WorldWideScience

Sample records for encoding human calumenin

  1. Ca-Dependent Folding of Human Calumenin

    Science.gov (United States)

    Mazzorana, Marco; Hussain, Rohanah; Sorensen, Thomas

    2016-01-01

    Human calumenin (hCALU) is a six EF-hand protein belonging to the CREC family. As other members of the family, it is localized in the secretory pathway and regulates the activity of SERCA2a and of the ryanodine receptor in the endoplasmic reticulum (ER). We have studied the effects of Ca2+ binding to the protein and found it to attain a more compact structure upon ion binding. Circular Dichroism (CD) measurements suggest a major rearrangement of the protein secondary structure, which reversibly switches from disordered at low Ca2+ concentrations to predominantly alpha-helical when Ca2+ is added. SAXS experiments confirm the transition from an unfolded to a compact structure, which matches the structural prediction of a trilobal fold. Overall our experiments suggest that calumenin is a Ca2+ sensor, which folds into a compact structure, capable of interacting with its molecular partners, when Ca2+ concentration within the ER reaches the millimolar range. PMID:26991433

  2. Molecular cloning of a cDNA encoding human calumenin, expression in Escherichia coli and analysis of its Ca2+-binding activity

    DEFF Research Database (Denmark)

    Vorum, H; Liu, X; Madsen, Peder

    1998-01-01

    By microsequencing and cDNA cloning we have identified the transformation-sensitive protein No. IEF SSP 9302 as the human homologue of calumenin. The nucleotide sequence predicts a 315 amino acid protein with high identity to murine and rat calumenin. The deduced protein contains a 19 amino acid N......-terminal signal sequence, 7 EF-hand domains and, at the C-terminus, a HDEF sequence which has been reported to function as retrieval signal to the ER. The calumenin transcript is ubiquitously expressed in human tissue, at high levels in heart, placenta and skeletal muscle, at lower levels in lung, kidney...... experiments in order to analyse for the affinity and the capacity of recombinant human (rh) calumenin. All 7 EF-hands of the protein are functional and bind Ca2+, each with an affinity of 1.6x103 M-1. The relatively low affinity for the EF-hands may suggest a role for the protein in Ca2+-dependent processes...

  3. Human calumenin localizes to the secretory pathway and is secreted to the medium

    DEFF Research Database (Denmark)

    Vorum, H; Hager, H; Christensen, Birgitte Mønster

    1999-01-01

    Calumenin belongs to a family of multiple EF-hand proteins that include reticulocalbin, ERC-55, and Cab45. Reticulocalbin and ERC-55 localize to the ER due to a C-terminal HDEL retrieval signal. Cab45 contains a HEEF C-terminal sequence and is localized to the Golgi apparatus. The murine homologu......, suggesting that the glycosylated protein has been further modified in the Golgi apparatus and secreted to the medium. Udgivelsesdato: 1999-May-1...

  4. Biophysical characterisation of calumenin as a charged F508del-CFTR folding modulator.

    Directory of Open Access Journals (Sweden)

    Rashmi Tripathi

    Full Text Available The cystic fibrosis transmembrane regulator (CFTR is a cyclic-AMP dependent chloride channel expressed at the apical surface of epithelial cells lining various organs such as the respiratory tract. Defective processing and functioning of this protein caused by mutations in the CFTR gene results in loss of ionic balance, defective mucus clearance, increased proliferation of biofilms and inflammation of human airways observed in cystic fibrosis (CF patients. The process by which CFTR folds and matures under the influence of various chaperones in the secretory pathway remains incompletely understood. Recently, calumenin, a secretory protein, belonging to the CREC family of low affinity calcium binding proteins has been identified as a putative CFTR chaperone whose biophysical properties and functions remain uncharacterized. We compared hydropathy, instability, charge, unfoldability, disorder and aggregation propensity of calumenin and other CREC family members with CFTR associated chaperones and calcium binding proteins, wild-type and mutant CFTR proteins and intrinsically disordered proteins (IDPs. We observed that calumenin, along with other CREC proteins, was significantly more charged and less folded compared to CFTR associated chaperones. Moreover like IDPs, calumenin and other CREC proteins were found to be less hydrophobic and aggregation prone. Phylogenetic analysis revealed a close link between calumenin and other CREC proteins indicating how evolution might have shaped their similar biophysical properties. Experimentally, calumenin was observed to significantly reduce F508del-CFTR aggregation in a manner similar to AavLEA1, a well-characterized IDP. Fluorescence microscopy based imaging analysis also revealed altered trafficking of calumenin in bronchial cells expressing F508del-CFTR, indicating its direct role in the pathophysiology of CF. In conclusion, calumenin is characterized as a charged protein exhibiting close similarity with

  5. Proteomic identification of calumenin as a G551D-CFTR associated protein.

    Directory of Open Access Journals (Sweden)

    Ling Teng

    Full Text Available Cystic fibrosis (CF is the most common lethal autosomal recessive disease in the Caucasian population. It is due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR gene. To date, over 1910 mutations have been identified in the CFTR gene. Among these mutations, the CF-causing missense mutation G551D-CFTR (approx. 5% of cases encodes for a CFTR chloride channel with normal expression on the cell surface. Nevertheless, it is associated with severe disease due to its altered channel activation. The aim of the present study was to identify specific interacting proteins of G551D-CFTR. Co-immunoprecipitated proteins with G551D-CFTR were resolved by 2D-gel electrophoresis (2-DE. Mass Spectrometry revealed that calumenin was present in the protein complex linked to G551D-CFTR. Despite its basal expression was not modified in G551D-CFTR expressing cells when compared to Wt-CFTR expressing cells, it was more abundant in the G551D-CFTR complex detected by immunoprecipitation. The calumenin-CFTR interaction was also shown by Surface Plasmon Resonance and further confirmed by computational analysis of the predicted calumenin's partners. Because in our cellular model calumenin was found in the endoplasmic reticulum (ER by immunofluorescence experiments, we suggest that calumenin is likely involved in the mutated CFTR's maturation. In conclusion, we showed for the first time that calumenin binds to CFTR and that it is increased in the G551D-CFTR complex. We suggest that it may be involved in the physiopathology of G551D-CFTR and that G551D-CFTR may follow a specific maturation and trafficking pathway. We also hypothesize that UPR may be triggered independently of the retention of G551D-CFTR in the ER because Grp78/Bip expression is increased in the cells. Finally, we propose here that Calumenin is a new CFTR chaperone.

  6. Expression profiling of the VKORC1 and Calumenin gene in a Danish strain of bromadiolone-resistant Norway rats

    DEFF Research Database (Denmark)

    Markussen, Mette Drude; Heiberg, Ann-Charlotte; Fredholm, Merete

    2008-01-01

    Anticoagulant resistance in Norway rats (Rattus norvegicus) has been associated with two genes, VKORC1 and Calumenin, which encodes proteins essential to the vitamin K-dependent gamma-carboxylation system. Mutations in the VKORC1 gene are considered the genetic basis for anticoagulant resistance...... lowered VKOR activity and the elevated requirement for vitamin K previously described for Danish resistant rats whereas the low Calumenin expression could be an adaptation to secure a high efficacy of the vitamin K-dependent gamma-carboxylation system during anticoagulant exposure. Our findings...

  7. Calumenin interacts with serum amyloid P component

    DEFF Research Database (Denmark)

    Vorum, H; Jacobsen, Christian; Honoré, Bent

    2000-01-01

    of the secretory pathway that include reticulocalbin, ERC-55, Cab45 and crocalbin. In order to further investigate the extracellular functions of calumenin we immobilized the recombinant protein to a column. After application of a placental tissue extract we were able to elute one protein that interacts...

  8. Proteomic Identification of Calumenin as a G551D - CFTR Associated Protein

    Science.gov (United States)

    Teng, Ling; Kerbiriou, Mathieu; Taiya, Mehdi; Le Hir, Sophie; Mignen, Olivier; Benz, Nathalie; Trouvé, Pascal; Férec, Claude

    2012-01-01

    Cystic fibrosis (CF) is the most common lethal autosomal recessive disease in the Caucasian population. It is due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. To date, over 1910 mutations have been identified in the CFTR gene. Among these mutations, the CF-causing missense mutation G551D-CFTR (approx. 5% of cases) encodes for a CFTR chloride channel with normal expression on the cell surface. Nevertheless, it is associated with severe disease due to its altered channel activation. The aim of the present study was to identify specific interacting proteins of G551D-CFTR. Co-immunoprecipitated proteins with G551D-CFTR were resolved by 2D-gel electrophoresis (2-DE). Mass Spectrometry revealed that calumenin was present in the protein complex linked to G551D-CFTR. Despite its basal expression was not modified in G551D-CFTR expressing cells when compared to Wt-CFTR expressing cells, it was more abundant in the G551D-CFTR complex detected by immunoprecipitation. The calumenin-CFTR interaction was also shown by Surface Plasmon Resonance and further confirmed by computational analysis of the predicted calumenin’s partners. Because in our cellular model calumenin was found in the endoplasmic reticulum (ER) by immunofluorescence experiments, we suggest that calumenin is likely involved in the mutated CFTR’s maturation. In conclusion, we showed for the first time that calumenin binds to CFTR and that it is increased in the G551D-CFTR complex. We suggest that it may be involved in the physiopathology of G551D-CFTR and that G551D-CFTR may follow a specific maturation and trafficking pathway. We also hypothesize that UPR may be triggered independently of the retention of G551D-CFTR in the ER because Grp78/Bip expression is increased in the cells. Finally, we propose here that Calumenin is a new CFTR chaperone. PMID:22768251

  9. Differential Response to Ca2+ from Vertebrate and Invertebrate Calumenin is Governed by a Single Amino Acid Residue.

    Science.gov (United States)

    Narayanasamy, Sasirekha; Aradhyam, Gopala Krishna

    2018-01-10

    Calumenin (Calu) is a well-conserved multi EF-hand containing Ca2+-binding protein. In this work, we focused our attention on the alterations that calumenin has undergone during evolution. We demonstrate that vertebrate calumenin is significantly different from its invertebrate homologs with respect to its response to Ca2+-binding. Human calumenin (HsCalu1) is intrinsically unstructured in the Ca2+ free form and responds to Ca2+ with a dramatic gain in structure. Calumenin from C. elegans (CeCalu) is structured even in the apo form, with no conformational change on binding Ca2+. We decode this structural and functional distinction by identifying a single Leu residue based switch located in the fourth EF-hand of HsCalu1, occupied by Gly in the invertebrate homologs. We demonstrate that replacing Leu by Gly (L150G) in HsCalu1 enables the protein to adopt structural fold even in the Ca2+ free form, similar to CeCalu, leading to ligand compensation (adoption of structure in the absence of Ca2+). The fourth (of seven) EF-hand of HsCalu1 nucleates the structural fold of the protein depending on the switch residue (Gly/Leu). Our analyses reveal that Leu replaced Gly from fishes onwards is absolutely conserved in higher vertebrates, while lower organisms have Gly, not only enlarging the scope of Ca2+-dependent structural transitions but also drawing a boundary between the invertebrate and vertebrate calumenin. The evolutionary selection of the switch residue corroborates well with the change in the structure of the protein, its pleiotropic functions and seems extendable to the presence or absence of a heart in that organism.

  10. Characterization of Bromadiolone Resistance in a Danish Strain of Norway Rats, Rattus norvegicus, by Hepatic Gene Expression Profiling of VKORC1 and Calumenin

    DEFF Research Database (Denmark)

    Markussen, Mette Drude; Heiberg, Ann-Charlotte; Fredholm, Merete

    2007-01-01

    Anticoagulant agents, such as warfarin and bromadiolone, are used to control populations of Norway rats (Rattus norvegicus). The anticoagulants compromise the blood-coagulation process by inhibiting the vitamin K2,3 epoxide reductase enzyme complex (VKOR). Mutations in the VKORC1 gene, encoding...... indicate that bromadiolone resistance does not involve an over-expression of calumenin. We observed a low VKORC1 mRNA expression in resistant rats compared to susceptible rats, which may explain pleiotropic effects of resistance, such as a low VKOR activity and an enhanced need for vitamin K, observed...... a VKOR protein, are believed to confer anticoagulant resistance in European strains of rats, whereas hepatic over-expression of calumenin has been suggested responsible for warfarin-resistance in an US rat strain. To characterize the resistance mechanism in a Danish bromadiolone-resistant strain of rats...

  11. Proteomic profiling of fibroblasts reveals a modulating effect of extracellular calumenin on the organization of the actin cytoskeleton

    DEFF Research Database (Denmark)

    Jensen, Morten Østergaard; Hansen, Gry Aune; Vorum, Henrik

    2006-01-01

    but not in normal vasculature. In order to study the possible effects of calumenin extracellularly we used proteomic profiling of fibroblasts cultured in absence as well as in presence of calumenin. Using two-dimensional gel electrophoresis (2-DE) and tandem mass spectrometry (MS/MS) we show that normal fibroblasts...

  12. Coherence potentials encode simple human sensorimotor behavior.

    Directory of Open Access Journals (Sweden)

    Dhanya Parameshwaran

    Full Text Available Recent work has shown that large amplitude negative periods in the local field potential (nLFPs are able to spread in saltatory manner across large distances in the cortex without distortion in their temporal structure forming 'coherence potentials'. Here we analysed subdural electrocorticographic (ECoG signals recorded at 59 sites in the sensorimotor cortex in the left hemisphere of a human subject performing a simple visuomotor task (fist clenching and foot dorsiflexion to understand how coherence potentials arising in the recordings relate to sensorimotor behavior. In all behaviors we found a particular coherence potential (i.e. a cascade of a particular nLFP wave pattern arose consistently across all trials with temporal specificity. During contrateral fist clenching, but not the foot dorsiflexion or ipsilateral fist clenching, the coherence potential most frequently originated in the hand representation area in the somatosensory cortex during the anticipation and planning periods of the trial, moving to other regions during the actual motor behavior. While these 'expert' sites participated more consistently, other sites participated only a small fraction of the time. Furthermore, the timing of the coherence potential at the hand representation area after onset of the cue predicted the timing of motor behavior. We present the hypothesis that coherence potentials encode information relevant for behavior and are generated by the 'expert' sites that subsequently broadcast to other sites as a means of 'sharing knowledge'.

  13. Fibulin-1C, C1 Esterase Inhibitor and Glucose Regulated Protein 75 Interact with the CREC Proteins, Calumenin and Reticulocalbin

    DEFF Research Database (Denmark)

    Hansen, G. A. W.; Ludvigsen, M.; Jacobsen, C.

    2015-01-01

    with an affinity of approximately 3-7 nM with reticulocalbin as well as with calumenin. These interactions suggest functional participation of the CREC proteins in chaperone activity, cell proliferation and transformation, cellular aging, haemostasis and thrombosis as well as modulation of the complement system...... in fighting bacterial infection....

  14. Human Transcriptome and Chromatin Modifications: An ENCODE Perspective

    Directory of Open Access Journals (Sweden)

    Li Shen

    2013-06-01

    Full Text Available A decade-long project, led by several international research groups, called the Encyclopedia of DNA Elements (ENCODE, recently released an unprecedented amount of data. The ambitious project covers transcriptome, cistrome, epigenome, and interactome data from more than 1,600 sets of experiments in human. To make use of this valuable resource, it is important to understand the information it represents and the techniques that were used to generate these data. In this review, we introduce the data that ENCODE generated, summarize the observations from the data analysis, and revisit a computational approach that ENCODE used to predict gene expression, with a focus on the human transcriptome and its association with chromatin modifications.

  15. The Human Brain Encodes Event Frequencies While Forming Subjective Beliefs

    Science.gov (United States)

    d’Acremont, Mathieu; Schultz, Wolfram; Bossaerts, Peter

    2015-01-01

    To make adaptive choices, humans need to estimate the probability of future events. Based on a Bayesian approach, it is assumed that probabilities are inferred by combining a priori, potentially subjective, knowledge with factual observations, but the precise neurobiological mechanism remains unknown. Here, we study whether neural encoding centers on subjective posterior probabilities, and data merely lead to updates of posteriors, or whether objective data are encoded separately alongside subjective knowledge. During fMRI, young adults acquired prior knowledge regarding uncertain events, repeatedly observed evidence in the form of stimuli, and estimated event probabilities. Participants combined prior knowledge with factual evidence using Bayesian principles. Expected reward inferred from prior knowledge was encoded in striatum. BOLD response in specific nodes of the default mode network (angular gyri, posterior cingulate, and medial prefrontal cortex) encoded the actual frequency of stimuli, unaffected by prior knowledge. In this network, activity increased with frequencies and thus reflected the accumulation of evidence. In contrast, Bayesian posterior probabilities, computed from prior knowledge and stimulus frequencies, were encoded in bilateral inferior frontal gyrus. Here activity increased for improbable events and thus signaled the violation of Bayesian predictions. Thus, subjective beliefs and stimulus frequencies were encoded in separate cortical regions. The advantage of such a separation is that objective evidence can be recombined with newly acquired knowledge when a reinterpretation of the evidence is called for. Overall this study reveals the coexistence in the brain of an experience-based system of inference and a knowledge-based system of inference. PMID:23804108

  16. Genes encoding chimeras of Neurospora crassa erg-3 and human ...

    Indian Academy of Sciences (India)

    http://www.ias.ac.in/article/fulltext/jbsc/027/02/0105-0112. Keywords. Lamin B receptor; sterol reductase. Abstract. The human gene TM7SF2 encodes a polypeptide (SR-1) with high sequence similarity to sterol C-14 reductase, a key sterol biosynthetic enzyme in fungi, plants and mammals. In Neurospora and yeast this ...

  17. Identification and validation of human papillomavirus encoded microRNAs.

    Directory of Open Access Journals (Sweden)

    Kui Qian

    Full Text Available We report here identification and validation of the first papillomavirus encoded microRNAs expressed in human cervical lesions and cell lines. We established small RNA libraries from ten human papillomavirus associated cervical lesions including cancer and two human papillomavirus harboring cell lines. These libraries were sequenced using SOLiD 4 technology. We used the sequencing data to predict putative viral microRNAs and discovered nine putative papillomavirus encoded microRNAs. Validation was performed for five candidates, four of which were successfully validated by qPCR from cervical tissue samples and cell lines: two were encoded by HPV 16, one by HPV 38 and one by HPV 68. The expression of HPV 16 microRNAs was further confirmed by in situ hybridization, and colocalization with p16INK4A was established. Prediction of cellular target genes of HPV 16 encoded microRNAs suggests that they may play a role in cell cycle, immune functions, cell adhesion and migration, development, and cancer. Two putative viral target sites for the two validated HPV 16 miRNAs were mapped to the E5 gene, one in the E1 gene, two in the L1 gene and one in the LCR region. This is the first report to show that papillomaviruses encode their own microRNA species. Importantly, microRNAs were found in libraries established from human cervical disease and carcinoma cell lines, and their expression was confirmed in additional tissue samples. To our knowledge, this is also the first paper to use in situ hybridization to show the expression of a viral microRNA in human tissue.

  18. [ENCODE apophenia or a panglossian analysis of the human genome].

    Science.gov (United States)

    Casane, Didier; Fumey, Julien; Laurenti, Patrick

    2015-01-01

    In September 2012, a batch of more than 30 articles presenting the results of the ENCODE (Encyclopaedia of DNA Elements) project was released. Many of these articles appeared in Nature and Science, the two most prestigious interdisciplinary scientific journals. Since that time, hundreds of other articles dedicated to the further analyses of the Encode data have been published. The time of hundreds of scientists and hundreds of millions of dollars were not invested in vain since this project had led to an apparent paradigm shift: contrary to the classical view, 80% of the human genome is not junk DNA, but is functional. This hypothesis has been criticized by evolutionary biologists, sometimes eagerly, and detailed refutations have been published in specialized journals with impact factors far below those that published the main contribution of the Encode project to our understanding of genome architecture. In 2014, the Encode consortium released a new batch of articles that neither suggested that 80% of the genome is functional nor commented on the disappearance of their 2012 scientific breakthrough. Unfortunately, by that time many biologists had accepted the idea that 80% of the genome is functional, or at least, that this idea is a valid alternative to the long held evolutionary genetic view that it is not. In order to understand the dynamics of the genome, it is necessary to re-examine the basics of evolutionary genetics because, not only are they well established, they also will allow us to avoid the pitfall of a panglossian interpretation of Encode. Actually, the architecture of the genome and its dynamics are the product of trade-offs between various evolutionary forces, and many structural features are not related to functional properties. In other words, evolution does not produce the best of all worlds, not even the best of all possible worlds, but only one possible world. © 2015 médecine/sciences – Inserm.

  19. Differential Encoding of Losses and Gains in the Human Striatum

    Science.gov (United States)

    Seymour, Ben; Daw, Nathaniel; Dayan, Peter; Singer, Tania; Dolan, Ray

    2009-01-01

    Studies on human monetary prediction and decision making emphasize the role of the striatum in encoding prediction errors for financial reward. However, less is known about how the brain encodes financial loss. Using Pavlovian conditioning of visual cues to outcomes that simultaneously incorporate the chance of financial reward and loss, we show that striatal activation reflects positively signed prediction errors for both. Furthermore, we show functional segregation within the striatum, with more anterior regions showing relative selectivity for rewards and more posterior regions for losses. These findings mirror the anteroposterior valence-specific gradient reported in rodents and endorse the role of the striatum in aversive motivational learning about financial losses, illustrating functional and anatomical consistencies with primary aversive outcomes such as pain. PMID:17475790

  20. Genes encoding longevity: from model organisms to humans.

    Science.gov (United States)

    Kuningas, Maris; Mooijaart, Simon P; van Heemst, Diana; Zwaan, Bas J; Slagboom, P Eline; Westendorp, Rudi G J

    2008-03-01

    Ample evidence from model organisms has indicated that subtle variation in genes can dramatically influence lifespan. The key genes and molecular pathways that have been identified so far encode for metabolism, maintenance and repair mechanisms that minimize age-related accumulation of permanent damage. Here, we describe the evolutionary conserved genes that are involved in lifespan regulation of model organisms and humans, and explore the reasons of discrepancies that exist between the results found in the various species. In general, the accumulated data have revealed that when moving up the evolutionary ladder, together with an increase of genome complexity, the impact of candidate genes on lifespan becomes smaller. The presence of genetic networks makes it more likely to expect impact of variation in several interacting genes to affect lifespan in humans. Extrapolation of findings from experimental models to humans is further complicated as phenotypes are critically dependent on the setting in which genes are expressed, while laboratory conditions and modern environments are markedly dissimilar. Finally, currently used methodologies may have only little power and validity to reveal genetic variation in the population. In conclusion, although the study of model organisms has revealed potential candidate genetic mechanisms determining aging and lifespan, to what extent they explain variation in human populations is still uncertain.

  1. Frequency encoded optical assessment of human retinal physiology

    Science.gov (United States)

    Leitgeb, Rainer A.; Michaely, Roland; Bachmann, Adrian; Lassner, Theo; Blatter, Cedric

    2008-02-01

    We demonstrate in-vivo functional imaging of the human retina with Fourier domain optical coherence tomography employing frequency encoding of an excitation pattern. The principle is based on projecting a modulated rectangular pattern across the foveal region and acquiring a time series of B-Scans at the same vertical position across the pattern. The idea is to modulate the excitation with a frequency that is distinct from the heartbeat and irregular motion artifacts. Fourier analysis of the time series at each transverse position in the B-scan series allows assessing the retinal response as change in the FDOCT reflectivity signal exactly at the pattern modulation frequency. We observe a change in retinal reflectivity within the region of the outer segment photoreceptor layer exactly at the pattern modulation frequency.

  2. Evidence for neural encoding of Bayesian surprise in human somatosensation.

    Science.gov (United States)

    Ostwald, Dirk; Spitzer, Bernhard; Guggenmos, Matthias; Schmidt, Timo T; Kiebel, Stefan J; Blankenburg, Felix

    2012-08-01

    Accumulating empirical evidence suggests a role of Bayesian inference and learning for shaping neural responses in auditory and visual perception. However, its relevance for somatosensory processing is unclear. In the present study we test the hypothesis that cortical somatosensory processing exhibits dynamics that are consistent with Bayesian accounts of brain function. Specifically, we investigate the cortical encoding of Bayesian surprise, a recently proposed marker of Bayesian perceptual learning, using EEG data recorded from 15 subjects. Capitalizing on a somatosensory mismatch roving paradigm, we performed computational single-trial modeling of evoked somatosensory potentials for the entire peri-stimulus time period in source space. By means of Bayesian model selection, we find that, at 140 ms post-stimulus onset, secondary somatosensory cortex represents Bayesian surprise rather than stimulus change, which is the conventional marker of EEG mismatch responses. In contrast, at 250 ms, right inferior frontal cortex indexes stimulus change. Finally, at 360 ms, our analyses indicate additional perceptual learning attributable to medial cingulate cortex. In summary, the present study provides novel evidence for anatomical-temporal/functional segregation in human somatosensory processing that is consistent with the Bayesian brain hypothesis. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. CAG-encoded polyglutamine length polymorphism in the human genome

    Directory of Open Access Journals (Sweden)

    Hayden Michael R

    2007-05-01

    Full Text Available Abstract Background Expansion of polyglutamine-encoding CAG trinucleotide repeats has been identified as the pathogenic mutation in nine different genes associated with neurodegenerative disorders. The majority of individuals clinically diagnosed with spinocerebellar ataxia do not have mutations within known disease genes, and it is likely that additional ataxias or Huntington disease-like disorders will be found to be caused by this common mutational mechanism. We set out to determine the length distributions of CAG-polyglutamine tracts for the entire human genome in a set of healthy individuals in order to characterize the nature of polyglutamine repeat length variation across the human genome, to establish the background against which pathogenic repeat expansions can be detected, and to prioritize candidate genes for repeat expansion disorders. Results We found that repeats, including those in known disease genes, have unique distributions of glutamine tract lengths, as measured by fragment analysis of PCR-amplified repeat regions. This emphasizes the need to characterize each distribution and avoid making generalizations between loci. The best predictors of known disease genes were occurrence of a long CAG-tract uninterrupted by CAA codons in their reference genome sequence, and high glutamine tract length variance in the normal population. We used these parameters to identify eight priority candidate genes for polyglutamine expansion disorders. Twelve CAG-polyglutamine repeats were invariant and these can likely be excluded as candidates. We outline some confusion in the literature about this type of data, difficulties in comparing such data between publications, and its application to studies of disease prevalence in different populations. Analysis of Gene Ontology-based functions of CAG-polyglutamine-containing genes provided a visual framework for interpretation of these genes' functions. All nine known disease genes were involved in DNA

  4. Genes encoding chimeras of Neurospora crassa erg-3 and human ...

    Indian Academy of Sciences (India)

    Unknown

    In the yeast Saccharomyces cerevisiae, sterol. C-14 reductase is encoded by the ERG24 gene and erg24 null mutants are not viable on rich medium but they are viable on synthetic medium (Crowley et al 1996). Both the Neurospora and the yeast mutants have been used previously to test for sterol C-14 reductase function ...

  5. Human germline antibody gene segments encode polyspecific antibodies.

    Science.gov (United States)

    Willis, Jordan R; Briney, Bryan S; DeLuca, Samuel L; Crowe, James E; Meiler, Jens

    2013-04-01

    Structural flexibility in germline gene-encoded antibodies allows promiscuous binding to diverse antigens. The binding affinity and specificity for a particular epitope typically increase as antibody genes acquire somatic mutations in antigen-stimulated B cells. In this work, we investigated whether germline gene-encoded antibodies are optimal for polyspecificity by determining the basis for recognition of diverse antigens by antibodies encoded by three VH gene segments. Panels of somatically mutated antibodies encoded by a common VH gene, but each binding to a different antigen, were computationally redesigned to predict antibodies that could engage multiple antigens at once. The Rosetta multi-state design process predicted antibody sequences for the entire heavy chain variable region, including framework, CDR1, and CDR2 mutations. The predicted sequences matched the germline gene sequences to a remarkable degree, revealing by computational design the residues that are predicted to enable polyspecificity, i.e., binding of many unrelated antigens with a common sequence. The process thereby reverses antibody maturation in silico. In contrast, when designing antibodies to bind a single antigen, a sequence similar to that of the mature antibody sequence was returned, mimicking natural antibody maturation in silico. We demonstrated that the Rosetta computational design algorithm captures important aspects of antibody/antigen recognition. While the hypervariable region CDR3 often mediates much of the specificity of mature antibodies, we identified key positions in the VH gene encoding CDR1, CDR2, and the immunoglobulin framework that are critical contributors for polyspecificity in germline antibodies. Computational design of antibodies capable of binding multiple antigens may allow the rational design of antibodies that retain polyspecificity for diverse epitope binding.

  6. MC148 encoded by human molluscum contagiosum poxvirus is an antagonist for human but not murine CCR8

    DEFF Research Database (Denmark)

    Lüttichau, H R; Gerstoft, J; Schwartz, T W

    2001-01-01

    The viral CC chemokines MC148, encoded by the poxvirus molluscum contagiosum, and viral macrophage inflammatory protein (vMIP)-I and vMIP-II, encoded by human herpesvirus 8, were probed on the murine CC receptor (CCR) 8 in parallel with human CCR8. In calcium mobilization assays, vMIP-I acted...

  7. Measuring human ventilation for apnoea detection using an optical encoder.

    Science.gov (United States)

    Weinberg, G M; Webster, J G

    1998-08-01

    We have designed, built and tested a proof-of-concept system based on optical encoder technology for measuring adult or infant ventilation. It uses change in chest circumference to provide an indirect measure of ventilation. The Hewlett-Packard HEDS-9720 optical encoder senses displacement of its matching codestrip. It yields a resolution of 0.17 mm and is accurate to 0.008 mm over a 10 mm test distance. The encoder is mounted on a nylon web belt wrapped around the torso and responds to changes in circumference. Motion of the code strip during respiration is converted to direction of movement (inhalation or exhalation) as well as magnitude of circumference change. Use of two sensor bands, one on the chest and one on the abdomen, may allow detection of obstructive apnoea in which there is no air flow out of or into the subject despite respiratory movement. Applications of this technology include infant apnoea monitoring as well as long-term adult monitoring.

  8. Determining the Neural Substrate for Encoding a Memory of Human Pain and the Influence of Anxiety.

    Science.gov (United States)

    Tseng, Ming-Tsung; Kong, Yazhuo; Eippert, Falk; Tracey, Irene

    2017-12-06

    To convert a painful stimulus into a briefly maintainable construct when the painful stimulus is no longer accessible is essential to guide human behavior and avoid dangerous situations. Because of the aversive nature of pain, this encoding process might be influenced by emotional aspects and could thus vary across individuals, but we have yet to understand both the basic underlying neural mechanisms as well as potential interindividual differences. Using fMRI in combination with a delayed-discrimination task in healthy volunteers of both sexes, we discovered that brain regions involved in this working memory encoding process were dissociable according to whether the to-be-remembered stimulus was painful or not, with the medial thalamus and the rostral anterior cingulate cortex encoding painful and the primary somatosensory cortex encoding nonpainful stimuli. Encoding of painful stimuli furthermore significantly enhanced functional connectivity between the thalamus and medial prefrontal cortex (mPFC). With regards to emotional aspects influencing encoding processes, we observed that more anxious participants showed significant performance advantages when encoding painful stimuli. Importantly, only during the encoding of pain, the interindividual differences in anxiety were associated with the strength of coupling between medial thalamus and mPFC, which was furthermore related to activity in the amygdala. These results indicate not only that there is a distinct signature for the encoding of a painful experience in humans, but also that this encoding process involves a strong affective component. SIGNIFICANCE STATEMENT To convert the sensation of pain into a briefly maintainable construct is essential to guide human behavior and avoid dangerous situations. Although this working memory encoding process is implicitly contained in the majority of studies, the underlying neural mechanisms remain unclear. Using fMRI in a delayed-discrimination task, we found that the

  9. The precuneus may encode irrationality in human gambling.

    Science.gov (United States)

    Sacre, P; Kerr, M S D; Subramanian, S; Kahn, K; Gonzalez-Martinez, J; Johnson, M A; Sarma, S V; Gale, J T

    2016-08-01

    Humans often make irrational decisions, especially psychiatric patients who have dysfunctional cognitive and emotional circuitry. Understanding the neural basis of decision-making is therefore essential towards patient management, yet current studies suffer from several limitations. Functional magnetic resonance imaging (fMRI) studies in humans have dominated decision-making neuroscience, but have poor temporal resolution and the blood oxygenation level-dependent signal is only a proxy for neural activity. On the other hand, lesion studies in humans used to infer functionality in decision-making lack characterization of neural activity altogether. Using a combination of local field potential recordings in human subjects performing a financial decision-making task, spectral analyses, and non-parametric cluster statistics, we analyzed the activity in the precuneus. In nine subjects, the neural activity modulated significantly between rational and irrational trials in the precuneus (p <; 0.001). In particular, high-frequency activity (70-100 Hz) increased when irrational decisions were made. Although preliminary, these results suggest suppression of gamma rhythms via electrical stimulation in the precuneus as a therapeutic intervention for pathological decision-making.

  10. Ipsilateral Directional Encoding of Joystick Movements in Human Cortex

    OpenAIRE

    Sharma, Mohit; Gaona, Charles; Roland, Jarod; Anderson, Nick; Freudenberg, Zachary; Leuthardt, Eric C.

    2009-01-01

    The majority of Brain Computer Interfaces have relied on signals related to primary motor cortex and the operation of the contralateral limb. Recently, the physiology associated with same-sided (ipsilateral) motor movements has been found to have a unique cortical physiology. This study sets out to assess whether more complex motor movements can be discerned utilizing ipsilateral cortical signals. In this study, three invasively monitored human subjects were recorded while performing a center...

  11. Encoding of physics concepts: concreteness and presentation modality reflected by human brain dynamics.

    Directory of Open Access Journals (Sweden)

    Kevin Lai

    Full Text Available Previous research into working memory has focused on activations in different brain areas accompanying either different presentation modalities (verbal vs. non-verbal or concreteness (abstract vs. concrete of non-science concepts. Less research has been conducted investigating how scientific concepts are learned and further processed in working memory. To bridge this gap, the present study investigated human brain dynamics associated with encoding of physics concepts, taking both presentation modality and concreteness into account. Results of this study revealed greater theta and low-beta synchronization in the anterior cingulate cortex (ACC during encoding of concrete pictures as compared to the encoding of both high and low imageable words. In visual brain areas, greater theta activity accompanying stimulus onsets was observed for words as compared to pictures while stronger alpha suppression was observed in responses to pictures as compared to words. In general, the EEG oscillation patterns for encoding words of different levels of abstractness were comparable but differed significantly from encoding of pictures. These results provide insights into the effects of modality of presentation on human encoding of scientific concepts and thus might help in developing new ways to better teach scientific concepts in class.

  12. Ghrelin modulates encoding-related brain function without enhancing memory formation in humans

    NARCIS (Netherlands)

    Kunath, N.; Muller, N.C.; Tonon, M.; Konrad, B.N.; Pawlowski, M.; Kopczak, A.; Elbau, I.; Uhr, M.; Kuhn, S.; Repantis, D.; Ohla, K.; Muller, T.D.; Fernandez, G.S.E.; Tschop, M.; Czisch, M.; Steiger, A.; Dresler, M.

    2016-01-01

    Ghrelin regulates energy homeostasis in various species and enhances memory in rodent models. In humans, the role of ghrelin in cognitive processes has yet to be characterized. Here we show in a double-blind randomized crossover design that acute administration of ghrelin alters encoding-related

  13. Nucleic acids encoding mosaic clade M human immunodeficiency virus type 1 (HIV-1) envelope immunogens

    Science.gov (United States)

    Korber, Bette T; Fischer, William; Liao, Hua-Xin; Haynes, Barton F; Letvin, Norman; Hahn, Beatrice H

    2015-04-21

    The present invention relates to nucleic acids encoding mosaic clade M HIV-1 Env polypeptides and to compositions and vectors comprising same. The nucleic acids of the invention are suitable for use in inducing an immune response to HIV-1 in a human.

  14. Effects of acute methamphetamine on emotional memory formation in humans: encoding vs consolidation.

    Science.gov (United States)

    Ballard, Michael E; Weafer, Jessica; Gallo, David A; de Wit, Harriet

    2015-01-01

    Understanding how stimulant drugs affect memory is important for understanding their addictive potential. Here we examined the effects of acute d-methamphetamine (METH), administered either before (encoding phase) or immediately after (consolidation phase) study on memory for emotional and neutral images in healthy humans. Young adult volunteers (N = 60) were randomly assigned to either an encoding group (N = 29) or a consolidation group (N = 31). Across three experimental sessions, they received placebo and two doses of METH (10, 20 mg) either 45 min before (encoding) or immediately after (consolidation) viewing pictures of emotionally positive, neutral, and negative scenes. Memory for the pictures was tested two days later, under drug-free conditions. Half of the sample reported sleep disturbances following the high dose of METH, which affected their memory performance. Therefore, participants were classified as poor sleepers (less than 6 hours; n = 29) or adequate sleepers (6 or more hours; n = 31) prior to analyses. For adequate sleepers, METH (20 mg) administered before encoding significantly improved memory accuracy relative to placebo, especially for emotional (positive and negative), compared to neutral, stimuli. For poor sleepers in the encoding group, METH impaired memory. METH did not affect memory in the consolidation group regardless of sleep quality. These results extend previous findings showing that METH can enhance memory for salient emotional stimuli but only if it is present at the time of study, where it can affect both encoding and consolidation. METH does not appear to facilitate consolidation if administered after encoding. The study also demonstrates the important role of sleep in memory studies.

  15. Effects of acute methamphetamine on emotional memory formation in humans: encoding vs consolidation.

    Directory of Open Access Journals (Sweden)

    Michael E Ballard

    Full Text Available Understanding how stimulant drugs affect memory is important for understanding their addictive potential. Here we examined the effects of acute d-methamphetamine (METH, administered either before (encoding phase or immediately after (consolidation phase study on memory for emotional and neutral images in healthy humans. Young adult volunteers (N = 60 were randomly assigned to either an encoding group (N = 29 or a consolidation group (N = 31. Across three experimental sessions, they received placebo and two doses of METH (10, 20 mg either 45 min before (encoding or immediately after (consolidation viewing pictures of emotionally positive, neutral, and negative scenes. Memory for the pictures was tested two days later, under drug-free conditions. Half of the sample reported sleep disturbances following the high dose of METH, which affected their memory performance. Therefore, participants were classified as poor sleepers (less than 6 hours; n = 29 or adequate sleepers (6 or more hours; n = 31 prior to analyses. For adequate sleepers, METH (20 mg administered before encoding significantly improved memory accuracy relative to placebo, especially for emotional (positive and negative, compared to neutral, stimuli. For poor sleepers in the encoding group, METH impaired memory. METH did not affect memory in the consolidation group regardless of sleep quality. These results extend previous findings showing that METH can enhance memory for salient emotional stimuli but only if it is present at the time of study, where it can affect both encoding and consolidation. METH does not appear to facilitate consolidation if administered after encoding. The study also demonstrates the important role of sleep in memory studies.

  16. Effects of Acute Methamphetamine on Emotional Memory Formation in Humans: Encoding vs Consolidation

    Science.gov (United States)

    Ballard, Michael E.; Weafer, Jessica; Gallo, David A.; de Wit, Harriet

    2015-01-01

    Understanding how stimulant drugs affect memory is important for understanding their addictive potential. Here we examined the effects of acute d-methamphetamine (METH), administered either before (encoding phase) or immediately after (consolidation phase) study on memory for emotional and neutral images in healthy humans. Young adult volunteers (N = 60) were randomly assigned to either an encoding group (N = 29) or a consolidation group (N = 31). Across three experimental sessions, they received placebo and two doses of METH (10, 20 mg) either 45 min before (encoding) or immediately after (consolidation) viewing pictures of emotionally positive, neutral, and negative scenes. Memory for the pictures was tested two days later, under drug-free conditions. Half of the sample reported sleep disturbances following the high dose of METH, which affected their memory performance. Therefore, participants were classified as poor sleepers (less than 6 hours; n = 29) or adequate sleepers (6 or more hours; n = 31) prior to analyses. For adequate sleepers, METH (20 mg) administered before encoding significantly improved memory accuracy relative to placebo, especially for emotional (positive and negative), compared to neutral, stimuli. For poor sleepers in the encoding group, METH impaired memory. METH did not affect memory in the consolidation group regardless of sleep quality. These results extend previous findings showing that METH can enhance memory for salient emotional stimuli but only if it is present at the time of study, where it can affect both encoding and consolidation. METH does not appear to facilitate consolidation if administered after encoding. The study also demonstrates the important role of sleep in memory studies. PMID:25679982

  17. Human Cytomegalovirus Encoded Homologs of Cytokines, Chemokines and their Receptors: Roles in Immunomodulation

    Science.gov (United States)

    McSharry, Brian P.; Avdic, Selmir; Slobedman, Barry

    2012-01-01

    Human cytomegalovirus (HCMV), the largest human herpesvirus, infects a majority of the world’s population. Like all herpesviruses, following primary productive infection, HCMV establishes a life-long latent infection, from which it can reactivate years later to produce new, infectious virus. Despite the presence of a massive and sustained anti-HCMV immune response, productively infected individuals can shed virus for extended periods of time, and once latent infection is established, it is never cleared from the host. It has been proposed that HCMV must therefore encode functions which help to evade immune mediated clearance during productive virus replication and latency. Molecular mimicry is a strategy used by many viruses to subvert and regulate anti-viral immunity and HCMV has hijacked/developed a range of functions that imitate host encoded immunomodulatory proteins. This review will focus on the HCMV encoded homologs of cellular cytokines/chemokines and their receptors, with an emphasis on how these virus encoded homologs may facilitate viral evasion of immune clearance. PMID:23202490

  18. Human Cytomegalovirus-Encoded Receptor US28 Is Expressed in Renal Allografts and Facilitates Viral Spreading In Vitro

    NARCIS (Netherlands)

    Lollinga, Wouter T; de Wit, Raymond H; Rahbar, Afsar; Vasse, Gwenda F; Davoudi, Belghis; Diepstra, Arjan; Riezebos-Brilman, Annelies; Harmsen, Martin C; Hillebrands, Jan-Luuk; Söderberg-Naucler, Cecilia; van Son, Willem J; Smit, Martine J; Sanders, Jan-Stephan; van den Born, Jacob

    BACKGROUND: Renal transplantation is the preferred treatment for patients with end-stage renal disease. Human cytomegalovirus (HCMV) activation is associated with decreased renal graft function and survival. Human cytomegalovirus encodes several immune modulatory proteins, including the G

  19. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward

    Science.gov (United States)

    Kishida, Kenneth T.; Saez, Ignacio; Lohrenz, Terry; Witcher, Mark R.; Laxton, Adrian W.; Tatter, Stephen B.; White, Jason P.; Ellis, Thomas L.; Phillips, Paul E. M.; Montague, P. Read

    2016-01-01

    In the mammalian brain, dopamine is a critical neuromodulator whose actions underlie learning, decision-making, and behavioral control. Degeneration of dopamine neurons causes Parkinson’s disease, whereas dysregulation of dopamine signaling is believed to contribute to psychiatric conditions such as schizophrenia, addiction, and depression. Experiments in animal models suggest the hypothesis that dopamine release in human striatum encodes reward prediction errors (RPEs) (the difference between actual and expected outcomes) during ongoing decision-making. Blood oxygen level-dependent (BOLD) imaging experiments in humans support the idea that RPEs are tracked in the striatum; however, BOLD measurements cannot be used to infer the action of any one specific neurotransmitter. We monitored dopamine levels with subsecond temporal resolution in humans (n = 17) with Parkinson’s disease while they executed a sequential decision-making task. Participants placed bets and experienced monetary gains or losses. Dopamine fluctuations in the striatum fail to encode RPEs, as anticipated by a large body of work in model organisms. Instead, subsecond dopamine fluctuations encode an integration of RPEs with counterfactual prediction errors, the latter defined by how much better or worse the experienced outcome could have been. How dopamine fluctuations combine the actual and counterfactual is unknown. One possibility is that this process is the normal behavior of reward processing dopamine neurons, which previously had not been tested by experiments in animal models. Alternatively, this superposition of error terms may result from an additional yet-to-be-identified subclass of dopamine neurons. PMID:26598677

  20. Inverted Encoding Models of Human Population Response Conflate Noise and Neural Tuning Width.

    Science.gov (United States)

    Liu, Taosheng; Cable, Dylan; Gardner, Justin L

    2018-01-10

    Channel-encoding models offer the ability to bridge different scales of neuronal measurement by interpreting population responses, typically measured with BOLD imaging in humans, as linear sums of groups of neurons (channels) tuned for visual stimulus properties. Inverting these models to form predicted channel responses from population measurements in humans seemingly offers the potential to infer neuronal tuning properties. Here, we test the ability to make inferences about neural tuning width from inverted encoding models. We examined contrast invariance of orientation selectivity in human V1 (both sexes) and found that inverting the encoding model resulted in channel response functions that became broader with lower contrast, thus apparently violating contrast invariance. Simulations showed that this broadening could be explained by contrast-invariant single-unit tuning with the measured decrease in response amplitude at lower contrast. The decrease in response lowers the signal-to-noise ratio of population responses that results in poorer population representation of orientation. Simulations further showed that increasing signal to noise makes channel response functions less sensitive to underlying neural tuning width, and in the limit of zero noise will reconstruct the channel function assumed by the model regardless of the bandwidth of single units. We conclude that our data are consistent with contrast-invariant orientation tuning in human V1. More generally, our results demonstrate that population selectivity measures obtained by encoding models can deviate substantially from the behavior of single units because they conflate neural tuning width and noise and are therefore better used to estimate the uncertainty of decoded stimulus properties.SIGNIFICANCE STATEMENT It is widely recognized that perceptual experience arises from large populations of neurons, rather than a few single units. Yet, much theory and experiment have examined links between single

  1. Detection of the human endogenous retrovirus ERV3-encoded Env-protein in human tissues using antibody-based proteomics.

    Science.gov (United States)

    Fei, Chen; Atterby, Christina; Edqvist, Per-Henrik; Pontén, Fredrik; Zhang, Wei Wei; Larsson, Erik; Ryan, Frank P

    2014-01-01

    There is growing evidence to suggest that human endogenous retroviruses (HERVs) have contributed to human evolution, being expressed in development, normal physiology and disease. A key difficulty in the scientific evaluation of this potential viral contribution is the accurate demonstration of virally expressed protein in specific human cells and tissues. In this study, we have adopted the endogenous retrovirus, ERV3, as our test model in developing a reliable high-capacity methodology for the expression of such endogenous retrovirus-coded protein. Two affinity-purified polyclonal antibodies to ERV3 Env-encoded protein were generated to detect the corresponding protein expression pattern in specific human cells, tissues and organs. Sampling included normal tissues from 144 individuals ranging from childhood to old age. This included more than forty different tissues and organs and some 216 different cancer tissues representing the twenty commonest forms of human cancer. The Rudbeck Laboratory, Uppsala University and Uppsala University Hospital, Uppsala, Sweden. The potential expression at likely physiological level of the ERV3Env encoded protein in a wide range of human cells, tissues and organs. We found that ERV3 encoded Env protein is expressed at substantive levels in placenta, testis, adrenal gland, corpus luteum, Fallopian tubes, sebaceous glands, astrocytes, bronchial epithelium and the ducts of the salivary glands. Substantive expression was also seen in a variety of epithelial cells as well as cells known to undergo fusion in inflammation and in normal physiology, including fused macrophages, myocardium and striated muscle. This contrasted strongly with the low levels expressed in other tissues types. These findings suggest that this virus plays a significant role in human physiology and may also play a possible role in disease. This technique can now be extended to the study of other HERV genomes within the human chromosomes that may have contributed to

  2. Comparative metagenomic analysis of plasmid encoded functions in the human gut microbiome

    Directory of Open Access Journals (Sweden)

    Marchesi Julian R

    2010-01-01

    Full Text Available Abstract Background Little is known regarding the pool of mobile genetic elements associated with the human gut microbiome. In this study we employed the culture independent TRACA system to isolate novel plasmids from the human gut microbiota, and a comparative metagenomic analysis to investigate the distribution and relative abundance of functions encoded by these plasmids in the human gut microbiome. Results Novel plasmids were acquired from the human gut microbiome, and homologous nucleotide sequences with high identity (>90% to two plasmids (pTRACA10 and pTRACA22 were identified in the multiple human gut microbiomes analysed here. However, no homologous nucleotide sequences to these plasmids were identified in the murine gut or environmental metagenomes. Functions encoded by the plasmids pTRACA10 and pTRACA22 were found to be more prevalent in the human gut microbiome when compared to microbial communities from other environments. Among the most prevalent functions identified was a putative RelBE toxin-antitoxin (TA addiction module, and subsequent analysis revealed that this was most closely related to putative TA modules from gut associated bacteria belonging to the Firmicutes. A broad phylogenetic distribution of RelE toxin genes was observed in gut associated bacterial species (Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria, but no RelE homologues were identified in gut associated archaeal species. We also provide indirect evidence for the horizontal transfer of these genes between bacterial species belonging to disparate phylogenetic divisions, namely Gram negative Proteobacteria and Gram positive species from the Firmicutes division. Conclusions The application of a culture independent system to capture novel plasmids from the human gut mobile metagenome, coupled with subsequent comparative metagenomic analysis, highlighted the unexpected prevalence of plasmid encoded functions in the gut microbial ecosystem. In

  3. Cloning of human genes encoding novel G protein-coupled receptors

    Energy Technology Data Exchange (ETDEWEB)

    Marchese, A.; Docherty, J.M.; Heiber, M. [Univ. of Toronto, (Canada)] [and others

    1994-10-01

    We report the isolation and characterization of several novel human genes encoding G protein-coupled receptors. Each of the receptors contained the familiar seven transmembrane topography and most closely resembled peptide binding receptors. Gene GPR1 encoded a receptor protein that is intronless in the coding region and that shared identity (43% in the transmembrane regions) with the opioid receptors. Northern blot analysis revealed that GPR1 transcripts were expressed in the human hippocampus, and the gene was localized to chromosome 15q21.6. Gene GPR2 encoded a protein that most closely resembled an interleukin-8 receptor (51% in the transmembrane regions), and this gene, not expressed in the six brain regions examined, was localized to chromosome 17q2.1-q21.3. A third gene, GPR3, showed identity (56% in the transmembrane regions) with a previously characterized cDNA clone from rat and was localized to chromosome 1p35-p36.1. 31 refs., 5 figs., 1 tab.

  4. Roughness encoding in human and biomimetic artificial touch: spatiotemporal frequency modulation and structural anisotropy of fingerprints.

    Science.gov (United States)

    Oddo, Calogero Maria; Beccai, Lucia; Wessberg, Johan; Wasling, Helena Backlund; Mattioli, Fabio; Carrozza, Maria Chiara

    2011-01-01

    The influence of fingerprints and their curvature in tactile sensing performance is investigated by comparative analysis of different design parameters in a biomimetic artificial fingertip, having straight or curved fingerprints. The strength in the encoding of the principal spatial period of ridged tactile stimuli (gratings) is evaluated by indenting and sliding the surfaces at controlled normal contact force and tangential sliding velocity, as a function of fingertip rotation along the indentation axis. Curved fingerprints guaranteed higher directional isotropy than straight fingerprints in the encoding of the principal frequency resulting from the ratio between the sliding velocity and the spatial periodicity of the grating. In parallel, human microneurography experiments were performed and a selection of results is included in this work in order to support the significance of the biorobotic study with the artificial tactile system.

  5. Roughness Encoding in Human and Biomimetic Artificial Touch: Spatiotemporal Frequency Modulation and Structural Anisotropy of Fingerprints

    Directory of Open Access Journals (Sweden)

    Maria Chiara Carrozza

    2011-05-01

    Full Text Available The influence of fingerprints and their curvature in tactile sensing performance is investigated by comparative analysis of different design parameters in a biomimetic artificial fingertip, having straight or curved fingerprints. The strength in the encoding of the principal spatial period of ridged tactile stimuli (gratings is evaluated by indenting and sliding the surfaces at controlled normal contact force and tangential sliding velocity, as a function of fingertip rotation along the indentation axis. Curved fingerprints guaranteed higher directional isotropy than straight fingerprints in the encoding of the principal frequency resulting from the ratio between the sliding velocity and the spatial periodicity of the grating. In parallel, human microneurography experiments were performed and a selection of results is included in this work in order to support the significance of the biorobotic study with the artificial tactile system.

  6. Structured RNAs in the ENCODE selected regions of the human genome

    DEFF Research Database (Denmark)

    Washietl, Stefan; Pedersen, Jakob Skou; Korbel, Jan O

    2007-01-01

    Functional RNA structures play an important role both in the context of noncoding RNA transcripts as well as regulatory elements in mRNAs. Here we present a computational study to detect functional RNA structures within the ENCODE regions of the human genome. Since structural RNAs in general lack...... characteristic signals in primary sequence, comparative approaches evaluating evolutionary conservation of structures are most promising. We have used three recently introduced programs based on either phylogenetic-stochastic context-free grammar (EvoFold) or energy directed folding (RNAz and AlifoldZ), yielding...... several thousand candidate structures (corresponding to approximately 2.7% of the ENCODE regions). EvoFold has its highest sensitivity in highly conserved and relatively AU-rich regions, while RNAz favors slightly GC-rich regions, resulting in a relatively small overlap between methods. Comparison...

  7. Cloning of the genes encoding two murine and human cochlear unconventional type I myosins

    Energy Technology Data Exchange (ETDEWEB)

    Crozet, F.; El Amraoui, Z.; Blanchard, S. [Institut Pasteur, Paris (France)] [and others

    1997-03-01

    Several lines of evidence indicate a crucial role for unconventional myosins in the function of the sensory hair cells of the inner ear. We report here the characterization of the cDNAs encoding two unconventional type I myosins from a mouse cochlear cDNA library. The first cDNA encodes a putative protein named Myo1c, which is likely to be the murine orthologue of the bullfrog myosin I{beta} and which may be involved in the gating of the mechanotransduction channel of the sensory hair cells. This myosin belongs to the group of short-tailed myosins I, with its tail ending shortly after a polybasic, TH-1-like domain. The second cDNA encodes a novel type I myosin Myo1f which displays three regions: a head domain with the conserved ATP- and actin-binding sites, a neck domain with a single IQ motif, and a tail domain with the tripartite structure initially described in protozoan myosins I. The tail of Myo1f includes (1) a TH-1 region rich in basic residues, which may interact with anionic membrane phospholipids; (2) a TH-2 proline-rich region, expected to contain an ATP-insensitive actin-binding site; and (3) an SH-3 domain found in a variety of cytoskeletal and signaling proteins. Northern blot analysis indicated that the genes encoding Myo1c and Myo1f display a widespread tissue expression in the adult mouse. Myo1c and Myo1f were mapped by in situ hybridization to the chromosomal regions 11D-11E and 17B-17C, respectively. The human orthologuous genes MYO1C and MYO1F were also characterized, and mapped to the human chromosomal regions 17p13 and 19p13.2- 19p1.3.3, respectively. 45 refs., 5 figs., 2 tabs.

  8. Mutagenesis in sequence encoding of human factor VII for gene therapy of hemophilia

    Directory of Open Access Journals (Sweden)

    B Kazemi

    2009-12-01

    Full Text Available "nBackground: Current treatment of hemophilia which is one of the most common bleeding disorders, involves replacement therapy using concentrates of FVIII and FIX .However, these concentrates have been associated with viral infections and thromboembolic complications and development of antibodies. "nThe use of recombinant human factor VII (rhFVII is effective  for the treatment of patients with  hemophilia A or B, who develop antibodies ( referred as inhibitors against  replacement therapy , because it induces coagulation independent of FVIII and FIX. However, its short half-life and high cost have limited its use. One potential solution to this problem may be the use of FVIIa gene transfer, which would attain continuing therapeutic levels of expression from a single injection. The aim of this study was to engineer a novel hFVII (human FVII gene containing a cleavage site for the intracellular protease and furin, by PCR mutagenesis "nMethods: The sequence encoding light and heavy chains of hFVII, were amplified by using hFVII/pTZ57R and specific primers, separately. The PCR products were cloned in pTZ57R vector. "nResults and discussion: Cloning was confirmed by restriction analysis or PCR amplification using specific primers and plasmid universal primers. Mutagenesis of sequence encoding light and heavy chain was confirmed by restriction enzyme. "nConclusion: In the present study, it was provided recombinant plasmids based on mutant form of DNA encoding light and heavy chains.  Joining mutant form of DNA encoding light chain with mutant heavy chain led to a new variant of hFVII. This variant can be activated by furin and an increase in the proportion of activated form of FVII. This mutant form of hFVII may be used for gene therapy of hemophilia.

  9. Receptor expression and responsiveness of human peripheral blood mononuclear cells to a human cytomegalovirus encoded CC chemokine.

    Science.gov (United States)

    Zheng, Qi; Xu, Jun; Gao, Huihui; Tao, Ran; Li, Wei; Shang, Shiqiang; Gu, Weizhong

    2015-01-01

    Human cytomegalovirus is a ubiquitous pathogen that infects the majority of the world's population. After long period of time co-evolving with human being, this pathogen has developed several strategies to evade host immune surveillance. One of the major trick is encoding homologous to those of the host organism or stealing host cellular genes that have significant functions in immune system. To date, we have found several viral immune analogous which include G protein coupled receptor, class I major histocompatibility complex and chemokine. Chemokine is a small group of molecules which is defined by the presence of four cysteines in highly conserved region. The four kinds of chemokines (C, CC, CXC, and CX3C) are classified based on the arrangement of 1 or 2 N-terminal cysteine residues. UL128 protein is one of the analogous that encoded by human cytomegalovirus that has similar amino acid sequences to the human CC chemokine. It has been proved to be one of the essential particles that involved in human cytomegalovirus entry into epithelial/endothelial cells as well as macrophages. It is also the target of potent neutralizing antibodies in human cytomegalovirus-seropositive individuals. We had demonstrated the chemotactic trait of UL128 protein in our previous study. Recombinant UL128 in vitro has the ability to attract monocytes to the infection region and enhances peripheral blood mononuclear cell proliferation by activating the MAPK/ERK signaling pathway. However, the way that this viral encoded chemokine interacting with peripheral blood mononuclear cells and the detailed mechanism that involving the virus entry into host cells keeps unknown. Here we performed in vitro investigation into the effects of UL128 protein on peripheral blood mononuclear cell's activation and receptor binding, which may help us further understand the immunomodulatory function of UL128 protein as well as human cytomegalovirus diffusion mechanism. Copyright © 2015 Elsevier Editora Ltda

  10. Transfer and expression of the gene encoding a human myeloid membrane antigen (gp150).

    Science.gov (United States)

    Look, A T; Peiper, S C; Rebentisch, M B; Ashmun, R A; Roussel, M F; Rettenmier, C W; Sherr, C J

    1985-02-01

    DNA from the human myeloid cell line HL-60 was cotransfected with the cloned thymidine kinase (tk) gene of herpes simplex virus into tk-deficient mouse L cells. tk-positive recipients expressing antigens detected on HL-60 cells were isolated with a fluorescence-activated cell sorter by use of a panel of monoclonal antibodies that detect epitopes on both normal and malignant myeloid cells. Independently sorted populations of transformed mouse cells showed concordant reactivities with four of the monoclonal antibodies in the panel (DU-HL60-4, MY7, MCS.2, and SJ-D1), which suggested that these antibodies reacted to products of a single human gene. A second round of DNA transfection and cell sorting was performed with donor DNA from primary transformants. Two different dominant selection systems were used to isolate secondary mouse L cell and NIH/3T3 cell transformants that coexpressed the same epitopes. Analysis of cellular DNA from secondary mouse cell subclones with a probe specific for human repetitive DNA sequences revealed a minimal human DNA complement containing a characteristic set of restriction fragments common to independently derived subclones. Two glycoproteins, of 130,000 (gp130) and 150,000 (gp150) mol wt, were specifically immunoprecipitated from metabolically labeled lysates of mouse cell transformants and were shown to contain [35S]methionine-labeled tryptic peptides identical to those of analogous glycoproteins expressed in the donor human myeloid cell line. Kinetic and biochemical analyses established that gp130 is a precursor that differs in its carbohydrate moiety from gp150, the mature form of the glycoprotein detected on the cell surface. The isolation of human gene sequences encoding gp150 in a mouse cell genetic background provides the possibility of molecularly cloning the gene and represents a general strategy for isolating human genes encoding differentiation-specific cell surface antigens.

  11. TMS interference with primacy and recency mechanisms reveals bimodal episodic encoding in the human brain.

    Science.gov (United States)

    Innocenti, Iglis; Cappa, Stefano F; Feurra, Matteo; Giovannelli, Fabio; Santarnecchi, Emiliano; Bianco, Giovanni; Cincotta, Massimo; Rossi, Simone

    2013-01-01

    A classic finding of the psychology of memory is the "serial position effect." Immediate free recall of a word list is more efficient for items presented early (primacy effect) or late (recency effect), with respect to those in the middle. In an event-related, randomized block design, we interfered with the encoding of unrelated words lists with brief trains of repetitive TMS (rTMS), applied coincidently with the acoustic presentation of each word to the left dorsolateral pFC, the left intraparietal lobe, and a control site (vertex). Interference of rTMS with encoding produced a clear-cut double dissociation on accuracy during immediate free recall. The primacy effect was selectively worsened by rTMS of the dorsolateral pFC, whereas recency was selectively worsened by rTMS of the intraparietal lobe. These results are in agreement with the double dissociation between short-term and long-term memory observed in neuropsychological patients and provide direct evidence of distinct cortical mechanisms of encoding in the human brain.

  12. Ghrelin modulates encoding-related brain function without enhancing memory formation in humans.

    Science.gov (United States)

    Kunath, N; Müller, N C J; Tonon, M; Konrad, B N; Pawlowski, M; Kopczak, A; Elbau, I; Uhr, M; Kühn, S; Repantis, D; Ohla, K; Müller, T D; Fernández, G; Tschöp, M; Czisch, M; Steiger, A; Dresler, M

    2016-11-15

    Ghrelin regulates energy homeostasis in various species and enhances memory in rodent models. In humans, the role of ghrelin in cognitive processes has yet to be characterized. Here we show in a double-blind randomized crossover design that acute administration of ghrelin alters encoding-related brain activity, however does not enhance memory formation in humans. Twenty-one healthy young male participants had to memorize food- and non-food-related words presented on a background of a virtual navigational route while undergoing fMRI recordings. After acute ghrelin administration, we observed decreased post-encoding resting state fMRI connectivity between the caudate nucleus and the insula, amygdala, and orbitofrontal cortex. In addition, brain activity related to subsequent memory performance was modulated by ghrelin. On the next day, however, no differences were found in free word recall or cued location-word association recall between conditions; and ghrelin's effects on brain activity or functional connectivity were unrelated to memory performance. Further, ghrelin had no effect on a cognitive test battery comprising tests for working memory, fluid reasoning, creativity, mental speed, and attention. In conclusion, in contrast to studies with animal models, we did not find any evidence for the potential of ghrelin acting as a short-term cognitive enhancer in humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Sequence and regulation of a gene encoding a human 89-kilodalton heat shock protein

    Energy Technology Data Exchange (ETDEWEB)

    Hickey, E.; Brandon, S.E.; Weber, L.A.; Lloyd, D.

    1989-06-01

    Vertebrate cells synthesize two forms of the 82- to 90-kilodalton heat shock protein that are encoded by distinct gene families. In HeLa cells, both proteins (hsp89/alpha/ and hspio/beta/) are abundant under normal growth conditions and are synthesized at increased rates in response to heat stress. Only the larger form, hsp89/alpha/, is induced by the adenovirus E1A gene product. The authors have isolated a human hsp89/alpha/ gene that shows complete sequence identity with heat- and E1A-inducible cDNA used as a hybridization probe. The 5'-flanking region contained overlapping and inverted consensus heat shock control elements that can confer heat-inducible expression n a /beta/-globin reporter gene. The gene contained 10 intervening sequences. The first intron was located adjacent to the translation start codon, an arrangement also found in the Drosophila hsp82 gene. The spliced mRNA sequence contained a single open reading frame encoding an 84,564-dalton polypeptide showing high homology with the hsp82 to hsp90 proteins of other organisms. The deduced hsp89/alpha/ protein sequence differed from the human hsp89/beta/ sequence reported elsewhere in at least 99 out of the 732 amino acids. Transcription of the hsp89/alpha/ gene was induced by serum during normal cell growth, but expression did not appear to be restricted to a particular stage of the cell cycles. hsp89/alpha/ mRNA was considerably more stable than the mRNA encoding hsp70, which can account for the higher constitutive rate of hsp89 synthesis in unstressed cells.

  14. Germline-encoded neutralization of a Staphylococcus aureus virulence factor by the human antibody repertoire.

    Science.gov (United States)

    Yeung, Yik Andy; Foletti, Davide; Deng, Xiaodi; Abdiche, Yasmina; Strop, Pavel; Glanville, Jacob; Pitts, Steven; Lindquist, Kevin; Sundar, Purnima D; Sirota, Marina; Hasa-Moreno, Adela; Pham, Amber; Melton Witt, Jody; Ni, Irene; Pons, Jaume; Shelton, David; Rajpal, Arvind; Chaparro-Riggers, Javier

    2016-11-18

    Staphylococcus aureus is both an important pathogen and a human commensal. To explore this ambivalent relationship between host and microbe, we analysed the memory humoral response against IsdB, a protein involved in iron acquisition, in four healthy donors. Here we show that in all donors a heavily biased use of two immunoglobulin heavy chain germlines generated high affinity (pM) antibodies that neutralize the two IsdB NEAT domains, IGHV4-39 for NEAT1 and IGHV1-69 for NEAT2. In contrast to the typical antibody/antigen interactions, the binding is primarily driven by the germline-encoded hydrophobic CDRH-2 motifs of IGHV1-69 and IGHV4-39, with a binding mechanism nearly identical for each antibody derived from different donors. Our results suggest that IGHV1-69 and IGHV4-39, while part of the adaptive immune system, may have evolved under selection pressure to encode a binding motif innately capable of recognizing and neutralizing a structurally conserved protein domain involved in pathogen iron acquisition.

  15. The Relationship Between Transcript Expression Levels of Nuclear Encoded (TFAM, NRF1 and Mitochondrial Encoded (MT-CO1 Genes in Single Human Oocytes During Oocyte Maturation

    Directory of Open Access Journals (Sweden)

    Ghaffari Novin M.

    2015-06-01

    Full Text Available In some cases of infertility in women, human oocytes fail to mature when they reach the metaphase II (MII stage. Mitochondria plays an important role in oocyte maturation. A large number of mitochondrial DNA (mtDNA, copied in oocytes, is essential for providing adenosine triphosphate (ATP during oocyte maturation. The purpose of this study was to identify the relationship between transcript expression levels of the mitochondrial encoded gene (MT-CO1 and two nuclear encoded genes, nuclear respiratory factor 1 (NRF1 and mitochondrial transcription factor A (TFAM in various stages of human oocyte maturation. Nine consenting patients, age 21-35 years old, with male factors were selected for ovarian stimulation and intracytoplasmic sperm injection (ICSI procedures. mRNA levels of mitochondrial- related genes were performed by singlecell TaqMan® quantitative real-time polymerase chain reaction (qRT-PCR. There was no significant relationship between the relative expression levels in germinal vesicle (GV stage oocytes (p = 0.62. On the contrary, a significant relationship was seen between the relative expression levels of TFAM and NRF1 and the MT-CO1 genes at the stages of metaphase I (MI and MII (p = 0.03 and p = 0.002. A relationship exists between the transcript expression levels of TFAM and NRF1, and MT-CO1 genes in various stages of human oocyte maturation.

  16. Construction of four double gene substitution human x bovine rotavirus reassortant vaccine candidates: each bears two outer capsid human rotavirus genes, one encoding P serotype 1A and the other encoding G serotype 1, 2, 3, or 4 specificity.

    Science.gov (United States)

    Hoshino, Y; Jones, R W; Chanock, R M; Kapikian, A Z

    1997-04-01

    Previously, four human x bovine rotavirus reassortant candidate vaccines, each of which derived ten genes from bovine rotavirus UK strain and only the outer capsid protein VP7-gene from human rotavirus strain D (G serotype 1), DS-1 (G serotype 2), P (G serotype 3), or ST3 (G serotype 4), were developed [Midthun et al., (1985): Journal of Virology 53:949-954; (1986): Journal of Clinical Microbiology 24:822-826]. Such human x bovine reassortant vaccines should theoretically provide antigenic coverage for the four epidemiologically most important VP7(G) serotypes 1, 2, 3, and 4. In an attempt to increase the antigenicity of VP7-based human x animal reassortant rotavirus vaccines which derive a single VP7-encoding gene from the human strain and the remaining ten genes from the animal strain, we generated double gene substitution reassortants. This was done by incorporating another protective antigen (VP4) of an epidemiologically important human rotavirus by crossing human rotavirus Wa strain (P serotype 1A), with each of the human x bovine single VP7-gene substitution rotavirus reassortants. In this way four separate double gene substitution rotavirus reassortants were generated. Each of these reassortants bears the VP4-encoding gene from human rotavirus Wa strain, the VP7-encoding gene from human rotavirus strain D, DS-1, P, or ST3, and the remaining nine genes from bovine rotavirus strain UK. The safety, antigenicity, and protective efficacy of individual components as well as combinations of strains are currently under evaluation.

  17. Chromosome locations of genes encoding human signal transduction adapter proteins, Nck (NCK), Shc (SHC1), and Grb2 (GRB2)

    DEFF Research Database (Denmark)

    Huebner, K; Kastury, K; Druck, T

    1994-01-01

    Abnormalities due to chromosomal aberration or point mutation in gene products of growth factor receptors or in ras gene products, which lie on the same signaling pathway, can cause disease in animals and humans. Thus, it can be important to determine chromosomal map positions of genes encoding "...

  18. Genetically encoded photocrosslinkers locate the high-affinity binding site of antidepressant drugs in the human serotonin transporter

    DEFF Research Database (Denmark)

    Rannversson, Hafsteinn; Andersen, Jacob; Hall, Lena Sørensen

    2016-01-01

    Despite the well-established role of the human serotonin transporter (hSERT) in the treatment of depression, the molecular details of antidepressant drug binding are still not fully understood. Here we utilize amber codon suppression in a membrane-bound transporter protein to encode...

  19. Human cytomegalovirus-encoded US28 may act as a tumor promoter in colorectal cancer.

    Science.gov (United States)

    Cai, Zhen-Zhai; Xu, Jian-Gang; Zhou, Yu-Hui; Zheng, Ji-Hang; Lin, Ke-Zhi; Zheng, Shu-Zhi; Ye, Meng-Si; He, Yun; Liu, Chang-Bao; Xue, Zhan-Xiong

    2016-03-07

    To assess human cytomegalovirus-encoded US28 gene function in colorectal cancer (CRC) pathogenesis. Immunohistochemical analysis was performed to determine US28 expression in 103 CRC patient samples and 98 corresponding adjacent noncancerous samples. Patient data were compared by age, sex, tumor location, histological grade, Dukes' stage, and overall mean survival time. In addition, the US28 gene was transiently transfected into the CRC LOVO cell line, and cell proliferation was assessed using a cell counting kit-8 assay. Cell cycle analysis by flow cytometry and a cell invasion transwell assay were also carried out. US28 levels were clearly higher in CRC tissues (38.8%) than in adjacent noncancerous samples (7.1%) (P = 0.000). Interestingly, elevated US28 amounts in CRC tissues were significantly associated with histological grade, metastasis, Dukes' stage, and overall survival (all P < 0.05); meanwhile, US28 expression was not significantly correlated with age, sex or tumor location. In addition, multivariate Cox regression data revealed US28 level as an independent CRC prognostic marker (P = 0.000). LOVO cells successfully transfected with the US28 gene exhibited higher viability, greater chemotherapy resistance, accelerated cell cycle progression, and increased invasion ability. US28 expression is predictive of poor prognosis and may promote CRC.

  20. Limits on perceptual encoding can be predicted from known receptive field properties of human visual cortex.

    Science.gov (United States)

    Cohen, Michael A; Rhee, Juliana Y; Alvarez, George A

    2016-01-01

    Human cognition has a limited capacity that is often attributed to the brain having finite cognitive resources, but the nature of these resources is usually not specified. Here, we show evidence that perceptual interference between items can be predicted by known receptive field properties of the visual cortex, suggesting that competition within representational maps is an important source of the capacity limitations of visual processing. Across the visual hierarchy, receptive fields get larger and represent more complex, high-level features. Thus, when presented simultaneously, high-level items (e.g., faces) will often land within the same receptive fields, while low-level items (e.g., color patches) will often not. Using a perceptual task, we found long-range interference between high-level items, but only short-range interference for low-level items, with both types of interference being weaker across hemifields. Finally, we show that long-range interference between items appears to occur primarily during perceptual encoding and not during working memory maintenance. These results are naturally explained by the distribution of receptive fields and establish a link between perceptual capacity limits and the underlying neural architecture. (c) 2015 APA, all rights reserved).

  1. Direction of movement is encoded in the human primary motor cortex.

    Directory of Open Access Journals (Sweden)

    Carolien M Toxopeus

    Full Text Available The present study investigated how direction of hand movement, which is a well-described parameter in cerebral organization of motor control, is incorporated in the somatotopic representation of the manual effector system in the human primary motor cortex (M1. Using functional magnetic resonance imaging (fMRI and a manual step-tracking task we found that activation patterns related to movement in different directions were spatially disjoint within the representation area of the hand on M1. Foci of activation related to specific movement directions were segregated within the M1 hand area; activation related to direction 0° (right was located most laterally/superficially, whereas directions 180° (left and 270° (down elicited activation more medially within the hand area. Activation related to direction 90° was located between the other directions. Moreover, by investigating differences between activations related to movement along the horizontal (0°+180° and vertical (90°+270° axis, we found that activation related to the horizontal axis was located more anterolaterally/dorsally in M1 than for the vertical axis, supporting that activations related to individual movement directions are direction- and not muscle related. Our results of spatially segregated direction-related activations in M1 are in accordance with findings of recent fMRI studies on neural encoding of direction in human M1. Our results thus provide further evidence for a direct link between direction as an organizational principle in sensorimotor transformation and movement execution coded by effector representations in M1.

  2. Selective elimination of high constitutive activity or chemokine binding in the human herpesvirus 8 encoded seven transmembrane oncogene ORF74

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Kledal, T N; Holst, Peter Johannes

    2000-01-01

    Open reading frame 74 (ORF74) encoded by human herpesvirus 8 is a highly constitutively active seven transmembrane (7TM) receptor stimulated by angiogenic chemokines, e.g. growth-related oncogene-alpha, and inhibited by angiostatic chemokines e.g. interferon-gamma-inducible protein. Transgenic mice...... either agonist or inverse agonist modulation as well as high constitutive activity of the virally encoded oncogene ORF74 and that these mutant forms presumably can be used in transgenic animals to identify the molecular mechanism of its transforming activity....

  3. Encoding/retrieval dissociation in working memory for human body forms.

    Science.gov (United States)

    Bauser, Denise A Soria; Mayer, Kerstin; Daum, Irene; Suchan, Boris

    2011-06-20

    The present study was conducted to investigate the effect of working memory (WM) load on body processing mechanisms by using event-related potentials (ERPs). It is well known that WM load modulates the P3b (amplitude decreases as WM load increases). Additionally, WM load for faces modulates earlier ERPs like the N170. The present study aimed to investigate the effect of WM load for bodies on the P3b which is associated with WM. Additionally, we explored the effect of WM load on the N170, which is thought to be associated with configural processing, and P1, which has been observed in body as well as in face processing. Effects were analyzed during the encoding and retrieval phases. WM load was modulated by presenting one to four unfamiliar bodies simultaneously for memory encoding. The present study showed that early encoding processes (reflected by the P1 and N170) might not be modulated by WM load, whereas during the retrieval phase, early processes associated with structural encoding (N170) were affected by WM load. A possible explanation of the encoding/retrieval differences might be that subjects used distinct processing strategies in both phases. Parallel encoding of the simultaneously presented bodies might play an important role during the encoding phase where one to four bodies have to be stored, whereas serial matching might be used to compare the probe with the stored pictures during the retrieval phase. Additionally, WM load modulations were observed in later processing steps, which might be associated with stimulus identification and matching processes (reflected by the early P3b) during the encoding but not during the retrieval phase. The current findings further showed for both the encoding and the retrieval phase that the late P3b amplitude decreased as WM load for body images increased indicating that the late P3b is involved in WM processes which do not appear to be category-specific. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. A DNMT3B alternatively spliced exon and encoded peptide are novel biomarkers of human pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Sailesh Gopalakrishna-Pillai

    Full Text Available A major obstacle in human stem cell research is the limited number of reagents capable of distinguishing pluripotent stem cells from partially differentiated or incompletely reprogrammed derivatives. Although human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs express numerous alternatively spliced transcripts, little attention has been directed at developing splice variant-encoded protein isoforms as reagents for stem cell research. In this study, several genes encoding proteins involved in important signaling pathways were screened to detect alternatively spliced transcripts that exhibited differential expression in pluripotent stem cells (PSCs relative to spontaneously differentiated cells (SDCs. Transcripts containing the alternatively spliced exon 10 of the de novo DNA methyltransferase gene, DNMT3B, were identified that are expressed in PSCs. To demonstrate the utility and superiority of splice variant specific reagents for stem cell research, a peptide encoded by DNMT3B exon 10 was used to generate an antibody, SG1. The SG1 antibody detects a single DNMT3B protein isoform that is expressed only in PSCs but not in SDCs. The SG1 antibody is also demonstrably superior to other antibodies at distinguishing PSCs from SDCs in mixed cultures containing both pluripotent stem cells and partially differentiated derivatives. The tightly controlled down regulation of DNMT3B exon 10 containing transcripts (and exon 10 encoded peptide upon spontaneous differentiation of PSCs suggests that this DNMT3B splice isoform is characteristic of the pluripotent state. Alternatively spliced exons, and the proteins they encode, represent a vast untapped reservoir of novel biomarkers that can be used to develop superior reagents for stem cell research and to gain further insight into mechanisms controlling stem cell pluripotency.

  5. Effects of Δ9-tetrahydrocannabinol administration on human encoding and recall memory function: a pharmacological FMRI study.

    Science.gov (United States)

    Bossong, Matthijs G; Jager, Gerry; van Hell, Hendrika H; Zuurman, Lineke; Jansma, J Martijn; Mehta, Mitul A; van Gerven, Joop M A; Kahn, René S; Ramsey, Nick F

    2012-03-01

    Deficits in memory function are an incapacitating aspect of various psychiatric and neurological disorders. Animal studies have recently provided strong evidence for involvement of the endocannabinoid (eCB) system in memory function. Neuropsychological studies in humans have shown less convincing evidence but suggest that administration of cannabinoid substances affects encoding rather than recall of information. In this study, we examined the effects of perturbation of the eCB system on memory function during both encoding and recall. We performed a pharmacological MRI study with a placebo-controlled, crossover design, investigating the effects of Δ9-tetrahydrocannabinol (THC) inhalation on associative memory-related brain function in 13 healthy volunteers. Performance and brain activation during associative memory were assessed using a pictorial memory task, consisting of separate encoding and recall conditions. Administration of THC caused reductions in activity during encoding in the right insula, the right inferior frontal gyrus, and the left middle occipital gyrus and a network-wide increase in activity during recall, which was most prominent in bilateral cuneus and precuneus. THC administration did not affect task performance, but while during placebo recall activity significantly explained variance in performance, this effect disappeared after THC. These findings suggest eCB involvement in encoding of pictorial information. Increased precuneus activity could reflect impaired recall function, but the absence of THC effects on task performance suggests a compensatory mechanism. These results further emphasize the eCB system as a potential novel target for treatment of memory disorders and a promising target for development of new therapies to reduce memory deficits in humans.

  6. Genomic organization and chromosomal localization of the human and mouse genes encoding the {alpha} receptor component for ciliary neurotrophic factor

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, D.M.; Rojas, E.; McClain, J. [Regeneron Pharmaceuticals, Inc., Tarrytown, NY (United States)] [and others

    1995-01-01

    Ciliary neurotrophic factor (CNTF) has recently been found to share receptor components with, and to be structurally related to, a family of broadly acting cytokines, including interleukin-6, leukemia inhibitory factor, and oncostatin M. However, the CNTF receptor complex also includes a CNTF-specific component known as CNTF receptor {alpha} (CNTFR{alpha}). Here we describe the molecular cloning of the human and mouse genes encoding CNTFR. We report that the human and mouse genes have an identical intron-exon structure that correlates well with the domain structure of CNTFR{alpha}. That is, the signal peptide and the immunoglobulin-like domain are each encoded by single exons, the cytokine receptor-like domain is distributed among 4 exons, and the C-terminal glycosyl phosphatidylinositol recognition domain in encoded by the final coding exon. The position of the introns within the cytokine receptor-like domain corresponds to those found in other members of the cytokine receptor superfamily. Confirming a recent study using radiation hybrids, we have also mapped the human CNTFR gene to chromosome band 9p13 and the mouse gene to a syntenic region of chromosome 4. 24 refs., 4 figs.

  7. Cloning of a cDNA encoding a novel human nuclear phosphoprotein belonging to the WD-40 family

    DEFF Research Database (Denmark)

    Honoré, B; Leffers, H; Madsen, Peder

    1994-01-01

    We have cloned and expressed in vaccinia virus a cDNA encoding an ubiquitous 501-amino-acid (aa) phosphoprotein that corresponds to protein IEF SSP 9502 (79,400 Da, pI 4.5) in the master 2-D-gel keratinocyte protein database [Celis et al., Electrophoresis 14 (1993) 1091-1198]. The deduced aa......-134]. The protein contains a nuclear targeting signal (KKKGK), and fractionation of transformed human amnion cells (AMA) in karyoplasts and cytoplasts confirmed that it is predominantly localized in the nucleus. Database searching indicated that IEF SSP 9502 is a putative human homologue of the Saccharomyces...

  8. A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities.

    Science.gov (United States)

    Geyer, Hartmut; Herr, Hugh

    2010-06-01

    While neuroscientists identify increasingly complex neural circuits that control animal and human gait, biomechanists find that locomotion requires little control if principles of legged mechanics are heeded that shape and exploit the dynamics of legged systems. Here, we show that muscle reflexes could be vital to link these two observations. We develop a model of human locomotion that is controlled by muscle reflexes which encode principles of legged mechanics. Equipped with this reflex control, we find this model to stabilize into a walking gait from its dynamic interplay with the ground, reproduce human walking dynamics and leg kinematics, tolerate ground disturbances, and adapt to slopes without parameter interventions. In addition, we find this model to predict some individual muscle activation patterns known from walking experiments. The results suggest not only that the interplay between mechanics and motor control is essential to human locomotion, but also that human motor output could for some muscles be dominated by neural circuits that encode principles of legged mechanics.

  9. On the immortality of television sets: "function" in the human genome according to the evolution-free gospel of ENCODE.

    Science.gov (United States)

    Graur, Dan; Zheng, Yichen; Price, Nicholas; Azevedo, Ricardo B R; Zufall, Rebecca A; Elhaik, Eran

    2013-01-01

    A recent slew of ENCyclopedia Of DNA Elements (ENCODE) Consortium publications, specifically the article signed by all Consortium members, put forward the idea that more than 80% of the human genome is functional. This claim flies in the face of current estimates according to which the fraction of the genome that is evolutionarily conserved through purifying selection is less than 10%. Thus, according to the ENCODE Consortium, a biological function can be maintained indefinitely without selection, which implies that at least 80 - 10 = 70% of the genome is perfectly invulnerable to deleterious mutations, either because no mutation can ever occur in these "functional" regions or because no mutation in these regions can ever be deleterious. This absurd conclusion was reached through various means, chiefly by employing the seldom used "causal role" definition of biological function and then applying it inconsistently to different biochemical properties, by committing a logical fallacy known as "affirming the consequent," by failing to appreciate the crucial difference between "junk DNA" and "garbage DNA," by using analytical methods that yield biased errors and inflate estimates of functionality, by favoring statistical sensitivity over specificity, and by emphasizing statistical significance rather than the magnitude of the effect. Here, we detail the many logical and methodological transgressions involved in assigning functionality to almost every nucleotide in the human genome. The ENCODE results were predicted by one of its authors to necessitate the rewriting of textbooks. We agree, many textbooks dealing with marketing, mass-media hype, and public relations may well have to be rewritten.

  10. The functional role of human right hippocampal/parahippocampal theta rhythm in environmental encoding during virtual spatial navigation.

    Science.gov (United States)

    Pu, Yi; Cornwell, Brian R; Cheyne, Douglas; Johnson, Blake W

    2017-03-01

    Low frequency theta band oscillations (4-8 Hz) are thought to provide a timing mechanism for hippocampal place cell firing and to mediate the formation of spatial memory. In rodents, hippocampal theta has been shown to play an important role in encoding a new environment during spatial navigation, but a similar functional role of hippocampal theta in humans has not been firmly established. To investigate this question, we recorded healthy participants' brain responses with a 160-channel whole-head MEG system as they performed two training sets of a virtual Morris water maze task. Environment layouts (except for platform locations) of the two sets were kept constant to measure theta activity during spatial learning in new and familiar environments. In line with previous findings, left hippocampal/parahippocampal theta showed more activation navigating to a hidden platform relative to random swimming. Consistent with our hypothesis, right hippocampal/parahippocampal theta was stronger during the first training set compared to the second one. Notably, theta in this region during the first training set correlated with spatial navigation performance across individuals in both training sets. These results strongly argue for the functional importance of right hippocampal theta in initial encoding of configural properties of an environment during spatial navigation. Our findings provide important evidence that right hippocampal/parahippocampal theta activity is associated with environmental encoding in the human brain. Hum Brain Mapp 38:1347-1361, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. The carboxyl terminus of human cytomegalovirus-encoded 7 transmembrane receptor US28 camouflages agonism by mediating constitutive endocytosis

    DEFF Research Database (Denmark)

    Waldhoer, Maria; Casarosa, Paola; Rosenkilde, Mette M

    2003-01-01

    US28 is one of four 7 transmembrane (7TM) chemokine receptors encoded by human cytomegalovirus and has been shown to both signal and endocytose in a ligand-independent, constitutively active manner. Here we show that the constitutive activity and constitutive endocytosis properties of US28...... that the cytoplasmic tail domain of US28 per se regulates receptor endocytosis, independent of the signaling ability of the core domain of US28. The constitutive endocytic property of the US28 c-tail was transposable to other 7TM receptors, the herpes virus 8-encoded ORF74 and the tachykinin NK1 receptor (ORF74-US28......-ctail and NK1-US28-ctail). Deletion of the US28 C terminus resulted in reduced constitutive endocytosis and consequently enhanced signaling capacity of all receptors tested as assessed by inositol phosphate turnover, NF-kappa B, and cAMP-responsive element-binding protein transcription assays. We...

  12. Nucleic acids encoding modified human immunodeficiency virus type 1 (HIV-1) group M consensus envelope glycoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, Barton F [Durham, NC; Gao, Feng [Durham, NC; Korber, Bette T [Los Alamos, NM; Hahn, Beatrice H [Birmingham, AL; Shaw, George M [Birmingham, AL; Kothe, Denise [Birmingham, AL; Li, Ying Ying [Hoover, AL; Decker, Julie [Alabaster, AL; Liao, Hua-Xin [Chapel Hill, NC

    2011-12-06

    The present invention relates, in general, to an immunogen and, in particular, to an immunogen for inducing antibodies that neutralizes a wide spectrum of HIV primary isolates and/or to an immunogen that induces a T cell immune response. The invention also relates to a method of inducing anti-HIV antibodies, and/or to a method of inducing a T cell immune response, using such an immunogen. The invention further relates to nucleic acid sequences encoding the present immunogens.

  13. Dynamic changes in parietal activation during encoding: implications for human learning and memory.

    Science.gov (United States)

    Elman, Jeremy A; Rosner, Zachary A; Cohn-Sheehy, Brendan I; Cerreta, Adelle G; Shimamura, Arthur P

    2013-11-15

    The ventral posterior parietal cortex (vPPC) monitors successful memory retrieval, yet its role during learning remains unclear. Indeed, increased vPPC activation during stimulus encoding is often negatively correlated with subsequent memory performance, suggesting that this region is suppressed during learning. Alternatively, the vPPC may engage in learning-related processes immediately after stimulus encoding thus facilitating retrieval at a later time. To investigate this possibility, we assessed vPPC activity during item presentation and immediately following its offset when a cue to remember was presented. We observed a dynamic change in vPPC response such that activity was negatively correlated with subsequent memory during stimulus presentation but positively correlated immediately following the stimulus during the cue phase. Furthermore, regional differences in this effect suggest a degree of functional heterogeneity within the vPPC. These findings demonstrate that the vPPC is engaged during learning and acts to facilitate post-encoding memory processes that establish long-term cortical representations. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Nuclear-encoded factors involved in post-transcriptional processing and modification of mitochondrial tRNAs in human disease

    Directory of Open Access Journals (Sweden)

    Christopher A Powell

    2015-03-01

    Full Text Available The human mitochondrial genome (mtDNA encodes twenty-two tRNAs (mt-tRNAs that are necessary for the intraorganellar translation of the thirteen mtDNA-encoded subunits of the mitochondrial respiratory chain complexes. Maturation of mt-tRNAs involves 5’ and 3’ nucleolytic excision from precursor RNAs, as well as extensive post-transcriptional modifications. Recent data suggest that over 7 % of all mt-tRNA residues in mammals undergo post-transcriptional modification, with over 30 different modified mt-tRNA positions so far described. These processing and modification steps are necessary for proper mt-tRNA function, and are performed by dedicated, nuclear-encoded enzymes. Recent growing evidence suggests that mutations in these nuclear genes, leading to incorrect maturation of mt-tRNAs, are a cause of human mitochondrial disease. Furthermore, mtDNA mutations in mt-tRNA genes, which may also affect mt-tRNA function, processing and modification, are also frequently associated with human disease. In theory, all pathogenic mt-tRNA variants should be expected to affect only a single process, which is mitochondrial translation, albeit to various extents. However, the clinical manifestations of mitochondrial disorders linked to mutations in mt-tRNAs are extremely heterogeneous, ranging from defects of a single tissue to complex multisystem disorders. This review focuses on the current knowledge of nuclear genes coding for proteins involved in mt-tRNA maturation that have been linked to human mitochondrial pathologies. We further discuss the possibility that tissue specific regulation of mt-tRNA modifying enzymes could play an important role in the clinical heterogeneity observed for mitochondrial diseases caused by mutations in mt-tRNA genes.

  15. Human Cytomegalovirus-Encoded Receptor US28 Is Expressed in Renal Allografts and Facilitates Viral Spreading In Vitro.

    Science.gov (United States)

    Lollinga, Wouter T; de Wit, Raymond H; Rahbar, Afsar; Vasse, Gwenda F; Davoudi, Belghis; Diepstra, Arjan; Riezebos-Brilman, Annelies; Harmsen, Martin C; Hillebrands, Jan-Luuk; Söderberg-Naucler, Cecilia; van Son, Willem J; Smit, Martine J; Sanders, Jan-Stephan; van den Born, Jacob

    2017-03-01

    Renal transplantation is the preferred treatment for patients with end-stage renal disease. Human cytomegalovirus (HCMV) activation is associated with decreased renal graft function and survival. Human cytomegalovirus encodes several immune modulatory proteins, including the G protein-coupled receptor US28, which scavenges human chemokines and modulates intracellular signaling. Our aim was to identify the expression and localization of US28 in renal allograft biopsies by immunohistochemistry and determine its role in viral spreading in vitro. Immunohistochemistry revealed US28 in 31 of 34 renal transplant biopsies from HCMV-seropositive donors. Expression was independent of HCMV viremia or IgG serostatus. US28 was predominantly expressed in the cytoplasm of vascular smooth muscle cells (VSMCs) and tubular epithelial cells, with a median positivity of 20% and 40%, respectively. Also, US28-positive cells were present within arterial neointima. In contrast to US28, HCMV-encoded immediate early antigen was detected in less than 5% of VSMCs, tubular epithelial cells, interstitial endothelium, interstitial inflammatory infiltrates, and glomerular cells.Primary VSMCs were infected with green fluorescent protein-tagged wild type or US28-deficient HCMV. The viral spreading of US28-deficient HCMV, via culture medium or cell-to-cell transmission, was significantly impeded as shown by green fluorescent protein (ie, infected) cell quantification and quantitative real-time polymerase chain reaction. Additionally, the number and size of foci was smaller. In summary, HCMV-encoded US28 was detected in renal allografts from HCMV-positive donors independent of viremia and serostatus. Also, US28 facilitates HCMV spreading in VSMCs in vitro. Because the vasculature is affected in chronic renal transplant dysfunction, US28 may provide a potential target for therapeutic intervention.

  16. Encoding of natural sounds at multiple spectral and temporal resolutions in the human auditory cortex

    NARCIS (Netherlands)

    Santoro, Roberta; Moerel, Michelle; De Martino, Federico; Goebel, R.; Ugurbil, Kamil; Yacoub, Essa; Formisano, Elia

    Functional neuroimaging research provides detailed observations of the response patterns that natural sounds (e.g. human voices and speech, animal cries, environmental sounds) evoke in the human brain. The computational and representational mechanisms underlying these observations, however, remain

  17. Molecular cloning and functional expression of a human cDNA encoding translation initiation factor 6

    OpenAIRE

    Si, Kausik; Chaudhuri, Jayanta; Chevesich, Jorge; Maitra, Umadas

    1997-01-01

    Eukaryotic translation initiation factor 6 (eIF6) binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit. In this paper, we devised a procedure for purifying eIF6 from rabbit reticulocyte lysates and immunochemically characterized the protein by using antibodies isolated from egg yolks of laying hens immunized with rabbit eIF6. By using these monospecific antibodies, a 1.096-kb human cDNA that encodes an eIF6 of 245 amino acids (calculated Mr 26,558) ha...

  18. A single human gene encoding multiple tyrosine hydroxylases with different predicted functional characteristics.

    Science.gov (United States)

    Grima, B; Lamouroux, A; Boni, C; Julien, J F; Javoy-Agid, F; Mallet, J

    Catecholaminergic systems in discrete regions of the brain are thought to be important in affective psychoses, learning and memory, reinforcement and sleep-wake cycle regulation. Tyrosine hydroxylase (TH) is the first enzyme in the pathway of catecholamine synthesis. Its importance is reflected in the diversity of the mechanisms that have been described which control its activity; TH levels vary both during development and as a function of the activity of the nervous system. Recently, we deduced the complete amino-acid sequence of rat TH from a complementary DNA clone encoding a functional enzyme. Here we demonstrate that, in man, TH molecules are encoded by at least three distinct messenger RNAs. The expression of these mRNAs varies in different parts of the nervous system. The sequence differences observed are confined to the 5' termini of the messengers and involve alternative splicing events. This variation has clear functional consequences for each putative form of the enzyme and could represent a novel means of regulating catecholamine levels in normal and pathological neurons.

  19. Molecular cloning, expression, and chromosomal localization of the gene encoding a human myeloid membrane antigen (gp150).

    Science.gov (United States)

    Look, A T; Peiper, S C; Rebentisch, M B; Ashmun, R A; Roussel, M F; Lemons, R S; Le Beau, M M; Rubin, C M; Sherr, C J

    1986-10-01

    DNA from a tertiary mouse cell transformant containing amplified human sequences encoding a human myeloid membrane glycoprotein, gp150, was used to construct a bacteriophage lambda library. A single recombinant phage containing 12 kilobases (kb) of human DNA was isolated, and molecular subclones were then used to isolate the complete gp150 gene from a human placental genomic DNA library. The intact gp150 gene, assembled from three recombinant phages, proved to be biologically active when transfected into NIH 3T3 cells. Molecular probes from the gp150 locus annealed with a 4.0-kb polyadenylated RNA transcript derived from human myeloid cell lines and from tertiary mouse cell transformants. The gp150 gene was assigned to human chromosome 15, and was subchromosomally localized to bands q25-26 by in situ hybridization. The chromosomal location of the gp150 gene coincides cytogenetically with the region assigned to the c-fes proto-oncogene, another human gene specifically expressed by myeloid cells.

  20. Human Cytomegalovirus-Encoded Human Interleukin-10 (IL-10) Homolog Amplifies Its Immunomodulatory Potential by Upregulating Human IL-10 in Monocytes.

    Science.gov (United States)

    Avdic, Selmir; McSharry, Brian P; Steain, Megan; Poole, Emma; Sinclair, John; Abendroth, Allison; Slobedman, Barry

    2016-04-01

    The human cytomegalovirus (HCMV) gene UL111A encodes cytomegalovirus-encoded human interleukin-10 (cmvIL-10), a homolog of the potent immunomodulatory cytokine human interleukin 10 (hIL-10). This viral homolog exhibits a range of immunomodulatory functions, including suppression of proinflammatory cytokine production and dendritic cell (DC) maturation, as well as inhibition of major histocompatibility complex (MHC) class I and class II. Here, we present data showing that cmvIL-10 upregulates hIL-10, and we identify CD14(+)monocytes and monocyte-derived macrophages and DCs as major sources of hIL-10 secretion in response to cmvIL-10. Monocyte activation was not a prerequisite for cmvIL-10-mediated upregulation of hIL-10, which was dose dependent and controlled at the transcriptional level. Furthermore, cmvIL-10 upregulated expression of tumor progression locus 2 (TPL2), which is a regulator of the positive hIL-10 feedback loop, whereas expression of a negative regulator of the hIL-10 feedback loop, dual-specificity phosphatase 1 (DUSP1), remained unchanged. Engagement of the hIL-10 receptor (hIL-10R) by cmvIL-10 led to upregulation of heme oxygenase 1 (HO-1), an enzyme linked with suppression of inflammatory responses, and this upregulation was required for cmvIL-10-mediated upregulation of hIL-10. We also demonstrate an important role for both phosphatidylinositol 3-kinase (PI3K) and STAT3 in the upregulation of HO-1 and hIL-10 by cmvIL-10. In addition to upregulating hIL-10, cmvIL-10 could exert a direct immunomodulatory function, as demonstrated by its capacity to upregulate expression of cell surface CD163 when hIL-10 was neutralized. This study identifies a mechanistic basis for cmvIL-10 function, including the capacity of this viral cytokine to potentially amplify its immunosuppressive impact by upregulating hIL-10 expression. Human cytomegalovirus (HCMV) is a large, double-stranded DNA virus that causes significant human disease, particularly in the

  1. ChromNet: Learning the human chromatin network from all ENCODE ChIP-seq data.

    Science.gov (United States)

    Lundberg, Scott M; Tu, William B; Raught, Brian; Penn, Linda Z; Hoffman, Michael M; Lee, Su-In

    2016-04-30

    A cell's epigenome arises from interactions among regulatory factors-transcription factors and histone modifications-co-localized at particular genomic regions. We developed a novel statistical method, ChromNet, to infer a network of these interactions, the chromatin network, by inferring conditional-dependence relationships among a large number of ChIP-seq data sets. We applied ChromNet to all available 1451 ChIP-seq data sets from the ENCODE Project, and showed that ChromNet revealed previously known physical interactions better than alternative approaches. We experimentally validated one of the previously unreported interactions, MYC-HCFC1. An interactive visualization tool is available at http://chromnet.cs.washington.edu.

  2. MicroRNAs tend to synergistically control expression of genes encoding extensively-expressed proteins in humans

    Directory of Open Access Journals (Sweden)

    Xue Chen

    2017-08-01

    Full Text Available Considering complicated microRNA (miRNA biogenesis and action mechanisms, it was thought so high energy-consuming for a cell to afford simultaneous over-expression of many miRNAs. Thus it prompts that an alternative miRNA regulation pattern on protein-encoding genes must exist, which has characteristics of energy-saving and precise protein output. In this study, expression tendency of proteins encoded by miRNAs’ target genes was evaluated in human organ scale, followed by quantitative assessment of miRNA synergism. Expression tendency analysis suggests that universally expressed proteins (UEPs tend to physically interact in clusters and participate in fundamental biological activities whereas disorderly expressed proteins (DEPs are inclined to relatively independently execute organ-specific functions. Consistent with this, miRNAs that mainly target UEP-encoding mRNAs, such as miR-21, tend to collaboratively or even synergistically act with other miRNAs in fine-tuning protein output. Synergistic gene regulation may maximize miRNAs’ efficiency with less dependence on miRNAs’ abundance and overcome the deficiency that targeting plenty of genes by single miRNA makes miRNA-mediated regulation high-throughput but insufficient due to target gene dilution effect. Furthermore, our in vitro experiment verified that merely 25 nM transfection of miR-21 be sufficient to influence the overall state of various human cells. Thus miR-21 was identified as a hub in synergistic miRNA–miRNA interaction network. Our findings suggest that synergistic miRNA–miRNA interaction is an important endogenous miRNA regulation mode, which ensures adequate potency of miRNAs at low abundance, especially those implicated in fundamental biological regulation.

  3. De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture

    Science.gov (United States)

    Di Pierro, Michele; Cheng, Ryan R.; Lieberman Aiden, Erez; Wolynes, Peter G.; Onuchic, José N.

    2017-01-01

    Inside the cell nucleus, genomes fold into organized structures that are characteristic of cell type. Here, we show that this chromatin architecture can be predicted de novo using epigenetic data derived from chromatin immunoprecipitation-sequencing (ChIP-Seq). We exploit the idea that chromosomes encode a 1D sequence of chromatin structural types. Interactions between these chromatin types determine the 3D structural ensemble of chromosomes through a process similar to phase separation. First, a neural network is used to infer the relation between the epigenetic marks present at a locus, as assayed by ChIP-Seq, and the genomic compartment in which those loci reside, as measured by DNA-DNA proximity ligation (Hi-C). Next, types inferred from this neural network are used as an input to an energy landscape model for chromatin organization [Minimal Chromatin Model (MiChroM)] to generate an ensemble of 3D chromosome conformations at a resolution of 50 kilobases (kb). After training the model, dubbed Maximum Entropy Genomic Annotation from Biomarkers Associated to Structural Ensembles (MEGABASE), on odd-numbered chromosomes, we predict the sequences of chromatin types and the subsequent 3D conformational ensembles for the even chromosomes. We validate these structural ensembles by using ChIP-Seq tracks alone to predict Hi-C maps, as well as distances measured using 3D fluorescence in situ hybridization (FISH) experiments. Both sets of experiments support the hypothesis of phase separation being the driving process behind compartmentalization. These findings strongly suggest that epigenetic marking patterns encode sufficient information to determine the global architecture of chromosomes and that de novo structure prediction for whole genomes may be increasingly possible. PMID:29087948

  4. De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture.

    Science.gov (United States)

    Di Pierro, Michele; Cheng, Ryan R; Lieberman Aiden, Erez; Wolynes, Peter G; Onuchic, José N

    2017-11-14

    Inside the cell nucleus, genomes fold into organized structures that are characteristic of cell type. Here, we show that this chromatin architecture can be predicted de novo using epigenetic data derived from chromatin immunoprecipitation-sequencing (ChIP-Seq). We exploit the idea that chromosomes encode a 1D sequence of chromatin structural types. Interactions between these chromatin types determine the 3D structural ensemble of chromosomes through a process similar to phase separation. First, a neural network is used to infer the relation between the epigenetic marks present at a locus, as assayed by ChIP-Seq, and the genomic compartment in which those loci reside, as measured by DNA-DNA proximity ligation (Hi-C). Next, types inferred from this neural network are used as an input to an energy landscape model for chromatin organization [Minimal Chromatin Model (MiChroM)] to generate an ensemble of 3D chromosome conformations at a resolution of 50 kilobases (kb). After training the model, dubbed Maximum Entropy Genomic Annotation from Biomarkers Associated to Structural Ensembles (MEGABASE), on odd-numbered chromosomes, we predict the sequences of chromatin types and the subsequent 3D conformational ensembles for the even chromosomes. We validate these structural ensembles by using ChIP-Seq tracks alone to predict Hi-C maps, as well as distances measured using 3D fluorescence in situ hybridization (FISH) experiments. Both sets of experiments support the hypothesis of phase separation being the driving process behind compartmentalization. These findings strongly suggest that epigenetic marking patterns encode sufficient information to determine the global architecture of chromosomes and that de novo structure prediction for whole genomes may be increasingly possible. Copyright © 2017 the Author(s). Published by PNAS.

  5. The Drosophila Medea gene is required downstream of dpp and encodes a functional homolog of human Smad4.

    Science.gov (United States)

    Hudson, J B; Podos, S D; Keith, K; Simpson, S L; Ferguson, E L

    1998-04-01

    The Transforming Growth Factor-beta superfamily member decapentaplegic (dpp) acts as an extracellular morphogen to pattern the embryonic ectoderm of the Drosophila embryo. To identify components of the dpp signaling pathway, we screened for mutations that act as dominant maternal enhancers of a weak allele of the dpp target gene zerknŁllt. In this screen, we recovered new alleles of the Mothers against dpp (Mad) and Medea genes. Phenotypic analysis of the new Medea mutations indicates that Medea, like Mad, is required for both embryonic and imaginal disc patterning. Genetic analysis suggests that Medea may have two independently mutable functions in patterning the embryonic ectoderm. Complete elimination of maternal and zygotic Medea activity in the early embryo results in a ventralized phenotype identical to that of null dpp mutants, indicating that Medea is required for all dpp-dependent signaling in embryonic dorsal-ventral patterning. Injection of mRNAs encoding DPP or a constitutively activated form of the DPP receptor, Thick veins, into embryos lacking all Medea activity failed to induce formation of any dorsal cell fates, demonstrating that Medea acts downstream of the thick veins receptor. We cloned Medea and found that it encodes a protein with striking sequence similarity to human SMAD4. Moreover, injection of human SMAD4 mRNA into embryos lacking all Medea activity conferred phenotypic rescue of the dorsal-ventral pattern, demonstrating conservation of function between the two gene products.

  6. Isolation and characterization of rat and human cDNAs encoding a novel putative peroxisomal enoyl-CoA hydratase

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, D.R.; Germain-Lee, E.; Valle, D.

    1995-06-10

    We have used a PCR-based subtractive hybridization method to identify upregulated cDNAs in the livers of rats treated with a peroxisome proliferator [clofibrate or di(2-ethylhexyl) phthalate]. After four rounds of subtractive hybridization 62 differentially hybridizing clones were partially sequenced and analyzed by sequence homology searching. Of 62, 49 were identical to 14 different upregulated rat sequences in the databank (mostly genes encoding microsomal or peroxisomal enzymes), 4 of 62 were fragments of three previously unknown genes, and 9 of 62 were false positives. Two of the unknown fragments hybridized to a single novel cDNA that was found to be more than 20-fold induced by both peroxisome proliferators. The 36-kDa predicted protein product of this cDNA shows a high degree of sequence homology to enoyl-CoA hydratases of several different species and has a C-terminal peroxisomal targeting sequence. An epitope-tagged protein product of a full-length cDNA was targeted to peroxisomes in a human cell line. We named this gene, which encodes an apparent peroxisomal enoyl-CoA hydratase, ECH1. We have also identified human ECH1 cDNA and mapped its structural gene to 19q13, 3{prime} to the ryanodine receptor, by hybridization to somatic cell hybrid DNA and chromosome 19-specific cosmid arrays. Possible roles for the ECH1 protein product in peroxisomal {beta}-oxidation are discussed. 64 refs., 6 figs., 2 tabs.

  7. A highly selective CCR2 chemokine agonist encoded by human herpesvirus 6

    DEFF Research Database (Denmark)

    Lüttichau, Hans R; Clark-Lewis, Ian; Jensen, Peter Østrup

    2003-01-01

    The chemokine-like, secreted protein product of the U83 gene from human herpesvirus 6, here named vCCL4, was chemically synthesized to be characterized in a complete library of the 18 known human chemokine receptors expressed individually in stably transfected cell lines. vCCL4 was found to cause...

  8. A novel human gene encoding a G-protein-coupled receptor (GPR15) is located on chromosome 3

    Energy Technology Data Exchange (ETDEWEB)

    Heiber, M.; Marchese, A.; O`Dowd, B.F. [Univ. of Toronto, Ontario (Canada)] [and others

    1996-03-05

    We used sequence similarities among G-protein-coupled receptor genes to discover a novel receptor gene. Using primers based on conserved regions of the opioid-related receptors, we isolated a PCR product that was used to locate the full-length coding region of a novel human receptor gene, which we have named GPR15. A comparison of the amino acid sequence of the receptor gene, which we have named GPR15. A comparison of the amino acid sequence of the receptor encoded by GPR15 with other receptors revealed that it shared sequence identity with the angiotensin II AT1 and AT2 receptors, the interleukin 8b receptor, and the orphan receptors GPR1 and AGTL1. GPR15 was mapped to human chromosome 3q11.2-q13.1. 12 refs., 2 figs.

  9. Nucleic acid sequences encoding D1 and D1/D2 domains of human coxsackievirus and adenovirus receptor (CAR)

    Science.gov (United States)

    Freimuth, Paul I.

    2010-04-06

    The invention provides recombinant human CAR (coxsackievirus and adenovirus receptor) polypeptides which bind adenovirus. Specifically, polypeptides corresponding to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2 are provided. In another aspect, the invention provides nucleic acid sequences encoding these domains and expression vectors for producing the domains and bacterial cells containing such vectors. The invention also includes an isolated fusion protein comprised of the D1 polypeptide fused to a polypeptide which facilitates folding of D1 when expressed in bacteria. The functional D1 domain finds application in a therapeutic method for treating a patient infected with a CAR D1-binding virus, and also in a method for identifying an antiviral compound which interferes with viral attachment. The invention also provides a method for specifically targeting a cell for infection by a virus which binds to D1.

  10. Rapid Cellular Phenotyping of Human Pluripotent Stem Cell-Derived Cardiomyocytes using a Genetically Encoded Fluorescent Voltage Sensor

    Directory of Open Access Journals (Sweden)

    Jordan S. Leyton-Mange

    2014-02-01

    Full Text Available In addition to their promise in regenerative medicine, pluripotent stem cells have proved to be faithful models of many human diseases. In particular, patient-specific stem cell-derived cardiomyocytes recapitulate key features of several life-threatening cardiac arrhythmia syndromes. For both modeling and regenerative approaches, phenotyping of stem cell-derived tissues is critical. Cellular phenotyping has largely relied upon expression of lineage markers rather than physiologic attributes. This is especially true for cardiomyocytes, in part because electrophysiological recordings are labor intensive. Likewise, most optical voltage indicators suffer from phototoxicity, which damages cells and degrades signal quality. Here we present the use of a genetically encoded fluorescent voltage indicator, ArcLight, which we demonstrate can faithfully report transmembrane potentials in human stem cell-derived cardiomyocytes. We demonstrate the application of this fluorescent sensor in high-throughput, serial phenotyping of differentiating cardiomyocyte populations and in screening for drug-induced cardiotoxicity.

  11. Cloning, structural analysis, and chromosomal localization of the human CSRP2 gene encoding the LIM domain protein CRP2.

    Science.gov (United States)

    Weiskirchen, R; Erdel, M; Utermann, G; Bister, K

    1997-08-15

    The CSRP2 gene encoding the LIM domain protein CRP2 was originally identified in quail based on its strong transcriptional suppression in transformed avian fibroblasts. Here we have isolated a human CSRP2 cDNA clone encoding a 193-amino-acid human CRP2 (hCRP2) protein with 96.4% amino acid sequence identity to the avian homolog. The CSRP2 cDNA clone was used to isolate CSRP2-related clones from gamma EMBL3 and P1 libraries of human genomic DNA. The complete organization of the CSRP2 gene was determined by nucleic acid hybridization, transcriptional mapping, and nucleotide sequence analysis. The gene spans a total of approximately 22 kb and contains six exons. The coding region is confined to exons 2-6 and predicts a hCRP2 protein identical in its amino acid sequence to the protein deduced from the CSRP2 cDNA clone. By fluorescence in situ hybridization using both lambda EMBL3 and P1 library clones as hybridization probes and a new method for computerized signal localization, CSRP2 was mapped to chromosome subband 12q21.1, a region frequently affected by deletion or breakage events in various tumor types. The library screens also led to the isolation of a CSRP2-related pseudogene, CSRP2P, which carried several extensive deletions and nucleotide substitutions but no intervening sequences in comparison to the CSRP2 cDNA sequence. By physical linkage and fluorescence in situ hybridization, CSRP2P was mapped to chromosome subband 3q21.1.

  12. Small gene family encoding an eggshell (chorion) protein of the human parasite Schistosoma mansoni

    Energy Technology Data Exchange (ETDEWEB)

    Bobek, L.A.; Rekosh, D.M.; Lo Verde, P.T.

    1988-08-01

    The authors isolated six independent genomic clones encoding schistosome chorion or eggshell proteins from a Schistosoma mansoni genomic library. A linkage map of five of the clones spanning 35 kilobase pairs (kbp) of the S. mansoni genome was constructed. The region contained two eggshell protein genes closely linked, separated by 7.5 kbp of intergenic DNA. The two genes of the cluster were arranged in the same orientation, that is, they were transcribed from the same strand. The sixth clone probably represents a third copy of the eggshell gene that is not contained within the 35-kbp region. The 5- end of the mRNA transcribed from these genes was defined by primer extension directly off the RNA. The ATCAT cap site sequence was homologous to a silkmoth chorion PuTCATT cap site sequence, where Pu indicates any purine. DNA sequence analysis showed that there were no introns in these genes. The DNA sequences of the three genes were very homologous to each other and to a cDNA clone, pSMf61-46, differing only in three or four nucleotices. A multiple TATA box was located at positions -23 to -31, and a CAAAT sequence was located at -52 upstream of the eggshell transcription unit. Comparison of sequences in regions further upstream with silkmoth and Drosophila sequences revealed very short elements that were shared. One such element, TCACGT, recently shown to be an essential cis-regulatory element for silkmoth chorion gene promoter function, was found at a similar position in all three organisms.

  13. Identification of an active reverse transcriptase enzyme encoded by a human endogenous HERV-K retrovirus

    NARCIS (Netherlands)

    Berkhout, B.; Jebbink, M.; Zsíros, J.

    1999-01-01

    Of the numerous endogenous retroviral elements that are present in the human genome, the abundant HERV-K family is distinct because several members are transcriptionally active and coding for biologically active proteins. A detailed phylogeny of the HERV-K family based on the partial sequence of the

  14. Human Dorsal Striatum Encodes Prediction Errors during Observational Learning of Instrumental Actions

    Science.gov (United States)

    Cooper, Jeffrey C.; Dunne, Simon; Furey, Teresa; O'Doherty, John P.

    2012-01-01

    The dorsal striatum plays a key role in the learning and expression of instrumental reward associations that are acquired through direct experience. However, not all learning about instrumental actions require direct experience. Instead, humans and other animals are also capable of acquiring instrumental actions by observing the experiences of…

  15. Human cytomegalovirus-encoded miR-US4-1 promotes cell ...

    Indian Academy of Sciences (India)

    2016-04-05

    Apr 5, 2016 ... Human cytomegalovirus (HCMV) can cause congenital diseases and opportunistic infections in immunocompromised individuals. Its functional proteins and microRNAs (miRNAs) facilitate efficient viral propagation by altering host cell behaviour. Identification of functional target genes of miRNAs is an ...

  16. Candida albicans orf19.3727 encodes phytase activity and is essential for human tissue damage.

    Directory of Open Access Journals (Sweden)

    Paul Wai-Kei Tsang

    Full Text Available Candida albicans is a clinically important human fungal pathogen. We previously identified the presence of cell-associated phytase activity in C. albicans. Here, we reveal for the first time, that orf19.3727 contributes to phytase activity in C. albicans and ultimately to its virulence potency. Compared with its wild type counterpart, disruption of C. albicans orf19.3727 led to decreased phytase activity, reduced ability to form hyphae, attenuated in vitro adhesion, and reduced ability to penetrate human epithelium, which are the major virulence attributes of this yeast. Thus, orf19.3727 of C. albicans plays a key role in fungal pathogenesis. Further, our data uncover a putative novel strategy for anti-Candidal drug design through inhibition of phytase activity of this common pathogen.

  17. The effect of foot compliance encoded in the windlass mechanism on the energetics of human walking.

    Science.gov (United States)

    Song, Seungmoon; LaMontagna, Christopher; Collins, Steven H; Geyer, Hartmut

    2013-01-01

    The human foot, which is the part of the body that interacts with the environment during locomotion, consists of rich biomechanical design. One of the unique designs of human feet is the windlass mechanism. In a previous simulation study, we found that the windlass mechanism seems to improve the energy efficiency of walking. To better understand the origin of this efficiency, we here conduct both simulation and experimental studies exploring the influence of foot compliance, which is one of the functionalities that the windlass mechanism embeds, on the energetics of walking. The studies show that walking with compliant feet incurs more energetic costs than walking with stiff feet. The preliminary results suggest that the energy saved by introducing the windlass mechanism does not originate from the compliance it embeds. We speculate that the energy savings of the windlass mechanism are related more to its contribution to reducing the effective foot length in swing than to providing compliance in stance.

  18. Replication-defective recombinant Semliki Forest virus encoding GM-CSF as a vector system for rapid and facile generation of autologous human tumor cell vaccines

    NARCIS (Netherlands)

    Withoff, S; Glazenburg, KL; van Veen, ML; Kraak, MMJ; Hospers, GAP; Storkel, S; de Vries, EGE; Wischut, J; Daemen, T

    2001-01-01

    This paper describes the production of recombinant Semliki Forest virus encoding murine or human granulocyte-macrophage colony-stimulating factor (GM-CSF) and the capacity of these vectors to transduce murine and human tumor cells ex vivo. High-titer stocks (up to 3 x 10(9) particles/ml) of

  19. Human endogenous retrovirus HERV-K(HML-2) encodes a stable signal peptide with biological properties distinct from Rec

    Science.gov (United States)

    Ruggieri, Alessia; Maldener, Esther; Sauter, Marlies; Mueller-Lantzsch, Nikolaus; Meese, Eckart; Fackler, Oliver T; Mayer, Jens

    2009-01-01

    Background The human endogenous retrovirus HERV-K(HML-2) family is associated with testicular germ cell tumors (GCT). Various HML-2 proviruses encode viral proteins such as Env and Rec. Results We describe here that HML-2 Env gives rise to a 13 kDa signal peptide (SP) that harbors a different C-terminus compared to Rec. Subsequent to guiding Env to the endoplasmatic reticulum (ER), HML-2 SP is released into the cytosol. Biochemical analysis and confocal microscopy demonstrated that similar to Rec, SP efficiently translocates to the granular component of nucleoli. Unlike Rec, SP does not shuttle between nucleus and cytoplasm. SP is less stable than Rec as it is subjected to proteasomal degradation. Moreover, SP lacks export activity towards HML-2 genomic RNA, the main function of Rec in the original viral context, and SP does not interfere with Rec's RNA export activity. Conclusion SP is a previously unrecognized HML-2 protein that, besides targeting and translocation of Env into the ER lumen, may exert biological functions distinct from Rec. HML-2 SP represents another functional similarity with the closely related Mouse Mammary Tumor Virus that encodes an Env-derived SP named p14. Our findings furthermore support the emerging concept of bioactive SPs as a conserved retroviral strategy to modulate their host cell environment, evidenced here by a "retroviral fossil". While the specific role of HML-2 SP remains to be elucidated in the context of human biology, we speculate that it may be involved in immune evasion of GCT cells or tumorigenesis. PMID:19220907

  20. Pre-encoding administration of amphetamine or THC preferentially modulates emotional memory in humans

    Science.gov (United States)

    Ballard, Michael E.; Gallo, David A.; de Wit, Harriet

    2012-01-01

    Rationale Many addictive drugs are known to have effects on learning and memory, and these effects could motivate future drug use. Specifically, addictive drugs may affect memory of emotional events and experiences in ways that are attractive to some users. However, few studies have investigated the effects of addictive drugs on emotional memory in humans. Objectives This study examined the effects of the memory-enhancing drug dextroamphetamine (AMP) and the memory-impairing drug Δ9-tetrahydrocannabinol (THC) on emotional memory in healthy volunteers. Methods Participants completed three experimental sessions across which they received capsules containing placebo and two doses of either AMP (10 and 20 mg; N=25) or THC (7.5 and 15 mg; N=25) before viewing pictures of positive (pleasant), neutral, and negative (unpleasant) scenes. Memory for the pictures was assessed two days later, under drug-free conditions. Results Relative to placebo, memory for emotional pictures was improved by AMP and impaired by THC, but neither drug significantly affected memory for unemotional pictures. Positive memory biases were not observed with either drug, and there was no indication that the drugs’ memory effects were directly related to their subjective or physiological effects alone. Conclusions This study provides the first clear evidence that stimulant drugs can preferentially strengthen, and cannabinoids can preferentially impair, memory for emotional events in humans. Although addictive drugs do not appear to positively bias memory, the possibility remains that these drugs’ effects on emotional memory could influence drug use among certain individuals. PMID:23224510

  1. Locus heterogeneity disease genes encode proteins with high interconnectivity in the human protein interaction network

    Directory of Open Access Journals (Sweden)

    Benjamin eKeith

    2014-12-01

    Full Text Available Mutations in genes potentially lead to a number of genetic diseases with differing severity. These disease genes have been the focus of research in recent years showing that the disease gene population as a whole is not homogeneous, and can be categorised according to their interactions. Locus heterogeneity describes a single disorder caused by mutations in different genes each acting individually to cause the same disease. Using datasets of experimentally derived human disease genes and protein interactions, we created a protein interaction network to investigate the relationships between the products of genes associated with a disease displaying locus heterogeneity, and use network parameters to suggest properties that distinguish these disease genes from the overall disease gene population. Through the manual curation of known causative genes of 100 diseases displaying locus heterogeneity and 397 single-gene Mendelian disorders, we use network parameters to show that our locus heterogeneity network displays distinct properties from the global disease network and a Mendelian network. Using the global human proteome, through random simulation of the network we show that heterogeneous genes display significant interconnectivity. Further topological analysis of this network revealed clustering of locus heterogeneity genes that cause identical disorders, indicating that these disease genes are involved in similar biological processes. We then use this information to suggest novel genes that may also contribute to diseases with locus heterogeneity.

  2. Pre-encoding administration of amphetamine or THC preferentially modulates emotional memory in humans.

    Science.gov (United States)

    Ballard, Michael E; Gallo, David A; de Wit, Harriet

    2013-04-01

    Many addictive drugs are known to have effects on learning and memory, and these effects could motivate future drug use. Specifically, addictive drugs may affect memory of emotional events and experiences in ways that are attractive to some users. However, few studies have investigated the effects of addictive drugs on emotional memory in humans. This study examined the effects of the memory-enhancing drug dextroamphetamine (AMP) and the memory-impairing drug Δ(9)-tetrahydrocannabinol (THC) on emotional memory in healthy volunteers. Participants completed three experimental sessions across which they received capsules containing placebo and two doses of either AMP (10 and 20 mg; N = 25) or THC (7.5 and 15 mg; N = 25) before viewing pictures of positive (pleasant), neutral, and negative (unpleasant) scenes. Memory for the pictures was assessed 2 days later, under drug-free conditions. Relative to placebo, memory for emotional pictures was improved by AMP and impaired by THC, but neither drug significantly affected memory for unemotional pictures. Positive memory biases were not observed with either drug, and there was no indication that the drugs' memory effects were directly related to their subjective or physiological effects alone. This study provides the first clear evidence that stimulant drugs can preferentially strengthen, and cannabinoids can preferentially impair, memory for emotional events in humans. Although addictive drugs do not appear to positively bias memory, the possibility remains that these drugs' effects on emotional memory could influence drug use among certain individuals.

  3. Identification of human microRNA-like sequences embedded within the protein-encoding genes of the human immunodeficiency virus.

    Directory of Open Access Journals (Sweden)

    Bryan Holland

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are highly conserved, short (18-22 nts, non-coding RNA molecules that regulate gene expression by binding to the 3' untranslated regions (3'UTRs of mRNAs. While numerous cellular microRNAs have been associated with the progression of various diseases including cancer, miRNAs associated with retroviruses have not been well characterized. Herein we report identification of microRNA-like sequences in coding regions of several HIV-1 genomes. RESULTS: Based on our earlier proteomics and bioinformatics studies, we have identified 8 cellular miRNAs that are predicted to bind to the mRNAs of multiple proteins that are dysregulated during HIV-infection of CD4+ T-cells in vitro. In silico analysis of the full length and mature sequences of these 8 miRNAs and comparisons with all the genomic and subgenomic sequences of HIV-1 strains in global databases revealed that the first 18/18 sequences of the mature hsa-miR-195 sequence (including the short seed sequence, matched perfectly (100%, or with one nucleotide mismatch, within the envelope (env genes of five HIV-1 genomes from Africa. In addition, we have identified 4 other miRNA-like sequences (hsa-miR-30d, hsa-miR-30e, hsa-miR-374a and hsa-miR-424 within the env and the gag-pol encoding regions of several HIV-1 strains, albeit with reduced homology. Mapping of the miRNA-homologues of env within HIV-1 genomes localized these sequence to the functionally significant variable regions of the env glycoprotein gp120 designated V1, V2, V4 and V5. CONCLUSIONS: We conclude that microRNA-like sequences are embedded within the protein-encoding regions of several HIV-1 genomes. Given that the V1 to V5 regions of HIV-1 envelopes contain specific, well-characterized domains that are critical for immune responses, virus neutralization and disease progression, we propose that the newly discovered miRNA-like sequences within the HIV-1 genomes may have evolved to self-regulate survival of the

  4. Genomic organization of the human SCN5A gene encoding the cardiac sodium channel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qing; Li, Zhizhong; Shen, Jiaxiang; Keating, M.T. [Univ. of Utah Health Sciences Center, Salt Lake City, UT (United States)

    1996-05-15

    The voltage-gated cardiac sodium channel, SCN5A, is responsible for the initial upstroke of the action potential. Mutations in the human SCN5A gene cause susceptibility to cardiac arrhythmias and sudden death in the long QT syndrome (LQT). In this report we characterize the genomic structure of SCN5A. SCN5A consists of 28 exons spanning approximately 80 kb on chromosome 3p21. We describe the sequences of all intron/exon boundaries and a dinucleotide repeat polymorphism in intron 16. Oligonucleotide primers based on exon-flanking sequences amplify all SCN5A exons by PCR. This work establishes the complete genomic organization of SCN5A and will enable high-resolution analyses of this locus for mutations associated with LQT and other phenotypes for which SCN5A may be a candidate gene. 40 refs., 4 figs., 2 tabs.

  5. Structure of the gene encoding human alpha 2-HS glycoprotein (AHSG).

    Science.gov (United States)

    Osawa, M; Umetsu, K; Sato, M; Ohki, T; Yukawa, N; Suzuki, T; Takeichi, S

    1997-09-01

    Alpha 2-HS glycoprotein (AHSG) is a human plasma glycoprotein and fetuin is the homologue in the calf. In this report, we present the structure and organization of the AHSG gene. Introns and the 5' and 3'-flanking regions were obtained by polymerase chain reaction (PCR) and the inverted PCR, respectively, from genomic DNA using AHSG cDNA-specific oligonucleotide primers. The sequence of the PCR products shows that the coding region spans approximately 8.2 kb and is composed of seven exons interrupted by six introns. The exon-intron splice junctions agree with the consensus sequence, and the positions interrupted by introns are precisely identical to those of the rat insulin receptor tyrosine kinase inhibitor (fetuin) gene. The 5'-promoter region contains several characteristic sequences such as an A + T-rich sequence of TAAATAA, C/EBP-binding site, and hepatocyte nuclear factor-5 (HNF-5) and serum response factor (SRF) sites.

  6. Murine and human b locus pigmentation genes encode a glycoprotein (gp75) with catalase activity

    Energy Technology Data Exchange (ETDEWEB)

    Halaban, R.; Moellmann, G. (Yale Univ. School of Medicine, New Haven, CT (USA))

    1990-06-01

    Melanogenesis is regulated in large part by tyrosinase, and defective tyrosinase leads to albinism. The mechanisms for other pigmentation determinants (e.g., those operative in tyrosinase-positive albinism and in murine coat-color mutants) are not yet known. One murine pigmentation gene, the brown (b) locus, when mutated leads to a brown (b/b) or hypopigmentated (B{sup lt}/B{sup lt}) coat versus the wild-type black (B/B). The authors show that the b locus codes for a glycoprotein with the activity of a catalase (catalase B). Only the c locus protein is a tyrosinase. Because peroxides may be by-products of melanogenic activity and hydrogen peroxide in particular is known to destroy melanin precursors and melanin, they conclude that pigmentation is controlled not only by tyrosinase but also by a hydroperoxidase. The studies indicate that catalase B is identical with gp75, a known human melanosomal glycoprotein; that the b mutation is in a heme-associated domain; and that the B{sup lt} mutation renders the protein susceptible to rapid proteolytic degradation.

  7. A new splice variant of the major subunit of human asialoglycoprotein receptor encodes a secreted form in hepatocytes.

    Directory of Open Access Journals (Sweden)

    Jia Liu

    Full Text Available BACKGROUND: The human asialoglycoprotein receptor (ASGPR is composed of two polypeptides, designated H1 and H2. While variants of H2 have been known for decades, the existence of H1 variants has never been reported. PRINCIPAL FINDINGS: We identified two splice variants of ASGPR H1 transcripts, designated H1a and H1b, in human liver tissues and hepatoma cells. Molecular cloning of ASGPR H1 variants revealed that they differ by a 117 nucleotide segment corresponding to exon 2 in the ASGPR genomic sequence. Thus, ASGPR variant H1b transcript encodes a protein lacking the transmembrane domain. Using an H1b-specific antibody, H1b protein and a functional soluble ASGPR (sASGPR composed of H1b and H2 in human sera and in hepatoma cell culture supernatant were identified. The expression of ASGPR H1a and H1b in Hela cells demonstrated the different cellular loctions of H1a and H1b proteins at cellular membranes and in intracellular compartments, respectively. In vitro binding assays using fluorescence-labeled sASGPR or the substract ASOR revealed that the presence of sASGPR reduced the binding of ASOR to cells. However, ASOR itself was able to enhance the binding of sASGPR to cells expressing membrane-bound ASGPR. Further, H1b expression is reduced in liver tissues from patients with viral hepatitis. CONCLUSIONS: We conclude that two naturally occurring ASGPR H1 splice variants are produced in human hepatocytes. A hetero-oligomeric complex sASGPR consists of the secreted form of H1 and H2 and may bind to free substrates in circulation and carry them to liver tissue for uptake by ASGPR-expressing hepatocytes.

  8. Cloning of human and mouse EBI1, a lymphoid-specific G-protein-coupled receptor encoded on human chromosome 17q12-q21.2.

    Science.gov (United States)

    Schweickart, V L; Raport, C J; Godiska, R; Byers, M G; Eddy, R L; Shows, T B; Gray, P W

    1994-10-01

    A lymphoid-specific member of the G-protein-coupled receptor family has been identified by PCR with degenerate oligonucleotides. We have determined that this receptor, also reported as the Epstein-Barr-induced cDNA EBI1, is expressed in normal lymphoid tissues and in several B- and T-lymphocyte cell lines. While the function and the ligand for EBI1 remain unknown, its sequence and gene structure suggest that it is related to the receptors that recognize chemoattractants, such as interleukin-8, RANTES, C5a, and fMet-Leu-Phe. Like the chemoattractant receptors, EBI1 contains intervening sequences near its 5' end; however, EBI1 is unique in that both of its introns interrupt the coding region of the first extracellular domain. The gene is encoded on human chromosome 17q12-q21.2. None of the other G-protein-coupled receptors has been mapped to this region, but the C-C chemokine family has been mapped to 17q11-q21. The mouse EBI1 cDNA has also been isolated and encodes a protein with 86% identity to the human homolog.

  9. Establishment of transgenic mice carrying gene encoding human zinc finger protein 191

    Science.gov (United States)

    Li, Jian-Zhong; Chen, Xia; Yang, Hua; Wang, Shui-Liang; Gong, Xue-Lian; Feng, Hao; Guo, Bao-Yu; Yu, Long; Wang, Zhu-Gang; Fu, Ji-Liang

    2004-01-01

    AIM: Human zinc finger protein 191 (ZNF191) was cloned and characterized as a Krüppel-like transcription factor, which might be relevant to many diseases such as liver cancer, neuropsychiatric and cardiovascular diseases. Although progress has been made recently, the biological function of ZNF191 remains largely unidentified. The aim of this study was to establish a ZNF 191 transgenic mouse model, which would promote the functional study of ZNF191. METHODS: Transgene fragments were microinjected into fertilized eggs of mice. The manipulated embryos were transferred into the oviducts of pseudo-pregnant female mice. The offsprings were identified by PCR and Southern blot analysis. ZNF 191 gene expression was analyzed by RT-PCR. Transgenic founder mice were used to establish transgenic mouse lineages. The first generation (F1) and the second generation (F2) mice were identified by PCR analysis. Ten-week transgenic mice were used for pathological examination. RESULTS: Four mice were identified as carrying copies of ZNF191 gene. The results of RT-PCR showed that ZNF 191 gene was expressed in the liver, testis and brain in one of the transgenic mouse lineages. Genetic analysis of transgenic mice demonstrated that ZNF 191 gene was integrated into the chromosome at a single site and could be transmitted stably. Pathological analysis showed that the expression of ZNF 191 did not cause obvious pathological changes in multiple tissues of transgenic mice. CONCLUSION: ZNF 191 transgenic mouse model would facilitate the investigation of biological functions of ZNF191 in vivo. PMID:14716836

  10. Asymmetric right/left encoding of emotions in the human subthalamic nucleus

    Directory of Open Access Journals (Sweden)

    Renana eEitan

    2013-10-01

    Full Text Available Emotional processing is lateralized to the non-dominant brain hemisphere. However, there is no clear spatial model for lateralization of emotional domains in the basal ganglia. The subthalamic nucleus (STN, an input structure in the basal ganglia network, plays a major role in the pathophysiology of Parkinson’s disease (PD. This role is probably not limited only to the motor deficits of PD, but may also span the emotional and cognitive deficits commonly observed in PD patients. Beta oscillations (12-30Hz, the electrophysiological signature of PD, are restricted to the dorsolateral part of the STN that corresponds to the anatomically defined sensorimotor STN. The more medial, more anterior and more ventral parts of the STN are thought to correspond to the anatomically defined limbic and associative territories of the STN. Surprisingly, little is known about the electrophysiological properties of the non-motor domains of the STN, nor about electrophysiological differences between right and left STNs.In this study, microelectrodes were utilized to record the STN spontaneous spiking activity and responses to vocal non-verbal emotional stimuli during deep brain stimulation (DBS surgeries in human PD patients. The oscillation properties of the STN neurons were used to map the dorsal oscillatory and the ventral non-oscillatory regions of the STN. Emotive auditory stimulation evoked activity in the ventral non-oscillatory region of the right STN. These responses were not observed in the left ventral STN or in the dorsal regions of either the right or left STN. Therefore, our results suggest that the ventral non-oscillatory regions are asymmetrically associated with non-motor functions, with the right ventral STN associated with emotional processing. These results suggest that DBS of the right ventral STN may be associated with beneficial or adverse emotional effects observed in PD patients and may relieve mental symptoms in other neurological and

  11. Tattoo Delivery of a Semliki Forest Virus-Based Vaccine Encoding Human Papillomavirus E6 and E7

    Science.gov (United States)

    van de Wall, Stephanie; Walczak, Mateusz; van Rooij, Nienke; Hoogeboom, Baukje-Nynke; Meijerhof, Tjarko; Nijman, Hans W.; Daemen, Toos

    2015-01-01

    The skin is an attractive organ for immunization because of the presence of antigen-presenting cells. Intradermal delivery via tattooing has demonstrated superior vaccine immunogenicity of DNA vaccines in comparison to conventional delivery methods. In this study, we explored the efficacy of tattoo injection of a tumor vaccine based on recombinant Semliki Forest virus replicon particles (rSFV) targeting human papillomavirus (HPV). Tattoo injection of rSFV particles resulted in antigen expression in both the skin and draining lymph nodes. In comparison with intramuscular injection, the overall antigen expression determined at the site of administration and draining lymph nodes was 10-fold lower upon tattoo injection. Delivery of SFV particles encoding the E6 and E7 antigens of human papillomavirus type 16 (SFVeE6,7) via tattooing resulted in HPV-specific cytotoxic T cells and in vivo therapeutic antitumor response. Strikingly, despite the observed lower overall transgene expression, SFVeE6,7 delivered via tattoo injection resulted in higher or equal levels of immune responses as compared to intramuscular injection. The intrinsic immunogenic potential of tattooing provides a benefit for immunotherapy based on an alphavirus. PMID:26343186

  12. Tattoo Delivery of a Semliki Forest Virus-Based Vaccine Encoding Human Papillomavirus E6 and E7

    Directory of Open Access Journals (Sweden)

    Stephanie van de Wall

    2015-03-01

    Full Text Available The skin is an attractive organ for immunization because of the presence of antigen-presenting cells. Intradermal delivery via tattooing has demonstrated superior vaccine immunogenicity of DNA vaccines in comparison to conventional delivery methods. In this study, we explored the efficacy of tattoo injection of a tumor vaccine based on recombinant Semliki Forest virus replicon particles (rSFV targeting human papillomavirus (HPV. Tattoo injection of rSFV particles resulted in antigen expression in both the skin and draining lymph nodes. In comparison with intramuscular injection, the overall antigen expression determined at the site of administration and draining lymph nodes was 10-fold lower upon tattoo injection. Delivery of SFV particles encoding the E6 and E7 antigens of human papillomavirus type 16 (SFVeE6,7 via tattooing resulted in HPV-specific cytotoxic T cells and in vivo therapeutic antitumor response. Strikingly, despite the observed lower overall transgene expression, SFVeE6,7 delivered via tattoo injection resulted in higher or equal levels of immune responses as compared to intramuscular injection. The intrinsic immunogenic potential of tattooing provides a benefit for immunotherapy based on an alphavirus.

  13. Co-vaccination with adeno-associated virus vectors encoding human papillomavirus 16 L1 proteins and adenovirus encoding murine GM-CSF can elicit strong and prolonged neutralizing antibody.

    Science.gov (United States)

    Liu, Dai-Wei; Chang, Junn-Liang; Tsao, Yeou-Ping; Huang, Chien-Wei; Kuo, Shu-Wen; Chen, Show-Li

    2005-01-01

    Non-infectious human papillomavirus-like particles (VLPs), encoded by the major capsid gene L1, have been shown to be effective as vaccines to prevent cervical cancer. We have developed the genetic immunization of the L1 gene to induce a neutralizing antibody. We constructed and generated a recombinant adeno-associated virus encoding human papillomavirus (HPV) 16 L1 protein that could form virus-like particles in transduced cells. Previous reports have demonstrated that the formation of VLP is necessary to induce high titers of neutralizing antibodies to protect an animal from viral challenge. Therefore, we carried out a single intramuscular (i.m.) injection with recombinant adeno-associated virus encoding HPV-16 L1 protein (rAAV-16L1) in BALB/c mice, which ultimately produced stronger and more prolonged neutralizing L1 antibodies, when compared to the DNA vaccine. Immunohistochemistry showed that the accumulation of antigen presenting cells, such as macrophages and dendritic cells, in rAAV-16L1 and L1 DNA-injected muscle fibers may be due to the L1 protein expression, but not to AAV infection. When compared to the L1 VLP vaccine, however, the titers of neutralizing L1 antibodies induced by VLP were higher than those induced by rAAV-16L1. Co-vaccinating with rAAV-16L1 and adenovirus encoding murine GM-CSF (rAAV-16L1/rAd-mGM-CSF) induced comparable higher levels of neutralizing L1 antibodies with those of VLP. This implies that a single i.m. co-injection with rAAV-16L1/rAd-mGM-CSF can achieve the same vaccine effect as a VLP vaccine requiring 3 booster injections.

  14. Machine learning classifier for identification of damaging missense mutations exclusive to human mitochondrial DNA-encoded polypeptides.

    Science.gov (United States)

    Martín-Navarro, Antonio; Gaudioso-Simón, Andrés; Álvarez-Jarreta, Jorge; Montoya, Julio; Mayordomo, Elvira; Ruiz-Pesini, Eduardo

    2017-03-07

    Several methods have been developed to predict the pathogenicity of missense mutations but none has been specifically designed for classification of variants in mtDNA-encoded polypeptides. Moreover, there is not available curated dataset of neutral and damaging mtDNA missense variants to test the accuracy of predictors. Because mtDNA sequencing of patients suffering mitochondrial diseases is revealing many missense mutations, it is needed to prioritize candidate substitutions for further confirmation. Predictors can be useful as screening tools but their performance must be improved. We have developed a SVM classifier (Mitoclass.1) specific for mtDNA missense variants. Training and validation of the model was executed with 2,835 mtDNA damaging and neutral amino acid substitutions, previously curated by a set of rigorous pathogenicity criteria with high specificity. Each instance is described by a set of three attributes based on evolutionary conservation in Eukaryota of wildtype and mutant amino acids as well as coevolution and a novel evolutionary analysis of specific substitutions belonging to the same domain of mitochondrial polypeptides. Our classifier has performed better than other web-available tested predictors. We checked performance of three broadly used predictors with the total mutations of our curated dataset. PolyPhen-2 showed the best results for a screening proposal with a good sensitivity. Nevertheless, the number of false positive predictions was too high. Our method has an improved sensitivity and better specificity in relation to PolyPhen-2. We also publish predictions for the complete set of 24,201 possible missense variants in the 13 human mtDNA-encoded polypeptides. Mitoclass.1 allows a better selection of candidate damaging missense variants from mtDNA. A careful search of discriminatory attributes and a training step based on a curated dataset of amino acid substitutions belonging exclusively to human mtDNA genes allows an improved

  15. Fowlpox virus encodes nonessential homologs of cellular alpha-SNAP, PC-1, and an orphan human homolog of a secreted nematode protein.

    Science.gov (United States)

    Laidlaw, S M; Anwar, M A; Thomas, W; Green, P; Shaw, K; Skinner, M A

    1998-08-01

    The genome of fowlpox virus (FWPV), type species of the Avipoxviridae, is considerably rearranged compared with that of vaccinia virus (the prototypic poxvirus and type species of the Orthopoxviridae) and is 30% larger. It is likely that the genome of FWPV contains genes in addition to those found in vaccinia virus, probably involved with its replication and survival in the chicken. A 7,470-bp segment of the FWPV genome has five open reading frames (ORFs), two of which encode ankyrin repeat proteins, many examples of which have been found in poxviruses. The remaining ORFs encode homologs of cellular genes not reported in any other virus. ORF-2 encodes a homolog of the yeast Sec17p and mammalian SNAP proteins, crucial to vesicular transport in the exocytic pathway. ORF-3 encodes a homolog of an orphan human protein, R31240_2, encoded on 19p13.2. ORF-3 is also homologous to three proteins (YLS2, YMV6, and C07B5.5) from the free-living nematode Caenorhabditis elegans and to a 43-kDa antigen from the parasitic nematode Trichinella spiralis. ORF-5 encodes a homolog of the mammalian plasma cell antigen PC-1, a type II glycoprotein with exophosphodiesterase activity. The ORFs are present in the virulent precursor, HP1, of the sequenced attenuated virus (FP9) and are conserved in other strains of FWPV. They were shown, by deletion mutagenesis, to be nonessential to virus replication in tissue culture. RNA encoding the viral homolog of PC-1 is expressed strongly early and late in infection, but RNAs encoding the homologs of SNAP and R31240_2 are expressed weakly and late.

  16. Partial Correction of Psoriasis upon Genetic Knock-Down of Human TNF-α by Lentivirus-Encoded shRNAs in a Xenograft Mouse Model

    DEFF Research Database (Denmark)

    Jakobsen, Maria; Stenderup, Karin; Rosada, Cecilia

    vectors demonstrated efficient transduction of human psoriatic skin. Grafted psoriatic skin was exposed to viral vector-encoded TNF- shRNAs by a single intradermal injection of purified VSV-G-pseudotyped lentiviral vectors (150 l containing 46.4 ng p24/ l was injected at a single site). Biopsies were...

  17. Distribution and characterization of a Sandhoff disease-associated 50-kb deletion in the gene encoding the human beta-hexosaminidase beta-chain

    NARCIS (Netherlands)

    Bikker, H.; van den Berg, F. M.; Wolterman, R. A.; Kleijer, W. J.; de Vijlder, J. J.; Bolhuis, P. A.

    1990-01-01

    A 50-kb deletion was demonstrated in the gene encoding for the beta-subunit of human hexosaminidase (HEXB), using field inversion gel electrophoresis (FIGE) of SfiI-digested chromosomal DNA from patients with Sandhoff disease. We investigated 14 patients from different parts of Europe and found no

  18. CC and CX3C chemokines differentially interact with the N terminus of the human cytomegalovirus-encoded US28 receptor

    DEFF Research Database (Denmark)

    Casarosa, Paola; Waldhoer, Maria; LiWang, Patricia J

    2005-01-01

    Human cytomegalovirus (HCMV) is the causative agent of life-threatening systemic diseases in immunocompromised patients as well as a risk factor for vascular pathologies, like atherosclerosis, in immunocompetent individuals. HCMV encodes a G-protein-coupled receptor (GPCR), referred to as US28...

  19. Mutations in the gene encoding GlyT2 (SLC6A5) define a presynaptic component of human startle disease

    NARCIS (Netherlands)

    Rees, Mark I.; Harvey, Kirsten; Pearce, Brian R.; Chung, Seo-Kyung; Duguid, Ian C.; Thomas, Philip; Beatty, Sarah; Graham, Gail E.; Armstrong, Linlea; Shiang, Rita; Abbott, Kim J.; Zuberi, Sameer M.; Stephenson, John B. P.; Owen, Michael J.; Tijssen, Marina A. J.; van den Maagdenberg, Arn M. J. M.; Smart, Trevor G.; Supplisson, Stephane; Harvey, Robert J.

    Hyperekplexia is a human neurological disorder characterized by an excessive startle response and is typically caused by missense and nonsense mutations in the gene encoding the inhibitory glycine receptor (GlyR) alpha 1 subunit (GLRA1)(1-3). Genetic heterogeneity has been confirmed in rare sporadic

  20. 3D Shape-Encoded Particle Filter for Object Tracking and Its Application to Human Body Tracking

    Directory of Open Access Journals (Sweden)

    R. Chellappa

    2008-03-01

    Full Text Available We present a nonlinear state estimation approach using particle filters, for tracking objects whose approximate 3D shapes are known. The unnormalized conditional density for the solution to the nonlinear filtering problem leads to the Zakai equation, and is realized by the weights of the particles. The weight of a particle represents its geometric and temporal fit, which is computed bottom-up from the raw image using a shape-encoded filter. The main contribution of the paper is the design of smoothing filters for feature extraction combined with the adoption of unnormalized conditional density weights. The “shape filter” has the overall form of the predicted 2D projection of the 3D model, while the cross-section of the filter is designed to collect the gradient responses along the shape. The 3D-model-based representation is designed to emphasize the changes in 2D object shape due to motion, while de-emphasizing the variations due to lighting and other imaging conditions. We have found that the set of sparse measurements using a relatively small number of particles is able to approximate the high-dimensional state distribution very effectively. As a measures to stabilize the tracking, the amount of random diffusion is effectively adjusted using a Kalman updating of the covariance matrix. For a complex problem of human body tracking, we have successfully employed constraints derived from joint angles and walking motion.

  1. 3D Shape-Encoded Particle Filter for Object Tracking and Its Application to Human Body Tracking

    Directory of Open Access Journals (Sweden)

    Chellappa R

    2008-01-01

    Full Text Available Abstract We present a nonlinear state estimation approach using particle filters, for tracking objects whose approximate 3D shapes are known. The unnormalized conditional density for the solution to the nonlinear filtering problem leads to the Zakai equation, and is realized by the weights of the particles. The weight of a particle represents its geometric and temporal fit, which is computed bottom-up from the raw image using a shape-encoded filter. The main contribution of the paper is the design of smoothing filters for feature extraction combined with the adoption of unnormalized conditional density weights. The "shape filter" has the overall form of the predicted 2D projection of the 3D model, while the cross-section of the filter is designed to collect the gradient responses along the shape. The 3D-model-based representation is designed to emphasize the changes in 2D object shape due to motion, while de-emphasizing the variations due to lighting and other imaging conditions. We have found that the set of sparse measurements using a relatively small number of particles is able to approximate the high-dimensional state distribution very effectively. As a measures to stabilize the tracking, the amount of random diffusion is effectively adjusted using a Kalman updating of the covariance matrix. For a complex problem of human body tracking, we have successfully employed constraints derived from joint angles and walking motion.

  2. Genetically encoded photocrosslinkers locate the high-affinity binding site of antidepressant drugs in the human serotonin transporter

    Science.gov (United States)

    Rannversson, Hafsteinn; Andersen, Jacob; Sørensen, Lena; Bang-Andersen, Benny; Park, Minyoung; Huber, Thomas; Sakmar, Thomas P.; Strømgaard, Kristian

    2016-01-01

    Despite the well-established role of the human serotonin transporter (hSERT) in the treatment of depression, the molecular details of antidepressant drug binding are still not fully understood. Here we utilize amber codon suppression in a membrane-bound transporter protein to encode photocrosslinking unnatural amino acids (UAAs) into 75 different positions in hSERT. UAAs are incorporated with high specificity, and functionally active transporters have similar transport properties and pharmacological profiles compared with wild-type transporters. We employ ultraviolet-induced crosslinking with p-azido-L-phenylalanine (azF) at selected positions in hSERT to map the binding site of imipramine, a prototypical tricyclic antidepressant, and vortioxetine, a novel multimodal antidepressant. We find that the two antidepressants crosslink with azF incorporated at different positions within the central substrate-binding site of hSERT, while no crosslinking is observed at the vestibular-binding site. Taken together, our data provide direct evidence for defining the high-affinity antidepressant binding site in hSERT. PMID:27089947

  3. Molecular cloning of a novel human gene encoding a 63-kDa protein and its sublocalization within the 11q13 locus

    Energy Technology Data Exchange (ETDEWEB)

    Perelman, B.; Dafni, N.; Naiman, T. [Tel Aviv Univ., Ramat Aviv (Israel)] [and others

    1997-05-01

    A human cDNA previously isolated by virtue of its ability to complement partially the ultraviolet sensitivity of a xeroderma pigmentosum cell line was further characterized. The transcription unit is expressed as a single 4.0-kb mRNA that encodes a novel 63-kDa cytoplasmic protein, possibly initiating from an internal AUG codon. The gene encoding this protein, named UVRAG, has been extremely well conserved during evolution, implying an important role for this gene product in cell metabolism. The transcribed mRNA is constitutively expressed in a wide variety of human tissues. The protein encoded by this gene is predicted to contain a coiled-coil structure and is likely to be metabolically unstable based on the occurrence of a strong PEST domain. UVRAG was assigned to human chromosome 11 by Southern hybridization to a somatic cell hybrid panel. Fluorescence in situ hybridization coupled with PCR analysis of human/rodent somatic cell hybrids containing segments of human chromosome 11 has localized this gene to a subregion of 11q13 in between the D11S916 and the D11S906 loci. Importantly, this region has been shown to be amplified in a variety of human malignancies, including breast cancer. 28 refs., 7 figs.

  4. Molecular cloning of cDNAs encoding human carnitine acetyltransferase and mapping of the corresponding gene to chromosome 9q34.1

    Energy Technology Data Exchange (ETDEWEB)

    Corti, O.; Finocchiaro, G.; DiDonato, S. [Istituto Nazionale Neurologico C. Besta, Milan (Italy)] [and others

    1994-09-01

    Using a combination of PCR screening of cDNA libraries and reverse transcription PCR, we have cloned three overlapping DNA fragments that encode human carnitine acetyltransferase (CAT), a key enzyme for metabolic pathways involved with the control of the acyl-Co/CoA ratio in mitochondria, peroxisomes, and endoplasmic reticulum. The resulting cDNA (2436 bp) hybridizes to a mRNA species of {approximately}2.9 kb that is particularly abundant in skeletal muscle and encodes a 68-kDa protein containing a peroxisomal targeting signal. The sequence matches those of several tryptic peptides obtained from purified human liver CAT and shows striking similarities with other members of the carnitine/choline acetyltransferase family very distant throughout evolution. CAT cDNA has also been used for fluorescence in situ hybridization on metaphase spreads of human chromosomes, and the corresponding gene, CAT1, has been mapped to chromosome 9q34.1. 29 refs., 4 figs.

  5. Limited similarity between plasmids encoding CTX-M-1 β-lactamase in Escherichia coli from humans, pigs, cattle, organic poultry layers and horses in Denmark

    DEFF Research Database (Denmark)

    Jakobsen, Lotte; Bortolaia, Valeria; Bielak, Eliza Maria

    2015-01-01

    typing, plasmid multilocus sequence typing, restriction fragment length polymorphism, and sequencing. Human and animal strains were unrelated based on PFGE. IncI1 was more common in human isolates (13/22) than in animal isolates (7/43), whereas the opposite trend was observed for IncN (5/22 human...... isolates and 24/43 animal isolates). Full characterisation of the plasmids harbouring blaCTX-M-1 revealed host-specific patterns in the distribution of plasmid types, with specific IncI1, IncN and IncH1 plasmid subtypes being predominant in humans, livestock and horses, respectively. Three...... indistinguishable human, bovine and porcine IncI1/ST49 plasmids had high nucleotide sequence homology and differed by the presence of IS66 elements in the bovine plasmid and the absence of one gene within the microcin-encoding operon in the human plasmid. In conclusion, this work suggests a minor contribution...

  6. Virulence and extended-spectrum β-lactamase encoding genes in Escherichia coli recovered from chicken meat intended for hospitalized human consumption

    OpenAIRE

    Younis, Gamal A.; Elkenany, Rasha M.; Fouda, Mohamed A.; Mostafa, Noura F.

    2017-01-01

    Aim: This study describes the prevalence of Escherichia coli in frozen chicken meat intended for human consumption with emphasis on their virulence determinants through detection of the virulence genes and recognition of the extended-spectrum β-lactamase (ESBL) encoding genes (bla OXA and bla TEM genes). Materials and Methods: A total of 120 frozen chicken meat samples were investigated for isolation of E. coli. All isolates were subjected to biochemical and serological tests. Eight serotypes...

  7. Human alpha 2-HS-glycoprotein: the A and B chains with a connecting sequence are encoded by a single mRNA transcript.

    OpenAIRE

    Lee, C C; Bowman, B H; Yang, F M

    1987-01-01

    The alpha 2-HS-glycoprotein (AHSG) is a plasma protein reported to play roles in bone mineralization and in the immune response. It is composed of two subunits, the A and B chains. Recombinant plasmids containing human cDNA AHSG have been isolated by screening an adult human liver library with a mixed oligonucleotide probe. The cDNA clones containing AHSG inserts span approximately 1.5 kilobase pairs and include the entire AHSG coding sequence, demonstrating that the A and B chains are encode...

  8. Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme.

    Science.gov (United States)

    Dierks, Thomas; Schmidt, Bernhard; Borissenko, Ljudmila V; Peng, Jianhe; Preusser, Andrea; Mariappan, Malaiyalam; von Figura, Kurt

    2003-05-16

    C(alpha)-formylglycine (FGly) is the catalytic residue in the active site of eukaryotic sulfatases. It is posttranslationally generated from a cysteine in the endoplasmic reticulum. The genetic defect of FGly formation causes multiple sulfatase deficiency (MSD), a lysosomal storage disorder. We purified the FGly generating enzyme (FGE) and identified its gene and nine mutations in seven MSD patients. In patient fibroblasts, the activity of sulfatases is partially restored by transduction of FGE encoding cDNA, but not by cDNA carrying an MSD mutation. The gene encoding FGE is highly conserved among pro- and eukaryotes and has a paralog of unknown function in vertebrates. FGE is localized in the endoplasmic reticulum and is predicted to have a tripartite domain structure.

  9. Electroporated Antigen-Encoding mRNA Is Not a Danger Signal to Human Mature Monocyte-Derived Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Stefanie Hoyer

    2015-01-01

    Full Text Available For therapeutic cancer vaccination, the adoptive transfer of mRNA-electroporated dendritic cells (DCs is frequently performed, usually with monocyte-derived, cytokine-matured DCs (moDCs. However, DCs are rich in danger-sensing receptors which could recognize the exogenously delivered mRNA and induce DC activation, hence influencing the DCs’ immunogenicity. Therefore, we examined whether electroporation of mRNA with a proper cap and a poly-A tail of at least 64 adenosines had any influence on cocktail-matured moDCs. We used 16 different RNAs, encoding tumor antigens (MelanA, NRAS, BRAF, GNAQ, GNA11, and WT1, and variants thereof. None of those RNAs induced changes in the expression of CD25, CD40, CD83, CD86, and CD70 or the secretion of the cytokines IL-8, IL-6, and TNFα of more than 1.5-fold compared to the control condition, while an mRNA encoding an NF-κB-activation protein as positive control induced massive secretion of the cytokines. To determine whether mRNA electroporation had any effect on the whole transcriptome of the DCs, we performed microarray analyses of DCs of 6 different donors. None of 60,000 probes was significantly different between mock-electroporated DCs and MelanA-transfected DCs. Hence, we conclude that no transcriptional programs were induced within cocktail-matured DCs by electroporation of single tumor-antigen-encoding mRNAs.

  10. Role of low- and high-frequency oscillations in the human hippocampus for encoding environmental novelty during a spatial navigation task.

    Science.gov (United States)

    Park, Jinsick; Lee, Hojong; Kim, Taekyung; Park, Ga Young; Lee, Eun Mi; Baek, Seunghee; Ku, Jeonghun; Kim, In Young; Kim, Sun I; Jang, Dong Pyo; Kang, Joong Koo

    2014-11-01

    The hippocampus plays a key role in the encoding and retrieval of information related to novel environments during spatial navigation. However, the neural basis for these processes in the human hippocampus remains unknown because it is difficult to directly measure neural signals in the human hippocampus. This study investigated hippocampal neural oscillations involved in encoding novel environments during spatial navigation in a virtual environment. Seven epileptic patients with implanted intracranial hippocampal depth electrodes performed three sessions of virtual environment navigation. Each session consisted of a navigation task and a location-recall task. The navigation task consisted of eight blocks, and in each block, the participant navigated to the location of four different objects and was instructed to remember the location of the objects. After the eight blocks were completed, a location-recall task was performed for each of the four objects. Intracranial electroencephalography data were monitored during the navigation tasks. Theta (5-8 Hz) and delta (1-4 Hz) oscillations were lower in the first block (novel environment) than in the eighth block (familiar environment) of the navigation task, and significantly increased from block one to block eight. By contrast, low-gamma (31-50 Hz) oscillations were higher in the first block than in the eighth block of the navigation task, and significantly decreased from block one to block eight. Comparison of sessions with high recall performance (low error between identified and actual object location) and low recall performance revealed that high-gamma (51-100 Hz) oscillations significantly decreased from block one to block eight only in sessions with high recall performance. These findings suggest that delta, theta, and low-gamma oscillations were associated with encoding of environmental novelty and high-gamma oscillations were important for the successful encoding of environmental novelty. Copyright © 2014

  11. Common genetic variation in the human FNDC5 locus, encoding the novel muscle-derived 'browning' factor irisin, determines insulin sensitivity.

    Directory of Open Access Journals (Sweden)

    Harald Staiger

    Full Text Available AIMS/HYPOTHESIS: Recently, the novel myokine irisin was described to drive adipose tissue 'browning', to increase energy expenditure, and to improve obesity and insulin resistance in high fat-fed mice. Here, we assessed whether common single nucleotide polymorphisms (SNPs in the FNDC5 locus, encoding the irisin precursor, contribute to human prediabetic phenotypes (overweight, glucose intolerance, insulin resistance, impaired insulin release. METHODS: A population of 1,976 individuals was characterized by oral glucose tolerance tests and genotyped for FNDC5 tagging SNPs. Subgroups underwent hyperinsulinaemic-euglycaemic clamps, magnetic resonance imaging/spectroscopy, and intravenous glucose tolerance tests. From 37 young and 14 elderly participants recruited in two different centres, muscle biopsies were obtained for the preparation of human myotube cultures. RESULTS: After appropriate adjustment and Bonferroni correction for the number of tested variants, SNPs rs16835198 and rs726344 were associated with in vivo measures of insulin sensitivity. Via interrogation of publicly available data from the Meta-Analyses of Glucose and Insulin-related traits Consortium, rs726344's effect on insulin sensitivity was replicated. Moreover, novel data from human myotubes revealed a negative association between FNDC5 expression and appropriately adjusted in vivo measures of insulin sensitivity in young donors. This finding was replicated in myotubes from elderly men. CONCLUSIONS/INTERPRETATION: This study provides evidence that the FNDC5 gene, encoding the novel myokine irisin, determines insulin sensitivity in humans. Our gene expression data point to an unexpected insulin-desensitizing effect of irisin.

  12. Targeted disruption in mice of a neural stem cell-maintaining, KRAB-Zn finger-encoding gene that has rapidly evolved in the human lineage.

    Directory of Open Access Journals (Sweden)

    Huan-Chieh Chien

    Full Text Available Understanding the genetic basis of the physical and behavioral traits that separate humans from other primates is a challenging but intriguing topic. The adaptive functions of the expansion and/or reduction in human brain size have long been explored. From a brain transcriptome project we have identified a KRAB-Zn finger protein-encoding gene (M003-A06 that has rapidly evolved since the human-chimpanzee separation. Quantitative RT-PCR analysis of different human tissues indicates that M003-A06 expression is enriched in the human fetal brain in addition to the fetal heart. Furthermore, analysis with use of immunofluorescence staining, neurosphere culturing and Western blotting indicates that the mouse ortholog of M003-A06, Zfp568, is expressed mainly in the embryonic stem (ES cells and fetal as well as adult neural stem cells (NSCs. Conditional gene knockout experiments in mice demonstrates that Zfp568 is both an NSC maintaining- and a brain size-regulating gene. Significantly, molecular genetic analyses show that human M003-A06 consists of 2 equilibrated allelic types, H and C, one of which (H is human-specific. Combined contemporary genotyping and database mining have revealed interesting genetic associations between the different genotypes of M003-A06 and the human head sizes. We propose that M003-A06 is likely one of the genes contributing to the uniqueness of the human brain in comparison to other higher primates.

  13. The human genome encodes ten alpha-crystallin-related small heat shock proteins: HspB1-10

    NARCIS (Netherlands)

    Kappé, G.; Franck, E.; Verschuure, P.; Boelens, W.C.; Leunissen, J.A.M.; Jong, de W.W.

    2003-01-01

    To obtain an inventory of all human genes that code for alpha-crystallin-related small heat shock proteins (sHsps), the databases available from the public International Human Genome Sequencing Consortium (IHGSC) and the private Celera human genome project were exhaustively searched. Using the human

  14. Latency-Associated Nuclear Antigen Encoded by Kaposi's Sarcoma-Associated Herpesvirus Interacts with Tat and Activates the Long Terminal Repeat of Human Immunodeficiency Virus Type 1 in Human Cells

    OpenAIRE

    Hyun, Teresa S.; Subramanian, Chitra; Cotter, Murray A.; Robert A. Thomas; Robertson, Erle S.

    2001-01-01

    The latency-associated nuclear antigen (LANA) is constitutively expressed in cells infected with the Kaposi's sarcoma (KS) herpesvirus (KSHV), also referred to as human herpesvirus 8. KSHV is tightly associated with body cavity-based lymphomas (BCBLs) in immunocompromised patients infected with human immunodeficiency virus (HIV). LANA, encoded by open reading frame 73 of KSHV, is one of a small subset of proteins expressed during latent infection and was shown to be important in tethering the...

  15. Molecular cloning and expression of mouse and human cDNA encoding AES and ESG proteins with strong similarity to Drosophila enhancer of split groucho protein.

    Science.gov (United States)

    Miyasaka, H; Choudhury, B K; Hou, E W; Li, S S

    1993-08-15

    Mouse and human cDNA encoding AES (amino-terminal enhancer of split) and ESG (enhancer of split groucho) proteins with strong similarity to Drosophila enhancer of split groucho protein were isolated and sequenced. Mouse AES-1 and AES-2 proteins, probably resulting from alternative splicing, contain 202 and 196 amino acids, respectively, while mouse ESG protein consists of 771 amino acids. The amino acid sequences of mouse and human AES proteins were found to exhibit approximately 50% identity to the amino-terminal region of Drosophila groucho, mouse ESG and human transducin-like enhancer of split (TLE) proteins. Mouse AES transcripts of 1.5 kb and 1.2 kb were abundantly expressed in muscle, heart and brain. Human AES transcripts of 1.6 kb and 1.4 kb were predominantly present in muscle, heart and placenta. Mouse ESG (homolog of human TLE 3) transcripts of 3.3 kb and 4.0 kb were found only in testis, while human TLE 1 transcripts of 4.5 kb was more abundant in muscle and placenta compared to heart, brain, lung, liver, kidney and pancreas. Human AES, TLE 1 and TLE 3 genes were mapped to chromosomes 19, 9 and 15, respectively, using human and Chinese hamster hybrid cell lines.

  16. COVER FIGURE in Nucleic Acids Research (Volume 39, Issue 9) entitled "The involvement of the nuclear-encoded human 2'-phosphodiesterase in mitochondrial RNA turnover"

    DEFF Research Database (Denmark)

    Poulsen, Jesper Buchhave

    2011-01-01

    (English) Cover: The involvement of the nuclear-encoded human 2'-phosphodiesterase (2'-PDE) in mitochondrial RNA turnover. The 2'-PDE precursor (upper left corner) gets directed into the mitochondrial matrix by an N-terminal mitochondrial signaling peptide (blue). Inside the matrix, this signaling...... peptide is cleaved-off (see magnification in lower left corner), and the 2'-PDE folded to generate a catalytically active protein actively degrading RNA (see magnification in upper right corner). Liberated ribonucleotide monophosphate products (A, G, C and U) are indicated by color-coded boxes...

  17. The human ATP binding cassette gene ABCA13, located on chromosome 7p12.3, encodes a 5058 amino acid protein with an extracellular domain encoded in part by a 4.8-kb conserved exon.

    Science.gov (United States)

    Prades, C; Arnould, I; Annilo, T; Shulenin, S; Chen, Z Q; Orosco, L; Triunfol, M; Devaud, C; Maintoux-Larois, C; Lafargue, C; Lemoine, C; Denèfle, P; Rosier, M; Dean, M

    2002-01-01

    The ABCA subfamily of ATP-binding cassette (ABC) transporters includes eleven members to date. In this study, we describe a new, unusually large gene on chromosome 7p12.3, ABCA13. This gene spans over 450 kb and is split into 62 exons. The predicted ABCA13 protein consists of 5,058 ami- no acid residues making it the largest ABC protein described to date. Like the other ABCA subfamily members, ABCA13 contains a hydrophobic, predicted transmembrane segment at the N-terminus, followed by a large hydrophilic region. In the case of ABCA13, the hydrophilic region is unexpectedly large, more than 3,500 amino acids, encoded by 30 exons, two of which are 4.8 and 1.7 kb in length. These two large exons are adjacent to each other and are conserved in the mouse Abca13 gene. Tissue profiling of the major transcript reveals the highest expression in human trachea, testis, and bone marrow. The expression of the gene was also determined in 60 tumor cell lines and the highest expression was detected in the SR leukemia, SNB-19 CNS tumor and DU-145 prostate tumor cell lines. ABCA13 has high similarity with other ABCA subfamily genes which are associated with human inherited diseases: ABCA1 with the cholesterol transport disorders Tangier disease and familial hypoalphalipoproteinemia, and ABCA4 with several retinal degeneration disorders. The ABCA13 gene maps to chromosome 7p12.3, a region that contains an inherited disorder affecting the pancreas (Shwachman-Diamond syndrome) as well as a locus involved in T-cell tumor invasion and metastasis (INM7), and therefore is a positional candidate for these pathologies. Copyright 2002 S. Karger AG, Basel

  18. Virulence and extended-spectrum β-lactamase encoding genes in Escherichia coli recovered from chicken meat intended for hospitalized human consumption.

    Science.gov (United States)

    Younis, Gamal A; Elkenany, Rasha M; Fouda, Mohamed A; Mostafa, Noura F

    2017-10-01

    This study describes the prevalence of Escherichia coli in frozen chicken meat intended for human consumption with emphasis on their virulence determinants through detection of the virulence genes and recognition of the extended-spectrum β-lactamase (ESBL) encoding genes (blaOXA and blaTEM genes). A total of 120 frozen chicken meat samples were investigated for isolation of E. coli. All isolates were subjected to biochemical and serological tests. Eight serotypes isolated from samples were analyzed for the presence of various virulence genes (stx1, stx2, and eae A genes) using multiplex polymerase chain reaction (PCR) technique. Moreover, the strains were evaluated for the ESBL encoding genes (blaTEM and blaOXA). Overall, 11.66% (14/120) chicken meat samples carried E. coli according to cultural and biochemical properties. The most predominant serotypes were O78 and O128: H2 (21.5%, each), followed by O121: H7 and O44: H18. Molecular method detected that 2 strains (25%) harbored stx1, 3 strains (37.5%) stx2, and 3 strains (37.5%) both stx1 and stx2, while 1 (12.5%) strain carried eae A gene. Particularly, only O26 serotype had all tested virulence genes (stx1, stx2, and eae A). The results revealed that all examined 8 serotypes were Shiga toxin-producing E. coli (STEC). The ESBL encoding genes (blaTEM and blaOXA) of STEC were detected in 4 (50%) isolates by multiplex PCR. The overall incidence of blaTEM and blaOXA genes was 3 (37.5%) and 2 (25%) isolates. The present study indicates the prevalence of virulent and ESBL-producing E. coli in frozen chicken meat intended for hospitalized human consumption due to poor hygienic measures and irregular use of antibiotics. Therefore, the basic instructions regarding good hygienic measures should be adapted to limit public health hazard.

  19. Lymphoepithelioma-like carcinoma of breast-evaluation for Epstein-Barr virus-encoded RNA, human papillomavirus, and markers of basal cell differentiation.

    Science.gov (United States)

    Shet, Tanuja; Pai, Trupti; Shetty, Omshree; Desai, Sangeeta

    2016-12-01

    This is a largest series of 5 cases of lymphoepithelioma-like carcinoma (LEC) of the breast attempting to look at the expression of basal cytokeratins (CKs), human papillomavirus, and Epstein-Barr virus-encoded RNAs in these tumors. Five cases were selected after stringent evaluation of all breast carcinomas showing dense lymphoid infiltration. Histologically, all these tumors showed the typical histology except 1 tumor that showed an unusual granulomatous response. All tumors were negative for estrogen and progesterone receptors and HER2 (triple negative). Three tumors expressed CK5/6 and high-molecular-weight CK, whereas only the case with nodal metastasis expressed CK14. Analysis for in situ hybridization for Epstein-Barr virus-encoded RNAs and human papillomavirus DNA on paraffin-processed tissues was negative in all tumors. All of these patients received adjuvant therapy. One patient with tumor expressing basal marker, CK5/6, had contralateral breast malignancy after a duration of 53 months of treatment completion. The rest were disease free with the follow-up period in the range of 6 to 105 months. The lymphoepithelioma-like carcinoma of breast expressed basal CK profile that is more CK5/6 positive than CK14. Analysis of basal markers within these tumors may help in refining the definition of these tumors and in classifying them into prognostically relevant groups. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Identification of 200,000-dalton human cell surface protein encoded by gene mapped to long arm of chromosome 11.

    Science.gov (United States)

    Imada, M; Kao, F T; Law, M L; Jones, C

    1986-03-01

    Cell surface proteins and glycoproteins of human and Chinese hamster cells and their hybrid cell clones were analyzed by two-dimensional gel electrophoresis. The J1 clone of human-Chinese hamster hybrid cells contained chromosome 11 as its only human chromosome. The J1 cells expressed a glycoprotein of 200,000 daltons which was shared by human fibroblasts but not by the parental Chinese hamster ovary cells. The 200,000-dalton protein was identified as a cell surface protein by the method of lactoperoxidase-catalyzed iodination. The protein was electrophoretically purified from radioiodinated cultures of human fibroblasts and J1 cells and subjected to the analysis of tryptic peptides by thin-layer electrophoresis followed by chromatography. The protein from both sources gave rise to fingerprints which closely resembled to each other. The results are consistent with a hypothesis that the 200,000-dalton protein of the J1 clone is of human origin. Analysis of segregant clones of J1 cells, which have deletions on human chromosome 11, has further suggested that the gene for this glycoprotein maps to the long arm of chromosome 11. A gene coding for the 200,000-dalton protein has not been previously mapped to this chromosome.

  1. Modulating and Measuring Intracellular H2O2 Using Genetically Encoded Tools to Study Its Toxicity to Human Cells.

    Science.gov (United States)

    Huang, Beijing K; Stein, Kassi T; Sikes, Hadley D

    2016-12-16

    Reactive oxygen species (ROS) such as H2O2 play paradoxical roles in mammalian physiology. It is hypothesized that low, baseline levels of H2O2 are necessary for growth and differentiation, while increased intracellular H2O2 concentrations are associated with pathological phenotypes and genetic instability, eventually reaching a toxic threshold that causes cell death. However, the quantities of intracellular H2O2 that lead to these different responses remain an unanswered question in the field. To address this question, we used genetically encoded constructs that both generate and quantify H2O2 in a dose-response study of H2O2-mediated toxicity. We found that, rather than a simple concentration-response relationship, a combination of intracellular concentration and the cumulative metric of H2O2 concentration multiplied by time (i.e., the area under the curve) determined the occurrence and level of cell death. Establishing the quantitative relationship between H2O2 and cell toxicity promotes a deeper understanding of the intracellular effects of H2O2 specifically as an individual reactive oxygen species, and it contributes to an understanding of its role in various redox-related diseases.

  2. Human anti-V3 HIV-1 monoclonal antibodies encoded by the VH5-51/VL lambda genes define a conserved antigenic structure.

    Science.gov (United States)

    Gorny, Miroslaw K; Sampson, Jared; Li, Huiguang; Jiang, Xunqing; Totrov, Maxim; Wang, Xiao-Hong; Williams, Constance; O'Neal, Timothy; Volsky, Barbara; Li, Liuzhe; Cardozo, Timothy; Nyambi, Phillipe; Zolla-Pazner, Susan; Kong, Xiang-Peng

    2011-01-01

    Preferential usage of immunoglobulin (Ig) genes that encode antibodies (Abs) against various pathogens is rarely observed and the nature of their dominance is unclear in the context of stochastic recombination of Ig genes. The hypothesis that restricted usage of Ig genes predetermines the antibody specificity was tested in this study of 18 human anti-V3 monoclonal Abs (mAbs) generated from unrelated individuals infected with various subtypes of HIV-1, all of which preferentially used pairing of the VH5-51 and VL lambda genes. Crystallographic analysis of five VH5-51/VL lambda-encoded Fabs complexed with various V3 peptides revealed a common three dimensional (3D) shape of the antigen-binding sites primarily determined by the four complementarity determining regions (CDR) for the heavy (H) and light (L) chains: specifically, the H1, H2, L1 and L2 domains. The CDR H3 domain did not contribute to the shape of the binding pocket, as it had different lengths, sequences and conformations for each mAb. The same shape of the binding site was further confirmed by the identical backbone conformation exhibited by V3 peptides in complex with Fabs which fully adapted to the binding pocket and the same key contact residues, mainly germline-encoded in the heavy and light chains of five Fabs. Finally, the VH5-51 anti-V3 mAbs recognized an epitope with an identical 3D structure which is mimicked by a single mimotope recognized by the majority of VH5-51-derived mAbs but not by other V3 mAbs. These data suggest that the identification of preferentially used Ig genes by neutralizing mAbs may define conserved epitopes in the diverse virus envelopes. This will be useful information for designing vaccine immunogen inducing cross-neutralizing Abs.

  3. The gene encoding human glutathione synthetase (GSS) maps to the long arm of chromosome 20 at band 11.2

    Energy Technology Data Exchange (ETDEWEB)

    Webb, G.C.; Vaska, V.L.; Ford, J.H. [Queen Elizabeth Hospital, Woodville (Australia)] [and others

    1995-12-10

    Two forms of glutathione synthetase deficiency have been described. While one form is mild, causing hemolytic anemia, the other more severe form causes 5-oxoprolinuria with secondary neurological involvement. Despite the existence of two deficiency phenotypes, Southern blots hybridized with a glutathione synthetase cDNA suggest that there is a single glutathione synthetase gene in the human genome. Analysis of somatic cell hybrids showed the human glutathione synthetase gene (GSS) to be located on chromosome 20, and this assignment has been refined to subband 20q11.2 using in situ hybridization. 16 refs., 2 figs.

  4. NCYM, a Cis-antisense gene of MYCN, encodes a de novo evolved protein that inhibits GSK3β resulting in the stabilization of MYCN in human neuroblastomas.

    Directory of Open Access Journals (Sweden)

    Yusuke Suenaga

    2014-01-01

    Full Text Available The rearrangement of pre-existing genes has long been thought of as the major mode of new gene generation. Recently, de novo gene birth from non-genic DNA was found to be an alternative mechanism to generate novel protein-coding genes. However, its functional role in human disease remains largely unknown. Here we show that NCYM, a cis-antisense gene of the MYCN oncogene, initially thought to be a large non-coding RNA, encodes a de novo evolved protein regulating the pathogenesis of human cancers, particularly neuroblastoma. The NCYM gene is evolutionally conserved only in the taxonomic group containing humans and chimpanzees. In primary human neuroblastomas, NCYM is 100% co-amplified and co-expressed with MYCN, and NCYM mRNA expression is associated with poor clinical outcome. MYCN directly transactivates both NCYM and MYCN mRNA, whereas NCYM stabilizes MYCN protein by inhibiting the activity of GSK3β, a kinase that promotes MYCN degradation. In contrast to MYCN transgenic mice, neuroblastomas in MYCN/NCYM double transgenic mice were frequently accompanied by distant metastases, behavior reminiscent of human neuroblastomas with MYCN amplification. The NCYM protein also interacts with GSK3β, thereby stabilizing the MYCN protein in the tumors of the MYCN/NCYM double transgenic mice. Thus, these results suggest that GSK3β inhibition by NCYM stabilizes the MYCN protein both in vitro and in vivo. Furthermore, the survival of MYCN transgenic mice bearing neuroblastoma was improved by treatment with NVP-BEZ235, a dual PI3K/mTOR inhibitor shown to destabilize MYCN via GSK3β activation. In contrast, tumors caused in MYCN/NCYM double transgenic mice showed chemo-resistance to the drug. Collectively, our results show that NCYM is the first de novo evolved protein known to act as an oncopromoting factor in human cancer, and suggest that de novo evolved proteins may functionally characterize human disease.

  5. Mutations in the gene encoding GlyT2 (SLC6A5) define a presynaptic component of human startle disease.

    Science.gov (United States)

    Rees, Mark I; Harvey, Kirsten; Pearce, Brian R; Chung, Seo-Kyung; Duguid, Ian C; Thomas, Philip; Beatty, Sarah; Graham, Gail E; Armstrong, Linlea; Shiang, Rita; Abbott, Kim J; Zuberi, Sameer M; Stephenson, John B P; Owen, Michael J; Tijssen, Marina A J; van den Maagdenberg, Arn M J M; Smart, Trevor G; Supplisson, Stéphane; Harvey, Robert J

    2006-07-01

    Hyperekplexia is a human neurological disorder characterized by an excessive startle response and is typically caused by missense and nonsense mutations in the gene encoding the inhibitory glycine receptor (GlyR) alpha1 subunit (GLRA1). Genetic heterogeneity has been confirmed in rare sporadic cases, with mutations affecting other postsynaptic glycinergic proteins including the GlyR beta subunit (GLRB), gephyrin (GPHN) and RhoGEF collybistin (ARHGEF9). However, many individuals diagnosed with sporadic hyperekplexia do not carry mutations in these genes. Here we show that missense, nonsense and frameshift mutations in SLC6A5 (ref. 8), encoding the presynaptic glycine transporter 2 (GlyT2), also cause hyperekplexia. Individuals with mutations in SLC6A5 present with hypertonia, an exaggerated startle response to tactile or acoustic stimuli, and life-threatening neonatal apnea episodes. SLC6A5 mutations result in defective subcellular GlyT2 localization, decreased glycine uptake or both, with selected mutations affecting predicted glycine and Na+ binding sites.

  6. The pathogenic human monoclonal anti-DNA that induces experimental systemic lupus erythematosus in mice is encoded by a VH4 gene segment.

    Science.gov (United States)

    Waisman, A; Shoenfeld, Y; Blank, M; Ruiz, P J; Mozes, E

    1995-04-01

    Systemic lupus erythematosus (SLE) can be induced in mice by immunization with a human anti-DNA IgM mAb that was derived from a patient with cold agglutinin disease. The latter anti-DNA mAb expresses the common idiotype (Id) designated 16/6 Id. The original human hybridoma 16/6 that secreted an IgM antibody that bound ssDNA and carried the 16/6 Id had switched in culture to secrete an IgG molecule. Herein we show that the IgG 16/6 antibody contains the previously reported characteristics of the original IgM 16/6 mAb: it expresses the 16/6 Id and is capable of inducing experimental SLE in susceptible mouse strains. The identify of the IgG 16/6 anti-DNA mAb to the original IgM mAb was shown both by serological techniques and at the T cell level. The human IgG 16/6 mAb was found to be encoded by a germline gene from the human VH4 gene family, with high similarity to the germline gene VH4.21 that was previously shown to code for anti-DNA antibodies isolated from SLE patients. The VH4.21 germline gene was found to also code for most antibodies with cold agglutinin activity that were isolated from patients with cold agglutinin disease.

  7. Effects of ¿9-Tetrahydrocannabinol Administration on human encoding and recall memory function: a pharmacological fMRI study

    NARCIS (Netherlands)

    Bossong, M.G.; Jager, G.; Hell, van H.H.; Zuurman, L.; Jansma, J.M.; Mehta, M.A.; Gerven, van J.; Kahn, R.S.; Ramsey, N.F.

    2012-01-01

    Deficits in memory function are an incapacitating aspect of various psychiatric and neurological disorders. Animal studies have recently provided strong evidence for involvement of the endocannabinoid (eCB) system in memory function. Neuropsychological studies in humans have shown less convincing

  8. The human subthalamic nucleus encodes the subjective value of reward and the cost of effort during decision-making

    Science.gov (United States)

    Zénon, Alexandre; Duclos, Yann; Carron, Romain; Witjas, Tatiana; Baunez, Christelle; Régis, Jean; Azulay, Jean-Philippe; Brown, Peter; Eusebio, Alexandre

    2016-01-01

    that low-frequency neuronal activity in the subthalamic nucleus may encode the information required to make cost-benefit comparisons, rather than signal conflict. The link between these neural responses and behaviour was stronger under dopamine replacement therapy. Our findings are consistent with the view that Parkinson’s disease symptoms may be caused by a disruption of the processes involved in balancing the value of actions with their associated effort cost. PMID:27190012

  9. Simulation of movement in three-dimensional musculoskeletal human lumbar spine using directional encoding-based neurocontrollers.

    Science.gov (United States)

    Nasseroleslami, Bahman; Vossoughi, Gholamreza; Boroushaki, Mehrdad; Parnianpour, Mohamad

    2014-09-01

    Despite development of accurate musculoskeletal models for human lumbar spine, the methods for prediction of muscle activity patterns in movements lack proper association with corresponding sensorimotor integrations. This paper uses the directional information of the Jacobian of the musculoskeletal system to orchestrate adaptive critic-based fuzzy neural controller modules for controlling a complex nonlinear redundant musculoskeletal system. The proposed controller is used to control a 3D 3-degree of freedom (DOF) musculoskeletal model of trunk, actuated by 18 muscles. The controller is capable of learning to control from sensory information, without relying on pre-assumed model parameters. Simulation results show satisfactory tracking of movements and the simulated muscle activation patterns conform to previous EMG experiments and optimization studies. The proposed controller can be used as a computationally inexpensive muscle activity generator to distinguish between neural and mechanical contributions to movement and for study of sensory versus motor origins of motor function and dysfunction in human spine.

  10. Virulence and extended-spectrum β-lactamase encoding genes in Escherichia coli recovered from chicken meat intended for hospitalized human consumption

    Directory of Open Access Journals (Sweden)

    Gamal A. Younis

    2017-10-01

    Full Text Available Aim: This study describes the prevalence of Escherichia coli in frozen chicken meat intended for human consumption with emphasis on their virulence determinants through detection of the virulence genes and recognition of the extended-spectrum β-lactamase (ESBL encoding genes (blaOXA and blaTEM genes. Materials and Methods: A total of 120 frozen chicken meat samples were investigated for isolation of E. coli. All isolates were subjected to biochemical and serological tests. Eight serotypes isolated from samples were analyzed for the presence of various virulence genes (stx1, stx2, and eae A genes using multiplex polymerase chain reaction (PCR technique. Moreover, the strains were evaluated for the ESBL encoding genes (blaTEM and blaOXA. Results: Overall, 11.66% (14/120 chicken meat samples carried E. coli according to cultural and biochemical properties. The most predominant serotypes were O78 and O128: H2 (21.5%, each, followed by O121: H7 and O44: H18. Molecular method detected that 2 strains (25% harbored stx1, 3 strains (37.5% stx2, and 3 strains (37.5% both stx1 and stx2, while 1 (12.5% strain carried eae A gene. Particularly, only O26 serotype had all tested virulence genes (stx1, stx2, and eae A. The results revealed that all examined 8 serotypes were Shiga toxin-producing E. coli (STEC. The ESBL encoding genes (blaTEM and blaOXA of STEC were detected in 4 (50% isolates by multiplex PCR. The overall incidence of blaTEM and blaOXA genes was 3 (37.5% and 2 (25% isolates. Conclusion: The present study indicates the prevalence of virulent and ESBL-producing E. coli in frozen chicken meat intended for hospitalized human consumption due to poor hygienic measures and irregular use of antibiotics. Therefore, the basic instructions regarding good hygienic measures should be adapted to limit public health hazard.

  11. An intact SAM-dependent methyltransferase fold is encoded by the human endothelin-converting enzyme-2 gene

    Energy Technology Data Exchange (ETDEWEB)

    Tempel, W.; Wu, H.; Dombrovsky, L.; Zeng, H.; Loppnau, P.; Zhu, H.; Plotnikov, A.N.; Bochkarev, A.; (Toronto)

    2010-08-17

    A recent survey of protein expression patterns in patients with Alzheimer's disease (AD) has identified ece2 (chromosome: 3; Locations: 3q27.1) as the most significantly downregulated gene within the tested group. ece2 encodes endothelin-converting enzyme ECE2, a metalloprotease with a role in neuropeptide processing. Deficiency in the highly homologous ECE1 has earlier been linked to increased levels of AD-related {beta}-amyloid peptide in mice, consistent with a role for ECE in the degradation of that peptide. Initially, ECE2 was presumed to resemble ECE1, in that it comprises a single transmembrane region of {approx}20 residues flanked by a small amino-terminal cytosolic segment and a carboxy-terminal lumenar peptidase domain. The carboxy-terminal domain has significant sequence similarity to both neutral endopeptidase, for which an X-ray structure has been determined, and Kell blood group protein. After their initial discovery, multiple isoforms of ECE1 and ECE2 were discovered, generated by alternative splicing of multiple exons. The originally described ece2 transcript, RefSeq NM{_}174046, contains the amino-terminal cytosolic portion followed by the transmembrane region and peptidase domain (Fig. 1, isoform B). Another ece2 transcript, available from the Mammalian Gene Collection under MGC2408 (Fig. 1, isoform C), RefSeq accession NM{_}032331, is predicted to be translated into a 255 residue peptide with low but detectable sequence similarity to known S-adenosyl-L-methionine (SAM)-dependent methyltransferases (SAM-MTs), such as the hypothetical protein TT1324 from Thermus thermophilis, PDB code 2GS9, which shares 30% amino acid sequence identity with ECE2 over 138 residues of the sequence. Intriguingly, another 'elongated' ece2 transcript (Fig. 1, isoform A) (RefSeq NM{_}014693) contains an amino-terminal portion of the putative SAM-MT domain, the transmembrane domain, and the protease domain. This suggests the possibility for coexistence of

  12. A restriction fragment length polymorphism results in a nonconservative amino acid substitution encoded within the first exon of the human lysyl oxidase gene

    Energy Technology Data Exchange (ETDEWEB)

    Csiszar, K.; Mariani, T.J.; Gosin, J.S.; Deak, S.B.; Boyd, C.D. [Robert Wood Johnson Medical School, New Brunswick, NJ (United States)

    1993-05-01

    A cDNA covering most of the coding sequence for human lysyl oxidase was used to screen, by Southern blot analysis, genomic DNA from circulating lymphocytes obtained from unrelated, apparently normal individuals. A heritable restriction fragment length polymorphism (RFLP) within a PstI restriction site was detected in 36% of individuals screened (a total of 72 chromosomes were analyzed). The major allele was represented as a 1.7-kb PstI restriction fragment. The minor allele was detected as 1.4 and 0.3kb restriction fragments. Lambda phage-DNA recombinants were isolated from a human lung fibroblast genomic DNA library using the human lysyl oxidase cDNA clone. DNA sequence analysis of several selected phage recombinants revealed that 83% of the coding sequence of lysyl oxidase was localized in four separate exons. Analysis of the coding sequence within exon 1, the most 5{prime} exon within the lysyl oxidase gene, revealed that the PstI RFLP was due to a G {r_arrow} A transition resulting in a nonconservative arginine to glutamine substitution proximal to a propeptide cleavage domain encoded by exon 1 of the lysyl oxidase gene. 33 refs., 5 figs., 1 tab.

  13. Human alpha 2-HS-glycoprotein: the A and B chains with a connecting sequence are encoded by a single mRNA transcript.

    Science.gov (United States)

    Lee, C C; Bowman, B H; Yang, F M

    1987-01-01

    The alpha 2-HS-glycoprotein (AHSG) is a plasma protein reported to play roles in bone mineralization and in the immune response. It is composed of two subunits, the A and B chains. Recombinant plasmids containing human cDNA AHSG have been isolated by screening an adult human liver library with a mixed oligonucleotide probe. The cDNA clones containing AHSG inserts span approximately 1.5 kilobase pairs and include the entire AHSG coding sequence, demonstrating that the A and B chains are encoded by a single mRNA transcript. The cDNA sequence predicts an 18-amino-acid signal peptide, followed by the A-chain sequence of AHSG. A heretofore unseen connecting sequence of 40 amino acids was deduced between the A- and B-chain sequences. The connecting sequence demonstrates the unique amino acid doublets and collagen triplets found in the A and B chains; it is not homologous with other reported amino acid sequences. The connecting sequence may be cleaved in a posttranslational step by limited proteolysis before mature AHSG is released into the circulation or may vary in its presence because of alternative processing. The AHSG cDNA was utilized for mapping the AHSG gene to the 3q21----qter region of human chromosome 3. The availability of the AHSG cDNA clone will facilitate the analysis of its genetic control and gene expression during development and bone formation. Images PMID:3474608

  14. Genotoxicity of N-nitroso-N-methylurea and acetone oxime in the transgenic Drosophila carrying the human gene encoding a subunit of glutathione S-transferase.

    Science.gov (United States)

    Rysková, M; Chroust, K; Trbusek, M; Benedík, J; Jowett, T

    1997-01-01

    The genotoxic effects of N-nitroso-N-methylurea (MNU) and acetone oxime (ACOX) were tested in the Somatic Mutation and Recombination Test (SMART) in Drosophila melanogaster. We have performed the same assay on transgenic flies expressing the human gene encoding a glutathione S-transferase alpha subunit (HGST). The SMART assay is used here to demonstrate genotoxicity and to determine the effect of human glutathione S-transferase on the genotoxic response. Three types of Drosophila strains were used: non-transgenic strains first described by Szabad (1986), transgenic strains derived from the Szabad strains but expressing the bacterial lacZ gene, and similarly derived transgenic strains expressing the HGST gene. MNU was highly genotoxic in both transgenic and non-transgenic flies. The non-transgenic lies were significantly more sensitive to the genotoxic effects of MNU compared to both types of transgenic flies. There were statistically significant differences between the transgenic HGST crosses and transgenic lacZ and non-transgenic control crosses but there was no significant difference between the genotoxic response to MNU in flies from the transgenic cross with lacZ and from the cross carrying three copies of HGST. ACOX also proved to be genotoxic to both non-transgenic and transgenic flies. However, flies carrying three copies of the gene were significantly more resistant to the genotoxic effect of ACOX than those transgenic flies with two or no copies of the human gene.

  15. Mapping the Binding Site for Escitalopram and Paroxetine in the Human Serotonin Transporter Using Genetically Encoded Photo-Cross-Linkers

    DEFF Research Database (Denmark)

    Rannversson, Hafsteinn; Andersen, Jacob; Bang-Andersen, Benny

    2017-01-01

    In spite of the important role of the human serotonin transporter (hSERT) in depression treatment, the molecular details of how antidepressant drugs bind are still not completely understood, in particular those related to potential high- and low-affinity binding sites in hSERT. Here, we utilize...... serotonin reuptake inhibitors (SSRIs). We find that the two antidepressant drugs exclusively cross-link to azF incorporated at the high-affinity binding site of hSERT, while cross-linking is not observed at the low-affinity binding site. Combined with previous homology models and recent structural data on h...

  16. The preliminary solution structure of human p8MTCP1, a protein encoded by the putative MTCP1 oncogene

    Science.gov (United States)

    Barthe, P.; Guignard, L.; Yang, Y.-S.; Chiche, L.; Strub, M.-P.; Hoh, F.; Stern, M.-H.; Roumestand, C.

    1998-02-01

    The NMR solution structure of the cystein-rich human p8 protein coded by the oncogene MTCP1 reveals an original scaffold consisting of three α-helices, two of them tightly held together by two disulphide bridges in an antiparallel α-hairpin. MTCP1 was found to be expressed in mature prolymphocytic leukemias. La structure RMN de la protéine humaine p8 en solution présente un repliement original en trois hélices α, deux d'entre elles étant étroitement maintenues dans une orientation antiparallèle par deux ponts disulfures. Cette protéine riche en cystéine est codée par l'oncogène MTCP1 qui est exprimé dans des leucémies prolymphocytaires de phénotype mature.

  17. Cloning and sequence analysis of gene oipA encoding an outer membrane protein of human Helicobacter pylori.

    Science.gov (United States)

    Chen, Dao-Rong; Huang, Ai-Long; Tao, Xiao-Hong; Wang, Pi-Long; Jiang, Zheng

    2004-11-01

    To construct a recombinant E. coli strain that would highly express the proinflammatory outer membrane protein of human Helicobacter pylori (H pylori). The oipA DNA was amplified by PCR, inserted into pET-32a, and transformed into Top10 E. coli strain. This recombinant plasmid of Top10 was sent out for nucleotide sequence analysis. Finally this sequence AF479754 was compared with HP0638 and JHP0581. The sequence of the aim gene was obtained. It had 924 base pairs. The identity was 95.32% against HP0638, 95.02% against JHP0581, which was higher than the identity between HP0638 and JHP0581. Although the aim gene was obtained, but it was different from the published sequence of GenBank. It is not clear what makes this difference. Maybe it is because different strain was used or because there were some variations. So more researches are required to prove it.

  18. Human neuronal encoding of English syntactic violations as revealed by both L1 and L2 speakers.

    Science.gov (United States)

    Kubota, Mikio; Ferrari, Paul; Roberts, Timothy P L

    2004-09-23

    Our previous study [M. Kubota, P. Ferrari, T.P.L. Roberts, Magnetoencephalography detection of early syntactic processes in humans: comparison between L1 speakers and L2 learners, Neurosci. Lett. 353 (2003) 107-110] showed that an early syntactic response was elicited in first language (L1) speakers for within-phrase, but not across-phrase violations, implying that there may exist a continuum of neuronal error gravity. Such an early component was not elicited by second-language (L2) learners. The current auditory study investigated whether two types of different syntactic violations regarding noun-phrase raising (NP-raising) and case-filter constructions would elicit a prominent early syntactic component in each hemisphere for both L1 and advanced L2 speakers of English. Neuromagnetic fields were recorded, using a dual 37-channel gradiometer system. A prominent component, peaking at approximately 150 ms post-onset, was observed in both hemispheres of two groups in response to NP-raising induced violations, but not case-filter violations. The findings imply that L1 and L2 speakers have similar neuronal mechanisms subserving syntactic processing of such violations.

  19. 3D spatially encoded and accelerated TE-averaged echo planar spectroscopic imaging in healthy human brain.

    Science.gov (United States)

    Iqbal, Zohaib; Wilson, Neil E; Thomas, M Albert

    2016-03-01

    Several different pathologies, including many neurodegenerative disorders, affect the energy metabolism of the brain. Glutamate, a neurotransmitter in the brain, can be used as a biomarker to monitor these metabolic processes. One method that is capable of quantifying glutamate concentration reliably in several regions of the brain is TE-averaged (1) H spectroscopic imaging. However, this type of method requires the acquisition of multiple TE lines, resulting in long scan durations. The goal of this experiment was to use non-uniform sampling, compressed sensing reconstruction and an echo planar readout gradient to reduce the scan time by a factor of eight to acquire TE-averaged spectra in three spatial dimensions. Simulation of glutamate and glutamine showed that the 2.2-2.4 ppm spectral region contained 95% glutamate signal using the TE-averaged method. Peak integration of this spectral range and home-developed, prior-knowledge-based fitting were used for quantitation. Gray matter brain phantom measurements were acquired on a Siemens 3 T Trio scanner. Non-uniform sampling was applied retrospectively to these phantom measurements and quantitative results of glutamate with respect to creatine 3.0 (Glu/Cr) ratios showed a coefficient of variance of 16% for peak integration and 9% for peak fitting using eight-fold acceleration. In vivo scans of the human brain were acquired as well and five different brain regions were quantified using the prior-knowledge-based algorithm. Glu/Cr ratios from these regions agreed with previously reported results in the literature. The method described here, called accelerated TE-averaged echo planar spectroscopic imaging (TEA-EPSI), is a significant methodological advancement and may be a useful tool for categorizing glutamate changes in pathologies where affected brain regions are not known a priori. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Personal significance is encoded automatically by the human brain: an event-related potential study with ringtones.

    Science.gov (United States)

    Roye, Anja; Jacobsen, Thomas; Schröger, Erich

    2007-08-01

    In this human event-related brain potential (ERP) study, we have used one's personal--relative to another person's--ringtone presented in a two-deviant passive oddball paradigm to investigate the long-term memory effects of self-selected personal significance of a sound on the automatic deviance detection and involuntary attention system. Our findings extend the knowledge of long-term effects usually reported in group-approaches in the domains of speech, music and environmental sounds. In addition to the usual mismatch negativity (MMN) and P3a component elicited by deviants in contrast to standard stimuli, we observed a posterior ERP deflection directly following the MMN for the personally significant deviant only. This specific impact of personal significance started around 200 ms after sound onset and involved neural generators that were different from the mere physical deviance detection mechanism. Whereas the early part of the P3a component was unaffected by personal significance, the late P3a was enhanced for the ERPs to the personal significant deviant suggesting that this stimulus was more powerful in attracting attention involuntarily. Following the involuntary attention switch, the personally significant stimulus elicited a widely-distributed negative deflection, probably reflecting further analysis of the significant sound involving evaluation of relevance or reorienting to the primary task. Our data show, that the personal significance of mobile phone and text message technology, which have developed as a major medium of communication in our modern world, prompts the formation of individual memory representations, which affect the processing of sounds that are not in the focus of attention.

  1. Discovery of highly potent and selective small molecule ADAMTS-5 inhibitors that inhibit human cartilage degradation via encoded library technology (ELT).

    Science.gov (United States)

    Deng, Hongfeng; O'Keefe, Heather; Davie, Christopher P; Lind, Kenneth E; Acharya, Raksha A; Franklin, G Joseph; Larkin, Jonathan; Matico, Rosalie; Neeb, Michael; Thompson, Monique M; Lohr, Thomas; Gross, Jeffrey W; Centrella, Paolo A; O'Donovan, Gary K; Bedard, Katie L Sargent; van Vloten, Kurt; Mataruse, Sibongile; Skinner, Steven R; Belyanskaya, Svetlana L; Carpenter, Tiffany Y; Shearer, Todd W; Clark, Matthew A; Cuozzo, John W; Arico-Muendel, Christopher C; Morgan, Barry A

    2012-08-23

    The metalloprotease ADAMTS-5 is considered a potential target for the treatment of osteoarthritis. To identify selective inhibitors of ADAMTS-5, we employed encoded library technology (ELT), which enables affinity selection of small molecule binders from complex mixtures by DNA tagging. Selection of ADAMTS-5 against a four-billion member ELT library led to a novel inhibitor scaffold not containing a classical zinc-binding functionality. One exemplar, (R)-N-((1-(4-(but-3-en-1-ylamino)-6-(((2-(thiophen-2-yl)thiazol-4-yl)methyl)amino)-1,3,5-triazin-2-yl)pyrrolidin-2-yl)methyl)-4-propylbenzenesulfonamide (8), inhibited ADAMTS-5 with IC(50) = 30 nM, showing >50-fold selectivity against ADAMTS-4 and >1000-fold selectivity against ADAMTS-1, ADAMTS-13, MMP-13, and TACE. Extensive SAR studies showed that potency and physicochemical properties of the scaffold could be further improved. Furthermore, in a human osteoarthritis cartilage explant study, compounds 8 and 15f inhibited aggrecanase-mediated (374)ARGS neoepitope release from aggrecan and glycosaminoglycan in response to IL-1β/OSM stimulation. This study provides the first small molecule evidence for the critical role of ADAMTS-5 in human cartilage degradation.

  2. Comparative mapping on the mouse and human X chromosomes of a human cDNA clone encoding the vasopressin renal-type receptor (AVP2R)

    Energy Technology Data Exchange (ETDEWEB)

    Faust, C.J.; Gonzales, J.C.; Seibold, A.; Birnbaumer, M.; Herman, G.E. (Baylor College of Medicine, Houston, TX (United States))

    1993-02-01

    Mutation in the gene for the human renal-type vasopressin receptor (V2R) have recently been identified in patients with nephrogenic diabetes insipidus (NDI). Both V2R and NDI have been independently mapped to Xq28. Using a combination of genetic and physical mapping, we have localized the murine V2r locus to within 100 kb of L1Cam on the mouse X chromosome in a region syntenic with human Xq28. Based on conserved gene order of mouse and human loci in this region, physical mapping using DNA derived form human lymphoblasts has established that the corresponding human loci V2R and L1CAM are linked within 210 kb. The efficiency and precision of genetic mapping of V2r and other loci in the mouse suggest that it might be easier to map additional human genes in the mouse first and infer the corresponding human location. More precise physical mapping in man could then be performed using pulsed-field gel electrophoresis and/or yeast artificial chromosomes. 16 refs., 1 fig. 1 tab.

  3. A novel gene, RSD-3/HSD-3.1, encodes a meiotic-related protein expressed in rat and human testis.

    Science.gov (United States)

    Zhang, Xiaodong; Liu, Huixian; Zhang, Yan; Qiao, Yuan; Miao, Shiying; Wang, Linfang; Zhang, Jianchao; Zong, Shudong; Koide, S S

    2003-06-01

    The expression of stage-specific genes during spermatogenesis was determined by isolating two segments of rat seminiferous tubule at different stages of the germinal epithelium cycle delineated by transillumination-delineated microdissection, combined with differential display polymerase chain reaction to identify the differential transcripts formed. A total of 22 cDNAs were identified and accepted by GenBank as new expressed sequence tags. One of the expressed sequence tags was radiolabeled and used as a probe to screen a rat testis cDNA library. A novel full-length cDNA composed of 2228 bp, designated as RSD-3 (rat sperm DNA no.3, GenBank accession no. AF094609) was isolated and characterized. The reading frame encodes a polypeptide consisting of 526 amino acid residues, containing a number of DNA binding motifs and phosphorylation sites for PKC, CK-II, and p34cdc2. Northern blot of mRNA prepared from various tissues of adult rats showed that RSD-3 is expressed only in the testis. The initial expression of the RSD-3 gene was detected in the testis on the 30th postnatal day and attained adult level on the 60th postnatal day. Immunolocalization of RSD-3 in germ cells of rat testis showed that its expression is restricted to primary spermatocytes, undergoing meiosis division I. A human testis homologue of RSD-3 cDNA, designated as HSD-3.1 (GenBank accession no. AF144487) was isolated by screening the Human Testis Rapid-Screen arrayed cDNA library panels by RT-PCR. The exon-intron boundaries of HSD-3.1 gene were determined by aligning the cDNA sequence with the corresponding genome sequence. The cDNA consisted of 12 exons that span approximately 52.8 kb of the genome sequence and was mapped to chromosome 14q31.3.

  4. Cloning of cDNA encoding a Bombyx mori homolog of human oxidation resistance 1 (OXR1) protein from diapause eggs, and analyses of its expression and function.

    Science.gov (United States)

    Kobayashi, Noriko; Takahashi, Masaki; Kihara, Shouhei; Niimi, Teruyuki; Yamashita, Okitsugu; Yaginuma, Toshinobu

    2014-09-01

    To better understand the molecular mechanisms of diapause initiation, we used the sensitive cDNA subtraction (selective amplification via biotin- and restriction-mediated enrichment) method and isolated a novel gene expressed abundantly in diapause eggs of the silkworm, Bombyx mori, which encodes a homolog of the human oxidation resistance 1 (OXR1) protein. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting analyses confirmed that BmOXR1 mRNA and its 140-kDa protein were differentially expressed in diapause eggs compared to non-diapause eggs. OXR1 double-stranded RNA (dsRNA) was injected into diapause-destined eggs before the cellular blastoderm stage, and 4days later, when untreated eggs reached the diapause stage, the OXR1 protein disappeared; however, these eggs remained in diapause, suggesting that BmOXR1 is not essential for diapause initiation and/or maintenance. To further investigate the in vivo function of BmOXR1 apart from its role in diapause, we overexpressed BmOXR1 in Drosophila melanogaster. The fruit fly male adult life-span was significantly extended in the 50%-survival time when adults were reared on diets both with and without H2O2 solution under 25°C incubation. These results suggest that BmOXR1 functions in D. melanogaster via a possible antioxidant effect. As BmOXR1 was expressed mainly in the nuclei of D. melanogaster cells, the mechanism underlying its antioxidation effect appears to be different from that in humans where it is expressed mainly in the mitochondria. Taken together, these results suggest that BmOXR1 might serve as an antioxidant regulator during the early diapause stage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Characterization of the in vitro expressed autoimmune rippling muscle disease immunogenic domain of human titin encoded by TTN exons 248-249

    Energy Technology Data Exchange (ETDEWEB)

    Zelinka, L. [Biomedical Sciences Program, Kent State University, Kent, OH (United States); McCann, S.; Budde, J.; Sethi, S.; Guidos, M.; Giles, R. [Center for Applied Chemical Biology, Department of Biological Sciences, Youngstown State University, One University Plaza, Youngstown, OH 44555 (United States); Walker, G.R., E-mail: grwalker@ysu.edu [Center for Applied Chemical Biology, Department of Biological Sciences, Youngstown State University, One University Plaza, Youngstown, OH 44555 (United States); Biomedical Sciences Program, Kent State University, Kent, OH (United States)

    2011-08-05

    Highlights: {yields} Affinity purification of the autoimmune rippling muscle disease immunogenic domain of titin. {yields} Partial sequence analysis confirms that the peptides is in the I band region of titin. {yields} This region of the human titin shows high degree of homology to mouse titin N2-A. -- Abstract: Autoimmune rippling muscle disease (ARMD) is an autoimmune neuromuscular disease associated with myasthenia gravis (MG). Past studies in our laboratory recognized a very high molecular weight skeletal muscle protein antigen identified by ARMD patient antisera as the titin isoform. These past studies used antisera from ARMD and MG patients as probes to screen a human skeletal muscle cDNA library and several pBluescript clones revealed supporting expression of immunoreactive peptides. This study characterizes the products of subcloning the titin immunoreactive domain into pGEX-3X and the subsequent fusion protein. Sequence analysis of the fusion gene indicates the cloned titin domain (GenBank ID: (EU428784)) is in frame and is derived from a sequence of N2-A spanning the exons 248-250 an area that encodes the fibronectin III domain. PCR and EcoR1 restriction mapping studies have demonstrated that the inserted cDNA is of a size that is predicted by bioinformatics analysis of the subclone. Expression of the fusion protein result in the isolation of a polypeptide of 52 kDa consistent with the predicted inferred amino acid sequence. Immunoblot experiments of the fusion protein, using rippling muscle/myasthenia gravis antisera, demonstrate that only the titin domain is immunoreactive.

  6. An N-terminally truncated envelope protein encoded by a human endogenous retrovirus W locus on chromosome Xq22.3

    Directory of Open Access Journals (Sweden)

    Roebke Christina

    2010-08-01

    Full Text Available Abstract Background We previously showed that the envelope (env sequence of a human endogenous retrovirus (HERV-W locus on chromosome Xq22.3 is transcribed in human peripheral blood mononuclear cells. The env open reading frame (ORF of this locus is interrupted by a premature stop at codon 39, but otherwise harbors a long ORF for an N-terminally truncated 475 amino acid Env protein, starting at an in-frame ATG at codon 68. We set out to characterize the protein encoded by that ORF. Results Transient expression of the 475 amino acid Xq22.3 HERV-W env ORF produced an N-terminally truncated HERV-W Env protein, as detected by the monoclonal anti-HERV-W Env antibodies 6A2B2 and 13H5A5. Remarkably, reversion of the stop at codon 39 in Xq22.3 HERV-W env reconstituted a full-length HERV-W Xq22.3 Env protein. Similar to the full-length HERV-W Env protein Syncytin-1, reconstituted full-length Xq22.3 HERV-W Env is glycosylated, forms oligomers, and is expressed at the cell surface. In contrast, Xq22.3 HERV-W Env is unglycosylated, does not form oligomers, and is located intracellularly, probably due to lack of a signal peptide. Finally, we reconfirm by immunohistochemistry that monoclonal antibody 6A2B2 detects an antigen expressed in placenta and multiple sclerosis brain lesions. Conclusions A partially defective HERV-W env gene located on chromosome Xq22.3, which we propose to designate ERVWE2, has retained coding capacity and can produce ex vivo an N-terminally truncated Env protein, named N-Trenv. Detection of an antigen by 6A2B2 in placenta and multiple sclerosis lesions opens the possibility that N-Trenv could be expressed in vivo. More generally, our findings are compatible with the idea that defective HERV elements may be capable of producing incomplete HERV proteins that, speculatively, may exert functions in human physiology or pathology.

  7. Ubiquitous human 'master' origins of replication are encoded in the DNA sequence via a local enrichment in nucleosome excluding energy barriers.

    Science.gov (United States)

    Drillon, Guénola; Audit, Benjamin; Argoul, Françoise; Arneodo, Alain

    2015-02-18

    As the elementary building block of eukaryotic chromatin, the nucleosome is at the heart of the compromise between the necessity of compacting DNA in the cell nucleus and the required accessibility to regulatory proteins. The recent availability of genome-wide experimental maps of nucleosome positions for many different organisms and cell types has provided an unprecedented opportunity to elucidate to what extent the DNA sequence conditions the primary structure of chromatin and in turn participates in the chromatin-mediated regulation of nuclear functions, such as gene expression and DNA replication. In this study, we use in vivo and in vitro genome-wide nucleosome occupancy data together with the set of nucleosome-free regions (NFRs) predicted by a physical model of nucleosome formation based on sequence-dependent bending properties of the DNA double-helix, to investigate the role of intrinsic nucleosome occupancy in the regulation of the replication spatio-temporal programme in human. We focus our analysis on the so-called replication U/N-domains that were shown to cover about half of the human genome in the germline (skew-N domains) as well as in embryonic stem cells, somatic and HeLa cells (mean replication timing U-domains). The 'master' origins of replication (MaOris) that border these megabase-sized U/N-domains were found to be specified by a few hundred kb wide regions that are hyper-sensitive to DNase I cleavage, hypomethylated, and enriched in epigenetic marks involved in transcription regulation, the hallmarks of localized open chromatin structures. Here we show that replication U/N-domain borders that are conserved in all considered cell lines have an environment highly enriched in nucleosome-excluding-energy barriers, suggesting that these ubiquitous MaOris have been selected during evolution. In contrast, MaOris that are cell-type-specific are mainly regulated epigenetically and are no longer favoured by a local abundance of intrinsic NFRs encoded in

  8. Real-Time Imaging of the Bacillithiol Redox Potential in the Human Pathogen Staphylococcus aureus Using a Genetically Encoded Bacilliredoxin-Fused Redox Biosensor.

    Science.gov (United States)

    Loi, Vu Van; Harms, Manuela; Müller, Marret; Huyen, Nguyen Thi Thu; Hamilton, Chris J; Hochgräfe, Falko; Pané-Farré, Jan; Antelmann, Haike

    2017-05-20

    Bacillithiol (BSH) is utilized as a major thiol-redox buffer in the human pathogen Staphylococcus aureus. Under oxidative stress, BSH forms mixed disulfides with proteins, termed as S-bacillithiolation, which can be reversed by bacilliredoxins (Brx). In eukaryotes, glutaredoxin-fused roGFP2 biosensors have been applied for dynamic live imaging of the glutathione redox potential. Here, we have constructed a genetically encoded bacilliredoxin-fused redox biosensor (Brx-roGFP2) to monitor dynamic changes in the BSH redox potential in S. aureus. The Brx-roGFP2 biosensor showed a specific and rapid response to low levels of bacillithiol disulfide (BSSB) in vitro that required the active-site Cys of Brx. Dynamic live imaging in two methicillin-resistant S. aureus (MRSA) USA300 and COL strains revealed fast and dynamic responses of the Brx-roGFP2 biosensor under hypochlorite and hydrogen peroxide (H2O2) stress and constitutive oxidation of the probe in different BSH-deficient mutants. Furthermore, we found that the Brx-roGFP2 expression level and the dynamic range are higher in S. aureus COL compared with the USA300 strain. In phagocytosis assays with THP-1 macrophages, the biosensor was 87% oxidized in S. aureus COL. However, no changes in the BSH redox potential were measured after treatment with different antibiotics classes, indicating that antibiotics do not cause oxidative stress in S. aureus. Conclusion and Innovation: This Brx-roGFP2 biosensor catalyzes specific equilibration between the BSH and roGFP2 redox couples and can be applied for dynamic live imaging of redox changes in S. aureus and other BSH-producing Firmicutes. Antioxid. Redox Signal. 26, 835-848.

  9. Absence of mutations in four genes encoding for congenital cataract and expressed in the human brain in Tunisian families with cataract and mental retardation

    Directory of Open Access Journals (Sweden)

    Chograni Manèl

    2011-11-01

    Full Text Available Abstract Background To identify the genetic defect associated with autosomal recessive congenital cataract (ARCC, mental retardation (MR and ARCC, MR and microcephaly present in most patients in four Tunisian consanguineous families. Methods We screened four genes implicated in congenital cataract by direct sequencing in two groups of patients; those affected by ARCC associated to MR and those who presented also microcephaly. Among its three genes PAX6, PITX3 and HSF4 are expressed in human brain and one gene LIM2 encodes for the protein MP20 that interact with the protein galectin-3 expressed in human brain and plays a crucial role in its development. All genes were screened by direct sequencing in two groups of patients; those affected by ARCC associated to MR and those who presented also microcephaly. Results We report no mutation in the four genes of congenital cataract and its flanking regions. Only variations that did not segregate with the studied phenotypes (ARCC associated to MR, ARCC associated with MR and microcephaly are reported. We detected three intronic variations in PAX6 gene: IVS4 -274insG (intron 4, IVS12 -174G>A (intron12 in the four studied families and IVS4 -195G>A (intron 4 in two families. Two substitutions polymorphisms in PITX3 gene: c.439 C>T (exon 3 and c.930 C>A (exon4 in one family. One intronic variation in HSF4 gene: IVS7 +93C>T (intron 7 identified in one family. And three intronic substitutions in LIM2 gene identified in all four studied families: IVS2 -24A>G (intron 2, IVS4 +32C>T (intron 4 and c.*15A>C (3'-downstream sequence. Conclusion Although the role of the four studied genes: PAX6, PITX3, HSF4 and LIM2 in both ocular and central nervous system development, we report the absence of mutations in all studied genes in four families with phenotypes associating cataract, MR and microcephaly.

  10. Metagenomic identification of a novel salt tolerance gene from the human gut microbiome which encodes a membrane protein with homology to a brp/blh-family β-carotene 15,15'-monooxygenase.

    Directory of Open Access Journals (Sweden)

    Eamonn P Culligan

    Full Text Available The human gut microbiome consists of at least 3 million non-redundant genes, 150 times that of the core human genome. Herein, we report the identification and characterisation of a novel stress tolerance gene from the human gut metagenome. The locus, assigned brpA, encodes a membrane protein with homology to a brp/blh-family β-carotene monooxygenase. Cloning and heterologous expression of brpA in Escherichia coli confers a significant salt tolerance phenotype. Furthermore, when cultured in the presence of exogenous β-carotene, cell pellets adopt a red/orange pigmentation indicating the incorporation of carotenoids in the cell membrane.

  11. Chromosomal localization of the genes encoding the kinetochore proteins CENPE and DENPF to human chromosomes 4q24{r_arrow}q25 and 1q32{r_arrow}q41, respectively, by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Testa, J.R.; Zhou, J.Y.; Bell, D.W.; Yen, T.J. [Fox Chase Cancer Center, Philadelphia, PA (United States)

    1994-10-01

    CENPE and CENPF are human kinetochore proteins of 312 and {approximately}400 kDa, respectively. As part of an effort to characterize the functions of these two proteins, we have used their respective cDNAs to map their human chromosomal locations by fluorescence in situ hybridization. The gene that encodes CENPE, a kinetochore-associated motor protein that is postulated to segregate chromosomes during mitosis, maps to chromosome 4q24{r_arrow}q25. The CENPF gene, which encodes a structural protein of the kinetochore, maps to chromosome 1q32{r_arrow}q41 within close proximity to the genetic locus that is linked to Van der Woude syndrome. 8 refs., 1 fig.

  12. SnoVault and encodeD: A novel object-based storage system and applications to ENCODE metadata.

    Science.gov (United States)

    Hitz, Benjamin C; Rowe, Laurence D; Podduturi, Nikhil R; Glick, David I; Baymuradov, Ulugbek K; Malladi, Venkat S; Chan, Esther T; Davidson, Jean M; Gabdank, Idan; Narayana, Aditi K; Onate, Kathrina C; Hilton, Jason; Ho, Marcus C; Lee, Brian T; Miyasato, Stuart R; Dreszer, Timothy R; Sloan, Cricket A; Strattan, J Seth; Tanaka, Forrest Y; Hong, Eurie L; Cherry, J Michael

    2017-01-01

    The Encyclopedia of DNA elements (ENCODE) project is an ongoing collaborative effort to create a comprehensive catalog of functional elements initiated shortly after the completion of the Human Genome Project. The current database exceeds 6500 experiments across more than 450 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the H. sapiens and M. musculus genomes. All ENCODE experimental data, metadata, and associated computational analyses are submitted to the ENCODE Data Coordination Center (DCC) for validation, tracking, storage, unified processing, and distribution to community resources and the scientific community. As the volume of data increases, the identification and organization of experimental details becomes increasingly intricate and demands careful curation. The ENCODE DCC has created a general purpose software system, known as SnoVault, that supports metadata and file submission, a database used for metadata storage, web pages for displaying the metadata and a robust API for querying the metadata. The software is fully open-source, code and installation instructions can be found at: http://github.com/ENCODE-DCC/snovault/ (for the generic database) and http://github.com/ENCODE-DCC/encoded/ to store genomic data in the manner of ENCODE. The core database engine, SnoVault (which is completely independent of ENCODE, genomic data, or bioinformatic data) has been released as a separate Python package.

  13. An Immunoinformatics-Derived DNA Vaccine Encoding Human Class 2 T Cell Epitopes of Ebola Virus, Sudan Virus, and Venezuelan Equine Encephalitis Virus is Immunogenic in HLA Transgenic Mice

    Science.gov (United States)

    2017-04-07

    1 An immunoinformatics-derived DNA vaccine encoding human Class II T cell epitopes of 1 Ebola virus, Sudan virus, and Venezuelan equine...connie.s.schmaljohn.civ@mail.mil 13 14 Keywords: genome-derived vaccine, epitope-based vaccine, DNA vaccine, peptide vaccine, T 15 cell epitope, Ebola virus, EBOV...for biodefense. We previously developed and 53 tested DNA vaccines expressing the envelope glycoproteins of these viruses in mice and 54 nonhuman

  14. The Arabic Diatessaron Project: Digitalizing, Encoding, Lemmatization

    Directory of Open Access Journals (Sweden)

    Giuliano Lancioni

    2016-04-01

    Full Text Available The Arabic Diatessaron Project (henceforth ADP is an international research project in Digital Humanities that aims to collect, digitalise and encode all known manuscripts of the Arabic Diatessaron (henceforth AD, a text that has been relatively neglected in scholarly research. ADP’s final goal is to provide a number of tools that can enable scholars to effectively query, compare and investigate all known variants of the text that will be encoded as far as possible in compliance with the Text Encoding Initiative (TEI guidelines. The paper addresses a number of issues involved in the process of digitalising manuscripts included in the two existing editions (Ciasca 1888 and Marmardji 1935, adding variants in unedited manuscripts, encoding and lemmatising the text. Issues involved in the design of the ADP include presentation of variants, choice of the standard text, applicability of TEI guidelines, automatic translation between different encodings, cross-edition concordances and principles of lemmatisation.

  15. Encoder: a connectionist model of how learning to visually encode fixated text images improves reading fluency.

    Science.gov (United States)

    Martin, Gale L

    2004-07-01

    This article proposes that visual encoding learning improves reading fluency by widening the span over which letters are recognized from a fixated text image so that fewer fixations are needed to cover a text line. Encoder is a connectionist model that learns to convert images like the fixated text images human readers encode into the corresponding letter sequences. The computational theory of classification learning predicts that fixated text-image size makes this learning difficult but that reducing image variability and biasing learning should help. Encoder confirms these predictions. It fails to learn as image size increases but achieves humanlike visual encoding accuracy when image variability is reduced by regularities in fixation positions and letter sequences and when learning is biased to discover mapping functions based on the sequential, componential structure of text. After training, Encoder exhibits many humanlike text familiarity effects. ((c) 2004 APA, all rights reserved)

  16. An encoding device and a method of encoding

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to an encoding device, such as an optical position encoder, for encoding input from an object, and a method for encoding input from an object, for determining a position of an object that interferes with light of the device. The encoding device comprises a light source...... in the area in the space and may interfere with the light, which interference may be encoded into a position or activation....

  17. An investigation into anti-proliferative effects of microRNAs encoded by the miR-106a-363 cluster on human carcinoma cells and keratinocytes using microarray profiling of miRNA transcriptomes.

    Science.gov (United States)

    Khuu, Cuong; Jevnaker, Anne-Marthe; Bryne, Magne; Osmundsen, Harald

    2014-01-01

    Transfection of human oral squamous carcinoma cells (clone E10) with mimics for unexpressed miR-20b or miR-363-5p, encoded by the miR-106a-363 cluster (miR-20b, miR-106a, miR-363-3p, or miR-363-5p), caused 40-50% decrease in proliferation. Transfection with mimics for miR-18a or miR-92a, encoded by the miR-17-92 cluster (all members being expressed in E10 cells), had no effect on proliferation. In contrast, mimic for the sibling miRNA-19a yielded about 20% inhibition of proliferation. To investigate miRNA involvement profiling of miRNA transcriptomes were carried out using deoxyoligonucleotide microarrays. In transfectants for miR-19a, or miR-20b or miR-363-5p most differentially expressed miRNAs exhibited decreased expression, including some miRNAs encoded in paralogous miR-17-92-or miR-106b-25 cluster. Only in cells transfected with miR-19a mimic significantly increased expression of miR-20b observed-about 50-fold as judged by qRT-PCR. Further studies using qRT-PCR showed that transfection of E10 cells with mimic for miRNAs encoded by miR-17-92 - or miR-106a-363 - or the miR-106b-25 cluster confirmed selective effect on expression on sibling miRNAs. We conclude that high levels of miRNAs encoded by the miR-106a-363 cluster may contribute to inhibition of proliferation by decreasing expression of several sibling miRNAs encoded by miR-17-92 or by the miR-106b-25 cluster. The inhibition of proliferation observed in miR-19a-mimic transfectants is likely caused by the miR-19a-dependent increase in the levels of miR-20b and miR-106a. Bioinformatic analysis of differentially expressed miRNAs from miR-106a, miR-20b and miR-363-5p transfectants, but not miR-92a transfectants, yielded significant associations to "Cellular Growth and Proliferation" and "Cell Cycle." Western blotting results showed that levels of affected proteins to differ between transfectants, suggesting that different anti-proliferative mechanisms may operate in these transfectants.

  18. Long-term protection against human papillomavirus e7-positive tumor by a single vaccination of adeno-associated virus vectors encoding a fusion protein of inactivated e7 of human papillomavirus 16/18 and heat shock protein 70.

    Science.gov (United States)

    Zhou, Liqiao; Zhu, Tong; Ye, Xiaojing; Yang, Lin; Wang, Bing; Liang, Xiaoyan; Lu, Lina; Tsao, Yeou-Ping; Chen, Show-Li; Li, Juan; Xiao, Xiao

    2010-01-01

    We investigated a gene vaccine strategy against human papillomavirus (HPV)-induced cancer and premalignant diseases, using adeno-associated virus (AAV) vector encoding the viral E7 oncoproteins as the tumor antigens from HPV serotypes 16 (HPV16) and 18 (HPV18). Genetically inactivated E7 proteins were fused with a heat shock protein 70 (hsp70) to minimize the risk of cell transformation and enhance immune responses. The fusion protein gene was packaged in AAV serotype 1 or 2 (AAV1 or 2) for efficient in vivo gene expression. Our results showed that after a single intramuscular injection, the AAV1 vector elicited stronger HPV-specific cytotoxic T lymphocyte (CTL) responses and interferon-gamma secretion when compared with the AAV2 vector. Prophylactic immunization with AAV1 protected 100% of the mice from tumor growth for more than 1 year, whereas all the control mice immunized with either a LacZ vector or saline grew large tumors and died within 6 weeks after inoculation of E7-positive tumor cell line TC-1. In addition, this single-dose AAV1 vaccination completely protected the mice against second and third challenges with higher numbers of TC-1 cells. Despite lower CTL responses against the E7 antigens, AAV2 vector prophylactic immunization was also sufficient to protect 100% of the mice against the initial and second tumor challenges and 70% of the mice against the third challenge. In addition, therapeutic immunization with AAV1 after palpable tumor formation inhibited tumor growth and caused tumor regression in some mice. Thus, our studies support the potential of AAV vectors as a genetic vaccine for the prevention and treatment of HPV-induced malignancies.

  19. Video time encoding machines.

    Science.gov (United States)

    Lazar, Aurel A; Pnevmatikakis, Eftychios A

    2011-03-01

    We investigate architectures for time encoding and time decoding of visual stimuli such as natural and synthetic video streams (movies, animation). The architecture for time encoding is akin to models of the early visual system. It consists of a bank of filters in cascade with single-input multi-output neural circuits. Neuron firing is based on either a threshold-and-fire or an integrate-and-fire spiking mechanism with feedback. We show that analog information is represented by the neural circuits as projections on a set of band-limited functions determined by the spike sequence. Under Nyquist-type and frame conditions, the encoded signal can be recovered from these projections with arbitrary precision. For the video time encoding machine architecture, we demonstrate that band-limited video streams of finite energy can be faithfully recovered from the spike trains and provide a stable algorithm for perfect recovery. The key condition for recovery calls for the number of neurons in the population to be above a threshold value.

  20. IDENTIFICATION OF ENCODED BEADS

    DEFF Research Database (Denmark)

    2005-01-01

    The present invention is relates to methods for the identification of spatially encoded beaded or granulated matrices comprising a plurality of immobilised particles. The identification is based on a distance matrix determination or based on a set of geometrical figures, such a triangles...

  1. Co-administration of plasmid-encoded granulocyte-macrophage colony-stimulating factor increases human immunodeficiency virus-1 DNA vaccine-induced polyfunctional CD4+ T-cell responses

    Directory of Open Access Journals (Sweden)

    Vinicius Canato Santana

    2015-01-01

    Full Text Available T-cell based vaccines against human immunodeficiency virus (HIV generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+ T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity.

  2. Co-administration of plasmid-encoded granulocyte-macrophage colony-stimulating factor increases human immunodeficiency virus-1 DNA vaccine-induced polyfunctional CD4+ T-cell responses.

    Science.gov (United States)

    Santana, Vinicius Canato; Almeida, Rafael Ribeiro; Ribeiro, Susan Pereira; Ferreira, Luís Carlos de Souza; Kalil, Jorge; Rosa, Daniela Santoro; Cunha-Neto, Edecio

    2015-12-01

    T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity.

  3. The Saccharomyces cerevisiae MEC1 gene, which encodes a homolog of the human ATM gene product, is required for G1 arrest following radiation treatment.

    OpenAIRE

    Siede, W.; Allen, J B; Elledge, S. J.; Friedberg, E C

    1996-01-01

    The Saccharomyces cerevisiae gene MEC1 represents a structural homolog of the human gene ATM mutated in ataxia telangiectasia patients. Like human ataxia telangiectasia cell lines, mec1 mutants are defective in G2 and S-phase cell cycle checkpoints in response to radiation treatment. Here we show an additional defect in G1 arrest following treatment with UV light or gamma rays and map a defective arrest stage at or upstream of START in the yeast cell cycle.

  4. Neural Semantic Encoders.

    Science.gov (United States)

    Munkhdalai, Tsendsuren; Yu, Hong

    2017-04-01

    We present a memory augmented neural network for natural language understanding: Neural Semantic Encoders. NSE is equipped with a novel memory update rule and has a variable sized encoding memory that evolves over time and maintains the understanding of input sequences through read, compose and write operations. NSE can also access multiple and shared memories. In this paper, we demonstrated the effectiveness and the flexibility of NSE on five different natural language tasks: natural language inference, question answering, sentence classification, document sentiment analysis and machine translation where NSE achieved state-of-the-art performance when evaluated on publically available benchmarks. For example, our shared-memory model showed an encouraging result on neural machine translation, improving an attention-based baseline by approximately 1.0 BLEU.

  5. Human splicing factor ASF/SF2 encodes for a repressor domain required for its inhibitory activity on pre-mRNA splicing.

    Science.gov (United States)

    Dauksaite, Vita; Akusjärvi, Göran

    2002-04-12

    The essential splicing factor ASF/SF2 activates or represses splicing depending on where on the pre-mRNA it binds. We have shown previously that ASF/SF2 inhibits adenovirus IIIa pre-mRNA splicing by binding to an intronic repressor element. Here we used MS2-ASF/SF2 fusion proteins to show that the second RNA binding domain (RBD2) is both necessary and sufficient for the splicing repressor function of ASF/SF2. Furthermore, we show that the completely conserved SWQDLKD motif in ASF/SF2-RBD2 is essential for splicing repression. Importantly, this heptapeptide motif is unlikely to be directly involved in RNA binding given its position within the predicted structure of RBD2. The activity of the ASF/SF2-RBD2 domain in splicing was position-dependent. Thus, tethering RBD2 to the IIIa intron resulted in splicing repression, whereas RBD2 binding at the second exon had no effect on IIIa splicing. The splicing repressor activity of RBD2 was not unique to the IIIa pre-mRNA, as binding of RBD2 at an intronic position in the rabbit beta-globin pre-mRNA also resulted in splicing inhibition. Taken together, our results suggest that ASF/SF2 encode distinct domains responsible for its function as a splicing enhancer or splicing repressor protein.

  6. Molecular cloning and functional expression of a novel human gene encoding two 41-43 kDa skeletal muscle internal membrane proteins.

    Science.gov (United States)

    Bouju, S; Lignon, M F; Piétu, G; Le Cunff, M; Léger, J J; Auffray, C; Dechesne, C A

    1998-11-01

    Systematic analysis of gene transcript repertoires prepared from libraries made with various specific human tissues permitted isolation of many partially sequenced cDNA clones. A few of these represented novel genes with limited or no similarity to known genes from humans or other species. The present study set out to isolate and sequence the full-length cDNA corresponding to one of these novel human transcripts, and identify the corresponding protein product at the subcellular level. Current sequence analyses have revealed that the protein contains a hydrophobic N-terminal segment and an internal leucine-zipper motif. Numerous sites of putative post-translational modifications, such as N-linked glycosylation, myristoylation and phosphorylation sites, were also identified. Using one monoclonal antibody raised against a recombinant fragment, two different 41-43 kDa proteins were detected in human skeletal muscle, heart and placenta homogenates at various ratios. Both immunodetected protein products of the novel human gene were distributed in the transverse tubules and/or near the junctional sarcoplasmic reticulum within skeletal muscle cells. Both proteins had physical properties believed to be attributable to integral membrane components. Finally, the GENX-3414 gene was chromosomally localized at position 4q24-q25.

  7. Structure of the human gene and two rat cDNAs encoding the alpha chain of GTP-binding regulatory protein Go: two different mRNAs are generated by alternative splicing.

    Science.gov (United States)

    Tsukamoto, T; Toyama, R; Itoh, H; Kozasa, T; Matsuoka, M; Kaziro, Y

    1991-04-15

    Go is a specific class ("other") of signal-transducing heterotrimeric GTP-binding proteins (G proteins) that is expressed in high levels in mammalian brain. We have cloned two different rat cDNAs encoding the alpha subunit of Go (Go alpha-1 and Go alpha-2) and a human Go alpha chromosomal gene. The human Go alpha gene spans more than 100 kilobases and contains 11 exons, including one noncoding exon in the 3' flanking region. The 5' flanking region is highly G + C-rich and contains five G.C boxes (Sp1 binding sites) but no TATA box. Exons 7 and 8 coding for amino acid residues 242-354 of Go alpha protein are duplicated (referred to as exons 7A, 7B, 8A, and 8B). It was found that exons 7A and 8A code for Go alpha-1, and 7B and 8B code for Go alpha-2. This indicates that two different Go alpha mRNAs may be generated by alternative splicing of a single Go alpha gene. The splice sites of the Go alpha-1 and Go alpha-2 genes are completely identical with those encoding human inhibitory G protein alpha subunits Gi2 alpha and Gi3 alpha [Itoh, H., Toyama, R., Kozasa, T., Tsukamoto, T., Matsuoka, M. & Kaziro, Y. (1988) J. Biol. Chem. 263, 6656-6664] and also transducin G protein alpha subunit Gt1 alpha [Raport, C. J., Dere, B. & Hurley, J. (1989) J. Biol. Chem. 264, 7122-7128]. Sequence homology and conservation of the exon-intron organization indicate that the genes coding for Go alpha, Gi2 alpha, Gi3 alpha, Gt1 alpha, and probably Gi1 alpha may be evolved from a common progenitor. Like Go alpha-1, Go alpha-2 is expressed mainly in brain.

  8. Characterization of the human laminin beta2 chain locus (LAMB2): linkage to a gene containing a nonprocessed, transcribed LAMB2-like pseudogene (LAMB2L) and to the gene encoding glutaminyl tRNA synthetase (QARS)

    DEFF Research Database (Denmark)

    Durkin, M E; Jäger, A C; Khurana, T S

    1999-01-01

    The laminin beta2 chain is an important constituent of certain kidney and muscle basement membranes. We have generated a detailed physical map of a 110-kb genomic DNA segment surrounding the human laminin beta2 chain gene (LAMB2) on chromosome 3p21.3-->p21.2, a region paralogous with the chromosome...... 7q22-->q31 region that contains the laminin beta1 chain gene locus (LAMB1). Several CpG islands and a novel polymorphic microsatellite marker (D3S4594) were identified. The 3' end of LAMB2 lies 16 kb from the 5' end of the glutaminyl tRNA synthetase gene (QARS). About 20 kb upstream of LAMB2 we...... found a gene encoding a transcribed, non-processed LAMB2-like pseudogene (LAMB2L). The sequence of 1.75 kb of genomic DNA at the 3' end of LAMB2L was similar to exons 8-12 of the laminin beta2 chain gene. The LAMB2L-LAMB2-QARS cluster lies telomeric to the gene encoding the laminin-binding protein...

  9. Mapping of the gene encoding the melanocortin-1 ([alpha]-melanocyte stimulating hormone) receptor (MC1R) to human chromosome 16q24. 3 by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Gantz, I.; Yamada, Tadataka; Tashiro, Takao; Konda, Yoshitaka; Shimoto, Yoshimasa; Miwa, Hiroto; Trent, J.M. (Univ. of Michigan Medical Center, Ann Arbor, MI (United States))

    1994-01-15

    [alpha]-Melanocyte stimulating hormone ([alpha]-MSH), a hormone originally named for its ability to regulate pigmentation of melanocytes, is a 13-amino-acid post-translational product of the pro-opiomelanocortin (POMC) gene. [alpha]-MSH and the other products of POMC processing, which share the core heptapeptide amino acid sequence Met-Glu (Gly)-His-Phe-Arg-Trp-Gly (Asp), the adrenocorticotropic hormone (ACTH), [beta]-MSH, and [gamma]-MSH, are collectively referred to as melanocortins. While best known for their effects on the melanocyte (pigmentation) and adrenal cortical cells (steroidogenesis), melanocortins have been postulated to function in diverse activities, including enhancement of learning and memory, control of the cardiovascular system, analgesia, thermoregulation, immunomodulation, parturition, and neurotrophism. To identify the chromosomal band encoding the human melanocortin-1 receptor gene, 1 [mu]g of an EMBL clone coding region of the human MC1R and approximately 15 kb of surrounding DNA was labeled with biotin and hybridized to human metaphase chromosomes as previously described. The results indicate that the human MC1R gene is localized to 16q24.3. 15 refs., 1 fig.

  10. Emergence of Escherichia coli encoding Shiga toxin 2f in human Shiga toxin-producing E-coli (STEC) infections in the Netherlands, January 2008 to December 2011

    NARCIS (Netherlands)

    Friesema, I.; van der Zwaluw, K.; Schuurman, T.; Kooistra-Smid, M.; Franz, E.; van Duynhoven, Y.; van Pelt, W.

    2014-01-01

    The Shiga toxins of Shiga toxin-producing Escherichia coli (STEC) can be divided into Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2) with several sub-variants. Variant Stx(2f) is one of the latest described, but has been rarely associated with symptomatic human infections. In the enhanced STEC

  11. Efficient introduction of a bisecting GlcNAc residue in tobacco N-glycans by expression of the gene encoding human N-acetylglucosaminyltransferse

    NARCIS (Netherlands)

    Rouwendal, G.J.A.; Wuhrer, M.; Florack, D.E.A.; Koeleman, C.A.M.; Deelder, A.M.; Bakker, H.; Stoopen, G.M.; van Die, I.; Helsper, J.P.F.G.; Hokke, C.H.; Bosch, D.

    2007-01-01

    In this study, we show that introduction of human N-acetylglucosaminyltransferase (GnT)-III gene into tobacco plants leads to highly efficient synthesis of bisected N-glycans. Enzymatically released N-glycans from leaf glycoproteins of wild-type and transgenic GnT-III plants were profiled by

  12. A presumed DNA helicase, encoded by the excision repair gene ERCC-3 is involved in the human repair disorders xeroderma pigmentosum and Cockayne's syndrome.

    NARCIS (Netherlands)

    G. Weeda (Geert); R.C.A. van Ham; W. Vermeulen (Wim); D. Bootsma (Dirk); A.J. van der Eb; J.H.J. Hoeijmakers (Jan)

    1990-01-01

    textabstractThe human gene ERCC-3 specifically corrects the defect in an early step of the DNA excision repair pathway of UV-sensitive rodent mutants of complementation group 3. The predicted 782 animo acid ERCC-3 protein harbors putative nucleotide, chromatin, and helix-turn-helix DNA binding

  13. Metatranscriptome analysis of the human fecal microbiota reveals subject-specific expression profiles, with genes encoding proteins involved in carbohydrate metabolism being dominantly expressed

    NARCIS (Netherlands)

    Booijink, C.C.G.M.; Boekhorst, te J.; Zoetendal, E.G.; Smidt, H.; Kleerebezem, M.; Vos, de W.M.

    2010-01-01

    The human gastrointestinal (GI) tract provides home to a complex microbial community, collectively termed microbiota. Although major efforts have been made to describe the diversity and stability of the microbiota, functional studies have been largely restricted to intestinal isolates and include

  14. Efficient introduction of a bisecting GlcNAc residue in tobacco N-glycans by expression of the gene encoding human N-acetylglucosaminyltransferase III

    NARCIS (Netherlands)

    Rouwendal, G.J.A.; Wuhrer, M.; Florack, D.E.A.; Koeleman, C.A.M.; Deelder, A.M.; Bakker, H.; Stoopen, G.M.; Die, van I.; Helsper, J.P.F.G.; Hokke, C.H.; Bosch, H.J.

    2007-01-01

    In this study we show that introduction of the human N-acetylglucosaminyltransferase (GnT)-III gene into tobacco leads to highly efficient synthesis of bisected N-glycans. Enzymatically released N-glycans from leaf glycoproteins of wild type and transgenic GnT-III plants were profiled by

  15. Reorientation in diamond-shaped environments: encoding of features and angles in enclosures versus arrays by adult humans and pigeons (Columbia livia).

    Science.gov (United States)

    Lubyk, Danielle M; Spetch, Marcia L; Zhou, Ruojing; Pisklak, Jeffrey; Mou, Weimin

    2013-07-01

    Although geometric reorientation has been extensively studied in numerous species, most research has been conducted in enclosed environments and has focused on use of the geometric property of relative wall length. The current studies investigated how angular information is used by adult humans and pigeons to orient and find a goal in enclosures or arrays that did not provide relative wall length information. In enclosed conditions, the angles formed a diamond shape connected by walls, whereas in array conditions, free-standing angles defined the diamond shape. Adult humans and pigeons were trained to locate two geometrically equivalent corners, either the 60° or 120° angles. Blue feature panels were located in the goal corners so that participants could use either the features or the local angular information to orient. Subsequent tests in manipulated environments isolated the individual cues from training or placed them in conflict with one another. In both enclosed and array environments, humans and pigeons were able to orient when either the angles or the features from training were removed. On conflict tests, female, but not male, adult humans weighted features more heavily than angular geometry. For pigeons, angles were weighted more heavily than features for birds that were trained to go to acute corners, but no difference in weighting was seen for birds trained to go to obtuse corners. These conflict test results were not affected by environment type. A subsequent test with pigeons ruled out an interpretation based on exclusive use of a principal axis rather than angle. Overall, the results indicate that, for both adult humans and pigeons, angular amplitude is a salient orientation cue in both enclosures and arrays of free-standing angles.

  16. Coselection for resistance to multiple late-generation human therapeutic antibiotics encoded on tetracycline resistance plasmids captured from uncultivated stream and soil bacteria.

    Science.gov (United States)

    Herrick, J B; Haynes, R; Heringa, S; Brooks, J M; Sobota, L T

    2014-08-01

    Transmissible plasmids captured from stream and soil bacteria conferring resistance to tetracycline in Pseudomonas were evaluated for linked resistance to antibiotics used in the treatment of human infections. Cells released from stream sediments and soils were conjugated with a rifampicin-resistant, plasmid-free Pseudomonas putida recipient and selected on tetracycline and rifampicin. Each transconjugant contained a single 50-80 kb plasmid. Resistance to 11 antibiotics, in addition to tetracycline, was determined for the stream transconjugants using a modification of the Stokes disc diffusion antibiotic susceptibility assay. Nearly half of plasmids conferred resistance to six or more antibiotics. Resistance to streptomycin, gentamicin, and/or ticarcillin was conferred by a majority of the plasmids, and resistance to additional human clinical use antibiotics such as piperacillin/tazobactam, ciprofloxacin and aztreonam was observed. MICs of 16 antibiotics for representative sediment and soil transconjugants revealed large increases, relative to the Ps. putida recipient, for 11 of 16 antibiotics tested, including the expanded spectrum antibiotics cefotaxime and ceftazidime, as well as piperacillin/tazobactam, lomefloxacin and levofloxacin. Resistance to multiple antibiotics-including those typically used in clinical Pseudomonas and enterobacterial infections-can be conferred by transmissible plasmids in streams and soils. Selective pressure exerted by the use of one antibiotic, such as the common agricultural antibiotic tetracycline, may result in the persistence of linked genes conferring resistance to important human clinical antibiotics. This may impact the spread of resistance to human use antibiotics even in the absence of direct selection. © 2014 The Society for Applied Microbiology.

  17. Murine and human SDF2L1 is an endoplasmic reticulum stress-inducible gene and encodes a new member of the Pmt/rt protein family.

    Science.gov (United States)

    Fukuda, S; Sumii, M; Masuda, Y; Takahashi, M; Koike, N; Teishima, J; Yasumoto, H; Itamoto, T; Asahara, T; Dohi, K; Kamiya, K

    2001-01-12

    We isolated murine and human cDNAs for SDF2L1 (stromal cell-derived factor 2-like1) and characterized the genomic structures. Northern blot analysis of the gene expression in various tissues revealed that both murine Sdf2l1 and human SDF2L1 genes are expressed ubiquitously, with particularly high expression in the testis. The SDF2L1 protein has an endoplasmic reticulum (ER)-retention-like motif, HDEL, at the carboxy (C)-terminus. Interestingly, SDF2L1 protein also shows significant similarity to the central hydrophilic part of protein O-mannosyltransferase (Pmt) proteins of Saccharomyces cerevisiae, the human homologues of Pmt (POMT1 and POMT2) and Drosophila melanogaster rotated abdomen (rt) protein. In a murine hepatocellular carcinoma cell line, Sdf2l1 was strongly induced by tunicamycin and a calcium ionophore, A23187, and weakly induced by heat stress but was not induced by cycloheximide. In conclusion, SDF2L1 protein is a new member of Pmt/rt protein family and Sdf2l1 is a new ER stress-inducible gene. Copyright 2001 Academic Press.

  18. Chromosomal localization of mouse and human genes encoding the splicing factors ASF/SF2 (SFRS1) and SC-35 (SFRS2)

    Energy Technology Data Exchange (ETDEWEB)

    Bermingham, J.R. Jr.; Arden, K.C.; Viars, C.S. [Univ. of California, San Diego, CA (United States)] [and others

    1995-09-01

    The mammalian SR-type splicing factors ASF/SF2 and SC-35 play crucial roles in pre-mRNA splicing and have been shown to shift splice site choice in vitro. We have mapped the ASF/SF2 gene in mice and humans and the SC-35 gene in mice. Somatic cell hybrid mapping of the human ASF/SF2 gene (SFRS1 locus) reveals that it resides on chromosome 17, and fluorescence in situ hybridization refines this localization to 17q21.3-q22. Recombinant inbred mapping of the mouse ASF/ SF2 gene (Sfrs1 locus) and the mouse SC-35 gene (Sfrs2 locus) demonstrates that both genes are located in a part of mouse chromosome 11 that is homologous to human chromosome 17. Mapping of Sfrs1 using F{sub 1} hybrid backcross mice between the strains C57BL/6 and DDK places Sfrs1 very near the marker D11Mit38 and indicates that the ASF/SF2 gene is closely linked to the Ovum mutant locus. 59 refs., 5 figs., 5 tabs.

  19. Neural correlates of the episodic encoding of pictures and words

    OpenAIRE

    Grady, Cheryl L.; Anthony R. Mcintosh; Rajah, M. Natasha; Craik, Fergus I.M.

    1998-01-01

    A striking characteristic of human memory is that pictures are remembered better than words. We examined the neural correlates of memory for pictures and words in the context of episodic memory encoding to determine material-specific differences in brain activity patterns. To do this, we used positron emission tomography to map the brain regions active during encoding of words and pictures of objects. Encoding was carried out by using three different strategies to explore possible interaction...

  20. Low-dose adenovirus vaccine encoding chimeric hepatitis B virus surface antigen-human papillomavirus type 16 E7 proteins induces enhanced E7-specific antibody and cytotoxic T-cell responses.

    Science.gov (United States)

    Báez-Astúa, Andrés; Herráez-Hernández, Elsa; Garbi, Natalio; Pasolli, Hilda A; Juárez, Victoria; Zur Hausen, Harald; Cid-Arregui, Angel

    2005-10-01

    Induction of effective immune responses may help prevent cancer progression. Tumor-specific antigens, such as those of human papillomaviruses involved in cervical cancer, are targets with limited intrinsic immunogenicity. Here we show that immunization with low doses (10(6) infectious units/dose) of a recombinant human adenovirus type 5 encoding a fusion of the E7 oncoprotein of human papillomavirus type 16 to the carboxyl terminus of the surface antigen of hepatitis B virus (HBsAg) induces remarkable E7-specific humoral and cellular immune responses. The HBsAg/E7 fusion protein assembled efficiently into virus-like particles, which stimulated antibody responses against both carrier and foreign antigens, and evoked antigen-specific kill of an indicator cell population in vivo. Antibody and T-cell responses were significantly higher than those induced by a control adenovirus vector expressing wild-type E7. Such responses were not affected by preexisting immunity against either HBsAg or adenovirus. These data demonstrate that the presence of E7 on HBsAg particles does not interfere with particle secretion, as it occurs with bigger proteins fused to the C terminus of HBsAg, and results in enhancement of CD8(+)-mediated T-cell responses to E7. Thus, fusion to HBsAg is a convenient strategy for developing cervical cancer therapeutic vaccines, since it enhances the immunogenicity of E7 while turning it into an innocuous secreted fusion protein.

  1. Molecular cloning of a cDNA encoding human SPH-binding factor, a conserved protein that binds to the enhancer-like region of the U6 small nuclear RNA gene promoter.

    Science.gov (United States)

    Rincon, J C; Engler, S K; Hargrove, B W; Kunkel, G R

    1998-11-01

    Many vertebrate small nuclear RNA gene promoters contain an SPH motif in their distal control regions that can confer transcriptional stimulation by RNA polymerase II or RNA polymerase III. Using the human U6 gene SPH motif as a probe, we isolated a cDNA encoding human SPH-binding factor (hSBF) from a HeLa cell expression library. The coding region of hSBF is almost identical to ZNF143, a 626 amino acid, seven zinc finger protein of previously unknown function. Furthermore, the predicted amino acid sequence of hSBF is highly homologous to Xenopus laevis and mouse Staf proteins, that bind to SPH motifs and stimulate transcription of selenocysteine tRNA gene promoters. Recombinant hSBF expressed in vitro or from Escherichia coli bound specifically to the human U6 gene SPH motif as shown by DNase I footprinting and electrophoretic mobility shift assays using various mutant SPH sites as competitors. Antibodies prepared against recombinant hSBF inhibited assembly of native SBF-DNA complexes. Immunodepleted HeLa S100 transcription extract no longer supported elevated levels of transcription by RNA polymerase III from a U6 promoter containing an SPH motif, whereas addition of recombinant hSBF protein to the immunodepleted extract reconstituted stimulated transcription.

  2. Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015.

    Science.gov (United States)

    Hasman, Henrik; Hammerum, Anette M; Hansen, Frank; Hendriksen, Rene S; Olesen, Bente; Agersø, Yvonne; Zankari, Ea; Leekitcharoenphon, Pimlapas; Stegger, Marc; Kaas, Rolf S; Cavaco, Lina M; Hansen, Dennis S; Aarestrup, Frank M; Skov, Robert L

    2015-01-01

    The plasmid-mediated colistin resistance gene, mcr-1, was detected in an Escherichia coli isolate from a Danish patient with bloodstream infection and in five E. coli isolates from imported chicken meat. One isolate from chicken meat belonged to the epidemic spreading sequence type ST131. In addition to IncI2, an incX4 replicon was found to be linked to mcr-1. This report follows a recent detection of mcr-1 in E. coli from animals, food and humans in China.

  3. Spatially conserved regulatory elements identified within human and mouse Cd247 gene using high-throughput sequencing data from the ENCODE project

    DEFF Research Database (Denmark)

    Pundhir, Sachin; Hannibal, Tine Dahlbæk; Bang-Berthelsen, Claus Heiner

    2014-01-01

    , supported by histone marks and ChIP-seq data, that specifically have features of an enhancer and a promoter, respectively. We also identified a putative long non-coding RNA from the characteristically long first intron of the Cd247 gene. The long non-coding RNA annotation is supported by manual annotations...... from the GENCODE project in human and our expression quantification analysis performed in NOD and B6 mice using qRT-PCR. Furthermore, 17 of the 23 SNPs already known to be implicated with T1D were observed within the long non-coding RNA region in mouse. The spatially conserved regulatory elements...

  4. Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015

    DEFF Research Database (Denmark)

    Hasman, H.; Hammerum, A. M.; Hansen, F.

    2015-01-01

    The plasmid-mediated colistin resistance gene, mcr-1, was detected in an Escherichia coli isolate from a Danish patient with bloodstream infection and in five E. coli isolates from imported chicken meat. One isolate from chicken meat belonged to the epidemic spreading sequence type ST131. In addi....... In addition to IncI2*, an incX4 replicon was found to be linked to mcr-1. This report follows a recent detection of mcr-1 in E. coli from animals, food and humans in China....

  5. Transfection of pseudouridine-modified mRNA encoding CPD-photolyase leads to repair of DNA damage in human keratinocytes: a new approach with future therapeutic potential

    Science.gov (United States)

    Boros, Gábor; Miko, Edit; Muramatsu, Hiromi; Weissman, Drew; Emri, Eszter; Rózsa, Dávid; Nagy, Georgina; Juhász, Attila; Juhász, István; van der Horst, Gijsbertus; Horkay, Irén; Remenyik, Éva; Karikó, Katalin; Emri, Gabriella

    2013-01-01

    UVB irradiation induces harmful photochemical reactions, including formation of cyclobutane pyrimidine dimers (CPDs) in DNA. Accumulation of unrepaired CPD lesions causes inflammation, premature ageing and skin cancer. Photolyases are DNA repair enzymes that can rapidly restore DNA integrity in a light-dependent process called photoreactivation, but these enzymes are absent in humans. Here, we present a novel mRNA-based gene therapy method that directs synthesis of a marsupial, Potorous tridactylus, CPD-photolyase in cultured human keratinocytes. Pseudouridine was incorporated during in vitro transcription to make the mRNA non-immunogenic and highly translatable. Keratinocytes transfected with lipofectamine-complexed mRNA expressed photolyase in the nuclei for at least 2 days. Exposing photolyase mRNA-transfected cells to UVB irradiation resulted in significantly less CPD in those cells that were also treated with photoreactivating light, which is required for photolyase activity. The functional photolyase also diminished other UVB-mediated effects, including induction of IL-6 and inhibition of cell proliferation. These results demonstrate that pseudouridine-containing photolyase mRNA is a powerful tool to repair UVB-induced DNA lesions. The pseudouridine-modified mRNA approach has a strong potential to discern cellular effects of CPD in UV-related cell biological studies. The mRNA-based transient expression of proteins offers a number of opportunities for future application in medicine. PMID:24211294

  6. Determination of human papillomavirus type 16 genotype and construction of cloning vector pTZ57R encoding HPV16 E7 gene.

    Science.gov (United States)

    Meshkat, Zahra; Soleimanjahi, Hoorieh; Mahmoudi, Mahmoud; Mirshahabi, Hessam; Hassan, Zuhair M; Ghaffari, Saeed R; Sabokbar, Tayebeh

    2007-10-01

    To isolate and construct a cloning vector containing the human papillomavirus (HPV)16-E7 gene as a target for application as a DNA vaccine. The study was performed in 2005 in Iran. The E7 gene, one of the most important HPV oncoproteins and a target molecule for therapeutic vaccines, was amplified by polymerase chain reaction (PCR). The PCR product was cloned into a suitable cloning vector and confirmed by colony-PCR, restriction enzyme analysis, and sequenced. The desired plasmid was sequenced and indicated 99% homology with those mentioned in the Genbank. The Iranian HPV16 E7 gene sequence is very similar to other sequences in the Genbank, and it can be used as a candidate gene in a therapeutic vaccine for Iranian patients with cervical cancer.

  7. A subset of group A-like var genes encodes the malaria parasite ligands for binding to human brain endothelial cells

    DEFF Research Database (Denmark)

    Claessens, Antoine; Adams, Yvonne; Ghumra, Ashfaq

    2012-01-01

    Cerebral malaria is the most deadly manifestation of infection with Plasmodium falciparum. The pathology of cerebral malaria is characterized by the accumulation of infected erythrocytes (IEs) in the microvasculature of the brain caused by parasite adhesins on the surface of IEs binding to human...... of these variants. The clinical in vivo relevance of the HBEC-selected parasites was supported by significantly higher surface recognition of HBEC-selected parasites compared with unselected parasites by antibodies from young African children suffering cerebral malaria (Mann-Whitney test, P = 0.......029) but not by antibodies from controls with uncomplicated malaria (Mann-Whitney test, P = 0.58). This work describes a binding phenotype for virulence-associated group A P. falciparum erythrocyte membrane protein 1 variants and identifies targets for interventions to treat or prevent cerebral malaria....

  8. Crystallographic Studies of Prion Protein (PrP) Segments Suggest How Structural Changes Encoded by Polymorphism at Residue 129 Modulate Susceptibility to Human Prion Disease

    Energy Technology Data Exchange (ETDEWEB)

    Apostol, Marcin I.; Sawaya, Michael R.; Cascio, Duilio; Eisenberg, David (UCLA)

    2010-09-23

    A single nucleotide polymorphism (SNP) in codon 129 of the human prion gene, leading to a change from methionine to valine at residue 129 of prion protein (PrP), has been shown to be a determinant in the susceptibility to prion disease. However, the molecular basis of this effect remains unexplained. In the current study, we determined crystal structures of prion segments having either Met or Val at residue 129. These 6-residue segments of PrP centered on residue 129 are 'steric zippers,' pairs of interacting {beta}-sheets. Both structures of these 'homozygous steric zippers' reveal direct intermolecular interactions between Met or Val in one sheet and the identical residue in the mating sheet. These two structures, plus a structure-based model of the heterozygous Met-Val steric zipper, suggest an explanation for the previously observed effects of this locus on prion disease susceptibility and progression.

  9. Expression of genes, encoding the enzymes of cysteine metabolism in human placenta in the first and third trimesters of uncomplicated pregnancy

    Directory of Open Access Journals (Sweden)

    K. L. Korneeva

    2016-02-01

    Full Text Available The cellular cysteine is highly regulated in a narrow range of concentrations due to its cyto- and neurtoxicity when it is overwhelmed or its deficiency for protein synthesis and other vital metabolic reactions when its amount is restricted. The regulation of cysteine content and its metabolic products, glutathione, taurine and inorganic sulfur compounds, is scarcely explored in human placenta though cysteine metabolism is closely related to the maintenance of redox status and protection from free radical oxidation, elimination of homocysteine and detoxification. These processes are particularly important for placenta which meets substantial changes of oxygen supply during its development, and is the last metabolically active organ between mother and fetus. The abundance of CDO, CSAD, ADO, SUOX, GCLC and GCLM mRNAs was estimated by RT-qPCR and compared with the computationally analyzed microarray gene expression data from GEO, while the level of individual protein – by western-blot analysis, both in placental samples from first and third trimesters of uncomplicated pregnancies. The abundance of CDO mRNA is significantly up-regulated at term compared to the first trimester, the level of GCLM and GCLC mRNAs remains almost unchanged while the abundance of other mRNAs reduces to varying degrees. Overall, the changes of gene expression in third trimester in comparison to the first one estimated by RT-qPCR and microarray coincide while the former data are more informative for the limited group of genes. The data provide the basis for further research of these genes expression and phenotype of human placenta in health and disease.

  10. Encoding the Factorisation Calculus

    Directory of Open Access Journals (Sweden)

    Reuben N. S. Rowe

    2015-08-01

    Full Text Available Jay and Given-Wilson have recently introduced the Factorisation (or SF- calculus as a minimal fundamental model of intensional computation. It is a combinatory calculus containing a special combinator, F, which is able to examine the internal structure of its first argument. The calculus is significant in that as well as being combinatorially complete it also exhibits the property of structural completeness, i.e. it is able to represent any function on terms definable using pattern matching on arbitrary normal forms. In particular, it admits a term that can decide the structural equality of any two arbitrary normal forms. Since SF-calculus is combinatorially complete, it is clearly at least as powerful as the more familiar and paradigmatic Turing-powerful computational models of Lambda Calculus and Combinatory Logic. Its relationship to these models in the converse direction is less obvious, however. Jay and Given-Wilson have suggested that SF-calculus is strictly more powerful than the aforementioned models, but a detailed study of the connections between these models is yet to be undertaken. This paper begins to bridge that gap by presenting a faithful encoding of the Factorisation Calculus into the Lambda Calculus preserving both reduction and strong normalisation. The existence of such an encoding is a new result. It also suggests that there is, in some sense, an equivalence between the former model and the latter. We discuss to what extent our result constitutes an equivalence by considering it in the context of some previously defined frameworks for comparing computational power and expressiveness.

  11. SlgA, encoded by the homolog of the human schizophrenia-associated gene PRODH, acts in clock neurons to regulate Drosophila aggression

    Directory of Open Access Journals (Sweden)

    Liesbeth Zwarts

    2017-06-01

    Full Text Available Mutations in the proline dehydrogenase gene PRODH are linked to behavioral alterations in schizophrenia and as part of DiGeorge and velo-cardio-facial syndromes, but the role of PRODH in their etiology remains unclear. Here, we establish a Drosophila model to study the role of PRODH in behavioral disorders. We determine the distribution of the Drosophila PRODH homolog slgA in the brain and show that knockdown and overexpression of human PRODH and slgA in the lateral neurons ventral (LNv lead to altered aggressive behavior. SlgA acts in an isoform-specific manner and is regulated by casein kinase II (CkII. Our data suggest that these effects are, at least partially, due to effects on mitochondrial function. We thus show that precise regulation of proline metabolism is essential to drive normal behavior and we identify Drosophila aggression as a model behavior relevant for the study of the mechanisms that are impaired in neuropsychiatric disorders.

  12. SlgA, encoded by the homolog of the human schizophrenia-associated gene PRODH, acts in clock neurons to regulate Drosophila aggression.

    Science.gov (United States)

    Zwarts, Liesbeth; Vulsteke, Veerle; Buhl, Edgar; Hodge, James J L; Callaerts, Patrick

    2017-06-01

    Mutations in the proline dehydrogenase gene PRODH are linked to behavioral alterations in schizophrenia and as part of DiGeorge and velo-cardio-facial syndromes, but the role of PRODH in their etiology remains unclear. Here, we establish a Drosophila model to study the role of PRODH in behavioral disorders. We determine the distribution of the Drosophila PRODH homolog slgA in the brain and show that knockdown and overexpression of human PRODH and slgA in the lateral neurons ventral (LNv) lead to altered aggressive behavior. SlgA acts in an isoform-specific manner and is regulated by casein kinase II (CkII). Our data suggest that these effects are, at least partially, due to effects on mitochondrial function. We thus show that precise regulation of proline metabolism is essential to drive normal behavior and we identify Drosophila aggression as a model behavior relevant for the study of the mechanisms that are impaired in neuropsychiatric disorders. © 2017. Published by The Company of Biologists Ltd.

  13. Frequent Use of the IgA Isotype in Human B Cells Encoding Potent Norovirus-Specific Monoclonal Antibodies That Block HBGA Binding.

    Directory of Open Access Journals (Sweden)

    Gopal Sapparapu

    2016-06-01

    Full Text Available Noroviruses (NoV are the most common cause of non-bacterial acute gastroenteritis and cause local outbreaks of illness, especially in confined situations. Despite being identified four decades ago, the correlates of protection against norovirus gastroenteritis are still being elucidated. Recent studies have shown an association of protection with NoV-specific serum histo-blood group antigen-blocking antibody and with serum IgA in patients vaccinated with NoV VLPs. Here, we describe the isolation and characterization of human monoclonal IgG and IgA antibodies against a GI.I NoV, Norwalk virus (NV. A higher proportion of the IgA antibodies blocked NV VLP binding to glycans than did IgG antibodies. We generated isotype-switched variants of IgG and IgA antibodies to study the effects of the constant domain on blocking and binding activities. The IgA form of antibodies appears to be more potent than the IgG form in blocking norovirus binding to histo-blood group antigens. These studies suggest a unique role for IgA antibodies in protection from NoV infections by blocking attachment to cell receptors.

  14. Antibody to a human DNA repair protein allows for cloning of a Drosophila cDNA that encodes an apurinic endonuclease

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, M.R. (Dept. of Biochemistry and Biophysics, Loyola Univ. Medical School, Maywood, IL (US)); Venugopal, S.; Harless, J.; Deutsch, W.A. (Louisiana State Univ., Baton Rouge, LA (USA). Dept. of Biochemistry)

    1989-03-01

    The cDNA of a Drosophila DNA repair gene, AP3, was cloned by screening an embryonic lambda gt11 expression library with an antibody that was originally prepared against a purified human apurinicapyrimidine (AP) endonuclease. The 1.2-kilobase (kb) AP3 cDNA mapped to a region on the third chromosome where a number of mutagen-sensitive alleles were located. The cDNA clone yielded an in vitro translation product of 35,000 daltons, in agreement with the predicted size of the translation product of the only open reading frame of AP3, and identical to the molecular size of an AP endonuclease activity recovered following sodium dodecyl sulfate-polyacrymalide gel electrophoresis of Drosophilia extracts. The C-terminal portion of the predicted protein contained regions of presumptive DNA-binding domains, while the DNA sequence at the amino end of AP3 showed similarity to the Escherichia coli recA gene. AP3 is expressed as an abundant 1.3-kb mRNA that is detected throughout the life cycle of Drosophila melanogaster. Another 3.5-klb mRNA also hybridized to the AP3 cDNA, but species was restricted to the early stages of development.

  15. Copy number variation leads to considerable diversity for B but not A haplotypes of the human KIR genes encoding NK cell receptors

    Science.gov (United States)

    Jiang, Wei; Johnson, Chris; Jayaraman, Jyothi; Simecek, Nikol; Noble, Janelle; Moffatt, Miriam F.; Cookson, William O.; Trowsdale, John; Traherne, James A.

    2012-01-01

    The KIR complex appears to be evolving rapidly in humans, and more than 50 different haplotypes have been described, ranging from four to 14 KIR loci. Previously it has been suggested that most KIR haplotypes consist of framework genes, present in all individuals, which bracket a variable number of other genes. We used a new technique to type 793 families from the United Kingdom and United States for both the presence/absence of all individual KIR genes as well as copy number and found that KIR haplotypes are even more complex. It is striking that all KIR loci are subject to copy number variation (CNV), including the so-called framework genes, but CNV is much more frequent in KIR B haplotypes than KIR A haplotypes. These two basic KIR haplotype groups, A and B, appear to be following different evolutionary trajectories. Despite the great diversity, there are 11 common haplotypes, derived by reciprocal recombination near KIR2DL4, which collectively account for 94% of KIR haplotypes determined in Caucasian samples. These haplotypes could be derived from combinations of just three centromeic and two telomeric motifs, simplifying disease analysis for these haplotypes. The remaining 6% of haplotypes displayed novel examples of expansion and contraction of numbers of loci. Conventional KIR typing misses much of this additional complexity, with important implications for studying the genetics of disease association with KIR that can now be explored by CNV analysis. PMID:22948769

  16. Stress as a mnemonic filter: Interactions between medial temporal lobe encoding processes and post-encoding stress.

    Science.gov (United States)

    Ritchey, Maureen; McCullough, Andrew M; Ranganath, Charan; Yonelinas, Andrew P

    2017-01-01

    Acute stress has been shown to modulate memory for recently learned information, an effect attributed to the influence of stress hormones on medial temporal lobe (MTL) consolidation processes. However, little is known about which memories will be affected when stress follows encoding. One possibility is that stress interacts with encoding processes to selectively protect memories that had elicited responses in the hippocampus and amygdala, two MTL structures important for memory formation. There is limited evidence for interactions between encoding processes and consolidation effects in humans, but recent studies of consolidation in rodents have emphasized the importance of encoding "tags" for determining the impact of consolidation manipulations on memory. Here, we used functional magnetic resonance imaging in humans to test the hypothesis that the effects of post-encoding stress depend on MTL processes observed during encoding. We found that changes in stress hormone levels were associated with an increase in the contingency of memory outcomes on hippocampal and amygdala encoding responses. That is, for participants showing high cortisol reactivity, memories became more dependent on MTL activity observed during encoding, thereby shifting the distribution of recollected events toward those that had elicited relatively high activation. Surprisingly, this effect was generally larger for neutral, compared to emotionally negative, memories. The results suggest that stress does not uniformly enhance memory, but instead selectively preserves memories tagged during encoding, effectively acting as mnemonic filter. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Enhanced anti-tumor effect of a gene gun-delivered DNA vaccine encoding the human papillomavirus type 16 oncoproteins genetically fused to the herpes simplex virus glycoprotein D

    Directory of Open Access Journals (Sweden)

    M.O. Diniz

    2011-05-01

    Full Text Available Anti-cancer DNA vaccines have attracted growing interest as a simple and non-invasive method for both the treatment and prevention of tumors induced by human papillomaviruses. Nonetheless, the low immunogenicity of parenterally administered vaccines, particularly regarding the activation of cytotoxic CD8+ T cell responses, suggests that further improvements in both vaccine composition and administration routes are still required. In the present study, we report the immune responses and anti-tumor effects of a DNA vaccine (pgD-E7E6E5 expressing three proteins (E7, E6, and E5 of the human papillomavirus type 16 genetically fused to the glycoprotein D of the human herpes simplex virus type 1, which was administered to mice by the intradermal (id route using a gene gun. A single id dose of pgD-E7E6E5 (2 µg/dose induced a strong activation of E7-specific interferon-γ (INF-γ-producing CD8+ T cells and full prophylactic anti-tumor effects in the vaccinated mice. Three vaccine doses inhibited tumor growth in 70% of the mice with established tumors. In addition, a single vaccine dose consisting of the co-administration of pgD-E7E6E5 and the vector encoding interleukin-12 or granulocyte-macrophage colony-stimulating factor further enhanced the therapeutic anti-tumor effects and conferred protection to 60 and 50% of the vaccinated mice, respectively. In conclusion, id administration of pgD-E7E6E5 significantly enhanced the immunogenicity and anti-tumor effects of the DNA vaccine, representing a promising administration route for future clinical trials.

  18. Detecting Faults from Encoded Information

    NARCIS (Netherlands)

    Persis, Claudio De

    2003-01-01

    The problem of fault detection for linear continuous-time systems via encoded information is considered. The encoded information is received at a remote location by the monitoring deiice and assessed to infer the occurrence of the fault. A class of faults is considered which allows to use a simple

  19. Encoding of Human Action in Broca's Area

    Science.gov (United States)

    Fazio, Patrik; Cantagallo, Anna; Craighero, Laila; D'Ausilio, Alessandro; Roy, Alice C.; Pozzo, Thierry; Calzolari, Ferdinando; Granieri, Enrico; Fadiga, Luciano

    2009-01-01

    Broca's area has been considered, for over a century, as the brain centre responsible for speech production. Modern neuroimaging and neuropsychological evidence have suggested a wider functional role is played by this area. In addition to the evidence that it is involved in syntactical analysis, mathematical calculation and music processing, it…

  20. Tyrosylprotein sulfotransferase-1 and tyrosine sulfation of chemokine receptor 4 are induced by Epstein-Barr virus encoded latent membrane protein 1 and associated with the metastatic potential of human nasopharyngeal carcinoma.

    Directory of Open Access Journals (Sweden)

    Juan Xu

    Full Text Available The latent membrane protein 1 (LMP1, which is encoded by the Epstein-Barr virus (EBV, is an important oncogenic protein that is closely related to carcinogenesis and metastasis of nasopharyngeal carcinoma (NPC, a prevalent cancer in China. We previously reported that the expression of the functional chemokine receptor CXCR4 is associated with human NPC metastasis. In this study, we show that LMP1 induces tyrosine sulfation of CXCR4 through tyrosylprotein sulfotransferase-1 (TPST-1, an enzyme that is responsible for catalysis of tyrosine sulfation in vivo, which is likely to contribute to the highly metastatic character of NPC. LMP1 could induce tyrosine sulfation of CXCR4 and its associated cell motility and invasiveness in a NPC cell culture model. In contrast, the expression of TPST-1 small interfering RNA reversed LMP1-induced tyrosine sulfation of CXCR4. LMP1 conveys signals through the epidermal growth factor receptor (EGFR pathway, and EGFR-targeted siRNA inhibited the induction of TPST-1 by LMP1. We used a ChIP assay to show that EGFR could bind to the TPST-1 promoter in vivo under the control of LMP1. A reporter gene assay indicated that the activity of the TPST-1 promoter could be suppressed by deleting the binding site between EGFR and TPST-1. Finally, in human NPC tissues, the expression of TPST-1 and LMP1 was directly correlated and clinically, the expression of TPST-1 was associated with metastasis. These results suggest the up-regulation of TPST-1 and tyrosine sulfation of CXCR4 by LMP1 might be a potential mechanism contributing to NPC metastasis.

  1. New concepts in PCM encoding

    Science.gov (United States)

    Yun, Paul M.

    The Pulse Coded Modulation (PCM) Encoder Systems used in telemetry have gained enormous flexibility for various applications because the input data channels and frame sync codes are programmable via the EEPROMs or UVEPROMs. The firmware in the current PCM Encoder Systems can be readily tailored for a specific application to monitor numerous types of analog channels, as well as digital channels. However, the current PCM Encoder Systems require several types of strap options which dictate not only a limited choice of gains and offsets, but also a fixed choice of the premodulation filter characteristics. The brain of the 1000 PCM Encoder is the Digital Signal Processor (DSP) which eliminates the fixed premodulation filter characteristics via digital filter functions, and also eliminates strap options via general purpose microprocessor functions.

  2. Data-driven encoding for quantitative genetic trait prediction.

    Science.gov (United States)

    He, Dan; Wang, Zhanyong; Parida, Laxmi

    2015-01-01

    Given a set of biallelic molecular markers, such as SNPs, with genotype values on a collection of plant, animal or human samples, the goal of quantitative genetic trait prediction is to predict the quantitative trait values by simultaneously modeling all marker effects. Quantitative genetic trait prediction is usually represented as linear regression models which require quantitative encodings for the genotypes: the three distinct genotype values, corresponding to one heterozygous and two homozygous alleles, are usually coded as integers, and manipulated algebraically in the model. Further, epistasis between multiple markers is modeled as multiplication between the markers: it is unclear that the regression model continues to be effective under this. In this work we investigate the effects of encodings to the quantitative genetic trait prediction problem. We first showed that different encodings lead to different prediction accuracies, in many test cases. We then proposed a data-driven encoding strategy, where we encode the genotypes according to their distribution in the phenotypes and we allow each marker to have different encodings. We show in our experiments that this encoding strategy is able to improve the performance of the genetic trait prediction method and it is more helpful for the oligogenic traits, whose values rely on a relatively small set of markers. To the best of our knowledge, this is the first paper that discusses the effects of encodings to the genetic trait prediction problem.

  3. Rescue of aberrant gating by a genetically encoded PAS (Per-Arnt-Sim) domain in several long QT syndrome mutant human ether-á-go-go-related gene potassium channels.

    Science.gov (United States)

    Gianulis, Elena C; Trudeau, Matthew C

    2011-06-24

    Congenital long QT syndrome 2 (LQT2) is caused by loss-of-function mutations in the human ether-á-go-go-related gene (hERG) voltage-gated potassium (K(+)) channel. hERG channels have slow deactivation kinetics that are regulated by an N-terminal Per-Arnt-Sim (PAS) domain. Only a small percentage of hERG channels containing PAS domain LQT2 mutations (hERG PAS-LQT2) have been characterized in mammalian cells, so the functional effect of these mutations is unclear. We investigated 11 hERG PAS-LQT2 channels in HEK293 cells and report a diversity of functional defects. Most hERG PAS-LQT2 channels formed functional channels at the plasma membrane, as measured by whole cell patch clamp recordings and cell surface biotinylation. Mutations located on one face of the PAS domain (K28E, F29L, N33T, R56Q, and M124R) caused defective channel gating, including faster deactivation kinetics and less steady-state inactivation. Conversely, the other mutations caused no measurable differences in channel gating (G53R, H70R, and A78P) or no measurable currents (Y43C, C66G, and L86R). We used a genetically encoded hERG PAS domain (NPAS) to examine whether channel dysfunction could be corrected. We found that NPAS fully restored wild-type-like deactivation kinetics and steady-state inactivation to the hERG PAS-LQT2 channels. Additionally, NPAS rescued aberrant currents in hERG R56Q channels during a dynamic ramp voltage clamp. Thus, our results reveal a putative "gating face" in the PAS domain where mutations within this region form functional channels with altered gating properties, and we show that NPAS is a general means for rescuing aberrant gating in hERG LQT2 mutant channels and may be a potential biological therapeutic.

  4. Latency-Associated Viral Interleukin-10 (IL-10) Encoded by Human Cytomegalovirus Modulates Cellular IL-10 and CCL8 Secretion during Latent Infection through Changes in the Cellular MicroRNA hsa-miR-92a

    Science.gov (United States)

    Poole, Emma; Avdic, Selmir; Hodkinson, Jemima; Jackson, Sarah; Wills, Mark; Slobedman, Barry

    2014-01-01

    ABSTRACT The UL111A gene of human cytomegalovirus encodes a viral homologue of the cellular immunomodulatory cytokine interleukin 10 (cIL-10), which, due to alternative splicing, results in expression of two isoforms designated LAcmvIL-10 (expressed during both lytic and latent infection) and cmvIL-10 (identified only during lytic infection). We have analyzed the functions of LAcmvIL-10 during latent infection of primary myeloid progenitor cells and found that LAcmvIL-10 is responsible, at least in part, for the known increase in secretion of cellular IL-10 and CCL8 in the secretomes of latently infected cells. This latency-associated increase in CCL8 expression results from a concomitant LAcmvIL-10-mediated suppression of the expression of the cellular microRNA (miRNA) hsa-miR-92a, which targets CCL8 directly. Taking the data together, we show that the previously observed downregulation of hsa-miR-92a and upregulation of CCL8 during HCMV latent infection of myeloid cells are intimately linked via the latency-associated expression of LAcmvIL-10. IMPORTANCE HCMV latency causes significant morbidity and mortality in immunocompromised individuals, yet HCMV is carried silently (latently) in 50 to 90% of the population. Understanding how HCMV maintains infection for the lifetime of an infected individual is critical for the treatment of immunocompromised individuals suffering with disease as a result of HCMV. In this study, we analyze one of the proteins that are expressed during the “latent” phase of HCMV, LAcmvIL-10, and find that the expression of the gene modulates the microenvironment of the infected cell, leading to evasion of the immune system. PMID:25253336

  5. Heterogeneity in Induction Level, Infection Ability, and Morphology of Shiga Toxin-Encoding Phages (Stx Phages) from Dairy and Human Shiga Toxin-Producing Escherichia coli O26:H11 Isolates

    Science.gov (United States)

    Bonanno, Ludivine; Petit, Marie-Agnès; Loukiadis, Estelle; Michel, Valérie

    2016-01-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) bacteria are foodborne pathogens responsible for diarrhea and hemolytic-uremic syndrome (HUS). Shiga toxin, the main STEC virulence factor, is encoded by the stx gene located in the genome of a bacteriophage inserted into the bacterial chromosome. The O26:H11 serotype is considered to be the second-most-significant HUS-causing serotype worldwide after O157:H7. STEC O26:H11 bacteria and their stx-negative counterparts have been detected in dairy products. They may convert from the one form to the other by loss or acquisition of Stx phages, potentially confounding food microbiological diagnostic methods based on stx gene detection. Here we investigated the diversity and mobility of Stx phages from human and dairy STEC O26:H11 strains. Evaluation of their rate of in vitro induction, occurring either spontaneously or in the presence of mitomycin C, showed that the Stx2 phages were more inducible overall than Stx1 phages. However, no correlation was found between the Stx phage levels produced and the origin of the strains tested or the phage insertion sites. Morphological analysis by electron microscopy showed that Stx phages from STEC O26:H11 displayed various shapes that were unrelated to Stx1 or Stx2 types. Finally, the levels of sensitivity of stx-negative E. coli O26:H11 to six Stx phages differed among the 17 strains tested and our attempts to convert them into STEC were unsuccessful, indicating that their lysogenization was a rare event. PMID:26826235

  6. Latency-associated viral interleukin-10 (IL-10) encoded by human cytomegalovirus modulates cellular IL-10 and CCL8 Secretion during latent infection through changes in the cellular microRNA hsa-miR-92a.

    Science.gov (United States)

    Poole, Emma; Avdic, Selmir; Hodkinson, Jemima; Jackson, Sarah; Wills, Mark; Slobedman, Barry; Sinclair, John

    2014-12-01

    The UL111A gene of human cytomegalovirus encodes a viral homologue of the cellular immunomodulatory cytokine interleukin 10 (cIL-10), which, due to alternative splicing, results in expression of two isoforms designated LAcmvIL-10 (expressed during both lytic and latent infection) and cmvIL-10 (identified only during lytic infection). We have analyzed the functions of LAcmvIL-10 during latent infection of primary myeloid progenitor cells and found that LAcmvIL-10 is responsible, at least in part, for the known increase in secretion of cellular IL-10 and CCL8 in the secretomes of latently infected cells. This latency-associated increase in CCL8 expression results from a concomitant LAcmvIL-10-mediated suppression of the expression of the cellular microRNA (miRNA) hsa-miR-92a, which targets CCL8 directly. Taking the data together, we show that the previously observed downregulation of hsa-miR-92a and upregulation of CCL8 during HCMV latent infection of myeloid cells are intimately linked via the latency-associated expression of LAcmvIL-10. HCMV latency causes significant morbidity and mortality in immunocompromised individuals, yet HCMV is carried silently (latently) in 50 to 90% of the population. Understanding how HCMV maintains infection for the lifetime of an infected individual is critical for the treatment of immunocompromised individuals suffering with disease as a result of HCMV. In this study, we analyze one of the proteins that are expressed during the "latent" phase of HCMV, LAcmvIL-10, and find that the expression of the gene modulates the microenvironment of the infected cell, leading to evasion of the immune system. Copyright © 2014 Poole et al.

  7. pENCODE: a plant encyclopedia of DNA elements.

    Science.gov (United States)

    Lane, Amanda K; Niederhuth, Chad E; Ji, Lexiang; Schmitz, Robert J

    2014-01-01

    ENCODE projects exist for many eukaryotes, including humans, but as of yet no defined project exists for plants. A plant ENCODE would be invaluable to the research community and could be more readily produced than its metazoan equivalents by capitalizing on the preexisting infrastructure provided from similar projects. Collecting and normalizing plant epigenomic data for a range of species will facilitate hypothesis generation, cross-species comparisons, annotation of genomes, and an understanding of epigenomic functions throughout plant evolution. Here, we discuss the need for such a project, outline the challenges it faces, and suggest ways forward to build a plant ENCODE.

  8. pENCODE: A Plant Encyclopedia of DNA Elements

    Science.gov (United States)

    Lane, Amanda K.; Niederhuth, Chad E.; Ji, Lexiang; Schmitz, Robert J.

    2015-01-01

    ENCODE projects exist for many eukaryotes, including humans, but as of yet no defined project exists for plants. A plant ENCODE would be invaluable to the research community and could be more readily produced than its metazoan equivalents by capitalizing on the preexisting infrastructure provided from similar projects. Collecting and normalizing plant epigenomic data for a range of species will facilitate hypothesis generation, cross-species comparisons, annotation of genomes, and an understanding of epigenomic functions throughout plant evolution. Here, we discuss the need for such a project, outline the challenges it faces, and suggest ways forward to build a plant ENCODE. PMID:25149370

  9. Role of sleep for encoding of emotional memory.

    Science.gov (United States)

    Kaida, Kosuke; Niki, Kazuhisa; Born, Jan

    2015-05-01

    Total sleep deprivation (TSD) has been consistently found to impair encoding of information during ensuing wakefulness, probably through suppressing NonREM (non-rapid eye movement) sleep. However, a possible contribution of missing REM sleep to this encoding impairment after TSD has so far not been systematically examined in humans, although such contribution might be suspected in particular for emotional information. Here, in two separate experiments in young healthy men, we compared effects of TSD and of selective REM sleep deprivation (REMD), relative to respective control conditions of undisturbed sleep, on the subsequent encoding of neutral and emotional pictures. The pictures were presented in conjunction with colored frames to also assess related source memory. REMD was achieved by tones presented contingently upon initial signs of REM sleep. Encoding capabilities were examined in the evening (18:00h) after the experimental nights, by a picture recognition test right after encoding. TSD significantly decreased both the rate of correctly recognized pictures and of recalled frames associated with the pictures. The TSD effect was robust and translated into an impaired long term memory formation, as it was likewise observed on a second recognition testing one week after the encoding phase. Contrary to our expectation, REMD did not affect encoding in general, or particularly of emotional pictures. Also, REMD did not affect valence ratings of the encoded pictures. However, like TSD, REMD distinctly impaired vigilance at the time of encoding. Altogether, these findings indicate an importance of NonREM rather than REM sleep for the encoding of information that is independent of the emotionality of the materials. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Multidimensionally encoded magnetic resonance imaging.

    Science.gov (United States)

    Lin, Fa-Hsuan

    2013-07-01

    Magnetic resonance imaging (MRI) typically achieves spatial encoding by measuring the projection of a q-dimensional object over q-dimensional spatial bases created by linear spatial encoding magnetic fields (SEMs). Recently, imaging strategies using nonlinear SEMs have demonstrated potential advantages for reconstructing images with higher spatiotemporal resolution and reducing peripheral nerve stimulation. In practice, nonlinear SEMs and linear SEMs can be used jointly to further improve the image reconstruction performance. Here, we propose the multidimensionally encoded (MDE) MRI to map a q-dimensional object onto a p-dimensional encoding space where p > q. MDE MRI is a theoretical framework linking imaging strategies using linear and nonlinear SEMs. Using a system of eight surface SEM coils with an eight-channel radiofrequency coil array, we demonstrate the five-dimensional MDE MRI for a two-dimensional object as a further generalization of PatLoc imaging and O-space imaging. We also present a method of optimizing spatial bases in MDE MRI. Results show that MDE MRI with a higher dimensional encoding space can reconstruct images more efficiently and with a smaller reconstruction error when the k-space sampling distribution and the number of samples are controlled. Copyright © 2012 Wiley Periodicals, Inc.

  11. Fly Photoreceptors Encode Phase Congruency.

    Directory of Open Access Journals (Sweden)

    Uwe Friederich

    Full Text Available More than five decades ago it was postulated that sensory neurons detect and selectively enhance behaviourally relevant features of natural signals. Although we now know that sensory neurons are tuned to efficiently encode natural stimuli, until now it was not clear what statistical features of the stimuli they encode and how. Here we reverse-engineer the neural code of Drosophila photoreceptors and show for the first time that photoreceptors exploit nonlinear dynamics to selectively enhance and encode phase-related features of temporal stimuli, such as local phase congruency, which are invariant to changes in illumination and contrast. We demonstrate that to mitigate for the inherent sensitivity to noise of the local phase congruency measure, the nonlinear coding mechanisms of the fly photoreceptors are tuned to suppress random phase signals, which explains why photoreceptor responses to naturalistic stimuli are significantly different from their responses to white noise stimuli.

  12. Genetically Encoded Fluorescent Redox Probes

    Directory of Open Access Journals (Sweden)

    Hui-Wang Ai

    2013-11-01

    Full Text Available Redox processes are involved in almost every cell of the body as a consequence of aerobic life. In the past decades, redox biology has been increasingly recognized as one of the key themes in cell signaling. The progress has been accelerated by development of fluorescent probes that can monitor redox conditions and dynamics in cells and cell compartments. This short paper focuses on fluorescent redox probes that are genetically encoded, and discusses their properties, molecular mechanism, advantages and pitfalls. Our recent work on reaction-based encoded probes that are responsive to particular redox signaling molecules is also reviewed. Future challenges and directions are also commented.

  13. Genetically encoded fluorescent redox probes.

    Science.gov (United States)

    Ren, Wei; Ai, Hui-Wang

    2013-11-11

    Redox processes are involved in almost every cell of the body as a consequence of aerobic life. In the past decades, redox biology has been increasingly recognized as one of the key themes in cell signaling. The progress has been accelerated by development of fluorescent probes that can monitor redox conditions and dynamics in cells and cell compartments. This short paper focuses on fluorescent redox probes that are genetically encoded, and discusses their properties, molecular mechanism, advantages and pitfalls. Our recent work on reaction-based encoded probes that are responsive to particular redox signaling molecules is also reviewed. Future challenges and directions are also commented.

  14. Early Decoding and Encoding Strategies.

    Science.gov (United States)

    Goldwater-Rozensher, Susan; Hebard, Amy J.

    A combination of case study observation and mini-experimentation techniques were used to examine a number of issues of relevance in the study of the acquisition of beginning reading skills. Six children were divided equally among three instructional modes: phonics, whole word, and mixed. They were asked to decode and encode words, and their…

  15. The herpesvirus 8-encoded chemokine vMIP-II, but not the poxvirus-encoded chemokine MC148, inhibits the CCR10 receptor

    DEFF Research Database (Denmark)

    Lüttichau, H R; Lewis, I C; Gerstoft, J

    2001-01-01

    The viral chemokine antagonist vMIP-II encoded by human herpesvirus 8 (HHV8) and MC148 encoded by the poxvirus - Molluscum contagiosum - were tested against the newly identified chemokine receptor CCR10. As the CCR10 ligand ESkine / CCL27 had the highest identity to MC148 and because both...

  16. Genetically Encoded Fluorescent Redox Probes

    OpenAIRE

    Hui-Wang Ai; Wei Ren

    2013-01-01

    Redox processes are involved in almost every cell of the body as a consequence of aerobic life. In the past decades, redox biology has been increasingly recognized as one of the key themes in cell signaling. The progress has been accelerated by development of fluorescent probes that can monitor redox conditions and dynamics in cells and cell compartments. This short paper focuses on fluorescent redox probes that are genetically encoded, and discusses their properties, molecular mechanism, adv...

  17. Conjugative botulinum neurotoxin-encoding plasmids in Clostridium botulinum.

    Directory of Open Access Journals (Sweden)

    Kristin M Marshall

    Full Text Available BACKGROUND: Clostridium botulinum produces seven distinct serotypes of botulinum neurotoxins (BoNTs. The genes encoding different subtype neurotoxins of serotypes A, B, F and several dual neurotoxin-producing strains have been shown to reside on plasmids, suggesting that intra- and interspecies transfer of BoNT-encoding plasmids may occur. The objective of the present study was to determine whether these C. botulinum BoNT-encoding plasmids are conjugative. METHODOLOGY/PRINCIPAL FINDINGS: C. botulinum BoNT-encoding plasmids pBotCDC-A3 (strain CDC-A3, pCLJ (strain 657Ba and pCLL (strain Eklund 17B were tagged with the erythromycin resistance marker (Erm using the ClosTron mutagenesis system by inserting a group II intron into the neurotoxin genes carried on these plasmids. Transfer of the tagged plasmids from the donor strains CDC-A3, 657Ba and Eklund 17B to tetracycline-resistant recipient C. botulinum strains was evaluated in mating experiments. Erythromycin and tetracycline resistant transconjugants were isolated from donor:recipient mating pairs tested. Transfer of the plasmids to the transconjugants was confirmed by pulsed-field gel electrophoresis (PFGE and Southern hybridizations. Transfer required cell-to-cell contact and was DNase resistant. This indicates that transfer of these plasmids occurs via a conjugation mechanism. CONCLUSIONS/SIGNIFICANCE: This is the first evidence supporting conjugal transfer of native botulinum neurotoxin-encoding plasmids in C. botulinum, and provides a probable mechanism for the lateral distribution of BoNT-encoding plasmids to other C. botulinum strains. The potential transfer of C. botulinum BoNT-encoding plasmids to other bacterial hosts in the environment or within the human intestine is of great concern for human pathogenicity and necessitates further characterization of these plasmids.

  18. Hall effect encoding of brushless dc motors

    Science.gov (United States)

    Berard, C. A.; Furia, T. J.; Goldberg, E. A.; Greene, R. C.

    1970-01-01

    Encoding mechanism integral to the motor and using the permanent magnets embedded in the rotor eliminates the need for external devices to encode information relating the position and velocity of the rotating member.

  19. Genetically encoded fluorescent redox sensors.

    Science.gov (United States)

    Lukyanov, Konstantin A; Belousov, Vsevolod V

    2014-02-01

    Life is a constant flow of electrons via redox couples. Redox reactions determine many if not all major cellular functions. Until recently, redox processes remained hidden from direct observation in living systems due to the lack of adequate methodology. Over the last years, imaging tools including small molecule probes and genetically encoded sensors appeared, which provided, for the first time, an opportunity to visualize and, in some cases, quantify redox reactions in live cells. Genetically encoded fluorescent redox probes, such as HyPer, rxYFP and roGFPs, have been used in several models, ranging from cultured cells to transgenic animals, and now enough information has been collected to highlight advantages and pitfalls of these probes. In this review, we describe the main types of genetically encoded redox probes, their essential properties, advantages and disadvantages. We also provide an overview of the most important, in our opinion, results obtained using these probes. Finally, we discuss redox-dependent photoconversions of GFP and other prospective directions in redox probe development. Fluorescent protein-based redox probes have important advantages such as high specificity, possibility of transgenesis and fine subcellular targeting. For proper selection of a redox sensor for a particular model, it is important to understand that HyPer and roGFP2-Orp1 are the probes for H2O2, whereas roGFP1/2, rxYFP and roGFP2-Grx1 are the probes for GSH/GSSG redox state. Possible pH changes should be carefully controlled in experiments with HyPer and rxYFP. Genetically encoded redox probes are the only instruments allowing real-time monitoring of reactive oxygen species and thiol redox state in living cells and tissues. We believe that in the near future the palette of FP-based redox probes will be expanded to red and far-red parts of the spectrum and to other important reactive species such as NO, O2 and superoxide. This article is part of a Special Issue entitled

  20. Holographically Encoded Volume Phase Masks

    Science.gov (United States)

    2015-07-13

    optics ,” Nat. Photonics 4, 188–193 (2010). 26. H. Kogelnik, “Coupled wave theory for thick volume holograms ,” Bell System Tech. J. 45(9), 2909–2944...phase masks Marc SeGall, Ivan Divliansky,* Clémence Jollivet, Axel Schülzgen, and Leonid B. Glebov University of Central Florida, College of Optics and...satisfying the Bragg condition of the hologram . Moreover, this approach enables the capability to encode and multiplex several phase masks into a single

  1. Molecular mechanisms for protein-encoded inheritance

    Energy Technology Data Exchange (ETDEWEB)

    Wiltzius, Jed J.W.; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R.; Apostol, Marcin I.; Goldschmidt, Lukasz; Soriaga, Angela B.; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David; (Cornell); (HHMI)

    2009-12-01

    In prion inheritance and transmission, strains are phenotypic variants encoded by protein 'conformations'. However, it is unclear how a protein conformation can be stable enough to endure transmission between cells or organisms. Here we describe new polymorphic crystal structures of segments of prion and other amyloid proteins, which offer two structural mechanisms for the encoding of prion strains. In packing polymorphism, prion strains are encoded by alternative packing arrangements (polymorphs) of {beta}-sheets formed by the same segment of a protein; in segmental polymorphism, prion strains are encoded by distinct {beta}-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring conformations capable of encoding strains. These molecular mechanisms for transfer of protein-encoded information into prion strains share features with the familiar mechanism for transfer of nucleic acid-encoded information into microbial strains, including sequence specificity and recognition by noncovalent bonds.

  2. ENCODE: A Sourcebook of Epigenomes and Chromatin Language

    Directory of Open Access Journals (Sweden)

    Maryam Yavartanoo

    2013-03-01

    Full Text Available Until recently, since the Human Genome Project, the general view has been that the majority of the human genome is composed of junk DNA and has little or no selective advantage to the organism. Now we know that this conclusion is an oversimplification. In April 2003, the National Human Genome Research Institute (NHGRI launched an international research consortium called Encyclopedia of DNA Elements (ENCODE to uncover non-coding functional elements in the human genome. The result of this project has identified a set of new DNA regulatory elements, based on novel relationships among chromatin accessibility, histone modifications, nucleosome positioning, DNA methylation, transcription, and the occupancy of sequence-specific factors. The project gives us new insights into the organization and regulation of the human genome and epigenome. Here, we sought to summarize particular aspects of the ENCODE project and highlight the features and data that have recently been released. At the end of this review, we have summarized a case study we conducted using the ENCODE epigenome data.

  3. Dynamical encoding of cursive handwriting.

    Science.gov (United States)

    Singer, Y; Tishby, N

    1994-01-01

    A model-based approach to on-line cursive handwriting analysis and recognition is presented and evaluated. In this model, on-line handwriting is considered as a modulation of a simple cycloidal pen motion, described by two coupled oscillations with a constant linear drift along the line of the writing. By slow modulations of the amplitudes and phase lags of the two oscillators, a general pen trajectory can be efficiently encoded. These parameters are then quantized into a small number of values without altering the writing intelligibility. A general procedure for the estimation and quantization of these cycloidal motion parameters for arbitrary handwriting is presented. The result is a discrete motor control representation of the continuous pen motion, via the quantized levels of the model parameters. This motor control representation enables successful word spotting and matching of cursive scripts. Our experiments clearly indicate the potential of this dynamic representation for complete cursive handwriting recognition.

  4. Engineering Genetically Encoded FRET Sensors

    Science.gov (United States)

    Lindenburg, Laurens; Merkx, Maarten

    2014-01-01

    Förster Resonance Energy Transfer (FRET) between two fluorescent proteins can be exploited to create fully genetically encoded and thus subcellularly targetable sensors. FRET sensors report changes in energy transfer between a donor and an acceptor fluorescent protein that occur when an attached sensor domain undergoes a change in conformation in response to ligand binding. The design of sensitive FRET sensors remains challenging as there are few generally applicable design rules and each sensor must be optimized anew. In this review we discuss various strategies that address this shortcoming, including rational design approaches that exploit self-associating fluorescent domains and the directed evolution of FRET sensors using high-throughput screening. PMID:24991940

  5. Encoding and Decoding Models in Cognitive Electrophysiology

    Directory of Open Access Journals (Sweden)

    Christopher R. Holdgraf

    2017-09-01

    Full Text Available Cognitive neuroscience has seen rapid growth in the size and complexity of data recorded from the human brain as well as in the computational tools available to analyze this data. This data explosion has resulted in an increased use of multivariate, model-based methods for asking neuroscience questions, allowing scientists to investigate multiple hypotheses with a single dataset, to use complex, time-varying stimuli, and to study the human brain under more naturalistic conditions. These tools come in the form of “Encoding” models, in which stimulus features are used to model brain activity, and “Decoding” models, in which neural features are used to generated a stimulus output. Here we review the current state of encoding and decoding models in cognitive electrophysiology and provide a practical guide toward conducting experiments and analyses in this emerging field. Our examples focus on using linear models in the study of human language and audition. We show how to calculate auditory receptive fields from natural sounds as well as how to decode neural recordings to predict speech. The paper aims to be a useful tutorial to these approaches, and a practical introduction to using machine learning and applied statistics to build models of neural activity. The data analytic approaches we discuss may also be applied to other sensory modalities, motor systems, and cognitive systems, and we cover some examples in these areas. In addition, a collection of Jupyter notebooks is publicly available as a complement to the material covered in this paper, providing code examples and tutorials for predictive modeling in python. The aim is to provide a practical understanding of predictive modeling of human brain data and to propose best-practices in conducting these analyses.

  6. Encoding and Decoding Models in Cognitive Electrophysiology

    Science.gov (United States)

    Holdgraf, Christopher R.; Rieger, Jochem W.; Micheli, Cristiano; Martin, Stephanie; Knight, Robert T.; Theunissen, Frederic E.

    2017-01-01

    Cognitive neuroscience has seen rapid growth in the size and complexity of data recorded from the human brain as well as in the computational tools available to analyze this data. This data explosion has resulted in an increased use of multivariate, model-based methods for asking neuroscience questions, allowing scientists to investigate multiple hypotheses with a single dataset, to use complex, time-varying stimuli, and to study the human brain under more naturalistic conditions. These tools come in the form of “Encoding” models, in which stimulus features are used to model brain activity, and “Decoding” models, in which neural features are used to generated a stimulus output. Here we review the current state of encoding and decoding models in cognitive electrophysiology and provide a practical guide toward conducting experiments and analyses in this emerging field. Our examples focus on using linear models in the study of human language and audition. We show how to calculate auditory receptive fields from natural sounds as well as how to decode neural recordings to predict speech. The paper aims to be a useful tutorial to these approaches, and a practical introduction to using machine learning and applied statistics to build models of neural activity. The data analytic approaches we discuss may also be applied to other sensory modalities, motor systems, and cognitive systems, and we cover some examples in these areas. In addition, a collection of Jupyter notebooks is publicly available as a complement to the material covered in this paper, providing code examples and tutorials for predictive modeling in python. The aim is to provide a practical understanding of predictive modeling of human brain data and to propose best-practices in conducting these analyses. PMID:29018336

  7. Host-Specific Patterns of Genetic Diversity among IncI1-I gamma and IncK Plasmids Encoding CMY-2 beta-Lactamase in Escherichia coli Isolates from Humans, Poultry Meat, Poultry, and Dogs in Denmark

    DEFF Research Database (Denmark)

    Hansen, Katrine Hartung; Bortolaia, Valeria; Nielsen, Christine Ahl

    2016-01-01

    and commensal E. coli isolates collected from 2006 to 2012 from humans, retail poultry meat, broilers, and dogs. Multilocus sequence typing (MLST), antimicrobial susceptibility testing, and conjugation were performed in conjunction with plasmid replicon typing, plasmid multilocus sequence typing (p...

  8. Novelty's effect on memory encoding.

    Science.gov (United States)

    Rangel-Gomez, Mauricio; Janenaite, Sigita; Meeter, Martijn

    2015-07-01

    It is often thought that novelty benefits memory formation. However, support for this idea mostly comes from paradigms that are open to alternative explanations. In the present study we manipulated novelty in a word-learning task through task-irrelevant background images. These background images were either standard (presented repeatedly), or novel (presented only once). Two types of background images were used: Landscape pictures and fractals. EEG was also recorded during encoding. Contrary to the idea that novelty aids memory formation, memory performance was not affected by the novelty of the background. In the evoked response potentials, we found evidence of distracting effects of novelty: both the N1 and P3b components were smaller to words studied with novel backgrounds, and the amplitude of the N2b component correlated negatively with subsequent retrieval. We conclude that although evidence from other studies does suggest benefits on a longer time scale, novelty has no instantaneous benefits for learning. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Universal dynamic goniometer for rotary encoders

    Science.gov (United States)

    Smirnov, Nikolai V.; Latyev, Svjatoslav M.; Naumova, Anastasiia I.

    2017-06-01

    A novel dynamic goniometer for the accuracy of rotary encoders has been developed on the base of the method of comparison with the reference encoder. The set-up of the goniometer considers all constructive and informative characteristics of measured encoders. The novel goniometer construction uses the new compensating method of instrumental errors in automatic working process. The advantages of the dynamic goniometer in combination with an optical rotary encoder at the reduction of the measuring time and a simultaneous increase of the accuracy.

  10. 47 CFR 11.32 - EAS Encoder.

    Science.gov (United States)

    2010-10-01

    ... must additionally provide the following minimum specifications: (1) Encoder programming. Access to encoder programming shall be protected by a lock or other security measures and be configured so that... fundamental frequencies of 853 and 960 Hz and not vary over ±0.5 Hz. (ii) Harmonic Distortion. The total...

  11. Effects of diazepam on encoding processes

    NARCIS (Netherlands)

    Gorissen, M.; Eling, P.; Luijtelaar, G. van; Coenen, A.

    1995-01-01

    Benzodiazepines are known to induce amnesic effects. To specify these effects more precisely, 40 healthy volunteers were given 15 mg diazepam or placebo. Effects on a chain of encoding operations were investigated: activation of memory representations, spreading of activation, semantic encoding and

  12. Regularity-Preserving but not Reflecting Encodings

    NARCIS (Netherlands)

    Endrullis, J.; Grabmayer, C.A.; Hendriks, R.D.A.; Palamidessi, C.

    2015-01-01

    Encodings, that is, injective functions from words to words, have been studied extensively in several settings. In computability theory the notion of encoding is crucial for defining computability on arbitrary domains, as well as for comparing the power of models of computation. In language theory

  13. Cellular encoding for interactive evolutionary robotics

    NARCIS (Netherlands)

    F.C. Gruau; K. Quatramaran

    1996-01-01

    textabstractThis work reports experiments in interactive evolutionary robotics. The goal is to evolve an Artificial Neural Network (ANN) to control the locomotion of an 8-legged robot. The ANNs are encoded using a cellular developmental process called cellular encoding. In a previous work similar

  14. Encoding information using Laguerre Gaussian modes

    Science.gov (United States)

    Trichili, Abderrahmen; Dudley, Angela; Ben Salem, Amine; Ndagano, Bienvenu; Zghal, Mourad; Forbes, Andrew

    2015-08-01

    We experimentally demonstrate an information encoding protocol using the two degrees of freedom of Laguerre Gaussian modes having different radial and azimuthal components. A novel method, based on digital holography, for information encoding and decoding using different data transmission scenarios is presented. The effects of the atmospheric turbulence introduced in free space communication is discussed as well.

  15. Aging affects neural precision of speech encoding.

    Science.gov (United States)

    Anderson, Samira; Parbery-Clark, Alexandra; White-Schwoch, Travis; Kraus, Nina

    2012-10-10

    Older adults frequently report they can hear what is said but cannot understand the meaning, especially in noise. This difficulty may arise from the inability to process rapidly changing elements of speech. Aging is accompanied by a general slowing of neural processing and decreased neural inhibition, both of which likely interfere with temporal processing in auditory and other sensory domains. Age-related reductions in inhibitory neurotransmitter levels and delayed neural recovery can contribute to decreases in the temporal precision of the auditory system. Decreased precision may lead to neural timing delays, reductions in neural response magnitude, and a disadvantage in processing the rapid acoustic changes in speech. The auditory brainstem response (ABR), a scalp-recorded electrical potential, is known for its ability to capture precise neural synchrony within subcortical auditory nuclei; therefore, we hypothesized that a loss of temporal precision results in subcortical timing delays and decreases in response consistency and magnitude. To assess this hypothesis, we recorded ABRs to the speech syllable /da/ in normal hearing younger (18-30 years old) and older (60-67 years old) adult humans. Older adults had delayed ABRs, especially in response to the rapidly changing formant transition, and greater response variability. We also found that older adults had decreased phase locking and smaller response magnitudes than younger adults. Together, our results support the theory that older adults have a loss of temporal precision in the subcortical encoding of sound, which may account, at least in part, for their difficulties with speech perception.

  16. The first constant-domain (CH1) exon of human IGHG2 is polymorphic and in strong linkage disequilibrium with the CH2 exon polymorphism encoding the G2m(n+) allotype in Caucasians

    DEFF Research Database (Denmark)

    Hougs, L; Svejgaard, A; Barington, T

    2001-01-01

    Here we describe a hitherto unknown proline/threonine polymorphism at residue 72 of the human IgG2 CH1 domain (EU numbering 189) and show that it is linked to the known valine/methionine polymorphism at residue 52 of CH2 (EU numbering 282) defining the G2m(n+)/G2m(n-) allotypes. We sequenced...

  17. Self-perpetuating development of encoding biases.

    Science.gov (United States)

    Lewicki, P; Hill, T; Sasaki, I

    1989-12-01

    The process of encoding new information involves the imposition of preexisting interpretive categories on newly encountered stimuli, even if the categories do not match perfectly those stimuli. We hypothesized that such encoding of stimuli as supportive of preexisting encoding dispositions may become a source of a perceiver's subjective experiences that support these dispositions. Through this nonconsciously operating mechanism, encoding rules may gradually develop in a self-perpetuating manner, even in the absence of any objectively supportive evidence. Results demonstrated this self-perpetuating process in three studies involving different stimulus materials and experimental tasks (matrix-scanning paradigm and two "intuitive judgment" tasks). The self-perpetuating development of encoding biases is discussed as one of the elementary mechanisms involved in the development of interpretive categories and other individually differentiated cognitive dispositions.

  18. Synthesis of extended nanoscale optical encoders.

    Science.gov (United States)

    Wickersham, Charles E; Kerr, Daniel H S; Lipman, Everett A

    2010-12-15

    An optical encoder is a device that uses an interrupted light source-sensor pair to map linear or rotational motion onto a periodic signal. Simple, inexpensive optical encoders are used for precise positioning in machines such as desktop printers, disk drives, and astronomical telescopes. A strand of DNA labeled with a series of Förster resonance energy transfer acceptor dyes can perform the same function at the nanometer scale, producing a periodic fluorescence signal that encodes the movement of a single donor-labeled molecular motor with high spatial and temporal resolution. Previous measurements of this type have employed encoders limited to five acceptor dyes, and hence five signal periods, restricting the range of motion that could be followed. Here we describe two methods for synthesizing double-stranded DNA containing several to hundreds of regularly spaced dyes on one strand. Distinct functional groups incorporated at the encoder ends enable tethering for single-molecule measurements.

  19. A model for visual memory encoding.

    Directory of Open Access Journals (Sweden)

    Rodolphe Nenert

    Full Text Available Memory encoding engages multiple concurrent and sequential processes. While the individual processes involved in successful encoding have been examined in many studies, a sequence of events and the importance of modules associated with memory encoding has not been established. For this reason, we sought to perform a comprehensive examination of the network for memory encoding using data driven methods and to determine the directionality of the information flow in order to build a viable model of visual memory encoding. Forty healthy controls ages 19-59 performed a visual scene encoding task. FMRI data were preprocessed using SPM8 and then processed using independent component analysis (ICA with the reliability of the identified components confirmed using ICASSO as implemented in GIFT. The directionality of the information flow was examined using Granger causality analyses (GCA. All participants performed the fMRI task well above the chance level (>90% correct on both active and control conditions and the post-fMRI testing recall revealed correct memory encoding at 86.33 ± 5.83%. ICA identified involvement of components of five different networks in the process of memory encoding, and the GCA allowed for the directionality of the information flow to be assessed, from visual cortex via ventral stream to the attention network and then to the default mode network (DMN. Two additional networks involved in this process were the cerebellar and the auditory-insular network. This study provides evidence that successful visual memory encoding is dependent on multiple modules that are part of other networks that are only indirectly related to the main process. This model may help to identify the node(s of the network that are affected by a specific disease processes and explain the presence of memory encoding difficulties in patients in whom focal or global network dysfunction exists.

  20. A model for visual memory encoding.

    Science.gov (United States)

    Nenert, Rodolphe; Allendorfer, Jane B; Szaflarski, Jerzy P

    2014-01-01

    Memory encoding engages multiple concurrent and sequential processes. While the individual processes involved in successful encoding have been examined in many studies, a sequence of events and the importance of modules associated with memory encoding has not been established. For this reason, we sought to perform a comprehensive examination of the network for memory encoding using data driven methods and to determine the directionality of the information flow in order to build a viable model of visual memory encoding. Forty healthy controls ages 19-59 performed a visual scene encoding task. FMRI data were preprocessed using SPM8 and then processed using independent component analysis (ICA) with the reliability of the identified components confirmed using ICASSO as implemented in GIFT. The directionality of the information flow was examined using Granger causality analyses (GCA). All participants performed the fMRI task well above the chance level (>90% correct on both active and control conditions) and the post-fMRI testing recall revealed correct memory encoding at 86.33 ± 5.83%. ICA identified involvement of components of five different networks in the process of memory encoding, and the GCA allowed for the directionality of the information flow to be assessed, from visual cortex via ventral stream to the attention network and then to the default mode network (DMN). Two additional networks involved in this process were the cerebellar and the auditory-insular network. This study provides evidence that successful visual memory encoding is dependent on multiple modules that are part of other networks that are only indirectly related to the main process. This model may help to identify the node(s) of the network that are affected by a specific disease processes and explain the presence of memory encoding difficulties in patients in whom focal or global network dysfunction exists.

  1. AAV vector encoding human VEGF165–transduced pectineus muscular flaps increase the formation of new tissue through induction of angiogenesis in an in vivo chamber for tissue engineering: A technique to enhance tissue and vessels in microsurgically engineered tissue

    Directory of Open Access Journals (Sweden)

    Silvia Moimas

    2015-12-01

    Full Text Available In regenerative medicine, new approaches are required for the creation of tissue substitutes, and the interplay between different research areas, such as tissue engineering, microsurgery and gene therapy, is mandatory. In this article, we report a modification of a published model of tissue engineering, based on an arterio-venous loop enveloped in a cross-linked collagen–glycosaminoglycan template, which acts as an isolated chamber for angiogenesis and new tissue formation. In order to foster tissue formation within the chamber, which entails on the development of new vessels, we wondered whether we might combine tissue engineering with a gene therapy approach. Based on the well-described tropism of adeno-associated viral vectors for post-mitotic tissues, a muscular flap was harvested from the pectineus muscle, inserted into the chamber and transduced by either AAV vector encoding human VEGF165 or AAV vector expressing the reporter gene β-galactosidase, as a control. Histological analysis of the specimens showed that muscle transduction by AAV vector encoding human VEGF165 resulted in enhanced tissue formation, with a significant increase in the number of arterioles within the chamber in comparison with the previously published model. Pectineus muscular flap, transduced by adeno-associated viral vectors, acted as a source of the proangiogenic factor vascular endothelial growth factor, thus inducing a consistent enhancement of vessel growth into the newly formed tissue within the chamber. In conclusion, our present findings combine three different research fields such as microsurgery, tissue engineering and gene therapy, suggesting and showing the feasibility of a mixed approach for regenerative medicine.

  2. Encoding of coordination complexes with XML.

    Science.gov (United States)

    Vinoth, P; Sankar, P

    2017-09-01

    An in-silico system to encode structure, bonding and properties of coordination complexes is developed. The encoding is achieved through a semantic XML markup frame. Composition of the coordination complexes is captured in terms of central atom and ligands. Structural information of central atom is detailed in terms of electron status of valence electron orbitals. The ligands are encoded with specific reference to the electron environment of ligand centre atoms. Behaviour of ligands to form low or high spin complexes is accomplished by assigning a Ligand Centre Value to every ligand based on the electronic environment of ligand centre atom. Chemical ontologies are used for categorization purpose and to control different hybridization schemes. Complexes formed by the central atoms of transition metal, non-transition elements belonging to s-block, p-block and f-block are encoded with a generic encoding platform. Complexes of homoleptic, heteroleptic and bridged types are also covered by this encoding system. Utility of the encoded system to predict redox electron transfer reaction in the coordination complexes is demonstrated with a simple application. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Sparse Encoding of Automatic Visual Association in Hippocampal Networks

    DEFF Research Database (Denmark)

    Hulme, Oliver J.; Skov, Martin; Chadwickc, Martin J.

    2014-01-01

    by these stimuli. Using multivariate Bayesian decoding, we show that human hippocampal and temporal neocortical structures host sparse associative representations that are automatically triggered by visual input. Furthermore, as predicted theoretically, there was a significant increase in sparsity in the Cornu...... Ammonis subfields, relative to the entorhinal cortex. Remarkably, the sparsity of CA encoding correlated significantly with associative memory performance over subjects; elsewhere within the temporal lobe, entorhinal, parahippocampal, perirhinal and fusiform cortices showed the highest model evidence...... for the sparse encoding of associative density. In the absence of reportability or attentional confounds, this charts a distribution of visual associative representations within hippocampal populations and their temporal lobe afferent fields, and demonstrates the viability of retrospective associative sampling...

  4. Encoding information using laguerre gaussian modes

    CSIR Research Space (South Africa)

    Trichili, A

    2015-08-01

    Full Text Available The authors experimentally demonstrate an information encoding protocol using the two degrees of freedom of Laguerre Gaussian modes having different radial and azimuthal components. A novel method, based on digital holography, for information...

  5. Using XML to encode TMA DES metadata

    Directory of Open Access Journals (Sweden)

    Oliver Lyttleton

    2011-01-01

    Full Text Available Background: The Tissue Microarray Data Exchange Specification (TMA DES is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not. Materials and Methods: We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF. Results: We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service. Conclusions: All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs.

  6. Using XML to encode TMA DES metadata.

    Science.gov (United States)

    Lyttleton, Oliver; Wright, Alexander; Treanor, Darren; Lewis, Paul

    2011-01-01

    The Tissue Microarray Data Exchange Specification (TMA DES) is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not. We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF. We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service. All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs.

  7. Reading Neural Encodings using Phase Space Methods

    OpenAIRE

    Abarbanel, Henry D. I.; Tumer, Evren C.

    2003-01-01

    Environmental signals sensed by nervous systems are often represented in spike trains carried from sensory neurons to higher neural functions where decisions and functional actions occur. Information about the environmental stimulus is contained (encoded) in the train of spikes. We show how to "read" the encoding using state space methods of nonlinear dynamics. We create a mapping from spike signals which are output from the neural processing system back to an estimate of the analog input sig...

  8. Functional properties of Virus-Encoded and Virus-Regulated 7TM Receptors

    DEFF Research Database (Denmark)

    Spiess, Katja; Rosenkilde, Mette Marie

    2014-01-01

    -herpesvirus-encoded BILF1 receptors, the human cytomegalovirus (HCMV)-encoded US28 receptor and the Epstein-Barr virus (EBV)-regulated EBI2 (or GPR183), 2) the tissue tropism and virus-dissemination properties, exemplified by the murine CMV-encoded M33, and 3) the tumorigenic properties, exemplified...... by the human herpesvirus 8 (HHV8)-encoded ORF74, HCMV-US28 and EBV-BILF1. Given the general high “druggability” of 7TM receptors, and the recent progress in the understanding of in particular immune evasive functions of the virus-exploited 7TM receptors, we put a special emphasis on the progress of novel anti...

  9. On the edge of language acquisition: inherent constraints on encoding multisyllabic sequences in the neonate brain.

    Science.gov (United States)

    Ferry, Alissa L; Fló, Ana; Brusini, Perrine; Cattarossi, Luigi; Macagno, Francesco; Nespor, Marina; Mehler, Jacques

    2016-05-01

    To understand language, humans must encode information from rapid, sequential streams of syllables - tracking their order and organizing them into words, phrases, and sentences. We used Near-Infrared Spectroscopy (NIRS) to determine whether human neonates are born with the capacity to track the positions of syllables in multisyllabic sequences. After familiarization with a six-syllable sequence, the neonate brain responded to the change (as shown by an increase in oxy-hemoglobin) when the two edge syllables switched positions but not when two middle syllables switched positions (Experiment 1), indicating that they encoded the syllables at the edges of sequences better than those in the middle. Moreover, when a 25 ms pause was inserted between the middle syllables as a segmentation cue, neonates' brains were sensitive to the change (Experiment 2), indicating that subtle cues in speech can signal a boundary, with enhanced encoding of the syllables located at the edges of that boundary. These findings suggest that neonates' brains can encode information from multisyllabic sequences and that this encoding is constrained. Moreover, subtle segmentation cues in a sequence of syllables provide a mechanism with which to accurately encode positional information from longer sequences. Tracking the order of syllables is necessary to understand language and our results suggest that the foundations for this encoding are present at birth. © 2015 John Wiley & Sons Ltd.

  10. Frequency and significance of the novel single nucleotide missense polymorphism Val109Asp in the human gene encoding omentin in Caucasian patients with type 2 diabetes mellitus or chronic inflammatory bowel diseases

    Directory of Open Access Journals (Sweden)

    Buechler Christa

    2007-02-01

    Full Text Available Background The omental adipose tissue is pathogenetically involved in both type 2 diabetes mellitus (T2D and chronic inflammatory bowel diseases (IBD such as Ulcerative colitis (UC and Crohn's Disease (CD. Thus, adipokines secreted from omental adipose tissue might play an important role in these diseases. Omentin represents a new adipokine expressed in and secreted by omental adipose tissue. Therefore, it was the aim to investigate the putative role of a newly described sequence missense variation in the human omentin gene. Methods The Val109Asp single nucleotide miss-sense polymorphism and the His86His polymorphism in exon-4 of the omentin gene were newly identified by random sequencing. Only the miss-sense polymorphism was investigated further. Genotyping was performed by restriction fragment length polymorphism (RFLP analysis of amplified DNA fragments. Three different cohorts of well-characterized individuals were included in the study. 114 patients suffering from T2D, 190 patients suffering from IBD (128 with CD and 62 with UC and 276 non-diabetic healthy controls without any history for IBD were analyzed. Results The following allelic frequencies were determined: controls: Val-allele: 0.26, Asp-allele: 0.74; T2D: Val-allele: 0.3, Asp-allele: 0.7; IBD: Val-allel: 0.31, Asp-allele: 0.69. UC and CD patients did not differ in regard to the allelic frequency. Similarly, controls, T2D patients and IBD patients did not show significant differences in genotype distribution among each other. Disease manifestation and pattern of infestation were not related to genotype subgroups, neither in CD nor in UC. Furthermore, there was no significant association between genotype subgroups and anthropometric or laboratory parameters in T2D patients. Conclusion Based on sequence comparisons and homology searches, the amino acid position 109 is conserved in the omentin gene of humans, mice and chimpanzee but is not completely conserved between other omentin

  11. The modENCODE Data Coordination Center: lessons in harvesting comprehensive experimental details

    OpenAIRE

    Washington, Nicole L; Stinson, E. O.; Perry, Marc D.; Ruzanov, Peter; Contrino, Sergio; Smith, Richard; Zha, Zheng; Lyne, Rachel; Carr, Adrian; Lloyd, Paul; Kephart, Ellen; McKay, Sheldon J.; Micklem, Gos; Stein, Lincoln D; Lewis, Suzanna E.

    2011-01-01

    The model organism Encyclopedia of DNA Elements (modENCODE) project is a National Human Genome Research Institute (NHGRI) initiative designed to characterize the genomes of Drosophila melanogaster and Caenorhabditis elegans. A Data Coordination Center (DCC) was created to collect, store and catalog modENCODE data. An effective DCC must gather, organize and provide all primary, interpreted and analyzed data, and ensure the community is supplied with the knowledge of the experimental conditions...

  12. Frontal Midline Theta Oscillations during Working Memory Maintenance and Episodic Encoding and Retrieval

    OpenAIRE

    Hsieh, Liang-Tien; Ranganath, Charan

    2013-01-01

    Neural oscillations in the theta band (4-8 Hz) are prominent in the human electroencephalogram (EEG), and many recent electrophysiological studies in animals and humans have implicated scalp-recorded frontal midline theta (FMT) in working memory and episodic memory encoding and retrieval processes. However, the functional significance of theta oscillations in human memory processes remains largely unknown. Here, we review studies in human and animals examining how scalp-recorded FMT relates t...

  13. Method of implementing frequency-encoded NOT, OR and NOR ...

    Indian Academy of Sciences (India)

    In this context, polarization encoding technique, intensity-based encoding technique, tristate and quaternary logic operation, multivalued logic operations, symbolic substitution techniques etc. may be mentioned. Very recently, frequency encoding/decoding technique has drawn interest from the scientific community.

  14. The cytomegalovirus-encoded chemokine receptor US28 promotes intestinal neoplasia in transgenic mice

    NARCIS (Netherlands)

    Bongers, G.; Maussang, D.; Muniz, L.R.; Noriega, V.M.; Fraile-Ramos, A.; Barker, N.; Marchesi, F.; Thirunarayanan, N.; Vischer, H.F.; Qin, L.; Mayer, L.; Harpaz, N.; Leurs, R.; Furtado, G.C.; Clevers, H.; Tortorella, D.; Smit, M.J.; Lira, S.A.

    2010-01-01

    US28 is a constitutively active chemokine receptor encoded by CMV (also referred to as human herpesvirus 5), a highly prevalent human virus that infects a broad spectrum of cells, including intestinal epithelial cells (IECs). To study the role of US28 in vivo, we created transgenic mice (VS28 mice)

  15. Dissociable effects of top-down and bottom-up attention during episodic encoding

    Science.gov (United States)

    Uncapher, Melina R.; Hutchinson, J. Benjamin; Wagner, Anthony D.

    2011-01-01

    It is well established that the formation of memories for life’s experiences—episodic memory—is influenced by how we attend to those experiences, yet the neural mechanisms by which attention shapes episodic encoding are still unclear. We investigated how top-down and bottom-up attention contribute to memory encoding of visual objects in humans by manipulating both types of attention during functional magnetic resonance imaging (fMRI) of episodic memory formation. We show that dorsal parietal cortex—specifically, intraparietal sulcus (IPS)—was engaged during top-down attention and was also recruited during the successful formation of episodic memories. By contrast, bottom-up attention engaged ventral parietal cortex—specifically, temporoparietal junction (TPJ)—and was also more active during encoding failure. Functional connectivity analyses revealed further dissociations in how top-down and bottom-up attention influenced encoding: while both IPS and TPJ influenced activity in perceptual cortices thought to represent the information being encoded (fusiform/lateral occipital cortex), they each exerted opposite effects on memory encoding. Specifically, during a preparatory period preceding stimulus presentation, a stronger drive from IPS was associated with a higher likelihood that the subsequently attended stimulus would be encoded. By contrast, during stimulus processing, stronger connectivity with TPJ was associated with a lower likelihood the stimulus would be successfully encoded. These findings suggest that during encoding of visual objects into episodic memory, top-down and bottom-up attention can have opposite influences on perceptual areas that subserve visual object representation, suggesting that one manner in which attention modulates memory is by altering the perceptual processing of to-be-encoded stimuli. PMID:21880922

  16. Generation and characterization of six single VP4 gene substitution reassortant rotavirus vaccine candidates: each bears a single human rotavirus VP4 gene encoding P serotype 1A[8] or 1B[4] and the remaining 10 genes of rhesus monkey rotavirus MMU18006 or bovine rotavirus UK.

    Science.gov (United States)

    Hoshino, Yasutaka; Jones, Ronald W; Chanock, Robert M; Kapikian, Albert Z

    2002-10-04

    The global disease burden of rotavirus diarrhea in infants and young children has stimulated interest in the biological and clinical characteristics of these agents, leading to intensive efforts to develop a vaccine. A rhesus rotavirus (RRV)-based quadrivalent vaccine ("RotaShield") was licensed and administered to about 1 million infants and found to be highly effective. However, it was withdrawn because of a link with intussusception. This vaccine was developed according to a modified "Jennerian" approach in which one of the two major outer capsid proteins (VP7) shares neutralization specificity with one of the four epidemiologically important human rotavirus serotypes. The other outer capsid protein (VP4) is derived solely from RRV and is distinct from the VP4 of the four human rotavirus serotypes of epidemiologic importance. In an effort to further increase the immunogenicity of the existing VP7-based RRV quadrivalent vaccine, we generated three single VP4 gene substitution reassortant rotavirus candidate vaccines, each of which bears a single human rotavirus VP4 gene encoding P serotype 1A[8] or 1B[4] specificity while the remaining 10 genes are derived from the rhesus rotavirus. By incorporating one or two of these strains into the quadrivalent vaccine, a pentavalent or hexavalent RRV-based vaccine could be formulated thus providing antigenic coverage not only for VP7 serotype 1, 2, 3 and 4 but also for VP4 serotype 1A[8] or 1B[4], thus possibly augmenting its immunogenicity. Similarly, three single VP4 gene (P1A[8] or P1B[4]) substitution reassortants have also been generated in a background of 10 bovine (UK) rotavirus genes for addition to a second generation UK-based quadrivalent vaccine.

  17. An information theoretic characterisation of auditory encoding.

    Directory of Open Access Journals (Sweden)

    Tobias Overath

    2007-10-01

    Full Text Available The entropy metric derived from information theory provides a means to quantify the amount of information transmitted in acoustic streams like speech or music. By systematically varying the entropy of pitch sequences, we sought brain areas where neural activity and energetic demands increase as a function of entropy. Such a relationship is predicted to occur in an efficient encoding mechanism that uses less computational resource when less information is present in the signal: we specifically tested the hypothesis that such a relationship is present in the planum temporale (PT. In two convergent functional MRI studies, we demonstrated this relationship in PT for encoding, while furthermore showing that a distributed fronto-parietal network for retrieval of acoustic information is independent of entropy. The results establish PT as an efficient neural engine that demands less computational resource to encode redundant signals than those with high information content.

  18. Encoding Microreactors with Droplet Chains in Microfluidics.

    Science.gov (United States)

    Song, Wenya; Lin, Gungun; Ge, Jin; Fassbender, Jürgen; Makarov, Denys

    2017-12-13

    Droplet-based high throughput biomolecular screening and combinatorial synthesis entail a viable indexing strategy to be developed for the identification of each microreactor. Here, we propose a novel indexing scheme based on the generation of droplet sequences on demand to form unique encoding droplet chains in fluidic networks. These codes are represented by multiunit and multilevel droplets packages, with each code unit possessing several distinct signal levels, potentially allowing large encoding capacity. For proof of concept, we use magnetic nanoparticles as the encoding material and a giant magnetoresistance (GMR) sensor-based active sorting system supplemented with an optical detector to generate and decode the sequence of one exemplar sample droplet reactor and a 4-unit quaternary magnetic code. The indexing capacity offered by 4-unit multilevel codes with this indexing strategy is estimated to exceed 104, which holds great promise for large-scale droplet-based screening and synthesis.

  19. The modENCODE Data Coordination Center: lessons in harvesting comprehensive experimental details.

    Science.gov (United States)

    Washington, Nicole L; Stinson, E O; Perry, Marc D; Ruzanov, Peter; Contrino, Sergio; Smith, Richard; Zha, Zheng; Lyne, Rachel; Carr, Adrian; Lloyd, Paul; Kephart, Ellen; McKay, Sheldon J; Micklem, Gos; Stein, Lincoln D; Lewis, Suzanna E

    2011-01-01

    The model organism Encyclopedia of DNA Elements (modENCODE) project is a National Human Genome Research Institute (NHGRI) initiative designed to characterize the genomes of Drosophila melanogaster and Caenorhabditis elegans. A Data Coordination Center (DCC) was created to collect, store and catalog modENCODE data. An effective DCC must gather, organize and provide all primary, interpreted and analyzed data, and ensure the community is supplied with the knowledge of the experimental conditions, protocols and verification checks used to generate each primary data set. We present here the design principles of the modENCODE DCC, and describe the ramifications of collecting thorough and deep metadata for describing experiments, including the use of a wiki for capturing protocol and reagent information, and the BIR-TAB specification for linking biological samples to experimental results. modENCODE data can be found at http://www.modencode.org.

  20. Semantic Congruence Accelerates the Onset of the Neural Signals of Successful Memory Encoding.

    Science.gov (United States)

    Packard, Pau A; Rodríguez-Fornells, Antoni; Bunzeck, Nico; Nicolás, Berta; de Diego-Balaguer, Ruth; Fuentemilla, Lluís

    2017-01-11

    As the stream of experience unfolds, our memory system rapidly transforms current inputs into long-lasting meaningful memories. A putative neural mechanism that strongly influences how input elements are transformed into meaningful memory codes relies on the ability to integrate them with existing structures of knowledge or schemas. However, it is not yet clear whether schema-related integration neural mechanisms occur during online encoding. In the current investigation, we examined the encoding-dependent nature of this phenomenon in humans. We showed that actively integrating words with congruent semantic information provided by a category cue enhances memory for words and increases false recall. The memory effect of such active integration with congruent information was robust, even with an interference task occurring right after each encoding word list. In addition, via electroencephalography, we show in 2 separate studies that the onset of the neural signals of successful encoding appeared early (∼400 ms) during the encoding of congruent words. That the neural signals of successful encoding of congruent and incongruent information followed similarly ∼200 ms later suggests that this earlier neural response contributed to memory formation. We propose that the encoding of events that are congruent with readily available contextual semantics can trigger an accelerated onset of the neural mechanisms, supporting the integration of semantic information with the event input. This faster onset would result in a long-lasting and meaningful memory trace for the event but, at the same time, make it difficult to distinguish it from plausible but never encoded events (i.e., related false memories). Conceptual or schema congruence has a strong influence on long-term memory. However, the question of whether schema-related integration neural mechanisms occur during online encoding has yet to be clarified. We investigated the neural mechanisms reflecting how the active

  1. Encoding and Decoding Procedures for Arrangements

    Directory of Open Access Journals (Sweden)

    Alexander A. Babaev

    2012-05-01

    Full Text Available This article discusses an algorithm based on the encoding procedure for representing a set of arrangement elements as a single number. Also the author provides the procedure for the inverse transformation of the code into arrangement elements. In addition the Article includes recommendations on the use of the above procedures in combinatorial algorithms of optimization.

  2. Encoders for block-circulant LDPC codes

    Science.gov (United States)

    Divsalar, Dariush (Inventor); Abbasfar, Aliazam (Inventor); Jones, Christopher R. (Inventor); Dolinar, Samuel J. (Inventor); Thorpe, Jeremy C. (Inventor); Andrews, Kenneth S. (Inventor); Yao, Kung (Inventor)

    2009-01-01

    Methods and apparatus to encode message input symbols in accordance with an accumulate-repeat-accumulate code with repetition three or four are disclosed. Block circulant matrices are used. A first method and apparatus make use of the block-circulant structure of the parity check matrix. A second method and apparatus use block-circulant generator matrices.

  3. Optimal Achievable Encoding for Brain Machine Interface

    Science.gov (United States)

    2017-12-22

    Brain - Machine Interface Eduardo Chichilnisky Leland Stanford Junior...Oct 2016 – 30 Sep 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Optimal Achievable Encoding for Brain - Machine Interface 5b...Stanford Artificial Retina 15. SUBJECT TERMS Artificial retina, Retinal prosthesis, Brain - machine interface , Brain -computer interface ,

  4. Evaluative and Taxonomic Encoding in Children's Memory.

    Science.gov (United States)

    Kail, Robert V., Jr.; Schroll, John T.

    Two experiments were conducted to investigate the development of evaluative and taxonomic encoding in children's memory. The task used was a modification of the Wickens short-term memory task in which subjects' recall of words is tested following a distraction task. The first experiment found that 11-year-old children, but not 8-year-old children,…

  5. Visual Memory : The Price of Encoding Details

    NARCIS (Netherlands)

    Nieuwenstein, Mark; Kromm, Maria

    2017-01-01

    Studies on visual long-term memory have shown that we have a tremendous capacity for remembering pictures of objects, even at a highly detailed level. What remains unclear, however, is whether encoding objects at such a detailed level comes at any cost. In the current study, we examined how the

  6. Letter-Position Encoding and Dyslexia

    Science.gov (United States)

    Whitney, Carol; Cornelissen, Piers

    2005-01-01

    This article focuses on applying the SERIOL model of orthographic processing to dyslexia. The model is extended to include a phonological route and reading acquisition. We propose that the temporal alignment of serial orthographic and phonological representations is a key aspect of learning to read, driving the formation of a phonemic encoding.…

  7. Phenotypic and Molecular Characterization of Plasmid- Encoded ...

    African Journals Online (AJOL)

    Purpose: To investigate the distribution of plasmid-encoded extended spectrum beta-lacatamases (ESBLs) in Lahore, Pakistan using different phenotypic and molecular methods. Methods: Escherichia coli and Klebsiella spp were obtained over a period of nineteen months (June 2007 to December 2008). Both were tested ...

  8. How Attention Modulates Encoding of Dynamic Stimuli

    Directory of Open Access Journals (Sweden)

    Noga Oren

    2016-10-01

    Full Text Available When encoding a real-life, continuous stimulus, the same neural circuits support processing and integration of prior as well as new incoming information. This ongoing interplay is modulated by attention, which is evident in the prefrontal cortex sections of the task positive network (TPN, and in the posterior cingulate cortex (PCC, a hub of the default mode network (DMN. Yet the exact nature of such modulation is still unclear. To investigate this issue, we utilized an fMRI task that employed movies as the encoded stimuli and manipulated attentional load via an easy or hard secondary task that was performed simultaneously with encoding. Results showed increased intersubject correlation (inter-SC levels when encoding movies in a condition of high, as compared to low attentional load. This was evident in bilateral ventrolateral and dorsomedial prefrontal cortices and the dorsal PCC (dPCC. These regions became more attuned to the combination of the movie and the secondary task as the attentional demand of the task increased. Activation analyses revealed that at higher load the frontal TPN regions were more activated, whereas the dPCC was more deactivated. Attentional load also influenced connectivity within and between the networks. At high load the dPCC was anti-correlated to the frontal regions, which were more functionally coherent amongst themselves. Finally and critically, greater inter-SC in the dPCC at high load during encoding predicted lower memory strength when that information was retrieved. This association between inter-SC levels and memory strength suggest that as attentional demands increased, the dPCC was more attuned to the secondary task at the expense of the encoded stimulus, thus weakening memory for the encoded stimulus. Together, our findings show that attentional load modulated the function of core TPN and DMN regions. Furthermore, the observed correlation between memory strength and the modulation of the dPCC points to this

  9. Spatially distributed encoding of covert attentional shifts in human thalamus

    DEFF Research Database (Denmark)

    Hulme, Oliver J; Whiteley, Louise Emma; Shipp, Stewart

    2010-01-01

    . Target position was cued after stimulus offset, requiring subjects to perform target detection from iconic visual memory. We found positionally specific responses at multiple thalamic sites, with individual voxels activating at more than one direction of attentional shift. Voxel clusters at anatomically...... the thalamic territory of cortical "eye-field" areas, thus supporting theories which propose the visuomotor origins of covert attentional selection....

  10. Structure, function and physiological consequences of virally encoded chemokine seven transmembrane receptors

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Smit, M J; Waldhoer, M

    2008-01-01

    A number of human and animal herpes viruses encode G-protein coupled receptors with seven transmembrane (7TM) segments-most of which are clearly related to human chemokine receptors. It appears, that these receptors are used by the virus for immune evasion, cellular transformation, tissue targeting...... pathogenesis is still poorly understood. Here we focus on the current knowledge of structure, function and trafficking patterns of virally encoded chemokine receptors and further address the putative roles of these receptors in virus survival and host -cell and/or -immune system modulation. Finally, we...

  11. Active-passive path-length encoded (APPLE) Doppler OCT.

    Science.gov (United States)

    Wartak, Andreas; Haindl, Richard; Trasischker, Wolfgang; Baumann, Bernhard; Pircher, Michael; Hitzenberger, Christoph K

    2016-12-01

    We present a novel active-passive path-length encoded (APPLE) swept source Doppler optical coherence tomography (DOCT) approach, enabling three-dimensional velocity vector reconstruction of moving particles without prior knowledge of the orientation of motion. The developed APPLE DOCT setup allows for non-invasive blood flow measurements in vivo and was primarily designed for quantitative human ocular blood flow investigations. The system's performance was demonstrated by in vitro flow phantom as well as in vivo retinal vessel bifurcation measurements. Furthermore, total retinal blood flow - a biomarker aiding in diagnosis and monitoring of major ocular diseases such as glaucoma, diabetic retinopathy or central/branch retinal vein occlusion - was determined in the eyes of healthy human volunteers.

  12. Cloning and Analysis of microRNAs Encoded by the Primate γ-Herpesvirus Rhesus Monkey Rhadinovirus

    OpenAIRE

    Schäfer, Alexandra; Cai, Xuezhong; Bilello, John P.; Desrosiers, Ronald C; Cullen, Bryan R.

    2007-01-01

    Several pathogenic human herpesviruses have recently been shown to express virally encoded microRNAs in infected cells. Although the function of these microRNAs is largely unknown, they are hypothesized to play a role in mediating viral replication by down-regulating cellular mRNAs encoding antiviral factors. Here, we report the cloning and analysis of microRNAs encoded by Rhesus Monkey Rhadinovirus (RRV), an animal virus model for the pathogenic human γ-herpesvirus Kaposi’s Sarcoma-Associate...

  13. A perceptual-based approach to bit allocation for H.264 encoder

    Science.gov (United States)

    Ou, Tao-Sheng; Huang, Yi-Hsin; Chen, Homer H.

    2010-07-01

    Since the ultimate receivers of encoded video are human eyes, the characteristics of human visual system should be taken into consideration in the design of bit allocation to improve the perceptual video quality. In this paper, we incorporate the structural similarity index as a distortion metric and propose a novel rate-distortion model to characterize the relationship between rate and the structural similarity index. Based on the model, we develop an optimum bit allocation and rate control scheme for H.264 encoders. Experimental results show that up to 25% bitrate reduction over the JM reference software can be achieved. Subjective evaluation further confirms that the proposed scheme preserves more structural information and improves the perceptual quality of the encoded video.

  14. DNA-Encoded Dynamic Combinatorial Chemical Libraries.

    Science.gov (United States)

    Reddavide, Francesco V; Lin, Weilin; Lehnert, Sarah; Zhang, Yixin

    2015-06-26

    Dynamic combinatorial chemistry (DCC) explores the thermodynamic equilibrium of reversible reactions. Its application in the discovery of protein binders is largely limited by difficulties in the analysis of complex reaction mixtures. DNA-encoded chemical library (DECL) technology allows the selection of binders from a mixture of up to billions of different compounds; however, experimental results often show low a signal-to-noise ratio and poor correlation between enrichment factor and binding affinity. Herein we describe the design and application of DNA-encoded dynamic combinatorial chemical libraries (EDCCLs). Our experiments have shown that the EDCCL approach can be used not only to convert monovalent binders into high-affinity bivalent binders, but also to cause remarkably enhanced enrichment of potent bivalent binders by driving their in situ synthesis. We also demonstrate the application of EDCCLs in DNA-templated chemical reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Nucleic acid compositions and the encoding proteins

    Science.gov (United States)

    Preston, III, James F.; Chow, Virginia; Nong, Guang; Rice, John D.; St. John, Franz J.

    2014-09-02

    The subject invention provides at least one nucleic acid sequence encoding an aldouronate-utilization regulon isolated from Paenibacillus sp. strain JDR-2, a bacterium which efficiently utilizes xylan and metabolizes aldouronates (methylglucuronoxylosaccharides). The subject invention also provides a means for providing a coordinately regulated process in which xylan depolymerization and product assimilation are coupled in Paenibacillus sp. strain JDR-2 to provide a favorable system for the conversion of lignocellulosic biomass to biobased products. Additionally, the nucleic acid sequences encoding the aldouronate-utilization regulon can be used to transform other bacteria to form organisms capable of producing a desired product (e.g., ethanol, 1-butanol, acetoin, 2,3-butanediol, 1,3-propanediol, succinate, lactate, acetate, malate or alanine) from lignocellulosic biomass.

  16. Parameter Estimation of Turbo Code Encoder

    Directory of Open Access Journals (Sweden)

    Mehdi Teimouri

    2014-01-01

    Full Text Available The problem of reconstruction of a channel code consists of finding out its design parameters solely based on its output. This paper investigates the problem of reconstruction of parallel turbo codes. Reconstruction of a turbo code has been addressed in the literature assuming that some of the parameters of the turbo encoder, such as the number of input and output bits of the constituent encoders and puncturing pattern, are known. However in practical noncooperative situations, these parameters are unknown and should be estimated before applying reconstruction process. Considering such practical situations, this paper proposes a novel method to estimate the above-mentioned code parameters. The proposed algorithm increases the efficiency of the reconstruction process significantly by judiciously reducing the size of search space based on an analysis of the observed channel code output. Moreover, simulation results show that the proposed algorithm is highly robust against channel errors when it is fed with noisy observations.

  17. An Encoding of XQuery in Prolog

    Science.gov (United States)

    Almendros-Jiménez, Jesús M.

    In this paper we describe the implementation of (a subset of) the XQuery language using logic programming (in particular, by means of Prolog). Such implementation has been developed using the Prolog interpreter SWI-Prolog. XML files are handled by means of the XML Library of SWI-Prolog. XPath/XQuery are encoded by means of Prolog rules. Such Prolog rules are executed in order to obtain the answer of the query.

  18. Toward Chemical Implementation of Encoded Combinatorial Libraries

    DEFF Research Database (Denmark)

    Nielsen, John; Janda, Kim D.

    1994-01-01

    The recent application of "combinatorial libraries" to supplement existing drug screening processes might simplify and accelerate the search for new lead compounds or drugs. Recently, a scheme for encoded combinatorial chemistry was put forward to surmount a number of the limitations possessed...... by existing methodologies. Here we detail the synthesis of several matrices and the necessary chemistry to implement the conceptual scheme. In addition, we disclose how this novel technology permits a controlled ′dendritic" display of the chemical libraries....

  19. An Intensional Concurrent Faithful Encoding of Turing Machines

    Directory of Open Access Journals (Sweden)

    Thomas Given-Wilson

    2014-10-01

    Full Text Available The benchmark for computation is typically given as Turing computability; the ability for a computation to be performed by a Turing Machine. Many languages exploit (indirect encodings of Turing Machines to demonstrate their ability to support arbitrary computation. However, these encodings are usually by simulating the entire Turing Machine within the language, or by encoding a language that does an encoding or simulation itself. This second category is typical for process calculi that show an encoding of lambda-calculus (often with restrictions that in turn simulates a Turing Machine. Such approaches lead to indirect encodings of Turing Machines that are complex, unclear, and only weakly equivalent after computation. This paper presents an approach to encoding Turing Machines into intensional process calculi that is faithful, reduction preserving, and structurally equivalent. The encoding is demonstrated in a simple asymmetric concurrent pattern calculus before generalised to simplify infinite terms, and to show encodings into Concurrent Pattern Calculus and Psi Calculi.

  20. Encoded libraries of chemically modified peptides.

    Science.gov (United States)

    Heinis, Christian; Winter, Greg

    2015-06-01

    The use of powerful technologies for generating and screening DNA-encoded protein libraries has helped drive the development of proteins as pharmaceutical ligands. However the development of peptides as pharmaceutical ligands has been more limited. Although encoded peptide libraries are typically several orders of magnitude larger than classical chemical libraries, can be more readily screened, and can give rise to higher affinity ligands, their use as pharmaceutical ligands is limited by their intrinsic properties. Two of the intrinsic limitations include the rotational flexibility of the peptide backbone and the limited number (20) of natural amino acids. However these limitations can be overcome by use of chemical modification. For example, the libraries can be modified to introduce topological constraints such as cyclization linkers, or to introduce new chemical entities such as small molecule ligands, fluorophores and photo-switchable compounds. This article reviews the chemistry involved, the properties of the peptide ligands, and the new opportunities offered by chemical modification of DNA-encoded peptide libraries. Copyright © 2015. Published by Elsevier Ltd.

  1. Blind Identification of Convolutional Encoder Parameters

    Directory of Open Access Journals (Sweden)

    Shaojing Su

    2014-01-01

    Full Text Available This paper gives a solution to the blind parameter identification of a convolutional encoder. The problem can be addressed in the context of the noncooperative communications or adaptive coding and modulations (ACM for cognitive radio networks. We consider an intelligent communication receiver which can blindly recognize the coding parameters of the received data stream. The only knowledge is that the stream is encoded using binary convolutional codes, while the coding parameters are unknown. Some previous literatures have significant contributions for the recognition of convolutional encoder parameters in hard-decision situations. However, soft-decision systems are applied more and more as the improvement of signal processing techniques. In this paper we propose a method to utilize the soft information to improve the recognition performances in soft-decision communication systems. Besides, we propose a new recognition method based on correlation attack to meet low signal-to-noise ratio situations. Finally we give the simulation results to show the efficiency of the proposed methods.

  2. Shift-encoded optically multiplexed imaging

    Science.gov (United States)

    Shah, Vinay; Rachlin, Yaron; Shepard, R. Hamilton; Shih, Tina

    2017-04-01

    In a multiplexed image, multiple fields-of-view (FoVs) are superimposed onto a common focal plane. The attendant gain in sensor FoV provides a new degree of freedom in the design of an imaging system, allowing for performance tradeoffs not available in traditional optical designs. We explore design choices relating to a shift-encoded optically multiplexed imaging system and discuss their performance implications. Unlike in a traditional imaging system, a single multiplexed image has a fundamental ambiguity regarding the location of objects in the image. We present a system that can shift each FoV independently to break this ambiguity and compare it to other potential disambiguation techniques. We then discuss the optical, mechanical, and encoding design choices of a shift-encoding midwave infrared imaging system that multiplexes six 15×15 deg FoVs onto a single one megapixel focal plane. Using this sensor, we demonstrate a computationally demultiplexed wide FoV video.

  3. Visual short-term memory: activity supporting encoding and maintenance in retinotopic visual cortex.

    Science.gov (United States)

    Sneve, Markus H; Alnæs, Dag; Endestad, Tor; Greenlee, Mark W; Magnussen, Svein

    2012-10-15

    Recent studies have demonstrated that retinotopic cortex maintains information about visual stimuli during retention intervals. However, the process by which transient stimulus-evoked sensory responses are transformed into enduring memory representations is unknown. Here, using fMRI and short-term visual memory tasks optimized for univariate and multivariate analysis approaches, we report differential involvement of human retinotopic areas during memory encoding of the low-level visual feature orientation. All visual areas show weaker responses when memory encoding processes are interrupted, possibly due to effects in orientation-sensitive primary visual cortex (V1) propagating across extrastriate areas. Furthermore, intermediate areas in both dorsal (V3a/b) and ventral (LO1/2) streams are significantly more active during memory encoding compared with non-memory (active and passive) processing of the same stimulus material. These effects in intermediate visual cortex are also observed during memory encoding of a different stimulus feature (spatial frequency), suggesting that these areas are involved in encoding processes on a higher level of representation. Using pattern-classification techniques to probe the representational content in visual cortex during delay periods, we further demonstrate that simply initiating memory encoding is not sufficient to produce long-lasting memory traces. Rather, active maintenance appears to underlie the observed memory-specific patterns of information in retinotopic cortex. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Properties of virion transactivator proteins encoded by primate cytomegaloviruses

    Directory of Open Access Journals (Sweden)

    Barry Peter A

    2009-05-01

    Full Text Available Abstract Background Human cytomegalovirus (HCMV is a betaherpesvirus that causes severe disease in situations where the immune system is immature or compromised. HCMV immediate early (IE gene expression is stimulated by the virion phosphoprotein pp71, encoded by open reading frame (ORF UL82, and this transactivation activity is important for the efficient initiation of viral replication. It is currently recognized that pp71 acts to overcome cellular intrinsic defences that otherwise block viral IE gene expression, and that interactions of pp71 with the cell proteins Daxx and ATRX are important for this function. A further property of pp71 is the ability to enable prolonged gene expression from quiescent herpes simplex virus type 1 (HSV-1 genomes. Non-human primate cytomegaloviruses encode homologs of pp71, but there is currently no published information that addresses their effects on gene expression and modes of action. Results The UL82 homolog encoded by simian cytomegalovirus (SCMV, strain Colburn, was identified and cloned. This ORF, named S82, was cloned into an HSV-1 vector, as were those from baboon, rhesus monkey and chimpanzee cytomegaloviruses. The use of an HSV-1 vector enabled expression of the UL82 homologs in a range of cell types, and permitted investigation of their abilities to direct prolonged gene expression from quiescent genomes. The results show that all UL82 homologs activate gene expression, and that neither host cell type nor promoter target sequence has major effects on these activities. Surprisingly, the UL82 proteins specified by non-human primate cytomegaloviruses, unlike pp71, did not direct long term expression from quiescent HSV-1 genomes. In addition, significant differences were observed in the intranuclear localization of the UL82 homologs, and in their effects on Daxx. Strikingly, S82 mediated the release of Daxx from nuclear domain 10 substructures much more rapidly than pp71 or the other proteins tested. All

  5. Semantics of the Visual Environment Encoded in Parahippocampal Cortex.

    Science.gov (United States)

    Bonner, Michael F; Price, Amy Rose; Peelle, Jonathan E; Grossman, Murray

    2016-03-01

    Semantic representations capture the statistics of experience and store this information in memory. A fundamental component of this memory system is knowledge of the visual environment, including knowledge of objects and their associations. Visual semantic information underlies a range of behaviors, from perceptual categorization to cognitive processes such as language and reasoning. Here we examine the neuroanatomic system that encodes visual semantics. Across three experiments, we found converging evidence indicating that knowledge of verbally mediated visual concepts relies on information encoded in a region of the ventral-medial temporal lobe centered on parahippocampal cortex. In an fMRI study, this region was strongly engaged by the processing of concepts relying on visual knowledge but not by concepts relying on other sensory modalities. In a study of patients with the semantic variant of primary progressive aphasia (semantic dementia), atrophy that encompassed this region was associated with a specific impairment in verbally mediated visual semantic knowledge. Finally, in a structural study of healthy adults from the fMRI experiment, gray matter density in this region related to individual variability in the processing of visual concepts. The anatomic location of these findings aligns with recent work linking the ventral-medial temporal lobe with high-level visual representation, contextual associations, and reasoning through imagination. Together, this work suggests a critical role for parahippocampal cortex in linking the visual environment with knowledge systems in the human brain.

  6. Retention interval affects visual short-term memory encoding.

    Science.gov (United States)

    Bankó, Eva M; Vidnyánszky, Zoltán

    2010-03-01

    Humans can efficiently store fine-detailed facial emotional information in visual short-term memory for several seconds. However, an unresolved question is whether the same neural mechanisms underlie high-fidelity short-term memory for emotional expressions at different retention intervals. Here we show that retention interval affects the neural processes of short-term memory encoding using a delayed facial emotion discrimination task. The early sensory P100 component of the event-related potentials (ERP) was larger in the 1-s interstimulus interval (ISI) condition than in the 6-s ISI condition, whereas the face-specific N170 component was larger in the longer ISI condition. Furthermore, the memory-related late P3b component of the ERP responses was also modulated by retention interval: it was reduced in the 1-s ISI as compared with the 6-s condition. The present findings cannot be explained based on differences in sensory processing demands or overall task difficulty because there was no difference in the stimulus information and subjects' performance between the two different ISI conditions. These results reveal that encoding processes underlying high-precision short-term memory for facial emotional expressions are modulated depending on whether information has to be stored for one or for several seconds.

  7. Neural Encoding of Auditory Features during Music Perception and Imagery.

    Science.gov (United States)

    Martin, Stephanie; Mikutta, Christian; Leonard, Matthew K; Hungate, Dylan; Koelsch, Stefan; Shamma, Shihab; Chang, Edward F; Millán, José Del R; Knight, Robert T; Pasley, Brian N

    2017-10-27

    Despite many behavioral and neuroimaging investigations, it remains unclear how the human cortex represents spectrotemporal sound features during auditory imagery, and how this representation compares to auditory perception. To assess this, we recorded electrocorticographic signals from an epileptic patient with proficient music ability in 2 conditions. First, the participant played 2 piano pieces on an electronic piano with the sound volume of the digital keyboard on. Second, the participant replayed the same piano pieces, but without auditory feedback, and the participant was asked to imagine hearing the music in his mind. In both conditions, the sound output of the keyboard was recorded, thus allowing precise time-locking between the neural activity and the spectrotemporal content of the music imagery. This novel task design provided a unique opportunity to apply receptive field modeling techniques to quantitatively study neural encoding during auditory mental imagery. In both conditions, we built encoding models to predict high gamma neural activity (70-150 Hz) from the spectrogram representation of the recorded sound. We found robust spectrotemporal receptive fields during auditory imagery with substantial, but not complete overlap in frequency tuning and cortical location compared to receptive fields measured during auditory perception. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Encoder-decoder optimization for brain-computer interfaces.

    Directory of Open Access Journals (Sweden)

    Josh Merel

    2015-06-01

    Full Text Available Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model" and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages.

  9. Systems properties of proteins encoded by imprinted genes.

    Science.gov (United States)

    Sandhu, Kuljeet Singh

    2010-10-01

    Genomically imprinted genes show parentally fixed mono-allelic expression and are important for the mammalian development. Dysregulation of genomic imprinting leads to several complex pathological conditions. Though the genetic and epigenetic regulation of imprinted genes has been well studied, their protein aspects are largely ignored. Here, we systematically studied a sub-network centered on proteins encoded by imprinted genes within human interactome. Using concepts of network biology, we uncover a highly connected, transitive and central network module of imprinted gene-products and their interacting partners (IGPN). The network is enriched in development, metabolism and cell cycle related functions and its malfunctioning ascribes error intolerance to human interactome network. Further, detailed analysis revealed that its higher centrality is determined by 'date' interactions among the proteins belonging to different functional classes than the 'party' interactions within the same functional class. Interestingly, a significant proportion of this network genetically associates with disease phenotypes. Moreover, the network comprises of gene-sets that are upregulated in leukemia, psychosis, obesity/diabetes and downregulated in autism. We conclude that imprinted gene-products are part of a functionally and topologically important module of human interactome and errors in this sub-network are intolerant to, otherwise robust, human interactome. The findings might also shed light on how imprinted genes, which are rather very few, coordinate at protein level to pleiotropically regulate growth and metabolism during embryonic and post-natal development.

  10. The downmodulation of the foreign body reaction by cytomegalovirus encoded interleukin-10

    NARCIS (Netherlands)

    van Putten, S.M.; Wubben, M.; Hennink, W.E.; van Luyna, M.J.A.; Harmsen, M.C.

    2009-01-01

    The foreign body reaction (FBR) is of great importance for the function and turnover of biomaterial scaffolds. The development of biological tools that modulate the FBR will augment scaffold functionality and benefit regenerative medicine. The human cytomegalovirus encodes a functional homolog of

  11. Searching for avidity by chemical ligation of combinatorially self-assembled DNA-encoded ligand libraries.

    Science.gov (United States)

    Matysiak, Stefan; Hellmuth, Klaus; El-Sagheer, Afaf H; Shivalingam, Arun; Ariyurek, Yavuz; de Jong, Marco; Hollestelle, Martine J; Out, Ruud; Brown, Tom

    2017-12-19

    DNA encoded ligands are self-assembled into bivalent complexes and chemically ligated to link their identities. To demonstrate their potential as a combinatorial screening platform for avidity interactions, the optimal bivalent aptamer design (examplar ligands) for human alpha-thrombin is determined in a single round of selection and the DNA scaffold replaced with minimal impact on the final design.

  12. Distribution of non-LEE-encoded type 3 secretion system dependent effectors in enteropathogenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Fábia A. Salvador

    2014-09-01

    Full Text Available Enteropathogenic Escherichia coli (EPEC are important human gastroenteritis agents. The prevalence of six non-LEE genes encoding type 3 translocated effectors was investigated. The nleC, cif and nleB genes were more prevalent in typical than in atypical EPEC, although a higher diversity of genes combinations was observed in atypical EPEC.

  13. Facilitation of Memory Encoding in Primate Hippocampus by a Neuroprosthesis that Promotes Task Specific Neural Firing

    Science.gov (United States)

    Hampson, Robert E.; Song, Dong; Opris, Ioan; Santos, Lucas M.; Shin, Dae C.; Gerhardt, Greg A.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Sam A.

    2014-01-01

    Objective Memory accuracy is a major problem in human disease and is the primary factor that defines Alzheimer’s’, aging and dementia resulting from impaired hippocampal function in medial temporal lobe. Development of a hippocampal memory neuroprosthesis that facilitates normal memory encoding in nonhuman primates (NHPs) could provide the basis for improving memory in human disease states. Approach NHPs trained to perform a short-term delayed match to sample (DMS) memory task were examined with multi-neuron recordings from synaptically connected hippocampal cell fields, CA1 and CA3. Recordings were analyzed utilizing a previously developed nonlinear multi-input multi-output (MIMO) neuroprosthetic model, capable of extracting CA3-to-CA1 spatiotemporal firing patterns during DMS performance. Main Results The MIMO model verified that specific CA3-to-CA1 firing patterns were critical for successful encoding of Sample phase information on more difficult DMS trials. This was validated by delivery of successful MIMO-derived encoding patterns via electrical stimulation to the same CA1 recording locations during the Sample phase which facilitated task performance in the subsequent delayed Match phase on difficult trials that required more precise encoding of Sample information. Significance These findings provide the first successful application of a neuroprosthesis designed to enhance and/or repair memory encoding in primate brain. PMID:24216292

  14. Occurrence of enterotoxin-encoding genes in Staphylococcus aureus causing mastitis in lactating goats

    Directory of Open Access Journals (Sweden)

    Daneelly H. Ferreira

    2014-07-01

    Full Text Available Staphylococcal enterotoxins are the leading cause of human food poisoning worldwide. Staphylococcus spp. are the main mastitis-causing agents in goats and frequently found in high counts in goat milk. This study aimed to investigate the occurrence of enterotoxin-encoding genes in Staphylococcus aureus associated with mastitis in lactating goats in Paraiba State, Brazil. Milk samples (n=2024 were collected from 393 farms. Staphylococcus aureus was isolated in 55 milk samples. Classical (sea, seb, sec, sed, see and novel (seg, seh, sei enterotoxin-encoding genes were investigated by means of polymerase chain reaction (PCR. From thirty-six tested isolates, enterotoxin-encoding genes were detected in 7 (19.5% S. aureus. The gene encoding enterotoxin C (seC was identified in six isolates, while seiwas observed in only one isolate. The genes sea, seb, sed, see, seg and seh were not observed amongst the S. aureus investigated in this study. In summary, S. aureus causing mastitis in goats can harbor enterotoxin-encoding genes and seC was the most frequent gene observed amongst the investigated isolates. This finding is important for surveillance purposes, since enterotoxin C should be investigated in human staphylococcal food poisoning outbreaks caused by consumption of goat milk and dairy products.

  15. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia

    Science.gov (United States)

    Landt, Stephen G.; Marinov, Georgi K.; Kundaje, Anshul; Kheradpour, Pouya; Pauli, Florencia; Batzoglou, Serafim; Bernstein, Bradley E.; Bickel, Peter; Brown, James B.; Cayting, Philip; Chen, Yiwen; DeSalvo, Gilberto; Epstein, Charles; Fisher-Aylor, Katherine I.; Euskirchen, Ghia; Gerstein, Mark; Gertz, Jason; Hartemink, Alexander J.; Hoffman, Michael M.; Iyer, Vishwanath R.; Jung, Youngsook L.; Karmakar, Subhradip; Kellis, Manolis; Kharchenko, Peter V.; Li, Qunhua; Liu, Tao; Liu, X. Shirley; Ma, Lijia; Milosavljevic, Aleksandar; Myers, Richard M.; Park, Peter J.; Pazin, Michael J.; Perry, Marc D.; Raha, Debasish; Reddy, Timothy E.; Rozowsky, Joel; Shoresh, Noam; Sidow, Arend; Slattery, Matthew; Stamatoyannopoulos, John A.; Tolstorukov, Michael Y.; White, Kevin P.; Xi, Simon; Farnham, Peggy J.; Lieb, Jason D.; Wold, Barbara J.; Snyder, Michael

    2012-01-01

    Chromatin immunoprecipitation (ChIP) followed by high-throughput DNA sequencing (ChIP-seq) has become a valuable and widely used approach for mapping the genomic location of transcription-factor binding and histone modifications in living cells. Despite its widespread use, there are considerable differences in how these experiments are conducted, how the results are scored and evaluated for quality, and how the data and metadata are archived for public use. These practices affect the quality and utility of any global ChIP experiment. Through our experience in performing ChIP-seq experiments, the ENCODE and modENCODE consortia have developed a set of working standards and guidelines for ChIP experiments that are updated routinely. The current guidelines address antibody validation, experimental replication, sequencing depth, data and metadata reporting, and data quality assessment. We discuss how ChIP quality, assessed in these ways, affects different uses of ChIP-seq data. All data sets used in the analysis have been deposited for public viewing and downloading at the ENCODE (http://encodeproject.org/ENCODE/) and modENCODE (http://www.modencode.org/) portals. PMID:22955991

  16. Convolutional over Recurrent Encoder for Neural Machine Translation

    National Research Council Canada - National Science Library

    Praveen Dakwale; Christof Monz

    2017-01-01

    ...) called encoder and the target words are predicted using another RNN known as decoder. Recently, various models have been proposed which replace the RNN encoder with a convolutional neural network (CNN...

  17. Evaluating standard terminologies for encoding allergy information.

    Science.gov (United States)

    Goss, Foster R; Zhou, Li; Plasek, Joseph M; Broverman, Carol; Robinson, George; Middleton, Blackford; Rocha, Roberto A

    2013-01-01

    Allergy documentation and exchange are vital to ensuring patient safety. This study aims to analyze and compare various existing standard terminologies for representing allergy information. Five terminologies were identified, including the Systemized Nomenclature of Medical Clinical Terms (SNOMED CT), National Drug File-Reference Terminology (NDF-RT), Medication Dictionary for Regulatory Activities (MedDRA), Unique Ingredient Identifier (UNII), and RxNorm. A qualitative analysis was conducted to compare desirable characteristics of each terminology, including content coverage, concept orientation, formal definitions, multiple granularities, vocabulary structure, subset capability, and maintainability. A quantitative analysis was also performed to compare the content coverage of each terminology for (1) common food, drug, and environmental allergens and (2) descriptive concepts for common drug allergies, adverse reactions (AR), and no known allergies. Our qualitative results show that SNOMED CT fulfilled the greatest number of desirable characteristics, followed by NDF-RT, RxNorm, UNII, and MedDRA. Our quantitative results demonstrate that RxNorm had the highest concept coverage for representing drug allergens, followed by UNII, SNOMED CT, NDF-RT, and MedDRA. For food and environmental allergens, UNII demonstrated the highest concept coverage, followed by SNOMED CT. For representing descriptive allergy concepts and adverse reactions, SNOMED CT and NDF-RT showed the highest coverage. Only SNOMED CT was capable of representing unique concepts for encoding no known allergies. The proper terminology for encoding a patient's allergy is complex, as multiple elements need to be captured to form a fully structured clinical finding. Our results suggest that while gaps still exist, a combination of SNOMED CT and RxNorm can satisfy most criteria for encoding common allergies and provide sufficient content coverage.

  18. A study on information hiding technology in image encoding

    Science.gov (United States)

    Li, Li; Yao, Zhihai; Wu, Haitao; Dai, Qiang

    2005-02-01

    Information hiding is a new technology which integrates with theories and technologies of many academic and technical subjects. For information hiding, digital media are used as the carrier of the information to be hidden. The carrier conceals secret messages by covering the form of their existence. In this paper, we briefly introduce the definition, basic models and basic characters of information hiding. The application and research trends for information hiding system are concerned. The information hiding technology based on digital image processing is closely related to human vision system. When the messages are having been concealed, the human eyes are due to verify the existence of hiding messages. That is, the status of information coverage depends on the human vision system. It is obvious that the characteristics of human vision system is to be taken advantage. The added secrete information in the digital image should have no any effect onto human eyes. In our research work, an implementation of information hiding technology system which is based on digital image encoding is proposed. First by analyzing knowledge of digital image processing and the model of human vision system, we discussed the algorithm of time domain appending method and the algorithm of substitution of lease significant bit. Secondly, we analyzed theory and algorithms of 2-D discrete wavelet transform and frequency domain algorithm based on discrete wavelet transformation. Carefully design software for information hiding based on digital image using Microsoft Visual C++6.0 is implemented. The communication with hiding messages may use any format of images such as BMP. It is proved to be an effective application.

  19. 2D Barcode for DNA Encoding

    CERN Document Server

    Purcaru, Elena

    2012-01-01

    The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution - DNA2DBC - DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features of 2D barcode implementation for DNA.

  20. Rapidly-Indexing Incremental-Angle Encoder

    Science.gov (United States)

    Christon, Philip R.; Meyer, Wallace W.

    1989-01-01

    Optoelectronic system measures relative angular position of shaft or other device to be turned, also measures absolute angular position after device turned through small angle. Relative angular position measured with fine resolution by optoelectronically counting finely- and uniformly-spaced light and dark areas on encoder disk as disk turns past position-sensing device. Also includes track containing coarsely- and nonuniformly-spaced light and dark areas, angular widths varying in proportion to absolute angular position. This second track provides gating and indexing signal.

  1. Speckle reduction in optical coherence tomography by "path length encoded" angular compounding.

    Science.gov (United States)

    Iftimia, N; Bouma, B E; Tearney, G J

    2003-04-01

    Speckle, the dominant factor reducing image quality in optical coherence tomography (OCT), limits the ability to identify cellular structures that are essential for diagnosis of a variety of diseases. We describe a new high-speed method for implementing angular compounding by path length encoding (ACPE) for reducing speckle in OCT images. By averaging images obtained at different incident angles, with each image encoded by path length, ACPE maintains high-speed image acquisition and requires minimal modifications to OCT probe optics. ACPE images obtained from tissue phantoms and human skin in vivo demonstrate a qualitative improvement over traditional OCT and an increased SNR that correlates well with theory.

  2. Resistance to β-Lactams in Neisseria ssp Due to Chromosomally Encoded Penicillin-Binding Proteins

    Directory of Open Access Journals (Sweden)

    André Zapun

    2016-09-01

    Full Text Available Neisseria meningitidis and Neisseria gonorrhoeae are human pathogens that cause a variety of life-threatening systemic and local infections, such as meningitis or gonorrhoea. The treatment of such infection is becoming more difficult due to antibiotic resistance. The focus of this review is on the mechanism of reduced susceptibility to penicillin and other β-lactams due to the modification of chromosomally encoded penicillin-binding proteins (PBP, in particular PBP2 encoded by the penA gene. The variety of penA alleles and resulting variant PBP2 enzymes is described and the important amino acid substitutions are presented and discussed in a structural context.

  3. Dual beam encoded extended fractional Fourier transform security ...

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... This paper describes a simple method for making dual beam encoded extended fractional Fourier transform (EFRT) security holograms. The hologram possesses different stages of encoding so that security features are concealed and remain invisible to the counterfeiter. These concealed and encoded ...

  4. FORMALIZATION OF LANGUAGE AS ENCODING OF IDEAS ABOUT THE WORLD

    Directory of Open Access Journals (Sweden)

    Irina Mikhaylovna Nekipelova

    2013-12-01

    Full Text Available The article is devoted to researching of formalization of language, which is viewed as the main way of natural and artificial encoding by human and society of conceptions and knowledge about the world. Formalization is been due to realization in human's mind such logic operation as synthesis and analysis. Realization of these processes need first of all for expression of human's thoughts within the bounds of subjective (private language and standardization of objective (general language. As a result of the realized research the fact that all significant conceptions about the world are fixed for language constant in language system (constants are related by regulated rules of handling has been revealed. In whole, there are many algorithms, which ensure work of language and lay a main way for deployment of language rules. There are no universal algorithms. Therefore any consistent formalization of theory is in essence incomplete. Although language is not only something that present in language actually, but something that present in language potential. Only material expressed constants and assertions can be formalized. DOI: http://dx.doi.org/10.12731/2218-7405-2013-8-51

  5. Linear encoder based low frequency inertial sensor

    Directory of Open Access Journals (Sweden)

    Collette Christophe

    2015-01-01

    Full Text Available For many applications, there is an increasing demand for low cost, high-resolution inertial sensors, which are capable of operating in harsh environments. Recently, a prototype of small optical inertial sensor has been built, using a Michelson interferometer. A resolution of 3 pm/√Hz has been obtained above 4 Hz using only low cost components. Compared to most state-of-the-art devices, this prototype did not contain any coil, which offers several important advantages, including a low thermal noise in the suspension and a full compatibility with magnetic environments (like particle collider. On the other hand, the Michelson is known to be tricky to tune, especially when one attempts to miniaturize the sensor. In this paper, we will propose a novel concept of inertial sensor, based on a linear encoder. Compared to the Michelson, the encoder is much more easy to mount, and the calibration more stable. The price to pay is a reduced resolution. In order to overcome this limitation, we amplify mechanically the relative motion between the support and the inertial mass. First results obtained with the new sensor will be discussed, and compared with the Michelson inertial sensor.

  6. Negative base encoding in optical linear algebra processors

    Science.gov (United States)

    Perlee, C.; Casasent, D.

    1986-01-01

    In the digital multiplication by analog convolution algorithm, the bits of two encoded numbers are convolved to form the product of the two numbers in mixed binary representation; this output can be easily converted to binary. Attention is presently given to negative base encoding, treating base -2 initially, and then showing that the negative base system can be readily extended to any radix. In general, negative base encoding in optical linear algebra processors represents a more efficient technique than either sign magnitude or 2's complement encoding, when the additions of digitally encoded products are performed in parallel.

  7. Contributions of local speech encoding and functional connectivity to audio-visual speech perception.

    Science.gov (United States)

    Giordano, Bruno L; Ince, Robin A A; Gross, Joachim; Schyns, Philippe G; Panzeri, Stefano; Kayser, Christoph

    2017-06-07

    Seeing a speaker's face enhances speech intelligibility in adverse environments. We investigated the underlying network mechanisms by quantifying local speech representations and directed connectivity in MEG data obtained while human participants listened to speech of varying acoustic SNR and visual context. During high acoustic SNR speech encoding by temporally entrained brain activity was strong in temporal and inferior frontal cortex, while during low SNR strong entrainment emerged in premotor and superior frontal cortex. These changes in local encoding were accompanied by changes in directed connectivity along the ventral stream and the auditory-premotor axis. Importantly, the behavioral benefit arising from seeing the speaker's face was not predicted by changes in local encoding but rather by enhanced functional connectivity between temporal and inferior frontal cortex. Our results demonstrate a role of auditory-frontal interactions in visual speech representations and suggest that functional connectivity along the ventral pathway facilitates speech comprehension in multisensory environments.

  8. Encoding and reactivation patterns predictive of successful memory performance are topographically organized along the longitudinal axis of the hippocampus.

    Science.gov (United States)

    Nakamura, Nozomu H; Sauvage, Magdalena M

    2016-01-01

    An ongoing debate in human memory research is whether the encoding and the retrieval of memory engage the same part of the hippocampus and the same cells, or whether encoding preferentially involves the anterior part of the hippocampus and retrieval its posterior part. Here, we used a human to rat translational behavioral approach combined to high-resolution molecular imaging to address this issue. We showed that successful memory performance is predicted by encoding and reactivation patterns only in the dorsal part of the rat hippocampus (posterior part in humans), but not in the ventral part (anterior part in humans). Our findings support the view that the encoding and the retrieval processes per se are not segregated along the longitudinal axis of the hippocampus, but that activity predictive of successful memory is and concerns specifically the dorsal part of the hippocampus. In addition, we found evidence that these processes are likely to be mediated by the activation/reactivation of the same cells at this level. Given the translational character of the task, our results suggest that both the encoding and the retrieval processes take place in the same cells of the posterior part of the human hippocampus. © 2015 Wiley Periodicals, Inc.

  9. A Run-Length Encoding Approach for Path Analysis of C. elegans Search Behavior

    Directory of Open Access Journals (Sweden)

    Li Huang

    2016-01-01

    Full Text Available The nematode Caenorhabditis elegans explores the environment using a combination of different movement patterns, which include straight movement, reversal, and turns. We propose to quantify C. elegans movement behavior using a computer vision approach based on run-length encoding of step-length data. In this approach, the path of C. elegans is encoded as a string of characters, where each character represents a path segment of a specific type of movement. With these encoded string data, we perform k-means cluster analysis to distinguish movement behaviors resulting from different genotypes and food availability. We found that shallow and sharp turns are the most critical factors in distinguishing the differences among the movement behaviors. To validate our approach, we examined the movement behavior of tph-1 mutants that lack an enzyme responsible for serotonin biosynthesis. A k-means cluster analysis with the path string-encoded data showed that tph-1 movement behavior on food is similar to that of wild-type animals off food. We suggest that this run-length encoding approach is applicable to trajectory data in animal or human mobility data.

  10. DNA-Encoded Solid-Phase Synthesis: Encoding Language Design and Complex Oligomer Library Synthesis.

    Science.gov (United States)

    MacConnell, Andrew B; McEnaney, Patrick J; Cavett, Valerie J; Paegel, Brian M

    2015-09-14

    The promise of exploiting combinatorial synthesis for small molecule discovery remains unfulfilled due primarily to the "structure elucidation problem": the back-end mass spectrometric analysis that significantly restricts one-bead-one-compound (OBOC) library complexity. The very molecular features that confer binding potency and specificity, such as stereochemistry, regiochemistry, and scaffold rigidity, are conspicuously absent from most libraries because isomerism introduces mass redundancy and diverse scaffolds yield uninterpretable MS fragmentation. Here we present DNA-encoded solid-phase synthesis (DESPS), comprising parallel compound synthesis in organic solvent and aqueous enzymatic ligation of unprotected encoding dsDNA oligonucleotides. Computational encoding language design yielded 148 thermodynamically optimized sequences with Hamming string distance ≥ 3 and total read length bases for facile sequencing. Ligation is efficient (70% yield), specific, and directional over 6 encoding positions. A series of isomers served as a testbed for DESPS's utility in split-and-pool diversification. Single-bead quantitative PCR detected 9 × 10(4) molecules/bead and sequencing allowed for elucidation of each compound's synthetic history. We applied DESPS to the combinatorial synthesis of a 75,645-member OBOC library containing scaffold, stereochemical and regiochemical diversity using mixed-scale resin (160-μm quality control beads and 10-μm screening beads). Tandem DNA sequencing/MALDI-TOF MS analysis of 19 quality control beads showed excellent agreement (ppt) between DNA sequence-predicted mass and the observed mass. DESPS synergistically unites the advantages of solid-phase synthesis and DNA encoding, enabling single-bead structural elucidation of complex compounds and synthesis using reactions normally considered incompatible with unprotected DNA. The widespread availability of inexpensive oligonucleotide synthesis, enzymes, DNA sequencing, and PCR make

  11. Premotor and Motor Cortices Encode Reward.

    Directory of Open Access Journals (Sweden)

    Pavan Ramkumar

    Full Text Available Rewards associated with actions are critical for motivation and learning about the consequences of one's actions on the world. The motor cortices are involved in planning and executing movements, but it is unclear whether they encode reward over and above limb kinematics and dynamics. Here, we report a categorical reward signal in dorsal premotor (PMd and primary motor (M1 neurons that corresponds to an increase in firing rates when a trial was not rewarded regardless of whether or not a reward was expected. We show that this signal is unrelated to error magnitude, reward prediction error, or other task confounds such as reward consumption, return reach plan, or kinematic differences across rewarded and unrewarded trials. The availability of reward information in motor cortex is crucial for theories of reward-based learning and motivational influences on actions.

  12. Radiofrequency encoded angular-resolved light scattering

    DEFF Research Database (Denmark)

    Buckley, Brandon W.; Akbari, Najva; Diebold, Eric D.

    2015-01-01

    The sensitive, specific, and label-free classification of microscopic cells and organisms is one of the outstanding problems in biology. Today, instruments such as the flow cytometer use a combination of light scatter measurements at two distinct angles to infer the size and internal complexity...... of cells at rates of more than 10,000 per second. However, by examining the entire angular light scattering spectrum it is possible to classify cells with higher resolution and specificity. Current approaches to performing these angular spectrum measurements all have significant throughput limitations...... Encoded Angular-resolved Light Scattering (REALS), this technique multiplexes angular light scattering in the radiofrequency domain, such that a single photodetector captures the entire scattering spectrum from a particle over approximately 100 discrete incident angles on a single shot basis. As a proof...

  13. Are animacy effects in episodic memory independent of encoding instructions?

    Science.gov (United States)

    Gelin, Margaux; Bugaiska, Aurélia; Méot, Alain; Bonin, Patrick

    2017-01-01

    The adaptive view of human memory [Nairne, J. S. 2010. Adaptive memory: Evolutionary constraints on remembering. In B. H. Ross (Ed.), The psychology of learning and motivation (Vol. 53 pp. 1-32). Burlington: Academic Press; Nairne, J. S., & Pandeirada, J. N. S. 2010a. Adaptive memory: Ancestral priorities and the mnemonic value of survival processing. Cognitive Psychology, 61, 1-22, 2010b; Memory functions. In The Corsini encyclopedia of psychology and behavioral science, (Vol 3, 4th ed. pp. 977-979). Hokoben, NJ: John Wiley & Sons] assumes that animates (e.g., baby, rabbit presented as words or pictures) are better remembered than inanimates (e.g., bottle, mountain) because animates are more important for fitness than inanimates. In four studies, we investigated whether the animacy effect in episodic memory (i.e., the better remembering of animates over inanimates) is independent of encoding instructions. Using both a factorial (Studies 1 and 3) and a multiple regression approach (Study 2), three studies tested whether certain contexts drive people to attend to inanimate more than to animate things (or the reverse), and therefore lead to differential animacy effects. The findings showed that animacy effects on recall performance were observed in the grassland-survival scenario used by Nairne, Thompson, and Pandeirada (2007. Adaptive memory: Survival processing enhances retention. Journal of Experimental Psychology: Learning, Memory, & Cognition, 33, 263-273) (Studies 1-3), when words were rated for their pleasantness (Study 2), and in explicit learning (Study 3). In the non-survival scenario of moving to a foreign land (Studies 1-2), animacy effects on recall rates were not reliable in Study 1, but were significant in Study 2, whereas these effects were reliable in the non-survival scenario of planning a trip as a tour guide (Study 3). A final (control) study (Study 4) was conducted to test specifically whether animacy effects are related to the more organised

  14. Bacteriophage-encoded shiga toxin gene in atypical bacterial host

    Directory of Open Access Journals (Sweden)

    Casas Veronica

    2011-07-01

    Full Text Available Abstract Background Contamination from fecal bacteria in recreational waters is a major health concern since bacteria capable of causing human disease can be found in animal feces. The Dog Beach area of Ocean Beach in San Diego, California is a beach prone to closures due to high levels of fecal indicator bacteria (FIB. A potential source of these FIB could be the canine feces left behind by owners who do not clean up after their pets. We tested this hypothesis by screening the DNA isolated from canine feces for the bacteriophage-encoded stx gene normally found in the virulent strains of the fecal bacterium Escherichia coli. Results Twenty canine fecal samples were collected, processed for total and bacterial fraction DNA, and screened by PCR for the stx gene. The stx gene was detected in the total and bacterial fraction DNA of one fecal sample. Bacterial isolates were then cultivated from the stx-positive fecal sample. Eighty nine of these canine fecal bacterial isolates were screened by PCR for the stx gene. The stx gene was detected in five of these isolates. Sequencing and phylogenetic analyses of 16S rRNA gene PCR products from the canine fecal bacterial isolates indicated that they were Enterococcus and not E. coli. Conclusions The bacteriophage-encoded stx gene was found in multiple species of bacteria cultivated from canine fecal samples gathered at the shoreline of the Dog Beach area of Ocean Beach in San Diego, California. The canine fecal bacteria carrying the stx gene were not the typical E. coli host and were instead identified through phylogenetic analyses as Enterococcus. This suggests a large degree of horizontal gene transfer of exotoxin genes in recreational waters.

  15. Encoding and analyzing aerial imagery using geospatial semantic graphs

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Jean-Paul; Strip, David R.; McLendon, William Clarence,; Parekh, Ojas D.; Diegert, Carl F.; Martin, Shawn Bryan; Rintoul, Mark Daniel

    2014-02-01

    While collection capabilities have yielded an ever-increasing volume of aerial imagery, analytic techniques for identifying patterns in and extracting relevant information from this data have seriously lagged. The vast majority of imagery is never examined, due to a combination of the limited bandwidth of human analysts and limitations of existing analysis tools. In this report, we describe an alternative, novel approach to both encoding and analyzing aerial imagery, using the concept of a geospatial semantic graph. The advantages of our approach are twofold. First, intuitive templates can be easily specified in terms of the domain language in which an analyst converses. These templates can be used to automatically and efficiently search large graph databases, for specific patterns of interest. Second, unsupervised machine learning techniques can be applied to automatically identify patterns in the graph databases, exposing recurring motifs in imagery. We illustrate our approach using real-world data for Anne Arundel County, Maryland, and compare the performance of our approach to that of an expert human analyst.

  16. Neuronal adaptation, novelty detection and regularity encoding in audition

    Directory of Open Access Journals (Sweden)

    Manuel S. Malmierca

    2014-06-01

    Full Text Available The ability to detect unexpected stimuli in the acoustic environment and determine their behavioral relevance to plan an appropriate reaction is critical for survival. This perspective article brings together several viewpoints and discusses current advances in understanding the mechanisms the auditory system implements to extract relevant information from incoming inputs and to identify unexpected events. This extraordinary sensitivity relies on the capacity to codify acoustic regularities, and is based on encoding properties that are present as early as the auditory midbrain. We review state-of-the-art studies on the processing of stimulus changes using non-invasive methods to record the summed electrical potentials in humans, and those that examine single-neuron responses in animal models. Human data will be based on mismatch negativity (MMN and enhanced middle latency responses (MLR. Animal data will be based on the activity of single neurons at the cortical and subcortical levels, relating selective responses to novel stimuli to the MMN and to stimulus-specific neural adaptation (SSA. Theoretical models of the neural mechanisms that could create SSA and novelty responses will also be discussed.

  17. Mnemons: encoding memory by protein super-assembly

    Directory of Open Access Journals (Sweden)

    Fabrice Caudron

    2015-02-01

    Full Text Available Memory is mainly understood as the recollection of past events. The human brain and its simplest unit, the synapse, belong to the places in which such memories are physically stored. From an experimental point of view, memory can be tested in humans by recall. However, in other organisms, memory is reflected in its use by individuals to learn about and adapt their behavior to their environment. Under this criterion, even unicellular organisms are able to learn from their environments and show the ability to adapt their responses to repeating stimuli. This indicates that they are able to keep track of their histories and use these traces to elaborate adapted responses, making these traces akin to memory encodings. Understanding these phenomena may even help us to dissect part of the rather complex molecular orchestration happening in our synapses. When exposed unsuccessfully to mating pheromone, i.e. when mating does not happen, budding yeast cells become refractory to the mating signal. This refractory state is restricted to the mother cell and not inherited by the daughter cells, even though it is stable for most if not the entire life span of the mother cell. Interestingly, both stability and asymmetric segregation of the acquired state are explained by the molecular mechanism underlying its establishment, which shows important analogies and distinctions to prions. Here we discuss these similarities and differences

  18. Effortful retrieval reduces hippocampal activity and impairs incidental encoding.

    Science.gov (United States)

    Reas, Emilie T; Brewer, James B

    2013-05-01

    Functional imaging studies frequently report that the hippocampus is engaged by successful episodic memory retrieval. However, considering that concurrent encoding of the background environment occurs during retrieval and influences medial temporal lobe activity, it is plausible that hippocampal encoding functions are reduced with increased attentional engagement during effortful retrieval. Expanding upon evidence that retrieval efforts suppress activity in hippocampal regions implicated in encoding, this study examines the influence of retrieval effort on encoding performance and the interactive effects of encoding and retrieval on hippocampal and neocortical activity. Functional magnetic resonance imaging was conducted while subjects performed a word recognition task with incidental picture encoding. Both lower memory strength and increased search duration were associated with encoding failure and reduced hippocampal and default network activity. Activity in the anterior hippocampus tracked encoding, which was more strongly deactivated when incidental encoding was unsuccessful. These findings highlight potential contributions from background encoding processes to hippocampal activations during neuroimaging studies of episodic memory retrieval. Copyright © 2013 Wiley Periodicals, Inc.

  19. A New Methodology for Vibration Error Compensation of Optical Encoders

    OpenAIRE

    Mariano Artes; Jesus Lopez

    2012-01-01

    Optical encoders are sensors based on grating interference patterns. Tolerances inherent to the manufacturing process can induce errors in the position accuracy as the measurement signals stand apart from the ideal conditions. In case the encoder is working under vibrations, the oscillating movement of the scanning head is registered by the encoder system as a displacement, introducing an error into the counter to be added up to graduation, system and installation errors. Behavior improvement...

  20. Dynamical encoding of looming, receding, and focussing

    Science.gov (United States)

    Longtin, Andre; Clarke, Stephen Elisha; Maler, Leonard; CenterNeural Dynamics Collaboration

    This talk will discuss a non-conventional neural coding task that may apply more broadly to many senses in higher vertebrates. We ask whether and how a non-visual sensory system can focus on an object. We present recent experimental and modeling work that shows how the early sensory circuitry of electric sense can perform such neuronal focusing that is manifested behaviorally. This sense is the main one used by weakly electric fish to navigate, locate prey and communicate in the murky waters of their natural habitat. We show that there is a distance at which the Fisher information of a neuron's response to a looming and receding object is maximized, and that this distance corresponds to a behaviorally relevant one chosen by these animals. Strikingly, this maximum occurs at a bifurcation between tonic firing and bursting. We further discuss how the invariance of this distance to signal attributes can arise, a process that first involves power-law spike frequency adaptation. The talk will also highlight the importance of expanding the classic dual neural encoding of contrast using ON and OFF cells in the context of looming and receding stimuli. The authors acknowledge support from CIHR and NSERC.

  1. Encoding pitch contours using current steering.

    Science.gov (United States)

    Luo, Xin; Landsberger, David M; Padilla, Monica; Srinivasan, Arthi G

    2010-09-01

    This study investigated cochlear implant (CI) users' ability to perceive pitch cues from time-varying virtual channels (VCs) to identify pitch contours. Seven CI users were tested on apical, medial, and basal electrode pairs with stimulus durations from 100 to 1000 ms. In one stimulus set, 9 pitch contours were created by steering current between the component electrodes and the VC halfway between the electrodes. Another stimulus set only contained 3 pitch contours (flat, falling, and rising). VC discrimination was also tested on the same electrodes. The total current level of dual-electrode stimuli was linearly interpolated between those of single-electrode stimuli to minimize loudness changes. The results showed that pitch contour identification (PCI) scores were similar across electrode locations, and significantly improved at longer durations. For durations longer than 300 ms, 2 subjects had nearly perfect 9-contour identification, and 5 subjects perfectly identified the 3 basic contours. Both PCI and VC discrimination varied greatly across subjects. Cumulative d(') values for VC discrimination were significantly correlated with 100-, 200-, and 500-ms PCI scores. These results verify the feasibility of encoding pitch contours using current steering, and suggest that identification of such pitch contours strongly relies on CI users' sensitivity to VCs.

  2. Temporal encoding in a nervous system.

    Directory of Open Access Journals (Sweden)

    Zane N Aldworth

    2011-05-01

    Full Text Available We examined the extent to which temporal encoding may be implemented by single neurons in the cercal sensory system of the house cricket Acheta domesticus. We found that these neurons exhibit a greater-than-expected coding capacity, due in part to an increased precision in brief patterns of action potentials. We developed linear and non-linear models for decoding the activity of these neurons. We found that the stimuli associated with short-interval patterns of spikes (ISIs of 8 ms or less could be predicted better by second-order models as compared to linear models. Finally, we characterized the difference between these linear and second-order models in a low-dimensional subspace, and showed that modification of the linear models along only a few dimensions improved their predictive power to parity with the second order models. Together these results show that single neurons are capable of using temporal patterns of spikes as fundamental symbols in their neural code, and that they communicate specific stimulus distributions to subsequent neural structures.

  3. Auditory-motor coupling affects phonetic encoding.

    Science.gov (United States)

    Schmidt-Kassow, Maren; Thöne, Katharina; Kaiser, Jochen

    2017-11-27

    Recent studies have shown that moving in synchrony with auditory stimuli boosts attention allocation and verbal learning. Furthermore rhythmic tones are processed more efficiently than temporally random tones ('timing effect'), and this effect is increased when participants actively synchronize their motor performance with the rhythm of the tones, resulting in auditory-motor synchronization. Here, we investigated whether this applies also to sequences of linguistic stimuli (syllables). We compared temporally irregular syllable sequences with two temporally regular conditions where either the interval between syllable onsets (stimulus onset asynchrony, SOA) or the interval between the syllables' vowel onsets was kept constant. Entrainment to the stimulus presentation frequency (1 Hz) and event-related potentials were assessed in 24 adults who were instructed to detect pre-defined deviant syllables while they either pedaled or sat still on a stationary exercise bike. We found larger 1 Hz entrainment and P300 amplitudes for the SOA presentation during motor activity. Furthermore, the magnitude of the P300 component correlated with the motor variability in the SOA condition and 1 Hz entrainment, while in turn 1 Hz entrainment correlated with auditory-motor synchronization performance. These findings demonstrate that acute auditory-motor coupling facilitates phonetic encoding. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Comparative genomics of Shiga toxin encoding bacteriophages

    Directory of Open Access Journals (Sweden)

    Smith Darren L

    2012-07-01

    Full Text Available Abstract Background Stx bacteriophages are responsible for driving the dissemination of Stx toxin genes (stx across their bacterial host range. Lysogens carrying Stx phages can cause severe, life-threatening disease and Stx toxin is an integral virulence factor. The Stx-bacteriophage vB_EcoP-24B, commonly referred to as Ф24B, is capable of multiply infecting a single bacterial host cell at a high frequency, with secondary infection increasing the rate at which subsequent bacteriophage infections can occur. This is biologically unusual, therefore determining the genomic content and context of Ф24B compared to other lambdoid Stx phages is important to understanding the factors controlling this phenomenon and determining whether they occur in other Stx phages. Results The genome of the Stx2 encoding phage, Ф24B was sequenced and annotated. The genomic organisation and general features are similar to other sequenced Stx bacteriophages induced from Enterohaemorrhagic Escherichia coli (EHEC, however Ф24B possesses significant regions of heterogeneity, with implications for phage biology and behaviour. The Ф24B genome was compared to other sequenced Stx phages and the archetypal lambdoid phage, lambda, using the Circos genome comparison tool and a PCR-based multi-loci comparison system. Conclusions The data support the hypothesis that Stx phages are mosaic, and recombination events between the host, phages and their remnants within the same infected bacterial cell will continue to drive the evolution of Stx phage variants and the subsequent dissemination of shigatoxigenic potential.

  5. Two-layer contractive encodings for learning stable nonlinear features.

    Science.gov (United States)

    Schulz, Hannes; Cho, Kyunghyun; Raiko, Tapani; Behnke, Sven

    2015-04-01

    Unsupervised learning of feature hierarchies is often a good strategy to initialize deep architectures for supervised learning. Most existing deep learning methods build these feature hierarchies layer by layer in a greedy fashion using either auto-encoders or restricted Boltzmann machines. Both yield encoders which compute linear projections of input followed by a smooth thresholding function. In this work, we demonstrate that these encoders fail to find stable features when the required computation is in the exclusive-or class. To overcome this limitation, we propose a two-layer encoder which is less restricted in the type of features it can learn. The proposed encoder is regularized by an extension of previous work on contractive regularization. This proposed two-layer contractive encoder potentially poses a more difficult optimization problem, and we further propose to linearly transform hidden neurons of the encoder to make learning easier. We demonstrate the advantages of the two-layer encoders qualitatively on artificially constructed datasets as well as commonly used benchmark datasets. We also conduct experiments on a semi-supervised learning task and show the benefits of the proposed two-layer encoders trained with the linear transformation of perceptrons. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Three-dimensional MRI with independent slab excitation and encoding.

    Science.gov (United States)

    Eissa, Amir; Wilman, Alan H

    2012-02-01

    Three-dimensional MRI is typically performed with the same orientation for radiofrequency slab excitation and slab select phase encoding. We introduce independent slab excitation and encoding to create a new degree of freedom in three-dimensional MRI, which is the angular relationship between the prescribed excitation volume and the voxel encoding grid. By separating the directions of slab excitation and slab phase encoding, the independent slab excitation and encoding method allows choice of optimal voxel orientation, while maintaining volume excitation based on anatomic landmarks. The method requires simple pulse sequence modifications and uses standard image reconstruction followed by removal of aliasing and image reformatting. The independent slab excitation and encoding method enables arbitrary oblique angle imaging using fixed voxel encoding gradients to maintain similar eddy current, concomitant field, or magnetic dipole effects independent of the oblique angle of excitation. We apply independent slab excitation and encoding to phase and susceptibility-weighted imaging using fixed voxel encoding aligned with the main magnetic field to demonstrate its value in both standardizing and improving image contrast, when using arbitrary oblique imaging volumes. Copyright © 2011 Wiley Periodicals, Inc.

  7. Method for high-speed Manchester encoded optical signal generation

    DEFF Research Database (Denmark)

    Zhang, Jianfeng; Chi, Nan; Holm-Nielsen, Pablo Villanueva

    2004-01-01

    A method for high-speed Manchester encoded optical signal generation is proposed and demonstrated with a specially configured electro-optical modulator. A 10 Gb/s Manchester encoded optical signal was generated, and its bit-error-ratio (BER) performance was evaluated.......A method for high-speed Manchester encoded optical signal generation is proposed and demonstrated with a specially configured electro-optical modulator. A 10 Gb/s Manchester encoded optical signal was generated, and its bit-error-ratio (BER) performance was evaluated....

  8. Exploring the influence of encoding format on subsequent memory.

    Science.gov (United States)

    Turney, Indira C; Dennis, Nancy A; Maillet, David; Rajah, M Natasha

    2017-05-01

    Distinctive encoding is greatly influenced by gist-based processes and has been shown to suffer when highly similar items are presented in close succession. Thus, elucidating the mechanisms underlying how presentation format affects gist processing is essential in determining the factors that influence these encoding processes. The current study utilised multivariate partial least squares (PLS) analysis to identify encoding networks directly associated with retrieval performance in a blocked and intermixed presentation condition. Subsequent memory analysis for successfully encoded items indicated no significant differences between reaction time and retrieval performance and presentation format. Despite no significant behavioural differences, behaviour PLS revealed differences in brain-behaviour correlations and mean condition activity in brain regions associated with gist-based vs. distinctive encoding. Specifically, the intermixed format encouraged more distinctive encoding, showing increased activation of regions associated with strategy use and visual processing (e.g., frontal and visual cortices, respectively). Alternatively, the blocked format exhibited increased gist-based processes, accompanied by increased activity in the right inferior frontal gyrus. Together, results suggest that the sequence that information is presented during encoding affects the degree to which distinctive encoding is engaged. These findings extend our understanding of the Fuzzy Trace Theory and the role of presentation format on encoding processes.

  9. Source-constrained retrieval influences the encoding of new information.

    Science.gov (United States)

    Danckert, Stacey L; MacLeod, Colin M; Fernandes, Myra A

    2011-11-01

    Jacoby, Shimizu, Daniels, and Rhodes (Psychonomic Bulletin & Review, 12, 852-857, 2005) showed that new words presented as foils among a list of old words that had been deeply encoded were themselves subsequently better recognized than new words presented as foils among a list of old words that had been shallowly encoded. In Experiment 1, by substituting a deep-versus-shallow imagery manipulation for the levels-of-processing manipulation, we demonstrated that the effect is robust and that it generalizes, also occurring with a different type of encoding. In Experiment 2, we provided more direct evidence for context-related encoding during tests of deeply encoded words, showing enhanced priming for foils presented among deeply encoded targets when participants made the same deep-encoding judgments on those items as had been made on the targets during study. In Experiment 3, we established that the findings from Experiment 2 are restricted to this specific deep judgment task and are not a general consequence of these foils being associated with deeply encoded items. These findings provide support for the source-constrained retrieval hypothesis of Jacoby, Shimizu, Daniels, and Rhodes: New information can be influenced by how surrounding items are encoded and retrieved, as long as the surrounding items recruit a coherent mode of processing.

  10. What is a "good" encoding of guarded choice?

    DEFF Research Database (Denmark)

    Nestmann, Uwe

    2000-01-01

    into the latter that preserves divergence-freedom and symmetries. This paper argues that there are nevertheless "good" encodings between these calculi. In detail, we present a series of encodings for languages with (1) input-guarded choice, (2) both input and output-guarded choice, and (3) mixed-guarded choice......, and investigate them with respect to compositionality and divergence-freedom. The first and second encoding satisfy all of the above criteria, but various "good" candidates for the third encoding-inspired by an existing distributed implementation-invalidate one or the other criterion, While essentially confirming...

  11. Enterotoxin-encoding genes in Staphylococcus spp. from bulk goat milk.

    Science.gov (United States)

    Lyra, Daniele G; Sousa, Francisca G C; Borges, Maria F; Givisiez, Patrícia E N; Queiroga, Rita C R E; Souza, Evandro L; Gebreyes, Wondwossen A; Oliveira, Celso J B

    2013-02-01

    Although Staphylococcus aureus has been implicated as the main Staphylococcus species causing human food poisoning, recent studies have shown that coagulase-negative Staphylococcus could also harbor enterotoxin-encoding genes. Such organisms are often present in goat milk and are the most important mastitis-causing agents. Therefore, this study aimed to investigate the occurrence of enterotoxin-encoding genes among coagulase-positive (CoPS) and coagulase-negative (CoNS) staphylococci isolated from raw goat milk produced in the semi-arid region of Paraiba, the most important region for goat milk production in Brazil. Enterotoxin-encoding genes were screened in 74 staphylococci isolates (30 CoPS and 44 CoNS) by polymerase chain reaction targeting the genes sea, seb, sec, sed, see, seg, seh, and sei. Enterotoxin-encoding genes were found in nine (12.2%) isolates, and four different genes (sea, sec, seg, and sei) were identified amongst the isolates. The most frequent genes were seg and sei, which were often found simultaneously in 44.5% of the isolates. The gene sec was the most frequent among the classical genes, and sea was found only in one isolate. All CoPS isolates (n=7) harboring enterotoxigenic genes were identified as S. aureus. The two coagulase-negative isolates were S. haemolyticus and S. hominis subsp. hominis and they harbored sei and sec genes, respectively. A higher frequency of enterotoxin-encoding genes was observed amongst CoPS (23.3%) than CoNS (4.5%) isolates (p<0.05), reinforcing the importance of S. aureus as a potential foodborne agent. However, the potential risk posed by CoNS in goat milk should not be ignored because it has a higher occurrence in goat milk and enterotoxin-encoding genes were detected in some isolates.

  12. Led into temptation? Rewarding brand logos bias the neural encoding of incidental economic decisions.

    Directory of Open Access Journals (Sweden)

    Carsten Murawski

    Full Text Available Human decision-making is driven by subjective values assigned to alternative choice options. These valuations are based on reward cues. It is unknown, however, whether complex reward cues, such as brand logos, may bias the neural encoding of subjective value in unrelated decisions. In this functional magnetic resonance imaging (fMRI study, we subliminally presented brand logos preceding intertemporal choices. We demonstrated that priming biased participants' preferences towards more immediate rewards in the subsequent temporal discounting task. This was associated with modulations of the neural encoding of subjective values of choice options in a network of brain regions, including but not restricted to medial prefrontal cortex. Our findings demonstrate the general susceptibility of the human decision making system to apparently incidental contextual information. We conclude that the brain incorporates seemingly unrelated value information that modifies decision making outside the decision-maker's awareness.

  13. Led into temptation? Rewarding brand logos bias the neural encoding of incidental economic decisions.

    Science.gov (United States)

    Murawski, Carsten; Harris, Philip G; Bode, Stefan; Domínguez D, Juan F; Egan, Gary F

    2012-01-01

    Human decision-making is driven by subjective values assigned to alternative choice options. These valuations are based on reward cues. It is unknown, however, whether complex reward cues, such as brand logos, may bias the neural encoding of subjective value in unrelated decisions. In this functional magnetic resonance imaging (fMRI) study, we subliminally presented brand logos preceding intertemporal choices. We demonstrated that priming biased participants' preferences towards more immediate rewards in the subsequent temporal discounting task. This was associated with modulations of the neural encoding of subjective values of choice options in a network of brain regions, including but not restricted to medial prefrontal cortex. Our findings demonstrate the general susceptibility of the human decision making system to apparently incidental contextual information. We conclude that the brain incorporates seemingly unrelated value information that modifies decision making outside the decision-maker's awareness.

  14. The feedback related negativity encodes both social rejection and explicit social expectancy violation

    OpenAIRE

    Rongjun eYu; Sai eSun

    2014-01-01

    Humans consistently make predictions about the valence of future events and use feedback to validate initial predictions. While the valence of outcomes provides utilitarian information, the accuracy of predictions is crucial for future performance adjustment. The feedback related negativity (FRN), identified as a marker of reward prediction error, possibly encodes social rejection and social prediction error. To test this possibility, we used event related potential (ERP) techniques combined ...

  15. Molecular evolution and expression profile of the chemerine encoding gene RARRES2 in baboon and chimpanzee

    OpenAIRE

    González Alvarez, Rafael; Garza Rodríguez, María; DELGADO ENCISO, IVÁN; Treviño Alvarado, Víctor M.; Canales del Castillo, Ricardo.; Martínez De Villarreal, Laura E.; Lugo Trampe, Ángel; Tejero, María E.; Schlabritz Loutsevitch, Natalia E.; Rocha Pizaña, María; Cole, Shelley A.; Reséndez Pérez, Diana; Moises Alvarez, Mario; Comuzzie, Anthony G.; Barrera Saldaña, Hugo A.

    2015-01-01

    Abstract Background Chemerin, encoded by the retinoic acid receptor responder 2 (RARRES2) gene is an adipocytesecreted protein with autocrine/paracrine functions in adipose tissue, metabolism and inflammation with a recently described function in vascular tone regulation, liver, steatosis, etc. This molecule is believed to represent a critical endocrine signal linking obesity to diabetes. There are no data available regarding evolution of RARRES2 in non-human primates and great apes. Expressi...

  16. What physics is encoded in Maxwell's equations?

    Science.gov (United States)

    Kosyakov, B. P.

    2005-08-01

    We reconstruct Maxwell's equations showing that a major part of the information encoded in them is taken from topological properties of spacetime, and the residual information, divorced from geometry, which represents the physical contents of electrodynamics, %these equations, translates into four assumptions:(i) locality; (ii) linearity; %of the dynamical law; (iii) identity of the charge-source and the charge-coupling; and (iv) lack of magnetic monopoles. However, a closer inspection of symmetries peculiar to electrodynamics shows that these assumptions may have much to do with geometry. Maxwell's equations tell us that we live in a three-dimensional space with trivial (Euclidean) topology; time is a one-dimensional unidirectional and noncompact continuum; and spacetime is endowed with a light cone structure readable in the conformal invariance of electrodynamics. Our geometric feelings relate to the fact that Maxwell's equations are built in our brain, hence our space and time orientation, our visualization and imagination capabilities are ensured by perpetual instinctive processes of solving Maxwell's equations. People are usually agree in their observations of angle relations, for example, a right angle is never confused with an angle slightly different from right. By contrast, we may disagree in metric issues, say, a colour-blind person finds the light wave lengths quite different from those found by a man with normal vision. This lends support to the view that conformal invariance of Maxwell's equations is responsible for producing our notion of space. Assuming that our geometric intuition is guided by our innate realization of electrodynamical laws, some abnormal mental phenomena, such as clairvoyance, may have a rational explanation.

  17. Olfactory bulb encoding during learning under anaesthesia

    Directory of Open Access Journals (Sweden)

    Alister U Nicol

    2014-06-01

    Full Text Available Neural plasticity changes within the olfactory bulb are important for olfactory learning, although how neural encoding changes support new associations with specific odours and whether they can be investigated under anaesthesia, remain unclear. Using the social transmission of food preference olfactory learning paradigm in mice in conjunction with in vivo microdialysis sampling we have shown firstly that a learned preference for a scented food odour smelled on the breath of a demonstrator animal occurs under isofluorane anaesthesia. Furthermore, subsequent exposure to this cued odour under anaesthesia promotes the same pattern of increased release of glutamate and GABA in the olfactory bulb as previously found in conscious animals following olfactory learning, and evoked GABA release was positively correlated with the amount of scented food eaten. In a second experiment, multiarray (24 electrodes electrophysiological recordings were made from olfactory bulb mitral cells under isofluorane anaesthesia before, during and after a novel scented food odour was paired with carbon disulfide. Results showed significant increases in overall firing frequency to the cued-odour during and after learning and decreases in response to an uncued odour. Analysis of patterns of changes in individual neurons revealed that a substantial proportion (>50% of them significantly changed their response profiles during and after learning with most of those previously inhibited becoming excited. A large number of cells exhibiting no response to the odours prior to learning were either excited or inhibited afterwards. With the uncued odour many previously responsive cells became unresponsive or inhibited. Learning associated changes only occurred in the posterior part of the olfactory bulb. Thus olfactory learning under anaesthesia promotes extensive, but spatially distinct, changes in mitral cell networks to both cued and uncued odours as well as in evoked glutamate and

  18. Encoding Cortical Dynamics in Sparse Features

    Directory of Open Access Journals (Sweden)

    Sheraz eKhan

    2014-05-01

    Full Text Available Distributed cortical solutions of magnetoencephalography (MEG and electroencephalography (EEG exhibit complex spatial and temporal dynamics. The extraction of patterns of interest and dynamic features from these cortical signals has so far relied on the expertise of investigators. There is a definite need in both clinical and neuroscience research for a method that will extract critical features from high-dimensional neuroimaging data in an automatic fashion. We have previously demonstrated the use of optical flow techniques for evaluating the kinematic properties of motion field projected on non-flat manifolds like in a cortical surface. We have further extended this framework to automatically detect features in the optical flow vector field by using the modified and extended 2-Riemannian Helmholtz Hodge Decomposition (HHD. Here, we applied these mathematical models on simulation and MEG data recorded from a healthy individual during a somatosensory experiment and an epilepsy pediatric patient during sleep. We tested whether our technique can automatically extract salient dynamical features of cortical activity. Simulation results indicated that we can precisely reproduce the simulated cortical dynamics with HHD; encode them in sparse features and represent the propagation of brain activity between distinct cortical areas. Using HHD, we decoded the somatosensory N20 component into two HHD features and represented the dynamics of brain activity as a traveling source between two primary somatosensory regions. In the epilepsy patient, we displayed the propagation of the epileptiform activity around the margins of a brain lesion. Our findings indicate that HHD measures computed from cortical dynamics can: (i quantitatively access the cortical dynamics in both healthy and disease brain in terms of sparse features and dynamic brain activity propagation between distinct cortical areas, and (ii facilitate a reproducible, automated analysis of MEG

  19. A single Danio rerio hars gene encodes both cytoplasmic and mitochondrial histidyl-tRNA synthetases.

    Directory of Open Access Journals (Sweden)

    Ashley L Waldron

    Full Text Available Histidyl tRNA Synthetase (HARS is a member of the aminoacyl tRNA synthetase (ARS family of enzymes. This family of 20 enzymes is responsible for attaching specific amino acids to their cognate tRNA molecules, a critical step in protein synthesis. However, recent work highlighting a growing number of associations between ARS genes and diverse human diseases raises the possibility of new and unexpected functions in this ancient enzyme family. For example, mutations in HARS have been linked to two different neurological disorders, Usher Syndrome Type IIIB and Charcot Marie Tooth peripheral neuropathy. These connections raise the possibility of previously undiscovered roles for HARS in metazoan development, with alterations in these functions leading to complex diseases. In an attempt to establish Danio rerio as a model for studying HARS functions in human disease, we characterized the Danio rerio hars gene and compared it to that of human HARS. Using a combination of bioinformatics, molecular biology, and cellular approaches, we found that while the human genome encodes separate genes for cytoplasmic and mitochondrial HARS protein, the Danio rerio genome encodes a single hars gene which undergoes alternative splicing to produce the respective cytoplasmic and mitochondrial versions of Hars. Nevertheless, while the HARS genes of humans and Danio differ significantly at the genomic level, we found that they are still highly conserved at the amino acid level, underscoring the potential utility of Danio rerio as a model organism for investigating HARS function and its link to human diseases in vivo.

  20. Encoding and decoding models in cognitive electrophysiology

    NARCIS (Netherlands)

    Holdgraf, C.R.; Rieger, J.W.; Micheli, C.; Martin, S.; Knight, R.T.; Theunissen, F.E.

    2017-01-01

    Cognitive neuroscience has seen rapid growth in the size and complexity of data recorded from the human brain as well as in the computational tools available to analyze this data. This data explosion has resulted in an increased use of multivariate, model-based methods for asking neuroscience

  1. Effortful Retrieval Reduces Hippocampal Activity and Impairs Incidental Encoding

    OpenAIRE

    Reas, Emilie T.; Brewer, James B.

    2013-01-01

    Functional imaging studies frequently report that the hippocampus is engaged by successful episodic memory retrieval. However, considering that concurrent encoding of the background environment occurs during retrieval and influences medial temporal lobe activity, it is plausible that hippocampal encoding functions are reduced with increased attentional engagement during effortful retrieval. Expanding upon evidence that retrieval efforts suppress activity in hippocampal regions implicated in e...

  2. Variation in the strength of lexical encoding across dialects

    NARCIS (Netherlands)

    Clapper, Cynthia G.; Tamati, Terrin N.; Pierrehumbert, Janet B.

    Lexical processing is slower and less accurate for unfamiliar dialects than familiar dialects. The goal of the current study was to test the hypothesis that dialect differences in lexical processing reflect differences in lexical encoding strength across dialects. Lexical encoding (i.e., updating

  3. On The Designed And Constructed Feedback Shift-Register Encoder

    African Journals Online (AJOL)

    Information transmission in noisy channels can be achieved with vanishingly small probability of error by proper coding of the information as long as the encoding rate is less than the channel capacity. An encoder capable of cyclical shifting of data, and which can therefore be used for Bose-Chaudhuri and Hocquenghem ...

  4. Hierarchical Encoding of Behavior: Translating Perception into Action

    Science.gov (United States)

    Hard, Bridgette Martin; Lozano, Sandra C.; Tversky, Barbara

    2006-01-01

    People encode goal-directed behaviors, such as assembling an object, by segmenting them into discrete actions, organized as goal-subgoal hierarchies. Does hierarchical encoding contribute to observational learning? Participants in 3 experiments segmented an object assembly task into coarse and fine units of action and later performed it…

  5. Practical encoders for controlling nonlinear systems under communication constraints

    NARCIS (Netherlands)

    Persis, Claudio De; Nešić, Dragan

    2008-01-01

    We introduce a new class of dynamic encoders for continuous-time nonlinear control systems which update their parameters only at discrete times. We prove that the information reconstructed from the encoded feedback can be used to deliver a piece-wise constant control law which yields semi-global

  6. Multiple channel secure communication using chaotic system encoding

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.L.

    1996-12-31

    fA new method to encrypt signals using chaotic systems has been developed that offers benefits over conventional chaotic encryption methods. The method simultaneously encodes multiple plaintext streams using a chaotic system; a key is required to extract the plaintext from the chaotic cipertext. A working prototype demonstrates feasibility of the method by simultaneously encoding and decoding multiple audio signals using electrical circuits.

  7. Polypeptides having laccase activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ye; Tang, Lan; Duan, Junxin; Zhang, Yu

    2017-08-22

    The present invention relates to isolated polypeptides having laccase activity and polynucleotides encoding the polypeptides and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  8. Impact of anxiety on prefrontal cortex encoding of cognitive flexibility.

    Science.gov (United States)

    Park, Junchol; Moghaddam, Bita

    2017-03-14

    Anxiety often is studied as a stand-alone construct in laboratory models. But in the context of coping with real-life anxiety, its negative impacts extend beyond aversive feelings and involve disruptions in ongoing goal-directed behaviors and cognitive functioning. Critical examples of cognitive constructs affected by anxiety are cognitive flexibility and decision making. In particular, anxiety impedes the ability to shift flexibly between strategies in response to changes in task demands, as well as the ability to maintain a strategy in the presence of distractors. The brain region most critically involved in behavioral flexibility is the prefrontal cortex (PFC), but little is known about how anxiety impacts PFC encoding of internal and external events that are critical for flexible behavior. Here we review animal and human neurophysiological and neuroimaging studies implicating PFC neural processing in anxiety-induced deficits in cognitive flexibility. We then suggest experimental and analytical approaches for future studies to gain a better mechanistic understanding of impaired cognitive inflexibility in anxiety and related disorders. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Convolutional over Recurrent Encoder for Neural Machine Translation

    Directory of Open Access Journals (Sweden)

    Dakwale Praveen

    2017-06-01

    Full Text Available Neural machine translation is a recently proposed approach which has shown competitive results to traditional MT approaches. Standard neural MT is an end-to-end neural network where the source sentence is encoded by a recurrent neural network (RNN called encoder and the target words are predicted using another RNN known as decoder. Recently, various models have been proposed which replace the RNN encoder with a convolutional neural network (CNN. In this paper, we propose to augment the standard RNN encoder in NMT with additional convolutional layers in order to capture wider context in the encoder output. Experiments on English to German translation demonstrate that our approach can achieve significant improvements over a standard RNN-based baseline.

  10. Review of Random Phase Encoding in Volume Holographic Storage

    Directory of Open Access Journals (Sweden)

    Wei-Chia Su

    2012-09-01

    Full Text Available Random phase encoding is a unique technique for volume hologram which can be applied to various applications such as holographic multiplexing storage, image encryption, and optical sensing. In this review article, we first review and discuss diffraction selectivity of random phase encoding in volume holograms, which is the most important parameter related to multiplexing capacity of volume holographic storage. We then review an image encryption system based on random phase encoding. The alignment of phase key for decryption of the encoded image stored in holographic memory is analyzed and discussed. In the latter part of the review, an all-optical sensing system implemented by random phase encoding and holographic interconnection is presented.

  11. Principles of metadata organization at the ENCODE data coordination center.

    Science.gov (United States)

    Hong, Eurie L; Sloan, Cricket A; Chan, Esther T; Davidson, Jean M; Malladi, Venkat S; Strattan, J Seth; Hitz, Benjamin C; Gabdank, Idan; Narayanan, Aditi K; Ho, Marcus; Lee, Brian T; Rowe, Laurence D; Dreszer, Timothy R; Roe, Greg R; Podduturi, Nikhil R; Tanaka, Forrest; Hilton, Jason A; Cherry, J Michael

    2016-01-01

    The Encyclopedia of DNA Elements (ENCODE) Data Coordinating Center (DCC) is responsible for organizing, describing and providing access to the diverse data generated by the ENCODE project. The description of these data, known as metadata, includes the biological sample used as input, the protocols and assays performed on these samples, the data files generated from the results and the computational methods used to analyze the data. Here, we outline the principles and philosophy used to define the ENCODE metadata in order to create a metadata standard that can be applied to diverse assays and multiple genomic projects. In addition, we present how the data are validated and used by the ENCODE DCC in creating the ENCODE Portal (https://www.encodeproject.org/). Database URL: www.encodeproject.org. © The Author(s) 2016. Published by Oxford University Press.

  12. The orphan G-protein-coupled receptor-encoding gene V28 is closely related to genes for chemokine receptors and is expressed in lymphoid and neural tissues.

    Science.gov (United States)

    Raport, C J; Schweickart, V L; Eddy, R L; Shows, T B; Gray, P W

    1995-10-03

    A polymerase chain reaction (PCR) strategy with degenerate primers was used to identify novel G-protein-coupled receptor-encoding genes from human genomic DNA. One of the isolated clones, termed V28, showed high sequence similarity to the genes encoding human chemokine receptors for monocyte chemoattractant protein 1 (MCP-1) and macrophage inflammatory protein 1 alpha (MIP-1 alpha)/RANTES, and to the rat orphan receptor-encoding gene RBS11. When RNA was analyzed by Northern blot, V28 was found to be most highly expressed in neural and lymphoid tissues. Myeloid cell lines, particularly THP.1 cells, showed especially high expression of V28. We have mapped V28 to human chromosome 3p21-3pter, near the MIP-1 alpha/RANTES receptor-encoding gene.

  13. Characteristic and intermingled neocortical circuits encode different visual object discriminations.

    Science.gov (United States)

    Zhang, Guo-Rong; Zhao, Hua; Cook, Nathan; Svestka, Michael; Choi, Eui M; Jan, Mary; Cook, Robert G; Geller, Alfred I

    2017-07-28

    Synaptic plasticity and neural network theories hypothesize that the essential information for advanced cognitive tasks is encoded in specific circuits and neurons within distributed neocortical networks. However, these circuits are incompletely characterized, and we do not know if a specific discrimination is encoded in characteristic circuits among multiple animals. Here, we determined the spatial distribution of active neurons for a circuit that encodes some of the essential information for a cognitive task. We genetically activated protein kinase C pathways in several hundred spatially-grouped glutamatergic and GABAergic neurons in rat postrhinal cortex, a multimodal associative area that is part of a distributed circuit that encodes visual object discriminations. We previously established that this intervention enhances accuracy for specific discriminations. Moreover, the genetically-modified, local circuit in POR cortex encodes some of the essential information, and this local circuit is preferentially activated during performance, as shown by activity-dependent gene imaging. Here, we mapped the positions of the active neurons, which revealed that two image sets are encoded in characteristic and different circuits. While characteristic circuits are known to process sensory information, in sensory areas, this is the first demonstration that characteristic circuits encode specific discriminations, in a multimodal associative area. Further, the circuits encoding the two image sets are intermingled, and likely overlapping, enabling efficient encoding. Consistent with reconsolidation theories, intermingled and overlapping encoding could facilitate formation of associations between related discriminations, including visually similar discriminations or discriminations learned at the same time or place. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Biophysical Characterisation of Calumenin as a Charged F508del-CFTR Folding Modulator: e104970

    National Research Council Canada - National Science Library

    Rashmi Tripathi; Nathalie Benz; Bridget Culleton; Pascal Trouvé; Claude Férec

    2014-01-01

      The cystic fibrosis transmembrane regulator (CFTR) is a cyclic-AMP dependent chloride channel expressed at the apical surface of epithelial cells lining various organs such as the respiratory tract...

  15. Biophysical characterisation of calumenin as a charged F508del-CFTR folding modulator

    National Research Council Canada - National Science Library

    Tripathi, Rashmi; Benz, Nathalie; Culleton, Bridget; Trouvé, Pascal; Férec, Claude

    2014-01-01

    The cystic fibrosis transmembrane regulator (CFTR) is a cyclic-AMP dependent chloride channel expressed at the apical surface of epithelial cells lining various organs such as the respiratory tract...

  16. Drug-Encoded Biomarkers for Monitoring Biological Therapies.

    Directory of Open Access Journals (Sweden)

    Desislava Tsoneva

    Full Text Available Blood tests are necessary, easy-to-perform and low-cost alternatives for monitoring of oncolytic virotherapy and other biological therapies in translational research. Here we assessed three candidate proteins with the potential to be used as biomarkers in biological fluids: two glucuronidases from E. coli (GusA and Staphylococcus sp. RLH1 (GusPlus, and the luciferase from Gaussia princeps (GLuc. The three genes encoding these proteins were inserted individually into vaccinia virus GLV-1h68 genome under the control of an identical promoter. The three resulting recombinant viruses were used to infect tumor cells in cultures and human tumor xenografts in nude mice. In contrast to the actively secreted GLuc, the cytoplasmic glucuronidases GusA and GusPlus were released into the supernatants only as a result of virus-mediated oncolysis. GusPlus resulted in the most sensitive detection of enzyme activity under controlled assay conditions in samples containing as little as 1 pg/ml of GusPlus, followed by GusA (25 pg/ml and GLuc (≥375 pg/ml. Unexpectedly, even though GusA had a lower specific activity compared to GusPlus, the substrate conversion in the serum of tumor-bearing mice injected with the GusA-encoding virus strains was substantially higher than that of GusPlus. This was attributed to a 3.2 fold and 16.2 fold longer half-life of GusA in the blood stream compared to GusPlus and GLuc respectively, thus a more sensitive monitor of virus replication than the other two enzymes. Due to the good correlation between enzymatic activity of expressed marker gene and virus titer, we conclude that the amount of the biomarker protein in the body fluid semiquantitatively represents the amount of virus in the infected tumors which was confirmed by low light imaging. We found GusA to be the most reliable biomarker for monitoring oncolytic virotherapy among the three tested markers.

  17. Beyond Initial Encoding: Measures of the Post-Encoding Status of Memory Traces Predict Long-Term Recall during Infancy

    Science.gov (United States)

    Pathman, Thanujeni; Bauer, Patricia J.

    2013-01-01

    The first years of life are witness to rapid changes in long-term recall ability. In the current research we contributed to an explanation of the changes by testing the absolute and relative contributions to long-term recall of encoding and post-encoding processes. Using elicited imitation, we sampled the status of 16-, 20-, and 24-month-old…

  18. Encoding of Shath on the basis of Rhetoric

    Directory of Open Access Journals (Sweden)

    Ahmad Goli

    2015-03-01

    Rhetoric encodes ambiguities and complexities of "Shath" by systematic literary ways and detects internal real-related meaning. Undoubtedly, sentences’ implicit meanings exist by circumstances, states, exigencies and rhetoric interprets sentences on the basis of this way (on the basis of concordance of speech with exigencies of states. Rhetoric has made this capacity in terms of aesthetic relation between the text and addressee to be considered the literary and routine language by the addressee and to enjoy from this difference. Meanwhile, the discovery of secondary meaning (implicit meaning has another pleasure. The interpretation of shathiyat based on Rhetoric is performed by considering of shathiyat’s relation with three influential branches: the relation of shath with religion, social conditions and mystic’s spiritual conditions. However, always there is a critique about the shath which is based on Rhetoric: variety of spiritual experiences among mystics and unavailability of spiritual areas (because of to be beyond of these areas from the scale of veracity and falsity. Rhetoric wasn’t efficient in the determining of mystics claims. According to what is said, it appears to be appropriate to revise the definition of shath and then to accept that shath often is a saying which is intentional and meaningful from the divinity resource that its paradoxical aspects are its capacity and location which are humane. Holy sayings are in the frame of mundane words, covering of divine message in the frame of humane expression. The key of encoding codes in this paradoxical, divinity/mundane and divine/humane relation is Rhetoric. This article extends this present theory.

  19. Encoding of Shath on the basis of Rhetoric

    Directory of Open Access Journals (Sweden)

    Ahmad Goli

    2015-04-01

    ambiguities and complexities of "Shath" by systematic literary ways and detects internal real-related meaning. Undoubtedly, sentences’ implicit meanings exist by circumstances, states, exigencies and rhetoric interprets sentences on the basis of this way (on the basis of concordance of speech with exigencies of states. Rhetoric has made this capacity in terms of aesthetic relation between the text and addressee to be considered the literary and routine language by the addressee and to enjoy from this difference. Meanwhile, the discovery of secondary meaning (implicit meaning has another pleasure. The interpretation of shathiyat based on Rhetoric is performed by considering of shathiyat’s relation with three influential branches: the relation of shath with religion, social conditions and mystic’s spiritual conditions. However, always there is a critique about the shath which is based on Rhetoric: variety of spiritual experiences among mystics and unavailability of spiritual areas (because of to be beyond of these areas from the scale of veracity and falsity. Rhetoric wasn’t efficient in the determining of mystics claims. According to what is said, it appears to be appropriate to revise the definition of shath and then to accept that shath often is a saying which is intentional and meaningful from the divinity resource that its paradoxical aspects are its capacity and location which are humane. Holy sayings are in the frame of mundane words, covering of divine message in the frame of humane expression. The key of encoding codes in this paradoxical, divinity/mundane and divine/humane relation is Rhetoric. This article extends this present theory.

  20. Development of a reflective optical encoder with submicron accuracy

    Science.gov (United States)

    Ye, Guoyong; Liu, Hongzhong; Ban, Yaowen; Shi, Yongsheng; Yin, Lei; Lu, Bingheng

    2018-03-01

    Signal distortion is a key issue that limits the measurement resolution and accuracy of optical encoders. In this paper, an optical encoder based on generalized grating imaging using a two-dimensional index grating is presented. The general expression of intensity distribution for generalized grating imaging including the relative displacement between the scale grating and the reading head is derived, and the formation of the signal distortion of the optical encoder is analyzed. Then, a two-dimensional index grating, which consists of multiple grating tracks with defined offsets, is proposed to suppress the dominant third and fifth order harmonic signals. The operating principle of the two-dimensional index grating is explained in detail and a reflective optical encoder is developed. In the experiment, approximately ideal Lissajous figure of the encoder signals is obtained. Fourier analysis of the encoder signals shows that both the third and fifth order harmonic distortions are below 0.6%. Experimental results show that the interpolation error of the optical encoder is within ± 0 . 18 μm, and the accuracy is better than ± 0 . 3 μm over 255 mm travel range with a maximum variation of 0.136 μm.

  1. High-Efficient Parallel CAVLC Encoders on Heterogeneous Multicore Architectures

    Directory of Open Access Journals (Sweden)

    H. Y. Su

    2012-04-01

    Full Text Available This article presents two high-efficient parallel realizations of the context-based adaptive variable length coding (CAVLC based on heterogeneous multicore processors. By optimizing the architecture of the CAVLC encoder, three kinds of dependences are eliminated or weaken, including the context-based data dependence, the memory accessing dependence and the control dependence. The CAVLC pipeline is divided into three stages: two scans, coding, and lag packing, and be implemented on two typical heterogeneous multicore architectures. One is a block-based SIMD parallel CAVLC encoder on multicore stream processor STORM. The other is a component-oriented SIMT parallel encoder on massively parallel architecture GPU. Both of them exploited rich data-level parallelism. Experiments results show that compared with the CPU version, more than 70 times of speedup can be obtained for STORM and over 50 times for GPU. The implementation of encoder on STORM can make a real-time processing for 1080p @30fps and GPU-based version can satisfy the requirements for 720p real-time encoding. The throughput of the presented CAVLC encoders is more than 10 times higher than that of published software encoders on DSP and multicore platforms.

  2. Natural Tendency towards Beauty in Humans: Evidence from Binocular Rivalry: e0150147

    National Research Council Canada - National Science Library

    Ce Mo; Tiansheng Xia; Kaixin Qin; Lei Mo

    2016-01-01

    ... towards beauty encoded in the human mind intrinsically. Here we demonstrate experimentally that humans automatically exhibit preference for visual and moral beauty without explicit cognitive efforts...

  3. Glucose Administration Enhances fMRI Brain Activation and Connectivity Related to Episodic Memory Encoding for Neutral and Emotional Stimuli

    Science.gov (United States)

    Parent, Marise B.; Krebs-Kraft, Desiree L.; Ryan, John P.; Wilson, Jennifer S.; Harenski, Carla; Hamann, Stephan

    2011-01-01

    Glucose enhances memory in a variety of species. In humans, glucose administration enhances episodic memory encoding, although little is known regarding the neural mechanisms underlying these effects. Here we examined whether elevating blood glucose would enhance functional MRI (fMRI) activation and connectivity in brain regions associated with…

  4. Molecular cloning of the gene which encodes beta-N-acetylglucosaminidase from a marine bacterium, Alteromonas sp. strain O-7.

    Science.gov (United States)

    Tsujibo, H; Fujimoto, K; Tanno, H; Miyamoto, K; Kimura, Y; Imada, C; Okami, Y; Inamori, Y

    1995-01-01

    The gene encoding the periplasmic beta-N-acetylglucosaminidase (GlcNAcase B) from a marine Alteromonas sp. strain, O-7, was cloned and sequenced. The protein sequence of GlcNAcase B revealed a highly significant homology with Vibrio GlcNAcase and alpha- and beta-chains of human beta-hexosaminidase. PMID:7574618

  5. Molecular cloning of the gene which encodes beta-N-acetylglucosaminidase from a marine bacterium, Alteromonas sp. strain O-7.

    OpenAIRE

    Tsujibo, H; Fujimoto, K; Tanno, H; Miyamoto, K.; Kimura, Y.; Imada, C; Okami, Y; Inamori, Y

    1995-01-01

    The gene encoding the periplasmic beta-N-acetylglucosaminidase (GlcNAcase B) from a marine Alteromonas sp. strain, O-7, was cloned and sequenced. The protein sequence of GlcNAcase B revealed a highly significant homology with Vibrio GlcNAcase and alpha- and beta-chains of human beta-hexosaminidase.

  6. Characterization of specific antibodies against cytomegalovirus (CMV)-encoded interleukin 10 produced by 28 % of CMV-seropositive blood donors

    DEFF Research Database (Denmark)

    de Lemos Rieper, Carina; Galle, Pia Søndergaard; Pedersen, Bente Klarlund

    2011-01-01

    Cytomegalovirus (CMV) has evolved multiple immunological evasion strategies, including the encoding of viral interleukin (IL)-10 homologues (cmvIL-10). In this study, cmvIL-10 bound avidly to the same receptors on blood mononuclear cells and was as bio-potent as native human IL-10. Seventeen...

  7. Agonists and inverse agonists for the herpesvirus 8-encoded constitutively active seven-transmembrane oncogene product, ORF-74

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Kledal, T N; Bräuner-Osborne, Hans

    1999-01-01

    A number of CXC chemokines competed with similar, nanomolar affinity against 125I-interleukin-8 (IL-8) binding to ORF-74, a constitutively active seven-transmembrane receptor encoded by human herpesvirus 8. However, in competition against 125I-labeled growth-related oncogene (GRO)-alpha, the ORF-74...

  8. Sort1, encoded by the cardiovascular risk locus 1p13.3, is a regulator of hepatic lipoprotein export

    DEFF Research Database (Denmark)

    Kjølby, Mads Fuglsang; Andersen, Olav Michael; Breiderhoff, Tilman

    2010-01-01

    Recent genome-wide association studies (GWAS) have revealed strong association of hypercholesterolemia and myocardial infarction with SNPs on human chromosome 1p13.3. This locus covers three genes: SORT1, CELSR2, and PSRC1. We demonstrate that sortilin, encoded by SORT1, is an intracellular sorti...

  9. Datacube Interoperability, Encoding Independence, and Analytics

    Science.gov (United States)

    Baumann, Peter; Hirschorn, Eric; Maso, Joan

    2017-04-01

    representations. Further, CIS 1.1 offers a unified model for any kind of regular and irregular grids, also allowing sensor models as per SensorML. Encodings include ASCII formats like GML, JSON, RDF as well as binary formats like GeoTIFF, NetCDF, JPEG2000, and GRIB2; further, a container concept allows mixed representations within one coverage file utilizing zip or other convenient package formats. Through the tight integration with the Sensor Web Enablement (SWE), a lossless "transport" from sensor into coverage world is ensured. The corresponding service model of WCS supports datacube operations ranging from simple data extraction to complex ad-hoc analytics with WPCS. Notably, W3C is working has set out on a coverage model as well; it has been designed relatively independently from the abovementioned standards, but there is informal agreement to link it into the CIS universe (which allows for different, yet interchangeable representations). Particularly interesting in the W3C proposal is the detailed semantic modeling of metadata; as CIS 1.1 supports RDF, a tight coupling seems feasible.

  10. Coding and encoding rights in internet infrastructure

    Directory of Open Access Journals (Sweden)

    Stefania Milan

    2017-01-01

    Full Text Available This article explores bottom-up grassroots ordering in internet governance, investigating the efforts by a group of civil society actors to inscribe human rights in internet infrastructure, lobbying the Internet Corporation for Assigned Names and Numbers. Adopting a Science and Technology Studies (STS perspective, we approach this struggle as a site of contestation, and expose the sociotechnical imaginaries animating policy advocacy. Combining quantitative mailing-list analysis, participant observation and qualitative discourse analysis, the article observes civil society in action as it contributes to shape policy in the realm of institutional and infrastructure design.

  11. Everyday memory: towards a translationally effective method of modelling the encoding, forgetting and enhancement of memory.

    Science.gov (United States)

    Nonaka, Mio; Fitzpatrick, Richard; Lapira, Jennifer; Wheeler, Damian; Spooner, Patrick A; Corcoles-Parada, Marta; Muñoz-López, Mónica; Tully, Tim; Peters, Marco; Morris, Richard G M

    2017-08-01

    The testing of cognitive enhancers could benefit from the development of novel behavioural tasks that display better translational relevance for daily memory and permit the examination of potential targets in a within-subjects manner with less variability. We here outline an optimized spatial 'everyday memory' task. We calibrate it systematically by interrogating certain well-established determinants of memory and consider its potential for revealing novel features of encoding-related gene activation. Rats were trained in an event arena in which food was hidden in sandwells in a different location everyday. They found the food during an initial memory-encoding trial and were then required to remember the location in six alternative choice or probe trials at various time-points later. Training continued daily over a period of 4 months, realizing a stable high level of performance and characterized by delay-dependent forgetting over 24 h. Spaced but not massed access to multiple rewards enhanced the persistence of memory, as did post-encoding administration of the PDE4 inhibitor Rolipram. Quantitative PCR and then genome-wide analysis of gene expression led to a new observation - stronger gene-activation in hippocampus and retrosplenial cortex following spaced than massed training. In a subsidiary study, a separate group of animals replicated aspects of this training profile, going on to show enhanced memory when training was subject to post-encoding environmental novelty. Distinctive features of this protocol include its potential validity as a model of memory encoding used routinely by human subjects everyday, and the possibility of multiple within-subject comparisons to speed up assays of novel compounds. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Encoding of episodic information through fast task-irrelevant perceptual learning.

    Science.gov (United States)

    Leclercq, Virginie; Le Dantec, Christophe C; Seitz, Aaron R

    2014-06-01

    The mechanisms guiding our learning and memory processes are of key interest to human cognition. While much research shows that attention and reinforcement processes help guide the encoding process, there is still much to know regarding how our brains choose what to remember. Recent research of task-irrelevant perceptual learning (TIPL) has found that information presented coincident with important events is better encoded even if participants are not aware of its presence (see Seitz & Watanabe, 2009). However a limitation of existing studies of TIPL is that they provide little information regarding the depth of encoding supported by pairing a stimulus with a behaviorally relevant event. The objective of this research was to understand the depth of encoding of information that is learned through TIPL. To do so, we adopted a variant of the "remember/know" paradigm, recently reported by Ingram, Mickes, and Wixted (2012), in which multiple confidence levels of both familiar (know) and remember reports are reported (Experiment 1), and in which episodic information is tested (Experiment 2). TIPL was found in both experiments, with higher recognition performance for target-paired than for distractor-paired images. Furthermore, TIPL benefitted both "familiar" and "remember" reports. The results of Experiment 2 indicate that the most confident "remember" response was associated with episodic information, where participants were able to access the location of image presentation for these items. Together, these results indicate that TIPL results in a deep enhancement in the encoding of target-paired information. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Facilitation of memory encoding in primate hippocampus by a neuroprosthesis that promotes task-specific neural firing

    Science.gov (United States)

    Hampson, Robert E.; Song, Dong; Opris, Ioan; Santos, Lucas M.; Shin, Dae C.; Gerhardt, Greg A.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Sam A.

    2013-12-01

    Objective. Memory accuracy is a major problem in human disease and is the primary factor that defines Alzheimer’s, ageing and dementia resulting from impaired hippocampal function in the medial temporal lobe. Development of a hippocampal memory neuroprosthesis that facilitates normal memory encoding in nonhuman primates (NHPs) could provide the basis for improving memory in human disease states. Approach. NHPs trained to perform a short-term delayed match-to-sample (DMS) memory task were examined with multi-neuron recordings from synaptically connected hippocampal cell fields, CA1 and CA3. Recordings were analyzed utilizing a previously developed nonlinear multi-input multi-output (MIMO) neuroprosthetic model, capable of extracting CA3-to-CA1 spatiotemporal firing patterns during DMS performance. Main results. The MIMO model verified that specific CA3-to-CA1 firing patterns were critical for the successful encoding of sample phase information on more difficult DMS trials. This was validated by the delivery of successful MIMO-derived encoding patterns via electrical stimulation to the same CA1 recording locations during the sample phase which facilitated task performance in the subsequent, delayed match phase, on difficult trials that required more precise encoding of sample information. Significance. These findings provide the first successful application of a neuroprosthesis designed to enhance and/or repair memory encoding in primate brain.

  14. DMD-based spatially Fourier-encoded photoacoustic microscopy

    Science.gov (United States)

    Liang, Jinyang; Gao, Liang; Li, Chiye; Wang, Lihong V.

    2015-03-01

    We present spatially Fourier-encoded photoacoustic microscopy using a digital micromirror device (DMD). The spatial fluence distribution of laser pulses is Fourier-encoded by the DMD, and a series of such encoded photoacoustic (PA) measurements enables decoding of the spatial distribution of optical absorption. By imaging a chromium target, we demonstrated the throughput and Fellgett advantages, which increased the PA signal-to-noise ratio (SNR) compared to raster scanning. The system was used to image two biological targets, a monolayer of red blood cells, and melanoma cells. The enhanced SNR benefited PA images by increasing the image's contrast-to-noise ratio and target identifiability.

  15. Method and apparatus for optical encoding with compressible imaging

    Science.gov (United States)

    Leviton, Douglas B. (Inventor)

    2006-01-01

    The present invention presents an optical encoder with increased conversion rates. Improvement in the conversion rate is a result of combining changes in the pattern recognition encoder's scale pattern with an image sensor readout technique which takes full advantage of those changes, and lends itself to operation by modern, high-speed, ultra-compact microprocessors and digital signal processors (DSP) or field programmable gate array (FPGA) logic elements which can process encoder scale images at the highest speeds. Through these improvements, all three components of conversion time (reciprocal conversion rate)--namely exposure time, image readout time, and image processing time--are minimized.

  16. Stability and plasticity in neural encoding of linguistically relevant pitch patterns.

    Science.gov (United States)

    Xie, Zilong; Reetzke, Rachel; Chandrasekaran, Bharath

    2017-03-01

    modulated by a single session of sound-to-category training. Our results suggest that behavioral relevance is a necessary ingredient for neural changes in pitch encoding to be observed throughout human development. These findings contribute to the neurophysiological understanding of long- and short-term experience-dependent modulation of pitch. Copyright © 2017 the American Physiological Society.

  17. The feedback related negativity encodes both social rejection and explicit social expectancy violation.

    Directory of Open Access Journals (Sweden)

    Rongjun eYu

    2014-07-01

    Full Text Available Humans consistently make predictions about the valence of future events and use feedbacks to update initial predictions. While the valence of outcomes provides utilitarian information, the accuracy of predictions is crucial for future performance adjustment. The feedback related negativity (FRN, identified as a marker of reward prediction error, possibly encodes social rejection and social prediction error. To test this possibility, we used event related potential techniques combined with social tasks in which participants make explicit prediction (whether others will accept their ‘friend request’ or not, Experiment 1 or implicit prediction (whether they would like this person or not, Experiment 2 respectively and then receive social feedback. We found that the FRN is sensitive to social rejection and explicit social prediction error in Experiment 1 but not implicit social prediction error in Experiment 2. We conclude that the FRN encodes social rejection and explicit social expectancy violation.

  18. Novel adenovirus encoded virus-like particles displaying the placental malaria associated VAR2CSA antigen

    DEFF Research Database (Denmark)

    Andersson, Anne-Marie C; dos Santos Marques Resende, Mafalda; Salanti, Ali

    2017-01-01

    and the CSA binding region of VAR2CSA has been identified as a promising vaccine target against placental malaria. Here we designed adenovirus encoded virus-like particles (VLP) by co-encoding Simian Immunodeficiency Virus (SIV) gag and VAR2CSA. The VAR2CSA antigen was fused to the transmembrane (TM......The malaria parasite Plasmodium falciparum presents antigens on the infected erythrocyte surface that bind human receptors expressed on the vascular endothelium. The VAR2CSA mediated binding to a distinct chondroitin sulphate A (CSA) is a crucial step in the pathophysiology of placental malaria......CSA fused to HA TM-CT was significantly superior in inducing ID1-ID2a specific antibodies after the first immunization. A sequential study was performed to include a comparison to the soluble VAR2CSA protein vaccine, which has entered a phase I clinical trial (NCT02647489). The results revealed...

  19. Reduction of a 4q35-encoded nuclear envelope protein in muscle differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ostlund, Cecilia [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Guan, Tinglu [Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037 (United States); Figlewicz, Denise A. [Department of Neurology, University of Michigan, Ann Arbor, MI 48109 (United States); Hays, Arthur P. [Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Worman, Howard J. [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Gerace, Larry [Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037 (United States); Schirmer, Eric C., E-mail: e.schirmer@ed.ac.uk [Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037 (United States); Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR (United Kingdom)

    2009-11-13

    Muscular dystrophy and peripheral neuropathy have been linked to mutations in genes encoding nuclear envelope proteins; however, the molecular mechanisms underlying these disorders remain unresolved. Nuclear envelope protein p19A is a protein of unknown function encoded by a gene at chromosome 4q35. p19A levels are significantly reduced in human muscle as cells differentiate from myoblasts to myotubes; however, its levels are not similarly reduced in all differentiation systems tested. Because 4q35 has been linked to facioscapulohumeral muscular dystrophy (FSHD) and some adjacent genes are reportedly misregulated in the disorder, levels of p19A were analyzed in muscle samples from patients with FSHD. Although p19A was increased in most cases, an absolute correlation was not observed. Nonetheless, p19A downregulation in normal muscle differentiation suggests that in the cases where its gene is inappropriately re-activated it could affect muscle differentiation and contribute to disease pathology.

  20. Variation in genes encoding eosinophil granule proteins in atopic dermatitis patients from Germany

    Directory of Open Access Journals (Sweden)

    Epplen Jörg T

    2008-11-01

    Full Text Available Abstract Background Atopic dermatitis (AD is believed to result from complex interactions between genetic and environmental factors. A main feature of AD as well as other allergic disorders is serum and tissue eosinophilia. Human eosinophils contain high amounts of cationic granule proteins, including eosinophil cationic protein (ECP, eosinophil-derived neurotoxin (EDN, eosinophil peroxidase (EPO and major basic protein (MBP. Recently, variation in genes encoding eosinophil granule proteins has been suggested to play a role in the pathogenesis of allergic disorders. We therefore genotyped selected single nucleotide polymorphisms within the ECP, EDN, EPO and MBP genes in a cohort of 361 German AD patients and 325 healthy controls. Results Genotype and allele frequencies did not differ between patients and controls for all polymorphisms investigated in this study. Haplotype analysis did not reveal any additional information. Conclusion We did not find evidence to support an influence of variation in genes encoding eosinophil granule proteins for AD pathogenesis in this German cohort.

  1. The feedback related negativity encodes both social rejection and explicit social expectancy violation

    Science.gov (United States)

    Sun, Sai; Yu, Rongjun

    2014-01-01

    Humans consistently make predictions about the valence of future events and use feedback to validate initial predictions. While the valence of outcomes provides utilitarian information, the accuracy of predictions is crucial for future performance adjustment. The feedback related negativity (FRN), identified as a marker of reward prediction error, possibly encodes social rejection and social prediction error. To test this possibility, we used event related potential (ERP) techniques combined with social tasks in which participants were required to make explicit predictions (whether others will accept their “friend request” or not, Experiment 1) or implicit predictions (whether they would like this person or not, Experiment 2) respectively, and then received social feedback. We found that the FRN is sensitive to social rejection and explicit social prediction error in Experiment 1 but not implicit social prediction error in Experiment 2. We conclude that the FRN encodes social rejection and explicit social expectancy violation. PMID:25120457

  2. Similar activation of signal transduction pathways by the herpesvirus-encoded chemokine receptors US28 and ORF74

    DEFF Research Database (Denmark)

    McLean, Katherine A; Holst, Peter J; Martini, Lene

    2004-01-01

    The virally encoded chemokine receptors US28 from human cytomegalovirus and ORF74 from human herpesvirus 8 are both constitutively active. We show that both receptors constitutively activate the transcription factors nuclear factor of activated T cells (NFAT) and cAMP response element binding...... viral gene expression similarly. As ORF74 is a known inducer of neoplasia, these findings may have important implications for cytomegalovirus-associated pathogenicity....

  3. System biology and the project Encode

    Directory of Open Access Journals (Sweden)

    M. Yu. Obolenskaya

    2014-08-01

    Full Text Available The goal of this review is to give an incipient knowledge on the background of system biology, the premises to its assignment as a new branch of biology, its principles, methodology and its great achievements in identification of functional elements of human genome and regulation of their concordant­ and differential activity. The short characteristics of functional elements including the protein-coding sequences and those coding noncoding RNAs, the DNAse 1 hypersensitivity sites and methylated CpG islets, modified histones and specific 3D structure of chromatin, are represented. The topology of transcription factors network with its main motifs, hierar­chy, combination and association of transcription factors and their allelic specificity are highlighted­.

  4. Self-perpetuating development of encoding biases in person perception.

    Science.gov (United States)

    Hill, T; Lewicki, P; Czyzewska, M; Boss, A

    1989-09-01

    It was hypothesized that encoding (interpretive) biases may develop in a self-perpetuating manner through biased, self-supportive encoding (even in the absence of any objectively supportive evidence). This process was investigated in 3 experiments with different stimulus materials (matrices of digits, silhouettes of persons, descriptions of personal problems). In the learning phase of each study, Ss nonconsciously acquired some encoding bias. In the testing phase, Ss' encoding of new material was predictably biased, and, consistent with the self-perpetuation hypothesis, the strength of the bias gradually increased over the segments of the material, even though the material did not contain any evidence supportive of the bias. Given the ambiguity of many (particularly social) stimuli, the self-perpetuation process may play a ubiquitous role in the development of interpretive categories and other individually differentiated cognitive dispositions.

  5. Universal Quantum Computing with Arbitrary Continuous-Variable Encoding.

    Science.gov (United States)

    Lau, Hoi-Kwan; Plenio, Martin B

    2016-09-02

    Implementing a qubit quantum computer in continuous-variable systems conventionally requires the engineering of specific interactions according to the encoding basis states. In this work, we present a unified formalism to conduct universal quantum computation with a fixed set of operations but arbitrary encoding. By storing a qubit in the parity of two or four qumodes, all computing processes can be implemented by basis state preparations, continuous-variable exponential-swap operations, and swap tests. Our formalism inherits the advantages that the quantum information is decoupled from collective noise, and logical qubits with different encodings can be brought to interact without decoding. We also propose a possible implementation of the required operations by using interactions that are available in a variety of continuous-variable systems. Our work separates the "hardware" problem of engineering quantum-computing-universal interactions, from the "software" problem of designing encodings for specific purposes. The development of quantum computer architecture could hence be simplified.

  6. Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding

    National Research Council Canada - National Science Library

    Gardner, Brian; Grüning, André

    2016-01-01

    Precise spike timing as a means to encode information in neural networks is biologically supported, and is advantageous over frequency-based codes by processing input features on a much shorter time-scale...

  7. Precision goniometer equipped with a 22-bit absolute rotary encoder.

    Science.gov (United States)

    Xiaowei, Z; Ando, M; Jidong, W

    1998-05-01

    The calibration of a compact precision goniometer equipped with a 22-bit absolute rotary encoder is presented. The goniometer is a modified Huber 410 goniometer: the diffraction angles can be coarsely generated by a stepping-motor-driven worm gear and precisely interpolated by a piezoactuator-driven tangent arm. The angular accuracy of the precision rotary stage was evaluated with an autocollimator. It was shown that the deviation from circularity of the rolling bearing utilized in the precision rotary stage restricts the angular positioning accuracy of the goniometer, and results in an angular accuracy ten times larger than the angular resolution of 0.01 arcsec. The 22-bit encoder was calibrated by an incremental rotary encoder. It became evident that the accuracy of the absolute encoder is approximately 18 bit due to systematic errors.

  8. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Spodsberg, Nikolaj

    2017-11-21

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  9. Statistical Characterization of MP3 Encoders for Steganalysis: 'CHAMP3'

    National Research Council Canada - National Science Library

    Westfeld, Andreas

    2004-01-01

    ...). As detailed in the technical proposal the research consists of three parts. The first task is to survey the discipline to identify the available MP3 encoders and generate a data pool for analysis...

  10. Polypeptides having xylanase activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Spodsberg, Nikolaj

    2018-02-06

    The present invention relates to isolated polypeptides having xylanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  11. Toward a Better Compression for DNA Sequences Using Huffman Encoding

    National Research Council Canada - National Science Library

    Al-Okaily, Anas; Almarri, Badar; Al Yami, Sultan; Huang, Chun-Hsi

    ... to compress such data to a less space and a faster transmission. Different implementations of Huffman encoding incorporating the characteristics of DNA sequences prove to better compress DNA data...

  12. Polypeptides having catalase activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ye; Duan, Junxin; Zhang, Yu; Tang, Lan

    2017-05-02

    Provided are isolated polypeptides having catalase activity and polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  13. Encoding Speed and Memory Span in Dyslexic Children

    Science.gov (United States)

    Spring, Carl

    1976-01-01

    Evaluated with 14 dyslexic and 14 normal boys (all 6-12 years old) was the relationship between slow speech-motor encoding to the transfer of information from short-term to long-term memory. (Author/DB)

  14. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ye; Duan, Junxin; Zhang, Yu; Tang, Lan

    2017-09-26

    Provided are isolated polypeptides having beta-glucosidase activity and polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  15. Theta and Gamma Oscillations during Encoding Predict Subsequent Recall

    National Research Council Canada - National Science Library

    Sederberg, Per B; Kahana, Michael J; Howard, Marc W; Donner, Elizabeth J; Madsen, Joseph R

    2003-01-01

    ... to 64 Hz as participants studied lists of common nouns. Significant increases in oscillatory power during encoding predicted subsequent recall, with this effect predominantly in the 4-8 Hz (theta) and 28-64 Hz (gamma) frequency bands...

  16. Two Genes Encoding Uracil Phosphoribosyltransferase Are Present in Bacillus subtilis

    DEFF Research Database (Denmark)

    Martinussen, Jan; Glaser, Philippe; Andersen, Paal S.

    1995-01-01

    Uracil phosphoribosyltransferase (UPRTase) catalyzes the key reaction in the salvage of uracil in many microorganisms. Surprisingly, two genes encoding UPRTase activity were cloned from Bacillus subtilis by complementation of an Escherichia coli mutant. The genes were sequenced, and the putative...

  17. An Improved Linearization Circuit Used for Optical Rotary Encoders

    National Research Council Canada - National Science Library

    Jelena Jovanović; Dragan Denić; Uglješa Jovanović

    2017-01-01

    .... To improve the optical encoder sensitivity and to increase its accuracy, an improved linearization circuit based on pseudo-linear signal generation and its further linearization with the two-stage...

  18. A new methodology for vibration error compensation of optical encoders.

    Science.gov (United States)

    Lopez, Jesus; Artes, Mariano

    2012-01-01

    Optical encoders are sensors based on grating interference patterns. Tolerances inherent to the manufacturing process can induce errors in the position accuracy as the measurement signals stand apart from the ideal conditions. In case the encoder is working under vibrations, the oscillating movement of the scanning head is registered by the encoder system as a displacement, introducing an error into the counter to be added up to graduation, system and installation errors. Behavior improvement can be based on different techniques trying to compensate the error from measurement signals processing. In this work a new "ad hoc" methodology is presented to compensate the error of the encoder when is working under the influence of vibration. The methodology is based on fitting techniques to the Lissajous figure of the deteriorated measurement signals and the use of a look up table, giving as a result a compensation procedure in which a higher accuracy of the sensor is obtained.

  19. A new methodology for vibration error compensation of optical encoders

    National Research Council Canada - National Science Library

    Lopez, Jesus; Artes, Mariano

    2012-01-01

    Optical encoders are sensors based on grating interference patterns. Tolerances inherent to the manufacturing process can induce errors in the position accuracy as the measurement signals stand apart from the ideal conditions...

  20. A New Methodology for Vibration Error Compensation of Optical Encoders

    Directory of Open Access Journals (Sweden)

    Mariano Artes

    2012-04-01

    Full Text Available Optical encoders are sensors based on grating interference patterns. Tolerances inherent to the manufacturing process can induce errors in the position accuracy as the measurement signals stand apart from the ideal conditions. In case the encoder is working under vibrations, the oscillating movement of the scanning head is registered by the encoder system as a displacement, introducing an error into the counter to be added up to graduation, system and installation errors. Behavior improvement can be based on different techniques trying to compensate the error from measurement signals processing. In this work a new “ad hoc” methodology is presented to compensate the error of the encoder when is working under the influence of vibration. The methodology is based on fitting techniques to the Lissajous figure of the deteriorated measurement signals and the use of a look up table, giving as a result a compensation procedure in which a higher accuracy of the sensor is obtained.

  1. Security enhanced BioEncoding for protecting iris codes

    Science.gov (United States)

    Ouda, Osama; Tsumura, Norimichi; Nakaguchi, Toshiya

    2011-06-01

    Improving the security of biometric template protection techniques is a key prerequisite for the widespread deployment of biometric technologies. BioEncoding is a recently proposed template protection scheme, based on the concept of cancelable biometrics, for protecting biometric templates represented as binary strings such as iris codes. The main advantage of BioEncoding over other template protection schemes is that it does not require user-specific keys and/or tokens during verification. Besides, it satisfies all the requirements of the cancelable biometrics construct without deteriorating the matching accuracy. However, although it has been shown that BioEncoding is secure enough against simple brute-force search attacks, the security of BioEncoded templates against more smart attacks, such as record multiplicity attacks, has not been sufficiently investigated. In this paper, a rigorous security analysis of BioEncoding is presented. Firstly, resistance of BioEncoded templates against brute-force attacks is revisited thoroughly. Secondly, we show that although the cancelable transformation employed in BioEncoding might be non-invertible for a single protected template, the original iris code could be inverted by correlating several templates used in different applications but created from the same iris. Accordingly, we propose an important modification to the BioEncoding transformation process in order to hinder attackers from exploiting this type of attacks. The effectiveness of adopting the suggested modification is validated and its impact on the matching accuracy is investigated empirically using CASIA-IrisV3-Interval dataset. Experimental results confirm the efficacy of the proposed approach and show that it preserves the matching accuracy of the unprotected iris recognition system.

  2. Mnemonic Encoding and Cortical Organization in Parietal and Prefrontal Cortices.

    Science.gov (United States)

    Masse, Nicolas Y; Hodnefield, Jonathan M; Freedman, David J

    2017-06-21

    Persistent activity within the frontoparietal network is consistently observed during tasks that require working memory. However, the neural circuit mechanisms underlying persistent neuronal encoding within this network remain unresolved. Here, we ask how neural circuits support persistent activity by examining population recordings from posterior parietal (PPC) and prefrontal (PFC) cortices in two male monkeys that performed spatial and motion direction-based tasks that required working memory. While spatially selective persistent activity was observed in both areas, robust selective persistent activity for motion direction was only observed in PFC. Crucially, we find that this difference between mnemonic encoding in PPC and PFC is associated with the presence of functional clustering: PPC and PFC neurons up to ∼700 μm apart preferred similar spatial locations, and PFC neurons up to ∼700 μm apart preferred similar motion directions. In contrast, motion-direction tuning similarity between nearby PPC neurons was much weaker and decayed rapidly beyond ∼200 μm. We also observed a similar association between persistent activity and functional clustering in trained recurrent neural network models embedded with a columnar topology. These results suggest that functional clustering facilitates mnemonic encoding of sensory information. SIGNIFICANCE STATEMENT Working memory refers to our ability to temporarily store and manipulate information. Numerous studies have observed that, during working memory, neurons in higher cortical areas, such as the parietal and prefrontal cortices, mnemonically encode the remembered stimulus. However, several recent studies have failed to observe mnemonic encoding during working memory, raising the question as to why mnemonic encoding is observed during some, but not all, conditions. In this study, we show that mnemonic encoding occurs when a cortical area is organized such that nearby neurons preferentially respond to the same

  3. Time Encoded Signal Processing for Speech Quality Assessment

    OpenAIRE

    Kraljevski, Ivan; Stojanovic, Igor; Chungurski, Slavco; Arsenovski, Sime

    2010-01-01

    In this paper a method for speech quality assessment is described and evaluated simulating transmission of AMR-NB encoded speech over noisy GSM channel. The proposed system uses comparison of Time Encoded Signal (TES) processing of speech sequences, where one original and one degraded speech signal were transmitted trough GSM simulation system with AWGN noise channel. Several tests have been made on reference speech sample of single speaker with simulated bit-error loss effects on the perc...

  4. Zero-Transition Serial Encoding for Image Sensors

    OpenAIRE

    Jahier Pagliari, Daniele; Macii, Enrico; Poncino, Massimo

    2017-01-01

    Off-chip serial buses are the most common interfaces between sensors and processing elements in embedded systems. Due to their length, these connections dissipate a large amount of energy, contributing significantly to the total consumption of the system. The error-tolerant feature of many sensor applications can be leveraged to reduce this energy contribution by means of an approximate serial data encoding. In this paper, we propose one such encoding called Serial T0, particularly, effective...

  5. Molecular cloning and functional analysis of the gene encoding ...

    African Journals Online (AJOL)

    Here we report for the first time the cloning of a full-length cDNA encoding GGPPS (Jc-GGPPS) from Jatropha curcas L. The full-length cDNA was 1414 base pair (bp), with an 1110-bp open reading frame (ORF) encoding a 370- amino-acids polypeptide. Bioinformatic analysis revealed that Jc-GGPPS is a member of the ...

  6. Theory of multisource crosstalk reduction by phase-encoded statics

    KAUST Repository

    Schuster, Gerard T.

    2011-03-01

    Formulas are derived that relate the strength of the crosstalk noise in supergather migration images to the variance of time, amplitude and polarity shifts in encoding functions. A supergather migration image is computed by migrating an encoded supergather, where the supergather is formed by stacking a large number of encoded shot gathers. Analysis reveals that for temporal source static shifts in each shot gather, the crosstalk noise is exponentially reduced with increasing variance of the static shift and the square of source frequency. This is not too surprising because larger time shifts lead to less correlation between traces in different shot gathers, and so should tend to reduce the crosstalk noise. Analysis also reveals that combining both polarity and time statics is a superior encoding strategy compared to using either polarity statics or time statics alone. Signal-to-noise (SNR) estimates show that for a standard migration image and for an image computed by migrating a phase-encoded supergather; here, G is the number of traces in a shot gather, I is the number of stacking iterations in the supergather and S is the number of encoded/blended shot gathers that comprise the supergather. If the supergather can be uniformly divided up into Q unique sub-supergathers, then the resulting SNR of the final image is, which means that we can enhance image quality but at the expense of Q times more cost. The importance of these formulas is that they provide a precise understanding between different phase encoding strategies and image quality. Finally, we show that iterative migration of phase-encoded supergathers is a special case of passive seismic interferometry. We suggest that the crosstalk noise formulas can be helpful in designing optimal strategies for passive seismic interferometry and efficient extraction of Green\\'s functions from simulated supergathers. © 2011 The Authors Geophysical Journal International © 2011 RAS.

  7. Permutations as a means to encode order in word space

    OpenAIRE

    Sahlgren, Magnus; Holst, Anders; Kanerva, Pentti

    2008-01-01

    We show that sequence information can be encoded into high-dimensional fixed-width vectors using permutations of coordinates. Computational models of language often represent words with high-dimensional semantic vectors compiled from word-use statistics. A word's semantic vector usually encodes the contexts in which the word appears in a large body of text but ignores word order. However, word order often signals a word's grammatical role in a sentence and thus tells of the word's meaning. Jo...

  8. A Novel Complex-Valued Encoding Grey Wolf Optimization Algorithm

    OpenAIRE

    Qifang Luo; Sen Zhang; Zhiming Li; Yongquan Zhou

    2015-01-01

    Grey wolf optimization (GWO) is one of the recently proposed heuristic algorithms imitating the leadership hierarchy and hunting mechanism of grey wolves in nature. The aim of these algorithms is to perform global optimization. This paper presents a modified GWO algorithm based on complex-valued encoding; namely the complex-valued encoding grey wolf optimization (CGWO). We use CGWO to test 16 unconstrained benchmark functions with seven different scales and infinite impulse response (IIR) mod...

  9. Encoding and Retrieval Interference in Sentence Comprehension: Evidence from Agreement.

    Science.gov (United States)

    Villata, Sandra; Tabor, Whitney; Franck, Julie

    2018-01-01

    Long-distance verb-argument dependencies generally require the integration of a fronted argument when the verb is encountered for sentence interpretation. Under a parsing model that handles long-distance dependencies through a cue-based retrieval mechanism, retrieval is hampered when retrieval cues also resonate with non-target elements (retrieval interference). However, similarity-based interference may also stem from interference arising during the encoding of elements in memory (encoding interference), an effect that is not directly accountable for by a cue-based retrieval mechanism. Although encoding and retrieval interference are clearly distinct at the theoretical level, it is difficult to disentangle the two on empirical grounds, since encoding interference may also manifest at the retrieval region. We report two self-paced reading experiments aimed at teasing apart the role of each component in gender and number subject-verb agreement in Italian and English object relative clauses. In Italian, the verb does not agree in gender with the subject, thus providing no cue for retrieval. In English, although present tense verbs agree in number with the subject, past tense verbs do not, allowing us to test the role of number as a retrieval cue within the same language. Results from both experiments converge, showing similarity-based interference at encoding, and some evidence for an effect at retrieval. After having pointed out the non-negligible role of encoding in sentence comprehension, and noting that Lewis and Vasishth's (2005) ACT-R model of sentence processing, the most fully developed cue-based retrieval approach to sentence processing does not predict encoding effects, we propose an augmentation of this model that predicts these effects. We then also propose a self-organizing sentence processing model (SOSP), which has the advantage of accounting for retrieval and encoding interference with a single mechanism.

  10. Encoding and Retrieval Interference in Sentence Comprehension: Evidence from Agreement

    Directory of Open Access Journals (Sweden)

    Sandra Villata

    2018-01-01

    Full Text Available Long-distance verb-argument dependencies generally require the integration of a fronted argument when the verb is encountered for sentence interpretation. Under a parsing model that handles long-distance dependencies through a cue-based retrieval mechanism, retrieval is hampered when retrieval cues also resonate with non-target elements (retrieval interference. However, similarity-based interference may also stem from interference arising during the encoding of elements in memory (encoding interference, an effect that is not directly accountable for by a cue-based retrieval mechanism. Although encoding and retrieval interference are clearly distinct at the theoretical level, it is difficult to disentangle the two on empirical grounds, since encoding interference may also manifest at the retrieval region. We report two self-paced reading experiments aimed at teasing apart the role of each component in gender and number subject-verb agreement in Italian and English object relative clauses. In Italian, the verb does not agree in gender with the subject, thus providing no cue for retrieval. In English, although present tense verbs agree in number with the subject, past tense verbs do not, allowing us to test the role of number as a retrieval cue within the same language. Results from both experiments converge, showing similarity-based interference at encoding, and some evidence for an effect at retrieval. After having pointed out the non-negligible role of encoding in sentence comprehension, and noting that Lewis and Vasishth’s (2005 ACT-R model of sentence processing, the most fully developed cue-based retrieval approach to sentence processing does not predict encoding effects, we propose an augmentation of this model that predicts these effects. We then also propose a self-organizing sentence processing model (SOSP, which has the advantage of accounting for retrieval and encoding interference with a single mechanism.

  11. Composite pulses for RF phase encoded MRI: A simulation study.

    Science.gov (United States)

    Salajeghe, Somaie; Babyn, Paul; Sarty, Gordon E

    2017-02-01

    In B1 encoded MRI, a realistic non-linear phase RF encoding coil will generate an inhomogeneous B1 field that leads to spatially dependent flip angles. The non-linearity of the B1 phase gradient can be compensated for in the reconstruction, but B1 inhomogeneity remains a problem. The effect of B1 inhomogeneity on tip angles for conventional, B0 encoded MRI, may be minimized using composite pulses. The objective of this study was to explore the feasibility of using composite pulses with non-linear RF phase encoding coils and to identify the most appropriate composite pulse scheme. RF encoded signals were simulated via the Bloch equation for various symmetric, asymmetric and antisymmetric composite pulses. The simulated signals were reconstructed using a constrained least squares method. Root mean square reconstruction errors varied from 6% (for an asymmetric composite pulse) to 9.7% (for an antisymmetric composite pulse). An asymmetric composite pulse scheme created images with fewer artifacts than other composite pulse schemes in inhomogeneous B0 and B1 fields making it the best choice for decreasing the effects of spatially varying flip angles. This is contrary to the conclusion that antisymmetric composite pulses are the best ones to use for spin echo sequences in conventional, B0 encoded, MRI. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  12. Multicore-based 3D-DWT video encoder

    Science.gov (United States)

    Galiano, Vicente; López-Granado, Otoniel; Malumbres, Manuel P.; Migallón, Hector

    2013-12-01

    Three-dimensional wavelet transform (3D-DWT) encoders are good candidates for applications like professional video editing, video surveillance, multi-spectral satellite imaging, etc. where a frame must be reconstructed as quickly as possible. In this paper, we present a new 3D-DWT video encoder based on a fast run-length coding engine. Furthermore, we present several multicore optimizations to speed-up the 3D-DWT computation. An exhaustive evaluation of the proposed encoder (3D-GOP-RL) has been performed, and we have compared the evaluation results with other video encoders in terms of rate/distortion (R/D), coding/decoding delay, and memory consumption. Results show that the proposed encoder obtains good R/D results for high-resolution video sequences with nearly in-place computation using only the memory needed to store a group of pictures. After applying the multicore optimization strategies over the 3D DWT, the proposed encoder is able to compress a full high-definition video sequence in real-time.

  13. Eddy current compensated double diffusion encoded (DDE) MRI.

    Science.gov (United States)

    Mueller, Lars; Wetscherek, Andreas; Kuder, Tristan Anselm; Laun, Frederik Bernd

    2017-01-01

    Eddy currents might lead to image distortions in diffusion-weighted echo planar imaging. A method is proposed to reduce their effects on double diffusion encoding (DDE) MRI experiments and the thereby derived microscopic fractional anisotropy (μFA). The twice-refocused spin echo scheme was adapted for DDE measurements. To assess the effect of individual diffusion encodings on the image distortions, measurements of a grid of plastic rods in water were performed. The effect of eddy current compensation on μFA measurements was evaluated in the brains of six healthy volunteers. The use of an eddy current compensation reduced the signal variation. As expected, the distortions caused by the second encoding were larger than those of the first encoding, entailing a stronger need to compensate for them. For an optimal result, however, both encodings had to be compensated. The artifact reduction strongly improved the measurement of the μFA in ventricles and gray matter by reducing the overestimation. An effect of the compensation on absolute μFA values in white matter was not observed. It is advisable to compensate both encodings in DDE measurements for eddy currents. Magn Reson Med 77:328-335, 2017. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  14. An unexpected inhibition of antiviral signaling by virus-encoded tumor suppressor p53 in pancreatic cancer cells

    Science.gov (United States)

    Hastie, Eric; Cataldi, Marcela; Steuerwald, Nury; Grdzelishvili, Valery Z.

    2015-01-01

    Virus-encoded tumor suppressor p53 transgene expression has been successfully used in vesicular stomatitis virus (VSV) and other oncolytic viruses (OVs) to enhance their anticancer activities. However, p53 is also known to inhibit virus replication via enhanced type I interferon (IFN) antiviral responses. To examine whether p53 transgenes enhance antiviral signaling in human pancreatic ductal adenocarcinoma (PDAC) cells, we engineered novel VSV recombinants encoding human p53 or the previously described chimeric p53-CC, which contains the coiled-coil (CC) domain from breakpoint cluster region (BCR) protein and evades the dominant-negative activities of endogenously expressed mutant p53. Contrary to an expected enhancement of antiviral signaling by p53, our global analysis of gene expression in PDAC cells showed that both p53 and p53-CC dramatically inhibited type I IFN responses. Our data suggest that this occurs through p53-mediated inhibition of the NF-κB pathway. Importantly, VSV-encoded p53 or p53-CC did not inhibit antiviral signaling in non-malignant human pancreatic ductal cells, which retain their resistance to all VSV recombinants. To the best of our knowledge, this is the first report of p53-mediated inhibition of antiviral signaling, and it suggests that OV-encoded p53 can simultaneously produce anticancer activities while assisting, rather than inhibiting, virus replication in cancer cells. PMID:25965802

  15. Subtractive hybridization cloning of a tissue-specific extinguisher: TSE1 encodes a regulatory subunit of protein kinase A.

    Science.gov (United States)

    Jones, K W; Shapero, M H; Chevrette, M; Fournier, R E

    1991-09-06

    Tissue-specific extinguisher 1 (TSE1) is a trans-acting locus on human chromosome 17 that down-regulates expression of seven liver genes in hepatoma x fibroblast hybrids. To study the mechanism by which TSE1 functions, we used subtractive cDNA hybridization to clone transcripts encoded within a 2-4 Mb segment of chromosome 17 that includes TSE1. High resolution mapping within this region indicated that 8 of 9 different human cDNAs so obtained were distinct from TSE1. The remaining cDNA clone mapped concordantly with TSE1 in a panel of fragment-containing hybrids. DNA sequencing indicated that this cDNA encoded regulatory subunit RI alpha of cAMP-dependent protein kinase, and RI alpha mRNA levels correlated with TSE1 activity in various hybrid lines. Stable transfection of wild-type or cAMP-binding mutant RI alpha alleles into hepatoma recipients produced an extinction phenotype indistinguishable from that encoded by human TSE1. We conclude that TSE1 encodes a regulatory subunit of protein kinase A whose activity differs in different cell types.

  16. An unexpected inhibition of antiviral signaling by virus-encoded tumor suppressor p53 in pancreatic cancer cells.

    Science.gov (United States)

    Hastie, Eric; Cataldi, Marcela; Steuerwald, Nury; Grdzelishvili, Valery Z

    2015-09-01

    Virus-encoded tumor suppressor p53 transgene expression has been successfully used in vesicular stomatitis virus (VSV) and other oncolytic viruses (OVs) to enhance their anticancer activities. However, p53 is also known to inhibit virus replication via enhanced type I interferon (IFN) antiviral responses. To examine whether p53 transgenes enhance antiviral signaling in human pancreatic ductal adenocarcinoma (PDAC) cells, we engineered novel VSV recombinants encoding human p53 or the previously described chimeric p53-CC, which contains the coiled-coil (CC) domain from breakpoint cluster region (BCR) protein and evades the dominant-negative activities of endogenously expressed mutant p53. Contrary to an expected enhancement of antiviral signaling by p53, our global analysis of gene expression in PDAC cells showed that both p53 and p53-CC dramatically inhibited type I IFN responses. Our data suggest that this occurs through p53-mediated inhibition of the NF-κB pathway. Importantly, VSV-encoded p53 or p53-CC did not inhibit antiviral signaling in non-malignant human pancreatic ductal cells, which retained their resistance to all tested VSV recombinants. To the best of our knowledge, this is the first report of p53-mediated inhibition of antiviral signaling, and it suggests that OV-encoded p53 can simultaneously produce anticancer activities while assisting, rather than inhibiting, virus replication in cancer cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. An Efficient Method for Electroporation of Small Interfering RNAs into ENCODE Project Tier 1 GM12878 and K562 Cell Lines.

    Science.gov (United States)

    Muller, Ryan Y; Hammond, Ming C; Rio, Donald C; Lee, Yeon J

    2015-12-01

    The Encyclopedia of DNA Elements (ENCODE) Project aims to identify all functional sequence elements in the human genome sequence by use of high-throughput DNA/cDNA sequencing approaches. To aid the standardization, comparison, and integration of data sets produced from different technologies and platforms, the ENCODE Consortium selected several standard human cell lines to be used by the ENCODE Projects. The Tier 1 ENCODE cell lines include GM12878, K562, and H1 human embryonic stem cell lines. GM12878 is a lymphoblastoid cell line, transformed with the Epstein-Barr virus, that was selected by the International HapMap Project for whole genome and transcriptome sequencing by use of the Illumina platform. K562 is an immortalized myelogenous leukemia cell line. The GM12878 cell line is attractive for the ENCODE Projects, as it offers potential synergy with the International HapMap Project. Despite the vast amount of sequencing data available on the GM12878 cell line through the ENCODE Project, including transcriptome, chromatin immunoprecipitation-sequencing for histone marks, and transcription factors, no small interfering siRNA-mediated knockdown studies have been performed in the GM12878 cell line, as cationic lipid-mediated transfection methods are inefficient for lymphoid cell lines. Here, we present an efficient and reproducible method for transfection of a variety of siRNAs into the GM12878 and K562 cell lines, which subsequently results in targeted protein depletion.

  18. Encoding of tactile stimuli by mechanoreceptors and interneurons of the medicinal leech

    Directory of Open Access Journals (Sweden)

    Jutta Kretzberg

    2016-10-01

    Full Text Available For many animals processing of tactile information is a crucial task in behavioral contexts like exploration, foraging and stimulus avoidance. The leech, having infrequent access to food, developed an energy efficient reaction to tactile stimuli, avoiding unnecessary muscle movements: The local bend behavior moves only a small part of the body wall away from an object touching the skin, while the rest of the animal remains stationary. Amazingly, the precision of this localized behavioral response is similar to the spatial discrimination threshold of the human fingertip, although the leech skin is innervated by an order of magnitude fewer mechanoreceptors and each midbody ganglion contains only 400 individually identified neurons in total. Prior studies suggested that this behavior is controlled by a three-layered feed-forward network, consisting of four mechanoreceptors (P cells, approximately 20 interneurons and 10 individually characterized motor neurons, all of which encode tactile stimulus location by overlapping, symmetrical tuning curves. Additionally, encoding of mechanical force was attributed to three types of mechanoreceptors reacting to distinct intensity ranges: T cells for touch, P cells for pressure and N cells for strong, noxious skin stimulation. In this study, we provide evidences that tactile stimulus encoding in the leech is more complex than previously thought. Combined electrophysiological, anatomical and voltage sensitive dye approaches indicate that P and T cells both play a major role in tactile information processing resulting in local bending. Our results indicate that tactile encoding neither relies on distinct force intensity ranges of different cell types, nor location encoding is restricted to spike count tuning. Instead, we propose that P and T cells form a mixed type population, which simultaneously employs temporal response features and spike counts for multiplexed encoding of touch location and force intensity

  19. Effects of Pre-Encoding Stress on Brain Correlates Associated with the Long-Term Memory for Emotional Scenes

    Science.gov (United States)

    Wirkner, Janine; Weymar, Mathias; Löw, Andreas; Hamm, Alfons O.

    2013-01-01

    Recent animal and human research indicates that stress around the time of encoding enhances long-term memory for emotionally arousing events but neural evidence remains unclear. In the present study we used the ERP old/new effect to investigate brain dynamics underlying the long-term effects of acute pre-encoding stress on memory for emotional and neutral scenes. Participants were exposed either to the Socially Evaluated Cold Pressure Test (SECPT) or a warm water control procedure before viewing 30 unpleasant, 30 neutral and 30 pleasant pictures. Two weeks after encoding, recognition memory was tested using 90 old and 90 new pictures. Emotional pictures were better recognized than neutral pictures in both groups and related to an enhanced centro-parietal ERP old/new difference (400–800 ms) during recognition, which suggests better recollection. Most interestingly, pre-encoding stress exposure specifically increased the ERP old/new-effect for emotional (unpleasant) pictures, but not for neutral pictures. These enhanced ERP/old new differences for emotional (unpleasant) scenes were particularly pronounced for those participants who reported high levels of stress during the SECPT. The results suggest that acute pre-encoding stress specifically strengthens brain signals of emotional memories, substantiating a facilitating role of stress on memory for emotional scenes. PMID:24039697

  20. Effects of pre-encoding stress on brain correlates associated with the long-term memory for emotional scenes.

    Directory of Open Access Journals (Sweden)

    Janine Wirkner

    Full Text Available Recent animal and human research indicates that stress around the time of encoding enhances long-term memory for emotionally arousing events but neural evidence remains unclear. In the present study we used the ERP old/new effect to investigate brain dynamics underlying the long-term effects of acute pre-encoding stress on memory for emotional and neutral scenes. Participants were exposed either to the Socially Evaluated Cold Pressure Test (SECPT or a warm water control procedure before viewing 30 unpleasant, 30 neutral and 30 pleasant pictures. Two weeks after encoding, recognition memory was tested using 90 old and 90 new pictures. Emotional pictures were better recognized than neutral pictures in both groups and related to an enhanced centro-parietal ERP old/new difference (400-800 ms during recognition, which suggests better recollection. Most interestingly, pre-encoding stress exposure specifically increased the ERP old/new-effect for emotional (unpleasant pictures, but not for neutral pictures. These enhanced ERP/old new differences for emotional (unpleasant scenes were particularly pronounced for those participants who reported high levels of stress during the SECPT. The results suggest that acute pre-encoding stress specifically strengthens brain signals of emotional memories, substantiating a facilitating role of stress on memory for emotional scenes.

  1. Episodic Memory Encoding Interferes with Reward Learning and Decreases Striatal Prediction Errors

    Science.gov (United States)

    Braun, Erin Kendall; Daw, Nathaniel D.

    2014-01-01

    Learning is essential for adaptive decision making. The striatum and its dopaminergic inputs are known to support incremental reward-based learning, while the hippocampus is known to support encoding of single events (episodic memory). Although traditionally studied separately, in even simple experiences, these two types of learning are likely to co-occur and may interact. Here we sought to understand the nature of this interaction by examining how incremental reward learning is related to concurrent episodic memory encoding. During the experiment, human participants made choices between two options (colored squares), each associated with a drifting probability of reward, with the goal of earning as much money as possible. Incidental, trial-unique object pictures, unrelated to the choice, were overlaid on each option. The next day, participants were given a surprise memory test for these pictures. We found that better episodic memory was related to a decreased influence of recent reward experience on choice, both within and across participants. fMRI analyses further revealed that during learning the canonical striatal reward prediction error signal was significantly weaker when episodic memory was stronger. This decrease in reward prediction error signals in the striatum was associated with enhanced functional connectivity between the hippocampus and striatum at the time of choice. Our results suggest a mechanism by which memory encoding may compete for striatal processing and provide insight into how interactions between different forms of learning guide reward-based decision making. PMID:25378157

  2. Genetic variants in nuclear-encoded mitochondrial genes influence AIDS progression.

    Directory of Open Access Journals (Sweden)

    Sher L Hendrickson

    Full Text Available BACKGROUND: The human mitochondrial genome includes only 13 coding genes while nuclear-encoded genes account for 99% of proteins responsible for mitochondrial morphology, redox regulation, and energetics. Mitochondrial pathogenesis occurs in HIV patients and genetically, mitochondrial DNA haplogroups with presumed functional differences have been associated with differential AIDS progression. METHODOLOGY/PRINCIPAL FINDINGS: Here we explore whether single nucleotide polymorphisms (SNPs within 904 of the estimated 1,500 genes that specify nuclear-encoded mitochondrial proteins (NEMPs influence AIDS progression among HIV-1 infected patients. We examined NEMPs for association with the rate of AIDS progression using genotypes generated by an Affymetrix 6.0 genotyping array of 1,455 European American patients from five US AIDS cohorts. Successfully genotyped SNPs gave 50% or better haplotype coverage for 679 of known NEMP genes. With a Bonferroni adjustment for the number of genes and tests examined, multiple SNPs within two NEMP genes showed significant association with AIDS progression: acyl-CoA synthetase medium-chain family member 4 (ACSM4 on chromosome 12 and peroxisomal D3,D2-enoyl-CoA isomerase (PECI on chromosome 6. CONCLUSIONS: Our previous studies on mitochondrial DNA showed that European haplogroups with presumed functional differences were associated with AIDS progression and HAART mediated adverse events. The modest influences of nuclear-encoded mitochondrial genes found in the current study add support to the idea that mitochondrial function plays a role in AIDS pathogenesis.

  3. Contributions of local speech encoding and functional connectivity to audio-visual speech perception

    Science.gov (United States)

    Giordano, Bruno L; Ince, Robin A A; Gross, Joachim; Schyns, Philippe G; Panzeri, Stefano; Kayser, Christoph

    2017-01-01

    Seeing a speaker’s face enhances speech intelligibility in adverse environments. We investigated the underlying network mechanisms by quantifying local speech representations and directed connectivity in MEG data obtained while human participants listened to speech of varying acoustic SNR and visual context. During high acoustic SNR speech encoding by temporally entrained brain activity was strong in temporal and inferior frontal cortex, while during low SNR strong entrainment emerged in premotor and superior frontal cortex. These changes in local encoding were accompanied by changes in directed connectivity along the ventral stream and the auditory-premotor axis. Importantly, the behavioral benefit arising from seeing the speaker’s face was not predicted by changes in local encoding but rather by enhanced functional connectivity between temporal and inferior frontal cortex. Our results demonstrate a role of auditory-frontal interactions in visual speech representations and suggest that functional connectivity along the ventral pathway facilitates speech comprehension in multisensory environments. DOI: http://dx.doi.org/10.7554/eLife.24763.001 PMID:28590903

  4. Effect of Alcohol on Encoding and Consolidation of Memory for Alcohol-Related Images.

    Science.gov (United States)

    Weafer, Jessica; Gallo, David A; de Wit, Harriet

    2016-07-01

    Drug and alcohol abusers develop strong memories for drug-related stimuli. Preclinical studies suggest that such memories are a result of drug actions on reward pathways, which facilitate learning about drug-related stimuli. However, few controlled studies have investigated how drugs affect memory for drug-related stimuli in humans. The current study examined the direct effect of alcohol on memory for images of alcohol-related or neutral beverages. Participants received alcohol (0.8 g/kg) either before viewing visual images (encoding condition; n = 20) or immediately after viewing them (consolidation condition; n = 20). A third group received placebo both before and after viewing the images (control condition; n = 19). Memory retrieval was tested exactly 48 hours later, in a drug-free state. Alcohol impaired memory in the encoding condition and enhanced memory in the consolidation condition, but these effects did not differ for alcohol-related and neutral beverage stimuli. However, in the encoding condition, participants who experienced greater alcohol-induced stimulation exhibited better memory for alcohol-related, but not neutral beverage stimuli. These findings suggest that individual differences in sensitivity to the positive, rewarding effects of alcohol are associated with greater propensity to remember alcohol-related stimuli encountered while intoxicated. As such, stimulant responders may form stronger memory associations with alcohol-related stimuli, which might then influence their drinking behavior. Copyright © 2016 by the Research Society on Alcoholism.

  5. What is a gene, post-ENCODE? History and updated definition.

    Science.gov (United States)

    Gerstein, Mark B; Bruce, Can; Rozowsky, Joel S; Zheng, Deyou; Du, Jiang; Korbel, Jan O; Emanuelsson, Olof; Zhang, Zhengdong D; Weissman, Sherman; Snyder, Michael

    2007-06-01

    While sequencing of the human genome surprised us with how many protein-coding genes there are, it did not fundamentally change our perspective on what a gene is. In contrast, the complex patterns of dispersed regulation and pervasive transcription uncovered by the ENCODE project, together with non-genic conservation and the abundance of noncoding RNA genes, have challenged the notion of the gene. To illustrate this, we review the evolution of operational definitions of a gene over the past century--from the abstract elements of heredity of Mendel and Morgan to the present-day ORFs enumerated in the sequence databanks. We then summarize the current ENCODE findings and provide a computational metaphor for the complexity. Finally, we propose a tentative update to the definition of a gene: A gene is a union of genomic sequences encoding a coherent set of potentially overlapping functional products. Our definition side-steps the complexities of regulation and transcription by removing the former altogether from the definition and arguing that final, functional gene products (rather than intermediate transcripts) should be used to group together entities associated with a single gene. It also manifests how integral the concept of biological function is in defining genes.

  6. Episodic memory encoding interferes with reward learning and decreases striatal prediction errors.

    Science.gov (United States)

    Wimmer, G Elliott; Braun, Erin Kendall; Daw, Nathaniel D; Shohamy, Daphna

    2014-11-05

    Learning is essential for adaptive decision making. The striatum and its dopaminergic inputs are known to support incremental reward-based learning, while the hippocampus is known to support encoding of single events (episodic memory). Although traditionally studied separately, in even simple experiences, these two types of learning are likely to co-occur and may interact. Here we sought to understand the nature of this interaction by examining how incremental reward learning is related to concurrent episodic memory encoding. During the experiment, human participants made choices between two options (colored squares), each associated with a drifting probability of reward, with the goal of earning as much money as possible. Incidental, trial-unique object pictures, unrelated to the choice, were overlaid on each option. The next day, participants were given a surprise memory test for these pictures. We found that better episodic memory was related to a decreased influence of recent reward experience on choice, both within and across participants. fMRI analyses further revealed that during learning the canonical striatal reward prediction error signal was significantly weaker when episodic memory was stronger. This decrease in reward prediction error signals in the striatum was associated with enhanced functional connectivity between the hippocampus and striatum at the time of choice. Our results suggest a mechanism by which memory encoding may compete for striatal processing and provide insight into how interactions between different forms of learning guide reward-based decision making. Copyright © 2014 the authors 0270-6474/14/3414901-12$15.00/0.

  7. An investigation into the development of an alternative optical shaft encoder

    OpenAIRE

    2012-01-01

    M.Ing. Shaft encoders, are devices generally used in speed and position control applications for sensing position of rotational and linearly moving objects. Most conventional shaft encoders operate on the principle of reading encoded information off a disk, which is fitted to the shaft or using resolver units. Problems are often experienced in fitting high-resolution encoder disks or resolvers to small motors or moving objects. The resolution of an encoder system, using an encoded disk, is...

  8. Graph Regularized Auto-Encoders for Image Representation.

    Science.gov (United States)

    Yiyi Liao; Yue Wang; Yong Liu

    2017-06-01

    Image representation has been intensively explored in the domain of computer vision for its significant influence on the relative tasks such as image clustering and classification. It is valuable to learn a low-dimensional representation of an image which preserves its inherent information from the original image space. At the perspective of manifold learning, this is implemented with the local invariant idea to capture the intrinsic low-dimensional manifold embedded in the high-dimensional input space. Inspired by the recent successes of deep architectures, we propose a local invariant deep nonlinear mapping algorithm, called graph regularized auto-encoder (GAE). With the graph regularization, the proposed method preserves the local connectivity from the original image space to the representation space, while the stacked auto-encoders provide explicit encoding model for fast inference and powerful expressive capacity for complex modeling. Theoretical analysis shows that the graph regularizer penalizes the weighted Frobenius norm of the Jacobian matrix of the encoder mapping, where the weight matrix captures the local property in the input space. Furthermore, the underlying effects on the hidden representation space are revealed, providing insightful explanation to the advantage of the proposed method. Finally, the experimental results on both clustering and classification tasks demonstrate the effectiveness of our GAE as well as the correctness of the proposed theoretical analysis, and it also suggests that GAE is a superior solution to the current deep representation learning techniques comparing with variant auto-encoders and existing local invariant methods.

  9. The new INRIM rotating encoder angle comparator (REAC)

    Science.gov (United States)

    Pisani, Marco; Astrua, Milena

    2017-04-01

    A novel angle comparator has been built and tested at INRIM. The device is based on a double air bearing structure embedding a continuously rotating encoder, which is read by two heads: one fixed to the base of the comparator and a second fixed to the upper moving part of the comparator. The phase measurement between the two heads’ signals is proportional to the relative angle suspended between them (and, therefore, the angle between the base and the upper, movable part of the comparator). The advantage of this solution is to reduce the encoder graduation errors and to cancel the cyclic errors due to the interpolation of the encoder lines. By using only two pairs of reading heads, we have achieved an intrinsic accuracy of  ±0.04″ (rectangular distribution) that can be reduced through self-calibration. The residual cyclic errors have shown to be less than 0.01″ peak-to-peak. The random fluctuations are less than 0.01″ rms on a 100 s time interval. A further advantage of the rotating encoder is the intrinsic knowledge of the absolute position without the need of a zeroing procedure. Construction details of the rotating encoder angle comparator (REAC), characterization tests, and examples of practical use are given.

  10. Monitoring activity in neural circuits with genetically encoded indicators

    Directory of Open Access Journals (Sweden)

    Gerard Joseph Broussard

    2014-12-01

    Full Text Available Recent developments in genetically encoded indicators of neural activity (GINAs have greatly advanced the field of systems neuroscience. As they are encoded by DNA, GINAs can be targeted to genetically defined cellular populations. Combined with fluorescence microscopy, most notably multi-photon imaging, GINAs allow chronic simultaneous optical recordings from large populations of neurons or glial cells in awake, behaving mammals, particularly rodents. This large-scale recording of neural activity at multiple temporal and spatial scales has greatly advanced our understanding of the dynamics of neural circuitry underlying behavior—a critical first step toward understanding the complexities of brain function, such as sensorimotor integration and learning.Here, we summarize the recent development and applications of the major classes of GINAs. In particular, we take an in-depth look at the design of available GINA families with a particular focus on genetically encoded calcium indicators, sensors probing synaptic activity, and genetically encoded voltage indicators. Using the family of the genetically encoded calcium indicator GCaMP as an example, we review established sensor optimization pipelines. We also discuss practical considerations for end users of GINAs about experimental methods including approaches for gene delivery, imaging system requirements, and data analysis techniques. With the growing toolbox of GINAs and with new microscopy techniques pushing beyond their current limits, the age of light can finally achieve the goal of broad and dense sampling of neuronal activity across time and brain structures to obtain a dynamic picture of brain function.

  11. Escherichia coli kgtP encodes an alpha-ketoglutarate transporter.

    OpenAIRE

    Seol, W; Shatkin, A J

    1991-01-01

    The witA gene located between pss and rrnG on the Escherichia coli chromosome encodes a 432-amino acid protein. It is homologous to a human hepatoma glucose transporter and to E. coli membrane proteins that transport citrate (CitA), arabinose (AraE), and xylose (XylE), and, like these carrier proteins, WitA also contains 12 highly hydrophobic putative membrane-spanning regions. Gene disruption mutants constructed in two E. coli strains grew slowly or not at all, depending on genetic backgroun...

  12. TMpcp: a Tuber magnatum gene which encodes a putative mitochondrial phosphate carrier.

    Science.gov (United States)

    Garnero, L; Bonfante, P

    2000-01-01

    Little is known about the genome of Tuber, Ascomycetes which comprise a number of ectomycorrhizal species. Screening of a genomic library of Tuber magnatum led to identification of a chitin synthase gene (chs). On sequencing upstream of it in the same phage, we found a 2000 bp long fragment that proved to contain a hypothetical gene with high homology with mitochondrial phosphate carriers from human and bovine heart, and from Saccharomyces cerevisiae. The sequence contains two putative introns and its open reading frame encodes for a protein 305 amino acids long. A primary sequence analysis revealed 6 hydrophobic segments and a signature pattern, similar to that of other mitochondrial carriers.

  13. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide.

    Science.gov (United States)

    Matsumoto, Akinobu; Pasut, Alessandra; Matsumoto, Masaki; Yamashita, Riu; Fung, Jacqueline; Monteleone, Emanuele; Saghatelian, Alan; Nakayama, Keiichi I; Clohessy, John G; Pandolfi, Pier Paolo

    2017-01-12

    Although long non-coding RNAs (lncRNAs) are non-protein-coding transcripts by definition, recent studies have shown that a fraction of putative small open reading frames within lncRNAs are translated. However, the biological significance of these hidden polypeptides is still unclear. Here we identify and functionally characterize a novel polypeptide encoded by the lncRNA LINC00961. This polypeptide is conserved between human and mouse, is localized to the late endosome/lysosome and interacts with the lysosomal v-ATPase to negatively regulate mTORC1 activation. This regulation of mTORC1 is specific to activation of mTORC1 by amino acid stimulation, rather than by growth factors. Hence, we termed this polypeptide 'small regulatory polypeptide of amino acid response' (SPAR). We show that the SPAR-encoding lncRNA is highly expressed in a subset of tissues and use CRISPR/Cas9 engineering to develop a SPAR-polypeptide-specific knockout mouse while maintaining expression of the host lncRNA. We find that the SPAR-encoding lncRNA is downregulated in skeletal muscle upon acute injury, and using this in vivo model we establish that SPAR downregulation enables efficient activation of mTORC1 and promotes muscle regeneration. Our data provide a mechanism by which mTORC1 activation may be finely regulated in a tissue-specific manner in response to injury, and a paradigm by which lncRNAs encoding small polypeptides can modulate general biological pathways and processes to facilitate tissue-specific requirements, consistent with their restricted and highly regulated expression profile.

  14. Distinctiveness and encoding effects in online sentence comprehension

    Directory of Open Access Journals (Sweden)

    Philip eHofmeister

    2014-12-01

    Full Text Available In explicit memory recall and recognition tasks, elaboration and contextual isolation both facilitate memory performance. Here, we investigate these effects in the context of sentence processing: targets for retrieval during online sentence processing of English object relative clause constructions differ in the amount of elaboration associated with the target noun phrase, or the homogeneity of superficial features (text color. Experiment 1 shows that greater elaboration for targets during the encoding phase reduces reading times at retrieval sites, but elaboration of non-targets has considerably weaker effects. Experiment 2 illustrates that processing isolated superficial features of target noun phrases --- here, a green word in a sentence with words colored white --- does not lead to enhanced memory performance, despite triggering longer encoding times. These results are interpreted in the light of the memory models of Nairne 1990, 2001, 2006, which state that encoding remnants contribute to the set of retrieval cues that provide the basis for similarity-based interference effects.

  15. Encoding of line drawings with a multiple grid chain code.

    Science.gov (United States)

    Minami, T; Shinohara, K

    1986-02-01

    The multiple grid(MG) chain code which uses four different square grids is proposed to encode line drawings. The main processes adopted in the code are: 1) a grid selection algorithm which allocates quantization points only to the vicinity of the course of a line drawing, 2) labeling rule on quantization points which makes the frequency of some codes larger than that of other codes, and 3) quantization points allocation-not to the corners, but to the sides of a square which makes the straight line segments larger without increasing quantization error. A performance comparison of various chain codes is made from the viewpoints of the encoding efficiency, naturalness of the encoded lines, and the rate distortion measure. Also, the superiority of the MG chain code to other codes is shown. At last, application of the MG chain code to the electronic blackboard system is explained.

  16. Identification of a Novel UTY‐Encoded Minor Histocompatibility Antigen

    DEFF Research Database (Denmark)

    Mortensen, B. K.; Rasmussen, A. H.; Larsen, Malene Erup

    2012-01-01

    Minor histocompatibility antigens (mHags) encoded by the Y‐chromosome (H‐Y‐mHags) are known to play a pivotal role in allogeneic haematopoietic cell transplantation (HCT) involving female donors and male recipients. We present a new H‐Y‐mHag, YYNAFHWAI (UTY139–147), encoded by the UTY gene...... and presented by HLA‐A*24:02. Briefly, short peptide stretches encompassing multiple putative H‐Y‐mHags were designed using a bioinformatics predictor of peptide‐HLA binding, NetMHCpan. These peptides were used to screen for peptide‐specific HLA‐restricted T cell responses in peripheral blood mononuclear cells...... obtained post‐HCT from male recipients of female donor grafts. In one of these recipients, a CD8+ T cell response was observed against a peptide stretch encoded by the UTY gene. Another bioinformatics tool, HLArestrictor, was used to identify the optimal peptide and HLA‐restriction element. Using peptide...

  17. The generation effect: activating broad neural circuits during memory encoding.

    Science.gov (United States)

    Rosner, Zachary A; Elman, Jeremy A; Shimamura, Arthur P

    2013-01-01

    The generation effect is a robust memory phenomenon in which actively producing material during encoding acts to improve later memory performance. In a functional magnetic resonance imaging (fMRI) analysis, we explored the neural basis of this effect. During encoding, participants generated synonyms from word-fragment cues (e.g., GARBAGE-W_ST_) or read other synonym pairs (e.g., GARBAGE-WASTE). Compared to simply reading target words, generating target words significantly improved later recognition memory performance. During encoding, this benefit was associated with a broad neural network that involved both prefrontal (inferior frontal gyrus, middle frontal gyrus) and posterior cortex (inferior temporal gyrus, lateral occipital cortex, parahippocampal gyrus, ventral posterior parietal cortex). These findings define the prefrontal-posterior cortical dynamics associated with the mnemonic benefits underlying the generation effect. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Feedback-Based Collaborative Secrecy Encoding over Binary Symmetric Channels

    CERN Document Server

    Amariucai, George

    2009-01-01

    In this paper we propose a feedback scheme for transmitting secret messages between two legitimate parties, over an eavesdropped communication link. Relative to Wyner's traditional encoding scheme \\cite{wyner1}, our feedback-based encoding often yields larger rate-equivocation regions and achievable secrecy rates. More importantly, by exploiting the channel randomness inherent in the feedback channels, our scheme achieves a strictly positive secrecy rate even when the eavesdropper's channel is less noisy than the legitimate receiver's channel. All channels are modeled as binary and symmetric (BSC). We demonstrate the versatility of our feedback-based encoding method by using it in three different configurations: the stand-alone configuration, the mixed configuration (when it combines with Wyner's scheme \\cite{wyner1}), and the reversed configuration. Depending on the channel conditions, significant improvements over Wyner's secrecy capacity can be observed in all configurations.

  19. Distinctiveness and encoding effects in online sentence comprehension.

    Science.gov (United States)

    Hofmeister, Philip; Vasishth, Shravan

    2014-01-01

    In explicit memory recall and recognition tasks, elaboration and contextual isolation both facilitate memory performance. Here, we investigate these effects in the context of sentence processing: targets for retrieval during online sentence processing of English object relative clause constructions differ in the amount of elaboration associated with the target noun phrase, or the homogeneity of superficial features (text color). Experiment 1 shows that greater elaboration for targets during the encoding phase reduces reading times at retrieval sites, but elaboration of non-targets has considerably weaker effects. Experiment 2 illustrates that processing isolated superficial features of target noun phrases-here, a green word in a sentence with words colored white-does not lead to enhanced memory performance, despite triggering longer encoding times. These results are interpreted in the light of the memory models of Nairne, 1990, 2001, 2006, which state that encoding remnants contribute to the set of retrieval cues that provide the basis for similarity-based interference effects.

  20. Enzymes and Enzyme Activity Encoded by Nonenveloped Viruses.

    Science.gov (United States)

    Azad, Kimi; Banerjee, Manidipa; Johnson, John E

    2017-09-29

    Viruses are obligate intracellular parasites that rely on host cell machineries for their replication and survival. Although viruses tend to make optimal use of the host cell protein repertoire, they need to encode essential enzymatic or effector functions that may not be available or accessible in the host cellular milieu. The enzymes encoded by nonenveloped viruses-a group of viruses that lack any lipid coating or envelope-play vital roles in all the stages of the viral life cycle. This review summarizes the structural, biochemical, and mechanistic information available for several classes of enzymes and autocatalytic activity encoded by nonenveloped viruses. Advances in research and development of antiviral inhibitors targeting specific viral enzymes are also highlighted.

  1. Genetically-encoded biosensors for monitoring cellular stress in bioprocessing.

    Science.gov (United States)

    Polizzi, Karen M; Kontoravdi, Cleo

    2015-02-01

    With the current wealth of transcriptomic data, it is possible to design genetically-encoded biosensors for the detection of stress responses and apply these to high-throughput bioprocess development and monitoring of cellular health. Such biosensors can sense extrinsic factors such as nutrient or oxygen deprivation and shear stress, as well as intrinsic stress factors like oxidative damage and unfolded protein accumulation. Alongside, there have been developments in biosensing hardware and software applicable to the field of genetically-encoded biosensors in the near future. This review discusses the current state-of-the-art in biosensors for monitoring cultures during biological manufacturing and the future challenges for the field. Connecting the individual achievements into a coherent whole will enable the application of genetically-encoded biosensors in industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Multi-Level Sequential Pattern Mining Based on Prime Encoding

    Science.gov (United States)

    Lianglei, Sun; Yun, Li; Jiang, Yin

    Encoding is not only to express the hierarchical relationship, but also to facilitate the identification of the relationship between different levels, which will directly affect the efficiency of the algorithm in the area of mining the multi-level sequential pattern. In this paper, we prove that one step of division operation can decide the parent-child relationship between different levels by using prime encoding and present PMSM algorithm and CROSS-PMSM algorithm which are based on prime encoding for mining multi-level sequential pattern and cross-level sequential pattern respectively. Experimental results show that the algorithm can effectively extract multi-level and cross-level sequential pattern from the sequence database.

  3. Inline SAW RFID tag using time position and phase encoding.

    Science.gov (United States)

    Härmä, Sanna; Arthur, Wesley G; Hartmann, Clinton S; Maev, Roman G; Plessky, Victor P

    2008-08-01

    Surface acoustic wave (SAW) radio-frequency identification (RFID) tags are encoded according to partial reflections of an interrogation signal by short metal reflectors. The standard encryption method involves time position encoding that uses time delays of response signals. However, the data capacity of a SAW RFID tag can be significantly enhanced by extracting additional phase information from the tag responses. In this work, we have designed, using FEM-BEM simulations, and fabricated, on 128 degrees -LiNbO3, inline 2.44-GHz SAW RFID tag samples that combine time position and phase encoding. Each reflective echo has 4 possible time positions and a phase of 0 degrees , -90 degrees , -180 degrees , or -270 degrees. This corresponds to 16 different states, i.e., 4 bits of data, per code reflector. In addition to the enhanced data capacity, our samples also exhibit a low loss level of -38 dB for code reflections.

  4. A GRISM-based probe for spectrally encoded confocal microscopy.

    Science.gov (United States)

    Pitris, C; Bouma, B; Shiskov, M; Tearney, G

    2003-01-27

    Spectrally encoded confocal microscopy (SECM) is a novel approach for obtaining high resolution, depth-sectioned images of microstructure within turbid samples. By encoding one spatial dimension in wavelength, imaging probes can be greatly simplified compared to standard scanning confocal microscopes, potentially enabling endoscopic implementation. The use of a diffraction grating for spectral encoding, however, skews the optical axis through the probe, thus complicating the design of narrow diameter instruments. In this Letter, we describe a novel use of a single-optical-axis element based on high index-of-refraction prisms and a transmission holographic grating for the design of narrow diameter SECM devices. Confocal images obtained with a 10.0 mm probe demonstrate a transverse resolution of 1.1 microm and a field of view of 650 microm.

  5. Encoding, training and retrieval in ferroelectric tunnel junctions

    Science.gov (United States)

    Xu, Hanni; Xia, Yidong; Xu, Bo; Yin, Jiang; Yuan, Guoliang; Liu, Zhiguo

    2016-05-01

    Ferroelectric tunnel junctions (FTJs) are quantum nanostructures that have great potential in the hardware basis for future neuromorphic applications. Among recently proposed possibilities, the artificial cognition has high hopes, where encoding, training, memory solidification and retrieval constitute a whole chain that is inseparable. However, it is yet envisioned but experimentally unconfirmed. The poor retention or short-term store of tunneling electroresistance, in particular the intermediate states, is still a key challenge in FTJs. Here we report the encoding, training and retrieval in BaTiO3 FTJs, emulating the key features of information processing in terms of cognitive neuroscience. This is implemented and exemplified through processing characters. Using training inputs that are validated by the evolution of both barrier profile and domain configuration, accurate recalling of encoded characters in the retrieval stage is demonstrated.

  6. Splice variants of porcine PPHLN1 encoding periphilin-1

    DEFF Research Database (Denmark)

    Larsen, Knud Erik; Momeni, Jamal; Farajzadeh, Leila

    2017-01-01

    of the periphilin-1 protein. Thus, variants Sp1 and Sp1 are the result of alternative splicing. The porcine PPHLN1 gene was mapped to chromosome 5. The porcine PPHLN1 gene was found to be differentially expressed in various porcine organs and tissues. The sequence of the porcine PPHLN1 cDNA, encoding the periphilin......The periphilin-1 protein is encoded by the PPHLN1 gene. Periphilin-1 is found in the cornified cell envelope during the terminal differentiation of keratinocyte at the outer layer of epidermis. In the current study we report on the cloning and characterization of the porcine PPHLN1 cDNA and two...... splice variants hereof. RT-PCR cloning using oligonucleotide primers derived from in silico sequences resulted in three PPHLN1 transcripts: a full-length mRNA and two transcript variant resulting in shorter proteins. The longest encoded periphilin-1, consisting of 373 amino acids, displays a high...

  7. Discovering Drugs with DNA-Encoded Library Technology: From Concept to Clinic with an Inhibitor of Soluble Epoxide Hydrolase.

    Science.gov (United States)

    Belyanskaya, Svetlana L; Ding, Yun; Callahan, James F; Lazaar, Aili L; Israel, David I

    2017-05-04

    DNA-encoded chemical library technology was developed with the vision of its becoming a transformational platform for drug discovery. The hope was that a new paradigm for the discovery of low-molecular-weight drugs would be enabled by combining the vast molecular diversity achievable with combinatorial chemistry, the information-encoding attributes of DNA, the power of molecular biology, and a streamlined selection-based discovery process. Here, we describe the discovery and early clinical development of GSK2256294, an inhibitor of soluble epoxide hydrolase (sEH, EPHX2), by using encoded-library technology (ELT). GSK2256294 is an orally bioavailable, potent and selective inhibitor of sEH that has a long half life and produced no serious adverse events in a first-time-in-human clinical study. To our knowledge, GSK2256294 is the first molecule discovered from this technology to enter human clinical testing and represents a realization of the vision that DNA-encoded chemical library technology can efficiently yield molecules with favorable properties that can be readily progressed into high-quality drugs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Differential encoding mechanisms for subsequent associative recognition and free recall.

    Science.gov (United States)

    Staresina, Bernhard P; Davachi, Lila

    2006-09-06

    Recent neuroimaging studies have successfully identified encoding mechanisms that support different forms of subsequent episodic recognition memory. In our everyday lives, however, much of our episodic memory retrieval is accomplished by means of free recall, i.e., retrieval without an external recognition cue. In this study, we used functional magnetic resonance imaging to investigate the encoding mechanisms that support later free recall and their relationship to those that support different forms of later recognition memory. First, in agreement with previous work, we found that activation in the left inferior frontal gyrus and hippocampus correlated with later associative/relational recognition. In these regions, activation was further enhanced for items later freely recalled, pointing to shared underlying relational encoding mechanisms whose magnitude of activation differentiates later successful free recall from successful associative recognition. Critically, we also found evidence for free recall-specific encoding mechanisms that did not, in our paradigm, support later associative recognition compared with item recognition. These free recall-specific effects were observed in left mid/dorsolateral prefrontal (DLPFC) and bilateral posterior parietal cortices (PPC). We speculate that the higher-level working memory operations associated with DLPFC and attention to internal mnemonic representations perhaps mediated via PPC may serve to embed an item into a rich associative network during encoding that facilitates later access to the item. Finally, activation in the perirhinal cortex correlated with successful associative binding regardless of the form of later memory, i.e., recognition or free recall, providing novel evidence for the role of the perirhinal cortex in episodic intra-item encoding.

  9. Optimal Base Encodings for Pseudo-Boolean Constraints

    CERN Document Server

    Codish, Michael; Fuhs, Carsten; Schneider-Kamp, Peter

    2010-01-01

    This paper formalizes the "optimal base problem", presents an algorithm to solve it, and describes its application to the encoding of Pseudo-Boolean constraints to SAT. We demonstrate the impact of integrating our algorithm within the Pseudo-Boolean constraint solver MiniSAT+. Experimentation indicates that our algorithm scales to consider bases involving numbers up to 1,000,000, improving on the restriction in MiniSAT+ to prime numbers up to 17. We show that, while for many examples primes up to 17 do suffice, encoding with respect to arbitrary bases improves the subsequent SAT solving time considerably.

  10. Solving traveling salesman problems with DNA molecules encoding numerical values.

    Science.gov (United States)

    Lee, Ji Youn; Shin, Soo-Yong; Park, Tai Hyun; Zhang, Byoung-Tak

    2004-12-01

    We introduce a DNA encoding method to represent numerical values and a biased molecular algorithm based on the thermodynamic properties of DNA. DNA strands are designed to encode real values by variation of their melting temperatures. The thermodynamic properties of DNA are used for effective local search of optimal solutions using biochemical techniques, such as denaturation temperature gradient polymerase chain reaction and temperature gradient gel electrophoresis. The proposed method was successfully applied to the traveling salesman problem, an instance of optimization problems on weighted graphs. This work extends the capability of DNA computing to solving numerical optimization problems, which is contrasted with other DNA computing methods focusing on logical problem solving.

  11. Spatio-Temporal Encoding in Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Gran, Fredrik

    2005-01-01

    In this dissertation two methods for spatio-temporal encoding in medical ultrasound imaging are investigated. The first technique is based on a frequency division approach. Here, the available spectrum of the transducer is divided into a set of narrow bands. A waveform is designed for each band...... are also included in the dissertation. The second method is based on encoding the transmitters with pseudo-random sequences. The signals can be separated after only one transmission using an estimation based technique. Broadband decoding can, therefore, be performed at the receiver after a single...

  12. Straight to the point: how people encode linear discontinuations

    Directory of Open Access Journals (Sweden)

    Rodrigo I. Mora

    2012-12-01

    Full Text Available Spatial discontinuations, as those found in cities and buildings, are everyday events. But, how do we encode and classify such misalignments? This is the topic of this paper. Twenty participants were asked to classify a total of 51 icons showing an upward-moving line being misaligned to the right, left and straight down. The results show that subjects were very sensitive to slight discontinuations occurring to vertical lines and that there was not exact symmetry between the left and right axis, meaning that the pieces slightly misaligned to the left were encoded differently than those misaligned to the right

  13. Hybrid architecture for encoded measurement-based quantum computation.

    Science.gov (United States)

    Zwerger, M; Briegel, H J; Dür, W

    2014-06-20

    We present a hybrid scheme for quantum computation that combines the modular structure of elementary building blocks used in the circuit model with the advantages of a measurement-based approach to quantum computation. We show how to construct optimal resource states of minimal size to implement elementary building blocks for encoded quantum computation in a measurement-based way, including states for error correction and encoded gates. The performance of the scheme is determined by the quality of the resource states, where within the considered error model a threshold of the order of 10% local noise per particle for fault-tolerant quantum computation and quantum communication.

  14. A Novel Complex-Valued Encoding Grey Wolf Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Qifang Luo

    2015-12-01

    Full Text Available Grey wolf optimization (GWO is one of the recently proposed heuristic algorithms imitating the leadership hierarchy and hunting mechanism of grey wolves in nature. The aim of these algorithms is to perform global optimization. This paper presents a modified GWO algorithm based on complex-valued encoding; namely the complex-valued encoding grey wolf optimization (CGWO. We use CGWO to test 16 unconstrained benchmark functions with seven different scales and infinite impulse response (IIR model identification. Compared to the real-valued GWO algorithm and other optimization algorithms; the CGWO performs significantly better in terms of accuracy; robustness; and convergence speed.

  15. Accelerated radial Fourier-velocity encoding using compressed sensing.

    Science.gov (United States)

    Hilbert, Fabian; Wech, Tobias; Hahn, Dietbert; Köstler, Herbert

    2014-09-01

    Phase Contrast Magnetic Resonance Imaging (MRI) is a tool for non-invasive determination of flow velocities inside blood vessels. Because Phase Contrast MRI only measures a single mean velocity per voxel, it is only applicable to vessels significantly larger than the voxel size. In contrast, Fourier Velocity Encoding measures the entire velocity distribution inside a voxel, but requires a much longer acquisition time. For accurate diagnosis of stenosis in vessels on the scale of spatial resolution, it is important to know the velocity distribution of a voxel. Our aim was to determine velocity distributions with accelerated Fourier Velocity Encoding in an acquisition time required for a conventional Phase Contrast image. We imaged the femoral artery of healthy volunteers with ECG-triggered, radial CINE acquisition. Data acquisition was accelerated by undersampling, while missing data were reconstructed by Compressed Sensing. Velocity spectra of the vessel were evaluated by high resolution Phase Contrast images and compared to spectra from fully sampled and undersampled Fourier Velocity Encoding. By means of undersampling, it was possible to reduce the scan time for Fourier Velocity Encoding to the duration required for a conventional Phase Contrast image. Acquisition time for a fully sampled data set with 12 different Velocity Encodings was 40 min. By applying a 12.6-fold retrospective undersampling, a data set was generated equal to 3:10 min acquisition time, which is similar to a conventional Phase Contrast measurement. Velocity spectra from fully sampled and undersampled Fourier Velocity Encoded images are in good agreement and show the same maximum velocities as compared to velocity maps from Phase Contrast measurements. Compressed Sensing proved to reliably reconstruct Fourier Velocity Encoded data. Our results indicate that Fourier Velocity Encoding allows an accurate determination of the velocity distribution in vessels in the order of the voxel size. Thus

  16. submitter Linear encoder based low frequency inertial sensor

    CERN Document Server

    Hellegouarch, Sylvain; Artoos, Kurt; Lambert, Pierre; Collette, Christophe

    2016-01-01

    In this article, we present a novel concept of inertial sensor, based on a linear encoder. Compared to other interferometric sensors, the encoder is much more easy to mount, and the calibration more stable. A prototype has been built and validated experimentally by comparison with a commercial seismometer. It has a resolution of about 10 pm/√Hz. In order to further improve the resolution, two concepts of mechanical amplifiers have been studied and compared. One of them is shown to be extremely promising, provided that the amplifier does not stiffen the sensor.

  17. Remapping of memory encoding and retrieval networks: insights from neuroimaging in primates.

    Science.gov (United States)

    Miyamoto, Kentaro; Osada, Takahiro; Adachi, Yusuke

    2014-12-15

    Advancements in neuroimaging techniques have allowed for the investigation of the neural correlates of memory functions in the whole human brain. Thus, the involvement of various cortical regions, including the medial temporal lobe (MTL) and posterior parietal cortex (PPC), has been repeatedly reported in the human memory processes of encoding and retrieval. However, the functional roles of these sites could be more fully characterized utilizing nonhuman primate models, which afford the potential for well-controlled, finer-scale experimental procedures that are inapplicable to humans, including electrophysiology, histology, genetics, and lesion approaches. Yet, the presence and localization of the functional counterparts of these human memory-related sites in the macaque monkey MTL or PPC were previously unknown. Therefore, to bridge the inter-species gap, experiments were required in monkeys using functional magnetic resonance imaging (fMRI), the same methodology adopted in human studies. Here, we briefly review the history of experimentation on memory systems using a nonhuman primate model and our recent fMRI studies examining memory processing in monkeys performing recognition memory tasks. We will discuss the memory systems common to monkeys and humans and future directions of finer cell-level characterization of memory-related processes using electrophysiological recording and genetic manipulation approaches. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Neurospora crassa fmf-1 encodes the homologue of the ...

    Indian Academy of Sciences (India)

    Neurospora crassa fmf-1 encodes the homologue of the. Schizosaccharomyces pombe Ste11p regulator of sexual development. Srividhya V. Iyer, Mukund Ramakrishnan and Durgadas P. Kasbekar. J. Genet. 88, 33–39. Figure 1. Sequence at the junction of the proximal breakpoint of T(AR173) has homology with Cen-VII ...

  19. Transcriptional modulation of genes encoding nitrate reductase in ...

    African Journals Online (AJOL)

    2016-10-26

    Oct 26, 2016 ... The free aluminum (Al) content in soil can reach levels that are toxic to plants, and this has frequently limited increased productivity of cultures. Four genes encoding nitrate reductase (NR) were identified, named ZmNR1–4. With the aim of evaluating NR activity and the transcriptional modulation of the.

  20. Method of implementing frequency-encoded NOT, OR and NOR ...

    Indian Academy of Sciences (India)

    Abstract. Optics has already proved its strong potentiality for the conduction of parallel logic, arithmetic and algebraic operations. In the last few decades several all-optical data processors were proposed. To implement these processors different data encoding/decoding techniques have been reported. In this context ...

  1. Local alignment of two-base encoded DNA sequence.

    Science.gov (United States)

    Homer, Nils; Merriman, Barry; Nelson, Stanley F

    2009-06-09

    DNA sequence comparison is based on optimal local alignment of two sequences using a similarity score. However, some new DNA sequencing technologies do not directly measure the base sequence, but rather an encoded form, such as the two-base encoding considered here. In order to compare such data to a reference sequence, the data must be decoded into sequence. The decoding is deterministic, but the possibility of measurement errors requires searching among all possible error modes and resulting alignments to achieve an optimal balance of fewer errors versus greater sequence similarity. We present an extension of the standard dynamic programming method for local alignment, which simultaneously decodes the data and performs the alignment, maximizing a similarity score based on a weighted combination of errors and edits, and allowing an affine gap penalty. We also present simulations that demonstrate the performance characteristics of our two base encoded alignment method and contrast those with standard DNA sequence alignment under the same conditions. The new local alignment algorithm for two-base encoded data has substantial power to properly detect and correct measurement errors while identifying underlying sequence variants, and facilitating genome re-sequencing efforts based on this form of sequence data.

  2. EGVI endoglucanase and nucleic acids encoding the same

    Energy Technology Data Exchange (ETDEWEB)

    Dunn-Coleman, Nigel (Los Gatos, CA); Goedegebuur, Frits (Vlaardingen, NL); Ward, Michael (San Francisco, CA); Yao, Jian (Sunnyvale, CA)

    2010-10-05

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6, and the corresponding EGVI amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  3. EGVI endoglucanase and nucleic acids encoding the same

    Energy Technology Data Exchange (ETDEWEB)

    Dunn-Coleman, Nigel (Los Gatos, CA); Goedegebuur, Frits (Vlaardingen, NL); Ward, Michael (San Francisco, CA); Yao, Jian (Sunnyvale, CA)

    2010-10-12

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6, and the corresponding EGVI amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  4. Learning from Number Board Games: You Learn What You Encode

    Science.gov (United States)

    Laski, Elida V.; Siegler, Robert S.

    2014-01-01

    We tested the hypothesis that encoding the numerical-spatial relations in a number board game is a key process in promoting learning from playing such games. Experiment 1 used a microgenetic design to examine the effects on learning of the type of counting procedure that children use. As predicted, having kindergartners count-on from their current…

  5. A spoonful of sugar: encoding and publishing in the classroom

    NARCIS (Netherlands)

    Spadini, E.

    2017-01-01

    This paper pursues the use of text encoding and digital publication in teaching textual criticism. A number of concepts and rules of textual criticism can be put into practice during a course thanks to the use of digital resources and tools. In dealing with original materials (text sources), the

  6. Pushing the limits of single-photon information encoding

    NARCIS (Netherlands)

    Hummel, T.; Tentrup, Tristan Bernhard Horst; Uppu, Ravitej; Mosk, Allard; Pinkse, Pepijn Willemszoon Harry

    2016-01-01

    Single photons are the carrier of choice in many quantum information processing protocols. Encoding information in a high-dimensional Hilbert space allows for the transfer of more than one bit of information per photon. We use a spatial light modulator (SLM) to direct the single photons to distinct

  7. Identification and characterization of a gene encoding a putative ...

    Indian Academy of Sciences (India)

    2012-10-30

    Oct 30, 2012 ... data demonstrated that AhLPAT4 had 1631 nucleotides, encoding a putative 43.8 kDa protein with 383 amino acid residues. The deduced protein ... senting the major components of vegetable oils. It is an efficient ... are then transported to endoplasmic reticulum (ER) or cyto- plasm to form acyl-CoA ...

  8. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Schnorr, Kirk; Kramer, Randall

    2017-08-08

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  9. Cloning, sequencing and expression of cDNA encoding growth ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 26; Issue 3. Cloning, sequencing ... The full-length cDNA clone is 1132 bp in length, coding for an open reading frame (ORF) of 603 bp; the reading frame encodes a putative polypeptide of 200 amino acids including the signal sequence of 22 amino acids. The 5′ and 3′ ...

  10. Overexpression of BrSAC1 encoding a phosphoinositide ...

    African Journals Online (AJOL)

    The full length gene (BrSAC1; GenBank accession no., GU434275) contained 1999 base pairs (bp), with an open reading frame of 1785 bp, encoding a polypeptide of 594 amino acids with a predicted molecular weight of 65 kDa, including a putative N-terminal signal peptide (the signal peptide counted within the 594 ...

  11. High speed image acquisition system of absolute encoder

    Science.gov (United States)

    Liao, Jianxiang; Chen, Xin; Chen, Xindu; Zhang, Fangjian; Wang, Han

    2017-01-01

    Absolute optical encoder as a product of optical, mechanical and electronic integration has been widely used in displacement measuring fields. However, how to improve the measurement velocity and reduce the manufacturing cost of absolute optical encoder is the key problem to be solved. To improve the measurement speed, a novel absolute optical encoder image acquisition system is proposed. The proposed acquisition system includes a linear CCD sensor is applied for capturing coding pattern images, an optical magnifying system is used for enlarging the grating stripes, an analog-digital conversion(ADC) module is used for processing the CCD analogy signal, a field programmable gate array(FPGA) device and other peripherals perform driving task. An absolute position measurement experiment was set up to verify and evaluate the proposed image acquisition system. The experimental result indicates that the proposed absolute optical encoder image acquisition system has the image acquisition speed of more than 9500fp/s with well reliability and lower manufacture cost.

  12. Functional analysis of a gene encoding threonine synthase from rice ...

    African Journals Online (AJOL)

    The predicted amino acid sequence of OsTS is highly homologous to that of Arabidopsis TS and many bacterial TS encoded by thrC gene. The OsTS protein harbors a signature binding motif for pyridoxal- 5' -phosphate at the amino terminus. A thrC mutant strain of Escherichia coli was complemented by OsTS expression.

  13. Transcriptional modulation of genes encoding nitrate reductase in ...

    African Journals Online (AJOL)

    The free aluminum (Al) content in soil can reach levels that are toxic to plants, and this has frequently limited increased productivity of cultures. Four genes encoding nitrate reductase (NR) were identified, named ZmNR1–4. With the aim of evaluating NR activity and the transcriptional modulation of the ZmNR1, ZmNR2, ...

  14. Prefrontal contributions to relational encoding in amnestic mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Chris M. Foster

    2016-01-01

    Full Text Available Relational memory declines are well documented as an early marker for amnestic mild cognitive impairment (aMCI. Episodic memory formation relies on relational processing supported by two mnemonic mechanisms, generation and binding. Neuroimaging studies using functional magnetic resonance imaging (fMRI have primarily focused on binding deficits which are thought to be mediated by medial temporal lobe dysfunction. In this study, prefrontal contributions to relational encoding were also investigated using fMRI by parametrically manipulating generation demands during the encoding of word triads. Participants diagnosed with aMCI and healthy control subjects encoded word triads consisting of a category word with either, zero, one, or two semantically related exemplars. As the need to generate increased (i.e., two- to one- to zero-link triads, both groups recruited a core set of regions associated with the encoding of word triads including the parahippocampal gyrus, superior temporal gyrus, and superior parietal lobule. Participants diagnosed with aMCI also parametrically recruited several frontal regions including the inferior frontal gyrus and middle frontal gyrus as the need to generate increased, whereas the control participants did not show this modulation. While there is some functional overlap in regions recruited by generation demands between the groups, the recruitment of frontal regions in the aMCI participants coincides with worse memory performance, likely representing a form of neural inefficiency associated with Alzheimer's disease.

  15. Observers as Internal Models for Remote Tracking via Encoded Information

    NARCIS (Netherlands)

    Isidori, Alberto; Marconi, Lorenzo; De Persis, Claudio; Gilles, Ernst Dieter; Graichen, Knut; Meurer, Thomas

    2005-01-01

    In this paper, we consider a servomechanism problem in which the command and control functions are distributed in space, and hence the system consists of different components linked by a communication channel of finite capacity. The desired control goal is achieved by designing appropriate encoders,

  16. On encoding of position information in inter-vehicle communications

    OpenAIRE

    長谷川, 孝明

    2002-01-01

    Copyright notice. c2002 IEICE All rights reserved. "On encoding of position information in inter-vehicle communications" Yoshito GOTO,Takaaki HASEGAWA. IEICE TRANSACTIONS on Information and Systems, 2002. Vol. E85-D No.11 pp. 1822-1829 許諾No.07RB0055.

  17. Cloning, expression and characterisation of a novel gene encoding ...

    African Journals Online (AJOL)

    微软用户

    2012-01-12

    Jan 12, 2012 ... 1Department of Entomology, China Agricultural University, Beijing 100193, China. 2Plant Protection Institute of Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China. ... cDNA from Bemisia tabaci encoding a CSP (GU250808), denoted BtabCSP was cloned by RT-PCR and.

  18. Automatic link-detection in Encoded Archival Descriptions

    NARCIS (Netherlands)

    Zhang, J.; Fachry, K.N.; Kamps, J.; Opas-Hänninen, L.L.; Jokelainen, M.; Juuso, I.; Seppänen, T.

    2008-01-01

    In this paper we investigate how currently emerging link detection methods can help enrich encoded archival descriptions. We discuss link detection methods in general, and evaluate the identification of names both within, and across, archival descriptions. Our initial experiments suggest that we can

  19. Neural correlates of the encoding of multimodal contextual features

    Science.gov (United States)

    Gottlieb, Lauren J.; Wong, Jenny; de Chastelaine, Marianne; Rugg, Michael D.

    2012-01-01

    Functional magnetic resonance imaging (fMRI) was employed to identify neural regions engaged during the encoding of contextual features belonging to different modalities. Subjects studied objects that were presented to the left or right of fixation. Each object was paired with its name, spoken in either a male or a female voice. The test requirement was to discriminate studied from unstudied pictures and, for each picture judged old, to retrieve its study location and the gender of the voice that spoke its name. Study trials associated with accurate rather than inaccurate location memory demonstrated enhanced activity in the fusiform and parahippocampal cortex and the hippocampus and reduced activity (a negative subsequent memory effect) in the medial occipital cortex. Successful encoding of voice information was associated with enhanced study activity in the right middle superior temporal sulcus and activity reduction in the right superior frontal cortex. These findings support the proposal that encoding of a contextual feature is associated with enhanced activity in regions engaged during its online processing. In addition, they indicate that negative subsequent memory effects can also demonstrate feature-selectivity. Relative to other classes of study trials, trials for which both contextual features were later retrieved demonstrated enhanced activity in the lateral occipital complex and reduced activity in the temporo-parietal junction. These findings suggest that multifeatural encoding was facilitated when the study item was processed efficiently and study processing was not interrupted by redirection of attention toward extraneous events. PMID:23166292

  20. Source location encoding in the fish lateral line canal

    NARCIS (Netherlands)

    Curcic-Blake, B; van Netten, SM

    2006-01-01

    The position of a hydrodynamic dipole source, as encoded in a linear array of mechano-detecting neuromasts in the fish lateral line canal, was electrophysiologically investigated. Measured excitation patterns along the lateral line were compared to theoretical predictions and were found to be in