WorldWideScience

Sample records for encoding enzymes involved

  1. Characterization of Genes Encoding Key Enzymes Involved in Anthocyanin Metabolism of Kiwifruit during Storage Period

    OpenAIRE

    Li, Boqiang; Xia, Yongxiu; Wang, Yuying; Qin, Guozheng; Tian, Shiping

    2017-01-01

    ‘Hongyang’ is a red fleshed kiwifruit with high anthocyanin content. In this study, we mainly investigated effects of different temperatures (25 and 0°C) on anthocyanin biosynthesis in harvested kiwifruit, and characterized the genes encoding key enzymes involved in anthocyanin metabolism, as well as evaluated the mode of the action, by which low temperature regulates anthocyanin accumulation in ‘Hongyang’ kiwifruit during storage period. The results showed that low temperature could effectiv...

  2. Sugarcane expressed sequences tags (ESTs encoding enzymes involved in lignin biosynthesis pathways

    Directory of Open Access Journals (Sweden)

    Ramos Rose Lucia Braz

    2001-01-01

    Full Text Available Lignins are phenolic polymers found in the secondary wall of plant conductive systems where they play an important role by reducing the permeability of the cell wall to water. Lignins are also responsible for the rigidity of the cell wall and are involved in mechanisms of resistance to pathogens. The metabolic routes and enzymes involved in synthesis of lignins have been largely characterized and representative genes that encode enzymes involved in these processes have been cloned from several plant species. The synthesis of lignins is liked to the general metabolism of the phenylpropanoids in plants, having enzymes (e.g. phenylalanine ammonia-lyase (PAL, cinnamate 4-hydroxylase (C4H and caffeic acid O-methyltransferase (COMT common to other processes as well as specific enzymes such as cinnamoyl-CoA reductase (CCR and cinnamyl alcohol dehydrogenase (CAD. Some maize and sorghum mutants, shown to have defective in CAD and/or COMT activity, are easier to digest because they have a reduced lignin content, something which has motivated different research groups to alter the lignin content and composition of model plants by genetic engineering try to improve, for example, the efficiency of paper pulping and digestibility. In the work reported in this paper, we have made an inventory of the sugarcane expressed sequence tag (EST coding for enzymes involved in lignin metabolism which are present in the sugarcane EST genome project (SUCEST database. Our analysis focused on the key enzymes ferulate-5-hydroxylase (F5H, caffeic acid O-methyltransferase (COMT, caffeoyl CoA O-methyltransferase (CCoAOMT, hydroxycinnamate CoA ligase (4CL, cinnamoyl-CoA reductase (CCR and cinnamyl alcohol dehydrogenase (CAD. The comparative analysis of these genes with those described in other species could be used as molecular markers for breeding as well as for the manipulation of lignin metabolism in sugarcane.

  3. Characterization of Genes Encoding Key Enzymes Involved in Anthocyanin Metabolism of Kiwifruit during Storage Period.

    Science.gov (United States)

    Li, Boqiang; Xia, Yongxiu; Wang, Yuying; Qin, Guozheng; Tian, Shiping

    2017-01-01

    'Hongyang' is a red fleshed kiwifruit with high anthocyanin content. In this study, we mainly investigated effects of different temperatures (25 and 0°C) on anthocyanin biosynthesis in harvested kiwifruit, and characterized the genes encoding key enzymes involved in anthocyanin metabolism, as well as evaluated the mode of the action, by which low temperature regulates anthocyanin accumulation in 'Hongyang' kiwifruit during storage period. The results showed that low temperature could effectively enhance the anthocyanin accumulation of kiwifruit in the end of storage period (90 days), which related to the increase in mRNA levels of ANS1, ANS2, DRF1, DRF2 , and UGFT2 . Moreover, the transcript abundance of MYBA1-1 and MYB5-1 , the genes encoding an important component of MYB-bHLH-WD40 (MBW) complex, was up-regulated, possibly contributing to the induction of specific anthocyanin biosynthesis genes under the low temperature. To further investigate the roles of AcMYB5-1/5-2/A1-1 in regulation of anthocyanin biosynthesis, genes encoding the three transcription factors were transiently transformed in Nicotiana benthamiana leaves. Overexpression of AcMYB5-1/5-2/A1-1 activated the gene expression of NtANS and NtDFR in tobacco. Our results suggested that low temperature storage could stimulate the anthocyanin accumulation in harvested kiwifruit via regulating several structural and regulatory genes involved in anthocyanin biosynthesis.

  4. Antioxidant-rich leaf extract of Barringtonia racemosa significantly alters the in vitro expression of genes encoding enzymes that are involved in methylglyoxal degradation III

    Directory of Open Access Journals (Sweden)

    Kin Weng Kong

    2016-08-01

    Full Text Available Background Barringtonia racemosa is a medicinal plant belonging to the Lecythidaceae family. The water extract of B. racemosa leaf (BLE has been shown to be rich in polyphenols. Despite the diverse medicinal properties of B. racemosa, information on its major biological effects and the underlying molecular mechanisms are still lacking. Methods In this study, the effect of the antioxidant-rich BLE on gene expression in HepG2 cells was investigated using microarray analysis in order to shed more light on the molecular mechanism associated with the medicinal properties of the plant. Results Microarray analysis showed that a total of 138 genes were significantly altered in response to BLE treatment (p < 0.05 with a fold change difference of at least 1.5. SERPINE1 was the most significantly up-regulated gene at 2.8-fold while HAMP was the most significantly down-regulated gene at 6.5-fold. Ingenuity Pathways Analysis (IPA revealed that “Cancer, cell death and survival, cellular movement” was the top network affected by the BLE with a score of 44. The top five canonical pathways associated with BLE were Methylglyoxal Degradation III followed by VDR/RXR activation, TR/RXR activation, PXR/RXR activation and gluconeogenesis. The expression of genes that encode for enzymes involved in methylglyoxal degradation (ADH4, AKR1B10 and AKR1C2 and glycolytic process (ENO3, ALDOC and SLC2A1 was significantly regulated. Owing to the Warburg effect, aerobic glycolysis in cancer cells may increase the level of methylglyoxal, a cytotoxic compound. Conclusions BLE has the potential to be developed into a novel chemopreventive agent provided that the cytotoxic effects related to methylglyoxal accumulation are minimized in normal cells that rely on aerobic glycolysis for energy supply.

  5. Enzymes and Enzyme Activity Encoded by Nonenveloped Viruses.

    Science.gov (United States)

    Azad, Kimi; Banerjee, Manidipa; Johnson, John E

    2017-09-29

    Viruses are obligate intracellular parasites that rely on host cell machineries for their replication and survival. Although viruses tend to make optimal use of the host cell protein repertoire, they need to encode essential enzymatic or effector functions that may not be available or accessible in the host cellular milieu. The enzymes encoded by nonenveloped viruses-a group of viruses that lack any lipid coating or envelope-play vital roles in all the stages of the viral life cycle. This review summarizes the structural, biochemical, and mechanistic information available for several classes of enzymes and autocatalytic activity encoded by nonenveloped viruses. Advances in research and development of antiviral inhibitors targeting specific viral enzymes are also highlighted.

  6. Involvement of methyltransferases enzymes during the energy

    African Journals Online (AJOL)

    Mgina

    INVOLVEMENT OF METHYLTRANSFERASES ENZYMES DURING THE. ENERGY METABOLISM OF ..... cell extract still exhibited relatively high methanogenesis with methanol (Fig ... product CH3-CoM into methane (see Fig. 1). The HS-CoM ...

  7. Designing universal primers for the isolation of DNA sequences encoding Proanthocyanidins biosynthetic enzymes in Crataegus aronia

    Directory of Open Access Journals (Sweden)

    Zuiter Afnan

    2012-08-01

    Full Text Available Abstract Background Hawthorn is the common name of all plant species in the genus Crataegus, which belongs to the Rosaceae family. Crataegus are considered useful medicinal plants because of their high content of proanthocyanidins (PAs and other related compounds. To improve PAs production in Crataegus tissues, the sequences of genes encoding PAs biosynthetic enzymes are required. Findings Different bioinformatics tools, including BLAST, multiple sequence alignment and alignment PCR analysis were used to design primers suitable for the amplification of DNA fragments from 10 candidate genes encoding enzymes involved in PAs biosynthesis in C. aronia. DNA sequencing results proved the utility of the designed primers. The primers were used successfully to amplify DNA fragments of different PAs biosynthesis genes in different Rosaceae plants. Conclusion To the best of our knowledge, this is the first use of the alignment PCR approach to isolate DNA sequences encoding PAs biosynthetic enzymes in Rosaceae plants.

  8. Expression of Genes Encoding Enzymes Involved in the One Carbon Cycle in Rat Placenta is Determined by Maternal Micronutrients (Folic Acid, Vitamin B12 and Omega-3 Fatty Acids

    Directory of Open Access Journals (Sweden)

    Vinita Khot

    2014-01-01

    Full Text Available We have reported that folic acid, vitamin B12, and omega-3 fatty acids are interlinked in the one carbon cycle and have implications for fetal programming. Our earlier studies demonstrate that an imbalance in maternal micronutrients influence long chain polyunsaturated fatty acid metabolism and global methylation in rat placenta. We hypothesize that these changes are mediated through micronutrient dependent regulation of enzymes in one carbon cycle. Pregnant dams were assigned to six dietary groups with varying folic acid and vitamin B12 levels. Vitamin B12 deficient groups were supplemented with omega-3 fatty acid. Placental mRNA levels of enzymes, levels of phospholipids, and glutathione were determined. Results suggest that maternal micronutrient imbalance (excess folic acid with vitamin B12 deficiency leads to lower mRNA levels of methylene tetrahydrofolate reductase (MTHFR and methionine synthase , but higher cystathionine b-synthase (CBS and Phosphatidylethanolamine-N-methyltransferase (PEMT as compared to control. Omega-3 supplementation normalized CBS and MTHFR mRNA levels. Increased placental phosphatidylethanolamine (PE, phosphatidylcholine (PC, in the same group was also observed. Our data suggests that adverse effects of a maternal micronutrient imbalanced diet may be due to differential regulation of key genes encoding enzymes in one carbon cycle and omega-3 supplementation may ameliorate most of these changes.

  9. Involvement of methyltransferases enzymes during the energy ...

    African Journals Online (AJOL)

    The methyl group transfer from dimethylsulfide (DMS), trimethylamine and methanol to 2-mercaptoethanesulfonic acid (coenzyme M) were investigated from cell extracts of Methanosarcina semesiae sp. nov. to evaluate whether the enzyme systems involved were constitutive or inductive. The extracts from cells grown on ...

  10. Multigene families encode the major enzymes of antioxidant metabolism in Eucalyptus grandis L

    Directory of Open Access Journals (Sweden)

    Felipe Karam Teixeira

    2005-01-01

    Full Text Available Antioxidant metabolism protects cells from oxidative damage caused by reactive oxygen species (ROS. In plants, several enzymes act jointly to maintain redox homeostasis. Moreover, isoform diversity contributes to the fine tuning necessary for plant responses to both exogenous and endogenous signals influencing antioxidant metabolism. This study aimed to provide a comprehensive view of the major classes of antioxidant enzymes in the woody species Eucalyptus grandis. A careful survey of the FORESTs data bank revealed 36 clusters as encoding antioxidant enzymes: six clusters encoding ascorbate peroxidase (APx isozymes, three catalase (CAT proteins, three dehydroascorbate reductase (DHAR, two glutathione reductase (GR isozymes, four monodehydroascorbate reductase (MDHAR, six phospholipid hydroperoxide glutathione peroxidases (PhGPx, and 12 encoding superoxide dismutases (SOD isozymes. Phylogenetic analysis demonstrated that all clusters (identified herein grouped with previously characterized antioxidant enzymes, corroborating the analysis performed. With respect to enzymes involved in the ascorbate-glutathione cycle, both cytosolic and chloroplastic isoforms were putatively identified. These sequences were widely distributed among the different ESTs libraries indicating a broad gene expression pattern. Overall, the data indicate the importance of antioxidant metabolism in eucalyptus.

  11. Genes encoding enzymes of the lignin biosynthesis pathway in Eucalyptus

    Directory of Open Access Journals (Sweden)

    Ricardo Harakava

    2005-01-01

    Full Text Available Eucalyptus ESTs libraries were screened for genes involved in lignin biosynthesis. This search was performed under the perspective of recent revisions on the monolignols biosynthetic pathway. Eucalyptus orthologues of all genes of the phenylpropanoid pathway leading to lignin biosynthesis reported in other plant species were identified. A library made with mRNAs extracted from wood was enriched for genes involved in lignin biosynthesis and allowed to infer the isoforms of each gene family that play a major role in wood lignin formation. Analysis of the wood library suggests that, besides the enzymes of the phenylpropanoids pathway, chitinases, laccases, and dirigent proteins are also important for lignification. Colocalization of several enzymes on the endoplasmic reticulum membrane, as predicted by amino acid sequence analysis, supports the existence of metabolic channeling in the phenylpropanoid pathway. This study establishes a framework for future investigations on gene expression level, protein expression and enzymatic assays, sequence polymorphisms, and genetic engineering.

  12. Fungi unearthed: transcripts encoding lignocellulolytic and chitinolytic enzymes in forest soil.

    Directory of Open Access Journals (Sweden)

    Harald Kellner

    Full Text Available BACKGROUND: Fungi are the main organisms responsible for the degradation of biopolymers such as lignin, cellulose, hemicellulose, and chitin in forest ecosystems. Soil surveys largely target fungal diversity, paying less attention to fungal activity. METHODOLOGY/PRINCIPAL FINDINGS: Here we have focused on the organic horizon of a hardwood forest dominated by sugar maple that spreads widely across Eastern North America. The sampling site included three plots receiving normal atmospheric nitrogen deposition and three that received an extra 3 g nitrogen m(2 y(1 in form of sodium nitrate pellets since 1994, which led to increased accumulation of organic matter in the soil. Our aim was to assess, in samples taken from all six plots, transcript-level expression of fungal genes encoding lignocellulolytic and chitinolytic enzymes. For this we collected RNA from the forest soil, reverse-transcribed it, and amplified cDNAs of interest, using both published primer pairs as well as 23 newly developed ones. We thus detected transcript-level expression of 234 genes putatively encoding 26 different groups of fungal enzymes, notably major ligninolytic and diverse aromatic-oxidizing enzymes, various cellulose- and hemicellulose-degrading glycoside hydrolases and carbohydrate esterases, enzymes involved in chitin breakdown, N-acetylglucosamine metabolism, and cell wall degradation. Among the genes identified, 125 are homologous to known ascomycete genes and 105 to basidiomycete genes. Transcripts corresponding to all 26 enzyme groups were detected in both control and nitrogen-supplemented plots. CONCLUSIONS/SIGNIFICANCE: Many of these enzyme groups are known to be important in soil turnover processes, but the contribution of some is probably underestimated. Our data highlight the importance of ascomycetes, as well as basidiomycetes, in important biogeochemical cycles. In the nitrogen-supplemented plots, we have detected no transcript-level gap likely to explain

  13. Accessory enzymes from Aspergillus involved in xylan and pectin degradation

    NARCIS (Netherlands)

    Vries, de R.P.

    1999-01-01

    The xylanolytic and pectinolytic enzyme systems from Aspergillus have been the subject of study for many years. Although the main chain cleaving enzymes and their encoding genes have been studied in detail, little information is available about most of the accessory

  14. Changes in photosynthesis and activities of enzymes involved in ...

    African Journals Online (AJOL)

    tolerance, respectively were used to investigate the oxygen consumption rate of photosystem I, the oxygen evolution rate of photosystem II, cab transcript levels, and activities of enzymes involved in photosynthetic carbon reduction cycle.

  15. Celluloytic enzymes, nucleic acids encoding them and methods for making and using them

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Kevin A; Zhao, Lishan; Cayouette, Michelle H

    2015-11-04

    The invention is directed to polypeptides having any cellulolytic activity, e.g., a cellulase activity, e.g., endoglucanase, cellobiohydrolase, beta-glucosidase, xylanase, mannanse, .beta.-xylosidase, arabinofuranosidase, and/or oligomerase activity, including thermostable and thermotolerant activity, and polynucleotides encoding these enzymes, and making and using these polynucleotides and polypeptides. The polypeptides of the invention can be used in a variety of pharmaceutical, agricultural, food and feed processing and industrial contexts. The invention also provides compositions or products of manufacture comprising mixtures of enzymes comprising at least one enzyme of this invention.

  16. Celluloytic enzymes, nucleic acids encoding them and methods for making and using them

    Science.gov (United States)

    Gray, Kevin A.; Zhao, Lishan; Cayouette, Michelle H.

    2015-09-08

    The invention is directed to polypeptides having any cellulolytic activity, e.g., a cellulase activity, e.g., endoglucanase, cellobiohydrolase, beta-glucosidase, xylanase, mannanse, .beta.-xylosidase, arabinofuranosidase, and/or oligomerase activity, including thermostable and thermotolerant activity, and polynucleotides encoding these enzymes, and making and using these polynucleotides and polypeptides. The polypeptides of the invention can be used in a variety of pharmaceutical, agricultural, food and feed processing and industrial contexts. The invention also provides compositions or products of manufacture comprising mixtures of enzymes comprising at least one enzyme of this invention.

  17. OVER-EXPRESSION OF GENE ENCODING FATTY ACID METABOLIC ENZYMES IN FISH

    Directory of Open Access Journals (Sweden)

    Alimuddin Alimuddin

    2008-12-01

    Full Text Available Eicosapentaenoic acid (EPA, 20:5n-3 and docosahexaenoic acid (DHA, 22:6n-3 have important nutritional benefits in humans. EPA and DHA are mainly derived from fish, but the decline in the stocks of major marine capture fishes could result in these fatty acids being consumed less. Farmed fish could serve as promising sources of EPA and DHA, but they need these fatty acids in their diets. Generation of fish strains that are capable of synthesizing enough amounts of EPA/DHA from the conversion of α-linolenic acid (LNA, 18:3n-3 rich oils can supply a new EPA/DHA source. This may be achieved by over-expression of genes encoding enzymes involved in HUFA biosynthesis. In aquaculture, the successful of this technique would open the possibility to reduce the enrichment of live food with fish oils for marine fish larvae, and to completely substitute fish oils with plant oils without reducing the quality of flesh in terms of EPA and DHA contents. Here, three genes, i.e. Δ6-desaturase-like (OmΔ6FAD, Δ5-desaturase-like (OmΔ5FAD and elongase-like (MELO encoding EPA/DHA metabolic enzymes derived from masu salmon (Oncorhynchus masou were individually transferred into zebrafish (Danio rerio as a model to increase its ability for synthesizing EPA and DHA. Fatty acid analysis showed that EPA content in whole body of the second transgenic fish generation over-expressing OmΔ6FAD gene was 1.4 fold and that of DHA was 2.1 fold higher (P<0.05 than those in non-transgenic fish. The EPA content in whole body of transgenic fish over-expressing OmΔ5FAD gene was 1.21-fold, and that of DHA was 1.24-fold higher (P<0.05 than those in nontransgenic fish. The same patterns were obtained in transgenic fish over-expressing MELO gene. EPA content was increased by 1.30-fold and DHA content by 1.33-fold higher (P<0.05 than those in non-transgenic fish. The results of studies demonstrated that fatty acid content of fish can be enhanced by over

  18. Enzymes involved in organellar DNA replication in photosynthetic eukaryotes.

    Science.gov (United States)

    Moriyama, Takashi; Sato, Naoki

    2014-01-01

    Plastids and mitochondria possess their own genomes. Although the replication mechanisms of these organellar genomes remain unclear in photosynthetic eukaryotes, several organelle-localized enzymes related to genome replication, including DNA polymerase, DNA primase, DNA helicase, DNA topoisomerase, single-stranded DNA maintenance protein, DNA ligase, primer removal enzyme, and several DNA recombination-related enzymes, have been identified. In the reference Eudicot plant Arabidopsis thaliana, the replication-related enzymes of plastids and mitochondria are similar because many of them are dual targeted to both organelles, whereas in the red alga Cyanidioschyzon merolae, plastids and mitochondria contain different replication machinery components. The enzymes involved in organellar genome replication in green plants and red algae were derived from different origins, including proteobacterial, cyanobacterial, and eukaryotic lineages. In the present review, we summarize the available data for enzymes related to organellar genome replication in green plants and red algae. In addition, based on the type and distribution of replication enzymes in photosynthetic eukaryotes, we discuss the transitional history of replication enzymes in the organelles of plants.

  19. Diversity of beetle genes encoding novel plant cell wall degrading enzymes.

    Directory of Open Access Journals (Sweden)

    Yannick Pauchet

    Full Text Available Plant cell walls are a heterogeneous mixture of polysaccharides and proteins that require a range of different enzymes to degrade them. Plant cell walls are also the primary source of cellulose, the most abundant and useful biopolymer on the planet. Plant cell wall degrading enzymes (PCWDEs are therefore important in a wide range of biotechnological processes from the production of biofuels and food to waste processing. However, despite the fact that the last common ancestor of all deuterostomes was inferred to be able to digest, or even synthesize, cellulose using endogenous genes, all model insects whose complete genomes have been sequenced lack genes encoding such enzymes. To establish if the apparent "disappearance" of PCWDEs from insects is simply a sampling problem, we used 454 mediated pyrosequencing to scan the gut transcriptomes of beetles that feed on a variety of plant derived diets. By sequencing the transcriptome of five beetles, and surveying publicly available ESTs, we describe 167 new beetle PCWDEs belonging to eight different enzyme families. This survey proves that these enzymes are not only present in non-model insects but that the multigene families that encode them are apparently undergoing complex birth-death dynamics. This reinforces the observation that insects themselves, and not just their microbial symbionts, are a rich source of PCWDEs. Further it emphasises that the apparent absence of genes encoding PCWDEs from model organisms is indeed simply a sampling artefact. Given the huge diversity of beetles alive today, and the diversity of their lifestyles and diets, we predict that beetle guts will emerge as an important new source of enzymes for use in biotechnology.

  20. Cellulolytic enzymes, nucleic acids encoding them and methods for making and using them

    Science.gov (United States)

    Gray, Kevin A [San Diego, CA; Zhao, Lishan [Emeryville, CA; Cayouette, Michelle H [San Diego, CA

    2012-01-24

    The invention provides polypeptides having any cellulolytic activity, e.g., a cellulase activity, a endoglucanase, a cellobiohydrolase, a beta-glucosidase, a xylanase, a mannanse, a .beta.-xylosidase, an arabinofuranosidase, and/or an oligomerase activity, polynucleotides encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides. In one aspect, the invention is directed to polypeptides having any cellulolytic activity, e.g., a cellulase activity, e.g., endoglucanase, cellobiohydrolase, beta-glucosidase, xylanase, mannanse, .beta.-xylosidase, arabinofuranosidase, and/or oligomerase activity, including thermostable and thermotolerant activity, and polynucleotides encoding these enzymes, and making and using these polynucleotides and polypeptides. In one aspect, the invention provides polypeptides having an oligomerase activity, e.g., enzymes that convert recalcitrant soluble oligomers to fermentable sugars in the saccharification of biomass. The polypeptides of the invention can be used in a variety of pharmaceutical, agricultural, food and feed processing and industrial contexts. The invention also provides compositions or products of manufacture comprising mixtures of enzymes comprising at least one enzyme of this invention.

  1. Enzymes Involved in AMPylation and deAMPylation.

    Science.gov (United States)

    Casey, Amanda K; Orth, Kim

    2018-02-14

    Posttranslational modifications are covalent changes made to proteins that typically alter the function or location of the protein. AMPylation is an emerging posttranslational modification that involves the addition of adenosine monophosphate (AMP) to a protein. Like other, more well-studied posttranslational modifications, AMPylation is predicted to regulate the activity of the modified target proteins. However, the scope of this modification both in bacteria and in eukaryotes remains to be fully determined. In this review, we provide an up to date overview of the known AMPylating enzymes, the regulation of these enzymes, and the effect of this modification on target proteins.

  2. Enzymes activities involving bacterial cytochromes incorporated in clays

    International Nuclear Information System (INIS)

    Lojou, E.; Giudici-Orticoni, M.Th.; Bianco, P.

    2005-01-01

    With the development of bio electrochemistry, researches appeared on the enzymes immobilization at the surface of electrodes for the realization of bioreactors and bio sensors. One of the main challenges is the development of host matrix able to immobilize the protein material preserving its integrity. In this framework the authors developed graphite electrodes modified by clay films. These electrodes are examined for two enzyme reactions involving proteins of sulfate-reduction bacteria. Then in the framework of the hydrogen biological production and bioreactors for the environmental pollution de-pollution, the electrochemical behavior of the cytochrome c3 in two different clays deposed at the electrode is examined

  3. Actinomycete enzymes and activities involved in straw saccharification

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, A J; Ball, A S [Liverpool Univ. (UK). Dept. of Genetics and Microbiology

    1990-01-01

    This research programme has been directed towards the analysis of actinomycete enzyme systems involved in the degradation of plant biomass (lignocellulose.) The programme was innovative in that a novel source of enzymes was systematically screened and wheat straw saccharifying activity was the test criterion. Over 200 actinomycete strains representing a broad taxonomic range were screened. A range of specific enzyme activities were involved and included cellulase, xylanase, arabinofuranosidase, acetylesterase, {beta}-xylosidase and {beta}-glucosidase. Since hemicellulose (arabinoxylan) was the primary source of sugar, xylanases were characterized. The xylan-degrading systems of actinomycetes were complex and nonuniform, with up to six separate endoxylanases identified in active strains. Except for microbispora bispora, actinomycetes were found to be a poor source of cellulase activity. Evidence for activity against the lignin fraction of straw was produced for a range of actinomycete strains. While modification reactions were common, cleavage of inter-monomer bonds, and utilization of complex polyphenolic compounds were restricted to two strains: Thermomonospora mesophila and Streptomyces badius. Crude enzyme preparations from actinomycetes can be used to generate sugar, particularly pentoses, directly from cereal straw. The potential for improvements in yield rests with the formulation to cooperative enzyme combinations from different strains. The stability properties of enzymes from thermophilic strains and the general neutral to alkali pH optima offer advantages in certain process situations. Actinomycetes are a particularly rich source of xylanases for commercial application and can rapidly solubilise a lignocarbohydrate fraction of straw which may have both product and pretreatment potential. 31 refs., 4 figs., 5 tabs.

  4. Characterization of Carbohydrate Active Enzymes Involved in Arabinogalactan Protein Metabolism

    DEFF Research Database (Denmark)

    Knoch, Eva

    and tissues, their functions and synthesis are still poorly understood. The aim of the research presented in the thesis was to characterize carbohydrate active enzymes involved in AGP biosynthesis and modification to gain insights into the biosynthesis of the glycoproteins in plants. Candidate...... glycosyltransferases and glycoside hydrolases were selected based on co-expression profiles from a transcriptomics analysis. Reverse genetics approach on a novel glucuronosyltransferase involved in AGP biosynthesis has revealed that the enzyme activity is required for normal cell elongation in etiolated seedlings....... The enzymatic activity of a hydrolase from GH family 17 was investigated, without successful determination of the activity. Members of hydrolase family 43 appeared to be localized in the Golgi-apparatus, which is also the compartment for glycan biosynthesis. The localization of these glycoside hydrolases...

  5. Gene encoding a deubiquitinating enzyme is mutated in artesunate- and chloroquine-resistant rodent malaria parasites.

    Science.gov (United States)

    Hunt, Paul; Afonso, Ana; Creasey, Alison; Culleton, Richard; Sidhu, Amar Bir Singh; Logan, John; Valderramos, Stephanie G; McNae, Iain; Cheesman, Sandra; do Rosario, Virgilio; Carter, Richard; Fidock, David A; Cravo, Pedro

    2007-07-01

    Artemisinin- and artesunate-resistant Plasmodium chabaudi mutants, AS-ART and AS-ATN, were previously selected from chloroquine-resistant clones AS-30CQ and AS-15CQ respectively. Now, a genetic cross between AS-ART and the artemisinin-sensitive clone AJ has been analysed by Linkage Group Selection. A genetic linkage group on chromosome 2 was selected under artemisinin treatment. Within this locus, we identified two different mutations in a gene encoding a deubiquitinating enzyme. A distinct mutation occurred in each of the clones AS-30CQ and AS-ATN, relative to their respective progenitors in the AS lineage. The mutations occurred independently in different clones under drug selection with chloroquine (high concentration) or artesunate. Each mutation maps to a critical residue in a homologous human deubiquitinating protein structure. Although one mutation could theoretically account for the resistance of AS-ATN to artemisinin derivates, the other cannot account solely for the resistance of AS-ART, relative to the responses of its sensitive progenitor AS-30CQ. Two lines of Plasmodium falciparum with decreased susceptibility to artemisinin were also selected. Their drug-response phenotype was not genetically stable. No mutations in the UBP-1 gene encoding the P. falciparum orthologue of the deubiquitinating enzyme were observed. The possible significance of these mutations in parasite responses to chloroquine or artemisinin is discussed.

  6. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David N.; Apel, William A.; Thompson, Vicki S.; Ward, Thomas E.

    2017-08-15

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  7. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David N.; Apel, William A.; Thompson, Vicki S.; Ward, Thomas E.

    2016-03-22

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  8. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    Science.gov (United States)

    Thompson, David N; Apel, William A; Thompson, Vicki S; Ward, Thomas E

    2013-07-23

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  9. Autophagy-Related Deubiquitinating Enzymes Involved in Health and Disease

    Directory of Open Access Journals (Sweden)

    Fouzi El Magraoui

    2015-10-01

    Full Text Available Autophagy is an evolutionarily-conserved process that delivers diverse cytoplasmic components to the lysosomal compartment for either recycling or degradation. This involves the removal of protein aggregates, the turnover of organelles, as well as the elimination of intracellular pathogens. In this situation, when only specific cargoes should be targeted to the lysosome, the potential targets can be selectively marked by the attachment of ubiquitin in order to be recognized by autophagy-receptors. Ubiquitination plays a central role in this process, because it regulates early signaling events during the induction of autophagy and is also used as a degradation-tag on the potential autophagic cargo protein. Here, we review how the ubiquitin-dependent steps of autophagy are balanced or counteracted by deubiquitination events. Moreover, we highlight the functional role of the corresponding deubiquitinating enzymes and discuss how they might be involved in the occurrence of cancer, neurodegenerative diseases or infection with pathogenic bacteria.

  10. Pyrosequencing the transcriptome of the greenhouse whitefly, Trialeurodes vaporariorum reveals multiple transcripts encoding insecticide targets and detoxifying enzymes

    Directory of Open Access Journals (Sweden)

    Gorman Kevin

    2011-01-01

    Full Text Available Abstract Background The whitefly Trialeurodes vaporariorum is an economically important crop pest in temperate regions that has developed resistance to most classes of insecticides. However, the molecular mechanisms underlying resistance have not been characterised and, to date, progress has been hampered by a lack of nucleotide sequence data for this species. Here, we use pyrosequencing on the Roche 454-FLX platform to produce a substantial and annotated EST dataset. This 'unigene set' will form a critical reference point for quantitation of over-expressed messages via digital transcriptomics. Results Pyrosequencing produced around a million sequencing reads that assembled into 54,748 contigs, with an average length of 965 bp, representing a dramatic expansion of existing cDNA sequences available for T. vaporariorum (only 43 entries in GenBank at the time of this publication. BLAST searching of non-redundant databases returned 20,333 significant matches and those gene families potentially encoding gene products involved in insecticide resistance were manually curated and annotated. These include, enzymes potentially involved in the detoxification of xenobiotics and those encoding the targets of the major chemical classes of insecticides. A total of 57 P450s, 17 GSTs and 27 CCEs were identified along with 30 contigs encoding the target proteins of six different insecticide classes. Conclusion Here, we have developed new transcriptomic resources for T. vaporariorum. These include a substantial and annotated EST dataset that will serve the community studying this important crop pest and will elucidate further the molecular mechanisms underlying insecticide resistance.

  11. Mutations in B3GALT6, which Encodes a Glycosaminoglycan Linker Region Enzyme, Cause a Spectrum of Skeletal and Connective Tissue Disorders

    OpenAIRE

    Nakajima, Masahiro; Mizumoto, Shuji; Miyake, Noriko; Kogawa, Ryo; Iida, Aritoshi; Ito, Hironori; Kitoh, Hiroshi; Hirayama, Aya; Mitsubuchi, Hiroshi; Miyazaki, Osamu; Kosaki, Rika; Horikawa, Reiko; Lai, Angeline; Mendoza-Londono, Roberto; Dupuis, Lucie

    2013-01-01

    Proteoglycans (PGs) are a major component of the extracellular matrix in many tissues and function as structural and regulatory molecules. PGs are composed of core proteins and glycosaminoglycan (GAG) side chains. The biosynthesis of GAGs starts with the linker region that consists of four sugar residues and is followed by repeating disaccharide units. By exome sequencing, we found that B3GALT6 encoding an enzyme involved in the biosynthesis of the GAG linker region is responsible for a sever...

  12. Transcriptional regulation of genes encoding ABA metabolism enzymes during the fruit development and dehydration stress of pear 'Gold Nijisseiki'.

    Science.gov (United States)

    Dai, Shengjie; Li, Ping; Chen, Pei; Li, Qian; Pei, Yuelin; He, Suihuan; Sun, Yufei; Wang, Ya; Kai, Wenbin; Zhao, Bo; Liao, Yalan; Leng, Ping

    2014-09-01

    To investigate the contribution of abscisic acid (ABA) in pear 'Gold Nijisseiki' during fruit ripening and under dehydration stress, two cDNAs (PpNCED1 and PpNCED2) which encode 9-cis-epoxycarotenoid dioxygenase (NCED) (a key enzyme in ABA biosynthesis), two cDNAs (PpCYP707A1 and PpCYP707A2) which encode 8'-hydroxylase (a key enzyme in the oxidative catabolism of ABA), one cDNA (PpACS3) which encodes 1-aminocyclopropane-1-carboxylic acid (ACC), and one cDNA (PpACO1) which encodes ACC oxidase involved in ethylene biosynthesis were cloned from 'Gold Nijisseiki' fruit. In the pulp, peel and seed, expressions of PpNCED1 and PpNCED2 rose in two stages which corresponded with the increase of ABA levels. The expression of PpCYP707A1 dramatically declined after 60-90 days after full bloom (DAFB) in contrast to the changes of ABA levels during this period, while PpCYP707A2 stayed low during the whole development of fruit. Application of exogenous ABA at 100 DAFB increased the soluble sugar content and the ethylene release but significantly decreased the titratable acid and chlorophyll contents in fruits. When fruits harvested at 100 DAFB were stored in the laboratory (25 °C, 50% relative humidity), the ABA content and the expressions of PpNCED1/2 and PpCYP707A1 in the pulp, peel and seed increased significantly, while ethylene reached its highest value after the maximum peak of ABA accompanied with the expressions of PpACS3 and PpACO1. In sum the endogenous ABA may play an important role in the fruit ripening and dehydration of pear 'Gold Nijisseiki' and the ABA level was regulated mainly by the dynamics of PpNCED1, PpNCED2 and PpCYP707A1 at the transcriptional level. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Isolation and characterization of the gene encoding the starch debranching enzyme limit dextrinase from germinating barley

    DEFF Research Database (Denmark)

    Kristensen, Michael; Lok, Finn; Planchot, Véronique

    1999-01-01

    with a value of 105 kDa estimated by SDS;;PAGE, The coding sequence is interrupted by 26 introns varying in length from 93 bp to 825 bp. The 27 exons vary in length from 53 bp to 197 bp. Southern blot analysis shows that the limit dextrinase gene is present as a single copy in the barley genome. Gene......The gene encoding the starch debranching enzyme limit dextrinase, LD, from barley (Hordeum vulgare), was isolated from a genomic phage library using a barley cDNA clone as probe. The gene encodes a protein of 904 amino acid residues with a calculated molecular mass of 98.6 kDa. This is in agreement...... expression is high during germination and the steady state transcription level reaches a maximum at day 5 of germination. The deduced amino acid sequence corresponds to the protein sequence of limit dextrinase purified from germinating malt, as determined by automated N-terminal sequencing of tryptic...

  14. Isolation of Penicillium chrysogenum PEX1 and PEX6 encoding AAA proteins involved in peroxisome biogenesis

    NARCIS (Netherlands)

    Kiel, JAKW; Hilbrands, RE; Bovenberg, RAL; Veenhuis, M

    In Penicillium chrysogenum, key enzymes involved in the production of penicillin reside in peroxisomes. As a first step to understand the role of these organelles in penicillin biosynthesis, we set out to isolate the genes involved in peroxisome biogenesis. Here we report the cloning and

  15. Characterization of the Holliday junction resolving enzyme encoded by the Bacillus subtilis bacteriophage SPP1.

    Directory of Open Access Journals (Sweden)

    Lisa Zecchi

    Full Text Available Recombination-dependent DNA replication, which is a central component of viral replication restart, is poorly understood in Firmicutes bacteriophages. Phage SPP1 initiates unidirectional theta DNA replication from a discrete replication origin (oriL, and when replication progresses, the fork might stall by the binding of the origin binding protein G38P to the late replication origin (oriR. Replication restart is dependent on viral recombination proteins to synthesize a linear head-to-tail concatemer, which is the substrate for viral DNA packaging. To identify new functions involved in this process, uncharacterized genes from phage SPP1 were analyzed. Immediately after infection, SPP1 transcribes a number of genes involved in recombination and replication from P(E2 and P(E3 promoters. Resequencing the region corresponding to the last two hypothetical genes transcribed from the P(E2 operon (genes 44 and 45 showed that they are in fact a single gene, re-annotated here as gene 44, that encodes a single polypeptide, named gene 44 product (G44P, 27.5 kDa. G44P shares a low but significant degree of identity in its C-terminal region with virus-encoded RusA-like resolvases. The data presented here demonstrate that G44P, which is a dimer in solution, binds with high affinity but without sequence specificity to several double-stranded DNA recombination intermediates. G44P preferentially cleaves Holliday junctions, but also, with lower efficiency, replicated D-loops. It also partially complemented the loss of RecU resolvase activity in B. subtilis cells. These in vitro and in vivo data suggest a role for G44P in replication restart during the transition to concatemeric viral replication.

  16. The evolutionary fate of the genes encoding the purine catabolic enzymes in hominoids, birds, and reptiles.

    Science.gov (United States)

    Keebaugh, Alaine C; Thomas, James W

    2010-06-01

    Gene loss has been proposed to play a major role in adaptive evolution, and recent studies are beginning to reveal its importance in human evolution. However, the potential consequence of a single gene-loss event upon the fates of functionally interrelated genes is poorly understood. Here, we use the purine metabolic pathway as a model system in which to explore this important question. The loss of urate oxidase (UOX) activity, a necessary step in this pathway, has occurred independently in the hominoid and bird/reptile lineages. Because the loss of UOX would have removed the functional constraint upon downstream genes in this pathway, these downstream genes are generally assumed to have subsequently deteriorated. In this study, we used a comparative genomics approach to empirically determine the fate of UOX itself and the downstream genes in five hominoids, two birds, and a reptile. Although we found that the loss of UOX likely triggered the genetic deterioration of the immediate downstream genes in the hominoids, surprisingly in the birds and reptiles, the UOX locus itself and some of the downstream genes were present in the genome and predicted to encode proteins. To account for the variable pattern of gene retention and loss after the inactivation of UOX, we hypothesize that although gene loss is a common fate for genes that have been rendered obsolete due to the upstream loss of an enzyme a metabolic pathway, it is also possible that same lack of constraint will foster the evolution of new functions or allow the optimization of preexisting alternative functions in the downstream genes, thereby resulting in gene retention. Thus, adaptive single-gene losses have the potential to influence the long-term evolutionary fate of functionally interrelated genes.

  17. Angular Gyrus Involvement at Encoding and Retrieval Is Associated with Durable But Less Specific Memories.

    Science.gov (United States)

    van der Linden, Marieke; Berkers, Ruud M W J; Morris, Richard G M; Fernández, Guillén

    2017-09-27

    After consolidation, information belonging to a mental schema is better remembered, but such memory can be less specific when it comes to details. A neuronal mechanism consistent with this behavioral pattern could result from a dynamic interaction that entails mediation by a specific cortical network with associated hippocampal disengagement. We now report that, in male and female adult human subjects, encoding and later consolidation of a series of objects embedded in a semantic schema was associated with a buildup of activity in the angular gyrus (AG) that predicted memory 24 h later. In parallel, the posterior hippocampus became less involved as schema objects were encoded successively. Hippocampal disengagement was related to an increase in falsely remembering objects that were not presented at encoding. During both encoding and retrieval, the AG and lateral occipital complex (LOC) became functionally connected and this interaction was beneficial for successful retrieval. Therefore, a network including the AG and LOC enhances the overnight retention of schema-related memories and their simultaneous detachment from the hippocampus reduces the specificity of the memory. SIGNIFICANCE STATEMENT This study provides the first empirical evidence on how the hippocampus and the neocortex interact dynamically when acquiring and then effectively retaining durable knowledge that is associated to preexisting knowledge, but they do so at the cost of memory specificity. This interaction is a fundamental mnemonic operation that has thus far been largely overlooked in memory research. Copyright © 2017 the authors 0270-6474/17/379474-12$15.00/0.

  18. Exploration of soil metagenome diversity for prospection of enzymes involved in lignocellulosic biomass conversion

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, T.M.; Squina, F.M. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil); Paixao, D.A.A.; Franco Cairo, J.P.L.; Buchli, F.; Ruller, R. [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE), Campinas, SP (Brazil); Prade, R. [Oklahoma State University, Sillwater, OK (United States)

    2012-07-01

    Full text: Metagenomics allows access to genetic information encoded in DNA of microorganisms recalcitrant to cultivation. They represent a reservoir of novel biocatalyst with potential application in environmental friendly techniques aiming to overcome the dependence on fossil fuels and also to diminish air and water pollution. The focus of our work is the generation of a tool kit of lignocellulolytic enzymes from soil metagenome, which could be used for second generation ethanol production. Environmental samples were collected at a sugarcane field after harvesting, where it is expected that the microbial population involved on lignocellulose degradation was enriched due to the presence of straws covering the soil. Sugarcane Bagasse-Degrading-Soil (SBDS) metagenome was massively-parallel-454-Roche-sequenced. We identified a full repertoire of genes with significant match to glycosyl hydrolases catalytic domain and carbohydrate-binding modules. Soil metagenomics libraries cloned into pUC19 were screened through functional assays. CMC-agar screening resulted in positive clones, revealing new cellulases coding genes. Through a CMC-zymogram it was possible to observe that one of these genes, nominated as E-1, corresponds to an enzyme that is secreted to the extracellular medium, suggesting that the cloned gene carried the original signal peptide. Enzymatic assays and analysis through capillary electrophoresis showed that E-1 was able to cleave internal glycosidic bonds of cellulose. New rounds of functional screenings through chromogenic substrates are being conducted aiming the generation of a library of lignocellulolytic enzymes derived from soil metagenome, which may become key component for development of second generation biofuels. (author)

  19. Distribution and biosynthesis of flavan-3-ols in Camellia sinensis seedlings and expression of genes encoding biosynthetic enzymes.

    Science.gov (United States)

    Ashihara, Hiroshi; Deng, Wei-Wei; Mullen, William; Crozier, Alan

    2010-04-01

    The distribution of phenolic compounds in young and developing leaves, stems, main and lateral roots and cotyledons of 8-week-old tea (Camellia sinensis) seedlings was investigated using HPLC-MS(2). Fourteen compounds, flavan-3-ols, chlorogenic acids, and kaempferol-O-glycosides, were identified on the basis of their retention time, absorbance spectrum, and MS fragmentation pattern. The major phenolics were (-)-epigallocatechin-3-O-gallate and (-)-epicatechin-3-O-gallate, located principally in the green parts of the seedlings. Considerable amounts of radioactivity from [ring-(14)C]phenylalanine were incorporated in (-)-epicatechin, (-)-epigallocatechin, (-)-epicatechin-3-O-gallate and (-)-epigallocatechin-3-O-gallate, by tissues of young and developing leaves and stems. Expression of genes encoding enzymes involved in flavan-3-ol biosynthesis, CHS, CHI, F3H, F3'5'H, DFR, ANS, ANR and LAR was investigated. Transcripts of all genes, except LAR, were more abundant in leaves and stems than in roots and cotyledons. No significant difference was found in the amount of transcript of LAR. These findings indicate that in tea seedlings flavan-3-ols are produced by a naringenin-chalcone-->naringenin-->dihydrokaempferol pathway. Dihydrokaempferol is a branch point in the synthesis of (-)-epigallocatechin-3-O-gallate and other flavan-3-ols which can be formed by routes beginning with either a flavonoid 3'-hydroxylase mediated conversion of the flavonol to dihydroquercetin or a flavonoid 3',5'-hydroxylase-catalysed conversion to dihydromyricetin with subsequent steps involving sequential reactions catalysed by dihydroflavanol 4-reductase, anthocyanidin synthase, anthocyanidin reductase and flavan-3-ol gallate synthase. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Several genes encoding enzymes with the same activity are necessary for aerobic fungal degradation of cellulose in nature.

    Directory of Open Access Journals (Sweden)

    Peter K Busk

    Full Text Available The cellulose-degrading fungal enzymes are glycoside hydrolases of the GH families and lytic polysaccharide monooxygenases. The entanglement of glycoside hydrolase families and functions makes it difficult to predict the enzymatic activity of glycoside hydrolases based on their sequence. In the present study we further developed the method Peptide Pattern Recognition to an automatic approach not only to find all genes encoding glycoside hydrolases and lytic polysaccharide monooxygenases in fungal genomes but also to predict the function of the genes. The functional annotation is an important feature as it provides a direct route to predict function from primary sequence. Furthermore, we used Peptide Pattern Recognition to compare the cellulose-degrading enzyme activities encoded by 39 fungal genomes. The results indicated that cellobiohydrolases and AA9 lytic polysaccharide monooxygenases are hallmarks of cellulose-degrading fungi except brown rot fungi. Furthermore, a high number of AA9, endocellulase and β-glucosidase genes were identified, not in what are known to be the strongest, specialized lignocellulose degraders but in saprophytic fungi that can use a wide variety of substrates whereas only few of these genes were found in fungi that have a limited number of natural, lignocellulotic substrates. This correlation suggests that enzymes with different properties are necessary for degradation of cellulose in different complex substrates. Interestingly, clustering of the fungi based on their predicted enzymes indicated that Ascomycota and Basidiomycota use the same enzymatic activities to degrade plant cell walls.

  1. A Ti plasmid-encoded enzyme required for degradation of mannopine is functionally homologous to the T-region-encoded enzyme required for synthesis of this opine in crown gall tumors.

    Science.gov (United States)

    Kim, K S; Chilton, W S; Farrand, S K

    1996-06-01

    The mocC gene encoded by the octopine/mannityl opine-type Ti plasmid pTi15955 is related at the nucleotide sequence level to mas1' encoded by the T region of this plasmid. While Mas1 is required for the synthesis of mannopine (MOP) by crown gall tumor cells, MocC is essential for the utilization of MOP by Agrobacterium spp. A cosmid clone of pTi15955, pYDH208, encodes mocC and confers the utilization of MOP on strain NT1 and on strain UIA5, a derivative of NT1 lacking the 450-kb cryptic plasmid pAtC58. NT1 or UIA5 harboring pYDH208 with an insertion mutation in mocC failed to utilize MOP as the sole carbon source. Plasmid pSa-C, which encodes only mocC, complemented this mutation in both strains. This plasmid also was sufficient to confer utilization of MOP on NT1 but not on UIA5. Computer analysis showed that MocC is related at the amino acid sequence level to members of the short-chain alcohol dehydrogenase family of oxidoreductases. Lysates prepared from Escherichia coli cells expressing mocC contained an enzymatic activity that oxidizes MOP to deoxyfructosyl glutamine (santhopine [SOP]) in the presence of NAD+. The reaction catalyzed by the MOP oxidoreductase is reversible; in the presence of NADH, the enzyme reduced SOP to MOP. The apparent Km values of the enzyme for MOP and SOP were 6.3 and 1.2 mM, respectively. Among analogs of MOP tested, only N-1-(1-deoxy-D-lyxityl)-L-glutamine and N-1-(1-deoxy-D-mannityl)-L-asparagine served as substrates for MOP oxidoreductase. These results indicate that mocC encodes an oxidoreductase that, as an oxidase, is essential for the catabolism of MOP. The reductase activity of this enzyme is precisely the reaction ascribed to its T-region-encoded homolog, Mas1, which is responsible for biosynthesis of mannopine in crown gall tumors.

  2. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution.

    Science.gov (United States)

    Janusz, Grzegorz; Pawlik, Anna; Sulej, Justyna; Swiderska-Burek, Urszula; Jarosz-Wilkolazka, Anna; Paszczynski, Andrzej

    2017-11-01

    Extensive research efforts have been dedicated to describing degradation of wood, which is a complex process; hence, microorganisms have evolved different enzymatic and non-enzymatic strategies to utilize this plentiful plant material. This review describes a number of fungal and bacterial organisms which have developed both competitive and mutualistic strategies for the decomposition of wood and to thrive in different ecological niches. Through the analysis of the enzymatic machinery engaged in wood degradation, it was possible to elucidate different strategies of wood decomposition which often depend on ecological niches inhabited by given organism. Moreover, a detailed description of low molecular weight compounds is presented, which gives these organisms not only an advantage in wood degradation processes, but seems rather to be a new evolutionatory alternative to enzymatic combustion. Through analysis of genomics and secretomic data, it was possible to underline the probable importance of certain wood-degrading enzymes produced by different fungal organisms, potentially giving them advantage in their ecological niches. The paper highlights different fungal strategies of wood degradation, which possibly correlates to the number of genes coding for secretory enzymes. Furthermore, investigation of the evolution of wood-degrading organisms has been described. © FEMS 2017.

  3. Overexpression of Genes Encoding Glycolytic Enzymes in Corynebacterium glutamicum Enhances Glucose Metabolism and Alanine Production under Oxygen Deprivation Conditions

    Science.gov (United States)

    Yamamoto, Shogo; Gunji, Wataru; Suzuki, Hiroaki; Toda, Hiroshi; Suda, Masako; Jojima, Toru; Inui, Masayuki

    2012-01-01

    We previously reported that Corynebacterium glutamicum strain ΔldhAΔppc+alaD+gapA, overexpressing glyceraldehyde-3-phosphate dehydrogenase-encoding gapA, shows significantly improved glucose consumption and alanine formation under oxygen deprivation conditions (T. Jojima, M. Fujii, E. Mori, M. Inui, and H. Yukawa, Appl. Microbiol. Biotechnol. 87:159–165, 2010). In this study, we employ stepwise overexpression and chromosomal integration of a total of four genes encoding glycolytic enzymes (herein referred to as glycolytic genes) to demonstrate further successive improvements in C. glutamicum glucose metabolism under oxygen deprivation. In addition to gapA, overexpressing pyruvate kinase-encoding pyk and phosphofructokinase-encoding pfk enabled strain GLY2/pCRD500 to realize respective 13% and 20% improved rates of glucose consumption and alanine formation compared to GLY1/pCRD500. Subsequent overexpression of glucose-6-phosphate isomerase-encoding gpi in strain GLY3/pCRD500 further improved its glucose metabolism. Notably, both alanine productivity and yield increased after each overexpression step. After 48 h of incubation, GLY3/pCRD500 produced 2,430 mM alanine at a yield of 91.8%. This was 6.4-fold higher productivity than that of the wild-type strain. Intracellular metabolite analysis showed that gapA overexpression led to a decreased concentration of metabolites upstream of glyceraldehyde-3-phosphate dehydrogenase, suggesting that the overexpression resolved a bottleneck in glycolysis. Changing ratios of the extracellular metabolites by overexpression of glycolytic genes resulted in reduction of the intracellular NADH/NAD+ ratio, which also plays an important role on the improvement of glucose consumption. Enhanced alanine dehydrogenase activity using a high-copy-number plasmid further accelerated the overall alanine productivity. Increase in glycolytic enzyme activities is a promising approach to make drastic progress in growth-arrested bioprocesses. PMID

  4. Evidence for the bacterial origin of genes encoding fermentation enzymes of the amitochondriate protozoan parasite Entamoeba histolytica.

    Science.gov (United States)

    Rosenthal, B; Mai, Z; Caplivski, D; Ghosh, S; de la Vega, H; Graf, T; Samuelson, J

    1997-06-01

    Entamoeba histolytica is an amitochondriate protozoan parasite with numerous bacterium-like fermentation enzymes including the pyruvate:ferredoxin oxidoreductase (POR), ferredoxin (FD), and alcohol dehydrogenase E (ADHE). The goal of this study was to determine whether the genes encoding these cytosolic E. histolytica fermentation enzymes might derive from a bacterium by horizontal transfer, as has previously been suggested for E. histolytica genes encoding heat shock protein 60, nicotinamide nucleotide transhydrogenase, and superoxide dismutase. In this study, the E. histolytica por gene and the adhE gene of a second amitochondriate protozoan parasite, Giardia lamblia, were sequenced, and their phylogenetic positions were estimated in relation to POR, ADHE, and FD cloned from eukaryotic and eubacterial organisms. The E. histolytica por gene encodes a 1,620-amino-acid peptide that contained conserved iron-sulfur- and thiamine pyrophosphate-binding sites. The predicted E. histolytica POR showed fewer positional identities to the POR of G. lamblia (34%) than to the POR of the enterobacterium Klebsiella pneumoniae (49%), the cyanobacterium Anabaena sp. (44%), and the protozoan Trichomonas vaginalis (46%), which targets its POR to anaerobic organelles called hydrogenosomes. Maximum-likelihood, neighbor-joining, and parsimony analyses also suggested as less likely E. histolytica POR sharing more recent common ancestry with G. lamblia POR than with POR of bacteria and the T. vaginalis hydrogenosome. The G. lamblia adhE encodes an 888-amino-acid fusion peptide with an aldehyde dehydrogenase at its amino half and an iron-dependent (class 3) ADH at its carboxy half. The predicted G. lamblia ADHE showed extensive positional identities to ADHE of Escherichia coli (49%), Clostridium acetobutylicum (44%), and E. histolytica (43%) and lesser identities to the class 3 ADH of eubacteria and yeast (19 to 36%). Phylogenetic analyses inferred a closer relationship of the E

  5. Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase

    Science.gov (United States)

    Roldán-Arjona, Teresa; Wei, Ying-Fei; Carter, Kenneth C.; Klungland, Arne; Anselmino, Catherine; Wang, Rui-Ping; Augustus, Meena; Lindahl, Tomas

    1997-01-01

    The major mutagenic base lesion in DNA caused by exposure to reactive oxygen species is 8-hydroxyguanine (8-oxo-7,8-dihydroguanine). In bacteria and Saccharomyces cerevisiae, this damaged base is excised by a DNA glycosylase with an associated lyase activity for chain cleavage. We have cloned, sequenced, and expressed a human cDNA with partial sequence homology to the relevant yeast gene. The encoded 47-kDa human enzyme releases free 8-hydroxyguanine from oxidized DNA and introduces a chain break in a double-stranded oligonucleotide specifically at an 8-hydroxyguanine residue base paired with cytosine. Expression of the human protein in a DNA repair-deficient E. coli mutM mutY strain partly suppresses its spontaneous mutator phenotype. The gene encoding the human enzyme maps to chromosome 3p25. These results show that human cells have an enzyme that can initiate base excision repair at mutagenic DNA lesions caused by active oxygen. PMID:9223306

  6. The euryhaline yeast Debaryomyces hansenii has two catalase genes encoding enzymes with differential activity profile.

    Science.gov (United States)

    Segal-Kischinevzky, Claudia; Rodarte-Murguía, Beatriz; Valdés-López, Victor; Mendoza-Hernández, Guillermo; González, Alicia; Alba-Lois, Luisa

    2011-03-01

    Debaryomyces hansenii is a spoilage yeast able to grow in a variety of ecological niches, from seawater to dairy products. Results presented in this article show that (i) D. hansenii has an inherent resistance to H2O2 which could be attributed to the fact that this yeast has a basal catalase activity which is several-fold higher than that observed in Saccharomyces cerevisiae under the same culture conditions, (ii) D. hansenii has two genes (DhCTA1 and DhCTT1) encoding two catalase isozymes with a differential enzymatic activity profile which is not strictly correlated with a differential expression profile of the encoding genes.

  7. Analysis of the transcriptome of Isodon rubescens and key enzymes involved in terpenoid biosynthesis

    Directory of Open Access Journals (Sweden)

    Xiuhong Su

    2016-05-01

    Full Text Available Isodon rubescens is an important medicinal plant in China that has been shown to reduce tumour growth due to the presence of the compound oridonin. In an effort to facilitate molecular research on oridonin biosynthesis, we reported the use of next generation massively parallel sequencing technologies and de novo transcriptome assembly to gain a comprehensive overview of I. rubescens transcriptome. In our study, a total of 50,934,276 clean reads, 101,640 transcripts and 44,626 unigenes were generated through de novo transcriptome assembly. A number of unigenes – 23,987, 10,263, 7359, 18,245, 17,683, 19,485, 9361 – were annotated in the National Center for Biotechnology Information (NCBI non-redundant protein (Nr, NCBI nucleotide sequences (Nt, Kyoto Encyclopedia of Genes and Genomes (KEGG Orthology (KO, Swiss-Prot, protein family (Pfam, gene ontology (GO, eukaryotic ortholog groups (KOG databases, respectively. Furthermore, the annotated unigenes were functionally classified according to the GO, KOG and KEGG. Based on these results, candidate genes encoding enzymes involved in terpenoids backbone biosynthesis were detected. Our data provided the most comprehensive sequence resource available for the study on I. rubescens, as well as demonstrated the effective use of Illumina sequencing and de novo transcriptome assembly on a species lacking genomic information.

  8. Using an Inducible Promoter of a Gene Encoding Penicillium verruculosum Glucoamylase for Production of Enzyme Preparations with Enhanced Cellulase Performance.

    Directory of Open Access Journals (Sweden)

    Alexander G Bulakhov

    Full Text Available Penicillium verruculosum is an efficient producer of highly active cellulase multienzyme system. One of the approaches for enhancing cellulase performance in hydrolysis of cellulosic substrates is to enrich the reaction system with β -glucosidase and/or accessory enzymes, such as lytic polysaccharide monooxygenases (LPMO displaying a synergism with cellulases.Genes bglI, encoding β-glucosidase from Aspergillus niger (AnBGL, and eglIV, encoding LPMO (formerly endoglucanase IV from Trichoderma reesei (TrLPMO, were cloned and expressed by P. verruculosum B1-537 strain under the control of the inducible gla1 gene promoter. Content of the heterologous AnBGL in the secreted multienzyme cocktails (hBGL1, hBGL2 and hBGL3 varied from 4 to 10% of the total protein, while the content of TrLPMO in the hLPMO sample was ~3%. The glucose yields in 48-h hydrolysis of Avicel and milled aspen wood by the hBGL1, hBGL2 and hBGL3 preparations increased by up to 99 and 80%, respectively, relative to control enzyme preparations without the heterologous AnBGL (at protein loading 5 mg/g substrate for all enzyme samples. The heterologous TrLPMO in the hLPMO preparation boosted the conversion of the lignocellulosic substrate by 10-43%; however, in hydrolysis of Avicel the hLPMO sample was less effective than the control preparations. The highest product yield in hydrolysis of aspen wood was obtained when the hBGL2 and hLPMO preparations were used at the ratio 1:1.The enzyme preparations produced by recombinant P. verruculosum strains, expressing the heterologous AnBGL or TrLPMO under the control of the gla1 gene promoter in a starch-containing medium, proved to be more effective in hydrolysis of a lignocellulosic substrate than control enzyme preparations without the heterologous enzymes. The enzyme composition containing both AnBGL and TrLPMO demonstrated the highest performance in lignocellulose hydrolysis, providing a background for developing a fungal strain capable

  9. A RALDH-like enzyme involved in Fusarium verticillioides development

    KAUST Repository

    Díaz-Sánchez, Violeta

    2015-12-11

    Retinaldehyde dehydrogenases (RALDHs) convert retinal to retinoic acid, an important chordate morphogen. Retinal also occurs in some fungi, such as Fusarium and Ustilago spp., evidenced by the presence of rhodopsins and β–carotene cleaving, retinal-forming dioxygenases. Based on the assumption that retinoic acid may also be formed in fungi, we searched the Fusarium protein databases for RALDHs homologs, focusing on Fusarium verticillioides. Using crude lysates of Escherichia coli cells expressing the corresponding cDNAs, we checked the capability of best matches to convert retinal into retinoic acid in vitro. Thereby, we identified an aldehyde dehydrogenase, termed CarY, as a retinoic acid-forming enzyme, an activity that was also exerted by purified CarY. Targeted mutation of the carY gene in F. verticillioides resulted in alterations of mycelia development and conidia morphology in agar cultures, and reduced capacity to produce perithecia as a female in sexual crosses. Complementation of the mutant with a wild-type carY allele demonstrated that these alterations are caused by the lack of CarY. However, retinoic acid could not be detected by LC-MS analysis either in the wild type or the complemented carY strain in vivo, making elusive the connection between CarY enzymatic activity and retinoic acid formation in the fungus.

  10. A RALDH-like enzyme involved in Fusarium verticillioides development

    KAUST Repository

    Dí az-Sá nchez, Violeta; Carmen Limó n, M.; Schaub, Patrick; Al-Babili, Salim; Avalos, Javier

    2015-01-01

    Retinaldehyde dehydrogenases (RALDHs) convert retinal to retinoic acid, an important chordate morphogen. Retinal also occurs in some fungi, such as Fusarium and Ustilago spp., evidenced by the presence of rhodopsins and β–carotene cleaving, retinal-forming dioxygenases. Based on the assumption that retinoic acid may also be formed in fungi, we searched the Fusarium protein databases for RALDHs homologs, focusing on Fusarium verticillioides. Using crude lysates of Escherichia coli cells expressing the corresponding cDNAs, we checked the capability of best matches to convert retinal into retinoic acid in vitro. Thereby, we identified an aldehyde dehydrogenase, termed CarY, as a retinoic acid-forming enzyme, an activity that was also exerted by purified CarY. Targeted mutation of the carY gene in F. verticillioides resulted in alterations of mycelia development and conidia morphology in agar cultures, and reduced capacity to produce perithecia as a female in sexual crosses. Complementation of the mutant with a wild-type carY allele demonstrated that these alterations are caused by the lack of CarY. However, retinoic acid could not be detected by LC-MS analysis either in the wild type or the complemented carY strain in vivo, making elusive the connection between CarY enzymatic activity and retinoic acid formation in the fungus.

  11. Involvement of SPI-2-encoded SpiC in flagellum synthesis in Salmonella enterica serovar Typhimurium

    Directory of Open Access Journals (Sweden)

    Sugita Asami

    2009-08-01

    Full Text Available Abstract Background SpiC encoded within Salmonella pathogenicity island 2 on the Salmonella enterica serovar Typhimurium chromosome is required for survival within macrophages and systemic infection in mice. Additionally, SpiC contributes to Salmonella-induced activation of the signal transduction pathways in macrophages by affecting the expression of FliC, a component of flagella filaments. Here, we show the contribution of SpiC in flagellum synthesis. Results Quantitative RT-PCR shows that the expression levels of the class 3 fliD and motA genes that encode for the flagella cap and motor torque proteins, respectively, were lower for a spiC mutant strain than for the wild-type Salmonella. Further, this mutant had lower expression levels of the class 2 genes including the fliA gene encoding the flagellar-specific alternative sigma factor. We also found differences in flagella assembly between the wild-type strain and the spiC mutant. Many flagella filaments were observed on the bacterial surface of the wild-type strain, whereas the spiC mutant had only few flagella. The absence of spiC led to reduced expression of the FlhD protein, which functions as the master regulator in flagella gene expression, although no significant difference at the transcription level of the flhDC operon was observed between the wild-type strain and the spiC mutant. Conclusion The data show that SpiC is involved in flagella assembly by affecting the post-transcription expression of flhDC.

  12. Autophagy-Related Deubiquitinating Enzymes Involved in Health and Disease

    OpenAIRE

    El Magraoui, Fouzi; Reidick, Christina; Meyer, Hemut E.; Platta, Harald W.

    2015-01-01

    Autophagy is an evolutionarily-conserved process that delivers diverse cytoplasmic components to the lysosomal compartment for either recycling or degradation. This involves the removal of protein aggregates, the turnover of organelles, as well as the elimination of intracellular pathogens. In this situation, when only specific cargoes should be targeted to the lysosome, the potential targets can be selectively marked by the attachment of ubiquitin in order to be recognized by autophagy-recep...

  13. Mutations in MDH2, Encoding a Krebs Cycle Enzyme, Cause Early-Onset Severe Encephalopathy

    NARCIS (Netherlands)

    Ait-El-Mkadem, Samira; Dayem-Quere, Manal; Gusic, Mirjana; Chaussenot, Annabelle; Bannwarth, Sylvie; François, Bérengère; Genin, Emmanuelle C; Fragaki, Konstantina; Volker-Touw, Catharina L M; Vasnier, Christelle; Serre, Valérie; van Gassen, Koen L I; Lespinasse, Françoise; Richter, Susan; Eisenhofer, Graeme; Rouzier, Cécile; Mochel, Fanny; De Saint-Martin, Anne; Abi Warde, Marie-Thérèse; de Sain-van der Velden, Monique G M; Jans, Judith J M; Amiel, Jeanne; Avsec, Ziga; Mertes, Christian; Haack, Tobias B; Strom, Tim; Meitinger, Thomas; Bonnen, Penelope E; Taylor, Robert W; Gagneur, Julien; van Hasselt, Peter M; Rötig, Agnès; Delahodde, Agnès; Prokisch, Holger; Fuchs, Sabine A; Paquis-Flucklinger, Véronique

    2016-01-01

    MDH2 encodes mitochondrial malate dehydrogenase (MDH), which is essential for the conversion of malate to oxaloacetate as part of the proper functioning of the Krebs cycle. We report bi-allelic pathogenic mutations in MDH2 in three unrelated subjects presenting with early-onset generalized

  14. Identification of genes encoding granule-bound starch synthase involved in amylose metabolism in banana fruit.

    Directory of Open Access Journals (Sweden)

    Hongxia Miao

    Full Text Available Granule-bound starch synthase (GBSS is responsible for amylose synthesis, but the role of GBSS genes and their encoded proteins remains poorly understood in banana. In this study, amylose content and GBSS activity gradually increased during development of the banana fruit, and decreased during storage of the mature fruit. GBSS protein in banana starch granules was approximately 55.0 kDa. The protein was up-regulated expression during development while it was down-regulated expression during storage. Six genes, designated as MaGBSSI-1, MaGBSSI-2, MaGBSSI-3, MaGBSSI-4, MaGBSSII-1, and MaGBSSII-2, were cloned and characterized from banana fruit. Among the six genes, the expression pattern of MaGBSSI-3 was the most consistent with the changes in amylose content, GBSS enzyme activity, GBSS protein levels, and the quantity or size of starch granules in banana fruit. These results suggest that MaGBSSI-3 might regulate amylose metabolism by affecting the variation of GBSS levels and the quantity or size of starch granules in banana fruit during development or storage.

  15. Identification of Genes Encoding Granule-Bound Starch Synthase Involved in Amylose Metabolism in Banana Fruit

    Science.gov (United States)

    Liu, Weixin; Xu, Biyu; Jin, Zhiqiang

    2014-01-01

    Granule-bound starch synthase (GBSS) is responsible for amylose synthesis, but the role of GBSS genes and their encoded proteins remains poorly understood in banana. In this study, amylose content and GBSS activity gradually increased during development of the banana fruit, and decreased during storage of the mature fruit. GBSS protein in banana starch granules was approximately 55.0 kDa. The protein was up-regulated expression during development while it was down-regulated expression during storage. Six genes, designated as MaGBSSI-1, MaGBSSI-2, MaGBSSI-3, MaGBSSI-4, MaGBSSII-1, and MaGBSSII-2, were cloned and characterized from banana fruit. Among the six genes, the expression pattern of MaGBSSI-3 was the most consistent with the changes in amylose content, GBSS enzyme activity, GBSS protein levels, and the quantity or size of starch granules in banana fruit. These results suggest that MaGBSSI-3 might regulate amylose metabolism by affecting the variation of GBSS levels and the quantity or size of starch granules in banana fruit during development or storage. PMID:24505384

  16. Several genes encoding enzymes with the same activity are necessary for aerobic fungal degradation of cellulose in nature

    DEFF Research Database (Denmark)

    Busk, Peter Kamp; Lange, Mette; Pilgaard, Bo

    2014-01-01

    The cellulose-degrading fungal enzymes are glycoside hydrolases of the GH families and lytic polysaccharide monooxygenases. The entanglement of glycoside hydrolase families and functions makes it difficult to predict the enzymatic activity of glycoside hydrolases based on their sequence....... In the present study we further developed the method Peptide Pattern Recognition to an automatic approach not only to find all genes encoding glycoside hydrolases and lytic polysaccharide monooxygenases in fungal genomes but also to predict the function of the genes. The functional annotation is an important...

  17. The Kynurenine 3-Monooxygenase Encoding Gene, BcKMO, Is Involved in the Growth, Development, and Pathogenicity of Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Kang Zhang

    2018-05-01

    Full Text Available A pathogenic mutant, BCG183, was obtained by screening the T-DNA insertion library of Botrytis cinerea. A novel pathogenicity-related gene BcKMO, which encodes kynurenine 3-monooxygenase (KMO, was isolated and identified via thermal asymmetric interlaced PCR, bioinformatics analyses, and KMO activity measurement. The mutant BCG183 grew slowly, did not produce conidia and sclerotia, had slender hyphae, and presented enhanced pathogenicity. The phenotype and pathogenicity of the BcKMO-complementing mutant (BCG183/BcKMO were similar to those of the wild-type (WT strain. The activities of polymethylgalacturonase, polygalacturonase, and toxins were significantly higher, whereas acid production was significantly decreased in the mutant BCG183, when compared with those in the WT and BCG183/BcKMO. Moreover, the sensitivity of mutant BCG183 to NaCl and KCl was remarkably increased, whereas that to fluconazole, Congo Red, menadione, H2O2, and SQ22536 and U0126 [cAMP-dependent protein kinase (cAMP and mitogen-activated protein kinase (MAPK signaling pathways inhibitors, respectively] were significantly decreased compared with the other strains. Furthermore, the key genes involved in the cAMP and MAPK signaling pathways, Pka1, Pka2, PkaR, Bcg2, Bcg3, bmp1, and bmp3, were significantly upregulated or downregulated in the mutant BCG183. BcKMO expression levels were also upregulated or downregulated in the RNAi mutants of the key genes involved in the cAMP and MAPK signaling pathways. These findings indicated that BcKMO positively regulates growth and development, but negatively regulates pathogenicity of B. cinerea. Furthermore, BcKMO was found to be involved in controlling cell wall degrading enzymes activity, toxins activity, acid production, and cell wall integrity, and participate in cAMP and MAPK signaling pathways of B. cinerea.

  18. The Kynurenine 3-Monooxygenase Encoding Gene, BcKMO, Is Involved in the Growth, Development, and Pathogenicity of Botrytis cinerea.

    Science.gov (United States)

    Zhang, Kang; Yuan, Xuemei; Zang, Jinping; Wang, Min; Zhao, Fuxin; Li, Peifen; Cao, Hongzhe; Han, Jianmin; Xing, Jihong; Dong, Jingao

    2018-01-01

    A pathogenic mutant, BCG183, was obtained by screening the T-DNA insertion library of Botrytis cinerea . A novel pathogenicity-related gene BcKMO , which encodes kynurenine 3-monooxygenase (KMO), was isolated and identified via thermal asymmetric interlaced PCR, bioinformatics analyses, and KMO activity measurement. The mutant BCG183 grew slowly, did not produce conidia and sclerotia, had slender hyphae, and presented enhanced pathogenicity. The phenotype and pathogenicity of the BcKMO -complementing mutant (BCG183/ BcKMO ) were similar to those of the wild-type (WT) strain. The activities of polymethylgalacturonase, polygalacturonase, and toxins were significantly higher, whereas acid production was significantly decreased in the mutant BCG183, when compared with those in the WT and BCG183/ BcKMO . Moreover, the sensitivity of mutant BCG183 to NaCl and KCl was remarkably increased, whereas that to fluconazole, Congo Red, menadione, H 2 O 2 , and SQ22536 and U0126 [cAMP-dependent protein kinase (cAMP) and mitogen-activated protein kinase (MAPK) signaling pathways inhibitors, respectively] were significantly decreased compared with the other strains. Furthermore, the key genes involved in the cAMP and MAPK signaling pathways, Pka1 , Pka2 , PkaR , Bcg2 , Bcg3 , bmp1 , and bmp3, were significantly upregulated or downregulated in the mutant BCG183. BcKMO expression levels were also upregulated or downregulated in the RNAi mutants of the key genes involved in the cAMP and MAPK signaling pathways. These findings indicated that BcKMO positively regulates growth and development, but negatively regulates pathogenicity of B. cinerea . Furthermore, BcKMO was found to be involved in controlling cell wall degrading enzymes activity, toxins activity, acid production, and cell wall integrity, and participate in cAMP and MAPK signaling pathways of B. cinerea .

  19. Kynurenine pathway metabolites and enzymes involved in redox reactions.

    Science.gov (United States)

    González Esquivel, D; Ramírez-Ortega, D; Pineda, B; Castro, N; Ríos, C; Pérez de la Cruz, V

    2017-01-01

    Oxido-reduction reactions are a fundamental part of the life due to support many vital biological processes as cellular respiration and glucose oxidation. In the redox reactions, one substance transfers one or more electrons to another substance. An important electron carrier is the coenzyme NAD + , which is involved in many metabolic pathways. De novo biosynthesis of NAD + is through the kynurenine pathway, the major route of tryptophan catabolism, which is sensitive to redox environment and produces metabolites with redox capacity, able to alter biological functions that are controlled by redox-responsive signaling pathways. Kynurenine pathway metabolites have been implicated in the physiology process and in the physiopathology of many diseases; processes that also share others factors as dysregulation of calcium homeostasis, mitochondrial dysfunction, oxidative stress, inflammation and cell death, which impact the redox environment. This review examines in detail the available evidence in which kynurenine pathway metabolites participate in redox reactions and their effect on cellular redox homeostasis, since the knowledge of the main factors and mechanisms that lead to cell death in many neurodegenative disorders and other pathologies, such as mitochondrial dysfunction, oxidative stress and kynurenines imbalance, will allow to develop therapies using them as targets. This article is part of the Special Issue entitled 'The Kynurenine Pathway in Health and Disease'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The Aspergillus niger faeB gene encodes a second feruloyl esterase involved in pectin and xylan degradation and is specifically induced in the presence of aromatic compounds.

    Science.gov (United States)

    de Vries, Ronald P; vanKuyk, Patricia A; Kester, Harry C M; Visser, Jaap

    2002-04-15

    The faeB gene encoding a second feruloyl esterase from Aspergillus niger has been cloned and characterized. It consists of an open reading frame of 1644 bp containing one intron. The gene encodes a protein of 521 amino acids that has sequence similarity to that of an Aspergillus oryzae tannase. However, the encoded enzyme, feruloyl esterase B (FAEB), does not have tannase activity. Comparison of the physical characteristics and substrate specificity of FAEB with those of a cinnamoyl esterase from A. niger [Kroon, Faulds and Williamson (1996) Biotechnol. Appl. Biochem. 23, 255-262] suggests that they are in fact the same enzyme. The expression of faeB is specifically induced in the presence of certain aromatic compounds, but not in the presence of other constituents present in plant-cell-wall polysaccharides such as arabinoxylan or pectin. The expression profile of faeB in the presence of aromatic compounds was compared with the expression of A. niger faeA, encoding feruloyl esterase A (FAEA), and A. niger bphA, the gene encoding a benzoate-p-hydroxylase. All three genes have different subsets of aromatic compounds that induce their expression, indicating the presence of different transcription activating systems in A. niger that respond to aromatic compounds. Comparison of the activity of FAEA and FAEB on sugar-beet pectin and wheat arabinoxylan demonstrated that they are both involved in the degradation of both polysaccharides, but have opposite preferences for these substrates. FAEA is more active than FAEB towards wheat arabinoxylan, whereas FAEB is more active than FAEA towards sugar-beet pectin.

  1. Distribution of steroidogenic enzymes involved in androgen synthesis in polycystic ovaries: an immunohistochemical study

    NARCIS (Netherlands)

    Kaaijk, E. M.; Sasano, H.; Suzuki, T.; Beek, J. F.; van der Veen, F.

    2000-01-01

    To find an explanation for the possible working mechanism of laparoscopic ovarian electrocautery for the treatment of anovulation in polycystic ovarian syndrome (PCOS), we evaluated the distribution of steroidogenic enzymes involved in the synthesis of ovarian androgens in surgical pathology

  2. Gene encoding a deubiquitinating enzyme is mutated in artesunate- and chloroquine-resistant rodent malaria parasites§

    Science.gov (United States)

    Hunt, Paul; Afonso, Ana; Creasey, Alison; Culleton, Richard; Sidhu, Amar Bir Singh; Logan, John; Valderramos, Stephanie G; McNae, Iain; Cheesman, Sandra; do Rosario, Virgilio; Carter, Richard; Fidock, David A; Cravo, Pedro

    2007-01-01

    Artemisinin- and artesunate-resistant Plasmodium chabaudi mutants, AS-ART and AS-ATN, were previously selected from chloroquine-resistant clones AS-30CQ and AS-15CQ respectively. Now, a genetic cross between AS-ART and the artemisinin-sensitive clone AJ has been analysed by Linkage Group Selection. A genetic linkage group on chromosome 2 was selected under artemisinin treatment. Within this locus, we identified two different mutations in a gene encoding a deubiquitinating enzyme. A distinct mutation occurred in each of the clones AS-30CQ and AS-ATN, relative to their respective progenitors in the AS lineage. The mutations occurred independently in different clones under drug selection with chloroquine (high concentration) or artesunate. Each mutation maps to a critical residue in a homologous human deubiquitinating protein structure. Although one mutation could theoretically account for the resistance of AS-ATN to artemisinin derivates, the other cannot account solely for the resistance of AS-ART, relative to the responses of its sensitive progenitor AS-30CQ. Two lines of Plasmodium falciparum with decreased susceptibility to artemisinin were also selected. Their drug-response phenotype was not genetically stable. No mutations in the UBP-1 gene encoding the P. falciparum orthologue of the deubiquitinating enzyme were observed. The possible significance of these mutations in parasite responses to chloroquine or artemisinin is discussed. PMID:17581118

  3. Mutations in Three Genes Encoding Proteins Involved in Hair Shaft Formation Cause Uncombable Hair Syndrome

    DEFF Research Database (Denmark)

    Ü Basmanav, F Buket; Cau, Laura; Tafazzoli, Aylar

    2016-01-01

    Uncombable hair syndrome (UHS), also known as "spun glass hair syndrome," "pili trianguli et canaliculi," or "cheveux incoiffables" is a rare anomaly of the hair shaft that occurs in children and improves with age. UHS is characterized by dry, frizzy, spangly, and often fair hair that is resistant...... in the majority of UHS case subjects. The two enzymes PADI3 and TGM3, responsible for posttranslational protein modifications, and their target structural protein TCHH are all involved in hair shaft formation. Elucidation of the molecular outcomes of the disease-causing mutations by cell culture experiments...... and tridimensional protein models demonstrated clear differences in the structural organization and activity of mutant and wild-type proteins. Scanning electron microscopy observations revealed morphological alterations in hair coat of Padi3 knockout mice. All together, these findings elucidate the molecular genetic...

  4. Trypanosoma cruzi has not lost its S-adenosylmethionine decarboxylase: characterization of the gene and the encoded enzyme.

    Science.gov (United States)

    Persson, K; Aslund, L; Grahn, B; Hanke, J; Heby, O

    1998-01-01

    All attempts to identify ornithine decarboxylase in the human pathogen Trypanosoma cruzi have failed. The parasites have instead been assumed to depend on putrescine uptake and S-adenosylmethionine decarboxylase (AdoMetDC) for their synthesis of the polyamines spermidine and spermine. We have now identified the gene encoding AdoMetDC in T. cruzi by PCR cloning, with degenerate primers corresponding to conserved amino acid sequences in AdoMetDC proteins of other trypanosomatids. The amplified DNA fragment was used as a probe to isolate the complete AdoMetDC gene from a T. cruzi genomic library. The AdoMetDC gene was located on chromosomes with a size of approx. 1.4 Mbp, and contained a coding region of 1110 bp, specifying a sequence of 370 amino acid residues. The protein showed a sequence identity of only 25% with human AdoMetDC, the major differences being additional amino acids present in the terminal regions of the T. cruzi enzyme. As expected, a higher sequence identity (68-72%) was found in comparison with trypanosomatid AdoMetDCs. When the coding region was expressed in Escherichia coli, the recombinant protein underwent autocatalytic cleavage, generating a 33-34 kDa alpha subunit and a 9 kDa beta subunit. The encoded protein catalysed the decarboxylation of AdoMet (Km 0.21 mM) and was stimulated by putrescine but inhibited by the polyamines, weakly by spermidine and strongly by spermine. Methylglyoxal-bis(guanylhydrazone) (MGBG), a potent inhibitor of human AdoMetDC, was a poor inhibitor of the T. cruzi enzyme. This differential sensitivity to MGBG suggests that the two enzymes are sufficiently different to warrant the search for compounds that might interfere with the progression of Chagas' disease by selectively inhibiting T. cruzi AdoMetDC. PMID:9677309

  5. Episodic retrieval involves early and sustained effects of reactivating information from encoding.

    Science.gov (United States)

    Johnson, Jeffrey D; Price, Mason H; Leiker, Emily K

    2015-02-01

    Several fMRI studies have shown a correspondence between the brain regions activated during encoding and retrieval, consistent with the view that memory retrieval involves hippocampally-mediated reinstatement of cortical activity. With the limited temporal resolution of fMRI, the precise timing of such reactivation is unclear, calling into question the functional significance of these effects. Whereas reactivation influencing retrieval should emerge with neural correlates of retrieval success, that signifying post-retrieval monitoring would trail retrieval. The present study employed EEG to provide a temporal landmark of retrieval success from which we could investigate the sub-trial time course of reactivation. Pattern-classification analyses revealed that early-onsetting reactivation differentiated the outcome of recognition-memory judgments and was associated with individual differences in behavioral accuracy, while reactivation was also evident in a sustained form later in the trial. The EEG findings suggest that, whereas prior fMRI findings could be interpreted as reflecting the contribution of reinstatement to retrieval success, they could also indicate the maintenance of episodic information in service of post-retrieval evaluation. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Molecular characterization of genes encoding leucoanthocyanidin reductase involved in proanthocyanidin biosynthesis in apple

    Directory of Open Access Journals (Sweden)

    Yuepeng eHan

    2015-04-01

    Full Text Available Proanthocyanidins (PAs are the major component of phenolics in apple, but mechanisms involved in PA biosynthesis remain unclear. Here, the relationship between the PA biosynthesis and the expression of genes encoding leucoanthocyanidin reductase (LAR and anthocyanidin reductase (ANR was investigated in fruit skin of one apple cultivar and three crabapples. Transcript levels of LAR1 and ANR2 genes were significantly correlated with the contents of catechin and epicatechin, respectively, which suggests their active roles in PA synthesis. Surprisingly, transcript levels for both LAR1 and LAR2 genes were almost undetectable in two crabapples that accumulated both flavan-3-ols and PAs. This contradicts the previous finding that LAR1 gene is a strong candidate regulating the accumulation of metabolites such as epicatechin and PAs in apple. Ectopic expression of apple MdLAR1 gene in tobacco suppresses expression of the late genes in anthocyanin biosynthetic pathway, resulting in loss of anthocyanin in flowers. Interestingly, a decrease in PA biosynthesis was also observed in flowers of transgenic tobacco plants overexpressing the MdLAR1 gene, which could be attributed to decreased expression of both the NtANR1 and NtANR2 genes. Our study not only confirms the in vivo function of apple LAR1 gene, but it is also helpful for understanding the mechanism of PA biosynthesis.

  7. The posterior medial cortex is involved in visual but not in verbal memory encoding processing: an intracerebral recording study.

    Science.gov (United States)

    Stillová, K; Jurák, P; Chládek, J; Halámek, J; Telecká, S; Rektor, I

    2013-03-01

    The objective is to study the involvement of the posterior medial cortex (PMC) in encoding and retrieval by visual and auditory memory processing. Intracerebral recordings were studied in two epilepsy-surgery candidates with depth electrodes implanted in the retrosplenial cingulate, precuneus, cuneus, lingual gyrus and hippocampus. We recorded the event-related potentials (ERP) evoked by visual and auditory memory encoding-retrieval tasks. In the hippocampus, ERP were elicited in the encoding and retrieval phases in the two modalities. In the PMC, ERP were recorded in both the encoding and the retrieval visual tasks; in the auditory modality, they were recorded in the retrieval task, but not in the encoding task. In conclusion, the PMC is modality dependent in memory processing. ERP is elicited by memory retrieval, but it is not elicited by auditory encoding memory processing in the PMC. The PMC appears to be involved not only in higher-order top-down cognitive activities but also in more basic, rather than bottom-up activities.

  8. Functional analysis of the Phycomyces carRA gene encoding the enzymes phytoene synthase and lycopene cyclase.

    Directory of Open Access Journals (Sweden)

    Catalina Sanz

    Full Text Available Phycomyces carRA gene encodes a protein with two domains. Domain R is characterized by red carR mutants that accumulate lycopene. Domain A is characterized by white carA mutants that do not accumulate significant amounts of carotenoids. The carRA-encoded protein was identified as the lycopene cyclase and phytoene synthase enzyme by sequence homology with other proteins. However, no direct data showing the function of this protein have been reported so far. Different Mucor circinelloides mutants altered at the phytoene synthase, the lycopene cyclase or both activities were transformed with the Phycomyces carRA gene. Fully transcribed carRA mRNA molecules were detected by Northern assays in the transformants and the correct processing of the carRA messenger was verified by RT-PCR. These results showed that Phycomyces carRA gene was correctly expressed in Mucor. Carotenoids analysis in these transformants showed the presence of ß-carotene, absent in the untransformed strains, providing functional evidence that the Phycomyces carRA gene complements the M. circinelloides mutations. Co-transformation of the carRA cDNA in E. coli with different combinations of the carotenoid structural genes from Erwinia uredovora was also performed. Newly formed carotenoids were accumulated showing that the Phycomyces CarRA protein does contain lycopene cyclase and phytoene synthase activities. The heterologous expression of the carRA gene and the functional complementation of the mentioned activities are not very efficient in E. coli. However, the simultaneous presence of both carRA and carB gene products from Phycomyces increases the efficiency of these enzymes, presumably due to an interaction mechanism.

  9. Composition and expression of genes encoding carbohydrate-active enzymes in the straw-degrading mushroom Volvariella volvacea.

    Directory of Open Access Journals (Sweden)

    Bingzhi Chen

    Full Text Available Volvariella volvacea is one of a few commercial cultivated mushrooms mainly using straw as carbon source. In this study, the genome of V. volcacea was sequenced and assembled. A total of 285 genes encoding carbohydrate-active enzymes (CAZymes in V. volvacea were identified and annotated. Among 15 fungi with sequenced genomes, V. volvacea ranks seventh in the number of genes encoding CAZymes. In addition, the composition of glycoside hydrolases in V. volcacea is dramatically different from other basidiomycetes: it is particularly rich in members of the glycoside hydrolase families GH10 (hemicellulose degradation and GH43 (hemicellulose and pectin degradation, and the lyase families PL1, PL3 and PL4 (pectin degradation but lacks families GH5b, GH11, GH26, GH62, GH93, GH115, GH105, GH9, GH53, GH32, GH74 and CE12. Analysis of genome-wide gene expression profiles of 3 strains using 3'-tag digital gene expression (DGE reveals that 239 CAZyme genes were expressed even in potato destrose broth medium. Our data also showed that the formation of a heterokaryotic strain could dramatically increase the expression of a number of genes which were poorly expressed in its parental homokaryotic strains.

  10. Genes involved in meso-diaminopimelate synthesis in Bacillus subtilis: identification of the gene encoding aspartokinase I.

    Science.gov (United States)

    Roten, C A; Brandt, C; Karamata, D

    1991-04-01

    Thermosensitive mutants of Bacillus subtilis deficient in peptidoglycan synthesis were screened for mutations in the meso-diaminopimelate (LD-A2pm) metabolic pathway. Mutations in two out of five relevant linkage groups, lssB and lssD, were shown to induce, at the restrictive temperature, a deficiency in LD-A2pm synthesis and accumulation of UDP-MurNAc-dipeptide. Group lssB is heterogeneous; it encompasses mutations that confer deficiency in the deacylation of N-acetyl-LL-A2pm and accumulation of this precursor. Accordingly, these mutations are assigned to the previously identified locus dapE. Mutations in linkage group lssD entail a thermosensitive aspartokinase 1. Therefore, they are most likely to affect the structural gene of this enzyme, which we propose to designate dapG. Mutation pyc-1476, previously reported to affect the pyruvate carboxylase, was shown to confer a deficiency in aspartokinase 1, not in the carboxylase, and to belong to the dapG locus, dapG is closely linked to spoVF, the putative gene of dipicolinate synthase. In conclusion, mutations affecting only two out of eight steps known to be involved in LD-A2pm synthesis were uncovered in a large collection of thermosensitive mutants obtained by indirect selection. We propose that this surprisingly restricted distribution of the thermosensitive dap mutations isolated so far is due to the existence, in each step of the pathway, of isoenzymes encoded by separate genes. The biological role of different aspartokinases was investigated with mutants deficient in dapE and dapG genes. Growth characteristics of these mutants in the presence of various combinations of aspartate family amino acids allow a reassessment of a metabolic channel hypothesis, i.e. the proposed existence of multienzyme complexes, each specific for a given end product.

  11. Mutation of a Rice Gene Encoding a Phenylalanine Biosynthetic Enzyme Results in Accumulation of Phenylalanine and Tryptophan[W

    Science.gov (United States)

    Yamada, Tetsuya; Matsuda, Fumio; Kasai, Koji; Fukuoka, Shuichi; Kitamura, Keisuke; Tozawa, Yuzuru; Miyagawa, Hisashi; Wakasa, Kyo

    2008-01-01

    Two distinct biosynthetic pathways for Phe in plants have been proposed: conversion of prephenate to Phe via phenylpyruvate or arogenate. The reactions catalyzed by prephenate dehydratase (PDT) and arogenate dehydratase (ADT) contribute to these respective pathways. The Mtr1 mutant of rice (Oryza sativa) manifests accumulation of Phe, Trp, and several phenylpropanoids, suggesting a link between the synthesis of Phe and Trp. Here, we show that the Mtr1 mutant gene (mtr1-D) encodes a form of rice PDT with a point mutation in the putative allosteric regulatory region of the protein. Transformed callus lines expressing mtr1-D exhibited all the characteristics of Mtr1 callus tissue. Biochemical analysis revealed that rice PDT possesses both PDT and ADT activities, with a preference for arogenate as substrate, suggesting that it functions primarily as an ADT. The wild-type enzyme is feedback regulated by Phe, whereas the mutant enzyme showed a reduced feedback sensitivity, resulting in Phe accumulation. In addition, these observations indicate that rice PDT is critical for regulating the size of the Phe pool in plant cells. Feeding external Phe to wild-type callus tissue and seedlings resulted in Trp accumulation, demonstrating a connection between Phe accumulation and Trp pool size. PMID:18487352

  12. Screening of Missense SNPs in Coding Regions of COX-2 as a Key Enzyme Involved in Cancer

    Directory of Open Access Journals (Sweden)

    Sodabeh Jahanbakhsh-Godehkahriz

    2013-09-01

    Full Text Available Background & Objectives: Non-synonymous single nucleotide polymorphism (nsSNPs which results in disruption of protein function are used as markers in linkage and association of human proteins that might be involved in diseases and cancers .   Methods: To study the functional effect of nsSNP in cyclooxygenase-2 (COX2 amino acids, the nucleotide sequences encoding COX-2 gene in cancers were extracted from the NCBI (gi|223941909 data bank (283 cases and analyzed by SIFT, I-Mutant 2.0, SNP and GO, PANTHER and FASTSNP servers. These servers involve programs that predict the effects of amino acid substitution on protein function, stability and missense .   Results: COX-2 is an essential enzyme for the production of pro-inflammatory prostaglandins which are relevant to cancer development and progression. The substitutions in some positions such as R228H and S428A of COX-2 in most of cancers linked to reformed protein function through disruption in enzyme active site.   Conclusion: Amino acid substitutions as a consequence of COX-2 nsSNPs have important role in human disease. Substitutions which are located in catalytic domain are important for the enzymatic function of COX-2 and associated with higher expression of COX-2.

  13. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  14. Characterisation of the cytochrome P450 enzymes involved in the in vitro metabolism of granisetron.

    Science.gov (United States)

    Bloomer, J C; Baldwin, S J; Smith, G J; Ayrton, A D; Clarke, S E; Chenery, R J

    1994-01-01

    1. The metabolism of granisetron was investigated in human liver microsomes to identify the specific forms of cytochrome P450 responsible. 2. 7-hydroxy and 9'-desmethyl granisetron were identified as the major products of metabolism following incubation of granisetron with human liver microsomes. At low, clinically relevant, concentrations of granisetron the 7-hydroxy metabolite predominated. Rates of granisetron 7-hydroxylation varied over 100-fold in the human livers investigated. 3. Enzyme kinetics demonstrated the involvement of at least two enzymes contributing to the 7-hydroxylation of granisetron, one of which was a high affinity component with a Km of 4 microM. A single, low affinity, enzyme was responsible for the 9'-desmethylation of granisetron. 4. Granisetron caused no inhibition of any of the cytochrome P450 activities investigated (CYP1A2, CYP2A6, CYP2B6, CYP2C9/8, CYP2C19, CYP2D6, CYP2E1 and CYP3A), at concentrations up to 250 microM. 5. Studies using chemical inhibitors selective for individual P450 enzymes indicated the involvement of cytochrome P450 3A (CYP3A), both pathways of granisetron metabolism being very sensitive to ketoconazole inhibition. Correlation data were consistent with the role of CYP3A3/4 in granisetron 9'-desmethylation but indicated that a different enzyme was involved in the 7-hydroxylation. PMID:7888294

  15. Molecular phylogeny and intricate evolutionary history of the three isofunctional enzymes involved in the oxidation of protoporphyrinogen IX.

    Science.gov (United States)

    Kobayashi, Koichi; Masuda, Tatsuru; Tajima, Naoyuki; Wada, Hajime; Sato, Naoki

    2014-08-01

    Tetrapyrroles such as heme and chlorophyll are essential for biological processes, including oxygenation, respiration, and photosynthesis. In the tetrapyrrole biosynthesis pathway, protoporphyrinogen IX oxidase (Protox) catalyzes the formation of protoporphyrin IX, the last common intermediate for the biosynthesis of heme and chlorophyll. Three nonhomologous isofunctional enzymes, HemG, HemJ, and HemY, for Protox have been identified. To reveal the distribution and evolution of the three Protox enzymes, we identified homologs of each along with other heme biosynthetic enzymes by whole-genome clustering across three domains of life. Most organisms possess only one of the three Protox types, with some exceptions. Detailed phylogenetic analysis revealed that HemG is mostly limited to γ-Proteobacteria whereas HemJ may have originated within α-Proteobacteria and transferred to other Proteobacteria and Cyanobacteria. In contrast, HemY is ubiquitous in prokaryotes and is the only Protox in eukaryotes, so this type may be the ancestral Protox. Land plants have a unique HemY homolog that is also shared by Chloroflexus species, in addition to the main HemY homolog originating from Cyanobacteria. Meanwhile, organisms missing any Protox can be classified into two groups; those lacking most heme synthetic genes, which necessarily depend on external heme supply, and those lacking only genes involved in the conversion of uroporphyrinogen III into heme, which would use a precorrin2-dependent alternative pathway. However, hemN encoding coproporphyrinogen IX oxidase was frequently found in organisms lacking Protox enzyme, which suggests a unique role of this gene other than in heme biosynthesis. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Cloning and Expression Analysis of MEP Pathway Enzyme-encoding Genes in Osmanthus fragrans

    Directory of Open Access Journals (Sweden)

    Chen Xu

    2016-09-01

    Full Text Available The 2-C-methyl-d-erythritol 4-phosphate (MEP pathway is responsible for the biosynthesis of many crucial secondary metabolites, such as carotenoids, monoterpenes, plastoquinone, and tocopherols. In this study, we isolated and identified 10 MEP pathway genes in the important aromatic plant sweet osmanthus (Osmanthus fragrans. Multiple sequence alignments revealed that 10 MEP pathway genes shared high identities with other reported proteins. The genes showed distinctive expression profiles in various tissues, or at different flower stages and diel time points. The qRT-PCR results demonstrated that these genes were highly expressed in inflorescences, which suggested a tissue-specific transcript pattern. Our results also showed that OfDXS1, OfDXS2, and OfHDR1 had a clear diurnal oscillation pattern. The isolation and expression analysis provides a strong foundation for further research on the MEP pathway involved in gene function and molecular evolution, and improves our understanding of the molecular mechanism underlying this pathway in plants.

  17. Absence of functional peroxisomes does not lead to deficiency of enzymes involved in cholesterol biosynthesis

    NARCIS (Netherlands)

    Hogenboom, Sietske; Romeijn, Gerrit Jan; Houten, Sander M.; Baes, Myriam; Wanders, Ronald J. A.; Waterham, Hans R.

    2002-01-01

    To unravel the conflicting data concerning the dependence of human cholesterol biosynthesis on functional peroxisomes, we determined activities and levels of selected enzymes involved in cholesterol biosynthesis in livers of PEX5 knockout mice, a well-characterized model for human Zellweger

  18. Trace Metal Requirements for Microbial Enzymes Involved in the Production and Consumption of Methane and Nitrous Oxide

    Science.gov (United States)

    Glass, Jennifer B.; Orphan, Victoria J.

    2011-01-01

    Fluxes of greenhouse gases to the atmosphere are heavily influenced by microbiological activity. Microbial enzymes involved in the production and consumption of greenhouse gases often contain metal cofactors. While extensive research has examined the influence of Fe bioavailability on microbial CO2 cycling, fewer studies have explored metal requirements for microbial production and consumption of the second- and third-most abundant greenhouse gases, methane (CH4), and nitrous oxide (N2O). Here we review the current state of biochemical, physiological, and environmental research on transition metal requirements for microbial CH4 and N2O cycling. Methanogenic archaea require large amounts of Fe, Ni, and Co (and some Mo/W and Zn). Low bioavailability of Fe, Ni, and Co limits methanogenesis in pure and mixed cultures and environmental studies. Anaerobic methane oxidation by anaerobic methanotrophic archaea (ANME) likely occurs via reverse methanogenesis since ANME possess most of the enzymes in the methanogenic pathway. Aerobic CH4 oxidation uses Cu or Fe for the first step depending on Cu availability, and additional Fe, Cu, and Mo for later steps. N2O production via classical anaerobic denitrification is primarily Fe-based, whereas aerobic pathways (nitrifier denitrification and archaeal ammonia oxidation) require Cu in addition to, or possibly in place of, Fe. Genes encoding the Cu-containing N2O reductase, the only known enzyme capable of microbial N2O conversion to N2, have only been found in classical denitrifiers. Accumulation of N2O due to low Cu has been observed in pure cultures and a lake ecosystem, but not in marine systems. Future research is needed on metalloenzymes involved in the production of N2O by enrichment cultures of ammonia oxidizing archaea, biological mechanisms for scavenging scarce metals, and possible links between metal bioavailability and greenhouse gas fluxes in anaerobic environments where metals may be limiting due to sulfide

  19. Analysis of the enzyme network involved in cattle milk production using graph theory.

    Science.gov (United States)

    Ghorbani, Sholeh; Tahmoorespur, Mojtaba; Masoudi Nejad, Ali; Nasiri, Mohammad; Asgari, Yazdan

    2015-06-01

    Understanding cattle metabolism and its relationship with milk products is important in bovine breeding. A systemic view could lead to consequences that will result in a better understanding of existing concepts. Topological indices and quantitative characterizations mostly result from the application of graph theory on biological data. In the present work, the enzyme network involved in cattle milk production was reconstructed and analyzed based on available bovine genome information using several public datasets (NCBI, Uniprot, KEGG, and Brenda). The reconstructed network consisted of 3605 reactions named by KEGG compound numbers and 646 enzymes that catalyzed the corresponding reactions. The characteristics of the directed and undirected network were analyzed using Graph Theory. The mean path length was calculated to be4.39 and 5.41 for directed and undirected networks, respectively. The top 11 hub enzymes whose abnormality could harm bovine health and reduce milk production were determined. Therefore, the aim of constructing the enzyme centric network was twofold; first to find out whether such network followed the same properties of other biological networks, and second, to find the key enzymes. The results of the present study can improve our understanding of milk production in cattle. Also, analysis of the enzyme network can help improve the modeling and simulation of biological systems and help design desired phenotypes to increase milk production quality or quantity.

  20. Differential expression of genes encoding anti-oxidant enzymes in Sydney rock oysters, Saccostrea glomerata (Gould) selected for disease resistance.

    Science.gov (United States)

    Green, Timothy J; Dixon, Tom J; Devic, Emilie; Adlard, Robert D; Barnes, Andrew C

    2009-05-01

    Sydney rock oysters (Saccostrea glomerata) selectively bred for disease resistance (R) and wild-caught control oysters (W) were exposed to a field infection of disseminating neoplasia. Cumulative mortality of W oysters (31.7%) was significantly greater than R oysters (0.0%) over the 118 days of the experiment. In an attempt to understand the biochemical and molecular pathways involved in disease resistance, differentially expressed sequence tags (ESTs) between R and W S. glomerata hemocytes were identified using the PCR technique, suppression subtractive hybridisation (SSH). Sequencing of 300 clones from two SSH libraries revealed 183 distinct sequences of which 113 shared high similarity to sequences in the public databases. Putative function could be assigned to 64 of the sequences. Expression of nine ESTs homologous to genes previously shown to be involved in bivalve immunity was further studied using quantitative reverse-transcriptase PCR (qRT-PCR). The base-line expression of an extracellular superoxide dismutase (ecSOD) and a small heat shock protein (sHsP) were significantly increased, whilst peroxiredoxin 6 (Prx6) and interferon inhibiting cytokine factor (IK) were significantly decreased in R oysters. From these results it was hypothesised that R oysters would be able to generate the anti-parasitic compound, hydrogen peroxide (H(2)O(2)) faster and to higher concentrations during respiratory burst due to the differential expression of genes for the two anti-oxidant enzymes of ecSOD and Prx6. To investigate this hypothesis, protein extracts from hemolymph were analysed for oxidative burst enzyme activity. Analysis of the cell free hemolymph proteins separated by native-polyacrylamide gel electrophoresis (PAGE) failed to detect true superoxide dismutase (SOD) activity by assaying dismutation of superoxide anion in zymograms. However, the ecSOD enzyme appears to generate hydrogen peroxide, presumably via another process, which is yet to be elucidated. This

  1. NUCLEOTIDE SEQUENCING AND TRANSCRIPTIONAL MAPPING OF THE GENES ENCODING BIPHENYL DIOXYGENASE, A MULTICOM- PONENT POLYCHLORINATED-BIPHENYL-DEGRADING ENZYME IN PSEUDOMONAS STRAIN LB400

    Science.gov (United States)

    The DNA region encoding biphenyl dioxygenase, the first enzyme in the biphenyl-polychlorinated biphenyl degradation pathway of Pseudomonas species strain LB400, was sequenced. Six open reading frames were identified, four of which are homologous to the components of toluene dioxy...

  2. MUREIN-METABOLIZING ENZYMES FROM ESCHERICHIA-COLI - SEQUENCE-ANALYSIS AND CONTROLLED OVEREXPRESSION OF THE SLT GENE, WHICH ENCODES THE SOLUBLE LYTIC TRANSGLYCOSYLASE

    NARCIS (Netherlands)

    ENGEL, H; KAZEMIER, B; KECK, W

    The complete nucleotide sequence of the slt gene encoding the soluble lytic transglycosylase (Slt; EC 3.2.1.-) from Escherichia coli has been determined. The largest open reading frame identified on a 2.5-kb PvuII-SalI fragment indicates that the enzyme is translated as a preprotein of either 654 or

  3. THE CALVIN CYCLE ENZYME PHOSPHOGLYCERATE KINASE OF XANTHOBACTER-FLAVUS REQUIRED FOR AUTOTROPHIC CO2 FIXATION IS NOT ENCODED BY THE CBB OPERON

    NARCIS (Netherlands)

    MEIJER, WG

    1994-01-01

    During autotrophic growth of Xanthobacter flavus, energy derived from the oxidation of hydrogen methanol or formate is used to drive the assimilation of CO2 via the Calvin cycle. The genes encoding the Calvin cycle enzymes are organized in the cbb operon, which is expressed only during autotrophic

  4. Dissemination of Genes Encoding Aminoglycoside-Modifying Enzymes and armA Among Enterobacteriaceae Isolates in Northwest Iran.

    Science.gov (United States)

    Ghotaslou, Reza; Yeganeh Sefidan, Fatemeh; Akhi, Mohammad Taghi; Asgharzadeh, Mohammad; Mohammadzadeh Asl, Yalda

    2017-10-01

    Enzymatic inactivation is one of the most important mechanisms of resistance to aminoglycosides. The aim of this study was to investigate the prevalence of armA and diversity of the genes encoding aminoglycoside-modifying enzymes (AMEs) and their associations with resistance phenotypes in Enterobacteriaceae isolates. Three hundred and seven Enterobacteriaceae isolates were collected from five hospitals in northwest Iran. The disk diffusion method for amikacin, gentamicin, tobramycin, kanamycin, and streptomycin, as well as the minimum inhibitory concentration for amikacin, gentamicin, tobramycin, and kanamycin were done for susceptibility testing. Thirteen AME genes and armA methylase were screened using the PCR and sequencing assays. Two hundred and twenty (71.7%) of isolates were resistant to aminoglycosides and 155 (70.5%) of them were positive for aminoglycoside resistance genes. The most prevalent AME genes were ant(3″)-Ia and aph(3″)-Ib with the frequency 35.9% and 30.5%, respectively. Also, 21 (9.5%) of resistant isolates were positive for armA methylase gene. The prevalence of resistance to aminoglycoside is high and AME genes frequently are disseminated in Enterobacteriaceae isolates. There is an association between phenotypic resistance and the presence of some aminoglycoside genes.

  5. Cocaine Administration and Its Withdrawal Enhance the Expression of Genes Encoding Histone-Modifying Enzymes and Histone Acetylation in the Rat Prefrontal Cortex.

    Science.gov (United States)

    Sadakierska-Chudy, Anna; Frankowska, Małgorzata; Jastrzębska, Joanna; Wydra, Karolina; Miszkiel, Joanna; Sanak, Marek; Filip, Małgorzata

    2017-07-01

    Chronic exposure to cocaine, craving, and relapse are attributed to long-lasting changes in gene expression arising through epigenetic and transcriptional mechanisms. Although several brain regions are involved in these processes, the prefrontal cortex seems to play a crucial role not only in motivation and decision-making but also in extinction and seeking behavior. In this study, we applied cocaine self-administration and extinction training procedures in rats with a yoked triad to determine differentially expressed genes in prefrontal cortex. Microarray analysis showed significant upregulation of several genes encoding histone modification enzymes during early extinction training. Subsequent real-time PCR testing of these genes following cocaine self-administration or early (third day) and late (tenth day) extinction revealed elevated levels of their transcripts. Interestingly, we found the enrichment of Brd1 messenger RNA in rats self-administering cocaine that lasted until extinction training during cocaine withdrawal with concomitant increased acetylation of H3K9 and H4K8. However, despite elevated levels of methyl- and demethyltransferase-encoded transcripts, no changes in global di- and tri-methylation of histone H3 at lysine 4, 9, 27, and 79 were observed. Surprisingly, at the end of extinction training (10 days of cocaine withdrawal), most of the analyzed genes in the rats actively and passively administering cocaine returned to the control level. Together, the alterations identified in the rat prefrontal cortex may suggest enhanced chromatin remodeling and transcriptional activity induced by early cocaine abstinence; however, to know whether they are beneficial or not for the extinction of drug-seeking behavior, further in vivo evaluation is required.

  6. Expression analysis of two gene subfamilies encoding the plasma membrane H+-ATPase in Nicotiana plumbaginifolia reveals the major transport functions of this enzyme.

    Science.gov (United States)

    Moriau, L; Michelet, B; Bogaerts, P; Lambert, L; Michel, A; Oufattole, M; Boutry, M

    1999-07-01

    The plasma membrane H+-ATPase couples ATP hydrolysis to proton transport, thereby establishing the driving force for solute transport across the plasma membrane. In Nicotiana plumbaginifolia, this enzyme is encoded by at least nine pma (plasma membrane H+-ATPase) genes. Four of these are classified into two gene subfamilies, pma1-2-3 and pma4, which are the most highly expressed in plant species. We have isolated genomic clones for pma2 and pma4. Mapping of their transcript 5' end revealed the presence of a long leader that contained small open reading frames, regulatory features typical of other pma genes. The gusA reporter gene was then used to determine the expression of pma2, pma3 and pma4 in N. tabacum. These data, together with those obtained previously for pma1, led to the following conclusions. (i) The four pma-gusA genes were all expressed in root, stem, leaf and flower organs, but each in a cell-type specific manner. Expression in these organs was confirmed at the protein level, using subfamily-specific antibodies. (ii) pma4-gusA was expressed in many cell types and notably in root hair and epidermis, in companion cells, and in guard cells, indicating that in N. plumbaginifolia the same H+-ATPase isoform might be involved in mineral nutrition, phloem loading and control of stomata aperture. (iii) The second gene subfamily is composed, in N. plumbaginifolia, of a single gene (pma4) with a wide expression pattern and, in Arabidopsis thaliana, of three genes (aha1, aha2, aha3), at least two of them having a more restrictive expression pattern. (iv) Some cell types expressed pma2 and pma4 at the same time, which encode H+-ATPases with different enzymatic properties.

  7. Sieve element occlusion (SEO) genes encode structural phloem proteins involved in wound sealing of the phloem.

    Science.gov (United States)

    Ernst, Antonia M; Jekat, Stephan B; Zielonka, Sascia; Müller, Boje; Neumann, Ulla; Rüping, Boris; Twyman, Richard M; Krzyzanek, Vladislav; Prüfer, Dirk; Noll, Gundula A

    2012-07-10

    The sieve element occlusion (SEO) gene family originally was delimited to genes encoding structural components of forisomes, which are specialized crystalloid phloem proteins found solely in the Fabaceae. More recently, SEO genes discovered in various non-Fabaceae plants were proposed to encode the common phloem proteins (P-proteins) that plug sieve plates after wounding. We carried out a comprehensive characterization of two tobacco (Nicotiana tabacum) SEO genes (NtSEO). Reporter genes controlled by the NtSEO promoters were expressed specifically in immature sieve elements, and GFP-SEO fusion proteins formed parietal agglomerates in intact sieve elements as well as sieve plate plugs after wounding. NtSEO proteins with and without fluorescent protein tags formed agglomerates similar in structure to native P-protein bodies when transiently coexpressed in Nicotiana benthamiana, and the analysis of these protein complexes by electron microscopy revealed ultrastructural features resembling those of native P-proteins. NtSEO-RNA interference lines were essentially devoid of P-protein structures and lost photoassimilates more rapidly after injury than control plants, thus confirming the role of P-proteins in sieve tube sealing. We therefore provide direct evidence that SEO genes in tobacco encode P-protein subunits that affect translocation. We also found that peptides recently identified in fascicular phloem P-protein plugs from squash (Cucurbita maxima) represent cucurbit members of the SEO family. Our results therefore suggest a common evolutionary origin for P-proteins found in the sieve elements of all dicotyledonous plants and demonstrate the exceptional status of extrafascicular P-proteins in cucurbits.

  8. Sterol composition of yeast organelle membranes and subcellular distribution of enzymes involved in sterol metabolism.

    OpenAIRE

    Zinser, E; Paltauf, F; Daum, G

    1993-01-01

    Organelles of the yeast Saccharomyces cerevisiae were isolated and analyzed for sterol composition and the activity of three enzymes involved in sterol metabolism. The plasma membrane and secretory vesicles, the fractions with the highest sterol contents, contain ergosterol as the major sterol. In other subcellular membranes, which exhibit lower sterol contents, intermediates of the sterol biosynthetic pathway were found at higher percentages. Lipid particles contain, in addition to ergostero...

  9. Mutations in B3GALT6, which encodes a glycosaminoglycan linker region enzyme, cause a spectrum of skeletal and connective tissue disorders.

    Science.gov (United States)

    Nakajima, Masahiro; Mizumoto, Shuji; Miyake, Noriko; Kogawa, Ryo; Iida, Aritoshi; Ito, Hironori; Kitoh, Hiroshi; Hirayama, Aya; Mitsubuchi, Hiroshi; Miyazaki, Osamu; Kosaki, Rika; Horikawa, Reiko; Lai, Angeline; Mendoza-Londono, Roberto; Dupuis, Lucie; Chitayat, David; Howard, Andrew; Leal, Gabriela F; Cavalcanti, Denise; Tsurusaki, Yoshinori; Saitsu, Hirotomo; Watanabe, Shigehiko; Lausch, Ekkehart; Unger, Sheila; Bonafé, Luisa; Ohashi, Hirofumi; Superti-Furga, Andrea; Matsumoto, Naomichi; Sugahara, Kazuyuki; Nishimura, Gen; Ikegawa, Shiro

    2013-06-06

    Proteoglycans (PGs) are a major component of the extracellular matrix in many tissues and function as structural and regulatory molecules. PGs are composed of core proteins and glycosaminoglycan (GAG) side chains. The biosynthesis of GAGs starts with the linker region that consists of four sugar residues and is followed by repeating disaccharide units. By exome sequencing, we found that B3GALT6 encoding an enzyme involved in the biosynthesis of the GAG linker region is responsible for a severe skeletal dysplasia, spondyloepimetaphyseal dysplasia with joint laxity type 1 (SEMD-JL1). B3GALT6 loss-of-function mutations were found in individuals with SEMD-JL1 from seven families. In a subsequent candidate gene study based on the phenotypic similarity, we found that B3GALT6 is also responsible for a connective tissue disease, Ehlers-Danlos syndrome (progeroid form). Recessive loss-of-function mutations in B3GALT6 result in a spectrum of disorders affecting a broad range of skeletal and connective tissues characterized by lax skin, muscle hypotonia, joint dislocation, and spinal deformity. The pleiotropic phenotypes of the disorders indicate that B3GALT6 plays a critical role in a wide range of biological processes in various tissues, including skin, bone, cartilage, tendon, and ligament. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  10. Mining the enzymes involved in the detoxification of reactive oxygen species (ROS) in sugarcane.

    Science.gov (United States)

    Kurama, Eiko E; Fenille, Roseli C; Rosa, Vicente E; Rosa, Daniel D; Ulian, Eugenio C

    2002-07-01

    Summary Adopting the sequencing of expressed sequence tags (ESTs) of a sugarcane database derived from libraries induced and not induced by pathogens, we identified EST clusters homologous to genes corresponding to enzymes involved in the detoxification of reactive oxygen species. The predicted amino acids of these enzymes are superoxide dismutases (SODs), glutathione-S-transferase (GST), glutathione peroxidase (GPX), and catalases. Three MnSOD mitochondrial precursors and 10 CuZnSOD were identified in sugarcane: the MnSOD mitochondrial precursor is 96% similar to the maize MnSOD mitochondrial precursor and, of the 10 CuZnSOD identified, seven were 98% identical to maize cytosolic CuZnSOD4 and one was 67% identical to putative peroxisomal CuZnSOD from Arabidopsis. Three homologues to class Phi GST were 87-88% identical to GST III from maize. Five GPX homologues were identified: three were homologous to cytosolic GPX from barley, one was 88% identical to phospholipid hydroperoxide glutathione peroxidase (PHGPX) from rice, and the last was 71% identical to GPX from A. thaliana. Three enzymes similar to maize catalase were identified in sugarcane: two were similar to catalase isozyme 3 and catalase chain 3 from maize, which are mitochondrial, and one was similar to catalase isozyme 1 from maize, whose location is peroxisomal subcellular. All enzymes were induced in all sugarcane libraries (flower, seed, root, callus, leaves) and also in the pathogen-induced libraries, except for CuZnSOD whose cDNA was detected in none of the libraries induced by pathogens (Acetobacter diazotroficans and Herbaspirillum rubrisubalbicans). The expression of the enzymes SOD, GST, GPX, and catalases involved in the detoxification was examined using reverse transcriptase-polymerase chain reaction in cDNA from leaves of sugarcane under biotic stress conditions, inoculated with Puccinia melanocephala, the causal agent of sugarcane rust disease.

  11. Structure of glycerol-3-phosphate dehydrogenase, an essential monotopic membrane enzyme involved in respiration and metabolism

    International Nuclear Information System (INIS)

    Yeh, Joanne I.; Chinte, Unmesh; Du, Shoucheng

    2008-01-01

    Sn-glycerol-3-phosphate dehydrogenase (GlpD) is an essential membrane enzyme, functioning at the central junction of respiration, glycolysis, and phospholipid biosynthesis. Its critical role is indicated by the multitiered regulatory mechanisms that stringently controls its expression and function. Once expressed, GlpD activity is regulated through lipid-enzyme interactions in Escherichia coli. Here, we report seven previously undescribed structures of the fully active E. coli GlpD, up to 1.75 (angstrom) resolution. In addition to elucidating the structure of the native enzyme, we have determined the structures of GlpD complexed with substrate analogues phosphoenolpyruvate, glyceric acid 2-phosphate, glyceraldehyde-3-phosphate, and product, dihydroxyacetone phosphate. These structural results reveal conformational states of the enzyme, delineating the residues involved in substrate binding and catalysis at the glycerol-3-phosphate site. Two probable mechanisms for catalyzing the dehydrogenation of glycerol-3-phosphate are envisioned, based on the conformational states of the complexes. To further correlate catalytic dehydrogenation to respiration, we have additionally determined the structures of GlpD bound with ubiquinone analogues menadione and 2-n-heptyl-4-hydroxyquinoline N-oxide, identifying a hydrophobic plateau that is likely the ubiquinone-binding site. These structures illuminate probable mechanisms of catalysis and suggest how GlpD shuttles electrons into the respiratory pathway. Glycerol metabolism has been implicated in insulin signaling and perturbations in glycerol uptake and catabolism are linked to obesity in humans. Homologs of GlpD are found in practically all organisms, from prokaryotes to humans, with >45% consensus protein sequences, signifying that these structural results on the prokaryotic enzyme may be readily applied to the eukaryotic GlpD enzymes.

  12. An operon encoding three glycolytic enzymes in Lactobacillus delbrueckii subsp. bulgaricus: glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase and triosephosphate isomerase.

    Science.gov (United States)

    Branny, P; de la Torre, F; Garel, J R

    1998-04-01

    The structural genes gap, pgk and tpi encoding three glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 3-phosphoglycerate kinase (PGK) and triosephosphate isomerase (TPI), respectively, have been cloned and sequenced from Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus). The genes were isolated after screening genomic sublibraries with specific gap and pgk probes obtained by PCR amplification of chromosomal DNA with degenerate primers corresponding to amino acid sequences highly conserved in GAPDHs and PGKs. Nucleotide sequencing revealed that the three genes were organized in the order gap-pgk-tpi. The translation start codons of the three genes were identified by alignment of the N-terminal sequences. These genes predicted polypeptide chains of 338, 403 and 252 amino acids for GAPDH, PGK and TPI, respectively, and they were separated by 96 bp between gap and pgk, and by only 18 bp between pgk and tpi. The codon usage in gap, pgk, tpi and three other glycolytic genes from L. bulgaricus differed, noticeably from that in other chromosomal genes. The site of transcriptional initiation was located by primer extension, and a probable promoter was identified for the gap-pgk-tpi operon. Northern hybridization of total RNA with specific probes showed two transcripts, an mRNA of 1.4 kb corresponding to the gap gene, and a less abundant mRNA of 3.4 kb corresponding to the gap-pgk-tpi cluster. The absence of a visible terminator in the 3'-end of the shorter transcript and the location of this 3'-end inside the pgk gene indicated that this shorter transcript was produced by degradation of the longer one, rather than by an early termination of transcription after the gap gene.

  13. In Vitro Optimization of Enzymes Involved in Precorrin-2 Synthesis Using Response Surface Methodology.

    Science.gov (United States)

    Fang, Huan; Dong, Huina; Cai, Tao; Zheng, Ping; Li, Haixing; Zhang, Dawei; Sun, Jibin

    2016-01-01

    In order to maximize the production of biologically-derived chemicals, kinetic analyses are first necessary for predicting the role of enzyme components and coordinating enzymes in the same reaction system. Precorrin-2 is a key precursor of cobalamin and siroheme synthesis. In this study, we sought to optimize the concentrations of several molecules involved in precorrin-2 synthesis in vitro: porphobilinogen synthase (PBGS), porphobilinogen deaminase (PBGD), uroporphyrinogen III synthase (UROS), and S-adenosyl-l-methionine-dependent urogen III methyltransferase (SUMT). Response surface methodology was applied to develop a kinetic model designed to maximize precorrin-2 productivity. The optimal molar ratios of PBGS, PBGD, UROS, and SUMT were found to be approximately 1:7:7:34, respectively. Maximum precorrin-2 production was achieved at 0.1966 ± 0.0028 μM/min, agreeing with the kinetic model's predicted value of 0.1950 μM/min. The optimal concentrations of the cofactor S-adenosyl-L-methionine (SAM) and substrate 5-aminolevulinic acid (ALA) were also determined to be 200 μM and 5 mM, respectively, in a tandem-enzyme assay. By optimizing the relative concentrations of these enzymes, we were able to minimize the effects of substrate inhibition and feedback inhibition by S-adenosylhomocysteine on SUMT and thereby increase the production of precorrin-2 by approximately five-fold. These results demonstrate the effectiveness of kinetic modeling via response surface methodology for maximizing the production of biologically-derived chemicals.

  14. Differential Involvement of Amygdala and Cortical NMDA Receptors Activation upon Encoding in Odor Fear Memory

    Science.gov (United States)

    Hegoburu, Chloé; Parrot, Sandrine; Ferreira, Guilaume; Mouly, Anne-Marie

    2014-01-01

    Although the basolateral amygdala (BLA) plays a crucial role for the acquisition of fear memories, sensory cortices are involved in their long-term storage in rats. However, the time course of their respective involvement has received little investigation. Here we assessed the role of the glutamatergic N-methyl-D-aspartate (NMDA) receptors in the…

  15. The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis.

    Science.gov (United States)

    Nair, Ramesh B; Bastress, Kristen L; Ruegger, Max O; Denault, Jeff W; Chapple, Clint

    2004-02-01

    Recent research has significantly advanced our understanding of the phenylpropanoid pathway but has left in doubt the pathway by which sinapic acid is synthesized in plants. The reduced epidermal fluorescence1 (ref1) mutant of Arabidopsis thaliana accumulates only 10 to 30% of the sinapate esters found in wild-type plants. Positional cloning of the REF1 gene revealed that it encodes an aldehyde dehydrogenase, a member of a large class of NADP(+)-dependent enzymes that catalyze the oxidation of aldehydes to their corresponding carboxylic acids. Consistent with this finding, extracts of ref1 leaves exhibit low sinapaldehyde dehydrogenase activity. These data indicate that REF1 encodes a sinapaldehyde dehydrogenase required for sinapic acid and sinapate ester biosynthesis. When expressed in Escherichia coli, REF1 was found to exhibit both sinapaldehyde and coniferaldehyde dehydrogenase activity, and further phenotypic analysis of ref1 mutant plants showed that they contain less cell wall-esterified ferulic acid. These findings suggest that both ferulic acid and sinapic acid are derived, at least in part, through oxidation of coniferaldehyde and sinapaldehyde. This route is directly opposite to the traditional representation of phenylpropanoid metabolism in which hydroxycinnamic acids are instead precursors of their corresponding aldehydes.

  16. Impact of haloperidol and quetiapine on the expression of genes encoding antioxidant enzymes in human neuroblastoma SH-SY5Y cells.

    Science.gov (United States)

    Schmidt, Andreas Johannes; Hemmeter, Ulrich Michael; Krieg, Jürgen-Christian; Vedder, Helmut; Heiser, Philip

    2009-05-01

    Antipsychotics are known to alter antioxidant activities in vivo. Therefore, the aim of the present study was to examine in the human neuroblastoma SH-SY5Y cell line the impact of a typical (haloperidol) and an atypical (quetiapine) antipsychotic on the expression of genes encoding the key enzymes of the antioxidant metabolism (Cu, Zn superoxide dismutase; Mn superoxide dismutase; glutathione peroxidase; catalase) and enzymes of the glutathione metabolism (gamma-glutamyl cysteine synthetase, glutathione-S-transferase, gamma-glutamyltranspeptidase, glutathione reductase). The cells were incubated for 24h with 0.3, 3, 30 and 300microM haloperidol and quetiapine, respectively; mRNA levels were measured by polymerase chain reaction. In the present study, we observed mostly significant decreases of mRNA contents. With respect to the key pathways, we detected mainly effects on the mRNA levels of the hydrogen peroxide detoxifying enzymes. Among the enzymes of the glutathione metabolism, glutathione-S-transferase- and gamma-glutamyltranspeptidase-mRNA levels showed the most prominent effects. Taken together, our results demonstrate a significantly reduced expression of genes encoding for antioxidant enzymes after treatment with the antipsychotics, haloperidol and quetiapine.

  17. Characterization of the human cytochrome P450 enzymes involved in the metabolism of dihydrocodeine

    Science.gov (United States)

    Kirkwood, L. C.; Nation, R. L.; Somogyi, A. A.

    1997-01-01

    Aims Using human liver microsomes from donors of the CYP2D6 poor and extensive metabolizer genotypes, the role of individual cytochromes P-450 in the oxidative metabolism of dihydrocodeine was investigated. Methods The kinetics of formation of N- and O-demethylated metabolites, nordihydrocodeine and dihydromorphine, were determined using microsomes from six extensive and one poor metabolizer and the effects of chemical inhibitors selective for individual P-450 enzymes of the 1A, 2A, 2C, 2D, 2E and 3A families and of LKM1 (anti-CYP2D6) antibodies were studied. Results Nordihydrocodeine was the major metabolite in both poor and extensive metabolizers. Kinetic constants for N-demethylation derived from the single enzyme Michaelis-Menten model did not differ between the two groups. Troleandomycin and erythromycin selectively inhibited N-demethylation in both extensive and poor metabolizers. The CYP3A inducer, α-naphthoflavone, increased N-demethylation rates. The kinetics of formation of dihydromorphine in both groups were best described by a single enzyme Michaelis-Menten model although inhibition studies in extensive metabolizers suggested involvement of two enzymes with similar Km values. The kinetic constants for O-demethylation were significantly different in extensive and poor metabolizers. The extensive metabolizers had a mean intrinsic clearance to dihydromorphine more than ten times greater than the poor metabolizer. The CYP2D6 chemical inhibitors, quinidine and quinine, and LKM1 antibodies inhibited O-demethylation in extensive metabolizers; no effect was observed in microsomes from a poor metabolizer. Conclusions CYP2D6 is the major enzyme mediating O-demethylation of dihydrocodeine to dihydromorphine. In contrast, nordihydrocodeine formation is predominantly catalysed by CYP3A. PMID:9431830

  18. A Ti plasmid-encoded enzyme required for degradation of mannopine is functionally homologous to the T-region-encoded enzyme required for synthesis of this opine in crown gall tumors.

    OpenAIRE

    Kim, K S; Chilton, W S; Farrand, S K

    1996-01-01

    The mocC gene encoded by the octopine/mannityl opine-type Ti plasmid pTi15955 is related at the nucleotide sequence level to mas1' encoded by the T region of this plasmid. While Mas1 is required for the synthesis of mannopine (MOP) by crown gall tumor cells, MocC is essential for the utilization of MOP by Agrobacterium spp. A cosmid clone of pTi15955, pYDH208, encodes mocC and confers the utilization of MOP on strain NT1 and on strain UIA5, a derivative of NT1 lacking the 450-kb cryptic plasm...

  19. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids.

    Science.gov (United States)

    Iyer, Lakshminarayan M; Tahiliani, Mamta; Rao, Anjana; Aravind, L

    2009-06-01

    Modified bases in nucleic acids present a layer of information that directs biological function over and beyond the coding capacity of the conventional bases. While a large number of modified bases have been identified, many of the enzymes generating them still remain to be discovered. Recently, members of the 2-oxoglutarate- and iron(II)-dependent dioxygenase super-family, which modify diverse substrates from small molecules to biopolymers, were predicted and subsequently confirmed to catalyze oxidative modification of bases in nucleic acids. Of these, two distinct families, namely the AlkB and the kinetoplastid base J binding proteins (JBP) catalyze in situ hydroxylation of bases in nucleic acids. Using sensitive computational analysis of sequences, structures and contextual information from genomic structure and protein domain architectures, we report five distinct families of 2-oxoglutarate- and iron(II)-dependent dioxygenase that we predict to be involved in nucleic acid modifications. Among the DNA-modifying families, we show that the dioxygenase domains of the kinetoplastid base J-binding proteins belong to a larger family that includes the Tet proteins, prototyped by the human oncogene Tet1, and proteins from basidiomycete fungi, chlorophyte algae, heterolobosean amoeboflagellates and bacteriophages. We present evidence that some of these proteins are likely to be involved in oxidative modification of the 5-methyl group of cytosine leading to the formation of 5-hydroxymethylcytosine. The Tet/JBP homologs from basidiomycete fungi such as Laccaria and Coprinopsis show large lineage-specific expansions and a tight linkage with genes encoding a novel and distinct family of predicted transposases, and a member of the Maelstrom-like HMG family. We propose that these fungal members are part of a mobile transposon. To the best of our knowledge, this is the first report of a eukaryotic transposable element that encodes its own DNA-modification enzyme with a

  20. Gene discovery for enzymes involved in limonene modification or utilization by the mountain pine beetle-associated pathogen Grosmannia clavigera.

    Science.gov (United States)

    Wang, Ye; Lim, Lynette; Madilao, Lina; Lah, Ljerka; Bohlmann, Joerg; Breuil, Colette

    2014-08-01

    To successfully colonize and eventually kill pine trees, Grosmannia clavigera (Gs cryptic species), the main fungal pathogen associated with the mountain pine beetle (Dendroctonus ponderosae), has developed multiple mechanisms to overcome host tree chemical defenses, of which terpenoids are a major component. In addition to a monoterpene efflux system mediated by a recently discovered ABC transporter, Gs has genes that are highly induced by monoterpenes and that encode enzymes that modify or utilize monoterpenes [especially (+)-limonene]. We showed that pine-inhabiting Ophiostomale fungi are tolerant to monoterpenes, but only a few, including Gs, are known to utilize monoterpenes as a carbon source. Gas chromatography-mass spectrometry (GC-MS) revealed that Gs can modify (+)-limonene through various oxygenation pathways, producing carvone, p-mentha-2,8-dienol, perillyl alcohol, and isopiperitenol. It can also degrade (+)-limonene through the C-1-oxygenated pathway, producing limonene-1,2-diol as the most abundant intermediate. Transcriptome sequencing (RNA-seq) data indicated that Gs may utilize limonene 1,2-diol through beta-oxidation and then valine and tricarboxylic acid (TCA) metabolic pathways. The data also suggested that at least two gene clusters, located in genome contigs 108 and 161, were highly induced by monoterpenes and may be involved in monoterpene degradation processes. Further, gene knockouts indicated that limonene degradation required two distinct Baeyer-Villiger monooxygenases (BVMOs), an epoxide hydrolase and an enoyl coenzyme A (enoyl-CoA) hydratase. Our work provides information on enzyme-mediated limonene utilization or modification and a more comprehensive understanding of the interaction between an economically important fungal pathogen and its host's defense chemicals.

  1. StAR Enhances Transcription of Genes Encoding the Mitochondrial Proteases Involved in Its Own Degradation

    Science.gov (United States)

    Bahat, Assaf; Perlberg, Shira; Melamed-Book, Naomi; Lauria, Ines; Langer, Thomas

    2014-01-01

    Steroidogenic acute regulatory protein (StAR) is essential for steroid hormone synthesis in the adrenal cortex and the gonads. StAR activity facilitates the supply of cholesterol substrate into the inner mitochondrial membranes where conversion of the sterol to a steroid is catalyzed. Mitochondrial import terminates the cholesterol mobilization activity of StAR and leads to mounting accumulation of StAR in the mitochondrial matrix. Our studies suggest that to prevent mitochondrial impairment, StAR proteolysis is executed by at least 2 mitochondrial proteases, ie, the matrix LON protease and the inner membrane complexes of the metalloproteases AFG3L2 and AFG3L2:SPG7/paraplegin. Gonadotropin administration to prepubertal rats stimulated ovarian follicular development associated with increased expression of the mitochondrial protein quality control system. In addition, enrichment of LON and AFG3L2 is evident in StAR-expressing ovarian cells examined by confocal microscopy. Furthermore, reporter studies of the protease promoters examined in the heterologous cell model suggest that StAR expression stimulates up to a 3.5-fold increase in the protease gene transcription. Such effects are StAR-specific, are independent of StAR activity, and failed to occur upon expression of StAR mutants that do not enter the matrix. Taken together, the results of this study suggest the presence of a novel regulatory loop, whereby acute accumulation of an apparent nuisance protein in the matrix provokes a mitochondria to nucleus signaling that, in turn, activates selected transcription of genes encoding the enrichment of mitochondrial proteases relevant for enhanced clearance of StAR. PMID:24422629

  2. Angiotensin-converting Enzyme as a Predictor of Extrathoracic Involvement of Sarcoidosis.

    Science.gov (United States)

    Yasar, Zehra; Özgül, Mehmet Akif; Cetinkaya, Erdoğan; Kargi, Aysel; Gül, Şule; Talay, Fahrettin; Tanriverdi, Elif; Dincer, H Erhan

    2016-01-18

    Sarcoidosis is a multisystem disease, with extrathoracic involvement occurring in 25-50% of patients. Multi-organ involvement is often associated with a more chronic and severe course. The value of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) in diagnosing extrathoracic involvement in sarcoidosis has been demonstrated; however, because of the radiation dose and high cost, indications for its use must be well defined. Angiotensin-converting enzyme (ACE) is produced by active granuloma cells; thus, serum ACE (sACE) levels may reflect the total granuloma load. In this retrospective study, we evaluated the diagnostic value of sACE in the detection of extrathoracic involvement in sarcoidosis. 43 patients with biopsy-proven sarcoidosis underwent FDG-PET/CT during the initial workup. Positive findings were classified as thoracic and/or extrathoracic. The diagnostic value of sACE was estimated using sensitivity, specificity, and area under the receiver operating characteristic curves (AUCs). Of the 43 patients studied, 17 (39.7%) had extrathoracic involvement. In this group, sACE values were higher than in patients without extrathoracic involvement (331 vs. 150, p=0.002) and correlated positively with extrathoracic involvement (R:0.532 p=0.02). Receiver operator characteristic curve analysis revealed an AUC of 0.816 [95% confidence interval: 0.669-0.963, p=0.002], 70.6% sensitivity and 80% specificity at the sACE cut-off value. In sarcoidosis, extrathoracic involvement may be life threatening or indicative of poor outcome. sACE levels are easily determined and may predict extrathoracic involvement. In patients with sarcoidosis, sACE levels can be used to better define those who would benefit from FDG-PET/CT examination to detect extrathoracic involvement.

  3. Two enzymes involved in biosynthesis of the host-selective phytotoxin HC-toxin

    International Nuclear Information System (INIS)

    Walton, J.D.

    1987-01-01

    Cochliobolus carbonum race 1 produces a cyclic tetrapeptide HC-toxin, which is necessary for its exceptional virulence on certain varieties of maize. Previous genetic analysis of HC-toxin production by the fungus has indicated that a single genetic locus controls HC-toxin production. Enzymes involved in the biosynthesis of HC-toxin have been sought by following the precedents established for the biosynthetic enzymes of cyclic peptide antibiotics. Two enzymatic activities from C. carbonum race 1 were found, a D-alanine- and an L-proline-dependent ATP/PP/sub i/ exchange, which by biochemical and genetic criteria were shown to be involved in the biosynthesis of HC-toxin. These two activities were present in all tested race 1 isolates of C. carbonum, which produce HC-toxin, and in none of the tested race 2 and race 3 isolates, which do not produce the toxin. In a genetic cross between two isolates of C. carbonum differing at the tox locus, all tox + progeny had both activities, and all tox - progeny lacked both activities

  4. Expression pattern of glycoside hydrolase genes in Lutzomyia longipalpis reveals key enzymes involved in larval digestion

    Directory of Open Access Journals (Sweden)

    Caroline da Silva Moraes

    2014-08-01

    Full Text Available The sand fly Lutzomyia longipalpis is the most important vector of American Visceral Leishmaniasis. Adults are phytophagous (males and females or blood feeders (females only, and larvae feed on solid detritus. Digestion in sand fly larvae has scarcely been studied, but some glycosidase activities putatively involved in microorganism digestion were already described. Nevertheless, the molecular nature of these enzymes, as the corresponding genes and transcripts, were not explored yet. Catabolism of microbial carbohydrates in insects generally involves β-1,3-glucanases, chitinases and digestive lysozymes. In this work, the transcripts of digestive β-1,3-glucanase and chitinases were identified in the L. longipalpis larvae throughout analysis of sequences and expression patterns of glycoside hydrolases families 16, 18 and 22. The activity of one i-type lysozyme was also registered. Interestingly, this lysozyme seems to play a role in immunity, rather than digestion. This is the first attempt to identify the molecular nature of sand fly larval digestive enzymes.

  5. Expression pattern of glycoside hydrolase genes in Lutzomyia longipalpis reveals key enzymes involved in larval digestion

    Science.gov (United States)

    Moraes, Caroline da Silva; Diaz-Albiter, Hector M.; Faria, Maiara do Valle; Sant'Anna, Maurício R. V.; Dillon, Rod J.; Genta, Fernando A.

    2014-01-01

    The sand fly Lutzomyia longipalpis is the most important vector of American Visceral Leishmaniasis. Adults are phytophagous (males and females) or blood feeders (females only), and larvae feed on solid detritus. Digestion in sand fly larvae has scarcely been studied, but some glycosidase activities putatively involved in microorganism digestion were already described. Nevertheless, the molecular nature of these enzymes, as the corresponding genes and transcripts, were not explored yet. Catabolism of microbial carbohydrates in insects generally involves β-1,3-glucanases, chitinases, and digestive lysozymes. In this work, the transcripts of digestive β-1,3-glucanase and chitinases were identified in the L. longipalpis larvae throughout analysis of sequences and expression patterns of glycoside hydrolases families 16, 18, and 22. The activity of one i-type lysozyme was also registered. Interestingly, this lysozyme seems to play a role in immunity, rather than digestion. This is the first attempt to identify the molecular nature of sand fly larval digestive enzymes. PMID:25140153

  6. Involvement of hippocampal NMDA receptors in encoding and consolidation, but not retrieval, processes of spontaneous object location memory in rats.

    Science.gov (United States)

    Yamada, Kazuo; Arai, Misaki; Suenaga, Toshiko; Ichitani, Yukio

    2017-07-28

    The hippocampus is thought to be involved in object location recognition memory, yet the contribution of hippocampal NMDA receptors to the memory processes, such as encoding, retention and retrieval, is unknown. First, we confirmed that hippocampal infusion of a competitive NMDA receptor antagonist, AP5 (2-amino-5-phosphonopentanoic acid, 20-40nmol), impaired performance of spontaneous object location recognition test but not that of novel object recognition test in Wistar rats. Next, the effects of hippocampal AP5 treatment on each process of object location recognition memory were examined with three different injection times using a 120min delay-interposed test: 15min before the sample phase (Time I), immediately after the sample phase (Time II), and 15min before the test phase (Time III). The blockade of hippocampal NMDA receptors before and immediately after the sample phase, but not before the test phase, markedly impaired performance of object location recognition test, suggesting that hippocampal NMDA receptors play an important role in encoding and consolidation/retention, but not retrieval, of spontaneous object location memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Autoselection of cytoplasmic yeast virus like elements encoding toxin/antitoxin systems involves a nuclear barrier for immunity gene expression.

    Science.gov (United States)

    Kast, Alene; Voges, Raphael; Schroth, Michael; Schaffrath, Raffael; Klassen, Roland; Meinhardt, Friedhelm

    2015-05-01

    Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and encode toxic anticodon nucleases (ACNases) along with specific immunity proteins. Here we show that nuclear, not cytoplasmic expression of either immunity gene (PaORF4, KlORF3 or DrORF5) results in transcript fragmentation and is insufficient to establish immunity to the cognate ACNase. Since rapid amplification of 3' ends (RACE) as well as linker ligation of immunity transcripts expressed in the nucleus revealed polyadenylation to occur along with fragmentation, ORF-internal poly(A) site cleavage due to the high A/T content is likely to prevent functional expression of the immunity genes. Consistently, lowering the A/T content of PaORF4 to 55% and KlORF3 to 46% by gene synthesis entirely prevented transcript cleavage and permitted functional nuclear expression leading to full immunity against the respective ACNase toxin. Consistent with a specific adaptation of the immunity proteins to the cognate ACNases, cross-immunity to non-cognate ACNases is neither conferred by PaOrf4 nor KlOrf3. Thus, the high A/T content of cytoplasmic VLEs minimizes the potential of functional nuclear recruitment of VLE encoded genes, in particular those involved in autoselection of the VLEs via a toxin/antitoxin principle.

  8. Autoselection of cytoplasmic yeast virus like elements encoding toxin/antitoxin systems involves a nuclear barrier for immunity gene expression.

    Directory of Open Access Journals (Sweden)

    Alene Kast

    2015-05-01

    Full Text Available Cytoplasmic virus like elements (VLEs from Kluyveromyces lactis (Kl, Pichia acaciae (Pa and Debaryomyces robertsiae (Dr are extremely A/T-rich (>75% and encode toxic anticodon nucleases (ACNases along with specific immunity proteins. Here we show that nuclear, not cytoplasmic expression of either immunity gene (PaORF4, KlORF3 or DrORF5 results in transcript fragmentation and is insufficient to establish immunity to the cognate ACNase. Since rapid amplification of 3' ends (RACE as well as linker ligation of immunity transcripts expressed in the nucleus revealed polyadenylation to occur along with fragmentation, ORF-internal poly(A site cleavage due to the high A/T content is likely to prevent functional expression of the immunity genes. Consistently, lowering the A/T content of PaORF4 to 55% and KlORF3 to 46% by gene synthesis entirely prevented transcript cleavage and permitted functional nuclear expression leading to full immunity against the respective ACNase toxin. Consistent with a specific adaptation of the immunity proteins to the cognate ACNases, cross-immunity to non-cognate ACNases is neither conferred by PaOrf4 nor KlOrf3. Thus, the high A/T content of cytoplasmic VLEs minimizes the potential of functional nuclear recruitment of VLE encoded genes, in particular those involved in autoselection of the VLEs via a toxin/antitoxin principle.

  9. The Fusarium oxysporum gnt2, Encoding a Putative N-Acetylglucosamine Transferase, Is Involved in Cell Wall Architecture and Virulence

    Science.gov (United States)

    López-Fernández, Loida; Ruiz-Roldán, Carmen; Pareja-Jaime, Yolanda; Prieto, Alicia; Khraiwesh, Husam; Roncero, M. Isabel G.

    2013-01-01

    With the aim to decipher the molecular dialogue and cross talk between Fusarium oxysporum f.sp. lycopersci and its host during infection and to understand the molecular bases that govern fungal pathogenicity, we analysed genes presumably encoding N-acetylglucosaminyl transferases, involved in glycosylation of glycoproteins, glycolipids, proteoglycans or small molecule acceptors in other microorganisms. In silico analysis revealed the existence of seven putative N-glycosyl transferase encoding genes (named gnt) in F. oxysporum f.sp. lycopersici genome. gnt2 deletion mutants showed a dramatic reduction in virulence on both plant and animal hosts. Δgnt2 mutants had αalterations in cell wall properties related to terminal αor β-linked N-acetyl glucosamine. Mutant conidia and germlings also showed differences in structure and physicochemical surface properties. Conidial and hyphal aggregation differed between the mutant and wild type strains, in a pH independent manner. Transmission electron micrographs of germlings showed strong cell-to-cell adherence and the presence of an extracellular chemical matrix. Δgnt2 cell walls presented a significant reduction in N-linked oligosaccharides, suggesting the involvement of Gnt2 in N-glycosylation of cell wall proteins. Gnt2 was localized in Golgi-like sub-cellular compartments as determined by fluorescence microscopy of GFP::Gnt2 fusion protein after treatment with the antibiotic brefeldin A or by staining with fluorescent sphingolipid BODIPY-TR ceramide. Furthermore, density gradient ultracentrifugation allowed co-localization of GFP::Gnt2 fusion protein and Vps10p in subcellular fractions enriched in Golgi specific enzymatic activities. Our results suggest that N-acetylglucosaminyl transferases are key components for cell wall structure and influence interactions of F. oxysporum with both plant and animal hosts during pathogenicity. PMID:24416097

  10. The Fusarium oxysporum gnt2, encoding a putative N-acetylglucosamine transferase, is involved in cell wall architecture and virulence.

    Directory of Open Access Journals (Sweden)

    Loida López-Fernández

    Full Text Available With the aim to decipher the molecular dialogue and cross talk between Fusarium oxysporum f.sp. lycopersci and its host during infection and to understand the molecular bases that govern fungal pathogenicity, we analysed genes presumably encoding N-acetylglucosaminyl transferases, involved in glycosylation of glycoproteins, glycolipids, proteoglycans or small molecule acceptors in other microorganisms. In silico analysis revealed the existence of seven putative N-glycosyl transferase encoding genes (named gnt in F. oxysporum f.sp. lycopersici genome. gnt2 deletion mutants showed a dramatic reduction in virulence on both plant and animal hosts. Δgnt2 mutants had αalterations in cell wall properties related to terminal αor β-linked N-acetyl glucosamine. Mutant conidia and germlings also showed differences in structure and physicochemical surface properties. Conidial and hyphal aggregation differed between the mutant and wild type strains, in a pH independent manner. Transmission electron micrographs of germlings showed strong cell-to-cell adherence and the presence of an extracellular chemical matrix. Δgnt2 cell walls presented a significant reduction in N-linked oligosaccharides, suggesting the involvement of Gnt2 in N-glycosylation of cell wall proteins. Gnt2 was localized in Golgi-like sub-cellular compartments as determined by fluorescence microscopy of GFP::Gnt2 fusion protein after treatment with the antibiotic brefeldin A or by staining with fluorescent sphingolipid BODIPY-TR ceramide. Furthermore, density gradient ultracentrifugation allowed co-localization of GFP::Gnt2 fusion protein and Vps10p in subcellular fractions enriched in Golgi specific enzymatic activities. Our results suggest that N-acetylglucosaminyl transferases are key components for cell wall structure and influence interactions of F. oxysporum with both plant and animal hosts during pathogenicity.

  11. Involvement of a Lipoxygenase-Like Enzyme in Abscisic Acid Biosynthesis 1

    Science.gov (United States)

    Creelman, Robert A.; Bell, Erin; Mullet, John E.

    1992-01-01

    Several lines of evidence indicate that abscisic acid (ABA) is derived from 9′-cis-neoxanthin or 9′-cis-violaxanthin with xanthoxin as an intermediate. 18O-labeling experiments show incorporation primarily into the side chain carboxyl group of ABA, suggesting that oxidative cleavage occurs at the 11, 12 (11′, 12′) double bond of xanthophylls. Carbon monoxide, a strong inhibitor of heme-containing P-450 monooxygenases, did not inhibit ABA accumulation, suggesting that the oxygenase catalyzing the carotenoid cleavage step did not contain heme. This observation, plus the ability of lipoxygenase to make xanthoxin from violaxanthin, suggested that a lipoxygenase-like enzyme is involved in ABA biosynthesis. To test this idea, the ability of several soybean (Glycine max L.) lipoxygenase inhibitors (5,8,11-eicosatriynoic acid, 5,8,11,14-eicosatetraynoic acid, nordihydroguaiaretic acid, and naproxen) to inhibit stress-induced ABA accumulation in soybean cell culture and soybean seedlings was determined. All lipoxygenase inhibitors significantly inhibited ABA accumulation in response to stress. These results suggest that the in vivo oxidative cleavage reaction involved in ABA biosynthesis requires activity of a nonheme oxygenase having lipoxygenase-like properties. PMID:16668998

  12. Involvement of a lipoxygenase-like enzyme in abscisic Acid biosynthesis.

    Science.gov (United States)

    Creelman, R A; Bell, E; Mullet, J E

    1992-07-01

    Several lines of evidence indicate that abscisic acid (ABA) is derived from 9'-cis-neoxanthin or 9'-cis-violaxanthin with xanthoxin as an intermediate. (18)O-labeling experiments show incorporation primarily into the side chain carboxyl group of ABA, suggesting that oxidative cleavage occurs at the 11, 12 (11', 12') double bond of xanthophylls. Carbon monoxide, a strong inhibitor of heme-containing P-450 monooxygenases, did not inhibit ABA accumulation, suggesting that the oxygenase catalyzing the carotenoid cleavage step did not contain heme. This observation, plus the ability of lipoxygenase to make xanthoxin from violaxanthin, suggested that a lipoxygenase-like enzyme is involved in ABA biosynthesis. To test this idea, the ability of several soybean (Glycine max L.) lipoxygenase inhibitors (5,8,11-eicosatriynoic acid, 5,8,11,14-eicosatetraynoic acid, nordihydroguaiaretic acid, and naproxen) to inhibit stress-induced ABA accumulation in soybean cell culture and soybean seedlings was determined. All lipoxygenase inhibitors significantly inhibited ABA accumulation in response to stress. These results suggest that the in vivo oxidative cleavage reaction involved in ABA biosynthesis requires activity of a nonheme oxygenase having lipoxygenase-like properties.

  13. Accumulation of cynaropicrin in globe artichoke and localization of enzymes involved in its biosynthesis.

    Science.gov (United States)

    Eljounaidi, K; Comino, C; Moglia, A; Cankar, K; Genre, A; Hehn, A; Bourgaud, F; Beekwilder, J; Lanteri, S

    2015-10-01

    Globe artichoke (Cynara cardunculus var. scolymus) belongs to the Asteraceae family, in which one of the most biologically significant class of secondary metabolites are sesquiterpene lactones (STLs). In globe artichoke the principal STL is the cynaropicrin, which contributes to approximately 80% of its characteristic bitter taste. Cynaropicrin content was assessed in globe artichoke tissues and was observed to accumulate in leaves of different developmental stages. In the receptacle, a progressive decrease was observed during inflorescence development, while the STL could not be detected in the inflorescence bracts. Almost undetectable amounts were found in the roots and inflorescence stems at the commercial stage. Cynaropicrin content was found to correlate with expression of genes encoding CcGAS, CcGAO and CcCOS, which are involved in the STL biosynthesis. A more detailed study of leaf material revealed that cynaropicrin predominantly accumulates in the trichomes, and not in the apoplastic cavity fluids. Analysis of the promoter regions of CcGAO and CcCOS revealed the presence of L1-box motifs, which confers trichome-specific expression in Arabidopsis, suggesting that cynaropicrin is not only stored but also synthesized in trichomes. A transient expression of GFP fusion proteins was performed in Nicotiana benthamiana plants: the CcGAS fluorescence signal was located in the cytoplasm while the CcGAO and CcCOS localized to the endoplasmatic reticulum. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. DUBbing Cancer: Deubiquitylating Enzymes Involved in Epigenetics, DNA Damage and the Cell Cycle As Therapeutic Targets.

    Science.gov (United States)

    Pinto-Fernandez, Adan; Kessler, Benedikt M

    2016-01-01

    Controlling cell proliferation is one of the hallmarks of cancer. A number of critical checkpoints ascertain progression through the different stages of the cell cycle, which can be aborted when perturbed, for instance by errors in DNA replication and repair. These molecular checkpoints are regulated by a number of proteins that need to be present at the right time and quantity. The ubiquitin system has emerged as a central player controlling the fate and function of such molecules such as cyclins, oncogenes and components of the DNA repair machinery. In particular, proteases that cleave ubiquitin chains, referred to as deubiquitylating enzymes (DUBs), have attracted recent attention due to their accessibility to modulation by small molecules. In this review, we describe recent evidence of the critical role of DUBs in aspects of cell cycle checkpoint control, associated DNA repair mechanisms and regulation of transcription, representing pathways altered in cancer. Therefore, DUBs involved in these processes emerge as potentially critical targets for the treatment of not only hematological, but potentially also solid tumors.

  15. DUBbing cancer: Deubiquitylating enzymes involved in epigenetics, DNA damage and the cell cycle as therapeutic targets

    Directory of Open Access Journals (Sweden)

    Benedikt M Kessler

    2016-07-01

    Full Text Available Controlling cell proliferation is one of the hallmarks of cancer. A number of critical checkpoints ascertain progression through the different stages of the cell cycle, which can be aborted when perturbed, for instance by errors in DNA replication and repair. These molecular checkpoints are regulated by a number of proteins that need to be present at the right time and quantity. The ubiquitin system has emerged as a central player controlling the fate and function of such molecules such as cyclins, oncogenes and components of the DNA repair machinery. In particular, proteases that cleave ubiquitin chains, referred to as deubiquitylating enzymes (DUBs, have attracted recent attention due to their accessibility to modulation by small molecules. In this review, we describe recent evidence of the critical role of DUBs in aspects of cell cycle checkpoint control, associated DNA repair mechanisms and regulation of transcription, representing pathways altered in cancer. Therefore, DUBs involved in these processes emerge as potentially critical targets for the treatment of not only hematological, but potentially also solid tumors.

  16. A maize gene encoding an NADPH binding enzyme highly homologous to isoflavone reductases is activated in response to sulfur starvation.

    Science.gov (United States)

    Petrucco, S; Bolchi, A; Foroni, C; Percudani, R; Rossi, G L; Ottonello, S

    1996-01-01

    we isolated a novel gene that is selectively induced both in roots and shoots in response to sulfur starvation. This gene encodes a cytosolic, monomeric protein of 33 kD that selectively binds NADPH. The predicted polypeptide is highly homologous ( > 70%) to leguminous isoflavone reductases (IFRs), but the maize protein (IRL for isoflavone reductase-like) belongs to a novel family of proteins present in a variety of plants. Anti-IRL antibodies specifically recognize IFR polypeptides, yet the maize protein is unable to use various isoflavonoids as substrates. IRL expression is correlated closely to glutathione availability: it is persistently induced in seedlings whose glutathione content is about fourfold lower than controls, and it is down-regulated rapidly when control levels of glutathione are restored. This glutathione-dependent regulation indicates that maize IRL may play a crucial role in the establishment of a thiol-independent response to oxidative stress under glutathione shortage conditions.

  17. Hepatic fatty acid oxidation : activity, localization and function of some enzymes involved

    NARCIS (Netherlands)

    A. van Tol (Arie)

    1971-01-01

    textabstractFatty acid oxidation is an important pathway for energy production in mammals and birds. In animal tissues the enzymes of fatty acid oxidation are located in the mitochondrion. Recent reports suggest that this is not the case in Castor bean endosperm. In this tissue the enzymes of

  18. Biogenesis of ER subdomains containing DGAT2, an enzyme involved in industrial oil biosynthesis

    Science.gov (United States)

    Diacylglycerol acyltransferases (DGATs) are enzymes that catalyze the committed step in triacylglycerol (TAG) biosynthesis by transferring a fatty acyl group from the acyl-CoA pool to the sn-3 position of diacylglycerol. The substrate specificity and overall activity of these enzymes play a key role...

  19. Discovery of Microorganisms and Enzymes Involved in High-Solids Decomposition of Rice Straw Using Metagenomic Analyses

    Science.gov (United States)

    D’haeseleer, Patrik; Khudyakov, Jane; Burd, Helcio; Hadi, Masood; Simmons, Blake A.; Singer, Steven W.; Thelen, Michael P.; VanderGheynst, Jean S.

    2013-01-01

    High-solids incubations were performed to enrich for microbial communities and enzymes that decompose rice straw under mesophilic (35°C) and thermophilic (55°C) conditions. Thermophilic enrichments yielded a community that was 7.5 times more metabolically active on rice straw than mesophilic enrichments. Extracted xylanase and endoglucanse activities were also 2.6 and 13.4 times greater, respectively, for thermophilic enrichments. Metagenome sequencing was performed on enriched communities to determine community composition and mine for genes encoding lignocellulolytic enzymes. Proteobacteria were found to dominate the mesophilic community while Actinobacteria were most abundant in the thermophilic community. Analysis of protein family representation in each metagenome indicated that cellobiohydrolases containing carbohydrate binding module 2 (CBM2) were significantly overrepresented in the thermophilic community. Micromonospora, a member of Actinobacteria, primarily housed these genes in the thermophilic community. In light of these findings, Micromonospora and other closely related Actinobacteria genera appear to be promising sources of thermophilic lignocellulolytic enzymes for rice straw deconstruction under high-solids conditions. Furthermore, these discoveries warrant future research to determine if exoglucanases with CBM2 represent thermostable enzymes tolerant to the process conditions expected to be encountered during industrial biofuel production. PMID:24205054

  20. Discovery of microorganisms and enzymes involved in high-solids decomposition of rice straw using metagenomic analyses.

    Directory of Open Access Journals (Sweden)

    Amitha P Reddy

    Full Text Available High-solids incubations were performed to enrich for microbial communities and enzymes that decompose rice straw under mesophilic (35°C and thermophilic (55°C conditions. Thermophilic enrichments yielded a community that was 7.5 times more metabolically active on rice straw than mesophilic enrichments. Extracted xylanase and endoglucanse activities were also 2.6 and 13.4 times greater, respectively, for thermophilic enrichments. Metagenome sequencing was performed on enriched communities to determine community composition and mine for genes encoding lignocellulolytic enzymes. Proteobacteria were found to dominate the mesophilic community while Actinobacteria were most abundant in the thermophilic community. Analysis of protein family representation in each metagenome indicated that cellobiohydrolases containing carbohydrate binding module 2 (CBM2 were significantly overrepresented in the thermophilic community. Micromonospora, a member of Actinobacteria, primarily housed these genes in the thermophilic community. In light of these findings, Micromonospora and other closely related Actinobacteria genera appear to be promising sources of thermophilic lignocellulolytic enzymes for rice straw deconstruction under high-solids conditions. Furthermore, these discoveries warrant future research to determine if exoglucanases with CBM2 represent thermostable enzymes tolerant to the process conditions expected to be encountered during industrial biofuel production.

  1. A mass spectrometric method to determine activities of enzymes involved in polyamine catabolism

    International Nuclear Information System (INIS)

    Moriya, Shunsuke; Iwasaki, Kaori; Samejima, Keijiro; Takao, Koichi; Kohda, Kohfuku; Hiramatsu, Kyoko; Kawakita, Masao

    2012-01-01

    Highlights: ► Compounds in polyamine catabolic pathway were determined by a column-free ESI-TOF MS. ► N 1 - and N 8 -acetylspermidine were determined by a column-free ESI-MS/MS. ► The method was applied to determine activities of APAO, SMO, and SSAT in the pathway. ► The assay method contained stable isotope-labeled natural substrates. ► It is applicable to biological samples containing natural substrate and product. - Abstract: An analytical method for the determination of three polyamines (putrescine, spermidine, and spermine) and five acetylpolyamines [N 1 -acetylspermidine (N 1 AcSpd), N 8 -acetylspermidine (N 8 AcSpd), N 1 -acetylspermine, N 1 ,N 8 -diacetylspermidine, and N 1 ,N 12 -diacetylspermine] involved in the polyamine catabolic pathway has been developed using a hybrid tandem mass spectrometer. Heptafluorobutyryl (HFB) derivatives of these compounds and respective internal standards labeled with stable isotopes were analyzed simultaneously by TOF MS, based on peak areas appearing at appropriate m/z values. The isomers, N 1 AcSpd and N 8 AcSpd were determined from their fragment ions, the acetylamidopropyl and acetylamidobutyl groups, respectively, using MS/MS with 13 C 2 -N 1 AcSpd and 13 C 2 -N 8 AcSpd which have the 13 C 2 -acetyl group as an internal standard. The TOF MS method was successfully applied to measure the activity of enzymes involved in polyamine catabolic pathways, namely N 1 -acetylpolyamine oxidase (APAO), spermine oxidase (SMO), and spermidine/spermine N 1 -acetyltransferase (SSAT). The following natural substrates and products labeled with stable isotopes considering the application to biological samples were identified; for APAO, [4,9,12- 15 N 3 ]-N 1 -acetylspermine and [1,4,8- 15 N 3 ]spermidine ( 15 N 3 -Spd), respectively; for SMO, [1,4,8,12- 15 N 4 ]spermine and 15 N 3 -Spd, respectively; and for SSAT, 15 N 3 -Spd and [1,4,8- 15 N 3 ]-N 1 -acetylspermidine, respectively.

  2. GLYCOGEN IN BACILLUS-SUBTILIS - MOLECULAR CHARACTERIZATION OF AN OPERON ENCODING ENZYMES INVOLVED IN GLYCOGEN BIOSYNTHESIS AND DEGRADATION

    NARCIS (Netherlands)

    KIEL, JAKW; BOELS, JM; BELDMAN, G; VENEMA, G

    Although it has never been reported that Bacillus subtilis is capable of accumulating glycogen, we have isolated a region from the chromosome of B. subtilis containing a glycogen operon. The operon is located directly downstream from trnB, which maps at 275 degrees on the B. subtilis chromosome. It

  3. Suppression of 9-cis-epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato.

    Science.gov (United States)

    Sun, Liang; Sun, Yufei; Zhang, Mei; Wang, Ling; Ren, Jie; Cui, Mengmeng; Wang, Yanping; Ji, Kai; Li, Ping; Li, Qian; Chen, Pei; Dai, Shengjie; Duan, Chaorui; Wu, Yan; Leng, Ping

    2012-01-01

    Cell wall catabolism during fruit ripening is under complex control and is key for fruit quality and shelf life. To examine the role of abscisic acid (ABA) in tomato (Solanum lycopersicum) fruit ripening, we suppressed SlNCED1, which encodes 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in the biosynthesis of ABA. To suppress SlNCED1 specifically in tomato fruits, and thus avoid the pleiotropic phenotypes associated with ABA deficiency, we used an RNA interference construct driven by the fruit-specific E8 promoter. ABA accumulation and SlNCED1 transcript levels in the transgenic fruit were down-regulated to between 20% and 50% of the levels measured in the control fruit. This significant reduction in NCED activity led to a down-regulation in the transcription of genes encoding major cell wall catabolic enzymes, specifically polygalacturonase (SlPG), pectin methyl esterase (SlPME), β-galactosidase precursor mRNA (SlTBG), xyloglucan endotransglycosylase (SlXET), endo-1,4-β-cellulose (SlCels), and expansin (SlExp). This resulted in an increased accumulation of pectin during ripening. In turn, this led to a significant extension of the shelf life to 15 to 29 d compared with a shelf life of only 7 d for the control fruit and an enhancement of fruit firmness at the mature stage by 30% to 45%. In conclusion, ABA affects cell wall catabolism during tomato fruit ripening via down-regulation of the expression of major catabolic genes (SlPG, SlPME, SlTBG, SlXET, SlCels, and SlExp).

  4. Suppression of 9-cis-Epoxycarotenoid Dioxygenase, Which Encodes a Key Enzyme in Abscisic Acid Biosynthesis, Alters Fruit Texture in Transgenic Tomato1[W][OA

    Science.gov (United States)

    Sun, Liang; Sun, Yufei; Zhang, Mei; Wang, Ling; Ren, Jie; Cui, Mengmeng; Wang, Yanping; Ji, Kai; Li, Ping; Li, Qian; Chen, Pei; Dai, Shengjie; Duan, Chaorui; Wu, Yan; Leng, Ping

    2012-01-01

    Cell wall catabolism during fruit ripening is under complex control and is key for fruit quality and shelf life. To examine the role of abscisic acid (ABA) in tomato (Solanum lycopersicum) fruit ripening, we suppressed SlNCED1, which encodes 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in the biosynthesis of ABA. To suppress SlNCED1 specifically in tomato fruits, and thus avoid the pleiotropic phenotypes associated with ABA deficiency, we used an RNA interference construct driven by the fruit-specific E8 promoter. ABA accumulation and SlNCED1 transcript levels in the transgenic fruit were down-regulated to between 20% and 50% of the levels measured in the control fruit. This significant reduction in NCED activity led to a down-regulation in the transcription of genes encoding major cell wall catabolic enzymes, specifically polygalacturonase (SlPG), pectin methyl esterase (SlPME), β-galactosidase precursor mRNA (SlTBG), xyloglucan endotransglycosylase (SlXET), endo-1,4-β-cellulose (SlCels), and expansin (SlExp). This resulted in an increased accumulation of pectin during ripening. In turn, this led to a significant extension of the shelf life to 15 to 29 d compared with a shelf life of only 7 d for the control fruit and an enhancement of fruit firmness at the mature stage by 30% to 45%. In conclusion, ABA affects cell wall catabolism during tomato fruit ripening via down-regulation of the expression of major catabolic genes (SlPG, SlPME, SlTBG, SlXET, SlCels, and SlExp). PMID:22108525

  5. The variability of sesquiterpenes emitted from two Zea mays cultivars is controlled by allelic variation of two terpene synthase genes encoding stereoselective multiple product enzymes.

    Science.gov (United States)

    Köllner, Tobias G; Schnee, Christiane; Gershenzon, Jonathan; Degenhardt, Jörg

    2004-05-01

    The mature leaves and husks of Zea mays release a complex blend of terpene volatiles after anthesis consisting predominantly of bisabolane-, sesquithujane-, and bergamotane-type sesquiterpenes. The varieties B73 and Delprim release the same volatile constituents but in significantly different proportions. To study the molecular genetic and biochemical mechanisms controlling terpene diversity and distribution in these varieties, we isolated the closely related terpene synthase genes terpene synthase4 (tps4) and tps5 from both varieties. The encoded enzymes, TPS4 and TPS5, each formed the same complex mixture of sesquiterpenes from the precursor farnesyl diphosphate but with different proportions of products. These mixtures correspond to the sesquiterpene blends observed in the varieties B73 and Delprim, respectively. The differences in the stereoselectivity of TPS4 and TPS5 are determined by four amino acid substitutions with the most important being a Gly instead of an Ala residue at position 409 at the catalytic site of the enzyme. Although both varieties contain tps4 and tps5 alleles, their differences in terpene composition result from the fact that B73 has only a single functional allele of tps4 and no functional alleles of tps5, whereas Delprim has only a functional allele of tps5 and no functional alleles of tps4. Lack of functionality was shown to be attributable to frame-shift mutations or amino acid substitutions that greatly reduce the activity of their encoded proteins. Therefore, the diversity of sesquiterpenes in these two maize cultivars is strongly influenced by single nucleotide changes in the alleles of two terpene synthase genes.

  6. Levels of Crotonaldehyde and 4-hydroxy-(E-2-nonenal and Expression of Genes Encoding Carbonyl-Scavenging Enzyme at Critical Node During Rice Seed Aging

    Directory of Open Access Journals (Sweden)

    Fu Shenzao

    2018-05-01

    Full Text Available Abstract:: The critical node (CN is an important stage during seed aging, which is related to effective genebank conservation. Previous studies have demonstrated that proteins undergo carbonylated modification at the CN in rice, indicating oxidative damage. However, the levels of reactive carbonyl species (RCS and the associated scavenging system at the CN are largely unknown. In this study, we optimized methods for the extraction and analysis of RCS from dry rice embryos. In order to acquire seeds at the CN, rice seeds were subjected to natural conditions for 7, 9, 11 and 13 months, and the seed germination rates were reduced to 90%, 82%, 71% and 57%, respectively. We chose the stage with seed germination rate of 82% as the CN according to the rice seed vigor loss curve. The levels of crotonaldehyde and 4-hydroxy-(E-2-nonenal (HNE were significantly increased at the CN. In addition, genes encoding carbonyl-scavenging enzyme, including OsALDHs and OsAKRs, were significantly down-regulated at the CN, and reductions in the expression of OsALDH2-2, OsALDH2-5, OsALDH3-4, OsALDH7, OsAKR1 and OsAKR2 in particular could be responsible for RCS accumulation. Thus, the accumulations of crotonaldehyde and HNE and down-regulation of genes encoding carbonyl-scavenging enzyme might be related to an accelerating loss of seed viability at the CN. Key words: carbonyl-scavenging system, reactive carbonyl species, seed aging, crotonaldehyde, critical node, rice storage

  7. Increased enzyme production under liquid culture conditions in the industrial fungus Aspergillus oryzae by disruption of the genes encoding cell wall α-1,3-glucan synthase.

    Science.gov (United States)

    Miyazawa, Ken; Yoshimi, Akira; Zhang, Silai; Sano, Motoaki; Nakayama, Mayumi; Gomi, Katsuya; Abe, Keietsu

    2016-09-01

    Under liquid culture conditions, the hyphae of filamentous fungi aggregate to form pellets, which reduces cell density and fermentation productivity. Previously, we found that loss of α-1,3-glucan in the cell wall of the fungus Aspergillus nidulans increased hyphal dispersion. Therefore, here we constructed a mutant of the industrial fungus A. oryzae in which the three genes encoding α-1,3-glucan synthase were disrupted (tripleΔ). Although the hyphae of the tripleΔ mutant were not fully dispersed, the mutant strain did form smaller pellets than the wild-type strain. We next examined enzyme productivity under liquid culture conditions by transforming the cutinase-encoding gene cutL1 into A. oryzae wild-type and the tripleΔ mutant (i.e. wild-type-cutL1, tripleΔ-cutL1). A. oryzae tripleΔ-cutL1 formed smaller hyphal pellets and showed both greater biomass and increased CutL1 productivity compared with wild-type-cutL1, which might be attributable to a decrease in the number of tripleΔ-cutL1 cells under anaerobic conditions.

  8. Enzymes involved in cholesterol homeostasis in outer vs inner cortices of the guinea pig adrenal

    International Nuclear Information System (INIS)

    Brody, R.I.

    1988-01-01

    Adrenocortical cells require cholesterol for steroid hormone synthesis. Intracellular free cholesterol levels are maintained by the actions of three key enzymes: HMG CoA reductase, a rate limiting enzyme of cholesterol biosynthesis, acyl CoA:cholesterol acyltransferase (ACAT), which esterifies cholesterol to fatty acids, and cholesterol ester hydrolase (CEH), which releases stored cholesterol by clearing the ester bond. The guinea pig adrenal cortex, which can be separated into a lipid-rich outer zone and a lipid-poor inner zone, provides a good model in which to determine whether the morphological differences in these regions correlate with functional distinctions in enzymes of cholesterol homeostasis. These studies have shown that there are great differences in these enzymes in the outer and inner zones of the guinea pig adrenal cortex. The cholesterol-rich outer zone possesses greater activities of ACAT and CEH than the inner zone, and, in untreated animals, these enzymes are nearly maximally stimulated. Both zones had substantial levels of HMG CoA reductase, as measured by enzyme assay and ELISA, and these levels increased following ACTH stimulation. However, only the outer zone incorporated 14 C-acetate into steroids and cholesterol to any great degree in vitro, and only in this zone was incorporation increased following incubation of cultures with ACTH. The discrepancies between HMG CoA reductase levels and 14 C-acetate incorporation in the inner zone indicate that cholesterol synthesis must be regulated differently in this zone

  9. The chaperone role of the pyridoxal 5'-phosphate and its implications for rare diseases involving B6-dependent enzymes.

    Science.gov (United States)

    Cellini, Barbara; Montioli, Riccardo; Oppici, Elisa; Astegno, Alessandra; Voltattorni, Carla Borri

    2014-02-01

    The biologically active form of the B6 vitamers is pyridoxal 5'-phosphate (PLP), which plays a coenzymatic role in several distinct enzymatic activities ranging from the synthesis, interconversion and degradation of amino acids to the replenishment of one-carbon units, synthesis and degradation of biogenic amines, synthesis of tetrapyrrolic compounds and metabolism of amino-sugars. In the catalytic process of PLP-dependent enzymes, the substrate amino acid forms a Schiff base with PLP and the electrophilicity of the PLP pyridine ring plays important roles in the subsequent catalytic steps. While the essential role of PLP in the acquisition of biological activity of many proteins is long recognized, the finding that some PLP-enzymes require the coenzyme for refolding in vitro points to an additional role of PLP as a chaperone in the folding process. Mutations in the genes encoding PLP-enzymes are causative of several rare inherited diseases. Patients affected by some of these diseases (AADC deficiency, cystathionuria, homocystinuria, gyrate atrophy, primary hyperoxaluria type 1, xanthurenic aciduria, X-linked sideroblastic anaemia) can benefit, although at different degrees, from the administration of pyridoxine, a PLP precursor. The effect of the coenzyme is not limited to mutations that affect the enzyme-coenzyme interaction, but also to those that cause folding defects, reinforcing the idea that PLP could play a chaperone role and improve the folding efficiency of misfolded variants. In this review, recent biochemical and cell biology studies highlighting the chaperoning activity of the coenzyme on folding-defective variants of PLP-enzymes associated with rare diseases are presented and discussed. Copyright © 2013 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  10. A comparative genomic analysis of the oxidative enzymes potentially involved in lignin degradation by Agaricus bisporus

    Science.gov (United States)

    Harshavardhan Doddapaneni; Venkataramanan Subramanian; Bolei Fu; Dan Cullen

    2013-01-01

    The oxidative enzymatic machinery for degradation of organic substrates in Agaricus bisporus (Ab) is at the core of the carbon recycling mechanisms in this fungus. To date, 156 genes have been tentatively identified as part of this oxidative enzymatic machinery, which includes 26 peroxidase encoding genes, nine copper radical oxidase [including three...

  11. High inorganic triphosphatase activities in bacteria and mammalian cells: identification of the enzymes involved.

    Directory of Open Access Journals (Sweden)

    Gregory Kohn

    Full Text Available BACKGROUND: We recently characterized a specific inorganic triphosphatase (PPPase from Nitrosomonas europaea. This enzyme belongs to the CYTH superfamily of proteins. Many bacterial members of this family are annotated as predicted adenylate cyclases, because one of the founding members is CyaB adenylate cyclase from A. hydrophila. The aim of the present study is to determine whether other members of the CYTH protein family also have a PPPase activity, if there are PPPase activities in animal tissues and what enzymes are responsible for these activities. METHODOLOGY/PRINCIPAL FINDINGS: Recombinant enzymes were expressed and purified as GST- or His-tagged fusion proteins and the enzyme activities were determined by measuring the release of inorganic phosphate. We show that the hitherto uncharacterized E. coli CYTH protein ygiF is a specific PPPase, but it contributes only marginally to the total PPPase activity in this organism, where the main enzyme responsible for hydrolysis of inorganic triphosphate (PPP(i is inorganic pyrophosphatase. We further show that CyaB hydrolyzes PPP(i but this activity is low compared to its adenylate cyclase activity. Finally we demonstrate a high PPPase activity in mammalian and quail tissue, particularly in the brain. We show that this activity is mainly due to Prune, an exopolyphosphatase overexpressed in metastatic tumors where it promotes cell motility. CONCLUSIONS AND GENERAL SIGNIFICANCE: We show for the first time that PPPase activities are widespread in bacteria and animals. We identified the enzymes responsible for these activities but we were unable to detect significant amounts of PPP(i in E. coli or brain extracts using ion chromatography and capillary electrophoresis. The role of these enzymes may be to hydrolyze PPP(i, which could be cytotoxic because of its high affinity for Ca(2+, thereby interfering with Ca(2+ signaling.

  12. Cloning and expression of synthetic genes encoding angiotensin-I converting enzyme (ACE)-inhibitory bioactive peptides in Bifidobacterium pseudocatenulatum.

    Science.gov (United States)

    Losurdo, Luca; Quintieri, Laura; Caputo, Leonardo; Gallerani, Raffaele; Mayo, Baltasar; De Leo, Francesca

    2013-03-01

    A wide range of biopeptides potentially able to lower blood pressure through inhibition of the angiotensin-I converting enzyme (ACE) is produced in fermented foods by proteolytic starter cultures. This work applies a procedure based on recombinant DNA technologies for the synthesis and expression of three ACE-inhibitory peptides using a probiotic cell factory. ACE-inhibitory genes and their pro-active precursors were designed, synthesized by PCR, and cloned in Escherichia coli; after which, they were cloned into the pAM1 E. coli-bifidobacteria shuttle vector. After E. coli transformation, constructs carrying the six recombinant clones were electrotransferred into the Bifidobacterium pseudocatenulatum M115 probiotic strain. Interestingly, five of the six constructs proved to be stable. Their expression was confirmed by reverse transcription PCR. Furthermore, transformed strains displayed ACE-inhibitory activity linearly correlated to increasing amounts of cell-free cellular lysates. In particular, 50 μg of lysates from constructs pAM1-Pro-BP3 and pAM1-BP2 showed a 50% higher ACE-inhibitory activity than that of the controls. As a comparison, addition of 50 ng of Pro-BP1 and Pro-BP3 synthetic peptides to 50 μg of cell-free extracts of B. pseudocatenulatum M115 wild-type strain showed an average of 67% of ACE inhibition; this allowed estimating the amount of the peptides produced by the transformants. Engineering of bifidobacteria for the production of biopeptides is envisioned as a promising cell factory model system. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. Involvement of detergent-insoluble complexes in the intracellular transport of intestinal brush border enzymes

    DEFF Research Database (Denmark)

    Danielsen, E M

    1995-01-01

    A number of transmembrane digestive enzymes of the porcine small intestinal brush border membrane were found to be partially Triton X-100-insoluble at 0 degree C and colocalized in gradient centrifugation experiments with the GPI-anchored alkaline phosphatase in low-density, detergent-insoluble c...... intracellularly. I therefore propose that, in the enterocyte, the brush border enzymes are targeted directly from the trans-Golgi network toward the apical cell surface......., and their insolubility increased to that of the steady-state level soon after they achieved their mature, complex glycosylation, i.e., after passage through the Golgi complex. Detergent-insoluble complexes isolated by density gradient centrifugation were highly enriched in brush border enzymes, and the enrichment...

  14. N-terminal modifications of cellular proteins: The enzymes involved, their substrate specificities and biological effects

    Science.gov (United States)

    Varland, Sylvia; Osberg, Camilla; Arnesen, Thomas

    2015-01-01

    The vast majority of eukaryotic proteins are N-terminally modified by one or more processing enzymes. Enzymes acting on the very first amino acid of a polypeptide include different peptidases, transferases, and ligases. Methionine aminopeptidases excise the initiator methionine leaving the nascent polypeptide with a newly exposed amino acid that may be further modified. N-terminal acetyl-, methyl-, myristoyl-, and palmitoyltransferases may attach an acetyl, methyl, myristoyl, or palmitoyl group, respectively, to the α-amino group of the target protein N-terminus. With the action of ubiquitin ligases, one or several ubiquitin molecules are transferred, and hence, constitute the N-terminal modification. Modifications at protein N-termini represent an important contribution to proteomic diversity and complexity, and are essential for protein regulation and cellular signaling. Consequently, dysregulation of the N-terminal modifying enzymes is implicated in human diseases. We here review the different protein N-terminal modifications occurring co- or post-translationally with emphasis on the responsible enzymes and their substrate specificities. PMID:25914051

  15. An overview of the neuro-cognitive processes involved in the encoding, consolidation, and retrieval of true and false memories.

    Science.gov (United States)

    Straube, Benjamin

    2012-07-24

    Perception and memory are imperfect reconstructions of reality. These reconstructions are prone to be influenced by several factors, which may result in false memories. A false memory is the recollection of an event, or details of an episode, that did not actually occur. Memory formation comprises at least three different sub-processes: encoding, consolidation and the retrieval of the learned material. All of these sub-processes are vulnerable for specific errors and consequently may result in false memories. Whereas, processes like imagery, self-referential encoding or spreading activation can lead to the formation of false memories at encoding, semantic generalization during sleep and updating processes due to misleading post event information, in particular, are relevant at the consolidation stage. Finally at the retrieval stage, monitoring processes, which are assumed to be essential to reject false memories, are of specific importance. Different neuro-cognitive processes have been linked to the formation of true and false memories. Most consistently the medial temporal lobe and the medial and lateral prefrontal cortex have been reported with regard to the formation of true and false memories. Despite the fact that all phases entailing memory formation, consolidation of stored information and retrieval processes, are relevant for the forming of false memories, most studies focused on either memory encoding or retrieval. Thus, future studies should try to integrate data from all phases to give a more comprehensive view on systematic memory distortions. An initial outline is developed within this review to connect the different memory stages and research strategies.

  16. Value-based modulation of memory encoding involves strategic engagement of fronto-temporal semantic processing regions.

    Science.gov (United States)

    Cohen, Michael S; Rissman, Jesse; Suthana, Nanthia A; Castel, Alan D; Knowlton, Barbara J

    2014-06-01

    A number of prior fMRI studies have focused on the ways in which the midbrain dopaminergic reward system coactivates with hippocampus to potentiate memory for valuable items. However, another means by which people could selectively remember more valuable to-be-remembered items is to be selective in their use of effective but effortful encoding strategies. To broadly examine the neural mechanisms of value on subsequent memory, we used fMRI to assess how differences in brain activity at encoding as a function of value relate to subsequent free recall for words. Each word was preceded by an arbitrarily assigned point value, and participants went through multiple study-test cycles with feedback on their point total at the end of each list, allowing for sculpting of cognitive strategies. We examined the correlation between value-related modulation of brain activity and participants' selectivity index, which measures how close participants were to their optimal point total, given the number of items recalled. Greater selectivity scores were associated with greater differences in the activation of semantic processing regions, including left inferior frontal gyrus and left posterior lateral temporal cortex, during the encoding of high-value words relative to low-value words. Although we also observed value-related modulation within midbrain and ventral striatal reward regions, our fronto-temporal findings suggest that strategic engagement of deep semantic processing may be an important mechanism for selectively encoding valuable items.

  17. Encoding and Retrieval Processes Involved in the Access of Source Information in the Absence of Item Memory

    Science.gov (United States)

    Ball, B. Hunter; DeWitt, Michael R.; Knight, Justin B.; Hicks, Jason L.

    2014-01-01

    The current study sought to examine the relative contributions of encoding and retrieval processes in accessing contextual information in the absence of item memory using an extralist cuing procedure in which the retrieval cues used to query memory for contextual information were "related" to the target item but never actually studied.…

  18. Value-based modulation of memory encoding involves strategic engagement of fronto-temporal semantic processing regions

    Science.gov (United States)

    Cohen, Michael S.; Rissman, Jesse; Suthana, Nanthia A.; Castel, Alan D.; Knowlton, Barbara J.

    2014-01-01

    A number of prior fMRI studies have focused on the ways in which the midbrain dopaminergic reward system co-activates with hippocampus to potentiate memory for valuable items. However, another means by which people could selectively remember more valuable to-be-remembered items is to be selective in their use of effective but effortful encoding strategies. To broadly examine the neural mechanisms of value on subsequent memory, we used fMRI to examine how differences in brain activity at encoding as a function of value relate to subsequent free recall for words. Each word was preceded by an arbitrarily assigned point value, and participants went through multiple study-test cycles with feedback on their point total at the end of each list, allowing for sculpting of cognitive strategies. We examined the correlation between value-related modulation of brain activity and participants’ selectivity index, a measure of how close participants were to their optimal point total given the number of items recalled. Greater selectivity scores were associated with greater differences in activation of semantic processing regions, including left inferior frontal gyrus and left posterior lateral temporal cortex, during encoding of high-value words relative to low-value words. Although we also observed value-related modulation within midbrain and ventral striatal reward regions, our fronto-temporal findings suggest that strategic engagement of deep semantic processing may be an important mechanism for selectively encoding valuable items. PMID:24683066

  19. Extraction of pectic enzymes from of Lulo (Solanum quitoense lam) involved in softening

    International Nuclear Information System (INIS)

    Rodriguez Nieto, Jeimmy Marcela; Restrepo Sanchez, Luz Patricia

    2011-01-01

    The main problem of post-harvest deterioration of Lulo (Solanum quitoense lam) is the softening is the main problem of post-harvest deterioration of Lulo that is generated mainly by the activity of pectic enzymes, which attack the structural network of the cell wall. this research was based on finding the best conditions structural cell wall network for extraction and measurement of enzyme activity pectinesterase (PE), polygalacturonase (PG) and pectato liasa (PL); tools needed to study the further role of these enzymes in the deterioration of pectatelyase fruit softening, due to various metabolic changes. It was found that the first two enzymes can be extracted simultaneously with 20 mm phosphate buffer pH 7.0, 0.06 m NaCl and 60 minutes of extraction, ratio 1:2 (plant material: extraction buffer), pectatelyase extracted with 20 mm phosphate buffer pH 7.0, 20 mm cysteine and 30 minutes of extraction, ratio 1:3. for quantification of pectinesterase activity is necessary to incubate 15 minutes at 42 Celsius degrade, 2500 μl of crude enzyme extract (EE) in 20 mm phosphate buffer pH 7.0, to 0.15 m NaCl and 1.6% citrus pectin as (CP) substrate with apparent km values of 3.78% CP and vmax 17.95 mol h+/min, mg prot. for the quantification of pectinesterase activity is necessary to incubate 15 minutes to 42 Celsius degrade 2500 μl of crude enzyme extract (EE) in 20 mm phosphate buffer pH 7.0, 0.15 m NaCl and 1.6% citrus pectin as substrate with apparent km values of 3.78% CP and 17.95 μ vmax mol h+/min Mg prot. for the quantification of polygalacturonase activity is necessary to incubate 15 minutes to 37 Celsius degrade 30 μl (EE) in 200 mm acetate buffer pH 4.5, 0.25 m NaCl and 1.0% of APG as substrate, with apparent km values 0.141% of APG and vmax 28.46 nkat/s mg prot. for the quantification of the pectatelyase activity is necessary to incubate 2 minutes to 17 Celsius degrade, 100 μl (EE) in buffer tris: HCl pH 8.5, 50 mm 4 mm CaCl2 and 0.1% PGA as substrate, with

  20. Branching enzyme assay: selective quantitation of the alpha 1,6-linked glucosyl residues involved in the branching points.

    Science.gov (United States)

    Krisman, C R; Tolmasky, D S; Raffo, S

    1985-06-01

    Methods previously described for glycogen or amylopectin branching enzymatic activity are insufficiently sensitive and not quantitative. A new, more sensitive, specific, and quantitative one was developed. It is based upon the quantitation of the glucose residues joined by alpha 1,6 bonds introduced by varying amounts of branching enzyme. The procedure involved the synthesis of a polysaccharide from Glc-1-P and phosphorylase in the presence of the sample to be tested. The branched polysaccharide was then purified and the glucoses involved in the branching points were quantitated after degradation with phosphorylase and debranching enzymes. This method appeared to be useful, not only in enzymatic activity determinations but also in the study of the structure of alpha-D-glucans when combined with those of total polysaccharide quantitation, such as iodine and phenol-sulfuric acid.

  1. Functional Characterization and Expression of Molluscan Detoxification Enzymes and Transporters Involved in Dietary Allelochemical Resistance

    Science.gov (United States)

    2008-06-01

    melanogasrer (43), and Homo sapiens (40) (Ding et al. 2003). To date, seven soluble cytosolic GST classes, encoding proteins of approximately 200 amino acids...Fasciola hepatica (P56598), Haliotis discus discus (ABF67506, ABF67507), Haemaphysalis longicornis (AAQ74441), Homo sapiens (NP_665683, AAV38750, NP_000840...MorciTa 2003 Mtilus Mdulis Western blot Jonsson ct al. 2004 CYP2H Mtilus go/lh,-ro/ii Western blot Peters el al. 19 9 0a (Y P2 Mvti/us ’dlis Western blot

  2. Characterisation of the cytochrome P450 enzymes involved in the in vitro metabolism of granisetron.

    OpenAIRE

    Bloomer, J C; Baldwin, S J; Smith, G J; Ayrton, A D; Clarke, S E; Chenery, R J

    1994-01-01

    1. The metabolism of granisetron was investigated in human liver microsomes to identify the specific forms of cytochrome P450 responsible. 2. 7-hydroxy and 9'-desmethyl granisetron were identified as the major products of metabolism following incubation of granisetron with human liver microsomes. At low, clinically relevant, concentrations of granisetron the 7-hydroxy metabolite predominated. Rates of granisetron 7-hydroxylation varied over 100-fold in the human livers investigated. 3. Enzyme...

  3. Differential Subplastidial Localization and Turnover of Enzymes Involved in Isoprenoid Biosynthesis in Chloroplasts.

    Directory of Open Access Journals (Sweden)

    Catalina Perello

    Full Text Available Plastidial isoprenoids are a diverse group of metabolites with roles in photosynthesis, growth regulation, and interaction with the environment. The methylerythritol 4-phosphate (MEP pathway produces the metabolic precursors of all types of plastidial isoprenoids. Proteomics studies in Arabidopsis thaliana have shown that all the enzymes of the MEP pathway are localized in the plastid stroma. However, immunoblot analysis of chloroplast subfractions showed that the first two enzymes of the pathway, deoxyxylulose 5-phosphate synthase (DXS and reductoisomerase (DXR, can also be found in non-stromal fractions. Both transient and stable expression of GFP-tagged DXS and DXR proteins confirmed the presence of the fusion proteins in distinct subplastidial compartments. In particular, DXR-GFP was found to accumulate in relatively large vesicles that could eventually be released from chloroplasts, presumably to be degraded by an autophagy-independent process. Together, we propose that protein-specific mechanisms control the localization and turnover of the first two enzymes of the MEP pathway in Arabidopsis chloroplasts.

  4. An overview of the neuro-cognitive processes involved in the encoding, consolidation, and retrieval of true and false memories

    Science.gov (United States)

    2012-01-01

    Perception and memory are imperfect reconstructions of reality. These reconstructions are prone to be influenced by several factors, which may result in false memories. A false memory is the recollection of an event, or details of an episode, that did not actually occur. Memory formation comprises at least three different sub-processes: encoding, consolidation and the retrieval of the learned material. All of these sub-processes are vulnerable for specific errors and consequently may result in false memories. Whereas, processes like imagery, self-referential encoding or spreading activation can lead to the formation of false memories at encoding, semantic generalization during sleep and updating processes due to misleading post event information, in particular, are relevant at the consolidation stage. Finally at the retrieval stage, monitoring processes, which are assumed to be essential to reject false memories, are of specific importance. Different neuro-cognitive processes have been linked to the formation of true and false memories. Most consistently the medial temporal lobe and the medial and lateral prefrontal cortex have been reported with regard to the formation of true and false memories. Despite the fact that all phases entailing memory formation, consolidation of stored information and retrieval processes, are relevant for the forming of false memories, most studies focused on either memory encoding or retrieval. Thus, future studies should try to integrate data from all phases to give a more comprehensive view on systematic memory distortions. An initial outline is developed within this review to connect the different memory stages and research strategies. PMID:22827854

  5. Encoding and retrieval processes involved in the access of source information in the absence of item memory.

    Science.gov (United States)

    Ball, B Hunter; DeWitt, Michael R; Knight, Justin B; Hicks, Jason L

    2014-09-01

    The current study sought to examine the relative contributions of encoding and retrieval processes in accessing contextual information in the absence of item memory using an extralist cuing procedure in which the retrieval cues used to query memory for contextual information were related to the target item but never actually studied. In Experiments 1 and 2, participants studied 1 category member (e.g., onion) from a variety of different categories and at test were presented with an unstudied category label (e.g., vegetable) to probe memory for item and source information. In Experiments 3 and 4, 1 member of unidirectional (e.g., credit or card) or bidirectional (e.g., salt or pepper) associates was studied, whereas the other unstudied member served as a test probe. When recall failed, source information was accessible only when items were processed deeply during encoding (Experiments 1 and 2) and when there was strong forward associative strength between the retrieval cue and target (Experiments 3 and 4). These findings suggest that a retrieval probe diagnostic of semantically related item information reinstantiates information bound in memory during encoding that results in reactivation of associated contextual information, contingent upon sufficient learning of the item itself and the association between the item and its context information.

  6. Evolutionary History of the Enzymes Involved in the Calvin-Benson Cycle in Euglenids.

    Science.gov (United States)

    Markunas, Chelsea M; Triemer, Richard E

    2016-05-01

    Euglenids are an ancient lineage that may have existed as early as 2 billion years ago. A mere 65 years ago, Melvin Calvin and Andrew A. Benson performed experiments on Euglena gracilis and elucidated the series of reactions by which carbon was fixed and reduced during photosynthesis. However, the evolutionary history of this pathway (Calvin-Benson cycle) in euglenids was more complex than Calvin and Benson could have imagined. The chloroplast present today in euglenophytes arose from a secondary endosymbiosis between a phagotrophic euglenid and a prasinophyte green alga. A long period of evolutionary time existed before this secondary endosymbiotic event took place, which allowed for other endosymbiotic events or gene transfers to occur prior to the establishment of the green chloroplast. This research revealed the evolutionary history of the major enzymes of the Calvin-Benson cycle throughout the euglenid lineage and showed that the majority of genes for Calvin-Benson cycle enzymes shared an ancestry with red algae and/or chromophytes suggesting they may have been transferred to the nucleus prior to the acquisition of the green chloroplast. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.

  7. Neuroprotection of ebselen against ischemia/reperfusion injury involves GABA shunt enzymes.

    Science.gov (United States)

    Seo, Jeong Yeol; Lee, Choong Hyun; Cho, Jun Hwi; Choi, Jung Hoon; Yoo, Ki-Yeon; Kim, Dae Won; Park, Ok Kyu; Li, Hua; Choi, Soo Young; Hwang, In Koo; Won, Moo-Ho

    2009-10-15

    Seleno-organic compound, ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one), is a substrate with radical-scavenging activity. In this study, we observed the neuroprotective effects of ebselen against ischemic damage and on GABA shunt enzymes such as glutamic acid decarboxylase 67 (GAD67), GABA transaminse (GABA-T) and succinic semialdehyde dehydrogenase (SSADH) in the hippocampal CA1 region after 5 min of transient forebrain ischemia in gerbils. For this, vehicle (physiological saline) or ebselen was administered 30 min before or after ischemia/reperfusion and sacrificed 4 days after ischemia/reperfusion. The administration of ebselen significantly reduced the neuronal death in the CA1 region induced by ischemia/reperfusion. In addition, treatment with ebselen markedly elevated GAD67, GABA-T and SSADH immunoreactivity and their protein levels compared to that in the vehicle-treated group, respectively. These results suggest that ebselen protects neurons from ischemic damage via control of the expressions of GABA shunt enzymes to enter the TCA cycle.

  8. Involvement of a novel enzyme, MdpA, in methyl tert-butyl ether degradation in Methylibium petroleiphilum PM1.

    Science.gov (United States)

    Schmidt, Radomir; Battaglia, Vince; Scow, Kate; Kane, Staci; Hristova, Krassimira R

    2008-11-01

    Methylibium petroleiphilum PM1 is a well-characterized environmental strain capable of complete metabolism of the fuel oxygenate methyl tert-butyl ether (MTBE). Using a molecular genetic system which we established to study MTBE metabolism by PM1, we demonstrated that the enzyme MdpA is involved in MTBE removal, based on insertional inactivation and complementation studies. MdpA is constitutively expressed at low levels but is strongly induced by MTBE. MdpA is also involved in the regulation of tert-butyl alcohol (TBA) removal under certain conditions but is not directly responsible for TBA degradation. Phylogenetic comparison of MdpA to related enzymes indicates close homology to the short-chain hydrolyzing alkane hydroxylases (AH1), a group that appears to be a distinct subfamily of the AHs. The unique, substrate-size-determining residue Thr(59) distinguishes MdpA from the AH1 subfamily as well as from AlkB enzymes linked to MTBE degradation in Mycobacterium austroafricanum.

  9. Eucalyptus ESTs involved in the production of 9-cis epoxycarotenoid dioxygenase, a regulatory enzyme of abscisic acid production

    Directory of Open Access Journals (Sweden)

    Iraê A. Guerrini

    2005-01-01

    Full Text Available Abscisic acid (ABA regulates stress responses in plants, and genomic tools can help us to understand the mechanisms involved in that process. FAPESP, a Brazilian research foundation, in association with four private forestry companies, has established the FORESTs database (https://forests.esalq.usp.br. A search was carried out in the Eucalyptus expressed sequence tag database to find ESTs involved with 9-cis epoxycarotenoid dioxygenase (NCED, the regulatory enzyme for ABA biosynthesis, using the basic local BLAST alignment tool. We found four clusters (EGEZLV2206B11.g, EGJMWD2252H08.g, EGBFRT3107F10.g, and EGEQFB1200H10.g, which represent similar sequences of the gene that produces NCED. Data showed that the EGBFRT3107F10.g cluster was similar to the maize (Zea mays NCED enzyme, while EGEZLV2206B11.g and EGJMWD2252H08.g clusters were similar to the avocado (Persea americana NCED enzyme. All Eucalyptus clusters were expressed in several tissues, especially in flower buds, where ABA has a special participation during the floral development process.

  10. Histochemical location of key enzyme activities involved in receptivity and self-incompatibility in the olive tree (Olea europaea L.).

    Science.gov (United States)

    Serrano, Irene; Olmedilla, Adela

    2012-12-01

    Stigma-surface and style enzymes are important for pollen reception, selection and germination. This report deals with the histochemical location of the activity of four basic types of enzyme involved in these processes in the olive (Olea europaea L.). The detection of peroxidase, esterase and acid-phosphatase activities at the surface of the stigma provided evidence of early receptivity in olive pistils. The stigma maintained its receptivity until the arrival of pollen. Acid-phosphatase activity appeared in the style at the moment of anthesis and continued until the fertilization of the ovule. RNase activity was detected in the extracellular matrix of the styles of flowers just before pollination and became especially evident in pistils after self-pollination. This activity gradually decreased until it practically disappeared in more advanced stages. RNase activity was also detected in pollen tubes growing in pollinated pistils and appeared after in vitro germination in the presence of self-incompatible pistils. These findings suggest that RNases may well be involved in intraspecific pollen rejection in olive flowers. To the best of our knowledge this is the first time that evidence of enzyme activity in stigma receptivity and pollen selection has been described in this species. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Gene ercA, encoding a putative iron-containing alcohol dehydrogenase, is involved in regulation of ethanol utilization in Pseudomonas aeruginosa.

    Science.gov (United States)

    Hempel, Niels; Görisch, Helmut; Mern, Demissew S

    2013-09-01

    Several two-component regulatory systems are known to be involved in the signal transduction pathway of the ethanol oxidation system in Pseudomonas aeruginosa ATCC 17933. These sensor kinases and response regulators are organized in a hierarchical manner. In addition, a cytoplasmic putative iron-containing alcohol dehydrogenase (Fe-ADH) encoded by ercA (PA1991) has been identified to play an essential role in this regulatory network. The gene ercA (PA1991) is located next to ercS, which encodes a sensor kinase. Inactivation of ercA (PA1991) by insertion of a kanamycin resistance cassette created mutant NH1. NH1 showed poor growth on various alcohols. On ethanol, NH1 grew only with an extremely extended lag phase. During the induction period on ethanol, transcription of structural genes exa and pqqABCDEH, encoding components of initial ethanol oxidation in P. aeruginosa, was drastically reduced in NH1, which indicates the regulatory function of ercA (PA1991). However, transcription in the extremely delayed logarithmic growth phase was comparable to that in the wild type. To date, the involvement of an Fe-ADH in signal transduction processes has not been reported.

  12. Identification of the para-nitrophenol catabolic pathway, and characterization of three enzymes involved in the hydroquinone pathway, in pseudomonas sp. 1-7

    Directory of Open Access Journals (Sweden)

    Zhang Shuangyu

    2012-03-01

    Full Text Available Abstract Background para-Nitrophenol (PNP, a priority environmental pollutant, is hazardous to humans and animals. However, the information relating to the PNP degradation pathways and their enzymes remain limited. Results Pseudomonas sp.1-7 was isolated from methyl parathion (MP-polluted activated sludge and was shown to degrade PNP. Two different intermediates, hydroquinone (HQ and 4-nitrocatechol (4-NC were detected in the catabolism of PNP. This indicated that Pseudomonas sp.1-7 degraded PNP by two different pathways, namely the HQ pathway, and the hydroxyquinol (BT pathway (also referred to as the 4-NC pathway. A gene cluster (pdcEDGFCBA was identified in a 10.6 kb DNA fragment of a fosmid library, which cluster encoded the following enzymes involved in PNP degradation: PNP 4-monooxygenase (PdcA, p-benzoquinone (BQ reductase (PdcB, hydroxyquinol (BT 1,2-dioxygenase (PdcC, maleylacetate (MA reductase (PdcF, 4-hydroxymuconic semialdehyde (4-HS dehydrogenase (PdcG, and hydroquinone (HQ 1,2-dioxygenase (PdcDE. Four genes (pdcDEFG were expressed in E. coli and the purified pdcDE, pdcG and pdcF gene products were shown to convert HQ to 4-HS, 4-HS to MA and MA to β-ketoadipate respectively by in vitro activity assays. Conclusions The cloning, sequencing, and characterization of these genes along with the functional PNP degradation studies identified 4-NC, HQ, 4-HS, and MA as intermediates in the degradation pathway of PNP by Pseudomonas sp.1-7. This is the first conclusive report for both 4-NC and HQ- mediated degradation of PNP by one microorganism.

  13. CMYB1 Encoding a MYB Transcriptional Activator Is Involved in Abiotic Stress and Circadian Rhythm in Rice

    Directory of Open Access Journals (Sweden)

    Min Duan

    2014-01-01

    Full Text Available Through analysis of cold-induced transcriptome, a novel gene encoding a putative MYB transcription factor was isolated and designated Cold induced MYB 1 (CMYB1. Tissue-specific gene expression analysis revealed that CMYB1 was highly expressed in rice stems and nodes. qRT-PCR assay indicated that CMYB1 was dramatically induced by cold stress (>100-folds and induced by exogenous ABA and osmotic stress. Interestingly, CMYB1 showed rhythmic expression profile in rice leaves at different developmental stages. Subcellular localization assay suggested that CMYB1-GFP (green fluorescent protein fusion protein was localized in the nuclei. Moreover, CMYB1 exhibited the transcriptional activation activity when transiently expressed in rice protoplast cells. Taken together, CMYB1 probably functions as a transcriptional activator in mediating stress and rhythm responsive gene expression in rice.

  14. DMBT1 encodes a protein involved in the immune defense and in epithelial differentiation and is highly unstable in cancer

    DEFF Research Database (Denmark)

    Mollenhauer, J; Herbertz, S; Holmskov, U

    2000-01-01

    in the respiratory immune defense. Immunohistochemical analyses revealed that DMBT1 is produced by both tumor-associated macrophages and tumor cells and that it is deregulated in glioblastoma multiforme in comparison to normal brain tissue. Our data further suggest that the proteins CRP-ductin and hensin, both...... of which have been implicated in epithelial differentiation, are the DMBT1 orthologs in mice and rabbits, respectively. These findings and the spatial and temporal distribution of DMBT1 in fetal and adult epithelia suggest that DMBT1 further plays a role in epithelial development. Rearrangements of DMBT1......, DMBT1 is a gene that is highly unstable in cancer and encodes for a protein with at least two different functions, one in the immune defense and a second one in epithelial differentiation....

  15. KPC-mediated resistance in Klebsiella pneumoniae in two hospitals in Padua, Italy, June 2009-December 2011: massive spreading of a KPC-3-encoding plasmid and involvement of non-intensive care units

    Directory of Open Access Journals (Sweden)

    Richter Sara N

    2012-07-01

    Full Text Available Abstract Background Klebsiella pneumoniae carbapenemases (KPCs producing bacteria have emerged as a cause of multidrug-resistant nosocomial infections worldwide. KPCs are plasmid-encoded enzymes capable of hydrolysing a broad spectrum of beta-lactams, including carbapenems and monobactams, therefore worryingly limiting antimicrobial treatment options. Analysis of circulating bacterial strains and KPC alleles may help understanding the route of KPC dissemination and therefore help containing the infection. Methods KPC-producing Klebsiella pneumoniae dissemination in two 1580- and 300- bed hospitals in Padua, Italy, from initial outbreak in 2009 to late 2011 was analysed. Molecular and clinical epidemiology, including bacterial strains, KPC-encoding plasmid sequences and associated resistance genes, involved hospital wards and relocation of patients were described. Routine antimicrobial susceptibility testing and MIC of carbapenems on clinical isolates were performed. Detection of resistance genes was obtained by PCR and sequencing. MLST, PFGE and ERIC were used for molecular genotyping. Plasmid analysis was obtained by digestion with restriction enzymes and deep sequencing. Results KPC-positive clinical samples were isolated from nearly 200 patients. In the initial outbreak intensive care units were almost exclusively involved, while medical, surgical and long-term wards were successively massively concerned. Analysis of KPC alleles, plasmids and bacterial sequence types (STs indicated that during the initial outbreak KPC-3 in ST258 and KPC-2 in ST147 were each confined in one of the two surveilled hospitals. While KPC-2 dissemination was effectively contained, KPC-3 in ST258 cross-spreading was observed. The simultaneous presence of two carbapenemases, VIM-1 and KPC-2, in the same isolate was also observed in three patients. Total sequencing of plasmid content of two KPC-3 strains showed novel association of resistance plasmids. Conclusions The

  16. Involvement of the lysophosphatidic acid-generating enzyme autotaxin in lymphocyte-endothelial cell interactions.

    Science.gov (United States)

    Nakasaki, Tae; Tanaka, Toshiyuki; Okudaira, Shinichi; Hirosawa, Michi; Umemoto, Eiji; Otani, Kazuhiro; Jin, Soojung; Bai, Zhongbin; Hayasaka, Haruko; Fukui, Yoshinori; Aozasa, Katsuyuki; Fujita, Naoya; Tsuruo, Takashi; Ozono, Keiichi; Aoki, Junken; Miyasaka, Masayuki

    2008-11-01

    Autotaxin (ATX) is a secreted protein with lysophospholipase D activity that generates lysophosphatidic acid (LPA) from lysophosphatidylcholine. Here we report that functional ATX is selectively expressed in high endothelial venules (HEVs) of both lymph nodes and Peyer's patches. ATX expression was developmentally regulated and coincided with lymphocyte recruitment to the lymph nodes. In adults, ATX expression was independent of HEV-expressed chemokines such as CCL21 and CXCL13, innate immunity signals including those via TLR4 or MyD88, and of the extent of lymphocyte trafficking across the HEVs. ATX expression was induced in venules at sites of chronic inflammation. Receptors for the ATX enzyme product LPA were constitutively expressed in HEV endothelial cells (ECs). In vitro, LPA induced strong morphological changes in HEV ECs. Forced ATX expression caused cultured ECs to respond to lysophosphatidylcholine, up-regulating lymphocyte binding to the ECs in a LPA receptor-dependent manner under both static and flow conditions. Although in vivo depletion of circulating ATX did not affect lymphocyte trafficking into the lymph nodes, we surmise, based on the above data, that ATX expressed by HEVs acts on HEVs in situ to facilitate lymphocyte binding to ECs and that ATX in the general circulation does not play a major role in this process. Tissue-specific inactivation of ATX will verify this hypothesis in future studies of its mechanism of action.

  17. Action of some drugs on enzymes involved in DNA-repair and semiconservative DNA-synthesis

    International Nuclear Information System (INIS)

    Wawra, E.; Klein, W.; Kocsis, F.; Weniger, P.

    1975-07-01

    Different antirheumatic and cytostatic drugs had been tested by measurement of the thymidine incorporation into DNA of spleen cells under conditions, under which either DNA-synthesis or repair after gamma- or UV-irradiation takes place. There are substances, which inhibit either only the semiconservative DNA-synthesis (vinblastine, isonicotinic acid hydracide) or only DNA-repair after gamma-irradiation (mixture of penicillin-G and procaine-penicillin-G) or both (cyclophosphamide, phenylbutazone, procarbazine, nalidixic acid). Vincristine shows no effect on the thymidine incorporation in DNA, but by density gradient centrifugation it has been found that it influences the ligase reaction. Two DNA polymerases had been isolated from spleen cells, one of the low molecular and one of the high molecular weight type. The influences of the described drugs on these enzymes and on a deoxyribonuclease I from beef pancreas have been tested in ''in vitro'' systems. In all cases, it has been found that there is no effect or only a very small one, compared with the action of well known inhibitors as e.g. ethidium bromide and p-chloromercuribenzoate, and this cannot be responsible for the suppressions found in DNA-repair and semiconservative DNA-synthesis. (author)

  18. Acute Psychological Stress Modulates the Expression of Enzymes Involved in the Kynurenine Pathway throughout Corticolimbic Circuits in Adult Male Rats

    Directory of Open Access Journals (Sweden)

    Haley A. Vecchiarelli

    2016-01-01

    Full Text Available Tryptophan is an essential dietary amino acid that is necessary for protein synthesis, but also serves as the precursor for serotonin. However, in addition to these biological functions, tryptophan also serves as a precursor for the kynurenine pathway, which has neurotoxic (quinolinic acid and neuroprotective (kynurenic acid metabolites. Glucocorticoid hormones and inflammatory mediators, both of which are increased by stress, have been shown to bias tryptophan along the kynurenine pathway and away from serotonin synthesis; however, to date, there is no published data regarding the effects of stress on enzymes regulating the kynurenine pathway in a regional manner throughout the brain. Herein, we examined the effects of an acute psychological stress (120 min restraint on gene expression patterns of enzymes along the kynurenine pathway over a protracted time-course (1–24 h post-stress termination within the amygdala, hippocampus, hypothalamus, and medial prefrontal cortex. Time-dependent changes in differential enzymes along the kynurenine metabolism pathway, particularly those involved in the production of quinolinic acid, were found within the amygdala, hypothalamus, and medial prefrontal cortex, with no changes seen in the hippocampus. These regional differences acutely may provide mechanistic insight into processes that become dysregulated chronically in stress-associated disorders.

  19. Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits.

    Science.gov (United States)

    Zhang, Mei; Leng, Ping; Zhang, Guanglian; Li, Xiangxin

    2009-08-15

    Ripening and senescence are generally controlled by ethylene in climacteric fruits like peaches, and the ripening process of grape, a non-climacteric fruit, may have some relationship to abscisic acid (ABA) function. In order to better understand the role of ABA in ripening and senescence of these two types of fruits, we cloned the 9-cis-epoxycarotenoid dioxygenase (NCED) gene that encodes a key enzyme in ABA biosynthesis from peaches and grapes using an RT-PCR approach. The NCED gene fragments were cloned from peaches (PpNCED1and PpNCED2, each 740bp) and grapes (VVNCED1, 741bp) using degenerate primers designed based on the conserved amino acids sequence of NCEDs in other plants. PpNCED1 showed 78.54% homology with PpNCED2, 74.90% homology with VVNCED1, and both showed high homology to NCEDs from other plants. The expression patterns of PpNCED1 and VVNCED1 were very similar. Both were highly expressed at the beginning of ripening when ABA content becomes high. The maximum ABA preceded ethylene production in peach fruit. ABA in the grape gradually increased from the beginning of ripening and reached the highest level at 20d before the harvest stage. However, ethylene remained at low levels during the entire process of fruit development, including ripening and senescence. ABA content, and ripening and softening of both types of fruits, were promoted or delayed by exogenous ABA or Fluridone (or NDGA) treatment. The roles of ABA and ethylene in the later ripening of fruit are complex. Based on results obtained in this study, we concluded that PpNCED1 and VVNCED1 initiate ABA biosynthesis at the beginning of fruit ripening, and that ABA accumulation might play a key role in the regulation of ripeness and senescence of both peach and grape fruits.

  20. Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts

    Science.gov (United States)

    Chenthamara, Komal; Zhang, Jian; Atanasova, Lea; Yang, Dongqing; Miao, Youzhi; Grujic, Marica; Pourmehdi, Shadi; Pretzer, Carina; Kopchinskiy, Alexey G.; Hundley, Hope; Wang, Mei; Aerts, Andrea; Salamov, Asaf; Lipzen, Anna; Barry, Kerrie; Grigoriev, Igor V.; Shen, Qirong; Kubicek, Christian P.

    2018-01-01

    Unlike most other fungi, molds of the genus Trichoderma (Hypocreales, Ascomycota) are aggressive parasites of other fungi and efficient decomposers of plant biomass. Although nutritional shifts are common among hypocrealean fungi, there are no examples of such broad substrate versatility as that observed in Trichoderma. A phylogenomic analysis of 23 hypocrealean fungi (including nine Trichoderma spp. and the related Escovopsis weberi) revealed that the genus Trichoderma has evolved from an ancestor with limited cellulolytic capability that fed on either fungi or arthropods. The evolutionary analysis of Trichoderma genes encoding plant cell wall-degrading carbohydrate-active enzymes and auxiliary proteins (pcwdCAZome, 122 gene families) based on a gene tree / species tree reconciliation demonstrated that the formation of the genus was accompanied by an unprecedented extent of lateral gene transfer (LGT). Nearly one-half of the genes in Trichoderma pcwdCAZome (41%) were obtained via LGT from plant-associated filamentous fungi belonging to different classes of Ascomycota, while no LGT was observed from other potential donors. In addition to the ability to feed on unrelated fungi (such as Basidiomycota), we also showed that Trichoderma is capable of endoparasitism on a broad range of Ascomycota, including extant LGT donors. This phenomenon was not observed in E. weberi and rarely in other mycoparasitic hypocrealean fungi. Thus, our study suggests that LGT is linked to the ability of Trichoderma to parasitize taxonomically related fungi (up to adelphoparasitism in strict sense). This may have allowed primarily mycotrophic Trichoderma fungi to evolve into decomposers of plant biomass. PMID:29630596

  1. Involvement of CYP 2E1 enzyme in ovotoxicity caused by 4-vinylcyclohexene and its metabolites

    International Nuclear Information System (INIS)

    Rajapaksa, Kathila S.; Cannady, Ellen A.; Sipes, I. Glenn; Hoyer, Patricia B.

    2007-01-01

    4-Vinylcyclohexene (VCH) is bioactivated by hepatic CYP 2A and 2B to a monoepoxide (VCM) and subsequently to an ovotoxic diepoxide metabolite (VCD). Studies suggest that the ovary can directly bioactivate VCH via CYP 2E1. The current study was designed to evaluate the role of ovarian CYP 2E1 in VCM-induced ovotoxicity. Postnatal day 4 B6C3F 1 and CYP 2E1 wild-type (+/+) and null (-/-) mouse ovaries were cultured (15 days) with VCD (30 μM), 1,2-VCM (125-1000 μM), or vehicle. Twenty-eight days female CYP 2E1 +/+ and -/- mice were dosed daily (15 days; ip) with VCH, 1,2-VCM, VCD or vehicle. Following culture or in vivo dosing, ovaries were histologically evaluated. In culture, VCD decreased (p 1 and CYP 2E1 +/+ ovaries, but not in CYP 2E1 -/- ovaries in culture. 1,2-VCM did not affect primary follicles in any group of mouse ovaries. Conversely, following in vivo dosing, primordial and primary follicles were reduced (p < 0.05) by VCD and VCM in CYP2E1 +/+ and -/-, and by VCH in +/+ mice. The data demonstrate that, whereas in vitro ovarian bioactivation of VCM requires CYP 2E1 enzyme, in vivo CYP 2E1 plays a minimal role. Thus, the findings support that hepatic metabolism dominates the contribution made by the ovary in bioactivation of VCM to its ovotoxic metabolite, VCD. This study also demonstrates the use of a novel ovarian culture system to evaluate ovary-specific metabolism of xenobiotics

  2. A chromatin modifying enzyme, SDG8, is involved in morphological, gene expression, and epigenetic responses to mechanical stimulation.

    Science.gov (United States)

    Cazzonelli, Christopher I; Nisar, Nazia; Roberts, Andrea C; Murray, Kevin D; Borevitz, Justin O; Pogson, Barry J

    2014-01-01

    Thigmomorphogenesis is viewed as being a response process of acclimation to short repetitive bursts of mechanical stimulation or touch. The underlying molecular mechanisms that coordinate changes in how touch signals lead to long-term morphological changes are enigmatic. Touch responsive gene expression is rapid and transient, and no transcription factor or DNA regulatory motif has been reported that could confer a genome wide mechanical stimulus. We report here on a chromatin modifying enzyme, SDG8/ASHH2, which can regulate the expression of many touch responsive genes identified in Arabidopsis. SDG8 is required for the permissive expression of touch induced genes; and the loss of function of sdg8 perturbs the maximum levels of induction on selected touch gene targets. SDG8 is required to maintain permissive H3K4 trimethylation marks surrounding the Arabidopsis touch-inducible gene TOUCH 3 (TCH3), which encodes a calmodulin-like protein (CML12). The gene neighboring was also slightly down regulated, revealing a new target for SDG8 mediated chromatin modification. Finally, sdg8 mutants show perturbed morphological response to wind-agitated mechanical stimuli, implicating an epigenetic memory-forming process in the acclimation response of thigmomorphogenesis.

  3. ClRTL1 Encodes a Chinese Fir RNase III–Like Protein Involved in Regulating Shoot Branching

    Directory of Open Access Journals (Sweden)

    Xia Li

    2015-10-01

    Full Text Available Identification of genes controlling shoot branching is crucial for improving plant architecture and increasing crop yield or biomass. A branching mutant of Chinese fir named “Dugansha” (Cunninghamia lanceolata var. dugan. has been isolated in our laboratory. We chose the cDNA-AFLP technique and an effective strategy to screen genes that potentially regulate shoot branching in Chinese fir using this mutant. An RNase III-like1 cDNA fragment named ClRTL1 was identified as a potential positive regulator. To investigate the function of ClRTL1 in regulating shoot branching, we cloned the full-length cDNA sequence from C. lanceolata (Lamb. Hook, deduced its secondary structure and function, and overexpressed the coding sequence in Arabidopsis. The ClRTL1 cDNA is 1045 bp and comprises an open reading frame of 705 bp. It encodes a protein of 235 amino acids. The deduced secondary structure of the ClRTL1 indicates that it is a mini-RNase III-like protein. The expression analysis and phenotypes of 35S: ClRTL1 in A. thaliana implies that ClRTL1 plays a role in promoting shoot branching in Chinese fir.

  4. Alpha-crystallins are involved in specific interactions with the murine gamma D/E/F-crystallin-encoding gene.

    Science.gov (United States)

    Pietrowski, D; Durante, M J; Liebstein, A; Schmitt-John, T; Werner, T; Graw, J

    1994-07-08

    The promoter of the murine gamma E-crystallin (gamma E-Cry) encoding gene (gamma E-cry) was analyzed for specific interactions with lenticular proteins in a gel-retardation assay. A 21-bp fragment immediately downstream of the transcription initiation site (DOTIS) is demonstrated to be responsible for specific interactions with lens extracts. The DOTIS-binding protein(s) accept only the sense DNA strand as target; anti-sense or double-stranded DNA do not interact with these proteins. The DOTIS sequence element is highly conserved among the murine gamma D-, gamma E- and gamma F-cry and is present at comparable positions in the orthologous rat genes. Only a weak or even no protein-binding activity is observed if a few particular bases are changed, as in the rat gamma A-, gamma C- and gamma E-cry elements. DOTIS-binding proteins were found in commercially available bovine alpha-Cry preparations. The essential participation of alpha-Cry in the DNA-binding protein complex was confirmed using alpha-Cry-specific monoclonal antibody. The results reported here point to a novel function of alpha-Cry besides the structural properties in the lens.

  5. Characterization of the hepatic cytochrome P450 enzymes involved in the metabolism of 25I-NBOMe and 25I-NBOH

    DEFF Research Database (Denmark)

    Nielsen, Line Marie; Holm, Niels Bjerre; Leth-Petersen, Sebastian

    2017-01-01

    )ethylamino]methyl]phenol (25I-NBOH) and to characterize the metabolites. The following approaches were used to identify the main enzymes involved in primary metabolism: incubation with a panel of CYP and monoamine oxidase (MAO) enzymes and incubation in pooled human liver microsomes (HLM) with and without specific CYP...

  6. Envelope gene sequences encoding variable regions 3 and 4 are involved in macrophage tropism of feline immunodeficiency virus

    NARCIS (Netherlands)

    Horzinek, M.C.; Vahlenkamp, T.W.; Ronde, A. de; Schuurman, N.M.P.; Vliet, A.L.W. van; Drunen, J. van; Egberink, H.F.

    1999-01-01

    The envelope is of cardinal importance for the entry of feline immunodeficiency virus (FIV) into its host cells, which consist of cells of the immune system including macrophages. To characterize the envelope glycoprotein determinants involved in macrophage tropism, chimeric infectious molecular

  7. S-Inosyl-L-Homocysteine Hydrolase, a Novel Enzyme Involved in S-Adenosyl-L-Methionine Recycling.

    Science.gov (United States)

    Miller, Danielle; Xu, Huimin; White, Robert H

    2015-07-01

    S-Adenosyl-L-homocysteine, the product of S-adenosyl-L-methionine (SAM) methyltransferases, is known to be a strong feedback inhibitor of these enzymes. A hydrolase specific for S-adenosyl-L-homocysteine produces L-homocysteine, which is remethylated to methionine and can be used to regenerate SAM. Here, we show that the annotated S-adenosyl-L-homocysteine hydrolase in Methanocaldococcus jannaschii is specific for the hydrolysis and synthesis of S-inosyl-L-homocysteine, not S-adenosyl-L-homocysteine. This is the first report of an enzyme specific for S-inosyl-L-homocysteine. As with S-adenosyl-L-homocysteine hydrolase, which shares greater than 45% sequence identity with the M. jannaschii homologue, the M. jannaschii enzyme was found to copurify with bound NAD(+) and has Km values of 0.64 ± 0.4 mM, 0.0054 ± 0.006 mM, and 0.22 ± 0.11 mM for inosine, L-homocysteine, and S-inosyl-L-homocysteine, respectively. No enzymatic activity was detected with S-adenosyl-L-homocysteine as the substrate in either the synthesis or hydrolysis direction. These results prompted us to redesignate the M. jannaschii enzyme an S-inosyl-L-homocysteine hydrolase (SIHH). Identification of SIHH demonstrates a modified pathway in this methanogen for the regeneration of SAM from S-adenosyl-L-homocysteine that uses the deamination of S-adenosyl-L-homocysteine to form S-inosyl-L-homocysteine. In strictly anaerobic methanogenic archaea, such as Methanocaldococcus jannaschii, canonical metabolic pathways are often not present, and instead, unique pathways that are deeply rooted on the phylogenetic tree are utilized by the organisms. Here, we discuss the recycling pathway for S-adenosyl-L-homocysteine, produced from S-adenosyl-L-methionine (SAM)-dependent methylation reactions, which uses a hydrolase specific for S-inosyl-L-homocysteine, an uncommon metabolite. Identification of the pathways and the enzymes involved in the unique pathways in the methanogens will provide insight into the

  8. DGAT enzymes and triacylglycerol biosynthesis

    Science.gov (United States)

    Yen, Chi-Liang Eric; Stone, Scot J.; Koliwad, Suneil; Harris, Charles; Farese, Robert V.

    2008-01-01

    Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, and the use of molecular tools, including mice deficient in either enzyme, has shed light on their functions. Although DGAT enzymes are involved in TG synthesis, they have distinct protein sequences and differ in their biochemical, cellular, and physiological functions. Both enzymes may be useful as therapeutic targets for diseases. Here we review the current knowledge of DGAT enzymes, focusing on new advances since the cloning of their genes, including possible roles in human health and diseases. PMID:18757836

  9. Bacillus halodurans Strain C125 Encodes and Synthesizes Enzymes from Both Known Pathways To Form dUMP Directly from Cytosine Deoxyribonucleotides

    DEFF Research Database (Denmark)

    Oehlenschlæger, Christian Berg; Løvgreen, Monika Nøhr; Reinauer, Eva

    2015-01-01

    Analysis of the genome of Bacillus halodurans strain C125 indicated that two pathways leading from a cytosine deoxyribonucleotide to dUMP, used for dTMP synthesis, were encoded by the genome of the bacterium. The genes that were responsible, the comEB gene and the dcdB gene, encoding dCMP deaminase...

  10. An Adaptation to Low Copper in Candida albicans Involving SOD Enzymes and the Alternative Oxidase.

    Directory of Open Access Journals (Sweden)

    Chynna N Broxton

    Full Text Available In eukaryotes, the Cu/Zn superoxide dismutase (SOD1 is a major cytosolic cuproprotein with a small fraction residing in the mitochondrial intermembrane space (IMS to protect against respiratory superoxide. Curiously, the opportunistic human fungal pathogen Candida albicans is predicted to express two cytosolic SODs including Cu/Zn containing SOD1 and manganese containing SOD3. As part of a copper starvation response, C. albicans represses SOD1 and induces the non-copper alternative SOD3. While both SOD1 and SOD3 are predicted to exist in the same cytosolic compartment, their potential role in mitochondrial oxidative stress had yet to be investigated. We show here that under copper replete conditions, a fraction of the Cu/Zn containing SOD1 localizes to the mitochondrial IMS to guard against mitochondrial superoxide. However in copper starved cells, localization of the manganese containing SOD3 is restricted to the cytosol leaving the mitochondrial IMS devoid of SOD. We observe that during copper starvation, an alternative oxidase (AOX form of respiration is induced that is not coupled to ATP synthesis but maintains mitochondrial superoxide at low levels even in the absence of IMS SOD. Surprisingly, the copper-dependent cytochrome c oxidase (COX form of respiration remains high with copper starvation. We provide evidence that repression of SOD1 during copper limitation serves to spare copper for COX and maintain COX respiration. Overall, the complex copper starvation response of C. albicans involving SOD1, SOD3 and AOX minimizes mitochondrial oxidative damage whilst maximizing COX respiration essential for fungal pathogenesis.

  11. Implementation of anion-receptor macrocycles in supramolecular tandem assays for enzymes involving nucleotides as substrates, products, and cofactors.

    Science.gov (United States)

    Florea, Mara; Nau, Werner M

    2010-03-07

    A supramolecular tandem assay for direct continuous monitoring of nucleotide triphosphate-dependent enzymes such as potato apyrase is described. The underlying principle of the assay relies on the use of anion-receptor macrocycles in combination with fluorescent dyes as reporter pairs. A combinatorial approach was used to identify two complementary reporter pairs, i.e. an amino-gamma-cyclodextrin with 2-anilinonaphtalene-6-sulfonate (ANS) as dye (fluorescence enhancement factor of 17 upon complexation) and a polycationic cyclophane with 8-hydroxy-1,3,6-pyrene trisulfonate (HPTS) as dye (fluorescence decrease by a factor of more than 2000), which allow the kinetic monitoring of potato apyrase activity at different ATP concentration ranges (microM and mM) with different types of photophysical responses (switch-ON and switch-OFF). Competitive fluorescence titrations revealed a differential binding of ATP (strongest competitor) versus ADP and AMP, which constitutes the prerequisite for monitoring enzymatic conversions (dephosphorylation or phosphorylation) involving nucleotides. The assay was tested for different enzyme and substrate concentrations and exploited for the screening of activating additives, namely divalent transition metal ions (Ni(2+), Mg(2+), Mn(2+), and Ca(2+)). The transferability of the assay could be demonstrated by monitoring the dephosphorylation of other nucleotide triphosphates (GTP, TTP, and CTP).

  12. A study of archaeal enzymes involved in polar lipid synthesis linking amino acid sequence information, genomic contexts and lipid composition

    Directory of Open Access Journals (Sweden)

    Hiromi Daiyasu

    2005-01-01

    Full Text Available Cellular membrane lipids, of which phospholipids are the major constituents, form one of the characteristic features that distinguish Archaea from other organisms. In this study, we focused on the steps in archaeal phospholipid synthetic pathways that generate polar lipids such as archaetidylserine, archaetidylglycerol, and archaetidylinositol. Only archaetidylserine synthase (ASS, from Methanothermobacter thermautotrophicus, has been experimentally identified. Other enzymes have not been fully examined. Through database searching, we detected many archaeal hypothetical proteins that show sequence similarity to members of the CDP alcohol phosphatidyltransferase family, such as phosphatidylserine synthase (PSS, phosphatidylglycerol synthase (PGS and phosphatidylinositol synthase (PIS derived from Bacteria and Eukarya. The archaeal hypothetical proteins were classified into two groups, based on the sequence similarity. Members of the first group, including ASS from M. thermautotrophicus, were closely related to PSS. The rough agreement between PSS homologue distribution within Archaea and the experimentally identified distribution of archaetidylserine suggested that the hypothetical proteins are ASSs. We found that an open reading frame (ORF tends to be adjacent to that of ASS in the genome, and that the order of the two ORFs is conserved. The sequence similarity of phosphatidylserine decarboxylase to the product of the ORF next to the ASS gene, together with the genomic context conservation, suggests that the ORF encodes archaetidylserine decarboxylase, which may transform archaetidylserine to archaetidylethanolamine. The second group of archaeal hypothetical proteins was related to PGS and PIS. The members of this group were subjected to molecular phylogenetic analysis, together with PGSs and PISs and it was found that they formed two distinct clusters in the molecular phylogenetic tree. The distribution of members of each cluster within Archaea

  13. Oligogalacturonide-mediated induction of a gene involved in jasmonic acid synthesis in response to the cell-wall-degrading enzymes of the plant pathogen Erwinia carotovora.

    Science.gov (United States)

    Norman, C; Vidal, S; Palva, E T

    1999-07-01

    Identification of Arabidopsis thaliana genes responsive to plant cell-wall-degrading enzymes of Erwinia carotovora subsp. carotovora led to the isolation of a cDNA clone with high sequence homology to the gene for allene oxide synthase, an enzyme involved in the biosynthesis of jasmonates. Expression of the corresponding gene was induced by the extracellular enzymes from this pathogen as well as by treatment with methyl jasmonate and short oligogalacturonides (OGAs). This suggests that OGAs are involved in the induction of the jasmonate pathway during plant defense response to E. carotovora subsp. carotovora attack.

  14. Case report of unexpected gastrointestinal involvement in type 1 Gaucher disease: comparison of eliglustat tartrate treatment and enzyme replacement therapy.

    Science.gov (United States)

    Kim, Yoo-Mi; Shin, Dong Hoon; Park, Su Bum; Cheon, Chong Kun; Yoo, Han-Wook

    2017-05-15

    Gastrointestinal involvement in Gaucher disease is very rare, and appears to be unresponsive to enzyme replacement therapy (ERT). Here, we describe identical twin, splenectomized, non-neuronopathic Gaucher patients on long-term ERT for 9 years, who complained of epigastric discomfort due to Gaucher cell infiltration of the gastroduodenal mucosa. Rare compound heterozygous mutations (p.Arg48Trp and p.Arg257Gln) of the GBA gene were found in both. Improvement in the gastroduodenal infiltration and reduced chitotriosidase levels were observed in one who switched to eliglustat tartrate for 1 year, whereas the other one who maintained ERT showed no improvement of chitotriosidase level and persistent duodenal lesions. This shows that eliglustat might be an effective treatment for Gaucher disease patients having lesions resistant to ERT.

  15. eIF4A inhibition allows translational regulation of mRNAs encoding proteins involved in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Andrew Bottley

    2010-09-01

    Full Text Available Alzheimer's disease (AD is the main cause of dementia in our increasingly aging population. The debilitating cognitive and behavioral symptoms characteristic of AD make it an extremely distressing illness for patients and carers. Although drugs have been developed to treat AD symptoms and to slow disease progression, there is currently no cure. The incidence of AD is predicted to increase to over one hundred million by 2050, placing a heavy burden on communities and economies, and making the development of effective therapies an urgent priority. Two proteins are thought to have major contributory roles in AD: the microtubule associated protein tau, also known as MAPT; and the amyloid-beta peptide (A-beta, a cleavage product of amyloid precursor protein (APP. Oxidative stress is also implicated in AD pathology from an early stage. By targeting eIF4A, an RNA helicase involved in translation initiation, the synthesis of APP and tau, but not neuroprotective proteins, can be simultaneously and specifically reduced, representing a novel avenue for AD intervention. We also show that protection from oxidative stress is increased upon eIF4A inhibition. We demonstrate that the reduction of these proteins is not due to changes in mRNA levels or increased protein degradation, but is a consequence of translational repression conferred by inhibition of the helicase activity of eIF4A. Inhibition of eIF4A selectively and simultaneously modulates the synthesis of proteins involved in Alzheimer's disease: reducing A-beta and tau synthesis, while increasing proteins predicted to be neuroprotective.

  16. A novel enzyme portfolio for red algal polysaccharide degradation in the marine bacterium Paraglaciecola hydrolytica S66T encoded in a sizeable polysaccharide utilization locus

    DEFF Research Database (Denmark)

    Schultz-Johansen, Mikkel; Bech, Pernille Kjersgaard; Hennessy, Rosanna Catherine

    2018-01-01

    with functional analysis to uncover the potential of this bacterium to produce enzymes for the hydrolysis of complex marine polysaccharides. A special feature of P. hydrolytica S66T is the presence of a large genomic region harboring an array of carbohydrate-active enzymes (CAZymes) notably agarases...... and carrageenases. Based on a first functional characterization combined with a comparative sequence analysis, we confirmed the enzymatic activities of several enzymes required for red algal polysaccharide degradation by the bacterium. In particular, we report for the first time, the discovery of novel enzyme...

  17. MMS2, Encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway

    International Nuclear Information System (INIS)

    Broomfield, S.; Chow, B.L.; Xiao, W.

    1998-01-01

    Among the three Saccharomyces cerevisiae DNA repair epistasis groups, the RAD6 group is the most complicated and least characterized, primarily because it consists of two separate repair pathways: an error-free postreplication repair pathway, and a mutagenesis pathway. The rad6 and rad18 mutants are defective in both pathways, and the rev3 mutant affects only the mutagenesis pathway, but a yeast gene that is involved only in error-free postreplication repair has not been reported. We cloned the MMS2 gene from a yeast genomic library by functional complementation of the mms2-1 mutant [Prakash, L. and Prakash, S. (1977) Genetics 86, 33-55]. MMS2 encodes a 137-amino acid, 15.2-kDa protein with significant sequence homology to a conserved family of ubiquitin-conjugating (Ubc) proteins. However, Mms2 does not appear to possess Ubc activity. Genetic analyses indicate that the mms2 mutation is hypostatic to rad6 and rad18 but is synergistic with the rev3 mutation, and the mms2 mutant is proficient in UV-induced mutagenesis. These phenotypes are reminiscent of a pol30-46 mutant known to be impaired in postreplication repair. The mms2 mutant also displayed a REV3-dependent mutator phenotype, strongly suggesting that the MMS2 gene functions in the error-free postreplication repair pathway, parallel to the REV3 mutagenesis pathway. Furthermore, with respect to UV sensitivity, mms2 was found to be hypostatic to the rad6 delta 1-9 mutation, which results in the absence of the first nine amino acids of Rad6. On the basis of these collective results, we propose that the mms2 null mutation and two other allele-specific mutations, rad6 delta 1-9 and pol30-46, define the error-free mode of DNA postreplication repair, and that these mutations may enhance both spontaneous and DNA damage-induced mutagenesis

  18. Biallelic mutation of UNC50, encoding a protein involved in AChR trafficking, is responsible for arthrogryposis.

    Science.gov (United States)

    Abiusi, Emanuela; D'Alessandro, Manuela; Dieterich, Klaus; Quevarec, Loic; Turczynski, Sandrina; Valfort, Aurore-Cecile; Mezin, Paulette; Jouk, Pierre Simon; Gut, Marta; Gut, Ivo; Bessereau, Jean Louis; Melki, Judith

    2017-10-15

    Arthrogryposis multiplex congenita (AMC) is a developmental condition characterized by multiple joint contractures resulting from reduced or absent fetal movements. Homozygosity mapping of disease loci combined with whole exome sequencing in a consanguineous family presenting with lethal AMC allowed the identification of a homozygous frameshift deletion in UNC50 gene (c.750_751del:p.Cys251Phefs*4) in the index case. To assess the effect of the mutation, an equivalent mutation in the Caenorhabditis elegans orthologous gene was created using CRISPR/Cas9. We demonstrated that unc-50(kr331) modification caused the loss of acetylcholine receptor (AChR) expression in C. elegans muscle. unc-50(kr331) animals were as resistant to the cholinergic agonist levamisole as unc-50 null mutants suggesting that AChRs were no longer expressed in this animal model. This was confirmed by using a knock-in strain in which a red fluorescent protein was inserted into the AChR locus: no signal was detected in unc-50(kr331) background, suggesting that UNC-50, a protein known to be involved in AChR trafficking, was no longer functional. These data indicate that biallelic mutation in the UNC50 gene underlies AMC through a probable loss of AChR expression at the neuromuscular junction which is essential for the cholinergic transmission during human muscle development. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Molecular and enzymatic characterization of two enzymes BmPCD and BmDHPR involving in the regeneration pathway of tetrahydrobiopterin from the silkworm Bombyx mori.

    Science.gov (United States)

    Li, Wentian; Gong, Meixia; Shu, Rui; Li, Xin; Gao, Junshan; Meng, Yan

    2015-08-01

    Tetrahydrobiopterin (BH4) is an essential cofactor of aromatic amino acid hydroxylases and nitric oxide synthase so that BH4 plays a key role in many biological processes. BH4 deficiency is associated with numerous metabolic syndromes and neuropsychological disorders. BH4 concentration in mammals is maintained through a de novo synthesis pathway and a regeneration pathway. Previous studies showed that the de novo pathway of BH4 is similar between insects and mammals. However, knowledge about the regeneration pathway of BH4 (RPB) is very limited in insects. Several mutants in the silkworm Bombyx mori have been approved to be associated with BH4 deficiency, which are good models to research on the RPB in insects. In this study, homologous genes encoding two enzymes, pterin-4a-carbinolamine dehydratase (PCD) and dihydropteridine reductase (DHPR) involving in RPB have been cloned and identified from B. mori. Enzymatic activity of DHPR was found in the fat body of wild type silkworm larvae. Together with the transcription profiles, it was indicated that BmPcd and BmDhpr might normally act in the RPB of B. mori and the expression of BmDhpr was activated in the brain and sexual glands while BmPcd was expressed in a wider special pattern when the de novo pathway of BH4 was lacked in lemon. Biochemical analyses showed that the recombinant BmDHPR exhibited high enzymatic activity and more suitable parameters to the coenzyme of NADH in vitro. The results in this report give new information about the RPB in B. mori and help in better understanding insect BH4 biosynthetic networks. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. EsrE-A yigP Locus-Encoded Transcript-Is a 3′ UTR sRNA Involved in the Respiratory Chain of E. coli

    Directory of Open Access Journals (Sweden)

    Hui Xia

    2017-08-01

    Full Text Available The yigP locus is widely conserved among γ-proteobacteria. Mutation of the yigP locus impacts aerobic growth of Gram-negative bacteria. However, the underlying mechanism of how the yigP locus influences aerobic growth remains largely unknown. Here, we demonstrated that the yigP locus in Escherichia coli encodes two transcripts; the mRNA of ubiquinone biosynthesis protein, UbiJ, and the 3′ untranslated region small regulatory RNA (sRNA, EsrE. EsrE is an independent transcript that is transcribed using an internal promoter of the yigP locus. Surprisingly, we found that both the EsrE sRNA and UbiJ protein were required for Q8 biosynthesis, and were sufficient to rescue the growth defect ascribed to deletion of the yigP locus. Moreover, our data showed that EsrE targeted multiple mRNAs involved in several cellular processes including murein biosynthesis and the tricarboxylic acid cycle. Among these targets, sdhD mRNA that encodes one subunit of succinate dehydrogenase (SDH, was significantly activated. Our findings provided an insight into the important function of EsrE in bacterial adaptation to various environments, as well as coordinating different aspects of bacterial physiology.

  1. Involvement of the VDE homing endonuclease and rapamycin in regulation of the Saccharomyces cerevisiae GSH11 gene encoding the high affinity glutathione transporter.

    Science.gov (United States)

    Miyake, Tsuyoshi; Hiraishi, Hiroyuki; Sammoto, Hiroyuki; Ono, Bun-Ichiro

    2003-10-10

    The Saccharomyces cerevisiae gene HGT1/GSH11 encodes the high affinity glutathione transporter and is repressed by cysteine added to the culture medium. It has been found previously that a 5'-upstream cis-element, CCGCCACAC, is responsible for regulating GSH11 expression and that several proteins bind to this element (Miyake, T., Kanayama, M., Sammoto, H., and Ono, B. (2002) Mol. Genet. Genomics 266, 1004-1011). In this report we present evidence that the most prominent of these proteins is VDE, known previously as the homing endonuclease encoded by VMA1. We show also that GSH11 is not expressed in a VDE-deleted strain and that inability to express the GSH11 of this strain is overcome by introduction of the coding region of VDE or the entire VMA1 gene. It is also found that VDE does not cut DNA in the vicinity of the GSH11 cis-element. Rapamycin, an inhibitor of the target of rapamycin (TOR) signal-transduction system, is found to enhance expression of GSH11 in a VDE-dependent manner under conditions of sulfur starvation. These results indicate that GSH11 is regulated by a system sensitive to sulfur starvation (presumably via cysteine depletion) and a more general system involving the nutritional starvation signal mediated by the TOR system. Both systems need to be operational (inhibition of TOR and sulfur starvation) for full expression of GSH11.

  2. Saccharomyces cerevisiae KTR4, KTR5 and KTR7 encode mannosyltransferases differentially involved in the N- and O-linked glycosylation pathways.

    Science.gov (United States)

    Hernández, Nahúm V; López-Ramírez, Luz A; Díaz-Jiménez, Diana F; Mellado-Mojica, Erika; Martínez-Duncker, Iván; López, Mercedes G; Mora-Montes, Héctor M

    2017-10-01

    Saccharomyces cerevisiae is a model to understand basic aspects of protein glycosylation pathways. Although these metabolic routes have been thoroughly studied, there are still knowledge gaps; among them, the role of the MNT1/KRE2 gene family. This family is composed of nine members, with only six functionally characterized. The enzymes Ktr1, Ktr3, and Mnt1/Kre2 have overlapping activities in both O-linked and N-linked glycan synthesis; while Ktr2 and Yur1 participate exclusively in the elongation of the N-linked glycan outer chain. KTR6 encodes for a phosphomannosyltransferase that synthesizes the cell wall phosphomannan. Here, we aimed to establish the functional role of KTR4, KTR5 and KTR7 in the protein glycosylation pathways, by using heterologous complementation in Candida albicans null mutants lacking members of the MNT1/KRE2 gene family. The three S. cerevisiae genes restored defects in the C. albicans N-linked glycosylation pathway. KTR5 and KTR7 partially complemented a C. albicans null mutant with defects in the synthesis of O-linked glycans, and only KTR4 fully elongated the O-linked glycans like wild-type cells. Therefore, our results suggest that the three genes have a redundant activity in the S. cerevisiae N-linked glycosylation pathway, but KTR4 plays a major role in O-linked glycan synthesis. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  3. A Novel Enzyme Portfolio for Red Algal Polysaccharide Degradation in the Marine Bacterium Paraglaciecola hydrolytica S66T Encoded in a Sizeable Polysaccharide Utilization Locus

    Directory of Open Access Journals (Sweden)

    Mikkel Schultz-Johansen

    2018-05-01

    Full Text Available Marine microbes are a rich source of enzymes for the degradation of diverse polysaccharides. Paraglaciecola hydrolytica S66T is a marine bacterium capable of hydrolyzing polysaccharides found in the cell wall of red macroalgae. In this study, we applied an approach combining genomic mining with functional analysis to uncover the potential of this bacterium to produce enzymes for the hydrolysis of complex marine polysaccharides. A special feature of P. hydrolytica S66T is the presence of a large genomic region harboring an array of carbohydrate-active enzymes (CAZymes notably agarases and carrageenases. Based on a first functional characterization combined with a comparative sequence analysis, we confirmed the enzymatic activities of several enzymes required for red algal polysaccharide degradation by the bacterium. In particular, we report for the first time, the discovery of novel enzyme activities targeting furcellaran, a hybrid carrageenan containing both β-carrageenan and κ/β-carrageenan motifs. Some of these enzymes represent a new subfamily within the CAZy classification. From the combined analyses, we propose models for the complete degradation of agar and κ/β-type carrageenan by P. hydrolytica S66T. The novel enzymes described here may find value in new bio-based industries and advance our understanding of the mechanisms responsible for recycling of red algal polysaccharides in marine ecosystems.

  4. A Novel Enzyme Portfolio for Red Algal Polysaccharide Degradation in the Marine Bacterium Paraglaciecola hydrolytica S66T Encoded in a Sizeable Polysaccharide Utilization Locus.

    Science.gov (United States)

    Schultz-Johansen, Mikkel; Bech, Pernille K; Hennessy, Rosanna C; Glaring, Mikkel A; Barbeyron, Tristan; Czjzek, Mirjam; Stougaard, Peter

    2018-01-01

    Marine microbes are a rich source of enzymes for the degradation of diverse polysaccharides. Paraglaciecola hydrolytica S66 T is a marine bacterium capable of hydrolyzing polysaccharides found in the cell wall of red macroalgae. In this study, we applied an approach combining genomic mining with functional analysis to uncover the potential of this bacterium to produce enzymes for the hydrolysis of complex marine polysaccharides. A special feature of P. hydrolytica S66 T is the presence of a large genomic region harboring an array of carbohydrate-active enzymes (CAZymes) notably agarases and carrageenases. Based on a first functional characterization combined with a comparative sequence analysis, we confirmed the enzymatic activities of several enzymes required for red algal polysaccharide degradation by the bacterium. In particular, we report for the first time, the discovery of novel enzyme activities targeting furcellaran, a hybrid carrageenan containing both β-carrageenan and κ/β-carrageenan motifs. Some of these enzymes represent a new subfamily within the CAZy classification. From the combined analyses, we propose models for the complete degradation of agar and κ/β-type carrageenan by P. hydrolytica S66 T . The novel enzymes described here may find value in new bio-based industries and advance our understanding of the mechanisms responsible for recycling of red algal polysaccharides in marine ecosystems.

  5. Characterization of the gene encoding serine acetyltransferase, a regulated enzyme of cysteine biosynthesis from the protist parasites Entamoeba histolytica and Entamoeba dispar. Regulation and possible function of the cysteine biosynthetic pathway in Entamoeba.

    Science.gov (United States)

    Nozaki, T; Asai, T; Sanchez, L B; Kobayashi, S; Nakazawa, M; Takeuchi, T

    1999-11-05

    The enteric protist parasites Entamoeba histolytica and Entamoeba dispar possess a cysteine biosynthetic pathway, unlike their mammalian host, and are capable of de novo production of L-cysteine. We cloned and characterized cDNAs that encode the regulated enzyme serine acetyltransferase (SAT) in this pathway from these amoebae by genetic complementation of a cysteine-auxotrophic Escherichia coli strain with the amoebic cDNA libraries. The deduced amino acid sequences of the amoebic SATs exhibited, within the most conserved region, 36-52% identities with the bacterial and plant SATs. The amoebic SATs contain a unique insertion of eight amino acids, also found in the corresponding region of a plasmid-encoded SAT from Synechococcus sp., which showed the highest overall identities to the amoebic SATs. Phylogenetic reconstruction also revealed a close kinship of the amoebic SATs with cyanobacterial SATs. Biochemical characterization of the recombinant E. histolytica SAT revealed several enzymatic features that distinguished the amoebic enzyme from the bacterial and plant enzymes: 1) inhibition by L-cysteine in a competitive manner with L-serine; 2) inhibition by L-cystine; and 3) no association with cysteine synthase. Genetically engineered amoeba strains that overproduced cysteine synthase and SAT were created. The cysteine synthase-overproducing amoebae had a higher level of cysteine synthase activity and total thiol content and revealed increased resistance to hydrogen peroxide. These results indicate that the cysteine biosynthetic pathway plays an important role in antioxidative defense of these enteric parasites.

  6. A new 1-deoxy-D-xylulose 5-phosphate reductoisomerase gene encoding the committed-step enzyme in the MEP pathway from Rauvolfia verticillata.

    Science.gov (United States)

    Liao, Zhihua; Chen, Rong; Chen, Min; Yang, Chunxian; Wang, Qiang; Gong, Yifu

    2007-01-01

    1-Deoxy-D-xylulose 5-phosphate (DXP) reductoisomerase (DXR; EC 1.1.1.267) catalyzes a committed step of the methylerythritol phosphate (MEP) pathway for the biosynthesis of pharmaceutical terpenoid indole alkaloid (TIA) precursors. The full-length cDNA sequence was cloned and characterized from a TIA-producing species, Rauvolfia verticillata, using rapid amplification of cDNA ends (RACE) technique. The new cDNA was named as RvDXR and submitted to GenBank to be assigned with an accession number (DQ779286). The full-length cDNA of RvDXR was 1804 bp containing a 1425 bp open reading frame (ORF) encoding a polypeptide of 474 amino acids with a calculated molecular mass of 51.3 kDa and an isoelectric point of 5.88. Comparative and bioinformatic analyses revealed that RvDXR showed extensive homology with DXRs from other plant species and contained a conserved transit peptide for plastids, an extended Pro-rich region and a highly conserved NADPH-binding motif in its N-terminal region owned by all plant DXRs. The phylogenetic analysis revealed that DXRs had two groups including a plant and bacterial group; RvDXR belonged to angiosperm DXRs that were obtained from Synechocystis through gene transfer according to the phylogenetic analysis. The structural modeling of RvDXR showed that RvDXR had the typical V-shaped structure of DXR proteins. The tissue expression pattern analysis indicated that RvDXR expressed in all tissues including roots, stems, leaves, fruits and followers but at different levels. The lowest transcription level was observed in followers and the highest transcription was found in fruits of R. verticillata; the transcription level of RvDXR was a little higher in roots and stems than in leaves. The cloning and characterization of RvDXR will be helpful to understand more about the role of DXR involved in R. verticillata TIA biosynthesis at the molecular level and provides a candidate gene for metabolic engineering of the TIAs pathway in R. verticillata.

  7. Involvement of TNF-α converting enzyme in the development of psoriasis-like lesions in a mouse model.

    Directory of Open Access Journals (Sweden)

    Kenji Sato

    Full Text Available TNF-α plays a crucial role in psoriasis; therefore, TNF inhibition has become a gold standard for the treatment of psoriasis. TNF-α is processed from a membrane-bound form by TNF-α converting enzyme (TACE to soluble form, which exerts a number of biological activities. EGF receptor (EGFR ligands, including heparin-binding EGF-like growth factor (HB-EGF, amphiregulin and transforming growth factor (TGF-α are also TACE substrates and are psoriasis-associated growth factors. Vascular endothelial growth factor (VEGF, one of the downstream molecules of EGFR and TNF signaling, plays a key role in angiogenesis for developing psoriasis. In the present study, to assess the possible role of TACE in the pathogenesis of psoriasis, we investigated the involvement of TACE in TPA-induced psoriasis-like lesions in K5.Stat3C mice, which represent a mouse model of psoriasis. In this mouse model, TNF-α, amphiregulin, HB-EGF and TGF-α were significantly up-regulated in the skin lesions, similar to human psoriasis. Treatment of K5.Stat3C mice with TNF-α or EGFR inhibitors attenuated the skin lesions, suggesting the roles of TACE substrates in psoriasis. Furthermore, the skin lesions of K5.Stat3C mice showed down-regulation of tissue inhibitor of metalloproteinase-3, an endogenous inhibitor of TACE, and an increase in soluble TNF-α. A TACE inhibitor abrogated EGFR ligand-dependent keratinocyte proliferation and VEGF production in vitro, suggesting that TACE was involved in both epidermal hyperplasia and angiogenesis during psoriasis development. These results strongly suggest that TACE contributes to the development of psoriatic lesions through releasing two kinds of psoriasis mediators, TNF-α and EGFR ligands. Therefore, TACE could be a potential therapeutic target for the treatment of psoriasis.

  8. A Root-Preferential DFR-Like Gene Encoding Dihydrokaempferol Reductase Involved in Anthocyanin Biosynthesis of Purple-Fleshed Sweet Potato.

    Science.gov (United States)

    Liu, Xiaoqiang; Xiang, Min; Fan, Yufang; Yang, Chunxian; Zeng, Lingjiang; Zhang, Qitang; Chen, Min; Liao, Zhihua

    2017-01-01

    Purple-fleshed sweet potato is good for health due to rich anthocyanins in tubers. Although the anthocyanin biosynthetic pathway is well understood in up-ground organs of plants, the knowledge on anthocyanin biosynthesis in underground tubers is limited. In the present study, we isolated and functionally characterized a root-preferential gene encoding dihydrokaempferol reductase ( IbDHKR ) from purple-fleshed sweet potato. IbDHKR showed highly similarity with the reported dihydroflavonol reductases in other plant species at the sequence levels and the NADPH-binding motif and the substrate-binding domain were also found in IbDHKR. The tissue profile showed that IbDHKR was expressed in all the tested organs, but with much higher level in tuber roots. The expression level of IbDHKR was consistent with the anthocyanin content in sweet potato organs, suggesting that tuber roots were the main organs to synthesize anthocyanins. The recombinant 44 kD IbDHKR was purified and fed by three different dihydroflavonol substrates including dihydrokaempferol (DHK), dihydroquerctin, and dihydromyrecetin. The substrate feeding assay indicated that only DHK could be accepted as substrate by IbDHKR, which was reduced to leucopelargonidin confirmed by LC-MS. Finally, IbDHKR was overexpressed in transgenic tobacco. The IbDHKR-overexpression tobacco corolla was more highly pigmented and contained higher level of anthocyanins than the wild-type tobacco corolla. In summary, IbDHKR was a root-preferential gene involved in anthocyanin biosynthesis and its encoding protein, specifically catalyzing DHK reduction to yield leucopelargonidin, was a candidate gene for engineering anthocyanin biosynthetic pathway.

  9. Tomato UDP-Glucose Sterol Glycosyltransferases: A Family of Developmental and Stress Regulated Genes that Encode Cytosolic and Membrane-Associated Forms of the Enzyme

    Directory of Open Access Journals (Sweden)

    Karla Ramirez-Estrada

    2017-06-01

    Full Text Available Sterol glycosyltransferases (SGTs catalyze the glycosylation of the free hydroxyl group at C-3 position of sterols to produce sterol glycosides. Glycosylated sterols and free sterols are primarily located in cell membranes where in combination with other membrane-bound lipids play a key role in modulating their properties and functioning. In contrast to most plant species, those of the genus Solanum contain very high levels of glycosylated sterols, which in the case of tomato may account for more than 85% of the total sterol content. In this study, we report the identification and functional characterization of the four members of the tomato (Solanum lycopersicum cv. Micro-Tom SGT gene family. Expression of recombinant SlSGT proteins in E. coli cells and N. benthamiana leaves demonstrated the ability of the four enzymes to glycosylate different sterol species including cholesterol, brassicasterol, campesterol, stigmasterol, and β-sitosterol, which is consistent with the occurrence in their primary structure of the putative steroid-binding domain found in steroid UDP-glucuronosyltransferases and the UDP-sugar binding domain characteristic for a superfamily of nucleoside diphosphosugar glycosyltransferases. Subcellular localization studies based on fluorescence recovery after photobleaching and cell fractionation analyses revealed that the four tomato SGTs, like the Arabidopsis SGTs UGT80A2 and UGT80B1, localize into the cytosol and the PM, although there are clear differences in their relative distribution between these two cell fractions. The SlSGT genes have specialized but still largely overlapping expression patterns in different organs of tomato plants and throughout the different stages of fruit development and ripening. Moreover, they are differentially regulated in response to biotic and abiotic stress conditions. SlSGT4 expression increases markedly in response to osmotic, salt, and cold stress, as well as upon treatment with abscisic

  10. The influence of a polymorphism in the gene encoding angiotensin converting enzyme (ACE on treatment outcomes in late-onset Pompe patients receiving alglucosidase alfa

    Directory of Open Access Journals (Sweden)

    Rena C. Baek

    2016-09-01

    Full Text Available Correlations between angiotensin-converting enzyme (ACE genotype (I/I, I/D, D/D, disease severity at baseline and response to enzyme replacement therapy (ERT were assessed in the Pompe disease Late-Onset Treatment Study (LOTS. No correlations were observed between ACE genotype and disease severity at baseline. However, D/D patients appeared to have a reduced response to alglucosidase alfa treatment than I/I or I/D patients, suggesting that ACE polymorphisms may influence the response to alglucosidase alfa treatment and warrants further investigation.

  11. Indirect Enzyme-Linked Immunosorbent Assay for Detection of Immunoglobulin G Reactive with a Recombinant Protein Expressed from the Gene Encoding the 116-Kilodalton Protein of Mycoplasma pneumoniae

    OpenAIRE

    Duffy, Michael F.; Whithear, Kevin G.; Noormohammadi, Amir H.; Markham, Philip F.; Catton, Michael; Leydon, Jennie; Browning, Glenn F.

    1999-01-01

    Serology remains the method of choice for laboratory diagnosis of Mycoplasma pneumoniae infection. Currently available serological tests employ complex cellular fractions of M. pneumoniae as antigen. To improve the specificity of M. pneumoniae diagnosis, a recombinant protein was assessed as a serodiagnostic reagent. A panel of recombinant proteins were expressed from a cloned M. pneumoniae gene that encodes a 116-kDa surface protein antigen. The recombinant proteins were assessed for reactiv...

  12. Solubilization of low-rank coal by Trichoderma atroviride: Evidence for the involvement of hydrolytic and oxidative enzymes by using C-14-labelled lignite

    Energy Technology Data Exchange (ETDEWEB)

    Holker, U.; Schmiers, H.; Grosse, S.; Winkelhofer, M.; Polsakiewicz, M.; Ludwig, S.; Dohse, J.; Hofer, M. [University of Bonn, Bonn (Germany). Inst. of Botany

    2002-04-01

    The deuteromycete Trichoderma atroviride is able to solubilize lignite in dependence on a given carbon source for growth. When cultivated on media containing glutamate, this mold excreted a set of different enzymes with hydrolytic activity. Addition of lignite to the growth media induced the synthesis of extracellular lignite-specific esterase activity but no evidence has been provided for its direct involvement in the process of lignite solubilization. Hence, the basic capability of T. atroviride enzymes to degrade a variety of ester and ether bonds at the surface or within the bulky lignite structure was tested using coal following its direct labelling with C-14-alkyl iodide. The participation of hydrolytic and oxidative enzymes in lignite degradation was assessed by measuring the release of C-14 radioactivity from selectively alkylated carboxylic and phenolic OH groups. T. atroviride cleaved both carboxylic esters using esterases and the phenolic ether bonds by using oxidative enzymes, most likely laccases.

  13. Cloning, Sequencing, and Expression of the Gene Encoding Cyclic 2,3-Diphosphoglycerate Synthetase, the Key Enzyme of Cyclic 2,3-Diphosphoglycerate Metabolism in Methanothermus fervidus

    Science.gov (United States)

    Matussek, Karl; Moritz, Patrick; Brunner, Nina; Eckerskorn, Christoph; Hensel, Reinhard

    1998-01-01

    Cyclic 2,3-diphosphoglycerate synthetase (cDPGS) catalyzes the synthesis of cyclic 2,3-diphosphoglycerate (cDPG) by formation of an intramolecular phosphoanhydride bond in 2,3-diphosphoglycerate. cDPG is known to be accumulated to high intracellular concentrations (>300 mM) as a putative thermoadapter in some hyperthermophilic methanogens. For the first time, we have purified active cDPGS from a methanogen, the hyperthermophilic archaeon Methanothermus fervidus, sequenced the coding gene, and expressed it in Escherichia coli. cDPGS purification resulted in enzyme preparations containing two isoforms differing in their electrophoretic mobility under denaturing conditions. Since both polypeptides showed the same N-terminal amino acid sequence and Southern analyses indicate the presence of only one gene coding for cDPGS in M. fervidus, the two polypeptides originate from the same gene but differ by a not yet identified modification. The native cDPGS represents a dimer with an apparent molecular mass of 112 kDa and catalyzes the reversible formation of the intramolecular phosphoanhydride bond at the expense of ATP. The enzyme shows a clear preference for the synthetic reaction: the substrate affinity and the Vmax of the synthetic reaction are a factor of 8 to 10 higher than the corresponding values for the reverse reaction. Comparison with the kinetic properties of the electrophoretically homogeneous, apparently unmodified recombinant enzyme from E. coli revealed a twofold-higher Vmax of the enzyme from M. fervidus in the synthesizing direction. PMID:9811660

  14. Cloning, sequencing, and expression of the gene encoding cyclic 2, 3-diphosphoglycerate synthetase, the key enzyme of cyclic 2, 3-diphosphoglycerate metabolism in Methanothermus fervidus.

    Science.gov (United States)

    Matussek, K; Moritz, P; Brunner, N; Eckerskorn, C; Hensel, R

    1998-11-01

    Cyclic 2,3-diphosphoglycerate synthetase (cDPGS) catalyzes the synthesis of cyclic 2,3-diphosphoglycerate (cDPG) by formation of an intramolecular phosphoanhydride bond in 2,3-diphosphoglycerate. cDPG is known to be accumulated to high intracellular concentrations (>300 mM) as a putative thermoadapter in some hyperthermophilic methanogens. For the first time, we have purified active cDPGS from a methanogen, the hyperthermophilic archaeon Methanothermus fervidus, sequenced the coding gene, and expressed it in Escherichia coli. cDPGS purification resulted in enzyme preparations containing two isoforms differing in their electrophoretic mobility under denaturing conditions. Since both polypeptides showed the same N-terminal amino acid sequence and Southern analyses indicate the presence of only one gene coding for cDPGS in M. fervidus, the two polypeptides originate from the same gene but differ by a not yet identified modification. The native cDPGS represents a dimer with an apparent molecular mass of 112 kDa and catalyzes the reversible formation of the intramolecular phosphoanhydride bond at the expense of ATP. The enzyme shows a clear preference for the synthetic reaction: the substrate affinity and the Vmax of the synthetic reaction are a factor of 8 to 10 higher than the corresponding values for the reverse reaction. Comparison with the kinetic properties of the electrophoretically homogeneous, apparently unmodified recombinant enzyme from E. coli revealed a twofold-higher Vmax of the enzyme from M. fervidus in the synthesizing direction.

  15. Key Feature of the Catalytic Cycle of TNF-α Converting Enzyme Involves Communication Between Distal Protein Sites and the Enzyme Catalytic Core

    International Nuclear Information System (INIS)

    Solomon, A.; Akabayov, B.; Frenkel, A.; Millas, M.; Sagi, I.

    2007-01-01

    Despite their key roles in many normal and pathological processes, the molecular details by which zinc-dependent proteases hydrolyze their physiological substrates remain elusive. Advanced theoretical analyses have suggested reaction models for which there is limited and controversial experimental evidence. Here we report the structure, chemistry and lifetime of transient metal-protein reaction intermediates evolving during the substrate turnover reaction of a metalloproteinase, the tumor necrosis factor-α converting enzyme (TACE). TACE controls multiple signal transduction pathways through the proteolytic release of the extracellular domain of a host of membrane-bound factors and receptors. Using stopped-flow x-ray spectroscopy methods together with transient kinetic analyses, we demonstrate that TACE's catalytic zinc ion undergoes dynamic charge transitions before substrate binding to the metal ion. This indicates previously undescribed communication pathways taking place between distal protein sites and the enzyme catalytic core. The observed charge transitions are synchronized with distinct phases in the reaction kinetics and changes in metal coordination chemistry mediated by the binding of the peptide substrate to the catalytic metal ion and product release. Here we report key local charge transitions critical for proteolysis as well as long sought evidence for the proposed reaction model of peptide hydrolysis. This study provides a general approach for gaining critical insights into the molecular basis of substrate recognition and turnover by zinc metalloproteinases that may be used for drug design

  16. A Polyketide Synthase Encoded by the Gene An15g07920 Is Involved in the Biosynthesis of Ochratoxin A in Aspergillus niger.

    Science.gov (United States)

    Zhang, Jian; Zhu, Liuyang; Chen, Haoyu; Li, Min; Zhu, Xiaojuan; Gao, Qiang; Wang, Depei; Zhang, Ying

    2016-12-28

    The polyketide synthase gene An15g07920 was known in Aspergillus niger CBS 513.88 as putatively involved in the production of ochratoxin A (OTA). Genome resequencing analysis revealed that the gene An15g07920 is also present in the ochratoxin-producing A. niger strain 1062. Disruption of An15g07920 in A. niger 1062 removed its capacity to biosynthesize ochratoxin β (OTβ), ochratoxin α (OTα), and OTA. These results indicate that the polyketide synthase encoded by An15g07920 is a crucial player in the biosynthesis of OTA, in the pathway prior to the phenylalanine ligation step. The gene An15g07920 reached its maximum transcription level before OTA accumulation reached its highest level, confirming that gene transcription precedes OTA production. These findings will not only help explain the mechanism of OTA production in A. niger but also provide necessary information for the development of effective diagnostic, preventive, and control strategies to reduce the risk of OTA contamination in foods.

  17. PHL1 of Cercospora zeae-maydis encodes a member of the photolyase/cryptochrome family involved in UV protection and fungal development.

    Science.gov (United States)

    Bluhm, B H; Dunkle, L D

    2008-10-01

    DNA photolyases harvest light energy to repair genomic lesions induced by UV irradiation, whereas cryptochromes, presumptive descendants of 6-4 DNA photolyases, have evolved in plants and animals as blue-light photoreceptors that function exclusively in signal transduction. Orthologs of 6-4 photolyases are predicted to exist in the genomes of some filamentous fungi, but their function is unknown. In this study, we identified two putative photolyase-encoding genes in the maize foliar pathogen Cercospora zeae-maydis: CPD1, an ortholog of cyclobutane pyrimidine dimer (CPD) photolyases described in other filamentous fungi, and PHL1, a cryptochrome/6-4 photolyase-like gene. Strains disrupted in PHL1 (Deltaphl1) displayed abnormalities in development and secondary metabolism but were unaffected in their ability to infect maize leaves. After exposure to lethal doses of UV light, conidia of Deltaphl1 strains were abolished in photoreactivation and displayed reduced expression of CPD1, as well as RAD2 and RVB2, orthologs of genes involved in nucleotide excision and chromatin remodeling during DNA damage repair. This study presents the first characterization of a 6-4 photolyase ortholog in a filamentous fungus and provides evidence that PHL1 regulates responses to UV irradiation.

  18. Identification of human genes involved in cellular responses to ionizing radiation: molecular and cellular studies of gene encoding the p68 helicase in mammalian cells

    International Nuclear Information System (INIS)

    Menaa, F.

    2003-12-01

    Cells submitted to genotoxic factors -like IR- activate several and important mechanisms such as repair, cell cycle arrest or 'apoptosis' to maintain genetic integrity. So, the damaged cells will induce many and different genes. The human transcriptome analysis by 'SSH' method in a human breast carcinoma cell line MCF7 γ-irradiated versus not irradiated, allowed to identify about one hundred genes. Among of these genes, we have focused our study on a radio-induced gene encoding the p68 helicase. In the conditions of irradiation used, our results show that the kinetic and the regulation of this gene expression differs between the nature of radiations used. Indeed, in γ-irradiated mammalian cells, ATM, a protein kinase activated by DSB and IR, is required to induce quickly P68 gene via the important transcription factor p53 stabilized by IR. In the case of UVC-irradiated cells, the P68 gene induction is late and the intracellular signalling pathway that lead to this induction is independent from the p53 protein. Finally, we show that the p68 protein under-expression is responsible for an increased radiosensitivity of MCF7 cells. Consequently, we can postulate that the p68 protein is involved in cellular responses to radiations to reduce the increased radiosensitivity of cells exposed to γ-rays. (author)

  19. Genome-wide identification of bahd acyltransferases and in vivo characterization of HQT-like enzymes involved in caffeoylquinic acid synthesis in globe artichoke

    NARCIS (Netherlands)

    Moglia, Andrea; Acquadro, Alberto; Eljounaidi, Kaouthar; Milani, Anna M.; Cagliero, Cecilia; Rubiolo, Patrizia; Genre, Andrea; Cankar, Katarina; Beekwilder, Jules; Comino, Cinzia

    2016-01-01

    Globe artichoke (Cynara cardunculus L. var. scolymus) is a rich source of compounds promoting human health (phytonutrients), among them caffeoylquinic acids (CQAs), mainly represented by chlorogenic acid (CGA), and dicaffeoylquinic acids (diCQAs). The enzymes involved in their biosynthesis belong

  20. The Aspergillus niger faeB gene encodes a second feruloyl esterase involved in pectin and xylan degradation and is specifically induced in the presence of aromatic compounds

    NARCIS (Netherlands)

    Vries, de R.P.; vanKuyk, P.A.; Kester, H.C.M.; Visser, J.

    2002-01-01

    The faeB gene encoding a second feruloyl esterase from Aspergillus niger has been cloned and characterized. It consists of an open reading frame of 1644 bp containing one intron. The gene encodes a protein of 521 amino acids that has sequence similarity to that of an Aspergillus oryzae tannase.

  1. Human adenovirus early region 4 open reading frame 1 genes encode growth-transforming proteins that may be distantly related to dUTP pyrophosphatase enzymes.

    OpenAIRE

    Weiss, R S; Lee, S S; Prasad, B V; Javier, R T

    1997-01-01

    An essential oncogenic determinant of subgroup D human adenovirus type 9 (Ad9), which uniquely elicits estrogen-dependent mammary tumors in rats, is encoded by early region 4 open reading frame 1 (E4 ORF1). Whereas Ad9 E4 ORF1 efficiently induces transformed foci on the established rat embryo fibroblast cell line CREF, the related subgroup A Ad12 and subgroup C Ad5 E4 ORF1s do not (R. T. Javier, J. Virol. 68:3917-3924, 1994). In this study, we found that the lack of transforming activity asso...

  2. Rv3634c from Mycobacterium tuberculosis H37Rv encodes an enzyme with UDP-Gal/Glc and UDP-GalNAc 4-epimerase activities.

    Directory of Open Access Journals (Sweden)

    Peehu Pardeshi

    Full Text Available A bioinformatics study revealed that Mycobacterium tuberculosis H37Rv (Mtb contains sequence homologs of Campylobacter jejuni protein glycosylation enzymes. The ORF Rv3634c from Mtb was identified as a sequence homolog of C. jejuni UDP-Gal/GalNAc 4-epimerase. This study reports the cloning of Rv3634c and its expression as an N-terminal His-tagged protein. The recombinant protein was shown to have UDP-Gal/Glc 4-epimerase activity by GOD-POD assay and by reverse phase HPLC. This enzyme was shown to have UDP-GalNAc 4-epimerase activity also. Residues Ser121, Tyr146 and Lys150 were shown by site-directed mutagenesis to be important for enzyme activity. Mutation of Ser121 and Tyr146 to Ala and Phe, respectively, led to complete loss of activity whereas mutation of Lys150 to Arg led to partial loss of activity. There were no gross changes in the secondary structures of any of these three mutants. These results suggest that Ser121 and Tyr146 are essential for epimerase activity of Rv3634c. UDP-Gal/Glc 4-epimerases from other organisms also have a catalytic triad consisting of Ser, Tyr and Lys. The triad carries out proton transfer from nucleotide sugar to NAD+ and back, thus effecting the epimerization of the substrate. Addition of NAD+ to Lys150 significantly abrogates the loss of activity, suggesting that, as in other epimerases, NAD+ is associated with Rv3634c.

  3. High content of endogenous cytokinins stimulates activity of enzymes and proteins involved in stress response in Nicotiana tabacum

    Czech Academy of Sciences Publication Activity Database

    Synková, Helena; Semorádová, Šárka; Burketová, Lenka

    2004-01-01

    Roč. 79, č. 2 (2004), s. 169-179 ISSN 0167-6857 R&D Projects: GA ČR GA206/01/1061; GA ČR GA206/03/0310 Grant - others:Grantová agentura Univerzity Karlovy(CZ) 134/2001/B-Bio/PrF; Grantová agentura Univerzity Karlovy(CZ) Z5038910 Institutional research plan: CEZ:AV0Z5038910 Keywords : antioxidant enzymes * enzymes of intermediary metabolism * ex vitro Subject RIV: ED - Physiology Impact factor: 1.028, year: 2004

  4. An ultraviolet-sensitive maternal mRNA encoding a cytoskeletal protein may be involved in axis formation in the ascidian embryo

    International Nuclear Information System (INIS)

    Jeffery, W.R.

    1990-01-01

    Ultraviolet (uv) irradiation of the vegetal hemisphere of fertilized eggs during ooplasmic segregation inhibits subsequent gastrulation and axis formation in ascidian embryos. The molecular basis of this phenomenon was investigated in by comparing in vivo protein synthesis and in vitro mRNA translation in normal and uv-irradiated embryos of the ascidian Styela clava. Analysis of protein synthesis by [35S]methionine incorporation, two-dimensional (2D) gel electrophoresis, and autoradiography showed that only 21 of 433 labeled polypeptides were missing or decreased in labeling intensity in uv-irradiated embryos. The most prominent of these was a 30,000 molecular weight (pI 6.0) polypeptide (p30). Extraction of gastrulae with the nonionic detergent Triton X-100 showed that p30 is retained in the detergent insoluble residue, suggesting that it is associated with the cytoskeleton. Several lines of evidence suggest that p30 may be involved in axis formation. First, p30 labeling peaks during gastrulation, when the embryonic axis is being established. Second, axis formation and p30 labeling are abolished by the same threshold uv dose, which is distinct from that required to inactivate muscle cell development. Third, the uv sensitivity period for abolishing p30 labeling and axis formation are both restricted to ooplasmic segregation. In vitro translation of egg RNA followed by 2D gel electrophoresis and autoradiography of the protein products showed that p30 is encoded by a maternal mRNA. The translation of p30 mRNA was abolished by uv irradiation of fertilized eggs during ooplasmic segregation suggesting that this message is a uv-sensitive target. The results are consistent with the hypothesis that uv irradiation blocks gastrulation and axis formation by inhibiting the translation of maternal mRNA localized in the vegetal hemisphere of the fertilized egg

  5. One of the Two Genes Encoding Nucleoid-Associated HU Proteins in Streptomyces coelicolor Is Developmentally Regulated and Specifically Involved in Spore Maturation▿ †

    Science.gov (United States)

    Salerno, Paola; Larsson, Jessica; Bucca, Giselda; Laing, Emma; Smith, Colin P.; Flärdh, Klas

    2009-01-01

    Streptomyces genomes encode two homologs of the nucleoid-associated HU proteins. One of them, here designated HupA, is of a conventional type similar to E. coli HUα and HUβ, while the other, HupS, is a two-domain protein. In addition to the N-terminal part that is similar to that of HU proteins, it has a C-terminal domain that is similar to the alanine- and lysine-rich C termini of eukaryotic linker histones. Such two-domain HU proteins are found only among Actinobacteria. In this phylum some organisms have only a single HU protein of the type with a C-terminal histone H1-like domain (e.g., Hlp in Mycobacterium smegmatis), while others have only a single conventional HU. Yet others, including the streptomycetes, produce both types of HU proteins. We show here that the two HU genes in Streptomyces coelicolor are differentially regulated and that hupS is specifically expressed during sporulation, while hupA is expressed in vegetative hyphae. The developmental upregulation of hupS occurred in sporogenic aerial hyphal compartments and was dependent on the developmental regulators whiA, whiG, and whiI. HupS was found to be nucleoid associated in spores, and a hupS deletion mutant had an average nucleoid size in spores larger than that in the parent strain. The mutant spores were also defective in heat resistance and spore pigmentation, although they possessed apparently normal spore walls and displayed no increased sensitivity to detergents. Overall, the results show that HupS is specifically involved in sporulation and may affect nucleoid architecture and protection in spores of S. coelicolor. PMID:19717607

  6. Atypical profiles and modulations of heme-enzymes catalyzed outcomes by low amounts of diverse additives suggest diffusible radicals' obligatory involvement in such redox reactions.

    Science.gov (United States)

    Manoj, Kelath Murali; Parashar, Abhinav; Venkatachalam, Avanthika; Goyal, Sahil; Satyalipsu; Singh, Preeti Gunjan; Gade, Sudeep K; Periyasami, Kalaiselvi; Jacob, Reeba Susan; Sardar, Debosmita; Singh, Shanikant; Kumar, Rajan; Gideon, Daniel A

    2016-06-01

    Peroxidations mediated by heme-enzymes have been traditionally studied under a single-site (heme distal pocket), non-sequential (ping-pong), two-substrates binding scheme of Michaelis-Menten paradigm. We had reported unusual modulations of peroxidase and P450 reaction outcomes and explained it invoking diffusible reactive species [Manoj, 2006; Manoj et al., 2010; Andrew et al., 2011, Parashar et al., 2014 & Venkatachalam et al., 2016]. A systematic investigation of specific product formation rates was undertaken to probe the hypothesis that involvement of diffusible reactive species could explain undefined substrate specificities and maverick modulations (sponsored by additives) of heme-enzymes. When the rate of specific product formation was studied as a function of reactants' concentration or environmental conditions, we noted marked deviations from normal profiles. We report that heme-enzyme mediated peroxidations of various substrates are inhibited (or activated) by sub-equivalent concentrations of diverse redox-active additives and this is owing to multiple redox equilibriums in the milieu. At low enzyme and peroxide concentrations, the enzyme is seen to recycle via a one-electron (oxidase) cycle, which does not require the substrate to access the heme centre. Schemes are provided that explain the complex mechanistic cycle, kinetics & stoichiometry. It is not obligatory for an inhibitor or substrate to interact with the heme centre for influencing overall catalysis. Roles of diffusible reactive species explain catalytic outcomes at low enzyme and reactant concentrations. The current work highlights the scope/importance of redox enzyme reactions that could occur "out of the active site" in biological or in situ systems. Copyright © 2016 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  7. Increased production of biomass-degrading enzymes by double deletion of creA and creB genes involved in carbon catabolite repression in Aspergillus oryzae.

    Science.gov (United States)

    Ichinose, Sakurako; Tanaka, Mizuki; Shintani, Takahiro; Gomi, Katsuya

    2018-02-01

    In a previous study, we reported that a double gene deletion mutant for CreA and CreB, which constitute the regulatory machinery involved in carbon catabolite repression, exhibited improved production of α-amylase compared with the wild-type strain and single creA or creB deletion mutants in Aspergillus oryzae. Because A. oryzae can also produce biomass-degrading enzymes, such as xylolytic and cellulolytic enzymes, we examined the production levels of those enzymes in deletion mutants in this study. Xylanase and β-glucosidase activities in the wild-type were hardly detected in submerged culture containing xylose as the carbon source, whereas those enzyme activities were significantly increased in the single creA deletion (ΔcreA) and double creA and creB deletion (ΔcreAΔcreB) mutants. In particular, the ΔcreAΔcreB mutant exhibited >100-fold higher xylanase and β-glucosidase activities than the wild-type. Moreover, in solid-state culture, the β-glucosidase activity of the double deletion mutant was >7-fold higher than in the wild-type. These results suggested that deletion of both creA and creB genes could also efficiently improve the production levels of biomass-degrading enzymes in A. oryzae. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Heterologous expression, purification, crystallization and preliminary X-ray analysis of raucaffricine glucosidase, a plant enzyme specifically involved in Rauvolfia alkaloid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ruppert, Martin [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Panjikar, Santosh [European Molecular Biology Laboratory Hamburg, Outstation Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Barleben, Leif [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Stöckigt, Joachim [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); College of Pharmaceutical Sciences, Zhejiang University, 353 Yan An Road, 310031 Hangzhou (China)

    2006-03-01

    Raucaffricine glucosidase, an enzyme involved in the biosynthesis of monoterpenoid indole alkaloids in the plant Rauvolfia serpentina, was crystallized by the hanging-drop vapour-diffusion method using PEG4000 as precipitant. The crystals diffract to 2.3 Å resolution and belong to space group I222. Raucaffricine glucosidase (RG) is an enzyme that is specifically involved in the biosynthesis of indole alkaloids from the plant Rauvolfia serpentina. After heterologous expression in Escherichia coli cells, crystals of RG were obtained by the hanging-drop vapour-diffusion technique at 293 K with 0.3 M ammonium sulfate, 0.1 M sodium acetate pH 4.6 buffer and 11% PEG 4000 as precipitant. Crystals belong to space group I222 and diffract to 2.30 Å, with unit-cell parameters a = 102.8, b = 127.3, c = 215.8 Å.

  9. Heterologous expression, purification, crystallization and preliminary X-ray analysis of raucaffricine glucosidase, a plant enzyme specifically involved in Rauvolfia alkaloid biosynthesis

    International Nuclear Information System (INIS)

    Ruppert, Martin; Panjikar, Santosh; Barleben, Leif; Stöckigt, Joachim

    2006-01-01

    Raucaffricine glucosidase, an enzyme involved in the biosynthesis of monoterpenoid indole alkaloids in the plant Rauvolfia serpentina, was crystallized by the hanging-drop vapour-diffusion method using PEG4000 as precipitant. The crystals diffract to 2.3 Å resolution and belong to space group I222. Raucaffricine glucosidase (RG) is an enzyme that is specifically involved in the biosynthesis of indole alkaloids from the plant Rauvolfia serpentina. After heterologous expression in Escherichia coli cells, crystals of RG were obtained by the hanging-drop vapour-diffusion technique at 293 K with 0.3 M ammonium sulfate, 0.1 M sodium acetate pH 4.6 buffer and 11% PEG 4000 as precipitant. Crystals belong to space group I222 and diffract to 2.30 Å, with unit-cell parameters a = 102.8, b = 127.3, c = 215.8 Å

  10. Regulation of pelD and pelE, encoding major alkaline pectate lyases in Erwinia chrysanthemi: involvement of the main transcriptional factors.

    Science.gov (United States)

    Rouanet, C; Nomura, K; Tsuyumu, S; Nasser, W

    1999-10-01

    The main virulence factors of the phytopathogenic bacterium Erwinia chrysanthemi are pectinases which attack pectin, the major constituent of the plant cell wall. Of these enzymes, the alkaline isoenzyme named PelD in strain 3937 and PelE in strain EC16 has been described as being particularly important, based on virulence studies of plants. Expression of the pelD and pelE genes is tightly modulated by various regulators, including the KdgR repressor and the cyclic AMP-cyclic AMP receptor protein (CRP) activator complex. The use of a lacZ reporter gene allowed us to quantify the repression of E. chrysanthemi 3937 pelD expression exerted by PecS, another repressor of pectinase synthesis. In vitro DNA-protein interaction experiments, centered on the pelD and pelE wild-type or pelE mutated promoter regions, allowed us to define precisely the sequences involved in the binding of these three regulators and of RNA polymerase (RNAP). These studies revealed an unusual binding of the KdgR repressor and suggested the presence of a UP (upstream) element in the pelD and pelE genes. Investigation of the simultaneous binding of CRP, KdgR, PecS, and the RNAP to the regulatory region of the pelD and pelE genes showed that (i) CRP and RNAP bind cooperatively, (ii) PecS partially inhibits binding of the CRP activator and of the CRP-RNAP complex, and (iii) KdgR stabilizes the binding of PecS and prevents transcriptional initiation by RNAP. Taken together, our data suggest that PecS attenuates pelD and pelE expression rather than acting as a true repressor like KdgR. Overall, control of the pelD and pelE genes of E. chrysanthemi appears to be both complex and novel.

  11. A chromatin modifying enzyme, SDG8, is involved in morphological, gene expression, and epigenetic responses to mechanical stimulation

    OpenAIRE

    Cazzonelli, Christopher I.; Nisar, Nazia; Roberts, Andrea C.; Murray, Kevin D.; Borevitz, Justin O.; Pogson, Barry J.

    2014-01-01

    Thigmomorphogenesis is viewed as being a response process of acclimation to short repetitive bursts of mechanical stimulation or touch. The underlying molecular mechanisms that coordinate changes in how touch signals lead to long-term morphological changes are enigmatic. Touch responsive gene expression is rapid and transient, and no transcription factor or DNA regulatory motif has been reported that could confer a genome wide mechanical stimulus. We report here on a chromatin modifying enzym...

  12. Displacement encoder

    International Nuclear Information System (INIS)

    Hesketh, T.G.

    1983-01-01

    In an optical encoder, light from an optical fibre input A is encoded by means of the encoding disc and is subsequently collected for transmission via optical fibre B. At some point in the optical path between the fibres A and B, the light is separated into component form by means of a filtering or dispersive system and each colour component is associated with a respective one of the coding channels of the disc. In this way, the significance of each bit of the coded information is represented by a respective colour thereby enabling the components to be re-combined for transmission by the fibre B without loss of information. (author)

  13. A gene encoding an abscisic acid biosynthetic enzyme (LsNCED4) collocates with the high temperature germination locus Htg6.1 in lettuce (Lactuca sp.).

    Science.gov (United States)

    Argyris, Jason; Truco, María José; Ochoa, Oswaldo; McHale, Leah; Dahal, Peetambar; Van Deynze, Allen; Michelmore, Richard W; Bradford, Kent J

    2011-01-01

    Thermoinhibition, or failure of seeds to germinate when imbibed at warm temperatures, can be a significant problem in lettuce (Lactuca sativa L.) production. The reliability of stand establishment would be improved by increasing the ability of lettuce seeds to germinate at high temperatures. Genes encoding germination- or dormancy-related proteins were mapped in a recombinant inbred line population derived from a cross between L. sativa cv. Salinas and L. serriola accession UC96US23. This revealed several candidate genes that are located in the genomic regions containing quantitative trait loci (QTLs) associated with temperature and light requirements for germination. In particular, LsNCED4, a temperature-regulated gene in the biosynthetic pathway for abscisic acid (ABA), a germination inhibitor, mapped to the center of a previously detected QTL for high temperature germination (Htg6.1) from UC96US23. Three sets of sister BC(3)S(2) near-isogenic lines (NILs) that were homozygous for the UC96US23 allele of LsNCED4 at Htg6.1 were developed by backcrossing to cv. Salinas and marker-assisted selection followed by selfing. The maximum temperature for germination of NIL seed lots with the UC96US23 allele at LsNCED4 was increased by 2-3°C when compared with sister NIL seed lots lacking the introgression. In addition, the expression of LsNCED4 was two- to threefold lower in the former NIL lines as compared to expression in the latter. Together, these data strongly implicate LsNCED4 as the candidate gene responsible for the Htg6.1 phenotype and indicate that decreased ABA biosynthesis at high imbibition temperatures is a major factor responsible for the increased germination thermotolerance of UC96US23 seeds.

  14. Division of Giardia isolates from humans into two genetically distinct assemblages by electrophoretic analysis of enzymes encoded at 27 loci and comparison with Giardia muris.

    Science.gov (United States)

    Mayrhofer, G; Andrews, R H; Ey, P L; Chilton, N B

    1995-07-01

    Giardia that infect humans are known to be heterogeneous but they are assigned currently to a single species, Giardia intestinalis (syn. G. lamblia). The genetic differences that exist within G. intestinalis have not yet been assessed quantitatively and neither have they been compared in magnitude with those that exist between G. intestinalis and species that are morphologically similar (G. duodenalis) or morphologically distinct (e.g. G. muris). In this study, 60 Australian isolates of G. intestinalis were analysed electrophoretically at 27 enzyme loci and compared with G. muris and a feline isolate of G. duodenalis. Isolates of G. intestinalis were distinct genetically from both G. muris (approximately 80% fixed allelic differences) and the feline G. duodenalis isolate (approximately 75% fixed allelic differences). The G. intestinalis isolates were extremely heterogeneous but they fell into 2 major genetic assemblages, separated by fixed allelic differences at approximately 60% of loci examined. The magnitude of the genetic differences between the G. intestinalis assemblages approached the level that distinguished the G. duodenalis isolate from the morphologically distinct G. muris. This raises important questions about the evolutionary relationships of the assemblages with Homo sapiens, the possibility of ancient or contemporary transmission from animal hosts to humans and the biogeographical origins of the two clusters.

  15. Bioinformatic evaluation of L-arginine catabolic pathways in 24 cyanobacteria and transcriptional analysis of genes encoding enzymes of L-arginine catabolism in the cyanobacterium Synechocystis sp. PCC 6803

    Directory of Open Access Journals (Sweden)

    Pistorius Elfriede K

    2007-11-01

    cyanobacterial genomes revealed that five different L-arginine-degrading pathways are present in the investigated cyanobacterial species. In Synechocystis sp. PCC 6803 an L-arginine deiminase pathway and an L-arginine oxidase/dehydrogenase pathway represent the major pathways, while the L-arginine decarboxylase pathway most likely only functions in polyamine biosynthesis. The transcripts encoding the enzymes of the two major pathways were constitutively expressed with the exception of the transcript for the carbamate kinase, which was substantially up-regulated in cells grown with L-arginine.

  16. A gene encoding starch branching enzyme I (SBEI) in apple (Malusxdomestica, Rosaceae) and its phylogenetic relationship to Sbe genes from other angiosperms.

    Science.gov (United States)

    Han, Yuepeng; Gasic, Ksenija; Sun, Fengjie; Xu, Mingliang; Korban, Schuyler S

    2007-06-01

    An apple starch-branching enzyme SbeI gene (GenBank Accession No. DQ115404) has been isolated, cloned, and sequenced. The SbeI is a single copy gene in the apple genome, consisting of 14 exons and 13 introns, and covering 6075bp. As detected by RT-PCR, the apple SbeI is expressed at very low levels during early stages of fruit development; while, the highest levels of mRNA transcripts are observed at approximately 44 days post-pollination. Besides fruits, the apple SbeI is also expressed in buds and flowers, and very weakly in leaves. The genomic structure of SbeI in apple is strikingly similar to those reported so far in grasses (Poaceae), with exons 4 through 13 being of identical lengths in both apple and grasses. Moreover, structure similarities in exon lengths have also been detected in SbeII genes of both grasses and eudicots. These findings prompted the investigation of the evolutionary process of the Sbe gene family in angiosperms. A total of 26 Sbe sequences, representing an array of monocots and eudicots, are investigated in this study. Phylogenetic analysis has suggested that Sbe genes have duplicated into SbeI and SbeII prior to the divergence of moncots from eudicots. The SbeII gene is further duplicated into SbeIIa and SbeIIb prior to the radiation of grasses; however, it is not yet clear whether this duplication event has occurred before or after the radiation of the eudicots.

  17. Involvement of a Novel Enzyme, MdpA, in Methyl tert-Butyl Ether Degradation in Methylibium petroleiphilum PM1 ▿

    Science.gov (United States)

    Schmidt, Radomir; Battaglia, Vince; Scow, Kate; Kane, Staci; Hristova, Krassimira R.

    2008-01-01

    Methylibium petroleiphilum PM1 is a well-characterized environmental strain capable of complete metabolism of the fuel oxygenate methyl tert-butyl ether (MTBE). Using a molecular genetic system which we established to study MTBE metabolism by PM1, we demonstrated that the enzyme MdpA is involved in MTBE removal, based on insertional inactivation and complementation studies. MdpA is constitutively expressed at low levels but is strongly induced by MTBE. MdpA is also involved in the regulation of tert-butyl alcohol (TBA) removal under certain conditions but is not directly responsible for TBA degradation. Phylogenetic comparison of MdpA to related enzymes indicates close homology to the short-chain hydrolyzing alkane hydroxylases (AH1), a group that appears to be a distinct subfamily of the AHs. The unique, substrate-size-determining residue Thr59 distinguishes MdpA from the AH1 subfamily as well as from AlkB enzymes linked to MTBE degradation in Mycobacterium austroafricanum. PMID:18791002

  18. Purification and crystallization of Bacillus subtilis NrnA, a novel enzyme involved in nanoRNA degradation

    Energy Technology Data Exchange (ETDEWEB)

    Nelersa, Claudiu M.; Schmier, Brad J.; Malhotra, Arun (Miami-MED)

    2012-05-08

    The final step in RNA degradation is the hydrolysis of RNA fragments five nucleotides or less in length (nanoRNA) to mononucleotides. In Escherichia coli this step is carried out by oligoribonuclease (Orn), a DEDD-family exoribonuclease that is conserved throughout eukaryotes. However, many bacteria lack Orn homologs, and an unrelated DHH-family phosphoesterase, NrnA, has recently been identified as one of the enzymes responsible for nanoRNA degradation in Bacillus subtilis. To understand its mechanism of action, B. subtilis NrnA was purified and crystallized at room temperature using the hanging-drop vapor-diffusion method with PEG 4000, PEG 3350 or PEG MME 2000 as precipitant. The crystals belonged to the primitive monoclinic space group P2{sub 1}, with unit-cell parameters a = 50.62, b = 121.3, c = 123.4 {angstrom}, {alpha} = 90, {beta} = 91.31, {gamma} = 90{sup o}.

  19. Involvement of transcription factor encoded by the mouse mi locus (MITF) in apoptosis of cultured mast cells induced by removal of interleukin-3.

    Science.gov (United States)

    Tsujimura, T.; Hashimoto, K.; Morii, E.; Tunio, G. M.; Tsujino, K.; Kondo, T.; Kanakura, Y.; Kitamura, Y.

    1997-01-01

    Mast cells develop when spleen cells of mice are cultured in the medium containing interleukin (IL)-3. Cultured mast cells (CMCs) show apoptosis when they are incubated in the medium without IL-3. We obtained CMCs from tg/tg mice that did not express the transcription factor encoded by the mi gene (MITF) due to the integration of a transgene at its 5' flanking region. MITF is a member of the basic-helix-loop-helix-leucine zipper (bHLH-Zip) protein family of transcription factors. We investigated the effect of MITF on the apoptosis of CMCs after removal of IL-3. When cDNA encoding normal MITF ((+)-MITF) was introduced into tg/tg CMCs with the retroviral vector, the apoptosis of tg/tg CMCs was significantly accelerated. The mutant mi allele represents a deletion of an arginine at the basic domain of MITF. The apoptosis of tg/tg CMCs was not accelerated by the introduction of cDNA encoding mi-MITF. The overexpression of (+)-MITF was not prerequisite to the acceleration of the apoptosis, as the apoptotic process proceeded faster in +/+ CMCs than in mi/mi CMCs. The Ba/F3 lymphoid cell line is also dependent on IL-3, and Ba/F3 cells show apoptosis after removal of IL-3. The c-myc gene encodes another transcription factor of the bHLH-Zip family, and the overexpression of the c-myc gene accelerated the apoptosis of Ba/F3 cells. However, the overexpression of (+)-MITF did not accelerate the apoptosis of Ba/F3 cells. The (+)-MITF appeared to play some roles for the acceleration of the apoptosis specifically in the mast cell lineage. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:9327738

  20. Proteolytic enzymes involved in MHC class I antigen processing: A guerrilla army that partners with the proteasome.

    Science.gov (United States)

    Lázaro, Silvia; Gamarra, David; Del Val, Margarita

    2015-12-01

    Major histocompatibility complex class I proteins (MHC-I) load short peptides derived from proteolytic cleavage of endogenous proteins in any cell of the body, in a process termed antigen processing and presentation. When the source proteins are altered self or encoded by a pathogen, recognition of peptide/MHC-I complexes at the plasma membrane leads to CD8(+) T-lymphocyte responses that clear infections and probably underlie tumor immune surveillance. On the other hand, presentation of self peptides may cause some types of autoimmunity. The peptides that are presented determine the specificity and efficiency of pathogen clearance or, conversely, of immunopathology. In this review we highlight the growing number of peptidases which, as a by-product of their regular activity, can generate peptide epitopes for immune surveillance. These ∼20 peptidases collectively behave as a guerrilla army partnering with the regular proteasome army in generating a variety of peptides for presentation by MHC-I and thus optimally signaling infection. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Isolation and characterization of a cDNA encoding (S)-cis-N-methylstylopine 14-hydroxylase from opium poppy, a key enzyme in sanguinarine biosynthesis.

    Science.gov (United States)

    Beaudoin, Guillaume A W; Facchini, Peter J

    2013-02-15

    Sanguinarine is a benzo[c]phenenthridine alkaloid with potent antimicrobial properties found commonly in plants of the Papaveraceae, including the roots of opium poppy (Papaver somniferum). Sanguinarine is formed from the central 1-benzylisoquinoline intermediate (S)-reticuline via the protoberberine alkaloid (S)-scoulerine, which undergoes five enzymatic oxidations and an N-methylation. The first four oxidations from (S)-scoulerine are catalyzed by cytochromes P450, whereas the final conversion involves a flavoprotein oxidase. All but one gene in the biosynthetic pathway from (S)-reticuline to sanguinarine has been identified. In this communication, we report the isolation and characterization of (S)-cis-N-methylstylopine 14-hydroxylase (MSH) from opium poppy based on the transcriptional induction in elicitor-treated cell suspension cultures and root-specific expression of the corresponding gene. Along with protopine 6-hydroxylase, which catalyzes the subsequent and penultimate step in sanguinarine biosynthesis, MSH is a member of the CYP82N subfamily of cytochromes P450. The full-length MSH cDNA was expressed in Saccharomyces cerevisiae and the recombinant microsomal protein was tested for enzymatic activity using 25 benzylisoquinoline alkaloids representing a wide range of structural subgroups. The only enzymatic substrates were the N-methylated protoberberine alkaloids N-methylstylopine and N-methylcanadine, which were converted to protopine and allocryptopine, respectively. Copyright © 2013. Published by Elsevier Inc.

  2. Catabolism of methyl ter-butyl ether (MTBE): characterization of the enzymes of Mycobacterium austroafricanum IFP 2012 involved in MTBE degradation; Catabolisme du methyl tert-butyl ether (MTBE): caracterisation des enzymes impliquees dans la degradation du MTBE chez Mycobacterium austroafricanum IFP 2012

    Energy Technology Data Exchange (ETDEWEB)

    Lopes Ferreira, N

    2005-11-15

    Methyl tert-butyl ether (MTBE) is added to gasoline to meet the octane index requirement. its solubility in water and its poor biodegradability made the use of MTBE a great environmental concern, particularly regarding aquifers. We previously isolated M austroafricanum IFP 2012 able to use MTBE as a sole source of carbon and energy and the MTBE pathway was partially characterized. In the present study, which aimed at isolating the genes involved in MTBE biodegradation in order to use them for estimation of MTBE biodegradation capacities in contaminated environment, we isolated a new M. austroafricanum strain, IFP 2015. A new degradation intermediate, the 2-methyl 1,2-propane-diol (2-M1,2-PD), the product of tert-butanol (TBA) oxidation, was identified. We also determined the enzymes induced during growth of M. austroafricanum IFP 2012 on MTBF. Then, using the tools of protein analysis and of molecular biology, we isolated and cloned the mpd genes cluster in the plasmid pCL4D. Heterologous expression of the recombinant plasmid in M smegmatis tmc2 155, showed the involvement of an 2-M1,2-PD dehydrogenase (MpdB) and a hydroxy-iso-butyr-aldehyde dehydrogenase (MpdC), encoded by mpdB and mpdC, respectively. Both enzymes were responsible for the conversion of 2-M 1,2-PD to hydroxy-isobutyric acid (HIBA). A further survey of different M austroafricanum strains, including IFP 2012, IFP 2015 and JOBS (ex-M vaccae) showed the link between the ability to grow on C{sub 2} to C{sub 16} n-alkanes and the MTBE and TBA degradation capacities. The alkB gene was partially sequenced in all these strains. Expression of alkB was demonstrated in M. austroafricanum IFP 2012 after growth on propane, hexane, hexadecane and TBA. Finally, we identified 2-propanol as the intermediate of HIBA degradation. The gene encoding the 2-propanol:p-N,N'-dimethyl-4-nitroso-aniline (NDMA) oxidoreductase was detected M austroafricanum IFP 2012. (author)

  3. Catabolism of methyl ter-butyl ether (MTBE): characterization of the enzymes of Mycobacterium austroafricanum IFP 2012 involved in MTBE degradation; Catabolisme du methyl tert-butyl ether (MTBE): caracterisation des enzymes impliquees dans la degradation du MTBE chez Mycobacterium austroafricanum IFP 2012

    Energy Technology Data Exchange (ETDEWEB)

    Lopes Ferreira, N.

    2005-11-15

    Methyl tert-butyl ether (MTBE) is added to gasoline to meet the octane index requirement. its solubility in water and its poor biodegradability made the use of MTBE a great environmental concern, particularly regarding aquifers. We previously isolated M austroafricanum IFP 2012 able to use MTBE as a sole source of carbon and energy and the MTBE pathway was partially characterized. In the present study, which aimed at isolating the genes involved in MTBE biodegradation in order to use them for estimation of MTBE biodegradation capacities in contaminated environment, we isolated a new M. austroafricanum strain, IFP 2015. A new degradation intermediate, the 2-methyl 1,2-propane-diol (2-M1,2-PD), the product of tert-butanol (TBA) oxidation, was identified. We also determined the enzymes induced during growth of M. austroafricanum IFP 2012 on MTBF. Then, using the tools of protein analysis and of molecular biology, we isolated and cloned the mpd genes cluster in the plasmid pCL4D. Heterologous expression of the recombinant plasmid in M smegmatis tmc2 155, showed the involvement of an 2-M1,2-PD dehydrogenase (MpdB) and a hydroxy-iso-butyr-aldehyde dehydrogenase (MpdC), encoded by mpdB and mpdC, respectively. Both enzymes were responsible for the conversion of 2-M 1,2-PD to hydroxy-isobutyric acid (HIBA). A further survey of different M austroafricanum strains, including IFP 2012, IFP 2015 and JOBS (ex-M vaccae) showed the link between the ability to grow on C{sub 2} to C{sub 16} n-alkanes and the MTBE and TBA degradation capacities. The alkB gene was partially sequenced in all these strains. Expression of alkB was demonstrated in M. austroafricanum IFP 2012 after growth on propane, hexane, hexadecane and TBA. Finally, we identified 2-propanol as the intermediate of HIBA degradation. The gene encoding the 2-propanol:p-N,N'-dimethyl-4-nitroso-aniline (NDMA) oxidoreductase was detected M austroafricanum IFP 2012. (author)

  4. Identification of human cytochrome P450 and UGT enzymes involved in the metabolism of ferulic acid, a major bioactive component in traditional Chinese medicines.

    Science.gov (United States)

    Zhuang, Xiao-Mei; Chen, Lin; Tan, Yan; Yang, Hai-Ying; Lu, Chuang; Gao, Yue; Li, Hua

    2017-09-01

    Ferulic acid (FA) is an active component of herbal medicines. One of the best documented activities of FA is its antioxidant property. Moreover, FA exerts antiallergic, anti-inflammatory, and hepatoprotective effects. However, the metabolic pathways of FA in humans remain unclear. To identify whether human CYP or UGT enzymes are involved in the metabolism of FA, reaction phenotyping of FA was conducted using major CYP-selective chemical inhibitors together with individual CYP and UGT Supersomes. The CYP- and/or UGT-mediated metabolism kinetics were examined simultaneously or individually. Relative activity factor and total normalized rate approaches were used to assess the relative contributions of each major human CYPs towards the FA metabolism. Incubations of FA with human liver microsomes (HLM) displayed NADPH- and UDPGA-dependent metabolism with multiple CYP and UGT isoforms involved. CYPs and UGTs contributed equally to the metabolism of FA in HLM. Although CYP1A2 and CYP3A4 appeared to be the major contributors in the CYP-mediated clearance, their contributions to the overall clearance are still minor (medicines because multiple phase I and phase II enzymes are involved in its metabolism. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  5. Manganese-induced regulations in growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in fragrant rice.

    Science.gov (United States)

    Li, Meijuan; Ashraf, Umair; Tian, Hua; Mo, Zhaowen; Pan, Shenggang; Anjum, Shakeel Ahmad; Duan, Meiyang; Tang, Xiangru

    2016-06-01

    Micro-nutrient application is essential for normal plant growth while a little is known about manganese (Mn)-induced regulations in morpho-physiological attributes, aroma formation and enzyme involved in 2-acetyl-1-pyrroline (2-AP) biosynthesis in aromatic rice. Present study aimed to examine the influence of four levels of Mn i.e., Mn1 (100 mg MnSO4 pot(-1)), Mn2 (150 mg MnSO4 pot(-1)), Mn3 (200 mg MnSO4 pot(-1)), and Mn4 (250 mg MnSO4 pot(-1)) on the growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in two fragrant rice cultivars i.e., Meixiangzhan and Nongxiang 18. Pots without Mn application were served as control (Ck). Each pot contained 15 kg of soil. Effects on agronomic characters, quality attributes, 2-AP contents and enzymes involved in 2-AP biosynthesis have been studied in early and late season rice. Results depicted that Mn improved rice growth, yield and related characters, and some quality attributes significantly. It further up-regulated proline, pyrroline-5-carboxylic acid (P5C) (precursors of 2-AP), soluble proteins and activities of proline dehydrogenase (ProDH), Δ(1) pyrroline-5-carboxylic acid synthetase (P5CS) ornithine aminotransferase (OAT) that led to enhanced 2-AP production in rice grains. Moreover, higher Mn levels resulted in increased grain Mn contents in both rice cultivars. Along with growth and yield improvement, Mn application significantly improved rice aromatic contents. Overall, Nongxiang 18 accumulated more 2-AP contents than Meixiangzhan in both seasons under Mn application. This study further explored the importance of Mn in rice aroma formation and signifies that micro-nutrients can play significant roles in rice aroma synthesis; however, intensive studies at molecular levels are still needed to understand the exact mechanisms of Mn to improve rice aroma formation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Bone marrow involvement in Gaucher disease at MRI: what long-term evolution can we expect under enzyme replacement therapy?

    International Nuclear Information System (INIS)

    Fedida, Benjamin; Touraine, Sebastien; Laredo, Jean-Denis; Stirnemann, Jerome; Belmatoug, Nadia; Petrover, David

    2015-01-01

    To study the long-term evolution of the bone marrow burden (BMB) score at MRI in patients with Gaucher disease (GD) under enzyme replacement therapy (ERT). Forty patients treated for GD were retrospectively studied in a referral centre. BMB scores were assessed on spine and femur MR examinations performed between January 2003 and June 2014. The long-term evolution of the BMB scores was analyzed using a linear mixed model. A total of 121 MRI examinations were performed during the study period with a mean follow-up of 7.1 years ± 5.6, an average rate of 3.1 MR examinations ± 1.7 per patient and an interval of 2.3 years ± 1.1 between examinations. Patients had received ERT during 12 years on average ± 6.7. The trend of BMB scores with time decreased significantly by 15 % (P = 0.008) during the total study period and 39 % (P = 0.01) during the first 5 years of treatment. No changes in BMB scores were observed after five years of treatment. In Gaucher patients, the trend of MRI BMB scores with time decreased significantly under ERT the first 5 years of treatment before a long-term stabilization. (orig.)

  7. Bone marrow involvement in Gaucher disease at MRI: what long-term evolution can we expect under enzyme replacement therapy?

    Energy Technology Data Exchange (ETDEWEB)

    Fedida, Benjamin; Touraine, Sebastien; Laredo, Jean-Denis [Hopital Lariboisiere, AP-HP, Department of Musculoskeletal Imaging, Paris (France); Stirnemann, Jerome [Universite Paris-Diderot Hopital Bichat, AP-HP, Department of Biostatistics and Medical Data Processing, INSERM UMR 738, Paris (France); Geneva University Hospital, Division of General Internal Medicine, Faculty of Medicine, Geneva (Switzerland); Belmatoug, Nadia [Hopital Beaujon, AP-HP, Referral Center for Lysosomal Diseases (RCLD), Clichy (France); Hopital Beaujon, AP-HP, Department of Internal Medicine, Clichy (France); Petrover, David [Hopital Lariboisiere, AP-HP, Department of Musculoskeletal Imaging, Paris (France); Hopital Beaujon, AP-HP, Referral Center for Lysosomal Diseases (RCLD), Clichy (France)

    2015-10-15

    To study the long-term evolution of the bone marrow burden (BMB) score at MRI in patients with Gaucher disease (GD) under enzyme replacement therapy (ERT). Forty patients treated for GD were retrospectively studied in a referral centre. BMB scores were assessed on spine and femur MR examinations performed between January 2003 and June 2014. The long-term evolution of the BMB scores was analyzed using a linear mixed model. A total of 121 MRI examinations were performed during the study period with a mean follow-up of 7.1 years ± 5.6, an average rate of 3.1 MR examinations ± 1.7 per patient and an interval of 2.3 years ± 1.1 between examinations. Patients had received ERT during 12 years on average ± 6.7. The trend of BMB scores with time decreased significantly by 15 % (P = 0.008) during the total study period and 39 % (P = 0.01) during the first 5 years of treatment. No changes in BMB scores were observed after five years of treatment. In Gaucher patients, the trend of MRI BMB scores with time decreased significantly under ERT the first 5 years of treatment before a long-term stabilization. (orig.)

  8. Heterologous expression, purification, crystallization and preliminary X-ray analysis of raucaffricine glucosidase, a plant enzyme specifically involved in Rauvolfia alkaloid biosynthesis.

    Science.gov (United States)

    Ruppert, Martin; Panjikar, Santosh; Barleben, Leif; Stöckigt, Joachim

    2006-03-01

    Raucaffricine glucosidase (RG) is an enzyme that is specifically involved in the biosynthesis of indole alkaloids from the plant Rauvolfia serpentina. After heterologous expression in Escherichia coli cells, crystals of RG were obtained by the hanging-drop vapour-diffusion technique at 293 K with 0.3 M ammonium sulfate, 0.1 M sodium acetate pH 4.6 buffer and 11% PEG 4000 as precipitant. Crystals belong to space group I222 and diffract to 2.30 A, with unit-cell parameters a = 102.8, b = 127.3, c = 215.8 A.

  9. The NAD+ metabolism of Leishmania, notably the enzyme nicotinamidase involved in NAD+ salvage, offers prospects for development of anti-parasite chemotherapy.

    Science.gov (United States)

    Michels, Paul A M; Avilán, Luisana

    2011-10-01

    NAD+ plays multiple, essential roles in the cell. As a cofactor in many redox reactions it is key in the cellular energy metabolism and as a substrate it participates in many reactions leading to a variety of covalent modifications of enzymes with major roles in regulation of expression and metabolism. Cells may have the ability to produce this metabolite either via alternative de novo synthesis pathways and/or by different salvage pathways. In this issue of Molecular Microbiology, Gazanion et al. (2011) demonstrate that Leishmania species can only rely on the salvage of NAD+ building blocks. One of the enzymes involved, nicotinamidase, is absent from human cells. The enzyme is important for growth of Leishmania infantum and essential for establishing an infection. The crystal structure of the parasite protein has been solved and shows prospects for design of inhibitors to be used as leads for development of new drugs. Indeed, NAD+ metabolism is currently being considered as a promising drug target in various diseases and the vulnerability of Leishmania for interference of this metabolism has been proved in previous work by the same group, by showing that administration of NAD+ precursors has detrimental effect on the pathogenic, amastigote stage of this parasite. © 2011 Blackwell Publishing Ltd.

  10. The ANGULATA7 gene encodes a DnaJ-like zinc finger-domain protein involved in chloroplast function and leaf development in Arabidopsis.

    Science.gov (United States)

    Muñoz-Nortes, Tamara; Pérez-Pérez, José Manuel; Ponce, María Rosa; Candela, Héctor; Micol, José Luis

    2017-03-01

    The characterization of mutants with altered leaf shape and pigmentation has previously allowed the identification of nuclear genes that encode plastid-localized proteins that perform essential functions in leaf growth and development. A large-scale screen previously allowed us to isolate ethyl methanesulfonate-induced mutants with small rosettes and pale green leaves with prominent marginal teeth, which were assigned to a phenotypic class that we dubbed Angulata. The molecular characterization of the 12 genes assigned to this phenotypic class should help us to advance our understanding of the still poorly understood relationship between chloroplast biogenesis and leaf morphogenesis. In this article, we report the phenotypic and molecular characterization of the angulata7-1 (anu7-1) mutant of Arabidopsis thaliana, which we found to be a hypomorphic allele of the EMB2737 gene, which was previously known only for its embryonic-lethal mutations. ANU7 encodes a plant-specific protein that contains a domain similar to the central cysteine-rich domain of DnaJ proteins. The observed genetic interaction of anu7-1 with a loss-of-function allele of GENOMES UNCOUPLED1 suggests that the anu7-1 mutation triggers a retrograde signal that leads to changes in the expression of many genes that normally function in the chloroplasts. Many such genes are expressed at higher levels in anu7-1 rosettes, with a significant overrepresentation of those required for the expression of plastid genome genes. Like in other mutants with altered expression of plastid-encoded genes, we found that anu7-1 exhibits defects in the arrangement of thylakoidal membranes, which appear locally unappressed. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  11. Arabidopsis thaliana RGXT1 and RGXT2 encode Golgi-localized (1,3)-alpha-D-xylosyltransferases involved in the synthesis of pectic rhamnogalacturonan-II

    DEFF Research Database (Denmark)

    Madsen, Jack Egelund; Petersen, Bent Larsen; Motawia, Mohammed Saddik

    2006-01-01

    in rhamnogalacturonan-II, a complex polysaccharide essential to vascular plants, and is conserved across higher plant families. Rhamnogalacturonan-II isolated from both RGXT1 and RGXT2 T-DNA insertional mutants functioned as specific acceptor molecules in the xylosyltransferase assay. Expression of RGXT1- and RGXT2......Two homologous plant-specific Arabidopsis thaliana genes, RGXT1 and RGXT2, belong to a new family of glycosyltransferases (CAZy GT-family-77) and encode cell wall (1,3)-alpha-d-xylosyltransferases. The deduced amino acid sequences contain single transmembrane domains near the N terminus, indicative...

  12. Quantification and enzyme targets of fatty acid amides from duckweed root exudates involved in the stimulation of denitrification.

    Science.gov (United States)

    Sun, Li; Lu, Yufang; Kronzucker, Herbert J; Shi, Weiming

    2016-07-01

    Fatty acid amides from plant root exudates, such as oleamide and erucamide, have the ability to participate in strong plant-microbe interactions, stimulating nitrogen metabolism in rhizospheric bacteria. However, mechanisms of secretion of such fatty acid amides, and the nature of their stimulatory activities on microbial metabolism, have not been examined. In the present study, collection, pre-treatment, and determination methods of oleamide and erucamide in duckweed root exudates are compared. The detection limits of oleamide and erucamide by gas chromatography (GC) (10.3ngmL(-1) and 16.1ngmL(-1), respectively) are shown to be much lower than those by liquid chromatography (LC) (1.7 and 5.0μgmL(-1), respectively). Quantitative GC analysis yielded five times larger amounts of oleamide and erucamide in root exudates of Spirodela polyrrhiza when using a continuous collection method (50.20±4.32 and 76.79±13.92μgkg(-1) FW day(-1)), compared to static collection (10.88±0.66 and 15.27±0.58μgkg(-1) FW day(-1)). Furthermore, fatty acid amide secretion was significantly enhanced under elevated nitrogen conditions (>300mgL(-1)), and was negatively correlated with the relative growth rate of duckweed. Mechanistic assays were conducted to show that erucamide stimulates nitrogen removal by enhancing denitrification, targeting two key denitrifying enzymes, nitrate and nitrite reductases, in bacteria. Our findings significantly contribute to our understanding of the regulation of nitrogen dynamics by plant root exudates in natural ecosystems. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. XTH31, Encoding an in Vitro XEH/XET-Active Enzyme, Regulates Aluminum Sensitivity by Modulating in Vivo XET Action, Cell Wall Xyloglucan Content, and Aluminum Binding Capacity in Arabidopsis[W

    Science.gov (United States)

    Zhu, Xiao Fang; Shi, Yuan Zhi; Lei, Gui Jie; Fry, Stephen C.; Zhang, Bao Cai; Zhou, Yi Hua; Braam, Janet; Jiang, Tao; Xu, Xiao Yan; Mao, Chuan Zao; Pan, Yuan Jiang; Yang, Jian Li; Wu, Ping; Zheng, Shao Jian

    2012-01-01

    Xyloglucan endohydrolase (XEH) and xyloglucan endotransglucosylase (XET) activities, encoded by xyloglucan endotransglucosylase-hydrolase (XTH) genes, are involved in cell wall extension by cutting or cutting and rejoining xyloglucan chains, respectively. However, the physiological significance of this biochemical activity remains incompletely understood. Here, we find that an XTH31 T-DNA insertion mutant, xth31, is more Al resistant than the wild type. XTH31 is bound to the plasma membrane and the encoding gene is expressed in the root elongation zone and in nascent leaves, suggesting a role in cell expansion. XTH31 transcript accumulation is strongly downregulated by Al treatment. XTH31 expression in yeast yields a protein with an in vitro XEH:XET activity ratio of >5000:1. xth31 accumulates significantly less Al in the root apex and cell wall, shows remarkably lower in vivo XET action and extractable XET activity, has a lower xyloglucan content, and exhibits slower elongation. An exogenous supply of xyloglucan significantly ameliorates Al toxicity by reducing Al accumulation in the roots, owing to the formation of an Al-xyloglucan complex in the medium, as verified by an obvious change in chemical shift of 27Al-NMR. Taken together, the data indicate that XTH31 affects Al sensitivity by modulating cell wall xyloglucan content and Al binding capacity. PMID:23204407

  14. Proteomics of Fusarium oxysporum race 1 and race 4 reveals enzymes involved in carbohydrate metabolism and ion transport that might play important roles in banana Fusarium wilt.

    Science.gov (United States)

    Sun, Yong; Yi, Xiaoping; Peng, Ming; Zeng, Huicai; Wang, Dan; Li, Bo; Tong, Zheng; Chang, Lili; Jin, Xiang; Wang, Xuchu

    2014-01-01

    Banana Fusarium wilt is a soil-spread fungal disease caused by Fusarium oxysporum. In China, the main virulence fungi in banana are F. oxysporum race 1 (F1, weak virulence) and race 4 (F4, strong virulence). To date, no proteomic analyses have compared the two races, but the difference in virulence between F1 and F4 might result from their differentially expressed proteins. Here we report the first comparative proteomics of F1 and F4 cultured under various conditions, and finally identify 99 protein species, which represent 59 unique proteins. These proteins are mainly involved in carbohydrate metabolism, post-translational modification, energy production, and inorganic ion transport. Bioinformatics analysis indicated that among the 46 proteins identified from F4 were several enzymes that might be important for virulence. Reverse transcription PCR analysis of the genes for 15 of the 56 proteins revealed that their transcriptional patterns were similar to their protein expression patterns. Taken together, these data suggest that proteins involved in carbohydrate metabolism and ion transport may be important in the pathogenesis of banana Fusarium wilt. Some enzymes such as catalase-peroxidase, galactosidase and chitinase might contribute to the strong virulence of F4. Overexpression or knockout of the genes for the F4-specific proteins will help us to further understand the molecular mechanism of Fusarium-induced banana wilt.

  15. OsGA2ox5, a Gibberellin Metabolism Enzyme, Is Involved in Plant Growth, the Root Gravity Response and Salt Stress

    Science.gov (United States)

    Cai, Weiming; Shan, Chi

    Gibberellin (GA) 2-oxidases play an important role in the GA catabolic pathway through 2b-hydroxylation. There are two classes of GA2oxs, i.e., a larger class of C19-GA2oxs and a smaller class of C20-GA2oxs. In this study, the gene encoding a GA 2-oxidase of rice, Oryza sativa GA 2-oxidase 5 (OsGA2ox5), was cloned and characterized. BLASTP analysis showed that OsGA2ox5 belongs to the C20-GA2oxs subfamily, a subfamily of GA2oxs acting on C20-GAs (GA12, GA53). Subcellular localization of OsGA2ox5-YFP in transiently transformed onion epidermal cells revealed the presence of this protein in both of the nucleus and cytoplasm. Real-time PCR analysis, along with GUS staining, revealed that OsGA2ox5 is expressed in the roots, culms, leaves, sheaths and panicles of rice. Rice plants overexpressing OsGA2ox5 exhibited dominant dwarf and GAdeficient phenotypes, with shorter stems and later development of reproductive organs than the wild type. The dwarfism phenotype was partially rescued by the application of exogenous GA3 at a concentration of 10 mM. Ectopic expression of OsGA2ox5 cDNA in Arabidopsis resulted in a similar phenotype. Real-time PCR assays revealed that both GA synthesis-related genes and GA signaling genes were expressed at higher levels in transgenic rice plants than in wild-type rice; OsGA3ox1, which encodes a key enzyme in the last step of the bioactive GAs synthesis pathway, was highly expressed in transgenic rice. The roots of OsGA2ox5-ox plants exhibited increased starch granule accumulation and gravity responses, revealing a role for GA in root starch granule development and gravity responses. Furthermore, rice and Arabidopsis plants overexpressing OsGA2ox5 were more resistant to high-salinity stress than wild-type plants. These results suggest that OsGA2ox5 plays important roles in GAs homeostasis, development, gravity responses and stress tolerance in rice.

  16. OsGA2ox5, a gibberellin metabolism enzyme, is involved in plant growth, the root gravity response and salt stress.

    Directory of Open Access Journals (Sweden)

    Chi Shan

    Full Text Available Gibberellin (GA 2-oxidases play an important role in the GA catabolic pathway through 2β-hydroxylation. There are two classes of GA2oxs, i.e., a larger class of C₁₉-GA2oxs and a smaller class of C₂₀-GA2oxs. In this study, the gene encoding a GA 2-oxidase of rice, Oryza sativa GA 2-oxidase 5 (OsGA2ox5, was cloned and characterized. BLASTP analysis showed that OsGA2ox5 belongs to the C₂₀-GA2oxs subfamily, a subfamily of GA2oxs acting on C₂₀-GAs (GA₁₂, GA₅₃. Subcellular localization of OsGA2ox5-YFP in transiently transformed onion epidermal cells revealed the presence of this protein in both of the nucleus and cytoplasm. Real-time PCR analysis, along with GUS staining, revealed that OsGA2ox5 is expressed in the roots, culms, leaves, sheaths and panicles of rice. Rice plants overexpressing OsGA2ox5 exhibited dominant dwarf and GA-deficient phenotypes, with shorter stems and later development of reproductive organs than the wild type. The dwarfism phenotype was partially rescued by the application of exogenous GA3 at a concentration of 10 µM. Ectopic expression of OsGA2ox5 cDNA in Arabidopsis resulted in a similar phenotype. Real-time PCR assays revealed that both GA synthesis-related genes and GA signaling genes were expressed at higher levels in transgenic rice plants than in wild-type rice; OsGA3ox1, which encodes a key enzyme in the last step of the bioactive GAs synthesis pathway, was highly expressed in transgenic rice. The roots of OsGA2ox5-ox plants exhibited increased starch granule accumulation and gravity responses, revealing a role for GA in root starch granule development and gravity responses. Furthermore, rice and Arabidopsis plants overexpressing OsGA2ox5 were more resistant to high-salinity stress than wild-type plants. These results suggest that OsGA2ox5 plays important roles in GAs homeostasis, development, gravity responses and stress tolerance in rice.

  17. Enzymatic characterization and gene identification of aconitate isomerase, an enzyme involved in assimilation of trans-aconitic acid, from Pseudomonas sp. WU-0701.

    Science.gov (United States)

    Yuhara, Kahori; Yonehara, Hiromi; Hattori, Takasumi; Kobayashi, Keiichi; Kirimura, Kohtaro

    2015-11-01

    trans-Aconitic acid is an unsaturated organic acid that is present in some plants such as soybean and wheat; however, it remains unclear how trans-aconitic acid is degraded and/or assimilated by living cells in nature. From soil, we isolated Pseudomonas sp. WU-0701 assimilating trans-aconitic acid as a sole carbon source. In the cell-free extract of Pseudomonas sp. WU-0701, aconitate isomerase (AI; EC 5.3.3.7) activity was detected. Therefore, it seems likely that strain Pseudomonas sp. WU-0701 converts trans-aconitic acid to cis-aconitic acid with AI, and assimilates this via the tricarboxylic acid cycle. For the characterization of AI from Pseudomonas sp. WU-0701, we performed purification, determination of enzymatic properties and gene identification of AI. The molecular mass of AI purified from cell-free extract was estimated to be ~ 25 kDa by both SDS/PAGE and gel filtration analyses, indicating that AI is a monomeric enzyme. The optimal pH and temperature of purified AI for the reaction were 6.0 °C and 37 °C, respectively. The gene ais encoding AI was cloned on the basis of the N-terminal amino acid sequence of the protein, and Southern blot analysis revealed that only one copy of ais is located on the bacterial genome. The gene ais contains an ORF of 786 bp, encoding a polypeptide of 262 amino acids, including the N-terminal 22 amino acids as a putative periplasm-targeting signal peptide. It is noteworthy that the amino acid sequence of AI shows 90% and 74% identity with molybdenum ABC transporter substrate-binding proteins of Pseudomonas psychrotolerans and Xanthomonas albilineans, respectively. This is the first report on purification to homogeneity, characterization and gene identification of AI. The nucleotide sequence of ais described in this article is available in the DDBJ/EMBL/GenBank nucleotide sequence databases under the Accession No. LC010980. © 2015 FEBS.

  18. Analysis of cathepsin and furin proteolytic enzymes involved in viral fusion protein activation in cells of the bat reservoir host.

    Directory of Open Access Journals (Sweden)

    Farah El Najjar

    Full Text Available Bats of different species play a major role in the emergence and transmission of highly pathogenic viruses including Ebola virus, SARS-like coronavirus and the henipaviruses. These viruses require proteolytic activation of surface envelope glycoproteins needed for entry, and cellular cathepsins have been shown to be involved in proteolysis of glycoproteins from these distinct virus families. Very little is currently known about the available proteases in bats. To determine whether the utilization of cathepsins by bat-borne viruses is related to the nature of proteases in their natural hosts, we examined proteolytic processing of several viral fusion proteins in cells derived from two fruit bat species, Pteropus alecto and Rousettus aegyptiacus. Our work shows that fruit bat cells have homologs of cathepsin and furin proteases capable of cleaving and activating both the cathepsin-dependent Hendra virus F and the furin-dependent parainfluenza virus 5 F proteins. Sequence analysis comparing Pteropus alecto furin and cathepsin L to proteases from other mammalian species showed a high degree of conservation; however significant amino acid variation occurs at the C-terminus of Pteropus alecto furin. Further analysis of furin-like proteases from fruit bats revealed that these proteases are catalytically active and resemble other mammalian furins in their response to a potent furin inhibitor. However, kinetic analysis suggests that differences may exist in the cellular localization of furin between different species. Collectively, these results indicate that the unusual role of cathepsin proteases in the life cycle of bat-borne viruses is not due to the lack of active furin-like proteases in these natural reservoir species; however, differences may exist between furin proteases present in fruit bats compared to furins in other mammalian species, and these differences may impact protease usage for viral glycoprotein processing.

  19. Isolation and characterization of an oxidosqualene cyclase gene encoding a β-amyrin synthase involved in Polygala tenuifolia Willd. saponin biosynthesis.

    Science.gov (United States)

    Jin, Mei Lan; Lee, Dae Young; Um, Yurry; Lee, Jeong Hoon; Park, Chun Geun; Jetter, Reinhard; Kim, Ok Tae

    2014-03-01

    Expression of PtBS (Polygala tenuifolia β-amyrin synthase) led to the production of β-amyrin as sole product. Polygala tenuifolia Willdenow is a rich source of triterpene saponins, onjisaponins and polygalasaponins, used as herbal medicine to treat phlegms and for detumescence in traditional Asian healing. The Polygala saponins share the oleanane backbone structure and are, therefore, likely synthesized via β-amyrin as a common precursor. We hypothesized that, in analogy to diverse other plant species, this central intermediate should be formed by a β-amyrin synthase catalyzing the complex cyclization of oxidosqualene. This member of the oxidosqualene cyclase (OSC) family of enzymes is thus defining an important branch point between primary and secondary metabolisms, and playing a crucial role in the control of oleanane-type triterpene saponin biosynthesis. From P. tenuifolia roots, we isolated an OSC cDNA containing a reading frame of 2,289 bp nucleotides. The predicted protein of 763 amino acids (molecular weight 87.353 kDa) showed particularly high amino acid sequence identities to known β-amyrin synthases (85-87 %) and was, therefore, named PtBS. Expression of PtBS in the triterpenoid synthase-deficient yeast mutant GIL77 led to the production of β-amyrin as sole product. qRT-PCR analysis of various P. tenuifolia organs showed that PtBS transcript levels were highest in the roots, consistent with onjisaponin accumulation patterns. Therefore, we conclude that PtBS is the β-amyrin synthase enzyme catalyzing the first committed step in the biosynthesis of onjisaponins and polygalasaponins in P. tenuifolia.

  20. Dumbbell DNA-templated CuNPs as a nano-fluorescent probe for detection of enzymes involved in ligase-mediated DNA repair.

    Science.gov (United States)

    Qing, Taiping; He, Xiaoxiao; He, Dinggeng; Ye, Xiaosheng; Shangguan, Jingfang; Liu, Jinquan; Yuan, Baoyin; Wang, Kemin

    2017-08-15

    DNA repair processes are responsible for maintaining genome stability. Ligase and polynucleotide kinase (PNK) have important roles in ligase-mediated DNA repair. The development of analytical methods to monitor these enzymes involved in DNA repair pathways is of great interest in biochemistry and biotechnology. In this work, we reported a new strategy for label-free monitoring PNK and ligase activity by using dumbbell-shaped DNA templated copper nanoparticles (CuNPs). In the presence of PNK and ligase, the dumbbell-shaped DNA probe (DP) was locked and could resist the digestion of exonucleases and then served as an efficient template for synthesizing fluorescent CuNPs. However, in the absence of ligase or PNK, the nicked DP could be digested by exonucleases and failed to template fluorescent CuNPs. Therefore, the fluorescence changes of CuNPs could be used to evaluate these enzymes activity. Under the optimal conditions, highly sensitive detection of ligase activity of about 1U/mL and PNK activity down to 0.05U/mL is achieved. To challenge the practical application capability of this strategy, the detection of analyte in dilute cells extracts was also investigated and showed similar linear relationships. In addition to ligase and PNK, this sensing strategy was also extended to the detection of phosphatase, which illustrates the versatility of this strategy. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The Key Enzyme of the Sialic Acid Metabolism Is Involved in Embryoid Body Formation and Expression of Marker Genes of Germ Layer Formation

    Directory of Open Access Journals (Sweden)

    Annett Thate

    2013-10-01

    Full Text Available The bi-functional enzyme UDP-N-acetyl-2-epimerase/N-acetylmannosamine kinase (GNE is the key enzyme of the sialic acid biosynthesis. Sialic acids are negatively charged nine carbon amino sugars and are found on most glycoproteins and many glycolipids in terminal positions, where they are involved in a variety of biological important molecular interactions. Inactivation of the GNE by homologous recombination results in early embryonic lethality in mice. Here, we report that GNE-deficient embryonic stem cells express less differentiation markers compared to wild-type embryonic stem cells. As a result, GNE-deficient embryonic stem cells fail to form proper embryoid bodies (EB within the first day of culture. However, when culturing these cells in the presence of sialic acids for three days, also GNE-deficient embryonic stem cells form normal EBs. In contrast, when culturing these cells in sialic acid reduced medium, GNE-deficient embryonic stem cells proliferate faster and form larger EBs without any change in the expression of markers of the germ layers.

  2. A member of a new plant gene family encoding a meprin and TRAF homology (MATH) domain-containing protein is involved in restriction of long distance movement of plant viruses

    Science.gov (United States)

    Cosson, Patrick; Sofer, Luc; Schurdi-Levraud, Valérie

    2010-01-01

    Restriction of long distance movement of several potyviruses in Arabidopsis thaliana is controlled by at least three dominant restricted TEV movement (RTM) genes, named RTM1, RTM2 and RTM3 and acts as a non-conventional resistance. RTM1 encodes a protein belonging to the jacalin family and RTM2 encodes a protein which has similarities to small heat shock proteins. The recent cloning of RTM3 which encodes a protein belonging to an unknown protein family of 29 members that has a meprin and TRAF homology (MATH) domain in its N-terminal region and a coiled-coil (CC) domain at its C-terminal end is an important breakthrough for a better understanding of this resistance process. Not only the third gene involved in this resistance has been identified and has allowed revealing a new gene family in plant but the discovery that the RTM3 protein interacts directly with RTM1 strongly suggests that the RTM proteins form a multimeric complex. However, these data also highlight striking similarities of the RTM resistance with the well known R-gene mediated resistance. PMID:20930558

  3. Heterologous expression, purification, crystallization and preliminary X-ray analysis of raucaffricine glucosidase, a plant enzyme specifically involved in Rauvolfia alkaloid biosynthesis

    Science.gov (United States)

    Ruppert, Martin; Panjikar, Santosh; Barleben, Leif; Stöckigt, Joachim

    2006-01-01

    Raucaffricine glucosidase (RG) is an enzyme that is specifically involved in the biosynthesis of indole alkaloids from the plant Rauvolfia serpentina. After heterologous expression in Escherichia coli cells, crystals of RG were obtained by the hanging-drop vapour-diffusion technique at 293 K with 0.3 M ammonium sulfate, 0.1 M sodium acetate pH 4.6 buffer and 11% PEG 4000 as precipitant. Crystals belong to space group I222 and diffract to 2.30 Å, with unit-cell parameters a = 102.8, b = 127.3, c = 215.8 Å. PMID:16511316

  4. Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis.

    Science.gov (United States)

    Yen, Chi-Liang Eric; Stone, Scot J; Koliwad, Suneil; Harris, Charles; Farese, Robert V

    2008-11-01

    Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, and the use of molecular tools, including mice deficient in either enzyme, has shed light on their functions. Although DGAT enzymes are involved in TG synthesis, they have distinct protein sequences and differ in their biochemical, cellular, and physiological functions. Both enzymes may be useful as therapeutic targets for diseases. Here we review the current knowledge of DGAT enzymes, focusing on new advances since the cloning of their genes, including possible roles in human health and diseases.

  5. Molecular evolution of nitrogen assimilatory enzymes in marine prasinophytes.

    Science.gov (United States)

    Ghoshroy, Sohini; Robertson, Deborah L

    2015-01-01

    Nitrogen assimilation is a highly regulated process requiring metabolic coordination of enzymes and pathways in the cytosol, chloroplast, and mitochondria. Previous studies of prasinophyte genomes revealed that genes encoding nitrate and ammonium transporters have a complex evolutionary history involving both vertical and horizontal transmission. Here we examine the evolutionary history of well-conserved nitrogen-assimilating enzymes to determine if a similar complex history is observed. Phylogenetic analyses suggest that genes encoding glutamine synthetase (GS) III in the prasinophytes evolved by horizontal gene transfer from a member of the heterokonts. In contrast, genes encoding GSIIE, a canonical vascular plant and green algal enzyme, were found in the Micromonas genomes but have been lost from Ostreococcus. Phylogenetic analyses placed the Micromonas GSIIs in a larger chlorophyte/vascular plant clade; a similar topology was observed for ferredoxin-dependent nitrite reductase (Fd-NiR), indicating the genes encoding GSII and Fd-NiR in these prasinophytes evolved via vertical transmission. Our results show that genes encoding the nitrogen-assimilating enzymes in Micromonas and Ostreococcus have been differentially lost and as well as recruited from different evolutionary lineages, suggesting that the regulation of nitrogen assimilation in prasinophytes will differ from other green algae.

  6. The pea branching RMS2 gene encodes the PsAFB4/5 auxin receptor and is involved in an auxin-strigolactone regulation loop.

    Science.gov (United States)

    Ligerot, Yasmine; de Saint Germain, Alexandre; Waldie, Tanya; Troadec, Christelle; Citerne, Sylvie; Kadakia, Nikita; Pillot, Jean-Paul; Prigge, Michael; Aubert, Grégoire; Bendahmane, Abdelhafid; Leyser, Ottoline; Estelle, Mark; Debellé, Frédéric; Rameau, Catherine

    2017-12-01

    Strigolactones (SLs) are well known for their role in repressing shoot branching. In pea, increased transcript levels of SL biosynthesis genes are observed in stems of highly branched SL deficient (ramosus1 (rms1) and rms5) and SL response (rms3 and rms4) mutants indicative of negative feedback control. In contrast, the highly branched rms2 mutant has reduced transcript levels of SL biosynthesis genes. Grafting studies and hormone quantification led to a model where RMS2 mediates a shoot-to-root feedback signal that regulates both SL biosynthesis gene transcript levels and xylem sap levels of cytokinin exported from roots. Here we cloned RMS2 using synteny with Medicago truncatula and demonstrated that it encodes a putative auxin receptor of the AFB4/5 clade. Phenotypes similar to rms2 were found in Arabidopsis afb4/5 mutants, including increased shoot branching, low expression of SL biosynthesis genes and high auxin levels in stems. Moreover, afb4/5 and rms2 display a specific resistance to the herbicide picloram. Yeast-two-hybrid experiments supported the hypothesis that the RMS2 protein functions as an auxin receptor. SL root feeding using hydroponics repressed auxin levels in stems and down-regulated transcript levels of auxin biosynthesis genes within one hour. This auxin down-regulation was also observed in plants treated with the polar auxin transport inhibitor NPA. Together these data suggest a homeostatic feedback loop in which auxin up-regulates SL synthesis in an RMS2-dependent manner and SL down-regulates auxin synthesis in an RMS3 and RMS4-dependent manner.

  7. The light gene of Drosophila melanogaster encodes a homologue of VPS41, a yeast gene involved in cellular-protein trafficking.

    Science.gov (United States)

    Warner, T S; Sinclair, D A; Fitzpatrick, K A; Singh, M; Devlin, R H; Honda, B M

    1998-04-01

    Mutations in a number of genes affect eye colour in Drosophila melanogaster; some of these "eye-colour" genes have been shown to be involved in various aspects of cellular transport processes. In addition, combinations of viable mutant alleles of some of these genes, such as carnation (car) combined with either light (lt) or deep-orange (dor) mutants, show lethal interactions. Recently, dor was shown to be homologous to the yeast gene PEP3 (VPS18), which is known to be involved in intracellular trafficking. We have undertaken to extend our earlier work on the lt gene, in order to examine in more detail its expression pattern and to characterize its gene product via sequencing of a cloned cDNA. The gene appears to be expressed at relatively high levels in all stages and tissues examined, and shows strong homology to VPS41, a gene involved in cellular-protein trafficking in yeast and higher eukaryotes. Further genetic experiments also point to a role for lt in transport processes: we describe lethal interactions between viable alleles of lt and dor, as well as phenotypic interactions (reductions in eye pigment) between allels of lt and another eye-colour gene, garnet (g), whose gene product has close homology to a subunit of the human adaptor complex, AP-3.

  8. Involvement of insulin-degrading enzyme in insulin- and atrial natriuretic peptide-sensitive internalization of amyloid-β peptide in mouse brain capillary endothelial cells.

    Science.gov (United States)

    Ito, Shingo; Ohtsuki, Sumio; Murata, Sho; Katsukura, Yuki; Suzuki, Hiroya; Funaki, Miho; Tachikawa, Masanori; Terasaki, Tetsuya

    2014-01-01

    Cerebral clearance of amyloid-β peptide (Aβ), which is implicated in Alzheimer's disease, involves elimination across the blood-brain barrier (BBB), and we previously showed that an insulin-sensitive process is involved in the case of Aβ1-40. The purpose of this study was to clarify the molecular mechanism of the insulin-sensitive Aβ1-40 elimination across mouse BBB. An in vivo cerebral microinjection study demonstrated that [125I]hAβ1-40 elimination from mouse brain was inhibited by human natriuretic peptide (hANP), and [125I]hANP elimination was inhibited by hAβ1-40, suggesting that hAβ1-40 and hANP share a common elimination process. Internalization of [125I]hAβ1-40 into cultured mouse brain capillary endothelial cells (TM-BBB4) was significantly inhibited by either insulin, hANP, other natriuretic peptides or insulin-degrading enzyme (IDE) inhibitors, but was not inhibited by phosphoramidon or thiorphan. Although we have reported the involvement of natriuretic peptide receptor C (Npr-C) in hANP internalization, cells stably expressing Npr-C internalized [125I]hANP but not [125I]hAβ1-40, suggesting that there is no direct interaction between Npr-C and hAβ1-40. IDE was detected in plasma membrane of TM-BBB4 cells, and internalization of [125I]hAβ1-40 by TM-BBB4 cells was reduced by IDE-targeted siRNAs. We conclude that elimination of hAβ1-40 from mouse brain across the BBB involves an insulin- and ANP-sensitive process, mediated by IDE expressed in brain capillary endothelial cells.

  9. Genome-Wide Identification of BAHD Acyltransferases and In vivo Characterization of HQT-like Enzymes Involved in Caffeoylquinic Acid Synthesis in Globe Artichoke

    Science.gov (United States)

    Moglia, Andrea; Acquadro, Alberto; Eljounaidi, Kaouthar; Milani, Anna M.; Cagliero, Cecilia; Rubiolo, Patrizia; Genre, Andrea; Cankar, Katarina; Beekwilder, Jules; Comino, Cinzia

    2016-01-01

    Globe artichoke (Cynara cardunculus L. var. scolymus) is a rich source of compounds promoting human health (phytonutrients), among them caffeoylquinic acids (CQAs), mainly represented by chlorogenic acid (CGA), and dicaffeoylquinic acids (diCQAs). The enzymes involved in their biosynthesis belong to the large family of BAHD acyltransferases. Following a survey of the globe artichoke genome, we identified 69 BAHD proteins carrying the catalytic site (HXXXD). Their phylogenetic analysis together with another 43 proteins, from 21 species, representative of the BAHD family, highlighted their grouping in seven major clades. Nine globe artichoke acyltransferases clustered in a sub-group of Clade V, with 3 belonging to hydroxycinnamoyl-CoA:quinate hydroxycinnamoyl transferase (HQT) and 2 to hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyl transferase (HCT) like proteins. We focused our attention on the former, HQT1, HQT2, and HQT3, as they are known to play a key role in CGA biosynthesis. The expression of genes coding for the three HQTs and correlation of expression with the CQA content is reported for different globe artichoke tissues. For the first time in the globe artichoke, we developed and applied the virus-induced gene silencing approach with the goal of assessing in vivo the effect of HQT1 silencing, which resulted in a marked reduction of both CGA and diCQAs. On the other hand, when the role of the three HQTs was assessed in leaves of Nicotiana benthamiana through their transient overexpression, significant increases in mono- and diCQAs content were observed. Using transient GFP fusion proteins expressed in N. benthamiana leaves we also established the sub-cellular localization of these three enzymes. PMID:27721818

  10. Inhibitory effect of leaves extracts of Ocimum basilicum and Ocimum gratissimum on two key enzymes involved in obesity and hypertension in vitro

    Directory of Open Access Journals (Sweden)

    Emmanuel Anyachukwu Irondi

    2016-12-01

    Full Text Available Aim: To evaluate the phenolics composition and inhibitory effect of the leaves extracts of Ocimum basilicum (O. basilicum and Ocimum gratissimum (O. gratissimum on two key enzymes [pancreatic lipase (PL and angiotensin 1-converting enzyme (ACE] involved in obesity and hypertension in vitro. Methods: The phenolics (flavonoids and phenolic acids were quantified using high performance liquid chromatrography coupled with diode array detection (HPLC-DAD. PL and ACE inhibitory effects; and DPPH* and ABTS*+ scavenging activities of the extracts were tested using Spectrophotometric methods. Results: O. basilicum had the following major phenolics: rutin, quercetin and quercitrin (flavonoids; caffeic, chlorogenic and gallic acids (phenolic acids; while O. gratissimum had the following major phenolics: rutin, quercitrin and luteolin (flavonoids; ellagic and chlorogenic acids (phenolic acids. Extracts of both plants inhibited PL and ACE; and scavenged DPPH* in a dose-dependent manner. O. gratissimum extract was more potent in inhibiting PL (IC50: 20.69 μg/mL and ACE (IC50: 29.44 μg/mL than O. basilicum (IC50: 52.14 μg/mL and IC50: 64.99 μg/mL, against PL and ACE, respectively. O. gratissimum also scavenged DPPH* and ABTS*+ more than O. basilicum. Conclusion: O. basilicum and O. gratissimum leaves could be used as functional foods for the management of obesity and obesity-related hypertension. However, O. gratissimum may be more effective than O. basilicum. [J Complement Med Res 2016; 5(4.000: 396-402

  11. Changes in Enzyme Activities Involved in Starch Synthesis and Hormone Concentrations in Superior and Inferior Spikelets and Their Association with Grain Filling of Super Rice

    Directory of Open Access Journals (Sweden)

    Jing FU

    2013-03-01

    Full Text Available The changes in activities of key enzymes involved in sucrose-to-starch conversion and concentrations of hormones in superior and inferior spikelets of super rice were investigated and their association with grain filling was analyzed. Four super rice cultivars, Liangyoupeijiu, IIyou 084, Huaidao 9 and Wujing 15, and two high-yielding and elite check cultivars, Shanyou 63 and Yangfujing 8, were used. The activities of sucrose synthase (SuSase, adenosine diphosphoglucose pyrophosphorylase (AGPase, starch synthase (StSase and starch branching enzyme (SBE, and the concentrations of zeatin + zeatin riboside (Z + ZR, indole-3-acetic acid (IAA and abscisic acid (ABA in superior and inferior spikelets were determined during the grain filling period and their relationships with grain filling rate were analyzed. Maximum grain filling rate, the time reaching the maximum grain-filling rate, mean grain filling rate and brown rice weight for superior spikelets showed a slight difference between the super and check rice cultivars, but were significantly lower in the super rice than in the check rice for inferior spikelets. Changes of enzyme activities and hormone concentrations in grains exhibited single peak curves during the grain filling period. The peak values and the mean activities of SuSase, AGPase, StSase and SBE were lower in inferior spikelets than in superior ones, as well as the peak values and the mean concentrations of Z + ZR and IAA. However, the peak value and the mean concentration of ABA were significantly higher in inferior spikelets than in superior ones and greater in the super rice than in the check rice. The grain filling rate was positively and significantly correlated with the activities of SuSase, AGPase and StSase and the concentrations of Z + ZR and IAA. The results suggested that the low activities of SuSase, AGPase and StSase and the low concentrations of Z + ZR and IAA might be important physiological reasons for the slow grain

  12. Structural, functional, and evolutionary analysis of moeZ, a gene encoding an enzyme required for the synthesis of the Pseudomonas metabolite, pyridine-2,6-bis(thiocarboxylic acid

    Directory of Open Access Journals (Sweden)

    Crawford Ronald L

    2002-04-01

    Full Text Available Abstract Background Pyridine-2,6-bis(thiocarboxylic acid (pdtc is a small secreted metabolite that has a high affinity for transition metals, increases iron uptake efficiency by 20% in Pseudomonas stutzeri, has the ability to reduce both soluble and mineral forms of iron, and has antimicrobial activity towards several species of bacteria. Six GenBank sequences code for proteins similar in structure to MoeZ, a P. stutzeri protein necessary for the synthesis of pdtc. Results Analysis of sequences similar to P. stutzeri MoeZ revealed that it is a member of a superfamily consisting of related but structurally distinct proteins that are members of pathways involved in the transfer of sulfur-containing moieties to metabolites. Members of this family of enzymes are referred to here as MoeB, MoeBR, MoeZ, and MoeZdR. MoeB, the molybdopterin synthase activating enzyme in the molybdopterin cofactor biosynthesis pathway, is the most characterized protein from this family. Remarkably, lengths of greater than 73% nucleic acid homology ranging from 35 to 486 bp exist between Pseudomonas stutzeri moeZ and genomic sequences found in some Mycobacterium, Mesorhizobium, Pseudomonas, Streptomyces, and cyanobacteria species. Conclusions The phylogenetic relationship among moeZ sequences suggests that P. stutzeri may have acquired moeZ through lateral gene transfer from a donor more closely related to mycobacteria and cyanobacteria than to proteobacteria. The importance of this relationship lies in the fact that pdtc, the product of the P. stutzeri pathway that includes moeZ, has an impressive set of capabilities, some of which could make it a potent pathogenicity factor.

  13. Carbohydrate-related enzymes of important Phytophthora plant pathogens.

    Science.gov (United States)

    Brouwer, Henk; Coutinho, Pedro M; Henrissat, Bernard; de Vries, Ronald P

    2014-11-01

    Carbohydrate-Active enZymes (CAZymes) form particularly interesting targets to study in plant pathogens. Despite the fact that many CAZymes are pathogenicity factors, oomycete CAZymes have received significantly less attention than effectors in the literature. Here we present an analysis of the CAZymes present in the Phytophthora infestans, Ph. ramorum, Ph. sojae and Pythium ultimum genomes compared to growth of these species on a range of different carbon sources. Growth on these carbon sources indicates that the size of enzyme families involved in degradation of cell-wall related substrates like cellulose, xylan and pectin is not always a good predictor of growth on these substrates. While a capacity to degrade xylan and cellulose exists the products are not fully saccharified and used as a carbon source. The Phytophthora genomes encode larger CAZyme sets when compared to Py. ultimum, and encode putative cutinases, GH12 xyloglucanases and GH10 xylanases that are missing in the Py. ultimum genome. Phytophthora spp. also encode a larger number of enzyme families and genes involved in pectin degradation. No loss or gain of complete enzyme families was found between the Phytophthora genomes, but there are some marked differences in the size of some enzyme families. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Alisol B 23-acetate protects against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes involved in bile acid homeostasis

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qiang; Chen, Xin-li; Wang, Chang-yuan; Liu, Qi; Sun, Hui-jun; Sun, Peng-yuan; Huo, Xiao-kui; Liu, Zhi-hao; Yao, Ji-hong; Liu, Ke-xin, E-mail: kexinliu@dlmedu.edu.cn

    2015-03-15

    Intrahepatic cholestasis is a clinical syndrome with systemic and intrahepatic accumulation of excessive toxic bile acids that ultimately cause hepatobiliary injury. Appropriate regulation of bile acids in hepatocytes is critically important for protection against liver injury. In the present study, we characterized the protective effect of alisol B 23-acetate (AB23A), a natural triterpenoid, on alpha-naphthylisothiocyanate (ANIT)-induced liver injury and intrahepatic cholestasis in mice and further elucidated the mechanisms in vivo and in vitro. AB23A treatment dose-dependently protected against liver injury induced by ANIT through reducing hepatic uptake and increasing efflux of bile acid via down-regulation of hepatic uptake transporters (Ntcp) and up-regulation of efflux transporter (Bsep, Mrp2 and Mdr2) expression. Furthermore, AB23A reduced bile acid synthesis through repressing Cyp7a1 and Cyp8b1, increased bile acid conjugation through inducing Bal, Baat and bile acid metabolism through an induction in gene expression of Sult2a1. We further demonstrate the involvement of farnesoid X receptor (FXR) in the hepatoprotective effect of AB23A. The changes in transporters and enzymes, as well as ameliorative liver histology in AB23A-treated mice were abrogated by FXR antagonist guggulsterone in vivo. In vitro evidences also directly demonstrated the effect of AB23A on FXR activation in a dose-dependent manner using luciferase reporter assay in HepG2 cells. In conclusion, AB23A produces protective effect against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes. - Highlights: • AB23A has at least three roles in protection against ANIT-induced liver injury. • AB23A decreases Ntcp, and increases Bsep, Mrp2 and Mdr2 expression. • AB23A represses Cyp7a1 and Cyp8b1 through inducing Shp and Fgf15 expression. • AB23A increases bile acid metabolism through inducing Sult2a1 expression. • FXR activation is involved

  15. Alisol B 23-acetate protects against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes involved in bile acid homeostasis

    International Nuclear Information System (INIS)

    Meng, Qiang; Chen, Xin-li; Wang, Chang-yuan; Liu, Qi; Sun, Hui-jun; Sun, Peng-yuan; Huo, Xiao-kui; Liu, Zhi-hao; Yao, Ji-hong; Liu, Ke-xin

    2015-01-01

    Intrahepatic cholestasis is a clinical syndrome with systemic and intrahepatic accumulation of excessive toxic bile acids that ultimately cause hepatobiliary injury. Appropriate regulation of bile acids in hepatocytes is critically important for protection against liver injury. In the present study, we characterized the protective effect of alisol B 23-acetate (AB23A), a natural triterpenoid, on alpha-naphthylisothiocyanate (ANIT)-induced liver injury and intrahepatic cholestasis in mice and further elucidated the mechanisms in vivo and in vitro. AB23A treatment dose-dependently protected against liver injury induced by ANIT through reducing hepatic uptake and increasing efflux of bile acid via down-regulation of hepatic uptake transporters (Ntcp) and up-regulation of efflux transporter (Bsep, Mrp2 and Mdr2) expression. Furthermore, AB23A reduced bile acid synthesis through repressing Cyp7a1 and Cyp8b1, increased bile acid conjugation through inducing Bal, Baat and bile acid metabolism through an induction in gene expression of Sult2a1. We further demonstrate the involvement of farnesoid X receptor (FXR) in the hepatoprotective effect of AB23A. The changes in transporters and enzymes, as well as ameliorative liver histology in AB23A-treated mice were abrogated by FXR antagonist guggulsterone in vivo. In vitro evidences also directly demonstrated the effect of AB23A on FXR activation in a dose-dependent manner using luciferase reporter assay in HepG2 cells. In conclusion, AB23A produces protective effect against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes. - Highlights: • AB23A has at least three roles in protection against ANIT-induced liver injury. • AB23A decreases Ntcp, and increases Bsep, Mrp2 and Mdr2 expression. • AB23A represses Cyp7a1 and Cyp8b1 through inducing Shp and Fgf15 expression. • AB23A increases bile acid metabolism through inducing Sult2a1 expression. • FXR activation is involved

  16. The Tomato Hoffman's Anthocyaninless Gene Encodes a bHLH Transcription Factor Involved in Anthocyanin Biosynthesis That Is Developmentally Regulated and Induced by Low Temperatures.

    Science.gov (United States)

    Qiu, Zhengkun; Wang, Xiaoxuan; Gao, Jianchang; Guo, Yanmei; Huang, Zejun; Du, Yongchen

    2016-01-01

    Anthocyanin pigments play many roles in plants, including providing protection against biotic and abiotic stresses. Many of the genes that mediate anthocyanin accumulation have been identified through studies of flowers and fruits; however, the mechanisms of genes involved in anthocyanin regulation in seedlings under low-temperature stimulus are less well understood. Genetic characterization of a tomato inbred line, FMTT271, which showed no anthocyanin pigmentation, revealed a mutation in a bHLH transcription factor (TF) gene, which corresponds to the ah (Hoffman's anthocyaninless) locus, and so the gene in FMTT271 at that locus was named ah. Overexpression of the wild type allele of AH in FMTT271 resulted in greater anthocyanin accumulation and increased expression of several genes in the anthocyanin biosynthetic pathway. The expression of AH and anthocyanin accumulation in seedlings was shown to be developmentally regulated and induced by low-temperature stress. Additionally, transcriptome analyses of hypocotyls and leaves from the near-isogenic lines seedlings revealed that AH not only influences the expression of anthocyanin biosynthetic genes, but also genes associated with responses to abiotic stress. Furthermore, the ah mutation was shown to cause accumulation of reactive oxidative species and the constitutive activation of defense responses under cold conditions. These results suggest that AH regulates anthocyanin biosynthesis, thereby playing a protective role, and that this function is particularly important in young seedlings that are particularly vulnerable to abiotic stresses.

  17. The Tomato Hoffman's Anthocyaninless Gene Encodes a bHLH Transcription Factor Involved in Anthocyanin Biosynthesis That Is Developmentally Regulated and Induced by Low Temperatures.

    Directory of Open Access Journals (Sweden)

    Zhengkun Qiu

    Full Text Available Anthocyanin pigments play many roles in plants, including providing protection against biotic and abiotic stresses. Many of the genes that mediate anthocyanin accumulation have been identified through studies of flowers and fruits; however, the mechanisms of genes involved in anthocyanin regulation in seedlings under low-temperature stimulus are less well understood. Genetic characterization of a tomato inbred line, FMTT271, which showed no anthocyanin pigmentation, revealed a mutation in a bHLH transcription factor (TF gene, which corresponds to the ah (Hoffman's anthocyaninless locus, and so the gene in FMTT271 at that locus was named ah. Overexpression of the wild type allele of AH in FMTT271 resulted in greater anthocyanin accumulation and increased expression of several genes in the anthocyanin biosynthetic pathway. The expression of AH and anthocyanin accumulation in seedlings was shown to be developmentally regulated and induced by low-temperature stress. Additionally, transcriptome analyses of hypocotyls and leaves from the near-isogenic lines seedlings revealed that AH not only influences the expression of anthocyanin biosynthetic genes, but also genes associated with responses to abiotic stress. Furthermore, the ah mutation was shown to cause accumulation of reactive oxidative species and the constitutive activation of defense responses under cold conditions. These results suggest that AH regulates anthocyanin biosynthesis, thereby playing a protective role, and that this function is particularly important in young seedlings that are particularly vulnerable to abiotic stresses.

  18. The Tomato Hoffman’s Anthocyaninless Gene Encodes a bHLH Transcription Factor Involved in Anthocyanin Biosynthesis That Is Developmentally Regulated and Induced by Low Temperatures

    Science.gov (United States)

    Gao, Jianchang; Guo, Yanmei; Huang, Zejun; Du, Yongchen

    2016-01-01

    Anthocyanin pigments play many roles in plants, including providing protection against biotic and abiotic stresses. Many of the genes that mediate anthocyanin accumulation have been identified through studies of flowers and fruits; however, the mechanisms of genes involved in anthocyanin regulation in seedlings under low-temperature stimulus are less well understood. Genetic characterization of a tomato inbred line, FMTT271, which showed no anthocyanin pigmentation, revealed a mutation in a bHLH transcription factor (TF) gene, which corresponds to the ah (Hoffman's anthocyaninless) locus, and so the gene in FMTT271 at that locus was named ah. Overexpression of the wild type allele of AH in FMTT271 resulted in greater anthocyanin accumulation and increased expression of several genes in the anthocyanin biosynthetic pathway. The expression of AH and anthocyanin accumulation in seedlings was shown to be developmentally regulated and induced by low-temperature stress. Additionally, transcriptome analyses of hypocotyls and leaves from the near-isogenic lines seedlings revealed that AH not only influences the expression of anthocyanin biosynthetic genes, but also genes associated with responses to abiotic stress. Furthermore, the ah mutation was shown to cause accumulation of reactive oxidative species and the constitutive activation of defense responses under cold conditions. These results suggest that AH regulates anthocyanin biosynthesis, thereby playing a protective role, and that this function is particularly important in young seedlings that are particularly vulnerable to abiotic stresses. PMID:26943362

  19. Soybean SAT1 (Symbiotic Ammonium Transporter 1) encodes a bHLH transcription factor involved in nodule growth and NH4+ transport.

    Science.gov (United States)

    Chiasson, David M; Loughlin, Patrick C; Mazurkiewicz, Danielle; Mohammadidehcheshmeh, Manijeh; Fedorova, Elena E; Okamoto, Mamoru; McLean, Elizabeth; Glass, Anthony D M; Smith, Sally E; Bisseling, Ton; Tyerman, Stephen D; Day, David A; Kaiser, Brent N

    2014-04-01

    Glycine max symbiotic ammonium transporter 1 was first documented as a putative ammonium (NH4(+)) channel localized to the symbiosome membrane of soybean root nodules. We show that Glycine max symbiotic ammonium transporter 1 is actually a membrane-localized basic helix-loop-helix (bHLH) DNA-binding transcription factor now renamed Glycine max bHLH membrane 1 (GmbHLHm1). In yeast, GmbHLHm1 enters the nucleus and transcriptionally activates a unique plasma membrane NH4(+) channel Saccharomyces cerevisiae ammonium facilitator 1. Ammonium facilitator 1 homologs are present in soybean and other plant species, where they often share chromosomal microsynteny with bHLHm1 loci. GmbHLHm1 is important to the soybean rhizobium symbiosis because loss of activity results in a reduction of nodule fitness and growth. Transcriptional changes in nodules highlight downstream signaling pathways involving circadian clock regulation, nutrient transport, hormone signaling, and cell wall modification. Collectively, these results show that GmbHLHm1 influences nodule development and activity and is linked to a novel mechanism for NH4(+) transport common to both yeast and plants.

  20. Rare mutations and potentially damaging missense variants in genes encoding fibrillar collagens and proteins involved in their production are candidates for risk for preterm premature rupture of membranes.

    Science.gov (United States)

    Modi, Bhavi P; Teves, Maria E; Pearson, Laurel N; Parikh, Hardik I; Chaemsaithong, Piya; Sheth, Nihar U; York, Timothy P; Romero, Roberto; Strauss, Jerome F

    2017-01-01

    Preterm premature rupture of membranes (PPROM) is the leading identifiable cause of preterm birth with ~ 40% of preterm births being associated with PPROM and occurs in 1% - 2% of all pregnancies. We hypothesized that multiple rare variants in fetal genes involved in extracellular matrix synthesis would associate with PPROM, based on the assumption that impaired elaboration of matrix proteins would reduce fetal membrane tensile strength, predisposing to unscheduled rupture. We performed whole exome sequencing (WES) on neonatal DNA derived from pregnancies complicated by PPROM (49 cases) and healthy term deliveries (20 controls) to identify candidate mutations/variants. Genotyping for selected variants from the WES study was carried out on an additional 188 PPROM cases and 175 controls. All mothers were self-reported African Americans, and a panel of ancestry informative markers was used to control for genetic ancestry in all genetic association tests. In support of the primary hypothesis, a statistically significant genetic burden (all samples combined, SKAT-O p-value = 0.0225) of damaging/potentially damaging rare variants was identified in the genes of interest-fibrillar collagen genes, which contribute to fetal membrane strength and integrity. These findings suggest that the fetal contribution to PPROM is polygenic, and driven by an increased burden of rare variants that may also contribute to the disparities in rates of preterm birth among African Americans.

  1. Dipeptidyl peptidase IV is involved in the cellulose-responsive induction of cellulose biomass-degrading enzyme genes in Aspergillus aculeatus.

    Science.gov (United States)

    Tani, Shuji; Yuki, Shota; Kunitake, Emi; Sumitani, Jun-Ichi; Kawaguchi, Takashi

    2017-06-01

    We screened for factors involved in the cellulose-responsive induction of cellulose biomass-degrading enzyme genes from approximately 12,000 Aspergillus aculeatus T-DNA insertion mutants harboring a transcriptional fusion between the FIII-avicelase gene (cbhI) promoter and the orotidine 5'-monophosphate decarboxylase gene. Analysis of 5-fluoroorodic acid (5-FOA) sensitivity, cellulose utilization, and cbhI expression of the mutants revealed that a mutant harboring T-DNA at the dipeptidyl peptidase IV (dppIV) locus had acquired 5-FOA resistance and was deficient in cellulose utilization and cbhI expression. The deletion of dppIV resulted in a significant reduction in the cellulose-responsive expression of both cbhI as well as genes controlled by XlnR-independent and XlnR-dependent signaling pathways at an early phase in A. aculeatus. In contrast, the dppIV deletion did not affect the xylose-responsive expression of genes under the control of XlnR. These results demonstrate that DppIV participates in cellulose-responsive induction in A. aculeatus.

  2. Temporal changes in glycogenolytic enzyme mRNAs during myogenesis of primary porcine satellite cells

    DEFF Research Database (Denmark)

    Henckel, Poul; Theil, Peter Kappel; Sørensen, Inge Lise

    2007-01-01

    , phosphorylase kinase, phosphorylase and glycogen debranching enzyme, and no alterations of the transporter molecule GLUT4, clearly indicate that glycogenolytic enzymes of potential importance to meat quality development are regulated at the gene level during myogenesis, and are heavily involved in muscle cell...... and muscle fibre development. The genes, however, are not influenced by insulin, and the lack of response to insulin of expression of gene-encoding enzymes involved in the formation and degradation of glycogen may question the applicability of porcine cell culture systems, like the one applied, as a model...

  3. Evaluation of a SUMO E2 conjugating enzyme involved in resistance to Clavibacter michiganensis subsp. michiganensis in Solanum peruvianum, through a tomato mottle virus VIGS assay

    Directory of Open Access Journals (Sweden)

    Mayra Janeth Esparza-Araiza

    2015-12-01

    Full Text Available Clavibacter michiganensis subsp. michiganensis (Cmm causes bacterial wilt and canker of tomato. Currently, no Solanum lycopersicum resistant varieties are commercially available, but some degree of Cmm resistance has been identified in Solanum peruvianum. Previous research showed up-regulation of a SUMO E2 conjugating enzyme (SCEI transcript in resistant S. peruvianum compared to susceptible S. lycopersicum following infection by Cmm. In order to test the role of SCEI in resistance to Cmm, a fragment of the gene from S. peruvianum was cloned into a novel virus-induced gene-silencing (VIGS vector based on the geminivirus Tomato Mottle Virus (ToMoV. Using biolistic inoculation, the ToMoV-based VIGS vector was shown to be effective in S. peruvianum by silencing the magnesium chelatase gene, which resulted in leaf bleaching. The ToMoV_SCEI construct resulted in approx. 61% silencing of SCEI in leaves of S. peruvianum as determined by quantitative RT-PCR. VIGS of SCEI in S. peruvianum resulted in unilateral wilting (15 dpi and subsequent death (20 dpi of the entire plant after Cmm inoculation, whereas empty vector-treated plants only showed wilting in the Cmm-inoculated leaf. SCEI-silenced plants also showed higher Cmm colonization with an average of 4.5 times more damaged tissue compared to the empty vector control plants. SCEI appears to play an important role in the innate immunity of S. peruvianum against Cmm, perhaps through the regulation of WRKY transcription factors, which may lead to expression of proteins involved in salicylic acid-dependent defense responses.

  4. Losartan attenuates chronic cigarette smoke exposure-induced pulmonary arterial hypertension in rats: Possible involvement of angiotensin-converting enzyme-2

    International Nuclear Information System (INIS)

    Han Suxia; He Guangming; Wang Tao; Chen Lei; Ning Yunye; Luo Feng; An Jin; Yang Ting; Dong Jiajia; Liao Zenglin; Xu Dan; Wen Fuqiang

    2010-01-01

    Chronic cigarette smoking induces pulmonary arterial hypertension (PAH) by largely unknown mechanisms. Renin-angiotensin system (RAS) is known to function in the development of PAH. Losartan, a specific angiotensin II receptor antagonist, is a well-known antihypertensive drug with a potential role in regulating angiotensin-converting enzyme-2 (ACE2), a recently found regulator of RAS. To determine the effect of losartan on smoke-induced PAH and its possible mechanism, rats were daily exposed to cigarette smoke for 6 months in the absence and in the presence of losartan. Elevated right ventricular systolic pressure (RVSP), thickened wall of pulmonary arteries with apparent medial hypertrophy along with increased angiotensin II (Ang II) and decreased ACE2 levels were observed in smoke-exposed-only rats. Losartan administration ameliorated pulmonary vascular remodeling, inhibited the smoke-induced RVSP and Ang II elevation and partially reversed the ACE2 decrease in rat lungs. In cultured primary pulmonary artery smooth muscle cells (PASMCs) from 3- and 6-month smoke-exposed rats, ACE2 levels were significantly lower than in those from the control rats. Moreover, PASMCs from 6-month exposed rats proliferated more rapidly than those from 3-month exposed or control rats, and cells grew even more rapidly in the presence of DX600, an ACE2 inhibitor. Consistent with the in vivo study, in vitro losartan pretreatment also inhibited cigarette smoke extract (CSE)-induced cell proliferation and ACE2 reduction in rat PASMCs. The results suggest that losartan may be therapeutically useful in the chronic smoking-induced pulmonary vascular remodeling and PAH and ACE2 may be involved as part of its mechanism. Our study might provide insight into the development of new therapeutic interventions for PAH smokers.

  5. ALDH16A1 is a novel non-catalytic enzyme that may be involved in the etiology of gout via protein-protein interactions with HPRT1.

    Science.gov (United States)

    Vasiliou, Vasilis; Sandoval, Monica; Backos, Donald S; Jackson, Brian C; Chen, Ying; Reigan, Philip; Lanaspa, Miguel A; Johnson, Richard J; Koppaka, Vindhya; Thompson, David C

    2013-02-25

    Gout, a common form of inflammatory arthritis, is strongly associated with elevated uric acid concentrations in the blood (hyperuricemia). A recent study in Icelanders identified a rare missense single nucleotide polymorphism (SNP) in the ALDH16A1 gene, ALDH16A1*2, to be associated with gout and serum uric acid levels. ALDH16A1 is a novel and rather unique member of the ALDH superfamily in relation to its gene and protein structures. ALDH16 genes are present in fish, amphibians, protista, bacteria but absent from archaea, fungi and plants. In most mammalian species, two ALDH16A1 spliced variants (ALDH16A1, long form and ALDH16A1_v2, short form) have been identified and both are expressed in HepG-2, HK-2 and HK-293 human cell lines. The ALDH16 proteins contain two ALDH domains (as opposed to one in the other members of the superfamily), four transmembrane and one coiled-coil domains. The active site of ALDH16 proteins from bacterial, frog and lower animals contain the catalytically important cysteine residue (Cys-302); this residue is absent from the mammalian and fish orthologs. Molecular modeling predicts that both the short and long forms of human ALDH16A1 protein would lack catalytic activity but may interact with the hypoxanthine-guanine phosphoribosyltransferase (HPRT1) protein, a key enzyme involved in uric acid metabolism and gout. Interestingly, such protein-protein interactions with HPRT1 are predicted to be impaired for the long or short forms of ALDH16A1*2. These results lead to the intriguing possibility that association between ALDH16A1 and HPRT1 may be required for optimal HPRT activity with disruption of this interaction possibly contributing to the hyperuricemia seen in ALDH16A1*2 carriers. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Characterization of a Glucosyltransferase Enzyme Involved in the Formation of Kaempferol and Quercetin Sophorosides in Crocus sativus1[C][W

    Science.gov (United States)

    Trapero, Almudena; Ahrazem, Oussama; Rubio-Moraga, Angela; Jimeno, Maria Luisa; Gómez, Maria Dolores; Gómez-Gómez, Lourdes

    2012-01-01

    UGT707B1 is a new glucosyltransferase isolated from saffron (Crocus sativus) that localizes to the cytoplasm and the nucleus of stigma and tepal cells. UGT707B1 transcripts were detected in the stigma tissue of all the Crocus species analyzed, but expression analysis of UGT707B1 in tepals revealed its absence in certain species. The analysis of the glucosylated flavonoids present in Crocus tepals reveals the presence of two major flavonoid compounds in saffron: kaempferol-3-O-β-d-glucopyranosyl-(1-2)-β-d-glucopyranoside and quercetin-3-O-β-d-glucopyranosyl-(1-2)-β-d-glucopyranoside, both of which were absent from the tepals of those Crocus species that did not express UGT707B1. Transgenic Arabidopsis (Arabidopsis thaliana) plants constitutively expressing UGT707B1 under the control of the cauliflower mosaic virus 35S promoter have been constructed and their phenotype analyzed. The transgenic lines displayed a number of changes that resembled those described previously in lines where flavonoid levels had been altered. The plants showed hyponastic leaves, a reduced number of trichomes, thicker stems, and flowering delay. Levels of flavonoids measured in extracts of the transgenic plants showed changes in the composition of flavonols when compared with wild-type plants. The major differences were observed in the extracts from stems and flowers, with an increase in 3-sophoroside flavonol glucosides. Furthermore, a new compound not detected in ecotype Columbia wild-type plants was detected in all the tissues and identified as kaempferol-3-O-sophoroside-7-O-rhamnoside. These data reveal the involvement of UGT707B1 in the biosynthesis of flavonol-3-O-sophorosides and how significant changes in flavonoid homeostasis can be caused by the overproduction of a flavonoid-conjugating enzyme. PMID:22649274

  7. Mutation for nonsyndromic mental retardation in the trans-2-enoyl-CoA reductase TER gene involved in fatty acid elongation impairs the enzyme activity and stability, leading to change in sphingolipid profile.

    Science.gov (United States)

    Abe, Kensuke; Ohno, Yusuke; Sassa, Takayuki; Taguchi, Ryo; Çalışkan, Minal; Ober, Carole; Kihara, Akio

    2013-12-20

    Very long-chain fatty acids (VLCFAs, chain length >C20) exist in tissues throughout the body and are synthesized by repetition of the fatty acid (FA) elongation cycle composed of four successive enzymatic reactions. In mammals, the TER gene is the only gene encoding trans-2-enoyl-CoA reductase, which catalyzes the fourth reaction in the FA elongation cycle. The TER P182L mutation is the pathogenic mutation for nonsyndromic mental retardation. This mutation substitutes a leucine for a proline residue at amino acid 182 in the TER enzyme. Currently, the mechanism by which the TER P182L mutation causes nonsyndromic mental retardation is unknown. To understand the effect of this mutation on the TER enzyme and VLCFA synthesis, we have biochemically characterized the TER P182L mutant enzyme using yeast and mammalian cells transfected with the TER P182L mutant gene and analyzed the FA elongation cycle in the B-lymphoblastoid cell line with the homozygous TER P182L mutation (TER(P182L/P182L) B-lymphoblastoid cell line). We have found that TER P182L mutant enzyme exhibits reduced trans-2-enoyl-CoA reductase activity and protein stability, thereby impairing VLCFA synthesis and, in turn, altering the sphingolipid profile (i.e. decreased level of C24 sphingomyelin and C24 ceramide) in the TER(P182L/P182L) B-lymphoblastoid cell line. We have also found that in addition to the TER enzyme-catalyzed fourth reaction, the third reaction in the FA elongation cycle is affected by the TER P182L mutation. These findings provide new insight into the biochemical defects associated with this genetic mutation.

  8. The Gene tia, Harbored by the Subtilase-Encoding Pathogenicity Island, Is Involved in the Ability of Locus of Enterocyte Effacement-Negative Shiga Toxin-Producing Escherichia coli Strains To Invade Monolayers of Epithelial Cells

    Science.gov (United States)

    Chiani, Paola; Michelacci, Valeria; Minelli, Fabio; Caprioli, Alfredo; Morabito, Stefano

    2017-01-01

    ABSTRACT Locus of enterocyte effacement (LEE)-negative Shiga toxin (Stx)-producing Escherichia coli (STEC) strains are human pathogens that lack the LEE locus, a pathogenicity island (PAI) involved in the intimate adhesion of LEE-positive strains to the host gut epithelium. The mechanism used by LEE-negative STEC strains to colonize the host intestinal mucosa is still not clear. The cell invasion determinant tia, previously described in enterotoxigenic E. coli strains, has been identified in LEE-negative STEC strains that possess the subtilase-encoding pathogenicity island (SE-PAI). We evaluated the role of the gene tia, present in these LEE-negative STEC strains, in the invasion of monolayers of cultured cells. We observed that these strains were able to invade Caco-2 and HEp-2 cell monolayers and compared their invasion ability with that of a mutant strain in which the gene tia had been inactivated. Mutation of the gene tia resulted in a strong reduction of the invasive phenotype, and complementation of the tia mutation with a functional copy of the gene restored the invasion activity. Moreover, we show that the gene tia is overexpressed in bacteria actively invading cell monolayers, demonstrating that tia is involved in the ability to invade cultured monolayers of epithelial cells shown by SE-PAI-positive E. coli, including STEC, strains. However, the expression of the tia gene in the E. coli K-12 strain JM109 was not sufficient, in its own right, to confer to this strain the ability to invade cell monolayers, suggesting that at least another factor must be involved in the invasion ability displayed by the SE-PAI-positive strains. PMID:28893912

  9. The Gene tia, Harbored by the Subtilase-Encoding Pathogenicity Island, Is Involved in the Ability of Locus of Enterocyte Effacement-Negative Shiga Toxin-Producing Escherichia coli Strains To Invade Monolayers of Epithelial Cells.

    Science.gov (United States)

    Bondì, Roslen; Chiani, Paola; Michelacci, Valeria; Minelli, Fabio; Caprioli, Alfredo; Morabito, Stefano

    2017-12-01

    Locus of enterocyte effacement (LEE)-negative Shiga toxin (Stx)-producing Escherichia coli (STEC) strains are human pathogens that lack the LEE locus, a pathogenicity island (PAI) involved in the intimate adhesion of LEE-positive strains to the host gut epithelium. The mechanism used by LEE-negative STEC strains to colonize the host intestinal mucosa is still not clear. The cell invasion determinant tia , previously described in enterotoxigenic E. coli strains, has been identified in LEE-negative STEC strains that possess the subtilase-encoding pathogenicity island (SE-PAI). We evaluated the role of the gene tia , present in these LEE-negative STEC strains, in the invasion of monolayers of cultured cells. We observed that these strains were able to invade Caco-2 and HEp-2 cell monolayers and compared their invasion ability with that of a mutant strain in which the gene tia had been inactivated. Mutation of the gene tia resulted in a strong reduction of the invasive phenotype, and complementation of the tia mutation with a functional copy of the gene restored the invasion activity. Moreover, we show that the gene tia is overexpressed in bacteria actively invading cell monolayers, demonstrating that tia is involved in the ability to invade cultured monolayers of epithelial cells shown by SE-PAI-positive E. coli , including STEC, strains. However, the expression of the tia gene in the E. coli K-12 strain JM109 was not sufficient, in its own right, to confer to this strain the ability to invade cell monolayers, suggesting that at least another factor must be involved in the invasion ability displayed by the SE-PAI-positive strains. Copyright © 2017 American Society for Microbiology.

  10. Occurrence of a number of enzymes involved in either gluconeogenesis or other processes in the pericarp of three cultivars of grape (Vitis vinifera L.) during development.

    Science.gov (United States)

    Famiani, Franco; Moscatello, Stefano; Ferradini, Nicoletta; Gardi, Tiziano; Battistelli, Alberto; Walker, Robert P

    2014-11-01

    It is uncertain whether the enzymes pyruvate orthophosphate dikinase (PPDK) or isocitrate lyase (ICL) are present in the pericarp of grape, in which they could function in gluconeogenesis. The occurrence of these and other enzymes was investigated in the pericarp of three cultivars of grape (Vitis vinifera L.). In particular, the abundance of the enzymes aldolase, glutamine synthase (GS), acid invertase, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), phosphoenolpyruvate carboxylase (PEPC), PPDK and ICL were determined during the development of the pericarp of the cultivars Cabernet Sauvignon, Chardonnay and Zibibbo. PPDK and ICL were not detected at any stage of development. Each of the other enzymes showed different changes in abundance during development. However, for a given enzyme its changes in abundance were similar in each cultivar. In the ripe pericarp of Cabernet Sauvignon, PEPC, cytosolic GS and aldolase were equally distributed between the vasculature and parenchyma cells of the flesh and skin. The absence or very low abundance of PPDK provides strong evidence that any gluconeogenesis from malate utilises phosphoenolpyruvate carboxykinase (PEPCK). The absence or very low abundance of ICL in the pericarp precludes any gluconeogenesis from ethanol. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Application of a hierarchical enzyme classification method reveals the role of gut microbiome in human metabolism.

    Science.gov (United States)

    Mohammed, Akram; Guda, Chittibabu

    2015-01-01

    Enzymes are known as the molecular machines that drive the metabolism of an organism; hence identification of the full enzyme complement of an organism is essential to build the metabolic blueprint of that species as well as to understand the interplay of multiple species in an ecosystem. Experimental characterization of the enzymatic reactions of all enzymes in a genome is a tedious and expensive task. The problem is more pronounced in the metagenomic samples where even the species are not adequately cultured or characterized. Enzymes encoded by the gut microbiota play an essential role in the host metabolism; thus, warranting the need to accurately identify and annotate the full enzyme complements of species in the genomic and metagenomic projects. To fulfill this need, we develop and apply a method called ECemble, an ensemble approach to identify enzymes and enzyme classes and study the human gut metabolic pathways. ECemble method uses an ensemble of machine-learning methods to accurately model and predict enzymes from protein sequences and also identifies the enzyme classes and subclasses at the finest resolution. A tenfold cross-validation result shows accuracy between 97 and 99% at different levels in the hierarchy of enzyme classification, which is superior to comparable methods. We applied ECemble to predict the entire complements of enzymes from ten sequenced proteomes including the human proteome. We also applied this method to predict enzymes encoded by the human gut microbiome from gut metagenomic samples, and to study the role played by the microbe-derived enzymes in the human metabolism. After mapping the known and predicted enzymes to canonical human pathways, we identified 48 pathways that have at least one bacteria-encoded enzyme, which demonstrates the complementary role of gut microbiome in human gut metabolism. These pathways are primarily involved in metabolizing dietary nutrients such as carbohydrates, amino acids, lipids, cofactors and

  12. Application of a hierarchical enzyme classification method reveals the role of gut microbiome in human metabolism

    Science.gov (United States)

    2015-01-01

    Background Enzymes are known as the molecular machines that drive the metabolism of an organism; hence identification of the full enzyme complement of an organism is essential to build the metabolic blueprint of that species as well as to understand the interplay of multiple species in an ecosystem. Experimental characterization of the enzymatic reactions of all enzymes in a genome is a tedious and expensive task. The problem is more pronounced in the metagenomic samples where even the species are not adequately cultured or characterized. Enzymes encoded by the gut microbiota play an essential role in the host metabolism; thus, warranting the need to accurately identify and annotate the full enzyme complements of species in the genomic and metagenomic projects. To fulfill this need, we develop and apply a method called ECemble, an ensemble approach to identify enzymes and enzyme classes and study the human gut metabolic pathways. Results ECemble method uses an ensemble of machine-learning methods to accurately model and predict enzymes from protein sequences and also identifies the enzyme classes and subclasses at the finest resolution. A tenfold cross-validation result shows accuracy between 97 and 99% at different levels in the hierarchy of enzyme classification, which is superior to comparable methods. We applied ECemble to predict the entire complements of enzymes from ten sequenced proteomes including the human proteome. We also applied this method to predict enzymes encoded by the human gut microbiome from gut metagenomic samples, and to study the role played by the microbe-derived enzymes in the human metabolism. After mapping the known and predicted enzymes to canonical human pathways, we identified 48 pathways that have at least one bacteria-encoded enzyme, which demonstrates the complementary role of gut microbiome in human gut metabolism. These pathways are primarily involved in metabolizing dietary nutrients such as carbohydrates, amino acids, lipids

  13. Pancreatic Enzymes

    Science.gov (United States)

    ... Contact Us DONATE NOW GENERAL DONATION PURPLESTRIDE Pancreatic enzymes Home Facing Pancreatic Cancer Living with Pancreatic Cancer ... and see a registered dietitian. What are pancreatic enzymes? Pancreatic enzymes help break down fats, proteins and ...

  14. Phosphoenolpyruvate carboxylase, NADP-malic enzyme, and pyruvate, phosphate dikinase are involved in the acclimation of Nicotiana tabacum L. to drought stress

    Czech Academy of Sciences Publication Activity Database

    Doubnerová-Hýsková, V.; Miedzińska, L.; Dobrá, Jana; Vaňková, Radomíra; Ryšlavá, H.

    2014-01-01

    Roč. 171, č. 5 (2014), s. 19-25 ISSN 0176-1617 R&D Projects: GA MŠk 1M0505 Institutional support: RVO:61389030 Keywords : Drought * NADP-malic enzyme * Nicotiana tabacum L. Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.557, year: 2014

  15. Ethnic differences in the prevalence of polymorphisms in CYP7A1, CYP7B1 AND CYP27A1 enzymes involved in cholesterol metabolism

    OpenAIRE

    Dias, Vera; Ribeiro, V.

    2011-01-01

    It is well known that drug disposition and response are greatly determined by the activities of drug metabolizing enzymes, which are polymorphic. Some of these polymorphisms are clinically relevant and presented an ethnic-dependent pattern of distribution. The characterization of the genetic distribution of different populations allows the selection of therapeutic options in accordance with the genetic background, with the objective to avoid adverse reactions and inefficacy of the treatment. ...

  16. Chemical Modification of a Dehydratase Enzyme Involved in Bacterial Virulence by an Ammonium Derivative: Evidence of its Active Site Covalent Adduct.

    Science.gov (United States)

    González-Bello, Concepción; Tizón, Lorena; Lence, Emilio; Otero, José M; van Raaij, Mark J; Martinez-Guitian, Marta; Beceiro, Alejandro; Thompson, Paul; Hawkins, Alastair R

    2015-07-29

    The first example of an ammonium derivative that causes a specific modification of the active site of type I dehydroquinase (DHQ1), a dehydratase enzyme that is a promising target for antivirulence drug discovery, is described. The resolution at 1.35 Å of the crystal structure of DHQ1 from Salmonella typhi chemically modified by this ammonium derivative revealed that the ligand is covalently attached to the essential Lys170 through the formation of an amine. The detection by mass spectroscopy of the reaction intermediates, in conjunction with the results of molecular dynamics simulations, allowed us to explain the inhibition mechanism and the experimentally observed differences between S. typhi and Staphylococcus aureus enzymes. The results presented here reveal that the replacement of Phe225 in St-DHQ1 by Tyr214 in Sa-DHQ1 and its hydrogen bonding interaction with the conserved water molecule observed in several crystal structures protects the amino adduct against further dehydration/aromatization reactions. In contrast, for the St-DHQ1 enzyme, the carboxylate group of Asp114, with the assistance of this water molecule, would trigger the formation of a Schiff base that can undergo further dehydration reactions until full aromatization of the cyclohexane ring is achieved. Moreover, in vitro antivirulence studies showed that the reported compound is able to reduce the ability of Salmonella Enteritidis to kill A459 respiratory cells. These studies have identified a good scaffold for the design of irreversible inhibitors that can be used as drugs and has opened up new opportunities for the development of novel antivirulence agents by targeting the DHQ1 enzyme.

  17. Benzene Exposure Alters Expression of Enzymes Involved in Fatty Acid β-Oxidation in Male C3H/He Mice

    Directory of Open Access Journals (Sweden)

    Rongli Sun

    2016-10-01

    Full Text Available Benzene is a well-known hematotoxic carcinogen that can cause leukemia and a variety of blood disorders. Our previous study indicated that benzene disturbs levels of metabolites in the fatty acid β-oxidation (FAO pathway, which is crucial for the maintenance and function of hematopoietic and leukemic cells. The present research aims to investigate the effects of benzene on changes in the expression of key enzymes in the FAO pathway in male C3H/He mice. Results showed that benzene exposure caused reduced peripheral white blood cell (WBC, red blood cell (RBC, platelet (Pit counts, and hemoglobin (Hgb concentration. Investigation of the effects of benzene on the expression of FA transport- and β-oxidation-related enzymes showed that expression of proteins Cpt1a, Crat, Acaa2, Aldh1l2, Acadvl, Crot, Echs1, and Hadha was significantly increased. The ATP levels and mitochondrial membrane potential decreased in mice exposed to benzene. Meanwhile, reactive oxygen species (ROS, hydrogen peroxide (H2O2, and malondialdehyde (MDA levels were significantly increased in the benzene group. Our results indicate that benzene induces increased expression of FA transport and β-oxidation enzymes, mitochondrial dysfunction, and oxidative stress, which may play a role in benzene-induced hematotoxicity.

  18. Matrix Metalloproteinase Enzyme Family

    Directory of Open Access Journals (Sweden)

    Ozlem Goruroglu Ozturk

    2013-04-01

    Full Text Available Matrix metalloproteinases play an important role in many biological processes such as embriogenesis, tissue remodeling, wound healing, and angiogenesis, and in some pathological conditions such as atherosclerosis, arthritis and cancer. Currently, 24 genes have been identified in humans that encode different groups of matrix metalloproteinase enzymes. This review discuss the members of the matrix metalloproteinase family and their substrate specificity, structure, function and the regulation of their enzyme activity by tissue inhibitors. [Archives Medical Review Journal 2013; 22(2.000: 209-220

  19. Differential induction of enzymes and genes involved in lipid metabolism in liver and visceral adipose tissue of juvenile yellow catfish Pelteobagrus fulvidraco exposed to copper

    International Nuclear Information System (INIS)

    Chen, Qi-Liang; Luo, Zhi; Pan, Ya-Xiong; Zheng, Jia-Lang; Zhu, Qing-Ling; Sun, Lin-Dan; Zhuo, Mei-Qin; Hu, Wei

    2013-01-01

    Highlights: •Cu downregulates lipogenesis and reduces lipid deposition in liver and adipose tissue. •Mechanism of Cu affecting lipid metabolism is determined at the enzymatic and molecular levels. •Cu exposure differentially influences lipid metabolism between liver and adipose tissue. -- Abstract: The present study was conducted to determine the mechanism of waterborne Cu exposure influencing lipid metabolism in liver and visceral adipose tissue (VAT) of juvenile yellow catfish Pelteobagrus fulvidraco. Yellow catfish were exposed to four waterborne copper (Cu) concentrations (2 (control), 24 (low), 71 (medium), 198 (high) μg Cu/l, respectively) for 6 weeks. Waterborne Cu exposure had a negative effect on growth and several condition indices (condition factor, viscerosomatic index, hepatosomatic index and visceral adipose index). In liver, lipid content, activities of lipogenic enzymes (6-phosphogluconate dehydrogenase (6PGD), glucose-6-phosphate dehydrogenase (G6PD), malic enzyme (ME), isocitrate dehydrogenase (ICDH), and fatty acid synthase (FAS)) as well as mRNA levels of 6PGD, G6PD, FAS and sterol-regulator element-binding protein-1 (SREBP-1) genes decreased with increasing Cu concentrations. However, activity and mRNA level of lipoprotein lipase (LPL) gene in liver increased. In VAT, G6PD, ME and LPL activities as well as the mRNA levels of FAS, LPL and PPARγ genes decreased in fish exposed to higher Cu concentrations. The differential Pearson correlations between transcription factors (SREBP-1 and peroxisome proliferators-activated receptor-γ (PPARγ)), and the activities and mRNA expression of lipogenic enzymes and their genes were observed between liver and VAT. Thus, our study indicated that reduced lipid contents in liver and VAT after Cu exposure were attributable to the reduced activities and mRNA expression of lipogenic enzymes and their genes in these tissues. Different response patterns of several tested enzymes and genes to waterborne Cu

  20. Differential induction of enzymes and genes involved in lipid metabolism in liver and visceral adipose tissue of juvenile yellow catfish Pelteobagrus fulvidraco exposed to copper

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qi-Liang; Luo, Zhi, E-mail: luozhi99@yahoo.com.cn; Pan, Ya-Xiong; Zheng, Jia-Lang; Zhu, Qing-Ling; Sun, Lin-Dan; Zhuo, Mei-Qin; Hu, Wei

    2013-07-15

    Highlights: •Cu downregulates lipogenesis and reduces lipid deposition in liver and adipose tissue. •Mechanism of Cu affecting lipid metabolism is determined at the enzymatic and molecular levels. •Cu exposure differentially influences lipid metabolism between liver and adipose tissue. -- Abstract: The present study was conducted to determine the mechanism of waterborne Cu exposure influencing lipid metabolism in liver and visceral adipose tissue (VAT) of juvenile yellow catfish Pelteobagrus fulvidraco. Yellow catfish were exposed to four waterborne copper (Cu) concentrations (2 (control), 24 (low), 71 (medium), 198 (high) μg Cu/l, respectively) for 6 weeks. Waterborne Cu exposure had a negative effect on growth and several condition indices (condition factor, viscerosomatic index, hepatosomatic index and visceral adipose index). In liver, lipid content, activities of lipogenic enzymes (6-phosphogluconate dehydrogenase (6PGD), glucose-6-phosphate dehydrogenase (G6PD), malic enzyme (ME), isocitrate dehydrogenase (ICDH), and fatty acid synthase (FAS)) as well as mRNA levels of 6PGD, G6PD, FAS and sterol-regulator element-binding protein-1 (SREBP-1) genes decreased with increasing Cu concentrations. However, activity and mRNA level of lipoprotein lipase (LPL) gene in liver increased. In VAT, G6PD, ME and LPL activities as well as the mRNA levels of FAS, LPL and PPARγ genes decreased in fish exposed to higher Cu concentrations. The differential Pearson correlations between transcription factors (SREBP-1 and peroxisome proliferators-activated receptor-γ (PPARγ)), and the activities and mRNA expression of lipogenic enzymes and their genes were observed between liver and VAT. Thus, our study indicated that reduced lipid contents in liver and VAT after Cu exposure were attributable to the reduced activities and mRNA expression of lipogenic enzymes and their genes in these tissues. Different response patterns of several tested enzymes and genes to waterborne Cu

  1. Yeast PAH1-encoded phosphatidate phosphatase controls the expression of CHO1-encoded phosphatidylserine synthase for membrane phospholipid synthesis.

    Science.gov (United States)

    Han, Gil-Soo; Carman, George M

    2017-08-11

    The PAH1 -encoded phosphatidate phosphatase (PAP), which catalyzes the committed step for the synthesis of triacylglycerol in Saccharomyces cerevisiae , exerts a negative regulatory effect on the level of phosphatidate used for the de novo synthesis of membrane phospholipids. This raises the question whether PAP thereby affects the expression and activity of enzymes involved in phospholipid synthesis. Here, we examined the PAP-mediated regulation of CHO1 -encoded phosphatidylserine synthase (PSS), which catalyzes the committed step for the synthesis of major phospholipids via the CDP-diacylglycerol pathway. The lack of PAP in the pah1 Δ mutant highly elevated PSS activity, exhibiting a growth-dependent up-regulation from the exponential to the stationary phase of growth. Immunoblot analysis showed that the elevation of PSS activity results from an increase in the level of the enzyme encoded by CHO1 Truncation analysis and site-directed mutagenesis of the CHO1 promoter indicated that Cho1 expression in the pah1 Δ mutant is induced through the inositol-sensitive upstream activation sequence (UAS INO ), a cis -acting element for the phosphatidate-controlled Henry (Ino2-Ino4/Opi1) regulatory circuit. The abrogation of Cho1 induction and PSS activity by a CHO1 UAS INO mutation suppressed pah1 Δ effects on lipid synthesis, nuclear/endoplasmic reticulum membrane morphology, and lipid droplet formation, but not on growth at elevated temperature. Loss of the DGK1 -encoded diacylglycerol kinase, which converts diacylglycerol to phosphatidate, partially suppressed the pah1 Δ-mediated induction of Cho1 and PSS activity. Collectively, these data showed that PAP activity controls the expression of PSS for membrane phospholipid synthesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Heterologous expression of the isopimaric acid pathway in Nicotiana benthamiana and the effect of N-terminal modifications of the involved cytochrome P450 enzyme

    DEFF Research Database (Denmark)

    Gnanasekaran, Thiyagarajan; Vavitsas, Konstantinos; Andersen-Ranberg, Johan

    2015-01-01

    in the infiltrated leaves. Furthermore, we demonstrated that a modified membrane anchor is a prerequisite for a functional CYP720B4 enzyme when the chloroplast targeting peptide is added. We report the accumulation of 45-55 μg/g plant dry weight of isopimaric acid four days after the infiltration with the modified...... in the chloroplast and subsequently oxidized by a cytochrome P450, CYP720B4. RESULTS: We transiently expressed the isopimaric acid pathway in Nicotiana benthamiana leaves and enhanced its productivity by the expression of two rate-limiting steps in the pathway (providing the general precursor of diterpenes). This co...

  3. Removal of polycyclic aromatic hydrocarbons from aqueous media by the marine fungus NIOCC 312: Involvement of lignin-degrading enzymes and exopolysaccharides

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Shailaja, M.S.; Parameswaran, P.S.; Singh, S.K.

    (Shimadzu, Model RF 1501, Japan). The fungal biomass was extracted in a Soxhlet apparatus in 20 volumes of alkaline methanol (by addition of 1% KOH) twice, each for 3 h, pooled, concentrated, dried over anhydrous Na 2 SO 4 and the residual... of the lignin- degrading enzymes, lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase in a marine isolate of the white-rot fungus, NIOCC #312 obtained from decaying seagrass in a coral lagoon. This fungus efficiently decolorized bleach plant...

  4. Possible involvement of G-proteins and cAMP in the induction of progesterone hydroxylating enzyme system in the vascular wilt fungus Fusarium oxysporum.

    Science.gov (United States)

    Poli, Anna; Di Pietro, Antonio; Zigon, Dusan; Lenasi, Helena

    2009-02-01

    Fungi present the ability to hydroxylate steroids. In some filamentous fungi, progesterone induces an enzyme system which converts the compound into a less toxic hydroxylated product. We investigated the progesterone response in the vascular wilt pathogen Fusarium oxysporum, using mass spectrometry and high performance liquid chromatography (HPLC). Progesterone was mainly transformed into 15alpha-hydroxyprogesterone, which was found predominantly in the extracellular medium. The role of two conserved fungal signaling cascades in the induction of the progesterone-transforming enzyme system was studied, using knockout mutants lacking the mitogen-activated protein kinase Fmk1 or the heterotrimeric G-protein beta subunit Fgb1 functioning upstream of the cyclic adenosine monophosphate (cAMP) pathway. No steroid hydroxylation was induced in the Deltafgb1 strain, suggesting a role for the G-protein beta subunit in progesterone signaling. Exogenous cAMP restored the induction of progesterone-transforming activity in the Deltafgb1 strain, suggesting that steroid signaling in F. oxysporum is mediated by the cAMP-PKA pathway.

  5. Giant virus Megavirus chilensis encodes the biosynthetic pathway for uncommon acetamido sugars.

    Science.gov (United States)

    Piacente, Francesco; De Castro, Cristina; Jeudy, Sandra; Molinaro, Antonio; Salis, Annalisa; Damonte, Gianluca; Bernardi, Cinzia; Abergel, Chantal; Tonetti, Michela G

    2014-08-29

    Giant viruses mimicking microbes, by the sizes of their particles and the heavily glycosylated fibrils surrounding their capsids, infect Acanthamoeba sp., which are ubiquitous unicellular eukaryotes. The glycans on fibrils are produced by virally encoded enzymes, organized in gene clusters. Like Mimivirus, Megavirus glycans are mainly composed of virally synthesized N-acetylglucosamine (GlcNAc). They also contain N-acetylrhamnosamine (RhaNAc), a rare sugar; the enzymes involved in its synthesis are encoded by a gene cluster specific to Megavirus close relatives. We combined activity assays on two enzymes of the pathway with mass spectrometry and NMR studies to characterize their specificities. Mg534 is a 4,6-dehydratase 5-epimerase; its three-dimensional structure suggests that it belongs to a third subfamily of inverting dehydratases. Mg535, next in the pathway, is a bifunctional 3-epimerase 4-reductase. The sequential activity of the two enzymes leads to the formation of UDP-l-RhaNAc. This study is another example of giant viruses performing their glycan synthesis using enzymes different from their cellular counterparts, raising again the question of the origin of these pathways. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. The Arabic Diatessaron Project: Digitalizing, Encoding, Lemmatization

    Directory of Open Access Journals (Sweden)

    Giuliano Lancioni

    2016-04-01

    Full Text Available The Arabic Diatessaron Project (henceforth ADP is an international research project in Digital Humanities that aims to collect, digitalise and encode all known manuscripts of the Arabic Diatessaron (henceforth AD, a text that has been relatively neglected in scholarly research. ADP’s final goal is to provide a number of tools that can enable scholars to effectively query, compare and investigate all known variants of the text that will be encoded as far as possible in compliance with the Text Encoding Initiative (TEI guidelines. The paper addresses a number of issues involved in the process of digitalising manuscripts included in the two existing editions (Ciasca 1888 and Marmardji 1935, adding variants in unedited manuscripts, encoding and lemmatising the text. Issues involved in the design of the ADP include presentation of variants, choice of the standard text, applicability of TEI guidelines, automatic translation between different encodings, cross-edition concordances and principles of lemmatisation.

  7. Nitro-Oleic Acid Reduces J774A.1 Macrophage Oxidative Status and Triglyceride Mass: Involvement of Paraoxonase2 and Triglyceride Metabolizing Enzymes.

    Science.gov (United States)

    Rosenblat, Mira; Rom, Oren; Volkova, Nina; Aviram, Michael

    2016-08-01

    Nitro-fatty acids possess anti-atherogenic properties, but their effects on macrophage oxidative status and lipid metabolism that play important roles in atherosclerosis development are unclear. This study compared the effects of nitro-oleic acid (OLA-NO2) with those of native oleic acid (OLA) on intracellular reactive oxygen species (ROS) generation, anti-oxidants and metabolism of triglycerides and cholesterol in J774A.1 macrophages. Upon incubating the cells with physiological concentrations of OLA-NO2 (0-1 µM) or with equivalent levels of OLA, ROS levels measured by 2, 7-dichlorofluorescein diacetate, decreased dose-dependently, but the anti-oxidative effects of OLA-NO2 were significantly augmented. Copper ion addition increased ROS generation in OLA treated macrophages without affecting OLA-NO2 treated cells. These effects could be attributed to elevated glutathione levels and to increased activity and expression of paraoxonase2 that were observed in OLA-NO2 vs OLA treated cells. Beneficial effects on triglyceride metabolism were noted in OLA-NO2 vs OLA treated macrophages in which cellular triglycerides were reduced due to attenuated biosynthesis and accelerated hydrolysis of triglycerides. Accordingly, OLA-NO2 treated cells demonstrated down-regulation of diacylglycerol acyltransferase1, the key enzyme in triglyceride biosynthesis, and increased expression of hormone-sensitive lipase and adipose triglyceride lipase that regulate triglyceride hydrolysis. Finally, OLA-NO2 vs OLA treatment resulted in modest but significant beneficial effects on macrophage cholesterol metabolism, reducing cholesterol biosynthesis rate and low density lipoprotein influx into the cells, while increasing high density lipoprotein-mediated cholesterol efflux from the macrophages. Collectively, compared with OLA, OLA-NO2 modestly but significantly reduces macrophage oxidative status and cellular triglyceride content via modulation of cellular anti-oxidants and triglyceride

  8. DGAT enzymes and triacylglycerol biosynthesis

    OpenAIRE

    Yen, Chi-Liang Eric; Stone, Scot J.; Koliwad, Suneil; Harris, Charles; Farese, Robert V.

    2008-01-01

    Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, ...

  9. Loop 7 of E2 enzymes: an ancestral conserved functional motif involved in the E2-mediated steps of the ubiquitination cascade.

    Directory of Open Access Journals (Sweden)

    Elena Papaleo

    Full Text Available The ubiquitin (Ub system controls almost every aspect of eukaryotic cell biology. Protein ubiquitination depends on the sequential action of three classes of enzymes (E1, E2 and E3. E2 Ub-conjugating enzymes have a central role in the ubiquitination pathway, interacting with both E1 and E3, and influencing the ultimate fate of the substrates. Several E2s are characterized by an extended acidic insertion in loop 7 (L7, which if mutated is known to impair the proper E2-related functions. In the present contribution, we show that acidic loop is a conserved ancestral motif in E2s, relying on the presence of alternate hydrophobic and acidic residues. Moreover, the dynamic properties of a subset of family 3 E2s, as well as their binary and ternary complexes with Ub and the cognate E3, have been investigated. Here we provide a model of L7 role in the different steps of the ubiquitination cascade of family 3 E2s. The L7 hydrophobic residues turned out to be the main determinant for the stabilization of the E2 inactive conformations by a tight network of interactions in the catalytic cleft. Moreover, phosphorylation is known from previous studies to promote E2 competent conformations for Ub charging, inducing electrostatic repulsion and acting on the L7 acidic residues. Here we show that these active conformations are stabilized by a network of hydrophobic interactions between L7 and L4, the latter being a conserved interface for E3-recruitment in several E2s. In the successive steps, L7 conserved acidic residues also provide an interaction interface for both Ub and the Rbx1 RING subdomain of the cognate E3. Our data therefore suggest a crucial role for L7 of family 3 E2s in all the E2-mediated steps of the ubiquitination cascade. Its different functions are exploited thank to its conserved hydrophobic and acidic residues in a finely orchestrate mechanism.

  10. lemmingA encodes the Apc11 subunit of the APC/C in Drosophila melanogaster that forms a ternary complex with the E2-C type ubiquitin conjugating enzyme, Vihar and Morula/Apc2

    Directory of Open Access Journals (Sweden)

    Nagy Olga

    2012-03-01

    Full Text Available Abstract Background Ubiquitin-dependent protein degradation is a critical step in key cell cycle events, such as metaphase-anaphase transition and mitotic exit. The anaphase promoting complex/cyclosome (APC/C plays a pivotal role in these transitions by recognizing and marking regulatory proteins for proteasomal degradation. Its overall structure and function has been elucidated mostly in yeasts and mammalian cell lines. The APC/C is, however, a multisubunit assembly with at least 13 subunits and their function and interaction within the complex is still relatively uncharacterized, particularly in metazoan systems. Here, lemming (lmg mutants were used to study the APC/C subunit, Apc11, and its interaction partners in Drosophila melanogaster. Results The lmg gene was initially identified through a pharate adult lethal P element insertion mutation expressing developmental abnormalities and widespread apoptosis in larval imaginal discs and pupal abdominal histoblasts. Larval neuroblasts were observed to arrest mitosis in a metaphase-like state with highly condensed, scattered chromosomes and frequent polyploidy. These neuroblasts contain high levels of both cyclin A and cyclin B. The lmg gene was cloned by virtue of the lmg03424 P element insertion which is located in the 5' untranslated region. The lemming locus is transcribed to give a 2.0 kb mRNA that contains two ORFs, lmgA and lmgB. The lmgA ORF codes for a putative protein with more than 80% sequence homology to the APC11 subunit of the human APC/C. The 85 amino acid protein also contains a RING-finger motif characteristic of known APC11 subunits. The lmgA ORF alone was sufficient to rescue the lethal and mitotic phenotypes of the lmg138 null allele and to complement the temperature sensitive lethal phenotype of the APC11-myc9 budding yeast mutant. The LmgA protein interacts with Mr/Apc2, and they together form a binding site for Vihar, the E2-C type ubiquitin conjugating enzyme. Despite

  11. Analgesic and anti-inflammatory activities of hydro-alcoholic extract of Lavandula officinalis in mice: possible involvement of the cyclooxygenase type 1 and 2 enzymes

    Directory of Open Access Journals (Sweden)

    Yasaman Husseini

    Full Text Available Abstract Lavandula officinalis Chaix, Lamiaceae, extracts can inhibit inflammation and also pain induced by formalin in mice. This study evaluated the effects of L. officinalis hydro-alcoholic extract on pain induced by formalin and also cyclooxygenase (COX type 1 and 2 activity in mice. To evaluate probable analgesic and anti-inflammatory effects of the extract, flowers were prepared by maceration and extraction in alcohol and their analgesic effects were studied in male mice, using formalin and hot plate tests. The effect of intraperitoneal hydro-alcoholic extracts of L. officinalis (100, 200, 250, 300, 400 and 800 mg/kg, subcutaneous morphine (10 mg/kg, dexamethasone (10 mg/kg; i.p. and indomethacin (10 mg/kg; i.p. on formalin induced pain were studied. Our results indicated that administration of the extract (100, 200, 250, 300, 400 and 800 mg/kg; i.p. has inhibitory effects on inflammation induced by formalin injection into the animals hind paw. Moreover, this inhibitory effect was equal to the effects of morphine, dexamethasone and indomethacin. The extract in100, 200 and 300 mg/kg; significantly reduced heat-induced pain. The extract also reduced COX activity in dose dependent manner, where the inhibitory effect on COX1 activity was 33% and on COX2 activity was 45%. Here for the first time we show that L. officinialis extract can modulate pain and inflammation induced by formalin by inhibition of COX enzymes.

  12. Elucidation of a carotenoid biosynthesis gene cluster encoding a novel enzyme, 2,2'-beta-hydroxylase, from Brevundimonas sp. strain SD212 and combinatorial biosynthesis of new or rare xanthophylls.

    Science.gov (United States)

    Nishida, Yasuhiro; Adachi, Kyoko; Kasai, Hiroaki; Shizuri, Yoshikazu; Shindo, Kazutoshi; Sawabe, Akiyoshi; Komemushi, Sadao; Miki, Wataru; Misawa, Norihiko

    2005-08-01

    A carotenoid biosynthesis gene cluster mediating the production of 2-hydroxyastaxanthin was isolated from the marine bacterium Brevundimonas sp. strain SD212 by using a common crtI sequence as the probe DNA. A sequence analysis revealed this cluster to contain 12 open reading frames (ORFs), including the 7 known genes, crtW, crtY, crtI, crtB, crtE, idi, and crtZ. The individual ORFs were functionally analyzed by complementation studies using Escherichia coli that accumulated various carotenoid precursors due to the presence of other bacterial crt genes. In addition to functionally identifying the known crt genes, we found that one (ORF11, named crtG) coded for a novel enzyme, carotenoid 2,2'-beta-hydroxylase, which showed intriguingly partial homology with animal sterol-C5-desaturase. When this crtG gene was introduced into E. coli accumulating zeaxanthin and canthaxanthin, the resulting transformants produced their 2-hydroxylated and 2,2'-dihydroxylated products which were structurally novel or rare xanthophylls, as determined by their nuclear magnetic resonance and high-performance liquid chromatography/photodiode array detector/atmospheric pressure chemical ionization mass spectrometry spectral data. The new carotenoid produced was suggested to have a strong inhibitory effect on lipid peroxidation.

  13. Elucidation of a Carotenoid Biosynthesis Gene Cluster Encoding a Novel Enzyme, 2,2′-β-Hydroxylase, from Brevundimonas sp. Strain SD212 and Combinatorial Biosynthesis of New or Rare Xanthophylls

    Science.gov (United States)

    Nishida, Yasuhiro; Adachi, Kyoko; Kasai, Hiroaki; Shizuri, Yoshikazu; Shindo, Kazutoshi; Sawabe, Akiyoshi; Komemushi, Sadao; Miki, Wataru; Misawa, Norihiko

    2005-01-01

    A carotenoid biosynthesis gene cluster mediating the production of 2-hydroxyastaxanthin was isolated from the marine bacterium Brevundimonas sp. strain SD212 by using a common crtI sequence as the probe DNA. A sequence analysis revealed this cluster to contain 12 open reading frames (ORFs), including the 7 known genes, crtW, crtY, crtI, crtB, crtE, idi, and crtZ. The individual ORFs were functionally analyzed by complementation studies using Escherichia coli that accumulated various carotenoid precursors due to the presence of other bacterial crt genes. In addition to functionally identifying the known crt genes, we found that one (ORF11, named crtG) coded for a novel enzyme, carotenoid 2,2′-β-hydroxylase, which showed intriguingly partial homology with animal sterol-C5-desaturase. When this crtG gene was introduced into E. coli accumulating zeaxanthin and canthaxanthin, the resulting transformants produced their 2-hydroxylated and 2,2′-dihydroxylated products which were structurally novel or rare xanthophylls, as determined by their nuclear magnetic resonance and high-performance liquid chromatography/photodiode array detector/atmospheric pressure chemical ionization mass spectrometry spectral data. The new carotenoid produced was suggested to have a strong inhibitory effect on lipid peroxidation. PMID:16085816

  14. A model for visual memory encoding.

    Directory of Open Access Journals (Sweden)

    Rodolphe Nenert

    Full Text Available Memory encoding engages multiple concurrent and sequential processes. While the individual processes involved in successful encoding have been examined in many studies, a sequence of events and the importance of modules associated with memory encoding has not been established. For this reason, we sought to perform a comprehensive examination of the network for memory encoding using data driven methods and to determine the directionality of the information flow in order to build a viable model of visual memory encoding. Forty healthy controls ages 19-59 performed a visual scene encoding task. FMRI data were preprocessed using SPM8 and then processed using independent component analysis (ICA with the reliability of the identified components confirmed using ICASSO as implemented in GIFT. The directionality of the information flow was examined using Granger causality analyses (GCA. All participants performed the fMRI task well above the chance level (>90% correct on both active and control conditions and the post-fMRI testing recall revealed correct memory encoding at 86.33 ± 5.83%. ICA identified involvement of components of five different networks in the process of memory encoding, and the GCA allowed for the directionality of the information flow to be assessed, from visual cortex via ventral stream to the attention network and then to the default mode network (DMN. Two additional networks involved in this process were the cerebellar and the auditory-insular network. This study provides evidence that successful visual memory encoding is dependent on multiple modules that are part of other networks that are only indirectly related to the main process. This model may help to identify the node(s of the network that are affected by a specific disease processes and explain the presence of memory encoding difficulties in patients in whom focal or global network dysfunction exists.

  15. A model for visual memory encoding.

    Science.gov (United States)

    Nenert, Rodolphe; Allendorfer, Jane B; Szaflarski, Jerzy P

    2014-01-01

    Memory encoding engages multiple concurrent and sequential processes. While the individual processes involved in successful encoding have been examined in many studies, a sequence of events and the importance of modules associated with memory encoding has not been established. For this reason, we sought to perform a comprehensive examination of the network for memory encoding using data driven methods and to determine the directionality of the information flow in order to build a viable model of visual memory encoding. Forty healthy controls ages 19-59 performed a visual scene encoding task. FMRI data were preprocessed using SPM8 and then processed using independent component analysis (ICA) with the reliability of the identified components confirmed using ICASSO as implemented in GIFT. The directionality of the information flow was examined using Granger causality analyses (GCA). All participants performed the fMRI task well above the chance level (>90% correct on both active and control conditions) and the post-fMRI testing recall revealed correct memory encoding at 86.33 ± 5.83%. ICA identified involvement of components of five different networks in the process of memory encoding, and the GCA allowed for the directionality of the information flow to be assessed, from visual cortex via ventral stream to the attention network and then to the default mode network (DMN). Two additional networks involved in this process were the cerebellar and the auditory-insular network. This study provides evidence that successful visual memory encoding is dependent on multiple modules that are part of other networks that are only indirectly related to the main process. This model may help to identify the node(s) of the network that are affected by a specific disease processes and explain the presence of memory encoding difficulties in patients in whom focal or global network dysfunction exists.

  16. Risk of Visual Impairment and Intracranial Hypertension After Space Flight: Evaluation of the Role of Polymorphism of Enzymes Involved in One-Carbon Metabolism

    Science.gov (United States)

    Smith, S. M.; Gregory, J. F.; Zeisel, G. H.; Gibson, C. R.; Mader, T. H.; Kinchen, J.; Ueland, P.; Ploutz-Snyder, R.; Heer, M.; Zwart, S. R.

    2016-01-01

    Data from the Nutritional Status Assessment protocol provided biochemical evidence that the one-carbon metabolic pathway may be altered in individuals experiencing vision-related issues during and after space flight (1, 2). Briefly, serum concentrations of homocysteine, cystathionine, 2-methylcitric acid, and methylmalonic acid were significantly (P<0.001) higher (25-45%) in astronauts with ophthalmic changes than in those without such changes (1). These differences existed before, during, and after flight. Serum folate was lower (P<0.01) during flight in individuals with ophthalmic changes. Preflight serum concentrations of cystathionine and 2-methylcitric acid, and mean in-flight serum folate, were significantly (P<0.05) correlated with postflight changes in refraction (1). A follow-up study was conducted to evaluate a small number of known polymorphisms of enzymes in the one-carbon pathway, and to evaluate how these relate to vision and other medical aspects of the eye. Specifically, we investigated 5 polymorphisms in MTRR, MTHFR, SHMT, and CBS genes and their association with ophthalmic changes after flight in 49 astronauts. The number of G alleles of MTRR 66 and C alleles of SHMT1 1420 both contributed to the odds of visual disturbances (3). Block regression showed that B-vitamin status at landing and genetics were significant predictors for many of the ophthalmic outcomes studied (3). In conclusion, we document an association between MTRR 66 and SHMT1 1420 polymorphisms and space flightinduced vision changes. These data document that individuals with an altered 1-carbon metabolic pathway may be predisposed to anatomic and/or physiologic changes that render them susceptible to ophthalmic damage during space flight.

  17. Low-temperature effect on enzyme activities involved in sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings.

    Science.gov (United States)

    Rosa, Mariana; Hilal, Mirna; González, Juan A; Prado, Fernando E

    2009-04-01

    The effect of low temperature on growth, sucrose-starch partitioning and related enzymes in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) was studied. The growth of cotyledons and growing axes in seedlings grown at 25/20 degrees C (light/dark) and shifted to 5/5 degrees C was lower than in those only growing at 25/20 degrees C (unstressed). However, there were no significant differences between low-temperature control and salt-treated seedlings. The higher activities of sucrose phosphate synthase (SPS, EC 2.4.1.14) and soluble acid invertase (acid INV, EC 3.2.1.25) were observed in salt-stressed cotyledons; however, the highest acid INV activity was observed in unstressed cotyledons. ADP-glucose pyrophosphorylase (ADP-GPPase, EC 2.7.7.27) was higher in unstressed cotyledons than in stressed ones. However, between 0 and 4days the highest value was observed in salt-stressed cotyledons. The lowest value of ADP-GPPase was observed in salt-acclimated cotyledons. Low temperature also affected sucrose synthase (SuSy, EC 2.4.1.13) activity in salt-treated cotyledons. Sucrose and glucose were higher in salt-stressed cotyledons, but fructose was essentially higher in low-temperature control. Starch was higher in low-temperature control; however, the highest content was observed at 0day in salt-acclimated cotyledons. Results demonstrated that low temperature induces different responses on sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons. Data also suggest that in salt-treated cotyledons source-sink relations (SSR) are changed in order to supply soluble sugars and proline for the osmotic adjustment. Relationships between starch formation and SuSy activity are also discussed.

  18. Enzyme Informatics

    Science.gov (United States)

    Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

  19. The N-glycan processing enzymes α-mannosidase and β-D-N-acetylhexosaminidase are involved in ripening-associated softening in the non-climacteric fruits of capsicum

    Science.gov (United States)

    Ghosh, Sumit; Meli, Vijaykumar S.; Kumar, Anil; Thakur, Archana; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2011-01-01

    Excessive softening of fruits during the ripening process leads to deterioration. This is of significant global importance as softening-mediated deterioration leads to huge postharvest losses. N-glycan processing enzymes are reported to play an important role during climacteric fruit softening: however, to date these enzymes have not been characterized in non-climacteric fruit. Two ripening-specific N-glycan processing enzymes, α-mannosidase (α-Man) and β-D-N-acetylhexosaminidase (β-Hex), have been identified and targeted to enhance the shelf life in non-climacteric fruits such as capsicum (Capsicum annuum). The purification, cloning, and functional characterization of α-Man and β-Hex from capsicum, which belong to glycosyl hydrolase (GH) families 38 and 20, respectively, are described here. α-Man and β-Hex are cell wall glycoproteins that are able to cleave terminal α-mannose and β-D-N-acetylglucosamine residues of N-glycans, respectively. α-Man and β-Hex transcripts as well as enzyme activity increase with the ripening and/or softening of capsicum. The function of α-Man and β-Hex in capsicum softening is investigated through RNA interference (RNAi) in fruits. α-Man and β-Hex RNAi fruits were approximately two times firmer compared with the control and fruit deterioration was delayed by approximately 7 d. It is shown that silencing of α-Man and β-Hex enhances fruit shelf life due to the reduced degradation of N-glycoproteins which resulted in delayed softening. Altogether, the results provide evidence for the involvement of N-glycan processing in non-climacteric fruit softening. In conclusion, genetic engineering of N-glycan processing can be a common strategy in both climacteric and non-climacteric species to reduce the post-harvest crop losses. PMID:21030387

  20. Molecular cloning of complementary DNAs encoding the heavy chain of the human 4F2 cell-surface antigen: a type II membrane glycoprotein involved in normal and neoplastic cell growth

    International Nuclear Information System (INIS)

    Quackenbush, E.; Clabby, M.; Gottesdiener, K.M.; Barbosa, J.; Jones, N.H.; Strominger, J.L.; Speck, S.; Leiden, J.M.

    1987-01-01

    Complementary DNA (cDNA) clones encoding the heavy chain of the heterodimeric human membrane glycoprotein 4F2 have been isolated by immunoscreening of a λgt11 expression library. The identity of these clones has been confirmed by hybridization to RNA and DNA prepared from mouse L-cell transfectants, which were produced by whole cell gene transfer and selected for cell-surface expression of the human 4F2 heavy chain. DNA sequence analysis suggest that the 4F2 heavy-chain cDNAs encode an approximately 526-amino acid type II membrane glycoprotein, which is composed of a large C-terminal extracellular domain, a single potential transmembrane region, and a 50-81 amino acid N-terminal intracytoplasmic domain. Southern blotting experiments have shown that the 4F2 heavy-chain cDNAs are derived from a single-copy gene that has been highly conserved during mammalian evolution

  1. Enzymes in Fermented Fish.

    Science.gov (United States)

    Giyatmi; Irianto, H E

    Fermented fish products are very popular particularly in Southeast Asian countries. These products have unique characteristics, especially in terms of aroma, flavor, and texture developing during fermentation process. Proteolytic enzymes have a main role in hydrolyzing protein into simpler compounds. Fermentation process of fish relies both on naturally occurring enzymes (in the muscle or the intestinal tract) as well as bacteria. Fermented fish products processed using the whole fish show a different characteristic compared to those prepared from headed and gutted fish. Endogenous enzymes like trypsin, chymotrypsin, elastase, and aminopeptidase are the most involved in the fermentation process. Muscle tissue enzymes like cathepsins, peptidases, transaminases, amidases, amino acid decarboxylases, glutamic dehydrogenases, and related enzymes may also play a role in fish fermentation. Due to the decreased bacterial number during fermentation, contribution of microbial enzymes to proteolysis may be expected prior to salting of fish. Commercial enzymes are supplemented during processing for specific purposes, such as quality improvement and process acceleration. In the case of fish sauce, efforts to accelerate fermentation process and to improve product quality have been studied by addition of enzymes such as papain, bromelain, trypsin, pepsin, and chymotrypsin. © 2017 Elsevier Inc. All rights reserved.

  2. Recombinant vectors construction for cellobiohydrolase encoding gene constitutive expression

    Directory of Open Access Journals (Sweden)

    Leontina GURGU

    2012-12-01

    Full Text Available Cellobiohydrolases (EC 3.2.1.91 are important exo enzymes involved in cellulose hydrolysis alongside endoglucanases (EC 3.2.1.4 and β-glucosidases (EC 3.2.1.21. Heterologous cellobiohydrolase gene expression under constitutive promoter control using Saccharomyces cerevisiae as host system is of great importance for a successful SSF process. From this point of view, the main objective of the work was to use Yeplac181 expression vector as a recipient for cellobiohdrolase - cbhB encoding gene expression under the control of the actin promoter, in Saccharomyces cerevisiae. Two hybridvectors, YEplac-Actp and YEplac-Actp-CbhB, were generated usingEscherichia coli XLI Blue for the cloning experiments. Constitutive cbhB gene expression was checked by proteine gel electrophoresis (SDS-PAGE after insertion of these constructs into Saccharomyces cerevisiae.

  3. Landscape encodings enhance optimization.

    Directory of Open Access Journals (Sweden)

    Konstantin Klemm

    Full Text Available Hard combinatorial optimization problems deal with the search for the minimum cost solutions (ground states of discrete systems under strong constraints. A transformation of state variables may enhance computational tractability. It has been argued that these state encodings are to be chosen invertible to retain the original size of the state space. Here we show how redundant non-invertible encodings enhance optimization by enriching the density of low-energy states. In addition, smooth landscapes may be established on encoded state spaces to guide local search dynamics towards the ground state.

  4. Landscape Encodings Enhance Optimization

    Science.gov (United States)

    Klemm, Konstantin; Mehta, Anita; Stadler, Peter F.

    2012-01-01

    Hard combinatorial optimization problems deal with the search for the minimum cost solutions (ground states) of discrete systems under strong constraints. A transformation of state variables may enhance computational tractability. It has been argued that these state encodings are to be chosen invertible to retain the original size of the state space. Here we show how redundant non-invertible encodings enhance optimization by enriching the density of low-energy states. In addition, smooth landscapes may be established on encoded state spaces to guide local search dynamics towards the ground state. PMID:22496860

  5. Light-induced Variation in Phenolic Compounds in Cabernet Sauvignon Grapes (Vitis vinifera L.) Involves Extensive Transcriptome Reprogramming of Biosynthetic Enzymes, Transcription Factors, and Phytohormonal Regulators.

    Science.gov (United States)

    Sun, Run-Ze; Cheng, Guo; Li, Qiang; He, Yan-Nan; Wang, Yu; Lan, Yi-Bin; Li, Si-Yu; Zhu, Yan-Rong; Song, Wen-Feng; Zhang, Xue; Cui, Xiao-Di; Chen, Wu; Wang, Jun

    2017-01-01

    Light environments have long been known to influence grape ( Vitis vinifera L.) berry development and biosynthesis of phenolic compounds, and ultimately affect wine quality. Here, the accumulation and compositional changes of hydroxycinnamic acids (HCAs) and flavonoids, as well as global gene expression were analyzed in Cabernet Sauvignon grape berries under sunlight exposure treatments at different phenological stages. Sunlight exposure did not consistently affect the accumulation of berry skin flavan-3-ol or anthocyanin among different seasons due to climatic variations, but increased HCA content significantly at véraison and harvest, and enhanced flavonol accumulation dramatically with its timing and severity degree trend. As in sunlight exposed berries, a highly significant correlation was observed between the expression of genes coding phenylalanine ammonia-lyase, 4-coumarate: CoA ligase, flavanone 3-hydroxylase and flavonol synthase family members and corresponding metabolite accumulation in the phenolic biosynthesis pathway, which may positively or negatively be regulated by MYB, bHLH, WRKY, AP2/EREBP, C2C2, NAC, and C2H2 transcription factors (TFs). Furthermore, some candidate genes required for auxin, ethylene and abscisic acid signal transductions were also identified which are probably involved in berry development and flavonoid biosynthesis in response to enhanced sunlight irradiation. Taken together, this study provides a valuable overview of the light-induced phenolic metabolism and transcriptome changes, especially the dynamic responses of TFs and signaling components of phytohormones, and contributes to the further understanding of sunlight-responsive phenolic biosynthesis regulation in grape berries.

  6. A mathematical model for the generation and control of a pH gradient in an immobilized enzyme system involving acid generation.

    Science.gov (United States)

    Chen, G; Fournier, R L; Varanasi, S

    1998-02-20

    An optimal pH control technique has been developed for multistep enzymatic synthesis reactions where the optimal pH differs by several units for each step. This technique separates an acidic environment from a basic environment by the hydrolysis of urea within a thin layer of immobilized urease. With this technique, a two-step enzymatic reaction can take place simultaneously, in proximity to each other, and at their respective optimal pH. Because a reaction system involving an acid generation represents a more challenging test of this pH control technique, a number of factors that affect the generation of such a pH gradient are considered in this study. The mathematical model proposed is based on several simplifying assumptions and represents a first attempt to provide an analysis of this complex problem. The results show that, by choosing appropriate parameters, the pH control technique still can generate the desired pH gradient even if there is an acid-generating reaction in the system. Copyright 1998 John Wiley & Sons, Inc.

  7. First evidence of a potential antibacterial activity involving a laccase-type enzyme of the phenoloxidase system in Pacific oyster Crassostrea gigas haemocytes.

    Science.gov (United States)

    Luna-Acosta, Andrea; Saulnier, Denis; Pommier, Mylène; Haffner, Philippe; De Decker, Sophie; Renault, Tristan; Thomas-Guyon, Hélène

    2011-12-01

    Phenoloxidases (POs) are a group of copper proteins including tyrosinase, catecholase and laccase. In several insects and crustaceans, antibacterial substances are produced through the PO cascade, participating in the direct killing of invading microorganisms. However, although POs are widely recognised as an integral part of the invertebrate immune defence system, experimental evidence is lacking that these properties are conserved in molluscs, and more particularly in the Pacific oyster Crassostrea gigas. In the present study, Vibrio splendidus LGP32 and Vibrio aestuarianus 02/041 growths were affected, after being treated with C. gigas haemocyte lysate supernatant (HLS), and either a common substrate of POs, l-3,4-dihydroxyphenylalanine (L-DOPA), to detect catecholase-type PO activity, or a specific substrate of laccase, p-phenylenediamine (PPD), to detect laccase-type PO activity. Interestingly, a higher bacterial growth inhibition was observed in the presence of PPD than in the presence of L-DOPA. These effects were suppressed when the specific PO inhibitor, phenylthiourea (PTU), was added to the medium. Results of the present study suggest, for the first time in a mollusc species, that antibacterial activities of HLS from C. gigas potentially involve POs, and more particularly laccase catalysed reactions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Light-induced Variation in Phenolic Compounds in Cabernet Sauvignon Grapes (Vitis vinifera L.) Involves Extensive Transcriptome Reprogramming of Biosynthetic Enzymes, Transcription Factors, and Phytohormonal Regulators

    Science.gov (United States)

    Sun, Run-Ze; Cheng, Guo; Li, Qiang; He, Yan-Nan; Wang, Yu; Lan, Yi-Bin; Li, Si-Yu; Zhu, Yan-Rong; Song, Wen-Feng; Zhang, Xue; Cui, Xiao-Di; Chen, Wu; Wang, Jun

    2017-01-01

    Light environments have long been known to influence grape (Vitis vinifera L.) berry development and biosynthesis of phenolic compounds, and ultimately affect wine quality. Here, the accumulation and compositional changes of hydroxycinnamic acids (HCAs) and flavonoids, as well as global gene expression were analyzed in Cabernet Sauvignon grape berries under sunlight exposure treatments at different phenological stages. Sunlight exposure did not consistently affect the accumulation of berry skin flavan-3-ol or anthocyanin among different seasons due to climatic variations, but increased HCA content significantly at véraison and harvest, and enhanced flavonol accumulation dramatically with its timing and severity degree trend. As in sunlight exposed berries, a highly significant correlation was observed between the expression of genes coding phenylalanine ammonia-lyase, 4-coumarate: CoA ligase, flavanone 3-hydroxylase and flavonol synthase family members and corresponding metabolite accumulation in the phenolic biosynthesis pathway, which may positively or negatively be regulated by MYB, bHLH, WRKY, AP2/EREBP, C2C2, NAC, and C2H2 transcription factors (TFs). Furthermore, some candidate genes required for auxin, ethylene and abscisic acid signal transductions were also identified which are probably involved in berry development and flavonoid biosynthesis in response to enhanced sunlight irradiation. Taken together, this study provides a valuable overview of the light-induced phenolic metabolism and transcriptome changes, especially the dynamic responses of TFs and signaling components of phytohormones, and contributes to the further understanding of sunlight-responsive phenolic biosynthesis regulation in grape berries. PMID:28469625

  9. Light-induced Variation in Phenolic Compounds in Cabernet Sauvignon Grapes (Vitis vinifera L. Involves Extensive Transcriptome Reprogramming of Biosynthetic Enzymes, Transcription Factors, and Phytohormonal Regulators

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2017-04-01

    Full Text Available Light environments have long been known to influence grape (Vitis vinifera L. berry development and biosynthesis of phenolic compounds, and ultimately affect wine quality. Here, the accumulation and compositional changes of hydroxycinnamic acids (HCAs and flavonoids, as well as global gene expression were analyzed in Cabernet Sauvignon grape berries under sunlight exposure treatments at different phenological stages. Sunlight exposure did not consistently affect the accumulation of berry skin flavan-3-ol or anthocyanin among different seasons due to climatic variations, but increased HCA content significantly at véraison and harvest, and enhanced flavonol accumulation dramatically with its timing and severity degree trend. As in sunlight exposed berries, a highly significant correlation was observed between the expression of genes coding phenylalanine ammonia-lyase, 4-coumarate: CoA ligase, flavanone 3-hydroxylase and flavonol synthase family members and corresponding metabolite accumulation in the phenolic biosynthesis pathway, which may positively or negatively be regulated by MYB, bHLH, WRKY, AP2/EREBP, C2C2, NAC, and C2H2 transcription factors (TFs. Furthermore, some candidate genes required for auxin, ethylene and abscisic acid signal transductions were also identified which are probably involved in berry development and flavonoid biosynthesis in response to enhanced sunlight irradiation. Taken together, this study provides a valuable overview of the light-induced phenolic metabolism and transcriptome changes, especially the dynamic responses of TFs and signaling components of phytohormones, and contributes to the further understanding of sunlight-responsive phenolic biosynthesis regulation in grape berries.

  10. Blind encoding into qudits

    International Nuclear Information System (INIS)

    Shaari, J.S.; Wahiddin, M.R.B.; Mancini, S.

    2008-01-01

    We consider the problem of encoding classical information into unknown qudit states belonging to any basis, of a maximal set of mutually unbiased bases, by one party and then decoding by another party who has perfect knowledge of the basis. Working with qudits of prime dimensions, we point out a no-go theorem that forbids 'shift' operations on arbitrary unknown states. We then provide the necessary conditions for reliable encoding/decoding

  11. Angiotensin-converting enzyme inhibitors delay the occurrence of renal involvement and are associated with a decreased risk of disease activity in patients with systemic lupus erythematosus--results from LUMINA (LIX): a multiethnic US cohort.

    Science.gov (United States)

    Durán-Barragán, S; McGwin, G; Vilá, L M; Reveille, J D; Alarcón, G S

    2008-07-01

    To examine if angiotensin-converting enzyme (ACE) inhibitor use delays the occurrence of renal involvement and decreases the risk of disease activity in SLE patients. SLE patients (Hispanics, African Americans and Caucasians) from the lupus in minorities: nature vs nurture (LUMINA) cohort were studied. Renal involvement was defined as ACR criterion and/or biopsy-proven lupus nephritis. Time-to-renal involvement was examined by univariable and multivariable Cox proportional hazards regression analyses. Disease activity was examined with a case-crossover design and a conditional logistic regression model; in the case intervals, a decrease in the SLAM-R score >or=4 points occurred but not in the control intervals. Eighty of 378 patients (21%) were ACE inhibitor users; 298 (79%) were not. The probability of renal involvement free-survival at 10 yrs was 88.1% for users and 75.4% for non-users (P = 0.0099, log rank test). Users developed persistent proteinuria and/or biopsy-proven lupus nephritis (7.1%) less frequently than non-users (22.9%), P = 0.016. By multivariable Cox proportional hazards regression analyses, ACE inhibitors use [hazard ratio (HR) 0.27; 95% CI 0.09, 0.78] was associated with a longer time-to-renal involvement occurrence whereas African American ethnicity (HR 3.31; 95% CI 1.44, 7.61) was with a shorter time. ACE inhibitor use (54/288 case and 254/1148 control intervals) was also associated with a decreased risk of disease activity (HR 0.56; 95% CI 0.34, 0.94). ACE inhibitor use delays the development of renal involvement and associates with a decreased risk of disease activity in SLE; corroboration of these findings in other lupus cohorts is desirable before practice recommendations are formulated.

  12. An encoding device and a method of encoding

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to an encoding device, such as an optical position encoder, for encoding input from an object, and a method for encoding input from an object, for determining a position of an object that interferes with light of the device. The encoding device comprises a light source...... in the area in the space and may interfere with the light, which interference may be encoded into a position or activation....

  13. Minor Threonine Dehydratase Encoded Within the Threonine Synthetic Region of Bacillus subtilis1

    Science.gov (United States)

    Vapnek, Daniel; Greer, Sheldon

    1971-01-01

    Challenging auxotrophs on metabolites that are precursors of a biosynthetic step involving a mutated enzyme has revealed a new class of suppressor mutations which act by derepressing a minor enzyme activity not normally detected in the wild-type strain. These indirect, partial suppressor mutations which allow isoleucine auxotrophs to grow on homoserine or threonine have been analyzed to determine their effect on enzymes involved in the biosynthesis of these amino acids. It has been found that one class of these suppressor mutations (sprA) leads to the derepression of homoserine kinase, homoserine dehydrogenase, and a minor threonine dehydratase that is not sufficiently active to be detected in the wild-type strain. The gene encoding this second threonine dehydratase activity has been found to be located between the structural genes for homoserine kinase and homoserine dehydrogenase. The results of these experiments indicate that plating of auxotrophs on precursors of a biosynthetic step involving mutated enzymes could prove to be a valuable method for the detection of regulatory mutants as well as a possible tool in studying the evolution of biochemical pathways. PMID:4997544

  14. Identification of cytochrome P450s involved in the metabolism of 6-benzyl-1-benzyloxymethyl-5-iodouracil (W-1) using human recombinant enzymes and rat liver microsomes in vitro.

    Science.gov (United States)

    Lu, Ying-Yuan; Cheng, Hai-Xu; Wang, Xin; Wang, Xiao-Wei; Liu, Jun-Yi; Li, Pu; Lou, Ya-Qing; Li, Jun; Lu, Chuang; Zhang, Guo-Liang

    2017-08-01

    1. The aim of this study was to identify the hepatic metabolic enzymes, which involved in the biotransformation of 6-benzyl-1-benzyloxymethyl-5-iodouracil (W-1), a novel non-nucleoside reverse transcriptase inhibitor (NNRTI) in rat and human in vitro. 2. The parent drug of W-1 was incubated with rat liver microsomes (RLMs) or recombinant CYPs (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, and CYP3A5, respectively) in the presence or absence of nicotinamide adeninedinucleotide phosphate (NADPH)-regenerating system. The metabolites of W-1 were analyzed with liquid chromatography-ion trap-time of flight-mass spectrometry (LC-IT-TOF-MS). 3. The parent drug of W-1 was metabolized in a NADPH-dependent manner in RLMs. The kinetic parameters of prototype W-1 including K m , V max , and CL int were 2.3 μM, 3.3 nmol/min/mg protein, and 1.4 mL/min/mg protein, respectively. Two metabolites M1 and M2 were observed in shorter retention times (2.988 and 3.188 min) with a higher molecular ion at m/z 463.0160 (both M1 and M2) than that of the W-1 parent drug (6.158 min with m/z 447.0218). The CYP selective inhibition and recombinant enzymes also showed that two hydroxyl metabolites M1 and M2 are mainly mediated by CYP2C19 and CYP3A4. 4. The identification of CYPs involved in W-1 biotransformation is important to understand and minimize, if possible, the potential of drug-drug interactions.

  15. Enzymic lactose hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J J; Brand, J C

    1980-01-01

    Acid or enzymic hydrolysis can be used to hydrolyze lactose. Advantages of both are compared and details of enzymic hydrolysis using yeast or fungal enzymes given. The new scheme outlined involves recycling lactase. Because lactose and lactase react to ultrafiltration (UF) membranes differently separation is possible. Milk or milk products are ultrafiltered to separate a concentrate from a lactose-rich permeate which is treated with lactase in a reactor until hydrolysis reaches a required level. The lactase can be removed by UF as it does not permeate the membrane, and it is recycled back to the reactor. Permeate from the second UF stage may or may not be recombined with the concentrate from the first stage to produce a low lactose product (analysis of a typical low-lactose dried whole milk is given). Batch or continuous processes are explained and a batch process without enzyme recovery is discussed. (Refs. 4).

  16. ERP Correlates of Encoding Success and Encoding Selectivity in Attention Switching

    Science.gov (United States)

    Yeung, Nick

    2016-01-01

    Long-term memory encoding depends critically on effective processing of incoming information. The degree to which participants engage in effective encoding can be indexed in electroencephalographic (EEG) data by studying event-related potential (ERP) subsequent memory effects. The current study investigated ERP correlates of memory success operationalised with two different measures—memory selectivity and global memory—to assess whether previously observed ERP subsequent memory effects reflect focused encoding of task-relevant information (memory selectivity), general encoding success (global memory), or both. Building on previous work, the present study combined an attention switching paradigm—in which participants were presented with compound object-word stimuli and switched between attending to the object or the word across trials—with a later recognition memory test for those stimuli, while recording their EEG. Our results provided clear evidence that subsequent memory effects resulted from selective attentional focusing and effective top-down control (memory selectivity) in contrast to more general encoding success effects (global memory). Further analyses addressed the question of whether successful encoding depended on similar control mechanisms to those involved in attention switching. Interestingly, differences in the ERP correlates of attention switching and successful encoding, particularly during the poststimulus period, indicated that variability in encoding success occurred independently of prestimulus demands for top-down cognitive control. These results suggest that while effects of selective attention and selective encoding co-occur behaviourally their ERP correlates are at least partly dissociable. PMID:27907075

  17. Uch2/Uch37 is the major deubiquitinating enzyme associated with the 26S proteasome in fission yeast

    DEFF Research Database (Denmark)

    Stone, Miranda; Hartmann-Petersen, Rasmus; Seeger, Michael

    2004-01-01

    . Some deubiquitinating enzymes are associated with the 26S proteasome contributing to and regulating the particle's activity. Here, we characterise fission yeast Uch2 and Ubp6, two proteasome associated deubiquitinating enzymes. The human orthologues of these enzymes are known as Uch37 and Usp14......, respectively. We report that the subunit Uch2/Uch37 is the major deubiquitinating enzyme associated with the fission yeast 26S proteasome. In contrast, the activity of Ubp6 appears to play a more regulatory and/or structural role involving the proteasome subunits Mts1/Rpn9, Mts2/Rpt2 and Mts3/Rpn12, as Ubp6...... becomes essential when activity of these subunits is compromised by conditional mutations. Finally, when the genes encoding Uch2/Uch37 and Ubp6 are disrupted, the cells are viable without showing obvious signs of impaired ubiquitin-dependent proteolysis, indicating that other deubiquitinating enzymes may...

  18. Bacterial enzymes involved in lignin degradation

    NARCIS (Netherlands)

    de Gonzalo, Gonzalo; Colpa, Dana I; Habib, Mohamed H M; Fraaije, Marco W

    2016-01-01

    Lignin forms a large part of plant biomass. It is a highly heterogeneous polymer of 4-hydroxyphenylpropanoid units and is embedded within polysaccharide polymers forming lignocellulose. Lignin provides strength and rigidity to plants and is rather resilient towards degradation. To improve the

  19. Assembly and multiple gene expression of thermophilic enzymes in Escherichia coli for in vitro metabolic engineering.

    Science.gov (United States)

    Ninh, Pham Huynh; Honda, Kohsuke; Sakai, Takaaki; Okano, Kenji; Ohtake, Hisao

    2015-01-01

    In vitro reconstitution of an artificial metabolic pathway is an emerging approach for the biocatalytic production of industrial chemicals. However, several enzymes have to be separately prepared (and purified) for the construction of an in vitro metabolic pathway, thereby limiting the practical applicability of this approach. In this study, genes encoding the nine thermophilic enzymes involved in a non-ATP-forming chimeric glycolytic pathway were assembled in an artificial operon and co-expressed in a single recombinant Escherichia coli strain. Gene expression levels of the thermophilic enzymes were controlled by their sequential order in the artificial operon. The specific activities of the recombinant enzymes in the cell-free extract of the multiple-gene-expression E. coli were 5.0-1,370 times higher than those in an enzyme cocktail prepared from a mixture of single-gene-expression strains, in each of which a single one of the nine thermophilic enzymes was overproduced. Heat treatment of a crude extract of the multiple-gene-expression cells led to the denaturation of indigenous proteins and one-step preparation of an in vitro synthetic pathway comprising only a limited number of thermotolerant enzymes. Coupling this in vitro pathway with other thermophilic enzymes including the H2 O-forming NADH oxidase or the malate/lactate dehydrogenase facilitated one-pot conversion of glucose to pyruvate or lactate, respectively. © 2014 Wiley Periodicals, Inc.

  20. mCSF1, a nucleus-encoded CRM protein required for the processing of many mitochondrial introns, is involved in the biogenesis of respiratory complexes I and IV in Arabidopsis.

    Science.gov (United States)

    Zmudjak, Michal; Colas des Francs-Small, Catherine; Keren, Ido; Shaya, Felix; Belausov, Eduard; Small, Ian; Ostersetzer-Biran, Oren

    2013-07-01

    The coding regions of many mitochondrial genes in plants are interrupted by intervening sequences that are classified as group II introns. Their splicing is essential for the expression of the genes they interrupt and hence for respiratory function, and is facilitated by various protein cofactors. Despite the importance of these cofactors, only a few of them have been characterized. CRS1-YhbY domain (CRM) is a recently recognized RNA-binding domain that is present in several characterized splicing factors in plant chloroplasts. The Arabidopsis genome encodes 16 CRM proteins, but these are largely uncharacterized. Here, we analyzed the intracellular location of one of these hypothetical proteins in Arabidopsis, mitochondrial CAF-like splicing factor 1 (mCSF1; At4 g31010), and analyzed the growth phenotypes and organellar activities associated with mcsf1 mutants in plants. Our data indicated that mCSF1 resides within mitochondria and its functions are essential during embryogenesis. Mutant plants with reduced mCSF1 displayed inhibited germination and retarded growth phenotypes that were tightly associated with reduced complex I and IV activities. Analogously to the functions of plastid-localized CRM proteins, analysis of the RNA profiles in wildtype and mcsf1 plants showed that mCSF1 acts in the splicing of many of the group II intron RNAs in Arabidopsis mitochondria. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  1. Role of the pathotype-specific ACRTS1 gene encoding a hydroxylase involved in the biosynthesis of host-selective ACR-toxin in the rough lemon pathotype of Alternaria alternata.

    Science.gov (United States)

    Izumi, Yuriko; Kamei, Eri; Miyamoto, Yoko; Ohtani, Kouhei; Masunaka, Akira; Fukumoto, Takeshi; Gomi, Kenji; Tada, Yasuomi; Ichimura, Kazuya; Peever, Tobin L; Akimitsu, Kazuya

    2012-08-01

    The rough lemon pathotype of Alternaria alternata produces host-selective ACR-toxin and causes Alternaria leaf spot disease of the rootstock species rough lemon (Citrus jambhiri) and Rangpur lime (C. limonia). Genes controlling toxin production were localized to a 1.5-Mb chromosome carrying the ACR-toxin biosynthesis gene cluster (ACRT) in the genome of the rough lemon pathotype. A genomic BAC clone containing a portion of the ACRT cluster was sequenced which allowed identification of three open reading frames present only in the genomes of ACR-toxin producing isolates. We studied the functional role of one of these open reading frames, ACRTS1 encoding a putative hydroxylase, in ACR-toxin production by homologous recombination-mediated gene disruption. There are at least three copies of ACRTS1 gene in the genome and disruption of two copies of this gene significantly reduced ACR-toxin production as well as pathogenicity; however, transcription of ACRTS1 and production of ACR-toxin were not completely eliminated due to remaining functional copies of the gene. RNA-silencing was used to knock down the remaining ACRTS1 transcripts to levels undetectable by reverse transcription-polymerase chain reaction. The silenced transformants did not produce detectable ACR-toxin and were not pathogenic. These results indicate that ACRTS1 is an essential gene in ACR-toxin biosynthesis in the rough lemon pathotype of A. alternata and is required for full virulence of this fungus.

  2. Study of genes induced by ionizing radiations at Arabidopsis thaliana: identification and molecular characterization of the ATGR1 gene, a new gene encoding a protein involved in plant cell division

    International Nuclear Information System (INIS)

    Deveaux, Yves

    1999-01-01

    DNA damage, that can be experimentally introduced by ionizing radiation (IR), induces complex signal transduction pathways leading to cell recovery or, alternatively to programmed cell death if damages are too severe. To identify the inducible components of the response to genotoxic stress in plants, we have screened by Differential Display for mRNAs that rapidly and strongly accumulate after IR treatment in A. thaliana cells. We have characterized ATGR1, a new single copy Arabidopsis gene encoding a PEST-box protein of unknown function. In unstressed plant organs the ATGR1 mRNA is hardly detectable, whereas the protein is present in extracts prepared from roots, shoot meristems and inflorescences, that all contain large amounts of actively dividing cells. This pattern is confirmed by immuno localisation on tissue sections that shows constitutive ATGR1 protein expression covering the root elongation zone, the shoot meristem, leaf primordial and the ovules of developing flowers. Histochemical analysis of transgenic plants expressing the GUS reporter gene under the control of the ATGR1 promoter, demonstrate that the developmental and tissue-specific profile of ATGR1 protein expression is conferred by the gene promoter. The massive, transient and dose-dependent accumulation of ATGR1 transcripts after IR treatment observed in all plant organs does not lead to significant changes in ATGR1 protein pattern. Stable ATGR1 protein overexpression, as exemplified by transgenic A. thaliana plants that contain a 35S promoter-ATGR1 gene fusion, does not induce notable changes of the overall ATGR1 protein level, but leads to male and female sterility. The cause of sterility is a lack of correct chromosome assembly and distribution at the stage metaphase II of meiosis. Taken together our results show that i) ATGR1 gene expression is associated to cell division during plant development ii) the ATGR1 protein level is regulated at the transcriptional and post-transcriptional level iii

  3. High frequency of the IVS2-2A>G DNA sequence variation in SLC26A5, encoding the cochlear motor protein prestin, precludes its involvement in hereditary hearing loss

    Directory of Open Access Journals (Sweden)

    Pereira Fred A

    2005-08-01

    Full Text Available Abstract Background Cochlear outer hair cells change their length in response to variations in membrane potential. This capability, called electromotility, is believed to enable the sensitivity and frequency selectivity of the mammalian cochlea. Prestin is a transmembrane protein required for electromotility. Homozygous prestin knockout mice are profoundly hearing impaired. In humans, a single nucleotide change in SLC26A5, encoding prestin, has been reported in association with hearing loss. This DNA sequence variation, IVS2-2A>G, occurs in the exon 3 splice acceptor site and is expected to abolish splicing of exon 3. Methods To further explore the relationship between hearing loss and the IVS2-2A>G transition, and assess allele frequency, genomic DNA from hearing impaired and control subjects was analyzed by DNA sequencing. SLC26A5 genomic DNA sequences from human, chimp, rat, mouse, zebrafish and fruit fly were aligned and compared for evolutionary conservation of the exon 3 splice acceptor site. Alternative splice acceptor sites within intron 2 of human SLC26A5 were sought using a splice site prediction program from the Berkeley Drosophila Genome Project. Results The IVS2-2A>G variant was found in a heterozygous state in 4 of 74 hearing impaired subjects of Hispanic, Caucasian or uncertain ethnicity and 4 of 150 Hispanic or Caucasian controls (p = 0.45. The IVS2-2A>G variant was not found in 106 subjects of Asian or African American descent. No homozygous subjects were identified (n = 330. Sequence alignment of SLC26A5 orthologs demonstrated that the A nucleotide at position IVS2-2 is invariant among several eukaryotic species. Sequence analysis also revealed five potential alternative splice acceptor sites in intron 2 of human SLC26A5. Conclusion These data suggest that the IVS2-2A>G variant may not occur more frequently in hearing impaired subjects than in controls. The identification of five potential alternative splice acceptor sites in

  4. Regulation of hydantoin-hydrolyzing enzyme expression in Agrobacterium tumefaciens strain RU-AE01.

    Science.gov (United States)

    Jiwaji, Meesbah; Dorrington, Rosemary Ann

    2009-10-01

    Optically pure D-: amino acids, like D-: hydroxyphenylglycine, are used in the semi-synthetic production of pharmaceuticals. They are synthesized industrially via the biocatalytic hydrolysis of p-hydroxyphenylhydantoin using enzymes derived from Agrobacterium tumefaciens strains. The reaction proceeds via a three-step pathway: (a) the ring-opening cleavage of the hydantoin ring by a D-: hydantoinase (encoded by hyuH), (b) conversion of the resultant D-: N-carbamylamino acid to the corresponding amino acid by a D-: N-carbamoylase (encoded by hyuC), and (c) chemical or enzymatic racemization of the un-reacted hydantoin substrate. While the structure and biochemical properties of these enzymes are well understood, little is known about their origin, their function, and their regulation in the native host. We investigated the mechanisms involved in the regulation of expression of the hydantoinase and N-carbamoylase enzyme activity in A. tumefaciens strain RU-AE01. We present evidence for a complex regulatory network that responds to the growth status of the cells, the presence of inducer, and nitrogen catabolite repression. Deletion analysis and site-directed mutagenesis were used to identify regulatory elements involved in transcriptional regulation of hyuH and hyuC expression. Finally, a comparison between the hyu gene clusters in several Agrobacterium strains provides insight into the function of D-: selective hydantoin-hydrolyzing enzyme systems in Agrobacterium species.

  5. a permutation encoding te algorithm solution of reso tation encoding

    African Journals Online (AJOL)

    eobe

    Keywords: Genetic algorithm, resource constrained. 1. INTRODUCTION. 1. .... Nigerian Journal of Technology. Vol. 34, No. 1, January 2015. 128 ... 4. ENCODING OF CHROMOSOME. ENCODING OF CHROMOSOME .... International Multi conference of Engineers and ... method”, Naval Research Logistics, vol 48, issue 2,.

  6. Vibrio Phage KVP40 Encodes a Functional NAD+ Salvage Pathway.

    Science.gov (United States)

    Lee, Jae Yun; Li, Zhiqun; Miller, Eric S

    2017-05-01

    The genome of T4-type Vibrio bacteriophage KVP40 has five genes predicted to encode proteins of pyridine nucleotide metabolism, of which two, nadV and natV , would suffice for an NAD + salvage pathway. NadV is an apparent nicotinamide phosphoribosyltransferase (NAmPRTase), and NatV is an apparent bifunctional nicotinamide mononucleotide adenylyltransferase (NMNATase) and nicotinamide-adenine dinucleotide pyrophosphatase (Nudix hydrolase). Genes encoding the predicted salvage pathway were cloned and expressed in Escherichia coli , the proteins were purified, and their enzymatic properties were examined. KVP40 NadV NAmPRTase is active in vitro , and a clone complements a Salmonella mutant defective in both the bacterial de novo and salvage pathways. Similar to other NAmPRTases, the KVP40 enzyme displayed ATPase activity indicative of energy coupling in the reaction mechanism. The NatV NMNATase activity was measured in a coupled reaction system demonstrating NAD + biosynthesis from nicotinamide, phosphoribosyl pyrophosphate, and ATP. The NatV Nudix hydrolase domain was also shown to be active, with preferred substrates of ADP-ribose, NAD + , and NADH. Expression analysis using reverse transcription-quantitative PCR (qRT-PCR) and enzyme assays of infected Vibrio parahaemolyticus cells demonstrated nadV and natV transcription during the early and delayed-early periods of infection when other KVP40 genes of nucleotide precursor metabolism are expressed. The distribution and phylogeny of NadV and NatV proteins among several large double-stranded DNA (dsDNA) myophages, and also those from some very large siphophages, suggest broad relevance of pyridine nucleotide scavenging in virus-infected cells. NAD + biosynthesis presents another important metabolic resource control point by large, rapidly replicating dsDNA bacteriophages. IMPORTANCE T4-type bacteriophages enhance DNA precursor synthesis through reductive reactions that use NADH/NADPH as the electron donor and NAD

  7. The Arabidopsis gene DIG6 encodes a large 60S subunit nuclear export GTPase 1 that is involved in ribosome biogenesis and affects multiple auxin-regulated development processes

    KAUST Repository

    Zhao, Huayan

    2015-08-13

    The circularly permuted GTPase large subunit GTPase 1 (LSG1) is involved in the maturation step of the 60S ribosome and is essential for cell viability in yeast. Here, an Arabidopsis mutant dig6 (drought inhibited growth of lateral roots) was isolated. The mutant exhibited multiple auxin-related phenotypes, which included reduced lateral root number, altered leaf veins, and shorter roots. Genetic mapping combined with next-generation DNA sequencing identified that the mutation occurred in AtLSG1-2. This gene was highly expressed in regions of auxin accumulation. Ribosome profiling revealed that a loss of function of AtLSG1-2 led to decreased levels of monosomes, further demonstrating its role in ribosome biogenesis. Quantitative proteomics showed that the expression of certain proteins involved in ribosome biogenesis was differentially regulated, indicating that ribosome biogenesis processes were impaired in the mutant. Further investigations showed that an AtLSG1-2 deficiency caused the alteration of auxin distribution, response, and transport in plants. It is concluded that AtLSG1-2 is integral to ribosome biogenesis, consequently affecting auxin homeostasis and plant development.

  8. The Arabidopsis gene DIG6 encodes a large 60S subunit nuclear export GTPase 1 that is involved in ribosome biogenesis and affects multiple auxin-regulated development processes

    KAUST Repository

    Zhao, Huayan; Lü , Shiyou; Li, Ruixi; Chen, Tao; Zhang, Huoming; Cui, Peng; Ding, Feng; Liu, Pei; Wang, Guangchao; Xia, Yiji; Running, Mark P.; Xiong, Liming

    2015-01-01

    The circularly permuted GTPase large subunit GTPase 1 (LSG1) is involved in the maturation step of the 60S ribosome and is essential for cell viability in yeast. Here, an Arabidopsis mutant dig6 (drought inhibited growth of lateral roots) was isolated. The mutant exhibited multiple auxin-related phenotypes, which included reduced lateral root number, altered leaf veins, and shorter roots. Genetic mapping combined with next-generation DNA sequencing identified that the mutation occurred in AtLSG1-2. This gene was highly expressed in regions of auxin accumulation. Ribosome profiling revealed that a loss of function of AtLSG1-2 led to decreased levels of monosomes, further demonstrating its role in ribosome biogenesis. Quantitative proteomics showed that the expression of certain proteins involved in ribosome biogenesis was differentially regulated, indicating that ribosome biogenesis processes were impaired in the mutant. Further investigations showed that an AtLSG1-2 deficiency caused the alteration of auxin distribution, response, and transport in plants. It is concluded that AtLSG1-2 is integral to ribosome biogenesis, consequently affecting auxin homeostasis and plant development.

  9. Parallel encoders for pixel detectors

    International Nuclear Information System (INIS)

    Nikityuk, N.M.

    1991-01-01

    A new method of fast encoding and determining the multiplicity and coordinates of fired pixels is described. A specific example construction of parallel encodes and MCC for n=49 and t=2 is given. 16 refs.; 6 figs.; 2 tabs

  10. In silico analysis of the fucosylation-associated genome of the human blood fluke Schistosoma mansoni: cloning and characterization of the enzymes involved in GDP-L-fucose synthesis and Golgi import.

    Science.gov (United States)

    Peterson, Nathan A; Anderson, Tavis K; Wu, Xiao-Jun; Yoshino, Timothy P

    2013-07-09

    Carbohydrate structures of surface-expressed and secreted/excreted glycoconjugates of the human blood fluke Schistosoma mansoni are key determinants that mediate host-parasite interactions in both snail and mammalian hosts. Fucose is a major constituent of these immunologically important glycans, and recent studies have sought to characterize fucosylation-associated enzymes, including the Golgi-localized fucosyltransferases that catalyze the transfer of L-fucose from a GDP-L-fucose donor to an oligosaccharide acceptor. Importantly, GDP-L-fucose is the only nucleotide-sugar donor used by fucosyltransferases and its availability represents a bottleneck in fucosyl-glycotope expression. A homology-based genome-wide bioinformatics approach was used to identify and molecularly characterize the enzymes that contribute to GDP-L-fucose synthesis and Golgi import in S. mansoni. Putative functions were further investigated through molecular phylogenetic and immunocytochemical analyses. We identified homologs of GDP-D-mannose-4,6-dehydratase (GMD) and GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductase (GMER), which constitute a de novo pathway for GDP-L-fucose synthesis, in addition to a GDP-L-fucose transporter (GFT) that putatively imports cytosolic GDP-L-fucose into the Golgi. In silico primary sequence analyses identified characteristic Rossman loop and short-chain dehydrogenase/reductase motifs in GMD and GMER as well as 10 transmembrane domains in GFT. All genes are alternatively spliced, generating variants of unknown function. Observed quantitative differences in steady-state transcript levels between miracidia and primary sporocysts may contribute to differential glycotope expression in early larval development. Additionally, analyses of protein expression suggest the occurrence of cytosolic GMD and GMER in the ciliated epidermal plates and tegument of miracidia and primary sporocysts, respectively, which is consistent with previous localization of highly

  11. The crtS gene of Xanthophyllomyces dendrorhous encodes a novel cytochrome-P450 hydroxylase involved in the conversion of beta-carotene into astaxanthin and other xanthophylls.

    Science.gov (United States)

    Alvarez, Vanessa; Rodríguez-Sáiz, Marta; de la Fuente, Juan Luis; Gudiña, Eduardo J; Godio, Ramiro P; Martín, Juan F; Barredo, José Luis

    2006-04-01

    The conversion of beta-carotene into xanthophylls is a subject of great scientific and industrial interest. We cloned the crtS gene involved in astaxanthin biosynthesis from two astaxanthin producing strains of Xanthophyllomyces dendrorhous: VKPM Y2410, an astaxanthin overproducing strain, and the wild type ATCC 24203. In both cases, the ORF has a length of 3166 bp, including 17 introns, and codes for a protein of 62.6 kDa with similarity to cytochrome-P450 hydroxylases. crtS gene sequences from strains VKPM Y2410, ATCC 24203, ATCC 96594, and ATCC 96815 show several nucleotide changes, but none of them causes any amino acid substitution, except a G2268 insertion in the 13th exon of ATCC 96815 which causes a change in the reading frame. A G1470 --> A change in the 5' splicing region of intron 8 was also found in ATCC 96815. Both point mutations explain astaxanthin idiotrophy and beta-carotene accumulation in ATCC 96815. Mutants accumulating precursors of the astaxanthin biosynthetic pathway were selected from the parental strain VKPM Y2410 (red) showing different colors depending on the compound accumulated. Two of them were blocked in the biosynthesis of astaxanthin, M6 (orange; 1% astaxanthin, 71 times more beta-carotene) and M7 (orange; 1% astaxanthin, 58 times more beta-carotene, 135% canthaxanthin), whereas the rest produced lower levels of astaxanthin (5-66%) than the parental strain. When the crtS gene was expressed in M7, canthaxanthin accumulation disappeared and astaxanthin production was partially restored. Moreover, astaxanthin biosynthesis was restored when X. dendrorhous ATCC 96815 was transformed with the crtS gene. The crtS gene was heterologously expressed in Mucor circinelloides conferring to this fungus an improved capacity to synthesize beta-cryptoxanthin and zeaxanthin, two hydroxylated compounds from beta-carotene. These results show that the crtS gene is involved in the conversion of beta-carotene into xanthophylls, being potentially useful to

  12. Prediction of Wild-type Enzyme Characteristics

    DEFF Research Database (Denmark)

    Geertz-Hansen, Henrik Marcus

    of biotechnology, including enzyme discovery and characterization. This work presents two articles on sequence-based discovery and functional annotation of enzymes in environmental samples, and two articles on analysis and prediction of enzyme thermostability and cofactor requirements. The first article presents...... a sequence-based approach to discovery of proteolytic enzymes in metagenomes obtained from the Polar oceans. We show that microorganisms living in these extreme environments of constant low temperature harbour genes encoding novel proteolytic enzymes with potential industrial relevance. The second article...... presents a web server for the processing and annotation of functional metagenomics sequencing data, tailored to meet the requirements of non-bioinformaticians. The third article presents analyses of the molecular determinants of enzyme thermostability, and a feature-based prediction method of the melting...

  13. Cloning of the gene encoding the δ subunit of the human T-cell receptor reveals its physical organization within the α-subunit locus and its involvement in chromosome translocations in T-cell malignancy

    International Nuclear Information System (INIS)

    Isobe, M.; Russo, G.; Haluska, F.G.; Croce, C.M.

    1988-01-01

    By taking advantage of chromosomal walking techniques, the authors have obtained clones that encompass the T-cell receptor (TCR) δ-chain gene. They analyzed clones spanning the entire J α region extending 115 kilobases 5' of the TCR α-chain constant region and have shown that the TCR δ-chain gene is located over 80 kilobases 5' of C α . TCR δ-chain gene is rearranged in the γ/δ-expressing T-cell line Peer and is deleted in α/β-expressing T-cell lines. Sequence analysis of portions of this genomic region demonstrates its identity with previously described cDNA clones corresponding to the C δ and J δ segments. Furthermore, they have analyzed a t(8;14)-(q24;q11) chromosome translocation from a T-cell leukemia and have shown that the J δ segment is rearranged in cells deriving from this tumor and probably directly involved in the translocation. Thus, the newly clones TCR δ chain is implicated in the genesis of chromosome translocations in T-cell malignancies carrying cytogenetic abnormalities of band 14q11

  14. An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis.

    Science.gov (United States)

    Kim, June-Sik; Mizoi, Junya; Yoshida, Takuya; Fujita, Yasunari; Nakajima, Jun; Ohori, Teppei; Todaka, Daisuke; Nakashima, Kazuo; Hirayama, Takashi; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2011-12-01

    In plants, osmotic stress-responsive transcriptional regulation depends mainly on two major classes of cis-acting elements found in the promoter regions of stress-inducible genes: ABA-responsive elements (ABREs) and dehydration-responsive elements (DREs). ABRE has been shown to perceive ABA-mediated osmotic stress signals, whereas DRE is known to be involved in an ABA-independent pathway. Previously, we reported that the transcription factor DRE-BINDING PROTEIN 2A (DREB2A) regulates DRE-mediated transcription of target genes under osmotic stress conditions in Arabidopsis (Arabidopsis thaliana). However, the transcriptional regulation of DREB2A itself remains largely uncharacterized. To elucidate the transcriptional mechanism associated with the DREB2A gene under osmotic stress conditions, we generated a series of truncated and base-substituted variants of the DREB2A promoter and evaluated their transcriptional activities individually. We found that both ABRE and coupling element 3 (CE3)-like sequences located approximately -100 bp from the transcriptional initiation site are necessary for the dehydration-responsive expression of DREB2A. Coupling our transient expression analyses with yeast one-hybrid and chromatin immunoprecipitation (ChIP) assays indicated that the ABRE-BINDING PROTEIN 1 (AREB1), AREB2 and ABRE-BINDING FACTOR 3 (ABF3) bZIP transcription factors can bind to and activate the DREB2A promoter in an ABRE-dependent manner. Exogenous ABA application induced only a modest accumulation of the DREB2A transcript when compared with the osmotic stress treatment. However, the osmotic stress-induced DREB2A expression was found to be markedly impaired in several ABA-deficient and ABA-insensitive mutants. These results suggest that in addition to an ABA-independent pathway, the ABA-dependent pathway plays a positive role in the osmotic stress-responsive expression of DREB2A.

  15. Immobilization of Enzymes in Polymer Supports.

    Science.gov (United States)

    Conlon, Hugh D.; Walt, David R.

    1986-01-01

    Two experiments in which an enzyme is immobilized onto a polymeric support are described. The experiments (which also demonstrate two different polymer preparations) involve: (1) entrapping an enzyme in an acrylamide polymer; and (2) reacting the amino groups on the enzyme's (esterase) lysine residues with an activated polymer. (JN)

  16. Activation of interfacial enzymes at membrane surfaces

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Andresen, Thomas Lars; Halperin, Avi

    2006-01-01

    A host of water-soluble enzymes are active at membrane surfaces and in association with membranes. Some of these enzymes are involved in signalling and in modification and remodelling of the membranes. A special class of enzymes, the phospholipases, and in particular secretory phospholipase A2 (s...

  17. Advances in enzyme bioelectrochemistry

    Directory of Open Access Journals (Sweden)

    ANDRESSA R. PEREIRA

    Full Text Available ABSTRACT Bioelectrochemistry can be defined as a branch of Chemical Science concerned with electron-proton transfer and transport involving biomolecules, as well as electrode reactions of redox enzymes. The bioelectrochemical reactions and system have direct impact in biotechnological development, in medical devices designing, in the behavior of DNA-protein complexes, in green-energy and bioenergy concepts, and make it possible an understanding of metabolism of all living organisms (e.g. humans where biomolecules are integral to health and proper functioning. In the last years, many researchers have dedicated itself to study different redox enzymes by using electrochemistry, aiming to understand their mechanisms and to develop promising bioanodes and biocathodes for biofuel cells as well as to develop biosensors and implantable bioelectronics devices. Inside this scope, this review try to introduce and contemplate some relevant topics for enzyme bioelectrochemistry, such as the immobilization of the enzymes at electrode surfaces, the electron transfer, the bioelectrocatalysis, and new techniques conjugated with electrochemistry vising understand the kinetics and thermodynamics of redox proteins. Furthermore, examples of recent approaches in designing biosensors and biofuel developed are presented.

  18. Cold-Adapted Enzymes

    Science.gov (United States)

    Georlette, D.; Bentahir, M.; Claverie, P.; Collins, T.; D'amico, S.; Delille, D.; Feller, G.; Gratia, E.; Hoyoux, A.; Lonhienne, T.; Meuwis, M.-a.; Zecchinon, L.; Gerday, Ch.

    In the last few years, increased attention has been focused on enzymes produced by cold-adapted micro-organisms. It has emerged that psychrophilic enzymes represent an extremely powerful tool in both protein folding investigations and for biotechnological purposes. Such enzymes are characterised by an increased thermosensitivity and, most of them, by a higher catalytic efficiency at low and moderate temperatures, when compared to their mesophilic counterparts. The high thermosensitivity probably originates from an increased flexibility of either a selected area of the molecular edifice or the overall protein structure, providing enhanced abilities to undergo conformational changes during catalysis at low temperatures. Structure modelling and recent crystallographic data have allowed to elucidate the structural parameters that could be involved in this higher resilience. It was demonstrated that each psychrophilic enzyme adopts its own adaptive strategy. It appears, moreover, that there is a continuum in the strategy of protein adaptation to temperature, as the previously mentioned structural parameters are implicated in the stability of thermophilic proteins. Additional 3D crystal structures, site-directed and random mutagenesis experiments should now be undertaken to further investigate the stability-flexibility-activity relationship.

  19. Photoperiodism and Enzyme Activity

    Science.gov (United States)

    Queiroz, Orlando; Morel, Claudine

    1974-01-01

    Metabolic readjustments after a change from long days to short days appear, in Kalanchoe blossfeldiana, to be achieved through the operation of two main mechanisms: variation in enzyme capacity, and circadian rhythmicity. After a lag time, capacity in phosphoenolpyruvate carboxylase and capacity in aspartate aminotransferase increase exponentially and appear to be allometrically linked during 50 to 60 short days; then a sudden fall takes place in the activity of the former. Malic enzyme and alanine aminotransferase behave differently. Thus, the operation of the two sections of the pathway (before and after the malate step) give rise to a continuously changing functional compartmentation in the pathway. Circadian rhythmicity, on the other hand, produces time compartmentation through phase shifts and variation in amplitude, independently for each enzyme. These characteristics suggest that the operation of a so-called biological clock would be involved. We propose the hypothesis that feedback regulation would be more accurate and efficient when applied to an already oscillating, clock-controlled enzyme system. PMID:16658749

  20. Positron emitter labeled enzyme inhibitors

    International Nuclear Information System (INIS)

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-01-01

    This invention involves a new strategy for imagining and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography

  1. Incremental phonological encoding during unscripted sentence production

    Directory of Open Access Journals (Sweden)

    Florian T Jaeger

    2012-11-01

    Full Text Available We investigate phonological encoding during unscripted sentence production, focusing on the effect of phonological overlap on phonological encoding. Previous work on this question has almost exclusively employed isolated word production or highly scripted multiword production. These studies have led to conflicting results: some studies found that phonological overlap between two words facilitates phonological encoding, while others found inhibitory effects. One worry with many of these paradigms is that they involve processes that are not typical to everyday language use, which calls into question to what extent their findings speak to the architectures and mechanisms underlying language production. We present a paradigm to investigate the consequences of phonological overlap between words in a sentence while leaving speakers much of the lexical and structural choices typical in everyday language use. Adult native speakers of English described events in short video clips. We annotated the presence of disfluencies and the speech rate at various points throughout the sentence, as well as the constituent order. We find that phonological overlap has an inhibitory effect on phonological encoding. Specifically, if adjacent content words share their phonological onset (e.g., hand the hammer, they are preceded by production difficulty, as reflected in fluency and speech rate. We also find that this production difficulty affects speakers’ constituent order preferences during grammatical encoding. We discuss our results and previous works to isolate the properties of other paradigms that resulted in facilitatory or inhibitory results. The data from our paradigm also speak to questions about the scope of phonological planning in unscripted speech and as to whether phonological and grammatical encoding interact.

  2. Selecting Operations for Assembler Encoding

    Directory of Open Access Journals (Sweden)

    Tomasz Praczyk

    2010-04-01

    Full Text Available Assembler Encoding is a neuro-evolutionary method in which a neural network is represented in the form of a simple program called Assembler Encoding Program. The task of the program is to create the so-called Network Definition Matrix which maintains all the information necessary to construct the network. To generate Assembler Encoding Programs and the subsequent neural networks evolutionary techniques are used.
    The performance of Assembler Encoding strongly depends on operations used in Assembler Encoding Programs. To select the most effective operations, experiments in the optimization and the predator-prey problem were carried out. In the experiments, Assembler Encoding Programs equipped with different types of operations were tested. The results of the tests are presented at the end of the paper.

  3. Process for preparing multilayer enzyme coating on a fiber

    Science.gov (United States)

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    A process for preparing high stability, high activity biocatalytic materials is disclosed and processes for using the same. The process involves coating of a material or fiber with enzymes and enzyme aggregate providing a material or fiber with high biocatalytic activity and stability useful in heterogeneous environments. In one illustrative approach, enzyme "seeds" are covalently attached to polymer nanofibers followed by treatment with a reagent that crosslinks additional enzyme molecules to the seed enzymes forming enzyme aggregates thereby improving biocatalytic activity due to increased enzyme loading and enzyme stability. This approach creates a useful new biocatalytic immobilized enzyme system with potential applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  4. Involvement of adenosine monophosphate activated kinase in interleukin-6 regulation of steroidogenic acute regulatory protein and cholesterol side chain cleavage enzyme in the bovine zona fasciculata and zona reticularis.

    Science.gov (United States)

    De Silva, Matharage S I; Dayton, Adam W; Rhoten, Lance R; Mallett, John W; Reese, Jared C; Squires, Mathieu D; Dalley, Andrew P; Porter, James P; Judd, Allan M

    2018-06-01

    In bovine adrenal zona fasciculata (ZF) and NCI-H295R cells, interleukin-6 (IL-6) increases cortisol release, increases expression of steroidogenic acute regulatory protein (StAR), cholesterol side chain cleavage enzyme (P450scc), and steroidogenic factor 1 (SF-1) (increases steroidogenic proteins), and decreases the expression of adrenal hypoplasia congenita-like protein (DAX-1) (inhibits steroidogenic proteins). In contrast, IL-6 decreases bovine adrenal zona reticularis (ZR) androgen release, StAR, P450scc, and SF-1 expression, and increases DAX-1 expression. Adenosine monophosphate (AMP) activated kinase (AMPK) regulates steroidogenesis, but its role in IL-6 regulation of adrenal steroidogenesis is unknown. In the present study, an AMPK activator (AICAR) increased (P < 0.01) NCI-H295R StAR promoter activity, StAR and P450scc expression, and the phosphorylation of AMPK (PAMPK) and acetyl-CoA carboxylase (PACC) (indexes of AMPK activity). In ZR (decreased StAR, P450scc, SF-1, increased DAX-1) (P < 0.01) and ZF tissues (increased StAR, P450scc, SF-1, decreased DAX-1) (P < 0.01), AICAR modified StAR, P450scc, SF-1 and DAX-1 mRNAs/proteins similar to the effects of IL-6. The activity (increased PAMPK and PACC) (P < 0.01) of AMPK in the ZF and ZR was increased by AICAR and IL-6. In support of an AMPK role in IL-6 ZF and ZR effects, the AMPK inhibitor compound C blocked (P < 0.01) the effects of IL-6 on the expression of StAR, P450scc, SF-1, and DAX-1. Therefore, IL-6 modification of the expression of StAR and P450scc in the ZF and ZR may involve activation of AMPK and these changes may be related to changes in the expression of SF-1 and DAX-1. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. A novel gene encoding xanthan lyase of Paenibacillus alginolyticus strain XL-1

    NARCIS (Netherlands)

    Ruijssenaars, H.J.; Hartmans, S.; Verdoes, J.C.

    2000-01-01

    Xanthan-modifying enzymes are powerful tools in studying structure-function relationships of this polysaccharide. One of these modifying enzymes is xanthan lyase, which removes the terminal side chain residue of xanthan. In this paper, the cloning and sequencing of the first xanthan lyase-encoding

  6. Relationships between protein-encoding gene abundance and corresponding process are commonly assumed yet rarely observed

    Science.gov (United States)

    Rocca, Jennifer D.; Hall, Edward K.; Lennon, Jay T.; Evans, Sarah E.; Waldrop, Mark P.; Cotner, James B.; Nemergut, Diana R.; Graham, Emily B.; Wallenstein, Matthew D.

    2015-01-01

    For any enzyme-catalyzed reaction to occur, the corresponding protein-encoding genes and transcripts are necessary prerequisites. Thus, a positive relationship between the abundance of gene or transcripts and corresponding process rates is often assumed. To test this assumption, we conducted a meta-analysis of the relationships between gene and/or transcript abundances and corresponding process rates. We identified 415 studies that quantified the abundance of genes or transcripts for enzymes involved in carbon or nitrogen cycling. However, in only 59 of these manuscripts did the authors report both gene or transcript abundance and rates of the appropriate process. We found that within studies there was a significant but weak positive relationship between gene abundance and the corresponding process. Correlations were not strengthened by accounting for habitat type, differences among genes or reaction products versus reactants, suggesting that other ecological and methodological factors may affect the strength of this relationship. Our findings highlight the need for fundamental research on the factors that control transcription, translation and enzyme function in natural systems to better link genomic and transcriptomic data to ecosystem processes.

  7. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...... by that enzyme...

  8. Rhizobial peptidase HrrP cleaves host-encoded signaling peptides and mediates symbiotic compatibility.

    Science.gov (United States)

    Price, Paul A; Tanner, Houston R; Dillon, Brett A; Shabab, Mohammed; Walker, Graham C; Griffitts, Joel S

    2015-12-08

    Legume-rhizobium pairs are often observed that produce symbiotic root nodules but fail to fix nitrogen. Using the Sinorhizobium meliloti and Medicago truncatula symbiotic system, we previously described several naturally occurring accessory plasmids capable of disrupting the late stages of nodule development while enhancing bacterial proliferation within the nodule. We report here that host range restriction peptidase (hrrP), a gene found on one of these plasmids, is capable of conferring both these properties. hrrP encodes an M16A family metallopeptidase whose catalytic activity is required for these symbiotic effects. The ability of hrrP to suppress nitrogen fixation is conditioned upon the genotypes of both the host plant and the hrrP-expressing rhizobial strain, suggesting its involvement in symbiotic communication. Purified HrrP protein is capable of degrading a range of nodule-specific cysteine-rich (NCR) peptides encoded by M. truncatula. NCR peptides are crucial signals used by M. truncatula for inducing and maintaining rhizobial differentiation within nodules, as demonstrated in the accompanying article [Horváth B, et al. (2015) Proc Natl Acad Sci USA, 10.1073/pnas.1500777112]. The expression pattern of hrrP and its effects on rhizobial morphology are consistent with the NCR peptide cleavage model. This work points to a symbiotic dialogue involving a complex ensemble of host-derived signaling peptides and bacterial modifier enzymes capable of adjusting signal strength, sometimes with exploitative outcomes.

  9. Mutagenesis in sequence encoding of human factor VII for gene therapy of hemophilia

    Directory of Open Access Journals (Sweden)

    B Kazemi

    2009-12-01

    Full Text Available "nBackground: Current treatment of hemophilia which is one of the most common bleeding disorders, involves replacement therapy using concentrates of FVIII and FIX .However, these concentrates have been associated with viral infections and thromboembolic complications and development of antibodies. "nThe use of recombinant human factor VII (rhFVII is effective  for the treatment of patients with  hemophilia A or B, who develop antibodies ( referred as inhibitors against  replacement therapy , because it induces coagulation independent of FVIII and FIX. However, its short half-life and high cost have limited its use. One potential solution to this problem may be the use of FVIIa gene transfer, which would attain continuing therapeutic levels of expression from a single injection. The aim of this study was to engineer a novel hFVII (human FVII gene containing a cleavage site for the intracellular protease and furin, by PCR mutagenesis "nMethods: The sequence encoding light and heavy chains of hFVII, were amplified by using hFVII/pTZ57R and specific primers, separately. The PCR products were cloned in pTZ57R vector. "nResults and discussion: Cloning was confirmed by restriction analysis or PCR amplification using specific primers and plasmid universal primers. Mutagenesis of sequence encoding light and heavy chain was confirmed by restriction enzyme. "nConclusion: In the present study, it was provided recombinant plasmids based on mutant form of DNA encoding light and heavy chains.  Joining mutant form of DNA encoding light chain with mutant heavy chain led to a new variant of hFVII. This variant can be activated by furin and an increase in the proportion of activated form of FVII. This mutant form of hFVII may be used for gene therapy of hemophilia.

  10. Thermodynamics of information processing based on enzyme kinetics: An exactly solvable model of an information pump.

    Science.gov (United States)

    Cao, Yuansheng; Gong, Zongping; Quan, H T

    2015-06-01

    Motivated by the recent proposed models of the information engine [Proc. Natl. Acad. Sci. USA 109, 11641 (2012)] and the information refrigerator [Phys. Rev. Lett. 111, 030602 (2013)], we propose a minimal model of the information pump and the information eraser based on enzyme kinetics. This device can either pump molecules against the chemical potential gradient by consuming the information to be encoded in the bit stream or (partially) erase the information initially encoded in the bit stream by consuming the Gibbs free energy. The dynamics of this model is solved exactly, and the "phase diagram" of the operation regimes is determined. The efficiency and the power of the information machine is analyzed. The validity of the second law of thermodynamics within our model is clarified. Our model offers a simple paradigm for the investigating of the thermodynamics of information processing involving the chemical potential in small systems.

  11. Thermodynamics of information processing based on enzyme kinetics: An exactly solvable model of an information pump

    Science.gov (United States)

    Cao, Yuansheng; Gong, Zongping; Quan, H. T.

    2015-06-01

    Motivated by the recent proposed models of the information engine [Proc. Natl. Acad. Sci. USA 109, 11641 (2012), 10.1073/pnas.1204263109] and the information refrigerator [Phys. Rev. Lett. 111, 030602 (2013), 10.1103/PhysRevLett.111.030602], we propose a minimal model of the information pump and the information eraser based on enzyme kinetics. This device can either pump molecules against the chemical potential gradient by consuming the information to be encoded in the bit stream or (partially) erase the information initially encoded in the bit stream by consuming the Gibbs free energy. The dynamics of this model is solved exactly, and the "phase diagram" of the operation regimes is determined. The efficiency and the power of the information machine is analyzed. The validity of the second law of thermodynamics within our model is clarified. Our model offers a simple paradigm for the investigating of the thermodynamics of information processing involving the chemical potential in small systems.

  12. PIXE analysis of Zn enzymes

    International Nuclear Information System (INIS)

    Solis, C.; Oliver, A.; Andrade, E.; Ruvalcaba-Sil, J.L.; Romero, I.; Celis, H.

    1999-01-01

    Zinc is a necessary component in the action and structural stability of many enzymes. Some of them are well characterized, but in others, Zn stoichiometry and its association is not known. PIXE has been proven to be a suitable technique for analyzing metallic proteins embedded in electrophoresis gels. In this study, PIXE has been used to investigate the Zn content of enzymes that are known to carry Zn atoms. These include the carbonic anhydrase, an enzyme well characterized by other methods and the cytoplasmic pyrophosphatase of Rhodospirillum rubrum that is known to require Zn to be stable but not how many metal ions are involved or how they are bound to the enzyme. Native proteins have been purified by polyacrylamide gel electrophoresis and direct identification and quantification of Zn in the gel bands was performed with an external proton beam of 3.7 MeV energy

  13. Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes

    Science.gov (United States)

    Winter, H.; Huber, S. C.; Brown, C. S. (Principal Investigator)

    2000-01-01

    Sucrose (Suc) plays a central role in plant growth and development. It is a major end product of photosynthesis and functions as a primary transport sugar and in some cases as a direct or indirect regulator of gene expression. Research during the last 2 decades has identified the pathways involved and which enzymes contribute to the control of flux. Availability of metabolites for Suc synthesis and 'demand' for products of sucrose degradation are important factors, but this review specifically focuses on the biosynthetic enzyme sucrose-phosphate synthase (SPS), and the degradative enzymes, sucrose synthase (SuSy), and the invertases. Recent progress has included the cloning of genes encoding these enzymes and the elucidation of posttranslational regulatory mechanisms. Protein phosphorylation is emerging as an important mechanism controlling SPS activity in response to various environmental and endogenous signals. In terms of Suc degradation, invertase-catalyzed hydrolysis generally has been associated with cell expansion, whereas SuSy-catalyzed metabolism has been linked with biosynthetic processes (e.g., cell wall or storage products). Recent results indicate that SuSy may be localized in multiple cellular compartments: (1) as a soluble enzyme in the cytosol (as traditionally assumed); (2) associated with the plasma membrane; and (3) associated with the actin cytoskeleton. Phosphorylation of SuSy has been shown to occur and may be one of the factors controlling localization of the enzyme. The purpose of this review is to summarize some of the recent developments relating to regulation of activity and localization of key enzymes involved in sucrose metabolism in plants.

  14. Elevated Liver Enzymes

    Science.gov (United States)

    Symptoms Elevated liver enzymes By Mayo Clinic Staff Elevated liver enzymes may indicate inflammation or damage to cells in the liver. Inflamed or ... than normal amounts of certain chemicals, including liver enzymes, into the bloodstream, which can result in elevated ...

  15. The significance of cellulolytic enzymes produced by Trichoderma in opportunistic lifestyle of this fungus.

    Science.gov (United States)

    Strakowska, Judyta; Błaszczyk, Lidia; Chełkowski, Jerzy

    2014-07-01

    The degradation of native cellulose to glucose monomers is a complex process, which requires the synergistic action of the extracellular enzymes produced by cellulolytic microorganisms. Among fungi, the enzymatic systems that can degrade native cellulose have been extensively studied for species belonging to the genera of Trichoderma. The majority of the cellulolytic enzymes described so far have been examples of Trichoderma reesei, extremely specialized in the efficient degradation of plant cell wall cellulose. Other Trichoderma species, such as T. harzianum, T. koningii, T. longibrachiatum, and T. viride, known for their capacity to produce cellulolytic enzymes, have been isolated from various ecological niches, where they have proved successful in various heterotrophic interactions. As saprotrophs, these species are considered to make a contribution to the degradation of lignocellulosic plant material. Their cellulolytic potential is also used in interactions with plants, especially in plant root colonization. However, the role of cellulolytic enzymes in species forming endophytic associations with plants or in those existing in the substratum for mushroom cultivation remains unknown. The present review discusses the current state of knowledge about cellulolytic enzymes production by Trichoderma species and the encoding genes, as well as the involvement of these proteins in the lifestyle of Trichoderma. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Enzymes with activity toward Xyloglucan

    NARCIS (Netherlands)

    Vincken, J.P.

    2003-01-01

    Xyloglucans are plant cell wall polysaccharides, which belong to the hemicellulose class. Here the structural variations of xyloglucans will be reviewed. Subsequently, the anchoring of xyloglucan in the plant cell wall will be discussed. Enzymes involved in degradation or modification of xyloglucan

  17. Analysing and Comparing Encodability Criteria

    Directory of Open Access Journals (Sweden)

    Kirstin Peters

    2015-08-01

    Full Text Available Encodings or the proof of their absence are the main way to compare process calculi. To analyse the quality of encodings and to rule out trivial or meaningless encodings, they are augmented with quality criteria. There exists a bunch of different criteria and different variants of criteria in order to reason in different settings. This leads to incomparable results. Moreover it is not always clear whether the criteria used to obtain a result in a particular setting do indeed fit to this setting. We show how to formally reason about and compare encodability criteria by mapping them on requirements on a relation between source and target terms that is induced by the encoding function. In particular we analyse the common criteria full abstraction, operational correspondence, divergence reflection, success sensitiveness, and respect of barbs; e.g. we analyse the exact nature of the simulation relation (coupled simulation versus bisimulation that is induced by different variants of operational correspondence. This way we reduce the problem of analysing or comparing encodability criteria to the better understood problem of comparing relations on processes.

  18. The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger.

    Science.gov (United States)

    van Munster, Jolanda M; Daly, Paul; Delmas, Stéphane; Pullan, Steven T; Blythe, Martin J; Malla, Sunir; Kokolski, Matthew; Noltorp, Emelie C M; Wennberg, Kristin; Fetherston, Richard; Beniston, Richard; Yu, Xiaolan; Dupree, Paul; Archer, David B

    2014-11-01

    Fungi are an important source of enzymes for saccharification of plant polysaccharides and production of biofuels. Understanding of the regulation and induction of expression of genes encoding these enzymes is still incomplete. To explore the induction mechanism, we analysed the response of the industrially important fungus Aspergillus niger to wheat straw, with a focus on events occurring shortly after exposure to the substrate. RNA sequencing showed that the transcriptional response after 6h of exposure to wheat straw was very different from the response at 24h of exposure to the same substrate. For example, less than half of the genes encoding carbohydrate active enzymes that were induced after 24h of exposure to wheat straw, were also induced after 6h exposure. Importantly, over a third of the genes induced after 6h of exposure to wheat straw were also induced during 6h of carbon starvation, indicating that carbon starvation is probably an important factor in the early response to wheat straw. The up-regulation of the expression of a high number of genes encoding CAZymes that are active on plant-derived carbohydrates during early carbon starvation suggests that these enzymes could be involved in a scouting role during starvation, releasing inducing sugars from complex plant polysaccharides. We show, using proteomics, that carbon-starved cultures indeed release CAZymes with predicted activity on plant polysaccharides. Analysis of the enzymatic activity and the reaction products, indicates that these proteins are enzymes that can degrade various plant polysaccharides to generate both known, as well as potentially new, inducers of CAZymes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Correction of acid beta-galactosidase deficiency in GM1 gangliosidosis human fibroblasts by retrovirus vector-mediated gene transfer: higher efficiency of release and cross-correction by the murine enzyme.

    Science.gov (United States)

    Sena-Esteves, M; Camp, S M; Alroy, J; Breakefield, X O; Kaye, E M

    2000-03-20

    Mutations in the lysosomal acid beta-galactosidase (EC 3.2.1.23) underlie two different disorders: GM1 gangliosidosis, which involves the nervous system and visceral organs to varying extents, and Morquio's syndrome type B (Morquio B disease), which is a skeletal-connective tissue disease without any CNS symptoms. This article shows that transduction of human GM1 gangliosidosis fibroblasts with retrovirus vectors encoding the human acid beta-galactosidase cDNA leads to complete correction of the enzymatic deficiency. The newly synthesized enzyme is correctly processed and targeted to the lysosomes in transduced cells. Cross-correction experiments using retrovirus-modified cells as enzyme donors showed, however, that the human enzyme is transferred at low efficiencies. Experiments using a different retrovirus vector carrying the human cDNA confirmed this observation. Transduction of human GM1 fibroblasts and mouse NIH 3T3 cells with a retrovirus vector encoding the mouse beta-galactosidase cDNA resulted in high levels of enzymatic activity. Furthermore, the mouse enzyme was found to be transferred to human cells at high efficiency. Enzyme activity measurements in medium conditioned by genetically modified cells suggest that the human beta-galactosidase enzyme is less efficiently released to the extracellular space than its mouse counterpart. This study suggests that lysosomal enzymes, contrary to the generalized perception in the field of gene therapy, may differ significantly in their properties and provides insights for design of future gene therapy interventions in acid beta-galactosidase deficiency.

  20. The ROS-sensitive microRNA-9/9* controls the expression of mitochondrial tRNA-modifying enzymes and is involved in the molecular mechanism of MELAS syndrome.

    Science.gov (United States)

    Meseguer, Salvador; Martínez-Zamora, Ana; García-Arumí, Elena; Andreu, Antonio L; Armengod, M-Eugenia

    2015-01-01

    Mitochondrial dysfunction activates mitochondria-to-nucleus signaling pathways whose components are mostly unknown. Identification of these components is important to understand the molecular mechanisms underlying mitochondrial diseases and to discover putative therapeutic targets. MELAS syndrome is a rare neurodegenerative disease caused by mutations in mitochondrial (mt) DNA affecting mt-tRNA(Leu(UUR)). Patient and cybrid cells exhibit elevated oxidative stress. Moreover, mutant mt-tRNAs(Leu(UUR)) lack the taurine-containing modification normally present at the wobble uridine (U34) of wild-type mt-tRNA(Leu(UUR)), which is considered an etiology of MELAS. However, the molecular mechanism is still unclear. We found that MELAS cybrids exhibit a significant decrease in the steady-state levels of several mt-tRNA-modification enzymes, which is not due to transcriptional regulation. We demonstrated that oxidative stress mediates an NFkB-dependent induction of microRNA-9/9*, which acts as a post-transcriptional negative regulator of the mt-tRNA-modification enzymes GTPBP3, MTO1 and TRMU. Down-regulation of these enzymes by microRNA-9/9* affects the U34 modification status of non-mutant tRNAs and contributes to the MELAS phenotype. Anti-microRNA-9 treatments of MELAS cybrids reverse the phenotype, whereas miR-9 transfection of wild-type cells mimics the effects of siRNA-mediated down-regulation of GTPBP3, MTO1 and TRMU. Our data represent the first evidence that an mt-DNA disease can directly affect microRNA expression. Moreover, we demonstrate that the modification status of mt-tRNAs is dynamic and that cells respond to stress by modulating the expression of mt-tRNA-modifying enzymes. microRNA-9/9* is a crucial player in mitochondria-to-nucleus signaling as it regulates expression of nuclear genes in response to changes in the functional state of mitochondria. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email

  1. Encoded libraries of chemically modified peptides.

    Science.gov (United States)

    Heinis, Christian; Winter, Greg

    2015-06-01

    The use of powerful technologies for generating and screening DNA-encoded protein libraries has helped drive the development of proteins as pharmaceutical ligands. However the development of peptides as pharmaceutical ligands has been more limited. Although encoded peptide libraries are typically several orders of magnitude larger than classical chemical libraries, can be more readily screened, and can give rise to higher affinity ligands, their use as pharmaceutical ligands is limited by their intrinsic properties. Two of the intrinsic limitations include the rotational flexibility of the peptide backbone and the limited number (20) of natural amino acids. However these limitations can be overcome by use of chemical modification. For example, the libraries can be modified to introduce topological constraints such as cyclization linkers, or to introduce new chemical entities such as small molecule ligands, fluorophores and photo-switchable compounds. This article reviews the chemistry involved, the properties of the peptide ligands, and the new opportunities offered by chemical modification of DNA-encoded peptide libraries. Copyright © 2015. Published by Elsevier Ltd.

  2. Growth of Bacillus methanolicus in 2 M methanol at 50 °C: the effect of high methanol concentration on gene regulation of enzymes involved in formaldehyde detoxification by the ribulose monophosphate pathway.

    Science.gov (United States)

    Bozdag, Ahmet; Komives, Claire; Flickinger, Michael C

    2015-07-01

    Bacillus methanolicus MGA3 is a Gram-positive aerobic methylotroph growing optimally at 50-53°C. Methylotrophy in B. methanolicus is encoded on pBM19 and by two chromosomal copies of the methanol dehydrogenase (mdh), hexulose phosphate synthase (hps) and phosphohexuloisomerase (phi) genes. However, there are no published studies on the regulation of methylotrophy or the dominant mechanism of detoxification of intracellular formaldehyde in response to high methanol concentration. The µ max of B. methanolicus MGA3 was assessed on methanol, mannitol and glucose. B. methanolicus achieved a µ max at 25 mM initial methanol of 0.65 ± 0.007 h(-1), which decreased to 0.231 ± 0.004 h(-1) at 2 M initial methanol. Slow growth was also observed with initial methanol concentrations of >2 M. The µ max on mannitol and glucose are 0.532 ± 0.002 and 0.336 ± 0.003 h(-1), respectively. Spiking cultures with additional methanol (100 mM) did not disturb the growth rate of methanol-grown cells, whereas, a 50 mM methanol spike halted the growth in mannitol. Surprisingly, growth in methanol was inhibited by 1 mM formaldehyde, while mannitol-grown cells tolerated 2 mM. Moreover, mannitol-grown cells removed formaldehyde faster than methanol-grown cells. Further, we show that methanol oxidation in B. methanolicus MGA3 is mainly carried out by the pBM19-encoded mdh. Formaldehyde and formate addition down-regulate the mdh and hps genes in methanol-grown cells. Similarly, they down-regulate mdh genes in mannitol-grown cells, but up-regulate hps. Phosphofructokinase (pfk) is up-regulated in both methanol and mannitol-grown cells, which suggests that pfk may be a possible synthetic methylotrophy target to reduce formaldehyde growth toxicity at high methanol concentrations.

  3. Heterologous expression of a Rauvolfia cDNA encoding strictosidine glucosidase, a biosynthetic key to over 2000 monoterpenoid indole alkaloids.

    Science.gov (United States)

    Gerasimenko, Irina; Sheludko, Yuri; Ma, Xueyan; Stöckigt, Joachim

    2002-04-01

    Strictosidine glucosidase (SG) is an enzyme that catalyses the second step in the biosynthesis of various classes of monoterpenoid indole alkaloids. Based on the comparison of cDNA sequences of SG from Catharanthus roseus and raucaffricine glucosidase (RG) from Rauvolfia serpentina, primers for RT-PCR were designed and the cDNA encoding SG was cloned from R. serpentina cell suspension cultures. The active enzyme was expressed in Escherichia coli and purified to homogeneity. Analysis of its deduced amino-acid sequence assigned the SG from R. serpentina to family 1 of glycosyl hydrolases. In contrast to the SG from C. roseus, the enzyme from R. serpentina is predicted to lack an uncleavable N-terminal signal sequence, which is believed to direct proteins to the endoplasmic reticulum. The temperature and pH optimum, enzyme kinetic parameters and substrate specificity of the heterologously expressed SG were studied and compared to those of the C. roseus enzyme, revealing some differences between the two glucosidases. In vitro deglucosylation of strictosidine by R. serpentina SG proceeds by the same mechanism as has been shown for the C. roseus enzyme preparation. The reaction gives rise to the end product cathenamine and involves 4,21-dehydrocorynantheine aldehyde as an intermediate. The enzymatic hydrolysis of dolichantoside (Nbeta-methylstrictosidine) leads to several products. One of them was identified as a new compound, 3-isocorreantine A. From the data it can be concluded that the divergence of the biosynthetic pathways leading to different classes of indole alkaloids formed in R. serpentina and C. roseus cell suspension cultures occurs at a later stage than strictosidine deglucosylation.

  4. Multidimensionally encoded magnetic resonance imaging.

    Science.gov (United States)

    Lin, Fa-Hsuan

    2013-07-01

    Magnetic resonance imaging (MRI) typically achieves spatial encoding by measuring the projection of a q-dimensional object over q-dimensional spatial bases created by linear spatial encoding magnetic fields (SEMs). Recently, imaging strategies using nonlinear SEMs have demonstrated potential advantages for reconstructing images with higher spatiotemporal resolution and reducing peripheral nerve stimulation. In practice, nonlinear SEMs and linear SEMs can be used jointly to further improve the image reconstruction performance. Here, we propose the multidimensionally encoded (MDE) MRI to map a q-dimensional object onto a p-dimensional encoding space where p > q. MDE MRI is a theoretical framework linking imaging strategies using linear and nonlinear SEMs. Using a system of eight surface SEM coils with an eight-channel radiofrequency coil array, we demonstrate the five-dimensional MDE MRI for a two-dimensional object as a further generalization of PatLoc imaging and O-space imaging. We also present a method of optimizing spatial bases in MDE MRI. Results show that MDE MRI with a higher dimensional encoding space can reconstruct images more efficiently and with a smaller reconstruction error when the k-space sampling distribution and the number of samples are controlled. Copyright © 2012 Wiley Periodicals, Inc.

  5. Expression-based clustering of CAZyme-encoding genes of Aspergillus niger.

    Science.gov (United States)

    Gruben, Birgit S; Mäkelä, Miia R; Kowalczyk, Joanna E; Zhou, Miaomiao; Benoit-Gelber, Isabelle; De Vries, Ronald P

    2017-11-23

    The Aspergillus niger genome contains a large repertoire of genes encoding carbohydrate active enzymes (CAZymes) that are targeted to plant polysaccharide degradation enabling A. niger to grow on a wide range of plant biomass substrates. Which genes need to be activated in certain environmental conditions depends on the composition of the available substrate. Previous studies have demonstrated the involvement of a number of transcriptional regulators in plant biomass degradation and have identified sets of target genes for each regulator. In this study, a broad transcriptional analysis was performed of the A. niger genes encoding (putative) plant polysaccharide degrading enzymes. Microarray data focusing on the initial response of A. niger to the presence of plant biomass related carbon sources were analyzed of a wild-type strain N402 that was grown on a large range of carbon sources and of the regulatory mutant strains ΔxlnR, ΔaraR, ΔamyR, ΔrhaR and ΔgalX that were grown on their specific inducing compounds. The cluster analysis of the expression data revealed several groups of co-regulated genes, which goes beyond the traditionally described co-regulated gene sets. Additional putative target genes of the selected regulators were identified, based on their expression profile. Notably, in several cases the expression profile puts questions on the function assignment of uncharacterized genes that was based on homology searches, highlighting the need for more extensive biochemical studies into the substrate specificity of enzymes encoded by these non-characterized genes. The data also revealed sets of genes that were upregulated in the regulatory mutants, suggesting interaction between the regulatory systems and a therefore even more complex overall regulatory network than has been reported so far. Expression profiling on a large number of substrates provides better insight in the complex regulatory systems that drive the conversion of plant biomass by fungi. In

  6. Identification and Functional Characterization of Genes Encoding Omega-3 Polyunsaturated Fatty Acid Biosynthetic Activities from Unicellular Microalgae

    Directory of Open Access Journals (Sweden)

    Royah Vaezi

    2013-12-01

    Full Text Available In order to identify novel genes encoding enzymes involved in the biosynthesis of nutritionally important omega-3 long chain polyunsaturated fatty acids, a database search was carried out in the genomes of the unicellular photoautotrophic green alga Ostreococcus RCC809 and cold-water diatom Fragilariopsis cylindrus. The search led to the identification of two putative “front-end” desaturases (Δ6 and Δ4 from Ostreococcus RCC809 and one Δ6-elongase from F. cylindrus. Heterologous expression of putative open reading frames (ORFs in yeast revealed that the encoded enzyme activities efficiently convert their respective substrates: 54.1% conversion of α-linolenic acid for Δ6-desaturase, 15.1% conversion of 22:5n-3 for Δ4-desaturase and 38.1% conversion of γ-linolenic acid for Δ6-elongase. The Δ6-desaturase from Ostreococcus RCC809 displays a very strong substrate preference resulting in the predominant synthesis of stearidonic acid (C18:4Δ6,9,12,15. These data confirm the functional characterization of omega-3 long chain polyunsaturated fatty acid biosynthetic genes from these two species which have until now not been investigated for such activities. The identification of these new genes will also serve to expand the repertoire of activities available for metabolically engineering the omega-3 trait in heterologous hosts as well as providing better insights into the synthesis of eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA in marine microalgae.

  7. Deep and shallow encoding effects on face recognition: an ERP study.

    Science.gov (United States)

    Marzi, Tessa; Viggiano, Maria Pia

    2010-12-01

    Event related potentials (ERPs) were employed to investigate whether and when brain activity related to face recognition varies according to the processing level undertaken at encoding. Recognition was assessed when preceded by a "shallow" (orientation judgement) or by a "deep" study task (occupation judgement). Moreover, we included a further manipulation by presenting at encoding faces either in the upright or inverted orientation. As expected, deeply encoded faces were recognized more accurately and more quickly with respect to shallowly encoded faces. The ERP showed three main findings: i) as witnessed by more positive-going potentials for deeply encoded faces, at early and later processing stage, face recognition was influenced by the processing strategy adopted during encoding; ii) structural encoding, indexed by the N170, turned out to be "cognitively penetrable" showing repetition priming effects for deeply encoded faces; iii) face inversion, by disrupting configural processing during encoding, influenced memory related processes for deeply encoded faces and impaired the recognition of faces shallowly processed. The present study adds weight to the concept that the depth of processing during memory encoding affects retrieval. We found that successful retrieval following deep encoding involved both familiarity- and recollection-related processes showing from 500 ms a fronto-parietal distribution, whereas shallow encoding affected only earlier processing stages reflecting perceptual priming. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Shared origins of a key enzyme during the evolution of C4 and CAM metabolism

    Science.gov (United States)

    Christin, Pascal-Antoine; Arakaki, Monica; Osborne, Colin P.; Bräutigam, Andrea; Sage, Rowan F.; Hibberd, Julian M.; Kelly, Steven; Covshoff, Sarah; Wong, Gane Ka-Shu; Hancock, Lillian; Edwards, Erika J.

    2014-01-01

    CAM and C4 photosynthesis are two key plant adaptations that have evolved independently multiple times, and are especially prevalent in particular groups of plants, including the Caryophyllales. We investigate the origin of photosynthetic PEPC, a key enzyme of both the CAM and C4 pathways. We combine phylogenetic analyses of genes encoding PEPC with analyses of RNA sequence data of Portulaca, the only plants known to perform both CAM and C4 photosynthesis. Three distinct gene lineages encoding PEPC exist in eudicots (namely ppc-1E1, ppc-1E2 and ppc-2), one of which (ppc-1E1) was recurrently recruited for use in both CAM and C4 photosynthesis within the Caryophyllales. This gene is present in multiple copies in the cacti and relatives, including Portulaca. The PEPC involved in the CAM and C4 cycles of Portulaca are encoded by closely related yet distinct genes. The CAM-specific gene is similar to genes from related CAM taxa, suggesting that CAM has evolved before C4 in these species. The similar origin of PEPC and other genes involved in the CAM and C4 cycles highlights the shared early steps of evolutionary trajectories towards CAM and C4, which probably diverged irreversibly only during the optimization of CAM and C4 phenotypes. PMID:24638902

  9. Role of antioxidant scavenging enzymes and extracellular ...

    African Journals Online (AJOL)

    ChithrashreeGS

    2012-08-23

    Aug 23, 2012 ... peroxidase are two important antioxidant scavenging enzymes involved in ... Catalase was assayed using the method of Beers and Sizer. (1951) with .... yeast dextrose calcium carbonate agar (YDC) medium. Catalase and ...

  10. Virally encoded 7TM receptors

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Waldhoer, M; Lüttichau, H R

    2001-01-01

    expression of this single gene in certain lymphocyte cell lineages leads to the development of lesions which are remarkably similar to Kaposi's sarcoma, a human herpesvirus 8 associated disease. Thus, this and other virally encoded 7TM receptors appear to be attractive future drug targets.......A number of herpes- and poxviruses encode 7TM G-protein coupled receptors most of which clearly are derived from their host chemokine system as well as induce high expression of certain 7TM receptors in the infected cells. The receptors appear to be exploited by the virus for either immune evasion...

  11. The carB gene encoding the large subunit of carbamoylphosphate synthetase from Lactococcus lactis is transcribed monocistronically

    DEFF Research Database (Denmark)

    Martinussen, Jan; Hammer, Karin

    1998-01-01

    The biosynthesis of carbamoylphosphate is catalysed by the heterodimeric enzyme carbamoylphosphate synthetase (CPSase). The genes encoding the two subunits in procaryotes are normally transcribed as an operon, whereas in Lactococcus lactis, the gene encoding the large subunit (carB) is shown...

  12. Nuclear-cytoplasmic conflict in pea (Pisum sativum L. is associated with nuclear and plastidic candidate genes encoding acetyl-CoA carboxylase subunits.

    Directory of Open Access Journals (Sweden)

    Vera S Bogdanova

    Full Text Available In crosses of wild and cultivated peas (Pisum sativum L., nuclear-cytoplasmic incompatibility frequently occurs manifested as decreased pollen fertility, male gametophyte lethality, sporophyte lethality. High-throughput sequencing of plastid genomes of one cultivated and four wild pea accessions differing in cross-compatibility was performed. Candidate genes for involvement in the nuclear-plastid conflict were searched in the reconstructed plastid genomes. In the annotated Medicago truncatula genome, nuclear candidate genes were searched in the portion syntenic to the pea chromosome region known to harbor a locus involved in the conflict. In the plastid genomes, a substantial variability of the accD locus represented by nucleotide substitutions and indels was found to correspond to the pattern of cross-compatibility among the accessions analyzed. Amino acid substitutions in the polypeptides encoded by the alleles of a nuclear locus, designated as Bccp3, with a complementary function to accD, fitted the compatibility pattern. The accD locus in the plastid genome encoding beta subunit of the carboxyltransferase of acetyl-coA carboxylase and the nuclear locus Bccp3 encoding biotin carboxyl carrier protein of the same multi-subunit enzyme were nominated as candidate genes for main contribution to nuclear-cytoplasmic incompatibility in peas. Existence of another nuclear locus involved in the accD-mediated conflict is hypothesized.

  13. Nuclear-Cytoplasmic Conflict in Pea (Pisum sativum L.) Is Associated with Nuclear and Plastidic Candidate Genes Encoding Acetyl-CoA Carboxylase Subunits

    Science.gov (United States)

    Bogdanova, Vera S.; Zaytseva, Olga O.; Mglinets, Anatoliy V.; Shatskaya, Natalia V.; Kosterin, Oleg E.; Vasiliev, Gennadiy V.

    2015-01-01

    In crosses of wild and cultivated peas (Pisum sativum L.), nuclear-cytoplasmic incompatibility frequently occurs manifested as decreased pollen fertility, male gametophyte lethality, sporophyte lethality. High-throughput sequencing of plastid genomes of one cultivated and four wild pea accessions differing in cross-compatibility was performed. Candidate genes for involvement in the nuclear-plastid conflict were searched in the reconstructed plastid genomes. In the annotated Medicago truncatula genome, nuclear candidate genes were searched in the portion syntenic to the pea chromosome region known to harbor a locus involved in the conflict. In the plastid genomes, a substantial variability of the accD locus represented by nucleotide substitutions and indels was found to correspond to the pattern of cross-compatibility among the accessions analyzed. Amino acid substitutions in the polypeptides encoded by the alleles of a nuclear locus, designated as Bccp3, with a complementary function to accD, fitted the compatibility pattern. The accD locus in the plastid genome encoding beta subunit of the carboxyltransferase of acetyl-coA carboxylase and the nuclear locus Bccp3 encoding biotin carboxyl carrier protein of the same multi-subunit enzyme were nominated as candidate genes for main contribution to nuclear-cytoplasmic incompatibility in peas. Existence of another nuclear locus involved in the accD-mediated conflict is hypothesized. PMID:25789472

  14. Quantum mechanical approaches to in silico enzyme characterization and drug design

    Energy Technology Data Exchange (ETDEWEB)

    Nilmeier, J P; Fattebert, J L; Jacobson, M P; Kalyanaraman, C

    2012-01-17

    The astonishing, exponentially increasing rates of genome sequencing has led to one of the most significant challenges for the biological and computational sciences in the 21st century: assigning the likely functions of the encoded proteins. Enzymes represent a particular challenge, and a critical one, because the universe of enzymes is likely to contain many novel functions that may be useful for synthetic biology, or as drug targets. Current approaches to protein annotation are largely based on bioinformatics. At the simplest level, this annotation involves transferring the annotations of characterized enzymes to related sequences. In practice, however, there is no simple, sequence based criterion for transferring annotations, and bioinformatics alone cannot propose new enzymatic functions. Structure-based computational methods have the potential to address these limitations, by identifying potential substrates of enzymes, as we and others have shown. One successful approach has used in silico 'docking' methods, more commonly applied in structure-based drug design, to identify possible metabolite substrates. A major limitation of this approach is that it only considers substrate binding, and does not directly assess the potential of the enzyme to catalyze a particular reaction using a particular substrate. That is, substrate binding affinity is necessary but not sufficient to assign function. A reaction profile is ultimately what is needed for a more complete quantitative description of function. To address this rather fundamental limitation, they propose to use quantum mechanical methods to explicitly compute transition state barriers that govern the rates of catalysis. Although quantum mechanical, and mixed quantum/classical (QM/MM), methods have been used extensively to investigate enzymatic reactions, the focus has been primarily on elucidating complex reaction mechanisms. Here, the key catalytic steps are known, and they use these methods quantify

  15. Prediction of novel archaeal enzymes from sequence-derived features

    DEFF Research Database (Denmark)

    Jensen, Lars Juhl; Skovgaard, Marie; Brunak, Søren

    2002-01-01

    The completely sequenced archaeal genomes potentially encode, among their many functionally uncharacterized genes, novel enzymes of biotechnological interest. We have developed a prediction method for detection and classification of enzymes from sequence alone (available at http://www.cbs.dtu.dk/......The completely sequenced archaeal genomes potentially encode, among their many functionally uncharacterized genes, novel enzymes of biotechnological interest. We have developed a prediction method for detection and classification of enzymes from sequence alone (available at http......://www.cbs.dtu.dk/services/ArchaeaFun/). The method does not make use of sequence similarity; rather, it relies on predicted protein features like cotranslational and posttranslational modifications, secondary structure, and simple physical/chemical properties....

  16. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  17. Cloning of gene-encoded stem bromelain on system coming from Pichia pastoris as therapeutic protein candidate

    Science.gov (United States)

    Yusuf, Y.; Hidayati, W.

    2018-01-01

    The process of identifying bacterial recombination using PCR, and restriction, and then sequencing process was done after identifying the bacteria. This research aimed to get a yeast cell of Pichia pastoris which has an encoder gene of stem bromelain enzyme. The production of recombinant stem bromelain enzymes using yeast cells of P. pastoris can produce pure bromelain rod enzymes and have the same conformation with the enzyme’s conformation in pineapple plants. This recombinant stem bromelain enzyme can be used as a therapeutic protein in inflammatory, cancer and degenerative diseases. This study was an early stage of a step series to obtain bromelain rod protein derived from pineapple made with genetic engineering techniques. This research was started by isolating the RNA of pineapple stem which was continued with constructing cDNA using reserve transcriptase-PCR technique (RT-PCR), doing the amplification of bromelain enzyme encoder gene with PCR technique using a specific premiere couple which was designed. The process was continued by cloning into bacterium cells of Escherichia coli. A vector which brought the encoder gene of stem bromelain enzyme was inserted into the yeast cell of P. pastoris and was continued by identifying the yeast cell of P. pastoris which brought the encoder gene of stem bromelain enzyme. The research has not found enzyme gene of stem bromelain in yeast cell of P. pastoris yet. The next step is repeating the process by buying new reagent; RNase inhibitor, and buying liquid nitrogen.

  18. Novel mutants of Erwinia carotovora subsp. carotovora defective in the production of plant cell wall degrading enzymes generated by Mu transpososome-mediated insertion mutagenesis.

    Science.gov (United States)

    Laasik, Eve; Ojarand, Merli; Pajunen, Maria; Savilahti, Harri; Mäe, Andres

    2005-02-01

    As in Erwinia carotovora subsp. carotovora the regulation details of the main virulence factors, encoding extracellular enzymes that degrade the plant cell wall, is only rudimentally understood, we performed a genetic screen to identify novel candidate genes involved in the process. Initially, we used Mu transpososome-mediated mutagenesis approach to generate a comprehensive transposon insertion mutant library of ca. 10000 clones and screened the clones for the loss of extracellular enzyme production. Extracellular enzymes production was abolished by mutations in the chromosomal helEcc, trkAEcc yheLEcc, glsEcc, igaAEcc and cysQEcc genes. The findings reported here demonstrate that we have isolated six new representatives that belong to the pool of genes modulating the production of virulence factors in E. carotovora.

  19. Encoding information into precipitation structures

    International Nuclear Information System (INIS)

    Martens, Kirsten; Bena, Ioana; Droz, Michel; Rácz, Zoltan

    2008-01-01

    Material design at submicron scales would be profoundly affected if the formation of precipitation patterns could be easily controlled. It would allow the direct building of bulk structures, in contrast to traditional techniques which consist of removing material in order to create patterns. Here, we discuss an extension of our recent proposal of using electrical currents to control precipitation bands which emerge in the wake of reaction fronts in A + + B – → C reaction–diffusion processes. Our main result, based on simulating the reaction–diffusion–precipitation equations, is that the dynamics of the charged agents can be guided by an appropriately designed time-dependent electric current so that, in addition to the control of the band spacing, the width of the precipitation bands can also be tuned. This makes straightforward the encoding of information into precipitation patterns and, as an amusing example, we demonstrate the feasibility by showing how to encode a musical rhythm

  20. How can survival processing improve memory encoding?

    Science.gov (United States)

    Luo, Meng; Geng, Haiyan

    2013-11-01

    We investigated the psychological mechanism of survival processing advantage from the perspective of false memory in two experiments. Using a DRM paradigm in combination with analysis based on signal detection theory, we were able to separately examine participants' utilization of verbatim representation and gist representation. Specifically, in Experiment 1, participants rated semantically related words in a survival scenario for a survival condition but rated pleasantness of words in the same DRM lists for a non-survival control condition. The results showed that participants demonstrated more gist processing in the survival condition than in the pleasantness condition; however, the degree of item-specific processing in the two encoding conditions did not significantly differ. In Experiment 2, the control task was changed to a category rating task, in which participants were asked to make category ratings of words in the category lists. We found that the survival condition involved more item-specific processing than did the category condition, but we found no significant difference between the two encoding conditions at the level of gist processing. Overall, our study demonstrates that survival processing can simultaneously promote gist and item-specific representations. When the control tasks only promoted either item-specific representation or gist representation, memory advantages of survival processing occurred.

  1. The Dimerization Domain in DapE Enzymes Is required for Catalysis

    OpenAIRE

    Nocek, Boguslaw; Starus, Anna; Makowska-Grzyska, Magdalena; Gutierrez, Blanca; Sanchez, Stephen; Jedrzejczak, Robert; Mack, Jamey C.; Olsen, Kenneth W.; Joachimiak, Andrzej; Holz, Richard C.

    2014-01-01

    The emergence of antibiotic-resistant bacterial strains underscores the importance of identifying new drug targets and developing new antimicrobial compounds. Lysine and meso-diaminopimelic acid are essential for protein production and bacterial peptidoglycan cell wall remodeling and are synthesized in bacteria by enzymes encoded within dap operon. Therefore dap enzymes may serve as excellent targets for developing a new class of antimicrobial agents. The dapE-encoded N-succinyl-L,L-diaminopi...

  2. Diversity and strain specificity of plant cell wall degrading enzymes revealed by the draft genome of Ruminococcus flavefaciens FD-1.

    Directory of Open Access Journals (Sweden)

    Margret E Berg Miller

    Full Text Available BACKGROUND: Ruminococcus flavefaciens is a predominant cellulolytic rumen bacterium, which forms a multi-enzyme cellulosome complex that could play an integral role in the ability of this bacterium to degrade plant cell wall polysaccharides. Identifying the major enzyme types involved in plant cell wall degradation is essential for gaining a better understanding of the cellulolytic capabilities of this organism as well as highlighting potential enzymes for application in improvement of livestock nutrition and for conversion of cellulosic biomass to liquid fuels. METHODOLOGY/PRINCIPAL FINDINGS: The R. flavefaciens FD-1 genome was sequenced to 29x-coverage, based on pulsed-field gel electrophoresis estimates (4.4 Mb, and assembled into 119 contigs providing 4,576,399 bp of unique sequence. As much as 87.1% of the genome encodes ORFs, tRNA, rRNAs, or repeats. The GC content was calculated at 45%. A total of 4,339 ORFs was detected with an average gene length of 918 bp. The cellulosome model for R. flavefaciens was further refined by sequence analysis, with at least 225 dockerin-containing ORFs, including previously characterized cohesin-containing scaffoldin molecules. These dockerin-containing ORFs encode a variety of catalytic modules including glycoside hydrolases (GHs, polysaccharide lyases, and carbohydrate esterases. Additionally, 56 ORFs encode proteins that contain carbohydrate-binding modules (CBMs. Functional microarray analysis of the genome revealed that 56 of the cellulosome-associated ORFs were up-regulated, 14 were down-regulated, 135 were unaffected, when R. flavefaciens FD-1 was grown on cellulose versus cellobiose. Three multi-modular xylanases (ORF01222, ORF03896, and ORF01315 exhibited the highest levels of up-regulation. CONCLUSIONS/SIGNIFICANCE: The genomic evidence indicates that R. flavefaciens FD-1 has the largest known number of fiber-degrading enzymes likely to be arranged in a cellulosome architecture. Functional

  3. Transcriptome Analysis Revealed Highly Expressed Genes Encoding Secondary Metabolite Pathways and Small Cysteine-Rich Proteins in the Sclerotium of Lignosus rhinocerotis.

    Directory of Open Access Journals (Sweden)

    Hui-Yeng Y Yap

    Full Text Available Lignosus rhinocerotis (Cooke Ryvarden (tiger milk mushroom has long been known for its nutritional and medicinal benefits among the local communities in Southeast Asia. However, the molecular and genetic basis of its medicinal and nutraceutical properties at transcriptional level have not been investigated. In this study, the transcriptome of L. rhinocerotis sclerotium, the part with medicinal value, was analyzed using high-throughput Illumina HiSeqTM platform with good sequencing quality and alignment results. A total of 3,673, 117, and 59,649 events of alternative splicing, novel transcripts, and SNP variation were found to enrich its current genome database. A large number of transcripts were expressed and involved in the processing of gene information and carbohydrate metabolism. A few highly expressed genes encoding the cysteine-rich cerato-platanin, hydrophobins, and sugar-binding lectins were identified and their possible roles in L. rhinocerotis were discussed. Genes encoding enzymes involved in the biosynthesis of glucans, six gene clusters encoding four terpene synthases and one each of non-ribosomal peptide synthetase and polyketide synthase, and 109 transcribed cytochrome P450 sequences were also identified in the transcriptome. The data from this study forms a valuable foundation for future research in the exploitation of this mushroom in pharmacological and industrial applications.

  4. Expanding the Halohydrin Dehalogenase Enzyme Family: Identification of Novel Enzymes by Database Mining.

    Science.gov (United States)

    Schallmey, Marcus; Koopmeiners, Julia; Wells, Elizabeth; Wardenga, Rainer; Schallmey, Anett

    2014-12-01

    Halohydrin dehalogenases are very rare enzymes that are naturally involved in the mineralization of halogenated xenobiotics. Due to their catalytic potential and promiscuity, many biocatalytic reactions have been described that have led to several interesting and industrially important applications. Nevertheless, only a few of these enzymes have been made available through recombinant techniques; hence, it is of general interest to expand the repertoire of these enzymes so as to enable novel biocatalytic applications. After the identification of specific sequence motifs, 37 novel enzyme sequences were readily identified in public sequence databases. All enzymes that could be heterologously expressed also catalyzed typical halohydrin dehalogenase reactions. Phylogenetic inference for enzymes of the halohydrin dehalogenase enzyme family confirmed that all enzymes form a distinct monophyletic clade within the short-chain dehydrogenase/reductase superfamily. In addition, the majority of novel enzymes are substantially different from previously known phylogenetic subtypes. Consequently, four additional phylogenetic subtypes were defined, greatly expanding the halohydrin dehalogenase enzyme family. We show that the enormous wealth of environmental and genome sequences present in public databases can be tapped for in silico identification of very rare but biotechnologically important biocatalysts. Our findings help to readily identify halohydrin dehalogenases in ever-growing sequence databases and, as a consequence, make even more members of this interesting enzyme family available to the scientific and industrial community. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis.

    Directory of Open Access Journals (Sweden)

    Xiuchun Ge

    Full Text Available Biofilms play important roles in microbial communities and are related to infectious diseases. Here, we report direct evidence that a bacterial nox gene encoding NADH oxidase is involved in biofilm formation. A dramatic reduction in biofilm formation was observed in a Streptococcus sanguinis nox mutant under anaerobic conditions without any decrease in growth. The membrane fluidity of the mutant bacterial cells was found to be decreased and the fatty acid composition altered, with increased palmitic acid and decreased stearic acid and vaccenic acid. Extracellular DNA of the mutant was reduced in abundance and bacterial competence was suppressed. Gene expression analysis in the mutant identified two genes with altered expression, gtfP and Idh, which were found to be related to biofilm formation through examination of their deletion mutants. NADH oxidase-related metabolic pathways were analyzed, further clarifying the function of this enzyme in biofilm formation.

  6. Ribose catabolism of Escherichia coli: characterization of the rpiB gene encoding ribose phosphate isomerase B and of the rpiR gene, which is involved in regulation of rpiB expression

    DEFF Research Database (Denmark)

    Sørensen, Kim I.; Hove-Jensen, Bjarne

    1996-01-01

    . The rpiB gene resided on a 4.6-kbp HindIII-EcoRV DNA fragment from phage lambda 10H5 (642) of the Kohara gene library and mapped at 92.85 min. Consistent with this map position, the cloned DNA fragment contained two divergent open reading frames of 149 and 296 codons, encoding ribose phosphate isomerase B...

  7. Premotor and Motor Cortices Encode Reward.

    Directory of Open Access Journals (Sweden)

    Pavan Ramkumar

    Full Text Available Rewards associated with actions are critical for motivation and learning about the consequences of one's actions on the world. The motor cortices are involved in planning and executing movements, but it is unclear whether they encode reward over and above limb kinematics and dynamics. Here, we report a categorical reward signal in dorsal premotor (PMd and primary motor (M1 neurons that corresponds to an increase in firing rates when a trial was not rewarded regardless of whether or not a reward was expected. We show that this signal is unrelated to error magnitude, reward prediction error, or other task confounds such as reward consumption, return reach plan, or kinematic differences across rewarded and unrewarded trials. The availability of reward information in motor cortex is crucial for theories of reward-based learning and motivational influences on actions.

  8. High Potential Source for Biomass Degradation Enzyme Discovery and Environmental Aspects Revealed through Metagenomics of Indian Buffalo Rumen

    Directory of Open Access Journals (Sweden)

    K. M. Singh

    2014-01-01

    Full Text Available The complex microbiomes of the rumen functions as an effective system for plant cell wall degradation, and biomass utilization provide genetic resource for degrading microbial enzymes that could be used in the production of biofuel. Therefore the buffalo rumen microbiota was surveyed using shot gun sequencing. This metagenomic sequencing generated 3.9 GB of sequences and data were assembled into 137270 contiguous sequences (contigs. We identified potential 2614 contigs encoding biomass degrading enzymes including glycoside hydrolases (GH: 1943 contigs, carbohydrate binding module (CBM: 23 contigs, glycosyl transferase (GT: 373 contigs, carbohydrate esterases (CE: 259 contigs, and polysaccharide lyases (PE: 16 contigs. The hierarchical clustering of buffalo metagenomes demonstrated the similarities and dissimilarity in microbial community structures and functional capacity. This demonstrates that buffalo rumen microbiome was considerably enriched in functional genes involved in polysaccharide degradation with great prospects to obtain new molecules that may be applied in the biofuel industry.

  9. Mediated effect of ultrasound treated Diclofenac on mussel hemocytes: First evidence for the involvement of respiratory burst enzymes in the induction of DCF-mediated unspecific mode of action.

    Science.gov (United States)

    Toufexi, Eirini; Dailianis, Stefanos; Vlastos, Dimitris; Manariotis, Ioannis D

    2016-06-01

    The present study investigates the toxic behavior of diclofenac (DCF) before and after its ultrasound (US) treatment, as well as the involvement of intracellular target molecules, such as NADPH oxidase and NO synthase, in the DCF-induced adverse effects on hemocytes of mussel Mytilus galloprovincialis. In this context, appropriate volumes (350 and 500mL) of DCF solutions (at concentrations of 2, 2.5, 5 and 10mgL(-1)) were treated under different ultrasound operating conditions (frequency at 582 and 862kHz, electric power density at 133 and 167W) for assessing US method efficiency. In parallel, DCF and US DCF-mediated cytotoxic (in terms of cell viability measured with the use of neutral red uptake/NRU method), oxidative (in terms of superoxide anions/(.)O2(-), nitric oxides such as NO2(-) and lipid peroxidation products, such as malondialdehyde/MDA content) and genotoxic (DNA damage measured by the use of Comet assay method) effects were investigated in hemocytes exposed for 1h to 5, 10 and 100ngL(-1) and 1, 10 and 20μgL(-1) of DCF. The involvement of NADPH oxidase and NO synthase to the DCF-induced toxicity was further investigated by the use of 10μΜ L-NAME, a NO synthase inhibitor and 10μΜ DPI, a NADPH oxidase inhibitor. According to the results, 350mL of 2mgL(-1) DCF showed higher degradation (>50%) under 167W electric power density and frequency at 862kHz for 120min, compared to degradation in all other cases, followed by a significant elimination of its toxicity. Specifically, US DCF-treated hemocytes showed a significant attenuation of DCF-mediated cytotoxic, oxidative and genotoxic effects, which appeared to be caused by NADPH oxidase and NO synthase activation, since their inhibition was followed by a significant elimination of (.)O2(-) and NO2(-) generation and the concomitant oxidative damage within cells. The results of the present study showed for the first time that unspecific mode of action of DCF, associated with the induction of NADPH oxidase

  10. Enzymes for improved biomass conversion

    Science.gov (United States)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  11. Hall effect encoding of brushless dc motors

    Science.gov (United States)

    Berard, C. A.; Furia, T. J.; Goldberg, E. A.; Greene, R. C.

    1970-01-01

    Encoding mechanism integral to the motor and using the permanent magnets embedded in the rotor eliminates the need for external devices to encode information relating the position and velocity of the rotating member.

  12. Role of the PhoP-PhoQ system in the virulence of Erwinia chrysanthemi strain 3937: involvement in sensitivity to plant antimicrobial peptides, survival at acid Hh, and regulation of pectolytic enzymes.

    Science.gov (United States)

    Llama-Palacios, Arancha; López-Solanilla, Emilia; Rodríguez-Palenzuela, Pablo

    2005-03-01

    Erwinia chrysanthemi is a phytopathogenic bacterium that causes soft-rot diseases in a broad number of crops. The PhoP-PhoQ system is a key factor in pathogenicity of several bacteria and is involved in the bacterial resistance to different factors, including acid stress. Since E. chrysanthemi is confronted by acid pH during pathogenesis, we have studied the role of this system in the virulence of this bacterium. In this work, we have isolated and characterized the phoP and phoQ mutants of E. chrysanthemi strain 3937. It was found that: (i) they were not altered in their growth at acid pH; (ii) the phoQ mutant showed diminished ability to survive at acid pH; (iii) susceptibility to the antimicrobial peptide thionin was increased; (iv) the virulence of the phoQ mutant was diminished at low and high magnesium concentrations, whereas the virulence of the phoP was diminished only at low magnesium concentrations; (v) in planta Pel activity of both mutant strains was drastically reduced; and (vi) both mutants lagged behind the wild type in their capacity to change the apoplastic pH. These results suggest that the PhoP-PhoQ system plays a role in the virulence of this bacterium in plant tissues, although it does not contribute to bacterial growth at acid pH.

  13. Identification of the Metabolic Enzyme Involved Morusin Metabolism and Characterization of Its Metabolites by Ultraperformance Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry (UPLC/Q-TOF-MS/MS

    Directory of Open Access Journals (Sweden)

    Xianbao Shi

    2016-01-01

    Full Text Available Morusin, the important active component of a traditional Chinese medicine, Morus alba L., has been shown to exhibit many vital pharmacological activities. In this study, six recombinant CYP450 supersomes and liver microsomes were used to perform metabolic studies. Chemical inhibition studies and screening assays with recombinant human cytochrome P450s were also used to characterize the CYP450 isoforms involved in morusin metabolism. The morusin metabolites identified varied greatly among different species. Eight metabolites of morusin were detected in the liver microsomes from pigs (PLMs, rats (RLMs, and monkeys (MLMs by LC-MS/MS and six metabolites were detected in the liver microsomes from humans (HLMs, rabbits (RAMs, and dogs (DLMs. Four metabolites (M1, M2, M5, and M7 were found in all species and hydroxylation was the major metabolic transformation. CYP1A2, CYP2C9, CYP2D6, CYP2E1, CYP3A4, and CYP2C19 contributed differently to the metabolism of morusin. Compared to other CYP450 isoforms, CYP3A4 played the most significant role in the metabolism of morusin in human liver microsomes. These results are significant to better understand the metabolic behaviors of morusin among various species.

  14. Flipped-Adversarial AutoEncoders

    OpenAIRE

    Zhang, Jiyi; Dang, Hung; Lee, Hwee Kuan; Chang, Ee-Chien

    2018-01-01

    We propose a flipped-Adversarial AutoEncoder (FAAE) that simultaneously trains a generative model G that maps an arbitrary latent code distribution to a data distribution and an encoder E that embodies an "inverse mapping" that encodes a data sample into a latent code vector. Unlike previous hybrid approaches that leverage adversarial training criterion in constructing autoencoders, FAAE minimizes re-encoding errors in the latent space and exploits adversarial criterion in the data space. Exp...

  15. Immobilized enzymes and cells

    Energy Technology Data Exchange (ETDEWEB)

    Bucke, C; Wiseman, A

    1981-04-04

    This article reviews the current state of the art of enzyme and cell immobilization and suggests advances which might be made during the 1980's. Current uses of immobilized enzymes include the use of glucoamylase in the production of glucose syrups from starch and glucose isomerase in the production of high fructose corn syrup. Possibilities for future uses of immobilized enzymes and cells include the utilization of whey and the production of ethanol.

  16. Profiling the orphan enzymes

    Science.gov (United States)

    2014-01-01

    The emergence of Next Generation Sequencing generates an incredible amount of sequence and great potential for new enzyme discovery. Despite this huge amount of data and the profusion of bioinformatic methods for function prediction, a large part of known enzyme activities is still lacking an associated protein sequence. These particular activities are called “orphan enzymes”. The present review proposes an update of previous surveys on orphan enzymes by mining the current content of public databases. While the percentage of orphan enzyme activities has decreased from 38% to 22% in ten years, there are still more than 1,000 orphans among the 5,000 entries of the Enzyme Commission (EC) classification. Taking into account all the reactions present in metabolic databases, this proportion dramatically increases to reach nearly 50% of orphans and many of them are not associated to a known pathway. We extended our survey to “local orphan enzymes” that are activities which have no representative sequence in a given clade, but have at least one in organisms belonging to other clades. We observe an important bias in Archaea and find that in general more than 30% of the EC activities have incomplete sequence information in at least one superkingdom. To estimate if candidate proteins for local orphans could be retrieved by homology search, we applied a simple strategy based on the PRIAM software and noticed that candidates may be proposed for an important fraction of local orphan enzymes. Finally, by studying relation between protein domains and catalyzed activities, it appears that newly discovered enzymes are mostly associated with already known enzyme domains. Thus, the exploration of the promiscuity and the multifunctional aspect of known enzyme families may solve part of the orphan enzyme issue. We conclude this review with a presentation of recent initiatives in finding proteins for orphan enzymes and in extending the enzyme world by the discovery of new

  17. Neural correlates of relational memory: successful encoding and retrieval of semantic and perceptual associations

    NARCIS (Netherlands)

    Prince, S.E.; Daselaar, S.M.; Cabeza, R.

    2005-01-01

    Using event-related functional magnetic resonance imaging, we identified brain regions involved in successful relational memory (RM) during encoding and retrieval for semantic and perceptual associations or in general, independent of phase and content. Participants were scanned while encoding and

  18. Comparison between different encoding schemes for synthetic aperture imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2002-01-01

    and spatio-temporal encoding was investigated. Experiments on wire phantom in water were carried out to quantify the gain from the different encodings. The gain in SNR using an FM modulated pulse is 12 dB. The penetration depth of the images was studied using tissue mimicking phantom with frequency dependent......Synthetic transmit aperture ultrasound (STAU) imaging can create images with as low as 2 emissions, making it attractive for 3D real-time imaging. Two are the major problems to be solved: (1) complexity of the hardware involved, and (2) poor image quality due to low signal to noise ratio (SNR). We...... attenuation of 0.5 dB/(cm MHz). The combination of spatial and temporal encoding have highest penetration depth. Images to a depth of 110 mm, can successfully be made with contrast resolution comparable to that of a linear array image. The in-vivo scans show that the motion artifacts do not significantly...

  19. Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction.

    Science.gov (United States)

    Beliaev, A S; Saffarini, D A

    1998-12-01

    Iron and manganese oxides or oxyhydroxides are abundant transition metals, and in aquatic environments they serve as terminal electron acceptors for a large number of bacterial species. The molecular mechanisms of anaerobic metal reduction, however, are not understood. Shewanella putrefaciens is a facultative anaerobe that uses Fe(III) and Mn(IV) as terminal electron acceptors during anaerobic respiration. Transposon mutagenesis was used to generate mutants of S. putrefaciens, and one such mutant, SR-21, was analyzed in detail. Growth and enzyme assays indicated that the mutation in SR-21 resulted in loss of Fe(III) and Mn(IV) reduction but did not affect its ability to reduce other electron acceptors used by the wild type. This deficiency was due to Tn5 inactivation of an open reading frame (ORF) designated mtrB. mtrB encodes a protein of 679 amino acids and contains a signal sequence characteristic of secreted proteins. Analysis of membrane fractions of the mutant, SR-21, and wild-type cells indicated that MtrB is located on the outer membrane of S. putrefaciens. A 5.2-kb DNA fragment that contains mtrB was isolated and completely sequenced. A second ORF, designated mtrA, was found directly upstream of mtrB. The two ORFs appear to be arranged in an operon. mtrA encodes a putative 10-heme c-type cytochrome of 333 amino acids. The N-terminal sequence of MtrA contains a potential signal sequence for secretion across the cell membrane. The amino acid sequence of MtrA exhibited 34% identity to NrfB from Escherichia coli, which is involved in formate-dependent nitrite reduction. To our knowledge, this is the first report of genes encoding proteins involved in metal reduction.

  20. A site-specific endonuclease encoded by a typical archaeal intron

    DEFF Research Database (Denmark)

    Dalgaard, Jacob; Garrett, Roger Antony; Belfort, Malene

    1993-01-01

    The protein encoded by the archaeal intron in the 23S rRNA gene of the hyperthermophile Desulfurococcus mobilis is a double-strand DNase that, like group I intron homing endonucleases, is capable of cleaving an intronless allele of the gene. This enzyme, I-Dmo I, is unusual among the intron...

  1. Sequence analysis and identification of the pyrKDbF operon from Lactococcus lactis including a novel gene, pyrK, involved in pyrimidine biosynthesis

    DEFF Research Database (Denmark)

    Andersen, Paal Skytt; Martinussen, Jan; Hammer, Karin

    1996-01-01

    Three genes encoding enzymes involved in the biosynthesis of pyrimidines have been found to constitute an operon in Lactococcus lactis. Two of the genes are the well-known pyr genes pyrDb and pyrF, encoding dihydroorotate dehydrogenase and orotidine monophosphate decarboxylase, respectively....... The third gene encodes a protein which was shown to be necessary for the activity of the pyrDb-encoded dihydroorotate dehydrogenase; we propose to name the gene pyrK. The pyrK-encoded protein is homologous to a number of proteins which are involved in electron transfer. The lactococcal pyrKDbF operon...... is highly homologous to the corresponding part of the much-larger pyr operon of Bacillus subtilis. orf2, the pyrK homolog in B. subtilis, has also been shown to be necessary for pyrimidine biosynthesis (A.E. Kahler and R.L. Switzer, J. Bacteriol. 178:5013-5016, 1996). Four genes adjacent to the operon, i...

  2. Two Pathways to Stimulus Encoding in Category Learning?

    Science.gov (United States)

    Davis, Tyler; Love, Bradley C.; Maddox, W. Todd

    2008-01-01

    Category learning theorists tacitly assume that stimuli are encoded by a single pathway. Motivated by theories of object recognition, we evaluate a dual-pathway account of stimulus encoding. The part-based pathway establishes mappings between sensory input and symbols that encode discrete stimulus features, whereas the image-based pathway applies holistic templates to sensory input. Our experiments use rule-plus-exception structures in which one exception item in each category violates a salient regularity and must be distinguished from other items. In Experiment 1, we find that discrete representations are crucial for recognition of exceptions following brief training. Experiments 2 and 3 involve multi-session training regimens designed to encourage either part or image-based encoding. We find that both pathways are able to support exception encoding, but have unique characteristics. We speculate that one advantage of the part-based pathway is the ability to generalize across domains, whereas the image-based pathway provides faster and more effortless recognition. PMID:19460948

  3. Enzyme Engineering for In Situ Immobilization.

    Science.gov (United States)

    Rehm, Fabian B H; Chen, Shuxiong; Rehm, Bernd H A

    2016-10-14

    Enzymes are used as biocatalysts in a vast range of industrial applications. Immobilization of enzymes to solid supports or their self-assembly into insoluble particles enhances their applicability by strongly improving properties such as stability in changing environments, re-usability and applicability in continuous biocatalytic processes. The possibility of co-immobilizing various functionally related enzymes involved in multistep synthesis, conversion or degradation reactions enables the design of multifunctional biocatalyst with enhanced performance compared to their soluble counterparts. This review provides a brief overview of up-to-date in vitro immobilization strategies while focusing on recent advances in enzyme engineering towards in situ self-assembly into insoluble particles. In situ self-assembly approaches include the bioengineering of bacteria to abundantly form enzymatically active inclusion bodies such as enzyme inclusions or enzyme-coated polyhydroxyalkanoate granules. These one-step production strategies for immobilized enzymes avoid prefabrication of the carrier as well as chemical cross-linking or attachment to a support material while the controlled oriented display strongly enhances the fraction of accessible catalytic sites and hence functional enzymes.

  4. Artificial Enzymes, "Chemzymes"

    DEFF Research Database (Denmark)

    Bjerre, Jeannette; Rousseau, Cyril Andre Raphaël; Pedersen, Lavinia Georgeta M

    2008-01-01

    Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models that successf......Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models...... that successfully perform Michaelis-Menten catalysis under enzymatic conditions (i.e., aqueous medium, neutral pH, ambient temperature) and for those that do, very high rate accelerations are seldomly seen. This review will provide a brief summary of the recent developments in artificial enzymes, so called...... "Chemzymes", based on cyclodextrins and other molecules. Only the chemzymes that have shown enzyme-like activity that has been quantified by different methods will be mentioned. This review will summarize the work done in the field of artificial glycosidases, oxidases, epoxidases, and esterases, as well...

  5. Magnetically responsive enzyme powders

    Energy Technology Data Exchange (ETDEWEB)

    Pospiskova, Kristyna, E-mail: kristyna.pospiskova@upol.cz [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2015-04-15

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction.

  6. Targeted enzyme prodrug therapies.

    Science.gov (United States)

    Schellmann, N; Deckert, P M; Bachran, D; Fuchs, H; Bachran, C

    2010-09-01

    The cure of cancer is still a formidable challenge in medical science. Long-known modalities including surgery, chemotherapy and radiotherapy are successful in a number of cases; however, invasive, metastasized and inaccessible tumors still pose an unresolved and ongoing problem. Targeted therapies designed to locate, detect and specifically kill tumor cells have been developed in the past three decades as an alternative to treat troublesome cancers. Most of these therapies are either based on antibody-dependent cellular cytotoxicity, targeted delivery of cytotoxic drugs or tumor site-specific activation of prodrugs. The latter is a two-step procedure. In the first step, a selected enzyme is accumulated in the tumor by guiding the enzyme or its gene to the neoplastic cells. In the second step, a harmless prodrug is applied and specifically converted by this enzyme into a cytotoxic drug only at the tumor site. A number of targeting systems, enzymes and prodrugs were investigated and improved since the concept was first envisioned in 1974. This review presents a concise overview on the history and latest developments in targeted therapies for cancer treatment. We cover the relevant technologies such as antibody-directed enzyme prodrug therapy (ADEPT), gene-directed enzyme prodrug therapy (GDEPT) as well as related therapies such as clostridial- (CDEPT) and polymer-directed enzyme prodrug therapy (PDEPT) with emphasis on prodrug-converting enzymes, prodrugs and drugs.

  7. Tagging, Encoding, and Jones Optimality

    DEFF Research Database (Denmark)

    Danvy, Olivier; Lopez, Pablo E. Martinez

    2003-01-01

    A partial evaluator is said to be Jones-optimal if the result of specializing a self-interpreter with respect to a source program is textually identical to the source program, modulo renaming. Jones optimality has already been obtained if the self-interpreter is untyped. If the selfinterpreter...... is typed, however, residual programs are cluttered with type tags. To obtain the original source program, these tags must be removed. A number of sophisticated solutions have already been proposed. We observe, however, that with a simple representation shift, ordinary partial evaluation is already Jones......-optimal, modulo an encoding. The representation shift amounts to reading the type tags as constructors for higherorder abstract syntax. We substantiate our observation by considering a typed self-interpreter whose input syntax is higher-order. Specializing this interpreter with respect to a source program yields...

  8. Functional characterization of proanthocyanidin pathway enzymes from tea and their application for metabolic engineering.

    Science.gov (United States)

    Pang, Yongzhen; Abeysinghe, I Sarath B; He, Ji; He, Xianzhi; Huhman, David; Mewan, K Mudith; Sumner, Lloyd W; Yun, Jianfei; Dixon, Richard A

    2013-03-01

    Tea (Camellia sinensis) is rich in specialized metabolites, especially polyphenolic proanthocyanidins (PAs) and their precursors. To better understand the PA pathway in tea, we generated a complementary DNA library from leaf tissue of the blister blight-resistant tea cultivar TRI2043 and functionally characterized key enzymes responsible for the biosynthesis of PA precursors. Structural genes encoding enzymes involved in the general phenylpropanoid/flavonoid pathway and the PA-specific branch pathway were well represented in the library. Recombinant tea leucoanthocyanidin reductase (CsLAR) expressed in Escherichia coli was active with leucocyanidin as substrate to produce the 2R,3S-trans-flavan-ol (+)-catechin in vitro. Two genes encoding anthocyanidin reductase, CsANR1 and CsANR2, were also expressed in E. coli, and the recombinant proteins exhibited similar kinetic properties. Both converted cyanidin to a mixture of (+)-epicatechin and (-)-catechin, although in different proportions, indicating that both enzymes possess epimerase activity. These epimers were unexpected based on the belief that tea PAs are made from (-)-epicatechin and (+)-catechin. Ectopic expression of CsANR2 or CsLAR led to the accumulation of low levels of PA precursors and their conjugates in Medicago truncatula hairy roots and anthocyanin-overproducing tobacco (Nicotiana tabacum), but levels of oligomeric PAs were very low. Surprisingly, the expression of CsLAR in tobacco overproducing anthocyanin led to the accumulation of higher levels of epicatechin and its glucoside than of catechin, again highlighting the potential importance of epimerization in flavan-3-ol biosynthesis. These data provide a resource for understanding tea PA biosynthesis and tools for the bioengineering of flavanols.

  9. Multiplicity of 3-Ketosteroid-9 alpha-Hydroxylase Enzymes in Rhodococcus rhodochrous DSM43269 for Specific Degradation of Different Classes of Steroids

    OpenAIRE

    Petrusma, Mirjan; Hessels, Gerda; Dijkhuizen, Lubbert; van der Geize, Robert

    2011-01-01

    The well-known large catabolic potential of rhodococci is greatly facilitated by an impressive gene multiplicity. This study reports on the multiplicity of kshA, encoding the oxygenase component of 3-ketosteroid 9 alpha-hydroxylase, a key enzyme in steroid catabolism. Five kshA homologues (kshA1 to kshA5) were previously identified in Rhodococcus rhodochrous DSM43269. These KshA(DSM43269) homologues are distributed over several phylogenetic groups. The involvement of these KshA homologues in ...

  10. Bioinformatics analysis and detection of gelatinase encoded gene in Lysinibacillussphaericus

    Science.gov (United States)

    Repin, Rul Aisyah Mat; Mutalib, Sahilah Abdul; Shahimi, Safiyyah; Khalid, Rozida Mohd.; Ayob, Mohd. Khan; Bakar, Mohd. Faizal Abu; Isa, Mohd Noor Mat

    2016-11-01

    In this study, we performed bioinformatics analysis toward genome sequence of Lysinibacillussphaericus (L. sphaericus) to determine gene encoded for gelatinase. L. sphaericus was isolated from soil and gelatinase species-specific bacterium to porcine and bovine gelatin. This bacterium offers the possibility of enzymes production which is specific to both species of meat, respectively. The main focus of this research is to identify the gelatinase encoded gene within the bacteria of L. Sphaericus using bioinformatics analysis of partially sequence genome. From the research study, three candidate gene were identified which was, gelatinase candidate gene 1 (P1), NODE_71_length_93919_cov_158.931839_21 which containing 1563 base pair (bp) in size with 520 amino acids sequence; Secondly, gelatinase candidate gene 2 (P2), NODE_23_length_52851_cov_190.061386_17 which containing 1776 bp in size with 591 amino acids sequence; and Thirdly, gelatinase candidate gene 3 (P3), NODE_106_length_32943_cov_169.147919_8 containing 1701 bp in size with 566 amino acids sequence. Three pairs of oligonucleotide primers were designed and namely as, F1, R1, F2, R2, F3 and R3 were targeted short sequences of cDNA by PCR. The amplicons were reliably results in 1563 bp in size for candidate gene P1 and 1701 bp in size for candidate gene P3. Therefore, the results of bioinformatics analysis of L. Sphaericus resulting in gene encoded gelatinase were identified.

  11. Emotional arousal and memory after deep encoding.

    Science.gov (United States)

    Leventon, Jacqueline S; Camacho, Gabriela L; Ramos Rojas, Maria D; Ruedas, Angelica

    2018-05-22

    Emotion often enhances long-term memory. One mechanism for this enhancement is heightened arousal during encoding. However, reducing arousal, via emotion regulation (ER) instructions, has not been associated with reduced memory. In fact, the opposite pattern has been observed: stronger memory for emotional stimuli encoded with an ER instruction to reduce arousal. This pattern may be due to deeper encoding required by ER instructions. In the current research, we examine the effects of emotional arousal and deep-encoding on memory across three studies. In Study 1, adult participants completed a writing task (deep-encoding) for encoding negative, neutral, and positive picture stimuli, whereby half the emotion stimuli had the ER instruction to reduce the emotion. Memory was strong across conditions, and no memory enhancement was observed for any condition. In Study 2, adult participants completed the same writing task as Study 1, as well as a shallow-encoding task for one-third of negative, neutral, and positive trials. Memory was strongest for deep vs. shallow encoding trials, with no effects of emotion or ER instruction. In Study 3, adult participants completed a shallow-encoding task for negative, neutral, and positive stimuli, with findings indicating enhanced memory for negative emotional stimuli. Findings suggest that deep encoding must be acknowledged as a source of memory enhancement when examining manipulations of emotion-related arousal. Copyright © 2018. Published by Elsevier B.V.

  12. Discovery of enzymes for toluene synthesis from anoxic microbial communities

    DEFF Research Database (Denmark)

    Beller, Harry R.; Rodrigues, Andria V.; Zargar, Kamrun

    2018-01-01

    Microbial toluene biosynthesis was reported in anoxic lake sediments more than three decades ago, but the enzyme catalyzing this biochemically challenging reaction has never been identified. Here we report the toluene-producing enzyme PhdB, a glycyl radical enzyme of bacterial origin that catalyzes...... phenylacetate decarboxylation, and its cognate activating enzyme PhdA, a radical S-adenosylmethionine enzyme, discovered in two distinct anoxic microbial communities that produce toluene. The unconventional process of enzyme discovery from a complex microbial community (>300,000 genes), rather than from...... a microbial isolate, involved metagenomics- and metaproteomics-enabled biochemistry, as well as in vitro confirmation of activity with recombinant enzymes. This work expands the known catalytic range of glycyl radical enzymes (only seven reaction types had been characterized previously) and aromatic...

  13. SnoVault and encodeD: A novel object-based storage system and applications to ENCODE metadata.

    Directory of Open Access Journals (Sweden)

    Benjamin C Hitz

    Full Text Available The Encyclopedia of DNA elements (ENCODE project is an ongoing collaborative effort to create a comprehensive catalog of functional elements initiated shortly after the completion of the Human Genome Project. The current database exceeds 6500 experiments across more than 450 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the H. sapiens and M. musculus genomes. All ENCODE experimental data, metadata, and associated computational analyses are submitted to the ENCODE Data Coordination Center (DCC for validation, tracking, storage, unified processing, and distribution to community resources and the scientific community. As the volume of data increases, the identification and organization of experimental details becomes increasingly intricate and demands careful curation. The ENCODE DCC has created a general purpose software system, known as SnoVault, that supports metadata and file submission, a database used for metadata storage, web pages for displaying the metadata and a robust API for querying the metadata. The software is fully open-source, code and installation instructions can be found at: http://github.com/ENCODE-DCC/snovault/ (for the generic database and http://github.com/ENCODE-DCC/encoded/ to store genomic data in the manner of ENCODE. The core database engine, SnoVault (which is completely independent of ENCODE, genomic data, or bioinformatic data has been released as a separate Python package.

  14. Parental involvement

    Directory of Open Access Journals (Sweden)

    Ezra S Simon

    2005-01-01

    Full Text Available Parent-Teacher Associations and other community groups can play a significant role in helping to establish and run refugee schools; their involvement can also help refugee adults adjust to their changed circumstances.

  15. Comparative differential gene expression analysis of nucleus-encoded proteins for Rafflesia cantleyi against Arabidopsis thaliana

    Science.gov (United States)

    Ng, Siuk-Mun; Lee, Xin-Wei; Wan, Kiew-Lian; Firdaus-Raih, Mohd

    2015-09-01

    Regulation of functional nucleus-encoded proteins targeting the plastidial functions was comparatively studied for a plant parasite, Rafflesia cantleyi versus a photosynthetic plant, Arabidopsis thaliana. This study involved two species of different feeding modes and different developmental stages. A total of 30 nucleus-encoded proteins were found to be differentially-regulated during two stages in the parasite; whereas 17 nucleus-encoded proteins were differentially-expressed during two developmental stages in Arabidopsis thaliana. One notable finding observed for the two plants was the identification of genes involved in the regulation of photosynthesis-related processes where these processes, as expected, seem to be present only in the autotroph.

  16. Enzymes and genes involved in the betalain biosynthesis in higher ...

    African Journals Online (AJOL)

    Betalains, a class of water-soluble nitrogen-containing pigments, replace anthocyanins and serve the analogous functions in 13 families of the order, caryophyllales. They modulate the attractive appearance of plants and protect them against destructive oxidative damage. Their antioxidant roles, radical scavenging ...

  17. Changes in photosynthesis and activities of enzymes involved in ...

    African Journals Online (AJOL)

    AJL

    2012-04-26

    Apr 26, 2012 ... oxygen and carbohydrates. In photosynthesis, a series of redox reactions occur in the electron transport system present in the chloroplast thylakoid membranes. Oxi- dation of water is catalyzed by photosystem II (PSII), a multi-subunit pigment protein complex located in the thylakoid membrane (Hillier and ...

  18. A review on degradation of hexachlorocyclohexane and involved enzymes

    International Nuclear Information System (INIS)

    Camacho-Perez, B.; Poggi-Varaldo, H. M.

    2009-01-01

    Lindane of γ-hexachloro-cyclohexane (γHCH) is a chlorinated insecticide widely used in developing countries, particularly in Mexico, in spite of its banning in first world countries. negative impacts of lindane on the environment and human health have been reported worldwide. (Author)

  19. Enzymes and Genes Involved in Aerobic Alkane Degradation

    Directory of Open Access Journals (Sweden)

    Zongze eShao

    2013-05-01

    Full Text Available Alkanes are major constituents of crude oil. They are also present at low concentrations in diverse non-contaminated because many living organisms produce them as chemo-attractants or as protecting agents against water loss. Alkane degradation is a widespread phenomenon in nature. The numerous microorganisms, both prokaryotic and eukaryotic, capable of utilizing alkanes as a carbon and energy source, have been isolated and characterized. This review summarizes the current knowledge of how bacteria metabolize alkanes aerobically, with a particular emphasis on the oxidation of long-chain alkanes, including factors that are responsible for chemotaxis to alkanes , transport across cell membrane of alkanes , the regulation of alkane degradation gene and initial oxidation.

  20. Characterization of Enzymes Involved in Fatty Acid Elongation

    Science.gov (United States)

    2007-04-11

    eukaryotes, such as MAELO (40% identity with yeast Elo2p) that elongates C16-C18 saturated and monounsaturated FAs in the filamentous fungus ...and n-6 FAs have been reported in patients suffering from hypertension [145]. Thus, several PUFA rich oil-producing organisms, including the fungus ...membrane proteome (30), a topological reporter cassette (Suc2p/His4C) was fused at the C-terminus of many membrane proteins, including Tsc13p. The

  1. Changes in photosynthesis and activities of enzymes involved in ...

    African Journals Online (AJOL)

    AJL

    2012-04-26

    Apr 26, 2012 ... were used to investigate the oxygen consumption rate of photosystem I, the oxygen evolution rate of photosystem II ... The growth and development of plants are directly related to its light ... chlorophyll, are the most abundant pigment proteins in ... 1997), and pea (CO2-free air, Harbinson and Foyer,. 1991).

  2. Indicators: Sediment Enzymes

    Science.gov (United States)

    Sediment enzymes are proteins that are produced by microorganisms living in the sediment or soil. They are indicators of key ecosystem processes and can help determine which nutrients are affecting the biological community of a waterbody.

  3. Enzyme Vs. Extremozyme -32 ...

    Indian Academy of Sciences (India)

    Enzymes are biocatalytic protein molecules that enhance the rates of ... to physical forces (hydrogen bonds, hydrophobic 1, electrostatic and Van der ... conformation. In 1995 ... surface against 14.7% in Klenow poll (some of the hydrophobic.

  4. NMDA receptors and memory encoding.

    Science.gov (United States)

    Morris, Richard G M

    2013-11-01

    It is humbling to think that 30 years have passed since the paper by Collingridge, Kehl and McLennan showing that one of Jeff Watkins most interesting compounds, R-2-amino-5-phosphonopentanoate (d-AP5), blocked the induction of long-term potentiation in vitro at synapses from area CA3 of the hippocampus to CA1 without apparent effect on baseline synaptic transmission (Collingridge et al., 1983). This dissociation was one of the key triggers for an explosion of interest in glutamate receptors, and much has been discovered since that collectively contributes to our contemporary understanding of glutamatergic synapses - their biophysics and subunit composition, of the agonists and antagonists acting on them, and their diverse functions in different networks of the brain and spinal cord. It can be fairly said that Collingridge et al.'s (1983) observation was the stimulus that has led, on the one hand, to structural biological work at the atomic scale describing the key features of NMDA receptors that enables their coincidence function to happen; and, on the other, to work with whole animals investigating the contributions that calcium signalling via this receptor can have on rhythmical activities controlled by spinal circuits, memory encoding in the hippocampus (the topic of this article), visual cortical plasticity, sensitization in pain, and other functions. In this article, I lay out how my then interest in long-term potentiation (LTP) as a model of memory enabled me to recognise the importance of Collingridge et al.'s discovery - and how I and my colleagues endeavoured to take things forward in the area of learning and memory. This is in some respects a personal story, and I tell it as such. The idea that NMDA receptor activation is essential for memory encoding, though not for storage, took time to develop and to be accepted. Along the way, there have been confusions, challenges, and surprises surrounding the idea that activation of NMDA receptors can

  5. Overproduction of ligninolytic enzymes

    Science.gov (United States)

    Elisashvili, Vladimir; Kachlishvili, Eva; Torok, Tamas

    2014-06-17

    Methods, compositions, and systems for overproducing ligninolytic enzymes from the basidiomycetous fungus are described herein. As described, the method can include incubating a fungal strain of Cerrena unicolor IBB 303 in a fermentation system having growth medium which includes lignocellulosic material and then cultivating the fungal strain in the fermentation system under conditions wherein the fungus expresses the ligninolytic enzymes. In some cases, the lignocellulosic material is mandarin peel, ethanol production residue, walnut pericarp, wheat bran, wheat straw, or banana peel.

  6. Measurement of enzyme activity.

    Science.gov (United States)

    Harris, T K; Keshwani, M M

    2009-01-01

    To study and understand the nature of living cells, scientists have continually employed traditional biochemical techniques aimed to fractionate and characterize a designated network of macromolecular components required to carry out a particular cellular function. At the most rudimentary level, cellular functions ultimately entail rapid chemical transformations that otherwise would not occur in the physiological environment of the cell. The term enzyme is used to singularly designate a macromolecular gene product that specifically and greatly enhances the rate of a chemical transformation. Purification and characterization of individual and collective groups of enzymes has been and will remain essential toward advancement of the molecular biological sciences; and developing and utilizing enzyme reaction assays is central to this mission. First, basic kinetic principles are described for understanding chemical reaction rates and the catalytic effects of enzymes on such rates. Then, a number of methods are described for measuring enzyme-catalyzed reaction rates, which mainly differ with regard to techniques used to detect and quantify concentration changes of given reactants or products. Finally, short commentary is given toward formulation of reaction mixtures used to measure enzyme activity. Whereas a comprehensive treatment of enzymatic reaction assays is not within the scope of this chapter, the very core principles that are presented should enable new researchers to better understand the logic and utility of any given enzymatic assay that becomes of interest.

  7. Encoder designed to work in harsh environments

    Energy Technology Data Exchange (ETDEWEB)

    Toop, L.

    2007-05-15

    Dynapar has developed the Acuro AX71 absolute encoder for use on offshore or land-based oil rig operations. It provides feedback on the operation of automated systems such as draw works, racking systems, rotary tables and top drives. By ensuring that automated systems function properly, this encoder responds to a need by the oil and gas industry to keep workers safe and improve efficiency, particularly for operations in rugged situations. The encoder provides feedback from motor systems to controllers, giving information about position and speed of downhole drill bits. This newly developed encoder is better than commonly used incremental encoders which are not precise in strong electrical noise environments. Rather, the absolute encoder uses a different method of reporting to the controller. A digital signal is transmitted constantly as the device operates. It is less susceptible to noise issues. It is highly accurate, tolerant of noise and is not affected by power outages. However, the absolute encoder is generally more delicate in drilling applications with high ambient temperatures and shock levels. Dynapar addressed this issue by developing compact stainless steel housing that is useful for corrosion resistance in marine applications. The AX71 absolute encoder can withstand up to 100 G of mechanical shock and ambient temperatures of up to 60 degrees C. The encoder is ATEX certified without barriers, and offers the high resolution feedback of 4,000 counts of multiturn rotation and 16,000 counts of position. 1 fig.

  8. Parametric fMRI analysis of visual encoding in the human medial temporal lobe.

    Science.gov (United States)

    Rombouts, S A; Scheltens, P; Machielson, W C; Barkhof, F; Hoogenraad, F G; Veltman, D J; Valk, J; Witter, M P

    1999-01-01

    A number of functional brain imaging studies indicate that the medial temporal lobe system is crucially involved in encoding new information into memory. However, most studies were based on differences in brain activity between encoding of familiar vs. novel stimuli. To further study the underlying cognitive processes, we applied a parametric design of encoding. Seven healthy subjects were instructed to encode complex color pictures into memory. Stimuli were presented in a parametric fashion at different rates, thus representing different loads of encoding. Functional magnetic resonance imaging (fMRI) was used to assess changes in brain activation. To determine the number of pictures successfully stored into memory, recognition scores were determined afterwards. During encoding, brain activation occurred in the medial temporal lobe, comparable to the results obtained by others. Increasing the encoding load resulted in an increase in the number of successfully stored items. This was reflected in a significant increase in brain activation in the left lingual gyrus, in the left and right parahippocampal gyrus, and in the right inferior frontal gyrus. This study shows that fMRI can detect changes in brain activation during variation of one aspect of higher cognitive tasks. Further, it strongly supports the notion that the human medial temporal lobe is involved in encoding novel visual information into memory.

  9. Arabinogalactan proteins: focus on carbohydrate active enzymes

    Directory of Open Access Journals (Sweden)

    Eva eKnoch

    2014-06-01

    Full Text Available Arabinogalactan proteins (AGPs are a highly diverse class of cell surface proteoglycans that are commonly found in most plant species. AGPs play important roles in many cellular processes during plant development, such as reproduction, cell proliferation, pattern formation and growth, and in plant-microbe interaction. However, little is known about the molecular mechanisms of their function. Numerous studies using monoclonal antibodies that recognize different AGP glycan epitopes have shown the appearance of a slightly altered AGP glycan in a specific stage of development in plant cells. Therefore, it is anticipated that the biosynthesis and degradation of AGP glycan is tightly regulated during development. Until recently, however, little was known about the enzymes involved in the metabolism of AGP glycans. In this review, we summarize recent discoveries of carbohydrate active enzymes (CAZy; http://www.cazy.org/ involved in the biosynthesis and degradation of AGP glycans, and we discuss the biological role of these enzymes in plant development.

  10. Gene cloning, expression, and characterization of a new carboxylesterase from Serratia sp. SES-01: comparison with Escherichia coli BioHe enzyme.

    Science.gov (United States)

    Kwon, Min-A; Kim, Hyun Suk; Oh, Joon Young; Song, Bong Keun; Song, Jae Kwang

    2009-02-01

    The carboxylesterase-encoding gene (bioHs) of a newly isolated strain, Serratia sp. SES-01, was cloned from the genomic DNA library by detecting formation of transparent halo around the colony on LB-tributyrin agar plates. The amino acid sequence of BioHs was highly similar to the members of the BioH enzyme family involved in the biotin biosynthetic pathway; it showed the highest similarity (91%) with that of Serratia proteamaculans. To compare BioHs with other BioH enzymes, the relatively well-known bioHe gene of E. coli was cloned with PCR. After we achieved high-level expression of soluble BioHs and BioHe through the exploration of different culture conditions, the purified BioHs and BioHe enzymes were characterized in terms of specificity, activity, and stability. BioHe was generally more robust to a change in temperature and pH and an addition of organic solvents than BioHs. The two enzymes exhibited a strong preference for carboxylesterase rather than for thioesterase and were optimal at relatively low temperatures (20-40 degrees ) and alkaline pHs (7.5-9.0). The results in this study strongly suggested that both the BioHs and BioHe enzymes would be potential candidates for use as a carboxylesterase in many industrial applications.

  11. Dynamical encoding of looming, receding, and focussing

    Science.gov (United States)

    Longtin, Andre; Clarke, Stephen Elisha; Maler, Leonard; CenterNeural Dynamics Collaboration

    This talk will discuss a non-conventional neural coding task that may apply more broadly to many senses in higher vertebrates. We ask whether and how a non-visual sensory system can focus on an object. We present recent experimental and modeling work that shows how the early sensory circuitry of electric sense can perform such neuronal focusing that is manifested behaviorally. This sense is the main one used by weakly electric fish to navigate, locate prey and communicate in the murky waters of their natural habitat. We show that there is a distance at which the Fisher information of a neuron's response to a looming and receding object is maximized, and that this distance corresponds to a behaviorally relevant one chosen by these animals. Strikingly, this maximum occurs at a bifurcation between tonic firing and bursting. We further discuss how the invariance of this distance to signal attributes can arise, a process that first involves power-law spike frequency adaptation. The talk will also highlight the importance of expanding the classic dual neural encoding of contrast using ON and OFF cells in the context of looming and receding stimuli. The authors acknowledge support from CIHR and NSERC.

  12. Protein engineering of enzymes for process applications

    DEFF Research Database (Denmark)

    Woodley, John M

    2013-01-01

    opportunities will be targeted on modification to enable process application. This article discusses the challenges involved in enzyme modification focused on process requirements, such as the need to fulfill reaction thermodynamics, specific activity under the required conditions, kinetics at required...... concentrations, and stability. Finally, future research directions are discussed, including the integration of biocatalysis with neighboring chemical steps....

  13. Furin is a chemokine-modifying enzyme

    DEFF Research Database (Denmark)

    Hensbergen, Paul J; Verzijl, Dennis; Balog, Crina I A

    2004-01-01

    Chemokines comprise a class of structurally related proteins that are involved in many aspects of leukocyte migration under basal and inflammatory conditions. In addition to the large number of genes, limited processing of these proteins by a variety of enzymes enhances the complexity of the tota...

  14. Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82.

    OpenAIRE

    Takizawa, N; Kaida, N; Torigoe, S; Moritani, T; Sawada, T; Satoh, S; Kiyohara, H

    1994-01-01

    Naphthalene and phenanthrene are transformed by enzymes encoded by the pah gene cluster of Pseudomonas putida OUS82. The pahA and pahB genes, which encode the first and second enzymes, dioxygenase and cis-dihydrodiol dehydrogenase, respectively, were identified and sequenced. The DNA sequences showed that pahA and pahB were clustered and that pahA consisted of four cistrons, pahAa, pahAb, pahAc, and pahAd, which encode ferredoxin reductase, ferredoxin, and two subunits of the iron-sulfur prot...

  15. Random-walk enzymes

    Science.gov (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  16. Assessment of respiratory involvement in children with ...

    African Journals Online (AJOL)

    Background: Mucopolysaccharidosis (MPS) are classified into seven clinical types based on eleven known lysosomal enzyme deficiencies of glycosaminoglycan (GAG) metabolism. Respiratory involvement seen in most MPS types includes recurrent respiratory infections, upper and lower airway obstruction, tracheomalacia ...

  17. Resistance to β-Lactams in Neisseria ssp Due to Chromosomally Encoded Penicillin-Binding Proteins.

    Science.gov (United States)

    Zapun, André; Morlot, Cécile; Taha, Muhamed-Kheir

    2016-09-28

    Neisseria meningitidis and Neisseria gonorrhoeae are human pathogens that cause a variety of life-threatening systemic and local infections, such as meningitis or gonorrhoea. The treatment of such infection is becoming more difficult due to antibiotic resistance. The focus of this review is on the mechanism of reduced susceptibility to penicillin and other β-lactams due to the modification of chromosomally encoded penicillin-binding proteins (PBP), in particular PBP2 encoded by the penA gene. The variety of penA alleles and resulting variant PBP2 enzymes is described and the important amino acid substitutions are presented and discussed in a structural context.

  18. The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry

    DEFF Research Database (Denmark)

    Rineau, Francois; Roth, Doris; Shah, Firoz

    2012-01-01

    chemistry similar to that of brown-rot fungi. The set of enzymes expressed by Pa. involutus during the degradation of the organic matter was similar to the set of enzymes involved in the oxidative degradation of wood by brown-rot fungi. However, Pa. involutus lacked transcripts encoding extracellular...... the mycorrhizal fungi. To capture the nitrogen, the fungi must at least partly disrupt the recalcitrant organic matterprotein complexes within which the nitrogen is embedded. This disruption process is poorly characterized. We used spectroscopic analyses and transcriptome profiling to examine the mechanism...... by which the ectomycorrhizal fungus Paxillus involutus degrades organic matter when acquiring nitrogen from plant litter. The fungus partially degraded polysaccharides and modified the structure of polyphenols. The observed chemical changes were consistent with a hydroxyl radical attack, involving Fenton...

  19. Impact of Bee Venom Enzymes on Diseases and Immune Responses.

    Science.gov (United States)

    Hossen, Md Sakib; Shapla, Ummay Mahfuza; Gan, Siew Hua; Khalil, Md Ibrahim

    2016-12-27

    Bee venom (BV) is used to treat many diseases and exhibits anti-inflammatory, anti-bacterial, antimutagenic, radioprotective, anti-nociceptive immunity promoting, hepatocyte protective and anti-cancer activity. According to the literature, BV contains several enzymes, including phospholipase A2 (PLA2), phospholipase B, hyaluronidase, acid phosphatase and α-glucosidase. Recent studies have also reported the detection of different classes of enzymes in BV, including esterases, proteases and peptidases, protease inhibitors and other important enzymes involved in carbohydrate metabolism. Nevertheless, the physiochemical properties and functions of each enzyme class and their mechanisms remain unclear. Various pharmacotherapeutic effects of some of the BV enzymes have been reported in several studies. At present, ongoing research aims to characterize each enzyme and elucidate their specific biological roles. This review gathers all the current knowledge on BV enzymes and their specific mechanisms in regulating various immune responses and physiological changes to provide a basis for future therapies for various diseases.

  20. Impact of Bee Venom Enzymes on Diseases and Immune Responses

    Directory of Open Access Journals (Sweden)

    Md. Sakib Hossen

    2016-12-01

    Full Text Available Bee venom (BV is used to treat many diseases and exhibits anti-inflammatory, anti-bacterial, antimutagenic, radioprotective, anti-nociceptive immunity promoting, hepatocyte protective and anti-cancer activity. According to the literature, BV contains several enzymes, including phospholipase A2 (PLA2, phospholipase B, hyaluronidase, acid phosphatase and α-glucosidase. Recent studies have also reported the detection of different classes of enzymes in BV, including esterases, proteases and peptidases, protease inhibitors and other important enzymes involved in carbohydrate metabolism. Nevertheless, the physiochemical properties and functions of each enzyme class and their mechanisms remain unclear. Various pharmacotherapeutic effects of some of the BV enzymes have been reported in several studies. At present, ongoing research aims to characterize each enzyme and elucidate their specific biological roles. This review gathers all the current knowledge on BV enzymes and their specific mechanisms in regulating various immune responses and physiological changes to provide a basis for future therapies for various diseases.

  1. Cellulose and hemicellulose-degrading enzymes in Fusarium commune transcriptome and functional characterization of three identified xylanases

    DEFF Research Database (Denmark)

    Yuhong, Huang; Busk, Peter Kamp; Lange, Lene

    2015-01-01

    in Fusarium commune. Prediction of the cellulose and hemicellulose-degrading enzymes in the F. commune transcriptome using peptide pattern recognition revealed 147 genes encoding glycoside hydrolases and six genes encoding lytic polysaccharide monooxygenases (AA9 and AA11), including all relevant cellulose...

  2. Hierarchically Nanoporous Bioactive Glasses for High Efficiency Immobilization of Enzymes

    DEFF Research Database (Denmark)

    He, W.; Min, D.D.; Zhang, X.D.

    2014-01-01

    Bioactive glasses with hierarchical nanoporosity and structures have been heavily involved in immobilization of enzymes. Because of meticulous design and ingenious hierarchical nanostructuration of porosities from yeast cell biotemplates, hierarchically nanostructured porous bioactive glasses can...... and products of catalytic reactions can freely diffuse through open mesopores (2–40 nm). The formation mechanism of hierarchically structured porous bioactive glasses, the immobilization mechanism of enzyme and the catalysis mechanism of immobilized enzyme are then discussed. The novel nanostructure...

  3. DEEPre: sequence-based enzyme EC number prediction by deep learning

    KAUST Repository

    Li, Yu

    2017-10-20

    Annotation of enzyme function has a broad range of applications, such as metagenomics, industrial biotechnology, and diagnosis of enzyme deficiency-caused diseases. However, the time and resource required make it prohibitively expensive to experimentally determine the function of every enzyme. Therefore, computational enzyme function prediction has become increasingly important. In this paper, we develop such an approach, determining the enzyme function by predicting the Enzyme Commission number.We propose an end-to-end feature selection and classification model training approach, as well as an automatic and robust feature dimensionality uniformization method, DEEPre, in the field of enzyme function prediction. Instead of extracting manuallycrafted features from enzyme sequences, our model takes the raw sequence encoding as inputs, extracting convolutional and sequential features from the raw encoding based on the classification result to directly improve the prediction performance. The thorough cross-fold validation experiments conducted on two large-scale datasets show that DEEPre improves the prediction performance over the previous state-of-the-art methods. In addition, our server outperforms five other servers in determining the main class of enzymes on a separate low-homology dataset. Two case studies demonstrate DEEPre\\'s ability to capture the functional difference of enzyme isoforms.The server could be accessed freely at http://www.cbrc.kaust.edu.sa/DEEPre.

  4. DEEPre: sequence-based enzyme EC number prediction by deep learning

    KAUST Repository

    Li, Yu; Wang, Sheng; Umarov, Ramzan; Xie, Bingqing; Fan, Ming; Li, Lihua; Gao, Xin

    2017-01-01

    Annotation of enzyme function has a broad range of applications, such as metagenomics, industrial biotechnology, and diagnosis of enzyme deficiency-caused diseases. However, the time and resource required make it prohibitively expensive to experimentally determine the function of every enzyme. Therefore, computational enzyme function prediction has become increasingly important. In this paper, we develop such an approach, determining the enzyme function by predicting the Enzyme Commission number.We propose an end-to-end feature selection and classification model training approach, as well as an automatic and robust feature dimensionality uniformization method, DEEPre, in the field of enzyme function prediction. Instead of extracting manuallycrafted features from enzyme sequences, our model takes the raw sequence encoding as inputs, extracting convolutional and sequential features from the raw encoding based on the classification result to directly improve the prediction performance. The thorough cross-fold validation experiments conducted on two large-scale datasets show that DEEPre improves the prediction performance over the previous state-of-the-art methods. In addition, our server outperforms five other servers in determining the main class of enzymes on a separate low-homology dataset. Two case studies demonstrate DEEPre's ability to capture the functional difference of enzyme isoforms.The server could be accessed freely at http://www.cbrc.kaust.edu.sa/DEEPre.

  5. Gene encoding gamma-carbonic anhydrase is cotranscribed with argC and induced in response to stationary phase and high CO2 in Azospirillum brasilense Sp7.

    Science.gov (United States)

    Kaur, Simarjot; Mishra, Mukti N; Tripathi, Anil K

    2010-07-04

    Carbonic anhydrase (CA) is a ubiquitous enzyme catalyzing the reversible hydration of CO2 to bicarbonate, a reaction underlying diverse biochemical and physiological processes. Gamma class carbonic anhydrases (gamma-CAs) are widespread in prokaryotes but their physiological roles remain elusive. At present, only gamma-CA of Methanosarcina thermophila (Cam) has been shown to have CA activity. Genome analysis of a rhizobacterium Azospirillum brasilense, revealed occurrence of ORFs encoding one beta-CA and two gamma-CAs. One of the putative gamma-CA encoding genes of A. brasilense was cloned and overexpressed in E. coli. Electrometric assays for CA activity of the whole cell extracts overexpressing recombinant GCA1 did not show CO2 hydration activity. Reverse transcription-PCR analysis indicated that gca1 in A. brasilense is co-transcribed with its upstream gene annotated as argC, which encodes a putative N-acetyl-gamma-glutamate-phosphate reductase. 5'-RACE also demonstrated that there was no transcription start site between argC and gca1, and the transcription start site located upstream of argC transcribed both the genes (argC-gca1). Using transcriptional fusions of argC-gca1 upstream region with promoterless lacZ, we further demonstrated that gca1 upstream region did not have any promoter and its transcription occurred from a promoter located in the argC upstream region. The transcription of argC-gca1 operon was upregulated in stationary phase and at elevated CO2 atmosphere. This study shows lack of CO2 hydration activity in a recombinant protein expressed from a gene predicted to encode a gamma-carbonic anhydrase in A. brasilense although it cross reacts with anti-Cam antibody raised against a well characterized gamma-CA. The organization and regulation of this gene along with the putative argC gene suggests its involvement in arginine biosynthetic pathway instead of the predicted CO2 hydration.

  6. The surface science of enzymes

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Nørskov, Jens Kehlet

    2002-01-01

    One of the largest challenges to science in the coming years is to find the relation between enzyme structure and function. Can we predict which reactions an enzyme catalyzes from knowledge of its structure-or from its amino acid sequence? Can we use that knowledge to modify enzyme function......? To solve these problems we must understand in some detail how enzymes interact with reactants from its surroundings. These interactions take place at the surface of the enzyme and the question of enzyme function can be viewed as the surface science of enzymes. In this article we discuss how to describe...... catalysis by enzymes, and in particular the analogies between enzyme catalyzed reactions and surface catalyzed reactions. We do this by discussing two concrete examples of reactions catalyzed both in nature (by enzymes) and in industrial reactors (by inorganic materials), and show that although analogies...

  7. Encoding of coordination complexes with XML.

    Science.gov (United States)

    Vinoth, P; Sankar, P

    2017-09-01

    An in-silico system to encode structure, bonding and properties of coordination complexes is developed. The encoding is achieved through a semantic XML markup frame. Composition of the coordination complexes is captured in terms of central atom and ligands. Structural information of central atom is detailed in terms of electron status of valence electron orbitals. The ligands are encoded with specific reference to the electron environment of ligand centre atoms. Behaviour of ligands to form low or high spin complexes is accomplished by assigning a Ligand Centre Value to every ligand based on the electronic environment of ligand centre atom. Chemical ontologies are used for categorization purpose and to control different hybridization schemes. Complexes formed by the central atoms of transition metal, non-transition elements belonging to s-block, p-block and f-block are encoded with a generic encoding platform. Complexes of homoleptic, heteroleptic and bridged types are also covered by this encoding system. Utility of the encoded system to predict redox electron transfer reaction in the coordination complexes is demonstrated with a simple application. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Magnetically responsive enzyme powders

    Czech Academy of Sciences Publication Activity Database

    Pospišková, K.; Šafařík, Ivo

    2015-01-01

    Roč. 380, APR 2015 (2015), s. 197-200 ISSN 0304-8853 R&D Projects: GA MŠk(CZ) LD13021 Institutional support: RVO:67179843 Keywords : enzyme powders * cross-linking * magnetic modification * magnetic separation * magnetic iron oxides particles * microwave-assisted synthesis Subject RIV: CE - Biochemistry Impact factor: 2.357, year: 2015

  9. Enzyme with rhamnogalacturonase activity.

    NARCIS (Netherlands)

    Kofod, L.V.; Andersen, L.N.; Dalboge, H.; Kauppinen, M.S.; Christgau, S.; Heldt-Hansen, H.P.; Christophersen, C.; Nielsen, P.M.; Voragen, A.G.J.; Schols, H.A.

    1998-01-01

    An enzyme exhibiting rhamnogalacturonase activity, capable of cleaving a rhamnogalacturonan backbone in such a manner that galacturonic acids are left as the non-reducing ends, and which exhibits activity on hairy regions from a soy bean material and/or on saponified hairy regions from a sugar beet

  10. Implantable enzyme amperometric biosensors.

    Science.gov (United States)

    Kotanen, Christian N; Moussy, Francis Gabriel; Carrara, Sandro; Guiseppi-Elie, Anthony

    2012-05-15

    The implantable enzyme amperometric biosensor continues as the dominant in vivo format for the detection, monitoring and reporting of biochemical analytes related to a wide range of pathologies. Widely used in animal studies, there is increasing emphasis on their use in diabetes care and management, the management of trauma-associated hemorrhage and in critical care monitoring by intensivists in the ICU. These frontier opportunities demand continuous indwelling performance for up to several years, well in excess of the currently approved seven days. This review outlines the many challenges to successful deployment of chronically implantable amperometric enzyme biosensors and emphasizes the emerging technological approaches in their continued development. The foreign body response plays a prominent role in implantable biotransducer failure. Topics considering the approaches to mitigate the inflammatory response, use of biomimetic chemistries, nanostructured topographies, drug eluting constructs, and tissue-to-device interface modulus matching are reviewed. Similarly, factors that influence biotransducer performance such as enzyme stability, substrate interference, mediator selection and calibration are reviewed. For the biosensor system, the opportunities and challenges of integration, guided by footprint requirements, the limitations of mixed signal electronics, and power requirements, has produced three systems approaches. The potential is great. However, integration along the multiple length scales needed to address fundamental issues and integration across the diverse disciplines needed to achieve success of these highly integrated systems, continues to be a challenge in the development and deployment of implantable amperometric enzyme biosensor systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Embedded enzymes catalyse capture

    Science.gov (United States)

    Kentish, Sandra

    2018-05-01

    Membrane technologies for carbon capture can offer economic and environmental advantages over conventional amine-based absorption, but can suffer from limited gas flux and selectivity to CO2. Now, a membrane based on enzymes embedded in hydrophilic pores is shown to exhibit combined flux and selectivity that challenges the state of the art.

  12. ISFET based enzyme sensors

    NARCIS (Netherlands)

    van der Schoot, Bart H.; Bergveld, Piet

    1987-01-01

    This paper reviews the results that have been reported on ISFET based enzyme sensors. The most important improvement that results from the application of ISFETs instead of glass membrane electrodes is in the method of fabrication. Problems with regard to the pH dependence of the response and the

  13. Cloning of Salmonella typhimurium DNA encoding mutagenic DNA repair

    International Nuclear Information System (INIS)

    Thomas, S.M.; Sedgwick, S.G.

    1989-01-01

    Mutagenic DNA repair in Escherichia coli is encoded by the umuDC operon. Salmonella typhimurium DNA which has homology with E. coli umuC and is able to complement E. coli umuC122::Tn5 and umuC36 mutations has been cloned. Complementation of umuD44 mutants and hybridization with E. coli umuD also occurred, but these activities were much weaker than with umuC. Restriction enzyme mapping indicated that the composition of the cloned fragment is different from the E. coli umuDC operon. Therefore, a umu-like function of S. typhimurium has been found; the phenotype of this function is weaker than that of its E. coli counterpart, which is consistent with the weak mutagenic response of S. typhimurium to UV compared with the response in E. coli

  14. Method of generating ploynucleotides encoding enhanced folding variants

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Andrew M.; Kiss, Csaba; Waldo, Geoffrey S.

    2017-05-02

    The invention provides directed evolution methods for improving the folding, solubility and stability (including thermostability) characteristics of polypeptides. In one aspect, the invention provides a method for generating folding and stability-enhanced variants of proteins, including but not limited to fluorescent proteins, chromophoric proteins and enzymes. In another aspect, the invention provides methods for generating thermostable variants of a target protein or polypeptide via an internal destabilization baiting strategy. Internally destabilization a protein of interest is achieved by inserting a heterologous, folding-destabilizing sequence (folding interference domain) within DNA encoding the protein of interest, evolving the protein sequences adjacent to the heterologous insertion to overcome the destabilization (using any number of mutagenesis methods), thereby creating a library of variants. The variants in the library are expressed, and those with enhanced folding characteristics selected.

  15. Perceptual priming versus explicit memory: dissociable neural correlates at encoding.

    Science.gov (United States)

    Schott, Björn; Richardson-Klavehn, Alan; Heinze, Hans-Jochen; Düzel, Emrah

    2002-05-15

    We addressed the hypothesis that perceptual priming and explicit memory have distinct neural correlates at encoding. Event-related potentials (ERPs) were recorded while participants studied visually presented words at deep versus shallow levels of processing (LOPs). The ERPs were sorted by whether or not participants later used studied words as completions to three-letter word stems in an intentional memory test, and by whether or not they indicated that these completions were remembered from the study list. Study trials from which words were later used and not remembered (primed trials) and study trials from which words were later used and remembered (remembered trials) were compared to study trials from which words were later not used (forgotten trials), in order to measure the ERP difference associated with later memory (DM effect). Primed trials involved an early (200-450 msec) centroparietal negative-going DM effect. Remembered trials involved a late (900-1200 msec) right frontal, positive-going DM effect regardless of LOP, as well as an earlier (600-800 msec) central, positive-going DM effect during shallow study processing only. All three DM effects differed topographically, and, in terms of their onset or duration, from the extended (600-1200 msec) fronto-central, positive-going shift for deep compared with shallow study processing. The results provide the first clear evidence that perceptual priming and explicit memory have distinct neural correlates at encoding, consistent with Tulving and Schacter's (1990) distinction between brain systems concerned with perceptual representation versus semantic and episodic memory. They also shed additional light on encoding processes associated with later explicit memory, by suggesting that brain processes influenced by LOP set the stage for other, at least partially separable, brain processes that are more directly related to encoding success.

  16. Encoding entanglement-assisted quantum stabilizer codes

    International Nuclear Information System (INIS)

    Wang Yun-Jiang; Bai Bao-Ming; Li Zhuo; Xiao He-Ling; Peng Jin-Ye

    2012-01-01

    We address the problem of encoding entanglement-assisted (EA) quantum error-correcting codes (QECCs) and of the corresponding complexity. We present an iterative algorithm from which a quantum circuit composed of CNOT, H, and S gates can be derived directly with complexity O(n 2 ) to encode the qubits being sent. Moreover, we derive the number of each gate consumed in our algorithm according to which we can design EA QECCs with low encoding complexity. Another advantage brought by our algorithm is the easiness and efficiency of programming on classical computers. (general)

  17. The Enzyme Function Initiative†

    Science.gov (United States)

    Gerlt, John A.; Allen, Karen N.; Almo, Steven C.; Armstrong, Richard N.; Babbitt, Patricia C.; Cronan, John E.; Dunaway-Mariano, Debra; Imker, Heidi J.; Jacobson, Matthew P.; Minor, Wladek; Poulter, C. Dale; Raushel, Frank M.; Sali, Andrej; Shoichet, Brian K.; Sweedler, Jonathan V.

    2011-01-01

    The Enzyme Function Initiative (EFI) was recently established to address the challenge of assigning reliable functions to enzymes discovered in bacterial genome projects; in this Current Topic we review the structure and operations of the EFI. The EFI includes the Superfamily/Genome, Protein, Structure, Computation, and Data/Dissemination Cores that provide the infrastructure for reliably predicting the in vitro functions of unknown enzymes. The initial targets for functional assignment are selected from five functionally diverse superfamilies (amidohydrolase, enolase, glutathione transferase, haloalkanoic acid dehalogenase, and isoprenoid synthase), with five superfamily-specific Bridging Projects experimentally testing the predicted in vitro enzymatic activities. The EFI also includes the Microbiology Core that evaluates the in vivo context of in vitro enzymatic functions and confirms the functional predictions of the EFI. The deliverables of the EFI to the scientific community include: 1) development of a large-scale, multidisciplinary sequence/structure-based strategy for functional assignment of unknown enzymes discovered in genome projects (target selection, protein production, structure determination, computation, experimental enzymology, microbiology, and structure-based annotation); 2) dissemination of the strategy to the community via publications, collaborations, workshops, and symposia; 3) computational and bioinformatic tools for using the strategy; 4) provision of experimental protocols and/or reagents for enzyme production and characterization; and 5) dissemination of data via the EFI’s website, enzymefunction.org. The realization of multidisciplinary strategies for functional assignment will begin to define the full metabolic diversity that exists in nature and will impact basic biochemical and evolutionary understanding, as well as a wide range of applications of central importance to industrial, medicinal and pharmaceutical efforts. PMID

  18. The Enzyme Function Initiative.

    Science.gov (United States)

    Gerlt, John A; Allen, Karen N; Almo, Steven C; Armstrong, Richard N; Babbitt, Patricia C; Cronan, John E; Dunaway-Mariano, Debra; Imker, Heidi J; Jacobson, Matthew P; Minor, Wladek; Poulter, C Dale; Raushel, Frank M; Sali, Andrej; Shoichet, Brian K; Sweedler, Jonathan V

    2011-11-22

    The Enzyme Function Initiative (EFI) was recently established to address the challenge of assigning reliable functions to enzymes discovered in bacterial genome projects; in this Current Topic, we review the structure and operations of the EFI. The EFI includes the Superfamily/Genome, Protein, Structure, Computation, and Data/Dissemination Cores that provide the infrastructure for reliably predicting the in vitro functions of unknown enzymes. The initial targets for functional assignment are selected from five functionally diverse superfamilies (amidohydrolase, enolase, glutathione transferase, haloalkanoic acid dehalogenase, and isoprenoid synthase), with five superfamily specific Bridging Projects experimentally testing the predicted in vitro enzymatic activities. The EFI also includes the Microbiology Core that evaluates the in vivo context of in vitro enzymatic functions and confirms the functional predictions of the EFI. The deliverables of the EFI to the scientific community include (1) development of a large-scale, multidisciplinary sequence/structure-based strategy for functional assignment of unknown enzymes discovered in genome projects (target selection, protein production, structure determination, computation, experimental enzymology, microbiology, and structure-based annotation), (2) dissemination of the strategy to the community via publications, collaborations, workshops, and symposia, (3) computational and bioinformatic tools for using the strategy, (4) provision of experimental protocols and/or reagents for enzyme production and characterization, and (5) dissemination of data via the EFI's Website, http://enzymefunction.org. The realization of multidisciplinary strategies for functional assignment will begin to define the full metabolic diversity that exists in nature and will impact basic biochemical and evolutionary understanding, as well as a wide range of applications of central importance to industrial, medicinal, and pharmaceutical efforts.

  19. Determining the Neural Substrate for Encoding a Memory of Human Pain and the Influence of Anxiety.

    Science.gov (United States)

    Tseng, Ming-Tsung; Kong, Yazhuo; Eippert, Falk; Tracey, Irene

    2017-12-06

    To convert a painful stimulus into a briefly maintainable construct when the painful stimulus is no longer accessible is essential to guide human behavior and avoid dangerous situations. Because of the aversive nature of pain, this encoding process might be influenced by emotional aspects and could thus vary across individuals, but we have yet to understand both the basic underlying neural mechanisms as well as potential interindividual differences. Using fMRI in combination with a delayed-discrimination task in healthy volunteers of both sexes, we discovered that brain regions involved in this working memory encoding process were dissociable according to whether the to-be-remembered stimulus was painful or not, with the medial thalamus and the rostral anterior cingulate cortex encoding painful and the primary somatosensory cortex encoding nonpainful stimuli. Encoding of painful stimuli furthermore significantly enhanced functional connectivity between the thalamus and medial prefrontal cortex (mPFC). With regards to emotional aspects influencing encoding processes, we observed that more anxious participants showed significant performance advantages when encoding painful stimuli. Importantly, only during the encoding of pain, the interindividual differences in anxiety were associated with the strength of coupling between medial thalamus and mPFC, which was furthermore related to activity in the amygdala. These results indicate not only that there is a distinct signature for the encoding of a painful experience in humans, but also that this encoding process involves a strong affective component. SIGNIFICANCE STATEMENT To convert the sensation of pain into a briefly maintainable construct is essential to guide human behavior and avoid dangerous situations. Although this working memory encoding process is implicitly contained in the majority of studies, the underlying neural mechanisms remain unclear. Using fMRI in a delayed-discrimination task, we found that the

  20. Primordial-like enzymes from bacteria with reduced genomes.

    Science.gov (United States)

    Ferla, Matteo P; Brewster, Jodi L; Hall, Kelsi R; Evans, Gary B; Patrick, Wayne M

    2017-08-01

    The first cells probably possessed rudimentary metabolic networks, built using a handful of multifunctional enzymes. The promiscuous activities of modern enzymes are often assumed to be relics of this primordial era; however, by definition these activities are no longer physiological. There are many fewer examples of enzymes using a single active site to catalyze multiple physiologically-relevant reactions. Previously, we characterized the promiscuous alanine racemase (ALR) activity of Escherichia coli cystathionine β-lyase (CBL). Now we have discovered that several bacteria with reduced genomes lack alr, but contain metC (encoding CBL). We characterized the CBL enzymes from three of these: Pelagibacter ubique, the Wolbachia endosymbiont of Drosophila melanogaster (wMel) and Thermotoga maritima. Each is a multifunctional CBL/ALR. However, we also show that CBL activity is no longer required in these bacteria. Instead, the wMel and T. maritima enzymes are physiologically bi-functional alanine/glutamate racemases. They are not highly active, but they are clearly sufficient. Given the abundance of the microorganisms using them, we suggest that much of the planet's biochemistry is carried out by enzymes that are quite different from the highly-active exemplars usually found in textbooks. Instead, primordial-like enzymes may be an essential part of the adaptive strategy associated with streamlining. © 2017 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.

  1. The effects of age on the neural correlates of episodic encoding.

    Science.gov (United States)

    Grady, C L; McIntosh, A R; Rajah, M N; Beig, S; Craik, F I

    1999-12-01

    Young and old adults underwent positron emission tomographic scans while encoding pictures of objects and words using three encoding strategies: deep processing (a semantic living/nonliving judgement), shallow processing (size judgement) and intentional learning. Picture memory exceeded word memory in both young and old groups, and there was an age-related decrement only in word recognition. During the encoding tasks three brain activity patterns were found that differentiated stimulus type and the different encoding strategies. The stimulus-specific pattern was characterized by greater activity in extrastriate and medial temporal cortices during picture encoding, and greater activity in left prefrontal and temporal cortices during encoding of words. The older adults showed this pattern to a significantly lesser degree. A pattern distinguishing deep processing from intentional learning of words and pictures was identified, characterized mainly by differences in prefrontal cortex, and this pattern also was of significantly lesser magnitude in the old group. A final pattern identified areas with increased activity during deep processing and intentional learning of pictures, including left prefrontal and bilateral medial temporal regions. There was no group difference in this pattern. These results indicate age-related dysfunction in several encoding networks, with sparing of one specifically involved in more elaborate encoding of pictures. These age-related changes appear to affect verbal memory more than picture memory.

  2. Left temporal and temporoparietal brain activity depends on depth of word encoding: a magnetoencephalographic study in healthy young subjects.

    Science.gov (United States)

    Walla, P; Hufnagl, B; Lindinger, G; Imhof, H; Deecke, L; Lang, W

    2001-03-01

    Using a 143-channel whole-head magnetoencephalograph (MEG) we recorded the temporal changes of brain activity from 26 healthy young subjects (14 females) related to shallow perceptual and deep semantic word encoding. During subsequent recognition tests, the subjects had to recognize the previously encoded words which were interspersed with new words. The resulting mean memory performances across all subjects clearly mirrored the different levels of encoding. The grand averaged event-related fields (ERFs) associated with perceptual and semantic word encoding differed significantly between 200 and 550 ms after stimulus onset mainly over left superior temporal and left superior parietal sensors. Semantic encoding elicited higher brain activity than perceptual encoding. Source localization procedures revealed that neural populations of the left temporal and temporoparietal brain areas showed different activity strengths across the whole group of subjects depending on depth of word encoding. We suggest that the higher brain activity associated with deep encoding as compared to shallow encoding was due to the involvement of more neural systems during the processing of visually presented words. Deep encoding required more energy than shallow encoding but for all that led to a better memory performance. Copyright 2001 Academic Press.

  3. Chemical Space of DNA-Encoded Libraries.

    Science.gov (United States)

    Franzini, Raphael M; Randolph, Cassie

    2016-07-28

    In recent years, DNA-encoded chemical libraries (DECLs) have attracted considerable attention as a potential discovery tool in drug development. Screening encoded libraries may offer advantages over conventional hit discovery approaches and has the potential to complement such methods in pharmaceutical research. As a result of the increased application of encoded libraries in drug discovery, a growing number of hit compounds are emerging in scientific literature. In this review we evaluate reported encoded library-derived structures and identify general trends of these compounds in relation to library design parameters. We in particular emphasize the combinatorial nature of these libraries. Generally, the reported molecules demonstrate the ability of this technology to afford hits suitable for further lead development, and on the basis of them, we derive guidelines for DECL design.

  4. Encoding information using laguerre gaussian modes

    CSIR Research Space (South Africa)

    Trichili, A

    2015-08-01

    Full Text Available The authors experimentally demonstrate an information encoding protocol using the two degrees of freedom of Laguerre Gaussian modes having different radial and azimuthal components. A novel method, based on digital holography, for information...

  5. Molecular mechanisms for protein-encoded inheritance

    Science.gov (United States)

    Wiltzius, Jed J. W.; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R.; Apostol, Marcin I.; Goldschmidt, Lukasz; Soriaga, Angela B.; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David

    2013-01-01

    Strains are phenotypic variants, encoded by nucleic acid sequences in chromosomal inheritance and by protein “conformations” in prion inheritance and transmission. But how is a protein “conformation” stable enough to endure transmission between cells or organisms? Here new polymorphic crystal structures of segments of prion and other amyloid proteins offer structural mechanisms for prion strains. In packing polymorphism, prion strains are encoded by alternative packings (polymorphs) of β-sheets formed by the same segment of a protein; in a second mechanism, segmental polymorphism, prion strains are encoded by distinct β-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring “conformations,” capable of encoding strains. These molecular mechanisms for transfer of information into prion strains share features with the familiar mechanism for transfer of information by nucleic acid inheritance, including sequence specificity and recognition by non-covalent bonds. PMID:19684598

  6. Activation of Pseudomonas aeruginosa elastase in Pseudomonas putida by triggering dissociation of the propeptide-enzyme complex

    NARCIS (Netherlands)

    Braun, P; Bitter, W; Tommassen, J

    2000-01-01

    The propeptide of Pseudomonas aeruginosa elastase functions both as an intramolecular chaperone required for the folding of the enzyme and as an inhibitor that prevents activity of the enzyme before its secretion into the extracellular medium. Since expression of the lasB gene, which encodes

  7. Recent advances in rational approaches for enzyme engineering

    Directory of Open Access Journals (Sweden)

    Kerstin Steiner

    2012-09-01

    Full Text Available Enzymes are an attractive alternative in the asymmetric syntheses of chiral building blocks. To meet the requirements of industrial biotechnology and to introduce new functionalities, the enzymes need to be optimized by protein engineering. This article specifically reviews rational approaches for enzyme engineering and de novo enzyme design involving structure-based approaches developed in recent years for improvement of the enzymes’ performance, broadened substrate range, and creation of novel functionalities to obtain products with high added value for industrial applications.

  8. Quantum Logical Operations on Encoded Qubits

    International Nuclear Information System (INIS)

    Zurek, W.H.; Laflamme, R.

    1996-01-01

    We show how to carry out quantum logical operations (controlled-not and Toffoli gates) on encoded qubits for several encodings which protect against various 1-bit errors. This improves the reliability of these operations by allowing one to correct for 1-bit errors which either preexisted or occurred in the course of operation. The logical operations we consider allow one to carry out the vast majority of the steps in the quantum factoring algorithm. copyright 1996 The American Physical Society

  9. Using XML to encode TMA DES metadata

    Directory of Open Access Journals (Sweden)

    Oliver Lyttleton

    2011-01-01

    Full Text Available Background: The Tissue Microarray Data Exchange Specification (TMA DES is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not. Materials and Methods: We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF. Results: We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service. Conclusions: All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs.

  10. Using XML to encode TMA DES metadata.

    Science.gov (United States)

    Lyttleton, Oliver; Wright, Alexander; Treanor, Darren; Lewis, Paul

    2011-01-01

    The Tissue Microarray Data Exchange Specification (TMA DES) is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not. We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF. We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service. All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs.

  11. Using XML to encode TMA DES metadata

    Science.gov (United States)

    Lyttleton, Oliver; Wright, Alexander; Treanor, Darren; Lewis, Paul

    2011-01-01

    Background: The Tissue Microarray Data Exchange Specification (TMA DES) is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not. Materials and Methods: We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF. Results: We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service. Conclusions: All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs. PMID:21969921

  12. An ethanolic extract of Artemisia dracunculus L. regulates gene expression of ubiquitin-proteasome system enzymes in skeletal muscle: potential role in the treatment of sarcopenic obesity.

    Science.gov (United States)

    Kirk-Ballard, Heather; Kilroy, Gail; Day, Britton C; Wang, Zhong Q; Ribnicky, David M; Cefalu, William T; Floyd, Z Elizabeth

    2014-01-01

    Obesity is linked to insulin resistance, a primary component of metabolic syndrome and type 2 diabetes. The problem of obesity-related insulin resistance is compounded when age-related skeletal muscle loss, called sarcopenia, occurs with obesity. Skeletal muscle loss results from elevated levels of protein degradation and prevention of obesity-related sarcopenic muscle loss will depend on strategies that target pathways involved in protein degradation. An extract from Artemisia dracunculus, termed PMI 5011, improves insulin signaling and increases skeletal muscle myofiber size in a rodent model of obesity-related insulin resistance. The aim of this study was to examine the effect of PMI 5011 on the ubiquitin-proteasome system, a central regulator of muscle protein degradation. Gastrocnemius and vastus lateralis skeletal muscle was obtained from KK-A(y) obese diabetic mice fed a control or 1% (w/w) PMI 5011-supplemented diet. Regulation of genes encoding enzymes of the ubiquitin-proteasome system was determined using real-time quantitative reverse transcriptase polymerase chain reaction. Although MuRF-1 ubiquitin ligase gene expression is consistently down-regulated in skeletal muscle, atrogin-1, Fbxo40, and Traf6 expression is differentially regulated by PMI 5011. Genes encoding other enzymes of the ubiquitin-proteasome system ranging from ubiquitin to ubiquitin-specific proteases are also regulated by PMI 5011. Additionally, expression of the gene encoding the microtubule-associated protein-1 light chain 3 (LC3), a ubiquitin-like protein pivotal to autophagy-mediated protein degradation, is down-regulated by PMI 5011 in the vastus lateralis. PMI 5011 alters the gene expression of ubiquitin-proteasome system enzymes that are essential regulators of skeletal muscle mass. This suggests that PMI 5011 has therapeutic potential in the treatment of obesity-linked sarcopenia by regulating ubiquitin-proteasome-mediated protein degradation. Copyright © 2014 Elsevier Inc

  13. The hexanoyl-CoA precursor for cannabinoid biosynthesis is formed by an acyl-activating enzyme in Cannabis sativa trichomes.

    Science.gov (United States)

    Stout, Jake M; Boubakir, Zakia; Ambrose, Stephen J; Purves, Randy W; Page, Jonathan E

    2012-08-01

    The psychoactive and analgesic cannabinoids (e.g. Δ(9) -tetrahydrocannabinol (THC)) in Cannabis sativa are formed from the short-chain fatty acyl-coenzyme A (CoA) precursor hexanoyl-CoA. Cannabinoids are synthesized in glandular trichomes present mainly on female flowers. We quantified hexanoyl-CoA using LC-MS/MS and found levels of 15.5 pmol g(-1) fresh weight in female hemp flowers with lower amounts in leaves, stems and roots. This pattern parallels the accumulation of the end-product cannabinoid, cannabidiolic acid (CBDA). To search for the acyl-activating enzyme (AAE) that synthesizes hexanoyl-CoA from hexanoate, we analyzed the transcriptome of isolated glandular trichomes. We identified 11 unigenes that encoded putative AAEs including CsAAE1, which shows high transcript abundance in glandular trichomes. In vitro assays showed that recombinant CsAAE1 activates hexanoate and other short- and medium-chained fatty acids. This activity and the trichome-specific expression of CsAAE1 suggest that it is the hexanoyl-CoA synthetase that supplies the cannabinoid pathway. CsAAE3 encodes a peroxisomal enzyme that activates a variety of fatty acid substrates including hexanoate. Although phylogenetic analysis showed that CsAAE1 groups with peroxisomal AAEs, it lacked a peroxisome targeting sequence 1 (PTS1) and localized to the cytoplasm. We suggest that CsAAE1 may have been recruited to the cannabinoid pathway through the loss of its PTS1, thereby redirecting it to the cytoplasm. To probe the origin of hexanoate, we analyzed the trichome expressed sequence tag (EST) dataset for enzymes of fatty acid metabolism. The high abundance of transcripts that encode desaturases and a lipoxygenase suggests that hexanoate may be formed through a pathway that involves the oxygenation and breakdown of unsaturated fatty acids. © 2012 National Research Council of Canada. The Plant Journal © 2012 Blackwell Publishing Ltd.

  14. Metagenomic insights into the carbohydrate-active enzymes carried by the microorganisms adhering to solid digesta in the rumen of cows.

    Directory of Open Access Journals (Sweden)

    Lingling Wang

    Full Text Available The ruminal microbial community is a unique source of enzymes that underpin the conversion of cellulosic biomass. In this study, the microbial consortia adherent on solid digesta in the rumen of Jersey cattle were subjected to an activity-based metagenomic study to explore the genetic diversity of carbohydrolytic enzymes in Jersey cows, with a particular focus on cellulases and xylanases. Pyrosequencing and bioinformatic analyses of 120 carbohydrate-active fosmids identified genes encoding 575 putative Carbohydrate-Active Enzymes (CAZymes and proteins putatively related to transcriptional regulation, transporters, and signal transduction coupled with polysaccharide degradation and metabolism. Most of these genes shared little similarity to sequences archived in databases. Genes that were predicted to encode glycoside hydrolases (GH involved in xylan and cellulose hydrolysis (e.g., GH3, 5, 9, 10, 39 and 43 were well represented. A new subfamily (S-8 of GH5 was identified from contigs assigned to Firmicutes. These subfamilies of GH5 proteins also showed significant phylum-dependent distribution. A number of polysaccharide utilization loci (PULs were found, and two of them contained genes encoding Sus-like proteins and cellulases that have not been reported in previous metagenomic studies of samples from the rumens of cows or other herbivores. Comparison with the large metagenomic datasets previously reported of other ruminant species (or cattle breeds and wallabies showed that the rumen microbiome of Jersey cows might contain differing CAZymes. Future studies are needed to further explore how host genetics and diets affect the diversity and distribution of CAZymes and utilization of plant cell wall materials.

  15. Methods for the Isolation of Genes Encoding Novel PHA Metabolism Enzymes from Complex Microbial Communities.

    Science.gov (United States)

    Cheng, Jiujun; Nordeste, Ricardo; Trainer, Maria A; Charles, Trevor C

    2017-01-01

    Development of different PHAs as alternatives to petrochemically derived plastics can be facilitated by mining metagenomic libraries for diverse PHA cycle genes that might be useful for synthesis of bio-plastics. The specific phenotypes associated with mutations of the PHA synthesis pathway genes in Sinorhizobium meliloti and Pseudomonas putida, allows the use of powerful selection and screening tools to identify complementing novel PHA synthesis genes. Identification of novel genes through their function rather than sequence facilitates the functional proteins that may otherwise have been excluded through sequence-only screening methodology. We present here methods that we have developed for the isolation of clones expressing novel PHA metabolism genes from metagenomic libraries.

  16. Methods for the isolation of genes encoding novel PHB cycle enzymes from complex microbial communities.

    Science.gov (United States)

    Nordeste, Ricardo F; Trainer, Maria A; Charles, Trevor C

    2010-01-01

    Development of different PHAs as alternatives to petrochemically derived plastics can be facilitated by mining metagenomic libraries for diverse PHA cycle genes that might be useful for synthesis of bioplastics. The specific phenotypes associated with mutations of the PHA synthesis pathway genes in Sinorhizobium meliloti allows for the use of powerful selection and screening tools to identify complementing novel PHA synthesis genes. Identification of novel genes through their function rather than sequence facilitates finding functional proteins that may otherwise have been excluded through sequence-only screening methodology. We present here methods that we have developed for the isolation of clones expressing novel PHA metabolism genes from metagenomic libraries.

  17. Isolation and characterization of the gene encoding the starch debranching enzyme limit dextrinase from germinating barley

    DEFF Research Database (Denmark)

    Kristensen, Michael; Lok, Finn; Planchot, Véronique

    1999-01-01

    supports the multidomain architecture and identifies both secondary structure elements of the catalytic (Pla)a-barrel substrate, catalytic residues, and specificity associated motifs characteristic of members of the glycoside hydrolase family 13 which cleave alpha-1.6-glucosidic bonds. A remarkable...

  18. Immunological response and protection of mice immunized with plasmid encoding Toxoplasma gondii glycolytic enzyme malate dehydrogenase.

    Science.gov (United States)

    Hassan, I A; Wang, S; Xu, L; Yan, R; Song, X; XiangRui, L

    2014-12-01

    Toxoplasma gondii Malate dehydrogenase (TgMDH) plays an important role as part of the energy production cycle. In this investigation, immunological changes and protection efficiency of this protein delivered as a DNA vaccine have been evaluated. Mice were intramuscularly immunized with pTgMDH, followed by challenge with virulent T. gondii RH strain, 2 weeks after the booster immunization. Compared to the control groups, the results showed that pTgMDH has stimulated specific humoral response as demonstrated by significant high titers of total IgG and subclasses IgG1 and IgG2a , beside IgA and IgM, but not IgE. Analysis of cytokine profiles revealed significant increases of IFN-γ, IL-4 and IL-17, while no significant changes were detected in TGF-β1. In cell-mediated response, both T lymphocytes subpopulations CD4(+) and CD8(+) were positively recruited as significant percentages were recorded in response to immunization with TgMDH. Significant long survival rate, 17 days, has been observed in the TgMDH vaccinated group, in contrast with control groups which died within 8-9 days after challenge. These results demonstrated that TgMDH could induce significant immunological responses leading to a considerable level of protection against acute toxoplasmosis infection. © 2014 John Wiley & Sons Ltd.

  19. Involving women.

    Science.gov (United States)

    Agbo, J

    1994-01-01

    I am a primary health care (PHC) coordinator working with the May Day Rural project, a local NGO involved in integrated approaches and programs with rural communities in the Ga District of the Greater-Accra region in Ghana. When we talk about the community development approach we must first and foremost recognize that we are talking about women, because in the developing world frequent childbirths mean that her burden of mortality is higher than a man's; her workload is extremely heavy--whether in gardening, farming, other household duties, caring for the sick, or the rearing of children; she has a key role in PHC and community development, because men are always looking for greener pastures elsewhere, leaving the women behind. Women's concerns are critical in most health care projects and women and children are their main beneficiaries. Why not include women in the management team, project design, implementation and evaluation processes? That is what the May Day Rural project is practicing, encouraging women's participation and creating a relationship of trust. full text

  20. Cloning and expression of DNA encoding a ripening form of a polypeptide having rhamno-galacturonase activity.

    NARCIS (Netherlands)

    Musters, W.; Stam, H.; Suykerbuyk, M.E.; Visser, J.; Verbakel, J.M.

    1993-01-01

    The invention relates to isolation of an Aspergillus gene encoding rhamnogalacturonase (RG-ase) and the construction of recombinant Aspergillus strains with overexpression of RG-ase. These strains can be used for the commercial production of RG-ase. RG-ase is an important enzyme in processes

  1. Functional Characterization of Proanthocyanidin Pathway Enzymes from Tea and Their Application for Metabolic Engineering1[W][OA

    Science.gov (United States)

    Pang, Yongzhen; Abeysinghe, I. Sarath B.; He, Ji; He, Xianzhi; Huhman, David; Mewan, K. Mudith; Sumner, Lloyd W.; Yun, Jianfei; Dixon, Richard A.

    2013-01-01

    Tea (Camellia sinensis) is rich in specialized metabolites, especially polyphenolic proanthocyanidins (PAs) and their precursors. To better understand the PA pathway in tea, we generated a complementary DNA library from leaf tissue of the blister blight-resistant tea cultivar TRI2043 and functionally characterized key enzymes responsible for the biosynthesis of PA precursors. Structural genes encoding enzymes involved in the general phenylpropanoid/flavonoid pathway and the PA-specific branch pathway were well represented in the library. Recombinant tea leucoanthocyanidin reductase (CsLAR) expressed in Escherichia coli was active with leucocyanidin as substrate to produce the 2R,3S-trans-flavan-ol (+)-catechin in vitro. Two genes encoding anthocyanidin reductase, CsANR1 and CsANR2, were also expressed in E. coli, and the recombinant proteins exhibited similar kinetic properties. Both converted cyanidin to a mixture of (+)-epicatechin and (−)-catechin, although in different proportions, indicating that both enzymes possess epimerase activity. These epimers were unexpected based on the belief that tea PAs are made from (−)-epicatechin and (+)-catechin. Ectopic expression of CsANR2 or CsLAR led to the accumulation of low levels of PA precursors and their conjugates in Medicago truncatula hairy roots and anthocyanin-overproducing tobacco (Nicotiana tabacum), but levels of oligomeric PAs were very low. Surprisingly, the expression of CsLAR in tobacco overproducing anthocyanin led to the accumulation of higher levels of epicatechin and its glucoside than of catechin, again highlighting the potential importance of epimerization in flavan-3-ol biosynthesis. These data provide a resource for understanding tea PA biosynthesis and tools for the bioengineering of flavanols. PMID:23288883

  2. Structural and Biochemical Characterization of Xylella fastidiosa DsbA Family Members: New insightsinto the Enzyme-Substrate Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldi, F.; Meza, A; Gulmarges, B

    2009-01-01

    Disulfide oxidoreductase DsbA catalyzes disulfide bond formation in proteins secreted to the periplasm and has been related to the folding process of virulence factors in many organisms. It is among the most oxidizing of the thioredoxin-like proteins, and DsbA redox power is understood in terms of the electrostatic interactions involving the active site motif CPHC. The plant pathogen Xylella fastidiosa has two chromosomal genes encoding two oxidoreductases belonging to the DsbA family, and in one of them, the canonical motif CPHC is replaced by CPAC. Biochemical assays showed that both X. fastidiosa homologues have similar redox properties and the determination of the crystal structure of XfDsbA revealed substitutions in the active site of X. fastidiosa enzymes, which are proposed to compensate for the lack of the conserved histidine in XfDsbA2. In addition, electron density maps showed a ligand bound to the XfDsbA active site, allowing the characterization of the enzyme interaction with an 8-mer peptide. Finally, surface analysis of XfDsbA and XfDsbA2 suggests that X. fastidiosa enzymes may have different substrate specificities.

  3. Non-homologous isofunctional enzymes: a systematic analysis of alternative solutions in enzyme evolution.

    Science.gov (United States)

    Omelchenko, Marina V; Galperin, Michael Y; Wolf, Yuri I; Koonin, Eugene V

    2010-04-30

    Evolutionarily unrelated proteins that catalyze the same biochemical reactions are often referred to as analogous - as opposed to homologous - enzymes. The existence of numerous alternative, non-homologous enzyme isoforms presents an interesting evolutionary problem; it also complicates genome-based reconstruction of the metabolic pathways in a variety of organisms. In 1998, a systematic search for analogous enzymes resulted in the identification of 105 Enzyme Commission (EC) numbers that included two or more proteins without detectable sequence similarity to each other, including 34 EC nodes where proteins were known (or predicted) to have distinct structural folds, indicating independent evolutionary origins. In the past 12 years, many putative non-homologous isofunctional enzymes were identified in newly sequenced genomes. In addition, efforts in structural genomics resulted in a vastly improved structural coverage of proteomes, providing for definitive assessment of (non)homologous relationships between proteins. We report the results of a comprehensive search for non-homologous isofunctional enzymes (NISE) that yielded 185 EC nodes with two or more experimentally characterized - or predicted - structurally unrelated proteins. Of these NISE sets, only