabinoids affect the function of many neurotransmitter systems, some of which play opposing roles. The diversity of cannabinoid roles and the complexity of task-dependent activation of neuronal circuits may lead to the effects of endocannabinoid system modulation being strongly dependent on environmental conditions. Recent findings are reviewed that raise the possibility that endocannabinoid signaling may change the impact of environmental influences on emotional and cognitive behavior rather than affecting one or another specific behavior.

  12. Responses of peripheral endocannabinoids and endocannabinoid-related compounds to hedonic eating in obesity.

    Science.gov (United States)

    Monteleone, A M; Di Marzo, V; Monteleone, P; Dalle Grave, R; Aveta, T; Ghoch, M El; Piscitelli, F; Volpe, U; Calugi, S; Maj, M

    2016-06-01

    Hedonic eating occurs independently from homeostatic needs prompting the ingestion of pleasurable foods that are typically rich in fat, sugar and/or salt content. In normal weight healthy subjects, we found that before hedonic eating, plasma levels of 2-arachidonoylglycerol (2-AG) were higher than before nonhedonic eating, and although they progressively decreased after food ingestion in both eating conditions, they were significantly higher in hedonic eating. Plasma levels of anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), instead, progressively decreased in both eating conditions without significant differences. In this study, we investigated the responses of AEA, 2-AG, OEA and PEA to hedonic eating in obese individuals. Peripheral levels of AEA, 2-AG, OEA and PEA were measured in 14 obese patients after eating favourite (hedonic eating) and non-favourite (nonhedonic eating) foods in conditions of no homeostatic needs. Plasma levels of 2-AG increased after eating the favourite food, whereas they decreased after eating the non-favourite food, with the production of the endocannabinoid being significantly enhanced in hedonic eating. Plasma levels of AEA decreased progressively in nonhedonic eating, whereas they showed a decrease after the exposure to the favourite food followed by a return to baseline values after eating it. No significant differences emerged in plasma OEA and PEA responses to favourite and non-favourite food. Present findings compared with those obtained in our previously studied normal weight healthy subjects suggest deranged responses of endocannabinoids to food-related reward in obesity.

  13. Abdominal obesity, cardiometabolic risk and endocannabinoid system

    Directory of Open Access Journals (Sweden)

    G. Bittolo Bon

    2013-05-01

    Full Text Available Abdominal obesity is the most prevalent manifestation of metabolic syndrome and is of central importance in the definition of global cardiometabolic risk. Visceral adipose tissue releases a large number of bioactive mediators, which influence body weight homeostasis, insulin resistance, alterations in lipids, blood pressure, coagulation, fibrinolysis and inflammation, leading to increased risk of cardiovascular events and of type 2 diabetes. Lifestyle modification is the first-line approach to the management of abdominal obesity and metabolic syndrome. However for patients at higher risk, who cannot achieve an appreciable reduction in weight and in global cardiometabolic risk with lifestyle modification alone, an adjunctive long term pharmacotherapy should be considered. The endocannabinoid system activity regulates food intake and metabolic factors through cannabinoid-1 (CB1 receptor located in multiple sites, including hypothalamus and limbic forebrain, adipose tissue, skeletal muscle, liver and the gastrointestinal tract. Evidence suggests that CB1 receptor blockade offers a novel therapeutic strategy. Data from four phase III trials suggest that rimonabant, the first cannabinoid receptor inhibitor, modulates cardiometabolic risk factors, both through its impact on body weight and metabolic parameters such as HDL-cholesterol, tryglicerides, Hb1Ac, through direct pathways that are not related to weight loss.

  14. Fluoxetine Facilitates Fear Extinction Through Amygdala Endocannabinoids.

    Science.gov (United States)

    Gunduz-Cinar, Ozge; Flynn, Shaun; Brockway, Emma; Kaugars, Katherine; Baldi, Rita; Ramikie, Teniel S; Cinar, Resat; Kunos, George; Patel, Sachin; Holmes, Andrew

    2016-05-01

    Pharmacologically elevating brain endocannabinoids (eCBs) share anxiolytic and fear extinction-facilitating properties with classical therapeutics, including the selective serotonin reuptake inhibitor, fluoxetine. There are also known functional interactions between the eCB and serotonin systems and preliminary evidence that antidepressants cause alterations in brain eCBs. However, the potential role of eCBs in mediating the facilitatory effects of fluoxetine on fear extinction has not been established. Here, to test for a possible mechanistic contribution of eCBs to fluoxetine's proextinction effects, we integrated biochemical, electrophysiological, pharmacological, and behavioral techniques, using the extinction-impaired 129S1/Sv1mJ mouse strain. Chronic fluoxetine treatment produced a significant and selective increase in levels of anandamide in the BLA, and an associated decrease in activity of the anandamide-catabolizing enzyme, fatty acid amide hydrolase. Slice electrophysiological recordings showed that fluoxetine-induced increases in anandamide were associated with the amplification of eCB-mediated tonic constraint of inhibitory, but not excitatory, transmission in the BLA. Behaviorally, chronic fluoxetine facilitated extinction retrieval in a manner that was prevented by systemic or BLA-specific blockade of CB1 receptors. In contrast to fluoxetine, citalopram treatment did not increase BLA eCBs or facilitate extinction. Taken together, these findings reveal a novel, obligatory role for amygdala eCBs in the proextinction effects of a major pharmacotherapy for trauma- and stressor-related disorders and anxiety disorders.

  15. The endocannabinoid system as a novel approach for managing obesity.

    Science.gov (United States)

    Lillo, Joseph L

    2007-04-01

    The recent discovery of the endocannabinoid system has led to the development of promising treatments for patients with obesity and associated cardiometabolic risk factors. Basic research has demonstrated that the endocannabinoid system plays an integral role in the regulation of food intake, metabolism, and storage. Research with the endocannabinoid receptor antagonist rimonabant has demonstrated statistically significant improvements in body weight, fasting insulin levels, glucose tolerance, high-density lipoprotein cholesterol levels, serum triglyceride levels, and waist circumference, compared with placebo. Rimonabant has also produced statistically significant improvements in inflammatory markers. Research with rimonabant has demonstrated sustained efficacy for as long as 2 years when used in conjunction with a reduced-calorie diet and moderate physical activity. Rimonabant is the first cannabinoid receptor 1 antagonist to be marketed in Europe and the first to file an New Drug Application in the United States. It may provide a novel therapeutic strategy for the treatment of patients with obesity and associated cardiometabolic risk factors.

  16. Biosynthesis and evaluation of the characteristics of silver nanoparticles using Cassia fistula fruit aqueous extract and its antibacterial activity

    Science.gov (United States)

    Ghafoori, Seyed Mohammad; Entezari, Maliheh; Taghva, Arefeh; Tayebi, Zahra

    2017-12-01

    There are several ways to produce nanoparticles, but the biological method of nanoparticle production is considered most efficient by researchers due to its eco-friendly and energy saving properties. In this study, the biosynthesis of silver nanoparticles (AgNPs) via Cassia fistula fruit pulp extract was examined. Furthermore, its antibacterial effects were investigated both in vitro and in vivo. To achieve biosynthesis, 10 ml of C. fistula extract was added to 90 ml of aqueous solution of 1 mM silver nitrate. The solution was incubated in darkness overnight, at room temperature. After changing the color of solution, the production of AgNPs was examined by UV-Vis spectrophotometry, XRD and DLS methods. Finally, the antibacterial activity of AgNPs was investigated by using three methods: (1) agar well diffusion, (2) MIC determining and (3) effect on prevention of infection in wound on rat models. The results revealed that synthesized silver nanoparticles have strong antibacterial activity in vitro and in vivo conditions. Undeniably, further research is required to investigate the side effects of such particles.

  17. Polymorphisms in the endocannabinoid receptor 1 in relation to fat mass distribution

    DEFF Research Database (Denmark)

    Frost, M; Nielsen, T L; Wraae, K

    2010-01-01

    Both animal and human studies have associated the endocannabinoid system with obesity and markers of metabolic dysfunction. Blockade of the cannabinoid receptor 1 (CB1) caused weight loss and reduction in waist size in both obese and type II diabetics. Recent studies on common variants of the CB1...... receptor gene (CNR1) and the link to obesity have been conflicting. The aim of the present study was to evaluate whether selected common variants of the CNR1 are associated with measures of obesity and fat distribution....

  18. Endocannabinoids modulate human blood-brain barrier permeability in vitro.

    Science.gov (United States)

    Hind, William H; Tufarelli, Cristina; Neophytou, Maria; Anderson, Susan I; England, Timothy J; O'Sullivan, Saoirse E

    2015-06-01

    Endocannabinoids alter permeability at various epithelial barriers, and cannabinoid receptors and endocannabinoid levels are elevated by stroke, with potential neuroprotective effects. We therefore explored the role of endocannabinoids in modulating blood-brain barrier (BBB) permeability in normal conditions and in an ischaemia/reperfusion model. Human brain microvascular endothelial cell and astrocyte co-cultures modelled the BBB. Ischaemia was modelled by oxygen-glucose deprivation (OGD) and permeability was measured by transepithelial electrical resistance. Endocannabinoids or endocannabinoid-like compounds were assessed for their ability to modulate baseline permeability or OGD-induced hyperpermeability. Target sites of action were investigated using receptor antagonists and subsequently identified with real-time PCR. Anandamide (10 μM) and oleoylethanolamide (OEA, 10 μM) decreased BBB permeability (i.e. increased resistance). This was mediated by cannabinoid CB2 receptors, transient receptor potential vanilloid 1 (TRPV1) channels, calcitonin gene-regulated peptide (CGRP) receptor (anandamide only) and PPARα (OEA only). Application of OEA, palmitoylethanolamide (both PPARα mediated) or virodhamine (all 10 μM) decreased the OGD-induced increase in permeability during reperfusion. 2-Arachidonoyl glycerol, noladin ether and oleamide did not affect BBB permeability in normal or OGD conditions. N-arachidonoyl-dopamine increased permeability through a cytotoxic mechanism. PPARα and γ, CB1 receptors, TRPV1 channels and CGRP receptors were expressed in both cell types, but mRNA for CB2 receptors was only present in astrocytes. The endocannabinoids may play an important modulatory role in normal BBB physiology, and also afford protection to the BBB during ischaemic stroke, through a number of target sites. © 2015 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.

  19. Role of the endocannabinoid system in the emotional manifestations of osteoarthritis pain.

    Science.gov (United States)

    La Porta, Carmen; Bura, S Andreea; Llorente-Onaindia, Jone; Pastor, Antoni; Navarrete, Francisco; García-Gutiérrez, María Salud; De la Torre, Rafael; Manzanares, Jorge; Monfort, Jordi; Maldonado, Rafael

    2015-10-01

    In this study, we investigated the role of the endocannabinoid system (ECS) in the emotional and cognitive alterations associated with osteoarthritis pain. The monosodium iodoacetate model was used to evaluate the affective and cognitive manifestations of osteoarthritis pain in type 1 (CB1R) and type 2 (CB2R) cannabinoid receptor knockout and wild-type mice and the ability of CB1R (ACEA) and CB2R (JWH133) selective agonists to improve these manifestations during a 3-week time period. The levels of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were measured in plasma and brain areas involved in the control of these manifestations. Patients with knee osteoarthritis and healthy controls were recruited to evaluate pain, affective, and cognitive symptoms, as well as plasma endocannabinoid levels and cannabinoid receptor gene expression in peripheral blood lymphocytes. The affective manifestations of osteoarthritis were enhanced in CB1R knockout mice and absent in CB2R knockouts. Interestingly, both ACEA and JWH133 ameliorated the nociceptive and affective alterations, whereas ACEA also improved the associated memory impairment. An increase of 2-AG levels in prefrontal cortex and plasma was observed in this mouse model of osteoarthritis. In agreement, an increase of 2-AG plasmatic levels and an upregulation of CB1R and CB2R gene expression in peripheral blood lymphocytes were observed in patients with osteoarthritis compared with healthy subjects. Changes found in these biomarkers of the ECS correlated with pain, affective, and cognitive symptoms in these patients. The ECS plays a crucial role in osteoarthritis and represents an interesting pharmacological target and biomarker of this disease.

  20. Endocannabinoids are conserved inhibitors of the Hedgehog pathway.

    Science.gov (United States)

    Khaliullina, Helena; Bilgin, Mesut; Sampaio, Julio L; Shevchenko, Andrej; Eaton, Suzanne

    2015-03-17

    Hedgehog ligands control tissue development and homeostasis by alleviating repression of Smoothened, a seven-pass transmembrane protein. The Hedgehog receptor, Patched, is thought to regulate the availability of small lipophilic Smoothened repressors whose identity is unknown. Lipoproteins contain lipids required to repress Smoothened signaling in vivo. Here, using biochemical fractionation and lipid mass spectrometry, we identify these repressors as endocannabinoids. Endocannabinoids circulate in human and Drosophila lipoproteins and act directly on Smoothened at physiological concentrations to repress signaling in Drosophila and mammalian assays. Phytocannabinoids are also potent Smo inhibitors. These findings link organismal metabolism to local Hedgehog signaling and suggest previously unsuspected mechanisms for the physiological activities of cannabinoids.

  1. Dietary conjugated linoleic acid supplementation alters the expression of genes involved in the endocannabinoid system in the bovine endometrium and increases plasma progesterone concentrations.

    Science.gov (United States)

    Abolghasemi, A; Dirandeh, E; Ansari Pirsaraei, Z; Shohreh, B

    2016-10-01

    Endocannabinoids are derived from phospholipids and reduce fertility by interfering with implantation. Identification of changes in the expression of genes of the endocannabinoid system as a result of dietary inclusion of conjugated linoleic acid (CLA) is critical to the advancement of our understanding of the nutritional regulation of uterine function. An experiment was conducted on transition cows to evaluate the expression of key endocannabinoid genes in bovine endometrium in response to dietary supplementation with CLA. A total of 16 cows were randomly assigned to two treatments: (1) control (75 g/day palm oil) and (2) CLA (75 g/day CLA) from 21 days prepartum to Day 42 postpartum. Cows underwent uterine biopsy on days 21 and 42 postpartum. The abundance of mRNA encoding endocannabinoid receptor (CNR2), N-acyl phosphatidylethanolamine phospholipase D (NAPEPLD), fatty acid amide hydrolase (FAAH), N-acylethanolamine acid amidase (NAAA), and monoglyceride lipase (MGLL) was measured by real-time PCR. Results reported that relative levels of mRNA encoding CNR2 and NAPEPLD were decreased (P  0.05) in the same situation. Mean plasma progesterone concentrations were higher in CLA-fed cows compared with control cows at Day 42 postpartum (3.51 and 1.42 ng/mL, respectively, P endocannabinoid receptor (CNR2) and enzymes that synthesize fatty acid amides (NAPEPLD) and of an increase in the expression of PTGS2 that in turn can oxidate endocannabinoids and consequently resulted in increased plasma progesterone concentrations during early lactation. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Biosynthesis of gold nanoparticles by the extreme bacterium Deinococcus radiodurans and an evaluation of their antibacterial properties.

    Science.gov (United States)

    Li, Jiulong; Li, Qinghao; Ma, Xiaoqiong; Tian, Bing; Li, Tao; Yu, Jiangliu; Dai, Shang; Weng, Yulan; Hua, Yuejin

    Deinococcus radiodurans is an extreme bacterium known for its high resistance to stresses including radiation and oxidants. The ability of D. radiodurans to reduce Au(III) and biosynthesize gold nanoparticles (AuNPs) was investigated in aqueous solution by ultraviolet and visible (UV/Vis) absorption spectroscopy, electron microscopy, X-ray diffraction (XRD), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). D. radiodurans efficiently synthesized AuNPs from 1 mM Au(III) solution in 8 h. The AuNPs were of spherical, triangular and irregular shapes with an average size of 43.75 nm and a polydispersity index of 0.23 as measured by DLS. AuNPs were distributed in the cell envelope, across the cytosol and in the extracellular space. XRD analysis confirmed the crystallite nature of the AuNPs from the cell supernatant. Data from the FTIR and XPS showed that upon binding to proteins or compounds through interactions with carboxyl, amine, phospho and hydroxyl groups, Au(III) may be reduced to Au(I), and further reduced to Au(0) with the capping groups to stabilize the AuNPs. Biosynthesis of AuNPs was optimized with respect to the initial concentration of gold salt, bacterial growth period, solution pH and temperature. The purified AuNPs exhibited significant antibacterial activity against both Gram-negative ( Escherichia coli ) and Gram-positive ( Staphylococcus aureus ) bacteria by damaging their cytoplasmic membrane. Therefore, the extreme bacterium D. radiodurans can be used as a novel bacterial candidate for efficient biosynthesis of AuNPs, which exhibited potential in biomedical application as an antibacterial agent.

  3. Endocannabinoids and cardiovascular prevention: real progress?

    Directory of Open Access Journals (Sweden)

    Livio Dei Cas

    2007-06-01

    Full Text Available ABSTRACT: The prevalence of obesity continues to increase and represents one of the principal causes of cardiovascular morbidity and mortality. After the discovery of a specific receptor of the psychoactive principle of marijuana, the cannabinoid receptors and their endogenous ligands, several studies have demonstrated the role of this system in the control of food intake and energy balance and its overactivity in obesity. Recent studies with the CB1 receptor antagonist rimonabant have demonstrated favorable effects such as a reduction in body weight and waist circumference and an improvement in metabolic factors (cholesterol, triglycerides, glycemia etc. Therefore, the antagonism of the endocannabinoid (EC system, if recent data can be confirmed, could be a new treatment target for high risk overweight or obese patients. Obesity is a growing problem that has epidemic proportions worldwide and is associated with an increased risk of premature death (1-3. Individuals with a central deposition of fats have elevated cardiovascular morbidity and mortality (including stroke, heart failure and myocardial infarction and, because of a growing prevalence not only in adults but also in adolescents, it was reclassified in AHA guidelines as a “major modifiable risk factor” for coronary heart disease (4, 5. Although first choice therapy in obesity is based on correcting lifestyle (diet and physical activity in patients with abdominal obesity and high cardiovascular risk and diabetes, often it is necessary to use drugs which reduce the risks. The EC system represents a new target for weight control and the improvement of lipid and glycemic metabolism (6, 7. (Heart International 2007; 3: 27-34

  4. Elevated Systemic Levels of Endocannabinoids and Related Mediators Across the Menstrual Cycle in Women With Endometriosis.

    Science.gov (United States)

    Sanchez, Ana Maria; Cioffi, Raffaella; Viganò, Paola; Candiani, Massimo; Verde, Roberta; Piscitelli, Fabiana; Di Marzo, Vincenzo; Garavaglia, Elisabetta; Panina-Bordignon, Paola

    2016-08-01

    Cannabinoids and modulators of the endocannabinoid system affect specific mechanisms that are critical to the establishment and development of endometriosis. The aim of this study was to measure the systemic levels of endocannabinoids and related mediators in women with and without endometriosis and to investigate whether such levels correlated with endometriosis-associated pain. Plasma and endometrial biopsies were obtained from women with a laparoscopic diagnosis of endometriosis (n = 27) and no endometrial pathology (n = 29). Plasma levels of endocannabinoids (N-arachidonoylethanolamine [AEA] and 2-arachidonoylglycerol [2-AG]) and related mediators (N-oleoylethanolamine [OEA] and N-palmitoylethanolamine [PEA]), messenger RNA expression of some of their receptors (cannabinoid receptor type 1 [CB1], CB2, transient receptor potential vanilloid type [TRPV1]), and the enzymes involved in the synthesis (N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D [NAPE-PLD]) and degradation (fatty acid amide hydrolase 1 [FAAH]) of AEA, OEA, and PEA were evaluated in endometrial stromal cells. The systemic levels of AEA, 2-AG, and OEA were elevated in endometriosis in the secretory phase compared to controls. The expression of CB1 was higher in secretory phase endometrial stromal cells of controls versus endometriosis. Similar expression levels of CB2, TRPV1, NAPE-PLD, and FAAH were detected in controls and endometriosis. Patients with moderate-to-severe dysmenorrhea and dyspareunia showed higher AEA and PEA levels than those with low-to-moderate pain symptoms, respectively. The association of increased circulating AEA and 2-AG with decreased local CB1 expression in endometriosis suggests a negative feedback loop regulation, which may impair the capability of these mediators to control pain. These preliminary data suggest that the pharmacological manipulation of the action or levels of these mediators may offer an alternative option for the management of endometriosis

  5. Lipidomic Analysis of Endocannabinoid Signaling: Targeted Metabolite Identification and Quantification

    Directory of Open Access Journals (Sweden)

    Jantana Keereetaweep

    2016-01-01

    Full Text Available The endocannabinoids N-arachidonoylethanolamide (or anandamide, AEA and 2-arachidonoylglycerol (2-AG belong to the larger groups of N-acylethanolamines (NAEs and monoacylglycerol (MAG lipid classes, respectively. They are biologically active lipid molecules that activate G-protein-coupled cannabinoid receptors found in various organisms. After AEA and 2-AG were discovered in the 1990s, they have been extensively documented to have a broad range of physiological functions. Along with AEA, several NAEs, for example, N-palmitoylethanolamine (PEA, N-stearoylethanolamine (SEA, and N-oleoylethanolamine (OEA are also present in tissues, usually at much larger concentrations than AEA. Any perturbation that involves the endocannabinoid pathway may subsequently alter basal level or metabolism of these lipid mediators. Further, the altered levels of these molecules often reflect pathological conditions associated with tissue damage. Robust and sensitive methodologies to analyze these lipid mediators are essential to understanding how they act as endocannabinoids. The recent advances in mass spectrometry allow researchers to develop lipidomics approaches and several methodologies have been proposed to quantify endocannabinoids in various biological systems.

  6. Effect of endocannabinoids on soybean lipoxygenase-1 activity.

    Science.gov (United States)

    Nguyen, Minh Duc; Nguyen, Dang Hung; Yoo, Jae-Myung; Myung, Pyung-Keun; Kim, Mee Ree; Sok, Dai-Eun

    2013-08-01

    Endocannabinoids appear to be involved in a variety of physiological processes. Lipoxygenase activity has been known to be affected by unsaturated fatty acids or phenolic compounds. In this study, we examined whether endocannabinoids containing both N-acyl group and phenolic group can affect the activity of soybean lipoxygenase (LOX)-1, similar to mammalian 15-lipoxygenase in physicochemical properties. First, N-arachidonoyl dopamine and N-oleoyl dopamine were found to inhibit soybean LOX-1-catalyzed oxygenation of linoleic acid in a non-competitive manner with a Ki value of 3.7 μM and 6.2 μM, respectively. Meanwhile, other endocannabinoids failed to show a remarkable inhibition of soybean LOX-1. Separately, N-arachidonoyl dopamine and N-arachidonoyl serotonin were observed to inactivate soybean LOX-1 with Kin value of 27 μM and 24 μM, respectively, and k3 value of 0.12 min(-1) and 0.35 min(-1), respectively. Furthermore, such an inactivation was enhanced by ascorbic acid, but suppressed by 13(S)-hydroperoxy-9,11-octadecadienoic acid. Taken together, it is proposed that endocannabinoids containing polyunsaturated acyl moiety and phenolic group may be efficient for the inhibition as well as inactivation of 15-lipoxygenase. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. The endocannabinoid system: an emerging key player in inflammation

    NARCIS (Netherlands)

    Witkamp, R.F.; Meijerink, J.

    2014-01-01

    Purpose of review: The purpose of this review is to illustrate the expanding view of the endocannabinoid system (ECS) in relation to its roles in inflammation. Recent findings: According to the formal classification, the ECS consists of two cannabinoid receptors, their endogenous fatty acid-derived

  8. Roles for the endocannabinoid system in ethanol-motivated behavior.

    Science.gov (United States)

    Henderson-Redmond, Angela N; Guindon, Josée; Morgan, Daniel J

    2016-02-04

    Alcohol use disorder represents a significant human health problem that leads to substantial loss of human life and financial cost to society. Currently available treatment options do not adequately address this human health problem, and thus, additional therapies are desperately needed. The endocannabinoid system has been shown, using animal models, to modulate ethanol-motivated behavior, and it has also been demonstrated that chronic ethanol exposure can have potentially long-lasting effects on the endocannabinoid system. For example, chronic exposure to ethanol, in either cell culture or preclinical rodent models, causes an increase in endocannabinoid levels that results in down-regulation of the cannabinoid receptor 1 (CB1) and uncoupling of this receptor from downstream G protein signaling pathways. Using positron emission tomography (PET), similar down-regulation of CB1 has been noted in multiple regions of the brain in human alcoholic patients. In rodents, treatment with the CB1 inverse agonist SR141716A (Rimonabant), or genetic deletion of CB1 leads to a reduction in voluntary ethanol drinking, ethanol-stimulated dopamine release in the nucleus accumbens, operant self-administration of ethanol, sensitization to the locomotor effects of ethanol, and reinstatement/relapse of ethanol-motivated behavior. Although the clinical utility of Rimonabant or other antagonists/inverse agonists for CB1 is limited due to negative neuropsychiatric side effects, negative allosteric modulators of CB1 and inhibitors of endocannabinoid catabolism represent therapeutic targets worthy of additional examination. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. The endocannabinoid system and its therapeutic implications in rheumatoid arthritis.

    Science.gov (United States)

    Gui, Huan; Tong, Qiang; Qu, Wenchun; Mao, Chen-Mei; Dai, Sheng-Ming

    2015-05-01

    Since the discovery of the endogenous receptor for Δ(9)-tetrahydrocannabinol, a main constituent of marijuana, the endocannabinoid system (comprising cannabinoid receptors and their endogenous ligands, as well as the enzymes involved in their metabolic processes) has been implicated as having multiple regulatory functions in many central and peripheral conditions, including rheumatoid arthritis (RA). RA is an immune-mediated inflammatory disease that is associated with the involvement of many kinds of cells (such as fibroblastlike synoviocytes [FLSs], osteoclasts, T cells, B cells, and macrophages) and molecules (such as interleukin-1β, tumor necrosis factor-α, interleukin-6, matrix metalloproteinases [MMPs], and chemokines). Increasing evidence suggests that the endocannabinoid system, especially cannabinoid receptor 2 (CB2), has an important role in the pathophysiology of RA. Many members of the endocannabinoid system are reported to inhibit synovial inflammation, hyperplasia, and cartilage destruction in RA. In particular, specific activation of CB2 may relieve RA by inhibiting not only the production of autoantibodies, proinflammatory cytokines, and MMPs, but also bone erosion, immune response mediated by T cells, and the proliferation of FLSs. In this review, we will discuss the possible functions of the endocannabinoid system in the modulation of RA, which may be a potential target for treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Lipidomic Analysis of Endocannabinoid Signaling: Targeted Metabolite Identification and Quantification

    Science.gov (United States)

    Keereetaweep, Jantana; Chapman, Kent D.

    2016-01-01

    The endocannabinoids N-arachidonoylethanolamide (or anandamide, AEA) and 2-arachidonoylglycerol (2-AG) belong to the larger groups of N-acylethanolamines (NAEs) and monoacylglycerol (MAG) lipid classes, respectively. They are biologically active lipid molecules that activate G-protein-coupled cannabinoid receptors found in various organisms. After AEA and 2-AG were discovered in the 1990s, they have been extensively documented to have a broad range of physiological functions. Along with AEA, several NAEs, for example, N-palmitoylethanolamine (PEA), N-stearoylethanolamine (SEA), and N-oleoylethanolamine (OEA) are also present in tissues, usually at much larger concentrations than AEA. Any perturbation that involves the endocannabinoid pathway may subsequently alter basal level or metabolism of these lipid mediators. Further, the altered levels of these molecules often reflect pathological conditions associated with tissue damage. Robust and sensitive methodologies to analyze these lipid mediators are essential to understanding how they act as endocannabinoids. The recent advances in mass spectrometry allow researchers to develop lipidomics approaches and several methodologies have been proposed to quantify endocannabinoids in various biological systems. PMID:26839710

  11. Cannabis and endocannabinoid modulators: Therapeutic promises and challenges.

    Science.gov (United States)

    Grant, Igor; Cahn, B Rael

    2005-01-01

    The discovery that botanical cannabinoids such as delta-9 tetrahydrocannabinol exert some of their effect through binding specific cannabinoid receptor sites has led to the discovery of an endocannabinoid signaling system, which in turn has spurred research into the mechanisms of action and addiction potential of cannabis on the one hand, while opening the possibility of developing novel therapeutic agents on the other. This paper reviews current understanding of CB1, CB2, and other possible cannabinoid receptors, their arachidonic acid derived ligands (e.g. anandamide; 2 arachidonoyl glycerol), and their possible physiological roles. CB1 is heavily represented in the central nervous system, but is found in other tissues as well; CB2 tends to be localized to immune cells. Activation of the endocannabinoid system can result in enhanced or dampened activity in various neural circuits depending on their own state of activation. This suggests that one function of the endocannabinoid system may be to maintain steady state. The therapeutic action of botanical cannabis or of synthetic molecules that are agonists, antagonists, or which may otherwise modify endocannabinoid metabolism and activity indicates they may have promise as neuroprotectants, and may be of value in the treatment of certain types of pain, epilepsy, spasticity, eating disorders, inflammation, and possibly blood pressure control.

  12. Antioxidant status and endocannabinoid concentration in postpartum depressive women

    Directory of Open Access Journals (Sweden)

    Mina Ranjbaran

    2015-02-01

    Conclusion: Women’s Job, husband’s job, wanted or unwanted pregnancy from husbands and marital period are associated to postpartum depression. In postpartum depression, TAC, AEA and 2-AG are reduced. So it can be concluded that both antioxidant system and endocannabinoid concentration involved in the development of postpartum depression.

  13. Biosynthesis of gold nanoparticles by the extreme bacterium Deinococcus radiodurans and an evaluation of their antibacterial properties

    Directory of Open Access Journals (Sweden)

    Li J

    2016-11-01

    Full Text Available Jiulong Li,1,* Qinghao Li,1,* Xiaoqiong Ma,2,* Bing Tian,1 Tao Li,1 Jiangliu Yu,1 Shang Dai,1 Yulan Weng,1 Yuejin Hua1 1Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 2Central Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China *These authors contributed equally to this work Abstract: Deinococcus radiodurans is an extreme bacterium known for its high resistance to stresses including radiation and oxidants. The ability of D. radiodurans to reduce Au(III and biosynthesize gold nanoparticles (AuNPs was investigated in aqueous solution by ultraviolet and visible (UV/Vis absorption spectroscopy, electron microscopy, X-ray diffraction (XRD, dynamic light scattering (DLS, Fourier transform infrared spectroscopy (FTIR and X-ray photoelectron spectroscopy (XPS. D. radiodurans efficiently synthesized AuNPs from 1 mM Au(III solution in 8 h. The AuNPs were of spherical, triangular and irregular shapes with an average size of 43.75 nm and a polydispersity index of 0.23 as measured by DLS. AuNPs were distributed in the cell envelope, across the cytosol and in the extracellular space. XRD analysis confirmed the crystallite nature of the AuNPs from the cell supernatant. Data from the FTIR and XPS showed that upon binding to proteins or compounds through interactions with carboxyl, amine, phospho and hydroxyl groups, Au(III may be reduced to Au(I, and further reduced to Au(0 with the capping groups to stabilize the AuNPs. Biosynthesis of AuNPs was optimized with respect to the initial concentration of gold salt, bacterial growth period, solution pH and temperature. The purified AuNPs exhibited significant antibacterial activity against both Gram-negative (Escherichia coli and Gram-positive (Staphylococcus aureus bacteria by damaging their cytoplasmic membrane. Therefore, the extreme

  14. Endocannabinoids Control Platelet Activation and Limit Aggregate Formation under Flow

    Science.gov (United States)

    De Angelis, Valentina; Koekman, Arnold C.; Weeterings, Cees; Roest, Mark; de Groot, Philip G.; Herczenik, Eszter; Maas, Coen

    2014-01-01

    Background The endocannabinoid system has previously been implicated in the regulation of neurons and inflammatory cells. Additionally, it has been reported that endocannabinoid receptors are present on circulating platelets, but there has been conflicting evidence on their contribution to platelet function. Objectives Our aim was to examine the role of endocannabinoids in platelet function in vitro and in vivo. Methods and Results We studied the effects of the well-characterized endogenous endocannabinoid anandamide on platelet aggregation in suspension, α-granule release, calcium mobilization, Syk phosphorylation, as well as platelet spreading and aggregate formation under flow. Anandamide inhibits platelet aggregation and α-granule release by collagen, collagen-derived peptide CRP-XL, ADP, arachidonic acid and thromboxane A2 analogue U46619. However, activation via thrombin receptor PAR-1 stays largely unaffected. Calcium mobilization is significantly impaired when platelets are stimulated with collagen or CRP-XL, but remains normal in the presence of the other agonists. In line with this finding, we found that anandamide prevents collagen-induced Syk phosphorylation. Furthermore, anandamide-treated platelets exhibit reduced spreading on immobilized fibrinogen, have a decreased capacity for binding fibrinogen in solution and show perturbed platelet aggregate formation under flow over collagen. Finally, we investigated the influence of Cannabis sativa consumption by human volunteers on platelet activation. Similar to our in vitro findings with anandamide, ex vivo collagen-induced platelet aggregation and aggregate formation on immobilized collagen under flow were impaired in whole blood of donors that had consumed Cannabis sativa. Conclusions Endocannabinoid receptor agonists reduce platelet activation and aggregate formation both in vitro and ex vivo after Cannabis sativa consumption. Further elucidation of this novel regulatory mechanism for platelet function

  15. Endocannabinoid system: Role in depression, reward and pain control (Review).

    Science.gov (United States)

    Huang, Wen-Juan; Chen, Wei-Wei; Zhang, Xia

    2016-10-01

    Depression and pain co-exist in almost 80% of patients and are associated with impaired health-related quality of life, often contributing to high mortality. However, the majority of patients who suffer from the comorbid depression and pain are not responsive to pharmacological treatments that address either pain or depression, making this comorbidity disorder a heavy burden on patients and society. In ancient times, this depression-pain comorbidity was treated using extracts of the Cannabis sativa plant, known now as marijuana and the mode of action of Δ9‑tetrahydrocannabinol, the active cannabinoid ingredient of marijuana, has only recently become known, with the identification of cannabinoid receptor type 1 (CB1) and CB2. Subsequent investigations led to the identification of endocannabinoids, anandamide and 2-arachidonoylglycerol, which exert cannabinomimetic effects through the CB1 and CB2 receptors, which are located on presynaptic membranes in the central nervous system and in peripheral tissues, respectively. These endocannabinoids are produced from membrane lipids and are lipohilic molecules that are synthesized on demand and are eliminated rapidly after their usage by hydrolyzing enzymes. Clinical studies revealed altered endocannabinoid signaling in patients with chronic pain. Considerable evidence suggested the involvement of the endocannabinoid system in eliciting potent effects on neurotransmission, neuroendocrine, and inflammatory processes, which are known to be deranged in depression and chronic pain. Several synthetic cannabinomimetic drugs are being developed to treat pain and depression. However, the precise mode of action of endocannabinoids on different targets in the body and whether their effects on pain and depression follow the same or different pathways, remains to be determined.

  16. Endocannabinoids control platelet activation and limit aggregate formation under flow.

    Directory of Open Access Journals (Sweden)

    Valentina De Angelis

    Full Text Available The endocannabinoid system has previously been implicated in the regulation of neurons and inflammatory cells. Additionally, it has been reported that endocannabinoid receptors are present on circulating platelets, but there has been conflicting evidence on their contribution to platelet function.Our aim was to examine the role of endocannabinoids in platelet function in vitro and in vivo.We studied the effects of the well-characterized endogenous endocannabinoid anandamide on platelet aggregation in suspension, α-granule release, calcium mobilization, Syk phosphorylation, as well as platelet spreading and aggregate formation under flow. Anandamide inhibits platelet aggregation and α-granule release by collagen, collagen-derived peptide CRP-XL, ADP, arachidonic acid and thromboxane A2 analogue U46619. However, activation via thrombin receptor PAR-1 stays largely unaffected. Calcium mobilization is significantly impaired when platelets are stimulated with collagen or CRP-XL, but remains normal in the presence of the other agonists. In line with this finding, we found that anandamide prevents collagen-induced Syk phosphorylation. Furthermore, anandamide-treated platelets exhibit reduced spreading on immobilized fibrinogen, have a decreased capacity for binding fibrinogen in solution and show perturbed platelet aggregate formation under flow over collagen. Finally, we investigated the influence of Cannabis sativa consumption by human volunteers on platelet activation. Similar to our in vitro findings with anandamide, ex vivo collagen-induced platelet aggregation and aggregate formation on immobilized collagen under flow were impaired in whole blood of donors that had consumed Cannabis sativa.Endocannabinoid receptor agonists reduce platelet activation and aggregate formation both in vitro and ex vivo after Cannabis sativa consumption. Further elucidation of this novel regulatory mechanism for platelet function may prove beneficial in the search

  17. Endocannabinoids control platelet activation and limit aggregate formation under flow.

    Science.gov (United States)

    De Angelis, Valentina; Koekman, Arnold C; Weeterings, Cees; Roest, Mark; de Groot, Philip G; Herczenik, Eszter; Maas, Coen

    2014-01-01

    The endocannabinoid system has previously been implicated in the regulation of neurons and inflammatory cells. Additionally, it has been reported that endocannabinoid receptors are present on circulating platelets, but there has been conflicting evidence on their contribution to platelet function. Our aim was to examine the role of endocannabinoids in platelet function in vitro and in vivo. We studied the effects of the well-characterized endogenous endocannabinoid anandamide on platelet aggregation in suspension, α-granule release, calcium mobilization, Syk phosphorylation, as well as platelet spreading and aggregate formation under flow. Anandamide inhibits platelet aggregation and α-granule release by collagen, collagen-derived peptide CRP-XL, ADP, arachidonic acid and thromboxane A2 analogue U46619. However, activation via thrombin receptor PAR-1 stays largely unaffected. Calcium mobilization is significantly impaired when platelets are stimulated with collagen or CRP-XL, but remains normal in the presence of the other agonists. In line with this finding, we found that anandamide prevents collagen-induced Syk phosphorylation. Furthermore, anandamide-treated platelets exhibit reduced spreading on immobilized fibrinogen, have a decreased capacity for binding fibrinogen in solution and show perturbed platelet aggregate formation under flow over collagen. Finally, we investigated the influence of Cannabis sativa consumption by human volunteers on platelet activation. Similar to our in vitro findings with anandamide, ex vivo collagen-induced platelet aggregation and aggregate formation on immobilized collagen under flow were impaired in whole blood of donors that had consumed Cannabis sativa. Endocannabinoid receptor agonists reduce platelet activation and aggregate formation both in vitro and ex vivo after Cannabis sativa consumption. Further elucidation of this novel regulatory mechanism for platelet function may prove beneficial in the search for new

  18. Rare genetic variants in the endocannabinoid system genes CNR1 and DAGLA are associated with neurological phenotypes in humans.

    Science.gov (United States)

    Smith, Douglas R; Stanley, Christine M; Foss, Theodore; Boles, Richard G; McKernan, Kevin

    2017-01-01

    Rare genetic variants in the core endocannabinoid system genes CNR1, CNR2, DAGLA, MGLL and FAAH were identified in molecular testing data from 6,032 patients with a broad spectrum of neurological disorders. The variants were evaluated for association with phenotypes similar to those observed in the orthologous gene knockouts in mice. Heterozygous rare coding variants in CNR1, which encodes the type 1 cannabinoid receptor (CB1), were found to be significantly associated with pain sensitivity (especially migraine), sleep and memory disorders-alone or in combination with anxiety-compared to a set of controls without such CNR1 variants. Similarly, heterozygous rare variants in DAGLA, which encodes diacylglycerol lipase alpha, were found to be significantly associated with seizures and neurodevelopmental disorders, including autism and abnormalities of brain morphology, compared to controls. Rare variants in MGLL, FAAH and CNR2 were not associated with any neurological phenotypes in the patients tested. Diacylglycerol lipase alpha synthesizes the endocannabinoid 2-AG in the brain, which interacts with CB1 receptors. The phenotypes associated with rare CNR1 variants are reminiscent of those implicated in the theory of clinical endocannabinoid deficiency syndrome. The severe phenotypes associated with rare DAGLA variants underscore the critical role of rapid 2-AG synthesis and the endocannabinoid system in regulating neurological function and development. Mapping of the variants to the 3D structure of the type 1 cannabinoid receptor, or primary structure of diacylglycerol lipase alpha, reveals clustering of variants in certain structural regions and is consistent with impacts to function.

  19. Differential alterations of the concentrations of endocannabinoids and related lipids in the subcutaneous adipose tissue of obese diabetic patients

    Directory of Open Access Journals (Sweden)

    Verde Roberta

    2010-04-01

    Full Text Available Abstract Background The endocannabinoids, anandamide and 2-AG, are produced by adipocytes, where they stimulate lipogenesis via cannabinoid CB1 receptors and are under the negative control of leptin and insulin. Endocannabinoid levels are elevated in the blood of obese individuals and nonobese type 2 diabetes patients. To date, no study has evaluated endocannabinoid levels in subcutaneous adipose tissue (SAT of subjects with both obesity and type 2 diabetes (OBT2D, characterised by similar adiposity and whole body insulin resistance and lower plasma leptin levels as compared to non-diabetic obese subjects (OB. Design and Methods The levels of anandamide and 2-AG, and of the anandamide-related PPARα ligands, oleoylethanolamide (OEA and palmitoylethanolamide (PEA, in the SAT obtained by abdominal needle biopsy in 10 OBT2D, 11 OB, and 8 non-diabetic normal-weight (NW subjects, were measured by liquid chromatography-mass spectrometry. All subjects underwent a hyperinsulinaemic euglycaemic clamp. Results As compared to NW, anandamide, OEA and PEA levels in the SAT were 2-4.4-fold elevated (p Conclusions The observed alterations emphasize, for the first time in humans, the potential different role and regulation of adipose tissue anandamide (and its congeners and 2-AG in obesity and type 2 diabetes.

  20. mGluR1/5 activation in the lateral hypothalamus increases food intake via the endocannabinoid system.

    Science.gov (United States)

    Sánchez-Fuentes, Asai; Marichal-Cancino, Bruno A; Méndez-Díaz, Mónica; Becerril-Meléndez, Alline L; Ruiz-Contreras, Alejandra E; Prospéro-Garcia, Oscar

    2016-09-19

    Mounting evidence has shown that glutamatergic and endocannabinoid systems in the hypothalamus regulate mammalian food intake. Stimulation of hypothalamic mGluR1/5 and CB1 receptors induces hyperphagia suggesting a possible interaction between these systems to control food intake. In addition, synthesis of endocannabinoids has been reported after mGluR1/5 stimulation in the brain. The aim of this study was to examine the potential cannabinergic activity in the food intake induction by lateral hypothalamic stimulation of mGluR1/5. Wistar albino male rats received bilateral infusions in the lateral hypothalamus (LH) of: (i) vehicle; (ii) (RS)-2-Chloro-5-hidroxyphenylglycine (CHPG; mGluR1/5 agonist); (iii) 2-AG (CB1 endogenous agonist); (iv) AM251 (CB1 antagonist); (v) tetrahydrolipstatin (THL, 1.2μg; diacyl-glycerol lipase inhibitor); and (vi) combinations of CHPG + with the other aforementioned drugs. Food intake was evaluated the first two hours after drug administration. CHPG significantly increased food intake; whereas CHPG in combination with a dose of 2-AG (with no effects on food intake) greatly increased food ingestion compared to CHPG alone. The increase induced by CHPG in food intake was prevented with AM251 or THL. These results suggest that activation of mGluR1/5 in the lateral hypothalamus induces an orexigenic effect via activation of the endocannabinoid system. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Endocannabinoid system in sexual motivational processes: Is it a novel therapeutic horizon?

    Science.gov (United States)

    Androvicova, Renata; Horacek, Jiri; Stark, Tibor; Drago, Filippo; Micale, Vincenzo

    2017-01-01

    The endocannabinoid system (ECS), which is composed of the cannabinoid receptors types 1 and 2 (CB1 and CB2) for marijuana's psychoactive ingredient Δ 9 -tetrahydrocannabinol (Δ 9 -THC), the endogenous ligands (AEA and 2-AG) and the enzymatic systems involved in their biosynthesis and degradation, recently emerged as important modulator of emotional and non-emotional behaviors. For centuries, in addition to its recreational actions, several contradictory claims regarding the effects of Cannabis use in sexual functioning and behavior (e.g. aphrodisiac vs anti-aphrodisiac) of both sexes have been accumulated. The identification of Δ 9 -THC and later on, the discovery of the ECS have opened a potential therapeutic target for sexual dysfunctions, given the partial efficacy of current pharmacological treatment. In agreement with the bidirectional modulation induced by cannabinoids on several behavioral responses, the endogenous cannabinoid AEA elicited biphasic effects on sexual behavior as well. The present article reviews current available knowledge on herbal, synthetic and endogenous cannabinoids with respect to the modulation of several aspects of sexuality in preclinical and human studies, highlighting their therapeutic potential. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Endocannabinoid System: A Multi-Facet Therapeutic Target.

    Science.gov (United States)

    Kaur, Rimplejeet; Ambwani, Sneha R; Singh, Surjit

    2016-01-01

    Cannabis sativa is also popularly known as marijuana. It has been cultivated and used by man for recreational and medicinal purposes since many centuries. Study of cannabinoids was at bay for very long time and its therapeutic value could not be adequately harnessed due to its legal status as proscribed drug in most of the countries. The research of drugs acting on endocannabinoid system has seen many ups and downs in the recent past. Presently, it is known that endocannabinoids has role in pathology of many disorders and they also serve "protective role" in many medical conditions. Several diseases like emesis, pain, inflammation, multiple sclerosis, anorexia, epilepsy, glaucoma, schizophrenia, cardiovascular disorders, cancer, obesity, metabolic syndrome related diseases, Parkinson's disease, Huntington's disease, Alzheimer's disease and Tourette's syndrome could possibly be treated by drugs modulating endocannabinoid system. Presently, cannabinoid receptor agonists like nabilone and dronabinol are used for reducing the chemotherapy induced vomiting. Sativex (cannabidiol and THC combination) is approved in the UK, Spain and New Zealand to treat spasticity due to multiple sclerosis. In US it is under investigation for cancer pain, another drug Epidiolex (cannabidiol) is also under investigation in US for childhood seizures. Rimonabant, CB1 receptor antagonist appeared as a promising anti-obesity drug during clinical trials but it also exhibited remarkable psychiatric side effect profile. Due to which the US Food and Drug Administration did not approve Rimonabant in US. It sale was also suspended across the EU in 2008. Recent discontinuation of clinical trial related to FAAH inhibitor due to occurrence of serious adverse events in the participating subjects could be discouraging for the research fraternity. Despite some mishaps in clinical trials related to drugs acting on endocannabinoid system, still lot of research is being carried out to explore and establish

  3. Review article: the endocannabinoid system in liver disease, a potential therapeutic target.

    Science.gov (United States)

    Basu, P P; Aloysius, M M; Shah, N J; Brown, R S

    2014-04-01

    Endocannabinoids are a family of potent lipid-soluble molecules, acting on the cannabinoid (CB) receptors that mediate the effects of marijuana. The CB receptors, endocannabinoids and the enzymes involved in their synthesis and degradation are located in the brain and peripheral tissues, including the liver. To review the current understanding of the role of the endocannabinoid system in liver disease-associated pathophysiological conditions, and drugs targeting the endocannabinoid system as therapy for liver disease. Original articles and reviews were used to summarise the relevant pre-clinical and clinical research findings relating to this topic. The endocannabinoid system as a whole plays an important role in liver diseases (i.e. non-alcoholic liver disease, alcoholic liver disease, hepatic encephalopathy and autoimmune hepatitis) and related pathophysiological conditions (i.e. altered hepatic haemodynamics, cirrhotic cardiomyopathy, metabolic syndrome and ischaemia/reperfusion disease). Pharmacological targeting of the endocannabinoid system has had success as treatment for patients with liver disease, but adverse events led to withdrawal of marketing approval. However, there is optimism over novel therapeutics targeting the endocannabinoid system currently in the pre-clinical stage of development. The endocannabinoid system plays an important role in the pathophysiology of liver disease and its associated conditions. While some drugs targeting the endocannabinoid system have deleterious neurological adverse events, there is promise for a newer generation of therapies that do not cross the blood-brain barrier. © 2014 John Wiley & Sons Ltd.

  4. Peripheral modulation of the endocannabinoid system in metabolic disease.

    Science.gov (United States)

    Shrestha, Nirajan; Cuffe, James S M; Hutchinson, Dana S; Headrick, John P; Perkins, Anthony V; McAinch, Andrew J; Hryciw, Deanne H

    2018-03-01

    Dysfunction of the endocannabinoid system (ECS) has been identified in metabolic disease. Cannabinoid receptor 1 (CB 1 ) is abundantly expressed in the brain but also expressed in the periphery. Cannabinoid receptor 2 (CB 2 ) is more abundant in the periphery, including the immune cells. In obesity, global antagonism of overexpressed CB 1 reduces bodyweight but leads to centrally mediated adverse psychological outcomes. Emerging research in isolated cultured cells or tissues has demonstrated that targeting the endocannabinoid system in the periphery alleviates the pathologies associated with metabolic disease. Further, peripheral specific cannabinoid ligands can reverse aspects of the metabolic phenotype. This Keynote review will focus on current research on the functionality of peripheral modulation of the ECS for the treatment of obesity. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  5. Allodynia Lowering Induced by Cannabinoids and Endocannabinoids (ALICE).

    Science.gov (United States)

    Luongo, Livio; Starowicz, Katarzyna; Maione, Sabatino; Di Marzo, Vincenzo

    2017-05-01

    Neuropathic pain is a neurological disorder that strongly affects the quality of life of patients. The molecular and cellular mechanisms at the basis of the neuropathic pain establishment still need to be clarified. Among the neuromodulators that play a role in the pathological pain pathways, endocannabinoids could be deeply involved in both neuronal and non-neuronal mechanisms responsible for the appearance of tactile allodynia. Indeed, the function and dysfunction of this complex system in the molecular and cellular mechanisms of chronic pain induction and maintenance have been widely studied over the last two decades. In this review article, we highlighted the possible modulation of the endocannabinoid system in the neuronal, glial and microglial modulation in neuropathic pain treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Endocannabinoid-dopamine interactions in striatal synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Brian Neil Mathur

    2012-04-01

    Full Text Available The nigrostriatal dopaminergic system is implicated in action control and learning. A large body of work has focused on the contribution of this system to modulation of the corticostriatal synapse, the predominant synapse type in the striatum. Signaling through the D2 dopamine receptor is necessary for endocannabinoid-mediated depression of corticostriatal glutamate release. Here we review the known details of this mechanism and discuss newly discovered signaling pathways interacting with this system that ultimately exert dynamic control of cortical input to the striatum and striatal output. This topic is timely with respect to Parkinson’s disease given recent data indicating changes in the striatal endocannabinoid system in patients with this disorder.

  7. [News about therapeutic use of Cannabis and endocannabinoid system].

    Science.gov (United States)

    Duran, Marta; Laporte, Joan-Ramon; Capellà, Dolors

    2004-03-20

    Growing basic research in recent years led to the discovery of the endocannabinoid system with a central role in neurobiology. New evidence suggests a therapeutic potential of cannabinoids in cancer chemotherapy-induced nausea and vomiting as well as in pain, spasticity and other symptoms in multiple sclerosis and movement disorders. Results of large randomized clinical trials of oral and sublingual Cannabis extracts will be known soon and there will be definitive answers to whether Cannabis has any therapeutic potential. Although the immediate future may lie in plant-based medicines, new targets for cannabinoid therapy focuses on the development of endocannabinoid degradation inhibitors which may offer site selectivity not afforded by cannabinoid receptor agonists.

  8. The Endocannabinoid System as a Therapeutic Target in Glaucoma

    Science.gov (United States)

    Cairns, Elizabeth A.; Baldridge, William H.; Kelly, Melanie E. M.

    2016-01-01

    Glaucoma is an irreversible blinding eye disease which produces progressive retinal ganglion cell (RGC) loss. Intraocular pressure (IOP) is currently the only modifiable risk factor, and lowering IOP results in reduced risk of progression of the disorder. The endocannabinoid system (ECS) has attracted considerable attention as a potential target for the treatment of glaucoma, largely due to the observed IOP lowering effects seen after administration of exogenous cannabinoids. However, recent evidence has suggested that modulation of the ECS may also be neuroprotective. This paper will review the use of cannabinoids in glaucoma, presenting pertinent information regarding the pathophysiology of glaucoma and how alterations in cannabinoid signalling may contribute to glaucoma pathology. Additionally, the mechanisms and potential for the use of cannabinoids and other novel agents that target the endocannabinoid system in the treatment of glaucoma will be discussed. PMID:26881140

  9. The Endocannabinoid System as a Therapeutic Target in Glaucoma

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Cairns

    2016-01-01

    Full Text Available Glaucoma is an irreversible blinding eye disease which produces progressive retinal ganglion cell (RGC loss. Intraocular pressure (IOP is currently the only modifiable risk factor, and lowering IOP results in reduced risk of progression of the disorder. The endocannabinoid system (ECS has attracted considerable attention as a potential target for the treatment of glaucoma, largely due to the observed IOP lowering effects seen after administration of exogenous cannabinoids. However, recent evidence has suggested that modulation of the ECS may also be neuroprotective. This paper will review the use of cannabinoids in glaucoma, presenting pertinent information regarding the pathophysiology of glaucoma and how alterations in cannabinoid signalling may contribute to glaucoma pathology. Additionally, the mechanisms and potential for the use of cannabinoids and other novel agents that target the endocannabinoid system in the treatment of glaucoma will be discussed.

  10. Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Vilela, Luciano R. [Graduate Program in Neuroscience, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Gobira, Pedro H.; Viana, Thercia G. [Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Medeiros, Daniel C.; Ferreira-Vieira, Talita H. [Department of Physiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Doria, Juliana G. [Graduate Program in Neuroscience, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Rodrigues, Flávia [Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Aguiar, Daniele C. [Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Pereira, Grace S.; Massessini, André R. [Department of Physiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Ribeiro, Fabíola M. [Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Oliveira, Antonio Carlos P. de [Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Moraes, Marcio F.D., E-mail: mfdm@icb.ufmg.br [Department of Physiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Moreira, Fabricio A., E-mail: fabriciomoreira@icb.ufmg.br [Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2015-08-01

    Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited. Evidence suggests that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication. Male Swiss mice received injections of endocannabinoid-related compounds followed by the lowest dose of cocaine that induces seizures, electroencephalographic activity and cell death in the hippocampus. The molecular mechanisms were studied in primary cell culture of this structure. The FAAH inhibitor, URB597, reduced cocaine-induced seizures and epileptiform electroencephalographic activity. The cannabinoid CB{sub 1} receptor selective agonist, ACEA, mimicked these effects, whereas the antagonist, AM251, prevented them. URB597 also inhibited cocaine-induced activation and death of hippocampal neurons, both in animals and in primary cell culture. Finally, we investigated if the PI3K/Akt/ERK intracellular pathway, a cell surviving mechanism coupled to CB{sub 1} receptor, mediated these neuroprotective effects. Accordingly, URB597 injection increased ERK and Akt phosphorylation in the hippocampus. Moreover, the neuroprotective effect of this compound was reversed by the PI3K inhibitor, LY294002. In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signaling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity. - Highlights: • Cocaine toxicity is characterized by seizures and hippocampal cell death. • The endocannabinoid anandamide acts as a brain protective mechanism. • Inhibition of anandamide hydrolysis

  11. The endocannabinoid anandamide inhibits potassium conductance in rat cortical astrocytes

    Czech Academy of Sciences Publication Activity Database

    Vignali, M.; Benfenati, V.; Caprini, M.; Anděrová, Miroslava; Nobile, M.; Ferroni, S.

    2009-01-01

    Roč. 57, č. 7 (2009), s. 791-806 ISSN 0894-1491 R&D Projects: GA ČR GA305/06/1316; GA ČR GA305/06/1464; GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50390512 Keywords : cortical astroglia * potassium conductance * endocannabinoids Subject RIV: FH - Neurology Impact factor: 4.932, year: 2009

  12. The endocannabinoid system and associative learning and memory in zebrafish.

    Science.gov (United States)

    Ruhl, Tim; Moesbauer, Kirstin; Oellers, Nadine; von der Emde, Gerhard

    2015-09-01

    In zebrafish the medial pallium of the dorsal telencephalon represents an amygdala homolog structure, which is crucially involved in emotional associative learning and memory. Similar to the mammalian amygdala, the medial pallium contains a high density of endocannabinoid receptor CB1. To elucidate the role of the zebrafish endocannabinoid system in associative learning, we tested the influence of acute and chronic administration of receptor agonists (THC, WIN55,212-2) and antagonists (Rimonabant, AM-281) on two different learning paradigms. In an appetitively motivated two-alternative choice paradigm, animals learned to associate a certain color with a food reward. In a second set-up, a fish shuttle-box, animals associated the onset of a light stimulus with the occurrence of a subsequent electric shock (avoidance conditioning). Once fish successfully had learned to solve these behavioral tasks, acute receptor activation or inactivation had no effect on memory retrieval, suggesting that established associative memories were stable and not alterable by the endocannabinoid system. In both learning tasks, chronic treatment with receptor antagonists improved acquisition learning, and additionally facilitated reversal learning during color discrimination. In contrast, chronic CB1 activation prevented aversively motivated acquisition learning, while different effects were found on appetitively motivated acquisition learning. While THC significantly improved behavioral performance, WIN55,212-2 significantly impaired color association. Our findings suggest that the zebrafish endocannabinoid system can modulate associative learning and memory. Stimulation of the CB1 receptor might play a more specific role in acquisition and storage of aversive learning and memory, while CB1 blocking induces general enhancement of cognitive functions. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Endocannabinoids in the Retina: From Marijuana to Neuroprotection

    Science.gov (United States)

    Yazulla, Stephen

    2008-01-01

    The active component of the marijuana plant Cannabis sativa, Δ9-tetrahydrocannabinol (THC), produces numerous beneficial effects, including analgesia, appetite stimulation and nausea reduction, in addition to its psychotropic effects. THC mimics the action of endogenous fatty acid derivatives, referred to as endocannabinoids. The effects of THC and the endocannabinoids are mediated largely by metabotropic receptors that are distributed throughout the nervous and peripheral organ systems. There is great interest in endocannabinoids for their role in neuroplasticity as well as for therapeutic use in numerous conditions, including pain, stroke, cancer, obesity, osteoporosis, fertility, neurodegenerative diseases, multiple sclerosis, glaucoma and inflammatory diseases, among others. However, there has been relatively far less research on this topic in the eye and retina compared with the brain and other organ systems. The purpose of this review is to introduce the “cannabinergic” field to the retinal community. All of the fundamental work on cannabinoids has been performed in non-retinal preparations, necessitating extensive dependence on this literature for background. Happily, the retinal cannabinoid system has much in common with other regions of the central nervous system. For example, there is general agreement that cannabinoids suppress dopamine release and presynaptically reduce transmitter release from cones and bipolar cells. How these effects relate to light and dark adaptation, receptive field formation, temporal properties of ganglion cells or visual perception are unknown. The presence of multiple endocannabinoids, degradative enzymes with their bioactive metabolites, and receptors provides a broad spectrum of opportunities for basic research and to identify targets for therapeutic application to retinal diseases. PMID:18725316

  14. Endocannabinoids: a unique opportunity to develop multitarget analgesics.

    Science.gov (United States)

    Maione, Sabatino; Costa, Barbara; Di Marzo, Vincenzo

    2013-12-01

    After 4 millennia of more or less documented history of cannabis use, the identification of cannabinoids, and of Δ(9)-tetrahydrocannabinol in particular, occurred only during the early 1960s, and the cloning of cannabinoid CB1 and CB2 receptors, as well as the discovery of endocannabinoids and their metabolic enzymes, in the 1990s. Despite this initial relatively slow progress of cannabinoid research, the turn of the century marked an incredible acceleration in discoveries on the "endocannabinoid signaling system," its role in physiological and pathological conditions, and pain in particular, its pharmacological targeting with selective agonists, antagonists, and inhibitors of metabolism, and its previously unsuspected complexity. The way researchers look at this system has thus rapidly evolved towards the idea of the "endocannabinoidome," that is, a complex system including also several endocannabinoid-like mediators and their often redundant metabolic enzymes and "promiscuous" molecular targets. These peculiar complications of endocannabinoid signaling have not discouraged efforts aiming at its pharmacological manipulation, which, nevertheless, now seems to require the development of multitarget drugs, or the re-visitation of naturally occurring compounds with more than one mechanism of action. In fact, these molecules, as compared to "magic bullets," seem to offer the advantage of modulating the "endocannabinoidome" in a safer and more therapeutically efficacious way. This approach has provided so far promising preclinical results potentially useful for the future efficacious and safe treatment of chronic pain and inflammation. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  15. Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity

    International Nuclear Information System (INIS)

    Vilela, Luciano R.; Gobira, Pedro H.; Viana, Thercia G.; Medeiros, Daniel C.; Ferreira-Vieira, Talita H.; Doria, Juliana G.; Rodrigues, Flávia; Aguiar, Daniele C.; Pereira, Grace S.; Massessini, André R.; Ribeiro, Fabíola M.; Oliveira, Antonio Carlos P. de; Moraes, Marcio F.D.; Moreira, Fabricio A.

    2015-01-01

    Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited. Evidence suggests that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication. Male Swiss mice received injections of endocannabinoid-related compounds followed by the lowest dose of cocaine that induces seizures, electroencephalographic activity and cell death in the hippocampus. The molecular mechanisms were studied in primary cell culture of this structure. The FAAH inhibitor, URB597, reduced cocaine-induced seizures and epileptiform electroencephalographic activity. The cannabinoid CB 1 receptor selective agonist, ACEA, mimicked these effects, whereas the antagonist, AM251, prevented them. URB597 also inhibited cocaine-induced activation and death of hippocampal neurons, both in animals and in primary cell culture. Finally, we investigated if the PI3K/Akt/ERK intracellular pathway, a cell surviving mechanism coupled to CB 1 receptor, mediated these neuroprotective effects. Accordingly, URB597 injection increased ERK and Akt phosphorylation in the hippocampus. Moreover, the neuroprotective effect of this compound was reversed by the PI3K inhibitor, LY294002. In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signaling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity. - Highlights: • Cocaine toxicity is characterized by seizures and hippocampal cell death. • The endocannabinoid anandamide acts as a brain protective mechanism. • Inhibition of anandamide hydrolysis attenuates

  16. Metabolic Interplay between Astrocytes and Neurons Regulates Endocannabinoid Action

    Directory of Open Access Journals (Sweden)

    Andreu Viader

    2015-08-01

    Full Text Available The endocannabinoid 2-arachidonoylglycerol (2-AG is a retrograde lipid messenger that modulates synaptic function, neurophysiology, and behavior. 2-AG signaling is terminated by enzymatic hydrolysis—a reaction that is principally performed by monoacylglycerol lipase (MAGL. MAGL is broadly expressed throughout the nervous system, and the contributions of different brain cell types to the regulation of 2-AG activity in vivo remain poorly understood. Here, we genetically dissect the cellular anatomy of MAGL-mediated 2-AG metabolism in the brain and show that neurons and astrocytes coordinately regulate 2-AG content and endocannabinoid-dependent forms of synaptic plasticity and behavior. We also find that astrocytic MAGL is mainly responsible for converting 2-AG to neuroinflammatory prostaglandins via a mechanism that may involve transcellular shuttling of lipid substrates. Astrocytic-neuronal interplay thus provides distributed oversight of 2-AG metabolism and function and, through doing so, protects the nervous system from excessive CB1 receptor activation and promotes endocannabinoid crosstalk with other lipid transmitter systems.

  17. Involvement of the endocannabinoid system in periodontal healing

    International Nuclear Information System (INIS)

    Kozono, Sayaka; Matsuyama, Takashi; Biwasa, Kamal Krishna; Kawahara, Ko-ichi; Nakajima, Yumiko; Yoshimoto, Takehiko; Yonamine, Yutaka; Kadomatsu, Hideshi; Tancharoen, Salunya; Hashiguchi, Teruto; Noguchi, Kazuyuki; Maruyama, Ikuro

    2010-01-01

    Endocannabinoids including anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are important lipid mediators for immunosuppressive effects and for appropriate homeostasis via their G-protein-coupled cannabinoid (CB) receptors in mammalian organs and tissues, and may be involved in wound healing in some organs. The physiological roles of endocannabinoids in periodontal healing remain unknown. We observed upregulation of the expression of CB1/CB2 receptors localized on fibroblasts and macrophage-like cells in granulation tissue during wound healing in a wound-healing model in rats, as well as an increase in AEA levels in gingival crevicular fluid after periodontal surgery in human patients with periodontitis. In-vitro, the proliferation of human gingival fibroblasts (HGFs) by AEA was significantly attenuated by AM251 and AM630, which are selective antagonists of CB1 and CB2, respectively. CP55940 (CB1/CB2 agonist) induced phosphorylation of the extracellular-regulated kinases (ERK) 1/2, p38 mitogen-activated protein kinase (p38MAPK), and Akt in HGFs. Wound closure by CP55940 in an in-vitro scratch assay was significantly suppressed by inhibitors of MAP kinase kinase (MEK), p38MAPK, and phosphoinositol 3-kinase (PI3-K). These findings suggest that endocannabinoid system may have an important role in periodontal healing.

  18. Endocannabinoids drive the acquisition of an alternative phenotype in microglia.

    Science.gov (United States)

    Mecha, M; Feliú, A; Carrillo-Salinas, F J; Rueda-Zubiaurre, A; Ortega-Gutiérrez, S; de Sola, R García; Guaza, C

    2015-10-01

    The ability of microglia to acquire diverse states of activation, or phenotypes, reflects different features that are determinant for their contribution to homeostasis in the adult CNS, and their activity in neuroinflammation, repair or immunomodulation. Despite the widely reported immunomodulatory effects of cannabinoids in both the peripheral immune system and the CNS, less is known about how the endocannabinoid signaling system (eCBSS) influence the microglial phenotype. The general aim of the present study was to investigate the role of endocannabinoids in microglia polarization by using microglia cell cultures. We show that alternative microglia (M2a) and acquired deactivated microglia (M2c) exhibit changes in the eCB machinery that favor the selective synthesis of 2-AG and AEA, respectively. Once released, these eCBs might be able to act through CB1 and/or CB2 receptors in order to influence the acquisition of an M2 phenotype. We present three lines of evidence that the eCBSS is critical for the acquisition of the M2 phenotype: (i) M2 polarization occurs on exposure to the two main endocannabinoids 2-AG and AEA in microglia cultures; (ii) cannabinoid receptor antagonists block M2 polarization; and (iii) M2 polarization is dampened in microglia from CB2 receptor knockout mice. Taken together, these results indicate the interest of eCBSS for the regulation of microglial activation in normal and pathological conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Endocannabinoids and the Immune System in Health and Disease.

    Science.gov (United States)

    Cabral, Guy A; Ferreira, Gabriela A; Jamerson, Melissa J

    2015-01-01

    Endocannabinoids are bioactive lipids that have the potential to signal through cannabinoid receptors to modulate the functional activities of a variety of immune cells. Their activation of these seven-transmembranal, G protein-coupled receptors sets in motion a series of signal transductional events that converge at the transcriptional level to regulate cell migration and the production of cytokines and chemokines. There is a large body of data that supports a functional relevance for 2-arachidonoylglycerol (2-AG) as acting through the cannabinoid receptor type 2 (CB2R) to inhibit migratory activities for a diverse array of immune cell types. However, unequivocal data that supports a functional linkage of anandamide (AEA) to a cannabinoid receptor in immune modulation remains to be obtained. Endocannabinoids, as typical bioactive lipids, have a short half-life and appear to act in an autocrine and paracrine fashion. Their immediate effective action on immune function may be at localized sites in the periphery and within the central nervous system. It is speculated that endocannabinoids play an important role in maintaining the overall "fine-tuning" of the immune homeostatic balance within the host.

  20. Peripheral endocannabinoid system dysregulation in first-episode psychosis.

    Science.gov (United States)

    Bioque, Miquel; García-Bueno, Borja; Macdowell, Karina S; Meseguer, Ana; Saiz, Pilar A; Parellada, Mara; Gonzalez-Pinto, Ana; Rodriguez-Jimenez, Roberto; Lobo, Antonio; Leza, Juan C; Bernardo, Miguel

    2013-12-01

    Several hypotheses involving alterations of the immune system have been proposed among etiological explanations for psychotic disorders. The endocannabinoid system (ECS) has a homeostatic role as an endogenous neuroprotective and anti-inflammatory system. Alterations of this system have been associated with psychosis. Cannabis use is a robust risk factor for these disorders that could alter the ECS signalling. In this study, 95 patients with a first episode of psychosis (FEP) and 90 healthy controls were recruited. Protein expression of cannabinoid receptor 2 (CB2), the protein levels of the main endocannabinoid synthesizing enzymes N-acyl phosphatidylethanolamine phospholipase (NAPE) and diacylglycerol lipase (DAGL), and of degradation enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) were determined by western blot analysis in peripheral blood mononuclear cells (PBMCs). Patients with a FEP showed a decreased expression of CB2 and of both endocannabinoids synthesizing enzymes (NAPE and DAGL) in comparison to healthy controls. After controlling for age, gender, body mass index, and cannabis use, NAPE and DAGL expression remained significantly decreased, whereas FAAH and MAGL expression were increased. On the other hand, FEP subjects with history of severe cannabis use showed a larger ECS dysregulation compared with healthy controls. These results indicate an ECS dysregulation in PBMC of FEP patients. The alteration of the ECS presented at the initial phases of psychosis could be contributing to the pathophysiology of the disease and constitutes a possible biomarker of psychotic disorders and an interesting pharmacological target to take into account for therapeutic purposes.

  1. [Functional role of the endocannabinoid system in emotional homeostasis].

    Science.gov (United States)

    Marco, E M; Viveros, M P

    Cannabis and derivatives induce complex effects on anxiety in humans and experimental animals. At low doses, cannabinoid agonists seem to exert anxiolytic actions, while at high doses anxiety and panic estates are often reported. Diverse animal models confirm this particular biphasic profile; however, the underlying neurobiological mechanisms have not been completely elucidated. The anxiogenic-like behavioral phenotype observed following both pharmacological and genetic blockade of cannabinoid CB1 receptors, together with the abundant expression of cannabinoid receptors within brain areas particularly involved in emotional control, such as amygdala, hippocampus and cortex, are among the numerous evidences that account for the participation of the endocannabinoid system in the regulation of anxiety states. Moreover, blockade of endogenous cannabinoid ligands deactivation has been reported to induce anxiolytic-like responses. Taken together, present data reinforce the involvement of the endocannabinoid system in the control of emotional homeostasis and further suggest the pharmacological manipulation of the endocannabinoid system as a potential therapeutic tool in the management of anxiety-related disorders.

  2. Manipulation of the Endocannabinoid System in Colitis: A Comprehensive Review.

    Science.gov (United States)

    Leinwand, Kristina L; Gerich, Mark E; Hoffenberg, Edward J; Collins, Colm B

    2017-02-01

    Inflammatory bowel disease (IBD) is a lifelong disease of the gastrointestinal tract whose annual incidence and prevalence is on the rise. Current immunosuppressive therapies available for treatment of IBD offer limited benefits and lose effectiveness, exposing a significant need for the development of novel therapies. In the clinical setting, cannabis has been shown to provide patients with IBD symptomatic relief, although the underlying mechanisms of their anti-inflammatory effects remain unclear. This review reflects our current understanding of how targeting the endocannabinoid system, including cannabinoid receptors 1 and 2, endogenous cannabinoids anandamide and 2-arachidonoylglycerol, atypical cannabinoids, and degrading enzymes including fatty acid amide hydrolase and monoacylglycerol lipase, impacts murine colitis. In addition, the impact of cannabinoids on the human immune system is summarized. Cannabinoid receptors 1 and 2, endogenous cannabinoids, and atypical cannabinoids are upregulated in inflammation, and their presence and stimulation attenuate murine colitis, whereas cannabinoid receptor antagonism and cannabinoid receptor deficient models reverse these anti-inflammatory effects. In addition, inhibition of endocannabinoid degradation through monoacylglycerol lipase and fatty acid amide hydrolase blockade can also attenuate colitis development, and is closely linked to cannabinoid receptor expression. Although manipulation of the endocannabinoid system in murine colitis has proven to be largely beneficial in attenuating inflammation, there is a paucity of human study data. Further research is essential to clearly elucidate the specific mechanisms driving this anti-inflammatory effect for the development of therapeutics to target inflammatory disease such as IBD.

  3. The endocannabinoid system in anxiety, fear memory and habituation

    Science.gov (United States)

    Ruehle, S; Rey, A Aparisi; Remmers, F

    2012-01-01

    Evidence for the involvement of the endocannabinoid system (ECS) in anxiety and fear has been accumulated, providing leads for novel therapeutic approaches. In anxiety, a bidirectional influence of the ECS has been reported, whereby anxiolytic and anxiogenic responses have been obtained after both increases and decreases of the endocannabinoid tone. The recently developed genetic tools have revealed different but complementary roles for the cannabinoid type 1 (CB1) receptor on GABAergic and glutamatergic neuronal populations. This dual functionality, together with the plasticity of CB1 receptor expression, particularly on GABAergic neurons, as induced by stressful and rewarding experiences, gives the ECS a unique regulatory capacity for maintaining emotional homeostasis. However, the promiscuity of the endogenous ligands of the CB1 receptor complicates the interpretation of experimental data concerning ECS and anxiety. In fear memory paradigms, the ECS is mostly involved in the two opposing processes of reconsolidation and extinction of the fear memory. Whereas ECS activation deteriorates reconsolidation, proper extinction depends on intact CB1 receptor signalling. Thus, both for anxiety and fear memory processing, endocannabinoid signalling may ensure an appropriate reaction to stressful events. Therefore, the ECS can be considered as a regulatory buffer system for emotional responses. PMID:21768162

  4. Involvement of the endocannabinoid system in periodontal healing

    Energy Technology Data Exchange (ETDEWEB)

    Kozono, Sayaka [Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Matsuyama, Takashi, E-mail: takashi@dent.kagoshima-u.ac.jp [Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Biwasa, Kamal Krishna [Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi 6205 (Bangladesh); Kawahara, Ko-ichi [Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Nakajima, Yumiko; Yoshimoto, Takehiko; Yonamine, Yutaka; Kadomatsu, Hideshi [Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Tancharoen, Salunya [Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok 10400 (Thailand); Hashiguchi, Teruto [Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Noguchi, Kazuyuki [Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Maruyama, Ikuro [Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan)

    2010-04-16

    Endocannabinoids including anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are important lipid mediators for immunosuppressive effects and for appropriate homeostasis via their G-protein-coupled cannabinoid (CB) receptors in mammalian organs and tissues, and may be involved in wound healing in some organs. The physiological roles of endocannabinoids in periodontal healing remain unknown. We observed upregulation of the expression of CB1/CB2 receptors localized on fibroblasts and macrophage-like cells in granulation tissue during wound healing in a wound-healing model in rats, as well as an increase in AEA levels in gingival crevicular fluid after periodontal surgery in human patients with periodontitis. In-vitro, the proliferation of human gingival fibroblasts (HGFs) by AEA was significantly attenuated by AM251 and AM630, which are selective antagonists of CB1 and CB2, respectively. CP55940 (CB1/CB2 agonist) induced phosphorylation of the extracellular-regulated kinases (ERK) 1/2, p38 mitogen-activated protein kinase (p38MAPK), and Akt in HGFs. Wound closure by CP55940 in an in-vitro scratch assay was significantly suppressed by inhibitors of MAP kinase kinase (MEK), p38MAPK, and phosphoinositol 3-kinase (PI3-K). These findings suggest that endocannabinoid system may have an important role in periodontal healing.

  5. The Endocannabinoid System as a Target for Treatment of Breast Cancer

    Science.gov (United States)

    2011-08-01

    code) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 The Endocannabinoid System as a Target for Treatment of Breast Cancer Dr...REFERENCES: 1 Ahn, K., McKinney, M. K. & Cravatt, B. F. Enzymatic pathways that regulate endocannabinoid signaling in the nervous system. Chem Rev

  6. Impact of embedded endocannabinoids and their oxygenation by lipoxygenase on membrane properties.

    Science.gov (United States)

    Dainese, Enrico; Sabatucci, Annalaura; Angelucci, Clotilde B; Barsacchi, Daniela; Chiarini, Marco; Maccarrone, Mauro

    2012-05-16

    N-Arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol are the best characterized endocannabinoids. Their biological activity is subjected to metabolic control whereby a dynamic equilibrium among biosynthetic, catabolic, and oxidative pathways drives their intracellular concentrations. In particular, lipoxygenases can generate hydroperoxy derivatives of endocannabinoids, endowed with distinct activities within cells. The in vivo interaction between lipoxygenases and endocannabinoids is likely to occur within cell membranes; thus, we sought to ascertain whether a prototypical enzyme like soybean (Glycine max) 15-lipoxygenase-1 is able to oxygenate endocannabinoids embedded in synthetic vesicles and how these substances could affect the binding ability of the enzyme to different lipid bilayers. We show that (i) embedded endocannabinoids increase membrane fluidity; (ii) 15-lipoxygenase-1 preferentially binds to endocannabinoid-containing bilayers; and that (iii) 15-lipoxygenase-1 oxidizes embedded endocannabinoids and thus reduces fluidity and local hydration of membrane lipids. Together, the present findings reveal further complexity in the regulation of endocannabinoid signaling within the central nervous system, disclosing novel control by oxidative pathways.

  7. Serum contents of endocannabinoids are correlated with blood pressure in depressed women.

    Science.gov (United States)

    Ho, W S Vanessa; Hill, Matthew N; Miller, Gregory E; Gorzalka, Boris B; Hillard, Cecilia J

    2012-02-28

    Depression is known to be a risk factor for cardiovascular diseases but the underlying mechanisms remain unclear. Since recent preclinical evidence suggests that endogenous agonists of cannabinoid receptors (endocannabinoids) are involved in both cardiovascular function and depression, we asked whether endocannabinoids correlated with either in humans. Resting blood pressure and serum content of endocannabinoids in ambulatory, medication-free, female volunteers with depression (n = 28) and their age- and ethnicity-matched controls (n = 27) were measured. In females with depression, both diastolic and mean arterial blood pressures were positively correlated with serum contents of the endocannabinoids, N-arachidonylethanolamine (anandamide) and 2-arachidonoylglycerol. There was no correlation between blood pressure and endocannabinoids in control subjects. Furthermore, depressed women had significantly higher systolic blood pressure than control subjects. A larger body mass index was also found in depressed women, however, it was not significantly correlated with serum endocannabinoid contents. This preliminary study raises the possibility that endocannabinoids play a role in blood pressure regulation in depressives with higher blood pressure, and suggests an interrelationship among endocannabinoids, depression and cardiovascular risk factors in women.

  8. Serum contents of endocannabinoids are correlated with blood pressure in depressed women

    Directory of Open Access Journals (Sweden)

    Ho WS Vanessa

    2012-02-01

    Full Text Available Abstract Background Depression is known to be a risk factor for cardiovascular diseases but the underlying mechanisms remain unclear. Since recent preclinical evidence suggests that endogenous agonists of cannabinoid receptors (endocannabinoids are involved in both cardiovascular function and depression, we asked whether endocannabinoids correlated with either in humans. Results Resting blood pressure and serum content of endocannabinoids in ambulatory, medication-free, female volunteers with depression (n = 28 and their age- and ethnicity-matched controls (n = 27 were measured. In females with depression, both diastolic and mean arterial blood pressures were positively correlated with serum contents of the endocannabinoids, N-arachidonylethanolamine (anandamide and 2-arachidonoylglycerol. There was no correlation between blood pressure and endocannabinoids in control subjects. Furthermore, depressed women had significantly higher systolic blood pressure than control subjects. A larger body mass index was also found in depressed women, however, it was not significantly correlated with serum endocannabinoid contents. Conclusions This preliminary study raises the possibility that endocannabinoids play a role in blood pressure regulation in depressives with higher blood pressure, and suggests an interrelationship among endocannabinoids, depression and cardiovascular risk factors in women.

  9. Investigations of the human endocannabinoid system in two subcutaneous adipose tissue depots in lean subjects and in obese subjects before and after weight loss

    DEFF Research Database (Denmark)

    Bennetzen, Marianne Faurholt; Wellner, Niels; Ahmed, Syed Sayeem Uddin

    2011-01-01

    Endocannabinoids (ECs) have a role in obesity by affecting appetite and through peripheral effects. Obesity is associated with a dysregulation of the endocannabinoid system (ECS).......Endocannabinoids (ECs) have a role in obesity by affecting appetite and through peripheral effects. Obesity is associated with a dysregulation of the endocannabinoid system (ECS)....

  10. Quantitative profiling of endocannabinoids in lipoproteins by LC-MS/MS.

    Science.gov (United States)

    Bilgin, Mesut; Bindila, Laura; Graessler, Juergen; Shevchenko, Andrej

    2015-07-01

    Endocannabinoids belong to a diverse family of endogenous lipid bioregulators acting as physiological ligands of cannabinoid receptor type 1 and cannabinoid receptor type 2 in the central and peripheral nervous system. They are also present in nmol L(-1) concentrations in human blood plasma; however, their association with possible molecular carriers remains poorly characterized. Here we report on the quantification of 46 endogenous molecular species from five major classes of endocannabinoids and endocannabinoid-related compounds in three lipoprotein fractions of human blood plasma: VLDL, LDL, HDL, and in the plasma lipoprotein-free fraction. Although sizable quantities of endocannabinoid-related molecules are associated with lipoproteins, we identified the lipoprotein-free fraction as a major carrier of endocannabinoids in blood circulation with the exception of 2-acylglycerols, which are markedly abundant in VLDL.

  11. The activated endocannabinoid system in atherosclerosis: driving force or protective mechanism?

    Science.gov (United States)

    Steffens, Sabine; Pacher, Pal

    2015-01-01

    Atherosclerosis and its major acute complications, myocardial infarction and stroke, are the leading causes of death and morbidity worldwide. Despite major advances in cardiovascular intervention and healthcare, improving preventive care and treatment remains a continuous mission for cardiovascular research. Within the last 10 to 15 years, the endocannabinoid system has emerged as an important lipid signaling system involved in many biological processes. Growing evidence suggests that an overactive endocannabinoid-CB1 receptor signaling promotes the development of cardiovascular risk factors such as obesity, insulin resistance and dyslipidemia. This prompted an increasing interest in studying the role of the endocannabinoid system in atherosclerosis. As opposed to the detrimental actions of CB1 signaling, the endocannabinoid-CB2 receptor axis exhibits an anti-inflammatory and atheroprotective role. We will review recent findings from experimental and clinical studies aimed at understanding the complex actions of endocannabinoid signaling in cardiovascular disease. This is followed by an outlook on emerging targets for possible therapeutic intervention.

  12. The Endocannabinoid System and Its Role in Regulating the Intrinsic Neural Circuitry of the Gastrointestinal Tract.

    Science.gov (United States)

    Trautmann, Samantha M; Sharkey, Keith A

    2015-01-01

    Endocannabinoids are important neuromodulators in the central nervous system. They regulate central transmission through pre- and postsynaptic actions on neurons and indirectly through effects on glial cells. Cannabinoids (CBs) also regulate neurotransmission in the enteric nervous system (ENS) of the gastrointestinal (GI) tract. The ENS consists of intrinsic primary afferent neurons, interneurons, and motor neurons arranged in two ganglionated plexuses which control all the functions of the gut. Increasing evidence suggests that endocannabinoids are potent neuromodulators in the ENS. In this review, we will highlight key observations on the localization of CB receptors and molecules involved in the synthesis and degradation of endocannabinoids in the ENS. We will discuss endocannabinoid signaling mechanisms, endocannabinoid tone and concepts of CB receptor metaplasticity in the ENS. We will also touch on some examples of enteric neural signaling in relation neuromuscular, secretomotor, and enteroendocrine transmission in the ENS. Finally, we will briefly discuss some key future directions. © 2015 Elsevier Inc. All rights reserved.

  13. Polymorphisms in the endocannabinoid receptor 1 in relation to fat mass distribution

    DEFF Research Database (Denmark)

    Nielsen, Morten Frost; Nielsen, T L; Wraae, K

    2010-01-01

    OBJECTIVE: Both animal and human studies have associated the endocannabinoid system with obesity and markers of metabolic dysfunction. Blockade of the cannabinoid receptor 1 (CB1) caused weight loss and reduction in waist size in both obese and type II diabetics. Recent studies on common variants...... of the CB1 receptor gene (CNR1) and the link to obesity have been conflicting. The aim of the present study was to evaluate whether selected common variants of the CNR1 are associated with measures of obesity and fat distribution. DESIGN AND METHODS: The single nucleotide polymorphisms (SNPs) rs806381, rs......10485179 and rs1049353 were genotyped, and body fat and fat distribution were assessed by the use of dual-energy X-ray absorptiometry and magnetic resonance imaging in a population-based study comprising of 783 Danish men, aged 20-29 years. RESULTS: The rs806381 polymorphism was significantly associated...

  14. Differences in chloride gradients allow for three distinct types of synaptic modulation by endocannabinoids.

    Science.gov (United States)

    Wang, Yanqing; Burrell, Brian D

    2016-08-01

    Endocannabinoids can elicit persistent depression of excitatory and inhibitory synapses, reducing or enhancing (disinhibiting) neural circuit output, respectively. In this study, we examined whether differences in Cl(-) gradients can regulate which synapses undergo endocannabinoid-mediated synaptic depression vs. disinhibition using the well-characterized central nervous system (CNS) of the medicinal leech, Hirudo verbana Exogenous application of endocannabinoids or capsaicin elicits potentiation of pressure (P) cell synapses and depression of both polymodal (Npoly) and mechanical (Nmech) nociceptive synapses. In P synapses, blocking Cl(-) export prevented endocannabinoid-mediated potentiation, consistent with a disinhibition process that has been indicated by previous experiments. In Nmech neurons, which are depolarized by GABA due to an elevated Cl(-) equilibrium potentials (ECl), endocannabinoid-mediated depression was prevented by blocking Cl(-) import, indicating that this decrease in synaptic signaling was due to depression of excitatory GABAergic input (disexcitation). Npoly neurons are also depolarized by GABA, but endocannabinoids elicit depression in these synapses directly and were only weakly affected by disruption of Cl(-) import. Consequently, the primary role of elevated ECl may be to protect Npoly synapses from disinhibition. All forms of endocannabinoid-mediated plasticity required activation of transient potential receptor vanilloid (TRPV) channels. Endocannabinoid/TRPV-dependent synaptic plasticity could also be elicited by distinct patterns of afferent stimulation with low-frequency stimulation (LFS) eliciting endocannabinoid-mediated depression of Npoly synapses and high-frequency stimulus (HFS) eliciting endocannabinoid-mediated potentiation of P synapses and depression of Nmech synapses. These findings demonstrate a critical role of differences in Cl(-) gradients between neurons in determining the sign, potentiation vs. depression, of

  15. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Amit Kumar [Department of Pharmaceutical Technology Biotechnology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Tripathy, Debabrata [Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, 793002 Meghalaya (India); Choudhary, Alka [Department of Natural Products, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Aili, Pavan Kumar [Department of Pharmaceutical Technology Biotechnology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Chatterjee, Anupam [Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, 793002 Meghalaya (India); Singh, Inder Pal [Department of Natural Products, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Banerjee, Uttam Chand, E-mail: ucbanerjee@niper.ac.in [Department of Pharmaceutical Technology Biotechnology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India)

    2015-08-01

    The present study aims to develop an easy and eco-friendly method for the synthesis of silver nanoparticles using extracts from the medicinal plant, Potentilla fulgens and evaluation of its anticancer and antimicrobial properties. The various parts of P. fulgens were screened and the root extract was found to have the highest potential for the synthesis of nanoparticles. The root extracts were able to quickly reduce Ag{sup +} to Ag{sup 0} and stabilized the nanoparticles. The synthesis of nanoparticles was confirmed by UV–Visible spectrophotometry and further characterized using Zeta sizer, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). Electron microscopic study showed that the size of the nanoparticle was in the range of 10 to 15 nm and spherical in shape. The studies of phytochemical analysis of nanoparticles indicated that the adsorbed components on the surface of nanoparticles were mainly flavonoid in nature. Furthermore, nanoparticles were evaluated as cytotoxic against various cancer cell lines and 0.2 to 12 μg/mL nanoparticles showed good toxicity. The IC{sub 50} value of nanoparticles was found to be 4.91 and 8.23 μg/mL against MCF-7 and U-87 cell lines, respectively. Additionally, the apoptotic effect of synthesized nanoparticles on normal and cancer cells was studied using trypan blue assay and flow-cytometric analysis. The results indicate the synthesized nanoparticle ability to kill cancer cells compared to normal cells. The nanoparticles also exhibited comparable antimicrobial activity against both Gram-positive and Gram-negative bacteria. - Highlights: • Bio-synthesis of AgNPs using a medicinal plant Potentilla fulgens Wall. ex Hook. • Optimization of NP synthesis and its characterization using various techniques • Determination of therapeutic potential in terms of anticancer and antimicrobial properties • To know the mechanistic

  16. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent

    International Nuclear Information System (INIS)

    Mittal, Amit Kumar; Tripathy, Debabrata; Choudhary, Alka; Aili, Pavan Kumar; Chatterjee, Anupam; Singh, Inder Pal; Banerjee, Uttam Chand

    2015-01-01

    The present study aims to develop an easy and eco-friendly method for the synthesis of silver nanoparticles using extracts from the medicinal plant, Potentilla fulgens and evaluation of its anticancer and antimicrobial properties. The various parts of P. fulgens were screened and the root extract was found to have the highest potential for the synthesis of nanoparticles. The root extracts were able to quickly reduce Ag + to Ag 0 and stabilized the nanoparticles. The synthesis of nanoparticles was confirmed by UV–Visible spectrophotometry and further characterized using Zeta sizer, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). Electron microscopic study showed that the size of the nanoparticle was in the range of 10 to 15 nm and spherical in shape. The studies of phytochemical analysis of nanoparticles indicated that the adsorbed components on the surface of nanoparticles were mainly flavonoid in nature. Furthermore, nanoparticles were evaluated as cytotoxic against various cancer cell lines and 0.2 to 12 μg/mL nanoparticles showed good toxicity. The IC 50 value of nanoparticles was found to be 4.91 and 8.23 μg/mL against MCF-7 and U-87 cell lines, respectively. Additionally, the apoptotic effect of synthesized nanoparticles on normal and cancer cells was studied using trypan blue assay and flow-cytometric analysis. The results indicate the synthesized nanoparticle ability to kill cancer cells compared to normal cells. The nanoparticles also exhibited comparable antimicrobial activity against both Gram-positive and Gram-negative bacteria. - Highlights: • Bio-synthesis of AgNPs using a medicinal plant Potentilla fulgens Wall. ex Hook. • Optimization of NP synthesis and its characterization using various techniques • Determination of therapeutic potential in terms of anticancer and antimicrobial properties • To know the mechanistic apoptosis effect of

  17. Evaluation of Brown Midrib Sorghum Mutants as a Potential Biomass Feedstock for 2,3-Butanediol Biosynthesis.

    Science.gov (United States)

    Guragain, Yadhu N; Srinivasa Rao, P; Vara Prasad, P V; Vadlani, Praveen V

    2017-11-01

    Three sorghum backgrounds [Atlas, Early Hegari (EH), and Kansas Collier (KC)] and two bmr mutants (bmr6 and bmr12) of each line were evaluated and compared for grain and biomass yield, biomass composition, and 2,3-butanediol production from biomass. The data showed that the bmr6 mutation in EH background led to a significant decrease in stover yield and increase in grain yield, whereas the stover yield was increased by 64% without affecting grain yield in KC background. The bmr mutants had 10 to 25% and 2 to 9% less lignin and structural carbohydrate contents, respectively, and 24 to 93% more non-structural sugars than their parents in all sorghum lines, except EH bmr12. The total fermentable sugars released were 22 to 36% more in bmr mutants than in parents for Atlas and KC, but not for EH. The bmr6 mutation in KC background produced the most promising feedstock, among the evaluated bmr mutants, for 2,3-butanediol production without affecting grain yield, followed by KC bmr12 and Atlas bmr6, but the bmr mutation had an adverse effect in EH background. This indicated that the genetic background of the parent line and type of bmr mutation significantly affect the biomass quality as a feedstock for biochemical production.

  18. Effects of a Weight Loss Program on Metabolic Syndrome, Eating Disorders and Psychological Outcomes: Mediation by Endocannabinoids.

    Science.gov (United States)

    Pataky, Zoltan; Carrard, Isabelle; Gay, Valerie; Thomas, Aurélien; Carpentier, Anne; Bobbioni-Harsch, Elisabetta; Golay, Alain

    2018-04-10

    To evaluate the effects of weight loss on endocannabinoids, cardiometabolic and psychological parameters, eating disorders (ED) as well as quality of life (QoL) and to elucidate the role of endocannabinoids in metabolic syndrome (MS). In total, 114 patients with obesity were prospectively included in a 12-month weight loss program. Plasma endocannabinoids were measured by mass spectrometry; ED, psychological and QoL-related parameters were evaluated by self-reported questionnaires; physical activity was measured by accelerometer. Nutritional assessment was done by a 3-day food diary. Among completers (n = 87), body weight decreased in 35 patients (-9.1 ± 8.6 kg), remained stable in 39 patients, and increased in 13 patients (+5.8 ± 3.4 kg). 75% of patients with MS at baseline were free of MS at follow-up, and their baseline plasma N-palmitoylethanolamide (PEA) values were significantly lower when compared to patients with persisting MS. At baseline, there was a positive relationship between PEA and waist circumference (p = 0.005, R2 = 0.08), fasting glucose (p < 0.0001, R2 = 0.12), total cholesterol (p = 0.001, R2 = 0.11), triglycerides (p = 0.001, R2 = 0.11), LDL-cholesterol (p = 0.03, R2 = 0.05) as well as depression score (p = 0.002, R2 = 0.29). Plasma PEA might play a role in metabolic improvement after weight loss. Even in subjects without weight loss, a multidisciplinary intervention improves psychological outcomes, ED, and QoL. © 2018 The Author(s) Published by S. Karger GmbH, Freiburg.

  19. Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity.

    Science.gov (United States)

    Sivaraj, Rajeshwari; Rahman, Pattanathu K S M; Rajiv, P; Narendhran, S; Venckatesh, R

    2014-08-14

    Copper oxide nanoparticles were synthesized by biological method using aqueous extract of Acalypha indica leaf and characterized by UV-visible spectroscopy, XRD, FT-IR, SEM TEM and EDX analysis. The synthesised particles were highly stable, spherical and particle size was in the range of 26-30 nm. The antimicrobial activity of A.indica mediated copper oxide nanoparticles was tested against selected pathogens. Copper oxide nanoparticles showed efficient antibacterial and antifungal effect against Escherichia coli, Pseudomonas fluorescens and Candida albicans. The cytotoxicity activity of A.indica mediated copper nanoparticles was evaluated by MTT assay against MCF-7 breast cancer cell lines and confirmed that copper oxide nanoparticles have cytotoxicity activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Circulating Endocannabinoids and the Polymorphism 385C>A in Fatty Acid Amide Hydrolase (FAAH) Gene May Identify the Obesity Phenotype Related to Cardiometabolic Risk: A Study Conducted in a Brazilian Population of Complex Interethnic Admixture

    Science.gov (United States)

    Martins, Cyro José de Moraes; Genelhu, Virginia; Pimentel, Marcia Mattos Gonçalves; Celoria, Bruno Miguel Jorge; Mangia, Rogerio Fabris; Aveta, Teresa; Silvestri, Cristoforo; Di Marzo, Vincenzo; Francischetti, Emilio Antonio

    2015-01-01

    The dysregulation of the endocannabinoid system is associated with cardiometabolic complications of obesity. Allelic variants in coding genes for this system components may contribute to differences in the susceptibility to obesity and related health hazards. These data have mostly been shown in Caucasian populations and in severely obese individuals. We investigated a multiethnic Brazilian population to study the relationships among the polymorphism 385C>A in an endocannabinoid degrading enzyme gene (FAAH), endocannabinoid levels and markers of cardiometabolic risk. Fasting plasma levels of endocannabinoids and congeners (anandamide, 2-arachidonoylglycerol, N-oleoylethanolamide and N-palmitoylethanolamide) were measured by liquid chromatography-mass spectrometry in 200 apparently healthy individuals of both genders with body mass indices from 22.5 ± 1.8 to 35.9 ± 5.5 kg/m2 (mean ± 1 SD) and ages between 18 and 60 years. All were evaluated for anthropometric parameters, blood pressure, metabolic variables, homeostatic model assessment of insulin resistance (HOMA-IR), adiponectin, leptin, C-reactive protein, and genotyping. The endocannabinoid levels increased as a function of obesity and insulin resistance. The homozygous genotype AA was associated with higher levels of anandamide and lower levels of adiponectin versus wild homozygous CC and heterozygotes combined. The levels of anandamide were independent and positively associated with the genotype AA position 385 of FAAH, C-reactive protein levels and body mass index. Our findings provide evidence for an endocannabinoid-related phenotype that may be identified by the combination of circulating anandamide levels with genotyping of the FAAH 385C>A; this phenotype is not exclusive to mono-ethnoracial populations nor to individuals with severe obesity. PMID:26561012

  1. Circulating Endocannabinoids and the Polymorphism 385C>A in Fatty Acid Amide Hydrolase (FAAH Gene May Identify the Obesity Phenotype Related to Cardiometabolic Risk: A Study Conducted in a Brazilian Population of Complex Interethnic Admixture.

    Directory of Open Access Journals (Sweden)

    Cyro José de Moraes Martins

    Full Text Available The dysregulation of the endocannabinoid system is associated with cardiometabolic complications of obesity. Allelic variants in coding genes for this system components may contribute to differences in the susceptibility to obesity and related health hazards. These data have mostly been shown in Caucasian populations and in severely obese individuals. We investigated a multiethnic Brazilian population to study the relationships among the polymorphism 385C>A in an endocannabinoid degrading enzyme gene (FAAH, endocannabinoid levels and markers of cardiometabolic risk. Fasting plasma levels of endocannabinoids and congeners (anandamide, 2-arachidonoylglycerol, N-oleoylethanolamide and N-palmitoylethanolamide were measured by liquid chromatography-mass spectrometry in 200 apparently healthy individuals of both genders with body mass indices from 22.5 ± 1.8 to 35.9 ± 5.5 kg/m2 (mean ± 1 SD and ages between 18 and 60 years. All were evaluated for anthropometric parameters, blood pressure, metabolic variables, homeostatic model assessment of insulin resistance (HOMA-IR, adiponectin, leptin, C-reactive protein, and genotyping. The endocannabinoid levels increased as a function of obesity and insulin resistance. The homozygous genotype AA was associated with higher levels of anandamide and lower levels of adiponectin versus wild homozygous CC and heterozygotes combined. The levels of anandamide were independent and positively associated with the genotype AA position 385 of FAAH, C-reactive protein levels and body mass index. Our findings provide evidence for an endocannabinoid-related phenotype that may be identified by the combination of circulating anandamide levels with genotyping of the FAAH 385C>A; this phenotype is not exclusive to mono-ethnoracial populations nor to individuals with severe obesity.

  2. Modulation of sweet taste sensitivities by endogenous leptin and endocannabinoids in mice.

    Science.gov (United States)

    Niki, Mayu; Jyotaki, Masafumi; Yoshida, Ryusuke; Yasumatsu, Keiko; Shigemura, Noriatsu; DiPatrizio, Nicholas V; Piomelli, Daniele; Ninomiya, Yuzo

    2015-06-01

    Potential roles of endogenous leptin and endocannabinoids in sweet taste were examined by using pharmacological antagonists and mouse models including leptin receptor deficient (db/db) and diet-induced obese (DIO) mice. Chorda tympani (CT) nerve responses of lean mice to sweet compounds were increased after administration of leptin antagonist (LA) but not affected by administration of cannabinoid receptor antagonist (AM251). db/db mice showed clear suppression of CT responses to sweet compounds after AM251, increased endocannabinoid levels in the taste organ, and enhanced expression of a biosynthesizing enzyme of endocannabinoids in taste cells. The effect of LA was gradually decreased and that of AM251 was increased during the course of obesity in DIO mice. These findings suggest that circulating leptin, but not local endocannabinoids, is a dominant modulator for sweet taste in lean mice and endocannabinoids become more effective modulators of sweet taste under conditions of deficient leptin signalling. Leptin is an anorexigenic mediator that reduces food intake by acting on hypothalamic receptor Ob-Rb. In contrast, endocannabinoids are orexigenic mediators that act via cannabinoid CB1 receptors in hypothalamus, limbic forebrain, and brainstem. In the peripheral taste system, leptin administration selectively inhibits behavioural, taste nerve and taste cell responses to sweet compounds. Opposing the action of leptin, endocannabinoids enhance sweet taste responses. However, potential roles of endogenous leptin and endocannabinoids in sweet taste remain unclear. Here, we used pharmacological antagonists (Ob-Rb: L39A/D40A/F41A (LA), CB1 : AM251) and examined the effects of their blocking activation of endogenous leptin and endocannabinoid signalling on taste responses in lean control, leptin receptor deficient db/db, and diet-induced obese (DIO) mice. Lean mice exhibited significant increases in chorda tympani (CT) nerve responses to sweet compounds after LA

  3. The role of the endocannabinoid system in pain.

    Science.gov (United States)

    Woodhams, Stephen G; Sagar, Devi Rani; Burston, James J; Chapman, Victoria

    2015-01-01

    Preparations of the Cannabis sativa plant have been used to analgesic effect for millenia, but only in recent decades has the endogenous system responsible for these effects been described. The endocannabinoid (EC) system is now known to be one of the key endogenous systems regulating pain sensation, with modulatory actions at all stages of pain processing pathways. The EC system is composed of two main cannabinoid receptors (CB1 and CB2) and two main classes of endogenous ligands or endocannabinoids (ECs). The receptors have distinct expression profiles, with CB1 receptors found at presynaptic sites throughout the peripheral and central nervous systems (PNS and CNS, respectively), whilst CB2 receptor is found principally (but not exclusively) on immune cells. The endocannabinoid ligands are lipid neurotransmitters belonging to either the N-acyl ethanolamine (NAEs) class, e.g. anandamide (AEA), or the monoacylglycerol class, e.g. 2-arachidonoyl glycerol (2-AG). Both classes are short-acting transmitter substances, being synthesised on demand and with signalling rapidly terminated by specific enzymes. ECs acting at CB1 negatively regulate neurotransmission throughout the nervous system, whilst those acting at CB2 regulate the activity of CNS immune cells. Signalling through both of these receptor subtypes has a role in normal nociceptive processing and also in the development resolution of acute pain states. In this chapter, we describe the general features of the EC system as related to pain and nociception and discuss the wealth of preclinical and clinical data involving targeting the EC system with focus on two areas of particular promise: modulation of 2-AG signalling via specific enzyme inhibitors and the role of spinal CB2 in chronic pain states.

  4. Endocannabinoids in nervous system health and disease: the big picture in a nutshell

    Science.gov (United States)

    Skaper, Stephen D.; Di Marzo, Vincenzo

    2012-01-01

    The psychoactive component of the cannabis resin and flowers, delta9-tetrahydrocannabinol (THC), was first isolated in 1964, and at least 70 other structurally related ‘phytocannabinoid’ compounds have since been identified. The serendipitous identification of a G-protein-coupled cannabinoid receptor at which THC is active in the brain heralded an explosion in cannabinoid research. Elements of the endocannabinoid system (ECS) comprise the cannabinoid receptors, a family of nascent lipid ligands, the ‘endocannabinoids’ and the machinery for their biosynthesis and metabolism. The function of the ECS is thus defined by modulation of these receptors, in particular, by two of the best-described ligands, 2-arachidonoyl glycerol and anandamide (arachidonylethanolamide). Research on the ECS has recently aroused enormous interest not only for the physiological functions, but also for the promising therapeutic potentials of drugs interfering with the activity of cannabinoid receptors. Many of the former relate to stress-recovery systems and to the maintenance of homeostatic balance. Among other functions, the ECS is involved in neuroprotection, modulation of nociception, regulation of motor activity, neurogenesis, synaptic plasticity and the control of certain phases of memory processing. In addition, the ECS acts to modulate the immune and inflammatory responses and to maintain a positive energy balance. This theme issue aims to provide the reader with an overview of ECS pharmacology, followed by discussions on the pivotal role of this system in the modulation of neurogenesis in the developing and adult organism, memory processes and synaptic plasticity, as well as in pathological pain and brain ageing. The volume will conclude with discussions that address the proposed therapeutic applications of targeting the ECS for the treatment of neurodegeneration, pain and mental illness. PMID:23108539

  5. The endocannabinoid system and the neuroendocrine control of hydromineral balance.

    Science.gov (United States)

    Ruginsk, S G; Vechiato, F M V; Elias, L L K; Antunes-Rodrigues, J

    2014-06-01

    Endocannabinoids (ECBs) are ubiquitous lipophilic agents, and this characteristic is consistent with the wide range of homeostatic functions attributed to the ECB system. There is an increasing number of studies showing that the ECB system affects neurotransmission within the hypothalamic neurohypophyseal system. We provide an overview of the primary roles of ECBs in the modulation of neuroendocrine function and, specifically, in the control of hydromineral homeostasis. Accordingly, the general aspects of ECB-mediated signalling, as well as the specific contributions of the central component of the ECB system to the integration of behavioural and endocrine responses that control body fluid homeostasis, are discussed. © 2014 British Society for Neuroendocrinology.

  6. Anandamide and analogous endocannabinoids: a lipid self-assembly study

    Energy Technology Data Exchange (ETDEWEB)

    Sagnella, Sharon M.; Conn, Charlotte E.; Krodkiewska, Irena; Mulet, Xavier; Drummond, Calum J.

    2014-09-24

    Anandamide, the endogenous agonist of the cannabinoid receptors, has been widely studied for its interesting biological and medicinal properties and is recognized as a highly significant lipid signaling molecule within the nervous system. Few studies have, however, examined the effect of the physical conformation of anandamide on its function. The study presented herein has focused on characterizing the self-assembly behaviour of anandamide and four other endocannabinoid analogues of anandamide, viz., 2-arachidonyl glycerol, arachidonyl dopamine, 2-arachidonyl glycerol ether (noladin ether), and o-arachidonyl ethanolamide (virodhamine). Molecular modeling of the five endocannabinoid lipids indicates that the highly unsaturated arachidonyl chain has a preference for a U or J shaped conformation. Thermal phase studies of the neat amphiphiles showed that a glass transition was observed for all of the endocannabinoids at {approx} -110 C with the exception of anandamide, with a second glass transition occurring for 2-arachidonyl glycerol, 2-arachidonyl glycerol ether, and virodhamine (-86 C, -95 C, -46 C respectively). Both anandamide and arachidonyl dopamine displayed a crystal-isotropic melting point (-4.8 and -20.4 C respectively), while a liquid crystal-isotropic melting transition was seen for 2-arachidonyl glycerol (-40.7 C) and 2-arachidonyl glycerol ether (-71.2 C). No additional transitions were observed for virodhamine. Small angle X-ray scattering and cross polarized optical microscopy studies as a function of temperature indicated that in the presence of excess water, both 2-arachidonyl glycerol and anandamide form co-existing Q{sub II}{sup G} (gyroid) and Q{sub II}{sup D} (diamond) bicontinuous cubic phases from 0 C to 20 C, which are kinetically stable over a period of weeks but may not represent true thermodynamic equilibrium. Similarly, 2-arachidonyl glycerol ether acquired an inverse hexagonal (HII) phase in excess water from 0 C to 40 C, while

  7. Overactivation of the endocannabinoid system alters the antilipolytic action of insulin in mouse adipose tissue.

    Science.gov (United States)

    Muller, Tania; Demizieux, Laurent; Troy-Fioramonti, Stéphanie; Gresti, Joseph; Pais de Barros, Jean-Paul; Berger, Hélène; Vergès, Bruno; Degrace, Pascal

    2017-07-01

    Evidence has accumulated that obesity-related metabolic dysregulation is associated with overactivation of the endocannabinoid system (ECS), which involves cannabinoid receptor 1 (CB1R), in peripheral tissues, including adipose tissue (AT). The functional consequences of CB1R activation on AT metabolism remain unclear. Since excess fat mobilization is considered an important primary event contributing to the onset of insulin resistance, we combined in vivo and in vitro experiments to investigate whether activation of ECS could alter the lipolytic rate. For this purpose, the appearance of plasma glycerol was measured in wild-type and CB1R -/- mice after acute anandamide administration or inhibition of endocannabinoid degradation by JZL195. Additional experiments were conducted on rat AT explants to evaluate the direct consequences of ECS activation on glycerol release and signaling pathways. Treatments stimulated glycerol release in mice fasted for 6 h and injected with glucose but not in 24-h fasted mice or in CB1R -/- , suggesting that the effect was dependent on plasma insulin levels and mediated by CB1R. We concomitantly observed that Akt cascade activity was decreased, indicating an alteration of the antilipolytic action of insulin. Similar results were obtained with tissue explants exposed to anandamide, thus identifying CB1R of AT as a major target. This study indicates the existence of a functional interaction between CB1R and lipolysis regulation in AT. Further investigation is needed to test if the elevation of ECS tone encountered in obesity is associated with excess fat mobilization contributing to ectopic fat deposition and related metabolic disorders. Copyright © 2017 the American Physiological Society.

  8. The endocannabinoid system expression in the female reproductive tract is modulated by estrogen.

    Science.gov (United States)

    Maia, J; Almada, M; Silva, A; Correia-da-Silva, G; Teixeira, N; Sá, S I; Fonseca, B M

    2017-11-01

    The endocannabinoid system (ECS) is involved in several physiological events that resulted in a growing interest in its modulation. Moreover, the uterine levels of anandamide (AEA), the major endocannabinoid, must be tightly regulated to create proper embryo implantation conditions. However, there are no evidences about the regulation of AEA in uterus by estrogen. Thus, the aim of this study is to elucidate whether estradiol benzoate (EB) and tamoxifen (TAM) administration to ovariectomized (OVX) rats can induce changes in the expression of cannabinoid receptors and AEA-metabolic enzymes in uterus by evaluating gene transcription and protein levels by qPCR, Western blot and immunohistochemistry. Moreover, the plasmatic and uterine levels of AEA and of prostaglandin E 2 (PGE 2 ) and prostaglandin F 2 α (PGF 2α ), the major cyclooxygenase-2 (COX-2) products, were determined by UPLC-MS/MS. The immunohistochemistry showed that cannabinoid receptors, as well as AEA-metabolic enzymes are mainly located in the epithelial cells of both lumen and glands and, to a lesser extent, in the muscle cells. Moreover, EB administration to OVX rats significantly increased CB1, CB2, NAPE-PLD, FAAH and COX-2 expression and transcription. These effects were absent in TAM and TAM+EB treatments showing that this response is estrogen receptor dependent. Additionally, although uterine levels of AEA remained unchanged in EB or TAM treated animals, they showed a rise with EB treatment in plasma. The latter also produced a decrease in uterine PGE 2 levels. In summary, these data collectively indicate that the expression of ECS components, as well as, the AEA and PGE 2 levels in rat uterus is modulated by EB. Thus, estradiol may have a direct regulatory role in the modulation of ECS in female reproductive tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Role of the endocannabinoid system in the neuroendocrine responses to inflammation.

    Science.gov (United States)

    De Laurentiis, Andrea; Araujo, Hugo A; Rettori, Valeria

    2014-01-01

    A few years ago the endocannabinoid system has been recognized as a major neuromodulatory system whose main functions are to exert and maintain the body homeostasis. Several different endocannabinoids are synthesized in a broad class of cell types, including those in the brain and the immune system; they bind to cannabinoid G-protein-coupled receptors, having profound effects on a variety of behavioral, neuroendocrine and autonomic functions. The coordinated neural, immune, behavioral and endocrine responses to inflammation are orchestrated to provide an important defense against infections and help homeostasis restoration in the body. These responses are executed and controlled mainly by the hypothalamic-pituitary adrenal axis. Also, the hypothalamic-neurohypophyseal system is essential for survival and plays a role recovering the homeostasis under a variety of stress conditions, including inflammation and infection. Since the endocannabinoid system components are present at sites involved in the hypothalamic-pituitary axis regulation, several studies were performed in order to investigate the endocannabinoid-mediated neurotransmitters and hormones secretion under physiological and pathological conditions. In the present review we focused on the endocannabinoids actions on the neuroendocrine response to inflammation and infection. We provide a detailed overview of the current understanding of the role of the endocannabinoid system in the recovering of homeostasis as well as potential pharmacological therapies based on the manipulation of endocannabinoid system components that could provide novel treatments for a wide range of disorders.

  10. Endocannabinoid signals in the developmental programming of delayed-onset neuropsychiatric and metabolic illnesses.

    Science.gov (United States)

    Keimpema, Erik; Calvigioni, Daniela; Harkany, Tibor

    2013-12-01

    It is increasingly recognized that maternal exposure to metabolic (nutritional) stimuli, infections, illicit or prescription drugs and environmental stressors during pregnancy can predispose affected offspring to developing devastating postnatal illnesses. If detrimental maternal stimuli coincide with critical periods of tissue production and organogenesis then they can permanently derail key cellular differentiation programs. Maternal programming can thus either provoke developmental failure directly ('direct hit') or introduce latent developmental errors that enable otherwise sub-threshold secondary stressors to manifest as disease ('double hit') postnatally. Accumulating evidence suggests that nervous system development is tightly controlled by maternal metabolic stimuli, and whose synaptic wiring and integrative capacity are adversely affected by dietary and hormonal challenges, infections or episodes of illicit drug use. Endocannabinoids, a family of signal lipids derived from polyunsaturated fatty acids, have been implicated in neuronal fate determination, the control of axonal growth, synaptogenesis and synaptic neurotransmission. Therefore the continuum and interdependence of endocannabinoid actions during the formation and function of synapses together with dynamic changes in focal and circulating endocannabinoid levels upon maternal nutritional imbalance suggest that endocannabinoids can execute the 'reprogramming' of specific neuronal networks. In the present paper, we review molecular evidence suggesting that maternal nutrition and metabolism during pregnancy can affect the formation and function of the hippocampus and hypothalamus by altering endocannabinoid signalling such that neuropsychiatric diseases and obesity respectively ensue in affected offspring. Moreover, we propose that the placenta, fetal adipose and nervous tissues interact via endocannabinoid signals. Thus endocannabinoids are hypothesized to act as a molecular substrate of maternal

  11. Endocannabinoids regulate growth and survival of human eccrine sweat gland-derived epithelial cells.

    Science.gov (United States)

    Czifra, Gabriella; Szöllősi, Attila G; Tóth, Balázs I; Demaude, Julien; Bouez, Charbel; Breton, Lionel; Bíró, Tamás

    2012-08-01

    The functional existence of the emerging endocannabinoid system (ECS), one of the new neuroendocrine players in cutaneous biology, is recently described in the human skin. In this study, using human eccrine sweat gland-derived immortalized NCL-SG3 model cells and a wide array of cellular and molecular assays, we investigated the effects of prototypic endocannabinoids (anandamide, 2-arachidonoylglycerol) on cellular functions. We show here that both endocannabinoids dose-dependently suppressed proliferation, induced apoptosis, altered expressions of various cytoskeleton proteins (e.g., cytokeratins), and upregulated lipid synthesis. Interestingly, as revealed by specific agonists and antagonists as well as by RNA interference, neither the metabotropic cannabinoid receptors (CB) nor the "ionotropic" CB transient receptor potential ion channels, expressed by these cells, mediated the cellular actions of the endocannabinoids. However, the endocannabinoids selectively activated the mitogen-activated protein kinase signaling pathway. Finally, other elements of the ECS (i.e., enzymes involved in the synthesis and degradation of endocannabinoids) were also identified on NCL-SG3 cells. These results collectively suggest that cannabinoids exert a profound regulatory role in the biology of the appendage. Therefore, from a therapeutic point of view, upregulation of endocannabinoid levels might help to manage certain sweat gland-derived disorders (e.g., tumors) characterized by unwanted growth.

  12. Endocannabinoid Signaling, Glucocorticoid-Mediated Negative Feedback and Regulation of the HPA Axis

    Science.gov (United States)

    Hill, M. N.; Tasker, J. G.

    2012-01-01

    The hypothalamic-pituitary-adrenal (HPA) axis regulates the outflow of glucocorticoid hormones under basal conditions and in response to stress. Within the last decade, a large body of evidence has mounted indicating that the endocannabinoid system is involved in the central regulation of the stress response; however, the specific role endocannabinoid signalling plays in phases of HPA axis regulation, or the neural sites of action mediating this regulation, was not mapped out until recently. This review aims to collapse the current state of knowledge regarding the role of the endocannabinoid system in the regulation of the HPA axis to put together a working model of how and where endocannabinoids act within the brain to regulate outflow of the HPA axis. Specifically, we discuss the role of the endocannabinoid system in the regulation of the HPA axis under basal conditions, activation in response to acute stress and glucocorticoid-mediated negative feedback. Interestingly, there appears to be some anatomical specificity to the role of the endocannabinoid system in each phase of HPA axis regulation, as well as distinct roles of both anandamide and 2-arachidonoylglycerol in these phases. Ultimately, the current level of information indicates that endocannabinoid signalling acts to suppress HPA axis activity through concerted actions within the prefrontal cortex, amygdala and hypothalamus. PMID:22214537

  13. [Pharmacological exploitation of the endocannabinoid system: new perspectives for the treatment of depression and anxiety disorders?].

    Science.gov (United States)

    Saito, Viviane M; Wotjak, Carsten T; Moreira, Fabrício A

    2010-05-01

    The present review provides a brief introduction into the endocannabinoid system and discusses main strategies of pharmacological interventions. We have reviewed the literature relating to the endocannabinoid system and its pharmacology; both original and review articles written in English were considered. Cannabinoids are a group of compounds present in Cannabis Sativa (hemp), such as Delta(9)-tetrahydrocannabinol, and their synthetic analogues. Research on their pharmacological profile led to the discovery of the endocannabinoid system in the mammalian brain. This system comprises at least two G-protein coupled receptors, CB(1) and CB(2), their endogenous ligands (endocannabinoids; e.g. the fatty acid derivatives anandamide and 2-arachydonoyl glycerol), and the enzymes responsible for endocannabinoid synthesis and catabolism. Endocannabinoids represent a class of neuromessengers, which are synthesized on demand and released from post-synaptic neurons to restrain the release of classical neurotransmitters from pre-synaptic terminals. This retrograde signalling modulates a variety of brain functions, including anxiety, fear and mood, whereby activation of CB(1) receptors was shown to exert anxiolytic-and antidepressant-like effects in preclinical studies. Animal experiments suggest that drugs promoting endocannabinoid action may represent a novel strategy for the treatment of depression and anxiety disorders.

  14. The neuroprotective role of endocannabinoids against chemical-induced injury and other adverse effects.

    Science.gov (United States)

    Zogopoulos, Panagiotis; Vasileiou, Ioanna; Patsouris, Efstratios; Theocharis, Stamatios

    2013-04-01

    Considerable progress has been made, recently, in understanding the role of the endocannabinoid system in regard to neuroprotection. Endogenous cannabinoids have received increasing attention as potential protective agents in several cases of neuronal injury. The endocannabinoid system is comprised of cannabinoid receptors (CB1 and CB2), their endogenous ligands (endocannabinoids) and proteins responsible for their metabolism. Endocannabinoids serve as retrograde signalling messengers in GABAergic and glutamatergic synapses, as well as modulators of post-synaptic transmission, interacting with other neurotransmitters, including norepinephrine and dopamine. Furthermore, endocannabinoids modulate neuronal, glial and endothelial cell function and exert neuromodulatory, anti-excitotoxic, anti-inflammatory and vasodilatory effects. Physiological stimuli and pathological conditions lead to differential increases in brain endocannabinoids that regulate distinct biological functions. The purpose of this review is to present the available in vivo and in vitro experimental data, up to date, regarding the endocannabinoid system and its role in neuroprotection, as well as its possible therapeutic perspectives. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Xenoestrogens elicit a modulation of endocannabinoid system and estrogen receptors in 4NP treated goldfish, Carassius auratus.

    Science.gov (United States)

    Pomatto, Valentina; Palermo, Francesco; Mosconi, Gilberto; Cottone, Erika; Cocci, Paolo; Nabissi, Massimo; Borgio, Luca; Polzonetti-Magni, Alberta M; Franzoni, Maria Fosca

    2011-10-01

    Based on pharmacological, behavioral and neuroanatomical studies, the endocannabinoids appear to be pivotal in some important neuroendocrine regulations of both vertebrates and invertebrates. Interestingly, a well developed endocannabinoid system was recently demonstrated by us in different bonyfish brain areas which control reproduction, energy balance and stress. Fish in particular are very sensitive to different types of stressors which can heavily affect their reproductive activity and negatively reverberate on aquaculture. Since recent new data have been reported on endocrine disruptors (EDs) impact on zebrafish receptor CB1 expression, in the present research we have investigated the response of the endocannabinoid system to acute treatment with an environmental stressor such as the xenoestrogen nonylphenol (4NP) in the brain and peripheral tissues of the goldfish Carassius auratus. First of all the estrogenic effects induced by 4NP were demonstrated by a dose-dependent increase of plasma levels and gene expression of the biomarker vitellogenin, then changes in cannabinoid receptors and anandamide degradative enzyme, the fatty acid amide hydrolase (FAAH), were analysed by means of Real Time PCR. As the exposure to EDs may lead to an activation of estrogen receptors and affects the Aromatase (AROB) transcription, changes in mRNA levels for ER subtypes and AROB were also evaluated. Our results confirm in goldfish the effect of 4NP on ERα and ERβ1 receptors and point out a different sensitivity of CB1 and CB2 for this compound, suggesting distinct roles of these cannabinoid receptors in some adaptive processes to contrast stress induced by xenoestrogen exposure. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Molecular components and functions of the endocannabinoid system in mouse prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    Mathieu Lafourcade

    2007-08-01

    Full Text Available Cannabinoids have deleterious effects on prefrontal cortex (PFC-mediated functions and multiple evidences link the endogenous cannabinoid (endocannabinoid system, cannabis use and schizophrenia, a disease in which PFC functions are altered. Nonetheless, the molecular composition and the physiological functions of the endocannabinoid system in the PFC are unknown.Here, using electron microscopy we found that key proteins involved in endocannabinoid signaling are expressed in layers v/vi of the mouse prelimbic area of the PFC: presynaptic cannabinoid CB1 receptors (CB1R faced postsynaptic mGluR5 while diacylglycerol lipase alpha (DGL-alpha, the enzyme generating the endocannabinoid 2-arachidonoyl-glycerol (2-AG was expressed in the same dendritic processes as mGluR5. Activation of presynaptic CB1R strongly inhibited evoked excitatory post-synaptic currents. Prolonged synaptic stimulation at 10Hz induced a profound long-term depression (LTD of layers V/VI excitatory inputs. The endocannabinoid -LTD was presynaptically expressed and depended on the activation of postsynaptic mGluR5, phospholipase C and a rise in postsynaptic Ca(2+ as predicted from the localization of the different components of the endocannabinoid system. Blocking the degradation of 2-AG (with URB 602 but not of anandamide (with URB 597 converted subthreshold tetanus to LTD-inducing ones. Moreover, inhibiting the synthesis of 2-AG with Tetrahydrolipstatin, blocked endocannabinoid-mediated LTD. All together, our data show that 2-AG mediates LTD at these synapses.Our data show that the endocannabinoid -retrograde signaling plays a prominent role in long-term synaptic plasticity at the excitatory synapses of the PFC. Alterations of endocannabinoid -mediated synaptic plasticity may participate to the etiology of PFC-related pathologies.

  17. Biosynthesis of tylophora alkaloids

    International Nuclear Information System (INIS)

    Mulchandani, N.B.; Iyer, S.S.; Badheka, L.P.

    1974-01-01

    Using labelled precursors, biosynthesis of the tylophora alkaloids, tylophorine, tylophorinidine and tylophorinide has been investigated in Tylophora asthmatica plants. The radioactive precursors, phenylalanine-2- 14 C, benzoic acid-1- 14 C, benzoic acid-ring 14 C, acetate-2- 14 C, ornithine-5- 14 C, acetate-2- 14 C, ornithine-5- 14 C and cinnamic acid-2- 14 C were administered to the plants individually by wick technique. Tylophorine was isolated in each case and assayed for its radioactivity to find out the incorporation of the label into it. The results indicate that: (1) phenylalanine via cinnamic acid is an important precursor in the biosynthesis of tylophorine (2) orinithine participates in tylophorine biosynthesis via pyrroline and (3) tylophorinidine may be a direct precursor of tylophorine. (M.G.B.)

  18. Aflatoxin biosynthesis: current frontiers.

    Science.gov (United States)

    Roze, Ludmila V; Hong, Sung-Yong; Linz, John E

    2013-01-01

    Aflatoxins are among the principal mycotoxins that contaminate economically important food and feed crops. Aflatoxin B1 is the most potent naturally occurring carcinogen known and is also an immunosuppressant. Occurrence of aflatoxins in crops has vast economic and human health impacts worldwide. Thus, the study of aflatoxin biosynthesis has become a focal point in attempts to reduce human exposure to aflatoxins. This review highlights recent advances in the field of aflatoxin biosynthesis and explores the functional connection between aflatoxin biosynthesis, endomembrane trafficking, and response to oxidative stress. Dissection of the regulatory mechanisms involves a complete comprehension of the aflatoxin biosynthetic process and the dynamic network of transcription factors that orchestrates coordinated expression of the target genes. Despite advancements in the field, development of a safe and effective multifaceted approach to solve the aflatoxin food contamination problem is still required.

  19. MECHANISMS IN ENDOCRINOLOGY: Endocannabinoids and metabolism: past, present and future.

    Science.gov (United States)

    Simon, Vincent; Cota, Daniela

    2017-06-01

    The endocannabinoid system (ECS), including cannabinoid type 1 and type 2 receptors (CB 1 R and CB 2 R), endogenous ligands called endocannabinoids and their related enzymatic machinery, is known to have a role in the regulation of energy balance. Past information generated on the ECS, mainly focused on the involvement of this system in the central nervous system regulation of food intake, while at the same time clinical studies pointed out the therapeutic efficacy of brain penetrant CB 1 R antagonists like rimonabant for obesity and metabolic disorders. Rimonabant was removed from the market in 2009 and its obituary written due to its psychiatric side effects. However, in the meanwhile a number of investigations had started to highlight the roles of the peripheral ECS in the regulation of metabolism, bringing up new hope that the ECS might still represent target for treatment. Accordingly, peripherally restricted CB 1 R antagonists or inverse agonists have shown to effectively reduce body weight, adiposity, insulin resistance and dyslipidemia in obese animal models. Very recent investigations have further expanded the possible toolbox for the modulation of the ECS, by demonstrating the existence of endogenous allosteric inhibitors of CB 1 R, the characterization of the structure of the human CB 1 R, and the likely involvement of CB 2 R in metabolic disorders. Here we give an overview of these findings, discussing what the future may hold in the context of strategies targeting the ECS in metabolic disease. © 2017 European Society of Endocrinology.

  20. Endocannabinoids in neuroendopsychology: multiphasic control of mitochondrial function

    Science.gov (United States)

    Nunn, Alistair; Guy, Geoffrey; Bell, Jimmy D.

    2012-01-01

    The endocannabinoid system (ECS) is a construct based on the discovery of receptors that are modulated by the plant compound tetrahydrocannabinol and the subsequent identification of a family of nascent ligands, the ‘endocannabinoids’. The function of the ECS is thus defined by modulation of these receptors—in particular, by two of the best-described ligands (2-arachidonyl glycerol and anandamide), and by their metabolic pathways. Endocannabinoids are released by cell stress, and promote both cell survival and death according to concentration. The ECS appears to shift the immune system towards a type 2 response, while maintaining a positive energy balance and reducing anxiety. It may therefore be important in resolution of injury and inflammation. Data suggest that the ECS could potentially modulate mitochondrial function by several different pathways; this may help explain its actions in the central nervous system. Dose-related control of mitochondrial function could therefore provide an insight into its role in health and disease, and why it might have its own pathology, and possibly, new therapeutic directions. PMID:23108551

  1. Endocannabinoids Stimulate Human Melanogenesis via Type-1 Cannabinoid Receptor*

    Science.gov (United States)

    Pucci, Mariangela; Pasquariello, Nicoletta; Battista, Natalia; Di Tommaso, Monia; Rapino, Cinzia; Fezza, Filomena; Zuccolo, Michela; Jourdain, Roland; Finazzi Agrò, Alessandro; Breton, Lionel; Maccarrone, Mauro

    2012-01-01

    We show that a fully functional endocannabinoid system is present in primary human melanocytes (normal human epidermal melanocyte cells), including anandamide (AEA), 2-arachidonoylglycerol, the respective target receptors (CB1, CB2, and TRPV1), and their metabolic enzymes. We also show that at higher concentrations AEA induces normal human epidermal melanocyte apoptosis (∼3-fold over controls at 5 μm) through a TRPV1-mediated pathway that increases DNA fragmentation and p53 expression. However, at lower concentrations, AEA and other CB1-binding endocannabinoids dose-dependently stimulate melanin synthesis and enhance tyrosinase gene expression and activity (∼3- and ∼2-fold over controls at 1 μm). This CB1-dependent activity was fully abolished by the selective CB1 antagonist SR141716 or by RNA interference of the receptor. CB1 signaling engaged p38 and p42/44 mitogen-activated protein kinases, which in turn activated the cyclic AMP response element-binding protein and the microphthalmia-associated transcription factor. Silencing of tyrosinase or microphthalmia-associated transcription factor further demonstrated the involvement of these proteins in AEA-induced melanogenesis. In addition, CB1 activation did not engage the key regulator of skin pigmentation, cyclic AMP, showing a major difference compared with the regulation of melanogenesis by α-melanocyte-stimulating hormone through melanocortin 1 receptor. PMID:22431736

  2. The endocannabinoid system: A novel player in human placentation.

    Science.gov (United States)

    Costa, M A

    2016-06-01

    Cannabis sativa is the most consumed illegal drug around the world. Its consumption during pregnancy is associated with gestational complications, particularly with fetal growth restriction. Endocannabinoids (eCBs) are lipid molecules that act by activating the G-protein coupled cannabinoid receptors, which are also target of the phytocannabinoid Δ(9)-tetrahydrocannabinol (THC). The endocannabinoid system (ECS) participates in distinct biological processes, including pain, inflammation, neuroprotection, and several reproductive events. In addition, an abnormal expression of ECS is associated with infertility and miscarriages. This manuscript will review and discuss the expression of ECS in normal and pathological human placentas, and the role of eCBs and THC in trophoblast proliferation, apoptosis, differentiation, and function. The current evidence points towards a role of ECS in human placentation, shedding light on the contribution of the eCBs in the coordination of human placentation, and in the cellular mechanisms underlying the deleterious effects of cannabis consumption during pregnancy. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Role of cannabis and endocannabinoids in the genesis of schizophrenia.

    Science.gov (United States)

    Fernandez-Espejo, Emilio; Viveros, Maria-Paz; Núñez, Luis; Ellenbroek, Bart A; Rodriguez de Fonseca, Fernando

    2009-11-01

    Cannabis abuse and endocannabinoids are associated to schizophrenia. It is important to discern the association between schizophrenia and exogenous Cannabis sativa, on one hand, and the endogenous cannabinoid system, on the other hand. On one hand, there is substantial evidence that cannabis abuse is a risk factor for psychosis in genetically predisposed people, may lead to a worse outcome of the disease, or it can affect normal brain development during adolescence, increasing the risk for schizophrenia in adulthood. Regarding genetic predisposition, alterations affecting the cannabinoid CNR1 gene could be related to schizophrenia. On the other hand, the endogenous cannabinoid system is altered in schizophrenia (i.e., increased density of cannabinoid CB1 receptor binding in corticolimbic regions, enhanced cerebrospinal fluid anandamide levels), and dysregulation of this system can interact with neurotransmitter systems in such a way that a "cannabinoid hypothesis" can be integrated in the neurobiological hypotheses of schizophrenia. Finally, there is also evidence that some genetic alterations of the CNR1 gene can act as a protectant factor against schizophrenia or can induce a better pharmacological response to atypical antipsychotics. Cannabis abuse is a risk factor for psychosis in predisposed people, it can affect neurodevelopment during adolescence leading to schizophrenia, and a dysregulation of the endocannabinoid system can participate in schizophrenia. It is also worth noting that some specific cannabinoid alterations can act as neuroprotectant for schizophrenia or can be a psychopharmacogenetic rather than a vulnerability factor.

  4. Endocannabinoids in Multiple Sclerosis and Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Pryce, Gareth; Baker, David

    2015-01-01

    There are numerous reports that people with multiple sclerosis (MS) have for many years been self-medicating with illegal street cannabis or more recently medicinal cannabis to alleviate the symptoms associated with MS and also amyotrophic lateral sclerosis (ALS). These anecdotal reports have been confirmed by data from animal models and more recently clinical trials on the ability of cannabinoids to alleviate limb spasticity, a common feature of progressive MS (and also ALS) and neurodegeneration. Experimental studies into the biology of the endocannabinoid system have revealed that cannabinoids have efficacy, not only in symptom relief but also as neuroprotective agents which may slow disease progression and thus delay the onset of symptoms. This review discusses what we now know about the endocannabinoid system as it relates to MS and ALS and also the therapeutic potential of cannabinoid therapeutics as disease-modifying or symptom control agents, as well as future therapeutic strategies including the potential for slowing disease progression in MS and ALS.

  5. Obesity, the endocannabinoid system, and bias arising from pharmaceutical sponsorship.

    Science.gov (United States)

    McPartland, John M

    2009-01-01

    Previous research has shown that academic physicians conflicted by funding from the pharmaceutical industry have corrupted evidence based medicine and helped enlarge the market for drugs. Physicians made pharmaceutical-friendly statements, engaged in disease mongering, and signed biased review articles ghost-authored by corporate employees. This paper tested the hypothesis that bias affects review articles regarding rimonabant, an anti-obesity drug that blocks the central cannabinoid receptor. A MEDLINE search was performed for rimonabant review articles, limited to articles authored by USA physicians who served as consultants for the company that manufactures rimonabant. Extracted articles were examined for industry-friendly bias, identified by three methods: analysis with a validated instrument for monitoring bias in continuing medical education (CME); analysis for bias defined as statements that ran contrary to external evidence; and a tally of misrepresentations about the endocannabinoid system. Eight review articles were identified, but only three disclosed authors' financial conflicts of interest, despite easily accessible information to the contrary. The Takhar CME bias instrument demonstrated statistically significant bias in all the review articles. Biased statements that were nearly identical reappeared in the articles, including disease mongering, exaggerating rimonabant's efficacy and safety, lack of criticisms regarding rimonabant clinical trials, and speculations about surrogate markers stated as facts. Distinctive and identical misrepresentations regarding the endocannabinoid system also reappeared in articles by different authors. The findings are characteristic of bias that arises from financial conflicts of interest, and suggestive of ghostwriting by a common author. Resolutions for this scenario are proposed.

  6. Masturbation to Orgasm Stimulates the Release of the Endocannabinoid 2-Arachidonoylglycerol in Humans.

    Science.gov (United States)

    Fuss, Johannes; Bindila, Laura; Wiedemann, Klaus; Auer, Matthias K; Briken, Peer; Biedermann, Sarah V

    2017-11-01

    Endocannabinoids are critical for rewarding behaviors such as eating, physical exercise, and social interaction. The role of endocannabinoids in mammalian sexual behavior has been suggested because of the influence of cannabinoid receptor agonists and antagonists on rodent sexual activity. However, the involvement of endocannabinoids in human sexual behavior has not been studied. To investigate plasma endocannabinoid levels before and after masturbation in healthy male and female volunteers. Plasma levels of the endocannabinoids 2-arachidonoylglycerol (2-AG), anandamide, the endocannabinoid-like lipids oleoyl ethanolamide and palmitoyl ethanolamide, arachidonic acid, and cortisol before and after masturbation to orgasm. In study 1, endocannabinoid and cortisol levels were measured before and after masturbation to orgasm. In study 2, masturbation to orgasm was compared with a control condition using a single-blinded, randomized, 2-session crossover design. In study 1, masturbation to orgasm significantly increased plasma levels of the endocannabinoid 2-AG, whereas anandamide, oleoyl ethanolamide, palmitoyl ethanolamide, arachidonic acid, and cortisol levels were not altered. In study 2, only masturbation to orgasm, not the control condition, led to a significant increase in 2-AG levels. Interestingly, we also found a significant increase of oleoyl ethanolamide after masturbation to orgasm in study 2. Endocannabinoids might play an important role in the sexual response cycle, leading to possible implications for the understanding and treatment of sexual dysfunctions. We found an increase of 2-AG through masturbation to orgasm in 2 studies including a single-blinded randomized design. The exact role of endocannabinoid release as part of the sexual response cycle and the biological significance of the finding should be studied further. Cannabis and other drug use and the attainment of orgasm were self-reported in the present study. Our data indicate that the

  7. Evidence for a role of endocannabinoids, astrocytes and p38 phosphorylation in the resolution of postoperative pain.

    Directory of Open Access Journals (Sweden)

    Matthew S Alkaitis

    2010-05-01

    Full Text Available An alarming portion of patients develop persistent or chronic pain following surgical procedures, but the mechanisms underlying the transition from acute to chronic pain states are not fully understood. In general, endocannabinoids (ECBs inhibit nociceptive processing by stimulating cannabinoid receptors type 1 (CB(1 and type 2 (CB(2. We have previously shown that intrathecal administration of a CB(2 receptor agonist reverses both surgical incision-induced behavioral hypersensitivity and associated over-expression of spinal glial markers. We therefore hypothesized that endocannabinoid signaling promotes the resolution of acute postoperative pain by modulating pro-inflammatory signaling in spinal cord glial cells.To test this hypothesis, rats receiving paw incision surgery were used as a model of acute postoperative pain that spontaneously resolves. We first characterized the concentration of ECBs and localization of CB(1 and CB(2 receptors in the spinal cord following paw incision. We then administered concomitant CB(1 and CB(2 receptor antagonists/inverse agonists (AM281 and AM630, 1 mg x kg(-1 each, i.p. during the acute phase of paw incision-induced mechanical allodynia and evaluated the expression of glial cell markers and phosphorylated p38 (a MAPK associated with inflammation in the lumbar dorsal horn. Dual blockade of CB(1 and CB(2 receptor signaling prevented the resolution of postoperative allodynia and resulted in persistent over-expression of spinal Glial Fibrillary Acidic Protein (GFAP, an astrocytic marker and phospho-p38 in astrocytes. We provide evidence for the functional significance of these astrocytic changes by demonstrating that intrathecal administration of propentofylline (50 microg, i.t. attenuated both persistent behavioral hypersensitivity and over-expression of GFAP and phospho-p38 in antagonist-treated animals.Our results demonstrate that endocannabinoid signaling via CB(1 and CB(2 receptors is necessary for the

  8. Endocannabinoid and cannabinoid-like fatty acid amide levels correlate with pain-related symptoms in patients with IBS-D and IBS-C: a pilot study.

    Directory of Open Access Journals (Sweden)

    Jakub Fichna

    Full Text Available AIMS: Irritable bowel syndrome (IBS is a functional gastrointestinal (GI disorder, associated with alterations of bowel function, abdominal pain and other symptoms related to the GI tract. Recently the endogenous cannabinoid system (ECS was shown to be involved in the physiological and pathophysiological control of the GI function. The aim of this pilot study was to investigate whether IBS defining symptoms correlate with changes in endocannabinoids or cannabinoid like fatty acid levels in IBS patients. METHODS: AEA, 2-AG, OEA and PEA plasma levels were determined in diarrhoea-predominant (IBS-D and constipation-predominant (IBS-C patients and were compared to healthy subjects, following the establishment of correlations between biolipid contents and disease symptoms. FAAH mRNA levels were evaluated in colonic biopsies from IBS-D and IBS-C patients and matched controls. RESULTS: Patients with IBS-D had higher levels of 2AG and lower levels of OEA and PEA. In contrast, patients with IBS-C had higher levels of OEA. Multivariate analysis found that lower PEA levels are associated with cramping abdominal pain. FAAH mRNA levels were lower in patients with IBS-C. CONCLUSION: IBS subtypes and their symptoms show distinct alterations of endocannabinoid and endocannabinoid-like fatty acid levels. These changes may partially result from reduced FAAH expression. The here reported changes support the notion that the ECS is involved in the pathophysiology of IBS and the development of IBS symptoms.

  9. The Endocannabinoid System, Aggression, and the Violence of Synthetic Cannabinoid Use, Borderline Personality Disorder, Antisocial Personality Disorder, and Other Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Nathan J. Kolla

    2018-03-01

    Full Text Available Endogenous and exogenous cannabinoids bind to central cannabinoid receptors to control a multitude of behavioral functions, including aggression. The first main objective of this review is to dissect components of the endocannabinoid system, including cannabinoid 1 and cannabinoid 2 receptors; the endogenous cannabinoids anandamide and 2-arachidonoylglycerol; and the indirect cannabinoid modulators fatty acid amide hydrolase and monoacylglycerol lipase; that have shown abnormalities in basic research studies investigating mechanisms of aggression. While most human research has concluded that the active ingredient of marijuana, Δ9-tetrahydrocannabinol, tends to dampen rather than provoke aggression in acute doses, recent evidence supports a relationship between the ingestion of synthetic cannabinoids and emergence of violent or aggressive behavior. Thus, another objective is to evaluate the emerging clinical data. This paper also discusses the relationship between prenatal and perinatal exposure to cannabis as well as use of cannabis in adolescence on aggressive outcomes. A final objective of the paper is to discuss endocannabinoid abnormalities in psychotic and affective disorders, as well as clinically aggressive populations, such as borderline personality disorder and antisocial personality disorder. With regard to the former condition, decreased anandamide metabolites have been reported in the cerebrospinal fluid, while some preliminary evidence suggests that fatty acid amide hydrolase genetic polymorphisms are linked to antisocial personality disorder and impulsive-antisocial psychopathic traits. To summarize, this paper will draw upon basic and clinical research to explain how the endocannabinoid system may contribute to the genesis of aggressive behavior.

  10. The endocannabinoid system and emotional processing: A pharmacological fMRI study with Delta 9-tetrahydrocannabinol

    NARCIS (Netherlands)

    Bossong, M.G.; Hell, van H.H.; Jager, G.; Kahn, R.S.; Ramsey, N.F.; Jansma, J.M.

    2013-01-01

    Various psychiatric disorders such as major depression are associated with abnormalities in emotional processing. Evidence indicating involvement of the endocannabinoid system in emotional processing, and thus potentially in related abnormalities, is increasing. In the present study, we examined the

  11. Interactions between the Kynurenine and the Endocannabinoid System with Special Emphasis on Migraine

    Directory of Open Access Journals (Sweden)

    Gábor Nagy-Grócz

    2017-07-01

    Full Text Available Both the kynurenine and the endocannabinoid systems are involved in several neurological disorders, such as migraine and there are increasing number of reports demonstrating that there are interactions of two systems. Although their cooperation has not yet been implicated in migraine, there are reports suggesting this possibility. Additionally, the individual role of the endocannabinoid and kynurenine system in migraine is reviewed here first, focusing on endocannabinoids, kynurenine metabolites, in particular kynurenic acid. Finally, the function of NMDA and cannabinoid receptors in the trigeminal system—which has a crucial role in the pathomechanisms of migraine—will also be discussed. The interaction of the endocannabinoid and kynurenine system has been demonstrated to be therapeutically relevant in a number of pathological conditions, such as cannabis addiction, psychosis, schizophrenia and epilepsy. Accordingly, the cross-talk of these two systems may imply potential mechanisms related to migraine, and may offer new approaches to manage the treatment of this neurological disorder.

  12. Exercise training and high-fat diet elicit endocannabinoid system modifications in the rat hypothalamus and hippocampus.

    Science.gov (United States)

    Gamelin, François-Xavier; Aucouturier, Julien; Iannotti, Fabio Arturo; Piscitelli, Fabiana; Mazzarella, Enrico; Aveta, Teresa; Leriche, Melissa; Dupont, Erwan; Cieniewski-Bernard, Caroline; Leclair, Erwan; Bastide, Bruno; Di Marzo, Vincenzo; Heyman, Elsa

    2016-08-01

    The purpose of the present study was to examine the effect of chronic exercise on the hypothalamus and hippocampus levels of the endocannabinoids (eCBs) anandamide (AEA) and 2-arachidonoylglycerol (2-AG) and of two AEA congeners and on the expression of genes coding for CB1, CB2 receptors (Cnr1 and Cnr2, respectively), and the enzymes responsible for eCB biosynthesis and degradation, in rats fed with a standard or high-fat diet. Male Wistar rats (n = 28) were placed on a 12-week high-fat (HFD) or standard diet period, followed by 12 weeks of exercise training for half of each group. Tissue levels of eCBs and related lipids were measured by liquid chromatography mass spectrometry, and expression of genes coding for CB1 and CB2 receptors and eCB metabolic enzymes was measured by quantitative real-time polymerase chain reaction (qPCR). HFD induced a significant increase in 2-AG (p hypothalamus. High-fat diet paired with exercise training had no effect on AEA, 2-AG, and AEA congener levels in the hypothalamus and hippocampus. Cnr1 expression levels were significantly increased in the hippocampus in response to HFD, exercise, and the combination of both (p < 0.05). Our results indicate that eCB signaling in the CNS is sensitive to diet and/or exercise.

  13. Pharmacotherapeutic targeting of the endocannabinoid signaling system: drugs for obesity and the metabolic syndrome.

    Science.gov (United States)

    Vemuri, V Kiran; Janero, David R; Makriyannis, Alexandros

    2008-03-18

    Endogenous signaling lipids ("endocannabinoids") functionally related to Delta(9)-tetrahydrocannabinol, the psychoactive ingredient of marijuana (Cannabis), are important biomediators and metabolic regulators critical to mammalian (patho)physiology. The growing family of endocannabinoids, along with endocannabinoid biosynthetic and inactivating enzymes, transporters, and at least two membrane-bound, G-protein coupled receptors, comprise collectively the mammalian endocannabinoid signaling system. The ubiquitous and diverse regulatory actions of the endocannabinoid system in health and disease have supported the regulatory approval of natural products and synthetic agents as drugs that alter endocannabinoid-system activity. More recent data support the concept that the endocananbinoid system may be modulated for therapeutic gain at discrete pharmacological targets with safety and efficacy. Potential medications based on the endocannabinoid system have thus become a central focus of contemporary translational research for varied indications with important unmet medical needs. One such indication, obesity, is a global pandemic whose etiology has a pathogenic component of endocannabinoid-system hyperactivity and for which current pharmacological treatment is severely limited. Application of high-affinity, selective CB1 cannabinoid receptor ligands to attenuate endocannabinoid signaling represents a state-of-the-art approach for improving obesity pharmacotherapy. To this intent, several selective CB1 receptor antagonists with varied chemical structures are currently in advanced preclinical or clinical trials, and one (rimonabant) has been approved as a weight-management drug in some markets. Emerging preclinical data suggest that CB1 receptor neutral antagonists may represent breakthrough medications superior to antagonists/inverse agonists such as rimonabant for therapeutic attenuation of CB1 receptor transmission. Since obesity is a predisposing condition for the

  14. Endocannabinoids and inflammatory response in periodontal ligament cells.

    Science.gov (United States)

    Özdemir, Burcu; Shi, Bin; Bantleon, Hans Peter; Moritz, Andreas; Rausch-Fan, Xiaohui; Andrukhov, Oleh

    2014-01-01

    Endocannabinoids are associated with multiple regulatory functions in several tissues. The main endocannabinoids, anandamide (AEA) and 2-arachidonylglycerol (2-AG), have been detected in the gingival crevicular fluid of periodontitis patients, but the association between periodontal disease or human periodontal ligament cells (hPdLCs) and endocannabinoids still remain unclear. The aim of the present study was to examine the effects of AEA and 2-AG on the proliferation/viability and cytokine/chemokine production of hPdLCs in the presence/absence of Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS). The proliferation/viability of hPdLCs was measured using 3,4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT)-assay. Interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemotactic protein-1 (MCP-1) levels were examined at gene expression and protein level by real-time PCR and ELISA, respectively. AEA and 2-AG did not reveal any significant effects on proliferation/viability of hPdLCs in the absence of P. gingivalis LPS. However, hPdLCs viability was significantly increased by 10-20 µM AEA in the presence of P. gingivalis LPS (1 µg/ml). In the absence of P. gingivalis LPS, AEA and 2-AG did not exhibit any significant effect on the expression of IL-8 and MCP-1 expression in hPdLCs, whereas IL-6 expression was slightly enhanced by 10 µM 2-AG and not affected by AEA. In P.gingivalis LPS stimulated hPdLCs, 10 µM AEA down-regulated gene-expression and protein production of IL-6, IL-8, and MCP-1. In contrast, 10 µM 2-AG had an opposite effect and induced a significant up-regulation of gene and protein expression of IL-6 and IL-8 (P<0.05) as well as gene-expression of MCP-1 in P. gingivalis LPS stimulated hPdLCs. Our data suggest that AEA appears to have an anti-inflammatory and immune suppressive effect on hPdLCs' host response to P.gingivalis LPS, whereas 2-AG appears to promote detrimental inflammatory processes. In conclusion, AEA and 2

  15. Endocannabinoids and inflammatory response in periodontal ligament cells.

    Directory of Open Access Journals (Sweden)

    Burcu Özdemir

    Full Text Available Endocannabinoids are associated with multiple regulatory functions in several tissues. The main endocannabinoids, anandamide (AEA and 2-arachidonylglycerol (2-AG, have been detected in the gingival crevicular fluid of periodontitis patients, but the association between periodontal disease or human periodontal ligament cells (hPdLCs and endocannabinoids still remain unclear. The aim of the present study was to examine the effects of AEA and 2-AG on the proliferation/viability and cytokine/chemokine production of hPdLCs in the presence/absence of Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS. The proliferation/viability of hPdLCs was measured using 3,4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT-assay. Interleukin-6 (IL-6, interleukin-8 (IL-8, and monocyte chemotactic protein-1 (MCP-1 levels were examined at gene expression and protein level by real-time PCR and ELISA, respectively. AEA and 2-AG did not reveal any significant effects on proliferation/viability of hPdLCs in the absence of P. gingivalis LPS. However, hPdLCs viability was significantly increased by 10-20 µM AEA in the presence of P. gingivalis LPS (1 µg/ml. In the absence of P. gingivalis LPS, AEA and 2-AG did not exhibit any significant effect on the expression of IL-8 and MCP-1 expression in hPdLCs, whereas IL-6 expression was slightly enhanced by 10 µM 2-AG and not affected by AEA. In P.gingivalis LPS stimulated hPdLCs, 10 µM AEA down-regulated gene-expression and protein production of IL-6, IL-8, and MCP-1. In contrast, 10 µM 2-AG had an opposite effect and induced a significant up-regulation of gene and protein expression of IL-6 and IL-8 (P<0.05 as well as gene-expression of MCP-1 in P. gingivalis LPS stimulated hPdLCs. Our data suggest that AEA appears to have an anti-inflammatory and immune suppressive effect on hPdLCs' host response to P.gingivalis LPS, whereas 2-AG appears to promote detrimental inflammatory processes. In conclusion

  16. Endocannabinoids and their oxygenation by cyclo-oxygenases, lipoxygenases and other oxygenases.

    Science.gov (United States)

    Urquhart, P; Nicolaou, A; Woodward, D F

    2015-04-01

    The naturally occurring mammalian endocannabinoids possess biological attributes that extend beyond interaction with cannabinoid receptors. These extended biological properties are the result of oxidative metabolism of the principal mammalian endocannabinoids arachidonoyl ethanolamide (anandamide; A-EA) and 2-arachidonoylglycerol (2-AG). Both endocannabinoids are oxidized by cyclo-oxygenase-2 (COX-2), but not by COX-1, to a series of prostaglandin derivatives (PGs) with quite different biological properties from those of the parent substrates. PG ethanolamides (prostamides, PG-EAs) and PG glyceryl esters (PG-Gs) are not only pharmacologically distinct from their parent endocannabinoids, they are distinct from the corresponding acidic PGs, and are differentiated from each other. Ethanolamides and glyceryl esters of the major prostanoids PGD2, PGE2, PGF2α, and PGI2 are formed by the various PG synthases, and thromboxane ethanolamides and glyceryl esters are not similarly produced. COX-2 is also of interest by virtue of its corollary central role in modulating endocannabinoid tone, providing a new therapeutic approach for treating pain and anxiety. Other major oxidative conversion pathways are provided for both A-EA and 2-AG by several lipoxygenases (LOXs), resulting in the formation of numerous hydroxyl metabolites. These do not necessarily represent inactivation pathways for endocannabinoids but may mimic or modulate the endocannabinoids or even display alternative pharmacology. Similarly, A-EA and 2-AG may be oxidized by P450 enzymes. Again a very diverse number of metabolites are formed, with either cannabinoid-like biological properties or an introduction of disparate pharmacology. The biological activity of epoxy and hydroxyl derivatives of the endocannabinoids remains to be fully elucidated. This review attempts to consolidate and compare the findings obtained to date in an increasingly important research area. This article is part of a Special Issue entitled

  17. The Endocannabinoid System in the Retina: From Physiology to Practical and Therapeutic Applications

    OpenAIRE

    Schwitzer, Thomas; Schwan, Raymund; Angioi-Duprez, Karine; Giersch, Anne; Laprevote, Vincent

    2016-01-01

    Cannabis is one of the most prevalent drugs used in industrialized countries. The main effects of Cannabis are mediated by two major exogenous cannabinoids: ?9-tetrahydroxycannabinol and cannabidiol. They act on specific endocannabinoid receptors, especially types 1 and 2. Mammals are endowed with a functional cannabinoid system including cannabinoid receptors, ligands, and enzymes. This endocannabinoid signaling pathway is involved in both physiological and pathophysiological conditions with...

  18. The role of sex steroid hormones, cytokines and the endocannabinoid system in female fertility.

    Science.gov (United States)

    Karasu, T; Marczylo, T H; Maccarrone, M; Konje, J C

    2011-01-01

    Marijuana, the most used recreational drug, has been shown to have adverse effects on human reproduction. Endogenous cannabinoids (also called endocannabinoids) bind to the same receptors as those of Δ(9)-tetrahydrocannabinol (THC), the psychoactive component of Cannabis sativa. The most extensively studied endocannabinoids are anandamide (N-arachidonoylethanolamine, AEA) and 2-arachidonoylglycerol. The endocannabinoids, their congeners and the cannabinoid receptors, together with the metabolic enzymes and putative transporters form the endocannabinoid system (ECS). In this review, we summarize current knowledge about the relationships of ECS, sex steroid hormones and cytokines in female fertility, and underline the importance of this endocannabinoid-hormone-cytokine network. Pubmed and the Web of Science databases were searched for studies published since 1985, looking into the ECS, sex hormones, type-1/2 T-helper (Th1/Th2) cytokines, leukaemia inhibitory factor, leptin and reproduction. The ECS plays a pivotal role in human reproduction. The enzymes involved in the synthesis and degradation of endocannabinoids normalize levels of AEA for successful implantation. The AEA degrading enzyme (fatty acid amide hydrolase) activity as well as AEA content in blood may potentially be used for the monitoring of early pregnancies. Progesterone and oestrogen are involved in the maintenance of endocannabinoid levels. The ECS plays an important role in the immune regulation of human fertility. The available studies suggest that tight control of the endocannabinoid-hormone-cytokine network is required for successful implantation and early pregnancy maintenance. This hormone-cytokine network is a key element at the maternal-foetal interface, and any defect in such a network may result in foetal loss.

  19. Modulation Of The Endo-Cannabinoid System: Therapeutic Potential Against Cocaine Dependence

    OpenAIRE

    Tanda, Gianluigi

    2007-01-01

    Dependence on cocaine is still a main unresolved medical and social concern, and in spite of research efforts, no pharmacological therapy against cocaine dependence is yet available. Recent studies have shown that the endocannabinoid system participates in specific stages and aspects of drug dependence in general, and some of this evidence suggests an involvement of the cannabinoid system in cocaine effects. For example, cocaine administration has been shown to alter brain endocannabinoid lev...

  20. Plasma endocannabinoid levels in lean, overweight and obese humans: relationships with intestinal permeability markers, inflammation and incretin secretion.

    Science.gov (United States)

    Little, Tanya J; Cvijanovic, Nada; DiPatrizio, Nicholas V; Argueta, Donovan A; Rayner, Christopher K; Feinle-Bisset, Christine; Young, Richard L

    2018-02-13

    Intestinal production of endocannabinoid and oleoylethanolamide (OEA) is impaired in high-fat diet/obese rodents, leading to reduced satiety. Such diets also alter the intestinal microbiome in association with enhanced intestinal permeability and inflammation, however little is known of these effects in humans. This study aimed to: (i) evaluate effects of lipid on plasma anandamide (AEA), 2-arachidonyl-sn-glycerol (2-AG) and OEA in humans, and (ii) examine relationships with intestinal permeability, inflammation markers and incretin hormone secretion. 20 lean, 18 overweight and 19 obese participants underwent intraduodenal Intralipid® infusion (2 kcal/min) with collection of endoscopic duodenal biopsies and blood. Plasma AEA, 2-AG, and OEA (HPLC/tandem mass spectrometry), tumour necrosis factor-α (TNF-α), glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) (multiplex), and duodenal expression of occludin, zona-occludin-1 (ZO-1), intestinal-alkaline-phosphatase (IAP), and toll-like receptor-4 (TLR4) (RT-PCR), were assessed. Fasting plasma AEA was increased in obese, compared with lean and overweight (Plean (Plean and overweight. The relationships between plasma AEA with duodenal ZO-1 and IAP, and GIP, suggest that altered endocannabinoid signalling may contribute to changes in intestinal permeability, inflammation and incretin release in human obesity.

  1. Endocannabinoids alleviate proinflammatory conditions by modulating innate immune response in muller glia during inflammation.

    Science.gov (United States)

    Krishnan, Gopinath; Chatterjee, Nivedita

    2012-11-01

    Muller cells play a prominent role in inflammatory conditions of the retina. They are part of the retinal innate immune response. The endocannabinoid system functions as an immune modulator in both the peripheral immune system as well as the central nervous system. We hypothesized that the neuroprotective ability of exogenous endocannabinoids in the retina is partially mediated through Muller glia. This study reports that exposure to endocannabinoids in activated but not resting primary human Muller glia inhibit production of several proinflammatory cytokines, while elevating anti-inflammatory mediators. Cytokine generation in activated Muller glia is regulated by endocannabinoids through the mitogen-activated protein kinase (MAPK) family at multiple signaling stages. Anandamide (AEA) acts to control MAPK phosphorylation through MKP-1. Both AEA and 2-arachidonoylglycerol (2-AG) inhibit the transcription factor NF-κB and increases the regulatory protein, IL1-R-associated kinase 1-binding protein 1. Endocannabinoids also increase expression of Tristetraprolin in activated Muller cells, which is implicated in affecting AU-rich proinflammatory cytokine mRNA. We demonstrate that exogenous application of AEA and 2-AG aid in retinal cell survival under inflammatory conditions by creating an anti-inflammatory milieu. Endocannabinoids or synthetic cannabinoid therapy may therefore orchestrate a molecular switch to bias the innate immune system suchthat the balance of pro- and anti-inflammatory cytokine generation creates a prosurvival milieu. Copyright © 2012 Wiley Periodicals, Inc.

  2. Endocannabinoids--at the crossroads between the gut microbiota and host metabolism.

    Science.gov (United States)

    Cani, Patrice D; Plovier, Hubert; Van Hul, Matthias; Geurts, Lucie; Delzenne, Nathalie M; Druart, Céline; Everard, Amandine

    2016-03-01

    Various metabolic disorders are associated with changes in inflammatory tone. Among the latest advances in the metabolism field, the discovery that gut microorganisms have a major role in host metabolism has revealed the possibility of a plethora of associations between gut bacteria and numerous diseases. However, to date, few mechanisms have been clearly established. Accumulating evidence indicates that the endocannabinoid system and related bioactive lipids strongly contribute to several physiological processes and are a characteristic of obesity, type 2 diabetes mellitus and inflammation. In this Review, we briefly define the gut microbiota as well as the endocannabinoid system and associated bioactive lipids. We discuss existing literature regarding interactions between gut microorganisms and the endocannabinoid system, focusing specifically on the triad of adipose tissue, gut bacteria and the endocannabinoid system in the context of obesity and the development of fat mass. We highlight gut-barrier function by discussing the role of specific factors considered to be putative 'gate keepers' or 'gate openers', and their role in the gut microbiota-endocannabinoid system axis. Finally, we briefly discuss data related to the different pharmacological strategies currently used to target the endocannabinoid system, in the context of cardiometabolic disorders and intestinal inflammation.

  3. Acute resistance exercise induces antinociception by activation of the endocannabinoid system in rats.

    Science.gov (United States)

    Galdino, Giovane; Romero, Thiago; Silva, José Felippe Pinho da; Aguiar, Daniele; Paula, Ana Maria de; Cruz, Jader; Parrella, Cosimo; Piscitelli, Fabiana; Duarte, Igor; Di Marzo, Vincenzo; Perez, Andrea

    2014-09-01

    Resistance exercise (RE) is also known as strength training, and it is performed to increase the strength and mass of muscles, bone strength, and metabolism. RE has been increasingly prescribed for pain relief. However, the endogenous mechanisms underlying this antinociceptive effect are still largely unexplored. Thus, we investigated the involvement of the endocannabinoid system in RE-induced antinociception. Male Wistar rats were submitted to acute RE in a weight-lifting model. The nociceptive threshold was measured by a mechanical nociceptive test (paw pressure) before and after exercise. To investigate the involvement of cannabinoid receptors and endocannabinoids in RE-induced antinociception, cannabinoid receptor inverse agonists, endocannabinoid metabolizing enzyme inhibitors, and an anandamide reuptake inhibitor were injected before RE. After RE, CB1 cannabinoid receptors were quantified in rat brain tissue by Western blot and immunofluorescence. In addition, endocannabinoid plasma levels were measured by isotope dilution-liquid chromatography mass spectrometry. RE-induced antinociception was prevented by preinjection with CB1 and CB2 cannabinoid receptor inverse agonists. By contrast, preadministration of metabolizing enzyme inhibitors and the anandamide reuptake inhibitor prolonged and enhanced this effect. RE also produced an increase in the expression and activation of CB1 cannabinoid receptors in rat brain tissue and in the dorsolateral and ventrolateral periaqueductal regions and an increase in endocannabinoid plasma levels. The present study suggests that a single session of RE activates the endocannabinoid system to induce antinociception.

  4. The endocannabinoid system in guarding against fear, anxiety and stress

    Science.gov (United States)

    Lutz, Beat; Marsicano, Giovanni; Maldonado, Rafael; Hillard, Cecilia J.

    2018-01-01

    The endocannabinoid (eCB) system has emerged as a central integrator linking the perception of external and internal stimuli to distinct neurophysiological and behavioural outcomes (such as fear reaction, anxiety and stress-coping), thus allowing an organism to adapt to its changing environment. eCB signalling seems to determine the value of fear-evoking stimuli and to tune appropriate behavioural responses, which are essential for the organism’s long-term viability, homeostasis and stress resilience; and dysregulation of eCB signalling can lead to psychiatric disorders. An understanding of the underlying neural cell populations and cellular processes enables the development of therapeutic strategies to mitigate behavioural maladaptation. PMID:26585799

  5. Marijuana, the Endocannabinoid System and the Female Reproductive System.

    Science.gov (United States)

    Brents, Lisa K

    2016-06-01

    Marijuana use among women is highly prevalent, but the societal conversation on marijuana rarely focuses on how marijuana affects female reproduction and endocrinology. This article reviews the current scientific literature regarding marijuana use and hypothalamic-pituitary-ovarian (HPO) axis regulation, ovarian hormone production, the menstrual cycle, and fertility. Evidence suggests that marijuana can reduce female fertility by disrupting hypothalamic release of gonadotropin releasing hormone (GnRH), leading to reduced estrogen and progesterone production and anovulatory menstrual cycles. Tolerance to these effects has been shown in rhesus monkeys, but the effects of chronic marijuana use on human female reproduction are largely unknown. Marijuana-induced analgesia, drug reinforcement properties, tolerance, and dependence are influenced by ovarian hormones, with estrogen generally increasing and progesterone decreasing sensitivity to marijuana. Carefully controlled regulation of the Endocannabinoid System (ECS) is required for successful reproduction, and the exogenous cannabinoids in marijuana may disrupt the delicate balance of the ECS in the female reproductive system.

  6. Role of the Endocannabinoid System in the Pathophysiology of Schizophrenia.

    Science.gov (United States)

    Fakhoury, Marc

    2017-01-01

    The endocannabinoid system (ECS) is a group of neuromodulatory lipids, enzymes, and receptors involved in numerous behavioral and physiological processes such as mood, memory, and appetite. Recently, longitudinal and postmortem studies have shown that the ECS might be involved in neuropsychiatric disorders like schizophrenia. However, despite the large amount of research, our knowledge of the ECS and its implication in this debilitating disorder is still largely limited. This review aims at providing a comprehensive overview of the current state of knowledge of the ECS in schizophrenia and presenting some potential antipsychotic compounds that modulate this system. Findings from animal and human studies, and their implications for pharmacotherapy, will be integrated and discussed in this paper. A closer look will be given at the roles of the cannabinoid receptors type 1 (CB 1 ) and type 2 (CB 2 ), as well as the endogenous ligand N-arachidonoylethanolamine (AEA) and 2-arachidonylglycerol (2-AG), in the development of psychotic and schizophrenia-like symptoms.

  7. Metabolism of the Endocannabinoid Anandamide: Open Questions after 25 Years

    Directory of Open Access Journals (Sweden)

    Mauro Maccarrone

    2017-05-01

    Full Text Available Cannabis extracts have been used for centuries, but its main active principle ∆9-tetrahydrocannabinol (THC was identified about 50 years ago. Yet, it is only 25 years ago that the first endogenous ligand of the same receptors engaged by the cannabis agents was discovered. This “endocannabinoid (eCB” was identified as N-arachidonoylethanolamine (or anandamide (AEA, and was shown to have several receptors, metabolic enzymes and transporters that altogether drive its biological activity. Here I report on the latest advances about AEA metabolism, with the aim of focusing open questions still awaiting an answer for a deeper understanding of AEA activity, and for translating AEA-based drugs into novel therapeutics for human diseases.

  8. The endocannabinoid system: directing eating behavior and macronutrient metabolism

    Directory of Open Access Journals (Sweden)

    Bruce Alan Watkins

    2015-01-01

    Full Text Available For many years, the brain has been the primary focus for research on eating behavior. More recently, the discovery of the endogenous endocannabinoids (EC and the endocannabinoid system (ECS, as well as the characterization of its actions on appetite and metabolism, has provided greater insight on the brain and food intake. The purpose of this review is to explain the actions of EC in the brain and other organs as well as their precursor polyunsaturated fatty acids (PUFA that are converted to these endogenous ligands. The binding of the EC to the cannabinoid receptors in the brain stimulates food intake, and the ECS participates in systemic macronutrient metabolism where the gastrointestinal system, liver, muscle, and adipose are involved. The EC are biosynthesized from two distinct families of dietary PUFA, namely the n-6 and n-3. Based on their biochemistry, these PUFA are well known to exert considerable physiological and health-promoting actions. However, little is known about how these different families of PUFA compete as precursor ligands of cannabinoid receptors to stimulate appetite or perhaps down-regulate the ECS to amend food intake and prevent or control obesity. The goal of this review is to assess the current available research on ECS and food intake, suggest research that may improve the complications associated with obesity and diabetes by dietary PUFA intervention, and further reveal mechanisms to elucidate the relationships between substrate for EC synthesis, ligand actions on receptors, and the physiological consequences of the ECS. Dietary PUFA are lifestyle factors that could potentially curb eating behavior, which may translate to changes in macronutrient metabolism, systemically and in muscle, benefiting health overall.

  9. Endocannabinoid system in cardiovascular disorders - new pharmacotherapeutic opportunities

    Directory of Open Access Journals (Sweden)

    Pedro Cunha

    2011-01-01

    Full Text Available The long history of Cannabis sativa had its development stimulated and oriented for medicine after the discovery and chemical characterization of its main active ingredient, the 9-tetrahydrocannabinol (9-THC. Consequently, a binding site for 9-THC was identified in rat brains and the first cannabinoid receptor (CB1 was cloned, followed by the CB2 and by the discover of two endogenous agonists: anandamide and 2-arachidonoyl glycerol. Cannabinoid receptors, endocannabinoids and the enzymes that catalyze its synthesis and degradation constitute the endocannabinoid system (ECS, which plays an important role in the cardiovascular system. In vivo experiments with rats have demonstrated the action of anandamide and 2-AG on the development of atherosclerotic plaque, as well as an effect on heart rate, blood pressure, vasoactivity and energy metabolism (action in dyslipidemia and obesity. Recent studies with an antagonist of CB1 receptors showed that the modulation of ECS can play an important role in reducing cardiovascular risk in obese and dyslipidemic patients. Similarly, studies in rats have demonstrated the action of CB2 receptors in adhesion, migration, proliferation and function of immune cells involved in the atherosclerotic plaque formation process. The evidence so far gathered shows that the modulation of ECS (as agonism or antagonism of its receptors is an enormous potential field for research and intervention in multiple areas of human pathophysiology. The development of selective drugs for the CB1 and CB2 receptors may open a door to new therapeutic regimens.This review article aims to address the key findings and evidences on the modulation of ECS, in order to prospect future forms of therapeutic intervention at the cardiovascular level. A recent, emerging, controversial and of undoubted scientific interest subject, which states as a potential therapeutic target to reach in the 21 st century.

  10. The endocannabinoid anandamide impairs in vitro decidualization of human cells.

    Science.gov (United States)

    Almada, M; Amaral, C; Diniz-da-Costa, M; Correia-da-Silva, G; Teixeira, N A; Fonseca, B M

    2016-10-01

    Endocannabinoids (eCBs) are endogenous mediators that along with the cannabinoid receptors (CB1 and CB2), a membrane transporter and metabolic enzymes form the endocannabinoid system (ECS). Several eCBs have been discovered with emphasis on anandamide (AEA). They are involved in several biological processes such as energy balance, immune response and reproduction. Decidualization occurs during the secretory phase of human menstrual cycle, which involves proliferation and differentiation of endometrial stromal cells into decidual cells and is crucial for the establishment and progression of pregnancy. In this study, a telomerase-immortalized human endometrial stromal cell line (St-T1b) and non-differentiated primary cultures of human decidual fibroblasts from term placenta were used to characterize the ECS using immunoblotting and qRT-PCR techniques. It was shown that St-T1b cells express CB1, but not CB2, and that both receptors are expressed in HdF cells. Furthermore, the expression of fatty acid amide hydrolase (FAAH), the main degrading enzyme of AEA, increased during stromal cell differentiation. AEA inhibited cell proliferation, through deregulation of cell cycle progression and induced polyploidy. Moreover, through CB1 binding receptor, AEA also impaired cell differentiation. Therefore, AEA is proposed as a modulator of human decidualization. Our findings may provide wider implications, as deregulated levels of AEA, due to Cannabis sativa consumption or altered expression of the metabolic enzymes, may negatively regulate human endometrial stromal cell decidualization with an impact on human (in)fertility.Free Portuguese abstract: A Portuguese translation of this abstract is freely available at http://www.reproduction-online.org/content/152/4/351/suppl/DC1. © 2016 Society for Reproduction and Fertility.

  11. Obesity, the endocannabinoid system, and bias arising from pharmaceutical sponsorship.

    Directory of Open Access Journals (Sweden)

    John M McPartland

    Full Text Available Previous research has shown that academic physicians conflicted by funding from the pharmaceutical industry have corrupted evidence based medicine and helped enlarge the market for drugs. Physicians made pharmaceutical-friendly statements, engaged in disease mongering, and signed biased review articles ghost-authored by corporate employees. This paper tested the hypothesis that bias affects review articles regarding rimonabant, an anti-obesity drug that blocks the central cannabinoid receptor.A MEDLINE search was performed for rimonabant review articles, limited to articles authored by USA physicians who served as consultants for the company that manufactures rimonabant. Extracted articles were examined for industry-friendly bias, identified by three methods: analysis with a validated instrument for monitoring bias in continuing medical education (CME; analysis for bias defined as statements that ran contrary to external evidence; and a tally of misrepresentations about the endocannabinoid system. Eight review articles were identified, but only three disclosed authors' financial conflicts of interest, despite easily accessible information to the contrary. The Takhar CME bias instrument demonstrated statistically significant bias in all the review articles. Biased statements that were nearly identical reappeared in the articles, including disease mongering, exaggerating rimonabant's efficacy and safety, lack of criticisms regarding rimonabant clinical trials, and speculations about surrogate markers stated as facts. Distinctive and identical misrepresentations regarding the endocannabinoid system also reappeared in articles by different authors.The findings are characteristic of bias that arises from financial conflicts of interest, and suggestive of ghostwriting by a common author. Resolutions for this scenario are proposed.

  12. An endocannabinoid system is present in the mouse olfactory epithelium but does not modulate olfaction.

    Science.gov (United States)

    Hutch, C R; Hillard, C J; Jia, C; Hegg, C C

    2015-08-06

    Endocannabinoids modulate a diverse array of functions including progenitor cell proliferation in the central nervous system, and odorant detection and food intake in the mammalian central olfactory system and larval Xenopus laevis peripheral olfactory system. However, the presence and role of endocannabinoids in the peripheral olfactory epithelium have not been examined in mammals. We found the presence of cannabinoid type 1 (CB1) and cannabinoid type 2 (CB2) receptor protein and mRNA in the olfactory epithelium. Using either immunohistochemistry or calcium imaging we localized CB1 receptors on neurons, glia-like sustentacular cells, microvillous cells and progenitor-like basal cells. To examine the role of endocannabinoids, CB1- and CB2- receptor-deficient (CB1(-/-)/CB2(-/-)) mice were used. The endocannabinoid 2-arachidonylglycerol (2-AG) was present at high levels in both C57BL/6 wildtype and CB1(-/-)/CB2(-/-) mice. 2-AG synthetic and degradative enzymes are expressed in wildtype mice. A small but significant decrease in basal cell and olfactory sensory neuron numbers was observed in CB1(-/-)/CB2(-/-) mice compared to wildtype mice. The decrease in olfactory sensory neurons did not translate to impairment in olfactory-mediated behaviors assessed by the buried food test and habituation/dishabituation test. Collectively, these data indicate the presence of an endocannabinoid system in the mouse olfactory epithelium. However, unlike in tadpoles, endocannabinoids do not modulate olfaction. Further investigation on the role of endocannabinoids in progenitor cell function in the olfactory epithelium is warranted. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. The endocannabinoid system--back to the scene of cardiometabolic risk factors control?

    Science.gov (United States)

    Martins, C J M; Genelhu, V; Di Marzo, V; Francischetti, E A

    2014-07-01

    This review examines the impact of the endocannabinoid signaling system on metabolic and cardiovascular health and the new therapeutic strategies that selectively target dysfunctional endocannabinoid action in peripheral tissues, without causing the undesirable central nervous system effects that occurred with the first-generation of CB1 receptor blockers. We first review the components of the endocannabinoid system and the enzymes that synthesize and degrade the endocannabinoids, the critical role of the system in the homeostasis of energy balance, and its hedonic aspects related to the incentive and motivational value of food. Second, we describe the central and peripheral actions of the endocannabinoid system and its interactions with other biological modulators, such as ghrelin and leptin. Third, we summarize data from human clinical trials with the CB1 inverse agonist rimonabant, showing that the drug, although effective in increasing weight loss with accompanying improvements in the metabolic profile of the participants in the RIO (Rimonabant In Obesity) trials, was withdrawn from the market because of the risk of serious adverse events. Finally, we describe: 1) the development of new selective peripheral blockers that interrupt endocannabinoid action selectively in peripheral tissues and that have been suggested as an alternative approach to treat the metabolic consequences of obesity and related diseases, without undesirable central nervous system effects, and 2) the potential for inhibition of enzymes of synthesis, as well as the possible role of endocannabinoid congeners, with opposing effects as compared to CB1 receptor agonists, in the control of metabolic disorders. © Georg Thieme Verlag KG Stuttgart · New York.

  14. [The endocannabinoid system role in the pathogenesis of obesity and depression].

    Science.gov (United States)

    Zdanowicz, Anna; Kaźmierczak, Wieńczysław; Wierzbiński, Piotr

    2015-07-01

    Excessive consumption and obesity do not always have to be strictly pathological. The adjustment of food intake as well as the pleasure of eating are the results of the circulation of neurotransmitters, hormones and glucocorticoids which have an ability to regulate the activity of many receptors connected with G protein, including endocannabinoid receptors. The key role of endocannabinoids in pathogenesis of obesity is their overproduction by adipose cells. Endocannabinoids (eCBs) affect CB1 receptors and increase hunger, willingness to intake food, decrease peristalsis and delay stomach emptying. In obese people increased levels of both central and peripheral endocannabinoids are observed. It may be connected with higher availability of endocannabinoid precursors to synthesis from adipose tissue and lipids. Raised concentration of eCBs in the body may be the consequence of their catabolism dysfunction. There is a positive correlation between amount the number of receptors in the peripheral tissues and obesity increase. It is thought that expression of CB1 receptors in mesolimbic system is connected with motivation to consume food in response to rewarding factor. The appetite increase after cannabinoids use is probably caused by rewarding action of the consumed food and it results from excessive dopaminergic transmission in award system. The pharmacological inhibition of endocannabinoids activity leads to weight loss, but may also have negative consequences such as decreased mood, reduced tolerance of pain, intensified anxiety, anhedonia, depressive symptoms, even suicidal thoughts. In post mortem examinations a decrease in CB1 receptor density in grey matter of glial cells in patients with major depression was identified. The pleiotropic and extensive activity of endocannabinoid system can influence a range of neurotransmitters thereby modulating the psychiatric life phenomena, simultaneously being involved in metabolism control and energetic system of human body

  15. The endocannabinoid system in the baboon (Papio spp.) as a complex framework for developmental pharmacology.

    Science.gov (United States)

    Rodriguez-Sanchez, Iram P; Guindon, Josee; Ruiz, Marco; Tejero, M Elizabeth; Hubbard, Gene; Martinez-de-Villarreal, Laura E; Barrera-Saldaña, Hugo A; Dick, Edward J; Comuzzie, Anthony G; Schlabritz-Loutsevitch, Natalia E

    The consumption of marijuana (exogenous cannabinoid) almost doubled in adults during last decade. Consumption of exogenous cannabinoids interferes with the endogenous cannabinoid (or "endocannabinoid" (eCB)) system (ECS), which comprises N-arachidonylethanolamide (anandamide, AEA), 2-arachidonoyl glycerol (2-AG), endocannabinoid receptors (cannabinoid receptors 1 and 2 (CB1R and CB2R), encoded by CNR1 and CNR2, respectively), and synthesizing/degrading enzymes (FAAH, fatty-acid amide hydrolase; MAGL, monoacylglycerol lipase; DAGL-α, diacylglycerol lipase-alpha). Reports regarding the toxic and therapeutic effects of pharmacological compounds targeting the ECS are sometimes contradictory. This may be caused by the fact that structure of the eCBs varies in the species studied. First: to clone and characterize the cDNAs of selected members of ECS in a non-human primate (baboon, Papio spp.), and second: to compare those cDNA sequences to known human structural variants (single nucleotide polymorphisms and haplotypes). Polymerase chain reaction-amplified gene products from baboon tissues were transformed into Escherichia coli. Amplicon-positive clones were sequenced, and the obtained sequences were conceptually translated into amino-acid sequences using the genetic code. Among the ECS members, CNR1 was the best conserved gene between humans and baboons. The phenotypes associated with mutations in the untranslated regions of this gene in humans have not been described in baboons. One difference in the structure of CNR2 between humans and baboons was detected in the region with the only known clinically relevant polymorphism in a human receptor. All of the differences in the amino-acid structure of DAGL-α between humans and baboons were located in the hydroxylase domain, close to phosphorylation sites. None of the differences in the amino-acid structure of MAGL observed between baboons and humans were located in the area critical for enzyme function. The evaluation of

  16. [Optimization of oxytetracycline biosynthesis].

    Science.gov (United States)

    Maksimova, E A; Falkov, N N; Izmaĭlov, N N; Romanchuk, N N

    1988-06-01

    It was shown that rising of temperature up to 30 degrees C at the stage of the oxytetracycline-producing organism growth promoted acceleration of the culture growth rate and increasing of the antibiotic concentration by the 114th hour of the biosynthetic process. For the apparatus used in the study optimal aeration and agitation conditions were developed. To provide optimal parameters during biosynthesis of oxytetracycline, it was recommended to use the aeration rate of 1 v/v.min and the specific mechanical power for mixing of not less than 1 kW/m3.

  17. Biosynthesis of Rishirilide B

    Directory of Open Access Journals (Sweden)

    Philipp Schwarzer

    2018-03-01

    Full Text Available Rishirilide B was isolated from Streptomyces rishiriensis and Streptomyces bottropensis on the basis of its inhibitory activity towards alpha-2-macroglobulin. The biosynthesis of rishirilide B was investigated by feeding experiments with different 13C labelled precursors using the heterologous host Streptomyces albus J1074::cos4 containing a cosmid encoding of the gene cluster responsible for rishirilide B production. NMR spectroscopic analysis of labelled compounds demonstrate that the tricyclic backbone of rishirilide B is a polyketide synthesized from nine acetate units. One of the acetate units is decarboxylated to give a methyl group. The origin of the starter unit was determined to be isobutyrate.

  18. Abnormalities in neuroendocrine stress response in psychosis: the role of endocannabinoids.

    Science.gov (United States)

    Appiah-Kusi, E; Leyden, E; Parmar, S; Mondelli, V; McGuire, P; Bhattacharyya, S

    2016-01-01

    The aim of this article is to summarize current evidence regarding alterations in the neuroendocrine stress response system and endocannabinoid system and their relationship in psychotic disorders such as schizophrenia. Exposure to stress is linked to the development of a number of psychiatric disorders including psychosis. However, the precise role of stress in the development of psychosis and the possible mechanisms that might underlie this are not well understood. Recently the cannabinoid hypothesis of schizophrenia has emerged as a potential line of enquiry. Endocannabinoid levels are increased in patients with psychosis compared with healthy volunteers; furthermore, they increase in response to stress, which suggests another potential mechanism for how stress might be a causal factor in the development of psychosis. However, research regarding the links between stress and the endocannabinoid system is in its infancy. Evidence summarized here points to an alteration in the baseline tone and reactivity of the hypothalamic-pituitary-adrenal (HPA) axis as well as in various components of the endocannabinoid system in patients with psychosis. Moreover, the precise nature of the inter-relationship between these two systems is unclear in man, especially their biological relevance in the context of psychosis. Future studies need to simultaneously investigate HPA axis and endocannabinoid alterations both at baseline and following experimental perturbation in healthy individuals and those with psychosis to understand how they interact with each other in health and disease and obtain mechanistic insight as to their relevance to the pathophysiology of schizophrenia.

  19. Expression and Function of the Endocannabinoid System in the Retina and the Visual Brain.

    Science.gov (United States)

    Bouchard, Jean-François; Casanova, Christian; Cécyre, Bruno; Redmond, William John

    2016-01-01

    Endocannabinoids are important retrograde modulators of synaptic transmission throughout the nervous system. Cannabinoid receptors are seven transmembrane G-protein coupled receptors favoring Gi/o protein. They are known to play an important role in various processes, including metabolic regulation, craving, pain, anxiety, and immune function. In the last decade, there has been a growing interest for endocannabinoids in the retina and their role in visual processing. The purpose of this review is to characterize the expression and physiological functions of the endocannabinoid system in the visual system, from the retina to the primary visual cortex, with a main interest regarding the retina, which is the best-described area in this system so far. It will show that the endocannabinoid system is widely present in the retina, mostly in the through pathway where it can modulate neurotransmitter release and ion channel activity, although some evidence also indicates possible mechanisms via amacrine, horizontal, and Müller cells. The presence of multiple endocannabinoid ligands, synthesizing and catabolizing enzymes, and receptors highlights various pharmacological targets for novel therapeutic application to retinal diseases.

  20. Mustard vesicants alter expression of the endocannabinoid system in mouse skin

    International Nuclear Information System (INIS)

    Wohlman, Irene M.; Composto, Gabriella M.; Heck, Diane E.; Heindel, Ned D.; Lacey, C. Jeffrey; Guillon, Christophe D.; Casillas, Robert P.; Croutch, Claire R.; Gerecke, Donald R.; Laskin, Debra L.; Joseph, Laurie B.; Laskin, Jeffrey D.

    2016-01-01

    Vesicants including sulfur mustard (SM) and nitrogen mustard (NM) are bifunctional alkylating agents that cause skin inflammation, edema and blistering. This is associated with alterations in keratinocyte growth and differentiation. Endogenous cannabinoids, including N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), are important in regulating inflammation, keratinocyte proliferation and wound healing. Their activity is mediated by binding to cannabinoid receptors 1 and 2 (CB1 and CB2), as well as peroxisome proliferator-activated receptor alpha (PPARα). Levels of endocannabinoids are regulated by fatty acid amide hydrolase (FAAH). We found that CB1, CB2, PPARα and FAAH were all constitutively expressed in mouse epidermis and dermal appendages. Topical administration of NM or SM, at concentrations that induce tissue injury, resulted in upregulation of FAAH, CB1, CB2 and PPARα, a response that persisted throughout the wound healing process. Inhibitors of FAAH including a novel class of vanillyl alcohol carbamates were found to be highly effective in suppressing vesicant-induced inflammation in mouse skin. Taken together, these data indicate that the endocannabinoid system is important in regulating skin homeostasis and that inhibitors of FAAH may be useful as medical countermeasures against vesicants. - Highlights: • Sulfur mustard and nitrogen mustard are potent skin vesicants. • The endocannabinoid system regulates keratinocyte growth and differentiation. • Vesicants are potent inducers of the endocannabinoid system in mouse skin. • Endocannabinoid proteins upregulated are FAAH, CB1, CB2 and PPARα. • FAAH inhibitors suppress vesicant-induced inflammation in mouse skin.

  1. Activation of Endocannabinoid System Is Associated with Persistent Inflammation in Human Aortic Aneurysm.

    Science.gov (United States)

    Gestrich, Christopher; Duerr, Georg D; Heinemann, Jan C; Meertz, Anne; Probst, Chris; Roell, Wilhelm; Schiller, Wolfgang; Zimmer, Andreas; Bindila, Laura; Lutz, Beat; Welz, Armin; Dewald, Oliver

    2015-01-01

    Human aortic aneurysms have been associated with inflammation and vascular remodeling. Since the endocannabinoid system modulates inflammation and tissue remodeling, we investigated its components in human aortic aneurysms. We obtained anterior aortic wall samples from patients undergoing elective surgery for aortic aneurysm or coronary artery disease as controls. Histological and molecular analysis (RT-qPCR) was performed, and endocannabinoid concentration was determined using LC-MRM. Patient characteristics were comparable between the groups except for a higher incidence of arterial hypertension and diabetes in the control group. mRNA level of cannabinoid receptors was significantly higher in aneurysms than in controls. Concentration of the endocannabinoid 2-arachidonoylglycerol was significantly higher, while the second endocannabinoid anandamide and its metabolite arachidonic acid and palmitoylethanolamide were significantly lower in aneurysms. Histology revealed persistent infiltration of newly recruited leukocytes and significantly higher mononuclear cell density in adventitia of the aneurysms. Proinflammatory environment in aneurysms was shown by significant upregulation of M-CSF and PPARγ but associated with downregulation of chemokines. We found comparable collagen-stained area between the groups, significantly decreased mRNA level of CTGF, osteopontin-1, and MMP-2, and increased TIMP-4 expression in aneurysms. Our data provides evidence for endocannabinoid system activation in human aortic aneurysms, associated with persistent low-level inflammation and vascular remodeling.

  2. Endocannabinoid regulation of β-cell functions: implications for glycaemic control and diabetes.

    Science.gov (United States)

    Jourdan, T; Godlewski, G; Kunos, G

    2016-06-01

    Visceral obesity is a major risk factor for the development of insulin resistance which can progress to overt type 2 diabetes (T2D) with loss of β-cell function and, ultimately, loss of β-cells. Insulin secretion by β-cells of the pancreatic islets is tightly coupled to blood glucose concentration and modulated by a large number of blood-borne or locally released mediators, including endocannabinoids. Obesity and its complications, including T2D, are associated with increased activity of the endocannabinoid/CB1 receptor (CB1 R) system, as indicated by the therapeutic effects of CB1 R antagonists. Similar beneficial effects of CB1 R antagonists with limited brain penetrance indicate the important role of CB1 R in peripheral tissues, including the endocrine pancreas. Pancreatic β-cells express all of the components of the endocannabinoid system, and endocannabinoids modulate their function via both autocrine and paracrine mechanisms, which influence basal and glucose-induced insulin secretion and also affect β-cell proliferation and survival. The present brief review will survey available information on the modulation of these processes by endocannabinoids and their receptors, with an attempt to assess the contribution of such effects to glycaemic control in T2D and insulin resistance. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  3. Inhibition of endocannabinoid neuronal uptake and hydrolysis as strategies for developing anxiolytic drugs.

    Science.gov (United States)

    Batista, Luara A; Gobira, Pedro H; Viana, Thercia G; Aguiar, Daniele C; Moreira, Fabricio A

    2014-09-01

    The endocannabinoid system comprises the CB1 and CB2 receptors (the targets of the Cannabis sativa compound delta-9-tetrahydrocannabinol), the endogenous ligands (endocannabinoids) arachidonoyl ethanolamide (anandamide) and 2-arachidonoyl glycerol, their synthesizing machinery and membrane transport system, and the hydrolyzing enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), respectively. The endocannabinoids may act on demand to confer protection against aversive stimuli, which suggests that increasing their brain levels may represent an approach for treatment of anxiety-related disorders. Thus, this article reviews the profile of endocannabinoid reuptake and hydrolysis inhibitors in experimental tests predictive of anxiolytic activity. The FAAH inhibitors and the blockers of anandamide transport, in contrast to direct CB1 receptor agonists, induce anxiolytic effects at doses that do not interfere with motor activity. MAGL inhibitors also reduce anxiety-like behavior, although they are more likely to impair motor activity. Regarding their mechanisms, increasing anandamide levels induce responses mediated by the CB1 receptor and occluded by the transient receptor potential vanilloid type-1 channels, whereas the effects of increasing 2-arachidonoyl glycerol depend on both CB1 and CB2 receptors. Their neuroanatomical targets include various structures related to anxiety and fear responses. Understanding the pharmacological properties of FAAH and MAGL inhibitors may contribute toward the development of new anxiolytic interventions based on the endocannabinoid system.

  4. The Endocannabinoid System in the Postimplantation Period: A Role during Decidualization and Placentation

    Directory of Open Access Journals (Sweden)

    B. M. Fonseca

    2013-01-01

    Full Text Available Although the detrimental effects of cannabis consumption during gestation are known for years, the vast majority of studies established a link between cannabis consumption and foetal development. The complex maternal-foetal interrelationships within the placental bed are essential for normal pregnancy, and decidua definitively contributes to the success of this process. Nevertheless, the molecular signalling network that coordinates strategies for successful decidualization and placentation are not well understood. The discovery of the endocannabinoid system highlighted new signalling mediators in various physiological processes, including reproduction. It is known that endocannabinoids present regulatory functions during blastocyst development, oviductal transport, and implantation. In addition, all the endocannabinoid machinery was found to be expressed in decidual and placental tissues. Additionally, endocannabinoid’s plasmatic levels were found to fluctuate during normal gestation and to induce decidual cell death and disturb normal placental development. Moreover, aberrant endocannabinoid signalling during the period of placental development has been associated with pregnancy disorders. It indicates the existence of a possible regulatory role for these molecules during decidualization and placentation processes, which are known to be particularly vulnerable. In this review, the influence of the endocannabinoid system in these critical processes is explored and discussed.

  5. Gestation Related Gene Expression of the Endocannabinoid Pathway in Rat Placenta

    Directory of Open Access Journals (Sweden)

    Kanchan Vaswani

    2015-01-01

    Full Text Available Mammalian placentation is a vital facet of the development of a healthy and viable offspring. Throughout gestation the placenta changes to accommodate, provide for, and meet the demands of a growing fetus. Gestational gene expression is a crucial part of placenta development. The endocannabinoid pathway is activated in the placenta and decidual tissues throughout pregnancy and aberrant endocannabinoid signaling during the period of placental development has been associated with pregnancy disorders. In this study, the gene expression of eight endocannabinoid system enzymes was investigated throughout gestation. Rat placentae were obtained at E14.25, E15.25, E17.25, and E20, RNA was extracted, and microarray was performed. Gene expression of enzymes Faah, Mgll, Plcd4, Pld1, Nat1, Daglα, and Ptgs2 was studied (cohort 1, microarray. Biological replication of the results was performed by qPCR (cohort 2. Four genes showed differential expression (Mgll, Plcd4, Ptgs2, and Pld1, from mid to late gestation. Genes positively associated with gestational age were Ptgs2, Mgll, and Pld1, while Plcd4 was downregulated. This is the first comprehensive study that has investigated endocannabinoid pathway gene expression during rat pregnancy. This study provides the framework for future studies that investigate the role of endocannabinoid system during pregnancy.

  6. Effects of mood inductions by meal ambiance and moderate alcohol consumption on endocannabinoids and N-acylethanolamines in humans

    NARCIS (Netherlands)

    Schrieks, I.C.; Ripken, Dina; Stafleu, Annette; Witkamp, R.F.; Hendriks, Henk F.J.

    2015-01-01

    Background: The endocannabinoid system is suggested to play a regulatory role in mood. However, the response of circulating endocannabinoids (ECs) to mood changes has never been tested in humans. In the present study, we examined the effects of mood changes induced by ambiance and moderate

  7. Endocannabinoid receptor 1 gene variations increase risk for obesity and modulate body mass index in European populations

    DEFF Research Database (Denmark)

    Benzinou, Michael; Chèvre, Jean-Claude; Ward, Kirsten J

    2008-01-01

    The therapeutic effects of cannabinoid receptor blockade on obesity-associated phenotypes underline the importance of the endocannabinoid pathway on the energy balance. Using a staged-approach, we examined the contribution of the endocannabinoid receptor 1 gene (CNR1) on obesity and body mass index...

  8. Modulation of the Endocannabinoid System: Vulnerability Factor and New Treatment Target for Stimulant Addiction.

    Directory of Open Access Journals (Sweden)

    Stéphanie eOlière

    2013-09-01

    Full Text Available Cannabis is one of the most widely used illicit substance among users of stimulants such as cocaine and amphetamine. Interestingly, recent accumulating evidence points toward the involvement of the endocannabinoid system (ECBS in the neurobiological processes related to stimulant addiction. This article presents an up-to-date review with deep-insights into the pivotal role of the ECBS in the neurobiology of stimulant addiction and the effects of its modulation on addictive behaviors. The aims of this article are to: 1 review the role of cannabis use and ECBS modulation in the neurobiological substrates of psychostimulant addiction and 2 evaluate the potential of cannabinoid-based pharmacological strategies to treat stimulant addiction. A growing number of studies support a critical role of the ECBS and its modulation by synthetic or natural cannabinoid in various neurobiological and behavioral aspects of stimulants addiction. Thus, cannabinoids modulate brain reward systems closely involved in stimulants addiction, and provide further evidence that the cannabinoid system could be explored as a potential drug discovery target for treating addiction across different classes of stimulants.

  9. Endocannabinoids participate in placental apoptosis induced by hypoxia inducible factor-1.

    Science.gov (United States)

    Abán, C; Martinez, N; Carou, C; Albamonte, I; Toro, A; Seyahian, A; Franchi, A; Leguizamón, G; Trigubo, D; Damiano, A; Farina, M

    2016-10-01

    During pregnancy, apoptosis is a physiological event critical in the remodeling and aging of the placenta. Increasing evidence has pointed towards the relevance of endocannabinoids (ECs) and hypoxia as modulators of trophoblast cell death. However, the relation between these factors is still unknown. In this report, we evaluated the participation of ECs in placental apoptosis induced by cobalt chloride (CoCl2), a hypoxia mimicking agent that stabilizes the expression of hypoxia inducible factor-1 alpha (HIF-1α). We found that HIF-1α stabilization decreased FAAH mRNA and protein levels, suggesting an increase in ECs tone. Additionally, CoCl2 incubation and Met-AEA treatment reduced cell viability and increased TUNEL-positive staining in syncytiotrophoblast layer. Immunohistochemical analysis demonstrated Bax and Bcl-2 protein expression in the cytoplasm of syncytiotrophoblast. Finally, HIF-1α stabilization produced an increase in Bax/Bcl-2 ratio, activation of caspase 3 and PARP cleavage. All these changes in apoptotic parameters were reversed with AM251, a CB1 antagonist. These results demonstrate that HIF-1α may induce apoptosis in human placenta via intrinsic pathway by a mechanism that involves activation of CB1 receptor suggesting a role of the ECs in this process.

  10. (+)-Germacrene A Biosynthesis

    Science.gov (United States)

    de Kraker, Jan-Willem; Franssen, Maurice C.R.; de Groot, Aede; König, Wilfried A.; Bouwmeester, Harro J.

    1998-01-01

    The leaves and especially the roots of chicory (Cichorium intybus L.) contain high concentrations of bitter sesquiterpene lactones such as the guianolides lactupicrin, lactucin, and 8-deoxylactucin. Eudesmanolides and germacranolides are present in smaller amounts. Their postulated biosynthesis through the mevalonate-farnesyl diphosphate-germacradiene pathway has now been confirmed by the isolation of a (+)-germacrene A synthase from chicory roots. This sesquiterpene cyclase was purified 200-fold using a combination of anion-exchange and dye-ligand chromatography. It has a Km value of 6.6 μm, an estimated molecular mass of 54 kD, and a (broad) pH optimum around 6.7. Germacrene A, the enzymatic product, proved to be much more stable than reported in literature. Its heat-induced Cope rearrangement into (−)-β-elemene was utilized to determine its absolute configuration on an enantioselective gas chromatography column. To our knowledge, until now in sesquiterpene biosynthesis, germacrene A has only been reported as an (postulated) enzyme-bound intermediate, which, instead of being released, is subjected to additional cyclization(s) by the same enzyme that generated it from farnesyl diphosphate. However, in chicory germacrene A is released from the sesquiterpene cyclase. Apparently, subsequent oxidations and/or glucosylation of the germacrane skeleton, together with a germacrene cyclase, determine whether guaiane- or eudesmane-type sesquiterpene lactones are produced. PMID:9701594

  11. Evaluation of biosynthetic pathways to delta-aminolevulinic acid in Propionibacterium shermanii based on biosynthesis of vitamin B12 from D-[1-13C]glucose.

    Science.gov (United States)

    Iida, K; Kajiwara, M

    2000-04-04

    Analysis of the (13)C nuclear magnetic resonance (NMR) spectrum of (13)C-labeled vitamin B(12) biosynthesized from D-[1-(13)C]glucose by Propionibacterium shermanii provided evidence suggesting that delta-aminolevulinic acid (ALA) incorporated in the (13)C-labeled vitamin B(12) may have been synthesized via both the Shemin pathway and the C5 pathway under anaerobic conditions in the ratio of 1 < [(ratio of ALA biosynthesis from the Shemin pathway)/(that from the C5 pathway)] < 1.8. The D-ribose moiety of vitamin B(12) was labeled with (13)C at R-1, R-3, and R-5. The aminopropanol moiety of vitamin B(12) was labeled on Pr-1 and Pr-2, but not Pr-3.

  12. Endocannabinoids shape accumbal encoding of cue-motivated behavior via CB1 receptor activation in the ventral tegmentum.

    Science.gov (United States)

    Oleson, Erik B; Beckert, Michael V; Morra, Joshua T; Lansink, Carien S; Cachope, Roger; Abdullah, Rehab A; Loriaux, Amy L; Schetters, Dustin; Pattij, Tommy; Roitman, Mitchell F; Lichtman, Aron H; Cheer, Joseph F

    2012-01-26

    Transient increases in nucleus accumbens (NAc) dopamine concentration are observed when animals are presented with motivationally salient stimuli and are theorized to energize reward seeking. They arise from high-frequency firing of dopamine neurons in the ventral tegmental area (VTA), which also results in the release of endocannabinoids from dopamine cell bodies. In this context, endocannabinoids are thought to regulate reward seeking by modulating dopamine signaling, although a direct link has never been demonstrated. To test this, we pharmacologically manipulated endocannabinoid neurotransmission in the VTA while measuring transient changes in dopamine concentration in the NAc during reward seeking. Disrupting endocannabinoid signaling dramatically reduced, whereas augmenting levels of the endocannabinoid 2-arachidonoylglycerol (2AG) increased, cue-evoked dopamine concentrations and reward seeking. These data suggest that 2AG in the VTA regulates reward seeking by sculpting ethologically relevant patterns of dopamine release during reward-directed behavior. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. CB1 receptor-mediated respiratory depression by endocannabinoids.

    Science.gov (United States)

    Iring, András; Hricisák, László; Benyó, Zoltán

    2017-06-01

    Endocannabinoids (ECs) are bioactive lipid mediators acting on two distinct cannabinoid receptors (CB1 and CB2), which are ubiquitously expressed in many tissues including the respiratory system. Despite numerous experimental data showing that cannabinomimetics influence respiration, the role of endogenously produced ECs in respiratory control has not been verified yet. Pulse oximetry was used in the present study to directly measure changes in respiratory parameters during elevation of EC levels. The cannabinoid reuptake inhibitor AM-404 (10mgkg -1 , i.v.), but not its vehicle, induced a transient reduction of respiratory rate with a concomitant depression of arterial oxygen saturation and increase in breath distension in wild-type mice. In contrast, CB1 knock-out mice showed no alteration in any of these parameters upon administration of AM-404. Our results imply that the EC system has an important role in the physiological control of respiration by modulating the respiratory rate and consequently influencing arterial oxygen saturation. Furthermore, this mechanism is entirely dependent on CB1 receptors. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Endocannabinoid signaling at the periphery: 50 years after THC

    Science.gov (United States)

    Maccarrone, Mauro; Bab, Itai; Bíró, Tamás; Cabral, Guy A.; Dey, Sudhansu K.; Di Marzo, Vincenzo; Konje, Justin C.; Kunos, George; Mechoulam, Raphael; Pacher, Pal; Sharkey, Keith A.; Zimmer, Andreas

    2015-01-01

    Fifty years ago (in 1964) the psychoactive ingredient of Cannabis sativa, Δ9-tetrahydrocannabinol (THC), was isolated. Nearly 30 years later the endogenous counterparts of THC, collectively termed endocannabinoids (eCBs), were discovered: N-arachidonoylethanolamine (anandamide, AEA) in 1992, and 2-arachidonoylglycerol (2-AG) in 1995. Since then, considerable research has shed light on the impact of eCBs on human health and disease, identifying an ensemble of proteins that bind, synthesize and degrade them, and that altogether form the eCB system. eCBs control basic biological processes, including cell-choice between survival and death, and progenitor/stem cell proliferation and differentiation. Not surprisingly, in the past two decades, eCBs have been recognized as key mediators of several aspects of human pathophysiology, and thus have emerged among the most widespread and versatile signaling molecules ever discovered. Here, some of the pioneers of this research field review the state-of-the-art of critical eCB functions in peripheral organs. Our community effort is aimed at establishing consensus views on the relevance of the peripheral eCB system for human health and disease pathogenesis, as well as to highlight emerging challenges and therapeutic hopes. PMID:25796370

  15. Impact of Cannabis, Cannabinoids, and Endocannabinoids in the Lungs.

    Science.gov (United States)

    Turcotte, Caroline; Blanchet, Marie-Renée; Laviolette, Michel; Flamand, Nicolas

    2016-01-01

    Since the identification of cannabinoid receptors in the 1990s, a research field has been dedicated to exploring the role of the cannabinoid system in immunity and the inflammatory response in human tissues and animal models. Although the cannabinoid system is present and crucial in many human tissues, studying the impact of cannabinoids on the lungs is particularly relevant because of their contact with exogenous cannabinoids in the context of marijuana consumption. In the past two decades, the scientific community has gathered a large body of evidence supporting that the activation of the cannabinoid system alleviates pain and reduces inflammation. In the context of lung inflammation, exogenous and endogenous cannabinoids have shown therapeutic potential because of their inhibitory effects on immune cell recruitment and functions. On the other hand, cannabinoids were shown to be deleterious to lung function and to impact respiratory pathogen clearance. In this review, we present the existing data on the regulation of lung immunity and inflammation by phytocannabinoids, synthetic cannabinoids and endocannabinoids.

  16. Pharmacology and toxicology of Cannabis derivatives and endocannabinoid agonists.

    Science.gov (United States)

    Gerra, Gilberto; Zaimovic, Amir; Gerra, Maria L; Ciccocioppo, Roberto; Cippitelli, Andrea; Serpelloni, Giovanni; Somaini, Lorenzo

    2010-01-01

    For centuries Cannabis sativa and cannabis extracts have been used in natural medicine. Delta(9)-tetrahydrocannabinol (THC) is the main active ingredient of Cannabis. THC seems to be responsible for most of the pharmacological and therapeutic actions of cannabis. In a few countries THC extracts (i.e. Sativex) or THC derivatives such as nabilone, and dronabinol are used in the clinic for the treatment of several pathological conditions like chemotherapy-induced nausea and vomiting, multiple sclerosis and glaucoma. On the other hand the severe side effects and the high abuse liability of these agents represent a serious limitation in their medical use. In addition, diversion in the use of these active ingredients for recreational purpose is a concern. Over recent years, alternative approaches using synthetic cannabinoid receptor agonists or agents acting as activators of the endocannabinoid systems are under scrutiny with the hope to develop more effective and safer clinical applications. Likely, in the near future few of these new molecules will be available for clinical use. The present article review recent study and patents with focus on the cannabinoid system as a target for the treatment of central nervous system disorders with emphasis on agonists.

  17. Impact of cannabis, cannabinoids and endocannabinoids in the lungs

    Directory of Open Access Journals (Sweden)

    Caroline Turcotte

    2016-09-01

    Full Text Available Since the identification of cannabinoid receptors in the 1990s, a research field has been dedicated to exploring the role of the cannabinoid system in immunity and the inflammatory response in human tissues and animal models. Although the cannabinoid system is present and crucial in many human tissues, studying the impact of cannabinoids on the lungs is particularly relevant because of their contact with exogenous cannabinoids is the context of marijuana consumption. In the past two decades, the scientific community has gathered a large body of evidence supporting that the activation of the cannabinoid system alleviates pain and reduces inflammation. In the context of lung inflammation, exogenous and endogenous cannabinoids have shown therapeutic potential because of their inhibitory effects on immune cell recruitment and functions. On the other hand, cannabinoids were shown to be deleterious to lung function and to impact respiratory pathogen clearance. In this review, we present the existing data on the regulation of lung immunity and inflammation by phytocannabinoids, synthetic cannabinoids and endocannabinoids.

  18. The endocannabinoid system as a target for novel anxiolytic drugs.

    Science.gov (United States)

    Patel, Sachin; Hill, Mathew N; Cheer, Joseph F; Wotjak, Carsten T; Holmes, Andrew

    2017-05-01

    The endocannabinoid (eCB) system has attracted attention for its role in various behavioral and brain functions, and as a therapeutic target in neuropsychiatric disease states, including anxiety disorders and other conditions resulting from dysfunctional responses to stress. In this mini-review, we highlight components of the eCB system that offer potential 'druggable' targets for new anxiolytic medications, emphasizing some of the less well-discussed options. We discuss how selectively amplifying eCBs recruitment by interfering with eCB-degradation, via fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), has been linked to reductions in anxiety-like behaviors in rodents and variation in human anxiety symptoms. We also discuss a non-canonical route to regulate eCB degradation that involves interfering with cyclooxygenase-2 (COX-2). Next, we discuss approaches to targeting eCB receptor-signaling in ways that do not involve the cannabinoid receptor subtype 1 (CB1R); by targeting the CB2R subtype and the transient receptor potential vanilloid type 1 (TRPV1). Finally, we review evidence that cannabidiol (CBD), while representing a less specific pharmacological approach, may be another way to modulate eCBs and interacting neurotransmitter systems to alleviate anxiety. Taken together, these various approaches provide a range of plausible paths to developing novel compounds that could prove useful for treating trauma-related and anxiety disorders. Published by Elsevier Ltd.

  19. Fetal Alcohol Spectrum Disorder: Potential Role of Endocannabinoids Signaling

    Directory of Open Access Journals (Sweden)

    Balapal S. Basavarajappa

    2015-10-01

    Full Text Available One of the unique features of prenatal alcohol exposure in humans is impaired cognitive and behavioral function resulting from damage to the central nervous system (CNS, which leads to a spectrum of impairments referred to as fetal alcohol spectrum disorder (FASD. Human FASD phenotypes can be reproduced in the rodent CNS following prenatal ethanol exposure. Several mechanisms are expected to contribute to the detrimental effects of prenatal alcohol exposure on the developing fetus, particularly in the developing CNS. These mechanisms may act simultaneously or consecutively and differ among a variety of cell types at specific developmental stages in particular brain regions. Studies have identified numerous potential mechanisms through which alcohol can act on the fetus. Among these mechanisms are increased oxidative stress, mitochondrial damage, interference with the activity of growth factors, glia cells, cell adhesion molecules, gene expression during CNS development and impaired function of signaling molecules involved in neuronal communication and circuit formation. These alcohol-induced deficits result in long-lasting abnormalities in neuronal plasticity and learning and memory and can explain many of the neurobehavioral abnormalities found in FASD. In this review, the author discusses the mechanisms that are associated with FASD and provides a current status on the endocannabinoid system in the development of FASD.

  20. Oxylipins, endocannabinoids, and related compounds in human milk: Levels and effects of storage conditions.

    Science.gov (United States)

    Wu, Junfang; Gouveia-Figueira, Sandra; Domellöf, Magnus; Zivkovic, Angela M; Nording, Malin L

    2016-01-01

    The presence of fatty acid derived oxylipins, endocannabinoids and related compounds in human milk may be of importance to the infant. Presently, clinically relevant protocols for storing and handling human milk that minimize error and variability in oxylipin and endocannabinoid concentrations are lacking. In this study, we compared the individual and combined effects of the following storage conditions on the stability of these fatty acid metabolites in human milk: state (fresh or frozen), storage temperature (4 °C, -20 °C or -80 °C), and duration (1 day, 1 week or 3 months). Thirteen endocannabinoids and related compounds, as well as 37 oxylipins were analyzed simultaneously by liquid chromatography coupled to tandem mass spectrometry. Twelve endocannabinoids and related compounds (2-111 nM) and 31 oxylipins (1.2 pM-1242 nM) were detected, with highest levels being found for 2-arachidonoylglycerol and 17(R)hydroxydocosahexaenoic acid, respectively. The concentrations of most endocannabinoid-related compounds and oxylipins were dependent on storage condition, and especially storage at 4 °C introduced significant variability. Our findings suggest that human milk samples should be analyzed immediately after, or within one day of collection (if stored at 4 °C). Storage at -80 °C is required for long-term preservation, and storage at -20 °C is acceptable for no more than one week. These findings provide a protocol for investigating the oxylipin and endocannabinoid metabolome in human milk, useful for future milk-related clinical studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Care and feeding of the endocannabinoid system: a systematic review of potential clinical interventions that upregulate the endocannabinoid system.

    Directory of Open Access Journals (Sweden)

    John M McPartland

    Full Text Available The "classic" endocannabinoid (eCB system includes the cannabinoid receptors CB1 and CB2, the eCB ligands anandamide (AEA and 2-arachidonoylglycerol (2-AG, and their metabolic enzymes. An emerging literature documents the "eCB deficiency syndrome" as an etiology in migraine, fibromyalgia, irritable bowel syndrome, psychological disorders, and other conditions. We performed a systematic review of clinical interventions that enhance the eCB system--ways to upregulate cannabinoid receptors, increase ligand synthesis, or inhibit ligand degradation.We searched PubMed for clinical trials, observational studies, and preclinical research. Data synthesis was qualitative. Exclusion criteria limited the results to 184 in vitro studies, 102 in vivo animal studies, and 36 human studies. Evidence indicates that several classes of pharmaceuticals upregulate the eCB system, including analgesics (acetaminophen, non-steroidal anti-inflammatory drugs, opioids, glucocorticoids, antidepressants, antipsychotics, anxiolytics, and anticonvulsants. Clinical interventions characterized as "complementary and alternative medicine" also upregulate the eCB system: massage and manipulation, acupuncture, dietary supplements, and herbal medicines. Lifestyle modification (diet, weight control, exercise, and the use of psychoactive substances--alcohol, tobacco, coffee, cannabis also modulate the eCB system.Few clinical trials have assessed interventions that upregulate the eCB system. Many preclinical studies point to other potential approaches; human trials are needed to explore these promising interventions.

  2. Care and feeding of the endocannabinoid system: a systematic review of potential clinical interventions that upregulate the endocannabinoid system.

    Science.gov (United States)

    McPartland, John M; Guy, Geoffrey W; Di Marzo, Vincenzo

    2014-01-01

    The "classic" endocannabinoid (eCB) system includes the cannabinoid receptors CB1 and CB2, the eCB ligands anandamide (AEA) and 2-arachidonoylglycerol (2-AG), and their metabolic enzymes. An emerging literature documents the "eCB deficiency syndrome" as an etiology in migraine, fibromyalgia, irritable bowel syndrome, psychological disorders, and other conditions. We performed a systematic review of clinical interventions that enhance the eCB system--ways to upregulate cannabinoid receptors, increase ligand synthesis, or inhibit ligand degradation. We searched PubMed for clinical trials, observational studies, and preclinical research. Data synthesis was qualitative. Exclusion criteria limited the results to 184 in vitro studies, 102 in vivo animal studies, and 36 human studies. Evidence indicates that several classes of pharmaceuticals upregulate the eCB system, including analgesics (acetaminophen, non-steroidal anti-inflammatory drugs, opioids, glucocorticoids), antidepressants, antipsychotics, anxiolytics, and anticonvulsants. Clinical interventions characterized as "complementary and alternative medicine" also upregulate the eCB system: massage and manipulation, acupuncture, dietary supplements, and herbal medicines. Lifestyle modification (diet, weight control, exercise, and the use of psychoactive substances--alcohol, tobacco, coffee, cannabis) also modulate the eCB system. Few clinical trials have assessed interventions that upregulate the eCB system. Many preclinical studies point to other potential approaches; human trials are needed to explore these promising interventions.

  3. The Endocannabinoid System across Postnatal Development in Transmembrane Domain Neuregulin 1 Mutant Mice

    Directory of Open Access Journals (Sweden)

    Rose Chesworth

    2018-02-01

    Full Text Available The use of cannabis is a well-established component risk factor for schizophrenia, particularly in adolescent individuals with genetic predisposition for the disorder. Alterations to the endocannabinoid system have been found in the prefrontal cortex of patients with schizophrenia. Thus, we assessed whether molecular alterations exist in the endocannabinoid signalling pathway during brain development in a mouse model for the schizophrenia risk gene neuregulin 1 (Nrg1. We analysed transcripts encoding key molecules of the endocannabinoid system in heterozygous transmembrane domain Nrg1 mutant mice (Nrg1 TM HET, which is known to have increased sensitivity to cannabis exposure. Tissue from the prelimbic cortex and hippocampus of male and female Nrg1 TM HET mice and wild type-like littermates was collected at postnatal days (PNDs 7, 10, 14, 21, 28, 35, 49, and 161. Quantitative polymerase chain reaction was conducted to assess mRNA levels of cannabinoid receptor 1 (CB1R and enzymes for the synthesis and breakdown of the endocannabinoid 2-arachidonoylglycerol [i.e., diacylglycerol lipase alpha (DAGLα, monoglyceride lipase (MGLL, and α/β-hydrolase domain-containing 6 (ABHD6]. No sex differences were found for any transcripts in either brain region; thus, male and female data were pooled. Hippocampal and cortical mRNA expression of DAGLα, MGLL, and ABHD6 increased until PND 21–35 and then decreased and stabilised for the rest of postnatal development. Hippocampal CB1R mRNA expression increased until PND 21 and decreased after this age. Expression levels of these endocannabinoid markers did not differ in Nrg1 TM HET compared to control mice at any time point. Here, we demonstrate dynamic changes in the developmental trajectory of several key endocannabinoid system transcripts in the mouse brain, which may correspond with periods of endocannabinoid system maturation. Nrg1 TM HET mutation did not alter the developmental trajectory of the

  4. Endocannabinoids control vesicle release mode at midbrain periaqueductal grey inhibitory synapses.

    Science.gov (United States)

    Aubrey, Karin R; Drew, Geoffrey M; Jeong, Hyo-Jin; Lau, Benjamin K; Vaughan, Christopher W

    2017-01-01

    The midbrain periaqueductal grey (PAG) forms part of an endogenous analgesic system which is tightly regulated by the neurotransmitter GABA. The role of endocannabinoids in regulating GABAergic control of this system was examined in rat PAG slices. Under basal conditions GABAergic neurotransmission onto PAG output neurons was multivesicular. Activation of the endocannabinoid system reduced GABAergic inhibition by reducing the probability of release and by shifting release to a univesicular mode. Blockade of endocannabinoid system unmasked a tonic control over the probability and mode of GABA release. These findings provides a mechanistic foundation for the control of the PAG analgesic system by disinhibition. The midbrain periaqueductal grey (PAG) has a crucial role in coordinating endogenous analgesic responses to physiological and psychological stressors. Endocannabinoids are thought to mediate a form of stress-induced analgesia within the PAG by relieving GABAergic inhibition of output neurons, a process known as disinhibition. This disinhibition is thought to be achieved by a presynaptic reduction in GABA release probability. We examined whether other mechanisms have a role in endocannabinoid modulation of GABAergic synaptic transmission within the rat PAG. The group I mGluR agonist DHPG ((R,S)-3,5-dihydroxyphenylglycine) inhibited evoked IPSCs and increased their paired pulse ratio in normal external Ca 2+ , and when release probability was reduced by lowering Ca 2+ . However, the effect of DHPG on the coefficient of variation and kinetics of evoked IPSCs differed between normal and low Ca 2+ . Lowering external Ca 2+ had a similar effect on evoked IPSCs to that observed for DHPG in normal external Ca 2+ . The low affinity GABA A receptor antagonist TPMPA ((1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid) inhibited evoked IPSCs to a greater extent in low than in normal Ca 2+ . Together these findings indicate that the normal mode of GABA release is

  5. The Endocannabinoid System across Postnatal Development in Transmembrane DomainNeuregulin 1Mutant Mice.

    Science.gov (United States)

    Chesworth, Rose; Long, Leonora E; Weickert, Cynthia Shannon; Karl, Tim

    2018-01-01

    The use of cannabis is a well-established component risk factor for schizophrenia, particularly in adolescent individuals with genetic predisposition for the disorder. Alterations to the endocannabinoid system have been found in the prefrontal cortex of patients with schizophrenia. Thus, we assessed whether molecular alterations exist in the endocannabinoid signalling pathway during brain development in a mouse model for the schizophrenia risk gene neuregulin 1 ( Nrg1 ). We analysed transcripts encoding key molecules of the endocannabinoid system in heterozygous transmembrane domain Nrg1 mutant mice ( Nrg1 TM HET), which is known to have increased sensitivity to cannabis exposure. Tissue from the prelimbic cortex and hippocampus of male and female Nrg1 TM HET mice and wild type-like littermates was collected at postnatal days (PNDs) 7, 10, 14, 21, 28, 35, 49, and 161. Quantitative polymerase chain reaction was conducted to assess mRNA levels of cannabinoid receptor 1 (CB 1 R) and enzymes for the synthesis and breakdown of the endocannabinoid 2-arachidonoylglycerol [i.e., diacylglycerol lipase alpha (DAGLα), monoglyceride lipase (MGLL), and α/β-hydrolase domain-containing 6 (ABHD6)]. No sex differences were found for any transcripts in either brain region; thus, male and female data were pooled. Hippocampal and cortical mRNA expression of DAGLα, MGLL, and ABHD6 increased until PND 21-35 and then decreased and stabilised for the rest of postnatal development. Hippocampal CB 1 R mRNA expression increased until PND 21 and decreased after this age. Expression levels of these endocannabinoid markers did not differ in Nrg1 TM HET compared to control mice at any time point. Here, we demonstrate dynamic changes in the developmental trajectory of several key endocannabinoid system transcripts in the mouse brain, which may correspond with periods of endocannabinoid system maturation. Nrg1 TM HET mutation did not alter the developmental trajectory of the endocannabinoid

  6. Acute Stress Suppresses Synaptic Inhibition and Increases Anxiety via Endocannabinoid Release in the Basolateral Amygdala.

    Science.gov (United States)

    Di, Shi; Itoga, Christy A; Fisher, Marc O; Solomonow, Jonathan; Roltsch, Emily A; Gilpin, Nicholas W; Tasker, Jeffrey G

    2016-08-10

    Stress and glucocorticoids stimulate the rapid mobilization of endocannabinoids in the basolateral amygdala (BLA). Cannabinoid receptors in the BLA contribute to anxiogenesis and fear-memory formation. We tested for rapid glucocorticoid-induced endocannabinoid regulation of synaptic inhibition in the rat BLA. Glucocorticoid application to amygdala slices elicited a rapid, nonreversible suppression of spontaneous, but not evoked, GABAergic synaptic currents in BLA principal neurons; the effect was also seen with a membrane-impermeant glucocorticoid, but not with intracellular glucocorticoid application, implicating a membrane-associated glucocorticoid receptor. The glucocorticoid suppression of GABA currents was not blocked by antagonists of nuclear corticosteroid receptors, or by inhibitors of gene transcription or protein synthesis, but was blocked by inhibiting postsynaptic G-protein activity, suggesting a postsynaptic nongenomic steroid signaling mechanism that stimulates the release of a retrograde messenger. The rapid glucocorticoid-induced suppression of inhibition was prevented by blocking CB1 receptors and 2-arachidonoylglycerol (2-AG) synthesis, and it was mimicked and occluded by CB1 receptor agonists, indicating it was mediated by the retrograde release of the endocannabinoid 2-AG. The rapid glucocorticoid effect in BLA neurons in vitro was occluded by prior in vivo acute stress-induced, or prior in vitro glucocorticoid-induced, release of endocannabinoid. Acute stress also caused an increase in anxiety-like behavior that was attenuated by blocking CB1 receptor activation and inhibiting 2-AG synthesis in the BLA. Together, these findings suggest that acute stress causes a long-lasting suppression of synaptic inhibition in BLA neurons via a membrane glucocorticoid receptor-induced release of 2-AG at GABA synapses, which contributes to stress-induced anxiogenesis. We provide a cellular mechanism in the basolateral amygdala (BLA) for the rapid stress

  7. Effects of acute versus repeated cocaine exposure on the expression of endocannabinoid signaling-related proteins in the mouse cerebellum

    Directory of Open Access Journals (Sweden)

    Ana ePalomino

    2014-03-01

    Full Text Available Growing awareness of cerebellar involvement in addiction is based on the cerebellum’s intermediary position between motor and reward, potentially acting as an interface between motivational and cognitive functions. Here, we examined the impact of acute and repeated cocaine exposure on the two main signaling systems in the mouse cerebellum: the endocannabinoid (eCB and glutamate systems. To this end, we investigated whether eCB signaling-related gene and protein expression (CB1 receptors and enzymes that produce (DAGLα/β and NAPE-PLD and degrade (MAGL and FAAH eCB were altered. In addition, we analyzed the gene expression of relevant components of the glutamate signaling system (glutamate synthesizing enzymes LGA and KGA, mGluR3/5 metabotropic receptors, and NR1/2A/2B/2C-NMDA and GluR1/2/3/4-AMPA ionotropic receptor subunits and the gene expression of tyrosine hydroxylase (TH, the rate-limiting enzyme in catecholamine biosynthesis, because noradrenergic terminals innervate the cerebellar cortex. Results indicated that acute cocaine exposure decreased DAGLα expression, suggesting a down-regulation of 2-AG production, as well as gene expression of TH, KGA, mGluR3 and all ionotropic receptor subunits analyzed in the cerebellum. The acquisition of conditioned locomotion and sensitization after repeated cocaine exposure were associated with an increased NAPE-PLD/FAAH ratio, suggesting enhanced anandamide production, and a decreased DAGLβ/MAGL ratio, suggesting decreased 2-AG generation. Repeated cocaine also increased LGA gene expression but had no effect on glutamate receptors. These findings indicate that acute cocaine modulates the expression of the eCB and glutamate systems. Repeated cocaine results in normalization of glutamate receptor expression, although sustained changes in eCB is observed. We suggest that cocaine-induced alterations to cerebellar eCB should be considered when analyzing the adaptations imposed by psychostimulants that

  8. The Endocannabinoid System Differentially Regulates Escape Behavior in Mice

    Directory of Open Access Journals (Sweden)

    Andreas J. Genewsky

    2017-10-01

    Full Text Available Among the hardwired behaviors, fear or survival responses certainly belong to the most evolutionary conserved ones. However, higher animals possess the ability to adapt to certain environments (e.g., novel foraging grounds, and, therefore, those responses need to be plastic. Previous studies revealed a cell-type specific role of the endocannabinoid system in novelty fear, conditioned fear and active vs. passive avoidance in a shuttle box paradigm. In this study we aim to investigate, whether knocking-out the cannabinoid receptor type-1 (CB1 on cortical glutamatergic (Glu-CB1−/− or GABAergic (GABA-CB1−/− neurons differentially affects the level of behavioral inhibition, which could ultimately lead to differences in escape behavior. In this context, we developed a novel behavioral paradigm, the Moving Wall Box (MWB. Using the MWB task we could show that Glu-CB1−/− mice have higher levels of behavioral inhibition over the course of repeated testing. GABA-CB1−/− mice, in contrast, showed significantly lower levels of behavioral inhibition compared to wild-type controls and more escape behavior. These changes in behavioral inhibition and escape behavior cannot be explained by altered levels of arousal, as repeated startle measurements revealed general habituation irrespective of the line and genotype of the animals. Taken together, we could show that CB1 on cortical glutamatergic terminals is important for the acquisition of active avoidance, as the absence of CB1 on these neurons creates a bias toward inhibitory avoidance. This is the case in situations without punishment such as electric footshocks. On the contrary CB1 receptors on GABAergic neurons mediate the acquisition of passive avoidance, as the absence of CB1 on those neurons establishes a strong bias toward escape behavior.

  9. Membrane-mediated action of the endocannabinoid anandamide on membrane proteins: implications for understanding the receptor-independent mechanism

    Science.gov (United States)

    Medeiros, Djalma; Silva-Gonçalves, Laíz Da Costa; da Silva, Annielle Mendes Brito; Dos Santos Cabrera, Marcia Perez; Arcisio-Miranda, Manoel

    2017-01-01

    Endocannabinoids are amphiphilic molecules that play crucial neurophysiological functions acting as lipid messengers. Antagonists and knockdown of the classical CB1 and CB2 cannabinoid receptors do not completely abolish many endocannabinoid activities, supporting the idea of a mechanism independent of receptors whose mode of action remains unclear. Here we combine gramicidin A (gA) single channel recordings and membrane capacitance measurements to investigate the lipid bilayer-modifying activity of endocannabinoids. Single channel recordings show that the incorporation of endocannabinoids into lipid bilayers reduces the free energy necessary for gramicidin channels to transit from the monomeric to the dimeric conformation. Membrane capacitance demonstrates that the endocannabinoid anandamide has limited effects on the overall structure of the lipid bilayers. Our results associated with the theory of membrane elastic deformation reveal that the action of endocannabinoids on membrane proteins can involve local adjustments of the lipid/protein hydrophobic interface. The current findings shed new light on the receptor-independent mode of action of endocannabinoids on membrane proteins, with important implications towards their neurobiological function.

  10. Tonic and transient endocannabinoid regulation of AMPAergic mPSCs and homeostatic plasticity in embryonic motor networks

    Science.gov (United States)

    Gonzalez-Islas, Carlos; Garcia-Bereguiain, Miguel Angel

    2012-01-01

    Endocannabinoid signaling has been shown to mediate synaptic plasticity by retrogradely inhibiting presynaptic transmitter release in several systems. We found that endocannabinoids act tonically to regulate AMPA mPSC frequency in embryonic motor circuits of the chick spinal cord. Further, strong postsynaptic depolarizations also induced a short-lived endocannabinoid–mediated suppression of mEPSC frequency. Unlike many previous studies, endocannabinoid signaling was not found to influence evoked transmitter release. The results suggest a special role for spontaneous glutamatergic mPSCs, and their control by endocannabinoids in the developing spinal cord. We determined that blocking endocannabinoid signaling, which increases spontaneous glutamatergic release, increased spontaneous network activity in vitro and in vivo. Previous work in spinal motoneurons had shown that reducing SNA chronically in vivo led to homeostatic increases in AMPA and GABA mPSC amplitude (homeostatic synaptic plasticity). Blocking endocannabinoid signaling in vivo, and thus increasing SNA, triggered compensatory decreases of both AMPA and GABA mPSC amplitudes. These findings, combined with previous results, are consistent with the idea that this form of homeostatic synaptic plasticity is a bidirectional process in the living embryo. Together, our results suggest a role for tonic signaling of endocannabinoids as a potential mechanism to regulate the level of SNA, which is known to be critical for synaptic maturation in the embryonic spinal cord. PMID:23015449

  11. Anticipatory and consummatory effects of (hedonic chocolate intake are associated with increased circulating levels of the orexigenic peptide ghrelin and endocannabinoids in obese adults

    Directory of Open Access Journals (Sweden)

    Antonello E. Rigamonti

    2015-11-01

    Full Text Available Background: Hedonic hunger refers to consumption of food just for pleasure and not to maintain energy homeostasis. Recently, consumption of food for pleasure was reported to be associated with increased circulating levels of both the orexigenic peptide ghrelin and the endocannabinoid 2-arachidonoyl-glycerol (2-AG in normal-weight subjects. To date, the effects of hedonic hunger, and in particular of chocolate craving, on these mediators in obese subjects are still unknown. Methods: To explore the role of some gastrointestinal orexigenic and anorexigenic peptides and endocannabinoids (and some related congeners in chocolate consumption, we measured changes in circulating levels of ghrelin, glucagon-like peptide 1 (GLP-1, peptide YY (PYY, anandamide (AEA, 2-AG, palmitoylethanolamide (PEA, and oleoylethanolamide (OEA in 10 satiated severely obese subjects after consumption of chocolate and, on a separate day, of a non-palatable isocaloric food with the same bromatologic composition. Evaluation of hunger and satiety was also performed by visual analogic scale. Results: The anticipatory phase and the consumption of food for pleasure were associated with increased circulating levels of ghrelin, AEA, 2-AG, and OEA. In contrast, the levels of GLP-1, PYY, and PEA did not differ before and after the exposure/ingestion of either chocolate or non-palatable foods. Hunger and satiety were higher and lower, respectively, in the hedonic session than in the non-palatable one. Conclusions: When motivation to eat is generated by exposure to, and consumption of, chocolate a peripheral activation of specific endogenous rewarding chemical signals, including ghrelin, AEA, and 2-AG, is observed in obese subjects. Although preliminary, these findings predict the effectiveness of ghrelin and endocannabinoid antagonists in the treatment of obesity.

  12. Anticipatory and consummatory effects of (hedonic) chocolate intake are associated with increased circulating levels of the orexigenic peptide ghrelin and endocannabinoids in obese adults

    Science.gov (United States)

    Rigamonti, Antonello E.; Piscitelli, Fabiana; Aveta, Teresa; Agosti, Fiorenza; De Col, Alessandra; Bini, Silvia; Cella, Silvano G.; Di Marzo, Vincenzo; Sartorio, Alessandro

    2015-01-01

    Background Hedonic hunger refers to consumption of food just for pleasure and not to maintain energy homeostasis. Recently, consumption of food for pleasure was reported to be associated with increased circulating levels of both the orexigenic peptide ghrelin and the endocannabinoid 2-arachidonoyl-glycerol (2-AG) in normal-weight subjects. To date, the effects of hedonic hunger, and in particular of chocolate craving, on these mediators in obese subjects are still unknown. Methods To explore the role of some gastrointestinal orexigenic and anorexigenic peptides and endocannabinoids (and some related congeners) in chocolate consumption, we measured changes in circulating levels of ghrelin, glucagon-like peptide 1 (GLP-1), peptide YY (PYY), anandamide (AEA), 2-AG, palmitoylethanolamide (PEA), and oleoylethanolamide (OEA) in 10 satiated severely obese subjects after consumption of chocolate and, on a separate day, of a non-palatable isocaloric food with the same bromatologic composition. Evaluation of hunger and satiety was also performed by visual analogic scale. Results The anticipatory phase and the consumption of food for pleasure were associated with increased circulating levels of ghrelin, AEA, 2-AG, and OEA. In contrast, the levels of GLP-1, PYY, and PEA did not differ before and after the exposure/ingestion of either chocolate or non-palatable foods. Hunger and satiety were higher and lower, respectively, in the hedonic session than in the non-palatable one. Conclusions When motivation to eat is generated by exposure to, and consumption of, chocolate a peripheral activation of specific endogenous rewarding chemical signals, including ghrelin, AEA, and 2-AG, is observed in obese subjects. Although preliminary, these findings predict the effectiveness of ghrelin and endocannabinoid antagonists in the treatment of obesity. PMID:26546790

  13. Serine biosynthesis and transport defects.

    Science.gov (United States)

    El-Hattab, Ayman W

    2016-07-01

    l-serine is a non-essential amino acid that is biosynthesized via the enzymes phosphoglycerate dehydrogenase (PGDH), phosphoserine aminotransferase (PSAT), and phosphoserine phosphatase (PSP). Besides its role in protein synthesis, l-serine is a potent neurotrophic factor and a precursor of a number of essential compounds including phosphatidylserine, sphingomyelin, glycine, and d-serine. Serine biosynthesis defects result from impairments of PGDH, PSAT, or PSP leading to systemic serine deficiency. Serine biosynthesis defects present in a broad phenotypic spectrum that includes, at the severe end, Neu-Laxova syndrome, a lethal multiple congenital anomaly disease, intermediately, infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end, the childhood disease with intellectual disability. A serine transport defect resulting from deficiency of the ASCT1, the main transporter for serine in the central nervous system, has been recently described in children with neurological manifestations that overlap with those observed in serine biosynthesis defects. l-serine therapy may be beneficial in preventing or ameliorating symptoms in serine biosynthesis and transport defects, if started before neurological damage occurs. Herein, we review serine metabolism and transport, the clinical, biochemical, and molecular aspects of serine biosynthesis and transport defects, the mechanisms of these diseases, and the potential role of serine therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Type 2 diabetes associated changes in the plasma non-esterified fatty acids, oxylipins and endocannabinoids

    Science.gov (United States)

    Type 2 diabetes (T2D) has profound effects on metabolism that can be detected in plasma. While increases in circulating non-esterified fatty acids (NEFA) are well described in T2D, effects on circulating signaling lipids have received little attention. Oxylipins and endocannabinoids are classes of ...

  15. Climbing fiber-evoked endocannabinoid signaling heterosynaptically suppresses presynaptic cerebellar long-term potentiation

    NARCIS (Netherlands)

    B.J. van Beugen (Boeke); R.Y. Nagaraja (Raghavendra); C.R.W. Hansel (Christian)

    2006-01-01

    textabstractEndocannabinoid signaling has been demonstrated to mediate depolarization-induced suppression of excitation at climbing fiber (CF) and parallel fiber (PF) synapses onto cerebellar Purkinje cells. Here, we show that CF-evoked release of cannabinoids (CBs) additionally suppresses a

  16. Caloric restriction lowers endocannabinoid tonus and improves cardiac function in type 2 diabetes

    NARCIS (Netherlands)

    Eyk, van H.J.; Schinkel, van L.D.; Kantae, V.; Dronkers, C.E.A.; Westenberg, J.J.M.; Roos, de A.; Lamb, H.J.; Jukema, J.W.; Harms, A.C.; Hankemeier, T.; Stelt, van der M.; Jazet, I.M.; Rensen, P.C.N.; Smit, J.W.A.

    2018-01-01

    Background/ObjectivesEndocannabinoids (ECs) are associated with obesity and ectopic fat accumulation, both of which play a role in the development of cardiovascular disease (CVD) in type 2 diabetes (T2D). The effect of prolonged caloric restriction on ECs in relation to fat distribution and cardiac

  17. Polymorphisms in the endocannabinoid receptor 1 in relation to fat mass distribution

    DEFF Research Database (Denmark)

    Frost, M; Nielsen, T L; Wraae, K

    2010-01-01

    Both animal and human studies have associated the endocannabinoid system with obesity and markers of metabolic dysfunction. Blockade of the cannabinoid receptor 1 (CB1) caused weight loss and reduction in waist size in both obese and type II diabetics. Recent studies on common variants of the CB1...

  18. The Endocannabinoid System: A Dynamic Signalling System at the Crossroads Between Metabolism and Disease

    NARCIS (Netherlands)

    Witkamp, R.F.

    2014-01-01

    The discovery of the endocannabinoid system (ECS) in the early 1990s of last century generated high expectations of new therapeutic opportunities. Its central role and pleiotropic character seemed to offer promising indications in the fields of pain, inflammation, CNS disorders, weight management

  19. Endocannabinoid concentrations in plasma associated with feed efficiency and carcass composition on crossbreed steers

    Science.gov (United States)

    Endocannabinoids, including anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are a class of endogenous lipid mediators that activate cannabinoids receptors and may be involved in the control of feed intake and energy metabolism. The objective of this study was to quantify AEA and 2-AG in plasma a...

  20. The endocannabinoid system mediates aerobic exercise-induced antinociception in rats.

    Science.gov (United States)

    Galdino, Giovane; Romero, Thiago R L; Silva, José Felipe P; Aguiar, Daniele C; de Paula, Ana Maria; Cruz, Jader S; Parrella, Cosimo; Piscitelli, Fabiana; Duarte, Igor D; Di Marzo, Vincenzo; Perez, Andrea C

    2014-02-01

    Exercise-induced antinociception is widely described in the literature, but the mechanisms involved in this phenomenon are poorly understood. Systemic (s.c.) and central (i.t., i.c.v.) pretreatment with CB₁ and CB₂ cannabinoid receptor antagonists (AM251 and AM630) blocked the antinociception induced by an aerobic exercise (AE) protocol in both mechanical and thermal nociceptive tests. Western blot analysis revealed an increase and activation of CB₁ receptors in the rat brain, and immunofluorescence analysis demonstrated an increase of activation and expression of CB₁ receptors in neurons of the periaqueductal gray matter (PAG) after exercise. Additionally, pretreatment (s.c., i.t. and i.c.v.) with endocannabinoid metabolizing enzyme inhibitors (MAFP and JZL184) and an anandamide reuptake inhibitor (VDM11) prolonged and intensified this antinociceptive effect. These results indicate that exercise could activate the endocannabinoid system, producing antinociception. Supporting this hypothesis, liquid-chromatography/mass-spectrometry measurements demonstrated that plasma levels of endocannabinoids (anandamide and 2-arachidonoylglycerol) and of anandamide-related mediators (palmitoylethanolamide and oleoylethanolamide) were increased after AE. Therefore, these results suggest that the endocannabinoid system mediates aerobic exercise-induced antinociception at peripheral and central levels. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Endocannabinoid system activation may be associated with insulin resistance in women with polycystic ovary syndrome.

    Science.gov (United States)

    Juan, Chi-Chang; Chen, Kuo-Hu; Wang, Peng-Hui; Hwang, Jiann-Loung; Seow, Kok-Min

    2015-07-01

    To assess the levels of endocannabinoids and cannabinoid receptors (CB) 1 and 2 in women with polycystic ovary syndrome (PCOS). Case-control study. University teaching hospital. In total, 20 women with PCOS and 20 healthy women in a control group, who were matched for body mass index and age, were enrolled in this study. The homeostasis model index was used to assess insulin resistance. Omental adipose tissue and human peripheral blood mononuclear cells (PBMCs) from PCOS and the controls were analyzed using real-time polymerase chain reactions for the expressions of CB1 and CB2. The levels of endocannabinoids were analyzed using high-performance liquid chromatography. The levels of anandamide and 2-arachidonoylglycerol, and the expression of CB1 and CB2 mRNA (messenger ribonucleic acid) in the PBMCs were significantly higher in the women with PCOS than in the women serving as controls. We found that expression of CB1, but not CB2, in adipose tissue was significantly higher in the women with, vs. without, PCOS. The expressions of CB1 mRNA and endocannabinoids showed a significant positive correlation with 2-hour glucose and insulin levels 2 hours after glucose loading in the PBMCs and adipose tissue. Activation of endocannabinoids and overexpression of cannabinoid receptors, especially CB1, may be associated with insulin resistance in women with PCOS. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. The endocannabinoid system as a target for the treatment of neurodegenerative disease.

    Science.gov (United States)

    Scotter, Emma L; Abood, Mary E; Glass, Michelle

    2010-06-01

    The Cannabis sativa plant has been exploited for medicinal, agricultural and spiritual purposes in diverse cultures over thousands of years. Cannabis has been used recreationally for its psychotropic properties, while effects such as stimulation of appetite, analgesia and anti-emesis have lead to the medicinal application of cannabis. Indeed, reports of medicinal efficacy of cannabis can been traced back as far as 2700 BC, and even at that time reports also suggested a neuroprotective effect of the cultivar. The discovery of the psychoactive component of cannabis resin, Delta(9)-tetrahydrocannabinol (Delta(9)-THC) occurred long before the serendipitous identification of a G-protein coupled receptor at which Delta(9)-THC is active in the brain. The subsequent finding of endogenous cannabinoid compounds, the synthesis of which is directed by neuronal excitability and which in turn served to regulate that excitability, further widened the range of potential drug targets through which the endocannabinoid system can be manipulated. As a result of this, alterations in the endocannabinoid system have been extensively investigated in a range of neurodegenerative disorders. In this review we examine the evidence implicating the endocannabinoid system in the cause, symptomatology or treatment of neurodegenerative disease. We examine data from human patients and compare and contrast this with evidence from animal models of these diseases. On the basis of this evidence we discuss the likely efficacy of endocannabinoid-based therapies in each disease context.

  3. Non-psychotropic analgesic drugs from the endocannabinoid system: "magic bullet" or "multiple-target" strategies?

    Science.gov (United States)

    Starowicz, Katarzyna; Di Marzo, Vincenzo

    2013-09-15

    The exploitation of preparations of Cannabis sativa to combat pain seems to date back to time immemorial, although their psychotropic effects, which are at the bases of their recreational use and limit their therapeutic use, are at least as ancient. Indeed, it has always been different to tease apart the unwanted central effects from the therapeutic benefits of Δ⁹-tetrahydrocannabinol (THC), the main psychotropic component of cannabis. The discovery of the cannabinoid receptors and of their endogenous ligands, the endocannabinoids, which, unlike THC, play a pro-homeostatic function in a tissue- and time-selective manner, offered the opportunity to develop new analgesics from synthetic inhibitors of endocannabinoid inactivation. The advantages of this approach over direct activation of cannabinoid receptors as a therapeutic strategy against neuropathic and inflammatory pain are discussed here along with its potential complications. These latter have been such that clinical success has been achieved so far more rapidly with naturally occurring THC or endocannabinoid structural analogues acting at a plethora of cannabinoid-related and -unrelated molecular targets, than with selective inhibitors of endocannabinoid enzymatic hydrolysis, thus leading to revisit the potential usefulness of "multi-target" versus "magic bullet" compounds as new analgesics. © 2013 Elsevier B.V. All rights reserved.

  4. From cannabis to endocannabinoids in multiple sclerosis: a paradigm of central nervous system autoimmune diseases.

    Science.gov (United States)

    Malfitano, Anna Maria; Matarese, Giuseppe; Bifulco, Maurizio

    2005-12-01

    An increasing body of evidence suggests that cannabinoids have beneficial effects on the symptoms of multiple sclerosis, including spasticity and pain. Endogenous molecules with cannabinoid-like activity, such as the "endocannabinoids", have been shown to mimic the anti-inflammatory properties of cannabinoids through the cannabinoid receptors. Several studies suggest that cannabinoids and endocannabinoids may have a key role in the pathogenesis and therapy of multiple sclerosis. Indeed, they can down regulate the production of pathogenic T helper 1-associated cytokines enhancing the production of T helper 2-associated protective cytokines. A shift towards T helper 2 has been associated with therapeutic benefit in multiple sclerosis. In addition, cannabinoids exert a neuromodulatory effect on neurotransmitters and hormones involved in the neurodegenerative phase of the disease. In vivo studies using mice with experimental allergic encephalomyelitis, an animal model of multiple sclerosis, suggest that the increase of the circulating levels of endocannabinoids might have a therapeutic effect, and that agonists of endocannabinoids with low psychoactive effects could open new strategies for the treatment of multiple sclerosis.

  5. Role of the endocannabinoid system in human brain functions relevant for psychiatric disorders

    NARCIS (Netherlands)

    Bossong, M.G.

    2012-01-01

    Impaired cognitive function is a fundamental characteristic of many psychiatric and neurological disorders such as schizophrenia or Alzheimer’s disease. The endocannabinoid (eCB) system, consisting of cannabinoid receptors and accompanying ligands, has been implicated in these disorders. In

  6. Behavioral and electrophysiological effects of endocannabinoid and dopaminergic systems on salient stimuli

    Directory of Open Access Journals (Sweden)

    Daniela eLaricchiuta

    2014-05-01

    Full Text Available Rewarding effects have been related to enhanced dopamine (DA release in corticolimbic and basal ganglia structures. The DAergic and endocannabinoid interaction in the responses to reward is described. This study investigated the link between endocannabinoid and DAergic transmission in the processes that are related to response to two types of reward, palatable food and novelty. Mice treated with drugs acting on endocannabinoid system (ECS (URB597, AM251 or DAergic system (haloperidol were submitted to approach-avoidance conflict tasks with palatable food or novelty. In the same mice, the cannabinoid type-1 (CB1-mediated GABAergic transmission in medium spiny neurons of the dorsomedial striatum was analyzed. The endocannabinoid potentiation by URB597 magnified approach behavior for reward (food and novelty and in parallel inhibited dorsostriatal GABAergic neurotransmission. The decreased activity of CB1 receptor by AM251 (alone or with URB597 or of DAergic D2 receptor by haloperidol had inhibitory effects toward the reward and did not permit the inhibition of dorsostriatal GABAergic transmission. When haloperidol was coadministered with URB597, a restoration effect on reward and reward-dependent motor activity was observed, only if the reward was the palatable food. In parallel, the coadministration led to restoring inhibition of CB1-mediated GABAergic transmission. Thus, in the presence of simultaneous ECS activation and inhibition of DAergic system the response to reward appears to be a stimulus-dependent manner.

  7. Rapid Elevations in Limbic Endocannabinoid Content by Glucocorticoid Hormones In Vivo

    Science.gov (United States)

    Hill, Matthew N.; Karatsoreos, Ilia N.; Hillard, Cecilia J.; McEwen, Bruce S.

    2010-01-01

    Functional interactions between glucocorticoids and the endocannabinoid system have been repeatedly documented; yet, to date, no studies have demonstrated in vivo that glucocorticoid hormones regulate endocannabinoid signaling. We demonstrate that systemic administration of the glucocorticoid corticosterone (3 and 10 mg/kg) resulted in an increase in the tissue content of the endocannabinoid N-arachidonylethanolamine (AEA) within several limbic structures (amygdala, hippocampus, hypothalamus), but not the prefrontal cortex, of male rats. Tissue AEA content was increased at 10 min and returned to control 1 h post corticosterone administration. The other primary endocannabinoid, 2-arachidonoylglycerol, was found to be elevated by corticosterone exclusively within the hypothalamus. The rapidity of the change suggests that glucocorticoids act through a non-genomic pathway. Tissue contents of two other N-acylethanolamines, palmitoylethanolamide and oleolyethanolamide, were not affected by corticosterone treatment, suggesting that the mechanism of regulation is neither fatty acid amide nor N-acylphosphatidylethanolamine phospholipase D. These data provide in vivo support for non-genomic steroid effects in mammals and suggest that AEA is a mediator of these effects. PMID:20399021

  8. Stress Response Recruits the Hippocampal Endocannabinoid System for the Modulation of Fear Memory

    Science.gov (United States)

    Alvares, Lucas de Oliveira; Engelke, Douglas Senna; Diehl, Felipe; Scheffer-Teixeira, Robson; Haubrich, Josue; Cassini, Lindsey de Freitas; Molina, Victor Alejandro; Quillfeldt, Jorge Alberto

    2010-01-01

    The modulation of memory processes is one of the several functions of the endocannabinoid system (ECS) in the brain, with CB1 receptors highly expressed in areas such as the dorsal hippocampus. Experimental evidence suggested an important role of the ECS in aversively motivated memories. Similarly, glucocorticoids released in response to stress…

  9. The role of the endocannabinoid system in eating disorders: neurochemical and behavioural preclinical evidence.

    Science.gov (United States)

    Scherma, Maria; Fattore, Liana; Castelli, Maria Paola; Fratta, Walter; Fadda, Paola

    2014-01-01

    The endocannabinoid system has long been known as a modulator of several physiological functions, among which the homeostatic and hedonic aspects of eating. CB1 receptors are widely expressed in brain regions that control food intake, reward and energy balance. Animal and human studies indicate that CB1 receptor agonists possess orexigenic effects enhancing appetite and increasing the rewarding value of food. Conversely, CB1 antagonists have been shown to inhibit the intake of food. Eating disorders include a range of chronic and disabling related pathological illnesses that are characterized by aberrant patterns of feeding behaviour and weight regulation, and by abnormal attitudes and perceptions toward body shape image. The psychological and biological factors underlying eating disorders are complex and not yet completely understood. However in the last decades, converging evidence have led to hypothesise a link between defects in the endocannabinoid system and eating disorders, including obesity. Here we review the neurochemical and behavioural preclinical evidence supporting the role of the endocannabinoid system in eating disorders to offer the reader an update regarding the state of the art. Despite the recent withdrawal from the market of rimonabant for treating obesity and overweight individuals with metabolic complications due to its psychiatric side effects, preclinical findings support the rationale for the clinical development of drug which modulate the endocannabinoid system in the treatment of eating disorders.

  10. Carotenoid Biosynthesis in Fusarium

    Directory of Open Access Journals (Sweden)

    Javier Avalos

    2017-07-01

    Full Text Available Many fungi of the genus Fusarium stand out for the complexity of their secondary metabolism. Individual species may differ in their metabolic capacities, but they usually share the ability to synthesize carotenoids, a family of hydrophobic terpenoid pigments widely distributed in nature. Early studies on carotenoid biosynthesis in Fusarium aquaeductuum have been recently extended in Fusarium fujikuroi and Fusarium oxysporum, well-known biotechnological and phytopathogenic models, respectively. The major Fusarium carotenoid is neurosporaxanthin, a carboxylic xanthophyll synthesized from geranylgeranyl pyrophosphate through the activity of four enzymes, encoded by the genes carRA, carB, carT and carD. These fungi produce also minor amounts of β-carotene, which may be cleaved by the CarX oxygenase to produce retinal, the rhodopsin’s chromophore. The genes needed to produce retinal are organized in a gene cluster with a rhodopsin gene, while other carotenoid genes are not linked. In the investigated Fusarium species, the synthesis of carotenoids is induced by light through the transcriptional induction of the structural genes. In some species, deep-pigmented mutants with up-regulated expression of these genes are affected in the regulatory gene carS. The molecular mechanisms underlying the control by light and by the CarS protein are currently under investigation.

  11. Biosynthesis of Tetrahydroisoquinoline Antibiotics.

    Science.gov (United States)

    Tang, Gong-Li; Tang, Man-Cheng; Song, Li-Qiang; Zhang, Yue

    2016-01-01

    The tetrahydroisoquinoline (THIQ) alkaloids are naturally occurring antibiotics isolated from a variety of microorganisms and marine invertebrates. This family of natural products exhibit broad spectrum antimicrobial and strong antitumor activities, and the potency of clinical application has been validated by the marketing of ecteinascidin 743 (ET-743) as anticancer drug. In the past 20 years, the biosynthetic gene cluster of six THIQ antibiotics has been characterized including saframycin Mx1 from Myxococcus xanthus, safracin-B from Pseudomonas fluorescens, saframycin A, naphthyridinomycin, and quinocarcin from Streptomyces, as well as ET-743 from Ecteinascidia turbinata. This review gives a brief summary of the current status in understanding the molecular logic for the biosynthesis of these natural products, which provides new insights on the biosynthetic machinery involved in the nonribosomal peptide synthetase system. The proposal of the THIQ biosynthetic pathway not only shows nature's route to generate such complex molecules, but also set the stage to develop a different process for production of ET-743 by synthetic biology.

  12. Stereoselectivity in Polyphenol Biosynthesis

    Science.gov (United States)

    Lewis, Norman G.; Davin, Laurence B.

    1992-01-01

    Stereoselectivity plays an important role in the late stages of phenyl-propanoid metabolism, affording lignins, lignans, and neolignans. Stereoselectivity is manifested during monolignol (glucoside) synthesis, e.g., where the geometry (E or Z) of the pendant double bond affects the specificity of UDPG:coniferyl alcohol glucosyltransferases in different species. Such findings are viewed to have important ramifications in monolignol transport and storage processes, with roles for both E- and Z-monolignols and their glucosides in lignin/lignan biosynthesis being envisaged. Stereoselectivity is also of great importance in enantiose-lective enzymatic processes affording optically active lignans. Thus, cell-free extracts from Forsythia species were demonstrated to synthesize the enantiomerically pure lignans, (-)-secoisolariciresinol, and (-)-pinoresinol, when NAD(P)H, H2O2 and E-coniferyl alcohol were added. Progress toward elucidating the enzymatic steps involved in such highly stereoselective processes is discussed. Also described are preliminary studies aimed at developing methodologies to determine the subcellular location of late-stage phenylpropanoid metabolites (e.g., coniferyl alcohol) and key enzymes thereof, in intact tissue or cells. This knowledge is essential if questions regarding lignin and lignan tissue specificity and regulation of these processes are to be deciphered.

  13. Glycolipid biosynthesis in cyanobacteria

    International Nuclear Information System (INIS)

    Van Dusen, W.J.; Jaworski, J.G.

    1987-01-01

    The biosynthesis of monogalactosyldiacyl-glycerol (MGDG) was studied in five different cyanobacteria. Previous work has shown Anabaena variabilis to synthesize both MGDG and monoglucosyl-diacylglycerol (MG1cDG) with MG1cDG being the precursor of MGDG. They have examined four other cyanobacteria to determine if a similar relationship exists. The cyanobacteria studied were Anabaena variabilis, Chlorogloeopsis sp., Schizothrix calcicola, Anacystis nidulans, and Anacystis marina. Each were grown in liquid culture and lipids were labeled with 14 C]CO 2 for 20 min., 1.0 hr, 1.0 hr + 10 hr chase. Glycolipids were analyzed by initial separation of MGDG and MG1cDG by TLC followed by further analysis by HPLC. Complete separation of molecular species was obtained isocratically on an ODS column. All of the cyanobacteria labeled 16-C and 18-C fatty acids except for A. marina which labeled only 14-C and 16-C fatty acids. Desaturation of the fatty acids could be observed in the 1.0 hr and chase experiments. All were capable of labeling both MG1cDG and MGDG with the precursor-product relationship being observed. There does not appear to be a direct relationship between the epimerization of the sugar moiety and fatty acid desaturation

  14. Biosynthesis of silver nanoparticles.

    Science.gov (United States)

    Poulose, Subin; Panda, Tapobrata; Nair, Praseetha P; Théodore, Thomas

    2014-02-01

    Metal nanoparticles have unique optical, electronic, and catalytic properties. There exist well-defined physical and chemical processes for their preparation. Those processes often yield small quantities of nanoparticles having undesired morphology, and involve high temperatures for the reaction and the use of hazardous chemicals. Relatively, the older technique of bioremediation of metals uses either microorganisms or their components for the production of nanoparticles. The nanoparticles obtained from bacteria, fungi, algae, plants and their components, etc. appear environment-friendly, as toxic chemicals are not used in the processes. In addition to this, the formation of nanoparticles takes place at almost normal temperature and pressure. Control of the shape and size of the nanoparticles is possible by appropriate selection of the pH and temperature. Three important steps are the bioconversion of Ag+ ions, conversion of desired crystals to nanoparticles, and nanoparticle stability. Generally, nanoparticles are characterized by the UV-visible spectroscopy and use of the electron microscope. Silver nanoparticles are used as antimicrobial agents and they possess antifungal, anti-inflammatory, and anti-angiogenic properties. This review highlights the biosynthesis of silver nanoparticles by various organisms, possible mechanisms of their synthesis, their characterization, and applications of silver nanoparticles.

  15. FABP-1 gene ablation impacts brain endocannabinoid system in male mice.

    Science.gov (United States)

    Martin, Gregory G; Chung, Sarah; Landrock, Danilo; Landrock, Kerstin K; Huang, Huan; Dangott, Lawrence J; Peng, Xiaoxue; Kaczocha, Martin; Seeger, Drew R; Murphy, Eric J; Golovko, Mikhail Y; Kier, Ann B; Schroeder, Friedhelm

    2016-08-01

    Liver fatty acid-binding protein (FABP1, L-FABP) has high affinity for and enhances uptake of arachidonic acid (ARA, C20:4, n-6) which, when esterified to phospholipids, is the requisite precursor for synthesis of endocannabinoids (EC) such as arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG). The brain derives most of its ARA from plasma, taking up ARA and transporting it intracellularly via cytosolic fatty acid-binding proteins (FABPs 3,5, and 7) localized within the brain. In contrast, the much more prevalent cytosolic FABP1 is not detectable in the brain but is instead highly expressed in the liver. Therefore, the possibility that FABP1 outside the central nervous system may regulate brain AEA and 2-AG was examined in wild-type (WT) and FABP1 null (LKO) male mice. LKO increased brain levels of AA-containing EC (AEA, 2-AG), correlating with increased free and total ARA in brain and serum. LKO also increased brain levels of non-ARA that contain potentiating endocannabinoids (EC*) such as oleoyl ethanolamide (OEA), PEA, 2-OG, and 2-PG. Concomitantly, LKO decreased serum total ARA-containing EC, but not non-ARA endocannabinoids. LKO did not elicit these changes in the brain EC and EC* as a result of compensatory up-regulation of brain protein levels of enzymes in EC synthesis (NAPEPLD, DAGLα) or cytosolic EC chaperone proteins (FABPs 3, 5, 7, SCP-2, HSP70), or cannabinoid receptors (CB1, TRVP1). These data show for the first time that the non-CNS fatty acid-binding protein FABP1 markedly affected brain levels of both ARA-containing endocannabinoids (AEA, 2-AG) as well as their non-ARA potentiating endocannabinoids. Fatty acid-binding protein-1 (FABP-1) is not detectable in brain but instead is highly expressed in liver. The possibility that FABP1 outside the central nervous system may regulate brain endocannabinoids arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG) was examined in wild-type (WT) and FABP-1 null (LKO) male mice. LKO

  16. The endocannabinoid-CB receptor system: Importance for development and in pediatric disease.

    Science.gov (United States)

    Fride, Ester

    2004-01-01

    Endogenous cannabinoids (endocannabinoids) and their cannabinoid CB1 and CB2 receptors, are present from the early stages of gestation and play a number of vital roles for the developing organism. Although most of these data are collected from animal studies, a role for cannabinoid receptors in the developing human brain has been suggested, based on the detection of "atypically" distributed CB1 receptors in several neural pathways of the fetal brain. In addition, a role for the endocannabinoid system for the human infant is likely, since the endocannabinoid 2-arachidonoyl glycerol has been detected in human milk. Animal research indicates that the Endocannabinoid-CB1 Receptor ('ECBR') system fulfills a number of roles in the developing organism: 1. embryonal implantation (requires a temporary and localized reduction in anandamide); 2. in neural development (by the transient presence of CB1 receptors in white matter areas of the nervous system); 3. as a neuroprotectant (anandamide protects the developing brain from trauma-induced neuronal loss); 4. in the initiation of suckling in the newborn (where activation of the CB1 receptors in the neonatal brain is critical for survival). 5. In addition, subtle but definite deficiencies have been described in memory, motor and addictive behaviors and in higher cognitive ('executive') function in the human offspring as result of prenatal exposure to marihuana. Therefore, the endocanabinoid-CB1 receptor system may play a role in the development of structures which control these functions, including the nigrostriatal pathway and the prefrontal cortex. From the multitude of roles of the endocannabinoids and their receptors in the developing organism, there are two distinct stages of development, during which proper functioning of the endocannabinoid system seems to be critical for survival: embryonal implantation and neonatal milk sucking. We propose that a dysfunctional Endocannabinoid-CB1 Receptor system in infants with growth

  17. The Endocannabinoid System Modulating Levels of Consciousness, Emotions and Likely Dream Contents.

    Science.gov (United States)

    Murillo-Rodriguez, Eric; Pastrana-Trejo, Jose Carlos; Salas-Crisóstomo, Mireille; de-la-Cruz, Miriel

    2017-01-01

    Cannabinoids are derivatives that are either compounds occurring naturally in the plant, Cannabis sativa or synthetic analogs of these molecules. The first and most widely investigated of the cannabinoids is Δ9-tetrahydrocannabinol (Δ9-THC), which is the main psychotropic constituent of cannabis and undergoes significant binding to cannabinoid receptors. These cannabinoid receptors are seven-transmembrane receptors that received their name from the fact that they respond to cannabinoid compounds, including Δ9-THC. The cannabinoid receptors have been described in rat, human and mouse brains and they have been named the CB1 and CB2 cannabinoid receptors. Later, an endogenous molecule that exerts pharmacological effects similar to those described by Δ9-THC and binds to the cannabinoid receptors was discovered. This molecule, named anandamide, was the first of five endogenous cannabinoid receptor agonists described to date in the mammalian brain and other tissues. Of these endogenous cannabinoids or endocannabinoids, the most thoroughly investigated to date have been anandamide and 2-arachidonoylglycerol (2-AG). Over the years, a significant number of articles have been published in the field of endogenous cannabinoids, suggesting a modulatory profile in multiple neurobiological roles of endocannabinoids. The general consensus accepts that the endogenous cannabinoid system includes natural ligands (such as anandamide and 2- AG), receptors (CB1 and CB2), and the main enzymes responsible for the hydrolysis of anandamide and 2-AG (fatty acid amide hydrolase [FAAH] and monoacylglycerol lipase [MAGL], respectively) as well as the anandamide membrane transporter (AMT). To date, diverse pieces of evidence have shown that the endocannabinoid system controls multiple functions such as feeding, pain, learning and memory and has been linked with various disturbances, such as Parkinson´s disease. Among the modulatory properties of the endocannabinoid system, current data

  18. Blunted cardiac response to hemorrhage in cirrhotic rats is mediated by local macrophage-released endocannabinoids.

    Science.gov (United States)

    Gaskari, Seyed Ali; Liu, Hongqun; D'Mello, Charlotte; Kunos, George; Lee, Samuel S

    2015-06-01

    Cirrhosis is associated with blunted cardiovascular response to stimuli such as hemorrhage, but the mechanism remains unclear. We aimed to clarify the role of endocannabinoids in blunted hemorrhage response in cirrhotic rats. Cirrhosis was induced by bile duct ligation (BDL). Hemodynamics were measured. Cannabinoid receptor-1 (CB1) antagonist, AM251, and macrophage inhibitor gadolinium chloride (GdCl3) were administered. Myocardial levels of anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) were measured and resident monocytes and macrophages quantified by immunohistochemistry. Isolated cardiomyocyte contractility was measured before and after incubation with monocytes from BDL and sham controls. Hemorrhage significantly decreased arterial pressure and left ventricular dP/dT. After hemorrhage, these changes quickly reversed in controls, but were severely prolonged in BDL rats. Chronic AM251 treatment restored this impaired response. AEA and 2-AG levels were increased in BDL hearts and further increased after hemorrhage. Sham hearts showed virtually no monocytes or macrophages before or after hemorrhage, whereas BDL hearts had significantly more white blood cells which further increased after hemorrhage. GdCl3 treatment significantly reduced cardiac endocannabinoid levels both at baseline and after hemorrhage. This treatment also restored cardiovascular response to hemorrhage in BDL rats but did not affect sham controls. Monocytes isolated from BDL rats more potently inhibited cardiomyocyte contractility than sham control monocytes. The cirrhotic heart showed increased monocyte recruitment and endocannabinoid levels. CB1 blockade or GdCl3 treatment restored blunted cardiovascular response to hemorrhage. Endocannabinoids released by monocytes blunt cardiac response to hemorrhage. Preventing monocyte recruitment or blocking endocannabinoid signaling may improve cardiovascular homeostasis in cirrhosis. Copyright © 2015 European Association for the Study of the Liver

  19. Endocannabinoids and related lipids in blood plasma following touch massage: a randomised, crossover study.

    Science.gov (United States)

    Lindgren, Lenita; Gouveia-Figueira, Sandra; Nording, Malin L; Fowler, Christopher J

    2015-09-29

    The endocannabinoid system is involved in the regulation of stress and anxiety. In a recent study, it was reported that short-term changes in mood produced by a pleasant ambience were correlated with changes in the levels of plasma endocannabinoids and related N-acylethanolamines (Schrieks et al. PLoS One 10: e0126421, 2015). In the present study, we investigated whether stress reduction by touch massage (TM) affects blood plasma levels of endocannabinoids and related N-acylethanolamines. A randomized two-session crossover design for 20 healthy participants was utilised, with one condition that consisted of TM and a rest condition as control. TM increased the perceived pleasantness rating of the participants, and both TM and rest reduced the basal anxiety level as assessed by the State scale of the STAI-Y inventory. However, there were no significant effects of either time (pre- vs. post-treatment measures) as main effect or the interaction time x treatment for the plasma levels of the endocannabinoids anandamide and 2-arachidonoylglycerol or for eight other related lipids. Four lipids showed acceptable relative reliabilities, and for two of these (linoleoyl ethanolamide and palmitoleoyl ethanolamide) a significant correlation was seen between the TM-related change in levels, calculated as (post-TM value minus pre-TM value) - (post-rest value minus pre-rest value), and the corresponding TM-related change in perceived pleasantness. It is concluded that in the participants studied here, there are no overt effects of TM upon plasma endocannabinoid levels. Possible associations of related N-acylethanolamines with the perceived pleasantness should be investigated further.

  20. Hypothalamus-pituitary axis: an obligatory target for endocannabinoids to inhibit steroidogenesis in frog testis.

    Science.gov (United States)

    Chianese, Rosanna; Ciaramella, Vincenza; Fasano, Silvia; Pierantoni, Riccardo; Meccariello, Rosaria

    2014-09-01

    Endocannabinoids - primarily anandamide (AEA) and 2-arachidonoylglycerol (2-AG) - are lipophilic molecules that bind to cannabinoid receptors (CB1 and CB2). They affect neuroendocrine activity inhibiting gonadotropin releasing hormone (GnRH) secretion and testosterone production in rodents, through a molecular mechanism supposed to be hypothalamus dependent. In order to investigate such a role, we choose the seasonal breeder, the anuran amphibian Rana esculenta, an experimental model in which components of the endocannabinoid system have been characterized. In February, at the onset of a new spermatogenetic wave, we carried out in vitro incubations of frog testis with AEA, at 10(-9)M dose. Such a treatment had no effect on the expression of cytochrome P450 17alpha hydroxylase/17,20 lyase (cyp17) nor 3-β-hydroxysteroid dehydrogenase/Δ-5-4 isomerase (3β-HSD), key enzymes of steroidogenesis. To understand whether or not the functionality of the hypothalamus-pituitary axis could be essential to support the role of endocannabinoids in steroidogenesis, frogs were injected with AEA, at 10(-8)M dose. Differently from in vitro experiment, the in vivo administration of AEA reduced the expression of cyp17 and 3β-HSD. Whereas the effect on 3β-HSD was counteracted by SR141716A (Rimonabant) - a selective antagonist of CB1, thus indicating a CB1 dependent modulation - the effect on cyp17 was not, suggesting a possible involvement of receptors other than CB1, probably the type-1 vanilloid receptor (TRPV1), since AEA works as an endocannabinoid and an endovanilloid as well. In conclusion our results indicate that endocannabinoids, via CB1, inhibit the expression of 3β-HSD in frog testis travelling along the hypothalamus-pituitary axis. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Fabp1 gene ablation inhibits high-fat diet-induced increase in brain endocannabinoids.

    Science.gov (United States)

    Martin, Gregory G; Landrock, Danilo; Chung, Sarah; Dangott, Lawrence J; Seeger, Drew R; Murphy, Eric J; Golovko, Mikhail Y; Kier, Ann B; Schroeder, Friedhelm

    2017-01-01

    The endocannabinoid system shifts energy balance toward storage and fat accumulation, especially in the context of diet-induced obesity. Relatively little is known about factors outside the central nervous system that may mediate the effect of high-fat diet (HFD) on brain endocannabinoid levels. One candidate is the liver fatty acid binding protein (FABP1), a cytosolic protein highly prevalent in liver, but not detected in brain, which facilitates hepatic clearance of fatty acids. The impact of Fabp1 gene ablation (LKO) on the effect of high-fat diet (HFD) on brain and plasma endocannabinoid levels was examined and data expressed for each parameter as the ratio of high-fat diet/control diet. In male wild-type mice, HFD markedly increased brain N-acylethanolamides, but not 2-monoacylglycerols. LKO blocked these effects of HFD in male mice. In female wild-type mice, HFD slightly decreased or did not alter these endocannabinoids as compared with male wild type. LKO did not block the HFD effects in female mice. The HFD-induced increase in brain arachidonic acid-derived arachidonoylethanolamide in males correlated with increased brain-free and total arachidonic acid. The ability of LKO to block the HFD-induced increase in brain arachidonoylethanolamide correlated with reduced ability of HFD to increase brain-free and total arachidonic acid in males. In females, brain-free and total arachidonic acid levels were much less affected by either HFD or LKO in the context of HFD. These data showed that LKO markedly diminished the impact of HFD on brain endocannabinoid levels, especially in male mice. © 2016 International Society for Neurochemistry.

  2. Endocannabinoids in amygdala and nucleus accumbens mediate social play reward in adolescent rats

    Science.gov (United States)

    Trezza, Viviana; Damsteegt, Ruth; Manduca, Antonia; Petrosino, Stefania; Van Kerkhof, Linda W.M.; Pasterkamp, R. Jeroen; Zhou, Yeping; Campolongo, Patrizia; Cuomo, Vincenzo; Di Marzo, Vincenzo; Vanderschuren, Louk J.M.J.

    2012-01-01

    The brain endocannabinoid system plays a crucial role in emotional processes. We have previously identified an important role for endocannabinoids in social play behavior, a highly rewarding form of social interaction in adolescent rats. Here, we tested the hypothesis that endocannabinoid modulation of social play behavior occurs in brain regions implicated in emotion and motivation. Social play increased levels of the endocannabinoid anandamide in the amygdala and nucleus accumbens (NAc), but not in prefrontal cortex or hippocampus of 4–5 week old male Wistar rats. Furthermore, social play increased phosphorylation of CB1 cannabinoid receptors in the amygdala. Systemic administration of the anandamide hydrolysis inhibitor URB597 increased social play behavior, and augmented the associated elevation in anandamide levels in the amygdala, but not the NAc. Infusion of URB597 into the basolateral amygdala (BLA) increased social play behavior, and blockade of BLA CB1 cannabinoid receptors with the antagonist/inverse agonist SR141716A prevented the play-enhancing effects of systemic administration of URB597. Infusion of URB597 into the NAc also increased social play, but blockade of NAc CB1 cannabinoid receptors did not antagonize the play-enhancing effects of systemic URB597 treatment. Last, SR141716A did not affect social play after infusion into the core and shell subregions of the NAc, while it reduced social play when infused into the BLA. These data show that increased anandamide signalling in the amygdala and NAc augments social play, and identify the BLA as a prominent site of action for endocannabinoids to modulate the rewarding properties of social interactions in adolescent rats. PMID:23100412

  3. The endocannabinoid system and emotional processing: a pharmacological fMRI study with ∆9-tetrahydrocannabinol.

    Science.gov (United States)

    Bossong, Matthijs G; van Hell, Hendrika H; Jager, Gerry; Kahn, René S; Ramsey, Nick F; Jansma, J Martijn

    2013-12-01

    Various psychiatric disorders such as major depression are associated with abnormalities in emotional processing. Evidence indicating involvement of the endocannabinoid system in emotional processing, and thus potentially in related abnormalities, is increasing. In the present study, we examined the role of the endocannabinoid system in processing of stimuli with a positive and negative emotional content in healthy volunteers. A pharmacological functional magnetic resonance imaging (fMRI) study was conducted with a placebo-controlled, cross-over design, investigating effects of the endocannabinoid agonist ∆9-tetrahydrocannabinol (THC) on brain function related to emotional processing in 11 healthy subjects. Performance and brain activity during matching of stimuli with a negative ('fearful faces') or a positive content ('happy faces') were assessed after placebo and THC administration. After THC administration, performance accuracy was decreased for stimuli with a negative but not for stimuli with a positive emotional content. Our task activated a network of brain regions including amygdala, orbital frontal gyrus, hippocampus, parietal gyrus, prefrontal cortex, and regions in the occipital cortex. THC interacted with emotional content, as activity in this network was reduced for negative content, while activity for positive content was increased. These results indicate that THC administration reduces the negative bias in emotional processing. This adds human evidence to support the hypothesis that the endocannabinoid system is involved in modulation of emotional processing. Our findings also suggest a possible role for the endocannabinoid system in abnormal emotional processing, and may thus be relevant for psychiatric disorders such as major depression. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.

  4. The endocannabinoid system as a target for the treatment of cannabis dependence.

    Science.gov (United States)

    Clapper, Jason R; Mangieri, Regina A; Piomelli, Daniele

    2009-01-01

    The endocannabinoid system modulates neurotransmission at inhibitory and excitatory synapses in brain regions relevant to the regulation of pain, emotion, motivation, and cognition. This signaling system is engaged by the active component of cannabis, Delta9-tetrahydrocannabinol (Delta9-THC), which exerts its pharmacological effects by activation of G protein-coupled type-1 (CB1) and type-2 (CB2) cannabinoid receptors. During frequent cannabis use a series of poorly understood neuroplastic changes occur, which lead to the development of dependence. Abstinence in cannabinoid-dependent individuals elicits withdrawal symptoms that promote relapse into drug use, suggesting that pharmacological strategies aimed at alleviating cannabis withdrawal might prevent relapse and reduce dependence. Cannabinoid replacement therapy and CB1 receptor antagonism are two potential treatments for cannabis dependence that are currently under investigation. However, abuse liability and adverse side-effects may limit the scope of each of these approaches. A potential alternative stems from the recognition that (i) frequent cannabis use may cause an adaptive down-regulation of brain endocannabinoid signaling, and (ii) that genetic traits that favor hyperactivity of the endocannabinoid system in humans may decrease susceptibility to cannabis dependence. These findings suggest in turn that pharmacological agents that elevate brain levels of the endocannabinoid neurotransmitters, anandamide and 2-arachidonoylglycerol (2-AG), might alleviate cannabis withdrawal and dependence. One such agent, the fatty-acid amide hydrolase (FAAH) inhibitor URB597, selectively increases anandamide levels in the brain of rodents and primates. Preclinical studies show that URB597 produces analgesic, anxiolytic-like and antidepressant-like effects in rodents, which are not accompanied by overt signs of abuse liability. In this article, we review evidence suggesting that (i) cannabis influences brain

  5. Participation of endocannabinoids in rapid suppression of stress responses by glucocorticoids in neonates.

    Science.gov (United States)

    Buwembo, A; Long, H; Walker, C-D

    2013-09-26

    In adult rodents, endocannabinoids (eCBs) regulate fast glucocorticoid (GC) feedback in the hypothalamus-pituitary adrenal (HPA) axis, acting as retrograde messengers that bind to cannabinoid receptors (CB1R) and inhibit glutamate release from presynaptic CRH neurons in the paraventricular nucleus of the hypothalamus (PVN). During the first two weeks of life, rat pups exhibit significant CRH and ACTH responses to stress although the adrenal GC output remains reduced. At the same time, pups also display increased sensitivity to GC feedback, but it is unclear whether eCBs play a role in mediating fast GC feedback in neonatal life. In our studies, we examined the role of eCBs in the rapid suppression of anoxia-induced ACTH release and determined whether eCB action could be modulated by the levels of circulating GCs present at the time of stress. PND8 pups were subjected to 3-min anoxia with AM251, a CB1R blocker, injected 30 min prior to stress onset. The effects of either metyrapone (MET) (a steroidogenic 11 beta-hydroxylase blocker) or methylprednisolone (PRED) (a synthetic GC) pretreatment on AM251 effect and the stress response were evaluated. Treatment with AM251 before stress onset tended to increase overall ACTH and CORT secretion, and also delayed the return to baseline ACTH. The AM251 effect on ACTH in PND8 pups was lost in MET-treated pups, who exhibited high basal and stimulated ACTH release and no CORT response to stress. Methylprednisolone suppressed ACTH stress responses although AM251 still delayed restoration of ACTH levels to the baseline. This suggests that the eCB effect on ACTH secretion in neonates is most evident when there is a dynamic fluctuation of corticosterone levels. Interestingly, AM251 increased basal and stimulated corticosterone secretion in all treatments including MET, suggestive of a direct action of CB1R blockade on adrenal steroidogenesis. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Serum levels of endocannabinoids are independently associated with nonalcoholic fatty liver disease.

    Science.gov (United States)

    Zelber-Sagi, Shira; Azar, Shahar; Nemirovski, Alina; Webb, Muriel; Halpern, Zamir; Shibolet, Oren; Tam, Joseph

    2017-01-01

    To evaluate the association between circulating levels of endocannabinoids (eCBs) and non-alcoholic fatty liver disease (NAFLD). The serum levels of the main eCBs, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), and their endogenous precursor and breakdown product, arachidonic acid (AA), were analyzed by liquid chromatography/tandem mass spectrometry in 105 volunteers screened for NAFLD. Hepatic ultrasound, fasting blood tests, and anthropometrics were assessed. Liver fat was quantified by the hepato-renal-ultrasound index representing the ratio between the brightness level of the liver and the kidney. Patients with NAFLD had higher levels (pmol/mL) of AA (2,721 ± 1,112 vs. 2,248 ± 977, P = 0.022) and 2-AG (46.5 ± 25.8 vs. 33.5 ± 13.6, P = 0.003), but not AEA. The trend for higher levels of AA and 2-AG in the presence of NAFLD was observed in both genders and within subgroups of overweight and obesity. The association of AA and 2-AG with NAFLD was maintained with adjustment for age, gender, and BMI (OR = 1.001, 1.000-1.001 95% CI, P = 0.008 and OR = 1.05, 1.01-1.09, P = 0.006, respectively) or waist circumference. This study is the first to show high circulating levels of 2-AG and AA in NAFLD patients compared with controls, independent of obesity. The findings may suggest an independent role of eCBs in the pathogenesis of NAFLD. © 2016 The Obesity Society.

  7. Prenatal cannabis exposure - The "first hit" to the endocannabinoid system.

    Science.gov (United States)

    Richardson, Kimberlei A; Hester, Allison K; McLemore, Gabrielle L

    As more states and countries legalize medical and/or adult recreational marijuana use, the incidences of prenatal cannabis exposure (PCE) will likely increase. While young people increasingly view marijuana as innocuous, marijuana preparations have been growing in potency in recent years, potentially creating global clinical, public health, and workforce concerns. Unlike fetal alcohol spectrum disorder, there is no phenotypic syndrome associated with PCE. There is also no preponderance of evidence that PCE causes lifelong cognitive, behavioral, or functional abnormalities, and/or susceptibility to subsequent addiction. However, there is compelling circumstantial evidence, based on the principles of teratology and fetal malprogramming, suggesting that pregnant women should refrain from smoking marijuana. The usage of marijuana during pregnancy perturbs the fetal endogenous cannabinoid signaling system (ECSS), which is present and active from the early embryonic stage, modulating neurodevelopment and continuing this role into adulthood. The ECSS is present in virtually every brain structure and organ system, and there is also evidence that this system is important in the regulation of cardiovascular processes. Endocannabinoids (eCBs) undergird a broad spectrum of processes, including the early stages of fetal neurodevelopment and uterine implantation. Delta-9-tetrahydrocannabinol (THC), the psychoactive chemical in cannabis, enters maternal circulation, and readily crosses the placental membrane. THC binds to CB receptors of the fetal ECSS, altering neurodevelopment and possibly rewiring ECSS circuitry. In this review, we discuss the Double-Hit Hypothesis as it relates to PCE. We contend that PCE, similar to a neurodevelopmental teratogen, delivers the first hit to the ECSS, which is compromised in such a way that a second hit (i.e., postnatal stressors) will precipitate the emergence of a specific phenotype. In summary, we conclude that perturbations of the

  8. Minocycline treatment inhibits microglial activation and alters spinal levels of endocannabinoids in a rat model of neuropathic pain

    Science.gov (United States)

    Guasti, Leonardo; Richardson, Denise; Jhaveri, Maulik; Eldeeb, Khalil; Barrett, David; Elphick, Maurice R; Alexander, Stephen PH; Kendall, David; Michael, Gregory J; Chapman, Victoria

    2009-01-01

    Activation of spinal microglia contributes to aberrant pain responses associated with neuropathic pain states. Endocannabinoids (ECs) are present in the spinal cord, and inhibit nociceptive processing; levels of ECs may be altered by microglia which modulate the turnover of endocannabinoids in vitro. Here, we investigate the effect of minocycline, an inhibitor of activated microglia, on levels of the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG), and the related compound N-palmitoylethanolamine (PEA), in neuropathic spinal cord. Selective spinal nerve ligation (SNL) in rats resulted in mechanical allodynia and the presence of activated microglia in the ipsilateral spinal cord. Chronic daily treatment with minocycline (30 mg/kg, ip for 14 days) significantly reduced the development of mechanical allodynia at days 5, 10 and 14 post-SNL surgery, compared to vehicle-treated SNL rats (P endocannabinoids and related compounds in neuropathic pain states. PMID:19570201

  9. Endocannabinoid dysregulation in cognitive and stress-related brain regions in the Nrg1 mouse model of schizophrenia.

    Science.gov (United States)

    Clarke, David J; Stuart, Jordyn; McGregor, Iain S; Arnold, Jonathon C

    2017-01-04

    The endocannabinoid system is dysregulated in schizophrenia. Mice with heterozygous deletion of neuregulin 1 (Nrg1 HET mice) provide a well-characterised animal model of schizophrenia, and display enhanced sensitivity to stress and cannabinoids during adolescence. However, no study has yet determined whether these mice have altered brain endocannabinoid concentrations. Nrg1 application to hippocampal slices decreased 2-arachidonoylglycerol (2-AG) signalling and disrupted long-term depression, a form of synaptic plasticity critical to spatial learning. Therefore we specifically aimed to examine whether Nrg1 HET mice exhibit increased 2-AG concentrations and disruption of spatial learning. As chronic stress influences brain endocannabinoids, we also sought to examine whether Nrg1 deficiency moderates adolescent stress-induced alterations in brain endocannabinoids. Adolescent Nrg1 HET and wild-type (WT) mice were submitted to chronic restraint stress and brain endocannabinoid concentrations were analysed. A separate cohort of WT and Nrg1 HET mice was also assessed for spatial learning performance in the Morris Water Maze. Partial genetic deletion of Nrg1 increased anandamide concentrations in the amygdala and decreased 2-AG concentrations in the hypothalamus. Further, Nrg1 HET mice exhibited increased 2-AG concentrations in the hippocampus and impaired spatial learning performance. Chronic adolescent stress increased anandamide concentrations in the amygdala, however, Nrg1 disruption did not influence this stress-induced change. These results demonstrate for the first time in vivo interplay between Nrg1 and endocannabinoids in the brain. Our results demonstrate that aberrant Nrg1 and endocannabinoid signalling may cooperate in the hippocampus to impair cognition, and that Nrg1 deficiency alters endocannabinoid signalling in brain stress circuitry. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The biochemical complexity of the endocannabinoid system with some remarks on stress and related disorders: a minireview.

    Science.gov (United States)

    Barna, I; Zelena, D

    2012-04-01

    Nowadays, the endocannabinoid-regulated processes are in the focus of interest, among others, for the treatment of stress-related disorders. In this minireview, we attempt to give some possible explanations for the conflicting results of the cannabinoidergic regulation of the hypothalamo-pituitary-adrenocortical (HPA) axis and related disorders, drawing attention to the complexity of the endocannabinoid system. The endocannabinoid system is a part of an intricate network of lipid pathways and consists of the cannabinoid receptors, their endogenous ligands, and the enzymes catalyzing their formation and degradation. The stress research is focused almost exclusively on the anandamide and 2-arachidonyl glycerol, and the cannabinoid 1 receptor. However, physiological, pathological, and pharmacological perturbations of the interconnected lipid pathways have a profound effect on the regulation of the endocannabinoid signaling system. For example, diet may substantially influence the lipid composition of the body. Recent studies have indicated that beside cannabinoid 1 receptor, the endocannabinoids may act on the cannabinoid 2, peroxisome proliferator-activated, and transient receptor potential of vanilloid type-1 receptors, too. All of these receptors are implicated in the development of stress-related disorders. However, it has to be mentioned that degradation of the endocannabinoids may result in the production of active compounds as well. Since endocannabinoids have a widespread distribution in the body, they may influence a phenomenon at several points. Different effects (stimulatory or inhibitory) at different levels of endocannabinoids (e.g. hypothalamus, hypophysis, adrenal gland in the case of HPA axis) may explain some of their unequivocal results.

  11. Prenatal Ethanol Exposure Persistently Alters Endocannabinoid Signaling and Endocannabinoid-Mediated Excitatory Synaptic Plasticity in Ventral Tegmental Area Dopamine Neurons.

    Science.gov (United States)

    Hausknecht, Kathryn; Shen, Ying-Ling; Wang, Rui-Xiang; Haj-Dahmane, Samir; Shen, Roh-Yu

    2017-06-14

    Prenatal ethanol exposure (PE) leads to increased addiction risk which could be mediated by enhanced excitatory synaptic strength in ventral tegmental area (VTA) dopamine (DA) neurons. Previous studies have shown that PE enhances excitatory synaptic strength by facilitating an anti-Hebbian form of long-term potentiation (LTP). In this study, we investigated the effect of PE on endocannabinoid-mediated long-term depression (eCB-LTD) in VTA DA neurons. Rats were exposed to moderate (3 g/kg/d) or high (6 g/kg/d) levels of ethanol during gestation. Whole-cell recordings were conducted in male offspring between 4 and 10 weeks old.We found that PE led to increased amphetamine self-administration. Both moderate and high levels of PE persistently reduced low-frequency stimulation-induced eCB-LTD. Furthermore, action potential-independent glutamate release was regulated by tonic eCB signaling in PE animals. Mechanistic studies for impaired eCB-LTD revealed that PE downregulated CB1 receptor function. Interestingly, eCB-LTD in PE animals was rescued by metabotropic glutamate receptor I activation, suggesting that PE did not impair the synthesis/release of eCBs. In contrast, eCB-LTD in PE animals was not rescued by increasing presynaptic activity, which actually led to LTP in PE animals, whereas LTD was still observed in controls. This result shows that the regulation of excitatory synaptic plasticity is fundamentally altered in PE animals. Together, PE leads to impaired eCB-LTD at the excitatory synapses of VTA DA neurons primarily due to CB1 receptor downregulation. This effect could contribute to enhanced LTP and the maintenance of augmented excitatory synaptic strength in VTA DA neurons and increased addiction risk after PE. SIGNIFICANCE STATEMENT Prenatal ethanol exposure (PE) is among many adverse developmental factors known to increase drug addiction risk. Increased excitatory synaptic strength in VTA DA neurons is a critical cellular mechanism for addiction risk. Our

  12. Endocannabinoids blunt the augmentation of synaptic transmission by serotonin 2A receptors in the nucleus tractus solitarii (nTS)

    Science.gov (United States)

    Austgen, James R.; Kline, David D.

    2013-01-01

    Serotonin (5-Hydroxytryptamine, 5-HT) and the 5-HT2 receptor modulate cardiovascular and autonomic function in part through actions in the nTS, the primary termination and integration point for cardiorespiratory afferents in the brainstem. In other brain regions, 5-HT2 receptors (5-HT2R) modify synaptic transmission directly, as well as through 5-HT2AR-induced endocannabinoid release. This study examined the role of 5-HT2AR as well as their interaction with endocannabinoids on neurotransmission in the nucleus tractus solitarii (nTS). Excitatory postsynaptic currents (EPSCs) in monosynaptic nTS neurons were recorded in the horizontal brainstem slice during activation and blockade of 5-HT2ARs. 5-HT2AR activation augmented solitary tract (TS) evoked EPSC amplitude whereas 5-HT2AR blockade depressed TS-EPSC amplitude at low and high TS stimulation rates. The 5-HT2AR-induced increase in neurotransmission was reduced by endocannabinoid receptor block and increased endogenous endocannabinoids in the synaptic cleft during high frequency, but not low, TS stimulation. Endocannabinoids did not tonically modify EPSCs. These data suggest 5-HT acting through the 5-HT2AR is an excitatory neuromodulator in the nTS and its effects are modulated by the endocannabinoid system. PMID:24041777

  13. Endocannabinoid system: An overview of its potential in current medical practice.

    Science.gov (United States)

    Mouslech, Zadalla; Valla, Vasiliki

    2009-01-01

    The endocannabinoid system (ECS) is a lipid signalling system, comprising of the endogenous cannabis-like ligands (endocannabinoids) anandamide (AEA) and 2-arachidonoylglycerol (2-AG), which derive from arachidonic acid. These bind to a family of G-protein-coupled receptors, called CB1 and CB2. The cannabinoid receptor 1 (CB1R) is distributed in brain areas associated with motor control, emotional responses, motivated behaviour and energy homeostasis. In the periphery, the same receptor is expressed in the adipose tissue, pancreas, liver, GI tract, skeletal muscles, heart and the reproduction system. The CB2R is mainly expressed in the immune system regulating its functions. Endocannabinoids are synthesized and released upon demand in a receptor-dependent way. They act as retrograde signalling messengers in GABAergic and glutamatergic synapses and as modulators of postsynaptic transmission, interacting with other neurotransmitters. Endocannabinoids are transported into cells by a specific uptake system and degraded by the enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). The ECS is involved in various pathophysiological conditions in central and peripheral tissues. It is implicated in the hormonal regulation of food intake, cardiovascular, gastrointestinal, immune, behavioral, antiproliferative and mammalian reproduction functions. Recent advances have correlated the ECS with drug addiction and alcoholism. The growing number of preclinical and clinical data on ECS modulators is bound to result in novel therapeutic approaches for a number of diseases currently treated inadequately. The ECS dysregulation has been correlated to obesity and metabolic syndrome pathogenesis. Rimonabant is the first CB1 blocker launched to treat cardiometabolic risk factors in obese and overweight patients. Phase III clinical trials showed the drug's ability to regulate intra-abdominal fat tissue levels, lipidemic, glycemic and inflammatory parameters. However

  14. Auxin biosynthesis and storage forms

    Science.gov (United States)

    Strader, Lucia C.

    2013-01-01

    The plant hormone auxin drives plant growth and morphogenesis. The levels and distribution of the active auxin indole-3-acetic acid (IAA) are tightly controlled through synthesis, inactivation, and transport. Many auxin precursors and modified auxin forms, used to regulate auxin homeostasis, have been identified; however, very little is known about the integration of multiple auxin biosynthesis and inactivation pathways. This review discusses the many ways auxin levels are regulated through biosynthesis, storage forms, and inactivation, and the potential roles modified auxins play in regulating the bioactive pool of auxin to affect plant growth and development. PMID:23580748

  15. Hypericin: chemical synthesis and biosynthesis.

    Science.gov (United States)

    Huang, Lin-Fang; Wang, Zeng-Hui; Chen, Shi-Lin

    2014-02-01

    Hypericin is one of the most important phenanthoperylene quinones extracted mainly from plants of the genus Hypericum belonging to the sections Euhypericum and Campylosporus of Keller's classification. Widespread attention to the antiviral and anti-tumor properties of hypericin has spurred investigations of the chemical synthesis and biosynthesis of this unique compound. However, the synthetic strategies are challenging for organic and biological chemists. In this review, specific significant advances in total synthesis, semi-synthesis, and biosynthesis in the past decades are summarized. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  16. Involvement of the endocannabinoid system in the physiological response to transient common carotid artery occlusion and reperfusion.

    Science.gov (United States)

    Quartu, Marina; Poddighe, Laura; Melis, Tiziana; Serra, Maria Pina; Boi, Marianna; Lisai, Sara; Carta, Gianfranca; Murru, Elisabetta; Muredda, Laura; Collu, Maria; Banni, Sebastiano

    2017-01-19

    The transient global cerebral hypoperfusion/reperfusion achieved by induction of Bilateral Common Carotid Artery Occlusion followed by Reperfusion (BCCAO/R) may trigger a physiological response in an attempt to preserve tissue and function integrity. There are several candidate molecules among which the endocannabinoid system (ECS) and/or peroxisome-proliferator activated receptor-alpha (PPAR-alpha) may play a role in modulating oxidative stress and inflammation. The aims of the present study are to evaluate whether the ECS, the enzyme cyclooxygenase-2 (COX-2) and PPAR-alpha are involved during BCCAO/R in rat brain, and to identify possible markers of the ongoing BCCAO/R-induced challenge in plasma. Adult Wistar rats underwent BCCAO/R with 30 min hypoperfusion followed by 60 min reperfusion. The frontal and temporal-occipital cortices and plasma were analyzed by high performance liquid chromatography-mass spectrometry (HPLC-MS) to determine concentrations of endocannabinoids (eCBs) and related molecules behaving as ligands of PPAR-alpha, and of oxidative-stress markers such as lipoperoxides, while Western Blot and immunohistochemistry were used to study protein expression of cannabinoid receptors, COX-2 and PPAR-alpha. Unpaired Student's t-test was used to evaluate statistical differences between groups. The acute BCCAO/R procedure is followed by increased brain tissue levels of the eCBs 2-arachidonoylglycerol and anandamide, palmitoylethanolamide, an avid ligand of PPAR-alpha, lipoperoxides, type 1 (CB1) and type 2 (CB2) cannabinoid receptors, and COX-2, and decreased brain tissue concentrations of docosahexaenoic acid (DHA), one of the major targets of lipid peroxidation. In plasma, increased levels of anandamide and lipoperoxides were observed. The BCCAO/R stimulated early molecular changes that can be easily traced in brain tissue and plasma, and that are indicative of the tissue physiological response to the reperfusion-induced oxidative stress and

  17. Endocannabinoid-Mediated Plasticity in Nucleus Accumbens Controls Vulnerability to Anxiety after Social Defeat Stress

    Directory of Open Access Journals (Sweden)

    Clémentine Bosch-Bouju

    2016-08-01

    Full Text Available Chronic social defeat stress (CSDS is a clinically relevant model of mood disorders. The relationship between the CSDS model and a physiologically pertinent paradigm of synaptic plasticity is not known. Here, we found that cluster analysis of the emotional behavior states of mice exposed to CSDS allowed their segregation into anxious and non-anxious groups. Endocannabinoid-mediated spike-timing dependent plasticity (STDP in the nucleus accumbens was attenuated in non-anxious mice and abolished in anxious mice. Anxiety-like behavior in stressed animals was specifically correlated with their ability to produce STDP. Pharmacological enhancement of 2-arachidonoyl glycerol (2-AG signaling in the nucleus accumbens normalized the anxious phenotype and STDP in anxious mice. These data reveal that endocannabinoid modulation of synaptic efficacy in response to a naturalistic activity pattern is both a molecular correlate of behavioral adaptability and a crucial factor in the adaptive response to chronic stress.

  18. Circulating Endocannabinoids and Insulin Resistance in Patients with Obstructive Sleep Apnea.

    Science.gov (United States)

    Wang, Xiaoya; Yu, Qin; Yue, Hongmei; Zhang, Jiabin; Zeng, Shuang; Cui, Fenfen

    2016-01-01

    Objectives. The purpose of this study is to investigate the relationship between plasma endocannabinoids and insulin resistance (IR) in patients with obstructive sleep apnea (OSA). Methods. A population of 64 with OSA and 24 control subjects was recruited. Body mass index (BMI), waist circumference, lipids, blood glucose and insulin, homeostasis model of assessment for insulin resistance index (HOMA-IR), anandamide (AEA), 1/2-arachidonoylglycerol (1/2-AG), and apnea-hypopnea index (AHI) were analyzed. Results. Fasting blood insulin (22.9 ± 7.8 mIU/L versus 18.5 ± 7.2 mIU/L, P endocannabinoids levels, especially AEA, were associated with IR and AHI in patients with OSA.

  19. High Times for Painful Blues: The Endocannabinoid System in Pain-Depression Comorbidity

    Science.gov (United States)

    Fitzgibbon, Marie; Finn, David P.

    2016-01-01

    Depression and pain are two of the most debilitating disorders worldwide and have an estimated cooccurrence of up to 80%. Comorbidity of these disorders is more difficult to treat, associated with significant disability and impaired health-related quality of life than either condition alone, resulting in enormous social and economic cost. Several neural substrates have been identified as potential mediators in the association between depression and pain, including neuroanatomical reorganization, monoamine and neurotrophin depletion, dysregulation of the hypothalamo-pituitary-adrenal axis, and neuroinflammation. However, the past decade has seen mounting evidence supporting a role for the endogenous cannabinoid (endocannabinoid) system in affective and nociceptive processing, and thus, alterations in this system may play a key role in reciprocal interactions between depression and pain. This review will provide an overview of the preclinical evidence supporting an interaction between depression and pain and the evidence supporting a role for the endocannabinoid system in this interaction. PMID:26342110

  20. A moderate diet restriction during pregnancy alters the levels of endocannabinoids and endocannabinoid-related lipids in the hypothalamus, hippocampus and olfactory bulb of rat offspring in a sex-specific manner.

    Science.gov (United States)

    Ramírez-López, María Teresa; Vázquez, Mariam; Lomazzo, Ermelinda; Hofmann, Clementine; Blanco, Rosario Noemi; Alén, Francisco; Antón, María; Decara, Juan; Arco, Rocío; Orio, Laura; Suárez, Juan; Lutz, Beat; Gómez de Heras, Raquel; Bindila, Laura; Rodríguez de Fonseca, Fernando

    2017-01-01

    Undernutrition during pregnancy has been associated to increased vulnerability to develop metabolic and behavior alterations later in life. The endocannabinoid system might play an important role in these processes. Therefore, we investigated the effects of a moderate maternal calorie-restricted diet on the levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG), arachidonic acid (AA) and the N-acylethanolamines (NAEs) anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) in the brain of newborn rat offspring. We focused on brain structures involved in metabolism, feeding behavior, as well as emotional and cognitive responses. Female Wistar rats were assigned during the entire pregnancy to either control diet (C) or restriction diet (R), consisting of a 20% calorie-restricted diet. Weight gain and caloric intake of rat dams were monitored and birth outcomes were assessed. 2-AG, AA and NAE levels were measured in hypothalamus, hippocampus and olfactory bulb of the offspring. R dams displayed lower gain weight from the middle pregnancy and consumed less calories during the entire pregnancy. Offspring from R dams were underweight at birth, but litter size was unaffected. In hypothalamus, R male offspring displayed decreased levels of AA and OEA, with no change in the levels of the endocannabinoids 2-AG and AEA. R female exhibited decreased 2-AG and PEA levels. The opposite was found in the hippocampus, where R male displayed increased 2-AG and AA levels, and R female exhibited elevated levels of AEA, AA and PEA. In the olfactory bulb, only R female presented decreased levels of AEA, AA and PEA. Therefore, a moderate diet restriction during the entire pregnancy alters differentially the endocannabinoids and/or endocannabinoid-related lipids in hypothalamus and hippocampus of the underweight offspring, similarly in both sexes, whereas sex-specific alterations occur in the olfactory bulb. Consequently, endocannabinoid and endocannabinoid

  1. Natural product inhibitors of fatty acid biosynthesis: synthesis of the marine microbial metabolites pseudopyronines A and B and evaluation of their anti-infective activities

    DEFF Research Database (Denmark)

    Giddens, Anna C.; Nielsen, Lone; Boshoff, Helena I.

    2007-01-01

    Total syntheses of the title natural products, pseudopyronines A (1) and B (2), have been achieved using methyl β-oxo carboxylic ester starting materials. The natural products and a small set of structurally related compounds were evaluated for growth inhibitory activity against a range...

  2. (vitamin B1) biosynthesis genes

    African Journals Online (AJOL)

    In this study, the gene transcripts of first two enzymes in thiamine biosynthesis pathway, THIC and THI1/THI4 were identified and amplified from oil palm tissues. Primers were designed based on sequence comparison of the genes from Arabidopsis thaliana, Zea mays, Oryza sativa and Alnus glutinosa. Oil palm's responses ...

  3. Endocannabinoid Catabolic Enzymes Play Differential Roles in Thermal Homeostasis in Response to Environmental or Immune Challenge.

    Science.gov (United States)

    Nass, Sara R; Long, Jonathan Z; Schlosburg, Joel E; Cravatt, Benjamin F; Lichtman, Aron H; Kinsey, Steven G

    2015-06-01

    Cannabinoid receptor agonists, such as Δ(9)-THC, the primary active constituent of Cannabis sativa, have anti-pyrogenic effects in a variety of assays. Recently, attention has turned to the endogenous cannabinoid system and how endocannabinoids, including 2-arachidonoylglycerol (2-AG) and anandamide, regulate multiple homeostatic processes, including thermoregulation. Inhibiting endocannabinoid catabolic enzymes, monoacylglycerol lipase (MAGL) or fatty acid amide hydrolase (FAAH), elevates levels of 2-AG or anandamide in vivo, respectively. The purpose of this experiment was to test the hypothesis that endocannabinoid catabolic enzymes function to maintain thermal homeostasis in response to hypothermic challenge. In separate experiments, male C57BL/6J mice were administered a MAGL or FAAH inhibitor, and then challenged with the bacterial endotoxin lipopolysaccharide (LPS; 2 mg/kg ip) or a cold (4 °C) ambient environment. Systemic LPS administration caused a significant decrease in core body temperature after 6 h, and this hypothermia persisted for at least 12 h. Similarly, cold environment induced mild hypothermia that resolved within 30 min. JZL184 exacerbated hypothermia induced by either LPS or cold challenge, both of which effects were blocked by rimonabant, but not SR144528, indicating a CB1 cannabinoid receptor mechanism of action. In contrast, the FAAH inhibitor, PF-3845, had no effect on either LPS-induced or cold-induced hypothermia. These data indicate that unlike direct acting cannabinoid receptor agonists, which elicit profound hypothermic responses on their own, neither MAGL nor FAAH inhibitors affect normal body temperature. However, these endocannabinoid catabolic enzymes play distinct roles in thermoregulation following hypothermic challenges.

  4. Fenitrothion action at the endocannabinoid system leading to spermatotoxicity in Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Yuki, E-mail: yukey@med.nagoya-cu.ac.jp [Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601 (Japan); Tomizawa, Motohiro [Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601 (Japan); Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo 156-8502 (Japan); Suzuki, Himiko [Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601 (Japan); Okamura, Ai [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Ohtani, Katsumi [National Institute of Occupational Safety and Health, Kanagawa 214-8585 (Japan); Nunome, Mari; Noro, Yuki [Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601 (Japan); Wang, Dong; Nakajima, Tamie [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Kamijima, Michihiro, E-mail: kamijima@med.nagoya-cu.ac.jp [Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601 (Japan)

    2014-09-15

    Organophosphate (OP) compounds as anticholinesterase agents may secondarily act on diverse serine hydrolase targets, revealing unfavorable physiological effects including male reproductive toxicity. The present investigation proposes that fenitrothion (FNT, a major OP compound) acts on the endocannabinoid signaling system in male reproductive organs, thereby leading to spermatotoxicity (sperm deformity, underdevelopment, and reduced motility) in rats. FNT oxon (bioactive metabolite of FNT) preferentially inhibited the fatty acid amide hydrolase (FAAH), an endocannabinoid anandamide (AEA) hydrolase, in the rat cellular membrane preparation from the testis in vitro. Subsequently, male Wistar rats were treated orally with 5 or 10 mg/kg FNT for 9 weeks and the subchronic exposure unambiguously deteriorated sperm motility and morphology. The activity-based protein profiling analysis with a phosphonofluoridate fluorescent probe revealed that FAAH was selectively inhibited among the FNT-treated cellular membrane proteome in testis. Intriguingly, testicular AEA (endogenous substrate of FAAH) levels were elevated along with the FAAH inhibition caused by the subchronic exposure. More importantly, linear regression analyses for the FNT-elicited spermatotoxicity reveal a good correlation between the testicular FAAH activity and morphological indices or sperm motility. Accordingly, the present study proposes that the FNT-elicited spermatotoxicity appears to be related to inhibition of FAAH leading to overstimulation of the endocannabinoid signaling system, which plays crucial roles in spermatogenesis and sperm motility acquirement. - Highlights: • Subchronic exposure to fenitrothion induces spermatotoxicity in rats. • The fatty acid amide hydrolase is a potential target for the spermatotoxicity. • Overstimulation of the endocannabinoid signal possibly leads to the spermatotoxicity.

  5. Target-dependent control of synaptic inhibition by endocannabinoids in the thalamus

    Science.gov (United States)

    Sun, Yan-Gang; Wu, Chia-Shan; Lu, Hui-Chen; Beierlein, Michael

    2011-01-01

    Inhibitory neurons in the thalamic reticular nucleus (TRN) play a critical role in controlling information transfer between thalamus and neocortex. GABAergic synapses formed by TRN neurons contact both thalamic relay cells as well as neurons within TRN. These two types of synapses are thought to have distinct roles for the generation of thalamic network activity but their selective regulation is poorly understood. In many areas throughout the brain, retrograde signaling mediated by endocannabinoids acts to dynamically regulate synaptic strength over both short and long time scales. However, retrograde signaling has never been demonstrated in the thalamus. Here, we show that depolarization-induced suppression of inhibition (DSI) is prominent at inhibitory synapses interconnecting TRN neurons. DSI is completely abolished in the presence of a cannabinoid receptor 1 (CB1R) antagonist and in mice lacking CB1Rs. DSI is prevented by DAG lipase inhibitors and prolonged by blocking the 2-arachidonoylglycerol (2-AG) degradation enzyme monoacylglycerol lipase (MGL), indicating that it is mediated by the release of 2-AG from TRN neurons. By contrast, DSI is not observed at TRN synapses targeting thalamic relay neurons. A combination of pharmacological and immunohistochemical data indicate that the differences in endocannabinoid signaling at the two synapses are mediated by a synapse-specific targeting of CB1Rs, as well as differences in endocannabinoid release between the two target neurons. Taken together, our results show that endocannabinoids control transmitter release at specific thalamic synapses, and could dynamically regulate sensory information processing and thalamus-mediated synchronous oscillations. PMID:21697372

  6. The Effects of the Endocannabinoids Anandamide and 2-Arachidonoylglycerol on Human Osteoblast Proliferation and Differentiation.

    Directory of Open Access Journals (Sweden)

    Marie Smith

    Full Text Available The endocannabinoid system is expressed in bone, although its role in the regulation of bone growth is controversial. Many studies have examined the effect of endocannabinoids directly on osteoclast function, but few have examined their role in human osteoblast function, which was the aim of the present study. Human osteoblasts were treated from seeding with increasing concentrations of anandamide or 2-arachidonoylglycerol for between 1 and 21 days. Cell proliferation (DNA content and differentiation (alkaline phosphatase (ALP, collagen and osteocalcin secretion and calcium deposition were measured. Anandamide and 2-arachidonoylglycerol significantly decreased osteoblast proliferation after 4 days, associated with a concentration-dependent increase in ALP. Inhibition of endocannabinoid degradation enzymes to increase endocannabinoid tone resulted in similar increases in ALP production. 2-arachidonoylglycerol also decreased osteocalcin secretion. After prolonged (21 day treatment with 2-arachidonoylglycerol, there was a decrease in collagen content, but no change in calcium deposition. Anandamide did not affect collagen or osteocalcin, but reduced calcium deposition. Anandamide increased levels of phosphorylated CREB, ERK 1/2 and JNK, while 2-arachidonoylglycerol increased phosphorylated CREB and Akt. RT-PCR demonstrated the expression of CB2 and TRPV1, but not CB1 in HOBs. Anandamide-induced changes in HOB differentiation were CB1 and CB2-independent and partially reduced by TRPV1 antagonism, and reduced by inhibition of ERK 1/2 and JNK. Our results have demonstrated a clear involvement of anandamide and 2-arachidonoylglycerol in modulating the activity of human osteoblasts, with anandamide increasing early cell differentiation and 2-AG increasing early, but decreasing late osteoblast-specific markers of differentiation.

  7. Endocannabinoids concentrations in plasma associated with feed efficiency and carcass composition of beef steers.

    Science.gov (United States)

    Artegoitia, V M; Foote, A P; Lewis, R M; King, D A; Shackelford, S D; Wheeler, T L; Freetly, H C

    2016-12-01

    Endocannabinoids, including anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are a class of endogenous lipid mediators that activate cannabinoids receptors and may be involved in the control of feed intake and energy metabolism. The objective of this study was to quantify AEA and 2-AG in plasma and identify possible associations with production traits and carcass composition in finishing beef steers. Individual DMI and BW gain were measured on 140 Angus-sired steers for 105 d on a finishing ration. Blood samples were collected on d 84 of the experiment, which was 40 d before slaughter. Variables were analyzed using Pearson CORR procedure of SAS. Mean endocannabinoid concentrations in plasma were 4.48 ± 1.82 ng/mL and 0.44 ± 0.24 ng/mL for AEA and 2-AG, respectively. The AEA concentration was positively correlated with G:F ratio ( = 0.20; = 0.02), indicating that more efficient animals had greater AEA plasma concentrations. In addition, AEA concentration tended to be negatively correlated with the 12th rib fat thickness ( = -0.17; = 0.07); but no correlation was found with USDA-calculated yield grade ( = -0.14; = 0.11), or marbling score ( = 0.05; = 0.54). The concentration of 2-AG was positively correlated with AEA ( = 0.21; = 0.01); however, 2-AG concentration was not correlated with parameters of feed efficiency or carcass composition. To our knowledge, this study is the first to report plasma concentration of endocannabinoids in steers. These results provide evidence that plasma concentration of a key endocannabinoid, AEA, was favorably correlated with feed efficiency and fat thickness in finishing steers.

  8. Commentary: Comment on the Effect of Endocannabinoid System on Rat Behavior

    Directory of Open Access Journals (Sweden)

    Ali Roohbakhsh

    2017-01-01

    Full Text Available I read the recently published article in Vol 6 (3 of Basic and Clinical Neuroscience entitled “Study the Effect of Endocannabinoid System on Rat Behavior in Elevated Plus- Maze” by Komaki et al. (2015. In this valuable article, the authors uncovered the effects of AM251 as a CB1 receptor antagonist on anxiety-like behaviors of rats using elevated plus-maze

  9. The endocannabinoid system as a target for the treatment of cannabis dependence

    OpenAIRE

    Clapper, Jason R.; Mangieri, Regina A.; Piomelli, Daniele

    2008-01-01

    The endocannabinoid system modulates neurotransmission at inhibitory and excitatory synapses in brain regions relevant to the regulation of pain, emotion, motivation, and cognition. This signaling system is engaged by the active component of cannabis, Δ 9 -tetrahydrocannabinol (Δ 9 -THC), which exerts its pharmacological effects by activation of G protein-coupled type-1 (CB 1 ) and type-2 (CB 2 ) cannabinoid receptors. During frequent cannabis use a series of poorly understood neuroplastic ch...

  10. Turning Over a New Leaf: Cannabinoid and Endocannabinoid Modulation of Immune Function.

    Science.gov (United States)

    Cabral, Guy A; Rogers, Thomas J; Lichtman, Aron H

    2015-06-01

    Cannabis is a complex substance that harbors terpenoid-like compounds referred to as phytocannabinoids. The major psychoactive phytocannabinoid found in cannabis ∆(9)-tetrahydrocannabinol (THC) produces the majority of its pharmacological effects through two cannabinoid receptors, termed CB1 and CB2. The discovery of these receptors as linked functionally to distinct biological effects of THC, and the subsequent development of synthetic cannabinoids, precipitated discovery of the endogenous cannabinoid (or endocannabinoid) system. This system consists of the endogenous lipid ligands N- arachidonoylethanolamine (anandamide; AEA) and 2-arachidonylglycerol (2-AG), their biosynthetic and degradative enzymes, and the CB1 and CB2 receptors that they activate. Endocannabinoids have been identified in immune cells such as monocytes, macrophages, basophils, lymphocytes, and dendritic cells and are believed to be enzymatically produced and released "on demand" in a similar fashion as the eicosanoids. It is now recognized that other phytocannabinoids such as cannabidiol (CBD) and cannabinol (CBN) can alter the functional activities of the immune system. This special edition of the Journal of Neuroimmune Pharmacology (JNIP) presents a collection of cutting edge original research and review articles on the medical implications of phytocannabinoids and the endocannabinoid system. The goal of this special edition is to provide an unbiased assessment of the state of research related to this topic from leading researchers in the field. The potential untoward effects as well as beneficial uses of marijuana, its phytocannabinoid composition, and synthesized cannabinoid analogs are discussed. In addition, the role of the endocannabinoid system and approaches to its manipulation to treat select human disease processes are addressed.

  11. Peripheral Endocannabinoids Associated With Energy Expenditure in Native Americans of Southwestern Heritage.

    Science.gov (United States)

    Heinitz, Sascha; Basolo, Alessio; Piaggi, Paolo; Piomelli, Daniele; Jumpertz von Schwartzenberg, Reiner; Krakoff, Jonathan

    2018-03-01

    The endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG), as well as the related acylethanolamide oleoylethanolamide (OEA), have been implicated in energy expenditure (EE) regulation and metabolic diseases. Muscle (fat-free mass) and fat (fat mass) are metabolically active compartments and main determinants of EE. To assess whether human muscle, adipose, and plasma endocannabinoids correlate with EE. Muscle, adipose, and plasma AEA, 2-AG, and OEA concentrations were measured via liquid chromatography-mass spectrometry. EE was assessed by indirect whole-room calorimetry. Clinical trial. Obese/overweight Native Americans of full (n = 35) and at least half (n = 21) Southwestern heritage. Twenty-four-hour EE, sleeping EE (SLEEP), resting EE (REE), respiratory quotient (RQ), and macronutrient oxidation. In full Natives, muscle AEA concentration correlated with SLEEP (r = -0.65, P = 0.004) and REE (r = -0.53, P = 0.02). Muscle 2-AG was associated with SLEEP (r = -0.75, P = 0.0003). Adipose OEA concentration correlated with RQ (r = -0.47, P = 0.04) and lipid oxidation (r = 0.51, P = 0.03). Plasma OEA concentration was associated with SLEEP (r = -0.52, P = 0.04). After adjustment for major determinants, these lipids explained nearly 20% of the additional variance of the respective measure. Similarly, in Native Americans of at least half Southwestern heritage, investigated lipids correlated with EE measures. Endocannabinoids in metabolically relevant peripheral tissues explained a large part of EE variation and may be involved in regulating EE. Dysregulation of peripheral endocannabinoids may predispose people to metabolic diseases via an effect on EE and lipid oxidation.

  12. Endocannabinoids in the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory

    OpenAIRE

    Campolongo, Patrizia; Roozendaal, Benno; Trezza, Viviana; Hauer, Daniela; Schelling, Gustav; McGaugh, James L.; Cuomo, Vincenzo

    2009-01-01

    Extensive evidence indicates that the basolateral complex of the amygdala (BLA) modulates the consolidation of memories for emotionally arousing experiences, an effect that involves the activation of the glucocorticoid system. Because the BLA expresses high densities of cannabinoid CB1 receptors, the present experiments investigated whether the endocannabinoid system in the BLA influences memory consolidation and whether glucocorticoids interact with this system. The CB1 receptor agonist WIN5...

  13. Translational Evidence for a Role of Endocannabinoids in the Etiology and Treatment of Posttraumatic Stress Disorder

    Science.gov (United States)

    Neumeister, Alexander; Seidel, Jordan; Ragen, Benjamin J.; Pietrzak, Robert H.

    2014-01-01

    Introduction Posttraumatic stress disorder (PTSD) is a prevalent, chronic, and disabling anxiety disorder that may develop following exposure to a traumatic event. Despite the public health significance of PTSD, relatively little is known about the etiology or pathophysiology of this disorder, and pharmacotherapy development to date has been largely opportunistic instead of mechanism-based. Recently, an accumulating body of evidence has implicated the endocannabinoid system in the etiology of PTSD, and targets within this system are believed to be suitable for treatment development. Methods Herein, we describe evidence from translational studies arguing for the relevance of the endocannabinoid system in the etiology of PTSD. We also show mechanisms relevant for treatment development. Results There is convincing evidence from multiple studies for reduced endocannabinoid availability in PTSD. Brain imaging studies show molecular adaptations with elevated cannabinoid type 1 (CB1) receptor availability in PTSD which is linked to abnormal threat processing and anxious arousal symptoms. Conclusion Of particular relevance is evidence showing reduced levels of the endocannabinoid anandamide and compensatory increase of CB1 receptor availability in PTSD, and an association between increased CB1 receptor availability in the amygdala and abnormal threat processing, as well as increased severity of hyperarousal, but not dysphoric symptomatology, in trauma survivors. Given that hyperarousal symptoms are the key drivers of more disabling aspects of PTSD such as emotional numbing or suicidality, novel, mechanism-based pharmacotherapies that target this particular symptom cluster in patients with PTSD may have utility in mitigating the chronicity and morbidity of the disorder. PMID:25456347

  14. (-)-Menthol biosynthesis and molecular genetics

    Science.gov (United States)

    Croteau, Rodney B.; Davis, Edward M.; Ringer, Kerry L.; Wildung, Mark R.

    2005-12-01

    (-)-Menthol is the most familiar of the monoterpenes as both a pure natural product and as the principal and characteristic constituent of the essential oil of peppermint ( Mentha x piperita). In this paper, we review the biosynthesis and molecular genetics of (-)-menthol production in peppermint. In Mentha species, essential oil biosynthesis and storage is restricted to the peltate glandular trichomes (oil glands) on the aerial surfaces of the plant. A mechanical method for the isolation of metabolically functional oil glands, has provided a system for precursor feeding studies to elucidate pathway steps, as well as a highly enriched source of the relevant biosynthetic enzymes and of their corresponding transcripts with which cDNA libraries have been constructed to permit cloning and characterization of key structural genes. The biosynthesis of (-)-menthol from primary metabolism requires eight enzymatic steps, and involves the formation and subsequent cyclization of the universal monoterpene precursor geranyl diphosphate to the parent olefin (-)-(4 S)-limonene as the first committed reaction of the sequence. Following hydroxylation at C3, a series of four redox transformations and an isomerization occur in a general “allylic oxidation-conjugate reduction” scheme that installs three chiral centers on the substituted cyclohexanoid ring to yield (-)-(1 R, 3 R, 4 S)-menthol. The properties of each enzyme and gene of menthol biosynthesis are described, as are their probable evolutionary origins in primary metabolism. The organization of menthol biosynthesis is complex in involving four subcellular compartments, and regulation of the pathway appears to reside largely at the level of gene expression. Genetic engineering to up-regulate a flux-limiting step and down-regulate a side route reaction has led to improvement in the composition and yield of peppermint oil.

  15. Frequency-dependent cannabinoid receptor-independent modulation of glycine receptors by endocannabinoid 2-AG

    Directory of Open Access Journals (Sweden)

    Natalia eLozovaya

    2011-07-01

    Full Text Available Endocannabinoids are known as retrograde messengers, being released from the postsynaptic neuron and acting on specific presynaptic G-protein-coupled cannabinoid (CB receptors to decrease neurotransmitter release. Also, at physiologically relevant concentrations cannabinoids can directly modulate the function of voltage-gated and receptor-operated ion channels. Using patch-clamp recording we analyzed the consequences of the direct action of an endocannabinoid, 2-arachidonoylglycerol (2-AG, on the functional properties of glycine receptor channels (GlyRs and ionic currents in glycinergic synapses. At physiologically relevant concentrations (0.1-1 µM, 2-AG directly affected the functions of recombinant homomeric alpha1H GlyR: it inhibited peak amplitude and dramatically enhanced desensitization. The action of 2-AG on GlyR-mediated currents developed rapidly, within ~300 milliseconds. Addition of 1 µM 2-AG strongly facilitated the depression of glycine-induced currents during repetitive (4-10 Hz application of short (2-ms duration pulses of glycine to outside-out patches. In brainstem slices from CB1 receptor-knockout mice, 2-AG significantly decreased the extent of facilitation of synaptic currents in hypoglossal motoneurons during repetitive (10-20 Hz stimulation. These observations suggest that endocannabinoids can modulate postsynaptic metaplasticity of glycinergic synaptic currents in a CB1 receptor-independent manner.

  16. O-hydroxyacetamide carbamates as a highly potent and selective class of endocannabinoid hydrolase inhibitors.

    Science.gov (United States)

    Niphakis, Micah J; Johnson, Douglas S; Ballard, T Eric; Stiff, Cory; Cravatt, Benjamin F

    2012-05-16

    The two major endocannabinoid transmitters, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are degraded by distinct enzymes in the nervous system, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), respectively. FAAH and MAGL inhibitors cause elevations in brain AEA and 2-AG levels, respectively, and reduce pain, anxiety, and depression in rodents without causing the full spectrum of psychotropic behavioral effects observed with direct cannabinoid receptor-1 (CB1) agonists. These findings have inspired the development of several classes of endocannabinoid hydrolase inhibitors, most of which have been optimized to show specificity for either FAAH or MAGL or, in certain cases, equipotent activity for both enzymes. Here, we investigate an unusual class of O-hydroxyacetamide carbamate inhibitors and find that individual compounds from this class can serve as selective FAAH or dual FAAH/MAGL inhibitors in vivo across a dose range (0.125-12.5 mg kg(-1)) suitable for behavioral studies. Competitive and click chemistry activity-based protein profiling confirmed that the O-hydroxyacetamide carbamate SA-57 is remarkably selective for FAAH and MAGL in vivo, targeting only one other enzyme in brain, the additional 2-AG hydrolase ABHD6. These data designate O-hydroxyacetamide carbamates as a versatile chemotype for creating endocannabinoid hydrolase inhibitors that display excellent in vivo activity and tunable selectivity for FAAH-anandamide versus MAGL (and ABHD6)-2-AG pathways.

  17. Endocannabinoids and Neurodegenerative Disorders: Parkinson's Disease, Huntington's Chorea, Alzheimer's Disease, and Others.

    Science.gov (United States)

    Fernández-Ruiz, Javier; Romero, Julián; Ramos, José A

    2015-01-01

    This review focuses on the role of the endocannabinoid signaling system in controlling neuronal survival, an extremely important issue to be considered when developing new therapies for neurodegenerative disorders. First, we will describe the cellular and molecular mechanisms, and the signaling pathways, underlying these neuroprotective properties, including the control of glutamate homeostasis, calcium influx, the toxicity of reactive oxygen species, glial activation and other inflammatory events; and the induction of autophagy. We will then concentrate on the preclinical studies and the few clinical trials that have been carried out targeting endocannabinoid signaling in three important chronic progressive neurodegenerative disorders (Parkinson's disease, Huntington's chorea, and Alzheimer's disease), as well as in other less well-studied disorders. We will end by offering some ideas and proposals for future research that should be carried out to optimize endocannabinoid-based treatments for these disorders. Such studies will strengthen the possibility that these therapies will be investigated in the clinical scenario and licensed for their use in specific disorders.

  18. Endocannabinoids affect innate immunity of Muller glia during HIV-1 Tat cytotoxicity.

    Science.gov (United States)

    Krishnan, Gopinath; Chatterjee, Nivedita

    2014-03-01

    In the retina, increased inflammatory response can cause visual impairment during HIV infection in spite of successful anti-retroviral therapy (HAART). The HIV-1 Tat protein is implicated in neurodegeneration by eliciting a cytokine response in cells of the CNS, including glia. The current study investigated whether innate immune response in human retinal Muller glia could be immune-modulated to combat inflammation. Endocannabinoids, N-arachidonoylethanolamide and 2-arachidonoylglycerol are used to alleviate Tat-induced cytotoxicity and rescue retinal cells. The neuroprotective mechanism involved suppression in production of pro-inflammatory and increase of anti-inflammatory cytokines, mainly through the MAPK pathway. The MAPK regulation was primarily by MKP-1. Both endocannabinoids regulated cytokine production by affecting at the transcriptional level the NF-κB complex, including IRAK1BP1 and TAB2. Stability of cytokine mRNA is likely to have been influenced through tristetraprolin. These findings have direct relevance in conditions like immune-recovery uveitis where anti-retroviral therapy has helped immune reconstitution. In such conditions drugs to combat overwhelming inflammatory response would need to supplement HAART. Endocannabinoids and their agonists may be thought of as neurotherapeutic during certain conditions of HIV-1 induced inflammation. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Endocannabinoids in brain plasticity: Cortical maturation, HPA axis function and behavior.

    Science.gov (United States)

    Dow-Edwards, Diana; Silva, Lindsay

    2017-01-01

    Marijuana use during adolescence has reached virtually every strata of society. The general population has the perception that marijuana use is safe for mature people and therefore is also safe for developing adolescents. However, both clinical and preclinical research shows that marijuana use, particularly prior to age 16, could have long-term effects on cognition, anxiety and stress-related behaviors, mood disorders and substance abuse. These effects derive from the role of the endocannabinoid system, the endogenous cannabinoid system, in the development of cortex, amygdala, hippocampus and hypothalamus during adolescence. Endocannabinoids are necessary for normal neuronal excitation and inhibition through actions at glutamate and GABA terminals. Synaptic pruning at excitatory synapses and sparing of inhibitory synapses likely results in changes in the balance of excitation/inhibition in individual neurons and within networks; processes which are necessary for normal cortical development. The interaction between prefrontal cortex (PFC), amygdala and hippocampus is responsible for emotional memory, anxiety-related behaviors and drug abuse and all utilize the endogenous cannabinoid system to maintain homeostasis. Also, endocannabinoids are required for fast and slow feedback in the normal stress response, processes which mature during adolescence. Therefore, exogenous cannabinoids, such as marijuana, have the potential to alter the course of development of each of these major systems (limbic, hypothalamic-pituitary-adrenal (HPA) axis and neocortex) if used during the critical period of brain development, adolescence. This article is part of a Special Issue entitled SI: Adolescent plasticity. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Genetic variation in the endocannabinoid system and response to Cognitive Behavior Therapy for child anxiety disorders.

    Science.gov (United States)

    Lester, Kathryn J; Coleman, Jonathan R I; Roberts, Susanna; Keers, Robert; Breen, Gerome; Bögels, Susan; Creswell, Cathy; Hudson, Jennifer L; McKinnon, Anna; Nauta, Maaike; Rapee, Ronald M; Schneider, Silvia; Silverman, Wendy K; Thastum, Mikael; Waite, Polly; Wergeland, Gro Janne H; Eley, Thalia C

    2017-03-01

    Extinction learning is an important mechanism in the successful psychological treatment of anxiety. Individual differences in response and relapse following Cognitive Behavior Therapy may in part be explained by variability in the ease with which fears are extinguished or the vulnerability of these fears to re-emerge. Given the role of the endocannabinoid system in fear extinction, this study investigates whether genetic variation in the endocannabinoid system explains individual differences in response to CBT. Children (N = 1,309) with a primary anxiety disorder diagnosis were recruited. We investigated the relationship between variation in the CNR1, CNR2, and FAAH genes and change in primary anxiety disorder severity between pre- and post-treatment and during the follow-up period in the full sample and a subset with fear-based anxiety disorder diagnoses. Change in symptom severity during active treatment was nominally associated (P endocannabinoid system genes and treatment response once multiple testing corrections were applied. Larger, more homogenous cohorts are needed to allow the identification of variants of small but statistically significant effect and to estimate effect sizes for these variants with greater precision in order to determine their potential clinical utility. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.

  1. Regulation of nausea and vomiting by cannabinoids and the endocannabinoid system.

    Science.gov (United States)

    Sharkey, Keith A; Darmani, Nissar A; Parker, Linda A

    2014-01-05

    Nausea and vomiting (emesis) are important elements in defensive or protective responses that animals use to avoid ingestion or digestion of potentially harmful substances. However, these neurally-mediated responses are at times manifested as symptoms of disease and they are frequently observed as side-effects of a variety of medications, notably those used to treat cancer. Cannabis has long been known to limit or prevent nausea and vomiting from a variety of causes. This has led to extensive investigations that have revealed an important role for cannabinoids and their receptors in the regulation of nausea and emesis. With the discovery of the endocannabinoid system, novel ways to regulate both nausea and vomiting have been discovered that involve the production of endogenous cannabinoids acting centrally. Here we review recent progress in understanding the regulation of nausea and vomiting by cannabinoids and the endocannabinoid system, and we discuss the potential to utilize the endocannabinoid system in the treatment of these frequently debilitating conditions. © 2013 Published by Elsevier B.V.

  2. From cannabis to the endocannabinoid system: refocussing attention on potential clinical benefits.

    Science.gov (United States)

    Youssef, F F; Irving, A J

    2012-06-01

    Cannabis sativa is one of the oldest herbal remedies known to man. Over the past four thousand years, it has been used for the treatment of numerous diseases but due to its psychoactive properties, its current medicinal usage is highly restricted. In this review, we seek to highlight advances made over the last forty years in the understanding of the mechanisms responsible for the effects of cannabis on the human body and how these can potentially be utilized in clinical practice. During this time, the primary active ingredients in cannabis have been isolated, specific cannabinoid receptors have been discovered and at least five endogenous cannabinoid neurotransmitters (endocannabinoids) have been identified. Together, these form the framework of a complex endocannabinoid signalling system that has widespread distribution in the body and plays a role in regulating numerous physiological processes within the body. Cannabinoid ligands are therefore thought to display considerable therapeutic potential and the drive to develop compounds that can be targeted to specific neuronal systems at low enough doses so as to eliminate cognitive side effects remains the 'holy grail' of endocannabinoid research.

  3. Individual differences in frontolimbic circuitry and anxiety emerge with adolescent changes in endocannabinoid signaling across species

    Science.gov (United States)

    Gee, Dylan G.; Fetcho, Robert N.; Jing, Deqiang; Li, Anfei; Glatt, Charles E.; Drysdale, Andrew T.; Cohen, Alexandra O.; Dellarco, Danielle V.; Yang, Rui R.; Dale, Anders M.; Jernigan, Terry L.; Lee, Francis S.; Casey, B.J.

    2016-01-01

    Anxiety disorders peak in incidence during adolescence, a developmental window that is marked by dynamic changes in gene expression, endocannabinoid signaling, and frontolimbic circuitry. We tested whether genetic alterations in endocannabinoid signaling related to a common polymorphism in fatty acid amide hydrolase (FAAH), which alters endocannabinoid anandamide (AEA) levels, would impact the development of frontolimbic circuitry implicated in anxiety disorders. In a pediatric imaging sample of over 1,000 3- to 21-y-olds, we show effects of the FAAH genotype specific to frontolimbic connectivity that emerge by ∼12 y of age and are paralleled by changes in anxiety-related behavior. Using a knock-in mouse model of the FAAH polymorphism that controls for genetic and environmental backgrounds, we confirm phenotypic differences in frontoamygdala circuitry and anxiety-related behavior by postnatal day 45 (P45), when AEA levels begin to decrease, and also, at P75 but not before. These results, which converge across species and level of analysis, highlight the importance of underlying developmental neurobiology in the emergence of genetic effects on brain circuitry and function. Moreover, the results have important implications for the identification of risk for disease and precise targeting of treatments to the biological state of the developing brain as a function of developmental changes in gene expression and neural circuit maturation. PMID:27001846

  4. The effect of endocannabinoid system in ischemia-reperfusion injury: a friend or a foe?

    Science.gov (United States)

    Moris, Demetrios; Georgopoulos, Sotirios; Felekouras, Evangelos; Patsouris, Efstratios; Theocharis, Stamatios

    2015-01-01

    In recent years, the endocannabinoid system has emerged as a new therapeutic target in variety of disorders associated with inflammation and tissue injury, including those of the neuronal, liver, renal and cardiovascular system. The aim of the present review is to elucidate the effect of endocannabinoid system on ischemia reperfusion injury (IRI) in different organs and systems. The MEDLINE/PubMed database was searched for publications with the medical subject heading Cannabinoids* (CBs), CB receptors*, organ*, ischemia/reperfusion injury*, endocannabinoid* and system*. The initial relevant studies retrieved from the literature were 91 from PubMed. This number was initially limited to 35, after excluding the reviews and studies reporting data for receptors other than cannabinoid. CB2 receptors may play an important compensatory role in controlling tissue inflammation and injury in cells of the neuronal, cardiovascular, liver and renal systems, as well as in infiltrating monocytes/macrophages and leukocytes during various pathological conditions of the systems (atherosclerosis, restenosis, stroke, myocardial infarction, heart, liver and renal failure). These receptors limit inflammation and associated tissue injury. On the basis of preclinical results, pharmacological modulation of CB2 receptors may hold a unique therapeutic potential in stroke, myocardial infarction, atherosclerosis, IRI and liver disease.

  5. Genetic Disruption of 2-Arachidonoylglycerol Synthesis Reveals a Key Role for Endocannabinoid Signaling in Anxiety Modulation

    Directory of Open Access Journals (Sweden)

    Brian C. Shonesy

    2014-12-01

    Full Text Available Summary: Endocannabinoid (eCB signaling has been heavily implicated in the modulation of anxiety and depressive behaviors and emotional learning. However, the role of the most-abundant endocannabinoid 2-arachidonoylglycerol (2-AG in the physiological regulation of affective behaviors is not well understood. Here, we show that genetic deletion of the 2-AG synthetic enzyme diacylglycerol lipase α (DAGLα in mice reduces brain, but not circulating, 2-AG levels. DAGLα deletion also results in anxiety-like and sex-specific anhedonic phenotypes associated with impaired activity-dependent eCB retrograde signaling at amygdala glutamatergic synapses. Importantly, acute pharmacological normalization of 2-AG levels reverses both phenotypes of DAGLα-deficient mice. These data suggest 2-AG deficiency could contribute to the pathogenesis of affective disorders and that pharmacological normalization of 2-AG signaling could represent an approach for the treatment of mood and anxiety disorders. : The role of the primary endogenous cannabinoid 2-AG in mood and anxiety regulation is not well understood. Shonesy et al. show that deletion of a primary 2-AG synthetic enzyme, DAGLα, results in anxiety and sex-specific depressive phenotypes, which can be rapidly reversed by pharmacological normalization of endocannabinoid levels.

  6. Inhibition of endocannabinoid metabolism by the metabolites of ibuprofen and flurbiprofen.

    Directory of Open Access Journals (Sweden)

    Jessica Karlsson

    Full Text Available In addition to their effects upon prostaglandin synthesis, the non-steroidal anti-inflammatory drugs ibuprofen and flurbiprofen inhibit the metabolism of the endocannabinoids 2-arachidonoylglycerol (2-AG and anandamide (AEA by cyclooxygenase-2 (COX-2 and fatty acid amide hydrolase (FAAH, respectively. Here, we investigated whether these effects upon endocannabinoid metabolism are shared by the main metabolites of ibuprofen and flurbiprofen.COX activities were measured via changes in oxygen consumption due to oxygenation of arachidonic acid (for COX-1 and arachidonic acid and 2-AG (for COX-2. FAAH activity was quantified by measuring hydrolysis of tritium labelled AEA in rat brain homogenates. The ability of ibuprofen and flurbiprofen to inhibit COX-2-catalysed oxygenation of 2-AG at lower concentrations than the oxygenation of arachidonic acid was seen with 4'-hydroxyflurbiprofen and possibly also 3'-hydroxyibuprofen, albeit at lower potencies than the parent compounds. All ibuprofen and flurbiprofen metabolites retained the ability to inhibit FAAH in a pH-dependent manner, although the potency was lower than seen with the parent compounds.It is concluded that the primary metabolites of ibuprofen and flurbiprofen retain some of the properties of the parent compound with respect to inhibition of endocannabinoid metabolism. However, these effects are unlikely to contribute to the actions of the parent compounds in vivo.

  7. Dynamic changes to the endocannabinoid system in models of chronic pain

    Science.gov (United States)

    Rani Sagar, Devi; Burston, James J.; Woodhams, Stephen G.; Chapman, Victoria

    2012-01-01

    The analgesic effects of cannabinoid ligands, mediated by CB1 receptors are well established. However, the side-effect profile of CB1 receptor ligands has necessitated the search for alternative cannabinoid-based approaches to analgesia. Herein, we review the current literature describing the impact of chronic pain states on the key components of the endocannabinoid receptor system, in terms of regionally restricted changes in receptor expression and levels of key metabolic enzymes that influence the local levels of the endocannabinoids. The evidence that spinal CB2 receptors have a novel role in the modulation of nociceptive processing in models of neuropathic pain, as well as in models of cancer pain and arthritis is discussed. Recent advances in our understanding of the spinal location of the key enzymes that regulate the levels of the endocannabinoid 2-AG are discussed alongside the outcomes of recent studies of the effects of inhibiting the catabolism of 2-AG in models of pain. The complexities of the enzymes capable of metabolizing both anandamide (AEA) and 2-AG have become increasingly apparent. More recently, it has come to light that some of the metabolites of AEA and 2-AG generated by cyclooxygenase-2, lipoxygenases and cytochrome P450 are biologically active and can either exacerbate or inhibit nociceptive signalling. PMID:23108548

  8. Cocaine-induced behavioral sensitization decreases the expression of endocannabinoid signaling-related proteins in the mouse hippocampus.

    Science.gov (United States)

    Blanco, Eduardo; Galeano, Pablo; Palomino, Ana; Pavón, Francisco J; Rivera, Patricia; Serrano, Antonia; Alen, Francisco; Rubio, Leticia; Vargas, Antonio; Castilla-Ortega, Estela; Decara, Juan; Bilbao, Ainhoa; de Fonseca, Fernando Rodríguez; Suárez, Juan

    2016-03-01

    In the reward mesocorticolimbic circuits, the glutamatergic and endocannabinoid systems are implicated in neurobiological mechanisms underlying cocaine addiction. However, the involvement of both systems in the hippocampus, a critical region to process relational information relevant for encoding drug-associated memories, in cocaine-related behaviors remains unknown. In the present work, we studied whether the hippocampal gene/protein expression of relevant glutamate signaling components, including glutamate-synthesizing enzymes and metabotropic and ionotropic receptors, and the hippocampal gene/protein expression of cannabinoid type 1 (CB1) receptor and endocannabinoid metabolic enzymes were altered following acute and/or repeated cocaine administration resulting in conditioned locomotion and locomotor sensitization. Results showed that acute cocaine administration induced an overall down-regulation of glutamate-related gene expression and, specifically, a low phosphorylation level of GluA1. In contrast, locomotor sensitization to cocaine produced an up-regulation of several glutamate receptor-related genes and, specifically, an increased protein expression of the GluN1 receptor subunit. Regarding the endocannabinoid system, acute and repeated cocaine administration were associated with an increased gene/protein expression of CB1 receptors and a decreased gene/protein expression of the endocannabinoid-synthesis enzymes N-acyl phosphatidylethanolamine D (NAPE-PLD) and diacylglycerol lipase alpha (DAGLα). These changes resulted in an overall decrease in endocannabinoid synthesis/degradation ratios, especially NAPE-PLD/fatty acid amide hydrolase and DAGLα/monoacylglycerol lipase, suggesting a reduced endocannabinoid production associated with a compensatory up-regulation of CB1 receptor. Overall, these findings suggest that repeated cocaine administration resulting in locomotor sensitization induces a down-regulation of the endocannabinoid signaling that could

  9. Moderate-vigorous physical activity across body mass index in females: moderating effect of endocannabinoids and temperament.

    Directory of Open Access Journals (Sweden)

    Fernando Fernández-Aranda

    Full Text Available Endocannabinoids and temperament traits have been linked to both physical activity and body mass index (BMI however no study has explored how these factors interact in females. The aims of this cross-sectional study were to 1 examine differences among distinct BMI groups on daytime physical activity and time spent in moderate-vigorous physical activity (MVPA, temperament traits and plasma endocannabinoid concentrations; and 2 explore the association and interaction between MVPA, temperament, endocannabinoids and BMI.Physical activity was measured with the wrist-worn accelerometer Actiwatch AW7, in a sample of 189 female participants (43 morbid obese, 30 obese, and 116 healthy-weight controls. The Temperament and Character Inventory-Revised questionnaire was used to assess personality traits. BMI was calculated by bioelectrical impedance analysis via the TANITA digital scale. Blood analyses were conducted to measure levels of endocannabinoids and endocannabinoid-related compounds. Path-analysis was performed to examine the association between predictive variables and MVPA.Obese groups showed lower MVPA and dysfunctional temperament traits compared to healthy-weight controls. Plasma concentrations of 2-arachidonoylglyceryl (2-AG were greater in obese groups. Path-analysis identified a direct effect between greater MVPA and low BMI (b = -0.13, p = .039 and high MVPA levels were associated with elevated anandamide (AEA levels (b = 0.16, p = .049 and N-oleylethanolamide (OEA levels (b = 0.22, p = .004, as well as high Novelty seeking (b = 0.18, p<.001 and low Harm avoidance (b = -0.16, p<.001.Obese individuals showed a distinct temperament profile and circulating endocannabinoids compared to controls. Temperament and endocannabinoids may act as moderators of the low MVPA in obesity.

  10. Effects of acute versus repeated cocaine exposure on the expression of endocannabinoid signaling-related proteins in the mouse cerebellum

    Science.gov (United States)

    Palomino, Ana; Pavón, Francisco-Javier; Blanco-Calvo, Eduardo; Serrano, Antonia; Arrabal, Sergio; Rivera, Patricia; Alén, Francisco; Vargas, Antonio; Bilbao, Ainhoa; Rubio, Leticia; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2014-01-01

    Growing awareness of cerebellar involvement in addiction is based on the cerebellum’s intermediary position between motor and reward, potentially acting as an interface between motivational and cognitive functions. Here, we examined the impact of acute and repeated cocaine exposure on the two main signaling systems in the mouse cerebellum: the endocannabinoid (eCB) and glutamate systems. To this end, we investigated whether eCB signaling-related gene and protein expression {cannabinoid receptor type 1 receptors and enzymes that produce [diacylglycerol lipase alpha/beta (DAGLα/β) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD)] and degrade [monoacylglycerol lipase (MAGL) and fatty acid amino hydrolase (FAAH)] eCB} were altered. In addition, we analyzed the gene expression of relevant components of the glutamate signaling system [glutamate synthesizing enzymes liver-type glutaminase isoform (LGA) and kidney-type glutaminase isoform (KGA), metabotropic glutamatergic receptor (mGluR3/5), NMDA-ionotropic glutamatergic receptor (NR1/2A/2B/2C) and AMPA-ionotropic receptor subunits (GluR1/2/3/4)] and the gene expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, because noradrenergic terminals innervate the cerebellar cortex. Results indicated that acute cocaine exposure decreased DAGLα expression, suggesting a down-regulation of 2-arachidonylglycerol (2-AG) production, as well as gene expression of TH, KGA, mGluR3 and all ionotropic receptor subunits analyzed in the cerebellum. The acquisition of conditioned locomotion and sensitization after repeated cocaine exposure were associated with an increased NAPE-PLD/FAAH ratio, suggesting enhanced anandamide production, and a decreased DAGLβ/MAGL ratio, suggesting decreased 2-AG generation. Repeated cocaine also increased LGA gene expression but had no effect on glutamate receptors. These findings indicate that acute cocaine modulates the expression of the eCB and

  11. Identification of endocannabinoid system-modulating N-alkylamides from Heliopsis helianthoides var. scabra and Lepidium meyenii.

    Science.gov (United States)

    Hajdu, Zsanett; Nicolussi, Simon; Rau, Mark; Lorántfy, László; Forgo, Peter; Hohmann, Judit; Csupor, Dezső; Gertsch, Jürg

    2014-07-25

    The discovery of the interaction of plant-derived N-alkylamides (NAAs) and the mammalian endocannabinoid system (ECS) and the existence of a plant endogenous N-acylethanolamine signaling system have led to the re-evaluation of this group of compounds. Herein, the isolation of seven NAAs and the assessment of their effects on major protein targets in the ECS network are reported. Four NAAs, octadeca-2E,4E,8E,10Z,14Z-pentaene-12-ynoic acid isobutylamide (1), octadeca-2E,4E,8E,10Z,14Z-pentaene-12-ynoic acid 2'-methylbutylamide (2), hexadeca-2E,4E,9Z-triene-12,14-diynoic acid isobutylamide (3), and hexadeca-2E,4E,9,12-tetraenoic acid 2'-methylbutylamide (4), were identified from Heliopsis helianthoides var. scabra. Compounds 2-4 are new natural products, while 1 was isolated for the first time from this species. The previously described macamides, N-(3-methoxybenzyl)-(9Z,12Z,15Z)-octadecatrienamide (5), N-benzyl-(9Z,12Z,15Z)-octadecatrienamide (6), and N-benzyl-(9Z,12Z)-octadecadienamide (7), were isolated from Lepidium meyenii (Maca). N-Methylbutylamide 4 and N-benzylamide 7 showed submicromolar and selective binding affinities for the cannabinoid CB1 receptor (Ki values of 0.31 and 0.48 μM, respectively). Notably, compound 7 also exhibited weak fatty acid amide hydrolase (FAAH) inhibition (IC50 = 4 μM) and a potent inhibition of anandamide cellular uptake (IC50 = 0.67 μM) that was stronger than the inhibition obtained with the controls OMDM-2 and UCM707. The pronounced ECS polypharmacology of compound 7 highlights the potential involvement of the arachidonoyl-mimicking 9Z,12Z double-bond system in the linoleoyl group for the overall cannabimimetic action of NAAs. This study provides additional strong evidence of the endocannabinoid substrate mimicking of plant-derived NAAs and uncovers a direct and indirect cannabimimetic action of the Peruvian Maca root.

  12. Biosynthesis of zinc oxide nanoparticles by petals extract ofRosa indicaL., its formulation as nail paint and evaluation of antifungal activity against fungi causing onychomycosis.

    Science.gov (United States)

    Tiwari, Nikita; Pandit, Raksha; Gaikwad, Swapnil; Gade, Aniket; Rai, Mahendra

    2017-03-01

    Aim : The authors report the biological synthesis of zinc oxide nanoparticles (ZnO-NPs) from the petals extract of Rosa indica L. (rose). Its efficacy was evaluated against two dermatophytes: namely: Trichophyton mentagrophytes and Microsporum canis which cause onychomycosis. The activity of antibiotics against the tested dermatophytes was enhanced, when evaluated in combination with ZnO-NPs. Methods and results: The synthesised ZnO-NPs were preliminary detected by using ultraviolet UV visible spectroscopy, which showed specific absorbance. The ZnO-NPs were further characterised by nanoparticle tracking analysis (NTA), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray diffraction and Zetasizer. Moreover, nanoparticles containing nail paint (nanopaint) was formulated and its antifungal activity was also assessed against T. mentagrophytes and M. canis . ZnO-NPs and formulated nanopaint containing ZnO-NPs, both showed significant antifungal activity. The maximum activity was noted against M. canis and lesser against T. mentagrophytes. Minimum inhibitory concentration of ZnO-NPs was also determined against the dermatophytes causing onychomycosis infection. Conclusion: ZnO-NPs can be utilised as a potential antifungal agent for the treatment of onychomycosis after more experimental trials.

  13. Role of endocannabinoids and cannabinoid-1 receptors in cerebrocortical blood flow regulation.

    Directory of Open Access Journals (Sweden)

    András Iring

    Full Text Available Endocannabinoids are among the most intensively studied lipid mediators of cardiovascular functions. In the present study the effects of decreased and increased activity of the endocannabinoid system (achieved by cannabinoid-1 (CB1 receptor blockade and inhibition of cannabinoid reuptake, respectively on the systemic and cerebral circulation were analyzed under steady-state physiological conditions and during hypoxia and hypercapnia (H/H.In anesthetized spontaneously ventilating rats the CB1-receptor antagonist/inverse agonist AM-251 (10 mg/kg, i.v. failed to influence blood pressure (BP, cerebrocortical blood flow (CoBF, measured by laser-Doppler flowmetry or arterial blood gas levels. In contrast, the putative cannabinoid reuptake inhibitor AM-404 (10 mg/kg, i.v. induced triphasic responses, some of which could be blocked by AM-251. Hypertension during phase I was resistant to AM-251, whereas the concomitant CoBF-increase was attenuated. In contrast, hypotension during phase III was sensitive to AM-251, whereas the concomitant CoBF-decrease was not. Therefore, CoBF autoregulation appeared to shift towards higher BP levels after CB1-blockade. During phase II H/H developed due to respiratory depression, which could be inhibited by AM-251. Interestingly, however, the concomitant rise in CoBF remained unchanged after AM-251, indicating that CB1-blockade potentially enhanced the reactivity of the CoBF to H/H. In accordance with this hypothesis, AM-251 induced a significant enhancement of the CoBF responses during controlled stepwise H/H.Under resting physiological conditions CB1-receptor mediated mechanisms appear to have limited influence on systemic or cerebral circulation. Enhancement of endocannabinoid levels, however, induces transient CB1-independent hypertension and sustained CB1-mediated hypotension. Furthermore, enhanced endocannabinoid activity results in respiratory depression in a CB1-dependent manner. Finally, our data indicate for the

  14. Role of Endocannabinoids and Cannabinoid-1 Receptors in Cerebrocortical Blood Flow Regulation

    Science.gov (United States)

    Horváth, Béla; Benkő, Rita; Lacza, Zsombor; Járai, Zoltán; Sándor, Péter; Di Marzo, Vincenzo; Pacher, Pál; Benyó, Zoltán

    2013-01-01

    Background Endocannabinoids are among the most intensively studied lipid mediators of cardiovascular functions. In the present study the effects of decreased and increased activity of the endocannabinoid system (achieved by cannabinoid-1 (CB1) receptor blockade and inhibition of cannabinoid reuptake, respectively) on the systemic and cerebral circulation were analyzed under steady-state physiological conditions and during hypoxia and hypercapnia (H/H). Methodology/Principal Findings In anesthetized spontaneously ventilating rats the CB1-receptor antagonist/inverse agonist AM-251 (10 mg/kg, i.v.) failed to influence blood pressure (BP), cerebrocortical blood flow (CoBF, measured by laser-Doppler flowmetry) or arterial blood gas levels. In contrast, the putative cannabinoid reuptake inhibitor AM-404 (10 mg/kg, i.v.) induced triphasic responses, some of which could be blocked by AM-251. Hypertension during phase I was resistant to AM-251, whereas the concomitant CoBF-increase was attenuated. In contrast, hypotension during phase III was sensitive to AM-251, whereas the concomitant CoBF-decrease was not. Therefore, CoBF autoregulation appeared to shift towards higher BP levels after CB1-blockade. During phase II H/H developed due to respiratory depression, which could be inhibited by AM-251. Interestingly, however, the concomitant rise in CoBF remained unchanged after AM-251, indicating that CB1-blockade potentially enhanced the reactivity of the CoBF to H/H. In accordance with this hypothesis, AM-251 induced a significant enhancement of the CoBF responses during controlled stepwise H/H. Conclusion/Significance Under resting physiological conditions CB1-receptor mediated mechanisms appear to have limited influence on systemic or cerebral circulation. Enhancement of endocannabinoid levels, however, induces transient CB1-independent hypertension and sustained CB1-mediated hypotension. Furthermore, enhanced endocannabinoid activity results in respiratory depression in a

  15. Endocannabinoid 1 and 2 (CB(1); CB(2)) receptor agonists affect negatively cow luteal function in vitro.

    Science.gov (United States)

    Weems, Y S; Lewis, A W; Neuendorff, D A; Randel, R D; Weems, C W

    2009-12-01

    Thirty to 40% of pregnancies are lost during the first third of pregnancy, which has been hypothesized to be due to inadequate progesterone secretion by the corpus luteum. Loss of luteal progesterone secretion during the estrous cycle is via uterine secretion of prostaglandin F(2)alpha (PGF(2)alpha). Cow luteal tissue secretion of prostaglandins (PG) E (PGE(1)+PGE(2)) and PGF(2)alpha are derived from precursors in membrane phospholipids. Cow luteal tissue secretion of PGE and PGF(2)alpha increased linearly with time in culture with the PGE: ratio being 1:1. PGE(1) or PGE(2) are luteotropic in cows and ewes and antiluteolytic in vitro and in vivo in ewes. Endocannabinoids are also derived from phospholipids and are associated with infertility, presumably by reducing implantation; however, effects of endocannabinoids on luteal function have not been addressed. The objective of this experiment was to determine the effects of endocannabinoid type 1 and 2 receptor agonists and receptor antagonists or a fatty acid amide hydrolase (FAAH; catabolizes endocannabinoids) inhibitor, PGE(1), or PGF(2)alpha on bovine luteal secretion of progesterone, PGE, and PGF(2)alphain vitro. PGE and PGF(2)alpha was increased (P or =0.05) with time in vehicle-treated luteal slices in vitro. Progesterone was increased (Pcow luteal function in vitro and that the corpus luteum may also be a site for endocannabinoid decreased fertility as well as a reduction in implantation.

  16. THC and endocannabinoids differentially regulate neuronal activity in the prefrontal cortex and hippocampus in the subchronic PCP model of schizophrenia.

    Science.gov (United States)

    Aguilar, David D; Giuffrida, Andrea; Lodge, Daniel J

    2016-02-01

    Cannabis use has been associated with an increased risk to develop schizophrenia as well as symptom exacerbation in patients. In contrast, clinical studies have revealed an inverse relationship between the cerebrospinal fluid levels of the endocannabinoid anandamide and symptom severity, suggesting a therapeutic potential for endocannabinoid-enhancing drugs. Indeed, preclinical studies have shown that these drugs can reverse distinct behavioral deficits in a rodent model of schizophrenia. The mechanisms underlying the differences between exogenous and endogenous cannabinoid administration are currently unknown. Using the phencyclidine (PCP) rat model of schizophrenia, we compared the effects on neuronal activity of systematic administration of delta-9-tetrahydrocannabinol (THC) with the fatty acid amide hydrolase inhibitor URB597. Specifically, we found that the inhibitory response in the prefrontal cortex to THC administration was absent in PCP-treated rats. In contrast, an augmented response to endocannabinoid upregulation was observed in the prefrontal cortex of PCP-treated rats. Interestingly, differential effects were also observed at the neuronal population level, as endocannabinoid upregulation induced opposite effects on coordinated activity when compared with THC. Such information is important for understanding why marijuana and synthetic cannabinoid use may be contraindicated in schizophrenia patients while endocannabinoid enhancement may provide a novel therapeutic approach. © The Author(s) 2015.

  17. Quantitative profiling of endocannabinoids and related N-acylethanolamines in human CSF using nano LC-MS/MS[S

    Science.gov (United States)

    Ogino, Shinji; Noga, Marek; Harms, Amy C.; van Dongen, Robin M.; Onderwater, Gerrit L. J.; van den Maagdenberg, Arn M. J. M.; Terwindt, Gisela M.; van der Stelt, Mario; Ferrari, Michel D.; Hankemeier, Thomas

    2017-01-01

    Endocannabinoids, a class of lipid messengers, have emerged as crucial regulators of synaptic communication in the CNS. Dysregulation of these compounds has been implicated in many brain disorders. Although some studies have identified and quantified a limited number of target compounds, a method that provides comprehensive quantitative information on endocannabinoids and related N-acylethanolamines (NAEs) in cerebrospinal fluid (CSF) is currently lacking, as measurements are challenging due to low concentrations under normal physiological conditions. Here we developed and validated a high-throughput nano LC-ESI-MS/MS platform for the simultaneous quantification of endocannabinoids (anandamide and 2-arachidonoylglycerol), ten related NAEs, and eight additional putatively annotated NAEs in human CSF. Requiring only 200 μl of CSF, our method has limits of detection from 0.28 to 61.2 pM with precisions of relative SD endocannabinoids and NAEs. Notably, our results show that docosahexaenoylethanolamide concentrations increase with age in males. Our method may offer new opportunities to gain insight into regulatory functions of endocannabinoids in the context of (ab)normal brain function. PMID:27999147

  18. Quantitative profiling of endocannabinoids and relatedN-acylethanolamines in human CSF using nano LC-MS/MS.

    Science.gov (United States)

    Kantae, Vasudev; Ogino, Shinji; Noga, Marek; Harms, Amy C; van Dongen, Robin M; Onderwater, Gerrit L J; van den Maagdenberg, Arn M J M; Terwindt, Gisela M; van der Stelt, Mario; Ferrari, Michel D; Hankemeier, Thomas

    2017-03-01

    Endocannabinoids, a class of lipid messengers, have emerged as crucial regulators of synaptic communication in the CNS. Dysregulation of these compounds has been implicated in many brain disorders. Although some studies have identified and quantified a limited number of target compounds, a method that provides comprehensive quantitative information on endocannabinoids and related N -acylethanolamines (NAEs) in cerebrospinal fluid (CSF) is currently lacking, as measurements are challenging due to low concentrations under normal physiological conditions. Here we developed and validated a high-throughput nano LC-ESI-MS/MS platform for the simultaneous quantification of endocannabinoids (anandamide and 2-arachidonoylglycerol), ten related NAEs, and eight additional putatively annotated NAEs in human CSF. Requiring only 200 μl of CSF, our method has limits of detection from 0.28 to 61.2 pM with precisions of relative SD endocannabinoids and NAEs. Notably, our results show that docosahexaenoylethanolamide concentrations increase with age in males. Our method may offer new opportunities to gain insight into regulatory functions of endocannabinoids in the context of (ab)normal brain function. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  19. Effect of the endocannabinoid receptor agonist Win-55 212-2 on early electrographic changes in a post-status model of epileptogenesis

    NARCIS (Netherlands)

    Suleymanova, E.M.; Blik, V.; Rijn, C.M. van; Vinogradova, L.V.

    2015-01-01

    Purpose: This study was performed to investigate whether stimulation of endocannabinoid system early after status epilepticus (SE) could prevent or modify the subsequent epileptogenesis. We studied the effect of an agonist of endocannabinoid receptors, WIN-55 212-2, on electrographic features during

  20. Dietary DHA reduced downstream endocannabinoid and inflammatory gene expression, epididymal fat mass, and improved aspects of glucose use in muscle in C57BL/6J mice

    Science.gov (United States)

    Objective: Endocannabinoid system (ECS) overactivation is associated with increased adiposity and likely contributes to type II diabetes risk. Elevated tissue cannabinoid receptor 1 (CB1) and circulating endocannabinoids derived from the n-6 polyunsaturated acid (PUFA) arachidonic acid occur in obes...

  1. Effects of Mood Inductions by Meal Ambiance and Moderate Alcohol Consumption on Endocannabinoids and N-Acylethanolamines in Humans: A Randomized Crossover Trial

    NARCIS (Netherlands)

    Schrieks, I.C.; Ripken, D.; Stafleu, A.; Witkamp, R.F.; Hendriks, H.F.J.

    2015-01-01

    Background: The endocannabinoid system is suggested to play a regulatory role in mood. However, the response of circulating endocannabinoids (ECs) to mood changes has never been tested in humans. In the present study, we examined the effects of mood changes induced by ambiance and moderate alcohol

  2. Minocycline treatment inhibits microglial activation and alters spinal levels of endocannabinoids in a rat model of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Elphick Maurice R

    2009-07-01

    Full Text Available Abstract Activation of spinal microglia contributes to aberrant pain responses associated with neuropathic pain states. Endocannabinoids (ECs are present in the spinal cord, and inhibit nociceptive processing; levels of ECs may be altered by microglia which modulate the turnover of endocannabinoids in vitro. Here, we investigate the effect of minocycline, an inhibitor of activated microglia, on levels of the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG, and the related compound N-palmitoylethanolamine (PEA, in neuropathic spinal cord. Selective spinal nerve ligation (SNL in rats resulted in mechanical allodynia and the presence of activated microglia in the ipsilateral spinal cord. Chronic daily treatment with minocycline (30 mg/kg, ip for 14 days significantly reduced the development of mechanical allodynia at days 5, 10 and 14 post-SNL surgery, compared to vehicle-treated SNL rats (P P P P P

  3. Moderate-vigorous physical activity across body mass index in females: moderating effect of endocannabinoids and temperament.

    Science.gov (United States)

    Fernández-Aranda, Fernando; Sauchelli, Sarah; Pastor, Antoni; Gonzalez, Marcela L; de la Torre, Rafael; Granero, Roser; Jiménez-Murcia, Susana; Baños, Rosa; Botella, Cristina; Fernández-Real, Jose M; Fernández-García, Jose C; Frühbeck, Gema; Gómez-Ambrosi, Javier; Rodríguez, Roser; Tinahones, Francisco J; Arcelus, Jon; Fagundo, Ana B; Agüera, Zaida; Miró, Jordi; Casanueva, Felipe F

    2014-01-01

    Endocannabinoids and temperament traits have been linked to both physical activity and body mass index (BMI) however no study has explored how these factors interact in females. The aims of this cross-sectional study were to 1) examine differences among distinct BMI groups on daytime physical activity and time spent in moderate-vigorous physical activity (MVPA), temperament traits and plasma endocannabinoid concentrations; and 2) explore the association and interaction between MVPA, temperament, endocannabinoids and BMI. Physical activity was measured with the wrist-worn accelerometer Actiwatch AW7, in a sample of 189 female participants (43 morbid obese, 30 obese, and 116 healthy-weight controls). The Temperament and Character Inventory-Revised questionnaire was used to assess personality traits. BMI was calculated by bioelectrical impedance analysis via the TANITA digital scale. Blood analyses were conducted to measure levels of endocannabinoids and endocannabinoid-related compounds. Path-analysis was performed to examine the association between predictive variables and MVPA. Obese groups showed lower MVPA and dysfunctional temperament traits compared to healthy-weight controls. Plasma concentrations of 2-arachidonoylglyceryl (2-AG) were greater in obese groups. Path-analysis identified a direct effect between greater MVPA and low BMI (b = -0.13, p = .039) and high MVPA levels were associated with elevated anandamide (AEA) levels (b = 0.16, p = .049) and N-oleylethanolamide (OEA) levels (b = 0.22, p = .004), as well as high Novelty seeking (b = 0.18, pendocannabinoids compared to controls. Temperament and endocannabinoids may act as moderators of the low MVPA in obesity.

  4. Diet-induced changes in n-3- and n-6-derived endocannabinoids and reductions in headache pain and psychological distress.

    Science.gov (United States)

    Ramsden, Christopher E; Zamora, Daisy; Makriyannis, Alexandros; Wood, JodiAnne T; Mann, J Douglas; Faurot, Keturah R; MacIntosh, Beth A; Majchrzak-Hong, Sharon F; Gross, Jacklyn R; Courville, Amber B; Davis, John M; Hibbeln, Joseph R

    2015-08-01

    Omega-3 and omega-6 fatty acids are biosynthetic precursors of endocannabinoids with antinociceptive, anxiolytic, and neurogenic properties. We recently reported that targeted dietary manipulation-increasing omega-3 fatty acids while reducing omega-6 linoleic acid (the H3-L6 intervention)-reduced headache pain and psychological distress among chronic headache patients. It is not yet known whether these clinical improvements were due to changes in endocannabinoids and related mediators derived from omega-3 and omega-6 fatty acids. We therefore used data from this trial (N = 55) to investigate 1) whether the H3-L6 intervention altered omega-3- and omega-6-derived endocannabinoids in plasma and 2) whether diet-induced changes in these bioactive lipids were associated with clinical improvements. The H3-L6 intervention significantly increased the omega-3 docosahexaenoic acid derivatives 2-docosahexaenoylglycerol (+65%, P changes in these endocannabinoid derivatives of omega-3 docosahexaenoic acid, but not omega-6 arachidonic acid, correlated with reductions in physical pain and psychological distress. These findings demonstrate that targeted dietary manipulation can alter endocannabinoids derived from omega-3 and omega-6 fatty acids in humans and suggest that 2-docosahexaenoylglycerol and docosahexaenoylethanolamine could have physical and/or psychological pain modulating properties. ClinicalTrials.gov (NCT01157208) PERSPECTIVE: This article demonstrates that targeted dietary manipulation can alter endocannabinoids derived from omega-3 and omega-6 fatty acids and that these changes are related to reductions in headache pain and psychological distress. These findings suggest that dietary interventions could provide an effective, complementary approach for managing chronic pain and related conditions. Published by Elsevier Inc.

  5. Endocannabinoid system acts as a regulator of immune homeostasis in the gut.

    Science.gov (United States)

    Acharya, Nandini; Penukonda, Sasi; Shcheglova, Tatiana; Hagymasi, Adam T; Basu, Sreyashi; Srivastava, Pramod K

    2017-05-09

    Endogenous cannabinoids (endocannabinoids) are small molecules biosynthesized from membrane glycerophospholipid. Anandamide (AEA) is an endogenous intestinal cannabinoid that controls appetite and energy balance by engagement of the enteric nervous system through cannabinoid receptors. Here, we uncover a role for AEA and its receptor, cannabinoid receptor 2 (CB2), in the regulation of immune tolerance in the gut and the pancreas. This work demonstrates a major immunological role for an endocannabinoid. The pungent molecule capsaicin (CP) has a similar effect as AEA; however, CP acts by engagement of the vanilloid receptor TRPV1, causing local production of AEA, which acts through CB2. We show that the engagement of the cannabinoid/vanilloid receptors augments the number and immune suppressive function of the regulatory CX3CR1 hi macrophages (Mϕ), which express the highest levels of such receptors among the gut immune cells. Additionally, TRPV1 -/- or CB2 -/- mice have fewer CX3CR1 hi Mϕ in the gut. Treatment of mice with CP also leads to differentiation of a regulatory subset of CD4 + cells, the Tr1 cells, in an IL-27-dependent manner in vitro and in vivo. In a functional demonstration, tolerance elicited by engagement of TRPV1 can be transferred to naïve nonobese diabetic (NOD) mice [model of type 1 diabetes (T1D)] by transfer of CD4 + T cells. Further, oral administration of AEA to NOD mice provides protection from T1D. Our study unveils a role for the endocannabinoid system in maintaining immune homeostasis in the gut/pancreas and reveals a conversation between the nervous and immune systems using distinct receptors.

  6. Adipose tissue endocannabinoid system gene expression: depot differences and effects of diet and exercise

    Directory of Open Access Journals (Sweden)

    Yang Rongze

    2011-10-01

    Full Text Available Abstract Background Alterations of endocannabinoid system in adipose tissue play an important role in lipid regulation and metabolic dysfunction associated with obesity. The purpose of this study was to determine whether gene expression levels of cannabinoid type 1 receptor (CB1 and fatty acid amide hydrolase (FAAH are different in subcutaneous abdominal and gluteal adipose tissue, and whether hypocaloric diet and aerobic exercise influence subcutaneous adipose tissue CB1 and FAAH gene expression in obese women. Methods Thirty overweight or obese, middle-aged women (BMI = 34.3 ± 0.8 kg/m2, age = 59 ± 1 years underwent one of three 20-week weight loss interventions: caloric restriction only (CR, N = 9, caloric restriction plus moderate-intensity aerobic exercise (CRM, 45-50% HRR, N = 13, or caloric restriction plus vigorous-intensity aerobic exercise (CRV, 70-75% HRR, N = 8. Subcutaneous abdominal and gluteal adipose tissue samples were collected before and after the interventions to measure CB1 and FAAH gene expression. Results At baseline, FAAH gene expression was higher in abdominal, compared to gluteal adipose tissue (2.08 ± 0.11 vs. 1.78 ± 0.10, expressed as target gene/β-actin mRNA ratio × 10-3, P Conclusions There are depot differences in subcutaneous adipose tissue endocannabinoid system gene expression in obese individuals. Aerobic exercise training may preferentially modulate abdominal adipose tissue endocannabinoid-related gene expression during dietary weight loss. Trial Registration ClinicalTrials.gov: NCT00664729.

  7. Endocannabinoids and prostaglandins both contribute to GnRH neuron-GABAergic afferent local feedback circuits

    Science.gov (United States)

    Glanowska, Katarzyna M.

    2011-01-01

    Gonadotropin-releasing hormone (GnRH) neurons form the final common pathway for central control of fertility. Regulation of GnRH neurons by long-loop gonadal steroid feedback through steroid receptor-expressing afferents such as GABAergic neurons is well studied. Recently, local central feedback circuits regulating GnRH neurons were identified. GnRH neuronal depolarization induces short-term inhibition of their GABAergic afferents via a mechanism dependent on metabotropic glutamate receptor (mGluR) activation. GnRH neurons are enveloped in astrocytes, which express mGluRs. GnRH neurons also produce endocannabinoids, which can be induced by mGluR activation. We hypothesized the local GnRH-GABA circuit utilizes glia-derived and/or cannabinoid mechanisms and is altered by steroid milieu. Whole cell voltage-clamp was used to record GABAergic postsynaptic currents (PSCs) from GnRH neurons before and after action potential-like depolarizations were mimicked. In GnRH neurons from ovariectomized (OVX) mice, this depolarization reduced PSC frequency. This suppression was blocked by inhibition of prostaglandin synthesis with indomethacin, by a prostaglandin receptor antagonist, or by a specific glial metabolic poison, together suggesting the postulate that prostaglandins, potentially glia-derived, play a role in this circuit. This circuit was also inhibited by a CB1 receptor antagonist or by blockade of endocannabinoid synthesis in GnRH neurons, suggesting an endocannabinoid element, as well. In females, local circuit inhibition persisted in androgen-treated mice but not in estradiol-treated mice or young ovary-intact mice. In contrast, local circuit inhibition was present in gonad-intact males. These data suggest GnRH neurons interact with their afferent neurons using multiple mechanisms and that these local circuits can be modified by both sex and steroid feedback. PMID:21917995

  8. Localization and production of peptide endocannabinoids in the rodent CNS and adrenal medulla.

    Science.gov (United States)

    Hofer, Stefanie C; Ralvenius, William T; Gachet, M Salomé; Fritschy, Jean-Marc; Zeilhofer, Hanns Ulrich; Gertsch, Jürg

    2015-11-01

    The endocannabinoid system (ECS) comprises the cannabinoid receptors CB1 and CB2 and their endogenous arachidonic acid-derived agonists 2-arachidonoyl glycerol and anandamide, which play important neuromodulatory roles. Recently, a novel class of negative allosteric CB1 receptor peptide ligands, hemopressin-like peptides derived from alpha hemoglobin, has been described, with yet unknown origin and function in the CNS. Using monoclonal antibodies we now identified the localization of RVD-hemopressin (pepcan-12) and N-terminally extended peptide endocannabinoids (pepcans) in the CNS and determined their neuronal origin. Immunohistochemical analyses in rodents revealed distinctive and specific staining in major groups of noradrenergic neurons, including the locus coeruleus (LC), A1, A5 and A7 neurons, which appear to be major sites of production/release in the CNS. No staining was detected in dopaminergic neurons. Peptidergic axons were seen throughout the brain (notably hippocampus and cerebral cortex) and spinal cord, indicative of anterograde axonal transport of pepcans. Intriguingly, the chromaffin cells in the adrenal medulla were also strongly stained for pepcans. We found specific co-expression of pepcans with galanin, both in the LC and adrenal gland. Using LC-MS/MS, pepcan-12 was only detected in non-perfused brain (∼ 40 pmol/g), suggesting that in the CNS it is secreted and present in extracellular compartments. In adrenal glands, significantly more pepcan-12 (400-700 pmol/g) was measured in both non-perfused and perfused tissues. Thus, chromaffin cells may be a major production site of pepcan-12 found in blood. These data uncover important areas of peptide endocannabinoid occurrence with exclusive noradrenergic immunohistochemical staining, opening new doors to investigate their potential physiological function in the ECS. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'. Copyright © 2015 Elsevier Ltd. All

  9. Endocannabinoids and cannabinoid receptors in ischaemia–reperfusion injury and preconditioning

    Science.gov (United States)

    Pacher, P; Haskó, G

    2007-01-01

    Ischaemia–reperfusion (I/R) is a pivotal mechanism of organ injury during stroke, myocardial infarction, organ transplantation and vascular surgeries. Ischaemic preconditioning (IPC) is a potent endogenous form of tissue protection against I/R injury. On the one hand, endocannabinoids have been implicated in the protective effects of IPC through cannabinoid CB1/CB2 receptor-dependent and -independent mechanisms. However, there is evidence suggesting that endocannabinoids are overproduced during various forms of I/R, such as myocardial infarction or whole body I/R associated with circulatory shock, and may contribute to the cardiovascular depressive state associated with these pathologies. Previous studies using synthetic CB1 receptor agonists or knockout mice demonstrated CB1 receptor-dependent protection against cerebral I/R injury in various animal models. In contrast, several follow-up reports have shown protection afforded by CB1 receptor antagonists, but not agonists. Excitedly, emerging studies using potent CB2 receptor agonists and/or knockout mice have provided compelling evidence that CB2 receptor activation is protective against myocardial, cerebral and hepatic I/R injuries by decreasing the endothelial cell activation/inflammatory response (for example, expression of adhesion molecules, secretion of chemokines, and so on), and by attenuating the leukocyte chemotaxis, rolling, adhesion to endothelium, activation and transendothelial migration, and interrelated oxidative/nitrosative damage. This review is aimed to discuss the role of endocannabinoids and CB receptors in various forms of I/R injury (myocardial, cerebral, hepatic and circulatory shock) and preconditioning, and to delineate the evidence supporting the therapeutic utility of selective CB2 receptor agonists, which are devoid of psychoactive effects, as a promising new approach to limit I/R-induced tissue damage. PMID:18026124

  10. Opposing actions of endocannabinoids on cholangiocarcinoma growth is via the differential activation of Notch signaling

    Science.gov (United States)

    Frampton, Gabriel; Coufal, Monique; Li, Huang; Ramirez, Jonathan; DeMorrow, Sharon

    2010-01-01

    The endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2-AG) have opposing effects on cholangiocarcinoma growth. Implicated in cancer, Notch signaling requires the γ-secretase complex for activation. The aims of this study were to determine if the opposing effects of endocannabinoids depend on the differential activation of the Notch receptors; and to demonstrate that the differential activation of these receptors are due to presenilin 1 containing- and presenilin 2-containing- γ-secretase complexes. Mz-ChA-1 cells were treated with AEA or 2-AG. Notch receptor expression, activation and nuclear translocation was determined. Specific roles for Notch 1 and 2 on cannabinoid-induced effects were determined by transient transfection of Notch 1 or 2 shRNA vectors prior to stimulation with AEA or 2-AG. Expression of presenilin 1 and 2 was determined after AEA or 2-AG treatment and the involvement of presenilin 1 and 2 in the cannabinoid induced effects were demonstrated in cell lines with low presenilin 1 or 2 expression. Antiproliferative effects of AEA required increased Notch 1 mRNA, activation and nuclear translocation, whereas the growth-promoting effects induced by 2-AG required increased Notch 2 mRNA expression, activation and nuclear translocation. AEA increased presenilin 1 expression and recruitment into the γ-secretase complex whereas 2-AG increased expression and recruitment of presenilin 2. The development of novel therapeutic strategies aimed at modulating the endocannabinoid system, or mimicking the mode of action of AEA on Notch signaling pathways would prove beneficial for cholangiocarcinoma management. PMID:20347808

  11. Opposing actions of endocannabinoids on cholangiocarcinoma growth is via the differential activation of Notch signaling

    Energy Technology Data Exchange (ETDEWEB)

    Frampton, Gabriel; Coufal, Monique [Department of Internal Medicine, Texas A and M Health Science Center College of Medicine, Temple, TX (United States); Li, Huang [Department of Internal Medicine, Texas A and M Health Science Center College of Medicine, Temple, TX (United States); Department of Hepatobiliary Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Ramirez, Jonathan [Digestive Disease Research Center, Scott and White Hospital, Temple, TX (United States); DeMorrow, Sharon, E-mail: demorrow@medicine.tamhsc.edu [Department of Internal Medicine, Texas A and M Health Science Center College of Medicine, Temple, TX (United States); Digestive Disease Research Center, Scott and White Hospital, Temple, TX (United States)

    2010-05-15

    The endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2-AG) have opposing effects on cholangiocarcinoma growth. Implicated in cancer, Notch signaling requires the {gamma}-secretase complex for activation. The aims of this study were to determine if the opposing effects of endocannabinoids depend on the differential activation of the Notch receptors and to demonstrate that the differential activation of these receptors are due to presenilin 1 containing- and presenilin 2 containing-{gamma}-secretase complexes. Mz-ChA-1 cells were treated with AEA or 2-AG. Notch receptor expression, activation, and nuclear translocation were determined. Specific roles for Notch 1 and 2 on cannabinoid-induced effects were determined by transient transfection of Notch 1 or 2 shRNA vectors before stimulation with AEA or 2-AG. Expression of presenilin 1 and 2 was determined after AEA or 2-AG treatment, and the involvement of presenilin 1 and 2 in the cannabinoid-induced effects was demonstrated in cell lines with low presenilin 1 or 2 expression. Antiproliferative effects of AEA required increased Notch 1 mRNA, activation, and nuclear translocation, whereas the growth-promoting effects induced by 2-AG required increased Notch 2 mRNA expression, activation, and nuclear translocation. AEA increased presenilin 1 expression and recruitment into the {gamma}-secretase complex, whereas 2-AG increased expression and recruitment of presenilin 2. The development of novel therapeutic strategies aimed at modulating the endocannabinoid system or mimicking the mode of action of AEA on Notch signaling pathways would prove beneficial for cholangiocarcinoma management.

  12. Feasibility of targeting ischaemia-related ventricular arrhythmias by mimicry of endogenous protection by endocannabinoids.

    Science.gov (United States)

    Andrag, Ellen; Curtis, Michael J

    2013-08-01

    The hypothesis that endocannabinoids protect hearts against ventricular fibrillation (VF) induced by myocardial ischaemia and reperfusion was examined, and the concept that cannabinoids may represent a new class of anti-VF drug was tested. In rat isolated hearts (Langendorff perfusion), VF evoked by reperfusion after 60 min regional ischaemia is known to be exacerbated by inhibitors of endogenous protectants such as nitric oxide. This preparation was used to assay the effects of cannabinoid agonists and antagonists, and the protocols were varied to examine mechanisms. Reperfusion-induced VF was not facilitated by relatively selective CB1 (1 μM AM251) or CB2 (1 μM AM630) antagonists. VF evoked during early (30 min) acute ischaemia was also unaffected. However, AM251 significantly increased the incidence of VF and the duration of VF episodes occurring during the later stage of acute ischaemia (30-60 min). AM630 had no such effects. In a separate study, cannabinoid perfusion (anandamide or 2-arachidonoylglycerol, both 0.01-1 μM) failed to reduce VF incidence concentration-dependently during 30 min ischaemia. In all these studies, changes in ancillary variables (QT, PR, heart rate) were unrelated to changes in VF. Endocannabinoids are not endogenous anti-VF mediators during reperfusion, but may have a weak protective effect during the late stages of ischaemia, mediated via CB1 agonism. This does not suggest endocannabinoids are important endogenous protectants in these settings, or that CB1 (or CB2) receptors are useful novel targets for developing drugs for VF. © 2013 The British Pharmacological Society.

  13. Obesity-driven synaptic remodeling affects endocannabinoid control of orexinergic neurons

    Science.gov (United States)

    Cristino, Luigia; Busetto, Giuseppe; Imperatore, Roberta; Ferrandino, Ida; Palomba, Letizia; Silvestri, Cristoforo; Petrosino, Stefania; Orlando, Pierangelo; Bentivoglio, Marina; Mackie, Kenneth; Di Marzo, Vincenzo

    2013-01-01

    Acute or chronic alterations in energy status alter the balance between excitatory and inhibitory synaptic transmission and associated synaptic plasticity to allow for the adaptation of energy metabolism to new homeostatic requirements. The impact of such changes on endocannabinoid and cannabinoid receptor type 1 (CB1)-mediated modulation of synaptic transmission and strength is not known, despite the fact that this signaling system is an important target for the development of new drugs against obesity. We investigated whether CB1-expressing excitatory vs. inhibitory inputs to orexin-A–containing neurons in the lateral hypothalamus are altered in obesity and how this modifies endocannabinoid control of these neurons. In lean mice, these inputs are mostly excitatory. By confocal and ultrastructural microscopic analyses, we observed that in leptin-knockout (ob/ob) obese mice, and in mice with diet-induced obesity, orexinergic neurons receive predominantly inhibitory CB1-expressing inputs and overexpress the biosynthetic enzyme for the endocannabinoid 2-arachidonoylglycerol, which retrogradely inhibits synaptic transmission at CB1-expressing axon terminals. Patch-clamp recordings also showed increased CB1-sensitive inhibitory innervation of orexinergic neurons in ob/ob mice. These alterations are reversed by leptin administration, partly through activation of the mammalian target of rapamycin pathway in neuropeptide-Y-ergic neurons of the arcuate nucleus, and are accompanied by CB1-mediated enhancement of orexinergic innervation of target brain areas. We propose that enhanced inhibitory control of orexin-A neurons, and their CB1-mediated disinhibition, are a consequence of leptin signaling impairment in the arcuate nucleus. We also provide initial evidence of the participation of this phenomenon in hyperphagia and hormonal dysregulation in obesity. PMID:23630288

  14. Polyunsaturated Fatty Acids Differentially Modulate Cell Proliferation and Endocannabinoid System in Two Human Cancer Lines.

    Science.gov (United States)

    Gastón, Repossi; María Eugenia, Pasqualini; Das, Undurti N; Eynard, Aldo R

    2017-01-01

    Evidence suggests that quantity and quality of dietary polyunsaturated fatty acids (PUFAs) play a role in the development of cancer. However, the mechanisms involved in this interaction(s) are not clear. Endocannabinoids are lipid metabolites known to have growth modulatory actions. We studied the effect of supplementation with PUFAs ω-6 and ω-3 (essential fatty acids, EFAs), saturated and monounsaturated fatty acids (non-EFAs) on the growth of tumor cells and modifications in their endocannabinoid content. Cell cultures of human glioblastoma (T98G) and breast cancer (MCF7) were supplemented with 50 or 100 mmol EFAs and non-EFAs for 72 h. Cell proliferation was then determined by MTT, anandamide (AEA) levels by HPLC, total fatty acids profiles by GLC, CB1 receptor expression by WB and FAAH activity by spectrophotometric method. Fatty acids profile reflected the incorporation of the lipids supplemented in each assay. Arachidonic acid (EFA ω-6) supplementation increased AEA levels and inhibited the growth of T98G, whereas palmitic acid (non-EFA) enhanced their proliferation. In breast cancer (MCF7) cells, eicosapentaenoic acid (EFA ω-3) reduced and oleic acid (non-EFA) enhanced their proliferation. CB1 expression was higher in T98G and no differences were observed in FAAH activity. The growth of tumor cells can be differentially modulated by fatty acids and, at least in part, can be attributed to their ability to act on the components of the endocannabinoid system. Copyright © 2017 IMSS. Published by Elsevier Inc. All rights reserved.

  15. Sleep restriction alters plasma endocannabinoids concentrations before but not after exercise in humans.

    Science.gov (United States)

    Cedernaes, Jonathan; Fanelli, Flaminia; Fazzini, Alessia; Pagotto, Uberto; Broman, Jan-Erik; Vogel, Heike; Dickson, Suzanne L; Schiöth, Helgi B; Benedict, Christian

    2016-12-01

    Following binding to cannabinoid receptors, endocannabinoids regulate a variety of central nervous system processes including appetite and mood. Recent evidence suggests that the systemic release of these lipid metabolites can be altered by acute exercise and that their levels also vary across the 24-h sleep-wake cycle. The present study utilized a within-subject design (involving 16 normal-weight men) to determine whether daytime circulating endocannabinoid concentrations differ following three nights of partial sleep deprivation (4.25-h sleep opportunity, 2:45-7a.m. each night) vs. normal sleep (8.5-h sleep opportunity, 10:30p.m.-7a.m. each night), before and after an acute bout of ergometer cycling in the morning. In addition, subjective hunger and stress were measured. Pre-exercise plasma concentrations of 2-arachidonoylglycerol (2AG) were 80% higher 1.5h after awakening (vs. normal sleep, psleep-deprived. This coincided with increased hunger ratings (+25% vs. normal sleep, pexercise (+44%, pSleep duration did not however modulate this exercise-induced rise. Finally, subjective stress was generally lower on the day after three nights of short sleep vs. normal sleep, especially after exercise (psleep loss, such as increased hunger and transiently improved psychological state, may partially result from activation of this signaling pathway. In contrast, more pronounced exercise-induced elevations of endocannabinoids appear to be less affected by short sleep duration. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  16. A biophysical model of endocannabinoid-mediated short term depression in hippocampal inhibition.

    Directory of Open Access Journals (Sweden)

    Margarita Zachariou

    Full Text Available Memories are believed to be represented in the synaptic pathways of vastly interconnected networks of neurons. The plasticity of synapses, that is, their strengthening and weakening depending on neuronal activity, is believed to be the basis of learning and establishing memories. An increasing number of studies indicate that endocannabinoids have a widespread action on brain function through modulation of synaptic transmission and plasticity. Recent experimental studies have characterised the role of endocannabinoids in mediating both short- and long-term synaptic plasticity in various brain regions including the hippocampus, a brain region strongly associated with cognitive functions, such as learning and memory. Here, we present a biophysically plausible model of cannabinoid retrograde signalling at the synaptic level and investigate how this signalling mediates depolarisation induced suppression of inhibition (DSI, a prominent form of short-term synaptic depression in inhibitory transmission in hippocampus. The model successfully captures many of the key characteristics of DSI in the hippocampus, as observed experimentally, with a minimal yet sufficient mathematical description of the major signalling molecules and cascades involved. More specifically, this model serves as a framework to test hypotheses on the factors determining the variability of DSI and investigate under which conditions it can be evoked. The model reveals the frequency and duration bands in which the post-synaptic cell can be sufficiently stimulated to elicit DSI. Moreover, the model provides key insights on how the state of the inhibitory cell modulates DSI according to its firing rate and relative timing to the post-synaptic activation. Thus, it provides concrete suggestions to further investigate experimentally how DSI modulates and is modulated by neuronal activity in the brain. Importantly, this model serves as a stepping stone for future deciphering of the role of

  17. Cannabinoid CB1Discrimination: Effects of Endocannabinoids and Catabolic Enzyme Inhibitors.

    Science.gov (United States)

    Leonard, Michael Z; Alapafuja, Shakiru O; Ji, Lipin; Shukla, Vidyanand G; Liu, Yingpeng; Nikas, Spyros P; Makriyannis, Alexandros; Bergman, Jack; Kangas, Brian D

    2017-12-01

    An improved understanding of the endocannabinoid system has provided new avenues of drug discovery and development toward the management of pain and other behavioral maladies. Exogenous cannabinoid type 1 (CB 1 ) receptor agonists such as Δ 9 -tetrahydrocannabinol are increasingly used for their medicinal actions; however, their utility is constrained by concern regarding abuse-related subjective effects. This has led to growing interest in the clinical benefit of indirectly enhancing the activity of the highly labile endocannabinoids N -arachidonoylethanolamine [AEA (or anandamide)] and/or 2-arachidonoylglycerol (2-AG) via catabolic enzyme inhibition. The present studies were conducted to determine whether such actions can lead to CB 1 agonist-like subjective effects, as reflected in CB 1 -related discriminative stimulus effects in laboratory subjects. Squirrel monkeys ( n = 8) that discriminated the CB 1 full agonist AM4054 (0.01 mg/kg) from vehicle were used to study, first, the inhibitors of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MGL) alone or in combination [FAAH (URB597, AM4303); MGL (AM4301); FAAH/MGL (JZL195, AM4302)] and, second, the ability of the endocannabinoids AEA and 2-AG to produce CB 1 agonist-like effects when administered alone or after enzyme inhibition. Results indicate that CB 1 -related discriminative stimulus effects were produced by combined, but not selective, inhibition of FAAH and MGL, and that these effects were nonsurmountably antagonized by low doses of rimonabant. Additionally, FAAH or MGL inhibition revealed CB 1 -like subjective effects produced by AEA but not by 2-AG. Taken together, the present data suggest that therapeutic effects of combined, but not selective, enhancement of AEA or 2-AG activity via enzyme inhibition may be accompanied by CB 1 receptor-mediated subjective effects. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  18. Opposing actions of endocannabinoids on cholangiocarcinoma growth is via the differential activation of Notch signaling.

    Science.gov (United States)

    Frampton, Gabriel; Coufal, Monique; Li, Huang; Ramirez, Jonathan; DeMorrow, Sharon

    2010-05-15

    The endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2-AG) have opposing effects on cholangiocarcinoma growth. Implicated in cancer, Notch signaling requires the gamma-secretase complex for activation. The aims of this study were to determine if the opposing effects of endocannabinoids depend on the differential activation of the Notch receptors and to demonstrate that the differential activation of these receptors are due to presenilin 1 containing- and presenilin 2 containing-gamma-secretase complexes. Mz-ChA-1 cells were treated with AEA or 2-AG. Notch receptor expression, activation, and nuclear translocation were determined. Specific roles for Notch 1 and 2 on cannabinoid-induced effects were determined by transient transfection of Notch 1 or 2 shRNA vectors before stimulation with AEA or 2-AG. Expression of presenilin 1 and 2 was determined after AEA or 2-AG treatment, and the involvement of presenilin 1 and 2 in the cannabinoid-induced effects was demonstrated in cell lines with low presenilin 1 or 2 expression. Antiproliferative effects of AEA required increased Notch 1 mRNA, activation, and nuclear translocation, whereas the growth-promoting effects induced by 2-AG required increased Notch 2 mRNA expression, activation, and nuclear translocation. AEA increased presenilin 1 expression and recruitment into the gamma-secretase complex, whereas 2-AG increased expression and recruitment of presenilin 2. The development of novel therapeutic strategies aimed at modulating the endocannabinoid system or mimicking the mode of action of AEA on Notch signaling pathways would prove beneficial for cholangiocarcinoma management. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Immune system modulation in the central nervous system: A possible role for endocannabinoids

    International Nuclear Information System (INIS)

    Abd-Allah, Adel R.A.

    2007-01-01

    The immune system is designed to protect the body from infection and tumor formation. To perform this function, cells of the immune system can be dangerous for the survival and function of the neuronal network in the brain under the influence of infection or immune imbalance. An attack of immune cells inside the brain includes the potential for severe neuronal damage or cell death and therefore impairment of the CNS function. To avoid such undesirable action of the immune system, the CNS performs a cascade of cellular and molecular mechanisms enabling strict control of immune reactions i mmune privilege . Under inflammatory and patholological conditions, uncontrolled immune system results in the activation of neuronal damage that is frequently associated with neurological diseases. On the other hand, processes of neuroprotection and neurorepair after neuronal damage depend on a steady and tightly controlled immunesurvelliance. Many immunoprotectants play a role to imbalance the immune reactions in the CNS and other organs which presents an important therapeutic target. It has been reported recently that endocannabinoids are secreted in abundance in the CNS following neuronal insult, probably for its protection. There are at least two types of cannabinoid receptors, CB1 and CB2. Both are coupled to G proteins. CB1 receptors exist primarily on central and peripheral neurons. CB2 receptors are present mainly on immune cells. Endogenous agonists for cannabinoid receptors (endocannabinoids), have been discovered, the most important being arachidonoyl ethanolamide (anandamide), 2-arachidonoyl glycerol (2AG), and 2-archidonyl glyceryl ether. Following their release, endocannabinoids are removed from the extracellular space and then degraded by intracellular enzymic hydrolysis. Therapeutic uses of cannabinoid receptor agonists/antagonists include the management of many disease conditions. They are also involved in immune system suppression and in cell to cell communication

  20. Genetic variation in the endocannabinoid system and response to Cognitive Behavior Therapy for child anxiety disorders

    Science.gov (United States)

    Coleman, Jonathan R. I.; Roberts, Susanna; Keers, Robert; Breen, Gerome; Bögels, Susan; Creswell, Cathy; Hudson, Jennifer L.; McKinnon, Anna; Nauta, Maaike; Rapee, Ronald M.; Schneider, Silvia; Silverman, Wendy K.; Thastum, Mikael; Waite, Polly; Wergeland, Gro Janne H.; Eley, Thalia C.

    2016-01-01

    Extinction learning is an important mechanism in the successful psychological treatment of anxiety. Individual differences in response and relapse following Cognitive Behavior Therapy may in part be explained by variability in the ease with which fears are extinguished or the vulnerability of these fears to re‐emerge. Given the role of the endocannabinoid system in fear extinction, this study investigates whether genetic variation in the endocannabinoid system explains individual differences in response to CBT. Children (N = 1,309) with a primary anxiety disorder diagnosis were recruited. We investigated the relationship between variation in the CNR1, CNR2, and FAAH genes and change in primary anxiety disorder severity between pre‐ and post‐treatment and during the follow‐up period in the full sample and a subset with fear‐based anxiety disorder diagnoses. Change in symptom severity during active treatment was nominally associated (P < 0.05) with two SNPs. During the follow‐up period, five SNPs were nominally associated with a poorer treatment response (rs806365 [CNR1]; rs2501431 [CNR2]; rs2070956 [CNR2]; rs7769940 [CNR1]; rs2209172 [FAAH]) and one with a more favorable response (rs6928813 [CNR1]). Within the fear‐based subset, the effect of rs806365 survived multiple testing corrections (P < 0.0016). We found very limited evidence for an association between variants in endocannabinoid system genes and treatment response once multiple testing corrections were applied. Larger, more homogenous cohorts are needed to allow the identification of variants of small but statistically significant effect and to estimate effect sizes for these variants with greater precision in order to determine their potential clinical utility. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc. PMID:27346075

  1. Identification of an endocannabinoid system in the rat pars tuberalis-a possible interface in the hypothalamic-pituitary-adrenal system?

    Science.gov (United States)

    Jafarpour, Arsalan; Dehghani, Faramarz; Korf, Horst-Werner

    2017-04-01

    Endocannabinoids (ECs) are ubiquitous endogenous lipid derivatives and play an important role in intercellular communication either in an autocrine/paracrine or in an endocrine fashion. Recently, an intrinsic EC system has been discovered in the hypophysial pars tuberalis (PT) of hamsters and humans. In hamsters, this EC system is under photoperiodic control and appears to influence the secretion of hormones such as prolactin from the adenohypophysis. We investigate the EC system in the PT of the rat, a frequently used species in endocrine research. By means of immunocytochemistry, enzymes involved in EC biosynthesis, e.g., N-arachidonoyl-phosphatidylethanolamine-phospholipase D (NAPE-PLD) and diacylglycerol lipase α (DAGLα) and enzymes involved in EC degradation, e.g., fatty acid amide hydrolase (FAAH) and cyclooxygenase-2 (COX-2), were demonstrated in PT cells of the rat. Immunoreactions (IR) for FAAH and for the cannabinoid receptor CB 1 were observed in corticotrope cells of the rat adenohypophysis; these cells were identified by antibodies against proopiomelanocortin (POMC) or adrenocorticotrophic hormone (ACTH). In the outer zone of the median eminence, numerous nerve fibers and terminals displayed CB 1 IR. The majority of these were also immunolabeled by an antibody against corticotropin-releasing factor (CRF). These results suggest that the EC system at the hypothalamo-hypophysial interface affects both the CRF-containing nerve fibers and the corticotrope cells in the adenohypophysis. Our data give rise to the hypothesis that, in addition to its well-known role in the reproductive axis, the PT might influence adrenal functions and, thus, the stress response and immune system.

  2. The thrifty lipids: Endocannabinoids and the neural control of energy conservation

    Science.gov (United States)

    DiPatrizio, Nicholas V.; Piomelli, Daniele

    2013-01-01

    The “thrifty gene hypothesis” posits that evolution preferentially selects physiological mechanisms that optimize energy storage to increase survival under alternating conditions of abundance and scarcity of food. Recent experiments suggest that endocannabinoids – a class of lipid-derived mediators that activate cannabinoid receptors in many cells of the body – are key agents of energy conservation. The new evidence indicates that these compounds increase energy intake and decrease energy expenditure by controlling the activity of peripheral and central neural pathways involved in the sensing and hedonic processing of sweet and fatty foods, as well as in the storage of their energy content for future use. PMID:22622030

  3. Endocannabinoids and Endovanilloids: A Possible Balance in the Regulation of the Testicular GnRH Signalling

    Directory of Open Access Journals (Sweden)

    Rosanna Chianese

    2013-01-01

    Full Text Available Reproductive functions are regulated both at central (brain and gonadal levels. In this respect, the endocannabinoid system (eCS has a very influential role. Interestingly, the characterization of eCS has taken many advantages from the usage of animal models different from mammals. Therefore, this review is oriented to summarize the main pieces of evidence regarding eCS coming from the anuran amphibian Rana esculenta, with particular interest to the morphofunctional relationship between eCS and gonadotropin releasing hormone (GnRH. Furthermore, a novel role for endovanilloids in the regulation of a testicular GnRH system will be also discussed.

  4. Cannabinoids and omega-3/6 endocannabinoids as cell death and anticancer modulators.

    Science.gov (United States)

    Brown, Iain; Cascio, Maria G; Rotondo, Dino; Pertwee, Roger G; Heys, Steven D; Wahle, Klaus W J

    2013-01-01

    Cannabinoids-endocannaboids are possible preventatives of common diseases including cancers. Cannabinoid receptors (CB(½), TRPV1) are central components of the system. Many disease-ameliorating effects of cannabinoids-endocannabinoids are receptor mediated, but many are not, indicating non-CBR signaling pathways. Cannabinoids-endocannabinoids are anti-inflammatory, anti-proliferative, anti-invasive, anti-metastatic and pro-apoptotic in most cancers, in vitro and in vivo in animals. They signal through p38, MAPK, JUN, PI3, AKT, ceramide, caspases, MMPs, PPARs, VEGF, NF-κB, p8, CHOP, TRB3 and pro-apoptotic oncogenes (p53,p21 waf1/cip1) to induce cell cycle arrest, autophagy, apoptosis and tumour inhibition. Paradoxically they are pro-proliferative and anti-apoptotic in some cancers. Differences in receptor expression and concentrations of cannabinoids in cancer and immune cells can elicit anti- or pro-cancer effects through different signal cascades (p38MAPK or PI3/AKT). Similarities between effects of cannabinoids-endocannabinoids, omega-3 LCPUFA and CLAs/CLnAs as anti-inflammatory, antiangiogenic, anti-invasive anti-cancer agents indicate common signaling pathways. Evidence in vivo and in vitro shows EPA and DHA can form endocannabinoids that: (i) are ligands for CB(½) receptors and possibly TRPV-1, (ii) have non-receptor mediated bioactivity, (iii) induce cell cycle arrest, (iii) increase autophagy and apoptosis, and (iv) augment chemotherapeutic actions in vitro. They can also form bioactive, eicosanoid-like products that appear to be non-CBR ligands but have effects on PPARs and NF-kB transcription factors. The use of cannabinoids in cancer treatment is currently limited to chemo- and radio-therapy-associated nausea and cancer-associated pain apart from one trial on brain tumours in patients. Further clinical studies are urgently required to determine the true potential of these intriguing, low toxicity compounds in cancer therapy. Particularly in view of

  5. Prior stimulation of the endocannabinoid system prevents methamphetamine-induced dopaminergic neurotoxicity in the striatum through activation of CB2 receptors.

    Science.gov (United States)

    Nader, Joëlle; Rapino, Cinzia; Gennequin, Benjamin; Chavant, Francois; Francheteau, Maureen; Makriyannis, Alexandros; Duranti, Andrea; Maccarrone, Mauro; Solinas, Marcello; Thiriet, Nathalie

    2014-12-01

    Methamphetamine toxicity is associated with cell death and loss of dopamine neuron terminals in the striatum similar to what is found in some neurodegenerative diseases. Conversely, the endocannabinoid system (ECS) has been suggested to be neuroprotective in the brain, and new pharmacological tools have been developed to increase their endogenous tone. In this study, we evaluated whether ECS stimulation could reduce the neurotoxicity of high doses of methamphetamine on the dopamine system. We found that methamphetamine alters the levels of the major endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) in the striatum, suggesting that the ECS participates in the brain responses to methamphetamine. Δ(9)-tetrahydrocannabinol (THC), a cannabis-derived agonist of both CB1 and CB2 cannabinoid receptors, or inhibitors of the main enzymes responsible for the degradation of AEA and 2-AG (URB597 and JZL184, respectively), blunted the decrease in striatal protein levels of tyrosine hydroxylase induced by methamphetamine. In addition, antagonists of CB2, but not of CB1, blocked the preventive effects of URB597 and JZL184, suggesting that only the former receptor subtype is engaged in neuroprotection exerted by ECS stimulation. Finally, we found that methamphetamine increases striatal levels of the cytokine tumor necrosis factor alpha, an effect that was blocked by ECS stimulation. Altogether, our results indicate that stimulation of ECS prior to the administration of an overdose of methamphetamine considerably reduces the neurotoxicity of the drug through CB2 receptor activation and highlight a protective function for the ECS against the toxicity induced by drugs and other external insults to the brain. This article is part of the Special Issue entitled 'CNS Stimulants'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Vitamin B biosynthesis in plants.

    Science.gov (United States)

    Roje, Sanja

    2007-07-01

    The vitamin B complex comprises water-soluble enzyme cofactors and their derivatives that are essential contributors to diverse metabolic processes in plants as well as in animals and microorganisms. Seven vitamins form this complex: B1 (thiamin (1)), B2 (riboflavin (2)), B3 (niacin (3)), B5 (pantothenic acid (4)), B6 (pyridoxine, pyridoxal (5), and pyridoxamine), B8 (biotin (6)), and B9 (folate (7)). All seven B vitamins are required in the human diet for proper nutrition because humans lack enzymes to synthesize these compounds de novo. This review aims to summarize the present knowledge of vitamin B biosynthesis in plants.

  7. Heterologous expression and characterization of a "Pseudomature" form of taxadiene synthase involved in paclitaxel (Taxol) biosynthesis and evaluation of a potential intermediate and inhibitors of the multistep diterpene cyclization reaction.

    Science.gov (United States)

    Williams, D C; Wildung, M R; Jin, A Q; Dalal, D; Oliver, J S; Coates, R M; Croteau, R

    2000-07-01

    The diterpene cyclase taxadiene synthase from yew (Taxus) species transforms geranylgeranyl diphosphate to taxa-4(5),11(12)-diene as the first committed step in the biosynthesis of the anti-cancer drug Taxol. Taxadiene synthase is translated as a preprotein bearing an N-terminal targeting sequence for localization to and processing in the plastids. Overexpression of the full-length preprotein in Escherichia coli and purification are compromised by host codon usage, inclusion body formation, and association with host chaperones, and the preprotein is catalytically impaired. Since the transit peptide-mature enzyme cleavage site could not be determined directly, a series of N-terminally truncated enzymes was created by expression of the corresponding cDNAs from a suitable vector, and each was purified and kinetically evaluated. Deletion of up to 79 residues yielded functional protein; however, deletion of 93 or more amino acids resulted in complete elimination of activity, implying a structural or catalytic role for the amino terminus. The pseudomature form of taxadiene synthase having 60 amino acids deleted from the preprotein was found to be superior with respect to level of expression, ease of purification, solubility, stability, and catalytic activity with kinetics comparable to the native enzyme. In addition to the major product, taxa-4(5),11(12)-diene (94%), this enzyme produces a small amount of the isomeric taxa-4(20), 11(12)-diene ( approximately 5%), and a product tentatively identified as verticillene ( approximately 1%). Isotopically sensitive branching experiments utilizing (4R)-[4-(2)H(1)]geranylgeranyl diphosphate confirmed that the two taxadiene isomers, and a third (taxa-3(4),11(12)-diene), are derived from the same intermediate taxenyl C4-carbocation. These results, along with the failure of the enzyme to utilize 2, 7-cyclogeranylgeranyl diphosphate as an alternate substrate, indicate that the reaction proceeds by initial ionization of the

  8. Biosynthesis of bacterial aromatic polyketides.

    Science.gov (United States)

    Zhan, Jixun

    2009-01-01

    Aromatic polyketides represent important members of the family of polyketides, which have displayed a wide assortment of bioactive properties, such as antibacterial, antitumor, and antiviral activities. Bacterial aromatic polyketides are mainly synthesized by type II polyketide synthases (PKSs). Whereas malonyl-CoA is exclusively used as the extender unit, starter units can vary in different aromatic polyketide biosynthetic pathways, leading to a variety of polyketide backbones. Once the polyketide chains are elongated by the minimal PKSs to the full length, the immediate tailoring enzymes including ketoreductases, oxygenases and cyclases will work on the nascent chains to form aromatic structures, which will be further decorated by those late tailoring enzymes such as methyltransferases and glycosyltransferases. The mechanistic studies on the biosynthetic pathways of aromatic polyketides such as oxytetracycline and pradimicin A have been extensively carried out in recent years. Engineered biosynthesis of novel "unnatural" polyketides has been achieved in heterologous hosts such as Streptomyces coelicolor and Escherichia coli. This review covers the most recent advances in aromatic polyketide biosynthesis, which provide new enzymes or methods for building novel polyketide biosynthetic machinery.

  9. Fatty acid biosynthesis in actinomycetes

    Science.gov (United States)

    Gago, Gabriela; Diacovich, Lautaro; Arabolaza, Ana; Tsai, Shiou-Chuan; Gramajo, Hugo

    2011-01-01

    All organisms that produce fatty acids do so via a repeated cycle of reactions. In mammals and other animals, these reactions are catalyzed by a type I fatty acid synthase (FAS), a large multifunctional protein to which the growing chain is covalently attached. In contrast, most bacteria (and plants) contain a type II system in which each reaction is catalyzed by a discrete protein. The pathway of fatty acid biosynthesis in Escherichia coli is well established and has provided a foundation for elucidating the type II FAS pathways in other bacteria (White et al., 2005). However, fatty acid biosynthesis is more diverse in the phylum Actinobacteria: Mycobacterium, possess both FAS systems while Streptomyces species have only the multi-enzyme FAS II system and Corynebacterium species exclusively FAS I. In this review we present an overview of the genome organization, biochemical properties and physiological relevance of the two FAS systems in the three genera of actinomycetes mentioned above. We also address in detail the biochemical and structural properties of the acyl-CoA carboxylases (ACCases) that catalyzes the first committed step of fatty acid synthesis in actinomycetes, and discuss the molecular bases of their substrate specificity and the structure-based identification of new ACCase inhibitors with anti-mycobacterial properties. PMID:21204864

  10. The Endocannabinoid System as Pharmacological Target Derived from Its CNS Role in Energy Homeostasis and Reward. Applications in Eating Disorders and Addiction

    Directory of Open Access Journals (Sweden)

    Francisco-Javier Bermúdez-Silva

    2011-08-01

    Full Text Available The endocannabinoid system (ECS has been implicated in many physiological functions, including the regulation of appetite, food intake and energy balance, a crucial involvement in brain reward systems and a role in psychophysiological homeostasis (anxiety and stress responses. We first introduce this important regulatory system and chronicle what is known concerning the signal transduction pathways activated upon the binding of endogenous cannabinoid ligands to the Gi/0-coupled CB1 cannabinoid receptor, as well as its interactions with other hormones and neuromodulators which can modify endocannabinoid signaling in the brain. Anorexia nervosa (AN and bulimia nervosa (BN are severe and disabling psychiatric disorders, characterized by profound eating and weight alterations and body image disturbances. Since endocannabinoids modulate eating behavior, it is plausible that endocannabinoid genes may contribute to the biological vulnerability to these diseases. We present and discuss data suggesting an impaired endocannabinoid signaling in these eating disorders, including association of endocannabinoid components gene polymorphisms and altered CB1-receptor expression in AN and BN. Then we discuss recent findings that may provide new avenues for the identification of therapeutic strategies based on the endocannabinod system. In relation with its implications as a reward-related system, the endocannabinoid system is not only a target for cannabis but it also shows interactions with other drugs of abuse. On the other hand, there may be also a possibility to point to the ECS as a potential target for treatment of drug-abuse and addiction. Within this framework we will focus on enzymatic machinery involved in endocannabinoid inactivation (notably fatty acid amide hydrolase or FAAH as a particularly interesting potential target. Since a deregulated endocannabinoid system may be also related to depression, anxiety and pain symptomatology accompanying drug

  11. Altering endocannabinoid neurotransmission at critical developmental ages: impact on rodent emotionality and cognitive performance

    Directory of Open Access Journals (Sweden)

    Viviana eTrezza

    2012-01-01

    Full Text Available The endocannabinoid system shows functional activity from early stages of brain development: it plays an important role in fundamental developmental processes such as cell proliferation, migration and differentiation, thus shaping brain organization during pre- and postnatal life. Cannabis sativa preparations are among the illicit drugs most commonly used by young people, including pregnant women. The developing brain can be therefore exposed to cannabis preparations during two critical periods: first, in offspring of cannabis-using mothers through perinatal and/or prenatal exposure; second, in adolescent cannabis users during neural maturation. In the last decade, it has become clear that the endocannabinoid system critically modulates memory processing and emotional responses. Therefore, it is well possible that developmental exposure to cannabinoid compounds induces enduring changes in behaviors and neural processes belonging to the cognitive and emotional domains. We address this issue by focusing on rodent studies, in order to provide a framework for understanding the impact of cannabinoid exposure on the developing brain.

  12. Characterization of tunable piperidine and piperazine carbamates as inhibitors of endocannabinoid hydrolases

    Science.gov (United States)

    Long, Jonathan Z.; Jin, Xin; Adibekian, Alexander; Li, Weiwei; Cravatt, Benjamin F.

    2010-01-01

    Monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) are two enzymes from the serine hydrolase superfamily that degrade the endocannabinoids 2-arachidonoylglycerol and anandamide, respectively. We have recently discovered that MAGL and FAAH are both inhibited by carbamates bearing an N-piperidine/piperazine group. Piperidine/piperazine carbamates show excellent in vivo activity, raising brain endocannabinoid levels and producing CB1-dependent behavioral effects in mice, suggesting that they represent a promising class of inhibitors for studying the endogenous functions of MAGL and FAAH. Herein, we disclose a full account of the syntheses, structure-activity relationships, and inhibitory activities of piperidine/piperazine carbamates against members of the serine hydrolase family. These scaffolds can be tuned for MAGL-selective or dual MAGL-FAAH inhibition by the attachment of an appropriately substituted bisarylcarbinol or aryloxybenzyl moiety, respectively, on the piperidine/piperazine ring. Modifications to the piperidine/piperazine ring ablated inhibitory activity, suggesting a strict requirement for a six-member ring to maintain potency. PMID:20099888

  13. Peripheral Endocannabinoid Responses to Hedonic Eating in Binge-Eating Disorder

    Directory of Open Access Journals (Sweden)

    Alessio Maria Monteleone

    2017-12-01

    Full Text Available Reward mechanisms are likely implicated in the pathophysiology of binge-eating behaviour, which is a key symptom of binge-eating disorder (BED. Since endocannabinoids modulate food-related reward, we aimed to investigate the responses of anandamide (AEA and 2-arachidonoylglycerol (2-AG to hedonic eating in patients with BED. Peripheral levels of AEA and 2-AG were measured in 7 obese BED patients before and after eating favorite (hedonic eating and non-favorite (non-hedonic eating foods. We found that plasma levels of AEA progressively decreased after eating the non-favorite food and significantly increased after eating the favorite food, whereas plasma levels of 2-AG did not differ significantly between the two test conditions, although they showed a trend toward significantly different time patterns. The changes in peripheral AEA levels were positively correlated to the subjects’ sensations of the urge to eat and the pleasantness while eating the presented food, while changes in peripheral 2-AG levels were positively correlated to the subjects’ sensation of the pleasantness while eating the presented food and to the amount of food they would eat. These results suggest the occurrence of distinctive responses of endocannabinoids to food-related reward in BED. The relevance of such findings to the pathophysiology of BED remains to be elucidated.

  14. Changes in the Peripheral Endocannabinoid System as a Risk Factor for the Development of Eating Disorders.

    Science.gov (United States)

    Capasso, Anna; Milano, Walter; Cauli, Omar

    2018-02-12

    Eating Disorder (ED) is characterized by persistently and severely disturbed eating behaviours. They arise from a combination of long-standing behavioural, emotional, psychological, interpersonal, and social factors and result in insufficient nutrient ingestion and/or adsorption. The three main EDs are: anorexia nervosa, bulimia nervosa, and binge eating disorder. We review the role of peripheral endocannabinoids in eating behaviour. The neuronal pathways involved in feeding behaviours are closely related to catecholaminergic, serotoninergic and peptidergic systems. Accordingly, feeding is promoted by serotonin, dopamine, and prostaglandin and inhibited by neuropeptide Y, norepinephrine, GABA, and opioid peptides. The endocannabinoid system plays a role in EDs, and multiple lines of evidence indicate that the cannabinoid signalling system is a key modulatory factor of the activity in the brain areas involved in EDs as well as in reward processes. Besides their central role in controlling food behaviours, peripheral cannabinoids are also involved in regulating adipose tissue and insulin signalling as well as cell metabolism in peripheral tissues such as liver, pancreas, fatty tissue, and skeletal muscle. Altogether, these data indicate that peripheral cannabinoids can provide new therapeutic targets not only for EDs but also for metabolic disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Turning down the thermostat: Modulating the endocannabinoid system in ocular inflammation and pain

    Directory of Open Access Journals (Sweden)

    J. Thomas Toguri

    2016-09-01

    Full Text Available The endocannabinoid system (ECS has emerged as an important regulator of both physiological and pathological processes. Notably, this endogenous system plays a key role in the modulation of pain and inflammation in a number of tissues. The components of the ECS, including endocannabinoids, their cognate enzymes and cannabinoid receptors, are localized in the eye, and evidence indicates that ECS modulation plays a role in ocular disease states. Of these diseases, ocular inflammation presents a significant medical problem, given that current clinical treatments can be ineffective or are associated with intolerable side-effects. Furthermore, a prominent comorbidity of ocular inflammation is pain, including neuropathic pain, for which therapeutic options remain limited. Recent evidence supports the use of drugs targeting the ECS for the treatment of ocular inflammation and pain in animal models; however, the potential for therapeutic use of cannabinoid drugs in the eye has not been thoroughly investigated at this time. This review will highlight evidence from experimental studies identifying components of the ocular ECS and discuss the functional role of the ECS during different ocular inflammatory disease states, including uveitis and corneal keratitis. Candidate ECS targeted therapies will be discussed, drawing on experimental results obtained from both ocular and non-ocular tissue(s, together with their potential application for the treatment of ocular inflammation and pain.

  16. A novel microflow LC-MS method for the quantitation of endocannabinoids in serum.

    Science.gov (United States)

    Kirkwood, Jay S; Broeckling, Corey D; Donahue, Seth; Prenni, Jessica E

    2016-10-15

    Endocannabinoids (ECs) represent a class of endogenous, small molecules that bind and activate the G-protein coupled EC receptors. They are involved in a variety of fundamental biological processes and are associated with many disease states. Endocannabinoids are often present in complex matrices and at low concentrations, complicating their measurement. Here we describe a highly sensitive method for the quantitation of the following ECs in serum: N-arachidonoylethanolamine (anandamide), N-oleoylethanolamine, N-palmitoylethanolamine, 2-arachidonoylglycerol, and its inactive isomer 1-arachidonoylglycerol. On-line sample trapping coupled with separation via microflow liquid chromatography and detection by tandem quadrupole mass spectrometry results in the necessary sensitivity for accurate quantitation of ECs in less than 50μL of serum, without the need for off-line solid phase extraction. Limits of quantitation between 1.2 and 13.4pg/mL were achieved, representing a significant increase in sensitivity compared to previous methods using analytical flow rates. An additional benefit of microflow chromatography is the reduction of solvent consumption by more than two orders of magnitude. The experimental utility of the assay is demonstrated through the analysis of serum from hibernating bears to assess seasonal changes in circulating EC concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Re-visiting the Endocannabinoid System and Its Therapeutic Potential in Obesity and Associated Diseases.

    Science.gov (United States)

    Richey, Joyce M; Woolcott, Orison

    2017-09-14

    The purpose of the review was to revisit the possibility of the endocannabinoid system being a therapeutic target for the treatment of obesity by focusing on the peripheral roles in regulating appetite and energy metabolism. Previous studies with the global cannabinoid receptor blocker rimonabant, which has both central and peripheral properties, showed that this drug has beneficial effects on cardiometabolic function but severe adverse psychiatric side effects. Consequently, focus has shifted to peripherally restricted cannabinoid 1 (CB1) receptor blockers as possible therapeutic agents that mitigate or eliminate the untoward effects in the central nervous system. Targeting the endocannabinoid system using novel peripheral CB1 receptor blockers with negligible penetrance across the blood-brain barrier may prove to be effective therapy for obesity and its co-morbidities. Perhaps the future of blockers targeting CB1 receptors will be tissue-specific neutral antagonists (e.g., skeletal muscle specific to treat peripheral insulin resistance, adipocyte-specific to treat fat excess, liver-specific to treat fatty liver and hepatic insulin resistance).

  18. The endocannabinoid system, a novel and key participant in acupuncture's multiple beneficial effects.

    Science.gov (United States)

    Hu, Bo; Bai, Fuhai; Xiong, Lize; Wang, Qiang

    2017-06-01

    Acupuncture and its modified forms have been used to treat multiple medical conditions, but whether the diverse effects of acupuncture are intrinsically linked at the cellular and molecular level and how they might be connected have yet to be determined. Recently, an emerging role for the endocannabinoid system (ECS) in the regulation of a variety of physiological/pathological conditions has been identified. Overlap between the biological and therapeutic effects induced by ECS activation and acupuncture has facilitated investigations into the participation of ECS in the acupuncture-induced beneficial effects, which have shed light on the idea that the ECS may be a primary mediator and regulatory factor of acupuncture's beneficial effects. This review seeks to provide a comprehensive summary of the existing literature concerning the role of endocannabinoid signaling in the various effects of acupuncture, and suggests a novel notion that acupuncture may restore homeostasis under different pathological conditions by regulating similar networks of signaling pathways, resulting in the activation of different reaction cascades in specific tissues in response to pathological insults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The Role of the Endocannabinoid System in the Brain-Gut Axis.

    Science.gov (United States)

    Sharkey, Keith A; Wiley, John W

    2016-08-01

    The actions of cannabis are mediated by receptors that are part of an endogenous cannabinoid system. The endocannabinoid system (ECS) consists of the naturally occurring ligands N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), their biosynthetic and degradative enzymes, and the cannabinoid (CB) receptors CB1 and CB2. The ECS is a widely distributed transmitter system that controls gut functions peripherally and centrally. It is an important physiologic regulator of gastrointestinal motility. Polymorphisms in the gene encoding CB1 (CNR1) have been associated with some forms of irritable bowel syndrome. The ECS is involved in the control of nausea and vomiting and visceral sensation. The homeostatic role of the ECS also extends to the control of intestinal inflammation. We review the mechanisms by which the ECS links stress and visceral pain. CB1 in sensory ganglia controls visceral sensation, and transcription of CNR1 is modified through epigenetic processes under conditions of chronic stress. These processes might link stress with abdominal pain. The ECS is also involved centrally in the manifestation of stress, and endocannabinoid signaling reduces the activity of hypothalamic-pituitary-adrenal pathways via actions in specific brain regions, notably the prefrontal cortex, amygdala, and hypothalamus. Agents that modulate the ECS are in early stages of development for treatment of gastrointestinal diseases. Increasing our understanding of the ECS will greatly advance our knowledge of interactions between the brain and gut and could lead to new treatments for gastrointestinal disorders. Copyright © 2016. Published by Elsevier Inc.

  20. The potential of inhibitors of endocannabinoid metabolism as anxiolytic and antidepressive drugs--A practical view.

    Science.gov (United States)

    Fowler, Christopher J

    2015-06-01

    The endocannabinoid system, comprising cannabinoid CB1 and CB2 receptors, their endogenous ligands anandamide and 2-arachidonoylglyerol, and their synthetic and metabolic enzymes, are involved in many biological processes in the body, ranging from appetite to bone turnover. Compounds inhibiting the breakdown of anandamide and 2-arachidonoylglycerol increase brain levels of these lipids and thus modulate endocannabinoid signalling. In the present review, the preclinical evidence that these enzymes are good targets for development of novel therapies for anxiety and depression are discussed from a practical, rather than mechanistic, point of view. It is concluded that the preclinical data are promising, albeit tempered by problems of tolerance as well as effects upon learning and memory for irreversible monoacylglycerol lipase inhibitors, and limited by a focus upon male rodents alone. Clinical data so far has been restricted to safety studies with inhibitors of anandamide hydrolysis and a hitherto unpublished study on such a compound in elderly patients with major depressive disorders, but under the dose regimes used, they are well tolerated and show no signs of "cannabis-like" behaviours. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  1. [Neurobiology of endocannabinoids and central effects of tetrahydrocannabinol contained in indian hemp].

    Science.gov (United States)

    Costentin, Jean

    2014-03-01

    Tetrahydrocannabinol, the main psychotropic component of Cannabis indica, is an addictive drug with multiple effects including both peripheral and central damages. All these effects are due to interference with endocannabinoidergic transmission. This endocannabinoid system subtly regulates many physiologicalfunctions. This regulation involves various ligands derived from arachidonic acid (anandamide, di-arachidonoylglycerol, virodhamin, noladin ether, N arachidonoyl dopamine, etc.) which stimulate two main types of receptor CB1 in the central nervous system and CB2 in the periphery. CB1 receptors are very numerous and ubiquitous in the brain. They influence various important functions (awakening, attention, delirium, hallucinations, memory, cognition, anxiety, humor stability, motor coordination, brain maturation, etc.). Far from mimicking endocannabinoids, THC caricatures their effects. It affects all brain structures, simultaneously, intensely and durably, inducing down-regulation of CB1 receptors and thereby reducing the effects of their physiological ligands. On account of its exceptional lipophilia, THC accumulates for days and even weeks in the brain. It is not a soft drug but rather a slow drug: its abuse induces long-lasting modifications and deterioration of brain function, potentially leading to various mental and psychiatric disorders.

  2. The endocannabinoid system and its role in schizophrenia: a systematic review of the literature.

    Science.gov (United States)

    Ferretjans, Rodrigo; Moreira, Fabrício A; Teixeira, Antônio L; Salgado, João V

    2012-10-01

    Schizophrenia is a psychiatric disorder whose mechanisms have remained only partially elucidated. The current proposals regarding its biological basis, such as the dopaminergic hypothesis, do not fully explain the diversity of its symptoms, indicating that other processes may be involved. This paper aims to review evidence supporting the involvement of the endocannabinoid system (ECS), a neurotransmitter group that is the target of Cannabis sativa compounds, in this disorder. A systematic review of original papers, published in English, indexed in PubMed up to April, 2012. Most studies employed genetics and histological, neuroimaging or neurochemical methods - either in vivo or post-mortem - to investigate whether components of the ECS are compromised in patients. Overall, the data show changes in cannabinoid receptors in certain brain regions as well as altered levels in endocannabinoid levels in cerebrospinal fluid and/or blood. Although a dysfunction of the ECS has been described, results are not entirely consistent across studies. Further data are warrant to better define a role of this system in schizophrenia.

  3. The endocannabinoid transport inhibitor AM404 differentially modulates recognition memory in rats depending on environmental aversiveness

    Science.gov (United States)

    Campolongo, Patrizia; Ratano, Patrizia; Manduca, Antonia; Scattoni, Maria L.; Palmery, Maura; Trezza, Viviana; Cuomo, Vincenzo

    2012-01-01

    Cannabinoid compounds may influence both emotional and cognitive processes depending on the level of environmental aversiveness at the time of drug administration. However, the mechanisms responsible for these responses remain to be elucidated. The present experiments investigated the effects induced by the endocannabinoid transport inhibitor AM404 (0.5–5 mg/kg, i.p.) on both emotional and cognitive performances of rats tested in a Spatial Open Field task and subjected to different experimental settings, named High Arousal (HA) and Low Arousal (LA) conditions. The two different experimental conditions influenced emotional reactivity independently of drug administration. Indeed, vehicle-treated rats exposed to the LA condition spent more time in the center of the arena than vehicle-treated rats exposed to the HA context. Conversely, the different arousal conditions did not affect the cognitive performances of vehicle-treated animals such as the capability to discriminate a spatial displacement of the objects or an object substitution. AM404 administration did not alter locomotor activity or emotional behavior of animals exposed to both environmental conditions. Interestingly, AM404 administration influenced the cognitive parameters depending on the level of emotional arousal: it impaired the capability of rats exposed to the HA condition to recognize a novel object while it did not induce any impairing effect in rats exposed to the LA condition. These findings suggest that drugs enhancing endocannabinoid signaling induce different effects on recognition memory performance depending on the level of emotional arousal induced by the environmental conditions. PMID:22454620

  4. Endocannabinoid signaling within the basolateral amygdala integrates multiple stress hormone effects on memory consolidation.

    Science.gov (United States)

    Atsak, Piray; Hauer, Daniela; Campolongo, Patrizia; Schelling, Gustav; Fornari, Raquel V; Roozendaal, Benno

    2015-05-01

    Glucocorticoid hormones are known to act synergistically with other stress-activated neuromodulatory systems, such as norepinephrine and corticotropin-releasing factor (CRF), within the basolateral complex of the amygdala (BLA) to induce optimal strengthening of the consolidation of long-term memory of emotionally arousing experiences. However, as the onset of these glucocorticoid actions appear often too rapid to be explained by genomic regulation, the neurobiological mechanism of how glucocorticoids could modify the memory-enhancing properties of norepinephrine and CRF remained elusive. Here, we show that the endocannabinoid system, a rapidly activated retrograde messenger system, is a primary route mediating the actions of glucocorticoids, via a glucocorticoid receptor on the cell surface, on BLA neural plasticity and memory consolidation. Furthermore, glucocorticoids recruit downstream endocannabinoid activity within the BLA to interact with both the norepinephrine and CRF systems in enhancing memory consolidation. These findings have important implications for understanding the fine-tuned crosstalk between multiple stress hormone systems in the coordination of (mal)adaptive stress and emotional arousal effects on neural plasticity and memory consolidation.

  5. The endocannabinoid system in critical neurodevelopmental periods: sex differences and neuropsychiatric implications.

    Science.gov (United States)

    Viveros, M P; Llorente, R; Suarez, J; Llorente-Berzal, A; López-Gallardo, M; de Fonseca, F Rodriguez

    2012-01-01

    This review focuses on the endocannabinoid system as a crucial player during critical periods of brain development, and how its disturbance either by early life stressful events or cannabis consumption may lead to important neuropsychiatric signs and symptoms. First we discuss the advantages and limitations of animal models within the framework of neuropsychiatric research and the crucial role of genetic and environmental factors for the establishment of vulnerable phenotypes. We are becoming aware of important sex differences that have emerged in relation to the psychobiology of cannabinoids. We will discuss sexual dimorphisms observed within the endogenous cannabinoid system, as well as those observed with exogenously administered cannabinoids. We start with how the expression of cannabinoid CB(1) receptors is regulated throughout development. Then, we discuss recent results showing how an experimental model of early maternal deprivation, which induces long-term neuropsychiatric symptoms, interacts in a sex-dependent manner with the brain endocannabinoid system during development. This is followed by a discussion of differential vulnerability to the pathological sequelae stemming from cannabinoid exposure during adolescence. Next we talk about sex differences in the interactions between cannabinoids and other drugs of abuse. Finally, we discuss the potential implications that organizational and activational actions of gonadal steroids may have in establishing and maintaining sex dependence in the neurobiological actions of cannabinoids and their interaction with stress.

  6. Neuroprotective Properties of Endocannabinoids N-Arachidonoyl Dopamine and N-Docosahexaenoyl Dopamine Examined in Neuronal Precursors Derived from Human Pluripotent Stem Cells.

    Science.gov (United States)

    Novosadova, E V; Arsenyeva, E L; Manuilova, E S; Khaspekov, L G; Bobrov, M Yu; Bezuglov, V V; Illarioshkin, S N; Grivennikov, I A

    2017-11-01

    Neuroprotective properties of endocannabinoids N-arachidonoyl dopamine (NADA) and N-docosahexaenoyl dopamine (DHDA) were examined in neuronal precursor cells differentiated from human induced pluripotent stem cells and subjected to oxidative stress. Both compounds exerted neuroprotective activity, which was enhanced by elevating the concentration of the endocannabinoids within the 0.1-10 µM range. However, both agents at 10 µM concentration showed a marked toxic effect resulting in death of ~30% of the cells. Finally, antagonists of cannabinoid receptors as well as the receptor of the TRPV1 endovanilloid system did not hamper the neuroprotective effects of these endocannabinoids.

  7. A diet containing a nonfat dry milk matrix significantly alters systemic endocannabinoids and oxylipins in diet-induced obese mice

    Science.gov (United States)

    BACKGROUND: Diets rich in dairy and/or calcium (Ca) have been associated with reductions in adiposity and inflammation, but the mechanisms underlying this remain to be fully elucidated. Oxylipins and endocannabinoids are bioactive lipids, which influence energy homeostasis, adipose function, insuli...

  8. Profiling the Oxylipin and Endocannabinoid Metabolome by UPLC-ESI-MS/MS in Human Plasma to Monitor Postprandial Inflammation.

    Science.gov (United States)

    Gouveia-Figueira, Sandra; Späth, Jana; Zivkovic, Angela M; Nording, Malin L

    2015-01-01

    Bioactive lipids, including oxylipins, endocannabinoids, and related compounds may function as specific biochemical markers of certain aspects of inflammation. However, the postprandial responsiveness of these compounds is largely unknown; therefore, changes in the circulating oxylipin and endocannabinoid metabolome in response to a challenge meal were investigated at six occasions in a subject who freely modified her usual diet. The dietary change, and especially the challenge meal itself, represented a modification of precursor fatty acid status, with expectedly subtle effects on bioactive lipid levels. To detect even the slightest alteration, highly sensitive ultra-performance liquid chromatography (UPLC) coupled to electrospray ionization (ESI) tandem mass spectrometry (MS/MS) methods for bioactive lipid profiling was employed. A previously validated UPLC-ESI-MS/MS method for profiling the endocannabinoid metabolome was used, while validation of an UPLC-ESI-MS/MS method for oxylipin analysis was performed with acceptable outcomes for a majority of the parameters according to the US Food and Drug Administration guidelines for linearity (0.9938 oxylipin and endocannabinoid metabolome. To summarize, we have shown proof-of-concept of our UPLC-ESI-MS/MS bioactive lipid protocols for the purpose of monitoring subtle shifts, and thereby useful to address lipid-mediated postprandial inflammation.

  9. Endocannabinoids produced upon action potential firing evoke a Cl− current via type-2 cannabinoid receptors in the medial prefrontal cortex

    NARCIS (Netherlands)

    den Boon, F.S.; Chameau, P.; Houthuijs, K.; Bolijn, S.; Mastrangelo, N.; Kruse, C.G.; Maccarrone, M.; Wadman, W.J.; Werkman, T.R.

    2014-01-01

    The functional presence of type-2 cannabinoid receptors (CB2Rs) in layer II/III pyramidal neurons of the rat medial prefrontal cortex (mPFC) was recently demonstrated. In the present study, we show that the application of the endocannabinoids (eCBs) 2-arachidonoylglycerol (2-AG) and methanandamide

  10. Endocannabinoid concentrations in plasma during the finishing period are associated with feed efficiency and carcass composition of beef cattle

    Science.gov (United States)

    We previously have shown that plasma concentrations of endocannabinoids (EC) are positively correlated with feed efficiency and leaner carcasses in finishing steers. However, whether the animal growth during the finishing period affects the concentration of EC is unknown. The objective of this study...

  11. Quantitative profiling of endocannabinoids and related N-acylethanolamines in human CSF using nano LC-MS/MS

    NARCIS (Netherlands)

    Kantae, V.; Ogino, S.; Noga, M.J.; Harms, A.C.; Dongen, van R.M.; Onderwater, G.L.J.; Maagdenberg, van den A.M.J.M.; Terwindt, G.M.; Stelt, van der M.; Ferrari, M.D.; Hankemeier, T.

    2016-01-01

    Endocannabinoids, a class of lipid messengers, have emerged as crucial regulators of synaptic communication in the central nervous system (CNS). Dysregulation of these compounds has been implicated in many brain disorders. Although some studies have identified and quantified a limited number of

  12. Modulation of the Endocannabinoids N-Arachidonoylethanolamine (AEA) and 2-Arachidonoylglycerol (2-AG) on Executive Functions in Humans

    Science.gov (United States)

    Fagundo, Ana B.; de la Torre, Rafael; Jiménez-Murcia, Susana; Agüera, Zaida; Pastor, Antoni; Casanueva, Felipe F.; Granero, Roser; Baños, Rosa; Botella, Cristina; del Pino-Gutierrez, Amparo; Fernández-Real, Jose M.; Fernández-García, Jose C.; Frühbeck, Gema; Gómez-Ambrosi, Javier; Menchón, José M.; Moragrega, Inés; Rodríguez, Roser; Tárrega, Salomé; Tinahones, Francisco J.; Fernández-Aranda, Fernando

    2013-01-01

    Animal studies point to an implication of the endocannabinoid system on executive functions. In humans, several studies have suggested an association between acute or chronic use of exogenous cannabinoids (Δ9-tetrahydrocannabinol) and executive impairments. However, to date, no published reports establish the relationship between endocannabinoids, as biomarkers of the cannabinoid neurotransmission system, and executive functioning in humans. The aim of the present study was to explore the association between circulating levels of plasma endocannabinoids N-arachidonoylethanolamine (AEA) and 2-Arachidonoylglycerol (2-AG) and executive functions (decision making, response inhibition and cognitive flexibility) in healthy subjects. One hundred and fifty seven subjects were included and assessed with the Wisconsin Card Sorting Test; Stroop Color and Word Test; and Iowa Gambling Task. All participants were female, aged between 18 and 60 years and spoke Spanish as their first language. Results showed a negative correlation between 2-AG and cognitive flexibility performance (r = −.37; pendocannabinoid system on prefrontal-dependent cognitive functioning. The present study might have significant implications for the underlying executive alterations described in some psychiatric disorders currently associated with endocannabinoids deregulation (namely drug abuse/dependence, depression, obesity and eating disorders). Understanding the neurobiology of their dysexecutive profile might certainly contribute to the development of new treatments and pharmacological approaches. PMID:23840456

  13. The Therapeutic Aspects of the Endocannabinoid System (ECS) for Cancer and their Development: From Nature to Laboratory.

    Science.gov (United States)

    Khan, Mohammed I; Sobocińska, Anna A; Czarnecka, Anna M; Król, Magdalena; Botta, Bruno; Szczylik, Cezary

    2016-01-01

    The endocannabinoid system (ECS) is a group of neuromodulatory lipids and their receptors, which are widely distributed in mammalian tissues. ECS regulates various cardiovascular, nervous, and immune system functions inside cells. In recent years, there has been a growing body of evidence for the use of synthetic and natural cannabinoids as potential anticancer agents. For instance, the CB1 and CB2 receptors are assumed to play an important role inside the endocannabinoid system. These receptors are abundantly expressed in the brain and fatty tissue of the human body. Despite recent developments in molecular biology, there is still a lack of knowledge about the distribution of CB1 and CB2 receptors in the human kidney and their role in kidney cancer. To address this gap, we explore and demonstrate the role of the endocannabinoid system in renal cell carcinoma (RCC). In this brief overview, we elucidate the therapeutic aspects of the endocannabinoid system for various cancers and explain how this system can be used for treating kidney cancer. Overall, this review provides new insights into cannabinoids' mechanisms of action in both in vivo and in vitro models, and focuses on recent discoveries in the field.

  14. Lifelong imbalanced LA/ALA intake impairs emotional and cognitive behavior via changes in brain endocannabinoid system.

    Science.gov (United States)

    Zamberletti, Erica; Piscitelli, Fabiana; De Castro, Valentina; Murru, Elisabetta; Gabaglio, Marina; Colucci, Paola; Fanali, Chiara; Prini, Pamela; Bisogno, Tiziana; Maccarrone, Mauro; Campolongo, Patrizia; Banni, Sebastiano; Rubino, Tiziana; Parolaro, Daniela

    2017-02-01

    Imbalanced dietary n-3 and n-6 PUFA content has been associated with a number of neurological conditions. Endocannabinoids are n-6 PUFA derivatives, whose brain concentrations are sensitive to modifications of fatty acid composition of the diet and play a central role in the regulation of mood and cognition. As such, the endocannabinoid system appears to be an ideal candidate for mediating the effects of dietary fatty acids on mood and cognition. Lifelong administration of isocaloric α-linolenic acid (ALA)-deficient and -enriched diets induced short-term memory deficits, whereas only dietary ALA enrichment altered emotional reactivity in adult male rats compared with animals fed a standard diet that was balanced in ALA/linoleic acid (LA) ratio. In the prefrontal cortex, both diets reduced 2-AG levels and increased MAG lipase expression, whereas only the enriched diet reduced AEA levels, simultaneously increasing FAAH expression. In the hippocampus, an ALA-enriched diet decreased AEA content and NAPE-PLD expression, and reduced 2-AG content while increasing MAG lipase expression. These findings highlight the importance of a diet balanced in fatty acid content for normal brain functions and to support a link between dietary ALA, the brain endocannabinoid system, and behavior, which indicates that dietary ALA intake is a sufficient condition for altering the endocannabinoid system in brain regions modulating mood and cognition. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  15. Lifelong imbalanced LA/ALA intake impairs emotional and cognitive behavior via changes in brain endocannabinoid system

    Science.gov (United States)

    Zamberletti, Erica; Piscitelli, Fabiana; De Castro, Valentina; Murru, Elisabetta; Gabaglio, Marina; Colucci, Paola; Fanali, Chiara; Prini, Pamela; Bisogno, Tiziana; Maccarrone, Mauro; Campolongo, Patrizia; Banni, Sebastiano; Rubino, Tiziana; Parolaro, Daniela

    2017-01-01

    Imbalanced dietary n-3 and n-6 PUFA content has been associated with a number of neurological conditions. Endocannabinoids are n-6 PUFA derivatives, whose brain concentrations are sensitive to modifications of fatty acid composition of the diet and play a central role in the regulation of mood and cognition. As such, the endocannabinoid system appears to be an ideal candidate for mediating the effects of dietary fatty acids on mood and cognition. Lifelong administration of isocaloric α-linolenic acid (ALA)-deficient and -enriched diets induced short-term memory deficits, whereas only dietary ALA enrichment altered emotional reactivity in adult male rats compared with animals fed a standard diet that was balanced in ALA/linoleic acid (LA) ratio. In the prefrontal cortex, both diets reduced 2-AG levels and increased MAG lipase expression, whereas only the enriched diet reduced AEA levels, simultaneously increasing FAAH expression. In the hippocampus, an ALA-enriched diet decreased AEA content and NAPE-PLD expression, and reduced 2-AG content while increasing MAG lipase expression. These findings highlight the importance of a diet balanced in fatty acid content for normal brain functions and to support a link between dietary ALA, the brain endocannabinoid system, and behavior, which indicates that dietary ALA intake is a sufficient condition for altering the endocannabinoid system in brain regions modulating mood and cognition. PMID:27903595

  16. Distinctive effects of eicosapentaenoic and docosahexaenoic acids in regulating neural stem cell fate are mediated via endocannabinoid signalling pathways.

    Science.gov (United States)

    Dyall, S C; Mandhair, H K; Fincham, R E A; Kerr, D M; Roche, M; Molina-Holgado, F

    2016-08-01

    Emerging evidence suggests a complex interplay between the endocannabinoid system, omega-3 fatty acids and the immune system in the promotion of brain self-repair. However, it is unknown if all omega-3 fatty acids elicit similar effects on adult neurogenesis and if such effects are mediated or regulated by interactions with the endocannabinoid system. This study investigated the effects of DHA and EPA on neural stem cell (NSC) fate and the role of the endocannabinoid signalling pathways in these effects. EPA, but not DHA, significantly increased proliferation of NSCs compared to controls, an effect associated with enhanced levels of the endocannabinoid 2-arachidonylglycerol (2-AG) and p-p38 MAPK, effects attenuated by pre-treatment with CB1 (AM251) or CB2 (AM630) receptor antagonists. Furthermore, in NSCs derived from IL-1β deficient mice, EPA significantly decreased proliferation and p-p38 MAPK levels compared to controls, suggesting a key role for IL-1β signalling in the effects observed. Although DHA similarly increased 2-AG levels in wild-type NSCs, there was no concomitant increase in proliferation or p-p38 MAPK activity. In addition, in NSCs from IL-1β deficient mice, DHA significantly increased proliferation without effects on p-P38 MAPK, suggesting effects of DHA are mediated via alternative signalling pathways. These results provide crucial new insights into the divergent effects of EPA and DHA in regulating NSC proliferation and the pathways involved, and highlight the therapeutic potential of their interplay with endocannabinoid signalling in brain repair. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Clinical Endocannabinoid Deficiency Reconsidered: Current Research Supports the Theory in Migraine, Fibromyalgia, Irritable Bowel, and Other Treatment-Resistant Syndromes.

    Science.gov (United States)

    Russo, Ethan B

    2016-01-01

    Medicine continues to struggle in its approaches to numerous common subjective pain syndromes that lack objective signs and remain treatment resistant. Foremost among these are migraine, fibromyalgia, and irritable bowel syndrome, disorders that may overlap in their affected populations and whose sufferers have all endured the stigma of a psychosomatic label, as well as the failure of endless pharmacotherapeutic interventions with substandard benefit. The commonality in symptomatology in these conditions displaying hyperalgesia and central sensitization with possible common underlying pathophysiology suggests that a clinical endocannabinoid deficiency might characterize their origin. Its base hypothesis is that all humans have an underlying endocannabinoid tone that is a reflection of levels of the endocannabinoids, anandamide (arachidonylethanolamide), and 2-arachidonoylglycerol, their production, metabolism, and the relative abundance and state of cannabinoid receptors. Its theory is that in certain conditions, whether congenital or acquired, endocannabinoid tone becomes deficient and productive of pathophysiological syndromes. When first proposed in 2001 and subsequently, this theory was based on genetic overlap and comorbidity, patterns of symptomatology that could be mediated by the endocannabinoid system (ECS), and the fact that exogenous cannabinoid treatment frequently provided symptomatic benefit. However, objective proof and formal clinical trial data were lacking. Currently, however, statistically significant differences in cerebrospinal fluid anandamide levels have been documented in migraineurs, and advanced imaging studies have demonstrated ECS hypofunction in post-traumatic stress disorder. Additional studies have provided a firmer foundation for the theory, while clinical data have also produced evidence for decreased pain, improved sleep, and other benefits to cannabinoid treatment and adjunctive lifestyle approaches affecting the ECS.

  18. Involvement of nitric oxide through endocannabinoids release in microglia activation during the course of CNS regeneration in the medicinal leech.

    Science.gov (United States)

    Arafah, Karim; Croix, Dominique; Vizioli, Jacopo; Desmons, Annie; Fournier, Isabelle; Salzet, Michel

    2013-04-01

    The medicinal leech is notable for its capacity to regenerate its central nervous system (CNS) following mechanical trauma. Using an electrochemical nitric oxide (NO)-selective electrode to measure NO levels, we found that the time course of NO release in the injured leech CNS is partially under the control of endocannabinoids, namely, N-arachidonyl ethanolamide (AEA) and 2-arachidonyl glycerol (2-AG). Relative quantification of these endocannabinoids was performed by stable isotope dilution (2AGd8 and AAEd8) coupled to mass spectrometry in course of regeneration process or adenosine triphosphate (ATP) treatment. Data show that 2-AG levels rose to a maximum about 30 min after injury or ATP treatment, and returned to baseline levels 4 h after injury. In same conditions, AEA levels also rapidly (within 5 min) dropped after injury or ATP treatment to the nerve cord, but did not fully return to baseline levels within 4 h of injury. In correlation with these data, chemoattraction activities of endocannabinoids on isolated leech microglial cells have been shown in vitro and in vivo reflecting that control over NO production is accompanied by the controlled chemoattraction of microglia directed from the periphery to the lesion site for neuronal repair purposes. Taken together, our results show that in the leech, after injury concurrent with ATP production, purinergic receptor activation, NO production, microglia recruitment, and accumulation to lesion site, a fine imbalance occurs in the endocannabinoid system. These events can bring explanations about the ability of the leech CNS to regenerate after a trauma and the key role of endocannabinoids in this phenomenon. Copyright © 2013 Wiley Periodicals, Inc.

  19. Diet-induced changes in n-3 and n-6 derived endocannabinoids and reductions in headache pain and psychological distress

    Science.gov (United States)

    Ramsden, Christopher E.; Zamora, Daisy; Makriyannis, Alexandros; Wood, JodiAnne T.; Mann, J. Douglas; Faurot, Keturah R.; MacIntosh, Beth A.; Majchrzak-Hong, Sharon F.; Gross, Jacklyn R.; Courville, Amber B.; Davis, John M.; Hibbeln, Joseph R.

    2015-01-01

    Omega-3 and omega-6 fatty acids are biosynthetic precursors to endocannabinoids with antinociceptive, anxiolytic, and neurogenic properties. We recently reported that targeted dietary manipulation—increasing omega-3 fatty acids while reducing omega-6 linoleic acid (the H3-L6 intervention)—reduced headache pain and psychological distress among chronic headache patients. It is not yet known whether these clinical improvements were due to changes in endocannabinoids and related mediators derived from omega-3 and omega-6 fatty acids. We therefore used data from this trial (n=55) to investigate (1) whether the H3-L6 intervention altered omega-3 and omega-6 derived endocannabinoids in plasma, and (2) whether diet-induced changes in these bioactive lipids were associated with clinical improvements. The H3-L6 intervention significantly increased the omega-3 docosahexaenoic acid derivatives 2-docosahexaenoylglycerol (+65%, pendocannabinoid derivatives of omega-3 docosahexaenoic acid, but not omega-6 arachidonic acid, correlated with reductions in physical pain and psychological distress. These findings demonstrate that targeted dietary manipulation can alter endocannabinoids derived from omega-3 and omega-6 fatty acids in humans, and suggest that 2-docosahexaenoylglycerol and docosahexaenoylethanolamine could have physical and/or psychological pain modulating properties. Trial Registration: ClinicalTrials.gov (NCT01157208) Perspective This article demonstrates that targeted dietary manipulation can alter endocannabinoids derived from omega-3 and omega-6 fatty acids, and that these changes are related to reductions in headache pain and psychological distress. These findings suggest that dietary interventions could provide an effective, complementary approach for managing chronic pain and related conditions. PMID:25958314

  20. Endocannabinoids in the brainstem modulate dural trigeminovascular nociceptive traffic via CB1 and "triptan" receptors: implications in migraine.

    Science.gov (United States)

    Akerman, Simon; Holland, Philip R; Lasalandra, Michele P; Goadsby, Peter J

    2013-09-11

    Activation and sensitization of trigeminovascular nociceptive pathways is believed to contribute to the neural substrate of the severe and throbbing nature of pain in migraine. Endocannabinoids, as well as being physiologically analgesic, are known to inhibit dural trigeminovascular nociceptive responses. They are also involved in the descending modulation of cutaneous-evoked C-fiber spinal nociceptive responses from the brainstem. The purpose of this study was to determine whether endocannabinoids are involved in the descending modulation of dural and/or cutaneous facial trigeminovascular nociceptive responses, from the brainstem ventrolateral periaqueductal gray (vlPAG). CB1 receptor activation in the vlPAG attenuated dural-evoked Aδ-fiber neurons (maximally by 19%) and basal spontaneous activity (maximally by 33%) in the rat trigeminocervical complex, but there was no effect on cutaneous facial receptive field responses. This inhibitory vlPAG-mediated modulation was inhibited by specific CB1 receptor antagonism, given via the vlPAG, and with a 5-HT1B/1D receptor antagonist, given either locally in the vlPAG or systemically. These findings demonstrate for the first time that brainstem endocannabinoids provide descending modulation of both basal trigeminovascular neuronal tone and Aδ-fiber dural-nociceptive responses, which differs from the way the brainstem modulates spinal nociceptive transmission. Furthermore, our data demonstrate a novel interaction between serotonergic and endocannabinoid systems in the processing of somatosensory nociceptive information, suggesting that some of the therapeutic action of triptans may be via endocannabinoid containing neurons in the vlPAG.